
bbc

Assembler Service and DDX Reference

Adobe LiveCycle ES4
May 2016

Legal Notices
For more information, see http://help.adobe.com/en_US/legalnotices/index.html.

http://help.adobe.com/en_US/legalnotices/index.html

 3

Contents

1 About This Help ... 12
What’s new ...12
Additional information...12

Part I: DDX User Document
2 Introducing Document Description XML... 15

DDX document structure ..15
DDX building blocks..15
DDX principles...16

Result elements ..17
Source elements...19
Filter elements ..20
Profile elements..21
Grouping PDF sources..22
Grouping XDP sources and content..23

Input and output ..23
Using input and output maps ...23
Using External Data URLs for source and result values ..24

Using External Data URLs for string values ...25
Scope of elements that affect PDF or XDP properties ..25

Scope of PDF page properties...25
Scope of XDPContent...26

Specifying length ...27
Dynamic document assembly ...27

Optional source documents ..27
Lists of documents...27

Automatic Conversion of source documents to PDF documents ..28

3 Assembling PDF Documents... 30
Specifying source documents ...30

About base documents ...30
Page ranges..31
Other source attributes..32

Specifying multiple input streams ...32
List defined by a source that specifies a name in the input map ...33
List defined by a source that specifies URL...33
List defined by the matchSource and select attributes acting on source...34

Saving PDF documents ..35

4 Modifying Acrobat and XML Forms ... 37
Flattening forms ...37
Restrictions on documents containing forms..38

Acrobat forms..38
XFA-based forms ..39

5 Creating and Modifying Acrobat and XML (XFA) Forms .. 40

LiveCycle ES4 Contents
Assembler Service and DDX Reference 4

Assemble a simple XDP document..40
Dynamically insert forms or form fragments into an XFA form ..41
Resolve references ...42
Package an XDP document as PDF..43

PDF documents from single XFA-based forms ...44
Assemble XFA-based forms with other documents..44
PDF documents from Acrobat forms..46

Package a PDF document as XDP...46

6 Assembling PDF Packages and Portfolios ... 47
Understanding PDF packages ..47
About PDF package and portfolio properties..48

PDF Package property: package files and package specifications...48
PDF Portfolio properties ..49
Folders..51
Navigation welcome page and navigation heading...51

Creating a PDF Portfolio...52
Creating a PDF package...53
Change the cover sheet for an existing PDF package or portfolio...54

Choose a new cover sheet ..54
Add or remove pages to an existing cover sheet...55

Creating a package or portfolio specification from other ones ..56
Creating a package or portfolio specification by aggregating existing ones..56
Selecting the package specification from an existing package..56
Overriding properties in merged package or portfolio specifications...57

Modifying the package files in a PDF package or portfolio ..58
Adding single files to an existing PDF package or portfolio ..58
Adding documents from a PDF package or portfolio to another ..58
Modifying selected files in a PDF package or portfolio..59
Exporting and importing package files..59

Converting a PDF package or portfolio into a single PDF ...60

7 Disassembling PDF Documents.. 62

8 Working with Bookmarks and Thumbnails ... 64
Including and excluding bookmarks...64
Exporting and importing bookmarks ...65

Exporting book marks from a PDF document ...65
Importing bookmarks into a PDF document ...66

Creating bookmarks from source documents ...66
Sorting bookmarks ..68

9 Working with Annotations.. 72
Including and excluding comments ...72
Importing and exporting comments ..73
Selecting specific comments ...75
Working with links ...78

Removing links..79
Rationalizing links ..79

10 Working with File Attachments.. 81
Preserving and deleting file attachments ...81
Attaching files to a PDF document ..82

LiveCycle ES4 Contents
Assembler Service and DDX Reference 5

Document-level file attachments ..82
Page-level file attachments..83

Extracting file attachments...83
Understanding filename encoding..85

11 Adding Table of Contents or Blank Pages to an Assembly .. 86
Adding a table of contents ...86
Formatting a table of contents..88

Applying page properties and content to particular pages...88
Applying entry styles to specific line levels ..89

Adding blank pages ..90

12 Setting Other Document Properties .. 92
Working with metadata ...92

Modifying metadata properties..93
Working with layers...94
Setting the initial view..94
Using document-level JavaScript...94

13 Setting Page Properties .. 96
Applying page properties ...96
Page size and rotation ..96

Changing page size...97
Rotation and orientation...98
Interaction of page properties and content...99

Prepress settings.. 100

14 Adding and Manipulating Page Content...103
Adding and removing headers and footers .. 103

Adding headers and footers ... 104
Removing headers and footers.. 107

Adding and removing watermarks and backgrounds... 107
Adding page content... 109
Overlaying and underlaying pages... 109
Understanding rendering order .. 110
Understanding blending color spaces .. 111
Specifying styled text... 112

Style attributes... 113
Applying identifying labels ... 114
Built-in keys ... 115

Using style profiles.. 116
Formatting dates... 118

15 Specifying Page Labels..123
About page labels ... 123

Specifying page labels .. 125
Removing page labels ... 129

16 Working with Secured Documents...131
Specifying passwords .. 131
Accessing a password-protected document .. 133
Digital signatures .. 133

17 Querying Documents ..135

LiveCycle ES4 Contents
Assembler Service and DDX Reference 6

Getting document information.. 135
Getting the text of a document ... 135
Getting information about the DDX processor.. 136

Part II: DDX Reference
18 DDX Concepts ..139

Element relationships and roles... 139
Attributes, child elements, and text content .. 139

Attribute names, formatting, and possible values.. 139
Child elements ... 140
Text content.. 141

Element categories ... 141
Document assembly .. 142
Document components ... 143
Document disassembly .. 145
Document properties .. 145
Page labels... 146
Page properties.. 146
Page content... 147
Profile .. 147
Query ... 148

Built-in keys ... 148
_AdobeCoverSheet .. 150
Color-specifier ... 152
External Data URL ... 152
Page and document ranges.. 156
length-specifier.. 157

19 DDX Language Elements...158
About ... 158
ArtBox .. 158
AttachmentAppearance ... 159
Author.. 160
Background ... 161
BlankPage... 163
BleedBox... 164
Bookmarks .. 165

Bookmarks result... 166
Bookmarks source... 166
Bookmarks filter .. 167

Center .. 168
ColorScheme... 168
Comments.. 169

Comments result... 169
Comments source .. 171
Comments filter .. 172

DatePattern ... 173
DDX .. 176
DDXProcessorSetting... 177
DisplayOrder ... 178

LiveCycle ES4 Contents
Assembler Service and DDX Reference 7

DocumentInformation .. 179
DocumentText.. 179
Field.. 180

Field contained in Schema element... 180
Field contained in DisplayOrder element .. 181
Field contained in SortOrder element... 181

FieldData .. 182
File... 183
FileAttachments... 183

FileAttachments result .. 183
FileAttachments document-level source ... 185
FileAttachments page-level source.. 186

FilenameEncoding .. 187
FileSize... 188
Folder... 189
Footer ... 190
Header ... 193
Header (portfolio navigation pane) .. 195
InitialViewProfile.. 196
JavaScript ... 199
Keyword.. 200
Keywords.. 200
Left .. 201
LinkAlias.. 201
Links ... 202

Links result... 202
Links source... 203
Links filter... 203

MasterPassword .. 204
Metadata .. 204

Metadata result.. 205
Metadata source ... 205

MetadataSchemaExtension... 206
Navigator.. 206
NoBackgrounds.. 207
NoBookmarks.. 207
NoComments.. 207
NoFileAttachments... 208
NoFooters... 208
NoForms ... 209
NoHeaders ... 209
NoJavaScripts.. 210
NoLinks.. 210
NoPackage ... 211
NoPackageFiles .. 211
NoPageLabels ... 212
NoPortfolio .. 212
NoThumbnails .. 213
NoWatermarks.. 213
OpenPassword .. 214
OutputIntent... 215

LiveCycle ES4 Contents
Assembler Service and DDX Reference 8

Package... 215
Package defining element... 216
Package filter element... 216
Referencing a package or portfolio contained in a StyleProfile element... 216

PackageFiles.. 217
PackageFiles modifying elements .. 217
PackageFiles source elements.. 218
PackageFiles filter elements.. 221
PackageFiles select elements ... 222
PackageFiles result elements.. 223
PackageFiles import elements ... 224

PageContent ... 225
PageLabel .. 228
PageMargins ... 229
PageOverlay .. 231
PageRotation .. 233
PageSize ... 233
PageUnderlay ... 235
Password .. 237
PasswordAccessProfile .. 237
PasswordEncryptionProfile.. 238
PDF.. 239

PDF result .. 240
PDF source... 244

PDFGroup... 249
PDFsFromBookmarks... 250
PDFAProfile.. 251

PDFAValidation.. 252
Permissions ... 253

Portfolio .. 255
Portfolio filter element.. 255
Portfolio defining element .. 255

Resource ... 256
RichMedia... 257
Right ... 257
Schema.. 258
SortOrder.. 259
String.. 260
StyledText .. 261

Attributes used in the rich text elements... 261
Rich text elements .. 271

StyleProfile ... 279
Subject... 279
TableOfContents.. 280
TableOfContentsEntryPattern .. 282
TableOfContentsPagePattern... 283
TargetLocale.. 284
Title ... 285
Transform ... 286
TrimBox ... 287
WelcomePage... 291

LiveCycle ES4 Contents
Assembler Service and DDX Reference 9

XDP ... 292
XDP (generic) .. 292
XDP result .. 293
XDP source .. 295

XDPContent... 298

Part III: Supporting XML Grammars Reference
20 Extended Services..303

PDFGenerationSettings .. 303
ReaderRights ... 304
XFAConversionSettings .. 305

XCI... 305
XFAData .. 306

21 About Language ..308
About ... 308
Build ... 308
Copyright.. 308
Processor .. 308
Version... 309

22 Document Information Language..310
Categories of DocInfo data .. 310

DocInfo ... 311
Author ... 311
CreatedDate.. 311
Creator ... 311
DisplayOrder ... 312
Extensions.. 312
FormType .. 313
Keyword .. 313
Keywords.. 313
ModifiedDate.. 313
NumPages.. 313
Package... 314
PageLabel .. 314
PageLabels .. 315
PageRotations ... 315
PageSize ... 315
PageSizes ... 316
PageRotation .. 316
PDFAConformance... 316
Producer .. 317
Schema ... 317
SortOrder ... 318
Subject .. 318
Title... 319
Version .. 319
ViolationDetail ... 319
Violation ... 320

23 Bookmarks Language..321

LiveCycle ES4 Contents
Assembler Service and DDX Reference 10

About the Bookmarks language.. 321
Intent of bookmarks in a PDF document ... 321
XML representation of bookmarks ... 321
Action ... 325
Bookmark... 325
Bookmarks .. 326
Desc.. 326
Dest .. 326
File .. 326
Fit .. 327
FitB.. 327
FitBH .. 328
FitBV... 328
FitH ... 329
FitR.. 329
FitV.. 330
GoTo... 331
GoToE .. 331
GoToR.. 333
Launch... 333
Named... 333
Target .. 334
Title... 335
URI .. 336
Win ... 336
XYZ ... 337

Supported character encodings .. 338

24 Document Text Language...340
About the DocText XML language.. 340

Text encoding... 341
DocText .. 342
Page .. 342
Paragraph .. 342
ParagraphsPerPage.. 342
P1 .. 343
P2 .. 343
P3 .. 343
P4 .. 343
Quad .. 343
TextPerPage .. 344
WithQuads... 344
Word .. 344

25 File Attachments Language ..345
About the Attachments XML language .. 345

Attachment ... 346
Attachments ... 346
Description .. 346
File .. 347
FileName ... 347
Location ... 348

LiveCycle ES4 Contents
Assembler Service and DDX Reference 11

Page .. 349

26 PackageFiles Language...350
About the PackageFiles language... 350
PackageFiles reference.. 351

Description .. 351
DisplayOrder ... 351
FieldData .. 352
File .. 352
Folders... 354
Folder .. 354
Package... 354
PackageFile.. 354
PackageFiles (root element).. 355
Schema ... 355
SortOrder ... 356

Part IV: Special Topics
27 Handling Out of Memory Problems ...358

Operation checkpoints (DDXProcessorSetting)... 358
About operation checkpoints .. 358
Determine a checkpoint value ... 358

 12

1 About This Help

The Assembler service can assemble, disassemble, and manipulate PDF and XDP documents. For
assembly, it combines multiple source documents into a resultant document. For disassembly, it breaks a
source document into multiple resultant documents.

The Assembler service can also perform these tasks:

? Insert additional content such as headers, footers, and a table of contents

? Preserve, import or export existing content such as annotations, file attachments, annotations, and
bookmarks

? Encrypt and apply usage rights to documents

? Convert documents into a PDF/A compliant file for use in archiving

Each job submitted to the Assembler service includes a Document Description XML (DDX) document and
a set of source PDF and XML documents. The DDX document provides instructions on how to use the
source documents to produce a set of result documents. The set of result documents usually includes one
or more PDF and XDP documents, but it can also include XML.

What’s new
Here are the new features that the Assembler service introduces. These features are reflected in new DDX
elements:

? Resolve Assets: The Assembler service lets embed all referenced images in the source XDP files. You
can specify how the image references are resolved—resolve all relative or absolute references, all
references, or none.

? Support for PDF/A-2b standard: LiveCycle adds the support for PDF/A-2b standard for archiving. You
can specify the PDF/A compliance as either PDF/A-1b, PDF/A-2b and PDF/A-3b.

Deprecated

Document Services deprecates the support for PDF/A-1a standard.

Additional information
See the following documentation to learn more about Document Services.

For information about See

Document Services modules LiveCycle ES4 Overview

The features available with each service. This
document also introduces Assembler
Installation and Verification Sample (Assembler
IVS), which lets you test DDX documents.

 LiveCycle ES4 Service Reference

http://www.adobe.com/go/learn_lc_overview_11
http://www.adobe.com/go/learn_lc_services_11

Adobe LiveCycle 11 About This Help
Assembler Service and DDX Reference Additional information 13

Document Builder, which is a Workbench
perspective where you can create and test
assembly descriptors (DDX documents) without
working directly in XML.

Using Document Builder

Programmatically invoking Document Services
services. For example, to learn how to
programmatically invoke the Assembler service.

Programming with LiveCycle

Last-minute changes to the product LiveCycle ES4 Release Notes

For information about See

http://www.adobe.com/go/learn_lc_document_builder_11
http://www.adobe.com/go/learn_lc_programming_11
http://www.adobe.com/go/learn_lc_releaseNotes_11

 14

Part I: DDX User Document

This section is an in-depth description of using DDX to represent specific results.

 15

2 Introducing Document Description XML

Document Description XML (DDX) is a declarative markup language whose elements represent building
blocks of documents. These building blocks include PDF and XDP documents, and other elements such as
comments, bookmarks, and styled text.

DDX documents describe resultant documents in terms of source documents. They describe the desired
characteristics of source documents as they appear in assembled resultant documents. They do not
provide instructions on how to convert or assemble documents. DDX processors such as the Assembler
service determine the best way to produce the desired result.

DDX documents are templates for the documents that the Assembler service produces. A single DDX can
be used with a range of source documents.

DDX document structure
At the root of any DDX document is the DDX element. Every DDX document has the structure shown here.

<?xml version="1.0" encoding="UTF-8"?>
<DDX xmlns="http://ns.adobe.com/DDX/1.0/">

<!-- Other DDX elements -->

</DDX>

DDX elements must be in the DDX namespace: http://ns.adobe.com/DDX/1.0/. The trailing slash
character (/) is required. All elements and attributes described in this specification, unless otherwise
indicated, belong to the DDX namespace.

Note: The DDX element is required in all DDX documents, but for brevity, most of the examples in this
document abbreviate it or omit it entirely.

The DDX schema, ddx.xsd, is provided with the Assembler service.

[dep root]\sdk\schemas\PDFAssembler

The Assembler service runs a complete validation on DDX documents that you submit and reports
violations that it finds. For information about programmatically validating a DDX document, see Validating
DDX Documents in Programming with LiveCycle.

DDX building blocks
The primary function of the Assembler service is to assemble multiple PDF or XDP documents into a single
document. The Assembler service can also generate output types other than PDF. These other types
represent either components of PDF documents, such as bookmarks, or information related to PDF
documents.

You use DDX elements to specify everything about the document or documents you want the Assembler
service to generate. DDX elements can be grouped according to the following categories. Each category

http://www.adobe.com/go/learn_lc_programming_11

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference DDX principles 16

represents a building block of a PDF or other file type. The names of DDX elements reflect their content
type:

Document assembly elements represent PDF documents, pages from existing PDF documents (the
PDF element), XDP documents, or fragments from XDP documents. In addition, the
TableOfContents and BlankPage elements add new pages to an assembly.

Document disassembly elements (PDFsFromBookmarks) create multiple PDF documents from a
single document.

Document component elements represent parts of PDF documents that can be imported and
exported but are not pages or page content; for example, Bookmarks and Links.

Document property elements represent information associated with a document, such as Metadata
and InitialViewProfile.

Page content elements specify new content that is added to pages in PDF documents, such as
PageContent, Header and Watermark elements.

Page property elements specify how pages are viewed or printed, for example, the PageSize
element.

Page label elements (PageLabel) specify page identifiers that are used for navigation in viewer
applications. Page label elements can also add content to the page.

PDF Package elements contain metadata about file attachments used for PDF packages and
portfolios. These elements also provide viewing information for the package or portfolio and schemas
that define characteristics of custom metadata. PDF packages are compatible with PDF Portfolios
available in Acrobat 9.

Query elements specify XML documents containing specific types of information about PDF
documents. They include elements such as DocumentInformation and DocumentText.

These elements and their usage are described in detail throughout this document. For information, see
“DDX Concepts” on page 139.

DDX principles
The DDX grammar uses principles that make it easier to understand the role of elements and how they
relate to other elements. The following example describes a single PDF document called doc1.pdf that
assembles the contents of two existing PDF documents, doc2.pdf and doc3.pdf.

Example: Basic assembly

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<PDF result="doc1.pdf">

<PDF source="doc2.pdf"/>
<PDF source="doc3.pdf"/>

</PDF>
</DDX>

Here are some important points illustrated by this example.

First, DDX element names reflect the content that they represent:

? The PDF result element in the example represent PDF documents.

? The PDF source elements can specify PDF or other types of documents. If you provide a Microsoft Word
document with a PDF source element, the Assembler service attempts to convert it to PDF before

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference Result elements 17

assembling it in the resultant document. If that service cannot convert the document to PDF, it raises
an exception.

? Other DDX elements such as Bookmarks, Links, and Headers represent specific content that can be
added to or extracted from a PDF document. These types of content also implicitly contained within
the PDF element.

Second, a number of DDX elements can be used in different ways and are categorized depending on the
context in which they are used. These elements are identified using the following terminology:

? A result element typically has a result attribute and represents data being returned. Result elements
have no initial content but accumulate the content of their child elements. See “Result elements” on
page 17 for details.

? A source element typically has a source attribute and represents initial content. See “Source elements”
on page 19 for details.

? A filter element is used much the same way as a source element, but its content comes from source
elements nested within it. Filter elements contain child elements of a certain type. They do not contain
a result or a source attribute. See “Filter elements” on page 20 for details.

A PDF element can be either a result or source element, depending on the presence of the result
attribute or the source attribute. These elements are called PDF source or PDF result elements, rather
than simply PDF elements.

Third, the strings appearing as values of the result and source attributes are names that identify data
streams. These attributes can specify External Data URLs or names in the output and input HashMap
objects. See the “Programmatically Assembling PDF Documents” section in Programming with LiveCycle.

Note: Beginning with LiveCycle ES 8.2, the source and result elements can use External Data URLs to
specify documents or lists of documents. (See “Using External Data URLs for source and result
values” on page 24.)

The element name determines the type of data (for example, PDF or Bookmarks). The names can have
extensions for clarity (for example, .pdf or .xml), although using extensions is not required. The names
do not reference files in the file system, although data is typically associated with files. The data specified
by source elements typically originate from files. The data specified by result elements is typically saved to
files. The exception is package files in a portfolio. With the advent of folders in portfolios, Acrobat 9 treats
component files (what DDX calls package files) the same as files in a filesystem. For the best experience
when viewing a portfolio in Acrobat, it is important that all component or package files be given filename
extensions. (See “Input and output” on page 23.)

Fourth, sibling elements aggregate content of the same kind. In the example, the two PDF source elements
combine their PDF pages to contribute content, in the order specified, to the parent element. This
principle does not apply to page property and content elements. (See “Scope of elements that affect PDF
or XDP properties” on page 25.)

Result elements
Each DDX document typically contains, as children of the DDX element, one or more result elements. A
result element has a result attribute and represents data being returned.

Note: The PDFsFromBookmarks element is an exception; it is a result element that does not have a
result attribute. (See “Disassembling PDF Documents” on page 62.)

http://www.adobe.com/go/learn_lc_programming_11

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference Result elements 18

The example from above is repeated here. This example has a single PDF result element, which means that
the Assembler service creates a stream named doc1.pdf. This stream contains a PDF document. The
Assembler service returns the stream to the client.

<PDF result="doc1.pdf">
<PDF source="doc2.pdf"/>
<PDF source="doc3.pdf"/>

</PDF>

In addition to the PDF element, the following element types can contain a result attribute: Bookmarks,
Links, Comments, FileAttachments, XDP, PackageFiles, DocumentInformation, About,
DocumentText, and Metadata. The following example has three result elements (also known as result
blocks): two that return PDF and one that returns bookmarks.

Example: Result elements

<DDX>
<PDF result="doc1.pdf">

<!-- Additional elements here -->
</PDF>
<PDF result="doc2.pdf">

<!-- Additional elements here -->
</PDF>
<Bookmarks result="doc3.xml">

<!-- Additional elements here -->
</Bookmarks>

</DDX>

Result elements must be direct children of the DDX element. They have no content initially but take their
content from their children, which can include the following elements:

? Source elements specifying various types of content (see “Source elements” on page 19)

? Filter elements (see “Filter elements” on page 20)

? Other elements providing additional pages, page content, or modifications to existing content.

Result elements have a return attribute that can be either true (the default) or false. If true, the
result is returned to you as a stream (see “Input and output” on page 23). You can set this attribute to
false if you do not need the data returned. Use this setting when the result is used later in the DDX
document as a source element for a subsequent result element.

Note: The FileAttachments and PackageFiles result elements do not have a return attribute.
Instead, they have an extract attribute that serves a similar purpose (see “Working with File
Attachments” on page 81).

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference Source elements 19

Source elements
The content of result elements comes from source elements, which typically contain a source attribute.

Note: Some source elements can represent a list of streams. A list of streams is an ordered list when the
order is important, such as when assembling PDF sources. To select the sources from the input map
by their key names, create this list by specifying a sourceMatch attribute. Not all source elements
support the sourceMatch attribute. (See “Specifying multiple input streams” on page 32.)

Source elements represent existing content, which can be one of the following:

? Content that has been provided to the Assembler service (see “Input and output” on page 23).

? Content that is provided as an External Data URL. Such a URL resolves to a document or list of
documents.

? The content of a previous result element in the same DDX document.

In the example, repeated here, doc2.pdf and doc3.pdf reference streams containing PDF content provided
by the client or obtained from a previous result element.

<PDF result="doc1.pdf">
<PDF source="doc2.pdf"/>
<PDF source="doc3.pdf"/>

</PDF>

Sibling and child elements

The PDF source elements doc2.pdf and doc3.pdf are siblings. That is, they appear at the same level of the
hierarchy and have the same parent. When sibling elements provide the same type of content, their
content is aggregated to contribute content to their parent. In the example, the pages from doc2.pdf and
doc3.pdf are combined to produce the result.

In some cases, the order of sibling elements is significant in determining the result. For PDF elements, as in
the example above, the order is significant because a PDF document contains sequential pages. Therefore,
the pages from doc3.pdf are appended to the pages from doc2.pdf to produce the result, since doc3.pdf
appears after doc2.pdf. Other elements whose order is significant when they appear as siblings are
Bookmarks, TableOfContents, and BlankPage.

For other elements, such as Comments, order is not significant because the comments have identifying
characteristics indicating their position in the document.

The next two examples show the distinction between siblings and children.

Example: Aggregating bookmark content using sibling elements

<PDF result="doc1.pdf">
<PDF source="doc2.pdf"/>
<Bookmarks source="doc3.xml"/>

</PDF>

In the previous example, the PDF result element obtains its content from its child elements. The first child
is a PDF source element that provides PDF content to the result. The second child is a Bookmarks element
that specifies an XML stream containing bookmarks. (See “Bookmarks” on page 165.)

The source document doc2.pdf provides PDF page content but also provides other content types that are
inherent to PDF. These types include bookmarks, links, comments, and file attachments. The Bookmarks

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference Filter elements 20

source element in the example above is a sibling to the PDF source element. As a result, the bookmarks
from doc3.xml are appended to any existing bookmarks in doc2.pdf. That aggregation becomes the
bookmarks in the result.

In the following example, by contrast, bookmarks from one source replace bookmarks in another. (Unlike
result elements, source elements can be children of other source elements.)

Example: Using a child element to replace content in the parent

<PDF result="doc1.pdf">
<PDF source="doc2.pdf">

<Bookmarks source="doc3.xml"/>
</PDF>

</PDF>

In this example, as in the previous one, doc2.pdf provides the PDF page content of the resultant
document. In contrast, the Bookmarks element is a child of the PDF source element rather than a sibling.
The child element provides the bookmarks used in doc2.pdf. As a result, the bookmarks in doc3.xml
replace preexisting bookmarks in doc2.pdf.

Filter elements
In the previous examples, Bookmarks elements appeared as children of PDF elements. Bookmarks are
one of the content types that can be contained in PDF documents. By contrast, the following example
shows a PDF source element as the child of a Bookmarks result element.

Example: Using a bookmarks result element

<Bookmarks result="doc1.xml">
<PDF source="doc2.pdf"/>

</Bookmarks>

Because the PDF source element is the child of a Bookmarks element, only the bookmarks in doc2.pdf
contribute to the result element. Unlike a PDF element, which implicitly contains other types of content, a
Bookmarks element can contain only bookmarks. Therefore, doc1.xml is an XML representation of the
bookmarks that came from doc2.pdf. (See “Exporting and importing bookmarks” on page 65 for more
information on bookmarks.)

This example can be extended to have two PDF source elements. Since they are siblings, their content is
concatenated and the bookmarks from the combined document constitute the result.

Example: Getting bookmarks from two source documents

<Bookmarks result="doc1.xml">
<PDF source="doc2.pdf"/>
<PDF source="doc3.pdf"/>

</Bookmarks>

Note: The bookmarks in doc3.pdf are updated to adjust to their new page locations. For example, if
doc2.pdf has five pages, a bookmark in doc3.pdf that references page 2 is updated in the result
document to reference page 7.

In the following example, the result (doc1.xml) is used as a source element to provide content to a PDF
result element. The data from a result element can be specified as the input data in a source element

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference Profile elements 21

in a subsequent result block. The order of result elements matters. That is, if the PDF result block appeared
before the Bookmarks result block, an error occurs.

Example: Using a result as a source element in a subsequent step

<Bookmarks result="doc1.xml">
<PDF source="doc2.pdf"/>
<PDF source="doc3.pdf"/>

</Bookmarks>
<PDF result="doc4.pdf">

<PDF source="doc5.pdf"/>
<Bookmarks source="doc1.xml"/>

</PDF>

The following example produces an equivalent result, except that only doc4.pdf is returned and no
Bookmarks result is generated in the process.

Example: Using a bookmarks filter element

<PDF result="doc4.pdf">
<PDF source="doc5.pdf"/>
<Bookmarks>

<PDF source="doc2.pdf"/>
<PDF source="doc3.pdf"/>

</Bookmarks>
</PDF>

In this case, the Bookmarks element is called a filter element. It can function as a source or result element.
The role it plays depends on its relationship to other elements. In the above example, the Bookmarks
filter element contains the result of filtering the bookmarks from doc2.pdf and doc3.pdf. The same
element also provides source bookmark content to doc4.pdf.

Note: A filter element, just like a source element of the same type, provides only content of its type.
That is, no content from doc2.pdf and doc3.pdf other than bookmarks is included in the assembly.

Profile elements
Some DDX elements are profiles that contain information used by other elements. They are children of the
root DDX element. Therefore, they are never children of other elements but have a name attribute that lets
other element reference them. Using profiles lets you avoid rewriting the same DDX.

Note: The value of the name attribute must be unique among profiles of a given type.

The DDX profile elements are discussed in detail elsewhere in this document:

? InitialViewProfile (See “Setting the initial view” on page 94.)

? PasswordEncryptionProfile (See “Specifying passwords” on page 131.)

? PasswordAccessProfile (See “Accessing a password-protected document” on page 133.)

? StyleProfile (See “Using style profiles” on page 116.)

? PDFAProfile

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference Grouping PDF sources 22

Grouping PDF sources
As described in “Scope of elements that affect PDF or XDP properties” on page 25, page content, page
property, and page label elements modify pages within their scope.

The following example has three source documents. doc2 and doc3 are specified to have a page size of
8.5 x 14 inches. doc4 is specified to have a page size of 8.5 x 11 inches.

Example: Specifying different page sizes

<PDF result="doc1">
<PDF source="doc2">

<PageSize width="8.5in" height="14in"/>
</PDF>
<PDF source="doc3">

<PageSize width="8.5in" height="14in"/>
</PDF>
<PDF source="doc4"

<PageSize width="8.5in" height="11in"/>
</PDF>

</PDF>

To avoid having to specify the same PageSize information multiple times, you can group the source
elements that it applies go by using the PDFGroup element. The PDFGroup element provides its own
scope that can include more than one source document.

Example: Using the PDFGroup element

<PDF result="doc1">
<PDFGroup>

<PageSize width="8.5in" height="14in"/>
<PDF source="doc2"/>
<PDF source="doc3"/>

</PDFGroup>
<PDF source="doc4"

<PageSize width="8.5in" height="11in"/>
</PDF>

</PDF>

The source documents doc2 and doc3 are in the PDFGroup element scope and therefore use all
properties specified for that scope. They also inherit properties from higher scope that are not specified in
the PDFGroup scope. In addition, individual source elements can have their own scope, providing
properties that override the corresponding PDFGroup properties. (PDFGroup elements can also be
nested.)

Example: Using the PDFGroup element

<PDF result="doc1">
<PageSize width="8.5in" height="11in"/>
<PDFGroup>

<PageSize width="8.5in" height="14in"/>
<PDF source="doc2"/>
<PDF source="doc3">

<PageSize width="11in" height="17in"/>
</PDF>
<PDF source=doc4"/>

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference Grouping XDP sources and content 23

</PDFGroup>
<PDF source="doc5"/>

</PDF>

In this example, the page size property from the PDFGroup scope (8.5 x 14 inches) applies to doc2 and
doc4. doc3 overrides this property by specifying its own page size (11 x 17 inches). doc5 inherits the page
size from the top-level scope (8.5 x 11 inches).

PDFGroup elements group page elements that have similar properties. A PDFGroup element does not
represent a PDF document by itself. In particular, note the following points:

Page numbering: A PDFGroup element does not have independent page numbering (although it can
specify page labels). Consider a PDFGroup element that contains <BlankPage
forceEven="true"/>. In this case, a page is odd or even, based on its position in the resultant
document. The odd or even determination is independent of the page position within the PDFGroup.

Order of applying properties: Placing documents in a PDFGroup element does not change the order
in which DDX properties are applied. That is, DDX elements are applied to documents in a PDFGroup in
the same order they would be if the DDX were constructed without PDFGroup elements. (See
“Interaction of page properties and content” on page 99.)

Grouping XDP sources and content
The XDP element lets you create an XDP document. In addition, the XDP (generic) element lets you
package an XDP document in a PDF result.

Input and output
A DDX document can specify inputs and outputs by using input and output maps or URLs. A DDX
document can use a mix of these conventions.

Using input and output maps
When you invoke the Assembler service using a client interface, you can provide the following
information:

? A data stream containing a DDX document that specifies the output you want.

? One or more input data streams. These data streams, which represent PDF and other input types, are
mapped to names that appear in source elements in the DDX document.

Note: A source name (for PDF, XDP, and PackageFiles source elements) can be mapped to a single
data stream or to an ordered list of streams. The relationship between source names and streams
is described in detail in “Specifying multiple input streams” on page 32.

For details about specifying the source documents programmatically, see the Assembler service quick
starts in Programming with LiveCycle.

After the Assembler service processes the DDX document, it returns one or more data streams (unless it
throws an exception). These data streams are mapped to the names specified by result attributes of
result elements in the DDX document. If the result is specified with an External Data URL, then the
resultant data streams are output directly to those locations. The resultant streams are not returned in the
output map.

http://www.adobe.com/go/learn_lc_programming_11

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference Using External Data URLs for source and result values 24

There is no relationship between source names and the names of files. Likewise, result names mapped to
output data streams are not related to filenames. In fact, the result names may not even be valid filenames,
particularly in the case of the PDFsFromBookmarks element, which generates names based on
bookmarks. (See “Disassembling PDF Documents” on page 62.)

Therefore, names used in DDX can be generic names. DDX support for source and result names that are
independent of filenames lets you reuse the DDX with varying sets of data. You use the client interface to
specify where the source data originates and where the results are stored.

Note: Using filename extensions such as .pdf for source or result attributes is not necessary but can be
useful for clarity.

In particular, the original files that provided the input data streams are not modified unless you explicitly
overwrite them using the client interface. In the following example, the input stream doc1 has no
relationship with the result doc1. Also, if a subsequent PDF source element references doc1, the original
source for doc1 is used.

Example: Using the same name for source and result

<PDF result="doc1">
<PDF source="doc1"/>
<PDF source="doc2"/>

</PDF>

Note: Do not modify the input data streams though the result element. Doing so can cause the Assembler
service to hang.

Note: Having a result and source with the same name can affect which source document is treated as the
base document. (See “About base documents” on page 30.)

Input data streams are not returned to the client. If a result element contains multiple references to the
same source, each instance references the original input data. A typical reason to list the same source
document more than once is when specifying different page ranges for each one. (See “Page ranges” on
page 31.) The following example would concatenate two copies of doc2 and return them as doc1.

Example: Specifying a source document twice

<PDF result="doc1">
<PDF source="doc2"/>
<PDF source="doc2"/>

</PDF>

Using External Data URLs for source and result values
As of LiveCycle ES 8.2, the Assembler service enables the use of URL references instead of input map keys
within a DDX document. With the URL reference capability, you do not need to provide an input data
stream because the Assembler service retrieves it directly. Here are examples of files that you can reference
by using External Data URLs:

? Assigned to process variables. The Process URL variant is not available through the client interface. It is
available only when the Assembler service is invoked as part of process created in Workbench.

? Located in the repository.

? Accessible from the Internet or intranet.

? Accessible on the server’s locally accessible file system.

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference Using External Data URLs for string values 25

See also

“Lists obtained from input maps or External Data URLs” on page 28

“External Data URL” on page 152.

Using External Data URLs for string values
As of LiveCycle ES 8.2, the Assembler service enables the use of URL references instead of hardwired
strings within a DDX document. You can use URLs to add dynamically generated text to a document. For
example, if a URL references a process variable containing a string, that string can be used in a page
header in the resulting PDF document. (See “External Data URL” on page 152.)

Scope of elements that affect PDF or XDP properties
Some DDX elements affect PDF page properties or XDPContent properties. The scope of these elements
applies to the parent element and to any of the parent’s children.

DDX provides flexibility in applying different page content and page properties to different pages in the
result document. The following examples use the PageSize element to illustrate the concept of scope in
DDX. The same principles apply to other page property and page content elements.

When you use DDX to specify XDPContent, the properties apply to the descendents.

Scope of PDF page properties
In the first example, the PageSize element is a child of the PDF result element. The scope of the
PageSize element is its parent element. Therefore, it applies to the entire result document, and it affects
all source documents that make up the result.

Example: Specifying a page property for the entire result document

<PDF result="doc1">
<PageSize width="8.5in" height="11in"/>
<PDF source="doc2"/>
<PDF source="doc3"/>
<PDF source="doc4"/>

</PDF>

The next example is equivalent to the previous one, even though the PageSize element appears after
the PDF source elements. There can be only one PageSize element for any scope, and the order of this
element relative to its siblings does not matter. (The order of the PDF source elements does matter
because they specify the order of pages in the result document.)

Example: Specifying a page property for the entire result document

<PDF result="doc1">
<PDF source="doc2"/>
<PDF source="doc3"/>
<PDF source="doc4"/>
<PageSize width="8.5in" height="11in"/>

</PDF>

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference Scope of XDPContent 26

In the next example, an additional PageSize element appears as a child of the first PDF source element.
This addition creates a new scope. The properties specified by this PageSize element apply only to the
pages in doc2, which have a page size of 8.5 x 14 inches. doc3 and doc4 retain the page size specified by
the PageSize element at the top level (8.5 x 11 inches).

Example: Overriding a page property at a lower scope

<PDF result="doc1">
<PageSize width="8.5in" height="11in"/>
<PDF source="doc2">

<PageSize width="8.5in" height="14in"/>
</PDF>
<PDF source="doc3"/>
<PDF source="doc4"/>

</PDF>

Note: The top-level scope is considered to be that of result elements that are direct children of the DDX
element. For example, a PageSize element cannot be a child of the DDX element with the
intention of having it apply to all result documents.

The PDFGroup element can be used to create another level of scoping. (See “PDFGroup” on page 249.)

For more information on how DDX elements affect the contents or properties of PDF pages, see “Setting
Page Properties” on page 96, “Adding and Manipulating Page Content” on page 103, and “Specifying Page
Labels” on page 123.

Odd and even pages

Some page property and page content elements have an alternation attribute that lets you specify
different values for even and odd pages within a given scope. You use this feature by specifying the
element twice and setting the alternation attribute to OddPages for one and EvenPages for the
other.

The default value for alternation is None. This value means that there is no difference between odd
and even pages and the element can appear only once in a given scope.

The alternation attribute applies only to the following elements:

? Page properties: PageMargins, ArtBox, TrimBox, and BleedBox

? Page content: Footer, NoFooters, Header, NoHeaders, Watermark, NoWatermarks,
Background, NoBackgrounds, PageContent

Scope of XDPContent
Similar to PDF source element, the XDPContent element can contain other XDPContent elements. The
properties specified by an XDPContent element apply to the element and to the children of the element.
For example, the nested XDPContent element inherits the value of its parent’s includeSubFolders
attribute.

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
 <XDP result="myFormResult">
 <XDP source="myFormSource">
 <XDPContent fragment="myFragment" includeSubFolders="false"

insertionPoint="myInsertionPoint" source="myFragmentSource">
<XDPContent fragment = "myOtherFragment"

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference Specifying length 27

insertionPoint="myOtherInsertionPoint"
source="myOtherFragmentSource">

</XDPContent>
 </XDP>
 </XDP>
</DDX>

Specifying length
Attributes of some DDX elements specify information about distance or length. These values are
expressed as a positive or negative value, along with a unit of measurement without any spaces. These are
examples of the allowable units:

? "1.0in": inches

? "25.4mm": millimeters

? "2.54cm": centimeters

? "72.0pt": points (1/72 inch)

Dynamic document assembly
DDX provide several mechanisms that let you dynamically create documents.

Optional source documents
All DDX source elements are required by default, meaning that an error is thrown if any source content is
missing. However, PDF and XDP source data can be specified as optional by specifying the required
attribute with a value of false. This setting instructs the Assembler service to skip over missing source
data without reporting errors. Use the required attribute for sources with these conditions:

? DDX specifies the source

? At execution time, some of the sources are missing

For example, a stock brokerage house sends statements to its customers every month describing their
total portfolio. Some customers own stocks or bonds, while others do not. In the latter case, source
documents describing the stocks or bonds are absent. Consider the following example.

<PDF result="CompletePortfolio">
<PDF source="Stocks" required="false"/>
<PDF source="Bonds" required="false"/>
<PDF source="Options" required="false"/>
<PDF source="TotalFunds"/>

</PDF>

Lists of documents
The PDF, XDP, and PackageFiles source elements can have a single data stream or an ordered list of
data streams. The ordered list can be supplied via an entry in the input map or an External Data URL.

See also

“Specifying multiple input streams” on page 32

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference Automatic Conversion of source documents to PDF documents 28

Lists obtained from input maps or External Data URLs

Lists are often used when the Assembler service is being driven from a watched folder. They are also useful
when you use a single DDX document to assemble an indeterminate number of documents. Because all of
the files in the list are included in a single PDF, XDP, or PackageFiles element, they are all treated
identically. That is, they simply occur in the resulting file in the order they occur in the list.

Lists constructed with the sourceMatch attribute

Lists can be constructed by the DDX document at run-time by using the sourceMatch attribute in the
PDF, XDP, or PackageFiles elements. The value of sourceMatch is a regular expression pattern (in
Java™ syntax) that matches keys in the input map. The result of apply the sourceMatch attribute is a list
of data streams with names that the match the regular expression. If the value of a matching key is itself a
list, then the contents of that list are included in the constructed list. Typically, however, sourceMatch is
used to build a list from files specified individually in the input map or URL.

The constructed list can be modified by using the optional sortOrder, sortLocale, and matchMode
attributes. By default, the constructed list is sorted in alphanumeric ascending order. You can change this
behavior by setting the sortOrder attribute value to Descending. By default, the locale used for sorting
is the default locale. The TargetLocale element specifies the default locale. The locale used for sorting
can be changed with the sortLocale attribute. Finally, a list can be built from keys not matched by
specifying a matchMode value of Exclude. Setting matchMode to Exclude is useful for including
documents that omitted by a previous sourceMatch list construction.

Lists obtained by apply the sourceMatch attribute to from input maps or
External Data URLs

To achieve even more flexibility, both source and sourceMatch can be specified within a single PDF,
XDP, or PackageFiles element. Using both attributes enables the input map to have different
configurations with either the list being built before the Assembler service is invoked or using the
Assembler service to build the list at run-time capability.

Automatic Conversion of source documents to PDF documents
If the type of a source file for a <PDF> element is not PDF, the Assembler service invokes another LiveCycle
service to convert the file to PDF. In particular, the Assembler service invokes the following services
depending on the type of file and other DDX elements:

? Generate PDF service. Converts native file formats to PDF. Examples of native file formats are Microsoft
Word, Excel, and HTML. The supported native file formats depends on the configuration of the
Generate PDF service.

? Generate PDF service. Converts into PDF any XDP element that appears in a PDF result element. The
result is a PDF document that can be assembled with sibling elements in the parent PDF result
element.

? DocConverter service. Converts a PDF document to a PDF/A document.

? Generate 3D PDF service. Converts CAD file formats to PDF (Windows only).

? Distiller service. Converts an Adobe PostScript® file to PDF.

? Forms service. Merges XML data into an XML form (XFA template). The XML data is specified with the
XMLData element. The result is a PDF file containing the filled form.

Adobe LiveCycle ES4 Introducing Document Description XML
Assembler Service and DDX Reference Automatic Conversion of source documents to PDF documents 29

? Output service. Flattens a dynamic XML form template (XFA template) to remove its interactive
qualities. (See “Flattening forms” on page 37.)

? Reader Extensions service. Enables Adobe Reader® users to digitally sign the resulting PDF document.

The PDFGenerationSettings and XFAConversionSettings elements specify conversion settings
for PDF and XFA conversion, respectively. (See “Extended Services” on page 303.)

 30

3 Assembling PDF Documents

The Assembler service can assemble PDF and XDP documents from other documents.

Note: If a PDF file contains invalid XMP metadata, the Assembler service throws an exception when
processing that file. The error message states that a "SyncMetadataTask task failed for document."

Such errors can occur with documents produced by outdated software, such as old versions of
Adobe Distiller® or Adobe FrameMaker®. You can avoid such problems by regenerating the input
PDF document using updated software.

Specifying source documents
The Assembler service can assemble documents from one or more source documents. It also supports
several options for specifying source documents.

Note: Beginning with LiveCycle ES 8.2, the non-PDF documents can used as PDF source documents.
Assembler service automatically converts such documents to PDF documents. The Assembler
service performs the conversion by using the Generate PDF service. The
PDFGenerationSettings element specifies conversion parameters. (See
“PDFGenerationSettings” on page 303.)

About base documents
When assembling multiple PDF source documents, one of them is considered to be the base document.
The base document is used as the source of certain properties of the result document, including document
properties, form data, document-level JavaScript code, and viewer preferences. Other source documents
do not contribute these properties to the result. However, they do contribute the other PDF building
blocks, such as page content and properties (see “DDX building blocks” on page 15) to the result
document.

For document-level components, like file attachments, they are only included from a document once, even
if the document is specified multiple times.

Note: Document-level file attachments are assembled from a non-base document when the entire PDF
document is part of the assembly. If only some pages from a non-base document are assembled,
then the document-level file attachments for that PDF are not included.

The Assembler service determines the base document by applying these considerations (in order):

1. The PDF source element that contains a baseDocument attribute whose value is true is the base
document. The default value of baseDocument is false. It is an error for more than one source
element in a PDF resultant block to have baseDocument set to true.

2. Otherwise, the first PDF source element, if any, whose source attribute has the same value as the PDF
resultant element’s result attribute is the base document.

3. Otherwise, the first PDF source element in the PDF result block is the base document.

The following example illustrates these cases.

Adobe LiveCycle ES4 Assembling PDF Documents
Assembler Service and DDX Reference Page ranges 31

Example: Setting the base document

<PDF result="doc3">
<PDF source="doc1"/>
<PDF source="doc2" baseDocument="true"/> <!--base document (explicit)-->

</PDF>

<PDF result="doc2">
<PDF source="doc1"/>
<PDF source="doc2"/> <!--base document (source matches result)-->

</PDF>

<PDF result="doc3">
<PDF source="doc1"/> <!--base document (first source document)-->
<PDF source="doc2"/>

</PDF>

Page ranges
Specify the range of pages to include for each source document by setting the pages attribute of each
PDF source element. If this attribute is not set, all pages are included by default. Page ranges can include
one or more of the following items:

? A positive integer that specifies a single page number in the source (where the pages are numbered
starting with 1)

? The keyword last means the last page number

? The keyword penultimate means the next-to-last page number

? A continuous, increasing range of pages separated by a hyphen (for example, 1-last)

? A discontinuous range of pages separated by commas (for example, 1,3,5,10)

Note: Spaces are allowed in page ranges.

Example: Specifying page ranges

<PDF source="doc1" pages="5"/> <!--page 5 only-->
<PDF source="doc1" pages="2-4"/> <!--pages 2 through 4-->
<PDF source="doc1" pages="1-3,6-9,20-21"/> <!--pages 1,2,3,6,7,8,9,20,21-->
<PDF source="doc1" pages="2-penultimate"/> <!--all but first & last pages-->
<PDF source="doc1"/> <!--all pages by default; equivalent to "1-last" -->

The following example assembles three PDF documents, specifying page ranges for the first two pages. It
is equivalent to deleting pagES4-4 from doc1.pdf, deleting page 7 from doc2.pdf, and then concatenating
the documents.

Example: Assembling pages from documents

<PDF result="doc4.pdf">
<PDF source="doc1.pdf" pages="1-2,5-last"/>
<PDF source="doc2.pdf" pages="1-6,8-last"/>
<PDF source="doc3.pdf"/>

</PDF>

Note: For PDF source’s that specify multiple input documents, use the select attribute to specify
document ranges. (See “Specifying multiple input streams” on page 32.)

Adobe LiveCycle ES4 Assembling PDF Documents
Assembler Service and DDX Reference Other source attributes 32

Other source attributes
In addition to the source and pages attributes, PDF source elements can have these attributes, which
are discussed further in other sections:

? bookmarkTitle specifies the title of a bookmark that is added to the resultant document (see
“Creating bookmarks from source documents” on page 66).

? includeInTOC controls whether the source document appears in the table of contents, if present
(see “Adding a table of contents” on page 86).

? access specifies a password for opening the source document if it is encrypted (see “Accessing a
password-protected document” on page 133).

? A number of attributes (matchMode, required, select, sortLocale, sortOrder) are used to
specify documents from a selection of multiple source documents. (See “Specifying multiple input
streams” on page 32). The sortLocale, sortOrder, and matchMode attributes apply only when the
sourceMatch attribute is used to create an ordered list.

Note: Data specified by a PDF source element can be in XML Data Package (XDP) format or PDF. XDP is an
XML format that can contain PDF data and form data.

Specifying multiple input streams
In most of the examples in this document, a PDF source element represents a single PDF document. You
can also map multiple documents to a single PDF source element, XDP source element, XDPContents, or
PackageFiles source element.

Names are mapped to streams with an input map. An input map contains entries that specify names and
corresponding values. The values can represent either a single input stream or an ordered list of input
streams. (See the "Programmatically Assembling PDF Documents" section in the Programming with
LiveCycle.)

A source element can have a sourceMatch attribute instead of a source attribute. (If neither is present,
the DDX is invalid.) The Assembler service uses these attributes and other source element attributes to
generate an ordered input list of one or more streams. The ordered input list is used to generate content for
the parent result element.

The Assembler service uses the following process to create the input list for a PDF, XDP, XDPContent, or
PackageFiles element:

? If the source attribute resolves to a document or list of document, the input is initially set to the
stream or ordered list of streams mapped to the name. If the source attribute is not a URL, the
Assembler services looks for the named document or document list in the input map or among the
previous result elements.

If source is present and the name is not found in the input map or from a previous result,
sourceMatch is used, if present. If sourceMatch is not present, an error occurs if the required
attribute is set to true. Otherwise, the source element is ignored and contributes no content to the
resultant document.

? sourceMatch specifies a regular expression whose syntax is implemented in the
java.util.regex package for Java. If source is not present, sourceMatch must be present. The
sourceMatch regular expression is used to select one or more source names from the input map. If
source is present and contains an URL, then the sourceMatch regular expression is used to select

http://www.adobe.com/go/learn_lc_programming_9
http://www.adobe.com/go/learn_lc_programming_9

Adobe LiveCycle ES4 Assembling PDF Documents
Assembler Service and DDX Reference List defined by a source that specifies a name in the input map 33

one or more source names from the URL. The URL can resolve to a document or a list of documents. If
source is present and its value is a key in the input map, then sourceMatch is ignored.

When the names are matched, matchMode indicates whether to include or exclude the matched
names. This list of names is then sorted according to sortOrder to result in an ordered list of names.

The matching names are sorted based on the value of the sortOrder attribute, either Ascending
(the default) or Descending. The Assembler service creates an ordered list of streams by taking each
name in the sorted list and adding each of its streams, in order, to the input list. (The sort order can be
refined for different languages by using the sortLocale attribute.)

? The final input list is created by applying the select attribute, which specifies a range of documents in
the list. Its syntax is the same as the syntax used for page ranges (see “Page ranges” on page 31). For
example, "2-last" selects the second-through-last document in the list. If the range results in no
documents being selected, the input list is empty.

If the value of matchMode is Exclude, the select attribute value is inverted. That is, the input list
includes all streams other than those streams specified by select.

If the final input list is empty (consists of no streams), the source element does not add any content to the
assembly. For example, if the select attribute is set to "3" and only two source documents are in the
input map, then the final input list is empty. You can specify that an empty list is acceptable by setting the
value of the required attribute to false. If the value of required is true (the default), an error occurs.

List defined by a source that specifies a name in the input map
In the following example, there are two keys in the input map, Cover and Files. Assume that Cover is
supplied as a single document and Files is supplied as a list of documents. The first file in the assembly,
Cover, does not have a Header applied. Each file in the Files list has a Header containing the value of
the Title keyword in metadata of the first file in the list using the built-in key SourceTitle. The same DDX
can be used when Files is a single file or a list of files. Consider the following example.

Example: Input map that specifies multiple input streams

<PDF result="AnAssembly">
<PDF source="Cover"/>
<PDF source="Files">

<Header><Center>
<StyledText><p>_SourceTitle</p></StyledText>
</Center></Header>

</PDF>
</PDF>

Note: When Files in the above example refers to a list of documents, the metadata properties of the first
file in the list are used for built-in keywords like SourceTitle.

List defined by a source that specifies URL
You can use External Data URLs as the value of source attributes. The URL can resolve to a single document
or to a folder. If the URL resolves to a folder, the Assembler service (by default) imports the contents of the
folder.

<PDF result="AnAssemblyAlso">
<PDF source="File:///c:/myDirectory/myFile" select="1" />
<PDF source="File:///c:/myDirectory/myFolder" select="2-last">

<Header><Center>

Adobe LiveCycle ES4 Assembling PDF Documents
Assembler Service and DDX Reference List defined by the matchSource and select attributes acting on source 34

<StyledText><p>_SourceTitle</p></StyledText>
</Center></Header>

</PDF>
</PDF>

List defined by the matchSource and select attributes acting on source
The following example shows how the select and sourceMatch attributes act on the source
attribute. It shows how to use regular expressions to select documents from a list of documents. The value
"chap[\d]+" is a regular expressions that uses the following conventions:

? [] encloses the characters to match

? \d specifies any digit

? + matches one or more of the preceding search criterion

The regular expression translates into this English expression: Find files that have names that include the
string chap followed by one or more digits.

Example: sourceMatch selects files from a source that is an External Data URL

<PDF result="mybook" save="Full"/>
<PDF source="intro"/>
<PDF source="Chapters" baseDocument="true"

sourceMatch="chap[\d]+" select="1"/>
<PDF source="Chapters"

sourceMatch="chap[\d]+" select="2-last"/>
<PDF source="Appendices"

sourceMatch="appendix[\d]+"/>
<PDF source="index"/>

</PDF>

The following two examples are of input maps that can be used with this DDX document. The first one
maps each logical name to a single data stream as follows:

In the example, the source attributes of the first and last PDF source element (intro and index) match
names in the input map. Therefore, those streams are used in the resultant document.

Logical name Data stream

intro stream_1

chap1 stream_2

chap2 stream_3

chap3 stream_4

chap4 stream_5

appendix1 stream_6

appendix2 stream_7

index stream_8

Adobe LiveCycle ES4 Assembling PDF Documents
Assembler Service and DDX Reference Saving PDF documents 35

The source attributes of the other PDF source elements (Chapters and Appendices) do not match any of
the names in the input map. Therefore, the sourceMatch attribute is checked. The regular expression
"chap[\d]+" matches chap1, chap2, chap3, and chap4 in the input map. The select attribute "1"
selects the first of those streams (chap1) and "2-last" selects the rest of them. (If only one name
matched "chap[\d]+", then "2-last" would generate an error unless the value of required was
false.)

Similarly, the sourceMatch expression "appendix[\d]+" matches appendix1 and appendix2.

In the following example, the input map maps each logical name to an ordered list of data streams.

In this case, all of the names match source attributes in the DDX. In the case of Chapters and Appendices,
multiple streams are used for the source elements.

PDF, XDP, or PackageFiles source elements that represent multiple streams are equivalent to
multiple versions of those elements representing individual streams. The other attributes in the
“sourceMatch selects files from a source that is an External Data URL” on page 34 example have these
meanings:

baseDocument: If true, the first document in the ordered list is marked as the base document.

bookmarkTitle: If present, the value is a built-in key (see “Built-in keys” on page 115); otherwise, the
bookmarks are identical for all selected input documents. For example,
bookmarkTitle="_SourceTitle" uses the metadata title of each PDF document as the bookmark
title.

includeInTOC: If true, it applies for all selected input documents.

pages: If set, the page range is applied separately to each selected input document.

access: If set, the same password specified by PasswordAccessProfile is used to open each
selected input document.

Saving PDF documents
The Assembler service provides several options for saving PDF documents.

Note: The term save in this discussion does not mean actually saving a file to disk. It means that the result
stream is structured in such a way that it can be saved as a PDF file.

The PDF result element’s save attribute specifies the save options:

Incremental: Performs an incremental save. This means that changes to the document are placed at
the end of the file, and the bytes corresponding to the original file are unchanged. Use this option to

Logical name Data streams

intro stream_1

Chapters stream_2, stream_3, stream_4, stream_5

Appendices stream_6, stream_7

index stream_8

Adobe LiveCycle ES4 Assembling PDF Documents
Assembler Service and DDX Reference Saving PDF documents 36

maximize the speed of the save operation and to preserve certifying signatures (certification) and
reader enabled rights.

If unspecified, the default is to save incrementally.

Incremental saves are relative to the base document (see “About base documents” on page 30). That is,
the bytes in the result stream begin with the original bytes of the base document, followed by updates.
As a result, an incrementally saved document is always larger than the original, even if pages were
removed. The removed pages are retained in the PDF document.

Full: Performs a full save, which means that the file is restructured so that duplicate and obsolete
information is removed. This results in a smaller file size than when doing an incremental save. Use this
option to minimize the size of the resultant PDF file.

Note: Typically, an incremental save takes less time to perform than a full save. However, when
deleting pages from a document (by specifying page ranges), there is not a significant
performance difference in the current version of the Assembler service.

Because the bytes corresponding to the original base document are not preserved, all digital
signatures in the document are invalidated. Such invalidated signatures include signatures for
certification and rights enabled for Adobe Reader®,

FastWebView: Restructures the file so that it is optimized for viewing on the web. This optimization
(called linearization in the PDF Reference guide) allows individual pages to be loaded quickly, without
the need to read the entire file. Use this option to minimize the size of the resultant PDF file;
FastWebView results in the smallest file sizes.

This type of optimization is considered a full save because incremental updates are incorporated into
the file when it is restructured. As with Full, all digital signatures in the document, including those
applying to certification and rights enabled for Adobe Reader, are invalidated.

When the value of save is unspecified, the Assembler service follows this behavior:

? If the PDF version is 1.4 or later, an incremental save is performed.

? If the PDF version is less than 1.4, a full save is performed.

 37

4 Modifying Acrobat and XML Forms

PDF documents can have interactive form fields that are used to collect data from a user. These form fields
include elements such as text boxes, radio buttons, and lists. Collectively, the form fields are called the
document’s form. PDF documents can have two types of forms:

? Traditional Acrobat forms.

? Forms based on the XML Forms Architecture (XFA) that are created in Adobe LiveCycle Designer ES4.
XFA forms have two varieties:

? Static XFA forms have a fixed layout of the form fields.

? Dynamic XFA forms can have a variable arrangement of form fields and a variable number of pages
depending on the data that is provided.

There are restrictions on the operations the Assembler service can perform depending on the presence of
forms. Documents containing Acrobat forms have the fewest restrictions, and dynamic XFA forms have the
most restrictions. See “Restrictions on documents containing forms” on page 38 for details.

To avoid these restrictions, you can flatten form fields in your source documents, as described in the next
section.

Flattening forms
Flattening means that form fields retain their graphical appearance but are no longer interactive. For
example, a check box still appears as a rectangle, but the user cannot click it to indicate a selection. In
addition, scripts associated with the fields no longer function.

To flatten all form fields for Acrobat forms or XFA-based forms, use the NoForms element as a child of a
PDF or PDFGroup element. The flattening is performed for the specified scope. Flattening is useful, for
example, if you want to assemble documents that contain XFA forms. If a non-base document contains
XFA-based forms, an error is thrown when that document is aggregated with other documents. To avoid
such an error, use the NoForms element to flatten all forms in the document. Alternatively, use the NoXFA
element to flatten all XFA-based forms in the document. The properties in the
XFAConversionSettings element specify how XFA-based forms are flattened. (See “Assemble
XFA-based forms with other documents” on page 44 and “XFAConversionSettings” on page 305.)

Note: If the PDF document is a dynamic XML form template (XFA form) and the flatten attribute is true,
the Assembler service uses the Output service to flatten the form. If that service is unavailable, an
exception is thrown.

The Assembler service itself flattens static XML forms and Acrobat forms.

In this example, any form fields in doc3.pdf are flattened. If doc2.pdf contains an Acrobat or XFA form, it is
retained.

Example: Flattening forms

<PDF result="doc1.pdf">
<PDF source="doc2.pdf"/>
<PDF source="doc3.pdf" >

LiveCycle ES Assembler Modifying Acrobat and XML Forms
Assembler Service and DDX Reference Restrictions on documents containing forms 38

<NoForms/>
</PDF>

</PDF>

To flatten only XFA forms, you use the NoXFA element as a child of a PDF or PDFGroup element. If the
documents in the scope of the NoXFA element do not have XFA forms, they are not modified.

The following example flattens XFA form fields in doc2.pdf and assembles doc2.pdf with doc1.pdf. The
resultant document is returned through the doc3.pdf output map.

Example: Flattening XFA forms

<PDF result="doc3.pdf">
<PDF source="doc1.pdf"/>
<PDF source="doc2.pdf">

<NoXFA/>
</PDF>

</PDF>

When the base document is an XFA form, you have the option of saving the result document in XDP format
instead of PDF. XDP is an XML format that can contain PDF data as well as form data. To save a document as
XDP, you set the format attribute to XDP as in this example.

Example: Saving an XFA form as XDP

<PDF result="doc3.pdf" format="XDP">
<PDF source="doc1.pdf"/> <!--Base document; must be XFA form-->
<PDF source="doc2.pdf"/>

</PDF>

Note: Flattening form fields can have side effects. Consider a document that contains JavaScript code that
runs when the document is opened. If the JavaScript references a specific form field and forms have
been flattened, an error occurs.

See also

Create a Flat PDF

“Creating and Modifying Acrobat and XML (XFA) Forms” on page 40

Restrictions on documents containing forms
There are restrictions that apply to documents that contain forms. These restrictions do apply when the
forms are flattened by using the NoXFA or NoForms elements.

Acrobat forms
When you assemble multiple documents that contain only Acrobat forms, the Assembler service retains all
form fields by default. In general, there are no restrictions on the operations that the Assembler service can
perform on documents containing Acrobat forms. However, if a document contains signature fields,
certain operations invalidate the signatures. (See “Digital signatures” on page 133.)

http://tm.corp.adobe.com/techCommunity/viewtopic.php?f=90&t=6970

LiveCycle ES Assembler Modifying Acrobat and XML Forms
Assembler Service and DDX Reference XFA-based forms 39

XFA-based forms
You can assemble a PDF document containing a static XFA-based form with other documents if these
conditions are satisfied:

? PDF document containing the form is the base document

? Form is static XFA. A dynamic XFA document cannot be assembled with any other documents.

? None of the other PDF documents can contain XFA forms. (They can contain Acrobat forms.)

If any of these conditions are violated, an exception is thrown.

You can assemble multiple XFA-based forms into a single form, export the result as a PDF document, and
then assemble that PDF document with other PDF documents. (See “Package an XDP document as PDF”
on page 43.)

In addition to assembly restrictions, static XFA documents also have these restrictions:

? You can disassemble a static XFA document, but the result documents are not XFA documents.

? Using the PageOverlay or PageUnderlay elements throws an exception.

? Attempting to change the page size or rotation of a document or to transform the page contents
throws an exception.

For unflattened dynamic XFA documents, no operations are permitted that modify the document, add
content, change page properties, or the initial view. The following operations are permitted with dynamic
XFA documents:

? Query operations

? Export operations (for example, exporting bookmarks, links, and annotations).

? Specifying encryption

? Removal of certification or usage rights

? Saving as XDP

? Disassembly (but the result documents are not XFA documents)

 40

5 Creating and Modifying Acrobat and XML (XFA)
Forms
You can use the Assembler service to dynamically assemble multiple XDP documents into a single XDP
document or into a PDF document. For source XDP files that include insertion points, you can specify the
fragments or entire forms to insert at the insertion point.

Here are some of the ways you can assemble XDP documents:

? “Assemble a simple XDP document” on page 40

? “Dynamically insert forms or form fragments into an XFA form” on page 41

? “Package an XDP document as PDF” on page 43

? “Package a PDF document as XDP” on page 46

See also

Guidelines for Dynamically Assembling Customized Forms and Documents

Assemble a simple XDP document
The following illustration shows three source XDP documents being assembled into a single resultant XDP
document. The resultant XDP document contains the three source XDP documents and the data for the
base XDP document. The resultant document obtains basic attributes from the base document. The base
document is the XDP source that includes a baseDocument="true" attribute or the first source XDP
document.

Here is a DDX expression that produces the result illustrated above.

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<XDP result="MyXDPResult">

<XDP source="sourceXDP1"/>
<XDP source="sourceXDP2"/>

http://www.adobe.com/go/learn_lc_dynamic_assembly_9

LiveCycle ES Assembler Creating and Modifying Acrobat and XML (XFA) Forms
Assembler Service and DDX Reference Dynamically insert forms or form fragments into an XFA form 41

<XDP source="sourceXDP3"/>
</XDP>

</DDX>

The first XDP source element is the base document, provided it does not contain a fragment. The
configuration and data in the XDP result is obtained from the base document.

Dynamically insert forms or form fragments into an XFA form
The Assembler service lets you create an XFA form by inserting forms or form fragments into another XFA
form.

Support for dynamic insertion of form fragments supports single-source control. You maintain a single
source of commonly used components. For example, you can create a fragment for your company banner.
If the banner changes, you only have to modify the fragment. The other forms that include the fragment
are unchanged.

Form designers use Designer 11 to create form fragments. These fragments are uniquely named subforms
within an XFA form. The form designers also use Designer 11 to create XFA forms that have uniquely
named insertion points. You (the programmer) write DDX expressions that specify how fragments are
inserted into the XFA form.

You can control the fragments or forms that are inserted into a form by the removal or retention of
insertion points. For example, if an insertion is removed after a fragment is inserted, then subsequent
fragments are not inserted into that same insertion point.

The following illustration shows two XML forms (XFA templates). The form on the left contains an insertion
point named myInsertionPoint. The form on the right contains a fragment named myFragment.

When the Assembler service interprets the following DDX expression, it creates an XML form that contains
another XML form. The myFragment subform from the myFragmentSource document is inserted at the
myInsertionPoint in the myFormSource document.

Example: Dynamic assembly of form fragments

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">

LiveCycle ES Assembler Creating and Modifying Acrobat and XML (XFA) Forms
Assembler Service and DDX Reference Resolve references 42

<XDP result="myFormResult">
<XDP source="myFormSource">

<XDPContent fragment="myFragment"
insertionPoint="myInsertionPoint" source="myFragmentSource"/>

</XDP>
</XDP>

</DDX>

Resolve references
XDP documents can contain images referenced either through absolute or relative references. Assembler
service, by default, retains the references to the images in the resultant XDP document.

You can specify how the Assembler service handles the images references in the source XDP documents.
when assembling the source documents. References in the source documents can be absolute or relative.
You can choose to have all the images embedded in the resultant so that it contains no relative or absolute
references. You define this by setting the value of the resolveAssets tag, which can take any of the
following options:

You can specify the value of the resolveAssets attribute either in the XDP source tag or in the parent
XDP result tag. If the attribute is specified to the XDP result tag, it will be inherited by all the XDP source
elements which are children of XDP result. However, explicitly specifying the attribute for a source element
overrides the setting of the result element for that source document alone.

Example: Resolve all source links in an XDP document

To convert all references in the source XDP documents, specify the resolveAssets tag for the resultant
document to all, as in the example below:

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<XDP result="result.xdp" resolveAssets="all">

<XDP source="input1.xdp" />
<XDP source="input2.xdp" />
<XDP source="input3.xdp" />

</XDP>
</DDX>

You can also specify the attribute for all the source XDP documents independently to get the same result.

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<XDP result="result.xdp">

<XDP source="input1.xdp" resolveAssets="all"/>
<XDP source="input2.xdp" resolveAssets="all"/>
<XDP source="input3.xdp" resolveAssets="all"/>

Value Description

none Does not resolve any references. All references are retained.

all Embeds all referenced images in the source XDP documents.

relative Embeds all the images referenced through relative references in the source XDP
document.

absolute Embeds all the images referenced through absolute references in the source XDP
document.

LiveCycle ES Assembler Creating and Modifying Acrobat and XML (XFA) Forms
Assembler Service and DDX Reference Package an XDP document as PDF 43

</XDP>
</DDX>

Example: Resolve selected source links in an XDP document

You can selectively specify the source references that you want to resolve by specifying the
resolveAssets attribute for them. The attributes for individual source documents override the
resultant XDP document’s setting. In this example, the fragments included are also resolved.

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<XDP result="result.xdp" >

<XDP source="input1.xdp" resolveAssets="all">
<XDPContent source="fragment.xdp" insertionPoint="MyInsertionPoint"
fragment="myFragment"/>

</XDP>
<XDP source="input2.xdp" />

</XDP>
</DDX>

Example: Selectively resolve absolute or relative references

You can selectively resolve absolute or relative references in all or some of the source documents, as
shown in the example below:

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<XDP result="result.xdp" resolveAssets="relative">

<XDP source="input1.xdp" />
<XDP source="input2.xdp" />

</XDP>
</DDX>

Package an XDP document as PDF
You can use the Assembler service to package an XDP document as a PDF document. The XDP assembly
must be contained within an XDP element that omits a source or result attribute. Such an element is called
an XDP (generic) element. The XDP (generic) element provides a PDF representation for inclusion in the
PDF assembly. However, the PDF with XDP cannot be successfully assembled unless the XDP is flattened
with NoForms or NoXFA.

In this example, the XDP source files are combined into a single XDP stream before being assembled into
the PDF result. The data from the base document is retained in the result. The data from other XDP files is
lost.

Example: Assembling multiple XFA-based forms into a single form

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<PDF result="interactive_form.pdf" encryption="passEncProfile1">

<XDP>
<XDP source="sourceXDP3"/>
<XDP source="sourceXDP4"/>

</XDP>
</PDF>

</DDX>

LiveCycle ES Assembler Creating and Modifying Acrobat and XML (XFA) Forms
Assembler Service and DDX Reference PDF documents from single XFA-based forms 44

Within the XDP (generic) element, you can use the XFAData element to populate the XFA form data fields.
Data supplied in the base document is replaced with data supplied in the XFAData element.

Example: Assembling multiple XFA-based forms with external data

<PDF result="final.pdf">
<XDP>

<XDP source="doc1.xdp"/>
<XDP source="doc2.xdp"/>
<XDPContent insertionPoint="Disclaimer"

source="disclaimer.xdp" fragment="US"/>
<XFAData source="data.xml"/>

</XDP>
</PDF>

PDF documents from single XFA-based forms
When the PDF result contains only a single XDP (generic) element (XFA-based form), the XML form in the
resultant PDF retains its fillable characteristics. That is, the XFA-based form is not flattened.

Example: Assembling a PDF document that contains an interactive XFA-based form (case 1)

<PDF result="result.pdf">
<XDP>

<!-- These XFA-based forms are assembled into a single form.-->
<XDP source="doc1.xdp"/>
<XDP source="doc2.xdp"/>

</XDP>
</PDF>

Example: Assembling a PDF document that contains an interactive XFA-based form (case 2)

<PDF result="result.pdf">
<PDF source="doc1.xdp"/>

</PDF>

Assemble XFA-based forms with other documents
You can assemble XFA-based forms with other documents. In some cases, the forms must be flattened.

Form is flattened: If the PDF result element contains an XDP (generic) element and other source
documents, then flatten the XFA-based forms before assembly.

Form remains interactive: If the PDF result element’s base document is a PDF source element
assembled from XFA-based forms, then the resultant document can be interactive. The PDF result can
also include other source documents that do not contain XFA-based forms.

Flatten assembly of multiple XFA-based forms

The Assembler service cannot assemble an XDP (generic) result with other documents. If the following
conditions occur, then Assembler throws an error:

? PDF result element contains multiple document sources.

? One or more of those sources are XDP (generic) elements

LiveCycle ES Assembler Creating and Modifying Acrobat and XML (XFA) Forms
Assembler Service and DDX Reference Assemble XFA-based forms with other documents 45

Before assembling an XFA-based form with another document, use the NoForms or NoXFA elements to
flatten the form. The Assembler service uses the Output service to flatten dynamic XFA forms. The
Assembler service flattens static XFA-based forms and Acrobat forms by itself. (See “Assemble XFA-based
forms with other documents” on page 44.)

Example: Flatten the XFA-based forms before assembling with PDF sources

<PDF result="result.pdf">
<XDP>

<XDP source="Summary.xdp"/>
</XDP>
<PDF source="doc1.pdf"/>
<NoForms/>

</PDF>

Example: Error when assembling a PDF containing an XFA-based form with other PDF documents

<PDF result="result.pdf">
<XDP>

<XDP source="doc1.xdp"/>
</XDP>
<PDF source="doc2.pdf"/>

</PDF>

Example: Error when assembling a PDF containing an XFA-based form with same

<PDF result="result.pdf">
<XDP>

<XDP source="doc1.xdp"/>
</XDP>

<XDP>
<XDP source="doc2.xdp"/>

</XDP>
</PDF>

Single XFA-based form remains interactive

You can assemble non-interactive PDF documents with an interactive PDF document, provided these
conditions are satisfied:

? PDF result contains at most one PDF source element that contains a single XFA-based form. (Other PDF
source elements provide non-interactive documents or Acrobat forms.)

? PDF source element containing the XFA-based form is the base document.

? XFA-based form is static (not dynamic).

Example: Assembling an interactive XFA-based form with other documents

<PDF result="intermediate_result.pdf" return="false">
<XDP>

<XDP source="doc1.xdp"/>
<XDP source="doc1.xdp"/>

</XDP>
</PDF>
<PDF result="final_result.pdf">

LiveCycle ES Assembler Creating and Modifying Acrobat and XML (XFA) Forms
Assembler Service and DDX Reference PDF documents from Acrobat forms 46

<PDF source="intermediate_result.pdf" baseDocument="true"/>
<PDF source="nonXFAForm.pdf"/>
<PDF source="other_nonXFAForm.pdf"/>

</PDF>

PDF documents from Acrobat forms
The Assembler service can successfully assemble PDF documents from multiple PDF documents
containing Acrobat forms. By default, Assembler retains all form fields.

The following example successfully returns a fillable form, if the two sources are Acrobat forms.

Example: Assembling a PDF document from multiple Acrobat forms

<PDF result="result.pdf">
<PDF source="acroform1.pdf"/>
<PDF source="acroform2.pdf"/>

</PDF>

Package a PDF document as XDP
The Assembler service can package a PDF document containing an XFA-based form into as XDP, as shown
in this example.

Example: Packaging a PDF document containing an XFA-based form as XDP

<DDX>
 <PDF result="doc.xdp" format="XDP">
 <PDF source=xfa-form.pdf"/>
 </PDF>
</DDX>

Note: The DDX fails if the PDF source element does not contain an XFA-based form.

 47

6 Assembling PDF Packages and Portfolios

You can use DDX expressions to create PDF packages and portfolios.

PDF packages are containers for a collection of documents. A PDF package includes metadata to support
efficient viewing, sorting, and searching of documents in the package. Acrobat 8 added support for PDF
packages.

PDF Portfolios extend the capability of PDF packages, by adding a customizable user interface (navigator),
folders, navigation header, and navigation welcome pages. The navigator is a compiled ActionScript
program that can use resources that are independent of the program. The resources can include localized
text string, custom color schemes, and graphic resources. Navigators conform to Navigator format and
navigation welcome pages and navigation headers conform to the Navigator Template Format.

When designing a PDF Portfolio, consider how the portfolio appears in Acrobat 9 and Acrobat 8:

? Acrobat 8: Supports only PDF packages. A PDF Portfolio viewed in Acrobat 8 appears to be a PDF
package. The cover sheet is displayed as if it was added as a package file and set as the default initial
document. The navigator, navigation welcome page, and navigation header are not visible and files do
not appear to be in folders.

? Acrobat 9: Supports PDF Portfolios and packages. A PDF package when viewed in Acrobat 9 appears
to be a PDF Portfolio.

See also

Adobe Developer Center

The PDF Developer Junkie Web: Customizing PDF Portfolio Layouts

LiveCycle Doc Team: Using Assembler to Create PDF Portfolios (PDF Packages)

Understanding PDF packages
Before PDF version 1.7, all PDF documents were single PDF documents consisting of pages and possibly
document-level file attachments. A PDF document as a container for a collection of documents, known as
a PDF package. A PDF package consists of a cover sheet, package files, and a package specification. In
Acrobat 9, a PDF package is called a PDF Portfolio or simply a portfolio.

A package specification provides information about how the files in the collection are displayed. It can also
contain a schema that defines the syntax of custom metadata that can be used to organize the files in the
package or portfolio. If a package specification is added to a single PDF, it becomes a PDF package, and
any preexisting document-level file attachments automatically become package files.

With packages, you can perform these tasks:

? Create a collection of documents that cannot be assembled in a single document. For example, some
forms cannot be assembled in a single PDF but can be collected together in a package.

? Flatten a package into a single PDF if the documents it contains are modifiable. For example, an
encrypted PDF document would remain as a document-level attachment.

? Add or change metadata in packages.

http://www.adobe.com/devnet/acrobat/
http://www.joelgeraci.com/adobe/devjunkie/web/portfolios_p1_outer.shtml
http://blogs.adobe.com/livecycledocs/2009/01/using_assembler_to_create_pdf.html

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference About PDF package and portfolio properties 48

? Add documents to packages.

? Modify documents in a package. For example, you can change the headers in the documents if they are
modifiable.

? Export documents from a package and then reimport them into the package in a workflow. For
example, you could export the documents, digitally sign them, and reimport them into the package.

About PDF package and portfolio properties
DDX provides properties you can use to specify PDF packages and portfolios.

PDF Package property: package files and package specifications
Here is a basic DDX expression that creates a PDF package:

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<PDF result="outDoc" >

<PDF source="cover" baseDocument="true"/>
<Package/>
<PackageFiles/>
<PackageFiles/>
<PackageFiles/>

</PDF>
</DDX>

Base file (the cover sheet)

The <PDF source="cover" baseDocument="true"/> expression defines the base document for
the PDF package. The base document provides a cover page for the PDF package or Portfolio. It must be a
PDF document that has at least one page. It also provides other basic characteristics such as page size and
orientation.

If the base document is not specified, then a locale-specific default cover sheet is used
(_AdobeCoverSheet).

PackageFiles

The PackageFiles element specifies the PDF and non-PDF documents to add to the PDF package or
portfolio. It also provides the metadata (the schema field values) for those documents. Here is a DDX
expression that shows the basic structure of a PackageFiles element. This expression does not specify
folders.

<PackageFiles>
<PDF source="Elwood.pdf"/>
<FieldData name="Genre">Movies</FieldData>
<FieldData name="Location">Chicago</FieldData>

</PackageFiles>

The FieldData element specifies metadata associated with the folder.

If the source attribute for the PackageFiles element is a URL that references a folder, then the contents
of the folder are added. If the PackageFiles is a child of a Folder element, then the folder structure is
retained. (See “Folders” on page 51.)

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference PDF Portfolio properties 49

Note: Document Services navigates down into the subfolders to include files in subfolders. Earlier versions
of LiveCycle did not include files in subfolders.

Package or Portfolio element

The Package or Portfolio element specifies information about custom metadata fields to use for a PDF
package. It also specifies the display order, sort order for the default, and custom metadata fields. Here is a
DDX expression that shows the structure of a Package element. The Portfolio element is the same
with the addition of other properties specific for PDF Portfolios.

<Package>
<Schema>

<Field name="Character" type="Filename"/>
<Field name="Genre" type="Text"/>
<Field name="Location" type="Text"/>

</Schema>
<DisplayOrder/>
<SortOrder/>

</Package>

Here are elements that can be children of the Package element. These child elements define package
characteristics:

? Schema element defines the custom metadata for the PDF package or portfolio.

? DisplayOrder element defines the display order for the result, in which the columns describing the
order in which viewing applications display the package files.

? SortOrder element defines the priority viewing applications apply to the fields when sorting. It also
defines the order of the package files when assembling into a single PDF document.

Files in a PDF package have default metadata such as filename and file size. They can also have custom
metadata that is defined in FieldData elements for the files. Metadata that exists in other forms such as
Acrobat metadata (author, title, and subject) is not used in PDF packages.

PDF Portfolio properties
Document Services (9.0) and Acrobat 9 add support for navigators, folders, and navigation welcome
pages.

The Assembler service cannot help you create a custom navigator, a navigation welcome page, or a
navigator header. But it lets you include such resources in a PDF navigator result.

Use Acrobat Pro to create a navigation welcome page or navigator header. Use Adobe Flex® Builder™ and
the Acrobat SDK to build a custom navigator. See the Adobe Developer Center for details.

http://www.adobe.com/devnet/acrobat/

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference PDF Portfolio properties 50

Navigators

Your PDF Portfolio can include navigators from these sources:

Document Services. These navigators are available from the Adobe Navigators LCA. This LCA initially
contains three basic multi-lingual navigator resources. These resources are similar to three basic layouts
that are available in Acrobat Pro: On an Image, Revolve, and Sliding Row.

These multi-lingual navigator resources support the same 28 languages that are supported for the
multi-lingual cover sheet. The locale-specific version is selected by using the TargetLocale. See
_AdobeCoverSheet for information about localization.

You can add custom navigators to this LCA. Here are navigators included in the Navigator LCA:

? AdobeOnImage.nav. Requests a background image. The schema includes X and Y viewer
coordinates that specify placement of files and folders on the background image when viewed. (See
the example at “DDX that creates PDF Portfolio that uses the AdobeOnImage navigator” on
page 52.)

? AdobeRevolve.nav

? AdobeSlidingRow.nav

Adobe Acrobat Pro. These navigators reside in the installation directory.

Other sources. Custom navigators that you or others develop.

PDF Portfolios. Your DDX can specify the navigator from an existing PDF Portfolio that contains a
custom navigator.

Here is a DDX example that accesses a navigator in the default Adobe Acrobat Pro installation directory.
This example assumes that the application is installed on the Document Services server. This example
does not include any package files.

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<PDF result="myPortfolio.pdf">

<Portfolio>
<Navigator source=

"file:///C:/Program Files/Adobe/Acrobat 9.0/Acrobat/Navigators/
AdobeRevolve.nav"/>

</Portfolio>

</PDF>
</DDX>

Here is a DDX example that obtains the navigator from a PDF file.

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<PDF result="myPortfolio.pdf">

<Portfolio>
<Navigator source=

"existingPortfolio.pdf"/>
</Portfolio>

</PDF>
</DDX>

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference Folders 51

Folders
Folders are analogous to directories in a hierarchical file system and allow files to be grouped in a recursive
manner. Folders provide a scalable and efficient mechanism for arranging files in a portable collection into
folders, while maintaining a high degree of compatibility with older viewers.

You can create a folder with attributes and place files into specific folders regardless of their source. Folders
are visible only when viewing a PDF Portfolio in Acrobat 9. Therefore, adding a Folder element for a
single PDF turns the PDF into a portfolio. That is, adding a Folder element has the same as adding a
portfolio element.

You can create a folder hierarchy by nesting Folder elements. Each Folder element can include a
graphic to use as a thumbnail image associated with the folder.

Here is an example of a nested folder structure. The path to the sole package file is
/QE/Beta Test Files/cool.pdf.

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<PDF result="pkg.pdf">
 <PDF source="doc1.pdf"/>
 <Folder name="QE" thumbnail="qeImage.jpg">
 <Description>QE Root folder</Description>
 <Folder name="Beta Test Files" thumbnail="betaImage.jpg">
 <Description>Beta Test Files</Description>
 <PackageFiles source="cool.pdf">
 <Description>test for coolness</Description>
 <FieldData name="Owner">Beta Boop</FieldData>
 </PackageFiles>
 </Folder>
 </Folder>
</PDF>
</DDX>

Here is a DDX that shows the basic structure of a DDX expression that creates a nested Folder in a PDF
package:

<Folder name="Characters">
<Description>Fictional characters.</Description>
<Folder name="Movies">

<PackageFiles>
<PDF source="Elwood.pdf"/>
<FieldData name="Location">Chicago</FieldData>

</PackageFiles>
</Folder>

</Folder>

Navigation welcome page and navigation heading
The navigation welcome page appears only once when the portfolio is opened in the viewer and the
navigation header appears across all navigation panes. These features are specified as XML that conforms
to the Navigator Template Format. Acrobat 9 or Adobe Reader 9 introduced support for these features.

Note: The Assembler service cannot help you create the navigation header (not to be confused with a
page header). Nor can the service help you create a navigation welcome page. The best tool for
creating navigation headers and navigation welcome pages is Acrobat Pro Extended 9.

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference Creating a PDF Portfolio 52

You can specify a navigation header or navigation welcome page file, and its resources. Alternatively, you
can specify an existing PDF Portfolio from which to obtain a header or welcome page.

The navigation welcome page is a resource with a name of "welcome/model.xml". If the welcome page
source is specified, then all resources excluding the navigation header ("header/model.xml") in the PDF
source are specified. Only resources referenced by a "header/model.xml" or "welcome/model.xml" are
visible in the PDF Portfolio navigation pane (also called the PDF Portfolio Layout pane). If the source
specified is an XML source, then any resources it references must also be specified. Such resources include
images and localized strings.

The navigation header is a resource with a name of "header/model.xml". If the header source is specified,
then all resources excluding the WelcomePage ("welcome/model.xml") in the source are specified. Only
resources referenced by a "header/model.xml" or "welcome/model.xml" are visible in the portfolio
navigation pane.

Example: Choosing a new welcome page for a PDF Portfolio

<PDF result="newPackage" >
<Portfolio>

<WelcomePage source="myXMLWelcomePage"/>
<Header source="myXMLHeader"

</Portfolio>
<PackageFiles>

<PDF source="pkg1.pdf"/>
<PDF source="pkg2.pdf"/>

</PackageFiles>
</PDF>

Creating a PDF Portfolio
The following example creates a PDF Portfolio that uses the AdobeOnImage navigator. For each file or
folder that is added, the DDX supplies a FieldData element that specifies the location for the icon. The
DDX also supplies an image in the Resource element.

The PDF Portfolio produced by this example works well in Acrobat 8 and 9. When the PDF Portfolio is
viewed in Acrobat 8, the cover sheet is not displayed.

Example: DDX that creates PDF Portfolio that uses the AdobeOnImage navigator

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<PDF result="portfolio1.pdf">

<Portfolio>
<Navigator source="AdobeOnImage.nav">
<!-- Or source="myCustomNav.nav" or source="myCustomNav.pdf" -->
<!-- AdobeOnImage uses the following resource. -->
<!-- Each navigator is unique in its use of resources. -->

<Resource name="navigator/image.xxx" source="myImage.png"/>
</Navigator>

</Portfolio>
<Folder name="LC ES4 Testing">

<Folder name="Single Files">
<PackageFiles source="process:///process_data/@doc1" required="false">

<!-- These FieldData entries
are specific to the AdobeOnImage navigator.-->

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference Creating a PDF package 53

<FieldData name="X">72</FieldData>
<FieldData name="Y">72</FieldData>

</PackageFiles>
<PackageFiles source="process:///process_data/@doc2" required="false">

<FieldData name="X">72</FieldData>
<FieldData name="Y">144</FieldData>

</PackageFiles>
</Folder>
<Folder name="Folder of Files">

<Description>Assembler Dev Test Files</Description>
<FieldData name="X">72</FieldData>
<FieldData name="Y">216</FieldData>
<PackageFiles source=

"contentspace:///Company Home/User Homes/Assembler Dev Tests/"
includeSubFolders="true"/>

</Folder>
</Folder>

</PDF>
</DDX>

Creating a PDF package
In the example below, a new package is created. The pages from single1 become the cover sheet for
resultDoc, and documents doc2 and doc3 are added as package files. The InitialViewProfile
element "letterCollection", which contains the package specification, suggests how the viewing
applications initially display the document. Viewing applications that support only PDF packages behave
differently from applications that support PDF Portfolios.

Example: Creating a PDF package

<DDX>
<PDF result="resultDoc" initialView="letterCollection">

<Package styleReference="letterCollection" />
<PDF source="single1"/>
<PackageFiles source="doc2">

<File filename="/documents/data" mimetype="application/pdf"/>
<Description>email from Employee B</Description>
<FieldData name="to">Employee A</FieldData>
<FieldData name="from">Employee B</FieldData>
<FieldData name="date">2005-06-21T09:47:00Z</FieldData>
<FieldData name="subject" prefix="Re:">Lunch on Friday!</FieldData>

</PackageFiles >
<PackageFiles source="doc3">

<File filename="/documents/data" mimetype="application/pdf"/>
<Description>email from Employee A</Description>
<FieldData name="to">Employee B</FieldData>
<FieldData name="from">Employee A</FieldData>
<FieldData name="date">2005-06-21T10:12:00Z</FieldData>
<FieldData name="subject" prefix="Re:">Lunch on Friday!</FieldData>

</PackageFiles >
</PDF>
<StyleProfile name="letterCollection">

<Package>
<Schema>

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference Change the cover sheet for an existing PDF package or portfolio 54

<Field name="from" type="Text" />
<Field name="to" type="Text" />
<Field name="date" type="Date" />
<Field name="subject" type="Text" />
<Field name="size" type="Size" />

</Schema >
<DisplayOrder>

<Field name="date"/>
<Field name="subject"/>
<Field name="from"/>
<Field name="to"/>
<Field name="size"/>

</DisplayOrder>
<SortOrder>

<Field name="date" ascending="true"/>
</SortOrder>

</Package>
</StyleProfile>
<InitialViewProfile

name="letterCollection"
packageInitialDocument="FirstSortedDocument"
packageUIPane="Left"

/>
</DDX>

Change the cover sheet for an existing PDF package or portfolio
You can change the cover sheet for an existing PDF package or portfolio.

Note: Acrobat 8 is more likely to display the cover sheets in PDF packages or portfolios. Acrobat 9 displays
those cover sheets only when specific viewer preferences are specified.

Choose a new cover sheet
Specify the new the cover sheet with a PDF source element and specify the PDF package or portfolio to
modify in a PackageFiles element. The PDF source must specify a single document, not an array of
documents. If the cover sheet is not already PDF, the Assembler service attempts to convert it to PDF.

The following PDF package contains these parts:

? Cover sheet that uses the pages from single1

? Package files from pkg1.pdf, pkg2.pdf

? Any document-level file attachments from single1

Page-level file attachments remain for every page included in the cover sheet (single1). No page-level
file attachments are included from pkg1.pdf and pkg2.pdf. The package specification is defined by
merging the package specification from pkg2.pdf with the package specification from pkg1.pdf.

Example: Choosing a new cover sheet for a PDF package

<PDF result="newPackage">
<PDF source="single1"/>
<PackageFiles>

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference Add or remove pages to an existing cover sheet 55

<PDF source="pkg1.pdf"/>
<PDF source="pkg2.pdf"/>

</PackageFiles>
</PDF>

Add or remove pages to an existing cover sheet
As shown in the example below, to add pages to an existing cover sheet, specify the additional source
documents. In the following example, pages from prepend-pages and append-pages are added to
the cover sheet contained in pkg1.pdf.

Example: Adding pages to a cover sheet

<PDF result="resultDoc">
<PDF source="prepend-pages"/>
<PDF source="pkg1.pdf" baseDocument="true"/>
<PDF source="append-pages"/>

</PDF>

As shown in the example below, to remove pages from an existing cover sheet, specify the pages to
include in the source document. In the following example, pages 2-4 are removed from the cover sheet.

Example: Removing pages from a cover sheet

<PDF result="resultDoc">
<PDF source="pkg1.pdf" pages="1,5-last"/>

</PDF>

As shown in the example below, if no cover sheet is specified, the_AdobeCoverSheet is used as the
default.

Example: Use a default cover sheet

<PDF result="resultDoc">
<PackageFiles>

<PDF source="pkg1.pdf"/>
<PDF source="pkg2.pdf"/>

</PackageFiles>
</PDF>

As shown in the example below, the AdobeCoverSheet is provided in 15 languages and selected by
specifying a locale. To support other languages, create locale-specific PDF documents to use as the cover
sheet. You can also use your custom cover sheet to replace the cover sheet in an existing PDF package or
portfolio. The Assembler service cannot select custom cover sheets based on locale.

If you are using a default package specification, the same locales that are supported for the Adobe cover
sheet are also available to select localized display strings for the default package specification. In the
following example, the German version of the Adobe cover sheet is specified.

Example: Localizing a cover sheet

<PDF result="resultPkg">
<TargetLocale locale="de_DE"/>
<PDF source="_AdobeCoverSheet"/>
<PackageFiles>

<PDF source="pkg"/>

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference Creating a package or portfolio specification from other ones 56

</PackageFiles>
</PDF>

Note: If the locale is not specified in the DDX, then the locale specified via User Management is used. If
those locale specifications are absent, "en_US" is used.

Creating a package or portfolio specification from other ones
A package or portfolio specification provides organizational information about the package or portfolio.
Portfolio specifications also identify the navigator and data that the navigator consumes.

Creating a package or portfolio specification by aggregating existing ones
You can also create a portfolio specification by aggregating portfolio specifications in existing PDF
Portfolios.

In the following example, two package or portfolio specifications are assembled. The new package
specification is created by aggregating the two package specifications.

? If the PDF source elements contain PDF packages, the Schema, DisplayOrder, and SortOrder
elements are aggregated.

? If the PDF source elements contain PDF Portfolios, only the Schema, DisplayOrder, and SortOrder
elements are aggregated. The other elements in the PDF result’s Portfolio element are taken from
the first portfolio, in this case pkg2.pdf.

? If any PDF source is a package, the resultant document will be a package.

? If none of the PDF sources are packages, the result is a single PDF. To force the result to be a package,
without overriding any package specifications, add <Package/> within the <PDF> result block.

Example: Assembling packages

<PDF result="newPackage">
<PDF source="pkg2.pdf"/>
<PDF source="pkg3.pdf"/>

</PDF>

Selecting the package specification from an existing package
In the following example, the explicit Package element specifies only the package specification that
exists in pkg1.pdf. As the package specification is explicitly specified, it does not include the
specifications from pkg2.pdf or pkg3.pdf. The cover sheet is aggregated from the cover sheets in
pkg2.pdf and pkg3.pdf.

This behavior is also true for a portfolio specification and the Portfolio element.

Example: Determining the content of a package specification

<PDF result="newPackage">
<Package>

<PDF source="pkg1.pdf"/>
</Package>
<PDF source="pkg2.pdf"/>
<PDF source="pkg3.pdf"/>

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference Overriding properties in merged package or portfolio specifications 57

</PDF>

In the example above, if pkg1.pdf is only a single PDF, it contributes nothing to the assembly. The
package specification starts with pkg2.pdf, followed by the specification that is contained in pkg3.pdf.
Considering that pkg1.pdf is only a single PDF, the following DDX achieves the same result.

Example: Using a default package specification

<PDF result="newPackage">
<Package />
<PDF source="pkg2.pdf"/>
<PDF source="pkg3.pdf"/>

</PDF>

Overriding properties in merged package or portfolio specifications
You can assemble a PDF package or portfolio specification from the package or portfolio specifications in
other packages or portfolios. By default, the existing specifications are aggregated the package or
portfolio specification of resultant document. You can override this default behavior by specifying a
Package element as a child of the result. The Package element specifies the Schema, DisplayOrder,
SortOrder, and TargetLocale that you want to replace. For example, if the Package element supplies
only a Schema element, then the schema in the package specification of the resultant PDF package
contains that schema. All other properties are taken from the merged package specifications.

This behavior is also true for a portfolio specification and the Portfolio element.

Changing the metadata display order in an existing PDF package or portfolio

You can change the display order in an existing PDF package, without changing the schema or sort order.
Make this change by adding a new package specification with the changes you want. The package
specification for the resultant PDF package or portfolio merges the new package specification with the
other package specifications included in the PDF result element.

The following example creates a package specification with a new display order for the metadata. It also
retains the same schema and sort order already defined in pkg1.pdf.

Example: Specifying a different display order in a package specification

<PDF result="newPackage">
<Package>

<DisplayOrder>
<Field name="Phone" />
<Field name="Last Name" />
<Field name="First Name" />
<Field name="Address" />

</DisplayOrder>
</Package>
<PDF source="pkg1.pdf"/>

</PDF>

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference Modifying the package files in a PDF package or portfolio 58

Modifying the package files in a PDF package or portfolio
The DDX grammar lets you add, modify, and extract the package files in an existing PDF package or
portfolio.

Adding single files to an existing PDF package or portfolio
You can add individual files to a PDF package or portfolio. The Assembler service retains the documents’
custom metadata if the Schema element defines that metadata. The service removes any custom
metadata that the Schema element does not define. The removed metadata can be pre-existing or newly
specified metadata (by a FieldData element).

In the following example, single is a single PDF and pkg is a PDF package. The result, newPackage, is a
package file that contains the package specification that existed within pkg.

Example: Adding a single PDF as a package file (a document in the collection)

<PDF result="newPackage">
<PDF source="pkg" />
<PackageFiles source="single">

<File filename="test.pdf" mimetype="application/pdf"/>
<FieldData name="Description">example</FieldData>

</PackageFiles>
</PDF>

Adding documents from a PDF package or portfolio to another
Using a PackageFiles source, filter, or import element, you can specify the package files and
specifications to assemble in the resultant PDF package or portfolio.

Using nameKeys to select files from a PDF package or portfolio file

The following example uses the nameKeys attribute to specify which files to include in a PDF package.
This example produces a resultant PDF Portfolio that includes the following files:

? Cover sheet and all package files from portfolio.pdf

? All package files from pkg2.pdf

? single4

? doc1.pdf and doc2.pdf from pkg3.pdf

The document single5 is omitted because the nameKeys filter does not select it. The document is a
single PDF and has no namekey. The package specifications from the source PDF packages and portfolios
are merged into one, beginning with portfolio.pdf, followed by pkg2.pdf, and then pkg3.pdf.

Example: Using a PackageFiles filter element to select package files

<PDF result="newPortfolio">
<PDF source="portfolio.pdf"/>
<PackageFiles>

<PDF source="pkg2.pdf"/>
<PDF source="single4"/>

</PackageFiles>

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference Modifying selected files in a PDF package or portfolio 59

<PackageFiles nameKeys="doc1.pdf, doc2.pdf">
<PDF source="pkg3.pdf"/>
<PDF source="single5"/>

</PackageFiles>
</PDF>

Using the nameKeys to select folders from a PDF Portfolio

Here is an example that uses the nameKeys attribute to specify which folders to include from a PDF
Portfolio. The PackageFiles in the resultant PDF Portfolio includes all files from portfolio_1.pdf
and only those files in portfolio_2.pdf that reside in the Drafts folder.

Example: Using a PackageFiles filter element to select folders and their files

<PDF result="newPortfolio">
<PDF source="portfolio_1.pdf"/>
<PackageFiles nameKeys="/Drafts">

<PDF source="portfolio_2.pdf"/>
</PackageFiles>

</PDF>

Modifying selected files in a PDF package or portfolio
Using a PackageFiles select element, you can select package files that are contained in the parent PDF
result or parent PDF source document. The PackageFiles select element is typically used to modify the
package files or to add metadata. (See “PackageFiles select elements” on page 222.)

In the following example, package files that the nameKey selects from portfolio_1.pdf are marked
with a "Draft" watermark. All package files from portfolio_1.pdf are then marked with an
additional "For Review" watermark. Selected files are marked only if they are modifiable PDF
documents.

Example: Using a select element to modify package files

<PDF result="newPortfolio.pdf">
<PDF source="portfolio_1.pdf"/>
<PackageFiles nameKeys="/Draft/doc1.pdf">

<Watermark><StyledText><p>Draft</p></StyledText></Watermark>
</PackageFiles>
<PackageFiles>

<Watermark verticalOffset="2in" replaceExisting="false">
<StyledText><p>For Review</p></StyledText>

</Watermark>
</PackageFiles>

</PDF>

Exporting and importing package files
You can use the PackageFiles result to extract, modify, and reimport the files in a PDF package or
portfolio.

The PackageFiles result element exports the package files and a descriptive XML document:

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference Converting a PDF package or portfolio into a single PDF 60

? Exported package files: These files are turned in a document map. Each exported file has one entry in
the map. The entry names correspond to nameKey attributes from the PackageFiles XML file.

? Descriptive XML file (PackageFiles XML file): This file provides information about each of the
package files, such as the metadata and the unique, internal nameKey. The filename of each exported
package file is represented in the nameKey attribute within the resultant XML document. For package
files that are in a PDF Portfolio with folders, the nameKey is the full path. Consider a portfolio that
contains a main folder named Reports. The Reports folder contains a subfolder named June. The value
of the nameKey attribute for the file is /Reports/June/summary.pdf. (See “PackageFiles
Language” on page 350.)

The following examples show how you can export, modify, and import package files. In the first example,
the package files and the descriptive XML file are exported. The package files are then processed
elsewhere. When the Assembler service is invoked for the second example, the input map contains entries
for each of the modified files. The entry names correspond to the nameKey entries in the descriptive XML
file. The mypkg.xml is unmodified.

Example: Exporting package files

<?xml version="1.0" encoding="UTF-8"?>
<!-- Export package files -->
<DDX>

<PackageFiles result="mypkg.xml" extract="true">
<PDF source="myPkg"/>

</PackageFiles>
</DDX>

Example: Importing modified package files

<?xml version="1.0" encoding="UTF-8"?> <!-- Import package files -->
<DDX>

<PDF result="myPkg">
<PDF source="myPkg"/>
<PackageFiles import="mypkg.xml"/>

</PDF>
</DDX>

Converting a PDF package or portfolio into a single PDF
The NoPackage and NoPortfolio elements assemble a single PDF document from the contents of its
parent PDF element. It assemblies the documents by appending each PDF package file to the cover sheet
in sort order. Any package files that cannot be converted into PDF (such as XFA-based forms), remain as file
attachments of the result.

Consider a PDF result that assembles pkg1.pdf and pkg2.pdf. The pkg1.pdf package contains single1a
and single1b as package files. The pkg2.pdf package contains single2a and single2b as package
files. The aggregated package specification produces the package files sorted in this order:

[single1a, single2a, single1b, single2b]

The pages in the resultant document consist of the cover sheets from pkg1.pdf and pkg2.pdf, followed
by pages from single1a, single2a, single1b, and single2b. The file attachments in the resultant
document are obtained from these sources:

? Any document-level file attachments in single1a, single1b, single2a, and single2b

Adobe LiveCycle 11 Assembling PDF Packages and Portfolios
Assembler Service and DDX Reference Converting a PDF package or portfolio into a single PDF 61

? Other package files that are not assembled. They become document-level file attachments.

? All page-level file attachments from all six files.

Encrypted PDF documents, dynamic XFA forms, and non-PDF documents cannot be assembled into a
single PDF.

The following example shows the usage of the NoPackage element in this case.

Example: Converting a package to a single PDF

<PDF result="newSingle">
<NoPackage/>
<PDF source="pkg1.pdf"/>
<PDF source="pkg2.pdf"/>

</PDF>

You can also use the NoPackage element to assemble a single PDF from PDF packages. In this case, the
<Package/> child of a <PDF> source element promotes a single PDF into a PDF package. The pages
become the cover sheet and the document-level file attachments become package files.

Example: Assembling a single PDF from two PDF documents

<PDF result="newSingle">
<NoPackage/>
<PDF source="doc1">

<Package/>
</PDF>
<PDF source="doc2">

<Package/>
</PDF>

</PDF>

 62

7 Disassembling PDF Documents

You can use the Assembler service to disassemble a single PDF document into multiple documents.
Disassembly is useful when the document was originally created from many individual documents, such
as a collection of bank statements.

Note: If a PDF file contains invalid XMP metadata, the Assembler service throws an exception when
processing that file. The error message states that a "SyncMetadataTask task failed for document."

Such errors can occur with documents produced by outdated software, such as old versions of
Adobe Distiller® or Adobe FrameMaker®. You can avoid such problems by regenerating the input
PDF document using updated software.

To disassemble a document, use the PDFsFromBookmarks element, as in the following example.

Example: Disassembling documents

<PDFsFromBookmarks prefix="stmt">
<PDF source="doc1.pdf"/>

</PDFsFromBookmarks>

The PDFsFromBookmarks element is a result element and can be a child only of a DDX element. (It does
not have a result attribute because it can result in the generation of multiple documents.)

PDFsFromBookmarks generates a single document for each level 1 bookmark in the source document
(doc1.pdf in this example). The Assembler service generates a name for each document that is the
concatenation of the following items:

? A string specified by the prefix attribute

? A 6-digit sequence number (This number could be used to re-create the original order of the pages
after the document is disassembled.)

? The bookmark title

? The filename extension .pdf

Note: Bookmarks can contain characters that are not legal in filenames. When saving the result streams as
files, the client is responsible for specifying appropriate filenames.

In the example, assume that the level 1 bookmarks in doc1.pdf are as follows:

? "Chapter 1" (beginning on page 3)

? "Chapter 2" (beginning on page 13)

? "Chapter 3" (beginning page 21)

There are three result documents:

? stmt.000001.Chapter 1.pdf, containing pagES4-12

? stmt.000002.Chapter 2.pdf, containing pages 13-20

? stmt.000003.Chapter 3.pdf, containing pages 21 through the last page.

Here are more details about how the documents are separated:

? Any level 1 bookmark that does not point to a page is ignored.

Adobe LiveCycle ES4 Disassembling PDF Documents
Assembler Service and DDX Reference 63

? The bookmarks must be in sequence. That is, they must point to pages that are in ascending order.
Otherwise, an error is returned.

? A single page is never extracted into two separate PDF documents. The first page of the first extracted
document is the destination page of the first level 1 bookmark. Pages are included until either the end
of the document is reached (the last page is included) or another level 1 bookmark is reached (the page
before that is included).

In the example, if Chapter 1 ends on page 13 and Chapter 2 begins in the middle of the page, then the
entire page 13 appears in stmt.000002.Chapter 2.pdf instead of in stmt.000001.Chapter 1.pdf.

? If more than one level 1 bookmark occurs on a page, all bookmarks except the first one are ignored.

The separated PDF documents are created as if they came from non-base documents (see “About base
documents” on page 30). Document-level elements such as properties, attachments, and initial views are
not included in the resultant PDF documents.

If the source document is encrypted, provide the master password for the document to disassemble it.
(See “Accessing a password-protected document” on page 133.)

As with PDF result elements, you can specify these attributes for the PDFsFromBookmarks element:

? encryption can be set to either the name of a PasswordEncryptionProfile element that
specifies password encryption or None (the default). A value of None indicates that the documents are
not encrypted. (See “Working with Secured Documents” on page 131.)

? save can be set to Full (the default) or FastWebView (see “Saving PDF documents” on page 35).
Incremental saving is not applicable to disassembled documents.

 64

8 Working with Bookmarks and Thumbnails

In PDF documents, bookmarks are a tree-structured hierarchy of outline items that provide a means of
navigating the document. When a user in a viewer application clicks a bookmark, an action is triggered.
Typically, a bookmark action specifies a particular location in the document to which the viewer navigates.
However, bookmarks can also trigger actions such as opening web pages or running JavaScript code.

For information on creating a table of contents from the bookmarks in a document, see “Adding a table of
contents” on page 86.

Including and excluding bookmarks
By default, all bookmarks from all source documents are included in the result document. Therefore, you
do not need to do anything special to preserve bookmarks. In the following example, the result document
contains the bookmarks from doc2, doc3, and doc4, in that order. The first (level 1) bookmark from doc3
follows the last bookmark from doc2, and so on.

Example: Preserving bookmarks

<PDF result="doc1">
<PDF source="doc2"/>
<PDF source="doc3"/>
<PDF source="doc4"/>

</PDF>

To exclude bookmarks from a source document, use the NoBookmarks element.

Example: Removing bookmarks from a source document

<PDF result="doc1">
<PDF source="doc2"/>
<PDF source="doc3">

<NoBookmarks/>
</PDF>
<PDF source="doc4"/>

</PDF>

In the example above, bookmarks from doc2 and doc4 are included in the result document; bookmarks
from doc3 are not included.

In the following example, because the NoBookmarks element is a child of the PDF result element, none of
the bookmarks in its scope are included.

Example: Removing all bookmarks

<PDF result="doc1">
<PDF source="doc2"/>
<PDF source="doc3"/>
<PDF source="doc4"/>
<NoBookmarks/>

</PDF>

Adobe LiveCycle ES4 Working with Bookmarks and Thumbnails
Assembler Service and DDX Reference Exporting and importing bookmarks 65

In the following example, the NoBookmarks element is a child of a PDFGroup element. Therefore, no
bookmarks are included from the source documents within the PDFGroup element. Only the bookmarks
from doc4 are included in the result.

Example: Selectively removing bookmarks

<PDF result="doc1">
<PDFGroup>

<PDF source="doc2"/>
<PDF source="doc3"/>
<NoBookmarks/>

<PDFGroup/>
<PDF source="doc4"/>

</PDF>

NoBookmarks and Bookmarks cannot be siblings.

You can also include bookmarks from PDF documents other than your PDF source documents. You can
restrict the bookmarks that are included by using the Bookmarks element as a filter element.

Example: Using a bookmarks filter element

<PDF result="doc1">
<PDF source="doc2"/>
<Bookmarks>

<PDF source="doc3"/>
<PDF source="doc4"/>

</Bookmarks>
</PDF>

In this example, the Bookmarks element filters the bookmarks from doc3 and doc4 and adds them to the
result. No content from doc3 and doc4 other than bookmarks are included in the result. doc2 provides PDF
page content as well as bookmarks (if any) to the result.

The same task could be accomplished by exporting the bookmarks from doc3 and doc4 to an XML
representation and then importing the bookmarks into doc2. The next section describes this process in
more detail.

Exporting and importing bookmarks
The Assembler service supports an XML representation of bookmarks. This representation conforms to a
schema whose namespace is http://ns.adobe.com/xpdf/1.6. You can export bookmarks to this
format or import them from this format.

Exporting book marks from a PDF document
To export bookmarks, use a Bookmarks result element. (See “Bookmarks” on page 165.)

The following example exports bookmarks from doc2 and doc3 to doc1.xml.

Example: Exporting bookmarks

<Bookmarks result="doc1.xml">
<PDF source="doc2"/>

Adobe LiveCycle ES4 Working with Bookmarks and Thumbnails
Assembler Service and DDX Reference Importing bookmarks into a PDF document 66

<PDF source="doc3"/>
</Bookmarks>

A Bookmarks result element can have any number of PDF source or PDFGroup elements as children. It
can also have Bookmarks source or filter elements as children. The bookmarks appear in the order they
would appear if all the source documents were assembled into a PDF document. In the above example, if
doc2 has 5 pages, a bookmark in doc3 that references page 2 is updated in the result document to
reference page 7.

Importing bookmarks into a PDF document
You can save a bookmarks XML document to a file and use it in a separate part of your workflow. Within a
DDX file, you can use a bookmarks XML document exported from one document to import bookmarks
into a result PDF document. You can also create a bookmarks XML document and import that into a result
PDF document.

Example: Adding bookmarks from one document to another

<Bookmarks result="doc1.xml" return="false">
<PDF source="doc2"/>

</Bookmarks>
<PDF result="doc3">

<PDF source="doc4"/>
<Bookmarks source="doc1.xml"/>

</PDF>

In this example, the bookmarks from doc2 are included in doc1.xml, which in turn is used to add
bookmarks to doc3. Note the following features of this example:

? The return attribute of the Bookmarks result element is set to false because doc1.xml is being
used only in the current DDX file and therefore does not need to be returned as a stream to the client.
(By default, return is true.)

? The bookmarks from doc1.xml are appended to the bookmarks from doc4 (if any) in the result
document doc3. To instead replace the bookmarks from doc4 with those from doc1.xml, make the
Bookmarks element a child rather than a sibling of the PDF source element, as in the following
example.

Example: Replacing bookmarks

<PDF result="doc3">
<PDF source="doc4">

<Bookmarks source="doc1.xml"/>
</PDF>

</PDF>

Creating bookmarks from source documents
For each PDF source document in an assembly, you can specify the name of a bookmark in the result
document by using the bookmarkTitle attribute. The bookmark appears in the result document as a
level 1 bookmark whose destination is the first page of the source document.

In the following example, each chapter in the book has a level 1 bookmark. All bookmarks that are present
in the source documents are moved down a level.

Adobe LiveCycle ES4 Working with Bookmarks and Thumbnails
Assembler Service and DDX Reference Creating bookmarks from source documents 67

Example: Creating bookmarks from source documents

<PDF result="TheBook">
<PDF source="Chap1" bookmarkTitle="Chapter 1"/>
<PDF source="Chap2" bookmarkTitle="Chapter 2"/>
<PDF source="Chap3" bookmarkTitle="Chapter 3"/>

</PDF>

For example, suppose the bookmarks in each of the chapters are:

Section A

Section B

Section C

The bookmarks in the result document have this hierarchy:

Chapter 1

Section A

Section B

Section C

Chapter 2

Section A

Section B

Section C

Chapter 3

Section A

Section B

Section C

To create more than one level of bookmarks from the source documents, use intermediate results. (You
cannot, for example, specify the bookmarkTitle attribute on the PDFGroup element.) The following
example illustrates this point.

Example: Creating bookmarks from source documents

<PDF result="PartI">
<PDF source="Chap1" bookmarkTitle="Chapter 1"/>
<PDF source="Chap2" bookmarkTitle="Chapter 2"/>
<PDF source="Chap3" bookmarkTitle="Chapter 3"/>

</PDF>
<PDF result="PartII">

<PDF source="Chap4" bookmarkTitle="Chapter 4"/>
<PDF source="Chap5" bookmarkTitle="Chapter 5"/>

</PDF
<PDF result="PartIII">

<PDF source="Chap6" bookmarkTitle="Chapter 6"/>
<PDF source="Chap7" bookmarkTitle="Chapter 7"/>
<PDF source="Chap8" bookmarkTitle="Chapter 8"/>

</PDF>

<PDF result="BigDoc">

Adobe LiveCycle ES4 Working with Bookmarks and Thumbnails
Assembler Service and DDX Reference Sorting bookmarks 68

<PDF source="PartI" bookmarkTitle="Part I"/>
<PDF source="PartII" bookmarkTitle="Part II"/>
<PDF source="PartIII" bookmarkTitle="Part III"/>

</PDF>

Here are the resulting bookmarks:

Part I

Chapter 1

...bookmarks from Chap1

Chapter 2

...bookmarks from Chap2

Chapter 3

...bookmarks from Chap3

Part II

Chapter 4

...bookmarks from Chap4

...etc...

Sorting bookmarks
You can sort bookmarks in a result PDF. Sorting is relative to the target page numbers in the resultant
document. This feature is helpful when you insert one document into another document, where both
documents contain bookmarks. For example, if you use the following DDX to assemble documents that
have bookmarks, the bookmarks in resultant document are ordered accordinating to the destination page
number.

Example: Inserting one document into another with sorting

<DDX>
 <PDF result="final.pdf" sortBookmarks="true">
 <PDF source="doc1" pages="1-2" />
 <PDF source="doc2"/>
 <PDF source="doc1" pages="3-last"/>
 </PDF>
</DDX>

In contrast, if you use the following DDX to assemble the same documents, the bookmarks in the resultant
document are logically out of order.

Example: Inserting one document into another without sorting

<DDX>
 <PDF result="final.pdf" >
 <PDF source="doc1" pages="1-2" />
 <PDF source="doc2"/>
 <PDF source="doc1" pages="3-last"/>
 </PDF>
</DDX>

Consider using the above DDX examples with the documents described in the following tables.

Adobe LiveCycle ES4 Working with Bookmarks and Thumbnails
Assembler Service and DDX Reference Sorting bookmarks 69

Bookmark structure of Doc1

Bookmark structure of Doc2

Bookmark structure of the resultant document with sorting

When the DDX at “Inserting one document into another with sorting” on page 68 is applied to the
example source documents, it produces a 14-page document with the following bookmark structure.
When the PDF result element includes the sortBookmarks="true" attribute, the order of the
bookmarks is consistent with the order of the target pages.

In some cases, the sort process inserts new bookmarks between sibling child bookmarks. To retain the
relative structure of the bookmarks in such cases, the ancestor bookmarks are repeated. However, the
repeated ancestor bookmarks have no destinations. In the following example, the Ba1 bookmark has the
child bookmarks Ba1-1 and Ba1-2. The sorting process inserts several bookmarks between those sibling
bookmarks. The Ba1 bookmark is repeated to show the parent relationship with the Ba1-2 bookmark.

Bookmark Target page

Ba1 1

 -- Ba1-1 2

 -- Ba1-2 4

Ba2 5

 -- Ba2-1 7

 -- Ba2-2 10

Bookmark Target page

Bb1 1

 -- Bb1-1 2

 -- Bb1-2 3

Bb2 4

Bookmark Target page

Ba1 1

 -- Ba1-1 2

Bb1 3

-- Bb1-1 4

-- Bb1-2 5

Bb2 6

Ba1 No target page

 -- Ba1-2 8

Adobe LiveCycle ES4 Working with Bookmarks and Thumbnails
Assembler Service and DDX Reference Sorting bookmarks 70

Bookmark structure of the resultant document without sorting

Without sorting, the resultant document is a 14-page document with the following bookmark structure.
The order of the bookmarks is inconsistent with the order of the target pages.

Ba2 9

 -- Ba2-1 11

 -- Ba2-2 14

Bookmark Target page

Ba1 1

 -- Ba1-1 2

 -- Ba1-2 8

Ba2 9

 -- Ba2-1 11

 -- Ba2-2 14

Bb1 3

-- Bb1-1 4

-- Bb1-2 5

Bb2 6

Bookmark Target page

Adobe LiveCycle ES4 Working with Bookmarks and Thumbnails
Assembler Service and DDX Reference Removing thumbnails 71

Removing thumbnails
A thumbnail is a small image of a PDF page. Acrobat can display thumbnails, allowing the user to navigate
to a page by clicking the image. Thumbnails can be embedded in a document so that they can be
displayed quickly when the document is opened. Acrobat generates thumbnails if they are not embedded.

Beginning with version 9.0, PDF packages and portfolios can include thumbnails for package files.
However, Acrobat 9 does not recognize or display package file thumbnails.

A disadvantage of embedding thumbnails is that they increase the size of the document. For some
workflows, such as when archiving documents for long periods of time, reducing file size is more
important than display speed. Therefore, the Assembler service provides the capability of removing
embedded thumbnails from a document.

To remove thumbnails from a document, you use the NoThumbnails element, as in the following
example. This element removes all thumbnails, including package file thumbnails.

Example: Removing thumbnails

<PDF result="doc3.pdf">
<NoThumbnails/>
<PDF source="doc1.pdf" />
<PDF source="doc2.pdf" />

</PDF>

In the following example, NoThumbnails applies only to one of the source elements. Therefore, only
thumbnails in doc1.pdf are removed.

Example: Removing thumbnails from part of a document

<PDF result="doc3.pdf">
<PDF source="doc1.pdf">

<NoThumbnails/>
</PDF>
<PDF source="doc2.pdf"/>

</PDF>

 72

9 Working with Annotations

PDF documents can contain annotations that appear on a page but are not considered to be part of the
page content. The Assembler service enables you to perform operations on annotations, such as
importing them into and exporting them from PDF documents. You can work with the following
annotation types:

? Comments, also known as markup annotations. These are items such as text notes, highlights, lines, and
circles. They can be used in review and comment workflows.

? Link annotations are areas on a page that users can click to perform an action, typically to navigate to
another part of the same document.

? File attachment annotations represent files attached to a page. They are described in “Working with File
Attachments” on page 81.

Note: Other annotation types, such as 3D graphics and multimedia, cannot be imported and exported
directly from PDF documents. However, they can be removed when working with the other
annotation types.

PDF annotations are described in detail in the PDF Reference.

Including and excluding comments
By default, all comments from source documents are included in the result document. Therefore, you do
not need to do anything special to preserve comments. In the following example, the result document
contains the comments from doc2, doc3, and doc4.

Example: Preserving comments

<PDF result="doc1">
<PDF source="doc2"/>
<PDF source="doc3"/>
<PDF source="doc4"/>

</PDF>

Comments remain associated with the pages on which they appear in the source document. The following
example assembles a subset of pages from doc2. Any comments (or other annotations) associated with
pages that are not included do not appear in the result.

Example: Assembling a subset of pages

<PDF result="doc1">
<PDF source="doc2" pages="1-5"/>
<PDF source="doc2" pages="10-15"/>

</PDF>

To exclude comments from the pages in a source element, use the NoComments element.

Example: Removing comments from a source document

<PDF result="doc1">
<PDF source="doc2"/>

Adobe LiveCycle ES4 Working with Annotations
Assembler Service and DDX Reference Importing and exporting comments 73

<PDF source="doc3">
<NoComments/>

</PDF>
<PDF source="doc4"/>

</PDF>

In the example above, comments from doc2 and doc4 are included in the result document; comments
from doc3 are not included.

Note: The NoComments element removes annotations (also known as comments). It removes all
annotation types (including 3D and multimedia, for example). The exception is that Link
annotations and Widget annotations cannot be removed. Use the NoLinks element to remove
Link annotations.

In the following example, because the NoComments element is a child of the PDF result element, none of
the comments in its scope are included.

Example: Removing all comments

<PDF result="doc1">
<PDF source="doc2"/>
<PDF source="doc3"/>
<PDF source="doc4"/>
<NoComments/>

</PDF>

In the following example, the NoComments element is a child of a PDFGroup element. Therefore, no
comments are included from the source documents within the PDFGroup element. Only the comments
from doc4 are included in the result.

Example: Removing comments from a group of sources

<PDF result="doc1">
<PDFGroup>

<PDF source="doc2"/>
<PDF source="doc3"/>
<NoComments/>

<PDFGroup/>
<PDF source="doc4"/>

</PDF>

NoComments and Comments cannot be siblings.

Importing and exporting comments
You can export a representation of the comments in a PDF document to a file and you can import
comments from a file. The following file formats can be used to store comments:

? Forms Data Format (FDF) is based on PDF and is documented in the PDF Reference.

? XFDF is an XML representation based on FDF. It is documented at
http://www.adobe.com/devnet/topics/xml.html.

Note: In addition to comments, FDF can also be used to store information about links and form fields. In
the Assembler service, however, you can use FDF only for comments. Links must be imported and

http://www.adobe.com/devnet/topics/xml.html

Adobe LiveCycle ES4 Working with Annotations
Assembler Service and DDX Reference Importing and exporting comments 74

exported using XFDF, and the Assembler service cannot export form fields. For more information,
see “Working with links” on page 78).

Some comment types are of special interest:

? The Assembler service provides special functionality with regard to file attachments. Page-level (not
document-level) file attachments are considered comments and can be imported and exported in the
same way as all other comments. For more information on file attachments, see “Working with File
Attachments” on page 81.

? Stamp annotations are also considered comments. However, they are not exported to XFDF.

? Link annotations are not comments but can be imported and exported separately using XFDF.

The Comments element can be used in several ways:

? As a source element, it specifies an FDF or XFDF stream containing comments.

? As a result element, it contains comments from the aggregation of its child elements and is returned as
an FDF or XFDF string. A Comments result element can appear only as a child of the DDX element.

? As a filter element, it is like a result element except that it is not returned to the user and can be used as
a source.

You can also select specific comments (see “Selecting specific comments” on page 75).

In this example, all comments from doc1.pdf are exported in XFDF format.

Example: Exporting comments as XFDF

<Comments result="doc1comments.xfdf" format="XFDF">
<PDF source="doc1.pdf"/>

</Comments>

In this example, doc2comments.xfdf contains comments that were exported previously. Because the
Comments source element is a child of the PDF source, the comments from doc2comments.xfdf replace
the existing comments in doc1.pdf.

Example: Replacing comments

<PDF result="doc3.pdf">
<PDF source="doc1.pdf">

<Comments source="doc2comments.xfdf"/>
</PDF>

</PDF>

In this example, the Comments source element is a sibling of the PDF source. Therefore, its comments are
combined with the existing comments in the PDF source, doc1.pdf. The combined comments are included
in the result.

Example: Importing additional comments

<PDF result="doc2.pdf">
<PDF source="doc1.pdf"/>
<Comments source="comments.xfdf"/>

</PDF>

In this example, comments are exported from one document and then imported into another. The
Comments result element from the first step is then used as a source element to create a PDF result.

Adobe LiveCycle ES4 Working with Annotations
Assembler Service and DDX Reference Selecting specific comments 75

Example: Exporting and importing comments

<Comments result="doc1comments.xfdf" format="XFDF">
<PDF source="doc1_rev1.pdf"/>

</Comments>
<PDF result="doc2.pdf">

<PDF source="doc1_rev2.pdf"/>
<Comments source="doc1comments.xfdf"/>

</PDF>

The same result can be accomplished with a Comments filter element. A Comments filter element is like a
result element except that it can be used in the same way as a source element. The comments are
exported from doc1_rev1.pdf and imported into doc2.pdf without the use of XFDF.

Example: Using a comments filter element

<PDF result="doc2.pdf">
<PDF source="doc1_rev2.pdf"/>
<Comments>

<PDF source="doc1_rev1.pdf"/>
</Comments>

</PDF>

The next section describes how you can select specific comments to export or import.

Selecting specific comments
A Comments result or filter element can specify a subset of the comments in their children rather than all
of them. You can set several attributes specifying criteria by which comments are selected:

? filter specifies whether comments are included or excluded. If omitted, its default value is Include.
If you specify a filter attribute with a value of Exclude, the selected comments are excluded from
the result and the other comments are included.

? beforeDate and afterDate select comments dated before or after a particular date, respectively.
The date is specified as an 8-character string of the format YYYYMMDD, where YYYY is the year, MM is the
month, and DD is the day.

? byAuthor selects comments that match an author’s name.

? byType selects comments by the annotation type, for example, Text or Highlight. Annotation
types are listed in the PDF Reference.

Adobe LiveCycle ES4 Working with Annotations
Assembler Service and DDX Reference Selecting specific comments 76

? byCategory selects the comments from a category of annotation types. Here are examples of
annotation types:

? Notes: Text annotations.

? DrawingMarkups: Line, PolyLine, Square, Circle, Polygon, and Ink annotations

? TextEditingMarkups: Highlight, Underline, Squiggly, StrikeOut, Caret, and
FreeText annotations.

? Stamps: Stamp annotations.

? Attachments: FileAttachment and Sound annotations.

? All: all of the above. If filter is set to Exclude, note that annotations in addition to the types
listed here are removed from the result, as if NoComments were specified. The exception is that Link
annotations and Widget annotations cannot be removed. Use the NoLinks element to remove
Link annotations.

The selection criteria are additive. That is, all comments satisfying any of the specified criteria are included.
In the following example, the result includes all comments from doc1_byGeorge.pdf that are dated before
July 4, 2005 or are drawing markups.

Example: Including selected comments

<PDF result="doc4.pdf">
<PDF source="doc1.pdf"/>
<Comments beforeDate="20050704" byCategory="DrawingMarkups"

filter="Include"/>
<PDF source="doc1_byGeorge.pdf"/>

</Comments>
</PDF>

If the previous example specified filter="Exclude", the result would include all comments except
comments that are dated before July 4, 2005 or are drawing markups.

This example exports all comments meeting any of these criteria: entered after June 1, 2005, Notes
annotations, or authored by Joe User.

Example: Exporting selected comments

<Comments result="doc6.fdf" format="FDF" filter="Include"
afterDate="20050601" byCategory="Notes" byAuthor="Joe User">

<PDF source="doc1.pdf"/>
</Comments>

To include only those comments that meet all of a set of criteria (rather than any), use nested Comments
elements. In the following example, the innermost Comments filter element includes only comments from
doc1.pdf authored by Joe User. Its parent element uses those comments as a source and then selects
comments that are Text annotations. Finally, the outermost Comments element narrows down the
selection to comments created after June 1, 2005, and exports them in FDF format.

Adobe LiveCycle ES4 Working with Annotations
Assembler Service and DDX Reference Selecting specific comments 77

Example: Using nested selection criteria

<Comments result="doc6.fdf" format="FDF" filter="Include"
afterDate="20050601">
<Comments byCategory="Notes" filter="Include">

<Comments byAuthor="Joe User" filter="Include">
<PDF source="doc1.pdf"/>

</Comments>
</Comments>

</Comments>

In this example, doc1.pdf is a source PDF document containing no comments. The other three documents
(doc1_fromTom.pdf, for example) are the same PDF document but contain comments from reviewers. The
Comments element extracts all the comments from these three documents, excluding any that are dated
after June 1, 2005, and imports them into the result document.

Example: Excluding specific comments

<PDF result="doc1_comments.pdf">
<Comments afterDate="20050601" filter="Exclude">

<PDF source="doc1_fromTom.pdf"/>
<PDF source="doc1_fromDick.pdf"/>
<PDF source="doc1_fromHarry.pdf"/>

</Comments>
<PDF source="doc1.pdf"/>

</PDF>

When exporting comments, you can also use selection attributes on a Comments result element. For
example, you could export the comments in the previous example to XFDF, as in this example.

Example: Exporting selected comments

<Comments result="doc8.xfdf" format="XFDF"
afterDate="20050601" filter="Exclude">

<PDF source="doc1_fromTom.pdf"/>
<PDF source="doc1_fromDick.pdf"/>
<PDF source="doc1_fromHarry.pdf"/>

</Comments>

If you want to specify different selection attributes for each source document, use separate Comments
filter elements as children of the Comments result element, as shown in the following example.

Example: Using several comments filter elements

<Comments result="doc9.xfdf" format="XFDF">
<PDF source="doc1_nocomment.pdf"/>
<Comments byCategory="Notes">

<PDF source="doc1_fromTom.pdf"/>
</Comments>
<Comments byCategory="DrawingMarkups">

<PDF source="doc1_fromDick.pdf"/>
</Comments>
<Comments byCategory="TextEditingMarkups">

<PDF source="doc1_fromHarry.pdf"/>
</Comments>

</Comments>

Adobe LiveCycle ES4 Working with Annotations
Assembler Service and DDX Reference Working with links 78

There are some important things to note about this example:

? The Comments result element must have at least one PDF source as a child element. It cannot have
only Comments filter elements as children; otherwise, an error occurs.

? The Comments filter elements select different types of comments from their respective source
elements. The comments are aggregated and effectively imported into the source document
doc1_nocomment.pdf, then exported as XFDF.

? The source document doc1_nocomments.pdf is not returned to the user. Therefore, its page contents
are ignored. But it must contain enough pages to include all the comments from the original
documents. It must also contain no comments of its own originally.

Working with links
Links in PDF documents are interactive elements that represent either a hypertext link to a destination in
the same (or other) PDF document or an action to be performed. In PDF, links are a type of annotation.

You can use the Links element to specify the following results:

? Export of a representation of the links in a PDF document into XFDF.

? Import of links in XFDF format into a PDF document. These links can replace or add to the existing links
in the document.

? Removal of the links in a document by using the NoLinks element.

This example extracts the links from doc1.pdf and returns the data to the client as an XFDF stream
specified by the Links result element.

Example: Exporting links as XFDF

<Links result="links1.xfdf">
<PDF source="doc1.pdf" />

</Links>

If a Links element has multiple PDF source elements as children. The children are effectively assembled
into a single document from which the link information is exported, as in this example. This means that
any links in doc1.pdf or doc2.pdf that reference the other document (that is, cross-document links) are
rationalized in the result document. See “Rationalizing links” on page 79 for details.

Example: Exporting links from multiple sources

<Links result="links1.xfdf">
<PDF source="doc1.pdf" />
<PDF source="doc1a.pdf" />

</Links>

You can save links1.xfdf to use in a separate workflow or within the same DDX. In the following example,
the result document doc3.pdf imports the links from links1.xfdf. Because the PDF and Links source
elements are siblings, the links from both sources are aggregated and included in the result.

Example: Adding links

<PDF result="doc3.pdf">
<PDF source="doc2.pdf" />
<Links source="links1.xfdf" />

</PDF>

Adobe LiveCycle ES4 Working with Annotations
Assembler Service and DDX Reference Removing links 79

In this example, the Links element is a child of the PDF source and therefore the links from links1.xfdf
replace the links in doc2.pdf. The result is returned as doc3.pdf.

Example: Replacing links

<PDF result="doc3.pdf">
<PDF source="doc2.pdf">

<Links source="links1.xfdf" />
</PDF>

</PDF>

If you do not need the XFDF outside the current DDX document, you can skip the step of exporting links to
XFDF and then importing them. Instead, you can use a Links filter element to effectively export and import
within a single result element. A filter element is like a result in that its content is provided by its child
elements. A filter element is also like a source in that it provides content to its parent. For more
information, see “Filter elements” on page 20.

In the following example, the Links filter element can be thought of as containing the links from its child,
doc1.pdf. Those links are then imported into the result document doc2.pdf.

Example: Using a links filter element

<PDF result="doc2.pdf">
<Links>

<PDF> source="doc1.pdf/>
</Links>

</PDF>

Removing links
You use the NoLinks element to specify that links within a scope should not be included in the result. In
the following example, the NoLinks element is in the scope of doc1.pdf. Therefore, any links in doc1.pdf
are effectively removed during the assembly. Any links in doc2.pdf and doc3.pdf are included in the result.

Example: Removing links

<PDF result="doc2.pdf">
<PDF source="doc1.pdf">

<NoLinks />
</PDF>
<PDF source="doc2.pdf">
<PDF source="doc3.pdf">

</PDF>

Note: You cannot specify both a Links and NoLinks element as siblings.

Rationalizing links
Links in PDF documents can reference other documents. Such links are called cross-document links. When
the user clicks such a link in a viewer application such as Acrobat, the location in the other document is
displayed.

When assembling documents, some source documents can have cross-document links to documents that
are represented by other sources in the assembly. In this example, suppose that you have two documents
called chapter1.pdf and chapter2.pdf and want to assemble them using the following DDX.

Adobe LiveCycle ES4 Working with Annotations
Assembler Service and DDX Reference Rationalizing links 80

Example: Assembling documents with cross-document links

<PDF result="book.pdf">
<PDF source="chapter1.pdf"/>
<PDF source="chapter2.pdf"/>

</PDF>

Suppose further that chapter1.pdf contains one or more cross-document links to chapter2.pdf and
chapter2.pdf contains one or more cross-document links to chapter1.pdf. In this case, have the links
reference the destination in the result document, rather than pointing to an external document.

A difficulty with referencing the destinations in the resultant document is that the names of source
elements in DDX are unrelated to the original filenames. If the Assembler service encounters a link whose
destination is a file called chapter2.pdf, it does not assume that this file is the same as the PDF source
element chapter2.pdf.

To ensure the resultant document’s cross-documents links work, specify the source names that correspond
to filenames that appear in cross-document links. To specify the source names, use the LinkAlias
element as a child of a PDF source, as shown in this example.

Example: Specifying link aliases

<PDF result="book.pdf">
<PDF source="chapter1.pdf" baseDocument="true">

<LinkAlias>Chapter1</LinkAlias>
<LinkAlias>chapter1.pdf</LinkAlias>

</PDF>
<PDF source="chapter2.pdf">

<LinkAlias>Chapter2</LinkAlias>
<LinkAlias>chapter2.pdf</LinkAlias>

</PDF>
</PDF>

For example, any cross-document links in the base document to files named "Chapter2" or "chapter2.pdf"
would resolve to the correct location in the result document.

 81

10 Working with File Attachments

PDF documents can contain file attachments consisting of any type of data. The data in these attachments
(also called embedded files) is separate from the page content and other document information. Any
external file can be attached to a PDF document. Once attached, it can be extracted to an external file.

PDF supports two types of file attachments:

? Document-level attachments are associated with the document as a whole and are identified by name.

? Page-level attachments are associated with a particular page in a document and do not have names.
These are also called file attachment annotations.

See the PDF Reference for more information.

You use the FileAttachments and NoFileAttachments elements to specify information about the
file attachments in a document.

Preserving and deleting file attachments
By default, attachments from all source documents are preserved in the resultant document. File
attachments are included from a source document only once, even if the source document is specified
several times. That is, if the base document contains three file attachments, then the result PDF document
contains three file attachments.

Note: Document-level file attachments are assembled from a non-base document when the entire PDF
document is part of the assembly. If only some pages from a non-base document are assembled,
then the document-level file attachments for that PDF are not included.

To exclude attachments, use the NoFileAttachments element. (See “NoFileAttachments” on page 208.)

Example: Excluding attachments from a source document

<PDF result="doc3.pdf">
<PDF source="doc1.pdf">

<NoFileAttachments/>
</PDF>
<PDF source="doc2.pdf"/>

</PDF>

The example above excludes attachments from doc1.pdf and includes attachments from doc2.pdf. The
following example excludes all file attachments by making the NoFileAttachments element a child of
the result element.

Adobe LiveCycle ES4 Working with File Attachments
Assembler Service and DDX Reference Attaching files to a PDF document 82

Example: Excluding all file attachments

<PDF result="doc3.pdf">
<NoFileAttachments/>
<PDF source="doc1.pdf"/>
<PDF source="doc2.pdf"/>

</PDF>

Note: The NoFileAttachments element and the FileAttachments element cannot be siblings.

Attaching files to a PDF document
You can attach files to a resultant document using the FileAttachments source element. As mentioned
earlier, there are two types of FileAttachments source elements: page-level and document-level.

Document-level file attachments
To attach a file at the document level, you use a FileAttachments source element and specify the
following information:

? The source attribute specifies the document to e attach.

? The nameKey attribute suggests a unique identifier for the document. Beginning with 9.0, the
nameKey is deprecated and can be omitted.

If you provide the nameKey, set its value to the filename of the attachment. The nameKey must be
unique. If duplicate filenames are specified, then the filename and nameKey are made unique by
appending a number to the root of the filename. For example, the second data.pdf added is
identified as data_0001.pdf.

? The File subelement specifies the filename for the attachment and optionally the MIME type, creation
date, and modification date. The filename must be unique.

? The FilenameEncoding subelement specifies the encoding for the filename.

? The Description subelement provides descriptive text.

This example attaches the file data.pdf to the resultant document.

Example: Attaching a file to the document

<PDF result="doc2.pdf">
<FileAttachments source="faData.pdf" >

<File filename="data.pdf" mimetype="application/pdf"/>
<FilenameEncoding encoding="UTF-8"/>
<Description>What this file does</Description>

</FileAttachments>
<PDF source="doc1.pdf"/>

</PDF>

In this example above, the FileAttachments source element is a sibling of the PDF source element.
Therefore, all file attachments in the original document doc1.pdf are preserved. In the following example,
data.pdf would be attached to the source (and hence the result), but all other attachments in doc1.pdf
would be deleted.

Adobe LiveCycle ES4 Working with File Attachments
Assembler Service and DDX Reference Page-level file attachments 83

Example: Replacing file attachments

<PDF result="doc2.pdf">
<PDF source="doc1.pdf">
<FileAttachments source="data.pdf" ... additional attributes />

</PDF>
</PDF>

Page-level file attachments
You can attach a file to any page of a PDF document as a file attachment annotation. To attach a page-level
file attachment, specify a FileAttachments element as a child of a PDF element. (See “FileAttachments”
on page 183.)

The syntax is similar to the syntax for document-level file attachments, with these exceptions:

? Page-level file attachments do not use the nameKey attribute.

? Page-level file attachments must have an additional subelement, AttachmentAppearance, that
specifies the appearance of the annotation icon on the page that represents the file attachment.
Beginning with version 9.0, the presence of this element is what distinguishes a page-level attachment
from a document-level attachment.

The file is attached to the first page represented by the parent element. Therefore, to attach a file to any
page other than the first page, use multiple PDF source elements, as in the following example.

Example: Attaching a file to a page

<PDF result="doc3.pdf">
<PDF source="doc1.pdf"/>
<PDF source="doc2.pdf" pages="1-2"/>
<PDF source="doc2.pdf" pages="3-last">

<FileAttachments source="meetingnotes.txt">
<File filename="meetingnotes.txt" mimetype="text/plain"/>
<FilenameEncoding encoding="ISO-8859-1"/>
<Description>comments from meeting</Description>
<AttachmentAppearance icon="Paperclip" color="red" opacity="75"

x="36.0" y="360.0" />
</FileAttachments>

</PDF>
</PDF>

This example creates a resultant document by assembling doc1.pdf and doc2.pdf. The goal is to attach the
file meetingnotes.txt to page 3 of the second source document, doc2.pdf. (Assuming doc1.pdf has three
pages, this file attachment appears on page 6 of the resulting doc3.pdf.) The doc2.pdf document is broken
into two parts by using two appearances of the PDF source element. Each appearance uses the pages
attribute to specify the pages in the part. The first part specifies pages 1-2, and the second part specifies
pagES4-last. The FileAttachments element causes the file to be attached to the first page of the range
3-last; that is, page 3.

Extracting file attachments
You can use the FileAttachments result element to return one or more file attachments from source
documents. Each file attachment is returned as a separate data stream, and the Assembler service maps
each stream to a unique name in the outputs map.

Adobe LiveCycle ES4 Working with File Attachments
Assembler Service and DDX Reference Extracting file attachments 84

Information about the mapping between names and streams is returned in an XML document that also
contains information about each returned file attachment.

This example returns all file attachments associated with the document doc3.pdf.

Example: Extracting all file attachments

<FileAttachments result="attachmentInfo.xml" nameKeys="*" extract="true">
<PDF source="doc3.pdf"/>
<FilenameEncoding encoding="ISO-8859-1"/>

</FileAttachments>

Note the following points about this example:

? The result attribute specifies the destination for the resultant XML document. This XML file contains
information about the file attachments. This document conforms to the FileAttachments schema. (See
“FileAttachments” on page 183.)

? All page-level file attachments in the PDF pages specified for the source document are returned; you
cannot specify individual page-level file attachments to return. If you specify the pages attribute on
the PDF source element, only file attachments on that range of pages would be returned. In the
example, all page-level file attachments are returned.

? The nameKeys attribute is a string specifying a list of document-level file attachments that are
returned. It can be a single name or a comma-separated list such as "doc1, doc2, doc3". The value
"*", as in the example above, requests that all document-level file attachments be returned. If you do
not specify this attribute, no document-level file attachments are returned.

? The extract attribute has a default value of true, so it is shown in the example only for convenience.
If you specify a value of false, the file attachments are not returned to you as streams. Only the XML
document is returned.

? The FilenameEncoding element specifies an encoding to use to decode the filenames of the file
attachments. You can specify more than one of these elements in case one of them is unknown to the
client. (See “FilenameEncoding” on page 187.)

The following example extracts a single document-level file attachment. It provides several encodings that
can be used to decode the stored filename. The result XML document is encoded with UTF-8.

Example: Extracting a single file attachment

<FileAttachments result="attachmentInfo.xml" nameKeys="data1" >
<PDF source="doc3.pdf"/>
<FilenameEncoding encoding="ISO-10646-UCS-2"/>
<FilenameEncoding encoding="UTF-8"/>
<FilenameEncoding encoding="ISO-8859-1"/>

</FileAttachments>

This example extracts multiple files attached to the PDF document.

Example: Extracting multiple file attachments

<FileAttachments result="attachmentInfo.xml" nameKeys="doc1,doc2,doc3" >
<PDF source="doc3.pdf"/>
<FilenameEncoding encoding="ISO-8859-1"/>

</FileAttachments>

In this example, page-level file attachments are extracted from pages 2-3 only. Default filename encoding
is used to decode the stored filename.

Adobe LiveCycle ES4 Working with File Attachments
Assembler Service and DDX Reference Understanding filename encoding 85

Example: Extracting file attachments from specific pages

<FileAttachments result="attachmentInfo.xml">
<PDF source="doc3.pdf" pages="2-3"/>
<FilenameEncoding encoding="ISO-8859-1"/>

</FileAttachments>

Understanding filename encoding
The FilenameEncoding element specifies character encodings to use for encoding and decoding the
names of files being attached or extracted. In LiveCycle ES 8.0 and later, the FilenameEncoding element
is optional. However, that element can be useful for processing documents that conform to PDF 1.6 or
earlier. With such documents, the filenames are not stored as Unicode strings. In such cases the package
files are document-level file attachments before the PDF to which they were attached became a PDF
package). If the original host encoding is unknown, and if more than one encoding is provided, the first
encoding that successfully decodes the bytes in the filename is used. However, there is no guarantee that
the result is the expected result. (See “FilenameEncoding” on page 187.)

 86

11 Adding Table of Contents or Blank Pages to an
Assembly
Most of the pages in assembled documents originate from source documents. You can also add pages to
your documents in the form of a table of contents (TOC) or blank pages.

Adding a table of contents
To create a table of contents, use a TableOfContents element. Only one TableOfContents element
can exist in a resultant document.

The placement of the TableOfContents element relative to the PDF source documents determines
where it is located in the resultant document. The TableOfContents element can be a child of a PDF
result or a PDFGroup element. It can also appear as a child of a StyleProfile element.

The table of contents consists of entries that are derived from bookmarks in the resultant document. Each
entry contains the bookmark title and the page that the bookmark links to. You can specify the number of
levels of bookmarks to include in the table of contents.

Note: Only bookmarks that link to pages in the resultant document are included in the table of contents.
Some bookmarks in a document can instead trigger actions such as running a script. (See “Working
with Bookmarks and Thumbnails” on page 64.)

Also, a mixture of Simplified-Chinese, Traditional-Chinese, Japanese, or Korean text in PDF
bookmarks within a given table of contents can result in illegible characters. To avoid problems with
such a mixture, specify the font to use for a particular Asian text. Because you cannot indicate the
preferred font or language within a given bookmark, mixed Asian languages within the same table
of contents are not supported.

In the following example, the table of contents is inserted after Intro and before Chap1. By default, the
table of contents includes the entries for all source elements after the TableOfContents element. It
omits entries from source elements before the TableOfContents element. Therefore, the table of
contents in this example does not include entries that represent the bookmarks in Intro.

Adobe LiveCycle ES4 Adding Table of Contents or Blank Pages to an Assembly
Assembler Service and DDX Reference Adding a table of contents 87

Example: Creating a table of contents

<PDF result="doc5">
<PDF source="Intro"/>
<TableOfContents/>
<PDF source="Chap1"/>
<PDF source="Chap2"/>
<PDF source="Summary"/>

</PDF>

The following example overrides the default behavior by setting the includeInTOC attribute explicitly.
In this case, entries from Intro, Chap1, and Chap2 are included in the table of contents, and entries from
Summary are not included.

Example: Including extra sources in a table of contents

<PDF result="doc5">
<PDF source="Intro" includeInTOC="true"/>
<TableOfContents/>
<PDF source="Chap1"/>
<PDF source="Chap2"/>
<PDF source="Summary" includeInTOC="false"/>

</PDF>

By default, the table of contents includes only bookmarks at the top level of the outline hierarchy. You can
include additional bookmarks by setting the maxBookmarkLevel attribute to one of the following
values:

? A positive integer, which specifies the level of bookmarks to include. The default value is 1, which
means that only the level 1 bookmarks are included.

? infinite, which means that all bookmarks are included in the table of contents.

The following example specifies that three levels of bookmarks appear in the table of contents.

Example: Specifying table of contents levels

<PDF result="doc5">
<TableOfContents maxBookmarkLevel="3" createLiveLinks="false"

bookmarkTitle="Table of Contents" includeInTOC="true"/>
<PDF source="Chap1"/>
<PDF source="Chap2"/>
<PDF source="Chap3"/>

</PDF>

This example also uses the following attributes:

? createLiveLinks specifies whether entries in the table of contents have PDF links associated with
them. The default is true but can be set to false, such as if the resulting document is intended solely
for print.

? bookmarkTitle specifies that a bookmark are created for the table of contents with the given title.

? includeInTOC specifies that the string specified for bookmarkTitle is used to generate a table of
contents entry for the table of contents itself. Its default value is true; however, the entry in the table
of contents is not generated unless bookmarkTitle is specified.

Adobe LiveCycle ES4 Adding Table of Contents or Blank Pages to an Assembly
Assembler Service and DDX Reference Formatting a table of contents 88

A TableOfContents element can also appear as a child of a StyleProfile element. (See “Using style
profiles” on page 116.) The StyleProfile element lets you define a table of contents that multiple
result elements reference via the styleReference attribute.

Example: Using a style profile to create a table of contents

<PDF result="finalDoc">
<TableOfContents styleReference="myTOCStyle"/>
<PDF source="Chap1"/>
<PDF source="Chap2"/>
<PDF source="Chap3"/>

</PDF>
<StyleProfile name="myTOCStyle"/>

<TableOfContents maxBookmarkLevel="3" createLiveLinks="false"/>
<!--Elements describing the table of contents-->

</TableOfContents>
</StyleProfile>

Formatting a table of contents
You can format a table of contents in the following ways:

Add content and properties. Specify elements such as PageMargins, Header, Watermark, and
PageLabels as children of the TableOfContents element. The table of contents also inherits these
elements if they are specified in a parent element.

Specify different properties and content for different pages. For example, you can specify one set
of properties for the first page of the table of contents and all other pages. To specify such properties,
add one or two TableOfContentsPagePattern elements as children of the TableOfContents
element. The TableOfContentsPagePattern element has a pages attribute that can be set to 1 or
2-last. Any child elements that you specify for the TableOfContentsPagePattern element
apply only to the pages specified.

Specify style information for line levels. For example, you can specify the style to use depending on
the bookmark level they apply to. Use the TableOfContentsEntryPattern element.

Applying page properties and content to particular pages
By default, page properties and content applied to the TableOfContents element (or its parents) apply
to all pages of the table of contents. You can override this behavior by using the
TableOfContentsPagePattern element. This element lets you specify the pages in the table of
content that have the page properties or content.

In the following example, a header and footer are defined for the table of contents as a whole. However,
the first page overrides the header and the remaining pages override the footer.

Example: Formatting a table of contents

<TableOfContents maxBookmarkLevel="3">
<Header styleReference="alpha"/>
<Footer styleReference="beta"/>
<TableOfContentsPagePattern pages="1">

<Header styleReference="gamma"/>
<TableOfContentsPagePattern/>
<TableOfContentsPagePattern pages="2-last">

Adobe LiveCycle ES4 Adding Table of Contents or Blank Pages to an Assembly
Assembler Service and DDX Reference Applying entry styles to specific line levels 89

<Footer styleReference="delta"/>
<TableOfContentsPagePattern/>

</TableOfContents>

Applying entry styles to specific line levels
By default, entry styles defined in the TableOfContentsEntryPattern element apply to the entry
style for each level in the table of contents. You can override this behavior by using the
applicableLevel attribute. Set this attribute to “1” for a style applied to the first level of entries. Set it to
“2” for a style applied to the second level of entries.

Specify an entry style by adding a StyledText element as a child of the
TableOfContentsEntryPattern element. This element can specify any of the styled text attributes of
the Assembler service (see “Specifying styled text” on page 112).

The following example shows a table of contents that uses two levels of bookmarks.

Example: Formatting table of contents entries

<TableOfContents maxBookmarkLevel="2">
<TableOfContentsEntryPattern applicableLevel="1" >

<StyledText>
<p font-family="MyriadPro" font-size="12pt">

<_BookmarkTitle/><leader leader-pattern="dotted"/>
<_BookmarkPageCitation/>

</p>
</StyledText>

</TableOfContentsEntryPattern>
<TableOfContentsEntryPattern applicableLevel="2" >

<StyledText>
<p font-family="MyriadPro" font-size="10pt" >

Section <_BookmarkTitle/><leader leader-pattern="space"/>
<_BookmarkPageCitation/>

</p>
</StyledText>

</TableOfContentsEntryPattern>
</TableOfContents>

If you do not specify an entry pattern for a specific bookmark level, the pattern specified for the next
higher level is used. In the example above, level 3 bookmarks use the same style as bookmarks that are
specified for level 2. If you do not specify any TableOfContentsEntryPattern elements, a default
style is used, which corresponds to the following example.

Example: Default style for table of contents entries

<StyledText> <p>
<_BookmarkTitle/>
<leader leader-pattern="dotted"/>
<_BookmarkPageCitation/></p>

</StyledText>

This style causes each entry to look like the following example:

Chapter 1..3
Chapter 2...25

Adobe LiveCycle ES4 Adding Table of Contents or Blank Pages to an Assembly
Assembler Service and DDX Reference Adding blank pages 90

Adding blank pages
You can use the BlankPage element to add pages to your document. Such pages are blank in the sense
that they begin with no text or graphics. However, as with all pages in an assembled document, you can
add page content such as headers and watermarks. You can also set the page properties and page labels.

A typical use for adding a blank page is to make the number of pages in a chapter, section, or document
even. As a result, the first page of the next section starts on an odd-numbered page. To force the next
chapter, section, or document to start on an odd-numbered page, specify true for the value of the
forceEven attribute. A blank page is added only if the number of pages up to that point in the resultant
document is odd.

In the following example, each chapter is forced to contain an even number of pages before the next
chapter is assembled into the resultant document.

Example: Adding blank pages

<PDF result="doc.pdf">
<PDF source="Chap1.pdf"/>
<BlankPage forceEven="true"/>
<PDF source="Chap2.pdf"/>
<BlankPage forceEven="true"/>
<PDF source="Chap3.pdf"/>
<BlankPage forceEven="true"/>

</PDF>

Note: The ordinal page number of a page in the resultant document determines whether that page is odd
or even. Whether a page is odd or even is independent of the page’s ordinal page number in a PDF
source or PDFGroup element. It is also independent of the PageLabel element that applies to the
page.

In the next example, a blank page is added only at the end of the resultant document, if necessary, to make
the pages even. The page, if it exists, has a watermark specified by the Watermark element that is a child
of the BlankPage element.

Example: Adding a blank page with a watermark

<PDF result="doc3.pdf">
<PDF source="doc1.pdf"/>
<PDF source="doc2.pdf"/>
<BlankPage forceEven="true">

<Watermark>
<StyledText font-family="Helvetica" font-size="14">

<p>This page intentionally left blank</p>
</StyledText>

</Watermark>
</BlankPage>

</PDF>

As with other pages, pages that the BlankPage element adds inherit page properties and content that
the parent elements specify. Page properties can also be specified through the BlankPage element. If a
value for either PageSize or PageRotation is not specified within the scope of the BlankPage
element, then the value is taken from other sources (in order of consideration):

1. Resultant PDF document page just before the blank page

Adobe LiveCycle ES4 Adding Table of Contents or Blank Pages to an Assembly
Assembler Service and DDX Reference Adding blank pages 91

2. Resultant PDF document page just after the blank page

If a page label is not specified within the scope of the blank page, the following result occurs:

? If the document contains no other page labels, the blank page has no page labels.

? If the document contains page labels, the blank page takes its labeling style from the previous page in
the assembly. This behavior is equivalent this setting: <PageLabel mode="Continue"/>. If no
pages are present before the blank page, the blank page takes a filler label that is equal to the ordinal
page number.

See also

“Scope of elements that affect PDF or XDP properties” on page 25.

 92

12 Setting Other Document Properties

Some properties of PDF documents apply to the document as a whole rather than to individual pages. The
Assembler service provides options for determining how these properties are set.

By default, document-level properties are taken from the base source document (see “About base
documents” on page 30).

Document properties also include security settings, which are discussed in “Working with Secured
Documents” on page 131.

Working with metadata
PDF documents contain metadata (information about the document) in an XML format called Extensible
Metadata Platform (XMP). PDF metadata includes properties such as the title, author, and date created.

When assembling documents, the resultant document contains the metadata from the base source
document.

Example: Using metadata from the base document

<PDF result="doc3.pdf">
<PDF source="doc1.pdf"/>
<PDF source="doc2.pdf"/>

</PDF>

The metadata in doc1.pdf becomes the metadata for the resultant document doc3.pdf. However, you can
modify the document metadata in several ways.

You can use DDX to export the metadata from a PDF document, as in the following example.

Example: Exporting metadata

<Metadata result="doc1.xmp"
<PDF source="doc1.pdf"/>

</Metadata>

Saved metadata can be imported into a PDF document to replace the existing metadata, as in this
example:

Example: Importing saved metadata

<PDF result="doc4.pdf">
<Metadata source="doc1.xmp"/>
<PDF source="doc2.pdf"/>
<PDF source="doc3.pdf"/>

</PDF>

The metadata that was previously exported as doc1.xmp replaces any metadata that existed in doc2.pdf
(the base document) and becomes the metadata for doc4.pdf.

Adobe LiveCycle ES4 Setting Other Document Properties
Assembler Service and DDX Reference Modifying metadata properties 93

Alternatively, you can combine the previous examples without having the XMP returned as a stream by
specifying the return attribute:

Example: Using a temporary metadata result

<Metadata result="temp" return="false"
<PDF source="doc1.pdf"/>

</Metadata>
<PDF result="doc4.pdf">

<Metadata source="temp"/>
<PDF source="doc2.pdf"/>
<PDF source="doc3.pdf"/>

</PDF>

Modifying metadata properties
You can modify individual metadata items in the result PDF with the Author, Title, Subject, and
Keywords elements. In this example, doc1.pdf provides all the metadata for doc2.pdf, except for the Title
property, which is set explicitly to "My Memoirs".

Example: Setting a metadata property

<PDF result="doc2.pdf">
<Title value="My Memoirs"/>
<PDF source="doc1.pdf"/>

</PDF>

In the next example, the Subject element is a sibling of the Metadata source element. The metadata
from doc1.xmp replaces the metadata in doc3.pdf. Then the value provided in the Subject element
overrides the Subject property.

Example: Overriding a metadata property

<PDF result="doc2.pdf">
<Metadata source="doc1.xmp"/>
<Subject value="politics"/>
<PDF source="doc3.pdf"/>

</PDF>

The Author, Title, and Subject elements contain a single string attribute, value. The Keywords
element contains Keyword subelements that each have a value attribute.

The Keywords element’s mode attribute lets you replace or amend keywords in the resultant document. A
value of Set (the default) replaces the keywords with the specified set. A value of Append adds the
keywords to the existing ones. In this example, the Keywords document property for Reference.pdf is set
to "PDF, language". Any existing keywords are overwritten.

Example: Specifying metadata keywords

<PDF result="Reference.pdf">
<Keywords>

<Keyword value="PDF"/>
<Keyword value="language"/>

</Keywords>
<PDF source="Reference.pdf"/>

</PDF>

Adobe LiveCycle ES4 Setting Other Document Properties
Assembler Service and DDX Reference Working with layers 94

Working with layers
Graphical content in PDF documents can be stored on different layers, which can be displayed or hidden
under user control. Such content is also called optional content.

Each layer in a PDF document has a name. When assembling two or more PDF documents, you can
distinguish between the layers that originated from different source documents. To standardize the layers
in the resultant document, use the layerLabel attribute of PDF source elements and the mergeLayers
attribute of the PDF result element.

Label layers. Layers in a PDF document can be grouped under a label name. Use the layerLabel
attribute of a PDF source element to specify the name of a top-level label. This label is a heading for the
layers of the source document. Labeling layers enables readers to distinguish between layers from
different source documents.

Merge layers. The mergeLayers attribute of the PDF result element determines whether layers with
the same name from different source documents are kept as separate layers in the resultant document.
If mergeLayers is false (the default), layers from source documents are kept distinct in the resultant
document. If mergeLayers is true, layers with the same name are merged into a single layer in the
resultant document.

Setting the initial view
You can specify how a resultant document is viewed when it is opened in a viewer application such as
Adobe Reader. This information is equivalent to the document’s Initial View properties, which can be set in
Acrobat. It includes magnification level and other page properties. It also includes properties for viewing
PDF packages or portfolios. (See “InitialViewProfile” on page 196.)

You specify the initial view for a document with an InitialViewProfile element, which must be a
child of the root DDX element. The initialView attribute of a PDF result element references the
InitialViewProfile element, as shown in the following example:

Example: Setting the initial view

<PDF result="doc3.pdf" initialView="demo">
<PDF source="doc1.pdf" />
<PDF source="doc2.pdf" />

</PDF>
<InitialViewProfile name="demo" show="BookmarksPanel"

magnification="FitPage" openToPage="2"/>

Using document-level JavaScript
The JavaScript element specifies a document-level script to add to the resultant PDF document. When
the PDF document is opened, all document-level scripts are executed. Use the NoJavaScripts element
to omit JavaScript in the resultant document. (See “NoJavaScripts” on page 210.)

In the following example, a document level JavaScript named "onOpen" is added to the resultant
document. Even if pdf1 contains a document level JavaScript named "onOpen", it is not included in the
result. The input data stream associated with "js1" is included in resultDoc as the JavaScript named
"onOpen" instead.

Adobe LiveCycle ES4 Setting Other Document Properties
Assembler Service and DDX Reference Using document-level JavaScript 95

Example: Adding a document level JavaScript to the resultant document

<PDF result="resultDoc">
<PDF source="pdf1"/>
<JavaScript source="js1", name="onOpen"/>

</PDF>

In the next example, the resultant document contains only the JavaScript from pdf1, which is the base
document. Any scripts contained in pdf2, pdf3, or pdf4 are excluded from the result. The
NoJavaScripts element lets you exclude all JavaScript from the resultant document.

Example: Including document level JavaScript only from the base document

<PDF result="resultDoc">
<PDF source="pdf1"/>
<PDFGroup>

<NoJavaScripts/>
<PDF source="pdf2"/>
<PDF source="pdf3"/>
<PDF source="pdf4"/>

</PDFGroup>
</PDF>

 96

13 Setting Page Properties

The Assembler service allows you to set several properties of PDF pages, such as their size and rotation.

Applying page properties
The page property elements are PageSize, PageRotation, PageMargins, ArtBox, BleedBox, and
TrimBox. You can specify these elements for different pages in an assembly by including them at the
appropriate level. (See “Scope of elements that affect PDF or XDP properties” on page 25.)

Page property elements can be children of the following elements: PDF result, PDF source, PDFGroup,
TableOfContents, TableOfContentsPagePattern, and BlankPage.

You can specify each page property element only once for a given scope, except when you use the
alternation attribute to specify odd and even pages. This restriction exists to ensure that individual
pages do not have conflicting properties. See “Odd and even pages” on page 26 for more details.

In addition to setting page properties, you can specify additional page content with page content
elements. (See “Adding and Manipulating Page Content” on page 103.)

The next section explains the relationship between these elements.

Page size and rotation
You use the PageSize element to define the page size of a PDF page. In DDX, the term page size is
interpreted in the following way:

? From the user’s point of view, it is the dimensions of the visible page. If you use the Crop Pages
command in Acrobat, you see the page size displayed as "Cropped page size". A standard letter-size
page is 8.5 x 11 inches. If the page is rotated 90°, the page size is 11 x 8.5 inches.

? In the PDF file, these dimensions correspond to the intersection of the /MediaBox and /CropBox
entries in the page dictionary after applying the /Rotate entry. (See the PDF Reference for details.)

? The page size corresponds to what is returned when using the DocumentInformation query
element to obtain information about the document. The XML that is returned includes a PageSize
element. (See “Getting document information” on page 135.)

There is an interaction between the PageSize and PageRotation elements. See “Rotation and
orientation” on page 98 for more information.

The width and height attributes of the PageSize element specify the dimensions, which default to the
standard letter size of 8.5 x 11 inches. These attributes can be specified in inches, millimeters, centimeters,
or points. (See “Specifying length” on page 27 for more information.) The default values are for letter size:
"612pt" (8.5 inches) for width and "792pt" (11 inches) for height.

In the following example, suppose that doc2 contains letter size pages (8.5 x 11 inches) and doc1 contains
legal size pages (8.5 x 14 inches). To make all the pages the same size, you can specify legal size for the
pages in doc2.

Adobe LiveCycle 11 Setting Page Properties
Assembler Service and DDX Reference Changing page size 97

Example: Setting the page size

<PDF result="newdoc">
<PDF source="doc1"/>
<PDF source="doc2">

<PageSize width="8.5in" height="14in"/>
</PDF>

</PDF>

Changing page size
If the page size changes, you can specify whether the page contents are scaled and how the original page
is anchored. The page size changes if the result page size is different from the source page size.

By default, page contents are not scaled. If the page size increases, white space is added around the
original page. If the page size decreases, the page contents are cropped to the new page size (possibly
resulting in some visible content being hidden).

To modify the default behavior, specify true for the attributes scaleUp and scaleDown. The scaleUp
attribute applies when the page size increases in both dimensions. The scaleDown attribute applies
when the page size decreases in at least one dimension.

If the new specified page is larger than the previous size in one dimension but smaller in the other and
scaleDown is true, scaling is performed. scaleUp never results in content being cropped; cropping can
occur only if the page size has been reduced and scaleDown is false.

Scaling never alters the aspect ratio of the page’s contents. If performed, scaling is always the same in the
horizontal and vertical dimensions. If the new page size has a different aspect ratio from the previous page
size, the scale factor is the largest one that accommodates the page. In the other, non-critical dimension,
either more of page’s contents are made visible or white space is added.

The horizontalAnchor and verticalAnchor attributes determine where extra white space (or
previously hidden content) appears if the page size increases. They also determine how cropping occurs if
the page size decreases and scaling is not performed.

For example, if you specify a page size of 8.5 x 14 inches, any source pages that were 8.5 x 11 inches grows
vertically. The default value for the verticalAnchor attribute is Middle. With this setting, the old page
size is centered vertically compared to the new size and white space appears equally at the top and
bottom. If you set the verticalAnchor attribute to Top or Bottom, the white space is added at the
bottom or top, respectively. The same applies for horizontalAnchor, which can be set to Center (the
default), Left, or Right.

By contrast, if the vertical dimension is decreased (say from 14 to 11) and verticalAnchor is Middle,
the page is cropped equally at top and bottom. If verticalAnchor is Bottom, the top of the page is
anchored to the new top and all cropping is done at the top. The following example and the figures below
show this cropping behavior.

Example: Decreasing the page size

<PDF result="newdoc">
<PageSize width="8.5in" height="11in"

verticalAnchor="Bottom/>
<PDF source="doc1"/>
<PDF source="doc2"/>

Adobe LiveCycle 11 Setting Page Properties
Assembler Service and DDX Reference Rotation and orientation 98

</PDF>

Rotation and orientation
You can use the PageRotation element to change the rotation angle of a page. The rotate90 attribute
specifies the rotation angle in increments of 90°, where a positive value is clockwise rotation and a
negative value is counterclockwise. This rotation is absolute, not relative. That is, if the rotate90 attribute
is set to 90, then the page rotation is 90°. For example, if the original rotation angle was 90 and you specify
90 in the PageRotation element, there is no change.

The Assembler service always assumes that the pages are set the way you want to view them; whether a
rotation value is specified or not. The Assembler service assumes that the pages are set the way you want
to view them. For example, when you add a footer to a rotated page, the footer is at the bottom of the
newly oriented page.

Example: Specifying a rotation angle

<PDF result="newdoc">
<PDF source="doc1">

<PageRotation rotate90="90"/>
<Footer styleReference="myStyle"/>

</PDF>
</PDF>

Legal-sized:
Not a

Letter-sized

page

Letter-sized

page

Adobe LiveCycle 11 Setting Page Properties
Assembler Service and DDX Reference Interaction of page properties and content 99

These figures illustrate how the source page looks before and after rotation and application of the footer.

Changing page rotation affects page size. If you change PageRotation, the effective page size changes.
However, if you change PageSize, the rotation does not change. The DocumentInformation query
returns page rotation and page size.

For purposes of this discussion, the following terms are used:

? A portrait page is one whose width is less than or equal to its height.

? A landscape page is one whose width is greater than its height.

If you specify a page size for your document, it is possible that some of the pages have a different
orientation from the specified one. To control what happens, set the select attribute of the PageSize
element to one of the following values:

? Auto: The orientation of each page is preserved if the page size is changed. If the specified orientation
does not match the existing orientation of a page, the width and height values for PageSize are
effectively swapped. For example, if the page size is 8.5 x 11 and the new page size is specified as 14 x
8.5, the effective page size becomes 8.5 x 14. As a result, the orientation is preserved.

? Portrait: The new values apply only to pages that are already in portrait mode. For example, if the
old page size is 11 x 8.5 (landscape) and the new page size is 8.5 x 14, the page size is not changed.

? Landscape: The new values apply only to pages that are already in landscape mode. For example, if
the old page size is 8.5 x 11 (portrait) and the new page size is 14 x 8.5, the page size is not changed.

? All: The new values apply to all pages regardless of their previous orientation.

Interaction of page properties and content
It is important to understand the effect of specifying multiple page property or page content elements to
a set of pages specified by a DDX scope. The elements are applied in the following order:

? PageRotation: Specifies a rotation angle applied to the original page size of the source element.
Including this element can change the page orientation from portrait to landscape or the reverse. (See
“Rotation and orientation” on page 98.)

Adobe LiveCycle 11 Setting Page Properties
Assembler Service and DDX Reference Prepress settings 100

? PageSize: Specifies the new page size. “Changing page size” on page 97 describes how this element
is used.

? Transform: A page content element that transforms the existing page content, including scaling,
translation, and rotation (see “Transforming page content” on page 121). If PageRotation changed
the orientation of the page, Transform rotates, scales, or translates the content relative to that new
orientation.

? PageMargins: Defines a border that affects the initial placement of page content elements such as
headers and footers. (See “Page margins” on page 101.)

? Page content elements (for example Header and Footer): Applies new content to the pages.
Elements that appear earlier in a DDX can modify the page content’s dimensions, orientation, and
content margins. Applying page content elements ensure that the resultant document bears the same
additional content. See “Adding and Manipulating Page Content” on page 103.)

Prepress settings
You can specify information for prepress production workflows by setting the ArtBox, BleedBox, and
TrimBox elements. These elements correspond to the /ArtBox, /BleedBox, and /TrimBox entries in
the page dictionary of a PDF file. (See section 10.10.1 in the PDF Reference for details.)

Unlike PDF, the prepress elements do not specify the exact coordinates of the boxes. Instead, their
positions are specified as offsets (margins) from the edge of the visible page. The PageSize element
specifies the dimensions of the visible page. (See “Page size and rotation” on page 96.)

These elements all have the same attributes:

? left, top, right, and bottom specify the distance from the edge of the page to the corresponding
edge of the box. Their default values are 0pt, meaning that the size of each box is the same as the page
size. (See “Specifying length” on page 27 for details.)

? alternation specifies whether the settings apply to all pages in the current scope, odd pages, or
even pages. (See “Odd and even pages” on page 26.)

This example shows the art box being set differently for odd and even pages. All offsets are set to 36 points
(.5 inch) from the edge of the page. The exception is a 72 point (1 inch) offset for the left side of the art box
on odd pages and the right side for even pages.

Example: Setting the art box for alternating pages

<PDF result="doc2">
<PDF source="doc1">

<ArtBox left="72pt" top="36pt" right="36pt" bottom="36pt"
alternation="OddPages"/>

<ArtBox left="36pt" top="36pt" right="72pt" bottom="36pt"
alternation="EvenPages"/>

</PDF>
</PDF>

Specifying a new value for the PageSize element does not adjust the settings of these elements. If these
values are important to your workflow, set them explicitly.

Adobe LiveCycle 11 Setting Page Properties
Assembler Service and DDX Reference Page margins 101

Page margins
The PageMargins element lets you specify the initial placement of page content elements such as
headers, watermarks, and tables of contents. (See “Adding and Manipulating Page Content” on page 103.)

The PageMargins element has four attributes, left, top, right, and bottom, which specify each
margin as a distance from the edge of the page. The PageSize element specifies the page dimensions.
The default margins are 36 points (.5 inches).

In this example, all the margins are set to values other than the default. The Header and Footer elements
specify the header and footer. (See “Adding and removing headers and footers” on page 103.)

Example: Setting page margins

<PDF result="doc1">
<PDF source="doc2">

<PageMargins left="1in" top="0.75in" right="0.75in" bottom="1in"/>
<Header padding="0.5in">

<Center>
<StyledText><p>Header content</p></StyledText>

</Center>
</Header>
<Footer>

<Center>
<StyledText><p>Footer content</p></StyledText>

</Center>
</Footer>

</PDF>
</PDF>

The page margins determine the placement of the header:

? The top of the header is aligned with the top margin

? The left side of the Left header is aligned with the left margin

? The right side of the Right header is aligned with the right margin

Footers behave in a similar manner. Watermarks, backgrounds, and tables of contents also use the margins
to determine where to place new content, as described in the individual sections on those elements.

Adobe LiveCycle 11 Setting Page Properties
Assembler Service and DDX Reference Page margins 102

This figure shows the placement of the margins, header, and footer defined in the example.

Note: The page margins determine where to place the text or graphics but do not provide a clipping
boundary. For example, the figure shows a centered header. If the header has too many characters,
it can overflow both the left and right margins. Similarly, a left-justified header can overflow the
right margin.

You can specify PageMargins only once within a given scope. The exception is when you use the
alternation attribute and specify both OddPages and EvenPages as values. (See “Odd and even
pages” on page 26.)

 103

14 Adding and Manipulating Page Content

You can add and remove several types of content to the pages of assembled PDF documents:

? Headers and footers consist of text or graphics that appear at the top or bottom of a page. Typically,
they contain information such as the date, page number, and document title.

? Watermarks and backgrounds consist of text or graphics that can appear anywhere on a page.
Watermarks can appear on top of the existing content, and backgrounds can appear in back of the
existing content.

? Overlays and underlays consist of entire PDF pages that are placed on top of the existing content
(overlays) or in back of the existing content (underlays).

? Page content, added in a manner similar to a watermark or background, which can be made screen
readable for structured (tagged) PDF documents.

For the Assembler service, reapplying a page content element to a PDF file causes the file to grow in size.
This growth occurs even if you set the PDF element’s save attribute to Full, as shown in the example below.
The page content elements include the Header, Footer, Watermark, Background, PageContent,
PageOverlay, and PageUnderlay elements.

The reason the file grows is that the Header, for example, references an optional content group (OCG) in
the PDF document. Because different PDF objects can reference the same OCG, it is assumed that other
PDF objects must be able to access the OCG associated with the Header. For this reason, reapplying the
Header adds a new OCG associated with the new Header. It does not remove the associated OCG.

For example, the following DDX causes the file to grow in size each time it is applied to the file:

<PDF result="result.pdf" save="Full">
 <PDF source="input.pdf" />
 <Header> <Center>
 <StyledText>
 <p>For review</p>
 </StyledText> </Center>
 </Header>
</PDF>

Adding and removing headers and footers
You can specify headers and footers that appear in your resultant documents.

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Adding headers and footers 104

Adding headers and footers
The Header and Footer elements specify page content that appears at the top and bottom of the page,
respectively. Headers and footers are located on the page as follows:

Outer margins. The PageMargins element specifies the outer margins for the given page. (See “Page
margins” on page 101.) For headers, the left, top, and right margins apply. For footers, the left, bottom,
and right margins apply. The default margins are 36 points (.5 inches).

Padding between the header or footer and the content. The Header or Footer element’s padding
attribute specifies the distance between the header or footer and the body content.

Background color. The Header or Footer element’s backgroundColor attribute specifies the
color to use for filling the background area for the header or footer area.

Placement of text. The Header or Footer element’s margin attribute provides additional control
over placement of text.

Header and Footer elements have the child elements Left, Center and Right, which specify an
anchor for placement of content within the header or footer:

? Left supplies content that is justified to the left margin.

? Center supplies content that is centered on the page.

? Right supplies content that is justified to the right margin.

Note: The margins and Header or Footer margins determine where to place the text or graphics. These
margins do not provide a clipping boundary. It cannot be assumed that a DDX processor can wrap
the text. For example, a left-justified header can overflow the right margin if it is too wide.

Header and Footer elements can be children of the following elements, which correspond to the pages
on which they can appear:

? PDF or PDFGroup elements (source pages)

? TableOfContents or TableOfContentsPagePattern elements (table of contents pages)

? BlankPage elements (blank pages)

You can also specify Header and Footer elements within named StyleProfile elements. Parent
elements can then reference those StyleProfiles by name. (See “Using style profiles” on page 116.)

In LiveCycle 7.x, when you specified a header or footer for a page, any header or footer that was previously
added to the page was removed. This behavior applied even if it contained no text or graphics. In
LiveCycle ES 8.0 and later, you can retain pre-existing headers and footers by setting the
replaceExisting attribute to false.

Note: The Assembler service can remove only page content added with Acrobat 8 or earlier. It cannot
remove watermarks, backgrounds, headers, and footers added with later versions. Acrobat 9 and
later does not distinguish between watermarks, backgrounds, headers, and footers. Also, the
Assembler does not remove page content that contains Bates numbers.

You can specify a different Header or Footer for even and odd pages within a given scope (see “Odd and
even pages” on page 26).

If Header or Footer are not explicitly specified for the current scope but are specified for a parent scope,
the parent Header or Footer apply to the current scope.

You can specify the contents of the header and footer fields in one of two ways:

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Adding headers and footers 105

? By using styled text specified by a StyledText element (see “Specifying styled text” on page 112)

? By using a page from a PDF document (specified by a PDF source element) as a graphic. The first page
from the pages specified by the PDF source is used.

The next figure shows the elements of a header and footer including the padding below the header, and
padding above the foot and the margins. The following example shows the corresponding DDX.

Example: Adding headers and a footer

<PDF result="doc2.pdf">
<PDF source="doc1.pdf">

<Header padding=".3in">
<Right>

<StyledText><p>Right-justified header</p></StyledText>
</Right>
<Left>

<StyledText><p>Left-justified header</p></StyledText>
</Left>

</Header>
<Footer padding=".25in">

<Center>
<StyledText><p>A centered footer</p></StyledText>

</Center>
</Footer>

</PDF>
</PDF>

Here is an alternative way to specify the same information:

Example: Specifying headers and footers with the styleReference attribute

<PDF result="doc2.pdf">

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Adding headers and footers 106

<PDF source="doc1.pdf">
<Header styleReference="myProfile"/>
<Footer styleReference="myProfile"/>

</PDF>
</PDF>
<StyleProfile name="myProfile">

<Header padding=".3in">
<Right>

<StyledText><p>Right-justified header</p></StyledText>
</Right>
<Left>

<StyledText><p>Left-justified header</p></StyledText>
</Left>

</Header>
<Footer padding=".25in">

<Center>
<StyledText><p>A centered footer</p></StyledText>

</Center>
</Footer>

</StyleProfile>

In the example, the Header and Footer elements have a styleReference attribute that references a
style profile. Style profiles (specified by the StyleProfile element) can contain information about
headers, footers, watermarks, backgrounds, tables of contents, or date patterns. See “Using style profiles”
on page 116 for more information.

Note: In terms of scope, Header and Footer elements that reference definitions within StyleProfile
elements are treated as if the definition appeared directly inline.

The next example shows different headers specified for odd and even pages and also specifies different
page margins for odd and even pages. In addition, the Header elements specify true for the
shrinkContentToFit attribute. This setting means that the content of the page is reduced in size to fit
between the header and the bottom of the page. The default value is false, which means the header
could possibly overlap some of the content at the top of the page.

Example: Specifying headers and footers for alternating pages

<PDF result="doc2.pdf">
<PDF source="doc1.pdf">

<PageMargins left="1in" top="0.5in" right="0.5in"
bottom="0.5in" alternation="OddPages"/>

<PageMargins left="0.5in" top="0.5in" right="1in"
bottom="0.5in" alternation="EvenPages"/>

<Header alternation="EvenPages" shrinkContentToFit="true">
<Center> <StyledText><p>Confidential</p></StyledText></Center>
<Left><StyledText><p>Draft</p></StyledText></Left>

</Header>
<Header alternation="OddPages" shrinkContentToFit="true">

<Center> <StyledText><p>Confidential</p></StyledText></Center>
<Right><StyledText><p>Draft</p></StyledText></Right>

</Header>
</PDF>

</PDF>

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Removing headers and footers 107

Removing headers and footers
You can use the NoHeaders and NoFooters elements to remove headers and footers from the pages in
a given scope. You can specify the alternation attribute for either of these elements, as described in
“Odd and even pages” on page 26.

Note: You cannot specify both Header and NoHeaders or both Footer and NoFooters in the same
scope.

This example removes headers from the document. Any headers that were added to either of the source
documents previously, for example by Acrobat or the Assembler service, are removed.

Example: Removing headers

<PDF result="headlessDoc.pdf">
<NoHeaders/>
<PDF source="doc1.pdf"/>
<PDF source="doc2.pdf"/>

</PDF>

In this example, a header is specified for the resultant document. The presence of NoHeaders in a lower
scope means that the header does not apply to the pages of doc2.pdf.

Example: Removing headers from specific sources

<PDF result="assembledDoc.pdf">
<Header styleReference="general"/>
<PDF source="doc1.pdf">
<PDF source="doc2.pdf">

<NoHeaders/>
</PDF>
<PDF source="doc3.pdf"/>

</PDF>

Note: The NoWatermarks and NoBackgrounds elements are used in the same way for watermarks and
backgrounds.

Adding and removing watermarks and backgrounds
Like headers and footers, watermarks and backgrounds specify text or graphics to add to the existing page
content. Watermarks are placed on top of the existing page content and are specified with the
Watermark element. Backgrounds are placed behind the existing page content and are specified with the
Background element.

Watermarks and backgrounds are similar to headers and footers in these ways:

? In LiveCycle 7.x, you could add at most one watermark and one background to a destination page.
When you added a watermark or background, any previous one was removed. In LiveCycle ES4 8.0 and
later, you can retain pre-existing watermarks and backgrounds by setting the replaceExisting
attribute to false.

Note: You can specify a different watermark or background for even and odd pages within a given
scope (see “Odd and even pages” on page 26).

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Adding and removing watermarks and backgrounds 108

? A Watermark or Background element can specify its content either as direct child elements or with
the styleReference attribute. The styleReference attribute references a StyleProfile
element that can contain a watermark or background description.

? The content of a watermark or background can be either a StyledText element or a single PDF
source element. When using a PDF source, the first page in the pages specified for the source is used as
the watermark or background.

? If Watermark or Background are not explicitly specified for the current scope but are specified for a
parent scope, the parent Watermark or Background apply to the current scope.

? You can use the NoWatermarks and NoBackgrounds elements to ensure that a group of pages
contains no watermarks or backgrounds.

Watermarks and backgrounds differ from headers and footers in that they are not restricted to specific
areas of the page. You can specify the placement of a watermark or background using several attributes.
You can also specify rotation and transparency.

Watermark and Background elements can be children of the following elements, which correspond to
the pages on which they can appear:

? PDF or PDFGroup elements (source pages)

? TableOfContents or TableOfContentsPagePattern elements (table of contents pages)

? BlankPage elements (blank pages)

You can specify a different Watermark or Background for even and odd pages within a given scope. (See
“Odd and even pages” on page 26.)

Note: The Assembler service supports only unfiltered data, ASCIIHex filters, and ASCII85 filters for inline
images in watermarks and backgrounds. All other filters in inline images are unsupported in these
operations.

Watermarks and backgrounds (as with all other page content) follow scoping rules. (See “Scope of
elements that affect PDF or XDP properties” on page 25.) In the following example, the Watermark
element is a child of the PDF result element. It specifies a watermark that applies to all other children of the
PDF result element that do not specify a watermark. Therefore the watermark applies to all the pages in
doc1 and doc2.

Example: Adding a watermark

<PDF result="myPDF">
<Watermark rotation="45">

<StyledText><p>Draft</p></StyledText>
</Watermark>
<PDF source="doc1"/>
<PDF source="doc2"/>

</PDF>

In the following example, the watermark specified for the PDF result still applies to the pages from doc1.
However, the pages from doc2 have a different watermark, supplied by a PDF page (the second page of
myWatermark). The pages of doc 3 have no watermark because of the presence of the NoWatermarks
element.

Example: Adding a watermark from a PDF page

<PDF result="myPDF">
<Watermark rotation="45">

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Adding page content 109

<StyledText><p>Draft</p></StyledText>
</Watermark>
<PDF source="doc1"/>
<PDF source="doc2">

<Watermark>
<PDF source="myWatermark" pages="2"/>

</Watermark>
<PDF/>
<PDF source="doc3">

<NoWatermarks/>
</PDF>

</PDF>

Backgrounds follow the same rules as watermarks, including the ability to use the NoBackgrounds
element.

Adding page content
Page content can be added in a manner similar to adding a watermark or background. The difference
between adding page content and adding a watermark or background is:

1. If the PDF document is already tagged (structured), text can be supplied to specify the text read by a
screen reader. Adding untagged pages to a base-document which is a structured PDF document, does
not result in their being tagged. Even adding a PageContent element to such a document does not
result in the added page being tagged. This behavior also applies when adding page content by using
the TableOfContents or BlankPage elements. (See “PageContent” on page 225.)

2. The page content added in this manner is not removable by other DDX elements.

3. Multiple PageContent elements can be specified per page.

It is recommended that the alternate text match the text within the page content element or accurately
describe the graphic within the page content. In the following example, doc1 is a tagged PDF document:

Example: Adding page content for screen reading

<PDF result="doc2">
 <PageContent appears="Behind" alternateText="This is highly Adobe
Confidential.">
 <StyledText><p><This is highly <graphic
source="AdobeConfLogo.pdf"/>.</p></StyledText>
 </PageContent>
 <PDF source="doc1"/>
</PDF>

Overlaying and underlaying pages
Overlays and underlays specify PDF page content that is added to pages in a document. They differ from
watermarks and backgrounds in the following ways:

? The content must come from PDF pages and cannot be specified using styled text.

? Overlay and underlay are not removable by other DDX elements.

? You can add multiple overlays or underlays to a page or pages.

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Understanding rendering order 110

You can use the PageOverlay and PageUnderlay elements to add page content over or under the
existing content, respectively. You specify them as child elements of the PDF elements identifying the
destination pages.

Note: The Assembler service supports only unfiltered data, ASCIIHex filters, and ASCII85 filters for inline
images on overlay pages. All other filters in inline images are unsupported in these operations.

Note: When overlaying PDF documents whose versions are 1.3 or earlier by using the PageOverlay
element, the PDF document is changed to version 1.4.

This example overlays page 5 from doc2.pdf onto all but the first page of doc1.pdf.

Example: Overlaying pages

<PDF result="doc3.pdf">
<PDF source="doc1.pdf" pages="2-last">

<PageOverlay>
<PDF source="doc2.pdf" pages="5"/>

</PageOverlay>
</PDF>

</PDF>

In this example, the parent of the PageOverlay element is a PDF source element that specifies the pages
with the overlay. The child of the PageOverlay element specifies the document from which the overlay
comes. In the example, it specifies a single page (5). If it does not specify a single page, the first page of the
range is used.

Items such as bookmarks, page labels, document structure, and document-level JavaScript code are not
copied from overlays or underlays to their destination document. Any page properties that conflict with
the destination page are ignored. Form fields and annotations can be copied by specifying a value of true
for the embedFormsAndAnnots attribute (the default is false). In this case, form-level JavaScript code
associated with forms on the page is included with the copied form.

The source (overlay or underlay) page is placed relative to the destination page so that the user space
origin (lower left corner) of both pages coincide. If the source page size is smaller than the destination
page size, no content is removed. In effect, the page size for the source overlay page is made larger.

Understanding rendering order
The PageContent, PageOverlay, and PageUnderlay elements add page content to the resultant
document. The content they add is indistinct from the other page content. That is, the added content
cannot be removed from the resultant document.

The order in which watermarks and backgrounds are added affects rendering order. The Assembler service
determines the rendering order of the content in a resultant document. The result element does not
determine rendering order.

Within a PDF result element, the following page content elements add page content over the existing
page content:

? PageContent with the appears attribute set to OnTop

? PageOverlay

? Watermark

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Understanding blending color spaces 111

The following page content elements add page content under the existing page content:

? PageContent with the appears attribute set to Behind (the default value)

? PageUnderlay

? Background

For PageContent, PageOverlay, and Watermark elements in the same result block, the Assembler
service overlays page content in the following order:

1. Watermark

2. PageContent

3. PageOverlay

The PageOverlay appears over the PageContent, which appears over the Watermark. The order in
which these elements appear in the result block have no bearing on their overlay order.

Similarly, for PageContent, PageUnderlay and Background in the same result block, the Assembler
service underlays page content in the following order:

1. Background

2. PageContent

3. PageUnderlay

The PageUnderlay appears behind or underneath the PageContent, which appears behind the
Background.

Adding a Watermark over a PageOverlay or a Background under a PageUnderlay requires two
result blocks. To add a Watermark over a PageOverlay, perform these steps:

1. Create a transient result block that applies the PageOverlay. (A result block is transient if its return
attribute is false.)

2. In another result block, add a source element that specifies the transient result block. Within that result
block, apply the Watermark or Background.

Understanding blending color spaces
Adding a page content element to a PDF document can change the appearance of other page content
under certain conditions. The page content elements include the elements PageContent, Watermark,
Background, PageOverlay, and PageUnderlay.

If the assembled page content elements or the target page in the document has the following
characteristics, it changes the appearance of other page content:

? Has opacity of less than 100%

? Contains RGB content

? Added to a page in a document that does not have a blending color space specified on each PDF page

Source documents or page content that use RGB colors in the added content are distorted in the resultant
document. The distortion occurs because RGB colors are converted to CMYK, which is the default blending

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Specifying styled text 112

color space. Colors within added content are always in the RGB color space, even if all requested colors are
black or gray. A color shift also occurs if an explicit CMYK or ICC blending color space is specified. DDX
processors assume that such a conversion and subsequent color shift is intended and no warning is issued.

To prevent color distortion from occurring, add one of the following elements to the DDX:

? Add an RGB or RGB-compatible ICC blending color space to the original PDF document. (Use Acrobat to
add such color spaces to the PDF document. The Assembler service cannot add blending color spaces
to a resultant document.)

? Set the opacity in the DDX to 100% (1.0).

Note: To change blending profiles in Acrobat, select Advanced > Print Production > Convert Colors >
Page-Level Transparency Blending Space.

For example, the following DDX file adds a watermark with opacity of 25% to the file test.pdf. The text
in the resulting file, result.pdf, is darker in appearance than in the original. This darkening occurs
because the /ExtGState is applied to the entire page instead of the watermark itself. Removing the
watermark removes the /ExtGState and the text returns to its original lighter color:

Example: Adding a watermark with opacity less than 100%

<?xml version="1.0" encoding="UTF-8"?>
<DDX xmlns="http://ns.adobe.com/DDX/1.0/">

<PDF result="result.pdf">
<PDF source="test.pdf"/>

<Watermark rotation="45" opacity="25%">
<StyledText><p font-size="72pt">Draft</p></StyledText>

</Watermark>
</PDF>

</DDX>

Specifying styled text
When you add page content elements or TableOfContentsEntryPattern elements to a PDF
document, you can specify style information for the stylized text. The page content elements include the
Header, Footer, Watermark, Background, PageContent, PageOverlay, and PageUnderlay
elements. To specify style information add the StyledText element,

which can be the child of a Header, Footer, Watermark, Background,PageContent, or
TableOfContentsEntryPattern element.

The following example adds a watermark with the text "Draft", in bold, to all the pages in the resultant
document.

Example: Adding a watermark using styled text

<PDF result="doc2">
<Watermark>

<StyledText>
<p>

Draft
</p>

</StyledText>
</Watermark>

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Style attributes 113

<PDF source="doc1"/>
</PDF>

A StyledText element contains as children one or more p (paragraph) elements. The p element can
contain any (zero or more) of the following items:

? A text string

? A built-in key (see “Built-in keys” on page 115) that generates a text string depending on the value of a
system or document property.

? The b (bold) element, as shown in the previous example.

? The i (italic) element.

? The Space element, which specifies a space between two styled text elements.

? The span element, which contains inline text, to which formatting can be applied.

? The leader element, which is used for table of contents entries and specifies a pattern used to fill a
line.

Each of the rich text elements (StyledText, p, b, i, span, and leader) can have attributes that specify
further information, as described in the next section.

Note: Remove any unnecessary white space, including line feed and tab characters, from DDX elements
that contain text. Unnecessary white space can result in unexpected line feeds or spaces. The p, b, i,
span, and DatePattern elements are used to display styled text. If only white space is required
between two child elements, use one of the following:

? Nonbreaking space entity number

? Space element for the DatePattern element and rich text elements.

The entity reference is undefined.

Style attributes
You can use the following attributes to specify attributes for the rich text elements which are based on rich
text elements found in CSS. Most the attributes specify font information, which includes the name of the
font, its size, style, and weight.

? font-family

? font-weight

? font-size

? font-style

If you do not specify font information, the Assembler service uses default font characteristics, which
correspond to these settings:

? font-family="Minion Pro"

? font-weight="12pt"

? font-size="normal"

? font-style="normal"

The following style attributes are also supported:

? Color

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Applying identifying labels 114

? Text decoration (for example, strikethrough)

? Text margins, alignment, and indentation

You can specify any of these attributes on any rich text element even if the attribute has no meaning for
that element. All of the child elements inherit the attribute, even though the attribute applies only to
certain elements.

Applying identifying labels
Bates numbering is a method of applying identifying labels to a batch of related documents. Consider, for
example, legal documents associated with a court case. Each page in the document (or set of documents)
is assigned a Bates number that uniquely identifies the page. The assigned Bates number also establishes
each document’s relationship to other Bates numbered documents. A Bates number contains a
sequentially incremented numeric value plus an optional prefix and suffix. The prefix + numeric + suffix is
called a Bates pattern.

All result blocks within the <DDX> root element define the set of documents. The start attribute (if
available) provides the first number in the sequence. If the start attribute is omitted, the DDX processor’s
default value (1) provides the first number in the sequence. Any other patterns that are started without
specifying a start value begin with a default value of 1. The start value for a given pattern is set once.
Any further settings of the start value in subsequent BatesNumber elements in the DDX are ignored for
that pattern.

The default and minimum number of digits for the numeric portion, numberOfDigits attribute, is 6.
Therefore, the number 1 would appear as 000001.

The BatesNumber element can appear anywhere inside a <Header>, <Footer>, <Watermark>,
<Background>, and <TableOfContentsEntryPattern>. The numeric portion of the number is
incremented only once per page. If there are multiple uses per page, the numeric value on that page
would remain unchanged.

Note: It is not recommended to place a BatesNumber within a PageContent element.

The Header, Footer, Watermark, or Background elements can be used to apply Bates numbers to the
files in a PDF package or portfolio. If these elements specify identical Bates number patterns to sequential
files in the package or portfolio, then the start value is ignored. The numeric portion increments
sequentially from file to file.

Note: Bates numbers added by using the Header, Footer, Watermark, or Background elements
cannot be removed with the NoHeader, NoFooter, NoWatermark, or NoBackground elements.

The following example applies an identifying label to pages within a document.

Example: Applying an identifying label to pages within a set of documents

<?xml version="1.0"?>
<DDX xmlns="http://ns.adobe.com/DDX/1.0/">

<PDF result="result1.pdf">
<PDF source="input1.pdf"/>
<Watermark verticalOffset="4.5in">

<StyledText>
<p><BatesNumber prefix="Ref ID = " start="1"/>.</p>

</StyledText>

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Built-in keys 115

</Watermark>
</PDF>

<PDF result="result2.pdf">
<PDF source="input2.pdf"/>
<Watermark verticalOffset="4.5in">

<StyledText>
<p><BatesNumber prefix="Ref ID = " start="1"/>.</p>

</StyledText>
</Watermark>

</PDF>
</DDX>

Notice there is one Bates pattern for the two result blocks so that the number sequence is carried through
both results. That is, if the first document as 6 pages, the last Bates number is 6, and the stamp appears as
Ref ID = 000006. The first page of the second document is numbered 7, and the stamp appears as Ref
ID = 000007.

Built-in keys
You can use the Assembler service built-in keys to insert variable information into headers, footers,
watermarks, backgrounds, and TOC entries. DDX processors replace these keys with appropriate strings as.

You can use built-in keys in two ways:

? As element names within the styled text elements p, span, i, and b to represent variable text. For
example, the _Title element in this example becomes the title of the resultant document.

<StyledText><p><_Title/></p></StyledText>

? As strings representing attribute values (or parts of values). The bookmarkTitle attribute of the
TableOfContents or PDF source elements and the prefix attribute of the PageLabel element
can use the following metadata keys:

? _Title

? _SourceTitle

? _Author

? _SourceAuthor

? _Subject

? _SourceSubject

? _Created

? _Modified

The start attribute of the PageLabel element can use the _PageNumber key only. For example, the
following snippet generates a bookmark in the resultant document. The bookmark contains the name of
the author of the source document.

<PDF source="doc1" bookmarkTitle="By _SourceAuthor"/>

If the author is "Adobe Systems Incorporated", the resulting bookmark is "By Adobe Systems Incorporated".

The following example uses two built-in keys as elements within a StyledText element to specify
information in a header. The header shows the page number (which is different for each page) and the
total number of pages (which is constant for the entire resultant document).

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Using style profiles 116

Example: Using built-in keys

<PDF result="doc3.pdf">
<Header>

<Center>
<StyledText>

<p>Page <_PageNumber/> of <_LastPageNumber/></p>
</StyledText>

</Center>
</Header>
<PDF source="doc1.pdf"/>
<PDF source="doc2.pdf"/>

</PDF>

The resultant document contains a centered header on each page. For a resultant document with 30
pages, the headers are "Page 1 of 30", "Page 2 of 30", and so on.

_Created, _Modified, and _DateTime can have an optional styleReference attribute that
references a DatePattern element defined within a StyleProfile element. See “Formatting dates”
on page 118 for details.

This example uses two documents with the following metadata:

doc1.pdf: Title is History of Chocolate and Author is Charlie

doc2.pdf: Title is Chocolate Futures and Author is Willy

Example: Using built-in keys

<PDF result="doc3.pdf">
<TableOfContents styleReference="myTOC"/>
<PDF source="doc1.pdf" bookmarkTitle="Section 1: _SourceTitle"/>
<PDF source="doc2.pdf" bookmarkTitle="Section 2: _SourceTitle"/>
<Watermark>

<StyledText>
<p>This was created by <_Author/>.</p>

</StyledText>
</Watermark>

</PDF>

This example would result in the following table of content entries for doc3.pdf:

Section 1: History of Chocolate 1
Section 2: Chocolate Futures200

Along with a watermark which contains the text "This was created by Charlie."

Using style profiles
A StyleProfile element can specify information about a package file, header, footer, watermark,
background, table of contents, and date pattern. Other elements in a DDX document reference the named
StyleProfile element to specify the corresponding characteristics.

Referencing StyleProfile element lets you create and maintain a set of named styles that can be used
in a DDX document as needed. You can reference a style profile in multiple places in the same DDX
document.

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Using style profiles 117

For example, to include the same header in two or more resultant documents, specify the following DDX
elements:

? Enclose a Header element describing the header within a StyleProfile element.

? Set the name attribute of the StyleProfile element to an identifying name.

? Use this name as the value of the styleReference attribute of all the Header elements to which you
want to apply the style profile.

The following example places the same header in two different resultant documents.

Example: Using a style profile in two resultant documents

<PDF result="doc2.pdf">
<PDF source="doc1.pdf">

<Header styleReference="myProfile"/>
</PDF>

</PDF>
<PDF result="doc4.pdf">

<PDF source="doc3.pdf">
<Header styleReference="myProfile"/>

</PDF>
</PDF>
<StyleProfile name="myProfile">

<Header>
<Left> <!--styled text--></Left>
<Center><!--styled text--></Center>
<Right><!--styled text--></Right>

</Header>
</StyleProfile>

Each StyleProfile can contain the following elements: Header, Footer, Watermark, Background,
TableOfContents, or DatePattern. There can be at most one of each element. The exception is when
distinguishing between odd and even pages, in which case there can be two (see “Odd and even pages”
on page 26).

Note: In terms of scope, elements that reference definitions within StyleProfile elements are treated
as if the definition appeared directly inline.

With one exception, any of those elements appearing elsewhere in the DDX can use the
styleReference attribute to reference the description in the style profile.

The exception is DatePattern, which cannot appear anywhere other than in a StyleProfile element.
It formats dates specified by the built-in keys _Created, _Modified, and _DateTime. Those keys can
reference a DatePattern element in a style profile with a styleReference attribute.

A DDX document can contain any number of StyleProfile elements as children of the DDX root
element. The following example shows the use of two different profiles.

Example: Using two style profiles

<PDF result="doc2.pdf">
<PDF source="cover.pdf" pages="1">

<Header styleReference="cover"/>
<Footer styleReference="cover"/>

</PDF>
<PDF source="doc1.pdf">

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Formatting dates 118

<Header styleReference="body"/>
<Footer styleReference="body"/>

</PDF>
</PDF>

<StyleProfile name="cover">
<DatePattern><DayNumber/> / <ShortMonthName/> / <Year/></DatePattern>
<Header>

<Left>
<StyledText>
<p><_DateTime styleReference="cover"/></p>
</StyledText>

</Left>
<Right><StyledText><p>Draft</p></StyledText></Right>

</Header>
<NoFooters/>

</StyleProfile>

<StyleProfile name="body">
<Header>

<Center> <StyledText><p>Confidential</p></StyledText></Center>
<Left>

<StyledText><p>
<_DateTime styleReference="cover"/>

</p></StyledText>
</Left>
<Right><StyledText><p>Draft</p></StyledText></Right>

</Header>
<Footer alternation="EvenPages">

<Left>
<StyledText>
<p>Page <_PageNumber/> of <_LastPageNumber/></p>
</StyledText>

</Left>
</Footer>
<Footer alternation="OddPages">

<Right>
<StyledText>
<p>Page <_PageNumber/> of <_LastPageNumber/></p>
</StyledText>

</Right>
</Footer>

</StyleProfile>

For an example of using StyleProfiles for Package definitions, see “Creating a PDF package” on
page 53.

Formatting dates
The built-in keys _DateTime, _Created and _Modified can be used to specify dates within
StyledText elements. These keys have an optional styleReference attribute that references a
StyleProfile element. This StyleProfile element can contain as a child a DatePattern element
that specifies formatting for the dates.

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Formatting dates 119

DatePattern can contain a number of child elements that represent the building blocks of a date string,
along with text. The elements have mostly self-explanatory names such as Second, Minute, Hour, Year,
and TimeZone. They take the current system time when the DDX document is processed and specify how
to format it.

If only white space is required between two child elements, use one of the following:

? Nonbreaking space entity number

? Space element for the DatePattern element and rich text elements

The default format in situations where DatePattern is not specified is equivalent to what is specified in
this example:

Example: The default date pattern

<DatePattern>
<Year/>-<MonthNumber01/>-<DayNumber01/>T<Hour01/>:

<Minute00/>:<Second00/><UTCOffset/>
</DatePattern>

For example, Jan 3, 2006 at 12:01am PST would be formatted as

2006-01-03T:00:01-0700

The following example specifies a header for all the pages in a source document. The Left element of the
header specifies a formatted date string with a DateTime built-in key inside a StyledText element. The
DateTime element references the StyleProfile whose name attribute is "greendate".

Example: Using a date pattern

<PDF result="doc2.pdf">
<PageLabel prefix="page "/>
<PDF source="doc1.pdf">

<Header>
<Left>

<StyledText>
<p color="green" font-weight="bold">

<_DateTime styleReference="greendate"/>
</p>

</StyledText>
</Left>
<Center><StyledText><p>Confidential</p></StyledText></Center>
<Right>

<StyledText><p color="red"><_PageLabel/></p></StyledText>
</Right>

</Header>
</PDF>

</PDF>

<StyleProfile name="greendate">
<DatePattern>

<DayNumber01/> <ShortMonthName/><Space/><Year/> at
<Hour24/>:<Minute00/>

</DatePattern>
</StyleProfile>

This DDX would result in a page header with this appearance:

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Formatting dates 120

01 Jan 2001 at 14:03 Confidential page 1

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Transforming page content 121

Transforming page content
The Transform element allows you to alter the page content of existing pages in the following ways:

? Scaling: You can make the contents of the page larger or smaller by using the scale attribute. This
attribute specifies a nonnegative number that can be expressed as a decimal or percentage. A value
less than 1 scales the contents down, and a value greater than 1 scales them up.

? Rotation: You can rotate the page contents in increments of 90 degrees by using the rotate90
attribute.

? Translation: You can move the page contents horizontally or vertically by using the newX and newY
attributes. These values are length specifiers (see “Specifying length” on page 27).

The default for all of the attributes is to do no transformation on the page contents.

The Transform element is categorized as a page content element rather than a page property element
because it affects existing page content. It has no effect on the properties of the page itself. For example,
rotating the contents of the page does not change the orientation of the page (portrait or landscape).

Note: Be careful when using this element. It is possible to move part or all of the page content outside the
visible portions of the page.

This example applies the following changes to the pages in the resultant document:

? Shrinks the page content of doc1.pdf to one-quarter size

? Moves the origin from the page to 50 points horizontal and 80 points vertical

? Rotates the content by 90 degrees

The content of doc2.pdf is unchanged.

Example: Transforming page content

<PDF result="doc3.pdf">
<PDF source="doc1.pdf">

<Transform
scale="0.25" newX="50" newY="80" rotate90="90"/>

</PDF>
<PDF source="doc2.pdf"/>

</PDF>

Adobe LiveCycle ES4 Adding and Manipulating Page Content
Assembler Service and DDX Reference Transforming page content 122

This figure shows how the page looks before and after the Transform element is applied.

 123

15 Specifying Page Labels

Acrobat and Adobe Reader identify pages in PDF documents with one or both of the following:

? The ordinal page number. PDF documents are numbered consecutively starting with 1.

? The page label. An optional identifier that has the following form:

prefix + page number

Both prefix and page number are optional.

The following items are valid page labels:

iii
page 3
I-A
Chapter 5 - 7

Typically, labels are used to identify sections such as chapters. However, there is no necessary relationship
between the ordinal page number and the page label. When a page label is present, Acrobat displays both
the page number and the label in a form such as "IV-3 (42 of 109)".

Note: The internal data structures in a PDF file use zero (0) to indicate the first page in the document.
The Assembler service and viewer applications use 1 to indicate the first page.

In addition to PageLabels element, you can also use other elements to add page labels to page content.
For example, these elements let you add page labels: Header, Footer, Watermark, Background, or
TableOfContents. To use these elements to add page labels, specify the label within a StyledText
element. See “Specifying styled text” on page 112 for details.

About page labels
To specify the page label to apply to a group of pages, use the PageLabel element. To remove page
labels, use the NoPageLabels element (see “Removing page labels” on page 129).

The parent element of the PageLabel element determines the range of pages to which it applies. For the
scope of any PageLabel element, the pages are numbered continuously, starting with 1 by default. Pages
within a lower scope have their own independent numbering. (See “Scope of elements that affect PDF or
XDP properties” on page 25.)

Note: You can specify PageLabel or NoPageLabels only once for any given scope.

This example shows a document with a preface and two chapters. The Pagelabel element specifies that
the page labels in the resultant document use the decimal numbering style. All source documents within
this scope (Chapter1 and Chapter2) use this style. However, you can also specify other numbering
conventions such as lower Roman numbering (i, ii, iii...). The attributes are described further below.

Example: Specifying two page label styles

<PDF result="doc4">
<PageLabel format="Decimal"/>
<PDF source="Preface">

Adobe LiveCycle ES4 Specifying Page Labels
Assembler Service and DDX Reference About page labels 124

<PageLabel format="LowerRoman"/>
</PDF>
<PDF source="Chapter1"/>
<PDF source="Chapter2"/>

</PDF>

Page labeling is optional. However, when assembling documents using the Assembler service, if any of the
source documents have page labels, then all pages in the resultant document have them.

When page labels are not explicitly specified for a range of pages, the Assembler service uses this default
behavior:

Pages with existing page labels. When assembling a PDF document from existing documents,
explicit page labels in source documents are preserved. For example, a page labeled "Chap 2 - 3" in the
source has the same label in the result regardless of the ordinal page number.

Pages that lack a label. Pages that have not been explicitly labeled are given a filler label which is the
ordinal page number with no prefix.

Table of content pages or blank pages. You can add new pages using elements such as
TableOfContents or BlankPage. The new pages take the labeling scheme of the preceding pages
in the resultant document, if any. If the new page is the first page in the assembly, it is given the filler
page label (the ordinal page number). This assignment assumes that any other pages in the document
contain page labels.

To ensure accurate page labels, provide PageLabel elements for all pages. Providing labels for all pages
avoids the default behavior which can produce unintended results.

The PageLabel element’s mode attribute lets you specify whether page labels from source documents
are preserved, added, or modified. That attribute supports the following values:

? Define (the default) means that the other attributes of the PageLabel element are used to define
the characteristics of the page labels for these pages.

? Preserve means that existing page labels from source pages remain the same in the result. Labels are
not changed regardless of the ordinal page number.

? Continue means that the pages use the page label style from the previous page in the document. The
pages are renumbered as they are assembled. If the previous page had no defined page label style, the
current pages also have no defined page label style.

Note: Continue is not valid for the first page in an assembly.

The remaining attributes of PageLabel apply only when mode is set to Define; otherwise, they are
ignored.

The prefix attribute specifies the prefix, which is a string that precedes the page number. The string can
contain built-in keys (see “Built-in keys” on page 115).

The format attribute specifies the style of the page number portion of the label:

? Decimal: 1, 2, 3, ...

? LowerRoman: i, ii, iii, ...

? UpperRoman: I, II, III, ...

? LowerAlpha: a, b, c, ...

? UpperAlpha: A, B, C, ...

Adobe LiveCycle ES4 Specifying Page Labels
Assembler Service and DDX Reference Specifying page labels 125

? None: No page numbers are included. Only the prefix (if defined) appears; otherwise, there is a blank
page label.

The start attribute specifies the starting page number in the resultant document for the group of pages
to which the PageLabel element applies. All other pages are numbered consecutively beginning with
start. It can be a positive integer or the PageNumber built-in key. By default, the starting page number is
1.

Note: Page labels need not be unique. For example, it is permissible to have two pages labeled "3" in a
document.

Specifying page labels
This example assembles three PDF documents that have two pages each. Because the PageLabel
element is specified separately for each source document, numbering begins at "1" for each document.
This behavior is equivalent to the start attribute being set to 1, its default value.

Example: Specifying the page label separately for each source document

<PDF result="doc4">
<!-- Each source provides a 2-page document. -->
<PDF source="doc1">

<PageLabel prefix="Chapter 1 - "/>
</PDF>
<PDF source="doc2">

<PageLabel prefix="Chapter 2 - "/>
</PDF>
<PDF source="doc3">

<PageLabel prefix="Appendix A - "/>
</PDF>

</PDF>

The resulting page numbers and labels are shown in the following table.

In the next example, the PageLabel element is a child of the PDF result element. Therefore, the page
label style, with the prefix "page ", applies to the entire resultant document. The page number starts with 1
and increments throughout the document.

Example: Applying a page label style to an entire document

<PDF result="doc4">
<PageLabel prefix="page "/>

Ordinal page number Page label

1 Chapter 1 - 1

2 Chapter 1 - 2

3 Chapter 2 - 1

4 Chapter 2 - 2

5 Appendix A - 1

6 Appendix A - 2

Adobe LiveCycle ES4 Specifying Page Labels
Assembler Service and DDX Reference Specifying page labels 126

<!-- Each source provides a 2-page document. -->
<PDF source="doc1"/>
<PDF source="doc2"/>
<PDF source="doc3"/>

</PDF>

The resulting page numbers and labels are shown in the following table.

This example produces the same result as the previous one. It specifies the page label style for the first
source document. It also continues the doc1 page label style for the documents in the PDFGroup
element.

Example: Continuing a page label style

<PDF result="doc4">
<!-- Each source provides a 2-page document. -->
<PDF source="doc1">

<PageLabel prefix="page "/>
</PDF>
<PDFGroup>

<PageLabel mode="Continue"/>
<PDF source="doc2"/>
<PDF source="doc3"/>

</PDFGroup>
</PDF>

The following examples illustrate several page labeling options using the same assembled documents.
The source documents are a title page, two content sections, and an advertising supplement inserted
between the two sections.

Ordinal page number Page label

1 page 1

2 page 2

3 page 3

4 page 4

5 page 5

6 page 6

Adobe LiveCycle ES4 Specifying Page Labels
Assembler Service and DDX Reference Specifying page labels 127

Some of the documents contain pre-existing page labels that are applied by using the PageLabel
element.

In the first example, the goal is to number FirstHalf and SecondHalf consecutively and number AdSection
independently. The following example shows how to achieve that goal. Here is how the example uses
page labels elements:

Global page label format. The PageLabel element that is a child of the PDF result defines a global
page label format. The mode="Define" expression applies the page label format to all pages in the
resultant document unless another page label property is specified. Those pages start with "1" (by
default) and are numbered consecutively, ignoring any intervening pages in a lower scope.

Document-specific page label override. The PageLabel elements for the Title and AdSection
documents preserve the original page labels in those documents.

Example: Overriding a global page label format

<PDF result="doc1">
<PageLabel format="Decimal" mode="Define"/>
<PDF source="Title">

<PageLabel mode="Preserve"/>
</PDF>
<PDF source="FirstHalf"/>
<PDF source="AdSection">

<PageLabel mode="Preserve"/>
</PDF>
<PDF source="SecondHalf"/>

</PDF>

Document Number of pages PageLabel attributes (if any)

Title 1 format="None" prefix="Title page"

FirstHalf 2 None

AdSection 2 format="Decimal" prefix="Ad - "

SecondHalf 2 None

Ordinal page number Page label

1 Title page

2 1

3 2

4 Ad - 1

5 Ad - 2

6 3

7 4

Adobe LiveCycle ES4 Specifying Page Labels
Assembler Service and DDX Reference Specifying page labels 128

The next example uses the same documents and also preserves the page labels for Title and AdSection.
However, there is no global page label format; therefore, the pages in FirstHalf and SecondHalf are given
the ordinal page number as the page label.

Example: Inheriting the default page label

<PDF result="doc1">
<PDF source="Title">

<PageLabel mode="Preserve"/>
</PDF>
<PDF source="FirstHalf"/>
<PDF source="AdSection">

<PageLabel mode="Preserve"/>
</PDF>
<PDF source="SecondHalf"/>

</PDF>

More complicated page labeling can require using intermediate results. For example, to have labeling
similar to the previous example but starting the numbering for FirstHalf with "1", use the following DDX.

Example: Using an intermediate result for page labels

<PDF result="TempDoc" return="false">
<PDF source="FirstHalf"/>
<PDF source="AdSection"/>
<PDF source="SecondHalf"/>

</PDF>
<PDF result="doc3">

<PDF source="Title"/>
<PDF source="TempDoc"/>

</PDF>

Ordinal page number Page label

1 Title page

2 2

3 3

4 Ad - 1

5 Ad - 2

6 6

7 7

Adobe LiveCycle ES4 Specifying Page Labels
Assembler Service and DDX Reference Removing page labels 129

In TempDoc, FirstHalf and SecondHalf are given default page labels starting with "1". Therefore, those page
labels are preserved when assembling doc3.

Removing page labels
If you use the NoPageLabels element as a child of a PDF result element, the resultant document omits
page labels.

Example: Removing page labels

<PDF result="doc1">
<NoPageLabels/>
<PDF source="doc2"/>
<PDF source="doc3"/>

</PDF>

If you use the NoPageLabels element as a child of a PDF source element, pre-existing labels are
removed. However, if any other pages in the document have page labels, pages in the scope are given the
filler page label (the ordinal page number).

In the following example, the EndMatter section is specified as having no page labels. However, because
other pages in the result have page labels, the pages in EndMatter are given the default filler page label
(the ordinal page number).

Example: Using the default page label

<PDF result="book">
<PDF source="Preface">

<PageLabel format="LowerRoman"/>
</PDF>
<PDF source="Body">

<PageLabel start="_PageNumber" format="Decimal"/>
</PDF>
<PDF source="EndMatter">

<NoPageLabels/>
</PDF>

</PDF>

To ensure that the page labels are blank (that is, the empty string), use the PageLabel element rather
than the NoPageLabels element, as in this example.

Ordinal page number Page label

1 Title Page

2 1

3 2

4 Ad - 1

5 Ad - 2

6 5

7 6

Adobe LiveCycle ES4 Specifying Page Labels
Assembler Service and DDX Reference Removing page labels 130

Example: Specifying an empty page label

<PDF result="book">
<PDF source="Preface">

<PageLabel format="LowerRoman"/>
</PDF>
<PDF source="Body">

<PageLabel start="_PageNumber" format="Decimal"/>
</PDF>
<PDF source="EndMatter">

<PageLabel format="None">
</PDF>

</PDF>

 131

16 Working with Secured Documents

PDF documents have various levels of security. For example, they can be encrypted so that only users
providing passwords can open them. They can also contain digital signatures attesting to the validity of
the document.

Specifying passwords
When creating a document using the Assembler service, you can specify passwords that are required to
access the document. PDF supports two types of passwords: a master password and an open password.

A master password (also called an owner password or permissions password) controls the ability to change
the permissions on a document. When you specify a master password, you can specify permissions that
restrict the operations users can perform. Restricted operations include the ability to print a document,
change its content, and extract its contents.

When opening a document that is encrypted with a master password, the following rules are applied:

? Users who provide a master password are considered the owners of the document. Such users are
unconstrained by the permission settings in the document. They can also change the permissions.

? Users can open the document without supplying a password if the document does not also have an
open password. Such users can perform only those actions allowed by the permissions settings in the
document. They cannot change the permissions.

An open password (also called a user password or document open password) controls the ability to open a
document. If this password is set for a document, a user is required to provide the password to open the
document:

? If the document does not also have a master password, no restrictions are imposed on the user’s
operations.

? If the document has a master password and the users provide the open password, the permission
settings in the document limit their actions.

In DDX, you specify password encryption for a document by setting the encryption attribute of the PDF
result element. The value of this attribute must match the name attribute of a
PasswordEncryptionProfile element, which provides the encryption information.

Note: You can also specify encryption when disassembling a document using the PDFsFromBookmarks
element. See “Disassembling PDF Documents” on page 62.

In this example, the PasswordEncryptionProfile element whose name attribute is "userProtect"
specifies an open password that is used to encrypt the PDF result doc2.

Example: Encrypting a document with an open password

<PDF result="doc2" encryption="userProtect">
<PDF source="doc"/>

</PDF>

<PasswordEncryptionProfile name="userProtect">

Adobe LiveCycle ES4 Working with Secured Documents
Assembler Service and DDX Reference Specifying passwords 132

<OpenPassword>opensesame</OpenPassword>
</PasswordEncryptionProfile>

If you specify None for the encryption attribute of the PDF result element, the document is not
encrypted. Whether the base source document is encrypted has no bearing on this behavior. If you do not
specify a value for encryption, the result is encrypted with the same settings as the base document. This
encryption behavior applies only for documents that are saved incrementally (see “Saving PDF
documents” on page 35).

A PasswordEncryptionProfile element must be at the root of the DDX document; that is, it must be
a child of the DDX element. A DDX document can contain any number of
PasswordEncryptionProfile elements. More than one PDF result element can reference the same
PasswordEncryptionProfile element.

The PasswordEncryptionProfile element has two additional attributes that you can set:

? compatibilityLevel specifies backward compatibility with previous PDF versions. A value of
Acrobat3 uses 40-bit RC4 encryption. Acrobat5 and later use 128-bit RC4 encryption. Acrobat6
allows metadata to be unencrypted in an encrypted document and Acrobat7 allows file attachments
only to be encrypted (see encryptionLevel below).

? encryptionLevel allows you to do selective encryption on the document and depends on the value
of compatibilityLevel. The default value, All, means that the entire document is encrypted.
NotMetadata means that the document metadata remains unencrypted while the rest of the
document is encrypted. OnlyFileAttachments means that the file attachments are encrypted
while the rest of the document is unencrypted.

You specify the permission settings associated with the document by using the Permissions element.
Its child element MasterPassword specifies the master password. The attributes copy, edit, print,
and screenReading specify different categories of permissions and are available only when
compatibilityLevel is Acrobat5 or greater. (See “Permissions” on page 253.)

The following example specifies both an open and master password. The permissions indicate that the
document cannot be printed and copying of content is not allowed. Users can still fill in forms and add
comments and digital signatures.

Example: Specifying an open and master password

<PDF result="doc" encryption="limit">
<PDF source="doc1"/>

</PDF>

<PasswordEncryptionProfile name="limit"
<OpenPassword>opensesame</OpenPassword>
<Permissions print="No" edit="CommentsFormFillinSign" copy="No">

<MasterPassword>docmaster</MasterPassword>
</Permissions>

</PasswordEncryptionProfile>

This example encrypts a document and sets permissions but leaves the document metadata unencrypted.

Example: Encrypting a document and leaving metadata unencrypted

<PDF result="doc2.pdf" encryption="limit">
<PDF source="doc1.pdf">

</PDF>
<PasswordEncryptionProfile name="limit" compatibilityLevel="Acrobat6"

Adobe LiveCycle ES4 Working with Secured Documents
Assembler Service and DDX Reference Accessing a password-protected document 133

encryptionLevel="NotMetadata">
<Permissions print="No" edit="CommentsFormFillinSign" copy="No">

< MasterPassword>letmein</MasterPassword>
</Permissions>

</PasswordEncryptionProfile>

Accessing a password-protected document
When you assemble documents, it is possible that one or more of your source documents is encrypted
with a password. The password must be specified for the Assembler service to be able to decrypt the data
and work with it. To specify the password, supply the following attributes in the DDX:

? Specify a PasswordAccessProfile element as a child of the DDX element. This element must have
one child element Password whose contents are the password itself. It must also have a name
attribute that is a unique identifying string that references the profile from elsewhere in the DDX.

? Use the PDF source element’s access attribute to reference a PasswordAccessProfile element.

This example shows the use of a PasswordAccessProfile element.

Example: Providing a password to access a document

<PDF result="doc2.pdf" encryption="None">
<PDF source="doc1.pdf" pages="2-last" access="deptA"/>

</PDF>
<PasswordAccessProfile name="deptA">

<Password>iamcy4jn</Password>
</PasswordAccessProfile>

If the password specified by the PasswordAccessProfile element is the master password, the
Assembler service can perform any operation on the document. If the password is the open password, the
Assembler service can only perform operations allowed by the permissions specified when the document
was encrypted.

Consider the situation where doc1.pdf does not permit page extraction and the profile provides only the
open password. In this situation, the Assembler service cannot assemble the resultant document because
the PDF source element for doc1.pdf removes one of the pages. This action is not permitted. Even though
the example creates a new unencrypted document, the permissions on the source document are
enforced.

To ensure successful assembly of the resultant document, provide the master password for the following
encrypted source documents:

? Non-base document in a PDF source element

? Source document in a PDFsFromBookmarks element

Digital signatures
Digital signatures can be used in PDF documents to authenticate the identity of a user and the document’s
contents. A signature stores information about the signer and the state of the document when it was
signed. Acrobat users sign PDF documents in signature fields, which are a type of form field.

Signatures can have several types:

Adobe LiveCycle ES4 Working with Secured Documents
Assembler Service and DDX Reference Digital signatures 134

? A certifying or author signature enables the author of a document to attest to its contents. It also
specifies the types of changes permitted for the document to remain certified. It must be the first
signature in the document.

? Regular or ordinary signatures enable signers to attest to the contents of a document but do not specify
permitted changes. All signatures in a certified document other than the first one are ordinary
signatures, as are all signatures in non-certified documents.

? Usage rights signatures are created when usage rights are added to a document by a product such as
the Reader Extensions service. These rights enable users to perform operations in Adobe Reader, such
as filling in form fields, that are not normally permitted. Individual users cannot create usage rights
signatures.

You cannot create digital signatures using the Assembler service. However, when you assemble
documents, some operations affect the digital signatures that are present in the source documents:

? When specifying save="Full" for a PDF result, all signatures become invalid and certifying
signatures from non-base documents are removed. (See “Saving PDF documents” on page 35.)

? Signatures become invalid when disassembling documents using the PDFsFromBookmarks element.
(See “Disassembling PDF Documents” on page 62.)

? Signatures become invalid when flattening form fields using the NoForms element. (See “Flattening
forms” on page 37.)

Certification can only be retained for the resultant document if the base document is certified.
Certification in non-base documents is never retained.

You can specify certification="None" on the resultant document to indicate that the resultant
document is not certified. If you do not specify the certification attribute, certification is retained for
the result when the base document is certified, except in the following cases:

? If you specify save="Full" or save="FastWebView", the resultant document is reorganized and
therefore the certification becomes invalid.

? If you specify the NoForms element, signature fields are flattened along with other form fields (see
“Flattening forms” on page 37). Therefore, the certifying signature is removed.

You can remove usage rights from a document by specifying a value of None for the
readerUsageRights attribute of the PDF result element.

 135

17 Querying Documents

The Assembler service provides the ability to obtain information about PDF documents and the DDX
processor itself. These capabilities are independent of specifying the features of documents. To obtain this
information, you use one of the following elements: DocumentInformation, DocumentText, and
About.

Each of these elements returns information in XML format. Typically, you process the result of such files
programmatically in order to use the results in the construction of another document.

Getting document information
You can use the DocumentInformation DDX element to return an XML file containing information
about a PDF document. The PDF document can be a source document (one that was provided as an input
stream) or one that was created by using a PDF result element. (See “DocumentInformation” on page 179.)

In this example, information about doc1 is returned as an XML stream.

Example: Getting document information

<DDX>
<PDF result="doc1">

<PDF source="doc2"/>
</PDF>
<DocumentInformation result="info.xml" source="doc1"/>

</DDX>

Note: The DocumentInformation element must appear after the PDF result element referenced by its
source attribute because the result document does not exist until the element that describes it
has been interpreted.

The XML stream (info.xml in the example) conforms to a schema specified in docinfo.xsd. Its namespace is

http://ns.adobe.com/DDX/DocInfo/1.0

The data returned by the DocumentInformation element contains the following information about the
document:

? Metadata from the PDF document properties: title, author, subject, keywords, date created, date
modified, creator application, PDF producer

? PDF version

? Number of pages in the document

? Page sizes, rotation angles, and page labels for all pages in the document

Getting the text of a document
You can use the DocumentText DDX element to return an XML file containing the words in one or more
PDF documents. The documents are specified as child elements of the DocumentText element, which
can be one or more PDF source or PDFGroup elements.

Adobe LiveCycle ES4 Querying Documents
Assembler Service and DDX Reference Getting information about the DDX processor 136

In this example, the words from doc1 are listed in the XML stream words.xml.

Example: Getting the text of a document

<DDX>
<PDF result="doc1">

<PDF source="doc2"/>
</PDF>
<DocumentText result="words.xml">

<PDF source="doc1"/>
</Text>

</DDX>

The XML stream conforms to a schema specified in doctext.xsd. Its namespace is

http://ns.adobe.com/DDX/DocText/1.0

When more than one source document are specified, the pages are aggregated and the text is returned as
if it were a single document. In this example, words.xml contains the words from a subset of pages from
two documents.

Example: Getting the words from pages in two documents

<DDX>
<DocumentText result="words.xml">

<PDF source="doc1" pages="1-10"/>
<PDF source="doc2" pages="3-5"/>

</DocumentText>
</DDX>

The result document looks like this:

<DocText xmlns="http://ns.adobe.com/DDX/DocText/1.0/">
<TextPerPage>

<Page pageNumber="1">
It a re, uterest abuspiostam, C. Axim il hortam intiam tervisq uemorum ommodii
fecte in sedii consulvid autea vehebem orurnum is.

</Page>
<Page pageNumber="2">

Sample Text Sample Text Sample Text Sample Text Sample Text Sample Text
</Page>

</TextPerPage>
</DocText>

Getting information about the DDX processor
You can use the About element to return an XML file containing information about the DDX processor.

Example: Getting information about the DDX processor

<DDX>
<About result="AboutDDX.xml"/>

</DDX>

The result document looks like this:

<About xmlns="http://ns.adobe.com/DDX/AboutDDX/1.0/">

Adobe LiveCycle ES4 Querying Documents
Assembler Service and DDX Reference Getting information about the DDX processor 137

<Processor>Adobe® LiveCycle™ Assembler</Processor>
<Version>7.2</Version>
<Build>7.2.1087.0.107773</Build>
<Copyright>

Copyright 2005-2006 Adobe Systems Incorporated. All Rights Reserved.
</Copyright>

</About>

 138

Part II: DDX Reference

This section describes the syntax and semantics of the DDX grammar.

 139

18 DDX Concepts

Each job submitted to the Assembler service includes a Document Description XML (DDX) document and
a set of source PDF and XML documents. The DDX document provides instructions on how to use the
source documents to produce a set of result documents. The set of result documents usually includes one
or more PDF documents. The set can also include XML documents derived from the source documents
and documents attached to the source documents.

Note: The Assembler service is an implementation of a DDX processor.

Element relationships and roles
A number of DDX elements have syntax that varies depending on the context in which they are used.
These elements are identified using the following terminology:

? A result element represents data being created. Result elements include a result attribute (except for
the PDFsFromBookmarks element, which has a prefix attribute instead).

Result elements have no initial content but accumulate the content of their child elements. Examples
of result elements are the PDF result element and the FileAttachments result element.

? A source element represents content to contribute to the result. It must be a child of a result element
and must have a source attribute with one exception. The PDF source and PackageFile elements
can instead have a sourceMatch attribute. Examples of source elements are the PDF source element
and the FileAttachments source element.

? A filter element is like a result element in that it takes its content from source elements nested within it.
A filter element is also like a source element in that it must be a child of a result element. Filter elements
lack the result and source attributes but contain child elements of a certain type. Examples of filter
elements are the Comment filter element and the Links filter element.

When using DDX, it is recommended that you understand the meaning of relationships between
elements, such as parent, child, and sibling. It is also recommended that you understand the scope of
elements and the inheritance of attributes.

Attributes, child elements, and text content
This reference guide describes the information conveyed in each DDX element and provides the syntax for
those elements’ attributes and attribute values.

Attribute names, formatting, and possible values
As shown in the following declaration, attribute names appear immediately after the element name. The
possible values for the attribute are shown to the right of the equal sign. Clicking the attribute name takes
you to a description of the attribute (although this feature is not implemented in this example).

<Comments
filter="Exclude" or "Include"
afterDate=unspecified or "YYYYMMDD"
…

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference Child elements 140

</Comments>

The syntax in the DDX Reference uses the following conventions.

Child elements
As shown in the following declaration, child elements appear after attributes. Clicking the element name
takes you to a description of the element (although this feature is not implemented in this example).

<SomeElement
filter="Exclude" or "Include"
afterDate=unspecified or "YYYYMMDD"
…

>
<PDF source> and/or <PDFGroup> [1..n]
<Comments filter> [0..n]

</SomeElement>

The syntax uses the following conventions.

Expression Meaning

"Exclude" Indicates the default value

"Include" An alternative value for the attribute

"YYYYMMDD" Italics indicates that a value must conform to the indicated type. The
attribute description explains the restrictions on such values. The
following list shows such attribute value types:

? xs:integer

? xs:string

? color

? File description

? page range

unspecified Indicates that the attribute is omitted.

or Indicates a descriptive comment.

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference Text content 141

Text content
As shown in the following declaration, elements can include text values.

<OpenPassword>
password

</OpenPassword>

As with attributes that take text values, the syntax used for text content uses the following convention.

Element categories
The names of DDX elements represent their content type. Elements can be placed into the following
categories, which relate to their use as PDF building blocks:

? “Document assembly” on page 142

? “Document components” on page 143

? “Document disassembly” on page 145

? “Document properties” on page 145

? “Page labels” on page 146

? “Page properties” on page 146

Expression Meaning

<PDF source> The source designation is a comment that indicates the expected
child element contains a source attribute, as described in “Element
relationships and roles” on page 139.

[1..n] The minimum and maximum allowable occurrences of the element
within the parent element. The following list describes occurrence
designations:

[1] The child element must be specified only once.

[1..n] The child element must be specified one or more times.

[0..2] In this case 2 is allowed for alternating pages. The child
element can be omitted, can appear once if used for all pages, or
can appear twice if each appearance applies to different
alternating pages. That is, one child element applies to the odd
pages and the other applies to the even pages.

or Indicates that either one of the child elements are allowed (not both).
The occurrence designator indicates the number of times either child
element appears within the parent element.

and/or Indicates that one or both child elements are allowed, where the
occurrence designator indicates the number of times either child
element appears within the parent element.

Expression Meaning

password A text value is provided.

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference Document assembly 142

? “Page content” on page 147

? “Profile” on page 147

? “Query” on page 148

Document assembly
Document assembly elements are used for “PDF assembly” on page 142, “PDF package or portfolio
assembly” on page 142, and “XDP assembly” on page 143.

PDF assembly

The following elements are in this category.

PDF package or portfolio assembly

The following elements are in this category.

Element name Description

BlankPage Specifies the addition of an initially blank page to the document.

PDF result PDF document that is returned to the client.

PDF source One or more PDF documents that are used to construct the parent
result PDF document.

PDFGroup Specifies a grouping of source documents to which page properties,
page content, and document components can be applied.

TableOfContents Specifies a table of contents in the result document.

TableOfContentsEntryPatt
ern

Specifies the style to apply to table of contents entries.

TableOfContentsPagePatte
rn

Defines the style for table of contents pages.

Element name Description

ColorScheme Color settings used in the PDF Portfolio.

DisplayOrder Determines the order in which the viewer displays the fields of a PDF
package.

Header (portfolio navigation
pane)

Resource that supplies a header used in a PDF Portfolio.

Field Describe the fields and their attributes, including the type of data
and the name used to identify the field in a PDF package or
portfolio.

FieldData References metadata for a package file in a PDF package or
portfolio.

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference Document components 143

XDP assembly

The following elements are in this category.

Document components
Document component elements represent parts of PDF documents that can be imported and exported
but are not pages or page content. These elements fall into the subcategories of navigation, comments,
and file attachments.

Package Identifies the parent element, PDF result or PDF source, as being a
PDF package. A <“PackageFiles” on page 217> element can either
add new package files or select package files for modification.

NoPackage Assembles a PDF package or portfolio into a single PDF that omits
the PDF package navigational features.

Navigator Specifies a navigator to use for a PDF Portfolio.

PackageFiles Adds new package files to the PDF package or portfolio being
assembled.

NoPackageFiles The package files in the package are not included, but the package
specification remains and the parent element remains a PDF
package.

Portfolio Extends PDF packages with additional navigational features
introduced with Adobe Acrobat 8.2.

NoPortfolio Assembles a PDF Portfolio into a single PDF that omits the PDF
Portfolio navigational features.

Schema Defines the characteristics of the metadata (Field) attributes
associated with each package file.

SortOrder Determines the order of the package files when assembling a single
result PDF. This element also indicates the priority the viewer uses
when sorting fields.

Schema Defines the metadata (Field) attributes that can be associated with
each package file

String Adds entries to the String name tree in a navigator dictionary.

WelcomePage Specifies the Welcome Page used in a PDF Portfolio.

Element name Description

Element name Description

XDP Specifies an XDP document assembled from other XDP documents.
Also packages an XDP document as a PDF document.

XDPContent Specifies XDP content to insert into the XDP source or result being
specified.

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference Document components 144

Navigational content

The elements in this subcategory represent navigational content, which can be imported into or exported
from PDF documents. The following elements fall into this subcategory.

Comments

The elements in this subcategory represent comments, which can be imported or exported from PDF
documents. The following elements fall into this subcategory.

Element name Description

Bookmarks result Exports bookmarks from the child elements to an XML document.

Bookmarks source Specifies that bookmarks contained in an XML document are
imported into the parent element.

Bookmarks filter Specifies bookmarks from child source elements that can be
imported into the parent element but are not returned as XML.

LinkAlias Provides an alternative name for the parent document, for use as a
link destination.

Links result Specifies that links be exported from the child elements as an XML
Forms Data Format (XFDF) document.

Links source Imports links into the parent element. The links are provided in the
source, which must be an XFDF document.

Links filter Specifies that links from child source elements be imported into the
parent element.

NoBookmarks Specifies removal of bookmarks from the parent element.

NoLinks Specifies removal of links from the parent element.

NoThumbnails Specifies removal of embedded thumbnails from the parent
element.

Element name Description

Comments result Exports the comments from the child elements as an XFDF or Forms
Data Format (FDF) document.

Comments source Imports comments into the parent element. The comments are
contained in an XFDF or FDF document.

Comments filter Specifies comments from child source elements that can be
imported into the parent element but are not returned as FDF or
XFDF.

NoComments Specifies removal of annotations from the parent element.

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference Document disassembly 145

File attachments

The elements in this subcategory represent file attachments, which can be imported or exported from PDF
documents. The following elements fall into this subcategory.

Document disassembly
The document disassembly element splits a single document into multiple PDF documents.

Document properties
Document property elements specify information that applies to a PDF document as a whole, as opposed
to individual pages. The following elements fall into this category.

Element name Description

AttachmentAppearance Defines the appearance and placement of a page-level file
attachment

Description Provides a description of a file attachment

File Specifies a file attached to a PDF document as a document-level or
page-level file attachment

FileAttachments result Requests information about file attachments and optionally returns
attachments as separate data streams

FileAttachments source Specifies a file to be attached to the parent document

NoFileAttachments Specifies removal of all file attachments in the parent element

Element name Description

PDFsFromBookmarks Splits a single PDF document into multiple PDF documents, based
on top-level bookmarks

Element name Description

Author Provides a value for the author metadata in the result document.

“JavaScript” on page 199 A source element that specifies a document-level JavaScript to be
added to the result PDF document.

“NoJavaScripts” on page 210 Specifies that the parent PDF result or source element contains no
document-level JavaScript.

Keyword Provides a single keyword for use as metadata.

Keywords Provides metadata keywords for the result document.

MasterPassword Specifies a password that is used to change permissions for the
result document.

Metadata result Exports the metadata from the child document as XMP.

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference Page labels 146

Page labels
Page label elements provide the format and page number starting point for a string in the form "text +
page number". This string is displayed beneath the page and beneath thumbnails in a viewer to identify
the page. Using the Assembler service, this string can also be added to page content such as footers. The
following elements fall into this category.

Page properties
Page property elements specify how pages are viewed or printed. The following elements fall into this
category.

Metadata source Imports the metadata contained in an XMP stream into the parent
document.

NoForms Flattens all form fields in the parent document.

NoXFA Flattens XFA-based forms in the parent element.

OpenPassword Specifies a password that is used to open the result document.

Password Provides an access password for the Assembler service to use to
open encrypted source documents.

Subject Provides the value for the subject metadata in the result document.

Title Specifies the value for the title metadata in the result document.

Element name Description

Element name Description

NoPageLabels Specifies removal of page labels from the parent element

PageLabel Specifies the format and content of page labels

Element name Description

ArtBox Defines the extent of the page’s meaningful content as intended by
the creator of the page

BleedBox Defines the bounds to which the contents of the page are clipped
when output in a production environment

PageMargins Specifies margins for page content elements

PageRotation Specifies the rotation angle of pages within the scope of the parent
element

PageSize Defines the page dimensions for purposes of display or print

TrimBox Defines the intended dimensions of the finished page after printing
and trimming

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference Page content 147

Page content
Page content elements specify new content that is added to pages in PDF documents. The following
elements fall into this category.

Profile
Profile elements are top-level elements specified only as children of the DDX root element. They contain
reusable specifications. Other elements reference them by name. Profile elements let you create and
maintain a repository of named profiles for different types of assemblies that are included within a DDX
document.

Element name Description

Background Provides styled text or graphics for placement behind existing page
content

Center Specifies a centered header or footer

DatePattern Provides style information used to construct a string representing
the date and time

Footer Provides styled text or graphics for footer content

graphic Inserts a graphic as if it were a character in a line of text.

Header Provides styled text or graphics for header content

Left Specifies a left-justified header or footer

NoBackgrounds Specifies removal of backgrounds from the parent element

NoFooters Specifies removal of footers from the parent element

NoHeaders Specifies removal of headers from the parent element

NoWatermarks Specifies removal of watermarks from the parent element

“PageContent” on
page 225

Provides styled text or graphics for placement either over or under
the existing page content. Allows for alternate text to be provided
for screen reading.

PageOverlay Provides content for placement over the current page content

PageUnderlay Provides content for placement under the current page content

Right Specifies a right-justified header or footer

StyledText Provides a rich text expression

Transform Specifies transformations applied to the page contents, including
scaling, translation, and rotation

Watermark Provides styled text or graphics for placement over the existing
page content

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference Query 148

Query
Query elements enable the return of XML documents containing specific types of information about PDF
documents. These XML documents provide information about a PDF document, such as the words it
contains, the bookmarks it contains, and its metadata and page-related information.

Some manual or programmatic examination may be required to use the results of the query in the
construction of another document.

Built-in keys
You can use DDX built-in keys to insert variable information into headers, footers, watermarks,
backgrounds, and table of contents entries. The Assembler service replaces these keys when it processes
the DDX document.

The following table describes the Assembler service built-in keys.

Element name Description

InitialViewProfile Specifies information about how a document is viewed when it is
opened in a viewer application.

PDFAProfile Specifies settings for conversion to PDF/A.

StyleProfile Specifies a named profile that contains style information about
page contents or table of contents elements.

PasswordEncryptionProfil
e

Specifies a named profile containing password security settings.

PasswordAccessProfile Specifies a named profile containing an access password.

Element name Description

About Requests information about the Assembler service.

DocumentInformation Requests information about a PDF document, such as the
document’s metadata settings and information about the pages in
the document

DocumentText Requests information about the words that appear in the specified
source documents

Built-in key Description

_PageLabel Page label of the current page in the result document. If the document has
no page labels, this key is set to the value of the PageNumber built-in key.

_LastPageLabel Page label of the last page in the result document.

_PageNumber Ordinal (1-based) page number of the current page in the result document.

_LastPageNumber Total number of pages in the result document.

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference Built-in keys 149

_Title Title from the metadata of the result document. If no title is defined, this key
is set to an empty string.

_SourceTitle Title from the metadata of the source document. If no title is defined, this key
is set to an empty string.

_Author Author from the metadata of the result document. If the metadata specifies
multiple authors, this key represents only the first author name. If no author
is defined, this key is set to an empty string.

_SourceAuthor Author from the metadata of the source document. If the metadata specifies
multiple source authors, this key represents only the first author name. If no
author is defined, this key is set to an empty string.

_Subject Subject from the metadata of the result document. If no subject is defined,
this key is set to an empty string.

_SourceSubject Subject from the metadata of the source document. If no subject is defined,
this key is set to an empty string.

_Created Creation date from the metadata of the result document.

When this key is used as the name of a rich text (styled text) element, it can
have an optional styleReference attribute. The value of this attribute
references a StyleProfile element, which in turn contains a
DatePattern element. The formatting in the DatePattern element is
applied to the value supplied by the built-in key.

_Modified Modification date from the metadata of the result document.

When this key is used as the name of a rich text (styled text) element, it can
have an optional styleReference attribute. See the _Created built-in
key.

_DateTime Current system time stamp.

When this key is used as the name of a rich text (styled text) element, it can
have an optional styleReference attribute. See the _Created built-in
key.

_BookmarkTitle Title of the current bookmark. (Used only with the
TableOfContentsEntryPattern element.)

_BookmarkPageCitat
ion

Page reference of the current bookmark. (Used only with the
TableOfContentsEntryPattern element.)

_AdobeCoverSheet An input source that is stored internally and is not provided in the input map.
The Adobe cover sheet is a single PDF file that is the default cover sheet for a
PDF package.

Its use is restricted to PDF source. See “_AdobeCoverSheet” on page 150 for
more details and information about localization.

_Filename Filename stored with a package file. Its use is restricted to the FieldData
element, as the value of the name attribute.

Built-in key Description

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference _AdobeCoverSheet 150

_AdobeCoverSheet
If a basic cover sheet is needed, there is a built-in Adobe cover sheet available, which is one single PDF
page. To include the built-in cover sheet, the PDF source attribute value is specified as
"_AdobeCoverSheet". DDX processors use the TargetLocale element to select locale-specific
versions of the basic cover sheets.

Specifying the built-in cover sheet indicates that the result is a PDF package, and a default package
specification is provided if necessary.

If no cover sheet is specified for a PDF package result, the Adobe cover sheet is automatically included in
an assembly.

If the most locally specified TargetLocale includes a supported language code, then a localized version
of _AdobeCoverSheet is provided. If TargetLocale is not specified or is not supported, the version for
the default locale is used.

The supported languages are listed in the following table, along with the locale value for TargetLocale:

_Description Description stored with a package file. Its use is restricted to the FieldData
element.

_ModificationDate Modification date stored with a package file. Its use is restricted to the
FieldData element.

_CreationDate Filename stored with a package file. Its use is restricted to the FieldData
element.

Built-in key Description

Language TargetLocale

Bulgarian bg_BG

Chinese (China) zh_CN

Chinese (Taiwan) zh_TW

Croatian hr_HR

Czech cs_CZ

Danish da_DK

Dutch nl_NL

English en_US

Finnish fi_FI

French fr_FR

German de_DE

Hungarian hu_HU

Italian it_IT

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference _AdobeCoverSheet 151

Japanese ja_JP

Korean ko_KR

Latvian lv_LV

Lithuania lt_LT

Norwegian no_NO

Polish pl_PL

Portuguese (Brazil) pt_BR

Romanian ro_RO

Russian ru_RU

Slovak sk_SK

Slovenian sl_SL

Spanish es_ES

Swedish sv_SE

Turkish tr_TR

Ukrainian uk_UA

Language TargetLocale

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference Special DDX attribute values 152

Special DDX attribute values
DDX uses special types to represent possible values of attributes.

Color-specifier
A color-specifier definition can have one of the values described in the following table.

External Data URL
An external data URL can be used as a source of documents and strings. An external data URL can also be
used as the destination of result documents. (See “Using External Data URLs for source and result values”
on page 24.) LiveCycle ES4 supports the following URL schemes:

? “Application URL” on page 153

? “Contentspace URL” on page 154

? “Process URL” on page 154

? “Repository URL (deprecated)” on page 154

? “File URL” on page 155

? “HTTP/HTTPS URL” on page 155

? “FTP URL” on page 155

? “Inputmap URL” on page 156

Any result attribute can be an URL, as long as the location the URL specifies is writable. Any source,
import, or thumbnail attribute can also be a URL, as long as the location specifies a document.

Some attributes that take string values can also be a URL.

String or string pattern Description

#rrggbb Hexadecimal representation of a color in the RGB color-space. rr is a
placeholder for the red component, gg for the green component, and bb
for the blue component. For example, the value #000000 represents
black and the value #FFFFFF represents white.

SVG color keyword
name

One of the colors named in the Scalable Vector Graphics (SVG)
Specification, version 1.1(http://www.w3.org/TR/SVG/). The following
examples are SVG color keyword names:

? black represents #000000

? aqua represents #00FFFF

? blue represents #0000FF

? white represents #FFFFFF

http://www.w3.org/TR/SVG/

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference External Data URL 153

Attribute values that require the URL to resolve to a String value

Application URL

(Since 9.0) Application URLs provide access to data available in an application created in
LiveCycle Workbench ES4. DDX elements can use Process URLs to access data independent of the
Assembler operation's input map.

Element Attributes

<Author> value

<BatesNumber> prefix, suffix

<File> filename

<Folder> name

<Keyword> value

<Resource>

(as child of <Navigator> and as child of
<Portfolio>)

name

<PackageFiles> sourceMatch

<PageLabel> prefix

<PDF> bookmarkTitle, sourceMatch

<PDFGenerationSettings> conversionSettings,
fileTypeSettings

<ReaderRights> credentialAlias

<String>

(String element as a child of the StyledText
element)

url

<String>

(String element as child of the Navigator
element)

name

<TargetLocale> locale

<Subject> value

<TableOfContents> bookmarkTitle

<Title> value

<XDP> fragment, sourceMatch,
insertionPoint,
retainInsertionPoints,removeIn
sertionPoints

<XDPContent> n/a

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference External Data URL 154

Assets such as documents and data can be contained in applications. An Application is identified name
and version, for example myApp/1.0. The version can contain additional folders for resources and
processes.

The following example shows the syntax of an application URL:

application:///myApp/1.0/myFiles/doc1.pdf

Contentspace URL

(Since 8.2) When LiveCycle Contentspace ES4 is installed and available (at http://localhost:8080/
contentspace), assets can be referenced in the DDX by using the contentspace URL. The path comes from
the path visible in Contentspace ES4, for example:

Company Home > User Homes > Assembler Dev Tests > doc1.pdf

The DDX can reference the above document using a Contentspace URL:

<PDF
source=
"contentspace:///Company Home/User Homes/Assembler Dev Tests/doc1.pdf"/>

Process URL

(Since 8.2) Process URLs provide access to data available in a process created in LiveCycle Workbench ES4.
DDX elements can use Process URLs to access process data independent of the Assembler operation's
input map.

The following example shows the syntax of a Process URL:

process://host:port/lc-xpath-data?lc-xpath-function#name

Where:

? host:port can be null and defaults to localhost:8080. All other values are treated as null.

? lc-xpath-data is an XPath expression consisting of the following /process_data/@inDoc

? lc-xpath-function is an XPath expression consisting of the following:
get-map-values(/process_data/mapOfDocuments)

? lc-xpath-data takes precedence over any lc-xpath-function

? name (optional) is a string used as the logical name for a document. The name can include an extension
that identifies the file type. If the Process URL resolves to a list of Document objects, each document
name is prefaced with an integer. The integer specifies the position of the Document in the list. For
example, 0_doc.pdf, 1_doc.pdf.

Here are examples of process URLs.

process://localhost:8080/process_data/@doc1#doc1.pdf
process:///process_data/@doc1#doc1.pdf
process://localhost:8080?get-map-values(/process_data/assemInputs)#docZ.pdf
process://?get-map-values(/process_data/assemInputs)#docZ.pdf

Repository URL (deprecated)

Beginning with LiveCycle 9.0, the repository URL is deprecated.

A Repository URL lets DDX elements reference files within the LiveCycle ES4 repository. Such direct access
is useful for standard files that are used in multiple documents, such as company logos, cover sheets, and

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference External Data URL 155

disclaimers. A Repository URL also enables access to specific versions of files within the
LiveCycle ES4 repository.

Here is the syntax for Repository URLs:

repository:///dir-path/filename[?rv=myResourceVersion]

Where brackets indicate optional parts:

? dir-path is a directory path in the LiveCycle ES4 repository service.

? filename is the (optional) name of the file being referenced.

? myResourceVersion is the version of the file that is accessed. This part is valid only when the
filename part is specified.

No authority or host specifications are permitted in a Repository URL.

If a Repository URL omits the filename part, the Assembler service includes every file in the dir-path
folder that satisfies the filtering criteria. The sourceMatch attribute (if present) specifies the filtering
criteria.

Caution: The Assembler service extends Repository URLs to support access of all files in a folder (when
the filename is omitted). Other LiveCycle ES4 services do not provide such support.

Here is an example of a Repository URL:

repository:///FinanceAppFolder/myForm.xdp?rv=1.2

File URL

A File URL enables direct access to files on locally accessible disk storage. The following example shows the
syntax of a File URL:

file:///dir-path/filename

 where:

? dir-path is a directory path

? filename is the (optional) name of the repository file being referenced

If a File URL omits the filename part, the Assembler service includes every file in the dir-path folder
that satisfies the filtering criteria. The sourceMatch attribute (if present) specifies the filtering criteria.

HTTP/HTTPS URL

A HTTP/HTTPS URL enables access to files on intranets and the World Wide Web. Basically, any URL that
works in a browser works with DDX. Your server settings determine whether to use https or http URLs.

FTP URL

(Since LiveCycle ES 8.2) An FTP URL enables access to files on FTP servers. As with HTTP/HTTPS URLs, some
FTP servers require security credentials. Here is the syntax of an FTP URL, where optional parts are
enclosed in brackets:

ftp://[userName:userPassword@]ftpServerAddress[:port]/myPath

ftps://[userName:userPassword@]ftpServerAddress[:port]/myPath

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference Page and document ranges 156

Inputmap URL

(Since LiveCycle ES4 9.0) An inputmap URL enables access to strings specified by the input map. Here is the
syntax of an inputmap URL:

inputmap:///String/String

Usually, you use the input map to provide the documents used in the assembly. Beginning with
LiveCycle ES4 (version 9), you can also use it to provide strings.

You can use an external data URLs to provide string values. For example, the following DDX expression
defines a watermark that has a value supplied as an inputmap URL.

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
 <PDF result="Untitled 1">
 <PDF source="sourcePDF1"/>
 <Watermark>
 <StyledText>
 <p>
 <String url="inputmap:///companyStrings/watermarkString">Temporary
string</String>
 </p>
 </StyledText>
 </Watermark>
 </PDF>
</DDX>

URL Examples

Accessing the output value of a service such as Generate PDF by using a value in the DDX element. For
example, consider the following:

<PDF source="process:///process_data/@pdfgResult">

instead of using a SetValue action to place the output document from the Generate PDF service into the
input map for the Assembler service.

Enables the document name to come from an XPath string variable. For example:
<File filename="process:///process_data/@doc1_name">

Allows the content of StyledText to come from an XPath string variable using the String element. For
example:

<StyledText><p><String
url="process:///process_data/@recipient"/></p></StyledText>

Page and document ranges
A page range or document range value is a comma-separated sequence of one or more of the following:

? Ordinal page number, such as 1, 5, or 99, where 1 specifies the first page in the document

? Keyword last, which specifies the last page or document

? Keyword penultimate, which specifies the next to last page

? Continuous and increasing range of pages, separated by a dash, such as 1-5, or 8-9

? Discontinuous range of pages, separated by a comma, such as 1, 3, 5

Adobe LiveCycle ES4 DDX Concepts
Assembler Service and DDX Reference length-specifier 157

Here are some examples of allowable values:

? 1,4-99,last

? penultimate,4,5,1-3 (even though the comma-separated values are specified in a mixed order,
the result uses the increasing order of 1-5, penultimate)

The ordinal pages specified for this attribute are independent of page numbers appearing in page labels
or as part of page content.

length-specifier
A length-specifier is a positive or negative value specified along with a unit of measurement without any
spaces. The units of measure allowed are "in" for inch, "cm" for centimeter, "mm" for millimeter, and "pt" for
points (1/72 in).

Here are some examples of length values.

nonnegative-length-specifier

A nonnegative-length-specifier is a positive value, greater than or equal to zero, specified along with a unit
of measurement without any spaces. The format is the same as for length-specifier.

positive-length-specifier

A positive-length-specifier is a positive value, greater than zero, specified along with a unit of
measurement without any spaces. The format is the same as for length-specifier.

Length value Description

"1.0in" 1.0 in

"-3.77cm" -3.77 cm

"35pt" 35 points (a point is 1/72 in)

"0pt" 0 points

 158

19 DDX Language Elements

Document Description XML (DDX) language is a declarative markup language for describing documents
that are constructed from component PDF, XDP, and XML documents.

The namespace of the DDX language is http://ns.adobe.com/DDX/1.0/, and the root element is DDX.

About
Requests information about the Assembler service.

<About
result="xs:string"

/>

Can be contained in the DDX element, which is the DDX root.

This element requests that the Assembler service produce an XML document that describes its version and
release.

The format of the XML document produced for this query element is described in “About Language” on
page 308.

Category

“Query” on page 149

Attributes

ArtBox
Defines the extent of the page’s meaningful content as intended by the creator of the page.

<ArtBox
left="0pt" or "length"
top="0pt" or "length"
right="0pt" or "length"
bottom="0pt" or "length"
alternation="None" or "OddPages" or "EvenPages"

/>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, PackageFiles filter, select, and conversion elements, and
BlankPage.

Name Description

result Required. Name of the stream containing the result of this query or an External Data
URL. (See “External Data URL” on page 152.)

http://ns.adobe.com/DDX/1.0/
http://ns.adobe.com/DDX/1.0/

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference AttachmentAppearance 159

This element is intended for use by prepress professionals only.

Category

“Page properties” on page 147

Attributes

AttachmentAppearance
Defines the appearance and placement of a page-level file attachment (also known as a file attachment
annotation).

<AttachmentAppearance
author="Author from document metadata" or "xs:string"
color="blue" or "color"
icon="Paperclip" or "Graph" or "Pushpin" or "Tag"
opacity="100%" or "percentage or decimal"
x="72pt" or "length"
y="72pt" or "length"

/>

Name Description

left Optional. Width of the margin as measured from the left side of the page to the
left side of the art box. In this case, the page is the visible page as viewed in
Acrobat.

Default: 0 pt

top Optional. Width of the margin as measured from the top of the page to the top
of the art box. In this case, the page is the visible page as viewed in Acrobat.

Default: 0 pt

right Optional. Width of the margin as measured from the right side of the page to the
right side of the art box. In this case, the page is the visible page as viewed in
Acrobat.

Default: 0 pt

bottom Optional. Width of the margin as measured from the bottom of the page to the
bottom of the art box. In this case, the page is the visible page as viewed in
Acrobat.

Default: 0 pt

alternation Optional. Specifies whether the element’s settings apply to all pages or to
alternating pages. This attribute can have the following values:

None (default) - Settings apply to all pages.

OddPages - Settings apply to odd pages only.

EvenPages - Settings apply to even pages only.

Pages are considered odd or even depending on their ordinal page number in
the resultant document.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Author 160

Can be contained in the FileAttachments source element.

Category

“Document components” on page 144

Attributes

Author
Provides a value for the author metadata in the resultant document.

<Author
value="xs:string"

/>

Can be contained in the PDF result element, and the PackageFiles filter, select, and conversion
elements.

value can specify multiple authors, separated by commas or semicolons. (If there are multiple authors,
the Author built-in key and the DocumentInformation element return only the first author.)

Name Description

icon Optional. The name of an icon that represents the attachment on the page.

Default: PushPin

color Optional. The color of the icon as displayed on the page.

Default: blue

opacity Optional. Controls the transparency of the icon associated with the attachment. The
value of this attribute can have the following forms:

? Decimal in the range of .0 to 1.0

? Percentage in the range of 0% to 100%. In this case, the percentage sign (%) is
required.

The default is 100%.

author Optional. The name of the author to be associated with the comment. If omitted,
the author (if any) from the result PDF document is used; if there are multiple
authors, the first one is used.

x Optional. Specifies the horizontal location of the icon on the page. It is measured as
the horizontal distance from the lower left corner of the page to the upper left
corner of the icon. These positions reflect any rotation and resizing.

Default: 72pt (1 inch)

y Optional. Specifies the vertical location of the icon on the page. It is measured as the
vertical distance from the lower left corner of the page to the upper left corner of
the icon. These positions reflect any rotation and resizing.

Default: 72pt (1 inch)

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Background 161

If specified as a sibling to a Metadata source element, the Metadata source is imported first and the
value of Author overrides the imported metadata.

Category

“Document properties” on page 146

Attributes

Background
Provides styled text or PDF content for placement behind the existing page content.

<Background
alternation="None" or "OddPages" or "EvenPages"
fitToPage="true" or "false"
horizontalAnchor="Left" or "Center" or "Right"
horizontalOffset="0pt" or "length"
opacity="100%" or "percentage"
rotation="0" or "xs:integer"
scale="100%" or "percentage"
showOnScreen="true" or "false"
showWhenPrinting="true" or "false"
verticalAnchor="Top" or "Middle" or "Bottom"
verticalOffset="0pt" or "length"
replaceExisting="true" or "false"

>
<StyledText> or < PDF source> [1]
<TargetLocale> [0..1]

</Background>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
PackageFiles filter, select, or conversion elements, TableOfContentsPagePattern, BlankPage,
and StyleProfile.

The Background element applies a background to all pages in the scope of its parent element. If
replaceExisting is omitted or is "true", then this element replaces any pre-existing backgrounds on
those pages. In LiveCycle ES 8.0 and later, the replaceExisting attribute lets you retain pre-existing
backgrounds when adding one new background. If replaceExisting is "false", a new Background
is added to the existing Background. Each page can contain at most one background. Transient results
allow for the addition of multiple backgrounds.

If the background content is provided in a PDF source element, the first page from the source document is
used for the background.

Use the Watermark element to place content over the existing page content.

Name Description

value Required. Specifies the author name. Any value, including an empty string, overrides
the author name in the resultant document. The string value can be specified with
an External Data URL. (See “External Data URL” on page 152.)

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Background 162

Category

“Page content” on page 148

Attributes

Name Description

alternation Optional. Specifies whether the element’s settings apply to all pages or to
alternating pages. This attribute can have the following values:

None (default) - Settings apply to all pages.

OddPages - Settings apply to odd pages only.

EvenPages - Settings apply to even pages only.

Pages are considered odd or even depending on their ordinal page number
in the resultant document.

fitToPage Optional. Specifies whether to scale the background content to fit the page.
This attribute can have the following values:

false (default) - Background content is scaled according to the scale
attribute.

true - Background content is forced to fit the boundaries of the page size,
by either expanding or shrinking the text. The scale attribute is ignored.

horizontalAnchor Optional. Specifies a horizontal anchor point, relative to the PageMargins
element of the page on which the background is placed. The
horizontalOffset attribute lets you modify the placement relative to this
anchor. This attribute can have the following values:

Left - Left page margin

Center (default) - Midpoint between the left and right margins

Right - Right margin

horizontalOffset Optional. Offset from the horizontal anchor point specified in the
horizontalAnchor attribute. A positive value moves the background
right, while a negative value moves it left.

opacity Optional. Transparency of the background. The value can be a decimal in the
range of .0 to 1.0 or a percentage in the range of 0% to 100%. In the latter
case, the percentage sign (%) is required.

replaceExisting Optional. If set to false, the specified background does not replace any
pre-existing background.

rotation Optional. Rotation of the background upon the page. The valid range is -360
to 360°.

scale Optional. Scaling of the background. The valid range is 8% to 3200%. The
value can be a decimal in the range of .0 to 1.0 or a percentage in the range of
0% to 100%. In the latter case, the percentage sign (%) is required.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference BlankPage 163

BlankPage
Specifies the addition of an initially blank page to the document.

<BlankPage
forceEven="true" or "false"

>
<ArtBox> [0..2, where 2 is allowed for alternating pages]
<Background> or

<NoBackgrounds> [0..2, where 2 is allowed for alternating pages]
<BleedBox> [0..2, where 2 is allowed for alternating pages]
<Footer>

or <NoFooters> [0..2, where 2 is allowed for alternating pages]
<Header>

or <NoHeaders> [0..2, where 2 is allowed for alternating pages]
<PageContent> [0..n]
<PageLabel> [0..1]
<PageMargins> [0..2, where 2 is allowed for alternating pages]
<PageOverlay> [0..n]
<PageRotation> [0..1]
<PageSize> [0..1]
<PageUnderlay> [0..n]
<TargetLocale> [0..1]
<TrimBox> [0..2, where 2 is allowed for alternating pages]
<Watermark>

showOnScreen Optional. Controls whether the background is displayed when pages are
viewed with an application such as Acrobat. This attribute can have the
following values:

true (default) - The background is displayed.

false - The background is not displayed.

showWhenPrinting Optional. Controls whether the background is included when pages are
printed with an application such as Acrobat. This attribute can have the
following values:

true (default) - The background is included.

false - The background is not included.

verticalAnchor Optional. Specifies a vertical anchor point, relative to the PageMargins
element of the page on which the background is placed. The
verticalOffset attribute lets you modify the placement relative to this
anchor. This attribute can have the following values:

Top - Top page margin

Middle (default) - Midpoint between the top and bottom margins.

Bottom - Bottom margin

verticalOffset Optional. Offset from the vertical anchor point specified in the
verticalAnchor attribute. A positive value moves the background up,
while a negative value moves it down.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference BleedBox 164

or <NoWatermarks> [0..2, where 2 is allowed for alternating pages]
</BlankPage>

Can be contained in the elements PDF result and PDFGroup.

Note: The PageContent element adds only its content, not the value of its alternateText attribute.
This limitation is because pages added via the BlankPage element are not tagged.

This element causes the Assembler service to append a blank page to the assembled document in the
following situations:

? forceEven="false"

? forceEven="true" and there is an odd number of pages in the resultant document at the point
where the BlankPage element appears.

Pages added by the BlankPage element inherit page properties and content specified for parent
elements, as well as the page properties specified as children of BlankPage. If PageSize and
PageRotation are not specified within the scope of the BlankPage element, their values are taken
from the result PDF page just before the blank page. If there is no preceding page, their values are taken
from the following page.

Similarly, if a page label is not specified within the scope of the blank page, the following results occurs:

? If there are no other page labels in the document, the blank page has no page labels.

? If there are page labels in the document, the blank page takes its labeling style from the previous page
in the assembly. This same behavior also occurs when <PageLabel mode="Continue"/> is
specified. If no pages precede the blank page, it takes a filler label that is equal to the ordinal page
number.

Category

“Document assembly” on page 143

Attributes

BleedBox
Defines the bounds to which the contents of the page are clipped when output in a production
environment.

<BleedBox
left="0pt" or "length"
top="0pt" or "length"
right="0pt" or "length"
bottom="0pt" or "length"
alternation="None" or "OddPages" or "EvenPages"

Name Description

forceEven Optional. Specifies the conditions when a blank page is added. (See description
for the BlankPage element.) This attribute can have the following values:

false (default) - A blank page is always added.

true - A blank page is added only if there is an odd number of pages in the
resultant document up to that point.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Bookmarks 165

/>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, PackageFiles filter, select, or conversion elements, and
BlankPage.

This element is intended for use by prepress professionals only.

Category

“Page properties” on page 147

Attributes

Bookmarks
Bookmarks elements enable the bookmarks contained in PDF documents to be exported, imported, and
removed. Bookmarks elements can have the following varieties:

? Bookmarks result. Specifies an XML document containing bookmarks from its child elements.

? Bookmarks source. Specifies bookmarks contained in a Bookmarks XML document. The bookmarks
are imported into all pages within the scope of the parent element.

? Bookmarks filter. Specifies the bookmarks from its child elements, which can be imported into all
pages within the scope of the parent element.

Also see the NoBookmarks element, which specifies that bookmarks be removed from all pages within
the scope of the parent element.

In PDF documents, bookmarks are a tree-structured hierarchy of outline items that provide a means of
navigating the document. When a user in a viewer application clicks a bookmark, an action is triggered.

Name Description

left Optional. Width of the margin as measured from the left side of the page to the
left side of the bleed box. In this case, the page is the visible page as viewed in
Acrobat.

top Optional. Width of the margin as measured from the top of the page to the top
of the bleed box. In this case, the page is the visible page as viewed in Acrobat.

right Optional. Width of the margin as measured from the right side of the page to the
right side of the bleed box. In this case, the page is the visible page as viewed in
Acrobat.

bottom Optional. Width of the margin as measured from the bottom of the page to the
bottom of the bleed box. In this case, the page is the visible page as viewed in
Acrobat.

alternation Optional. Specifies whether the margin settings apply to all pages or alternating
pages. This attribute can have the following values:

None (default) - The margin settings apply to all pages.

OddPages - The margin settings apply to odd pages only.

EvenPages - The margin settings apply to even pages only.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Bookmarks result 166

Typically, a bookmark action specifies a particular location in the document to which the viewer should
navigate. However, bookmarks can also trigger actions such as opening web pages or running JavaScript
code.

Bookmarks result
Specifies that bookmarks from the child elements be exported to an XML document.

<Bookmarks
result="xs:string"
return="true" or "false"

>
< PDF source> and/or <PDFGroup> [1..n]
<Bookmarks source> [0..n]
<Bookmarks filter> [0..n]
<TargetLocale> [0..1]

</Bookmarks>

Can be contained in the DDX element, which is the DDX root.

This element directs the Assembler service to export the bookmarks in the element’s child elements. If the
Bookmarks result element contains multiple PDF source documents, they are effectively assembled into
a single PDF document from which bookmarks are exported. (This document is not returned to the user.)

Bookmarks are exported in an XML document that conforms to the Bookmarks XML language, which is a
component of the XPDF language. (See “Bookmarks Language” on page 321.)

This element must contain at least one PDF source element, either as a direct child or within a child
PDFGroup element.

Category

“Document components” on page 144

Attributes

Bookmarks source
Bookmarks contained in an XML document are imported into all pages within the scope of the parent
element.

Name Description

result Required. Specifies a name to be associated with the exported bookmarks. This
name must be unique among all result elements in the DDX document. This name
can be specified with an External Data URL. (See “External Data URL” on page 152.)

return Optional. Specifies whether the exported bookmarks are returned to the client. This
attribute can have the following values:

true (default) - Exported bookmarks are returned to the client.

false - Exported bookmarks are transient data, which can be referenced as the
source from a subsequent result element. The bookmarks are not returned to the
client.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Bookmarks filter 167

<Bookmarks
source="xs:string"

/>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or conversion
elements, and PDFGroup.

This element identifies an XML document representing PDF bookmarks. The bookmarks are aggregated
with bookmarks in other sibling source elements, if any. The aggregation replaces any bookmarks found in
any pages within the scope of the parent element.

Category

“Document components” on page 144

Attributes

Bookmarks filter
Specifies that bookmarks from child source elements be imported into the pages within the scope of the
parent element.

<Bookmarks>
< PDF source> and/or <PDFGroup> [1..n]
<Bookmarks source> [0..n]
<TargetLocale> [0..1]

</Bookmarks>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or conversion
elements, and PDFGroup.

The Bookmarks filter element contributes bookmarks to the pages within the scope of the parent
element. It is shorthand for a simple export/import operation. That is, the Bookmarks filter element is
equivalent to using these expressions (in order):

1. Bookmarks result to produce an intermediate Bookmarks XML document. The intermediate
Bookmarks XML document is not returned to the client.

2. Bookmarks source element to then import the bookmarks from that Bookmarks XML document into
the parent document. (See “Bookmarks Language” on page 321.)

As with the Bookmarks source element, the bookmarks specified by this element are aggregated with
bookmarks in other sibling source elements, if any. The aggregation replaces any bookmarks found in the
pages within the scope of the parent element.

The filter element must contain at least one PDF source element, which can be a child or be embedded
within a child PDFGroup element.

Name Description

source Required. Identifies the name of the Bookmarks XML document. This name can be
specified with an External Data URL. (See “External Data URL” on page 152 and
“Bookmarks Language” on page 321.)

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Center 168

Category

“Document components” on page 144

Center
Specifies the center point of the page as the anchor point for a header or footer.

<Center> [0..1]
<StyledText> or < PDF source> [1]

</Center>

Can be contained in the elements Footer and Header.

The content specified by the child elements is centered on the page. If the StyledText element includes
a text-align attribute, that attribute is ignored.

If this element specifies a PDF source element as a child, the first page of the document provides the
content.

This element does not support containment of the text within the middle third of the page. The text can
go off the left and right sides of the page.

This element it does not support auto-wrapping of text. Use the styled text <p> element to wrap the text.

Category

“Page content” on page 148

ColorScheme
(Since 9.0) Color settings used in the PDF Portfolio.

<ColorScheme
scheme="noScheme | blueScheme | brownScheme | darkblueScheme |

darkbrownScheme | darkgreenScheme | lightblueScheme |
lightgrayScheme | oliveScheme | orangeScheme | pinkScheme |
purpleScheme | rustScheme | steeleScheme | taupeScheme | yellowScheme"

primaryText="color-specifier"
secondaryText="color-specifier"
background="color-specifier"
cardBackground="color-specifier"
cardBorder="color-specifier"

/>

Can be contained in the Portfolio element.

The ColorScheme properties can be used for various components of a PDF Portfolio navigator, such as a
built-in navigator, a navigator header, or portfolio welcome page. The named schemes match the colors
that can be selected in Adobe Acrobat 9.0 and later.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Comments 169

Attributes

Comments
PDF documents can contain annotations that appear on a page but are not considered to be part of the
page content. Comments, in both the Assembler service and Acrobat, are the equivalent of what the PDF
Reference calls markup annotations. They include items such as text notes, highlights, lines, and circles.

Comments elements enable comments contained in PDF documents to be exported, imported, and
removed. The Comments elements include the following formats:

? Comments result. Exports comments from the child elements as an FDF or XFDF document.

? Comments source. Imports comments contained in an XFDF or FDF document into the pages within
the scope of the parent element.

? Comments filter. Represents the comments in its child elements, without exporting them as FDF or
XFDF.

Also see the NoComments element, which specifies that comments be removed from the pages within the
scope of the parent element.

Some operations that you can perform on comments also affect other annotation types, as noted in the
individual elements.

Comments result
Specifies that the comments from the child elements be exported as an XFDF or FDF document.

<Comments

Name Description

scheme Optional. The name of a built-in color scheme. These schemes are based on the
schemes available in Adobe Acrobat 9.0.

A value of noScheme allows the viewing application to use its default colors.

primaryText Optional. The color of the primary text in a navigator, such as filenames and links.
This color overrides the corresponding value in the scheme attribute, if
specified.

The value is a hexadecimal representation of a color (for example #000000) or
an SVG color keyword name (for example black). See “Color-specifier” on
page 153.

secondaryText Optional. The color of the text other than primary text in a navigator. Overrides
the corresponding value in the scheme attribute, if specified.

background Optional. The color of the navigator background. Overrides the corresponding
value in the scheme attribute, if specified.

cardBackground Optional. The color of the navigator card background. Overrides the
corresponding value in the scheme attribute, if specified.

cardBorder Optional. The color of the navigator card border or the "selected" card. Overrides
the corresponding value in the scheme attribute, if specified.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Comments result 170

result="xs:string"
format="FDF" or "XFDF"
return="true" or "false"
afterDate="YYYYMMDD"
beforeDate="YYYYMMDD"
byAuthor="Author name"
byCategory="Notes" or "DrawingMarkups" or "TextEditingMarkups" or "Stamps"

or "Attachments" or "All"
byType="name1,name2,name3"
filter="Exclude" or "Include"

>
<PDF source> and/or <PDFGroup> [1..n]
<Comments filter> [0..n]
<TargetLocale> [0..1]

</Comments>

Can be contained in the DDX element, which is the DDX root.

To select the comments to export, add attributes that specify the selection criteria. If multiple selection
attributes are included in a Comments element, comments are selected if they satisfy any of the criterion,
as in an "or" logical operation. If a Comments element is nested within another Comments element,
comments selected by one of the elements must also satisfy the conditions in the other element. This
behavior is similar to an "and" logical operation. (See “Selection Attributes” on page 171.) For an
explanation of the use of the Comment element selection attributes, see the “Introducing Document
Description XML” on page 15.

The comments are exported as FDF or XFDF.

The result element must contain at least one PDF source element, which can be a child or be embedded
within a child PDFGroup element.

Category

“Document components” on page 144

Attributes

Name Description

result Required. Specifies a name to be associated with the exported comments. This
name must be unique among all result elements in the DDX document. This name
can be specified with an External Data URL. (See “External Data URL” on page 152.)

format Optional. Specifies the format to use for the exported comments. This attribute can
have the following values:

FDF

XFDF (default)

return Optional. Specifies whether the exported comments are returned to the client. This
attribute can have the following values:

true (default) - Exported comments are returned to the client.

false - Exported comments are not returned to the client but can be referenced
as source from within a subsequent result element.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Comments source 171

Selection Attributes

Comments source
Comments contained in an XFDF or FDF document are imported into the pages within the scope of the
parent element.

<Comments
source="xs:string"
format="FDF" or "XFDF"

Name Description

afterDate Optional. Select comments dated after this date. The date is specified in
YYYYMMDD format, where YYYY is the year, MM is the month number, and DD is the
day number.

beforeDate Optional. Select comments dated before this date. The date is specified in
YYYYMMDD format, where YYYY is the year, MM is the month number, and DD is the
day number.

byAuthor Optional. Select comments that match the name specified by this attribute.

byCategory Optional. Select comments by category. Multiple categories can be selected by
entering the names as a comma-separated list. This attribute can have any
combination of the following values:

Notes - Includes the comment type Text.

DrawingMarkups - Includes the comment types Line, PolyLine, Square, Circle,
Polygon, and Ink.

TextEditingMarkups - Includes the comment types Highlight, Underline,
Squiggly, StrikeOut, Caret, and FreeText.

Attachments - Includes the comment types FileAttachment and Sound.
FileAttachments are limited to page-level file attachments. That is,
document-level file attachments are not represented as comments. (See
“FileAttachments” on page 183.)

All (default) - All comments are selected. If byCategory is set to this value and
filter is set to Exclude, no comments are exported.

Note: When All is specified and filter is set to Include, the Assembler
service removes other annotation types. The exception are comments
from the pages within the scope of the parent element, including Movie,
Screen, PrinterMark, TrapNet, 3D, and Watermark annotations. Link and
Widget annotations are not removed.

byType Optional. Select comments by annotation type. Multiple types can be selected by
entering the names separated by a comma. Annotation types, such as Text and Line,
are listed in the PDF Reference.

filter Optional. Specifies whether to include or exclude the comments selected by the
other attributes. This attribute can have the following values:

Include (default) - Selected comments are included.

Exclude - Selected comments are excluded.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Comments filter 172

/>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or conversion
elements, and PDFGroup.

This element identifies an FDF or XFDF document representing PDF comments. The comments are
aggregated with comments in other sibling source elements, if any. The aggregation replaces any
comments found in the pages within the scope of the parent element.

Category

“Document components” on page 144

Attributes

Comments filter
Specifies comments from child source elements that can be imported into the pages within the scope of
the parent element.

<Comments
filter="Exclude" or "Include"
afterDate=unspecified or "YYYYMMDD"
beforeDate=unspecified or "YYYYMMDD"
byAuthor=unspecified or "Author name"
byCategory=unspecified or "Notes" or "DrawingMarkups"

or "TextEditingMarkups" or "Stamps"
or "Attachments" or "All"

byType=unspecified or "name1,name2,name3"
>

<PDF source> and/or <PDFGroup> [1..n]
<Comments filter> [0..n]
<TargetLocale> [0..1]

</Comments>

This element contributes selected comments to the aggregation of comments contained in the pages
within the scope of the parent element. This element is shorthand for a simple export/import operation.
That is, the Comments filter element is equivalent to using these elements (in order):

1. Comments result to produce an intermediate XFDF document. The intermediate XFDF document is not
returned to the client.

2. Comments source element to then import the comments from that XFDF document into the parent
document.

Name Description

source Required. A string or an External Data URL that identifies the XFDF or FDF document
containing comments. A string must specify the name of an input map entry, which
must resolve to a document (idp.document) of type XFDF or FDF. An input map
entry and an External Data URL must resolve to a document. (See “External Data
URL” on page 152.)

format Optional. Specifies the format of the imported comments. This attribute can have
the values XFDF (default) or FDF.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference DatePattern 173

The Comments filter element is identical to the Comments source. The comments are aggregated with
comments in other sibling source elements, if any. The aggregation replaces any comments found in the
pages within the scope of the parent element.

The Comments filter element must contain at least one PDF source element, which can be a child or be
embedded within a child PDFGroup element. A Comments filter element cannot contain a Comments
source element because the filter only applies to a PDF document. Filtering previously extracted
comments is not supported.

Category

“Document components” on page 144

Attributes

DatePattern
Provides information used to construct a string representing the date and time.

<DatePattern>
xs:string
<Space/> [0..1]
<Second/> [0..1]
<Second00/> [0..1]
<Minute/> [0..1]
<Minute00/> [0..1]
<Hour/> [0..1]
<Hour01/> [0..1]
<Hour24/> [0..1]
<AmPm/> [0..1]
<DayNumber/> [0..1]
<NayNumber01/> [0..1]
<DayName/> [0..1]
<ShortDayName/> [0..1]
<MonthNumber/> [0..1]
<MonthNumber01/> [0..1]
<MonthName/> [0..1]
<ShortMonthName/> [0..1]
<Year/> [0..1]
<ShortYear/> [0..1]
<UTCOffset/> [0..1]
<ShortTimeZone/> [0..1]
<TimeZone/> [0..1]

</DatePattern>

Name Description

filter Optional. Specifies whether matching is inverted such that instead of selecting
comments to include, the filter selects comments to exclude. This attribute can have
the following values:

? Include (default) - Comments that match the criteria are included.

? Exclude - Comments that match the criteria are excluded.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference DatePattern 174

Must be contained in StyleProfile element.

The formatting described by the DatePattern element can be applied only to the built-in keys
_Created, _Modified, and _DateTime.

The following table describes the formatting specified by the appearance of each formatting element.
These elements have no attributes, child elements, or content.

DatePattern children Formatting applied to given built-in key

xs:string Optional. Typically, such text provides separators used between values or
provides other information.

Space Optional. Specifies a white space between two styled text elements.

Second Optional. 1- or 2-digit (0-59) second of the minute.

Second00 Optional. 2-digit (00-59) second of the minute.

Minute Optional. 1- or 2-digit (0-59) minute of the hour.

Minute00 Optional. 2-digit (00-59) minute of the hour.

Hour Optional. 1- or 2-digit (1-12) hour of the meridian (AM/PM), expressed as a
12-hour clock. The AM/PM designator can be included using the AmPm
element.

Hour01 Optional. 2-digit (01-12) hour of the meridian (AM/PM), expressed as a
12-hour clock. The meridian name can be added using the AmPm element.

Hour24 Optional. Zero-padded 2-digit (00-23) hour of the day, expressed as a
24-hour clock.

AmPm Optional. Meridian name (AM or PM) of the prevailing locale.

DayNumber Optional. 1- or 2-digit (1-31) day of the month.

NayNumber01 Optional. Zero-padded 2-digit (01-31) day of the month.

DayName Optional. Full weekday name of the prevailing locale.

ShortDayName Optional. Abbreviated weekday name of the prevailing locale.

MonthNumber Optional. 1- or 2-digit (1-12) month of the year.

MonthNumber01 Optional. Zero-padded 2-digit (01-12) month of the year.

MonthName Optional. Full month name of the prevailing locale.

ShortMonthName Optional. Abbreviated month name of the prevailing locale.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference DatePattern 175

Year Optional. 4-digit year.

ShortYear Optional. 2-digit year, where 00 = 2000, 29 = 2029, 30 = 1930, and 99 = 1999.

UTCOffset Optional. Time zone as a delta from Coordinated Universal Time (east or west
of the Greenwich meridian) in RFC 822. The time zone format is Z, +HH[MM],
or -HH[MM], where HH is a placeholder for a zero-padded 2-digit hour of the
day, and MM is a placeholder for a zero-padded 2-digit minute of the hour.
The acceptable values are further described below:

? Z - Indicates the time zone is 'zero meridian' or 'Zulu Time'.

? +HH[MM] or -HH[MM] - A time zone expressed as an offset of plus or
minus states that the offset can be added to the time to indicate that the
local time zone is HH hours and MM minutes ahead or behind. The plus or
minus sign must be included. For example, PDT is "-0700".

Note: The convention +HH[MM] and -HH[MM]conforms to RFC 822, which
does not use a colon to separate hours and minutes. This convention
differs from the XML schema xs:dateTime format, which requires a
colon between the hours and minutes.

ShortTimeZone Optional. Abbreviated time zone name of the prevailing locale, such as GMT,
EST, and GMT-00:30.

TimeZone Optional. Full time zone name of the prevailing locale, for example "Pacific
Standard Time."

DatePattern children Formatting applied to given built-in key

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference DDX 176

The default format is the following:

<Year/>-<MonthNumber01/>-<DayNumber01/>T<Hour01/>:<Minute00/>:<Second00/>
<UTCOffset/>

For example, Jan 3, 2006 at 12:01am PST would be formatted as follows:

2006-01-03T:00:01-0700

Category

“Page content” on page 148

DDX
The DDX element is the root element and there can only be one element of this type. Only result, setting,
and profile elements exist at the root level. The name of each result element must be unique among other
result elements in the same DDX document.

<DDX>
<About> [0..1]
<Bookmarks result> [0..n]
<Comments result> [0..n]
<DDXProcessorSetting> [0..1]
<DocumentInformation> [0..n]
<DocumentText> [0..n]
<FileAttachments result> [0..n]
<FilenameEncoding> [0..n]
<FileSize> [0..1]
<InitialViewProfile> [0..n]
<Links result> [0..n]
<Metadata result> [0..n]
<Navigator> [0..n]
<PackageFiles result> [0..n]
<PasswordAccessProfile> [0..n]
<PasswordEncryptionProfile> [0..n]
<PDF result> [0..n]
<PDFAProfile> [0..n]
<PDFGenerationSettings> [0..1]
<PDFsFromBookmarks> [0..n]
<StyleProfile> [0..n]
<TargetLocale> [0..1]
<XDP result> [0..1]
<XFAConversionSettings> [0..1]

</DDX>

The order in which child elements appear in the DDX element dictates the order in which those elements
are interpreted. Any result element can contain source elements that reference a preceding result. In the
following example, the PDF source element specifies the Metadata result (doc1.xmp). The doc1.xmp is
created as an interim result before the PDF source element is interpreted.

<Metadata result="doc1.xmp" return="false">
<PDF source="doc1.pdf"/>

</Metadata>

<PDF result="resultDoc.pdf">

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference DDXProcessorSetting 177

<PDF source="doc2.pdf"/>
<Metadata source="doc1.xmp"/>

</PDF>

Category

“Document assembly” on page 143

DDXProcessorSetting
(Since 8.0.1) Provides generic tuning hints and configuration settings to the DDX processor.

<DDXProcessorSetting
name="settingName"
value="settingValue"

/>

Can be contained in the DDX or PDF result elements.

The name-value pairs supported can vary between DDX processors and releases. A DDX processor must
ignore any settings that it does not support.

See “Operation checkpoints (DDXProcessorSetting)” on page 358.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Description 178

Description
Provides a description for a file attachment.

<Description>
A description of the file

</Description>

Can be contained in the FileAttachments source element.

The contents of the Description element is a text description of a file being attached to a source
document. (When the resultant document is viewed with Acrobat, the attachment description is visible in
the Attachments panel.)

Category

“Document components” on page 144

DisplayOrder
Order for displaying the PDF package or portfolio fields.

<DisplayOrder>
<Field> [0..n]

</DisplayOrder>

Can be contained in the Package or Portfolio elements.

The order of the Field elements contained in the DisplayOrder element corresponds to the order in
which the viewer application displays the fields. If a Field is present in the Schema and absent in the
DisplayOrder, its order is undefined and dependent on the PDF viewer.

If DisplayOrder is missing from the Package or Portfolio element, then the display order is
aggregated from PDF package and portfolio documents (if any) in the PDF result. (The PDF result is the
parent of the Package or Portfolio element.) If these elements define multiple PDF package or
portfolio documents, their display orders are aggregated in the following order:

1. PDF base document (if it defines a PDF package or portfolio)

2. Subsequent PDF source documents, in the order specified in the DDX document

Fields that are duplicated across multiple PDF packages or portfolios are represented only once in the
aggregated display order. A Field is a duplicate if it has the same name value and type value. If the Field
name does not exist in the Schema for the result package, it is not added.

If the DisplayOrder is not specified, it is left to the application to determine the order in which the
Schema name values are displayed.

Category

“Document assembly” on page 143

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference DocumentInformation 179

DocumentInformation
Returns an XML document that contains information about a PDF document. The information can be the
number of pages, page sizes, and labels, and metadata settings such as author and title.

<DocumentInformation
result="xml output name"
source="pdf input name">
<PDFAValidation> [0..1]

</DocumentInformation>

Can be contained in the DDX element, which is the DDX root.

If the PDFAValidation child element is specified, then the information includes the results of checking
the PDF document for conformance. The PDFAValidation element specifies conformance criteria.

The format of the XML document produced for this element is described in “Document Information
Language” on page 310.

Category

“Query” on page 149

Attributes

DocumentText
Returns an XML document that describes the words used in the document, the positions on the page of
each word, or the paragraphs per page.

<DocumentText
mode attribute = "TextPerPage" or "WithQuads" or "ParagraphsPerPage"
result="xml output name"

>
< PDF source> and/or <PDFGroup> [1..n]

/DocumentText>

Can be contained in the DDX element, which is the DDX root.

Name Description

result Required. Name of the stream containing the resultant XML document. The
source can be specified with an External Data URL. (See “External Data URL” on
page 152.)

source Required. Name of the PDF document for which information is desired. The
source can be specified with an External Data URL. (See “External Data URL” on
page 152.)

This attribute can specify either of the following designations:

? The name of a PDF stream specified in the input to the DDX.

? The name of a PDF result element that was created previously in the DDX.
The DocumentInformation element must appear after the PDF result
element.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Field 180

The format of the XML document produced for this element is described in “Document Text Language” on
page 340.

Category

“Query” on page 149

Attributes

Field
The Field element defines the schema for the custom metadata for the PDF Portfolio or package files.

A Field element exists within Schema, DisplayOrder, and SortOrder elements (see “Assembling
PDF Packages and Portfolios” on page 48).

Category

“Document assembly” on page 143

Field contained in Schema element
The Field elements contained in a Schema element describe the metadata, the Fields, and their
attributes.

The field name specified through DDX is normalized. That is, the field name is stripped of leading and
trailing white space, and sequences of white space are replaced with a single space character.

<Field
name="xs:string"
type="Text" or "Date" or "Number" or "Filename" or "Description" or

"ModificationDate" or "CreationDate" or "Size" or "CompressedSize"
visible="true" or "false"
editable="true" or "false"

/>

Can be contained in Schema.

Name Description

mode Optional. Specifies whether the Document Text (DocText) XML document includes
word positions. This attribute can have the following values:

TextPerPage (default) - The DocText document provides the text that appears
on each page, without providing the positions for individual words.

WithQuads - For each word on each page, the DocText document includes a
bounding box that describes the word’s position on the page.

ParagraphsPerPage - (since 9.0) Groups the words into sentences and
paragraphs per page. There is no overflow to the next page.

result Required. Name of the output stream containing the DocText document produced
in response to the DocumentInformation element. The result can be specified
with an External Data URL. (See “External Data URL” on page 152.)

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Field contained in DisplayOrder element 181

Attributes

Field contained in DisplayOrder element
The Field elements contained in a DisplayOrder element identify the order of the fields shown in the
user interface of a PDF viewer. Any field names that do not exist in the resulting schema are not included.

<Field
name="xs:string"

/>

Attributes

Field contained in SortOrder element
The Field elements contained in a SortOrder element identify fields used by the PDF viewer to sort the
data in the display. Any Field names that do not exist in the resulting schema are not included. The locale
affects the sorting behavior. The TargetLocale element specifies the locale.

<Field
name="xs:string"

Name Description

editable Optional. Indicates whether the PDF viewing application provide support for
editing the field value. This attribute has no affect on whether the field is editable by
a DDX processor.

name Required. The textual field name that is displayed to the user by the PDF viewing
application. The name is normalized. That is, it is stripped of leading and trailing
white space, and sequences of white space are replaced with a single space
character. To add spaces, use the entity number for a non-breaking space ().

type Required. Identifies the type of data that is stored in this field. For the types "Text",
"Date" and "Number", the value must be provided using the FieldData element
contained in a PackageFiles element.

The other types are for basic metadata stored with all attached files: filename,
description, modification date, and creation date. If the value is not provided, it
comes from the File and Description elements specified when importing
PackageFiles. The "Size" is the actual size, in bytes, of the attached file, and
must not be modified.

The field data for the CompressedSize type is the length of the embedded file
stream. The Length entry in the embedded file stream dictionary specifies the file
length. (See the “Embedded File Streams” chapter of the ISO 32000, Document
management, Portable document format, PDF 1.7.)

LiveCycle 9.0 adds support for the CompressedSize attribute.

visible Optional. The initial visibility of the field in the PDF viewer. At least one field must be
specified as visible, or an error is thrown.

Name Description

name Required. The name of a field as described in the Schema.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference FieldData 182

ascending="true" or "false"
>
</Field>

Attributes

FieldData
Defines the metadata that corresponds to the related Field defined in the Schema.

When a field name is not defined in the resulting schema, the metadata entry is not included and a
warning is logged. Similarly, if the resulting PDF document is not a PDF package or portfolio, the metadata
entry is not included and a warning is logged.

It is possible to modify the basic metadata (filename, description, modification date, creation date, and
size) by using built-in keys for the name. The build-in keys are _Filename, _Description,
_ModificationDate, and _CreationDate.

<FieldData
name="xs:string"
prefix="xs:string"

>
xs:string

</FieldData>

Can be contained in the PackageFiles and Folder elements.

While the DDX schema allows an xs:string value, the value must be convertible to the data type
defined for that field in the Schema. Otherwise, the value is cleared and a warning is logged. More
specifically, convert values for "Date", "ModificationDate", and "CreationDate" metadata to
xs:dateTime. If no time zone information is present in the string, the TargetLocale in effect is applied.
For "Number", the value must be convertible to xs:decimal.

Attributes

Name Description

ascending Optional. When sorting on this field, this attribute specifies whether to sort in
ascending ("true") or descending ("false") order.

name Required. The name of a field as described in the Schema.

Name Description

name Required. The name of a field as described in Schema.

prefix Optional. Additional text that is prefixed to the value, but is not included when
sorting on the values of this FieldData. As an attribute, the prefix is normalized.
That is, it is stripped of leading and trailing white space, and sequences of white
space are replaced with a single space character. To add spaces, use the entity
number for a non-breaking space ().

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference File 183

File
Specifies a document-level or page-level file attachment.

<File
filename="xs:string"
mimetype=unspecified or "IANA MIME type"
creationDate="current dateTime" or "xs:dateTime"
modificationDate="current dateTime" or "xs:dateTime"

/>

Can be contained in the FileAttachments source element.

Category

“Document components” on page 144

Attributes

FileAttachments
PDF documents can include file attachments. A file attachment is data extracted from a named file and
relocated into the PDF document. A file attachment can be associated with the entire PDF document
(document-level file attachment) or with an individual page (page-level file attachment).

The FileAttachments element has a source and result version:

? The FileAttachments result element provides information in an XML document about one or more
file attachments from a source document, optionally returning them as named streams.

? The FileAttachments source element attaches a single file to the result document.

FileAttachments result
Requests information about file attachments. For single PDF documents that are not PDF packages or
portfolios, this element optionally returns attachments as separate data streams.

Name Description

filename Required. The filename to be associated with the file attachment. If the
filename does not have a valid extension, the file attachment may not be
viewable from within Acrobat or Adobe Reader. (The attachment is a file in
the resultant PDF document.)

The string value for the filename can be specified with an External Data URL.

mimetype Optional. The MIME type for the data being attached.

MIME types are registered with IANA
(http://iana.org/assignments/media-types/).

creationDate Optional. The creation date for the data being attached. If not specified, the
current date, as known to the server, is used.

modificationDate Optional. The modification date for the data being attached. If not specified,
the current date, as known to the server, is used.

http://www.iana.org/assignments/media-types/

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference FileAttachments result 184

<FileAttachments
result="xml output name"
extract="true" or "false"
nameKeys=unspecified or "*" or "nameKey,nameKey,…"

>
< PDF source> [1]
<FilenameEncoding> [0..n]

</FileAttachments>

Can be contained in the DDX element, which is the DDX root.

The FileAttachments result element specifies one or more file attachments, each of which is returned
as a separate data stream if the extract attribute is true. An XML document is always returned, which
contains information about the specified attachments, including the unique names mapped to the output
data stream. (See “File Attachments Language” on page 345.)

In LiveCycle Assembler 7.2 and earlier, the FilenameEncoding element was required to provide the
character encoding of the original filenames. The original filename is the filename at the time the files are
attached. In LiveCycle ES 8.0 and later, the FilenameEncoding element is optional. In PDF version 1.7 or
later, the encoding information for the filename is stored in the PDF document. However, for compatibility
with older documents, it is recommended that you continue to provide the FilenameEncoding
element. This element provides an encoding to use to decode the filename as it is extracted from the.

More than one character encoding name can be specified. The Assembler service attempts to decode the
filenames using each character encoding until it finds the one that works best.

Category

“Document components” on page 144

Attributes

Name Description

result Required. A name to be associated with the returned XML document. This name
must be unique among all result elements in the DDX document. The result can be
specified with an External Data URL. (See “External Data URL” on page 152.)

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference FileAttachments document-level source 185

FileAttachments document-level source
Specifies a file to be attached to the parent document.

<FileAttachments
source="input name"
nameKey="name"

>
<File> [1]
<FilenameEncoding> [0..1]
<Description> [0..1]

</FileAttachments>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or conversion
elements, and PDFGroup.

The FileAttachments source element attaches a single file to the parent document. It can attach the
file as a document-level file attachment. If an AttachmentAppearance element is specified, the element
attaches the file as a page-level file attachment. (See “FileAttachments page-level source” on page 186.)

Note: The FileAttachments document-level source element replaces an existing file attachment only
if the nameKey value matches the name of the existing file attachment. If the FileAttachments
element omits the nameKey attribute, then it is possible to attach multiple copies of the same files
to a PDF document. To distinguish such identically named files, provide different filenames in the
File elements.

Category

“Document components” on page 144

extract Optional. Specifies whether the attachments specified in the nameKeys attribute
are returned to the client. This attribute can have the following values:

true (default) - The file attachments are returned as separate data streams to
the client.

false - Only the XML document describing the attachments is returned.

nameKeys Optional. Identifies file attachments selected from the source document. Here are
the supported values:

? Unspecified (default). All page-level file attachments are extracted.

? An asterisk (*). All page-level and document-level file attachments are extracted.

? A string specifying a single name key or a comma-separated list of name keys
representing document-level file attachments to extract.

The appearance of a pages attribute in the PDF source element specifies pages
from the source document. If such a PDF source is a child of the FileAttachments
result element, only the specified pages are included in the file attachment.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference FileAttachments page-level source 186

Attributes

FileAttachments page-level source
Specifies a file to be attached to a specific page of the PDF document. The page to which the file is
attached is the first page of the document specified by the parent PDF element.

<FileAttachments
source="xs:string"

>
<File> [1]
<FilenameEncoding> [0..1]
<Description> [0..1]
<AttachmentAppearance> [1]

</FileAttachments>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or conversion
elements, and PDFGroup.

The FileAttachments source element attaches a single file to the parent document. It can attach the
file as a page-level file attachment (a file attachment annotation). In this case, the file is attached to the first
page of the pages within the scope of the parent element. The appearance of the
AttachmentAppearance element distinguishes page-level file attachments from document-level file
attachments. That element also specifies the appearance of the icon associated with the annotation.

Note: The FileAttachments page-level source element replaces an existing file attachment only if the
nameKey value matches the name of the existing file attachment. If the FileAttachments
element omits the nameKey attribute, then it is possible to attach multiple copies of the same files
to a PDF document. To distinguish such identically named files, provide different filenames in the
File elements.

Category

“Document components” on page 144

Attributes

Name Description

source Required. A name associated with the data to be attached to the parent document.
The source can be specified with an External Data URL. (See “External Data URL” on
page 152.)

nameKey Optional. A name that identifies a document-level file attachment. If the value of
this attribute is already used by another attachment in the PDF document, the new
attachment replaces the existing attachment. Otherwise, the new attachment is
assigned a unique namekey. The nameKey value is based on the filename specified
by the File element and (if relevant) on the Folder element.

Name Description

source Required. A name associated with the data to be attached to the parent document.
The source can be specified with an External Data URL. (See “External Data URL” on
page 152.)

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference FilenameEncoding 187

FilenameEncoding
Specifies character encodings to use for encoding and decoding the names of files being attached or
extracted.

<FilenameEncoding
encoding= "character encoding name"
useOnImport= "true" or "false"

/>

Can be contained in DDX, PDF result, PDF group, PackageFiles result, source, filter, select, and
conversion elements, NoPackage, FileAttachments result, FileAttachments document-level
source, and FileAttachments page-level source.

Starting in LiveCycle ES 8.0, the FilenameEncoding element is optional. However, it can be useful if the
filenames are not stored as Unicode strings, as was the case in PDF 1.6 or earlier. In such cases, the package
files were document-level file attachments before the PDF to which they were attached became a PDF
package or portfolio. If the original host encoding is unknown, the FilenameEncoding element is used
to decode the bytes in the filename. If multiple FilenameEncoding elements are provided, the first
encoding that successfully decodes the bytes in the filename is used. However, there is no guarantee that
the result is the expected result.

In PDF version 1.7 or later, if the FilenameEncoding element is defined at the root DDX level, it applies to
all elements that can contain it. In such cases, the most local FilenameEncoding specified is the one
used. The most local set of FilenameEncoding elements is used in the order specified to decode
filenames when exporting or filtering package files or exporting file attachments. Only one
FilenameEncoding element is used when importing package files or file attachments. This one is either
the first element specified in the most local set, or the first one marked useOnImport="true" in the
most local set.

Category

“Document components” on page 144

Attributes

Name Description

encoding Required. The Assembler service supports the character encodings described in the
following table. Depending on the character encodings available through your
installation’s Java Virtual Machine, the Assembler service can also support additional
character encodings. Examples of such additional character encodings are
ISO-8859-1, ISO-10646-UCS-2, and ISO-2022. (See the Extensible Markup Language
(XML) Specification, 1.0.)

If this attribute is omitted, the DDX processor may employ a default strategy. For
example, it may use UTF-8 as the default encoding.

useOnImport Optional. Flags a FilenameEncoding element as the preferred one to use when
importing package files or file attachments. If multiple FilenameEncoding
elements are flagged in a set, the following occurs:

? Warning is logged

? First flagged FilenameEncoding element is used to encode the filename for
compatibility with older viewers.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference FileSize 188

Character encodings

FileSize
(Since 8.2) The FileSize element does not specify pages or add content to the resulting PDF document.
Instead, it is a hint to reduce the size of the resulting PDF document, if possible. When files are
incrementally saved (the default save mode), they are always larger than the original. This growth in size
occurs even when removing pages because the original pages remain.

To attempt to reduce the file size, the PDF document must be saved for FastWebView.

Caution: Saving a PDF document for FastWebView, breaks signatures and certification.

There are several effects of using the FileSize element:

? Document assembly takes more time.

? Setting the useObjectStreams attribute to true requires Acrobat 6 or later to view the resulting
document. If the PDF document is version 1.4 or earlier, the version is changed to 1.5.

? Disabling the FileSize element’s attributes (false) has the same effect as omitting the FileSize
element. By default, all of the FileSize element’s attributes are enabled (true).

? Setting the PDF result element’s save attribute to Incremental (the default setting) can disable the
FileSize element’s hint.

A FileSize element in the DDX root element inherits into all PDF result elements. The exception is PDF
result elements that contain their own FileSize element.

<FileSize
compressNonObjectStreams="true" or "false"
removeDuplicateResources="true" or "false"
useObjectStreams="true" or "false"
/>

Can be contained in the elements PDF result and DDX.

Character encoding
names Description

ASCII ISO/IEC 8859-1:1998 Information technology -- 8-bit single-byte coded graphic
character sets -- Part 1: Latin alphabet No. 1, published by ISO (not available
online)

BASE64 The Base16, Base32, and Base64 Data Encodings, RFC 3548
(http://ietf.org/rfc/rfc3548.txt)

UTF-8 The Unicode Standard, Version 4.0,
(http://unicode.org/versions/Unicode4.0.0/ch03.pdf#G7404)

UTF-16 The Unicode Standard, Version 4.0,
(http://.unicode.org/versions/Unicode4.0.0/ch03.pdf#G7404)

PDFDocEncoding PDF Reference, version 1.6,
(http://partners.adobe.com/public/developer/pdf/index_reference.html)

http://www.ietf.org/rfc/rfc3548.txt
http://www.unicode.org/versions/Unicode4.0.0/ch03.pdf#G7404
http://www.unicode.org/versions/Unicode4.0.0/ch03.pdf#G7404
http://partners.adobe.com/public/developer/pdf/index_reference.html

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Folder 189

Attributes

Example

The following DDX applies all the default FileSize settings to FileSizeAll.pdf, but removes only duplicate
resources from RemoveDuplicates.pdf.

<?xml version="1.0" encoding="UTF-8"?>
<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<FileSize/>

<PDF result="FileSizeAll.pdf" save="FastWebView">
<PDF source="largeFileSize.pdf"/>

</PDF>
<PDF result="RemoveDuplicates.pdf" save="FastWebView">
<PDF source="largeFileSize.pdf"/>
<FileSize useObjectStreams="false" compressNonObjectStreams="false"/>

</PDF>
</DDX>

Folder
(Since 9.0) Identifies a folder for the package files in a PDF Portfolio.

<Folder
name="xs:string"
thumbnail="xs:string"

>
<Description>[0..1]
<FieldData> [0..1]
<Folder> [0..n]
<PackageFiles> [0..n]

</Folder>

Can be contained in the elements PDF result, PDF source, and Folder.

Folders in a PDF Portfolio are similar to directories in a hierarchical file system. They allow files to be
logically grouped. It follows that folder names must be unique among other folders at the same level in
the hierarchy. Similarly, filenames must be unique within a folder.

To add a nested file structure to a PDF Portfolio, use the PackageFiles element rather than this element.
Set the PackageFiles element’s source attribute to a URL that specifies the root of the file structure. By
default, that element adds all files and subfolders to the portfolio and retains the folder structure.

Name Description

compressNonObjectStreams Optional. If true, force compression of all non-object streams, such
as content streams, using a flate filter. The default is true.

removeDuplicateResources Optional. If true, remove duplicate resources. The default is true.

useObjectStreams Optional. If true, use object streams for objects and the
crossreference table, and compress them. This requires the PDF
document version to be a minimum of 1.5 and for the save mode to
be FastWebView. The default is true.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Footer 190

Attributes

Footer
Characteristics of footer content placed on a page.

<Footer
shrinkContentToFit="true" or "false"
padding="0pt" or "nonnegative length"
alternation="None" or "OddPages" or "EvenPages"
whiteout="true" or "false"
styleReference="Name of style element"
replaceExisting="true" or "false"
background-color="transparent" or "color-specifier"
margin="margin-shorthand-specifier"
margin-top="0pt or nonnegative-length-specifier"
margin-right="0pt or nonnegative-length-specifier"
margin-bottom="0pt or nonnegative-length-specifier"
margin-left="0pt or nonnegative-length-specifier"

>
<Left/> or <Center/> or <Right/> [1..3]
<TargetLocale/> [0..1]

</Footer>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, BlankPage, PackageFiles filter, select, or conversion elements,
and StyleProfile.

Name Description

name Required. The name of the folder. This name can be specified with
an External Data URL. (See “External Data URL” on page 153.)

The value of name has these restrictions:

? Cannot contain any embedded NULL characters

? Must not be longer than 255 characters

? Must not contain any of the eight special characters " / \ : * " < >
|" (forward slash, back slash, colon, asterisk, double quote, left
angle, right angle, bar)

? Must not have period ('.') as the last character

thumbnail Optional. The input map key or External Data URL mapped to a
document containing an image of type JPG, GIF, or PNG. It is
recommended that this image have a max resolution of 170x90
(width*height).

Some viewing applications (such as Acrobat 9) do not display
thumbnails for folders.

The NoThumbnails element removes thumbnails in the resultant
document.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Footer 191

At least one of the three child elements Center, Left, and Right must be present. These elements
indicate footer fields that are centered, left justified, and right justified, respectively.

This element specifies removal of any preexisting footers on the pages to which it applies, even if the
contents of the footer components are blank. It also supports multiple footers (if replaceExisting is
"false").

The background-color and margin-* attributes on the Footer element define the position and
extent of the background area occupied by the footer.

? For both headers and footers, the left border of the background area is drawn inside the left
PageMargin. Additionally, the right border is drawn inside the right PageMargin.

? For headers, the top border is drawn inside the top PageMargin and the bottom is drawn at the upper
edge of the header’s padding area. This bottom edge position is the tallest height of the <Left>,
<Center>, or <Right> zones present in the header.

? For footers, the bottom border is drawn inside the bottom PageMargin and the top border is drawn at
the lower edge of the footer’s padding area. This top edge position is the tallest of the <Left>,
<Center>, or <Right> zones present in the footer.

? The content or layout area of the header or footer is inside the border on each of the four sides by the
corresponding side’s margin-* setting.

The left, bottom, and right margins for the footer come from the PageMargins element in effect for the
scope of the Footer element. The padding attribute specifies the top margin, between the footer and
the body content. The Footer element content plus page margins and footer padding defines the
bounding box for the footer. The margin-* attributes (for example, margin-top) further refine the
bounding box position. The margin-* attributes are relative to the PageMargin.

The Footer element can specify the appearance and content of the footer or it can reference a
StyleProfile element that itself contains a Footer element.

Category

“Page content” on page 148

Attributes

Name Description

shrinkContentToFit Optional. Specifies whether the original page content is scaled down if
necessary so that it fits above the footer being added to the page. This
attribute can have the following values:

false (default) - Original page content is not scaled down.

true - Original page content is scaled so that it fits in its entirety
between the header and footer.

padding Optional. A nonnegative length value specifying how much white
space is added above the footer, between it and the page body
content. This padding is included in the footer area when applying
shrinkContentToFit.

replaceExisting Optional. If it is set to "false", pre-existing footers in the source PDF
document remain. That is, the Footer element does not replace the
existing footer.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Footer 192

alternation Optional. Specifies whether the element’s settings apply to all pages or
to alternating pages. This attribute can have the following values:

None (default) - Settings apply to all pages.

OddPages - Settings apply to odd pages only.

EvenPages - Settings apply to even pages only.

Pages are considered odd or even depending on their ordinal page
number in the result document.

whiteout Optional. Specifies whether the footer area (including padding)
obscures the underlying page content. This attribute can have the
following values:

false (default) - Footer area does not obscure underlying page
content.

true - Footer area uses a white background to obscure any
underlying page body content.

styleReference Optional. The name of a StyleProfile element that contains a
Footer element describing the footer. If this attribute is present, the
other attributes are ignored.

background-color Optional. The color of the background area for the header or footer
body region. The value is a hexadecimal representation of a color (for
example #000000) or an SVG color keyword name (for example
black). See “Color-specifier” on page 152.

This attribute is not inheritable. This attribute was added in
LiveCycle ES 8.2.

margin Optional. A shorthand CSS margin property of the form. This attribute
was added in LiveCycle ES 8.2.

Note: Use XML escape characters (for example, use "<" for "<").

margin-top Optional. Sets the top margin of the content/layout area. Must not be
less than 0. This attribute is not inheritable. This attribute was added in
LiveCycle ES 8.2.

margin-right Optional. Sets the right margin of the content/layout area. Must not be
less than 0. This attribute is not inheritable. This attribute was added in
LiveCycle ES 8.2.

margin-bottom Optional. Sets the bottom margin of the content/layout area. This
attribute is not inheritable. This attribute was added in
LiveCycle ES 8.2.

margin-left Optional. Sets the left margin of the content/layout area. Must not be
less than 0. This attribute is not inheritable. This attribute was added in
LiveCycle ES 8.2.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Header 193

Header
Characteristics of header content placed on a page.

<Header>
shrinkContentToFit="true" or "false"
padding="0pt" or "nonnegative length"
alternation="None" or "OddPages" or "EvenPages"
whiteout="true" or "false"
styleReference="Name of style element"
replaceExisting="true" or "false"
background-color="transparent" or "color-specifier"
margin="margin-shorthand-specifier"
margin-top="0pt or nonnegative-length-specifier"
margin-right="0pt or nonnegative-length-specifier"
margin-bottom="0pt or nonnegative-length-specifier"
margin-left="0pt or nonnegative-length-specifier"

>
<Left/> or <Center/> or <Right/> [1..3]
<TargetLocale/> [0..1]

</Header>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, BlankPage, PackageFiles filter, select, or conversion elements,
and StyleProfile.

At least one of the three child elements Center, Left, and Right must be present. These elements
indicate header fields that are centered, left justified, and right justified, respectively.

This element specifies removal of any preexisting headers on the pages to which it applies, even if the
contents of the header components are blank. It also supports multiple headers (if replaceExisting is
"false").

The background-color and margin-* attributes on the Header element define the position and
extent of the background area occupied by the header.

? For both headers and footers, the left border of the background area is drawn inside the left
PageMargin. Additionally, the right border is drawn inside the right PageMargin.

? For headers, the top border is drawn inside the top PageMargin and the bottom is drawn at the upper
edge of the header’s padding area. This bottom edge position is the tallest height of the <Left>,
<Center>, or <Right> zones present in the header.

? For footers, the bottom border is drawn inside the bottom PageMargin and the top border is drawn at
the lower edge of the footer’s padding area. This top edge position is the tallest of the <Left>,
<Center>, or <Right> zones present in the footer.

? The content or layout area of the header or footer is inside the border on each of the four sides by the
corresponding side’s margin-* setting.

The left, bottom, and right margins for the header come from the PageMargins element in effect for the
scope of the Header element. The padding attribute specifies the bottom margin, between the header
and the body content. The Header element content plus page margins and padding defines the
bounding box for the header. The margin-* attributes (for example, margin-top) further refine the
bounding box position for the header. The margin-* attributes are relative to the PageMargin.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Header 194

The Header element can specify the appearance and content of the header or it can reference a
StyleProfile element that itself contains a Header element.

Category

“Page content” on page 148

Attributes

Name Description

shrinkContentToFit Optional. Specifies whether the original page content is scaled down if
necessary so that it fits below the header being added to the page.
This attribute can have the following values:

false (default) - Original page content is not scaled down.

true - Original page content is scaled so that it fits in its entirety
between the header and footer.

padding Optional. A nonnegative length value specifying how much white
space is added below the header, between it and the page body
content. This padding is included in the header area when applying
shrinkContentToFit.

replaceExisting Optional. If it is set to "false", pre-existing headers in the source PDF
document remain. That is, the Header element does not replace the
existing header.

alternation Optional. Specifies whether the element’s settings apply to all pages or
to alternating pages. This attribute can have the following values:

None (default) - Settings apply to all pages.

OddPages - Settings apply to odd pages only.

EvenPages - Settings apply to even pages only.

Pages are considered odd or even depending on their ordinal page
number in the result document.

whiteout Optional. Specifies whether the header area (including padding)
obscures the underlying page content. This attribute can have the
following values:

false (default) - Header area does not obscure underlying page
content.

true - Header area uses a white background to obscure any
underlying page body content.

styleReference Optional. The name of a StyleProfile element that contains a
Header element describing the header. If this attribute is present, the
other attributes must not be present.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Header (portfolio navigation pane) 195

Header (portfolio navigation pane)
(Since 9.0) Resource that supplies a navigation header used in a PDF Portfolio.

<Header source="xs:string">
<Resource> [0..n]

</Header>Header_portfolio

Can be contained in the Portfolio element.

You can use Acrobat 9 to design a portfolio header.

The Header itself is a resource with a name of "header/model.xml". If the header source is specified as a
PDF document, then all resources excluding the WelcomePage ("welcome/model.xml") in the PDF source
are specified. Only resources referenced by a "header/model.xml" or "welcome/model.xml" are visible in
the portfolio navigation pane. If the header source is specified as XML, then any resources referenced by
the XML must be provided as children. (See the WelcomePage element.)

background-color Optional. The color of the background area for the header or footer
body region. The value is a hexadecimal representation of a color (for
example #000000) or an SVG color keyword name (for example
black). See “Color-specifier” on page 152.

This attribute is not inheritable. This attribute was added in
LiveCycle ES 8.2.

margin Optional. A shorthand CSS margin property of the form. This attribute
was added in LiveCycle ES 8.2.

Note: Use XML escape characters (for example, use "<" for "<").

margin-top Optional. Sets the top margin of the content/layout area. Must not be
less than 0. This attribute is not inheritable. This attribute was added in
LiveCycle ES 8.2.

margin-right Optional. Sets the right margin of the content/layout area. Must not be
less than 0. This attribute is not inheritable. This attribute was added in
LiveCycle ES 8.2.

margin-bottom Optional. Sets the bottom margin of the content/layout area. This
attribute is not inheritable. This attribute was added in
LiveCycle ES 8.2.

margin-left Optional. Sets the left margin of the content/layout area. Must not be
less than 0. This attribute is not inheritable. This attribute was added in
LiveCycle ES 8.2.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference InitialViewProfile 196

Attributes

InitialViewProfile
Specifies how a document is displayed when it is initially opened in a viewer application.

<InitialViewProfile
name="xs:string"
display="FileName" or "DocumentTitle"
magnification="Default" or "percentage" or "FitPage"

or "FitVisible" or "FitWidth"
openToPage="1" or "xs:positiveInteger"
pageLayout="Default" or "SinglePage" or "Continuous" or "Facing"

or "ContinuousFacing" or "ContinuousFacingRight" or
"ContinuousFacingLeft" or "FacingRight" or "FacingLeft"

show="PageOnly" or "BookmarksPanel" or "PagesPanel" or "AttachmentPanel"
or "LayersPanel"

userInterfaceOptions="empty-string"
or "HideMenuBar,HideToolBars,HideWindowControls"

windowOptions="empty-string"
or "ResizeToInitialPage,CenterOnScreen,FullScreenMode"

packageUIPane= "Left" or "Top" or "Minimized" or "SplitHorizontal"
or "SplitVertical"

splitterBarPosition="percentage-specifier"
packageInitialDocument= "CoverSheet" or "FirstSortedDocument"

/>

Can be contained in the DDX element, which is the DDX root.

The settings in this element are equivalent to what can be specified in the Acrobat user interface by
selecting File > Properties > Initial View.

 PDF result elements can specify the profile to apply with their initialView attribute, which must match
the name attribute of the InitialViewProfile element.

Category

“Profile” on page 148

Name Description

source Optional. Input map key or URL mapped to either a PDF document which contains a
Welcome Page or to an XML document. If the source is a PDF, then more resources than
are necessary can be included. If the source attribute is not specified, then it defaults to
the identified base document for the <PDF> result.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference InitialViewProfile 197

Attributes

Name Description

name Required. Name of the initial view profile.

The value of this attribute must be unique among other
InitialViewProfile elements in the same DDX document.

display Optional. Controls how the document is identified in the window title
bar. This attribute can have the following values:

FileName (default) - The PDF filename is displayed in the window
title bar.

DocumentTitle - The Title from the document metadata is
displayed in the window title bar.

magnification Optional. Controls the magnification level of the pages when the
document is opened. This attribute can have the following values:

? Default (default) - The default magnification as set by the user’s
preference.

? percentage - Magnification expressed as a percentage or
decimal. Values must be between 0% and 6400% (0 - 64.0).

? FitPage - Fit the entire page within the application window.

? FitVisible - Fit the visible content of the page within the width
of the application window.

? FitWidth - Fit the entire width of the page within the width of the
application window.

openToPage Optional. Specifies the page displayed when the document is opened.
The value must be an integer between 1 and the last ordinal page
number.

packageInitialDocument Optional. A string that identifies whether the cover sheet or the first
package file (according to SortOrder) is initially shown in the viewer
pane. The cover sheet is also known as the root PDF document that the
files in the package are attached to.

With viewing applications that support PDF Portfolios, the portfolio
navigator can override this setting.

When a package specification is included from PDF source documents,
the packageInitialDocument attribute remains unchanged if it is
not specified.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference InitialViewProfile 198

packageUIPane Optional. Instructions to the viewer.

? Top (default)- The viewer presents all information in the schema in
a multicolumn format docked at the top of the viewer pane. The
behavior of this setting and SplitHorizontal are similar except
this setting adds a fixed splitter bar position.

? Left - The viewer presents a subset of information from the
schema, docked to the left of the viewer pane. The behavior of this
setting and SplitHorizontal are similar except this setting
adds a fixed splitter bar position.

? Minimized - The viewer minimizes the information.

? SplitHorizontal - The viewer presents a split horizontal view.
When one of the package files is opened, the viewer continues to
display the detailed file list.

? SplitVertical - The viewer presents a split vertical view. When
one of the package files is opened, the viewer continues to display
the detailed file list.

splitterBarPosition Optional. Relative position of the splitter bar in the vertical or
horizontal window. Relevant only if packageUIPane has a value of
SplitHorizontal or SplitVertical. If this attribute is not
specified and a split view is specified, the splitter bar position is
viewer-dependent.

LiveCycle 9.0 adds support for this attribute.

pageLayout Optional. Controls paging through the document. This attribute can
have the following values:

Default (default)

SinglePage

Continuous

Facing (same as FacingRight with odd-numbered pages on the
right)

ContinuousFacing (same as ContinuousFacingRight with
odd-numbered pages on the right)

ContinuousFacingRight

ContinuousFacingLeft

FacingRight

FacingLeft

If the windowOptions attribute is set to FullScreenMode, this
attribute is given the value SinglePage.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference JavaScript 199

JavaScript
The JavaScript element specifies a document-level script that is added to the resultant PDF document.
When the PDF document is opened, all document-level scripts are executed.

<JavaScript
source="unspecified" or "xs:string"
name="xs:string"

/>

Can be contained in PDF result, and PackageFiles filter, select, or conversion elements.

The name of the script must be unique within a PDF document. DDX processors resolve name conflicts as
follows:

Conflict with imported script. If a PDF source document and the JavaScript element contain an
identically named script, then the script in the JavaScript element prevails. That is, the script in the
JavaScript element is used in the resultant document.

Conflict among PDF sources. If an identically named script exists in multiple PDF sources and the
JavaScript element is omitted, the script from the base document prevails. That is, the script in the
base document is used in the resultant document.

Note: Document-level scripts are not included from non-baseDocument PDF sources that specify only
some of the pages from the source document.

The NoJavaScripts element removes any JavaScript in the resultant document. The JavaScript and
NoJavaScripts elements cannot be siblings.

show Optional. Specifies the panel, if any, displayed along with the page.
This attribute can have the following values:

PageOnly - Displays the page and no panels.

BookmarksPanel (default)

PagesPanel

AttachmentPanel

LayersPanel

userInterfaceOptions Optional. Controls the interface options displayed with the page. This
attribute can have the following values:

empty-string (default) - No user interface options are selected.

HideMenuBar,HideToolBars,HideWindowControls - One
or more options can be specified in a comma-separated string.

windowOptions Optional. Controls the appearance of the window containing the
viewer. This attribute can have the following values:

empty-string (default) - No window options are selected.

ResizeToInitialPage,CenterOnScreen,
FullScreenMode - One or more options can be specified in a
comma-separated string.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Keyword 200

Category

“Document properties” on page 146

Attributes

Keyword
Provides a single keyword for use as metadata.

<Keyword
value="xs:string"

/>

Can be contained in the Keywords element.

Category

“Document properties” on page 146

Attributes

Keywords
Provides metadata keywords for the result document.

<Keywords
mode="Set" or "Append"

>
<Keyword/> [0..n]

</Keywords>

Can be contained in the PDF result element, and PackageFiles filter, select, or conversion elements.

This element specifies a set of keywords for the metadata of the result document. Each keyword is
specified in a separate Keyword child element.

Name Description

name Required. A unique name within the PDF document associated with the script.

source Required. A logical name, associated with an input data stream or an ordered list of
data streams, containing JavaScript content. If the source is not provided, the
document-level JavaScript with that name is not included in the result PDF document.
The source can be specified with an External Data URL. (See “Source elements” on
page 19.)

Name Description

value The value of this attribute can be specified as a string or with an External Data URL that
returns a string.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Left 201

The keywords specified here replace or supplement existing keywords, depending on the value of the
mode attribute. If mode is defined as Set and there are no child Keyword elements, all existing keywords
are removed from the document metadata.

If the Keywords and Metadata source elements are siblings, the settings in the Keywords element are
evaluated after the settings in the Metadata source element. As a result, a Keywords element having its
mode attribute defined as Set overrides keywords imported by the Metadata source element.

Category

“Document properties” on page 146

Attributes

Left
Specifies the left edge of the page as the anchor point for a header or footer.

<Left>
<StyledText> or < PDF source> [1]

</Left>

Can be contained in the elements Footer and Header.

The content specified by the child elements is aligned with the left margin (specified by the left attribute
PageMargins element). If the StyledText element includes a text-align attribute, that attribute is
ignored.

Note: There is no containment of the text within the left third of the page and there is no auto-wrapping
of text. The text can go off the right side of the page. Use the <p> element to wrap the text.

If this element specifies a PDF source element as a child, the first page of the document provides the
content.

Category

“Page content” on page 148

LinkAlias
Provides an alternative name for the parent document, for use as a link destination.

<LinkAlias>
text

Name Description

mode Optional. Specifies whether existing keywords in the result document are retained. This
attribute can have the following values:

Set (default) - Keywords from this element replace keywords in the result
document.

Append - Keywords from this element supplement keywords in the result
document.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Links 202

</LinkAlias>

Can be contained in the PDF source element.

This element is used for resolving cross-document links in an assembly of multiple PDF documents.
Consider a cross-document link in another source document that references the file provided by the
current source document. This link is resolved correctly if the filename specified in the link matches the
name specified by this element.

Note: Leading and trailing spaces in the link alias are processed as part of the alias and, therefore, must be
avoided.

Category

“Document components” on page 144

Links
Links elements enable the links contained in PDF documents to be exported, imported, and removed.
Links elements can have the following varieties:

? Links result. Specifies that links be exported from the child elements as an XFDF document.

? Links source. Specifies links contained in an XFDF document be imported into the pages within the
scope of the parent element.

? Links filter. Specifies the links from its child elements, which can be imported into the pages within
the scope of the parent element.

Also see the NoLinks element, which specifies removal of links from the pages within the scope of the
parent element.

Links result
Specifies that links be exported from the child elements as an XFDF document.

<Links>
result="xs:string"
return="true" or "false"

>
< PDF source> and/or <PDFGroup> [1..n]
<Links source> [0..n]
<Links filter> [0..n]
<TargetLocale> [0..1]

</Links>

Can be contained in the DDX element, which is the DDX root.

The Links result element must contain at least one PDF source element, which can be a child or be
embedded within a child PDFGroup element. If this element contains multiple PDF source elements, all
children are assembled into one PDF document from which the link information is exported.

Category

“Document components” on page 144

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Links source 203

Attributes

Links source
Links contained in an XFDF document are imported into the pages within the scope of the parent element.

<Links
source="xs:string"

/>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or conversion
elements, and PDFGroup.

The Links source element identifies an XFDF document representing PDF links. The links are aggregated
with the links in other sibling source elements, if any. The aggregation replaces any links found in the
pages within the scope of the parent element.

Category

“Document components” on page 144

Attributes

Links filter
Specifies the links from its child elements, which can be imported into the pages within the scope of the
parent element.

<Links>
< PDF source> and/or <PDFGroup> [1..n]
<Links source> [0..n]
<TargetLocale> [0..1]

</Links>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or conversion
elements, and PDFGroup.

Name Description

result Required. Specifies a name to be associated with the XFDF stream. This name must
be unique among all result elements in the DDX document. The result can be
specified as an External Data URL.

return Optional. Specifies whether the XFDF stream is returned to the client. This attribute
can have the following values:

true (default) - The XFDF stream is returned to the client.

false - The XFDF stream is not returned to the client but can be referenced
from within a subsequent result element.

Name Description

source Required. The name of the XFDF document containing links. This name can be
specified with an External Data URL. (See “External Data URL” on page 152.)

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference MasterPassword 204

The Links filter element contributes links to the aggregation contained by the pages within the scope of
the parent element. It is shorthand for a simple export/import operation. That is, the Links filter element
is equivalent to this sequence of elements (in order):

1. Links result to produce an intermediate XFDF document

2. Links source element that imports the links into the parent document.

The Links filter element cannot return the links to the client as an XFDF data stream. The Links result
element can return them.

The Links filter element has the same aggregating behavior as the Links source element.

The Links filter element must contain at least one PDF source element, which can be a child or can be
embedded within a child PDFGroup element.

Category

“Document components” on page 144

MasterPassword
Password that is required to change permissions for the resultant document.

<MasterPassword>
xs:string

</MasterPassword>

Must be contained in the Permissions element.

The password specified in this element corresponds to the owner password described in the PDF Reference.
A person who successfully provides the password specified in the MasterPassword element has full
(owner) access to the document. This unlimited access includes the ability to change the document’s
passwords and access permissions.

If the MasterPassword element is omitted, then there are no permission restrictions on the document.
That is, full access is granted to everyone who can open the document. The open password can restrict
who can open the document. If both the MasterPassword element and the OpenPassword element
are specified, they cannot be the same.

Category

“Document properties” on page 146

Metadata
PDF documents contain metadata (information about the document) in an XML format called Extensible
Metadata Platform (XMP). PDF metadata includes properties such as the title, author, and date created.

Metadata elements enable the metadata contained in PDF documents to be exported, imported, and
removed. The Metadata elements include the following varieties:

? Metadata result. Specifies that metadata specified by child elements be exported as an XMP
document.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Metadata result 205

? Metadata source. Specifies an XMP metadata stream imported into the pages within the scope of the
parent element.

Metadata result
Metadata from the child document is exported as an Extensible Metadata Platform (XMP) document.

<Metadata
result="xmp output name"
return="true" or "false"

>
< PDF source> [1]

</Metadata>

Can be contained in the DDX element, which is the DDX root.

Note: XMP provides a standard format for the creation, processing, and interchange of metadata.
Metadata is data that describes the characteristics or properties of a document. It can be
distinguished from the main contents of a document. For example, for a word-processing
document, the contents include the actual text data and formatting information. In contrast, the
metadata can include properties such as author, modification date, or copyright status. The XMP
Specification can be obtained from http://www.adobe.com/products/xmp/index.html.

Category

“Document properties” on page 146

Attributes

Metadata source
Metadata contained in an XMP stream that is imported into the parent document.

<Metadata
source="xmp input name"

>
</Metadata>

Can be contained in the PDF result element, and the PackageFiles filter, select, or conversion elements.

The XMP content specified by this element becomes the metadata for the result document, replacing any
preexisting metadata in that document.

Name Description

result Required. A name to be associated with the exported metadata. This name must be
unique among all result elements in the DDX document. The result can be specified
with an External Data URL. (See “External Data URL” on page 152.)

return Optional. Specifies whether the metadata is returned to the client. This attribute can
have the following values:

true (default) - The XMP data is returned to the client as a named stream.

false - The XMP data stream is not returned to the client but can be referenced
as the source from within a subsequent result document.

http://www.adobe.com/products/xmp/index.html

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference MetadataSchemaExtension 206

Category

“Document properties” on page 146

Attributes

MetadataSchemaExtension
(Since 9.0) Metadata schema for use with PDF/A conformance.

<MetadataSchemaExtension source = "xs:string"/>

Can be contained in the <PDFAProfile> element.

PDF/A conformance requires that all metadata used in the PDF/A document be associated with a schema.
The schema can be published in the XMP specification or defined in the PDF/A document using an
extension schema.

Attributes

Navigator
(Since 9.0) Specifies a navigator to use for a PDF Portfolio.

<Navigator source="xs:string">
<Resource> [0..n]
<String> [0..n]

</Navigator>

Can be contained in the Portfolio element.

Attributes

Note: NAV files and other resources can come from the repository, content services (deprecated), and a
LiveCycle ES4 resource-only application.

Name Description

source Required. The name of an input data stream containing XMP metadata. The source
can be specified with an External Data URL. (See “External Data URL” on page 152.)

Name Description

source Required. The source represents an input document that contains RDF compliant
metadata extensions. The source can be specified by using an External Data URL.
(See “External Data URL” on page 153.)

Name Description

source (Optional) Input map key or External Data URL mapped to a document which
returns a NAV file or a PDF document containing a navigator. If the source
attribute is not specified, then it defaults to the identified base document for the
PDF result document.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference NoBackgrounds 207

NoBackgrounds
Specifies removal of backgrounds from the pages within the scope of the parent element.

<NoBackgrounds
alternation="None" or "OddPages" or "EvenPages"

/>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, PackageFiles filter, select, or conversion elements, and
BlankPage.

This element removes only backgrounds added with Acrobat 8 or earlier. Beginning with Acrobat 9,
backgrounds are identified only as watermarks. Also, this element does not remove backgrounds that
contain Bates numbers.

Category

“Page content” on page 148

Attributes

NoBookmarks
Specifies removal of bookmarks from the pages within the scope of the parent element.

<NoBookmarks/>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or conversion
elements, and PDFGroup.

Category

“Document components” on page 144

NoComments
Specifies removal of comments from the pages within the scope of the parent element.

<NoComments/>

Name Description

alternation Optional. Specifies whether the element’s settings apply to all pages or to
alternating pages. This attribute can have the following values:

None (default) - Settings apply to all pages.

OddPages - Settings apply to odd pages only.

EvenPages - Settings apply to even pages only.

Pages are considered odd or even depending on their ordinal page number in
the result document.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference NoFileAttachments 208

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or conversion
elements, and PDFGroup.

The NoComments element removes annotation types other than comments. It removes such annotations
from the pages within the scope of the parent element. For example, the element removes Movie, Screen,
PrinterMark, TrapNet, 3D, and Watermark annotations. It does not remove Link and Widget annotations.

Category

“Document components” on page 144

NoFileAttachments
Specifies removal of all file attachments in the pages within the scope of the parent element. The
NoFileAttachments element does not remove package files from a PDF package or portfolio. The
elements NoFileAttachments and FileAttachments cannot be siblings.

<NoFileAttachments/>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or conversion
elements, and PDFGroup.

Category

“Document components” on page 144

NoFooters
Specifies removal of footers from the pages within the scope of the parent element.

<NoFooters
alternation="None" or "OddPages" or "EvenPages"

/>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, PackageFiles filter, select, or conversion elements, and
BlankPage.

This element removes only footers added with Acrobat 8 or earlier. It cannot remove footers added with
later versions. Acrobat 9 and later does not distinguish between watermarks, backgrounds, headers, and
footers. Also, this element does not remove footers that contain Bates numbers.

Category

“Page content” on page 148

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference NoForms 209

Attributes

NoForms
All Acrobat (Acroform) and XFA-based form fields in the parent document are flattened.

<NoForms/>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or source
elements, and PDFGroup.

This element flattens all form fields in the parent document. Such form fields include signature fields and
data fields. This flattening invalidates any digital signatures in the parent document. The form fields in the
resultant document retain their graphical appearance but are no longer interactive.

Note: If the PDF document is a dynamic XFA form, the Assembler service uses the Output service to flatten
the form. If that service is unavailable, an exception is thrown.

If the PDF does not contain any forms, the document is unmodified.

For XFA forms, the XFA stream is not included in the resultant PDF document, therefore the parent result
element must not specify the XDP format.

Category

“Document properties” on page 146

NoHeaders
Specifies removal of headers from the pages within the scope of the parent element.

<NoHeaders
alternation="None" or "OddPages" or "EvenPages"

/>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, PackageFiles filter, select, or conversion elements, and
BlankPage.

This element removes only headers added with Acrobat 8 or earlier. Beginning with Acrobat 9, headers are
identified only as watermarks. Also, this element does not remove headers that contain Bates numbers.

Name Description

alternation Optional. Specifies whether the element’s settings apply to all pages or to
alternating pages. This attribute can have the following values:

None (default) - Settings apply to all pages.

OddPages - Settings apply to odd pages only.

EvenPages - Settings apply to even pages only.

Pages are considered odd or even depending on their ordinal page number in
the result document.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference NoJavaScripts 210

This element removes only headers added with Acrobat 8 or earlier. It cannot remove headers added with
later versions. Acrobat 9 and later does not distinguish between watermarks, backgrounds, headers, and
footers. Also, this element does not remove headers that contain Bates numbers.

Category

“Page content” on page 148

Attributes

NoJavaScripts
The NoJavaScripts element specifies that the parent PDF result or source element contains no
document-level scripts. If the NoJavaScripts element is specified as the child of a PDFGroup element,
it applies to all PDF sources contained in that PDFGroup. The JavaScript and NoJavaScripts
elements cannot be siblings.

<NoJavaScripts/>

Can be contained in PDF result, PDF source, PackageFiles filter, select, or conversion elements, and
PDFGroup.

Category

“Document properties” on page 146

NoLinks
Specifies removal of links from the pages within the scope of the parent element.

<NoLinks/>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or conversion
elements, and PDFGroup.

Category

“Document components” on page 144

Name Description

alternation Optional. Specifies whether the element’s settings apply to all pages or to
alternating pages. This attribute can have the following values:

None (default) - Settings apply to all pages.

OddPages - Settings apply to odd pages only.

EvenPages - Settings apply to even pages only.

Pages are considered odd or even depending on their ordinal page number in
the result document.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference NoPackage 211

NoPackage
Inclusion of a NoPackage element specifies that the PDF parent is not a PDF package or portfolio. Instead
the PDF parent is a single PDF document. Any potential package files are included instead as pages in that
single PDF document, in the order specified by the package's sort order.

The following types of package files are included as document-level file attachments:

? Non-PDF documents

? PDF documents that cannot be assembled with other PDF documents, for example, PDF documents
that contain XFA-based forms or encrypted documents.

The fields in the package files are removed as document-level file attachments contain only basic
metadata.

NoPackage cannot be a sibling to the Package or Portfolio elements.

<NoPackage
bookmarkPackageFiles="true" or "false"

>
<FilenameEncoding/> [0..n]

</NoPackage>

Can be contained in PDF result, PDF source.

Attributes

Category

“Document assembly” on page 143

NoPackageFiles
Inclusion of a NoPackageFiles element specifies that the PDF parent does not contain any package
files.

<NoPackageFiles/>

Can be contained in PDF result and PDF source.

If <NoPackageFiles/> is specified for a single PDF, document-level file attachments are not removed.

The NoPackageFiles and NoPackage elements can be siblings. Such an appearance indicates that the
parent PDF element does not have any package files and is not a PDF package or portfolio.

Name Description

bookmarkPackage
Files

Optional. Default is true. Determines whether to add a top-level bookmark for
the pages from the Package file in the resulting "flattened" PDF document. Any
bookmarks within the Package file are included automatically and appear under
this bookmark. The title of the bookmark is the filename of the Package file.
FilenameEncoding is used when necessary to decode the filename.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference NoPageLabels 212

Category

“Document assembly” on page 143

NoPageLabels
Specifies removal of page labels from the pages within the scope of the parent element.

<NoPageLabels/>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or conversion
elements, and PDFGroup.

If the NoPageLabels element appears as a child of the PDF result element, all page labels are removed
from the result document.

If a NoPageLabels element appears as a child of a PDF source or PDFGroup element, the pages in the
parent element have no page labels. However, if the result document contains page labels anywhere else,
a default page label is defined for all pages that contain no page labels. Page labels in the result document
are considered regardless of their origin. The default page label contains only the ordinal page number.

Category

“Page labels” on page 147

NoPortfolio
(Since 9.0) The PDF parent element is a single PDF document rather than a PDF Portfolio. This element is
interchangeable with the NoPackage element.

<NoPortfolio
bookmarkPackageFiles="true" or "false"

>
<FilenameEncoding/> [0..n]

</NoPortfolio>

Can be contained in the elements PDF result, PDF source.

The NoPortfolio element cannot be a sibling to the Portfolio or Package elements.

Attributes

Category

“Document assembly” on page 143

Name Description

bookmarkPackage
Files

Optional. Default is true. Determines whether to add a top-level bookmark for
the pages from the Package file in the resulting "flattened" PDF document. Any
bookmarks within the Package file are automatically included and appear under
this bookmark. The title of the bookmark is the filename of the Package file. The
FilenameEncoding element is used when necessary to decode the filename.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference NoThumbnails 213

NoThumbnails
Specifies removal of embedded thumbnails from the pages, package files, and folders within the scope of
the parent element.

<NoThumbnails/>

Can appear in the elements PDF result, PDF source, PackageFiles filter, select, or conversion elements,
and PDFGroup.

Thumbnails are small images of the page that can be embedded in the document. If thumbnails are not
present, the viewer application generates them. Eliminating embedded thumbnails can reduce file size.

Category

“Document components” on page 144

NoWatermarks
Specifies removal of watermarks from the pages within the scope of the parent element.

<NoWatermarks/>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, PackageFiles filter, select, or conversion elements, and
BlankPage.

This element removes only watermarks added with Acrobat 8 or earlier. It cannot remove watermarks
added with later versions. Acrobat 9 and later does not distinguish between watermarks, backgrounds,
headers, and footers. Also, this element does not remove watermarks that contain Bates numbers.

Category

“Page content” on page 148

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference NoXFA 214

NoXFA
Specifies that XFA-based forms in the pages within the scope of the parent element be flattened. If the
document does not contain XFA-based forms, it is unmodified.

<NoXFA
flatten="true" or "false"

/>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or source
elements, and PDFGroup.

A flattened PDF lacks an XML form template (XFA) and non-signature elements.

When non-base documents are assembled with other documents, those non-base documents cannot
contain XFA-based forms. This element lets you remove the XFA content from non-base document.

If the DDX processor cannot flatten the form, it throws an exception. To avoid the exception, set the
flatten attribute to false. This setting causes the DDX processor to simply remove the XFA element
from the PDF document, which allows it to be assembled. However, data may be lost.

Note: If the PDF document is a dynamic XML form template and the flatten attribute is true, the
Assembler service uses the Output service to flatten the form. If that service is unavailable, an
exception is thrown.

See also

“Flattening forms” on page 37

Attributes

Category

“Document properties” on page 146

OpenPassword
User password that is required to open the resultant document.

<OpenPassword>
password

</OpenPassword>

Name Description

flatten Optional. Specifies whether full flattening is required.

If true, the form is flattened. However, an error is raised if the Assembler service
is unable to flatten the form.

If false, the only XFA entry in the parent result element is removed. The data is
not merged with the form before flattening. As a result, some data may be lost. If
flatten is false, the Output service is not used.

LiveCycle 9.0 adds support for this attribute.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference OutputIntent 215

Can be contained in the PasswordEncryptionProfile element.

The password specified in this element corresponds to the user password described in the PDF Reference. A
person who successfully provides the password specified in the OpenPassword element can open the
document. However, they are restricted in their activities according to the user access permissions
specified when the owner secured the document.

If both the MasterPassword element and the OpenPassword element are specified, their values
cannot be the same.

If the OpenPassword element is unspecified, the document is not password-protected at the user level.
Anyone can open such a document.

Category

“Document properties” on page 146

OutputIntent
Specifies color settings for PDF/A conversion. This element was added in LiveCycle ES 8.2.

<OutputIntent
colorSpace="sRGB or CoatedFOGRA27 or JapanColorCoated or SWOP"

/>
</OutputIntent>

Can be contained in PDFAProfile.

Attributes

Package
Specifies that the parent PDF is a PDF package or portfolio. The Package element can contain the
package specification or allow the specification to be aggregated from any PDF sources that are packages
in the assembly. If no sources are packages, the empty <Package /> element specifies a default package
specification.

The package specification aggregates the package specifications from PDF sources. If the baseDocument
is a package, then its package specification becomes the starting point for the resulting package
specification. The package specifications from other PDF sources are included in the order in which the
packages are assembled. The first package contributes the packageInitialDocument and
packageUIPane, unless specified in InitialViewProfile. See Schema, DisplayOrder, and
SortOrder for a description of how package specifications are aggregated. See the
InitialViewProfile element.

Category

“Document assembly” on page 143

Name Description

colorSpace Optional. Name of color space to use during conversion. Default is sRGB.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Package defining element 216

Package defining element
Defines a package specification that can be used in a PDF package or portfolio.

<Package>
<Schema>[0..1]
<DisplayOrder> [0..1]
<SortOrder> [0..1]
<TargetLocale> [0..1]

</Package>

Can be contained in PDF result, PDF source, and StyleProfile.

If the Package defining element omits the Schema element, the DDX processor aggregates a schema
from the PDF source documents. It aggregates the schemas from the PDF packages or portfolios in the
assembled PDF source elements.

If the Package defining element omits the DisplayOrder or SortOrder elements, the DDX processor
aggregates corresponding replacements from the PDF source documents. This aggregation is the same as
for an omitted Schema element.

Package filter element
As a filter element, the package specification comes entirely from the package specification contained
within the child PDF source element. If the PDF source is not a package, then it is as if the Package
element were specified as the empty <Package/> element.

<Package>
<PDF> source [1]
<TargetLocale> [0..1]

</Package>

Can be contained in PDF result, PDF source, and StyleProfile.

Category

“Document assembly” on page 143

Referencing a package or portfolio contained in a StyleProfile element
You can use the styleReference attribute to reference a Package or Portfolio element contained
within a named StyleProfile element. The Package or Portfolio in the referenced
StyleProfile is used.

<Package styleReference="xs:string"/>
<Portfolio styleReference="xs:string"/>

Can be contained in PDF result and PDF source.

Attributes

Name Description

styleReference Required. The name of a StyleProfile element that contains a specification
for a PDF package.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PackageFiles 217

PackageFiles
The PackageFiles element performs various tasks related to the package files used in a PDF package or
portfolio. Package files are also called component files or portfolio files. Here are some of the tasks it
specifies:

? Add package files to a PDF package or portfolio (PackageFiles source). More specific versions of this
element can also modify, filter, and select the documents added to the PDF package or portfolio. (See
the elements PackageFiles modifying, PackageFiles filter, and PackageFiles filter.)

? Export an XML file containing information about the files in an existing PDF package or portfolio
(PackageFiles result). You can also use the PackageFiles result element to export the package
files from an existing PDF package or portfolio.

? Import information from another PDF package or portfolio (PackageFiles import)

? Select packages files. The PackageFiles element’s nameKeys attribute selects package files from
the source document.

The above versions of the PackageFiles element allow the metadata associated with package files to
be specified or modified. They also allow the contents of a package file to be modified if it is a modifiable
PDF document. One such sequence is described below:

1. Use the PackageFiles result element to export information about the package files and to export
the package files themselves.

2. Modify the exported files in another service.

3. Use the PackageFiles import element to import the modified files, using a modified version of the
descriptive XML created when the package files were exported.

For example, you could export the documents, digitally sign them, and reimport them into the package.

PackageFiles does not include the cover sheet from any packages contained within the
PackageFiles filter element.

Category

“Document assembly” on page 143

PackageFiles modifying elements
Modifies characteristics of the package files. The filter, select, and conversion elements allow a number of
child elements. The following elements are allowed:

(<Bookmarks> source and/or <Bookmarks> filter [0..n]) or
<NoBookmarks> [0..1]

(<Links> source and/or <Links> filter [0..n]) or
<NoLinks> [0..1]

<NoThumbnails> [0..1]
(<Comments> source and/or <Comments> filter [0..n]) or <NoComments> [0..1]
<NoFileAttachments> [0..1]
<Metadata> source [0..1]
<Author> [0..1]
<Title> [0..1]
<Subject> [0..1]
<Keywords> [0..1]

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PackageFiles source elements 218

<PageContent> [0..n]
<PageSize> [0..1]
<PageRotation> [0..1]
<PageMargins> [0..2, where 2 is allowed for alternating pages]
<PageLabel> [0..1] or <NoPageLabels> [0..1]
<ArtBox> [0..2, where 2 is allowed for alternating pages]
<BleedBox> [0..2, where 2 is allowed for alternating pages]
<TrimBox> [0..2, where 2 is allowed for alternating pages]
<Transform> [0..1]
<Header> [0..2, where 2 is allowed for alternating pages] or

<NoHeaders> [0..2, where 2 is allowed for alternating pages]
<Footer> [0..2, where 2 is allowed for alternating pages] or

<NoFooters> [0..2, where 2 is allowed for alternating pages]
<JavaScript> [0..n] or <NoJavaScripts>[0..1]
<Watermark> [0..1] or

<NoWatermarks> [0..2, where 2 is allowed for alternating pages]
<Background> [0..2, where 2 is allowed for alternating pages] or

<NoBackgrounds> [0..2, where 2 is allowed for alternating pages]
<PageOverlay> [0..n]
<PageUnderlay> [0..n]
<NoForms> [0..1]
<NoXFA> [0..1]
<FilenameEncoding> [0..n]
<TargetLocale> [0..1]

Only selected package files that are modifiable PDF documents are modified. Here are examples of this
syntax:

? Header adds headers to the package files identified by the PackageFiles element

? Footer adds footers to the package files identified by the PackageFiles element.

If PageLabel is specified for the PDF document, a mode of "Continue" is ignored and a warning is
logged. The FileAttachments element attaches a file to the PDF document’s pages. If a package file is
not a modifiable PDF document, then a warning is logged.

PackageFiles source elements
Adds documents to a package and assigns metadata to those documents.

<PackageFiles
access="unspecified or xs:string"
includeSubFolders="true" or "false"
matchMode="Include or Exclude"
nameKey="xs:string"
required="true or false
source="xs:string"
sourceMatch="unspecified or regular-expression"

>
<Description> [0..1]
<FieldData> [0..n]
<File> [0..1]
<FilenameEncoding> [0..1]
... PackageFiles modifying elements ...

</PackageFiles>

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PackageFiles source elements 219

Can be contained in PDF result element.

As a source element, PackageFiles adds any type of document to a PDF package or portfolio. However,
the best viewing experience is when PDF documents are added as package files. The source attribute
specifies the stream that contains the contents of the document that is attached. Optionally, the nameKey
attribute specifies a unique identifier for the package file.

The nameKey attribute is similar to document-level FileAttachments. If the nameKey attribute
specifies the full filename and the PDF result already contains a PackageFile with that nameKey, then the
existing file is replaced.

A viewing application may assign a name to the root folder, such as Home or Main. To accommodate these
different names, the nameKeys attribute specifies the root folder as a backslash (/). For example, if you
open a PDF Portfolio and display a detailed list view, the top-level folder is the first name in the path. In the
nameKeys attribute, the backslash (/) precedes the first name. For example, consider a file with the
following folder hierarchy:

? Reports is the top-level folder

? Reports contains a subfolder named January

? January contains the file Expenses.pdf

The nameKey value for file in the above folder hierarchy is /Reports/January/Expenses.pdf.
However, the viewing application may display Main > Reports > January across the top of the navigation
pane.

Any modifying elements contained as children of the PackageFiles source element modify the
document if it is a modifiable PDF document. If the document being added is not a PDF document or is
not modifiable, the document is left unchanged and warning is logged.

The PackageFiles source element does not contribute a package specification to any aggregation of
package specifications.

A FieldData can redefine the Description or File values. For more information on the FieldData
element, see “FieldData” on page 182.

Attributes

Name Description

access Optional. If the source is a password encrypted PDF document, this attribute
names the PasswordAccessProfile to apply if the document is opened or
modified. This attribute was added in LiveCycle ES 8.2.

includeSubFolde
rs

Optional. If this attribute is true and the source attribute specifies a URL that
references a folder, then all files in the folder and subfolders are included. The
included files retain the structure of the subfolders in the PDF Portfolio being
created. No part of the source attribute value appears as a folder name in the
resulting PDF Portfolio. This behavior is analogous to drag-and-drop from the file
system into Acrobat when viewing a PDF Portfolio. The default value is true.

If false, then only the files specified in the folder are included in the PDF
Portfolio.

LiveCycle ES4 (version 9) adds support for this attribute.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PackageFiles source elements 220

matchMode Optional. Specifies whether to include the matched results in the resultant
document. This attribute can have the following values:

Include (default) - Includes the matched data streams.

Exclude - Excludes the matched data streams.

This attribute was added in LiveCycle 8.2.

nameKey Optional. A unique, internal identifier for a package file. If the nameKey attribute
is omitted, the DDX processor generates a unique nameKey based on the
filename.

Similar to a file system, the nameKey must be unique. Thus, if the filename is
report.pdf, then the nameKey for the document is report.pdf. If a
document is added to a PDF package or portfolio and that filename exists, then a
number is added to the filename, such as report_0001.pdf. The modified
filename is the nameKey.

The PackageFiles export element returns an XML file that specifies the
nameKey attributes assigned to each document.

required Optional. A value of true (default) requires the PackageFile source element
actually to add a package file to the PDF package or portfolio.

A value of false, eliminates this requirement. That is, if no data streams are
identified in the input map, then no package files are added and no error occurs.

This attribute was added in LiveCycle ES 8.2.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PackageFiles filter elements 221

PackageFiles filter elements
As a filter element, PackageFiles allows only certain package files and their package specifications to
be included.

<PackageFiles
nameKeys="unspecified" or "xs:string"

>
<PDF> source [1..n]
<FieldData> [0..n]
<TargetLocale> [0..1]
... PackageFiles modifying elements ...

</PackageFiles>

Can be contained in the PDF result element.

If the PDF source element provides a single PDF document, then the PackageFiles filter element
converts that file into a package file in the resultant document. Such conversion occurs only when the
document is a single PDF document. Additionally, the DDX processor generates a unique nameKey for the
file.

source Optional. The name of the input data stream provided by the client. This name
can be specified with an External Data URL. (See “External Data URL” on
page 152.)

This stream maps to the data stream included in the PDF package or portfolio.
The data stream can contain content of any type.

sourceMatch Optional, but required if the source attribute is not specified. The value is a
regular expression pattern that selects source names and their associated data
streams from the input map or URL.

Source specifies an input map. If source specifies a non-URL name and
sourceMatch is specified, sourceMatch is used only when the source
attribute does not match an entry in the input map or URL.

Source specifies a URL. If the source attribute specifies a URL that
references a folder of files, then sourceMatch can select specific files from
the folder.

The regular expression syntax is a standard regular expression syntax as
implemented in the java.util.regex class for Java.

Depending on the matchMode attribute, the matched documents are either
included or excluded in the assembled document. If more than one name
matches, the names are sorted, as specified in the sortOrder and
sortLocale attributes.

The string value can be specified with an External Data URL.

See also
“External Data URL” on page 153

“Specifying multiple input streams” on page 32

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PackageFiles select elements 222

If the PDF source element provides a PDF package or portfolio, all its package files are included as package
files in the resultant document. If the nameKeys attribute is provided, only those package files that match
an entry in the nameKeys attribute are included.

A PDF package or portfolio document within a PackageFiles element contributes only the package
files to the resultant document. It does not contribute cover sheets.

To specify a filename, use the FieldData element and provide a value for the _Filename built-in key.

For each file added to the package files in the resultant document, the DDX processor creates a unique
nameKey property. To find out what these nameKey values are, use a PackageFiles result element.

Note: If you use the PackageFiles filter element to add an encrypted file, provide the file’s open
password. (See the OpenPassword element.) If you omit the open password, the DDX processor
throws an exception and the resultant document is not created. The open password is required
because the document must be opened to determine whether it is a single PDF document or a PDF
package or portfolio. The alternative is to use a PackageFiles source element to blindly add the
file as a package file. The PackageFiles source element adds PDF and non-PDF documents to a
PDF Portfolio or package.

Attributes

PackageFiles select elements
As a select element, PackageFiles allows only certain package files and their package specifications to
be modified. It never adds additional package files nor does it turn a single PDF document into a PDF
package or portfolio.

When modifying the package file, the select element functions as an edit-in-place feature that works on
package files in the parent PDF package or portfolio. It is the only <PackageFiles> variant that can be a
child of the PDF source element.

The nameKeys attribute is used to select specific package files from the parent PDF package or portfolio.
Each package file in a PDF package or portfolio has a unique nameKey value. This value can be the
filename or a variation of the filename. To determine the values to use in this nameKeys attribute, use the
PackageFiles result element to export information about the package files.

A PackageFiles select element is different from a PackageFiles filter element in that the select
element does not contain a PDF source from which to filter. Instead, the package files are selected from
package files contained in the parent element. If the parent element is not a PDF package or portfolio,
then nothing is selected and a warning is logged.

Name Description

nameKeys Optional. The value is a single nameKey or a comma-separated list of nameKeys.
The entries in this attribute select package files from the PDF package or
portfolio in the child PDF source element.

Each package file in a PDF package or portfolio has a unique nameKey value.
This value can be the filename or a variation of the filename. To determine the
values to use in this nameKeys attribute, use the PackageFiles result element
to export information about the package files.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PackageFiles result elements 223

If selected package files are not PDF documents, or are not modifiable PDF documents, then they are left
unchanged and a warning is logged.

<PackageFiles
nameKeys="unspecified" or "xs:string"

>
<FieldData> [0..n]
... PackageFiles modifying elements ...

</PackageFiles>

For more information on the FieldData element, see “FieldData” on page 182.

Can be contained in PDF result and PDF source.

Attributes

PackageFiles result elements
Returns an XML file containing information about the package files. Can also return the package files.

<PackageFiles
result="xs:string"
extract="true" or "false"
nameKeys="unspecified" or "xs:string"

>
<PDF> source [1]
<FilenameEncoding> [0..n]
<TargetLocale> [0..1]

</PackageFiles>

Can be contained in the DDX element, which is the DDX root.

The PackageFiles result element returns an XML document that provides information about the
package files. The information includes the files’ metadata and the unique name (nameKey) mapped to
the output data stream. The XML document conforms to the PackageFiles schema. (See “PackageFiles
Language” on page 350.)

Note: If the PDF source element contains a simple PDF document, then the root element in the resultant
XML PackageFiles document is empty. File attachments are not considered package files. If the PDF
source element contains a PDF package or portfolio but no package files are selected, then the root
element contains only the package specification.

Name Description

nameKeys Optional. The value is a single nameKey or a comma-separated list of nameKeys.
The entries in this attribute select package files from the package or portfolio
assembled for the PDF result element.

Each package file in a PDF package or portfolio has a unique nameKey value.
This value can be the filename or a variation of the filename. To determine the
values to use in this nameKeys attribute, use the PackageFiles result element
to export information about the package files.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PackageFiles import elements 224

Attributes

PackageFiles import elements
Imports package files provided as a string that represents an XML version of the package files.

<PackageFiles
import="xs:string"

/>

Can be contained in the PDF result element.

The value of the import attribute is an XML PackageFiles document. Typically, using the XML
PackageFiles document involves these steps:

1. PackageFiles result element produces an XML PackageFiles document. This file represents the
package files for a PDF package or portfolio. The PackageFiles result element can optionally return
the package files.

2. An external process modifies the XML PackageFiles document.

3. PackageFiles import element updates the package file with the changes. All package files listed in
that XML document must be provided as inputs. Each input document must correspond to a unique
name (nameKey) described in the XML document.

To prevent imported package files from replacing existing package files, modify the XML to remove the
nameKeys. If no nameKey is present in the XML file for a package file, a new, unique nameKey is
automatically generated.

Note: The automatically generated nameKey values are unique only within a document. Because the DDX
processor automatically generates nameKey values where needed, different PDF documents can

Name Description

extract Optional. If its value is "true", all package files specified are returned as
separate data streams to the client. If its value is "false", then only the result
XML data, containing information about the package files specified, is returned.

result Required. A name to be associated with the returned data stream. The stream
contains the XML data that provides the mapping of the data stream name to
information stored with the package file. That information includes the
nameKey, filename, creation date, MIME type, and any other custom metadata
(see “PackageFiles Language” on page 350).

The value of this attribute must be unique among other result elements in the
same DDX document. The result can be specified with an External Data URL. (See
“External Data URL” on page 153.)

The name is not a filename and should not be treated as such by the client.

nameKeys Optional. The nameKeys attribute identifies package files to include in the result
XML and extracted if extract="true". The value is either a single nameKey or
a comma-separated list of nameKeys. The default identifies all package files.

You can discover the names in a PDF package or portfolio by using the
PackageFiles result element with the nameKeys attribute omitted.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PageContent 225

have package files with the same nameKeys. The nameKey values can be the same, even though
there is no relationship between the files they identify

The DDX processor merges the data in the XML PackageFiles document with the existing PDF package or
portfolio. The major parts of the XML PackageFiles document are package specification, package files, and
folders.

Package specifications. The specification is merged with the existing package specification. (See
“Creating a package or portfolio specification by aggregating existing ones” on page 57.)

Package files. This category includes file identifiers and FieldData (metadata). The XML file can contain
FieldData elements for each file. Those FieldData elements provide metadata for each package file.
When you import such an XML file, the FieldData elements are imported into the package file
FieldData elements. The exception is that the DDX processor omits metadata that is not defined in
the schema in the package file schema. That schema is aggregated with the imported XML PackageFile.

Folders. Folders are merged with folders in the existing package specification.

Note: If all package files listed in the import XML are missing from the input map, then an error is thrown.
If only some package files listed are missing, a warning is logged for each missing package file, while
the rest are imported without error. Also, if multiple PackageFiles import elements are specified,
an exception is thrown.

See also

“PackageFiles” on page 217

“Modifying the package files in a PDF package or portfolio” on page 59

“PackageFiles Language” on page 350

Attributes

PageContent
(Since 8.2) Adds content to a page similar to Watermark but with alternate text and style profiles.

<PageContent
alternateText="xs:string"
alternation="None or OddPages or EvenPages"
appears="Behind or OnTop"
fitToPage="true or false"
horizontalAnchor="Left or Center or Right"
horizontalOffset="0pt or length-specifier"
opacity="100% or percentage-specifier"
rotation="0 or xs:integer"

Name Description

import Required. A name to be associated with the data stream containing the XML
generated from a PackageFiles result specification. The XML provides the
mapping of the input data stream names to information stored with the package
file. That information includes the filename, creation date, MIME type, and any
custom metadata (see “PackageFiles Language” on page 350). The import source
can be specified with an External Data URL. (See “External Data URL” on
page 153.)

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PageContent 226

scale="100% or percentage-specifier"
showOnScreen="true or false"
showWhenPrinting="true or false"
verticalAnchor="Top or Middle or Bottom"
verticalOffset="0pt or length-specifier"

>
<StyledText> or <PDF> source [1]
<TargetLocale> [0..1]

</PageContent>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, PackageFiles filter, select, or conversion elements, BlankPage,
and StyleProfile.

The PageContent element is similar to the Watermark element. It differs from the Watermark element
in the following ways:

? There is no replacement or removal of PageContent content.

? Alternate text can be provided for screen readers to read for pages in the document that are already
tagged. If a document is tagged, adding content to it does not cause screen readers to read the
content. Hence, it is recommended that alternate text be provided for text and graphics added with the
PageContent element.

? Multiple PageContent elements can be specified per page.

With tagged PDF documents, screen readers receive the string values of non-empty alternateText
attributes in place of the content. It is recommended that the text provided in the alternateText
attribute match the content, with the addition of text to represent any graphical content. This
recommendation does not apply if the content is purely graphical.

The anchor points and offset attributes describe the placement of the PageContent.

Note: Adding a PageContent element with alternateText does not promote untagged pages to
tagged pages, even if assembled with a structured PDF. However, adding pages from unstructured
PDF documents to structured PDFs does promote the new pages to structured PDF. Also, using the
BlankPage and TableOfContents elements to add content to a structured PDF promotes the
new pages to structured PDF.

The PageContent element can contain either one StyledText or one PDF source element, but not
both. The first page from the pages specified by the PDF source is used for the page content.

Attributes

Name Description

alternateText Optional. If a non-empty string is provided, and the PDF is tagged, then this
string is passed to a screen reader in place of the content. A structured PDF
document is tagged.

alternation Optional. If None, applies to all pages. If OddPages, applies to odd pages
only. If EvenPages, applies to even pages only.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PageContent 227

The following example shows how to reference a PageContent element contained within a named
StyleProfile element:

<PageContent styleReference="xs:string"/>

In the following example, doc1 is a tagged PDF document.

<PDF result="doc2">
<PageContent appears="Behind" alternateText="This is highly Confidential.">

<StyledText><p><This is highly
<graphic source="AdobeConfLogo.pdf"/>.</p></StyledText>

appears Optional. Determines whether the new content appears behind or on top of
the current page content. For tagged PDF documents, this attribute can
affect whether the alternateText (if present) is spoken before existing
page content or after. The default value (Behind) can cause screen readers to
read the alternateText before the existing page content. There is no
guarantee of the order in which the alternateText and existing page
content is read.

fitToPage Optional. If true, the scale attribute is ignored and the PageContent is
guaranteed to fit to the boundaries of the PageSize element. The fit is
accomplished by expanding or shrinking the text.

horizontalAnchor Optional. The horizontalOffset is relative to the horizontalAnchor.
Left is the left PageMargin. Center is the center of the page. Right is the right
PageMargin.

horizontalOffset Optional. The offset from the horizontalAnchor point. A positive value
moves right, while a negative value moves left.

opacity Optional. Controls the transparency of the PageContent text. The value of
this attribute can have the following forms:

? Decimal in the range of .0 to 1.0

? Percentage in the range of 0% to 100%. In this case, the percentage sign
(%) is required.

The default is 100%.

rotation rotation Optional. The valid range is -360 to 360 degrees.

scale Optional. The valid range is 8 to 3200 percent.

showOnScreen Optional. A Boolean value that controls whether the PageContent is
displayed when pages are viewed within an application such as Acrobat.

showWhenPrinting Optional. A Boolean value that controls whether the PageContent appears
on the page when printed.

verticalAnchor Optional. The verticalOffset is relative to the verticalAnchor. Top is
the top PageMargin. Middle is the middle of the page and Bottom is the
bottom PageMargin

verticalOffset Optional. The offset from the verticalAnchor point. A positive value
moves up, while a negative value moves down.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PageLabel 228

</PageContent>
<PDF source="doc1"/>

</PDF>

PageLabel
Specifies the format and content of page labels, where the labels show the page number preceded by a
prefix.

<PageLabel
mode="Define" or "Preserve" or "Continue"
start="1" or "ordinal-specifier" or "_PageNumber"
format="None" or "Decimal" or "LowerRoman" or "UpperRoman"

or "LowerAlpha" or "UpperAlpha"
prefix="empty-string" or "xs:string"

/>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, PackageFiles filter, select, or conversion elements, and
BlankPage.

The PageLabel element defines the page labels for the scope of the parent element.

A page label is an optional identifier for a page that has the form "prefix + page number". In Acrobat and
Adobe Reader, page labels are displayed in the banner beneath the page and beneath thumbnails. Labels
have the following form, where prefix is optional.

prefix + page number

Page label can be directly related to the ordinal page number, which starts with 1 and ends with the
number of pages. Alternatively, page labels can be independent of the ordinal page number.

Preexisting page labels in the source document are replaced with the page labels defined in this element.
Page labels not within the scope of a PageLabel element are left unchanged.

Category

“Page labels” on page 147

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PageMargins 229

Attributes

PageMargins
Specifies margins for page content elements being added to a page.

<PageMargins
left="36pt" or "nonnegative length"
top="36pt" or "nonnegative length"
right="36pt" or "nonnegative length"
bottom="36pt" or "nonnegative length"
alternation="None" or "OddPages" or "EvenPages"

/>

Name Description

mode Optional. Specifies the source of page label characteristics. This attribute can have
the following values:

Define (default) - Indicates that the other attributes in this element define the
page label style.

Preserve - Describes the source document as keeping the existing page label
style; pages are not renumbered as they are assembled.

Continue - Uses the page label style from the previous source document and
renumbers the pages from the current source document as they are assembled.
If the previous document has no defined page label style, no page labels are
generated for these pages.

A value of Continue is not valid for the first document in the assembly.

start Optional. Specifies the page number for the first page the source document
contributes to the result document. The value can be an ordinal page number or the
value of the built-in key _PageNumber. This built-in key specifies the current page’s
ordinal page number. (See “Built-in keys” on page 149.)

If the mode attribute has a value other than Define, this attribute is ignored.

format Optional. Specifies a page number format. This attribute can have the following
values:

None - No page numbers are included in page label, even if a prefix is defined.

Decimal (default) - For example, 1, 2, 3, …

LowerRoman - For example, i, ii, iii, …

UpperRoman - For example, I, II, III, …

LowerAlpha - For example, a, b, c, …

UpperAlpha - For example, A, B, C, …

If the mode attribute has a value other than Define, this attribute is ignored.

prefix Text displayed before the number. The string value can be specified with an External
Data URL.

If the mode attribute has a value other than Define, this attribute is ignored.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PageMargins 230

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, PackageFiles filter, select, or conversion elements, and
BlankPage.

The margins specified by this element affect only content being added to a page in the resulting PDF
document through the page content elements. These elements include Watermark, Background,
Header, Footer, PageContent, and TableOfContents.

The PageMargins element has no affect on the preexisting content of the page. Margins can be specified
differently for odd pages and even pages through the alternation attribute. There can be only one
PageMargins element specified per page side. This limitation means that there can be two
PageMargins elements for a document only if one is for odd pages and one is for even pages.

The PageMargins element defines a reference for initial placement of text. It does not provide a
boundary to which text is restricted. In other words, the text is not clipped to the margin. As a result,
content provided in the page content elements Watermark, Background, Header, Footer, and
TableOfContents can exceed the margins specified in this element. For example, excessive text in the
Left element of a Header element can overflow the right margin. In another example, excessive lines in
a Center element of a Header element can cause the header to exceed the bottom margin.

This element’s attributes specify margins relative to the page size (provided in the PageSize element).

Category

“Page properties” on page 147

Attributes

Name Description

left Optional. Width of left margin, which is the distance between the left side of the
page and the left side of the page contents.

A negative value defaults to 0. Default is 36 points (0.5 inches).

top Optional. Width of top margin, which is the distance between the top of the
page and the top of the page content.

A negative value defaults to 0. Default is 36 points (0.5 inches).

right Optional. Width of right margin, which is the distance between the right side of
the page and the right side of the page content.

A negative value defaults to 0. Default is 36 points (0.5 inches).

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PageOverlay 231

PageOverlay
Provides content for placement over the current page content.

<PageOverlay
embedFormsAndAnnots="true" or "false"
opacity="100%" or "percentage"
scale="1.0" or "percentage"
newX="0pt" or "length"
newY="0pt" or "length"
rotate90= "degrees in increments of 90"

>
< PDF source> [1]

</PageOverlay>

Can be contained in elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, PackageFiles filter, select, or conversion elements, and
BlankPage.

This element, the PageContent element, and the PageUnderlay element differ from other page
content elements in that the content cannot be distinguished from other page content. Unlike content
provided by Header or Watermark elements, there is no way to specify the removal of an overlay or
underlay in DDX. There can be multiple overlays or underlays and all are applied within their scope.

A parent document can contain multiple overlays and underlays, all of which are applied to each page in
the parent document.

Only page content is used. That is, bookmarks, page properties, and page labels from the source are not
incorporated into the parent document.

Forms and annotations (including links) are included only when the embedFormsAndAnnots attribute is
set to true. When form fields are copied, form-level JavaScript segments associated with form fields are
preserved. Document-level JavaScript segments in the source are not preserved.

The page overlay’s visible page size defines its visible content in the resultant document. The orientation
of the overlay is relative to the lower left corner of the PageSize of both the overlay source page and the
destination page.

bottom Optional. Width of bottom margin, which is the distance between the bottom of
the page and the bottom of the page content. A negative value defaults to 0.
Default is 36 points (0.5 inches).

alternation Optional. Specifies whether the element’s settings apply to all pages or to
alternating pages. This attribute can have the following values:

None (default) - Settings apply to all pages.

OddPages - Settings apply to odd pages only.

EvenPages - Settings apply to even pages only.

Pages are considered odd or even depending on their ordinal page number in
the result document.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PageOverlay 232

The PageOverlay and PageUnderlay elements contain a source PDF element from which the overlay
or underlay pages are obtained. The pages to overlay or underlay are applied sequentially to all the pages
in the destination page set. One successive overlay or underlay page (source pages) is applied per
successive destination page. Mismatches can occur between the number of pages in the source pages and
the number of pages in the destination document. Here are the considerations DDX processors use to
resolve such mismatches:

A single-page overlay. In this case, the overlay is repeatedly applied to all pages in the set of
destination pages. A single-page overlay can be a single-page PDF source document. It can also be a
multi-page PDF source document that includes a pages attribute that specifies a single page.

A multi-page overlay that provides more pages than the destination pages. In this case, the
overlay pages are repeated in full or in part.

A multi-page overlay that provides fewer pages than the destination pages. In this case, only the
needed overlay pages are applied. The unneeded pages are skipped.

Category

“Page content” on page 148

Attributes

Name Description

embedFormsAndAnnots Optional. Specifies whether to include any existing form fields and
annotations (including links) from the source page when overlaying or
underlaying on the destination pages.

newX Optional. The value, in user space, for shifting the coordinates of the
origin from (0,0) (the lower left corner of the visible page). A positive
value shifts the origin to the right, while a negative value shifts the
origin to the left.

newY Optional. The value, in user space, for shifting the coordinates of the
origin from (0,0) (the lower left corner of the visible page). A positive
value shifts the origin up, while a negative value shifts the origin down.

opacity Optional. Controls the transparency of the source page before
overlaying or underlaying the destination pages. The value of this
attribute can have these forms:

? Decimal in the range of .0 to 1.0

? Percentage in the range of 0% to 100%. In this case, the percentage
sign (%) is required.

The default value is 100%.

rotate90 Optional. Specifies a rotation setting for the page in increments of 90
degrees. A positive number rotates clockwise and a negative number
rotates counterclockwise.

scale Optional. The factor by which to scale the page.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PageRotation 233

PageRotation
Specifies the rotation of the pages within the scope of the parent element.

<Rotation
rotate90="degrees in increments of 90"

/>

Can be contained in the elements PDF result, PDF source, PDFGroup, PackageFiles filter, select, or
conversion elements, and BlankPage.

The PageRotation element specifies the rotation angle of the pages within the scope of the parent
element. The rotation specified in this element overrides any existing page rotation, either from a
preceding DDX element or from preexisting settings in the page itself. That is, page rotation settings are
not additive.

The PageRotation element determines the viewer orientation of the page. It does not affect the
relationship of the page content to the media. For example, consider a page whose media has a landscape
orientation and whose text is placed according to that orientation. If that page is rotated 90 degrees, the
resulting viewed page has a portrait orientation and its text appears sideways. To rotate the page content,
see the Transform element.

The PageRotation element affects how new page content is placed on the page. The view of the page
after applying the settings in this element determines the page’s upper edge for adding a Header,
Watermark, or other page content.

The DocumentInformation query element can be used to obtain the PageRotation values for all
pages in a document.

Category

“Page properties” on page 147

Attributes

PageSize
Defines the page dimensions for purposes of display or print.

<PageSize
width="612pt" or "positive page width"
height="792pt" or "positive page height"
horizontalAnchor = "Left" or "Center" or "Right"
scaleDown = "false" or "true"
scaleUp = "false" or "true"
select="Auto" or "All" or "Landscape
verticalAnchor = "Top" or "Middle" or "Bottom"

/>

Name Description

rotate90 Optional. Specifies a rotation setting for the page in increments of 90 degrees. A
positive number is clockwise, and a negative number is counterclockwise.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PageSize 234

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, PackageFiles filter, select, or conversion elements, and
BlankPage.

The PageSize element sets the width and height of the page, as viewed in Acrobat. If the page size
changes, the page content can be scaled or cropped, or white space can be added. If scaling is called for
with the scaleUp or scaleDown attributes, the aspect ratio of the page contents is retained. That is,
scaling is performed equally in the horizontal and vertical dimensions, and therefore the smaller
dimension constrains scaleUp.

The anchor attributes taken together specify the point in the original page that stays constant. For
example, if the following conditions occur, the page is cropped or expanded equally around its midpoint:

? Scaling is not specified.

? Horizontal and vertical anchors have respective values of Center and Middle.

More specifically, if the new page size is smaller than the existing page’s size, the page is cropped equally
about its midpoint. If it is larger, the page is expanded equally in each direction about its midpoint. (See

When the PageSize element is a child of a TableOfContents element, it serves only to describe the
size of the table of contents.

The Assembler service can swap the values of the width and height attributes to be consistent with the
page orientation specified in the sibling PageRotation element. (See “Page size and rotation” on
page 97.)

The DocumentInformation query element can be used to obtain the PageSize values for all pages in
a document.

Category

“Page properties” on page 147

Attributes

Name Description

width Optional. Specifies the horizontal boundary of the page content, which
correlates to the width of the target media. Default is letter size width: 612
pts (8.5 inches). The value of width must be greater than 0.

height Optional. Specifies the vertical boundary of the page content, which
correlates to the height of the target media. Default is letter size height: 792
pts (11.0 inches). The value of height must be greater than 0.

scaleUp Optional. Specifies whether the page’s contents are scaled if both
dimensions of the specified page size are larger than the corresponding
dimensions of the current page size. This attribute can have the following
values:

false (default) - White space is added around the existing page
content to accommodate increases in page size.

true - The page’s contents are scaled up until the new page size is filled
along either dimension. The page content’s aspect ratio is retained.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PageUnderlay 235

PageUnderlay
Provides content for placement under the current page content.

<PageUnderlay
embedFormsAndAnnots="true" or "false"
opacity="100%" or "percentage"
scale="1.0" or "percentage"

scaleDown Optional. Specifies whether the page’s contents are scaled if either
dimension of the specified page size is smaller than the corresponding
dimension of the existing page size. This attribute can have the following
values:

false (default) - The page’s contents are cropped to the new page’s
size.

true - The page’s contents are scaled down to fit within the new page
size. The page content’s aspect ratio is retained.

select Optional. Selects which pages are resized as specified by this element’s
width and height attributes. This attribute can have the following values:

Auto (default). The width and height values are applied while
maintaining each page's orientation as portrait or landscape, even if that
means swapping the specified width and height.

All. All the pages are set to the specified width and height regardless of
their original width and height value. As a result, one edge of a page can
be clipped while another is expanded.

Portrait. Only pages whose original width is less than or equal to its
height have their width and height values set to the specified values. As
a result, one edge of a page can be clipped while another is expanded.

Landscape. Only pages whose original height is less than its width
have their width and height values set to the specified values. As a
result, one edge of a page can be clipped while another is expanded.

horizontalAnchor Optional. Specifies which portion of the page stays anchored in the
horizontal direction when the content is scaled, as specified in scaleUp
and scaleDown. This attribute can have the following values:

Left

Center (default)

Right

verticalAnchor Optional. Specifies which portion of the page stays anchored in the vertical
direction when the content is scaled, as specified in scaleUp and
scaleDown. This attribute can have the following values:

Top

Middle (default)

Bottom

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PageUnderlay 236

newX="0pt" or "length"
newY="0pt" or "length"
rotate90= "degrees in increments of 90"

>
< PDF source> [1]

</PageUnderlay>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, PackageFiles filter, select, or conversion elements, and
BlankPage.

This element and the PageOverlay element differ from other page content elements in that the content
cannot be distinguished from other page content. Unlike content provided by Header or Watermark
elements, there is no way specify the removal of an overlay or underlay in the DDX document.

A parent document can contain multiple overlays and underlays, all of which are applied to each page in
the parent document.

Only page content from the source page is used. That is, bookmarks, page properties, and page labels are
not incorporated into the parent document.

Forms and annotations (including links) are included only when the embedFormsAndAnnots attribute is
set to true. When form fields are copied, form-level JavaScript segments associated with form fields are
preserved. Document-level JavaScript segments in the source are not preserved.

The page underlay’s visible page size defines its visible content in the resultant document. The orientation
of the underlay is relative to the lower left corner of the PageSize of both the underlay source page and
the destination page.

The PageOverlay and PageUnderlay elements contain a source PDF element from which the overlay
or underlay pages are obtained. The pages to overlay or underlay are applied sequentially to all the pages
in the destination page set. One successive overlay or underlay page (source pages) is applied per
successive destination page. Mismatches can occur between the number of pages in the source pages and
the number of pages in the destination document. Here are the considerations DDX processors use to
resolve such mismatches:

A single-page underlay. In this case, the underlay is repeatedly applied to all pages in the set of
destination pages. A single-page underlay can be a single-page PDF source document. It can also be a
multi-page PDF source document that includes a pages attribute that specifies a single page.

A multi-page underlay that provides more pages than the destination pages. In this case, the
underlay pages are repeated in full or in part.

A multi-page underlay that provides fewer pages than the destination pages. In this case, only the
needed underlay pages are applied. The unneeded pages are skipped.

Category

“Page content” on page 148

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Password 237

Attributes

Password
Provides an access password for the Assembler service to use to open encrypted source documents. You
can specify either the open or master password, depending on which value you know and your
requirements.

<Password>password</Password>

Can be contained in the PasswordAccessProfile element.

Category

“Page properties” on page 147

PasswordAccessProfile
Specifies a named profile containing an access password.

<PasswordAccessProfile
name="xs:string"

>
<Password>

Name Description

embedFormsAndAnnots Optional. Specifies whether to include any existing form fields and
annotations (including links) from the source page when overlaying or
underlaying on the destination pages.

newX Optional. The value, in user space, for shifting the coordinates of the
origin from (0,0) (the lower left corner of the visible page). A positive
value shifts the origin to the right, while a negative value shifts the
origin to the left.

newY Optional. The value, in user space, for shifting the coordinates of the
origin from (0,0) (the lower left corner of the visible page). A positive
value shifts the origin up, while a negative value shifts the origin down.

opacity Optional. Controls the transparency of the source page before
overlaying or underlaying on the destination pages. The value of this
attribute can have the following forms:

? Decimal in the range of .0 to 1.0

? Percentage in the range of 0% to 100%. In this case, the percentage
sign (%) is required.

The default is 100%.

rotate90 Optional. Specifies a rotation setting for the page in increments of 90
degrees. A positive number rotates clockwise and a negative number
rotates counterclockwise.

scale Optional. The factor by which to scale the page.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PasswordEncryptionProfile 238

</PasswordAccessProfile>

Can be contained in the DDX element, which is the DDX root.

The password specified in this element allows the Assembler service to open password-protected source
documents. Such documents can be opened only after an access password is supplied.

The password supplied in this profile must be the owner password (master password) used in those source
documents. This password enables the Assembler service to have unrestricted access to those documents.

The password specified in this element does not change the password protection specified in the result
document.

Category

“Profile” on page 148

Attributes

PasswordEncryptionProfile
Specifies a named profile containing password security settings for the result document.

<PasswordEncryptionProfile
name="xs:string"
compatibilityLevel="Acrobat3 or Acrobat5 or Acrobat6 or Acrobat7 or

Acrobat9"
encryptionLevel="All or NotMetadata or OnlyFileAttachments"

>
<OpenPassword>[0..1]
<Permissions> [0..1]

</PasswordEncryptionProfile>

The default for the compatibilityLevel is Acrobat5.

Can be contained in the DDX element, which is the root element.

Password protection affects access to PDF documents by limiting what users can do with the file,
depending on the password they provide. If an open password is specified for a document, a user must
provide a password to open the document. The user can perform only those tasks allowed in the
document permissions. The OpenPassword element specifies an open password.

If the user provides the owner password (specified in the MasterPassword supplement of the
Permissions element), the user can change the permissions. If the PasswordEncryptionProfile
element applies only an owner password, a user can open the document without providing a password.
However, that user can perform only those tasks allowed in the document permissions.

Name Description

name Required. The name of the PasswordAccessProfile element. The PDF source
element contains an access attribute that can reference the password contained in this
element.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDF 239

Category

“Profile” on page 148

Attributes

PDF
The PDF element is used to describe PDF documents, as described below:

? A PDF result element has a result attribute. It describes the resultant document.

? A PDF source element has a source or sourceMatch attribute. It describes the content to be
assembled into a PDF result element.

Name Description

name Required. Name of the PasswordEncryptionProfile element. The PDF
result element’s encryption attribute uses this name to reference the
profile.

The value of this attribute must differ from the names assigned to other
PasswordEncryptionProfile elements within the same DDX. Also, the
name cannot be None because that value is reserved to indicate that the
result document not be encrypted.

compatibilityLevel Optional. A code specifying the algorithm used to encrypt and decrypt the
document. These algorithms are described in the PDF Reference.

Possible values for this attribute are Acrobat3, Acrobat5 (default),
Acrobat6, Acrobat7,Acrobat9.

A value of Acrobat3 uses 40-bit RC4 encryption. Acrobat5 and later use
128-bit RC4 encryption. Acrobat6 allows metadata to be unencrypted in
an encrypted document and Acrobat7 allows file attachments only to be
encrypted. For Acrobat9, encryption is 256-bit AES, supports FIPs, and
requires "Unlimited Strength Jurisdiction Policy Files" be available in the
Java Runtime Environment (JRE).

encryptionLevel Optional. Specifies the parts of the document that are encrypted. This
attribute can have the following values:

All (default) - The entire document is encrypted, including
metadata and file attachments.

NotMetadata - Excludes document-level metadata from
encryption.

OnlyFileAttachments - Only file attachments are encrypted. This
setting applies only when the compatibilityLevel attribute has
a value of Acrobat7.

This attribute is ignored if the compatibilityLevel attribute is set to
Acrobat3 or Acrobat5.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDF result 240

PDF result
Describes the resultant PDF document in terms of other documents and content. When the result is a PDF
package or portfolio, any child elements of PDF source affecting the content only apply to the resultant
document’s cover sheet. Those child elements not apply to the package files. The PackageFiles
element can be used to affect the content of a package file when it is a modifiable PDF document.
PackageFiles specified with NoPackage or NoPortfolio can supply the required PDF source when
at least one of the package files is a PDF document. In all cases, the PDF result must contain PDF pages.

A PDF result element contains elements and attributes that describe the contents of a resultant PDF
document. A PDF result element cannot be included within any other result element and must contain at
least one PDF source element. The constituent PDF source elements can be nested within a PDFGroup or
Folder element.

<PDF
result="pdf output name"
certification=unspecified or "None"
encryption=unspecified or "None" or "PasswordEncryptionProfile_name"
format="PDF" or "XDP"
initialView= unspecified or "InitialViewProfile_name"
mergeLayers="true" or "false"
pdfa = "xs:string"
readerUsageRights=unspecified or "None"
return="true" or "false"
save=unspecified or "Incremental" or "Full" or "FastWebView"
sortBookmarks="true" or "false"
>

<ArtBox> [0..2, where 2 is allowed for alternating pages]
<Author> [0..1]
<Background>

or <NoBackgrounds> [0..2, where 2 is allowed for alternating pages]
<BlankPage> [0..n]
<BleedBox> [0..2, where 2 is allowed for alternating pages]]
<Bookmarks source> and/or <Bookmarks filter>)[0..n] or

<NoBookmarks> [0..1]
<Comments source> and/or <Comments filter>)[0..n] or <NoComments> [0..1]
<DDXProcessorSetting> [0..1]
< FileAttachments source> [0..n] or <NoFileAttachments> [0..1]
<FilenameEncoding> [0..n]
<FileSize> [0..1]
<Folder> [0..1]
<Footer> or <NoFooters> [0..2, where 2 is allowed for alternating pages]
<JavaScript> [0..n] or <NoJavaScripts>[0..1]
<Keywords> [0..1]
(<Links source> and/or <Links filter>)[0..n] or <NoLinks> [0..1]
<Metadata source> [0..1]
<NoForms> [0..1]

<NoThumbnails> [0..1]
<NoXFA> [0..1]
<Package> or <NoPackage>[0..n]
<PackageFiles> [0..n] or <NoPackageFiles> [0..1]
<PageContent> [0..n]
<PageLabel> [0..1] or <NoPageLabels> [0..1]
<PageMargins> [0..2, where 2 is allowed for alternating pages]

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDF result 241

<PageOverlay> [0..n]
<PageRotation> [0..1]
<PageSize> [0..1]
<PageUnderlay> [0..n]
< PDF source> and/or <PDFGroup> [1..n]
<PDFGenerationSettings> [0..1]
<RichMedia source> [0..1]
<Portfolio> [0..1] or <NoPortfolio> [0..1]
<ReaderRights> [0..1]
<Subject> [0..1]
<TableOfContents> [0..1]
<TargetLocale> [0..1]
<Title> [0..1]
<Transform> [0..1]
<TrimBox> [0..2, where 2 is allowed for alternating pages]
<Watermark>or <NoWatermarks> [0..2, where 2 is allowed for alternating

pages]
<XDP> [0..1]
<XFAConversionSettings> [0..1]

</PDF>

Can be contained in the DDX element, which is the root element.

Category

“Document assembly” on page 143

Attributes

Name Description

result Required. A name to be associated with the assembled PDF document. This
name must be unique among all result elements in the DDX document. The
result can be specified with an External Data URL. (See “External Data URL”
on page 153.)

format Optional. This attribute can have the following values:

PDF (default) - Result document is returned as a PDF document.

XDP - Result document is returned as an XML Data Packaging (XDP)
document. This value can be used only if the base document is an
XFA-based PDF document.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDF result 242

return Optional. Specifies whether the assembled PDF document is returned. This
attribute can have the following values:

true (default) - The assembled PDF document is returned to the client
as a stream.

false - The assembled PDF document is available as transient data,
which can be referenced as source from within a subsequent PDF result
element. In this case, the assembled PDF document is not returned to
the client.

initialView Optional. Specifies the name of an InitialViewProfile element. If this
attribute is not specified, the initial view from the base document is
preserved in the result.

This attribute is ignored for XFA-based documents.

save Optional. Specifies how Acrobat save the result document. If specified, this
attribute can have the following values:

Incremental - Performs an incremental save. This means that changes
to the document are placed at the end of the file, and the bytes
corresponding to the original file are unchanged. Incremental saves are
relative to the base document. That is, the bytes in the result stream
begin with the original bytes of the base document, followed by
updates.

Full - A full save is performed, overwriting any existing incremental
saves. This option does not result in optimization for fast web viewing.

FastWebView - The PDF document is optimized and restructured for
page-at-a-time downloading from web servers. This save results in the
removal of any existing incremental saves.

If this attribute is not specified, the save characteristics depend on the PDF
level. For PDF 1.4 and later, the DDX processor performs an incremental
save, which is relative to the base document. For PDF 1.3 and earlier, the
Assembler service performs a full save.

Note: The removal of existing incremental saves invalidates any signatures,
certification, or reader-enabled rights set on the base document.

encryption Optional. If specified, this attribute can have the following values:

PasswordEncryptionProfile name - This value is the name of the
PasswordEncryptionProfile element with which to encrypt the
result.

None - Specifies that the output must have no encryption regardless of
whether the source base document was encrypted.

If this attribute is not specified and the baseDocument is encrypted, then
the resultant document has the same encryption.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDF result 243

readerUsageRights Optional. If present, the value must be None, indicating that the document
must have all Adobe Reader usage rights removed.

If this attribute is not specified, any existing Adobe Reader usage rights are
retained unless other changes to the document would invalidate its digital
signatures.

If the <ReaderRights> element is present and a Reader Extension service
is available, then the specified Reader Rights overrides the value of None.

pdfa Optional. Name of a PDFAProfile that specifies the type of PDF archive to
which the resultant document conforms. A value of Default specifies that
the default PDF/A profile is used. If not specified, the output does not
conform to PDF/A.

This attribute was added in LiveCycle ES 8.2.

certification Optional. If specified, this attribute can have the following value:

None - Indicates that the result must not contain a certifying (author)
signature.

If this attribute is not specified, the base document’s certifying signature is
retained, if possible. The base document’s certifying signature cannot be
retained in the following situations:

? If the certifying signature appears in a non-base document in an
assembly. Also, the base document’s certification becomes invalid.

? If forms are removed in the result document, by specifying the NoForms
element.

The base document’s certifying signature is lost later in the document’s life
if a user performs a full save on the document. (See the save attribute.)

mergeLayers Optional. Specifies how layers from different source documents are treated.
This attribute can have the following values:

false (default) - Layers from different source documents are kept
distinct in the assembled document. If the layerLabel attribute in the
source document is specified, it modifies the layer names. Otherwise,
the layers names are unmodified.

true - If there are name conflicts in layer names, layers with the same
name are merged to make a single layer with that name.

sortBookmarks If true, bookmarks are sorted relative to their target page numbers in the
resultant document. Only bookmarks that have page destinations within
the resultant document are sorted. Such bookmarks have destinations such
as XYZ, Fit, FitB, FitH, FitV, FitBH, FitBV, and FitR. (See “Sorting bookmarks” on
page 69.)

Bookmarks that do not have page destinations within the resultant
document are added as is. Their position remain nearest to their parent, as
they would fall in the order depending upon the ordering of the
page-numbered Bookmarks.

This attribute was added in LiveCycle ES4 Service Pack 1 (version 9.0.0.1).

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDF source 244

PDF source
Identifies a source of PDF content from one or more input data streams. A PDF source element can be a
single PDF document or a PDF package or portfolio. It can contain other elements that describe content
and properties to replace corresponding items in the source content. A PDF source element must be
contained within a PDF result element and cannot contain another PDF source element.

When the source is a PDF package or portfolio, the cover page and the package files are included. Any
child elements of the PDF source affecting the content only apply to the cover sheet and not to the
package files. The PackageFiles element can be used to affect the content of a package file if it is a
modifiable PDF document.

A PDF source element can be an XDP document that contains PDF content. The XDP format is described
in the XFA Specification, version 2.2 at http://www.adobe.com/go/learn_lc_XFA.

<PDF
source="input name"
sourceMatch=unspecified or "regular expression"
pages="1-last" or "page range"
access=unspecified or "PasswordAccessProfile name"
baseDocument="true" or "false"
bookmarkTitle=unspecified or "xs:string"
includeInTOC="true" [if document is after TOC in result document]or "false"
includeSubFolders="true" or "false"
layerLabel=unspecified or "xs:string"
matchMode="Include" or "Exclude"
required="true" or "false"
select="1-last" or "range specifier"
sortLocale="xs:string"
sortOrder="Ascending" or "Descending"

>
<ArtBox> [0..2, where 2 is allowed for alternating pages]
<Background>

or <NoBackgrounds> [0..2, where 2 is allowed for alternating pages]
<BleedBox> [0..2, where 2 is allowed for alternating pages]
<Bookmarks source> and/or <Bookmarks filter> [0..n]) or

<NoBookmarks> [0..1]
<Comments source> and/or <Comments filter>) [0..n] or

<NoComments> [0..1]
<FileAttachments source> [0..n] or <NoFileAttachments> [0..1]
<Footer> or <NoFooters> [0..2, where 2 is allowed for alternating pages]
<Folder> [0..1]
<Header>

or <NoHeaders> [0..2, where 2 is allowed for alternating pages]
<LinkAlias> [0..n]
<Links source> and/or <Links filter>) [0..n] or <NoLinks> [0..1]
<NoForms> [0..1]
<NoJavaScripts>[0..1]
<NoThumbnails> [0..1]
<NoXFA> [0..1]
<Package> or <NoPackage>[0..n]
<PackageFiles> [0..n] or <NoPackageFiles> [0..1]
<PageContent> [0..n]
<PageLabel> [0..1] or <NoPageLabels> [0..1]
<PageMargins> [0..2, where 2 is allowed for alternating pages]

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDF source 245

<PageOverlay> [0..n]
<PageRotation> [0..1]
<PageSize> [0..1]
<PageUnderlay> [0..n]
<PDFGenerationSettings> [0..1]
<Portfolio> or <NoPortfolio> [0..1]
<RichMedia> [0..1]
<TargetLocale> [0..1]
<Transform> [0..1]
<TrimBox> [0..2, where 2 is allowed for alternating pages]
<Watermark>

or <NoWatermarks> [0..2, where 2 is allowed for alternating pages]
<XFAConversionSettings> [0..1]
<XFAData> [0..1]

</PDF>

Can be contained in any of the following elements: PDF result, PackageFiles filter, conversion, or result,
PDFGroup, Bookmarks result, Bookmarks filter, Links result, Links filter, Comments result, Comments
filter, FileAttachments result, Left, Right, Center, Watermark, Background, PageOverlay,
PageUnderlay, Metadata result, PDFsFromBookmarks, PageContent, DocumentText, and
Portfolio.

Category

“Document assembly” on page 143

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDF source 246

Attributes

Name Description

source Optional, but required if the sourceMatch attribute is not specified. A logical
name associated with a single input data stream, or an ordered list of data
streams. The source can be specified with an External Data URL. See “External
Data URL” on page 153.

Note: DDX processors, such as the Adobe LiveCycle Assembler service,
attempt to convert non-PDF input streams to PDF content.

If both source and sourceMatch attributes are specified, this attribute is used
only if it matches a name entry in the input map.

sourceMatch Optional, but required if the source attribute is not specified. The value is a
regular expression pattern that selects source names and their associated data
streams from the input map or URL.

Source specifies an input map. If source specifies a non-URL name and
sourceMatch is specified, sourceMatch is used only when the source
attribute does not match an entry in the input map or URL.

Source specifies a URL. If the source attribute specifies a URL that
references a folder of files, then sourceMatch can select specific files from
the folder.

The regular expression syntax is a standard regular expression syntax as
implemented in the java.util.regex class for Java.

Depending on the matchMode attribute, the matched documents are either
included or excluded in the assembled document. If more than one name
matches, the names are sorted, as specified in the sortOrder and
sortLocale attributes.

The string value can be specified with an External Data URL.

See also
“External Data URL” on page 153

“Specifying multiple input streams” on page 32

pages Optional. Specifies which pages from the source document to include in the
result document. The default value is 1-last, which signifies the entire
document is included. (See “Page and document ranges” on page 157.)

Note: Document-level file attachments are assembled from a non-base
document when the entire PDF document is part of the assembly. If only
some pages from a non-base document are assembled, then the
document-level file attachments for that PDF are not included.

access Optional. Specifies the name of the PasswordAccessProfile element to
apply when opening the document. This attribute is relevant if the source
document is encrypted.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDF source 247

baseDocument Optional. Identifies the base document and provides the initial structure that
the Assembler service uses to set certain document-level properties of the
result PDF document. These include document properties, form data,
document-level JavaScript code, and viewer preferences. The result document
can contain only one source identified as a base document. Documents other
than the base document contribute only the following content and properties
to the resultant document:

? Pages

? Document components (such as bookmarks, links, file attachments)

? Page labels

? Page content

? Page properties

Document-level components, such as file attachments, are only included from
a document once, even if the document is specified multiple times.

A file mapped to a baseDocument is always required in the input map for the
Assembler service, even if the required attribute is set to "false".

This attribute can have the following values:

true - Identifies the parent PDF source element as the base document.

false (default) - Does not identify the parent PDF source element as
the base document, though a base document is always required. If none
of the source documents in a PDF result are specified as the base
document, the Assembler service determines the base document.

bookmarkTitle Optional. Structures the appearance of bookmarks in the result document by
specifying a bookmark title that identifies the source document bookmarks.
The string can contain built-in keys. The string value can be specified with an
External Data URL that resolves to a string. See “External Data URL” on
page 153.

If this attribute is omitted, no bookmark title precedes the source document
bookmarks. If the bookmarkTitle attribute value is a URL, it is assumed to
return a string attribute. The content and its length are not checked.

includeInTOC Optional. Controls whether the source document is included in a table of
contents created in the result document. This attribute is ignored if the PDF
result element lacks a TableOfContents element. This attribute can have the
following values:

true (default) - Source document bookmarks are included in the table of
contents.

false (default) - Source document bookmarks are not included.

default value - The default value of this attribute depends upon the location
of the TableOfContents element within the PDF result element. All PDF
source elements that appear before the TableOfContents element are
assigned a default value of false as for this attribute. All PDF source
elements that appear after use true as the default value.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDF source 248

includeSubFolder
s

Optional. If true, all files in the folder and subfolders are included. This results in
a list of documents for the PDF source element that maintains the original
folder structure. If false, only the files in the specified folder are included.

LiveCycle 9.0 adds support for this attribute.

layerLabel Optional. Specifies the name for a top-level label under which all the layers of
the source document are grouped. This label enables users of the document to
distinguish between layers from different source documents and to avoid
name conflicts.

matchMode Optional. Specifies whether the match results in the source document being
included or excluded from the document assembly. This attribute can have the
following values:

Include (default) - Includes the matched data streams.

Exclude - Excludes the matched data streams.

required Optional. The default (true) requires that the PDF source element add PDF
content to the assembly. If it does not, the DDX processor declares an error.

If set to false and no data streams are identified for this PDF source element,
the PDF source elements adds no PDF content to the assembly. No error is
declared.

select Optional. Determines which documents are selected when an ordered list of
input streams is provided. The default value is 1-last, indicating that all
streams be selected. For the syntax of specifying ranges, see “Page and
document ranges” on page 157.

sortLocale Optional. Specifies the locale to use for sorting, according to sortOrder,
names matched by the sourceMatch attribute. The value of this attribute
must contain a valid 2-character ISO language code (see ISO 639). Any locale
passes schema validation; however, if the requested locale is not available, a
ValidationException is thrown.

The default value for this attribute is obtained from the TargetLocale
element.

sortOrder Optional. If the regular expression specified in the sourceMatch attribute
matches multiple documents, this attribute specifies the order in which those
documents are sorted. The sort order is used to create an ordered list of
documents. This attribute is not used if the source attribute matches an entry
in the input map.

This attribute can have the following values:

Ascending (default) - Matched documents are sorted in ascending order: A-Z.

Descending - Matched documents are sorted in descending order: Z-A.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDFGroup 249

PDFGroup
Specifies a grouping of source documents to which page properties, page content, and document
components can be applied.

<PDFGroup>
<ArtBox> [0..2, where 2 is allowed for alternating pages]
<Background>

or <NoBackgrounds> [0..2, where 2 is allowed for alternating pages]
<BlankPage> [0..n]
<BleedBox> [0..2, where 2 is allowed for alternating pages]
<Bookmarks source> and/or <Bookmarks filter> [0..n])

or <NoBookmarks> [0..1]
<Comments source> and/or <Comments filter> [0..n])

or <NoComments> [0..1]
< FileAttachments source> [0..n] or <NoFileAttachments> [0..1]
<FilenameEncoding> [0..n]
<Footer>

or <NoFooters> [0..2, where 2 is allowed for alternating pages]
<Header>

or <NoHeaders> [0..2, where 2 is allowed for alternating pages]
<Links source> and/or <Links filter> [0..n] or <NoLinks> [0..1]
<NoForms> [0..1]
<NoJavaScripts> [0..1]
<NoThumbnails> [0..1]
<NoXFA> [0..1]
<PageContent> [0..n]
<PageLabel> [0..1] or <NoPageLabels> [0..1]
<PageMargins> [0..2, where 2 is allowed for alternating pages]
<PageOverlay> [0..n]
<PageRotation> [0..1]
<PageSize> [0..1]
<PageUnderlay> [0..n]
< PDF source> and/or <PDFGroup> [1..n]
<PDFGenerationSettings> [0..1]
<TableOfContents> [0..1]
<TargetLocale> [0..1]
<TrimBox> [0..2, where 2 is allowed for alternating pages]
<Transform> [0..1]

<Watermark>
or <NoWatermarks> [0..2, where 2 is allowed for alternating pages]

<XFAConversionSettings> [0..1]
</PDFGroup>

Can be contained in any of the following elements: PDF result, PDFGroup, Bookmarks result, Bookmarks
filter, Links result, Links filter, Comments result, Comments filter, and DocumentText.

The PDFGroup element provides a convenient way to specify elements that apply to multiple PDF source
elements. All the other child elements of PDFGroup apply to all PDF source elements in the scope of the
PDFGroup element.

PDFGroup elements can be nested. The innermost PDFGroup element must contain at least one PDF
source.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDFsFromBookmarks 250

Category

“Document assembly” on page 143

PDFsFromBookmarks
Single PDF document is split into multiple PDF documents, based on top-level bookmarks.

<PDFsFromBookmarks
encryption="None" or "xs:string"
prefix="xs:string"
save="Full" or "FastWebView"

>
< PDF source> [1]

</PDFsFromBookmarks>

Can be contained in the DDX element, which is the DDX root.

The Assembler service breaks the source document into multiple result documents. It uses the level-one
bookmarks in the source document to determine where to split the source document. Only the first
level-one bookmark on a page is considered.

If the source document is encrypted, the master password must be provided using the
PasswordEncryptionProfile element.

The PDF documents produced for this element are named by concatenating the following text:

(value of the prefix attribute)+(auto-generated 6-digit sequence number)+(bookmark title)+(.pdf)

If any of the characters used to construct a PDF document contain invalid file path characters, the
Assembler service replaces these characters with an underscore (_). The following characters are invalid
file path characters:

? Slash "/"

? Backslash "\"

? Colon ":"

? Ampersand (*)

? Question mark (?)

? Quote (")

? Left angle bracket (<)

? Right angle bracket (>)

? Bar (|)

Any certifying signatures or reader-enabled rights in the source document are invalidated in the result PDF
documents.

Category

“Document properties” on page 146

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDFAProfile 251

Attributes

PDFAProfile
(Since 8.2) Provides settings for conversion to a PDF/A document. The PDF result element’s pdfa attribute
references this element.

<PDFAProfile
compliance="PDF/A-1b, PDF/A-2b, or PDF/A-3b"
name="xs:string"
resultLevel="PassFail or Summary or Detailed"
signatures="ArchiveAsNeeded or AlwaysArchive">
optionalContent = "Visible or All"
verify="true or false"

>
<OutputIntent> [0..1]
<MetadataSchemaExtension> [0..1]

</PDFAProfile>

Can be contained in the DDX element, which is the DDX root. This element was added in LiveCycle ES 8.2.

Attributes

Name Description

encryption Optional. Name of the PasswordEncryptionProfile element to use for
encrypting the result document. This attribute can have the following values:

None (default) - No encryption.

string - Name of the PasswordEncryptionProfile element.

prefix Required. Prefix to use in the names of the result documents.

The DDX processor modifies any invalid characters in the name.

save Optional. Specifies how the result documents are saved. This attribute can have the
following values:

Full (default)

FastWebView - Full save that restructures the result documents for
page-at-a-time downloading from web servers.

Incremental save is not supported.

Name Description

compliance Optional. Compliance level for PDF/A output as either PDF/A-1b, PDF/A-2b,
and PDF/A-3b. The default is PDF/A-1b.

name Required. The name of the PDF/A profile.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference PDFAValidation 252

PDFAValidation
Used to validate PDF/A conformance.

<PDFAValidation
allowCertificationSignatures="true or false"
compliance="PDF/A-1b, PDF/A-2b, or PDF/A-3b"
ignoreUnusedResources="true or false"
resultLevel="PassFail or Summary or Detailed"

/>

Reports whether an input PDF document is PDF/A compliant. This element can have the following
attribute:

Can be contained in the DocumentInformation element.

resultLevel Optional. Specifies the reporting level from the conversion effort.

A value of PassFail reports whether the conversion was successful for the
compliance and options that were specified.

A value of Summary is similar to Acrobat’s PDF/A Preflight results in how it
reports a count of each error encountered.

Detailed attemps to provide enough information to find constructs in the
PDF source that cause violations. There is no ordering of the detailed violations.

The default is PassFail.

optionalContent Indicates how the optional content within the PDF is handled. A PDF/A
document does not allow optional content, so it must either be removed or
converted to content.

A value of Visible converts all visible optional content to content and
remove the remaining optional content.

A value of All converts all optional content to visible content regardless of the
original optional content's visibility.

The default is Visible.

signatures Optional. Specifies whether to archive signatures. The default is
ArchiveAsNeeded. This setting specifies that signatures are left intact unless
it causes the conversion to fail. In cases where an incremental save is possible, it
is also possible to leave the signatures intact.

verify Optional. If verify is true, the conversion saves the converted PDF/A
document and then runs the validation against it. If false, the conversion
reports the success of the conversion based only on unfixable errors found.

The default is true.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Permissions 253

Attributes

Permissions
Specifies document permissions and a master password that enables those permissions to be changed.

<Permissions
copy="Yes" or "No"
edit="All" or "No" or "NotExtract" or "DocAssembly" or "FormFillinSign"

or "CommentsFormFillinSign"
<MasterPassword> [1]
print="No" or "HighResolution" or "LowResolution"

screenReading="Yes" or "No"
>

</Permissions>

Can be contained in the PasswordEncryptionProfile element.

Note: The All value for the edit attribute has been deprecated. If a permission (master) password has
been set on the document, then the least restrictive edit permission is NotExtract, which means
any changes except extracting pages.

The Permissions element describes the actions that can be performed on the document. It also
specifies a master password that allows the permissions to be changed.

Category

“Document properties” on page 146

Name Description

allowCertificationSigna
tures

Determines whether the PDF document is PDF/A compliant. Valid
values are true, false, and notvalidated.

Default value: true

compliance Specifies the PDF/A compliance level. Valid values are PDF/A-1b,
PDF/A-2b, or PDF/A-3b.

Default value: PDF/A-1b

ignoreUnusedResources Specifies whether to ignore resources that are not used. Valid values
are true or false.

Default value: true

resultLevel Optional. Specifies the reporting level from a hypothetical conversion
effort. PassFail reports whether the conversion would be possible
for the compliance and options that were specified. Summary is
similar to Acrobat’s PDF/A Preflight results in how it reports a count of
each error encountered. Detailed attempts to provide enough
information to find the construct in the PDF which is causing a
violation. Note there is no ordering of the detailed violations.

Default value: PassFail.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Permissions 254

Attributes

Name Description

print Optional. Specifies the quality at which the document can be printed. This
attribute can have the following values:

HighResolution (default) - The document can be printed at any
resolution.

LowResolution - The document can be printed at no higher than 150 dpi
resolution (each page is printed as a bitmap image). This setting is available
only if the parent PasswordEncryptionProfile element’s
compatibilityLevel attribute has a value of Acrobat5 or later.

No - The document cannot be printed.

edit Optional. Specifies the permissions for editing the document. This attribute
can have the following values:

NotExtract (default) - Users can perform all editing operations except
extracting pages. All is now the same as NotExtract.

DocAssembly - Users can insert, delete, and rotate pages, as well as create
bookmarks and thumbnail pages. This value is available only if the parent
PasswordEncryptionProfile element’s compatibilityLevel
attribute has a value of Acrobat5 or later.

FormFillinSign - Users can fill forms and add digital signatures in
addition to performing the tasks allowed by this attribute’s DocAssembly
value. This value is available only if the parent
PasswordEncryptionProfile element’s compatibilityLevel
attribute has a value of Acrobat5 or later.

CommentsFormFillinSign - Users can fill forms and add digital
signatures and comments.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Portfolio 255

Portfolio
(Since 9.0) Extends the <Package> element for PDF Portfolios.

Portfolio filter element
As a filter element, the package specification comes entirely from the package specification contained
within the child PDF source element. If the PDF source is not a package, then it is as if the Portfolio
element were specified as the empty <Portfolio/> element.

<Portfolio>
<PDF source> [0..1]
<TargetLocale> [0..1]

</Portfolio>

Can be contained in the elements PDF result and StyledText elements.

A PDF result or source can have either a Portfolio subelement or a Package subelement. It cannot
have both.

Portfolio defining element
The portfolio defining element’s Schema, DisplayOrder, and SortOrder elements define a package
specification.

copy Optional. Specifies whether users can copy text, images, and other content.
This setting is available only if the parent PasswordEncryptionProfile
element’s compatibilityLevel attribute has a value of Acrobat5 or later.

This attribute can have the following values:

Yes (default) - Users can copy text, images, links, forms, and other content.

No - Users cannot copy text, images, and other content.

screenReading Optional. Specifies whether users can use a screen reader to read content from
the document. If users are allowed to do so, they can use the screen reader to
perform these tasks:

? Select text or graphics.

? Copy the selected items into the system buffer.

? Paste the content into another application.

This setting is available only if the parent PasswordEncryptionProfile
element’s compatibilityLevel attribute has a value of Acrobat5 or later.

This attribute can have the following values:

Yes (default) - Users can use a screen reader to copy content from the
document.

No - Users cannot read the document with a PDF screen reader. If set to No,
then copy is set to No, even if not specified.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Resource 256

<Portfolio
styleReference="xs:string">
<ColorScheme> [0..1]
<DisplayOrder> [0..1]
<Header> (portfolio navigation pane) [0..1]
<Navigator> [0..1]
<Schema> [0..1]
<SortOrder> [0..1]
<TargetLocale> [0..1]
<WelcomePage> [0..1]

</Portfolio>

Can be contained in PDF result, PDF source, and StyleProfile.

If Schema is specified within Portfolio, then that is the schema. The same is true, individually, for
DisplayOrder and SortOrder, meaning if DisplayOrder is specified in Portfolio. If the Schema
element is missing from the Portfolio element, then the Schema element value aggregates the
schemas in any PDF package or portfolio sources.

If the Portfolio defining element omits the DisplayOrder or SortOrder elements, the DDX
processor aggregates corresponding replacements from the PDF source documents. This aggregation is
the same as for an omitted Schema element.

Category

“Document assembly” on page 143

Attributes

Resource
(Since 9.0) A resource for a PDF Portfolio collection header or welcome page (which use the
NavigatorTemplate format) or for a navigator.

<Resource
name="xs:string"
source="xs:string"
>

</Resource>

Can be contained in the elements Header (portfolio navigation pane) and Portfolio.

Name Description

styleReference Required. The name of a StyleProfile element that contains a specification
for a PDF Portfolio.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference RichMedia 257

Attributes

RichMedia
(Since 9.0) Attaches a compiled ActionScript program (SWF file) to a page.

<RichMedia
source="xs:string"
page="1" or "page number"
left="72pt" or "length-specifier"
top="372pt" or "length-specifier"
width="400pt" or "length-specifier"
height="300pt" or "length-specifier"

>

</RichMedia>

Can be contained in the elements <PDF> result and <PDF> source.

Attributes

Right
Specifies the right edge of the page as the anchor point for a header or footer. The PageMargins element
defines the right edge.

<Right> [0..1]
<StyledText> or < PDF source> [1]

Name Description

name (Optional) A relative reference to the resource from the Navigator (SWF
content) or Navigator Template XML. If not specified, the name of the
source document is used. The string can be specified with an External
Data URL.

source (Required) An input map key or External Data URL which specifies the
document to add as a resource.

Name Description

source Required. Identifies the SWF content. The source can be specified with an
External Data URL.

page Optional. Specifies the page on which the SWF content is attached.

left Optional. Left alignment of the SWF content on the page. The units are points.

top Optional. Top alignment of the SWF content on the page. The units are points.

width Optional. Width of the display for the SWF content. The width and height are
determined from the SWF content itself. The units are points.

height Optional. Height of the display for the SWF content. The width and height are
determined from the SWF content itself. The units are points.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Schema 258

</Right>

Can be contained in the elements Footer and Header.

The content specified by the child elements is aligned with the right margin (specified by the
PageMargins element). If the StyledText element includes a text-align attribute, that attribute is
ignored.

Note: There is no containment of the text within the right third of the page and there is no auto-wrapping
of text. The text can go off the left side of the page. To ensure text containment and wrapping, place
the text in the rich text p element.

If this element specifies a PDF source element as a child, the first page of the document provides the
content.

Category

“Page content” on page 148

Schema
The Schema element is part of the package specification and defines the metadata (Field) attributes that
can be associated with each package file. There is only one Schema per PDF package or portfolio. The
individual values for the metadata are specified for each package file as described in the PackageFiles
element.

The Schema element can only be a child of a Package element. However, if Schema is not specified, then
it is aggregated from any PDF package sources being included in the assembly.

DDX processors can aggregate a schema from multiple PDF package or portfolio source’s package
specification. In this case, the first schema is from the PDF base document if it is a package. Otherwise, it is
from the first PDF package or portfolio source specified. From that starting point, the schema is merged in
from each PDF package or portfolio source in the order specified in the DDX document.

When DDX processors aggregate schemas, name conflicts occur when multiple schemas contain a Field
with the same name but with different types. When such a conflict occurs, the Field is added and a
warning is logged. The name remains unchanged. If both Fields are marked as being visible, both appear in
the user interface without any distinction. Any element within DisplayOrder and SortOrder that
references this name includes both Fields. However, the order of such identically named Fields is
undefined. Any FieldData element specified within PackageFiles for adding metadata attempts to
use the most appropriate type, but the result is undefined.

DDX processors apply special considerations when aggregating differently named Fields of the following
types. In particular, only the first one specified is kept in the schema. Others of the duplicate type are
discarded.

? Filename

? Description

? ModificationDate

? CreationDate

? Size

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference SortOrder 259

The name stored in a PDF source, which is a package, can contain any sequence of white space characters
that the creating application allows. However, the name, when specified through DDX, is normalized as
follows:

? Leading and trailing white space is stripped.

? Sequences of white space are replaced with a single space character.

Therefore, all comparisons on the name are made using a normalized copy of the name, without modifying
pre-existing names in a package.

As an empty element, the Schema element specifies the default schema.

<Schema/>

which is the equivalent of specifying the following, given the inherited TargetLocale is "en":

<Schema>
<Field name="Index" type="Number" visible="false"/>
<Field name="Name" type="Filename" editable="true"/>
<Field name="Description" type="Description" editable="true"/>
<Field name="Modified" type="ModificationDate" />
<Field name="Size" type="Size" />

</Schema>

For supported locales, the name Field is localized. See “_AdobeCoverSheet” on page 151 for such a list.

As a defining element, the Schema element’s child Field elements specify the schema. If Schema is
empty, then it specifies the default schema. If it is missing from the Package element, the Schema is
aggregated from PDF sources in the assembly that are packages.

It is highly recommended that the DisplayOrder and SortOrder be specified when <Schema> is
specified.

<Schema>
<Field> [0..n]

</Schema>

For more information, see “Field contained in Schema element” on page 180.

Can be contained in Package.

Category

“Document assembly” on page 143

SortOrder
The order of the Field elements contained in the SortOrder element corresponds to the order of the
package files when assembling into a single PDF document. The order also corresponds to the priority
viewing applications apply to the fields when sorting. The first Field specified is the main sorting value.
Additional fields, applied in order, are used when the previous Field does not result in unique values.

The SortOrder element can only be a child of Package. However, if SortOrder is not specified, then
the SortOrder is aggregated from any PDF package or portfolio sources’ package specifications being
included in the assembly.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference String 260

Any Field listed in the SortOrder that does not exist in the Schema is not included and a warning is
logged.

DDX processors aggregate the SortOrder elements from multiple PDF package or portfolio package
specifications in the following steps:

Obtain base SortOrder element. If the base PDF source document is a PDF package or portfolio,
then its SortOrder is used as the base SortOrder. Otherwise, the base SortOrder is obtained from
the first PDF source element that contains a PDF package or portfolio.

Merge subsequent SortOrder elements. For the other PDF source files that contain PDF packages or
portfolios, their SortOrder is merged into the base SortOrder.

If the SortOrder being merged in is a duplicate (meaning that it has the same name value), then it is not
added. If the Field does not exist in the Schema for the result package, then it is not added.

If the SortOrder is not specified, then it is left to the application as to the order in which the metadata is
sorted.

The locale affects the results of sorting the Field values. The inherited TargetLocale element sets the
locale. If no locale is specified, the default is "en".

If SortOrder is empty, then the SortOrder is unspecified. Only if it is missing from the Package
element is the SortOrder aggregated from PDF sources in the assembly that are packages.

<SortOrder>
<Field> [0..n]

</SortOrder>

For more information, see “Field contained in SortOrder element” on page 181.

Can be contained in Package.

Category

“Document assembly” on page 143

String
(Since 9.0) Adds entries to the String name tree in a navigator dictionary.

<String
name="xs:string"
url="URL"

/>

Can be contained in the Navigator source element.

This property has limited usefulness for localization and personalization. The Acrobat Navigator API does
not currently use these properties. This element is similar to the Resource element.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference StyledText 261

Attributes

StyledText
Describes styled text (rich text) content added to the page.

Can be contained in the elements TableOfContentsEntryPattern, Footer, Header, Watermark,
Background, PageContent.

Category

“Page content” on page 148

This expanded section lists the elements that are supported in rich text strings in the DDX language.

The StyledText element describes styled text (rich text strings) to added to the page using content
elements, such as the following:

? Left, Center, and Right elements, which are children of the Header and Footer elements

? Watermark element

? Background element

? PageContent element

? TableOfContentsEntryPattern element

The rich text strings are XML expressions that conform to a subset of the XHTML 1.0 specification. They
must also conform to a limited set of style properties taken from the specification Cascading Style Sheets
Specification, version 2 (www.w3.org/TR/CSS2). This document uses the term CSS to mean the Cascading
Style Sheets Specification, version 2.

Attributes used in the rich text elements

Inheritance

CSS inheritance rules apply to the elements contained in the StyledText element. Under some
circumstances, an attribute can be specified on an element even though it has no meaning on that
element. The attribute is then propagated downward through the descendent elements to the node
where it is used. Such attributes are called inheritable attributes.

Many of the attributes shown in the StyledText element attribute table are inheritable attributes. The
attribute descriptions in the next section indicate which attributes are inheritable.

Name Description

name (Required) Name of the resource string. The name can be provided with an
External Data URL.

url (Required) An input map key or External Data URL that provides the string to
add.

http://www.w3.org/TR/CSS1

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Attributes used in the rich text elements 262

Attributes

The following table describes the attributes used in the StyledText element or its children. The syntax
declarations for each element include relevant attributes, although any of the attributes can be used in
any of the elements.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Attributes used in the rich text elements 263

Name Description

color Optional and inheritable. Color of the enclosed text, leaders, and text
decorations.

font Deprecated. Instead of using the font attribute, use the following individual
font attributes:

? font-family

? font-weight

? font-size

? font-style

Optional and inheritable. A shorthand font property of the following form,
where each font characteristic is optional. The exception is the
line-height characteristic must be preceded by the font-size
characteristic and a slash. Unspecified components of this attribute value are
set to their default values. The descriptions of the individual properties
explain those defaults.

font-style font-weight font-size/line-height
font-family

The values in the following examples are delineated in the table. That is, the
first example below is explained in the first row in the table, and the second
example in the second row.

font="italic 25pt/50pt Helvetica"

font="200 sans-serif"

font="oblique normal normal/normal 'Times New Roman'"

Note: A font-family name in the font attribute must be delimited with single
quotes, if there are spaces within its name. For example, 'Times New
Roman'.

In any given element, you can specify the font attribute or the individual
attributes that describe a font (font-style, font-weight, font-size,
line-height, and font-family). If the font attribute is present in an
element, do not specify any of the individual attributes that describe a font.

Note: * default value

Style Weight Size Line height Family

italic normal*

(400)

25pt 50pt Helvetica

normal* 200 normal*

(12pt)

normal*

(1.2x font size)

sans-serif

(Myriad Pro used)

oblique normal

(400)

normal

(12pt)

normal

(1.2x font size)

Times New
Roman

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Attributes used in the rich text elements 264

font-family Optional and inheritable. Provides a font name, a generic font type, or a
comma-separated list of font names or generic font types. The font
characteristics are used to display the enclosed text. The following list shows
how the Assembler service maps generic font types:

serif to Minion Pro

sans-serif to Myriad Pro

cursive to Minion Pro

fantasy to Minion Pro

monospace to Courier Std

If a list of fonts is provided, the first font containing glyphs for the specified
text is used. If no font family is specified, the Assembler service environment
variables specify a default font family.

Font names that contain a space must be enclosed in single quotes, as shown
below:

font-family="Helvetica, 'Times New Roman', Courier"

Font family name matching requires the exact presence or absence of spaces.

Omit this attribute if it duplicates information in a font attribute that
appears in the same element.

(See “Font-family naming issues” on page 268.)

font-size Optional and inheritable. The font size of the enclosed text. The following list
shows supported values:

12pt (default)

positive length - A length value greater than 0.

Omit this attribute if it duplicates information in a font attribute that
appears in the same element.

font-stretch Optional and inheritable. Specifies the stretch values for a font family. Stretch
values are particular to a font family. The following list shows supported
values, in order of narrowest to widest stretch:

ultra-condensed

extra-condensed

condensed

semi-condensed

normal (default)

semi-expanded

expanded

extra-expanded

ultra-expanded

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Attributes used in the rich text elements 265

font-style Optional and inheritable. Specifies whether the enclosed text is displayed
using a normal or italic (oblique) font. Style values are particular to a font
family. The following list shows supported values:

normal (default)

italic

oblique

Omit this attribute if it duplicates information in a font attribute that
appears in the same element.

font-weight Optional and inheritable. Specifies weight of the font for the enclosed text.
Normal is equivalent to 400 and bold is equivalent to 700. The following list
shows supported values:

normal (default)

bold

Any of the values "100" or "200" or "300" or "400" or "500" or "600" or "700"
or "800" or "900". If a numeric value is specified, it must be a multiple of
100.

Omit this attribute if it duplicates information in a font attribute that
appears in the same element.

leader-pattern Optional and inheritable. Specifies the pattern of spaces, dashes, dots, and
lines used in a leader. A leader is a repetitious pattern of characters that fill a
line. For example, a leader-pattern is typically used between the bookmark
title and bookmark page reference in a table of contents entry. The following
list shows the supported values:

space (default)

dashed

double-dashed

triple-dashed

solid

double

triple

dotted

double-dotted

triple-dotted

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Attributes used in the rich text elements 266

line-height Optional and inheritable. Specifies the line-height of the enclosed text, which
is the same as the distance between the current baseline and the one just
above. When a numerical value is specified, the line height is the font size of
the current element multiplied with the numerical value. DDX processors
handle inheritance differently between numerical values and percentage
values. In particular, when a numerical value is specified, child elements
inherits the factor itself, not the resultant value.

The following values are supported:

normal (normal) - This value is equivalent to 1.2 x font-size.

length - Line height as a length that must not be less than 0.

margin Optional. A shorthand CSS margin property that includes a space-separated,
sequential set of margin values. This attribute uses the following format:

margin-top margin-right margin-bottom margin-left

If margin values are omitted from this sequence, the Assembler service
determines default values as described in the Cascading Style Sheets
Specification, version 2 (www.w3.org/TR/CSS2).

This attribute is ignored in the elements StyledText, span, b, i, and
leader.

This attribute is not inheritable.

margin-top Optional. Sets the top margin of a p element. The attribute value must not be
less than 0.

This attribute is ignored in the elements StyledText, span, b, i, and
leader.

This attribute is not inheritable.

margin-right Optional. Sets the right margin of a p element. The attribute value must not
be less than 0.

This attribute is ignored in the elements StyledText, span, b, i, and
leader.

This attribute is not inheritable.

margin-bottom Optional. Sets the bottom margin of a p element. The attribute value must
not be less than 0.

This attribute is ignored in the elements StyledText, span, b, i, and
leader.

This attribute is not inheritable.

Name Description

http://www.w3.org/TR/CSS1

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Attributes used in the rich text elements 267

margin-left Optional. Sets the left margin of a p element. The attribute value must not be
less than 0.

This attribute is ignored in the elements StyledText, span, b, i, and
leader.

This attribute is not inheritable.

text-align Optional and inheritable. Horizontal alignment of lines in a paragraph. The
following values are supported:

left (default)

right

center

justify

justify-all

This attribute is ignored in the elements span, b, i, and leader.

This attribute is not supported in the DDX Header and Footer elements,
which take alignment instructions from their child elements Left, Center
and Right.

This attribute is inheritable if specified in the p or StyledText element.

text-decoration Optional and inheritable. Specifies special characteristics applied to the
enclosed text. The following values are supported:

none (default)

underline

overline

line-through

text-indent Optional and inheritable. Specifies additional indention of the first line of a
paragraph. A negative value cannot be greater than the paragraph’s
margin-left value.

This attribute is ignored in the elements span, b, i, and leader.

This attribute is inheritable if specified in the p or StyledText element.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Attributes used in the rich text elements 268

Font-family naming issues

Shortcomings in the way CSS specifies font-family names can result in font name collisions. Such collisions
result in the incorrect font being selected to render the associated text. The following table summarizes
the symptoms of such font name collisions and their workarounds.

Caution: Font family name matching requires the exact presence or absence of spaces that the system
uses.

Workaround when a font variation is erroneously used instead of the plain font face

If you use the OTF preferred font family name, collisions can occur on fonts that have decorative variations,
or that have special extensions or subsets. When such collisions occur, the decorative, extension, or subset
form can be chosen over the plain form. The choice depends on the order fonts are inserted into the Font

vertical-align Optional. Specifies vertical positioning of the content described by the
element. The following values are supported:

baseline (default) - Align the baseline of the element (or the bottom, if
the element does not have a baseline) with the baseline of the parent

base - Same meaning as the baseline value.

sub - Subscript the element.

subscript - Same meaning as the sub value.

sup - Superscript the element.

super - Same meaning as the sup value.

superscript - Same meaning as the sup value.

length - Distance from the current baseline to the new baseline.

This attribute is not inheritable.

xml:space Optional and inheritable. Specifies handling for the whitespace characters
carriage return, line feed, and space. The following values are supported:

default (default) - Convert line feeds and carriage returns to spaces and
collapse multiple adjacent whitespace to a single space.

preserve - All spaces, line feeds, and carriage returns are retained as
entered. The line feed is interpreted as a line-break.

Name Description

Desired font Selected font Workaround

Plain Decorative variation, extension, or
subset, as described in “Font
variations, extensions, and subsets”
on page 269

Use the Windows font family name, as
described in “Workaround when a font
variation is erroneously used instead of
the plain font face” on page 268

Decorative
variation,
extension, or
subset

Plain Use the OTF preferred font family
name, as described in “Workaround
when a plain font face is used instead
of a font variation” on page 269

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Attributes used in the rich text elements 269

Manager Module font set. The Mac OS font family name is generally the same as the OTF family name for
Adobe OTF fonts.

To avoid improperly selected variations, specify the Windows font family name rather than the OTF
preferred font family name. Use this workaround only for the improperly selected variations.

Consider the situation when HelveticaNeueLTStd-Bd.otf (plain) and HelveticaNeueLTStd-BdOu.otf (outline)
are installed together on the Font Manager Module. The OTF preferred font family name is
Helvetica Neue LT Std, and the Windows font family name is HelveticaNeueLT Std.

Example: OTF preferred font family yields outline font

<StyledText font-size="14pt" font-family="Helvetica Neue LT Std">
<p font-weight="600">This is erroneously displayed as an outline font.</p>

</StyledText>

Workaround when a plain font face is used instead of a font variation

You can have the opposite situation, where you use the Windows font family name with a variation,
extension, or subset but see the plain font instead. To avoid choosing the wrong font variation in this
situation, use the OTF preferred font family name (Mac OS font family name). Use this workaround only for
improperly selected variations.

If you are using the Windows font family name, you are limited to four or less weight-italic combinations.

Font variations, extensions, and subsets

Specific names are used for font variations, extensions, and subsets.

Decorative variations that may have font family name collisions

The following list of decorative variations may result in collisions within certain font families. These
variation names are used with font family names.

? Borders

? Calm

? Active

? ExtraActive

? Caption

? Display

? Headline

? Cursive

? Decorated

? Gothic

? Grime

? Informal

? Inline

? Ornament[ed,s]

? Outline

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Attributes used in the rich text elements 270

? Fill[ed]

? Shadow[ed]

? Stencil

? Contour

? Open

? Solid

? Dots

? Squiggles

? Sketch

? Tilt

? ZigZag

Extensions or subsets that may have family name collisions

The following list of extensions or subsets may result in collisions within certain font families. These
extension or subset names are used with font family names.

? Address

? NameNum

? SubCapt

? Extension

? Fractions [Fra]

? Initial(s)

? Ligatures

? Phonetic

? Poetica-*

? Pi extensions: -1...-4

? GreekwMathPi

? NewswithCommPi

? Ding[bats]

? Thangs

? ChessDraughts

? DiceDominoes

? EnglishCards

? FrenchCards

? SmallCaps

? 29AB

? 29BC

? 30AB

? 30BC

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Rich text elements 271

? 31AB

? 31BC

? 32AB

? 32BC

? 33BC

? Symbol

Rich text elements
The StyledText element is the root of a rich text expression. (See also “Attributes used in the rich text
elements” on page 261.)

b

Specifies that the bold typeface of a font is applied to an isolated string of text (font-weight="700").

<b
color="black" or "color-specifier"
font-family=unspecified or "font-family-specifier"
font-size="12pt" or "positive length"
font-stretch="normal" or "extra-condensed" or "condensed"

or "semi-condensed" or "semi-expanded" or "expanded" or "extra-expanded"
font-style="normal" or "italic" or "oblique"
line-height="normal" or "positive length"
text-decoration="none" or "underline" or "overline" or "line-through"
vertical-align="baseline" or "base" or "sub" or "subscript" or "sup"

or "super" or "superscript" or "length"
xml:space="preserve" or "default"

>
xs:string
<Built-in key> [0..n]
 [0..n]
<i> [0..n]
 [0..n]
<graphic> [0..n]
<sub> [0..n]
<sup> [0..n]
<leader> [0..n]
<BatesNumber> [0,,n]
<TargetLocale> [0..1]
<String> [0..n]

xs:string

Can be contained in the elements p, i, b, and span and in the element contents described by
xs:string.

BatesNumber

Provides a means to apply identifying labels to a batch of related documents. (See “Applying identifying
labels” on page 115.) For example, legal documents associated with a court case is an example of a batch
of related documents. Each page in the document, or set of documents, is assigned a Bates number. This

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Rich text elements 272

number uniquely identifies that page and establishes its relationship to other Bates numbered
documents.

A Bates number contains a sequentially incremented numeric value plus an optional prefix and suffix. The
prefix + numeric + suffix is known as a Bates pattern. For example, <BatesNumber prefix="Chapter 1 "
numberOfDigits=10 suffix=""/> has a Bates pattern of "Chapter 1 10".

<BatesNumber
start="unspecified or xs:positiveInteger"
numberOfDigits="6 or 6 <= xs:positiveInteger <= 15"
prefix="xs:string"
suffix="xs:string"

/>

Can be contained in the elements p, i, b, and span.

Attributes

Built-in key

Provides the value of a built-in key, where the name of the element reflects the name of a built-in key.

<Built-in key/>

or

<Built-in key
styleReference="reference to named style profile"

/>

Can be contained in the elements p, i, b, and span.

(See “Built-in keys” on page 149.)

Name Description

numberOfDigits Optional. The number of digits which make up the bates number. The
default and minimum value is 6, which produces Bates numbers such
as 000001, 000002, and so on. The value is set to the minimum if a
smaller number is entered. The maximum value is 15. Values greater
than 15 default to 15.

prefix Optional. Any text that appears just before the bates number.

start Optional. If specified, it is the number that is assigned to the first bates
number for that bates pattern. This value must be greater than or
equal to 1. If not specified, the DDX processor provides a mechanism
for setting the default, else the default is 1.

The start value is set once for a given pattern. Additional usage of the
same BatesNumber element with the same pattern continues to
increment sequentially.

suffix Optional. Any text that is to appear just after the Bates number.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Rich text elements 273

Attributes

Example: _Title built-in key replaced by document title from XMP

<StyledText><p><_Title/></p></StyledText>

Example: _DateTime key replaced by date and time styled as specified by the greendate style

<p color="green" font-weight="bold">
<_DateTime styleReference="greendate"/>

</p>

graphic

Inserts a graphic as if it were a character in a line of text.

<graphic
source="xs:string"
width="Auto"or "positive-length"
height="Auto"or "positive-length"
block-align="top" or "middle" or "bottom"
inline-align="left" or "center" or "right"
rotate90="0" or"degrees of rotation in intervals of 90"
scale-to-fit="fit-maximum" or "fit-minimum" or "fit-width" or "fit-height"

or "fit-both" or "do-not-scale"
vertical-align="baseline" or "base" or "sub" or "subscript" or "sup"

or "super" or "superscript" or "length"
/>

Can be contained in the elements p, i, b, span, sub, and sup.

Category

“Page content” on page 148

Attributes

Name Description

styleReference Optional. The name of a StyleProfile element that itself contains a
DatePattern element as appropriate.

Name Description

block-align Optional. Specifies the horizontal placement of the graphic relative to
the specified height.

height Optional. The optimal height of the graphic. The default of "auto" uses
the "intrinsic-height" of the graphic source. It must be greater
than 0.

inline-align Optional. Specifies the vertical placement of the graphic relative to the
specified width.

rotate90 Optional. The reference orientation of the graphic with respect to the
page.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Rich text elements 274

i

Specifies that italics be applied to an isolated string of text (font-style="italic").

<i
color="black" or "color-specifier"
font-family=unspecified or "font-family-specifier"
font-size="12pt" or "positive length"
font-stretch="normal" or "extra-condensed" or "condensed"

or "semi-condensed" or "semi-expanded" or "expanded" or "extra-expanded"
font-weight="normal" or "bold " or "100" or "200" or "300" or "400"

or "500" or "600" or "700" or "800" or "900"
line-height="normal" or "positive length"
text-decoration="none" or "underline" or "overline" or "line-through"
text-indent="0pt" or "length"
vertical-align="baseline" or "base" or "sub" or "subscript" or "sup"

or "super" or "superscript" or "length"
xml:space="preserve" or "default"

>
xs:string
<Built-in key> [0..n]
 [0..n]
<i> [0..n]
 [0..n]
<graphic> [0..n]
<sub> [0..n]
<sup> [0..n]
<leader> [0..n]
<BatesNumber> [0,,n]
<TargetLocale> [0..n]
<String> [0..n]

xs:string</i>

Can be contained in the elements p, i, b, and span and in the element contents described by
xs:string.

scale-to-fit Optional. Specifies a strategy for scaling the graphic to fit the line.

source Required. A logical name in the input map associated with a data
stream containing graphical content to include in the output text.
Currently, only content of type PDF is accepted.

vertical-align Optional. A "length" specifier is an amount by which to adjust the
baseline of the enclosed text. A positive value indicates a superscript; a
negative value indicates a subscript. Otherwise, "base" or
"baseline" is equivalent to 0. "sub" or "subscript" means to
lower the baseline to the proper position for subscripts. "sup",
"super", or "superscript" means to raise the baseline to the
proper position for superscripts. This attribute is not inheritable.

width Optional. The optimal width of the graphic. The default of "auto"
uses the "intrinsic-width" of the graphic source. It must be
greater than 0.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Rich text elements 275

If the font-style attribute is specified, it is ignored.

leader

Specifies the addition of a repetitious pattern of characters (spaces, dashes, dots, or lines) to fill a line.
Typically, leaders appear between the bookmark title and bookmark page reference in a table of contents
entry.

<leader
color="black" or "color"
font-size="12pt" or "positive length"
leader-pattern="space" or "dashed" or "double-dashed" or "triple-dashed"

or "dotted" or "double-dotted" or "triple-dotted" or "solid"
or "double" or "triple"

<Space/>
/>

Can be contained in the elements p, i, b, and span and in the element contents described by
xs:string.

p

Specifies a paragraph of styled text.

<p
color="black" or "color"
font-family=unspecified or "font-family-specifer"
font-size="12pt" or "positive length"
font-stretch="normal" or "extra-condensed" or "condensed"

or "semi-condensed" or "semi-expanded" or "expanded" or "extra-expanded"
font-style="normal" or "italic" or "oblique"
font-weight="normal" or "bold " or "100" or "200" or "300" or "400" or "500"

or "600" or "700" or "800" or "900"
line-height="normal" or "positive length"
margin="margin-shorthand-specifier"
margin-top="0pt" or "nonnegative length"
margin-right="0pt" or "nonnegative length"
margin-bottom="0pt" or "nonnegative length"
margin-left="0pt" or "nonnegative length"
text-align="left" or "right" or "center" or "justify" or "justify-all"
text-decoration="none" or "underline" or "overline" or "line-through"
text-indent="0pt" or "length"
xml:space="preserve" or "default"

>
xs:string
<Built-in key> [0..n]
 [0..n]
<i> [0..n]
 [0..n]
<graphic> [0..n]
<sub> [0..n]
<sup> [0..n]
<leader> [0..n]
<BatesNumber> [0,,n]
<TargetLocale> [0..n]

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Rich text elements 276

<String> [0..n]
xs:string</p>

Can be included in the StyledText element.

The p element is thought of as the paragraph element. An empty paragraph is legal and can be specified
with an empty p element or as containing only white space.

Space

Specifies a space between two styled text elements. The nonbreaking space entity number can
also be used.

<Space/>

Can be contained in the p, b, i, span, and DatePattern elements.

span

Specifies formatting for spans of inline text.

<span
color="black" or "color"
font-family=unspecified or "font-family-specifier"
font-size="12pt" or "positive-length"
font-stretch="normal" or "extra-condensed" or "condensed"

or "semi-condensed" or "semi-expanded" or "expanded" or "extra-expanded"
font-style="normal" or "italic" or "oblique"
font-weight="normal" or "bold " or "100" or "200" or "300" or "400"

or "500" or "600" or "700" or "800" or "900"
line-height="normal" or "positive length"
text-decoration="none" or "underline" or "overline" or "line-through"
vertical-align="baseline" or "base" or "sub" or "subscript" or "sup"

or "super" or "superscript" or "length"
xml:space="preserve" or "default"

>
xs:string

<Built-in key> [0..n]
 [0..n]
<i> [0..n]
 [0..n]
<graphic> [0..n]
<sub> [0..n]
<sup> [0..n]
<leader> [0..n]
<BatesNumber> [0,,n]
<TargetLocale> [0..n]
<String> [0..n]

xs:string

Can be contained in the elements p, i, b, and span.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Rich text elements 277

String

For DDX processors that can resolve URL references, the String element allows text content to come
from an URL. When possible DDX processors treat the resolved URL as a string. If the URL does not resolve
or is unspecified, DDX processors use the String element’s content (if provided). If the URL does not
resolve and there is no text content, then the URL itself is used as the string.

<String url="xs:string">
xs:string

</String>

Can be contained in the elements p, i, b, and span.

Example
? <String url="process:///process_data/@lcStringVar>Dr. Zhivago</String>,

assuming that lcStringVar contains "The King and I", then the text is "The King and I".

? <String url="badURL">Dr. Zhivago</String>, the text is "Dr. Zhivago".

? <String url="badURL"/>, the text is "badURL".

StyledText

The root of a rich text expression.

<StyledText
color="black" or "color-specifier"
font-family=unspecified or "font-family-specifier"
font-size="12pt" or "positive length"
font-stretch="normal" or "extra-condensed" or "condensed"

or "semi-condensed" or "semi-expanded" or "expanded" or "extra-expanded"
font-style="normal" or "italic" or "oblique"
font-weight="normal" or "bold " or "100" or "200" or "300" or "400" or "500"

or "600" or "700" or "800" or "900"
line-height="normal" or "positive length"
text-align="left" or "right" or "center" or "justify" or "justify-all"
text-decoration="none" or "underline" or "overline" or "line-through"
text-indent="0pt" or "length"
xml:space="preserve" or "default"

>
<p> [1..n]
<TargetLocale> [0..1]

</StyledText>

Can be contained in the elements TableOfContentsEntryPattern, Left, Right, Center,
Watermark, Background, and PageContent.

The StyledText element is the container for all rich text within DDX. For attribute inheritance, this
element is the root.

sub

Provides a convenient way to apply vertical-align="subscript" to an isolated text string. The
approximate size of the subscript is 60% of the font size, and the approximate shift is 31% of the font size.
While sub and sup can be nested, only the innermost element is honored.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Rich text elements 278

<sub
color="black" or "color"
font-family=unspecified or "font-family-specifier"
font-size="12pt" or "positive-length"
font-stretch="normal" or "ultra-condensed" or "extra-condensed" or

"condensed" or "semi-condensed" or "semi-expanded" or "expanded" or
"extra-expanded" or "ultra-expanded"

font-style="normal" or "italic" or "oblique"
font-weight="normal" or "bold " or "100" or "200" or "300" or "400"

or "500" or "600" or "700" or "800" or "900"
line-height="normal" or "positive-length"
text-decoration="none" or "underline" or "overline" or "line-through"

>
 [0..n]
<i> [0..n]
 [0..n]
<graphic> [0..n]
<sub> [0..n]
<sup> [0..n]
<leader> [0..n]
<Built-in key> [0..n]
<TargetLocale> [0..1]
xs:string

</sub>

Can be contained in the elements p, i, b, span, sub, and sup, and in the element contents described by
xs:string.

sup

Provides a convenient way to apply vertical-align="superscript" to an isolated string of text. The
approximate size of the superscript is 60% of the font size and the approximate shift is -15% of the font
size. While sub and sup can be nested, only the innermost element is honored.

<sup
color="black" or "color"
font-family=unspecified or "font-family-specifier"
font-size="12pt" or "positive-length"
font-stretch="normal" or "ultra-condensed" or "extra-condensed" or

"condensed" or "semi-condensed" or "semi-expanded" or "expanded" or
"extra-expanded" or "ultra-expanded"

font-style="normal" or "italic" or "oblique"
font-weight="normal" or "bold " or "100" or "200" or "300" or "400"

or "500" or "600" or "700" or "800" or "900"
line-height="normal" or "positive-length"
text-decoration="none" or "underline" or "overline" or "line-through"

>
 [0..n]
<i> [0..n]
 [0..n]
<graphic> [0..n]
<sub> [0..n]
<sup> [0..n]
<leader> [0..n]
<Built-in key> [0..n]

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference StyleProfile 279

<TargetLocale> [0..1]
xs:string</sup>

Can be contained in the elements p, i, b, span, sub, and sup, and in the element contents described by
xs:string.

StyleProfile
The StyleProfile element contains elements that add package specifications, page content, or add a
table of contents (TableOfContents) element. Page content elements include Header and
Watermark elements. The descriptions of content found in a StyleProfile element are external to a
document description. The elements that describe an assembly include styleReference attributes that
can reference StyleProfile element by name.

Named references allow for the creation and maintenance of a repository of named styles for different
types of assemblies. Those styles are included within a DDX document when needed.

<StyleProfile
name="xs:string"

>
<Background> [0..1]
<DatePattern> [0..1]
<Footer> [0..1]
<Header> [0..1]
<Package> [0..1]
<Portfolio> [0..1]
<PageContent> [0..1]
<TableOfContents> [0..1]
<Watermark> [0..1]

</StyleProfile>

Can be contained in the DDX element, which is the DDX root.

The DatePattern element in a style profile can be referenced from the styleReference attribute of
the _DateTime, _Created, and _Modified built-in keys when used within a StyledText element.

Category

“Profile” on page 148

Attributes

Subject
Provides the value for the subject metadata in the result document.

<Subject
value="xs:string"

/>

Name Description

name The name of the StyleProfile element.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference TableOfContents 280

Can be contained in the PDF result element, and the PackageFiles filter, select, or conversion elements.

If specified as a sibling to a Metadata source element, then the Metadata source is imported first and
the subject value overrides the imported Metadata.

Category

“Document properties” on page 146

Attributes

TableOfContents
Specifies a table of contents in the result document.

<TableOfContents
maxBookmarkLevel="1" or "infinite" or "xs:positiveInteger"
bookmarkTitle=unspecified or "name of a bookmark title"
createLiveLinks="true" or "false"
includeInTOC="true" or "false"
toc-backgroundcolor="transparent or color-specifier"
toc-margin="margin-shorthand-specifier"
toc-margin-top-left="0 pt or nonnegative-length-specifier"
toc-margin-right="0 pt or nonnegative-length-specifier"
toc-margin-bottom="0 pt or nonnegative-length-specifier"
toc-margin-left="0 pt or nonnegative-length-specifier"

>

<ArtBox> [0..1]
<Background>

or <NoBackgrounds> [0..2, where 2 is allowed for alternating pages]
<BleedBox> [0..1]
<Footer> or <NoFooters> [0..2, where 2 is allowed for alternating pages]
<Header> or <NoHeaders> [0..2, where 2 is allowed for alternating pages]
<PageContent> [0..n]
<PageLabel> [0..1]
<PageMargins> [0..2, where 2 is allowed for alternating pages]
<PageOverlay> [0..n]
<PageRotation> [0..1]
<PageSize> [0..1]
<PageUnderlay> [0..n]
<TableOfContentsEntryPattern> [0..toclevels]
<TableOfContentsPagePattern> [0..2]
<TargetLocale> [0..1]
<TrimBox> [0..1]
<Watermark>

or <NoWatermarks> [0..2, where 2 is allowed for alternating pages]
</TableOfContents>

Name Description

value Required. Subject to use in the metadata. An empty string blanks out the subject
metadata. The string value can be specified with an External Data URL.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference TableOfContents 281

Note: PageContent adds only the content, not alternateText, as TableOfContent pages are not tagged.

Can be contained in the elements PDF result, PDFGroup, and StyleProfile.

This element has two forms, depending on the appearance of the styleReference attribute:

Reference to a StyleProfile element. If the styleReference attribute is specified, it references the
name attribute of a StyleProfile element that defines the table of contents. Any other attributes or
any child elements in the TableOfContents element are ignored.

Definition of style properties. Otherwise, the appearance of the table of contents is specified in the
element’s other attributes and child elements.

The placement of the TableOfContents element relative to PDF source elements influences the
placement and contents of the table of contents. The Assembler service adds a table of contents just
before the content obtained from the next PDF source element. By default, the entries in the table of
contents include the bookmarks from PDF source elements that come after the TableOfContents
element. (The includeInTOC attribute of PDF source element lets you change the entries added to the
table of contents.)

Category

“Document assembly” on page 143

Attributes

Name Description

bookmarkTitle Optional. Specifies whether a bookmark is created for the table of
contents, and if so, the title of the bookmark. The string value can be
specified with an External Data URL.

This attribute can have the following values:

unspecified (default) - If this attribute is omitted, no bookmark is
created for the table of contents.

bookmark title - A bookmark is created for the table of
contents. The bookmark has the title provided. The string can
contain built-in keys. The new bookmark becomes the top-level
bookmark for the generated table of contents.

maxBookmarkLevel Optional. Specifies the maximum nesting level of bookmarks used to
construct the table of contents. For example, a value of 1 means that
only top-level bookmarks are used to build the table. Further, only
bookmarks that reference pages within the result document are
included in the table of contents.

createLiveLinks Optional. Specifies whether entries in the table of contents have PDF
links associated with them. This attribute can have the following
values:

true (default) - Entries in the table of contents include links to their
destinations

false - Entries in the table of contents do not have links to their
destinations. This setting is useful if the result document is intended
solely for print.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference TableOfContentsEntryPattern 282

TableOfContentsEntryPattern
Specifies the style to apply to table of contents entries.

<TableOfContentsEntryPattern
applicableLevel="all" or "positive non-zero integer"

>
<StyledText> [1]
<TargetLocale> [0..1]

</TableOfContentsEntryPattern>

Can be contained in the TableOfContents element.

Category

“Document assembly” on page 143

includeInTOC Optional. Controls whether the table of contents includes an entry to
itself. The entry is included only when a bookmark title is provided in
the bookmarkTitle attribute. This attribute can have the following
values:

true (default) - If the bookmark title is provided, the table of
contents includes it in the table of contents.

false - The bookmark title (if provided) is omitted from the table
of contents.

toc-backgroundcolor Optional and inheritable. The color of the background area for the
table of contents body region. This attribute was added in LiveCycle ES
8.2.

toc-margin Optional and inheritable. A shorthand CSS margin property of the
form: <margin-top><margin-right><margin-bottom><margin-left>.
This attribute was added in LiveCycle ES 8.2.

toc-margin-top Optional and inheritable. Sets the top margin of the table of contents
background area. This value must not be less than 0. This attribute was
added in LiveCycle ES 8.2.

toc-margin-right Optional and inheritable. Sets the right margin of the table of contents
background area. This value must not be less than 0. This attribute was
added in LiveCycle ES 8.2.

toc-margin-bottom Optional and inheritable. Sets the bottom margin of the table of
contents background area. This value must not be less than 0. This
attribute was added in LiveCycle ES 8.2.

toc-margin-left Optional and inheritable. Sets the left margin of the table of contents
background area. This value must not be less than 0. This attribute was
added in LiveCycle ES 8.2.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference TableOfContentsPagePattern 283

Attributes

TableOfContentsPagePattern
Defines the style for table of contents pages.

<TableOfContentsPagePattern
pages="1-last" or "1" or "2-last"
toc-backgroundcolor="transparent or color-specifier"
toc-margin="margin-shorthand-specifier"
toc-margin-top-left="0 pt or nonnegative-length-specifier"
toc-margin-right="0 pt or nonnegative-length-specifier"
toc-margin-bottom="0 pt or nonnegative-length-specifier"
toc-margin-left="0 pt or nonnegative-length-specifier"

>
<ArtBox> [0..1]
<Background> or <NoBackgrounds> [0..2, where 2 is allowed for

alternating pages]
<BleedBox> [0..1]
<Footer> or <NoFooters> [0..2, where 2 is allowed for alternating pages]
<Header> or <NoHeaders> [0..2, where 2 is allowed for alternating pages]
<PageContent> [0..n]
<PageLabel> [0..1, where 2 is allowed if applied to alternating pages]
<PageMargins> [0..2, where 2 is allowed for alternating pages]
<PageOverlay> [0..n]
<PageRotation> [0..1]
<PageSize> [0..1]
<PageUnderlay> [0..n]
<TargetLocale> [0..1]
<TrimBox> [0..1]
<Watermark> or <NoWatermarks> [0..2, where 2 is allowed for

alternating pages]
</TableOfContentsPagePattern>

Note: PageContent adds only the content, not alternateText, as TableOfContent pages are not tagged.

Can be contained in the TableOfContents element.

This element specifies the style applied to one or more pages of the table of contents described by the
parent TableOfContents element.

The toc-background and related toc-margin attributes are used to set up the background for the
area occupied by the TOC listings.

? The left border of the toc-background area is drawn inside the left page margin.

? The top border is drawn at the bottom of the padding on the header area.

Name Description

applicableLevel Optional. The bookmark level for which this entry pattern is defined. This
attribute can have the following values:

all (default) - Entry pattern applies to all bookmark levels.

positive non-zero integer - A single bookmark level to which the entry
pattern applies.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference TargetLocale 284

? The right border is drawn inside the right page margin.

? The bottom border is the top of the padding on the footer area.

? The content/layout area of the background is inset from each of the four borders by the corresponding
side’s toc-margin setting.

? If backgrounds are also desired on the header or footer areas, they must be set up individually on the
<Header> and <Footer> entries in the <TableOfContentsPagePattern>.

Category

“Document assembly” on page 143

Attributes

TargetLocale
The TargetLocale indicates the locale ID to apply to strings for the following purposes:

? Sorting a list of source names specified by the PDF source, XDP source and PackageFiles source
elements.

Name Description

pages Optional. Associates the style described by the
TableOfContentsPagePattern element with pages in the table of
content described by the parent TableOfContents element. This
attribute can have the following values:

1-last (default) - The style applies to all pages in the table of
contents.

1 - The style applies to the first page.

2-last - The style applies to all pages in the table of contents but the
first page.

toc-backgroundcolor Optional. The toc-background and related toc-margin attributes are used
to set up the background for the area occupied by the TOC listings. This
attribute was added in LiveCycle ES 8.2.

toc-margin Optional. A shorthand CSS margin property of the form:
<margin-top><margin-right><margin-bottom><margin-left>. This
attribute was added in LiveCycle ES 8.2.

toc-margin-top Optional: Sets the top margin of the table of contents background area.
Must not be less than 0. This attribute was added in LiveCycle ES 8.2.

toc-margin-right Optional. Sets the right margin of the table of contents background area.
Must not be less than 0. This attribute was added in LiveCycle ES 8.2.

toc-margin-bottom Optional. Sets the bottom margin of the table of contents background
area. Must not be less than 0. This attribute was added in LiveCycle ES 8.2.

toc-margin-left Optional. Sets the left margin of the table of contents background area.
Must not be less than 0. This attribute was added in LiveCycle ES 8.2.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Title 285

? Sorting names specified by Schema for a PDF package or portfolio when exporting package files or
assembling package files into a single PDF file.

? Selecting a localized version of the default Schema for a package or portfolio specification.

? Selecting a localized version of a navigator from a multi-lingual .NAV file.

? Selecting a localized version of the built-in "_AdobeCoverSheet" PDF document.

? Formatting text specified within the StyledText element.

? Converting strings to a dateTime value when working with DatePattern elements.

The locale is an ID consisting of optional language, script, country, and variant fields in that order,
separated by underscores, followed by an optional keyword list. The script, if present, is four characters
long. The character length distinguishes it from a country code, which is two characters long. A keyword
list begins with an at-sign ('@') and consists of one or more keyword/value pairs separated by commas. The
recommended format is a 2-letter language code followed by an underscore and then a 2-letter country
code. For example, ja_JP.

TargetLocale can be specified globally as well as locally. Therefore, TargetLocale can be specified as
a child of the DDX root element. The locale ID applies to its parent element and inherits elements that can
also contain TargetLocale elements. The most local TargetLocale specification is the one used at
any point in the DDX document.

There is a legacy case of a locale specified as an attribute of another element. The PDF source element
includes the attribute "sortLocale" used for sorting a list of input names (via the "sourceMatch"
attribute). If not specified, "sortLocale" inherits from a more global specification of TargetLocale. A
TargetLocale contained within a PDF source element is considered more local than its "sortLocale"
attribute.

If no locale is specified, the default locale ID is specific to the DDX processor. The LiveCycle Assembler
service infers the default locale ID from the user's context. If it cannot be inferred, the locale defaults to en.

<TargetLocale locale="xs:string"/>

Can be contained in DDX, PDF result, PDF source, PDFGroup, TableOfContentsEntryPattern,
TableOfContents, TableOfContentsPagePattern, BlankPage, Bookmarks result, Bookmarks
filter, Comments result, Comments filter, Links result, Links filter, Package, PackageFiles,
Portfolio, StyleProfile, StyledText, p, span, i, b, sub, sup, Header, Footer, Watermark,
PageContent,and Background.

Category

“Document properties” on page 146

Attributes

Title
Specifies the value for the title metadata in the result document.

Name Description

locale Required. A string representation of the locale as defined in RFC 3066. The string value
can be specified with an External Data URL. Examples are "en_US", "de", and
"zh_Hans".

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Transform 286

<Title
value="xs:string"

/>

Can be contained in the PDF result element and the PackageFiles filter, select, or conversion elements.

If specified as a sibling to a Metadata source element, then the Metadata source is imported first and
the title value overrides the imported Metadata.

Category

“Document properties” on page 146

Attributes

Transform
Specifies transformations applied to preexisting page contents.

<Transform
scale="1.0" or "percentage or decimal"
newX="0pt" or "length"
newY="0pt" or "length"
rotate90="0" or "degrees of rotation in intervals of 90"

/>

Can be contained in the elements PDF result, PDF source, PackageFiles filter, select, or conversion
elements, and PDFGroup.

This element enables the page contents to be scaled, translated, and rotated, without changing the page
orientation. In contrast, the PageRotation element affects the page orientation. The Transform
element does not apply to new content specified with page content elements. The Header element is a
page content element. Also, it does not apply to new pages specified with the TableOfContents or
BlankPage elements.

Category

“Page content” on page 148

Attributes

Name Description

value Required. Title name to use in the metadata. The string value can be specified with an
External Data URL. An empty string blanks out the title name.

Name Description

scale Optional. The percentage by which the page contents are scaled. The value can be a
decimal in the range of .0 to 1.0 or a percentage in the range of 0% to 100%. In the
latter case, the percentage sign (%) is required.

newX Optional. Units by which the X-axis origin is shifted. A positive value shifts the origin
to the right, and a negative value shifts it to the left.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference TrimBox 287

TrimBox
Defines the intended dimensions of the finished page after printing and trimming.

<TrimBox
left="0pt" or "length"
top="0pt" or "length"
right="0pt" or "length"
bottom="0pt" or "length"
alternation="None" or "OddPages" or "EvenPages"

/>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
TableOfContentsPagePattern, PackageFiles filter, select, or conversion elements, and
BlankPage.

This element is intended for use by print professionals only.

Category

“Page properties” on page 147

Attributes

newY Optional. Units by which the Y-axis origin is shifted. A positive value shifts the origin
upward, and a negative value shifts it downward.

rotate90 Optional. Specifies a rotation setting for the page in increments of 90 degrees. A
positive number rotates the axes clockwise, and a negative number rotates them
counter clockwise.

Name Description

Name Description

left Optional. Width of the margin as measured from the left side of the page to the
left side of the trim box. In this case, the page is the visible page as viewed in
Acrobat.

top Optional. Width of the margin as measured from the top of the page to the top
of the trim box. In this case, the page is the visible page as viewed in Acrobat.

right Optional. Width of the margin as measured from the right side of the page to the
right side of the trim box. In this case, the page is the visible page as viewed in
Acrobat.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference TrimBox 288

bottom Optional. Width of the margin as measured from the bottom of the page to the
bottom of the trim box. In this case, the page is the visible page as viewed in
Acrobat.

alternation Optional. Specifies whether the element’s settings apply to all pages or to
alternating pages. This attribute can have the following values:

None (default) - Settings apply to all pages.

OddPages - Settings apply to odd pages only.

EvenPages - Settings apply to even pages only.

Pages are considered odd or even depending on their ordinal page number in
the result document.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Watermark 289

Watermark
Provides styled text or a PDF file for placement over the existing page content. The Watermark element
applies a watermark to all pages in the scope of its parent element. It replaces any preexisting watermarks
on those pages if the replaceExisting attribute has not been specified or is "true".

The replaceExisting attribute lets you replace or retain pre-existing watermarks when adding one
new watermark. If replaceExisting is "false", a new Watermark is added to the existing
Watermark. There can only be one watermark specified (added) per page. Transient results allow for the
addition of multiple watermarks.

Note: This element removes only watermarks added with Acrobat 8 or earlier. It cannot remove
watermarks added with later versions. Acrobat 9 and later does not distinguish between
watermarks, backgrounds, headers, and footers. Also, this element does not remove watermarks
that contain Bates numbers.

If the watermark content is provided in a PDF source element, the first page from the source document is
used for the watermark.

Use the Background element to place content behind the existing page content.

<Watermark
alternation="None" or "OddPages" or "EvenPages"
fitToPage="true" or "false"
horizontalAnchor="Left" or "Center" or "Right"
horizontalOffset="0pt" or "length"
opacity="100%" or "percentage"
rotation="0" or "xs:integer"
scale="100%" or "percentage"
showOnScreen="true" or "false"
showWhenPrinting="true" or "false"
verticalAnchor="Top" or "Middle" or "Bottom"
verticalOffset="0pt" or "length"
replaceExisting="true" or "false"

>
<StyledText> or < PDF source> [1]
<TargetLocale> [0..1]

</Watermark>

Can be contained in the elements PDF result, PDF source, PDFGroup, TableOfContents,
PackageFiles filter, select, or conversion, TableOfContentsPagePattern, BlankPage, and
StyleProfile.

Category

“Page content” on page 148

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference Watermark 290

Attributes

Name Description

alternation Optional. Specifies whether the element’s settings apply to all pages or to
alternating pages. This attribute can have the following values:

None (default) - Settings apply to all pages.

OddPages - Settings apply to odd pages only.

EvenPages - Settings apply to even pages only.

Pages are considered odd or even depending on their ordinal page number
in the result document.

fitToPage Optional. Specifies whether to scale the watermark content to fit the page.
This attribute can have the following values:

false (default) - Watermark content is scaled according to the scale
attribute.

true - Watermark content is forced to fit the boundaries of the page
size, by either expanding or shrinking the text. The scale attribute is
ignored.

horizontalAnchor Optional. Specifies a horizontal anchor point, relative to the PageMargins
element of the page on which the watermark is placed. The
horizontalOffset attribute modifies the placement relative to this
anchor.

Left - Left page margin

Center (default) - Midpoint between the left and right margins

Right - Right margin

horizontalOffset Optional. Offset from the horizontal anchor point specified in the
horizontalAnchor attribute. A positive value moves the watermark
right, while a negative value moves it left.

opacity Optional. Transparency of the watermark or background text. The value of
this attribute can have the following forms:

? Decimal in the range of .0 to 1.0

? Percentage in the range of 0% to 100%. In this case, the percentage sign
(%) is required.

The default is 100%.

replaceExisting Optional. If set to false, then any pre-existing watermarks in the source
PDF document remain. The specified watermark does not replace any
existing watermarks.

rotation Optional. Rotation of the watermark upon the page. The valid range is -360
to 360 degrees.

scale Optional. Scaling of the watermark. The valid range is 8% to 3200%. The
value can be a decimal in the range of .0 to 1.0 or a percentage in the range
of 0% to 100%. In the latter case, the percentage sign (%) is required.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference WelcomePage 291

WelcomePage
Specifies the Welcome Page used in a PDF Portfolio.

<WelcomePage source="xs:string">
<Resource> [0..n]

</WelcomePage>

Can be contained in the Portfolio element.

The welcome page can be a PDF. It can also be an XML document that conforms to the Template Navigator
specification.

The welcome page is a resource with a name of "welcome/model.xml". If the welcome page source is
specified, then all resources excluding the Header ("header/model.xml") in the PDF source are specified.
Only resources referenced by a "header/model.xml" or "welcome/model.xml" are visible in the PDF
Portfolio navigation pane (also called the PDF Portfolio Layout pane). If the source specified is an XML
source, then any resources it references must also be specified. Such resources include images and
localized strings.

Note: Acrobat 9 does not fully support the spec). If the portfolio welcome page is designed with the
Acrobat user interface, there are no issues of whether the implementation is supported.

showOnScreen Optional. Controls whether the watermark or background is displayed
when pages are viewed with an application such as Acrobat. This attribute
can have the following values:

true (default) - The watermark is displayed.

false - The watermark is not displayed.

showWhenPrinting Optional. Controls whether the watermark or background is included when
pages are printed with an application such as Acrobat. This attribute can
have the following values:

true (default) - The watermark is included.

false - The watermark is not included.

verticalAnchor Optional. Specifies a vertical anchor point, relative to the PageMargins
element of the page on which the watermark is placed. The
verticalOffset attribute modifies the placement relative to this anchor.

Top - Top page margin

Middle (default) - Midpoint between the top and bottom margins.

Bottom - Bottom margin

verticalOffset Optional. Offset from the vertical anchor point specified in the
verticalAnchor attribute. A positive value moves the watermark up,
while a negative value moves it down.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference XDP 292

Attributes

XDP
(Since 9.0) The XDP element allows you to insert part or all of an Adobe XML form (an XFA template) into a
root XDP document. This process is called XFA dynamic assembly. The XDP element also allows you to
package an XDP document as a PDF document.

XDP (generic)
(Since 9.0) Describes an XDP assembly that is dynamically assembled into a PDF document. After the
children of the XDP element are assembled, the result is converted to a PDF for assembly with the siblings
of the XDP element. The XDP (generic) element is the only form of the XDP element that can be a child of
the PDF result element.

<XDP
aggregateXDPContent="None" or "All"

>
<XDPContent> | <XDP source> | <XFAData> [0..n]

</XDP>

Can be contained in the PDF result element.

Note: It is an error to assemble multiple XDP (generic) elements. To avoid this error, include the NoXFA or
NoForms element as a sibling of the XDP (generic) elements. Alternatively, use the XDP result
element to assemble the XDP forms, and then include that result as an XDP source within an XDP
(generic) element. (See “Creating and Modifying Acrobat and XML (XFA) Forms” on page 41 and
Guidelines for Dynamically Assembling Customized Forms and Documents.)

Name Description

source Optional. Input map key or URL mapped to either a PDF document which
contains a Welcome Page or to an XML document. If the source is a PDF, then
more resources than are necessary can be included. If the source attribute is not
specified, then it defaults to the identified base document for the <PDF> result.

http://www.adobe.com/go/learn_lc_dynamic_assembly_9

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference XDP result 293

Attributes

XDP result
(Since 9.0) Describes the contents to assemble into an XDP document.

<XDP
result="xs:string"
aggregateXDPContent="None" or "All"
removeInsertionPoints= "xs:string"
resolveAssets="none" or "all" or "absolute" or "relative"
retainInsertionPoints= "xs:string"
return="true" or "false"

>

<XDPContent> [0..n]
<XDP source> [1..n]

</XDP>

Can be contained in the DDX element.

Name Description

aggregateXDPCon
tent

Optional. A string that controls whether inner-most XDPContent overrides or
adds to XDPContent elements in an outer (higher) level. Here are the supported
values:

? All Indicates that all of the XDP content from every level are added at the
insertion point in inner-to-outer level order.

? None (default) Indicates that within a XDPContent hierarchy the most inner
level XDPContent is for an insertion point. If there are additional
XDPContent elements applied to the same insertion point at an outer level,
then that XDPContent is not inserted. The insertion is blocked because the
insertion point has already been used.

If aggregateXDPContent is None, then only the local scope is used. So, you
insert the fragment into the insertion point defined as the child. If the same
insertion point is used as a sibling, then it is ignored. Whereas if
aggregateXDPContent=All, then the insertion point is reused as a sibling
and the fragments inserted are aggregated together.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference XDP result 294

Attributes

Name Description

result Required. Name of the assembled XDP document. The name can be provided
with an External Data URL. See “External Data URL” on page 153.

resolveAssets (Since 10.0) Optional. A string that specifies how the referenced images in the
source documents must be resolved in the PDF. You can specify the value for this
attribute either for the XDP result attribute or for individual source XDP
documents. Supported values are:

? none Indicates that none of the image references are resolved. This is the
default value.

? all Indicates that all the images linked through absolute or relative
references by the source XDP documents are embedded in the result XDP
document.

? absolute Indicates that only images linked through absolute references in
the source XDP documents are embedded in the result XDP document.

? relative Indicates that only images linked through relative references in
the source XDP documents are embedded in the result XDP document.

aggregateXDPCon
tent

Optional. A string that controls whether inner-most XDPContent overrides or
adds to XDPContent elements in an outer (higher) level. Here are the supported
values:

? All Indicates that all of the XDP content from every level is added at the
insertion point in inner-to-outer level order.

? None (default) Indicates that within a XDPContent hierarchy the most inner
level XDPContent is for an insertion point. If there are additional
XDPContent elements applied to the same insertion point at an outer level,
then that XDPContent is not inserted. The insertion is blocked because the
insertion point has already been used.

If aggregateXDPContent is None, then only the local scope is used. So, you
insert the fragment into the insertion point defined as the child. If the same
insertion point is used as a sibling, then it is ignored. Whereas if
aggregateXDPContent=All, then the insertion point is reused as a sibling
and the fragments inserted are aggregated together.

removeInsertion
Points

Optional. A string that specifies which insertion points to remove after the form
fragments are assembled into the XDP result. Here are the supported values:

? All All of the insertion points are removed

? None (default) None of the insertion points are removed.

? A comma-separated list of the insertion points to remove.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference XDP source 295

XDP source
Specifies XDP source content to assemble into the XDP result.

<XDP source="xs:string"
baseDocument = ="true" or "false"
fragment="xs:string"
includeSubFolders="true" or "false"
matchMode="Include" or "Exclude"
removeInsertionPoints="xs:string"
resolveAssets="none" or "all" or "absolute" or "relative"
required="true" or "false"
retainInsertionPoints="xs:string"
select="1-last" or "range"
sourceMatch = "xs:string"
sortOrder="Ascending" or "Descending"
sortLocale="xs:string"

>
<XDPContent> [0..n]

</XDP>

Can be contained in the elements XDP result and XDP generic.

retainInsertion
Points

Optional. A string that specifies the insertion points to retain. Here are the
supported values:

? All (default) All of the insertion points are retained

? None None of the insertion points are retained.

? A comma-separated list of the insertion points to retain.

If retainInsertionPoints and removeInsertionPoints attributes are
specified for the same XDP result, the removeInsertionPoints value is used
and the retainInsertionPoints value is ignored.

return Optional. Specifies whether the assembled XDP document is returned. This
attribute can have the following values:

true (default) - The assembled XDP document is returned to the client as a
stream.

false - The assembled XDP document is available as transient data, which
can be referenced as source from within a subsequent XDP result element. In
this case, the assembled XDP document is not returned to the client.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference XDP source 296

Attributes

Name Description

source Optional, but required if the sourceMatch attribute is not specified. A logical
name associated with a single input data stream or an ordered list of data
streams. The source can be specified with an External Data URL. See “External
Data URL” on page 153.

If both the source and sourceMatch attributes are specified, this attribute is
used only if it matches a name entry in the input map.

baseDocument Optional. Identifies the base document and provides the initial structure that the
Assembler service uses to set certain document-level properties of the result
XDP document. These include document properties, form data, document-level
JavaScript code, and viewer preferences. The result document can contain only
one source identified as a base document. Documents other than the base
document only contribute the following items to the resulting document:

? Pages

? Document components (such as bookmarks, links, file attachments)

? Page labels

? Page content

? Page properties

Document-level components, are only included from a document once, even if
the document is specified multiple times.

A file mapped to a baseDocument is always required in the input map for the
Assembler service, even if the required attribute is set to "false".

This attribute can have the following values:

true - Identifies the parent XDP source element as the base document.

false (default) - Does not identify the parent XDP source element as the
base document, though a base document is always required. If none of
the source documents in an XDP result are specified as the base
document, the DDX processor determines the base document.

fragment Optional. A string that identifies the form fragments to include in the XDP result.
The name corresponds to the names of subforms in the XDP forms that this
element identifies. The value can be an External Data URL that resolves to a
string.

If fragment is omitted, the entire XDP form specified by this element is included
in the XDP result.

includeSubFolde
rs

Optional. If true, all files in the folder and subfolders are included. The result is a
list of documents for the XDP source element. If false, only the files in the
specified folder are included.

matchMode Optional. Specifies whether to include the matched results in the resultant
document. This attribute can have the following values:

Include (default) - Includes the matched data streams.

Exclude - Excludes the matched data streams.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference XDP source 297

removeInsertion
Points

Optional. A string that specifies which insertion points to remove after the form
fragments are assembled into the XDP result. Here are the supported values:

? All All of the insertion points are removed

? None (default) None of the insertion points are removed.

? A comma-separated list of the insertion points to remove.

required Optional. The default (true) requires the element to add XDP content to the
assembly. If no XDP content is added, then the DDX processor declares an error.

If set to false and no data streams are identified for this element, then this
element does not contribute any XDP content to the assembly. No error is
declared.

resolveAssets (Since 10.0) Optional. A string that specifies how the referenced images in the
source documents must be resolved in the PDF. You can specify the value for this
attribute either for the XDP result attribute or for individual source XDP
documents. Supported values are:

? none Indicates that none of the image references are resolved. This is the
default value.

? all Indicates that all the images linked through absolute or relative
references by the source XDP document are embedded in the result XDP
document.

? absolute Indicates that only images linked through absolute references in
the source XDP documents are embedded in the result XDP document.

? relative Indicates that only images linked through relative references in
the source XDP documents are embedded in the result XDP document.

retainInsertion
Points

Optional. A string that specifies the insertion points to retain. Here are the
supported values:

? All (default) All of the insertion points are retained

? None None of the insertion points are retained.

? A comma-separated list of the insertion points to retain.

If retainInsertionPoints and removeInsertionPoints attributes are
specified for the same XDP result, the removeInsertionPoints value is used
and the retainInsertionPoints value is ignored.

select Optional. Specifies which streams from the source document to include in the
result document. The default value is 1-last, which signifies the entire
document is included. (See “Page and document ranges” on page 157.)

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference XDPContent 298

XDPContent
(Since 9.0) Specifies XDP content to insert into the XDP source or result being specified.

<XDPContent source="xs:string"
fragment="xs:string"
includeSubFolders="true" or "false"

sortOrder Optional. If the regular expression specified in the sourceMatch attribute
matches multiple documents, this attribute specifies the order in which those
documents are sorted. The sort order is used to create an ordered list of
documents. This attribute is not used if the source attribute matches an entry
in the input map.

This attribute can have the following values:

Ascending (default) - Matched documents are sorted in ascending order: A-Z.

Descending - Matched documents are sorted in descending order: Z-A.

sortLocale Optional. Specifies the locale to use for sorting, according to sortOrder, names
matched by the sourceMatch attribute. The value of this attribute must
contain a valid 2-character ISO language code (see ISO 639). Any locale passes
schema validation; however, if the requested locale is not available, a
ValidationException is thrown.

The default value for this attribute is obtained from the TargetLocale
element.

sourceMatch Optional, but required if the source attribute is not specified. The value is a
regular expression pattern that selects source names and their associated data
streams from the input map or URL.

Source specifies an input map. If source specifies a non-URL name and
sourceMatch is specified, sourceMatch is used only when the source
attribute does not match an entry in the input map or URL.

Source specifies a URL. If the source attribute specifies a URL that
references a folder of files, then sourceMatch can select specific files from
the folder.

The regular expression syntax is a standard regular expression syntax as
implemented in the java.util.regex class for Java.

Depending on the matchMode attribute, the matched documents are either
included or excluded in the assembled document. If more than one name
matches, the names are sorted, as specified in the sortOrder and
sortLocale attributes.

The string value can be specified with an External Data URL.

See also
“External Data URL” on page 153

“Specifying multiple input streams” on page 32

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference XDPContent 299

insertionPoint="xs:string"
matchMode="Include" or "Exclude"
removeInsertionPoints="xs:string"
required="true" or "false"
retainInsertionPoints="xs:string"
select="1-last" or "document range specifier"
sortLocale="xs:string"
sortOrder="xs:string"
sourceMatch="xs:string"

>
<XDPContent> [0..n]

</XDPContent>

Can be contained in the elements XDP result, XDP source, and XDP generic.

Category

“Document assembly” on page 143

Attributes

Name Description

source Optional, but required if the sourceMatch attribute is not specified. A
logical name associated with a single input data stream or an ordered list of
data streams. The source can be specified with an External Data URL. See
“External Data URL” on page 153.

If both the source and sourceMatch attributes are specified, this
attribute is only used if it matches a name entry in the input map.

fragment Optional. A string that identifies the XDP content to insert into the parent
element’s XDP document. The name corresponds to the names of subforms
in the XDP form that this element identifies.

If fragment is omitted, the entire XDP document specified by this attribute is
inserted into the parent element’s XDP document.

The value can be an External Data URL that resolves to a string.

Form designers assign names to XML form templates by using LiveCycle
Designer ES4. The forms are saved as XDP documents.

includeSubFolders Optional. If true, all files in the folder and subfolders are included. The result
is a list of documents for the XDP source element. If false, only the files in the
specified folder are included.

insertionPoint Required. Name of the insertion point where this element’s XDP content is
inserted. The insertion point is a property of the parent element’s XDP
document. The value can be an External Data URL that resolves to a string.

Form designers add insertion points in XML form templates by using
LiveCycle Designer ES4. The forms are saved as XDP documents.

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference XDPContent 300

matchMode Optional. Specifies whether to include the matched results in the resultant
document. This attribute can have the following values:

Include (default) - Includes the matched data streams.

Exclude - Excludes the matched data streams.

removeInsertionPoi
nts

Optional. A string that specifies which insertion points to remove after the
form fragments are assembled into the XDP result. Here are the supported
values:

? All All of the insertion points are removed

? None (default) None of the insertion points are removed.

? A comma-separated list of the insertion points to remove.

required Optional. The default (true) requires the element to add XDP content to
the assembly. If no XDP content is added, then the DDX processor declares
an error.

If set to false and no data streams are identified for this element, then this
element does not contribute any XDP content to the assembly. No error is
declared.

retainInsertionPoi
nts

Optional. A string that specifies the insertion points to retain. Here are the
supported values:

? All (default) All of the insertion points are retained

? None None of the insertion points are retained.

? A comma-separated list of the insertion points to retain.

If retainInsertionPoints and removeInsertionPoints attributes
are specified for the same XDP result, the removeInsertionPoints
value is used and the retainInsertionPoints value is ignored.

select Optional. Determines which documents are selected when an ordered list of
input streams is provided. The default value is 1-last, indicating that all
streams be selected. For the syntax of specifying ranges, see “Page and
document ranges” on page 157.

sortLocale Optional. Specifies the locale to use for sorting, according to sortOrder,
names matched by the sourceMatch attribute. The value of this attribute
must contain a valid 2-character ISO language code (see ISO 639). Any locale
passes schema validation; however, if the requested locale is not available, a
ValidationException is thrown.

The default value for this attribute is obtained from the TargetLocale
element.

Name Description

Adobe LiveCycle ES4 DDX Language Elements
Assembler Service and DDX Reference XDPContent 301

sortOrder Optional. If the regular expression specified in the sourceMatch attribute
matches multiple documents, this attribute specifies the order in which
those documents are sorted. The sort order is used to create an ordered list
of documents. This attribute is not used if the source attribute matches an
entry in the input map.

This attribute can have the following values:

Ascending (default) - Matched documents are sorted in ascending order:
A-Z.

Descending - Matched documents are sorted in descending order: Z-A.

sourceMatch Optional, but required if the source attribute is not specified. The value is a
regular expression pattern that selects source names and their associated
data streams from the input map or URL.

Source specifies an input map. If source specifies a non-URL name
and sourceMatch is specified, sourceMatch is used only when the
source attribute does not match an entry in the input map or URL.

Source specifies a URL. If the source attribute specifies a URL that
references a folder of files, then sourceMatch can select specific files
from the folder.

The regular expression syntax is a standard regular expression syntax as
implemented in the java.util.regex class for Java.

Depending on the matchMode attribute, the matched documents are
either included or excluded in the assembled document. If more than one
name matches, the names are sorted, as specified in the sortOrder and
sortLocale attributes.

The string value can be specified with an External Data URL.

See also
“External Data URL” on page 153

“Specifying multiple input streams” on page 32

Name Description

 302

Part III: Supporting XML Grammars Reference

This section describes the syntax and semantics of the XML grammars used with the DDX grammar.

 #

20 Extended Services

Some DDX elements provide configuration information for DDX processors that can call other services. For
example, the Assembler service can call these LiveCycle ES4 services: Reader Extensions, Generate PDF,
Forms, and Output.

Not all DDX processors support the extended service elements. When a DDX processor encounters an
unsupported element, it may raise an exception.

PDFGenerationSettings
Controls the options that are used when converting native documents, to PDF documents. Examples of
native documents include images, Microsoft® Word documents, and Microsoft PowerPoint.

<PDFGenerationSettings
conversionSettings="xs:string"
fileTypeSettings="xs:string">

/>

Can be contained in the DDX, PDF, and PDFGroup elements. This element was added in LiveCycle ES 8.2.

Conversion is performed automatically when native documents are supplied to PDF source elements.
Conversion requires the service to be available for generating PDF, such as the Generate PDF service.

For the Generate PDF service, see LiveCycle ES4 Administration Help for information on default and
custom settings.

Attributes

Name Description

conversionSetti
ngs

Optional. Name of the PDF settings to apply to the resultant PDF. This name
corresponds to settings on the Adobe PDF Settings in the LiveCycle
Administration Console. The following names are examples of conversion
settings for English installations:

High Quality Print

Oversized Pages

PDFA1b 2005 CMYK

The default setting is Standard.

The string value can be specified with an External Data URL.

fileTypeSetting
s

Optional. Name of conversion settings to use for converting the native document
to PDF. This name corresponds to named settings on the LiveCycle
Administration Console. The default setting is Standard.

The string value can be specified with an External Data URL.

http://www.adobe.com/go/learn_lc_admin_11

Adobe LiveCycle ES4 Running H/F 1
Assembler Service and DDX Reference Running H/F 2 #

ReaderRights
Specifies the rights that are enabled when the document is viewed in Adobe Reader. This element is
meaningful only if the Reader Extensions service is available.

<ReaderRights
credentialAlias="xs:string"
formFillIn="true or false"
formDataImportExport="true or false"
submitStandalone="true or false"
onlineForms="true or false"
dynamicFormFields="true or false"
dynamicFormPages="true or false"
barcodeDecoding="true or false"
digitalSignatures="true or false"
comments="true or false"
onlineComments="true or false"
embeddedFiles="true or false"
mode="Final or Draft"

/>

Can be contained in the PDF result element. This element was added in LiveCycle ES 8.2.

The attributes to include in the ReaderRights element depend on the rights that the specified
credential includes.

Attributes

Name Description

credentialAlias (Required) Specifies the alias of the credential used to apply usage rights to
a PDF document. The string value can be specified with an External Data
URL.

formFillIn (Optional) Corresponds to the formFillIn usage right.

formDataImportExpor
t

(Optional) Corresponds to the formDataImportExport usage right.

submitStandalone (Optional) Corresponds to the submitStandalone usage right.

onlineForms (Optional) Corresponds to the onlineForms usage right.

dynamicFormFields (Optional) Corresponds to the dynamicFormFields usage right.

dynamicFormPages (Optional) Corresponds to the dynamicFormPages usage right.

barcodeDecoding (Optional) Corresponds to the barcodeDecoding usage right.

digitalSignatures (Optional) Corresponds to the digitalSignatures usage right.

comments (Optional) Corresponds to the comments usage right.

onlineComments (Optional) Corresponds to the onlineComments usage right.

embeddedFiles (Optional) Corresponds to the embeddedFiles usage right.

mode (Optional) Corresponds to the mode usage right.

Adobe LiveCycle ES4 Running H/F 1
Assembler Service and DDX Reference Running H/F 2 #

XFAConversionSettings
(Since 8.2) Controls the options for converting XFA documents to PDF documents.

<XFAConversionSettings
renderAtClient="auto or true or false"
tagged="true or false"
retainSignatureFields="None or All or Signed or Unsigned"

/>

Can be contained in the DDX, PDF, and PDFGroup elements.

For the Assembler service, this setting is used when calling the Forms service and the Output service.
Other DDX elements can override these settings, such as NoForms or NoXFA. Here are some examples:

? When NoForms or NoXFA is specified and XFA stream is required, then the renderAtClient
attribute is ignored. That is, the default behavior prevails.

? When NoForms is specified as some form fields remain for tagged PDF, the tagged attribute is
ignored. That is, the default behavior prevails.

Attributes

XCI
Specifies the path of the XCI file. An XCI file is a configuration file to perform tasks, such as embedding a
font into a document. The default.xci file is located in the svcdata\XMLFormService folder. For example,
assuming that LiveCycle is installed on JBoss, the full path is [Install location]\svcdata\XMLFormService.

<XFAConversionSettings>
<XCI source="source key">

</XFAConversionSettings>

Can be contained in the XFAConversionSettings element.

Attributes

Name Description

renderAtClie
nt

Optional. Enables the delivery of PDF content by using the client-side rendering
capability of Acrobat 7 or later. The value auto uses the XFA dynamicRender
configuration value. Default is auto, unless NoXFA is specified, and then the default
value is false. A value of true results in the creation of a Dynamic XFA PDF.

tagged Optional. Setting to true results in creating a tagged PDF document. The default is
false.

Name Description

source Required. A logical name, associated with an input data stream or an ordered list of
data streams, containing XCI content. If the source is not provided, the rendition
options specified in the XCI file not applied to resultant PDF document. The source
can be specified with an External Data URL. (See “Source elements” on page 19.)

Adobe LiveCycle ES4 Running H/F 1
Assembler Service and DDX Reference Running H/F 2 #

XFAData
(Since 8.2) The XFAData element lets one provide form data to be merged into a PDF when it is an
XFA-based form. The parent element can be a PDF source or an XDP (generic) element. An XDP (generic)
element contains a dynamically assembled XFA-based form that is being assembled into a PDF result. an
XFA form. If the source attribute is provided, the XFA data is taken from the specified input source. If the
source attribute is not provided, the XFA data is provided as the content of the XFAData element.

Note: The Assembler service uses the Forms service to merge data into XFA forms. If that service is not
available, the XFAData element is ignored.

If the parent PDF source attribute or the XFAData source attribute points to a list of documents, only the
first document in each list is used.

<XFAData
source="xs:string"

>
<any element in ##other namespace> or <any element in ##local namespace>

[0..1]
</XFAData>

Can be contained in the elements PDF source and XDP (generic).

Attributes

The following is an example XDF Data.

<PDF result="filledinForm.pdf">
<PDF source="form.pdf">

<XFAData>
<form1>

<header>
<dtmDate>20040606T101010</dtmDate>
<txtOrderedByCompanyName>

Any Company Name
</txtOrderedByCompanyName>
<txtOrderedByAddress>555, Any Blvd.</txtOrderedByAddress>
<txtOrderedByCity>Any City</txtOrderedByCity>
<txtOrderedByStateProv>Alabama</txtOrderedByStateProv>
<txtOrderedByZipCode>12345</txtOrderedByZipCode>
<txtOrderedByCountry>United States</txtOrderedByCountry>
<txtPONum>8745236985</txtPONum>

</header>
<requirements/>
<scope/>
<correspondence/>
<questions/>
<closing/>

</form1>
</XFAData>

</PDF>

Name Description

source Optional. The name of an input document that contains XFA form data in XML format.
The string value can be specified with an External Data URL.

Adobe LiveCycle ES4 Running H/F 1
Assembler Service and DDX Reference Running H/F 2 #

</PDF>

 308

21 About Language

The About language is an XML syntax that provides information about the Assembler service.

The Assembler service returns an About document in response to the About element appearing in the
DDX document.

The namespace of the About language is http://ns.adobe.com/DDX/About/1.0/ and the root element is
the About element. The schema is installed in the product Documentation folder.

About
The root element for the About language.

<About>
<Processor>
<Version>
<Build>
<Copyright>

</About>

Build
Provides the build number for the Assembler service.

<Build>
xs:string

</Build>

Copyright
Provides the copyright for the Assembler service.

<Copyright>
xs:string

</Copyright>

Processor
Provides the product name of the Assembler service.

<Processor>
xs:string

</Processor>

http://ns.adobe.com/DDX/About/1.0/

Adobe LiveCycle ES4 About Language
Assembler Service and DDX Reference Version 309

Version
Provides the version number of the Assembler service.

<Version>
xs:string

</Version>

 310

22 Document Information Language

The Document Information (DocInfo) language provides information about a PDF document, such as title,
author, and number of pages. Some of the data, such as title and author, in a DocInfo document is
metadata taken from the document’s document information dictionary. Other information, such as
number of pages and page labels, reflects the PDF document’s contents.

The Assembler service returns a DocInfo document in response to the DocumentInformation
element appearing in the DDX document.

The namespace of the DDX language is http://ns.adobe.com/DDX/DocInfo/1.0/, and the root element is
DocInfo. The schema is installed in the product Documentation folder.

Categories of DocInfo data
The data in a DocInfo document can be categorized as metadata or derived information. The DocInfo
language does not group data according to category; however, these categories are discussed to clarify
the sources of data included in a DocInfo document.

Metadata includes document-level information can come from the following sources:

? Provided by the application used to produce the PDF document, for example the PDF version and total
number of pages in the document

? Applied to the PDF document, usually by human interaction. Examples of such metadata are the
document’s title, author, subject, and keywords.

Derived information is data obtained by examining the structure and contents of the PDF document, for
example:

? Page size as viewed or printed and the page rotation setting for all pages of the document, listing the
settings per range of pages. Derived information also includes the page label settings for all pages of
the document, again listing the page labels per range of pages.

http://ns.adobe.com/DDX/DocInfo/1.0/
http://ns.adobe.com/DDX/DocInfo/1.0/

Adobe LiveCycle ES4 Document Information Language
Assembler Service and DDX Reference DocInfo reference 311

DocInfo reference

DocInfo
Root element for the DocInfo language.

<DocInfo>
<Title> [0..1]
<Author> [0..1]
<Subject> [0..1]
<Keywords> [0..1]
<CreatedDate> [0..1]
<ModifiedDate> [0..1]
<Creator> [0..1]
<Producer> [0..1]
<Version> [1]
<NumPages> [1]
<Package> [0..1]
<FormType> [1]
<PageSizes> [0..1]
<PageRotations> [0..1]
<PageLabels> [0..1]
<PDFAConformance> [0..1]
<Extensions> [0..1]

</DocInfo>

Author
The name of the person who created the specified PDF document.

<Author>
"xs:string"

</Author>

Can be contained in the DocInfo element.

This information is obtained from the PDF document’s metadata. If that information is missing, the
Author element is omitted. If there is more than one author listed in the metadata, only the first one is
represented in this element.

CreatedDate
The Created date from the PDF document properties. The format of the date is
<year>-<month>-<day>T<hour>:<minute>:<sec>-<offsetGMTHour><offsetGMTMinute>

<CreatedDate>
"xs:string"

</CreatedDate>

Creator
Name of the application used to produce the content of the document.

<Creator>

Adobe LiveCycle ES4 Document Information Language
Assembler Service and DDX Reference DisplayOrder 312

"xs:string"
</Creator>

Can be contained in the DocInfo element.

The result PDF document inherits this value from the base document.

DisplayOrder
Contains Field elements that identify the specified order of the fields when displayed in a viewer.

<DisplayOrder>
<Field name="xs:string" /> [0..n]

</DisplayOrder>

Attributes

Can be contained in the Package element.

Extensions
The PDF specification is now the ISO/DIS 32000 standard and the PDF version number will not increment
beyond version 1.7. Instead, an extensions dictionary identifies the versions of vendor-specific extensions
to the PDF specification. Each vendor or entity must register a prefix with the PDF Name Registry (ISO
32000, Annex E). Each entry in this dictionary has a key derived from the registered prefix assigned to the
vendor that defines the extension.

The associated value is a dictionary containing BaseVersion and ExtensionLevel entries. BaseVersion is a
name that identifies the PDF version upon which the extension is based. ExtensionLevel is an integer that
identifies the version of the extension.

<Extensions>
<Extension> [0..n]

</Extensions>

<Extension>
<Vendor>

xs:string
</Vendor>
<BaseVersion>

xs:string
</BaseVersion>
<ExtensionLevel>

xs:string
</ExtensionLevel>

</Extension>

Note: The BaseVersion can differ from the <Version> included in this result.

Name Description

name Required. The normalized name of a Field as defined in the Schema. The non-normalized
name appears as the content in the Schema element.

Adobe LiveCycle ES4 Document Information Language
Assembler Service and DDX Reference FormType 313

FormType
Type of form used in the document, if any.

<FormType>
"xs:string"

</FormType>

Can be contained in the DocInfo element.

The contents of this element can be any of the following values:

"NotAForm "

"Acroform "

"Static-XFA"

"Dynamic-XFA"

"XFAForeground"

Keyword
Keyword associated with the specified PDF document.

<Keyword>
xs:string

</Keyword>

Can be contained in the Keywords element.

Keywords
Keywords associated with the specified PDF document.

<Keywords>
<Keyword> [1..n]

</Keywords>

Can be contained in the DocInfo element.

This information is obtained from the PDF document’s metadata. If that information is missing, the
Keywords element is omitted.

ModifiedDate
The Modified date from the PDF document properties. The format of the date is
<year>-<month>-<day>T<hour>:<minute>:<sec>-<offsetGMTHour><offsetGMTMinute>

<ModifiedDate>
xs:string

</ModifiedDate>

NumPages
Number of pages in the specified PDF document.

Adobe LiveCycle ES4 Document Information Language
Assembler Service and DDX Reference Package 314

<NumPages>
number of pages

</NumPages>

Can be contained in the DocInfo element.

Package
Only present if the PDF document is a PDF package. It describes the package specification for the package,
if there is one. If specified as an empty element (<Package/>), the package specification is the default
consisting of basic metadata known for file attachments in general.

<Package>
<Schema> [0..1]
<DisplayOrder> [0..1]
<SortOrder> [0..1]

</Package>

Can be contained in the DocInfo element.

PageLabel
The page label for a continuous range of pages with the same page label.

<PageLabel
pages="pages to which the label applies"
start="Integer page number"
format="None" or "Decimal" or "LowerRoman" or "UpperRoman" or

"LowerAlpha" or "UpperAlpha"
prefix="xs:string"

/>

Can be contained in the PageLabels element.

Attributes

Name Description

pages The page range to which the page label format applies. (See “Page and document
ranges” on page 156.)

start First label number for this page range, not necessarily the ordinal page number.

format Manner in which the number is displayed. The following values are supported:

None - Indicates there is no number following the prefix in the page label.

Decimal - For example, 1, 2, 3, …

LowerRoman - For example, i, ii, iii, …

UpperRoman - For example, I, II, III, …

LowerAlpha - For example, a, b, c, …

UpperAlpha - For example, A, B, C, …

prefix Text displayed before the number.

Adobe LiveCycle ES4 Document Information Language
Assembler Service and DDX Reference PageLabels 315

Example: Specifying page labels

<!-- Pages 1 through 5 bear a page label with the text "Page: " followed by the
page number in lower-case Roman numerals, where page numbering begins with 1
("i"). -->
<PageLabel

pages="1-5"
startingNumber="1"
style="LowerRoman"
prefix="Page: "

>

PageLabels
The page labels for the specified PDF document.

<PageLabels>
<PageLabel> [1..n]

</PageLabels>

Can be contained in the DocInfo element.

If the PDF document omits page labels, this element is omitted.

PageRotations
Specifies the page rotations used in the document.

<PageRotations>
<PageRotation> [1..n]

</PageRotations>

Can be contained in the DocInfo element.

PageSize
Page size for a continuous range of pages with equal page size.

<PageSize
pages="pages"
width="page width" [or rename to shortedge/longedge]
height="page height"

/>

Can be contained in the PageSizes element.

Attributes

Name Description

pages Range of pages that share this same width and height. (“Page and document
ranges” on page 156)

width Width of the page (media).

height Height of the page (media).

Adobe LiveCycle ES4 Document Information Language
Assembler Service and DDX Reference PageSizes 316

Example: Page ranges qualify page sizes

<?xml version="1.0" encoding="UTF-8"?>
<DocInfo xmlns="http://ns.adobe.com/DDX/DocInfo/1.0/"

…
<!-- All pages use a page size of 8.5x11 inches. -->
<PageSizes>

<PageSize
pages="1-last"
width="8.5in"
height="11.0in"

/>
</PageSizes>

</DocInfo>

Can be contained in the PageSizes element.

PageSizes
Page sizes used in the specified PDF document.

<PageSizes>
<PageSize> [1..n]

</PageSizes>

Can be contained in the DocInfo element.

The PageSizes element contains one PageSize element for each distinct page size.

PageRotation
Specifies page rotation setting for a continuous range of pages with the same page rotation setting.

<PageRotation
pages="page range"
rotate90="degrees in increments of 90"

/>

Can be contained in the PageRotations element.

Attributes

PDFAConformance
Specifies the PDF/A conformance level of the PDF.

<PDFAConformance
compliance="PDF/A-1b, PDF/A-2b, or PDF/A-3b"

Name Description

pages A page range that describes the pages having a the orientation specified by this element.
(See “Page and document ranges” on page 156.)

rotate90 Optional. Specifies a rotation setting for the page in increments of 90 degrees. A positive
number is clockwise, and a negative number is counterclockwise.

Adobe LiveCycle ES4 Document Information Language
Assembler Service and DDX Reference Producer 317

isCompliant="false or true or notValidated"
resultLevel="PassFail or Summary or Detailed"
ignoreUnusedResources="xs:boolean"
allowCertificationSignatures="xs:boolean"

>
<ViolationDetail> [0..n]
<Violation> [0..n]

</PDFAConformance>

If the PDFAValidation element is present on the DocumentInformation query, the PDF is validated for
conformance with the result presented in the PDFAConformance element. If the PDFAValidation
element is not present, the PDFAConformance returns the PDF/A metadata if it exists in the PDF
document.

The PDFAConformance element is added to the DocInfo results if the PDF contains a PDF/A version
metadata element. It is always added when a PDFAValidation element is present on the
DocumentInformation query. The metadata PDF/A version is reported whenever it exists in the PDF
document. The PFDAConformance is reported as notvalidated if the PDFAValidation element is
not present.

Attributes

Producer
Name of the application used to convert the content into PDF.

<Producer>
xs:string

</Producer>

The result PDF document inherits this value from the base document.

Can be contained in the DocInfo element.

Schema
The description of the PDF package fields (metadata). The element content of the Field element is the
textual name displayed to the user in the user interface of the PDF viewing application.

Name Description

isCompliant Determines whether the PDF document is PDF/A compliant. Valid
values are true, false, and notvalidated.

compliance Specifies whether this document is PDF/A compliant. Valid values are
PDF/A-1b, PDF/A-2b, or PDF/A-3b.

resultLevel Specifies how much information is returned. Valid values are PassFail,
Summary, or Detailed.

ignoreUnusedResources Specifies whether to ignore resources that are not used. Valid values are
true or false.

allowCertificationSig
natures

Specifies whether signatures are allowed. Valid values are true or
false.

Adobe LiveCycle ES4 Document Information Language
Assembler Service and DDX Reference SortOrder 318

<Schema>
<Field name="xs:string"

type="Text" or "Date" or "Number" or "Filename" or "Description" or
"ModificationDate" or "CreationDate" or "Size"
visible="true" or "false"
editable="true" or "false"

>
 xs:string

</Field> [0..n]
</Schema>

Attributes

Can be contained in the Package element.

SortOrder
The SortOrder element contains Field elements that identify which field values are used for sorting.
The first field listed is the main sort. Any subsequent fields are used when the first sort results in duplicate
values.

<SortOrder>
<Field name="xs:string" ascending="true" or "false/> [0..n]

</SortOrder>

Attributes

Can be contained in the Package element.

Subject
The subject of the specified PDF document.

<Subject>

Name Description

editable Optional. Indicates whether the PDF viewing application allows the field value to be
edited. This attribute has no effect on whether the field is editable by a DDX processor.

name Required. The normalized name of a field as defined in the Schema. The non-normalized
name appears as the element content. The normalized name is used when assembling
PDF packages and comparing field names.

type Required. The type identifies the type of data that is stored in this field.

visible Optional. The initial visibility of the field in the PDF viewer. At least one field must be
specified as visible; otherwise, an error is thrown.

Name Description

ascending Optional. When sorting on this field, this attribute specifies whether to sort in ascending
("true") or descending ("false") order.

name Required. The name of a field as described in the schema.

Adobe LiveCycle ES4 Document Information Language
Assembler Service and DDX Reference Title 319

Document subject
</Subject>

Can be contained in the DocInfo element.

This information is obtained from the PDF document’s metadata. If that information is missing, the
Subject element is omitted.

Title
The title of the specified PDF document, obtained from the document’s metadata.

<Title>
document title

</Title>

Can be contained in the DocInfo element.

This information is obtained from the PDF document’s metadata. If that information is missing, the Title
element is omitted.

Version
The PDF version of the specified PDF document.

<Version>
version specification

</Version>

The value of the Version element corresponds to the version of the PDF Reference to which the file
conforms. Possible values are shown below.

ViolationDetail
Contained within PDFAConformance element to report the details of one instance of a detected
violation. The elements are not sorted.

<ViolationDetail
key="xs:string"
page="xs:positiveInteger"
field="xs:string"
annot="xs:string"

Value PDF Reference

1.7 PDF Reference, Sixth Edition, version 1.7, available at http://www.adobe.com/go/pdf_developer.

1.6 PDF Reference, Fifth Edition, version 1.6, available at http://www.adobe.com/go/pdf_developer

1.5 PDF Reference, Fourth Edition, Version 1.5, available at
http://www.adobe.com/go/pdf_developer

1.4 PDF Reference, Third Edition, Version 1.4, available at http://www.adobe.com/go/pdf_developer

1.3 PDF Reference, Second Edition, Version 1.3, published by Addison-Wesley, ISBN 0-201-61588-6
and available at http://www.adobe.com/go/pdf_developer

http://www.adobe.com/go/pdf_developer
http://www.adobe.com/go/pdf_developer
http://www.adobe.com/go/pdf_developer
http://www.adobe.com/go/pdf_developer
http://www.adobe.com/go/pdf_developer

Adobe LiveCycle ES4 Document Information Language
Assembler Service and DDX Reference Violation 320

fieldAnnot="xs:string"
colorSpace="xs:string"
font="xs:string"
pattern="xs:string"
xObject ="xs:string"

/>

Violation
Contained within PDFAConformance element to report a count of each type of detected violation.

<Violation
count="xs:positiveInteger"
key="xs:string"
description="xs:string"

/>

 321

23 Bookmarks Language

The Bookmarks language is an XML representation of bookmarks that can be extracted from PDF
documents. It can also be imported into PDF documents, as directed by the appearance of a Bookmarks
element in a DDX document.

Bookmarks are a tree-structured hierarchy of outline items in the PDF document that enable navigation of
the document.

About the Bookmarks language
The namespace for the Bookmarks language supported by the Assembler service is
http://ns.adobe.com/pdf/bookmarks and the namespace version is 1.0.

The root of the Bookmarks XML language is the Bookmarks element.

Intent of bookmarks in a PDF document
A PDF document viewer can optionally display a document outline on the screen. This display allows the
user to navigate interactively from one part of the document to another. The outline consists of a
tree-structured hierarchy of bookmarks (also called outline objects). The outline serves as a visual table of
contents to display the document’s structure to the user. The user can interactively open and close
individual items by clicking them with the mouse. When an item is open, its immediate children in the
hierarchy become visible on the screen. Each child can in turn be open or closed, selectively revealing or
hiding further parts of the hierarchy. When an item is closed, all of its descendants in the hierarchy are
hidden. Clicking the text of any visible item causes the viewer application to jump to the corresponding
destination. It can also trigger an action associated with the item.

In addition to supporting navigation within a document, bookmarks can be used to navigate from the
source document to another document. They can also be used to launch applications.

XML representation of bookmarks
The Bookmarks language describes the structure, appearance, and actions associated with bookmarks
that are part of a PDF document.

When a Bookmarks XML document is imported into a PDF document, the bookmarks information
becomes part of the PDF document. That is, the bookmarks information is represented within the PDF
document, as entries in the PDF outline dictionary. When bookmarks are exported from a PDF document,
the entries in the PDF outline dictionary are represented as a Bookmarks XML document.

http://ns.adobe.com/pdf/bookmarks
http://ns.adobe.com/pdf/bookmarks

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference XML representation of bookmarks 322

Bookmarks that navigate within a PDF document

The example below shows a Bookmark document that represents the bookmark actions described in the
following table.

Example: A basic bookmark expression that specifies destinations and views

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<Bookmarks xmlns="http://ns.adobe.com/pdf/bookmarks" version="1.0">

<Bookmark>
<Dest>

<Fit PageNum="11"/>
</Dest>
<Title>First Slide</Title>

</Bookmark>
<Bookmark>

<Dest>
<Fit PageNum="12"/>

</Dest>
<Title>Second Slide</Title>
<Bookmark>

<Title>A backup slide</Title>
<Dest>

<XYZ PageNum="13" Left="45.0" Top="530.0" Zoom="2.0"/>
</Dest>

</Bookmark>
</Bookmark>

</Bookmarks>

Bookmark title Level Effect when clicked

First Slide 1 Changes the view to page 12, fitting that page into the viewer window.
The page numbers provided in Bookmarks XML and PDF use
zero-based page numbers, but viewer applications show one-based
page numbers. As a result, the Bookmarks XML expression
PageNum="11" is displayed as page number 12.

Second Slide 1 Changes the view to page 13, fitting that page into the viewer window.

A backup slide 2 Changes the view to page 14. The viewer application also makes the
following adjustments to the view:

? Positions the designated spot of the page at the upper left corner
of the viewer window

? Displays the content at twice its original size

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference XML representation of bookmarks 323

Bookmarks that navigate within a document and change views

The following example shows a Bookmark document that represents the bookmark actions described in
the following table.

Example: A basic bookmark expression that specifies go-to actions

<?xml version="1.0" encoding="UTF-8"?>
<Bookmarks xmlns="http://ns.adobe.com/pdf/bookmarks" version="1.0">

<Bookmark>
<Bookmark>

<Bookmark>
<Action>

<Launch NewWindow="true">
<File Name="MyFile.pdf"/>

</Launch>
</Action>
<Title>Contents</Title>

</Bookmark>
<Bookmark>

<Action>
<GoTo>

<Dest>
<FitR PageNum="23" Left="28" Bottom="2"

Right="23" Top="404"/>
</Dest>

</GoTo>
</Action>
<Title>Preface</Title>

</Bookmark>
<Dest>

<FitR PageNum="23" Left="285" Bottom="207" Right="523" Top="404"/>
</Dest>
<Title>Document Subtitle</Title>

Bookmark title Level Effect when clicked

Document Title 1 The viewer application displays the page contents that fall within a
rectangle at the lower right side of page 6. It also magnifies the
contents to fit the viewer window.

Document
Subtitle

2 The viewer application displays the page contents that fall within a
rectangle at the lower right side of page 24. It also magnifies the
contents to fit the viewer window.

Preface 3 The viewer application displays the page contents that fall within a
rectangle at the lower-left side of page 24. It also magnifies the
contents to fit the viewer window.

Chapter 1 3 The viewer application displays the first page of the file called
MyOtherFile.pdf. The lack of a path indicates the file is co-located with
the PDF file in which the bookmarks reside.

Depending on viewer application preferences, the viewer application
either displays the file in the current viewer window or opens a new
viewer window.

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference XML representation of bookmarks 324

</Bookmark>
<Dest>

<FitR PageNum="5" Left="285" Bottom="207" Right="523" Top="404"/>
</Dest>
<Title>Document Title</Title>

</Bookmark>
</Bookmarks>

Bookmarks that launch views or applications

The following example shows a Bookmark document that represents the bookmark actions described in
the following table.

Example: A basic bookmark expression that specifies launch actions

<?xml version="1.0" encoding="UTF-8"?>
<Bookmarks xmlns="http://ns.adobe.com/pdf/bookmarks" version="1.0">

<Bookmark>
<Action>

<Launch NewWindow="true">
<File Name="C:\adobe\livecycle\samples\assembler7\articles.pdf"/>

</Launch>
</Action>
<Title>Open a new document in an external file</Title>

</Bookmark>
<Bookmark>

<Action>
<Launch>

<Win Name="C:/Program Files/Windows NT/Accessories/wordpad.exe"/>
</Launch>

</Action>
<Title>Launch WordPad</Title>

</Bookmark>
</Bookmarks>

Bookmark title Level Effect when clicked

Open a new
document in
an external file

1 The viewer application opens a new window in which it displays the
PDF document located at

C:/adobe/livecycle/samples/assembler7/articles.pdf

Launch WordPad 1 The viewer application launches the WordPad application, which is
located at

C:/Program Files/Windows
NT/Accessories/wordpad.exe

Note: Either the forward slash or backward slash separators can be
used in paths.

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference Bookmarks XML language reference 325

Bookmarks XML language reference

Action
The action performed when the bookmark is activated.

<Action>
<GoTo> [1] or
<GoToR> [1] or
<GoToE> [1] or
<Launch> [1] or
<URI> [1] or
<Named> [1]

</Action>

Can be contained in the Bookmark element.

The PDF counterpart to this element is the A entry of the outline dictionary.

The Action element expresses actions that are performed when the user clicks the bookmark. The
actions can launch an application or change the displayed page’s appearance state.

Bookmark
An individual bookmark item within the hierarchy.

<Bookmark
Color
Styles

>
<Title> [1]
<Dest> [0..1]
<Action> [0..1]
<Bookmark> [0..n]

</Bookmark>

Can be contained in the Bookmarks element, which is the Bookmarks XML language root.

The PDF counterpart to this element is the outline dictionary.

Attributes

Name Description

Color Optional. An array of three numbers in the range 0.0 to 1.0. The array represents the
components in the DeviceRGB color space of the color used for the outline entry’s text.
Default value: 0.0 0.0 0.0, which corresponds to black.

Styles Optional. The font style to use for the bookmark entry. The following values are supported:

Italic

Bold

Italic Bold - Specifies that both the italics and bold font faces are used. The words
must be separated with a space.

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference Bookmarks 326

Bookmarks
Root element of the Bookmarks XML language.

<Bookmarks
<Bookmark> [0..n]

</Bookmarks>

Desc
A description of a file destination.

<Desc>
xs:string

</Desc>

Can be contained in the File element.

Dest
The destination displayed when this item is activated.

<Dest>
<XYZ> [0..1] or
<Fit> [0..1] or
<FitH> [0..1] or
<FitV> [0..1] or
<FitR> [0..1] or
<FitB> [0..1] or
<FitBH> [0..1] or
<FitBV> [0..1]

</Dest>

Can be contained in the elements Bookmark, GoTo, GoToE, and GoToR.

A destination defines a particular view of a document. It consists of the following attributes:

? Page of the document displayed

? Location of the document window on that page

? Magnification (zoom) factor to use when displaying the page

File
The full path of a file or the file’s identity within a PDF package or portfolio.

<File
FSType="xs:string"
FSType_enc="xs:token"
Name="xs:string"
Name_enc="xs:token"

>
<Desc> [0..1]

Can be contained in the GoToE, GoToR and Launch elements.

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference Fit 327

The PDF counterpart to this element is the file specification dictionary.

Attributes

Fit
Specifies a page destination and viewer characteristics that fit the entire page into the viewer window.

<Fit
PageNum="xs:nonNegativeInteger"

/>

Can be contained in the Dest element.

When a user clicks a bookmark that uses the Fit element, the viewer application adjusts the page display
to fit the window. Specifically, it magnifies the contents to fit the entire page within the window, both
horizontally and vertically. If the required horizontal and vertical magnification factors are different, the
viewer application uses the smaller of the two, centering the page within the window in the other
dimension.

Attributes

FitB
Specifies a page destination and viewer characteristics that fit the page’s bounding box into the viewer
window.

<FitB
PageNum="xs:nonNegativeInteger"

Name Description

FSType Optional. The name of the file system used to interpret this file specification. If this
entry is present, the designated file system interprets the value of the Name attribute.
PDF defines only one standard file system name, URL (see the PDF Reference); an
application or plug-in extension can register the names of other file systems.

FSType_enc Optional. The encoding used to represent the FSType value in the PDF document. If
this attribute is omitted, the PDFDocEncoding character encoding is used. (See
“Supported character encodings” on page 338.)

Name Required. Filename, using UNIX or DOS notation. The following values are equivalent:

C:/adobe/livecycle/samples/assembler7/MyFile.pdf

or

C:\adobe\livecycle\samples\assembler7\MyFile.pdf

Name_enc Optional. The encoding used to represent the Name value in the PDF document. If this
attribute is omitted, the PDFDocEncoding character encoding is used.(See “Supported
character encodings” on page 338.)

Name Description

PageNum Required. The page number of the destination, where 0 is the first page in the
document.

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference FitBH 328

/>

Can be contained in the Dest element.

When a user clicks a bookmark that uses the FitBH element, the viewer application adjusts the page to fit
the bounding box. Specifically, it displays the designated page with its contents magnified enough to fit
its bounding box entirely within the window both horizontally and vertically. If the required horizontal and
vertical magnification factors are different, the viewer application uses the smaller of the two, centering
the bounding box within the window in the other dimension.

Attributes

FitBH
Specifies a page destination and viewer characteristics that set the top boundary of the page. This element
also fits the width of the page’s bounding box into the viewer window.

<FitBH
PageNum="xs:nonNegativeInteger"
Top="xsd:float"

/>

Can be contained in the Dest element.

When a user clicks a bookmark that uses the FitBH element, the viewer application makes the following
adjustments to the displayed page:

? Position a vertical coordinate on the page at the top edge of the window. The Top attribute specifies
the vertical coordinate.

? Contents of the page magnified enough to fit the entire width of its bounding box within the window.

Attributes

FitBV
Specifies a page destination and viewer characteristics that set the left boundary of the page. This element
also sets fits the height of the page’s bounding box into the viewer window.

<FitBV
PageNum="xs:nonNegativeInteger"
Left="xsd:float"

/>

Name Description

PageNum Required. The page number of the destination, where 0 is the first page in the
document.

Name Description

PageNum Required. The page number of the destination, where 0 is the first page in the
document.

Top Vertical coordinate in points that specifies the top of the viewed page.

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference FitH 329

Can be contained in the Dest element.

When a user clicks a bookmark that uses the FitBV element, the viewer application makes the following
adjustments to the displayed page:

? Positions the horizontal coordinate specified in the Left attribute at the left edge of the window.

? Magnifies the contents of the page to fit the entire height of its bounding box within the window.

Attributes

FitH
Specifies a page destination and viewer characteristics that set the top of the page and horizontally fits the
page into the viewer window.

<FitH
PageNum="xs:nonNegativeInteger"
Top="xsd:float"

/>

Can be contained in the Dest element.

When a user clicks a bookmark that uses the FitH element, the viewer application makes the following
adjustments to the displayed page:

? Positions the vertical coordinate specified in the Top attribute positioned at the top edge of the
window.

? Magnifies the contents of the page to fit the entire width of the page within the window.

Attributes

FitR
Specifies a page destination and viewer characteristics that fit a rectangle on the page into the viewer
window.

<FitR
PageNum="xs:nonNegativeInteger"
Left="xsd:float"
Bottom="xsd:float"
Right="xsd:float"

Name Description

PageNum Required. The page number of the destination, where 0 is the first page in the
document.

Left Horizontal coordinate in points that specifies the left side of the viewed page.

Name Description

PageNum Required. The page number of the destination, where 0 is the first page in the
document.

Top Vertical coordinate in points that specifies the top of the displayed portion of the page.

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference FitV 330

Top="xsd:float"
/>

Can be contained in the Dest element.

When a user clicks a bookmark with the FitR element, the viewer application displays the portion of the
page designated by the rectangle. It also magnifies the contents in the rectangle to fit the viewer window.
The viewer application magnifies the page contents horizontally and vertically. If the required horizontal
and vertical magnification factors are different, the application uses the smaller of the two, centering the
rectangle within the window in the other dimension.

The Left, Bottom, Right, and Top attributes define the rectangle. The rectangle coordinates are in
points, with the origin at the lower left corner of the page.

Attributes

FitV
Specifies a page destination and viewer characteristics that set the left border of the page and vertically fit
the page into the viewer window.

<FitV
PageNum="xs:nonNegativeInteger"
Left="xsd:float"

/>

Can be contained in the Dest element.

When a user clicks a bookmark that uses the FitV element, the viewer application makes the following
adjustments to the displayed page:

? Positions the horizontal coordinate specified by the Left attribute positioned at the left edge of the
window.

? Magnifies the page content to fit the entire height of the page within the window.

Attributes

Name Description

PageNum Required. The page number of the destination, where 0 is the first page in the
document.

Left The horizontal coordinate for the left side of the rectangle, in points.

Bottom The vertical coordinate for the bottom of the rectangle, in points.

Right The horizontal coordinate for the right side of the rectangle, in points.

Top The vertical coordinate for the top of the rectangle, in points.

Name Description

PageNum Required. The page number of the destination, where 0 is the first page in the document.

Left Horizontal coordinate in points that specifies the left side of the displayed portion of the
page.

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference GoTo 331

GoTo
Specifies a page destination in the document.

<GoTo>
<Dest> [1]

</GoTo>

Can be contained in the Action element.

The PDF counterpart to this element is an Action dictionary with the S key set to GoTo.

GoToE
Specifies a destination in an embedded or embedding file. Embedded files are file attachments or package
files. Embedding files are the parent files of attachments files or package files.

<GoToE
NewWindow="true" or "false"

>
<File> [0..1] or
<Dest> [0..1] or
<Target> [0..1]

</GoToE>

Can be contained in the Action element.

The PDF counterpart to this element is an Action dictionary with the S key set to GoToE.

An embedded go-to action is similar to a remote go-to action (GoToR element). The embedded go-to
action differs in that it allows jumping to or from a PDF file that is embedded in another PDF file. Such
embedded files are package files or file attachments.

Here is an example that adds a bookmark with a GoToE action that links to a package file within FileB.pdf, a
separate file. The destination package file within FileB.pdf has the path /FolderA/FolderA1/foo.pdf. The file
that contains the bookmark and FileB.pdf are stored in the same folder.

The File element’s Name attribute specifies the separate PDF file that contains the package. The Target
element’s Filename attribute precedes the filename with an index that indicates the folder that contains
the file. In this example, the folder containing foo.pdf is the second folder in the Folders element. The
PackageFile XML file exported from FileB.pdf appears after the example. The index angle brackets use
escape sequences to avoid conflicting with the bookmarks XML declarations.

Example: Bookmark xml that links to an embedded file in a folder

<Bookmarks xmlns="http://ns.adobe.com/pdf/bookmarks" version="1.0">
<Bookmark>

<Title>Go to package file</Title>
<Action>

<GoToE NewWindow="true">
<Dest>

<FitH PageNum="0" />
</Dest>
<File Name="FileB.pdf"/>
<Target Relationship="Child" Filename_enc="UTF-16"

Filename="<2>foo.pdf"/>

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference GoToE 332

</GoToE>
</Action>

</Bookmark>
</Bookmarks>

For clarity, here is the PackageFile XML file exported from FileB.pdf. This file shows the folder structure and
nameKeys.

<?xml version="1.0" encoding="UTF-8"?>
<PackageFiles xmlns="http://ns.adobe.com/DDX/PackageFiles/1.0/">

<Package/>
<Folders>

<Folder name="FolderA">
<Folder name="FolderA1"/>

</Folder>
<Folder name="FolderB"/>

</Folders>

...

<PackageFile attachmentKey="doc1_attach.0000.0002"
nameKey="/FolderA/FolderA1/foo.pdf">
<File creationDate="2009-12-18T08:09:16-08:00"

mimeType="application/pdf"
modificationDate="2009-10-06T09:32:10-05:00"
size="39916">
<Filename>foo.pdf</Filename>

</File>
</PackageFile>

</PackageFiles>

You can add a bookmark to a PDF file that is then included as a package file in a PDF package or portfolio.
You can also use this example to add a bookmark to a PDF file that is already a package file in a PDF
package or portfolio. To add a bookmark to a package file, use the following steps:

1. Use the PackageFiles result element to export the package file to modify. This element also exports
information about the package files.

2. Use the Bookmarks source element to add the bookmark to the exported package file.

3. From the PackageFiles result, remove all PackageFile declarations except the one for the modified
package file.

4. Use the PackageFiles import element to update the original PDF file with modified PackageFile XML
file. The Assembler service replaces the original package file with the modified package file (the one
that you added the bookmark to).

Attributes

Name Description

NewWindow Optional. Specifies whether the destination is displayed in a new window. If true, the
destination document is opened in a new window; if false, the destination document
replaces the current document in the same window. If this entry is absent, the viewer
application honors the current user preference.

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference GoToR 333

GoToR
Specifies a destination in another document (go to remote).

<GoToR
NewWindow="true" or "false"

>
<File> [0..1]
<Dest> [0..1]

</GoToR>

Can be contained in the Action element.

The PDF counterpart to this element is an Action dictionary with the S key set to GoToR.

Attributes

Launch
Launches an application, opens a file, or prints a file.

<Launch
NewWindow="true" or "false"

>
<File> [0..1] or
<Win> [0..1]

</Launch>

Can be contained in the Action element.

The PDF counterpart to this element is an Action dictionary with the S key set to Launch. See examples
in “Bookmarks that launch views or applications” on page 324.

Attributes

Named
Execute an action predefined by the viewer application.

<Named
Name="xs:string"

Name Description

NewWindow Optional. Specifies whether the destination is displayed in a new window. If true, the
destination document is opened in a new window; if false, the destination document
replaces the current document in the same window. If this entry is absent, the viewer
application honors the current user preference.

Name Description

NewWindow Optional. Specifies whether the destination is displayed in a new window. If true, the
destination document is opened in a new window; if false, the destination document
replaces the current document in the same window. If this entry is absent, the viewer
application honors the current user preference.

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference Target 334

Name_enc="xs:token"
/>

Can be contained in the Action element.

The PDF counterpart to this element is an Action dictionary with the S key set to Named.

Attributes

Target
Specifies the embedded or embedding document in which the destination resides.

<Target
Relationship="Parent" or "Child"
Filename="xs:string"
Filename_enc="xs:token"
PageNum="xs:nonNegativeInteger"
AnnotName="xs:string"
AnnotNum="xs:nonNegativeInteger"

>
<Target> [0..1]

</Target>

Can be contained in the GoToE element.

The PDF counterpart to this element is a Target dictionary.

A PDF document can contain document-level attachments or page-level attachments.

The Target element provides path information to the embedded or embedding document. Target
elements can be nested, with each nesting level specifying one additional embedding level. Consider a
PDF document that contains an embedded (attached) document. The embedded document can also
contain an embedded document. Nested Target elements allow a bookmark to navigate from the
top-level document to the lowest-level one, or the reverse.

Name Description

Name Required. Name of the action to perform. PDF viewer applications are expected to
support the following named actions:

? NextPage

? PrevPage

? FirstPage

? LastPage

Non-standard PDF viewer applications can support additional named actions.

Name_enc Optional. The encoding used to represent the Name value in the PDF document. If this
attribute is omitted, the PDFDocEncoding character encoding is used. (See “Supported
character encodings” on page 338.)

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference Title 335

Attributes

Title
The text displayed on the screen for this bookmark entry.

<Title>

Name Description

Relationshi
p

Required. Specifies whether the target document is a parent or child of the current
document.

Filename Required if the destination is an embedded file such as a file attachment or package
file. To determine the value to use for this attribute, use the PackageFiles result or
FileAttachments result element to obtain the nameKey for the destination file.

When DDX processors embed a file, they typically use the filename as the starting
point for determining the nameKey. They modify that name to ensure each nameKey
is unique and to represent PDF Portfolio folders. For example, if the original filename is
MyFile.pdf and there are other identically named files in the package, the Assembler
service may assign MyFile.001.pdf as the nameKey.

Beginning with LiveCycle 9, the value for this attribute has the format
<folder_index>nameKey. It is not the whole path. If the file is not in a folder, omit
<folder_index>. If the file is in a folder, the value of folder_index corresponds
to the order in which the folder is defined in the PackageFile. Use escape encoding for
the angle brackets. More specifically, use < in place of the left angle bracket (<),
and use > in place of the right angle bracket (>). Consider a target file in the
second folder defined in the PackageFile’s Folders element where the nameKey is
MyFile.001.pdf. In this case, use Filename="<2>MyFile.001.pdf".

See also

“Bookmark xml that links to an embedded file in a folder” on page 331

“File Attachments Language” on page 345

“PackageFiles Language” on page 350

Filename_en
c

Optional. The encoding used to represent the Filename value in the PDF document.
If this attribute is omitted, the PDFDocEncoding character encoding is used. (See
“Supported character encodings” on page 338.)

PageNum Required if the destination is a file-attachment annotation (page-level attachment).
This attribute specifies the page number that bears the destination annotation, where
0 is the first page in the document.

AnnotName Optional. If the destination is a file-attachment annotation (page-level attachment),
this attribute specifies the name of the destination annotation. Either the AnnotName
attribute or the AnnotNum attribute must be provided to specify file-attachment
annotation targets.

AnnotNum Optional. If the destination is a file-attachment annotation (page-level attachment),
this attribute specifies the number of the destination annotation. A value of 0 specifies
the first annotation on the page. Either the AnnotName attribute or the AnnotNum
attribute must be provided to specify file-attachment annotation targets.

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference URI 336

Bookmark title
</Title>

Can be contained in the Bookmark element.

URI
An action that resolves and displays a URL in the viewer window.

<URI
URI="xs:string"
IsMap="true" or "false"

/>

Can be contained in the Action element.

Attributes

Win
Windows-specific launch parameters.

<Win
Name="xs:string"
Name_enc="xs:token"
Dir="xs:string"
Dir_enc="xs:token"
Action="open" or "print"
Action_enc="xs:token"
Params="xs:string"
Params_enc="xs:token"

/>

Can be contained in the Launch element.

Name Description

URI Required. The uniform resource identifier to resolve, encoded in 7-bit ASCII.

IsMap Optional. Specifies whether to track the mouse position when the URL is resolved.

This entry applies only to actions triggered by the user’s clicking an annotation. It is
ignored for actions associated with outline items or with a document’s PDF OpenAction
entry.

Note: This attribute is not relevant to bookmarks.

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference XYZ 337

Attributes

XYZ
A destination that specifies positioning of a specific page in the viewer window.

<XYZ
PageNum="xs:nonNegativeInteger"
Left="xsd:float"
Top="xsd:float"
Zoom="xsd:float"

/>

Can be contained in the Dest element.

When a user clicks a bookmark that uses the XYZ element, the viewer application makes the following
adjustments to the displayed page:

? Positions the upper-left corner of the page at the upper-left corner of the window.

? Magnifies the contents of the page as specified in the Zoom attribute.

Name Description

Name Required. The filename of the application to launch or the document to open or print.
The name format uses standard Windows path format.

Name_enc Optional. The encoding used to represent the Name value in the PDF document. If this
attribute is omitted, the PDFDocEncoding character encoding is used. (See
“Supported character encodings” on page 338.)

Dir Optional. A string specifying the default directory in standard DOS syntax.

Dir_enc Optional. The encoding used to represent the Dir value in the PDF document. If this
attribute is omitted, the PDFDocEncoding character encoding is used. (See
“Supported character encodings” on page 338.)

Action Optional. A string specifying the operation to perform:

? open - Open a document.

? print - Print a document.

If the Name attribute designates an application instead of a document, this entry is
ignored and the application is launched. Default value: open.

Action_enc Optional. The encoding used to represent the Action value in the PDF document. If
this attribute is omitted, the PDFDocEncoding character encoding is used. (See
“Supported character encodings” on page 338.)

Params Optional. A parameter string passed to the application designated by the Name
attribute. This entry is ignored if Name designates a document.

If Params_enc is omitted, encoding is assumed to be PDFDocEncoding or UTF-16,
based on the characters encountered in the Params value.

Params_enc Optional. The encoding used to represent the Params value in the PDF document. If
this attribute is omitted, the PDFDocEncoding character encoding is used. (See
“Supported character encodings” on page 338.)

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference Supported character encodings 338

Attributes

Supported character encodings
The Assembler service supports the character encodings described in the following table. These
encodings are used to convert a string or name into encoding in the PDF document. The original string or
name is an attribute provided in the Bookmarks XML document.

Depending on the character encodings available through your installation’s Java Virtual Machine, the
Assembler service can also support additional encodings. These additional encodings are described in the
Extensible Markup Language (XML) Specification, 1.0. Examples of such additional character encodings are
ISO-8859-1, ISO-10646-UCS-2, and ISO-2022.

Name Description

PageNum Required. The page number for the destination, where 0 is the first page in the
document.

Left Optional. Horizontal coordinate for the upper left side of the view, expressed in points.
This value describes the distance from the left side of the page to the left side of the
view.

If omitted, the PDF viewer application uses the current value for this attribute.

Top Optional. Vertical coordinate for the upper left side of the view, expressed in points.
This value describes the distance from the bottom of the page to the top of the view.

If omitted, the PDF viewer application uses the current value for this attribute.

Zoom Optional. Zoom factor, expressed as a fraction. For example a value of 0.3 scales down
the document to 30%.

If this attribute has a value of 0 or is omitted, the PDF viewer application uses the
current value for this attribute.

To express the scaling factor in terms of Fit Page or Fit Width, use destination child
elements such as Fit, FitB, or FitBH.

Encoding names Description

ASCII ISO/IEC 8859-1:1998 Information technology -- 8-bit single-byte coded graphic
character sets -- Part 1: Latin alphabet No. 1, published by ISO (not available
online)

BASE64 The Base16, Base32, and Base64 Data Encodings, RFC 3548
(http://ietf.org/rfc/rfc3548.txt)

UTF-8 The Unicode Standard, Version 4.0,
(http://unicode.org/versions/Unicode4.0.0/ch03.pdf#G7404)

UTF-16 The Unicode Standard, Version 4.0,
(http://unicode.org/versions/Unicode4.0.0/ch03.pdf#G7404)

PDFDocEncoding PDF Reference, version 1.6, (http://www.adobe.com/go/pdf_developer)

http://www.ietf.org/rfc/rfc3548.txt
http://www.unicode.org/versions/Unicode4.0.0/ch03.pdf#G7404
http://www.unicode.org/versions/Unicode4.0.0/ch03.pdf#G7404
http://www.adobe.com/go/pdf_developer

Adobe LiveCycle 11 Bookmarks Language
Assembler Service and DDX Reference Supported character encodings 339

The following illustration shows how the filename is converted from the character encoding of the XML
file (UTF-8) into the character encoding specified in the Name_enc attribute. The resulting encoded name
is then incorporated into the PDF document, along with an indication of its character encoding, BASE64.

<?xml version="1.0"
encoding="UTF-8"?>

<Bookmarks>
<Bookmark>

<File
Name="MyFile.pdf"
Name_enc="BASE64"

/>
</Bookmark>

</Bookmarks>

Outline dictionary represents the
filename "MyFile.pdf" encoded as
BASE64.

Bookmarks XML document PDF document

Conversion from
UTF-8 to BASE64

 340

24 Document Text Language

The DocText language is an XML representation of the words or sentences used in a PDF document. The
language includes words in the body, headers, footers, watermarks, and backgrounds. A DocText
document can optionally include the positions on the page of each word. The order in which the words are
listed is not guaranteed to be the reading order.

The Assembler service returns a DocText document in response to the DocumentText element
appearing in the DDX document.

About the DocText XML language
The namespace of the DDX language is http://ns.adobe.com/DDX/DocText/1.0/, and the root element is
DocText. The schema is installed in the product Documentation folder.

Example: DocText document that provides words and word locations (long form)

<?xml version="1.0" encoding="UTF-8"?>
<DocText xmlns="http://ns.adobe.com/DDX/DocText/1.0/">

<WithQuads>
<Page pageNumber="n">

<Word>word1
<Quad>

<P1 X="59.588" Y="590.5" />
<P2 X="54.044" Y="590.5" />
<P3 X="54.044" Y="575.366" />
<P4 X="59.588" Y="575.366" />

</Quad>
</Word>

</Page>
</WithQuads>

</DocText>

Example: DocText document that provides only words (short form)

<?xml version="1.0" encoding="UTF-16"?>
<DocText xmlns="http://ns.adobe.com/DDX/DocText/1.0/">

<TextPerPage>
<Page pageNumber="n">word1 word2 word3...</Page>

</TextPerPage>
</DocText>

Example: DocText document that provides the sentences for each paragraph

<DocText xmlns="http://ns.adobe.com/DDX/DocText/1.0/">
<ParagraphsPerPage>

<Page pageNumber="1">
<Paragraph>

<Sentence>The Tell Tale Heart Revealed Would you call a man crazy,
calm, or patient for killing a man just because he feared the man’s
eye?</Sentence>

http://ns.adobe.com/DDX/DocText/1.0/

Adobe LiveCycle ES4 Document Text Language
Assembler Service and DDX Reference Text encoding 341

<Sentence>I sure would. </Sentence>
</Paragraph>

</Page>
</ParagraphsPerPage>

</DocText>

Example: DocText document that provides only words in paragraphs and sentences

<DocText>
 <ParagraphsPerPage>
 <Page>
 <Paragraph>
 <Sentence>
 xs:string
 </Sentence>
 <Sentence>word1 word2 word3...</Sentence>
 </Paragraph>
 <Paragraph>...</Paragraph>
 </Page>
 <Page>...</Page>
 </ParagraphsPerPage>
</DocText>

Text encoding
The text encoding used for the words included in a DocText document is specified in the encoding of the
result XML document, typically UTF-8.

Adobe LiveCycle ES4 Document Text Language
Assembler Service and DDX Reference DocText reference 342

DocText reference
This reference provides the syntax and grammar for the DocText language.

DocText
Root element of a DocText document.

<DocText>
<WithQuads> or <ParagraphsPerPage> or <TextPerPage> [1]

</DocText>

Page
Lists the words that appear on a particular page.

<Page pageNumber="n">
<Word/> [0..n, present only if a child of the WithQuads element]
word1 word2 word3 [present only if a child of the TextPerPage element]

</Page>

Can be contained in the elements WithQuads or TextPerPage.

If the Page element is a child of the TextPerPage element, it contains a space-separated list of the words
that appear on the page. The words are not sorted alphabetically, but they are roughly in reading order on
the page.

The words are encoded using the encoding specified in the first line of the DocText file, usually UTF-8.

Attributes

Paragraph
Sentences contained in a paragraph on the page.

<Paragraph>
<Sentence> [0..n]

xs:string
</Sentence>

</Paragraph>

A sentence contains a string of words terminated by punctuation.

Can be contained in the Page element.

ParagraphsPerPage
Outer element containing paragraphs and sentence strings.

<ParagraphsPerPage>

Name Description

pageNumber Ordinal page number of a page in the document.

Adobe LiveCycle ES4 Document Text Language
Assembler Service and DDX Reference P1 343

<Page pageNumber="xs:decimal"> [0..n]
<Paragraph> [0..n]

</ParagraphsPerPage>

Can be contained in the DocText element.

P1
Specifies one corner of a word’s bounding box.

<P1
x="X-coordinate"
y="Y-coordinate"

</P1>

Can be contained in the Quad element.

Attributes

P2
See the P1 element.

P3
See the P1 element.

P4
See the P1 element.

Quad
Specifies the four corners that describe an area on the page where the word appears.

<Quad>
<P1> [1]
<P2> [1]
<P3> [1]
<P4> [1]

</Quad>

Can be contained in the Page element.

Name Description

x X-coordinate of one corner of a bounding box.

y Y-coordinate of one corner of a bounding box.

Adobe LiveCycle ES4 Document Text Language
Assembler Service and DDX Reference TextPerPage 344

TextPerPage
Specifies the words used on an individual page, without specifying the location of those words.

<TextPerPage>
<Page> [0..n]

</TextPerPage>

Can be contained in the DocText element.

WithQuads
Provides the page number and placement on the page of each word in the document.

<WithQuads>
<Page/> [0..n]

</WithQuads>

Can be contained in the DocText element.

Word
Describes the location of an individual word on the page.

<Word>
word
<Quad/>

</Word>

Can be contained in the Page element.

The contents of this element is a single word that appears on the page. Text encoding used for this work is
specified in the first line of the DocText file, usually UTF-8.

 345

25 File Attachments Language

The File Attachments language is an XML language that describes file attachments in a set of PDF
documents. The file attachments can be returned as named data streams. An Attachments document does
not contain file attachments.

About the Attachments XML language
The namespace of the Attachments language is http://ns.adobe.com/DDX/Attachments/1.0/, and the root
element is Attachments. The schema is installed in the product Documentation folder.

The Assembler service returns an Attachments document in response to the appearance of the
FileAttachments result element in a DDX document. The FileAttachments result element specifies
the source documents for which file attachment information is desired. It can also specify keys that identify
which file attachments to consider and whether those attachments are returned to the client as separate
data streams.

An Attachments document contains a description for each file attachment specified in the
FileAttachments result element. The description includes the file attachment’s unique identifier,
filename, description, and MIME-type. The Assembler service assigns a unique identifier to each file
attachment, regardless of whether the attachments are returned to the client.

File attachments are identified using unique identifiers rather than filenames because the original
filename cannot always be decoded.

http://ns.adobe.com/DDX/Attachments/1.0/

Adobe LiveCycle ES4 File Attachments Language
Assembler Service and DDX Reference Attachments reference 346

Attachments reference

Attachment
Describes a single file attachment.

<Attachment
attachmentKey="xs:string"
name="xs:string"

>
<File> [1]
<Description> [0..1]
<Page> [0..1]

</Attachment>

Can be contained in the Attachments element.

Attributes

Attachments
Describes some or all of the file attachments in a PDF document. This element is empty if no file
attachments are extracted.

<Attachments>
<Attachment> [1..n]

</Attachments>

This element is the root element for the Attachments XML.

Description
Provides the description for the file attachment.

<Description>
xs:string

</Description>

Can be contained in the Attachment element.

The value provided is taken from the source PDF document Attachment Description property. A user can
set this property by selecting the attachment and then selecting the properties menu. If the source
document omits a value for the Attachment Description, this element is omitted.

Name Description

attachmentKey The contrived name associated with the output stream.

name Name under which the file was attached to the PDF document, if attached at the
document level. If the file was attached at the page level, there is no name. This
attribute corresponds to the nameKeys attribute in the DDX language
FileAttachments element.

Adobe LiveCycle ES4 File Attachments Language
Assembler Service and DDX Reference File 347

File
<File

mimeType="xs:string"
size="xs:integer"
creationDate="xs:dateTime"
modificationDate="xs:dateTime"

>
<FileName> [1..n]

</File>

Can be contained in the Attachment element.

Attributes

FileName
Filename and the success of decoding that name from the source PDF document.

<FileName
unmappableCharacters="true"
fromEncoding="algorithm name"
success="true" or "false"

>
decoded file name

</FileName>

Can be contained in the File element.

Occasionally, the filename encoding algorithm in the original PDF document is unknown. In such cases,
the decoding process is a trial and error process that involves trying multiple algorithms supplied by the
DDX FilenameEncoding element.

The name is encoded using UTF-8, as specified in the XML encoding attribute.

Name Description

mimeType Optional. MIME type of the file. If this information is unknown, the attribute is
absent.

size Optional. Size of the file, in bytes. If this information is unknown, the attribute is
absent.

creationDate Optional. Creation date of the file. If this value is unknown, the attribute is absent.

modificationD
ate

Optional. Date the file was last modified. If this value is unknown, the attribute is
absent.

Adobe LiveCycle ES4 File Attachments Language
Assembler Service and DDX Reference Location 348

Attributes

Location
Specifies a position on a page as coordinates.

<Location
x="length"
y="length"

/>

Can be contained in the Page element.

Attributes

Name Description

unmappableCharact
ers

Flag indicating whether, after applying the encoding specified by the
fromEncoding attribute, unmappable characters were found in the
filename.

If unmappable characters are found, this attribute appears in the XML with a
value of true. In addition, the following changes occur:

? Unmappable characters are replaced with the Unicode substitution
character (\uFFFD).

? success attribute is set to false.

? Modified filename text is displayed.

If unmappable characters are not found, this attribute is absent.

fromEncoding Encoding applied to produce the string content of the FileName element.

success Flag indicating the success of the attempt to decode the filename. This
attribute can have the following values:

false - Decoding was unsuccessful. If the unmappableCharacters
attribute is present, some characters in the filename could not be
decoded. If that attribute is absent, the decoding attempt failed.

true - Decoding was successful.

Name Description

x Specifies the horizontal location on the page where the icon is placed. The value provides
the horizontal distance from the lower left corner of the page to the upper right corner of
the icon.

y Specifies the vertical location on the page where the icon is placed. The value provides the
vertical distance from the lower left corner of the page to the upper right corner of the icon.

Adobe LiveCycle ES4 File Attachments Language
Assembler Service and DDX Reference Page 349

Page
Specifies the page on which a page-level file attachment occurs and the position on that page where the
annotation is placed.

<Page
pageNumber="xs:integer"

>
<Location> [0..1]

</Page>

Can be contained in the Attachment element.

Attributes

Name Description

pageNumber The number of the page in the PDF document to which the file was
attached.

 350

26 PackageFiles Language

The PackageFiles language is an XML grammar that provides information about package files in a PDF
document.

The PackageFiles language is important for obtaining the nameKey that identifies package files. The
nameKey for a package file is a contrived name for these reasons:

? Original filename may be known from the original encoding for the given filename.

? Multiple files with the same filename may be present.

? Package file may be contained in a Folder.

Thus, a PackageFiles document helps with identification by providing a mapping of the contrived name to
information about the file. The PackageFiles result element returns a PackageFiles document.

About the PackageFiles language
The namespace of the PackageFiles language is http://ns.adobe.com/DDX/PackageFiles/1.0/, and the root
element is PackageFiles.The schema is installed in the product Documentation folder.

The Assembler service returns a PackageFiles document in response to the appearance of the
PackageFiles result element in a DDX document.

Example: Resultant PackageFiles

<?xml version="1.0" encoding="UTF-8"?>
<PackageFiles xmlns="http://ns.adobe.com/DDX/PackageFiles/1.0/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ns.adobe.com/DDX/PackageFiles/1.0/
F:\lc\assembler\kendall\schemas\pdfm\packagefiles.xsd">

<Package/>
<Folders>

<Description>A few test files</Description>
<Folder name="Chapters">

<Description>Folder for Chapters</Description>
<Folder name="Chapter 1">

<Description>Folder Chapter 1</Description>
</Folder>
<Folder name="Chapter 2">

</Folder>
</Folder>
<Folder name="Biodynamics">

<Description>Folder for Biodynamics</Description>
</Folder>

</Folders>
<PackageFile

attachmentKey="SimpleFolders.pdf_attach.0000.0001"
nameKey="/Chapters/Chapter 1/chap1.pdf">
<File creationDate="2009-08-03T14:05:10-07:00"

mimeType="application/pdf"

http://ns.adobe.com/DDX/PackageFiles/1.0/

Adobe LiveCycle ES4 PackageFiles Language
Assembler Service and DDX Reference PackageFiles reference 351

modificationDate="2009-07-16T10:44:20-08:00"
size="6508">
<Filename>chap1.pdf</Filename>

</File>
</PackageFile>
<PackageFile attachmentKey="SimpleFolders.pdf_attach.0000.0002"

nameKey="/Chapters/Chapter 2/chap2.pdf">
<File creationDate="2009-08-03T14:05:18-07:00"

mimeType="application/pdf"
modificationDate="2009-07-16T10:44:20-08:00" size="12942">
<Filename>chap2.pdf</Filename>

</File>
<Description>File chap2.pdf</Description>

</PackageFile>
<PackageFile attachmentKey="SimpleFolders.pdf_attach.0000.0003"

nameKey="/Biodynamics/biodynamic.pdf">
<File creationDate="2009-08-03T14:06:00-07:00"

mimeType="application/pdf"
modificationDate="2009-07-16T10:44:26-08:00" size="9339">
<Filename>biodynamic.pdf</Filename>

</File>
</PackageFile>

</PackageFiles>

PackageFiles reference
The PackageFiles schema provided below represents the XML contained in a PackageFiles result
element. The PackageFiles element is the root element.

Description
The description associated with this package file or folder.

<Description> "xs:string" </Description>

DisplayOrder
The DisplayOrder element contains FieldData elements that identify the specified order of the fields
when displayed in a viewer.

<DisplayOrder>
<FieldData name="xs:string"/> [0..n]

</DisplayOrder>

Attributes

Name Description

name Required. The normalized name of a FieldData as defined in the Schema. The
non-normalized name appears as the content in the Schema element.

Adobe LiveCycle ES4 PackageFiles Language
Assembler Service and DDX Reference FieldData 352

FieldData
There is one FieldData element for each custom field defined in the Schema, even if no value is set. The
FieldData element content is the value (the metadata) for this package file.

<FieldData
name="xs:string"
type="Text" or "Date" or "Number" or "Filename" or "Description" or

"ModificationDate" or "CreationDate" or "Size"
>

"xs:string"
</FieldData>

Can be contained in the Folders, Folder, o rPackageFile elements.

Attributes

File
The File element provides the basic metadata for the package file extracted from the PDF document.
When the PackageFiles schema is applied to an XML source for the PackageFiles import element,
the input is similar to that provided to the PackageFiles and FileAttachments source elements.

<File
creationDate="xs:dateTime"
mimeType="xs:string"
modificationDate="xs:dateTime"
size="xs:integer"

>
<Filename

fromEncoding="xs:dateTime"
success="true" or "false"
unmappableCharacters="false" or "true"

>[1..n]
"xs:string"

</Filename>
</File>

Within the File element, there is one Filename element that is output for each FilenameEncoding
specified in the PackageFiles result element. Multiple encodings can be successfully used to decode
the filename, but some successful decoding operations may not yield the correct result.

Using a specified encoding to decode the filename can fail for one of two reasons:

? The filename bytes cannot be mapped to anything in the encoding.

? Some unmappable characters are found, but the decoding process did not completely fail. In this case
a filename is provided. The unmappable characters are replaced with Unicode substitution characters.

Name Description

name Required. The normalized name of a Field as defined in the Schema. The
non-normalized name appears as the content in the Schema element.

type Required. The type of metadata stored in the Field according to the Schema.

Adobe LiveCycle ES4 PackageFiles Language
Assembler Service and DDX Reference File 353

With PDF documents that conform to PDF 1.7 and later, the filename encoding is known. With PDF
documents that conform to earlier versions of PDF, the encoding is unknown. If the FilenameEncoding
element is in a PDF result block that includes an earlier PDF version, the DDX processor tries default
encodings.

The PackageFiles import element uses a PackageFiles document. The DDX processor uses that
document to update the package file in the PDF result block. A PackageFiles document can have multiple
Filename elements for each file, with one Filename per decoding attempt. For each File in the
PackageFiles document, the DDX processor determines the filename by selecting the first Filename
element with the success attribute set or defaulted to "true".

File Attributes

Filename Attributes

Name Description

creationDate Optional. The creation date of the file, if known. If not known, this attribute is
absent. The default for import is the current date.

mimeType Optional. The MIME type of the file, if known. If it is not provided, then for import,
this entry is left blank.

Leaving the mimeType blank can cause problems when attempting to open the
document within the resultant PDF package or portfolio. The default is the empty
string.

modificationD
ate

Optional. The date on which the file was last modified, if known. If not known, this
attribute is absent. The default for import is the current date.

size Optional. The size of the file in bytes. The size is calculated as the number of actual
bytes in the data stream.

Name Description

fromEncoding Required. The encoding applied to produce the string content of the
Filename element.

success Optional. A flag indicating whether the encoding was successfully applied to
the filename. A success value of "false", when the
unmappableCharacters attribute is not present, means that the filename
failed to completely decode based on the fromEncoding value. It is not
required when used for PackageFiles import.

unmappableCharac
ters

Optional. A flag indicating whether, after applying the encoding specified by
the fromEncoding attribute, unmappable characters were found in the
filename.

If unmappable characters are found, this attribute appears in the XML and is
set to "true". Additionally, the unmappable characters are replaced with the
Unicode substitution character (\uFFFD), the success attribute is set to
"false", and the modified filename text is displayed.

If unmappable characters are not found, this attribute omitted from the XML.

Adobe LiveCycle ES4 PackageFiles Language
Assembler Service and DDX Reference Folders 354

Folders
(Since 9.0) Root in the folder structure for the PDF package.

<Folders
name = "xs:string"

>
<Description>[0..1]
<Folder> [0..n]
<FieldData>[0..n]

</Folders>

Contained in the PackageFiles elements.

This element describes the folders and subfolders within the PDF package or portfolio. The nesting of
folders shows the folder hierarchy.

Attributes

Folder
(Since 9.0) Node in the folder structure for the PDF package.

This element has the same properties as the Folders element.

Contained in the Folders elements.

Package
The package specification for the PDF package.

<Package>
<Schema>[0..1]
<DisplayOrder>[0..1]
<SortOrder>[0..1]

</Package>

PackageFile
Describes a package file selected from the PDF document.

<PackageFile
attachmentKey= "xs:string"
nameKey= "xs:string"
required= "false" or "true"

>
<File>[1]
<Description>[0..1]
<FieldData>[0..n]

</PackageFile>

Name Description

name Required. Folder name. The name must conform to the encoding specified in the DDX
FilenameEncoding element.

Adobe LiveCycle ES4 PackageFiles Language
Assembler Service and DDX Reference PackageFiles (root element) 355

Attributes

PackageFiles (root element)
Contains one Package element which contains the package specification and a PackageFile element
for each package file selected from the PDF document. The PackageFiles root element will be empty if
the PDF document is a single PDF and not a PDF package, or if no package files are extracted.

<PackageFiles>
<Package>[0..1]
<Folders> [0..1]
<PackageFile> [0..n]

</PackageFiles>

Schema
The description of the PDF package fields (metadata). The element content of the FieldData element is
the textual name displayed to the user in the user interface of the PDF viewing application.

<Schema>
<FieldData

Name Description

attachmentKey Required. The contrived name associated with the output stream for the extracted
attachment.

For document-level attachments, the syntax is

documentName + "_attach.0000." + nnnn

The documentName is the value of the PDF source attribute from which the
package files are being extracted. The nnnn is a sequence number for the package
file.

For example, if PDF source "docA" has two package files, the attachmentKey
values will be:

"docA_attach.0000.0001"
"docA_attach.0000.0002"

nameKey Optional. The internal name under which the package file was added to the PDF
package, when generated by the PackageFiles result element.

If the package file is generated by another process and is used by the
PackageFiles import DDX element, it is recommended that the nameKey
values be the filename and that all filenames be unique. Duplicate file names are
allowed if they exist in different folders. Thus, the nameKey would include the
folder path. For example, \myFoldername\myFilename.

See the description of nameKey for the PackageFiles source DDX element.

required Optional. If the package file is not found in the input map passed into the
Assembler operation and the value of this attribute is "true", an exception is
thrown and the operation stops. The exception contains the message that the
required file associated with attachmentKey is missing from the input map. If
this attribute’s value is ""false" or is not specified, then a warning similar to the
exception message is logged and the operation continues.

Adobe LiveCycle ES4 PackageFiles Language
Assembler Service and DDX Reference SortOrder 356

name="xs:string"
type="Text" or "Date" or "Number" or "Filename" or "Description" or

"ModificationDate" or "CreationDate" or "Size" or "CompressedSize"
visible="true" or "false"
editable="false" or "false"

>
"xs:stringxs:string"

</Field> [0..n]
</Schema>

Attributes

SortOrder
The SortOrder element contains FieldData elements that identify which field values are used for
sorting. The first field listed is the main sorting value. Any subsequent fields are used when the first sorting
attempt results in duplicate values.

<SortOrder>
<FieldData name="xs:string"
ascending="true" or "false"/> [0..n]

</SortOrder>

Attributes

Name Description

editable Optional. Indicates whether the PDF viewing application should provide support for
editing the field value. This attribute has no effect on whether the field is editable by a
DDX processor.

name Required. The normalized name of a FieldData as defined in the Schema. The
non-normalized name appears as the element content. The normalized name is used
when assembling PDF packages and comparing FieldData names.

type Required. The type identifies the type of data that is stored in this FieldData.

visible Optional. The initial visibility of the field in the PDF viewer. At least one FieldData
must be specified as visible.

Name Description

ascending Optional. When sorting with this field, this attribute specifies whether to sort in
ascending ("true") or descending ("false") order.

name Required. The normalized name of a FieldData as defined in the Schema. The
non-normalized name appears as the content in the Schema element.

 357

Part IV: Special Topics

More advanced settings let you coordinate between DDX expressions, system settings, and LiveCycle ES4
configuration settings.

 358

27 Handling Out of Memory Problems

Assembling and applying content to large PDF documents can use so much memory that the Assembler
service is terminated with an out of memory (OOM) exception. You can use operation checkpoints to avoid
triggering such exceptions.

Caution: Incorrectly setting values in the DDXProcessorSetting element can cause your LiveCycle ES4
system to fail. Do not adjust this setting when your system is in a production mode.

Operation checkpoints (DDXProcessorSetting)
Beginning with LiveCycle 8.0.1, the DDX grammar defines a new element (DDXProcessorSetting) that
lets you specify a checkpoint setting. This element can help avoid out of memory (OOM) conditions. This
setting specifies when the Assembler service temporarily saves the PDF document to disk when applying
Header (portfolio navigation pane), Footer, Watermark, Background, or PageContent elements.
These elements are called the checkpointed elements.

About operation checkpoints
Setting operation checkpoints can reduce the amount of memory required to process the document,
which can help avoid out of memory conditions on the server. The penalty of setting operation
checkpoints is slower performance due to writing the documents to disk and to reapplying credentials for
encrypted documents.

The DDXProcessorSetting element has the following form:

<DDXProcessorSetting name="checkpoint" value="positive-integer"/>

It can appear as a child of the DDX or PDF result elements.

In the Assembler service, the only supported value for the name attribute is checkpoint. The checkpoint
setting is a unit-less hint to the Assembler service. It specifies how many operations to perform in memory
before doing a temporary save (checkpoint) of the file to disk. Its value can be set to zero (0), which turns
checkpointing off or to any positive integer value. Smaller values trigger more frequent checkpointing and
therefore use less memory while applying the checkpointed elements. Conversely, larger values mean that
more operations are processed between checkpoints. By default, the value is zero (0).

Only the operations for applying the checkpointed elements count toward the checkpoint trigger.

Determine a checkpoint value
The checkpoint value is specific to individual LiveCycle ES4 environments and is empirically obtained to
avoid out of memory situations for particular workflows.

A guideline is every 1000 operations consume 25 MB of memory. A checkpoint value of 4000 allows 100
MB of memory for these operations. The memory consumption is reset when the service begins
interpreting a new DDX or when the checkpoint count rolls over.

Adobe LiveCycle ES4 Handling Out of Memory Problems
Assembler Service and DDX Reference Determine a checkpoint value 359

The suggested checkpoint values are between 500 to 5000. Start your setting at 4000 (the suggested
starting point) and reduce it until the assembly completes successfully. Here is a DDX expression that
shows the DDXProcessorSetting element with the suggested starting point.

<DDX xmlns="http://ns.adobe.com/DDX/1.0/">
<DDXProcessorSetting name="checkpoint" value="4000"/>
<PDF result="outDoc" >

<Header>
<Right><StyledText><p>Oct. 2007</p></StyledText></Right>
<Left><PDF source="paw_icon"/></Left>

</Header>

<Footer alternation="OddPages">
<Right><StyledText><p>Page <_PageNumber/></p></StyledText></Right>

</Footer>

<Footer alternation="EvenPages">
<Left><StyledText><p>Page <_PageNumber/></p></StyledText></Left>

</Footer>

<PDF source="cover" bookmarkTitle="Cover" />
<PDF source="shasta" bookmarkTitle="Shasta" required="false" />
<PDF source="sam" bookmarkTitle="Sam" required="false" />
<PDF source="bobby" bookmarkTitle="Bobby" required="false" />
<PDF source="billy" bookmarkTitle="Billy" required="false" />
<PDF source="joaquin" bookmarkTitle="Joaquin" required="false" />
<PDF source="reese" bookmarkTitle="Reese" required="false">

<Watermark rotation="45" opacity="60%">
<StyledText color="red"

font-size="72pt"><p>Adopted!</p></StyledText>
</Watermark>

</PDF>
<PDF source="summary" bookmarkTitle="Summary" required="false" />

</PDF>

</DDX>

Include this expression in the DDX document for your assembly workflow.

	Contents
	About This Help
	What’s new
	Additional information

	Part I: DDX User Document
	Introducing Document Description XML
	DDX document structure
	DDX building blocks
	DDX principles
	Result elements
	Source elements
	Sibling and child elements

	Filter elements
	Profile elements
	Grouping PDF sources
	Grouping XDP sources and content

	Input and output
	Using input and output maps
	Using External Data URLs for source and result values

	Using External Data URLs for string values
	Scope of elements that affect PDF or XDP properties
	Scope of PDF page properties
	Odd and even pages

	Scope of XDPContent

	Specifying length
	Dynamic document assembly
	Optional source documents
	Lists of documents
	Lists obtained from input maps or External Data URLs
	Lists constructed with the sourceMatch attribute
	Lists obtained by apply the sourceMatch attribute to from input maps or External Data URLs

	Automatic Conversion of source documents to PDF documents

	Assembling PDF Documents
	Specifying source documents
	About base documents
	Page ranges
	Other source attributes

	Specifying multiple input streams
	List defined by a source that specifies a name in the input map
	List defined by a source that specifies URL
	List defined by the matchSource and select attributes acting on source

	Saving PDF documents

	Modifying Acrobat and XML Forms
	Flattening forms
	Restrictions on documents containing forms
	Acrobat forms
	XFA-based forms

	Creating and Modifying Acrobat and XML (XFA) Forms
	Assemble a simple XDP document
	Dynamically insert forms or form fragments into an XFA form
	Resolve references
	Package an XDP document as PDF
	PDF documents from single XFA-based forms
	Assemble XFA-based forms with other documents
	Flatten assembly of multiple XFA-based forms
	Single XFA-based form remains interactive

	PDF documents from Acrobat forms

	Package a PDF document as XDP

	Assembling PDF Packages and Portfolios
	Understanding PDF packages
	About PDF package and portfolio properties
	PDF Package property: package files and package specifications
	Base file (the cover sheet)
	PackageFiles
	Package or Portfolio element

	PDF Portfolio properties
	Navigators

	Folders
	Navigation welcome page and navigation heading

	Creating a PDF Portfolio
	Creating a PDF package
	Change the cover sheet for an existing PDF package or portfolio
	Choose a new cover sheet
	Add or remove pages to an existing cover sheet

	Creating a package or portfolio specification from other ones
	Creating a package or portfolio specification by aggregating existing ones
	Selecting the package specification from an existing package
	Overriding properties in merged package or portfolio specifications
	Changing the metadata display order in an existing PDF package or portfolio

	Modifying the package files in a PDF package or portfolio
	Adding single files to an existing PDF package or portfolio
	Adding documents from a PDF package or portfolio to another
	Using nameKeys to select files from a PDF package or portfolio file
	Using the nameKeys to select folders from a PDF Portfolio

	Modifying selected files in a PDF package or portfolio
	Exporting and importing package files

	Converting a PDF package or portfolio into a single PDF

	Disassembling PDF Documents
	Working with Bookmarks and Thumbnails
	Including and excluding bookmarks
	Exporting and importing bookmarks
	Exporting book marks from a PDF document
	Importing bookmarks into a PDF document

	Creating bookmarks from source documents
	Sorting bookmarks
	Removing thumbnails

	Working with Annotations
	Including and excluding comments
	Importing and exporting comments
	Selecting specific comments
	Working with links
	Removing links
	Rationalizing links

	Working with File Attachments
	Preserving and deleting file attachments
	Attaching files to a PDF document
	Document-level file attachments
	Page-level file attachments

	Extracting file attachments
	Understanding filename encoding

	Adding Table of Contents or Blank Pages to an Assembly
	Adding a table of contents
	Formatting a table of contents
	Applying page properties and content to particular pages
	Applying entry styles to specific line levels

	Adding blank pages

	Setting Other Document Properties
	Working with metadata
	Modifying metadata properties

	Working with layers
	Setting the initial view
	Using document-level JavaScript

	Setting Page Properties
	Applying page properties
	Page size and rotation
	Changing page size
	Rotation and orientation
	Interaction of page properties and content

	Prepress settings
	Page margins

	Adding and Manipulating Page Content
	Adding and removing headers and footers
	Adding headers and footers
	Removing headers and footers

	Adding and removing watermarks and backgrounds
	Adding page content
	Overlaying and underlaying pages
	Understanding rendering order
	Understanding blending color spaces
	Specifying styled text
	Style attributes
	Applying identifying labels
	Built-in keys

	Using style profiles
	Formatting dates

	Transforming page content

	Specifying Page Labels
	About page labels
	Specifying page labels

	Removing page labels

	Working with Secured Documents
	Specifying passwords
	Accessing a password-protected document
	Digital signatures

	Querying Documents
	Getting document information
	Getting the text of a document
	Getting information about the DDX processor

	Part II: DDX Reference
	DDX Concepts
	Element relationships and roles
	Attributes, child elements, and text content
	Attribute names, formatting, and possible values
	Child elements
	Text content

	Element categories
	Document assembly
	PDF assembly
	PDF package or portfolio assembly
	XDP assembly

	Document components
	Navigational content
	Comments
	File attachments

	Document disassembly
	Document properties
	Page labels
	Page properties
	Page content
	Profile
	Query

	Built-in keys
	_AdobeCoverSheet

	Special DDX attribute values
	Color-specifier
	External Data URL
	Page and document ranges
	length-specifier

	DDX Language Elements
	About
	ArtBox
	AttachmentAppearance
	Author
	Background
	BlankPage
	BleedBox
	Bookmarks
	Bookmarks result
	Bookmarks source
	Bookmarks filter

	Center
	ColorScheme
	Comments
	Comments result
	Comments source
	Comments filter

	DatePattern
	DDX
	DDXProcessorSetting
	Description
	DisplayOrder
	DocumentInformation
	DocumentText
	Field
	Field contained in Schema element
	Field contained in DisplayOrder element
	Field contained in SortOrder element

	FieldData
	File
	FileAttachments
	FileAttachments result
	FileAttachments document-level source
	FileAttachments page-level source

	FilenameEncoding
	FileSize
	Folder
	Footer
	Header
	Header (portfolio navigation pane)
	InitialViewProfile
	JavaScript
	Keyword
	Keywords
	Left
	LinkAlias
	Links
	Links result
	Links source
	Links filter

	MasterPassword
	Metadata
	Metadata result
	Metadata source

	MetadataSchemaExtension
	Navigator
	NoBackgrounds
	NoBookmarks
	NoComments
	NoFileAttachments
	NoFooters
	NoForms
	NoHeaders
	NoJavaScripts
	NoLinks
	NoPackage
	NoPackageFiles
	NoPageLabels
	NoPortfolio
	NoThumbnails
	NoWatermarks
	NoXFA
	OpenPassword
	OutputIntent
	Package
	Package defining element
	Package filter element
	Referencing a package or portfolio contained in a StyleProfile element

	PackageFiles
	PackageFiles modifying elements
	PackageFiles source elements
	PackageFiles filter elements
	PackageFiles select elements
	PackageFiles result elements
	PackageFiles import elements

	PageContent
	PageLabel
	PageMargins
	PageOverlay
	PageRotation
	PageSize
	PageUnderlay
	Password
	PasswordAccessProfile
	PasswordEncryptionProfile
	PDF
	PDF result
	PDF source

	PDFGroup
	PDFsFromBookmarks
	PDFAProfile
	PDFAValidation
	Permissions

	Portfolio
	Portfolio filter element
	Portfolio defining element

	Resource
	RichMedia
	Right
	Schema
	SortOrder
	String
	StyledText
	Attributes used in the rich text elements
	Inheritance
	Attributes
	Font-family naming issues
	Font variations, extensions, and subsets

	Rich text elements
	b
	BatesNumber
	Built-in key
	graphic
	i
	leader
	p
	Space
	span
	String
	StyledText
	sub
	sup

	StyleProfile
	Subject
	TableOfContents
	TableOfContentsEntryPattern
	TableOfContentsPagePattern
	TargetLocale
	Title
	Transform
	TrimBox
	Watermark
	WelcomePage
	XDP
	XDP (generic)
	XDP result
	XDP source

	XDPContent

	Part III: Supporting XML Grammars Reference
	Extended Services
	PDFGenerationSettings
	ReaderRights
	XFAConversionSettings
	XCI

	XFAData

	About Language
	About
	Build
	Copyright
	Processor
	Version

	Document Information Language
	Categories of DocInfo data
	DocInfo reference
	DocInfo
	Author
	CreatedDate
	Creator
	DisplayOrder
	Extensions
	FormType
	Keyword
	Keywords
	ModifiedDate
	NumPages
	Package
	PageLabel
	PageLabels
	PageRotations
	PageSize
	PageSizes
	PageRotation
	PDFAConformance
	Producer
	Schema
	SortOrder
	Subject
	Title
	Version
	ViolationDetail
	Violation

	Bookmarks Language
	About the Bookmarks language
	Intent of bookmarks in a PDF document
	XML representation of bookmarks

	Bookmarks XML language reference
	Action
	Bookmark
	Bookmarks
	Desc
	Dest
	File
	Fit
	FitB
	FitBH
	FitBV
	FitH
	FitR
	FitV
	GoTo
	GoToE
	GoToR
	Launch
	Named
	Target
	Title
	URI
	Win
	XYZ

	Supported character encodings

	Document Text Language
	About the DocText XML language
	Text encoding

	DocText reference
	DocText
	Page
	Paragraph
	ParagraphsPerPage
	P1
	P2
	P3
	P4
	Quad
	TextPerPage
	WithQuads
	Word

	File Attachments Language
	About the Attachments XML language
	Attachments reference
	Attachment
	Attachments
	Description
	File
	FileName
	Location
	Page

	PackageFiles Language
	About the PackageFiles language
	PackageFiles reference
	Description
	DisplayOrder
	FieldData
	File
	Folders
	Folder
	Package
	PackageFile
	PackageFiles (root element)
	Schema
	SortOrder

	Part IV: Special Topics
	Handling Out of Memory Problems
	Operation checkpoints (DDXProcessorSetting)
	About operation checkpoints
	Determine a checkpoint value

