
bbc

Guidelines for Dynamically Assembling
Customized Forms and Documents

Adobe® LiveCycle® Designer 11
March 2013

Legal Notices
For more information, see http://help.adobe.com/en_US/legalnotices/index.html.

http://help.adobe.com/en_US/legalnotices/index.html

 iii

Contents

About this document
Who should read this document? . 1

Additional information . 1

Introduction
How it works . 2

Create a form design . 2

Create one or more fragments . 3

Create a Document Description XML (DDX) file . 4

Submit the job to the Assembler service . 5

Dynamic Assembly Guidelines
XDP file guidelines . 6

Insertion point guidelines . 6

Naming insertion points . 6

Positioning insertion points . 6

Sizing insertion points . 8

Placeholder content . 8

Master page guidelines . 8

Example of modifying page numbers and size . 9

Fragment guidelines .13

Using fragments created in Designer .13

Floating Field Guidelines .13

Manifest Guidelines .14

Tab Order Guidelines .14

Locale Guidelines .14

Script Guidelines .14

Form Data Guidelines .14

Using name and global data binding .14

Data binding using a schema .16

Form Printer Directives

DDX Capabilities for Dynamically Assembling Forms and Fragments
Selecting variable fragments .21

Input map variables .21

Process variables .22

sourceMatch attribute .22

Aggregation of XDPContent .23

Generating an XDP or PDF result .24

 1

About this document

This Adobe® LiveCycle® Designer 11 document, Dynamically Assembling Customized Forms and Documents, provides a flexible and
powerful way to combine forms and fragments.

The intent of this document is to guide users to successfully assemble customized forms and documents. Advanced form developers can
take advantage of features beyond those described here.

Who should read this document?
This document is intended for individuals who are responsible for dynamically assembling customized forms and documents.

Additional information
The resources in this table can help you learn more about Adobe® LiveCycle® ES4.

For information about See

Creating forms using Designer Designer Help

Using the Assembler service Adobe LiveCycle ES4 Services Reference Overview

Document Description XML (DDX) language Assembler Service and DDX Reference

Using Adobe LiveCycle Output 11 Adobe LiveCycle ES4 Services Reference Overview

Editing XDC files XDC Editor Help

Using Document Builder to create DDX files Creating Assembly Descriptors Using Workbench

http://www.adobe.com/go/learn_dep_designer_11
http://www.adobe.com/go/learn_dep_services_11
http://www.adobe.com/go/learn_dep_ddx_11
http://www.adobe.com/go/learn_dep_services_11
http://www.adobe.com/go/learn_dep_xdcEditor_11
http://www.adobe.com/go/learn_dep_workbench_11

 2

Introduction

Dynamically assembling PDF forms offers total flexibility in customizing XDP files to a specific need. First, you can author and manage
related forms and fragments using Designer. Then, you dynamically assemble the forms and fragments together before they are rendered
into a PDF form or document. Using this technique, complex logic can be applied to match the rendered form or document specifically to
the usage required.

PDF forms can sometimes be complicated to use, for example, when a single form has to cater to every possible client. With a little infor-
mation about the client, dynamic assembling makes it possible to effectively build a form to match that client’s needs exactly. The result is
a simplified filling process where the actual form is smaller and more efficient.

Similarly, documents often have common attributes. For example, a loan agreement for one state requires a certain waiver page to be
included as a part of a group of pages in a loan agreement document. However, another state requires a different waiver page. In addition,
certain clauses and sections on different pages may vary based on criteria. For example, the state the where the client lives, marital status,
dependents, and loan options chosen. In both cases, a set of related forms and fragments can be assembled into a unique XDP file that is
customized for a specific client.

Multiple forms can be concatenated into a larger form. As well, each XDP file can contain named insertion points that are used to place any
fragment or group of fragments within the form. Through these simple techniques, forms and fragments can be assembled into a single
XDP document and then used to render highly customized PDF forms and documents.

How it works
The example in this section provides a basic understanding of how dynamically assembling forms and fragments works. It takes you
through the steps for assembling a simple patient clinic visit form. These steps are the building blocks for more involved implementations,
upon which complex logic can be applied to specifically match the rendered form or document to the usage required:

1 In Designer, create a form design that contains insertion point placeholders for the fragments that are inserted into the form. Save the
form design in XDP format.

2 In Designer, create one or more fragments and save them in XDP format. When the XDP files are dynamically assembled into a single
XDP file, the fragments appear in place of the insertion point placeholder.

3 Create a Document Description XML (DDX) file indentifying the XDP files (forms and fragments) to be dynamically assembled into
a single XDP file. The resulting XDP can then be rendered as a PDF form, a PDF, or print format document.

4 Submit the job to the Assembler service. (See LiveCycle Services.)

Create a form design
For this example, a simple form design has been created using Designer, and then saved as an XDP file. The form design’s master page
contains a logo, title, form id, and approval notes. Only one Insertion Point object has been added to the page.

The Insertion Point object, named InsertionPoint by default, is a subform that acts as a placeholder for a fragment. The fragment is inserted
into the form when the form is assembled on a server by using the Assembler service. (See Designer Help.)

Inside the InsertionPoint subform, there is a subform that contains an insertion point placeholder (a text object that contains temporary
placeholder content). Notice that when the subform is selected in the Hierarchy palette, as shown in the following figure, the Subform tab
shows that This Subform Is An Insertion Point is selected. For this example, the insertion point name is ddx_fragment. For the examples
that follow, ddx_fragment is used in the DDX file to designate an insertion point.

http://www.adobe.com/go/learn_lc_services_11
http://www.adobe.com/go/learn_lc_designer_11

ADOBE LIVECYCLE DESIGNER 11
Introduction Guidelines for Dynamically Assembling Customized Forms and Documents

 3

Note: Although giving subforms meaningful names is recommended, the subform names are not used to locate insertion points when the XDP
files are dynamically assembled.

When the insertion point text object is selected in the Hierarchy palette, you can see that This Is An Insertion Point Placeholder is selected
in Draw tab. Form designers type placeholder content to assist them in developing the form. In this example, the placeholder content reads,
“This is where the dynamic content will be placed.” This content is automatically removed when a fragment is inserted when the XDP files
are dynamically assembled into a single XDP file.

Create one or more fragments
Fragments are a reusable part of a form that can be inserted into multiple custom forms and documents. For example, a fragment can be a
logo or a block of address fields.

You can replace the selected objects in the current form design with a reference to a fragment. (See Using Fragments in Designer Help.)

For this example, three fragments are used:

http://www.adobe.com/go/learn_lc_designer_11

ADOBE LIVECYCLE DESIGNER 11
Introduction Guidelines for Dynamically Assembling Customized Forms and Documents

 4

• The file named wp_simple_contact.xdp, contains a single fragment, “subPatient Contact.”

• A second file named wp_simple_patient.xdp, contains two fragments, “subPatientPhysical” and “subPatientHealth”.

Create a Document Description XML (DDX) file
The Assembler service uses the DDX language to define the desired resulting document. For this example, the DDX file identifies the
wp_simple_template_flowed.xdp file as the XDP source. The three fragments are defined in XDPContent and are inserted at the insertion
point named “ddx_fragment” when the XDP is dynamically assembled.

<?xml version="1.0" encoding="UTF-8"?>
<!-- **
 *
 * Simple Dynamic Assembly with a single XDP with one insertion point and

ADOBE LIVECYCLE DESIGNER 11
Introduction Guidelines for Dynamically Assembling Customized Forms and Documents

 5

 * multiple fragment flowed into that point.
 *
 * ** -->
<DDX xmlns="http://ns.adobe.com/DDX/1.0/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://ns.adobe.com/DDX/1.0/
http://spg.corp.adobe.com/pub/doc-o-matic/fibonacci/vrg/schemas/pdfm/ddx.xsd">

<XDP result="wp_simple_result.xdp">
<XDP source="wp_simple_template_flowed.xdp">
<XDPContent insertionPoint="ddx_fragment" source="wp_simple_contact.xdp" fragment="subPatientContact"
/>
<XDPContent insertionPoint="ddx_fragment" source="wp_simple_patient.xdp" fragment="subPatientPhysical"
/>
<XDPContent insertionPoint="ddx_fragment" source="wp_simple_patient.xdp" fragment="subPatientHealth" />
</XDP>

</XDP>
</DDX>

Submit the job to the Assembler service
The form design saved as an XDP file, fragments, and DDX file are passed to the Assembler service to create the dynamically assembled
XDP file.

Note: Each fragment is inserted at the insertion point in the order in which they appear in the DDX file.
You can view the resulting XDP file in Designer:

 6

Dynamic Assembly Guidelines

The following are guidelines and considerations to follow when setting up forms and documents for dynamic assembly.

XDP file guidelines
This section describes guidelines and considerations to follow when creating the XDP files that you want dynamically assembled into a
single XDP file.

Note: Designer manages a UUID and timestamp as part of the XDP files it creates. Document Services takes advantage of these identifiers for
caching. If an XDP file is hand edited without changing the UUID and timestamp, unexpected results could occur due to the caching. Therefore,
avoid editing XDP files outside Designer. A new UUID and timestamp are generated for dynamically assembled custom forms and documents.

Insertion point guidelines
It is recommended that you use a single insertion point for a single location in the XDP file. You can then define the insertion point in the
DDX file to include multiple fragments. Similarly, use multiple insertion points in the XDP file whenever there is content that separates the
insertion points.

There are several ways to insert an insertion point using Designer (See Creating an insertion point in Designer Help.):

• Insert an insertion point object
• Insert an insertion point into an existing subform
• Define an existing subform as an insertion point
The recommended method for creating an insertion point is to insert an insertion point object. The insertion point object automatically
generates a flowed insertion point that is designed to maintain fragment position, while changing size to fit the fragment content. For more
information, see “Positioning insertion points” on page 6.

You can also choose to define an existing subform as an insertion point. You can use a subform with a positioned layout if the fragment is
a fixed size. For example, if you have a custom logo that is required to be a specified size. You can also use the insertion point object in this
case.

Naming insertion points
It is recommended that you give the insertion point a meaningful and unique name, unless you are inserting the same fragment in multiple
insertion points. For example, if two insertion points are named “myInsertionPoint”, fragments that are designated to be placed in
“myInsertionPoint” are placed in both locations.

Positioning insertion points
As you work with insertion points, consider whether the insertion point subform manages fixed or flowed content. (See About Subforms
in Designer Help.)

http://www.adobe.com/go/learn_lc_designer_11
http://www.adobe.com/go/learn_lc_designer_11

ADOBE LIVECYCLE DESIGNER 11
Dynamic Assembly Guidelines Guidelines for Dynamically Assembling Customized Forms and Documents

 7

Inside the InsertionPoint subform, which flows content, there is a subform that positions content. The nested subforms allow the content
inserted at the insertion point to retain its original relative position. Each added section of content flows down the page. For example, in
the illustration below, both fragments, My First Fragment and My Second Fragment, maintain their original positions and flow the content.

If the InsertionPoint subform does not flow content, the fragments overlap as they are placed in the insertion point. In the following
example, the My First Fragment appears but it covers up most of My Second Fragment:

If both the InsertionPoint subform and the subform inside flow content, the overall fragments flow and the content of each fragment
reflows.

Flowed Subform

Positioned Subform Designated as an
Insertion Point

My First Fragment

Field1: Field2:

My Second Fragment

Another Field:

This text is just a sentence in the second
fragment.

Position Subform

Positioned Subform Designated as an
Insertion Point

My First Fragment

Field1: Field2:

This text is just a sentence in the second
fragment.

Flowed Subform

Flowed Subform Designated as an
Insertion Point

My First Fragment

Field2:

My Second Fragment Another

sentence in the second fragment.

 Field: This text is just a

Field1:

ADOBE LIVECYCLE DESIGNER 11
Dynamic Assembly Guidelines Guidelines for Dynamically Assembling Customized Forms and Documents

 8

Sizing insertion points
It is recommended that you use the Auto-fit options in the Layout tab for the height of subforms designated as insertion points. Fragments
inherit the height and width of the subform designated as the insertion point when placed into the form design. When you select the Auto-
fit options, the inserted fragment uses its own size. By default, the fragment content overflows the space if the designated size is too small.
Therefore, overlapping occurs if the height is a fixed value and the fragment is larger that this height. Conversely, gaps occur if the fragment
is smaller than the fixed value.

The Auto-fit option is selected for the height of the insertion point object subforms, allowing the inserted fragment to maintain its own
height. Moving an insertion point object after placing it in the form design can disable the Auto-fit option, causing the height to be set.
Ensure that the Auto-fit options in the Layout tab are selected after you move an insertion point.

Placeholder content
You can designate the content within an Insertion Point subform as placeholder content. As shown in “How it works” on page 2, placeholder
content is automatically inserted when you add the insertion point object to the form design. You can customize the content to indicate the
purpose of the insertion point in your form. For example, you can provide a sample of the content that is inserted into the form or document
to help the form designer visualize the final document.

The placeholder content is removed when the form or document is dynamically assembled. By default, the insertion points are not retained
and therefore, the placeholder content is also removed regardless of whether the insertion point is used or not. If the DDX file specifies that
insertion points are retained, then the placeholder content also remains for any unused insertion points.

Master page guidelines
In Designer, you use master pages to add objects that appear in the same position throughout the form design. Master pages are useful for
defining size and position of content areas, adding page numbering, and including headers and footers. You can add an insertion point in
the master page for fragments that hold these elements. However, because master pages are only displayed as the content layout is put into
them, do not add an insertion point for content.

When two complete forms are assembled into a single form, the master pages are retained for both documents. When the content begins
for the second form, a page break is forced and the master pages from the second form are used.

The page size of each of the master pages is retained when the two documents are assembled. However, the page count is not reset when
the content begins for the second form. To reset page numbering when the master pages from the second form are used, edit the page
number scripts in Designer.

ADOBE LIVECYCLE DESIGNER 11
Dynamic Assembly Guidelines Guidelines for Dynamically Assembling Customized Forms and Documents

 9

You use the page number objects in the Designer Custom palette to insert page numbers into the master page. Then, using the Script Editor,
edit the object’s script to set the raw value of the CurrentPage from xfa.layout.page(this) to this.parent.index+1. Also change the
raw value of the total PageCount from xfa.layout.pageCount() to this.parent.all.length. (See Scripting in Designer Help).

Example of modifying page numbers and size
This example demonstrates the different outcomes when assembling XDP files with master pages that use different page sizes and
numbering schemes.

There are two XDP files:

• The wp_simple_template_pageNbrs.xdp file, in which the page size has not been changed and the page numbering starts on page 1
• The wp_simple_small_page.xdp file, which has a smaller page size

http://www.adobe.com/go/learn_lc_designer_11

ADOBE LIVECYCLE DESIGNER 11
Dynamic Assembly Guidelines Guidelines for Dynamically Assembling Customized Forms and Documents

 10

The scripts are not edited and therefore the page numbering is not reset when assembling the two forms. The page label has been modified
to prefix an A to help identify the label used.

The wp_simple_template_flowed.xdp and wp_simple_small_page.xdp files are defined using the following DDX snippet.

<XDP result="wp_master_page_continuous_result.xdp">
<XDP source="wp_simple_template_pageNbrs.xdp">
<XDPContent insertionPoint="ddx_fragment" source="wp_simple_contact.xdp" fragment="subPatientContact" />
<XDPContent insertionPoint="ddx_fragment" source="wp_simple_patient.xdp" fragment="subPatientPhysical" />
<XDPContent insertionPoint="ddx_fragment" source="wp_simple_patient.xdp" fragment="subPatientHealth" />

</XDP>
<XDP source="wp_simple_small_page.xdp"/>
</XDP>

ADOBE LIVECYCLE DESIGNER 11
Dynamic Assembly Guidelines Guidelines for Dynamically Assembling Customized Forms and Documents

 11

When the XDP files are assembled, the resulting XDP file starts at page 1 and the pages from the second wp_simple_small_page form start
at page A2. Also, notice that the label reads Page 1 of 1. Looking at the script changes that were made earlier to the
wp_simple_template_pageNbrs.xdp file, notice that the modified script specifies that the count be calculated based on the number of pages
using that master page rather than the entire document.

The following DDX snippet results in wp_simple_template_pageNbrs.xdp and wp_simple_small_page.xdp assembled in the opposite
order. Recall that the wp_simple_template_pageNbrs.xdp file has been edited so that the scripts for the page numbering start at page 1, even
though it is now the second page in the result.

ADOBE LIVECYCLE DESIGNER 11
Dynamic Assembly Guidelines Guidelines for Dynamically Assembling Customized Forms and Documents

 12

<XDP result="wp_master_page_discontinuous_result.xdp">
<XDP source="wp_simple_small_page.xdp"/>
<XDP source="wp_simple_template_pageNbrs.xdp">

<XDPContent insertionPoint="ddx_fragment" source="wp_simple_contact.xdp" fragment="subPatientContact"/>
<XDPContent insertionPoint="ddx_fragment" source="wp_simple_patient.xdp"
fragment="subPatientPhysical"/>
<XDPContent insertionPoint="ddx_fragment" source="wp_simple_patient.xdp" fragment="subPatientHealth"/>

</XDP>
</XDP>
The result shows wp_simple_small_page starting at page 1 as expected. Notice that the page is labeled: A1 of A2. The reason is that the
wp_simple_small_page script is using the default document page count. However, the appended pages from
wp_simple_template_pageNbrs.xdp also start at page 1. The reason is that the scripts were edited so that the page number would start at 1
in the master pages. It also shows Page 1 of 1 because the script was modified to show the master page count rather than the full document
count.

You can also edit the script so that the starting page number is a number other than 1 for an appended document. You specify the starting
page number by adding that number to the script. In the following example, the script has been edited to start number with 5:

form1.#pageSet[0].Page1.subHeader.CurrentPage::ready:layout - (JavaScript, client)
this.rawValue = this.parent.index+5;

ADOBE LIVECYCLE DESIGNER 11
Dynamic Assembly Guidelines Guidelines for Dynamically Assembling Customized Forms and Documents

 13

The best practice is to set up page numbering scripts consistently in all of the documents. To set up page numbering scripts consistently,
use continuous labeling and do not change the scripts in any of the XDP files to be assembled. The result is a continuous page numbering
scheme with the total count always being the full number of pages in the document. Otherwise, edit all of the script consistently. In the last
example, if both forms had the same script modification, then the assembled form would have shown Page A1 of A1 and Page 1 of 1, instead
of Page A1 of A2, where there is no A2.

Fragment guidelines
Although you can generate fragments using Designer, it is not necessary. The fragment is defined by designating the name of a subform to
pull from any form created using Designer.

Assign fragments unique meaningful names unless you know that you want the same fragment name as in the sourceMatch selections
described in “DDX Capabilities for Dynamically Assembling Forms and Fragments” on page 21.

In the following Designer form design, the Hierarchy palette shows three subforms: patientFragments, subPatientPhysical, and subPa-
tientHealth. Any of these subforms can be used as a fragment when dynamically assembling a single XDP file. If the patientFragments
fragment is used, then the content of both subPatientPhysical and subPatientHealth is inserted. In addition, the lower-level fragment,
subPatientPhysical, can also be used to only insert a portion of the wp_simple_patient.xdp.

Using fragments created in Designer
You create a fragment using Designer by selecting the objects to include in the fragment, and then selecting Edit > Fragments > Create
Fragment. (See Using Fragments in Designer Help.)Designer separates the content into its own file (saved in XDP format) to be used as a
fragment. This fragment file does contain its own master pages; therefore, the fragment name must be specified for the XDPContent
element. If the fragment name is not specified, both the fragment content and the master pages for the fragment are inserted at the insertion
point.

Floating Field Guidelines
If a text object in a fragment contains a floating field reference, that reference must be within the fragment.

http://www.adobe.com/go/learn_lc_designer_11

ADOBE LIVECYCLE DESIGNER 11
Dynamic Assembly Guidelines Guidelines for Dynamically Assembling Customized Forms and Documents

 14

Manifest Guidelines
The manifest object is used in a several contexts: paper forms barcodes, Acrobat signatures, and data signatures. Any objects referenced
from these manifests (Collections) must be within the fragment.

Tab Order Guidelines
Any explicit tab order definitions in the fragment must be self-contained. That is, no object inside the fragment can specify a tab position
outside the fragment.

Locale Guidelines
For XDP files having an explicitly set locale, any inserted fragment must be consistent with that locale or must explicitly declare its own
locale.

Script Guidelines
XDP files can include scripts. Here are some things to consider:

• Any script used by the fragment must be self-contained.
• Any referenced script objects must also exist in the same document.
• Any script in an XDP file that performs document-wide operations (for example, traverses objects in the form), must be generic and

robust enough to work after fragments are inserted into the document.

Form Data Guidelines
Document Services does not provide any merging of data descriptions during assembly. The only data description that is retained is that of
the base document. The base document is either the first document of the assembly or the source XDP file with the attribute
baseDocument="true". Only one document can be the base document. If more than one is specified, only the first instance where
baseDocument="true" is used.

Although only the data description from the base document is retained, it is still possible to bind data for fragment fields. You can use global
data binding on the form fields or provide the complete schema for the base document and fragments in the base document. For more infor-
mation, see “Data binding using a schema” on page 16.

Using name and global data binding
If the schema is expected to change or is unknown, set the binding type to Use Name or Use Global Data to make the best name match of
the fields and data elements.

In Designer, set the binding type to Use Name to bind the XML data to the field based on a name match. The first name match binds that
field to that data element from the data XML. The same XML data element cannot be used again for a match.

ADOBE LIVECYCLE DESIGNER 11
Dynamic Assembly Guidelines Guidelines for Dynamically Assembling Customized Forms and Documents

 15

Use global data binding when the field that maps to the same data element is displayed multiple times. In the example below, the Binding
tab in the Object palette shows that Use Global Data is selected for Name (displayed in the Name text box). The first match in the XML data
for Name displays in every instance of the fields named Name. Global data binding is useful, for example, when the name of the client is
displayed multiple times in the form.

For the following example, the XML data file contains multiple vehicle records. In the Automobiles subform, the binding type is set to Use
Name (Automobiles). The Auto subform binding is set to Use Name (Auto). The Auto subform is repeated throughout the form, allowing
each subform to take the next section of Auto data from the data XML.

The following is an abbreviated section of the data XML. By setting the binding type to Use Name (Make), the first instance of Make is
“Dodge”, the second is “Infiniti”, and the third is “Tesla”.

<Automobiles>
<Auto id="1" Reference="Auto_1">

<Year>1998</Year>

ADOBE LIVECYCLE DESIGNER 11
Dynamic Assembly Guidelines Guidelines for Dynamically Assembling Customized Forms and Documents

 16

<Make>Dodge</Make>
<Model>Ram Pickup</Model>

</Auto>
<Auto id="2" Reference="Auto_2">

<Year>2003</Year>
<Make>Infiniti</Make>
Model>I30t</Model>

</Auto>
<Auto id="3" Reference="Auto_3">

<Year>2008</Year>
<Make>Tesla</Make>
<Model>Roadster</Model>

</Auto>
</Automobiles>

The Use Name and Use Global Data binding types provide simple connections between the form fields and the data. Yet, they can also
create situations that are difficult the debug. For example, if you add a new subform called X between Automobile and Auto and the Use
Name binding type is selected, then Auto and all the children bindings will fail. To resolve the problem, select No Data Binding in the X
subform.

You can use explicit data binding to avoid unintentional data and form field matching in data binding. However, modifying the data schema
requires that you also modify the explicit binding. Explicit data binding requires that you bind the exact schema to the field. For example,
if $.Automobiles.Auto[0].Make is entered into the Data Binding Object property for the Make field, then the Make from the first Auto
element under Automobiles is bound in the data XML.

Note: The data element can be bound to multiple form fields by specifying “$record.Automobiles.Auto[0].Make” in any form field that requires
that value.
For more advanced binding of multiple records, use dynamic forms.

Data binding using a schema
In the case where the schema is known, the source XDP file can be created from the schema. Use Workbench to create an XDP file from
the full schema. The data model is only retained on the source XDP file. It is important that the document includes the full schema for all
fragments and appended XDP files, in addition to its own form fields.

When you create a fragment, you can either select an existing subform or select one or more objects in the form design. If you select objects
that are not in a subform, the objects are wrapped in a subform when the fragment is created. Also, clear the Replace Selection With
Reference To New Form Fragment checkbox in the Create Fragment dialog box. (See Using Fragments in Designer Help.) After the
fragment has been added, designate the subform as an insertion point and either delete its contents or designate this content as placeholder
content.

http://www.adobe.com/go/learn_lc_designer_11

ADOBE LIVECYCLE DESIGNER 11
Dynamic Assembly Guidelines Guidelines for Dynamically Assembling Customized Forms and Documents

 17

Through these steps, a source XDP file and a fragment have been created that can be referred to in the DDX file for assembly. When the
fragment is inserted, the form field automatically binds to the schema from the XDP file.

 18

Form Printer Directives

You can use the Output service to send a dynamically assembled XDP file directly to a printer.

To send the output directly to the correct printer and switch paper trays as required, you configure and map the media type in the XDC file
that is associated with a printer to the selected paper type in Designer. To set up the printing features for the form, do the following tasks:

• In XDC Editor, create a custom XDC file that maps the selected medium to an input tray number for the printer. (See “Creating Device
Profiles” in Workbench Help)

• In Designer, select the paper type (media type) for each XDP file
The following orchestration calls DDX to assemble the forms, sends the resulting form to generatePrintedOutput, which in turn, sends the
form to the printer.

In the Process Properties tab for the generatePrintedOutput call, notice that a custom XDC file is selected in the repository. This XDC file
is used to configure the form for printing.

http://www.adobe.com/go/learn_lc_workbench_11

ADOBE LIVECYCLE DESIGNER 11
Form Printer Directives Guidelines for Dynamically Assembling Customized Forms and Documents

 19

The custom XDC file maps the named medium to an input tray number for the printer. You define the XDC file to match the associated
printer's capabilities and input trays. (See “Creating Device Profiles” in Workbench Help).

In Designer, you select the paper type (media type) in the Paper Type field in the Master Page tab of the Object palette. To achieve paper
tray switching, you can select a different paper type for each XDP file before you submit the job to the Assembler service. In the following
template8a.xdp file, Letter Letterhead is selected as the paper type for the Page1 master page:

http://www.adobe.com/go/learn_lc_workbench_11

ADOBE LIVECYCLE DESIGNER 11
Form Printer Directives Guidelines for Dynamically Assembling Customized Forms and Documents

 20

In the following template8b.xdp file, Letter Plain is selected as the paper type for the Page1 master page:

When the template8a.xdp and template8b.xdp files are dynamically assembled, each file’s content remains associated with its original
master page. As the resulting document moves through the orchestration, the XDC file maps the paper type to a printer tray. The document
is sent to the printer. After the last content page of the template8a.xdp file is printed, the paper tray switches to correctly print the content
of the template8b.xdp file, as defined by its paper type.

 21

DDX Capabilities for Dynamically Assembling
Forms and Fragments

DDX encompasses several mechanisms that enable you to dynamically assemble forms and fragments. This section focuses exclusively on
those mechanisms in DDX. (See Assembler Service and DDX Reference.)

Note: DDX files start with the DDX element. However, for the purposes of this chapter, the examples are abbreviated to focus on DDX capabil-
ities for dynamically assembling forms and fragments.
In the following example, the master.xdp file includes two fragments:

• personal information (piInfoLib), based on a state
• automobile information (vehiclesLibs), based on the specific automobile.
<XDP result="finalform.xdp">

<XDP source="master.xdp">
<XDPContent insertionPoint="piInfo_goes_here"

source="application:///UC_10_005/1.0/PolicyForms/Fragments/piInfoLib.xdp"
fragment="inputmap:///stateName" required="false"/>

<XDPContent insertionPoint="vehicles_list_goes_here"
source="application:///UC_10_005/1.0/PolicyForms/Fragments/vehiclesLib.xdp"
fragment="inputmap:///auto1Reference"/>

</XDP>
</XDP>

You can store and manage assets such as forms, fragments, images, and XML schemas in the application space. The application space is a
simple solution because it manages the assets in an application within the repository.

You use the application URL in the DDX file to reference the processes and assets. The application URL takes the format
application:///, followed by application name, the version, and then the full path to the asset. For example:

application:///UC_10_005/1.0/PolicyForms/Fragments/vehiclesLib.xdp".

Selecting variable fragments
There are several methods available for dynamically selecting variable fragments that compose the form in the DDX file.

For complex cases, a DDX can be programmatically generated and passed to the Assembler service with all of the required section logic in
the program. The methods described in this section are techniques for simple section methods within Workbench.

The recommended best practice is to use the input map.

Input map variables
You can specify input map variables in place of string and file references. The Assembler service InvokeDDX process uses an input map to
specify the input for DDX processing. The DDX file references the input map names, which are assigned to values through the input map.
The input map values can be set to literals or process variables. The input map URL starts with the inputmap:///, followed by a name.
For example, using XDPContent, you can define a fragment to point to an input map variable using the input map URL:

<XDPContent insertionPoint="piInfo_goes_here"
source="application:///UC_10_005/1.0/PolicyForms/Fragments/piInfoLib.xdp"
fragment="inputmap:///stateName" required="false"/>

http://www.adobe.com/go/learn_lc_ddx_11

ADOBE LIVECYCLE DESIGNER 11
DDX Capabilities for Dynamically Assembling Forms and Fragments Guidelines for Dynamically Assembling Customized Forms and Documents

 22

Then, in the Process Properties panel for the InvokeDDX process, the inputmap variable can be set to a literal value or a process variable.
The following example shows the input map variable of stateName being set to the process variable of
stateName, "/process_data/@StateName".

Process variables
Process variables defined in Workbench can also be referenced from the DDX file using the process URL (“process:///”). In the previous
input map example, the process variable URL could have been set directly in the DDX file:

<XDPContent insertionPoint="piInfo_goes_here"
source="application:///UC_10_005/1.0/PolicyForms/Fragments/piInfoLib.xdp"
fragment="process:///process_data/@stateName" required="false"/>

However, using the process variable directly requires naming process variables during DDX design time and remembering to define these
variables at the time of process definition. It also ties the DDX file to a specific process. By using the input map, the process variable defini-
tions can be made during the process creation and mapped to the required input map variables.

sourceMatch attribute
You can also select files using the sourceMatch attribute. The sourceMatch attribute selects a file from a set of files based on matching
criteria, which can be variable. This approach is useful when the fragments are organized into different files with the same fragment name.
For example, the riskFragments.xdp and stateFragements.xdp files both contain fragments named by the state, i.e. “FL”. You can use one
insertion point to insert all of the same named fragments from the files that match the sourceMatch.

ADOBE LIVECYCLE DESIGNER 11
DDX Capabilities for Dynamically Assembling Forms and Fragments Guidelines for Dynamically Assembling Customized Forms and Documents

 23

In the example below, both stateFragments.xdp and riskFragments.xdp files match sourceMatch="[\w]+Fragments.xdp. Therefore, the
fragment name mapped to stateName is from each of these fragment forms and inserted at the insertion point. Because the default sort
order is ascending based on the filename, the riskFragment.xdp appears first.

By setting the attribute required="false" on XDP elements, the inclusion of forms and fragments can be controlled. If
required="false", then forms and fragments that are not available, are not included with no errors.

Aggregation of XDPContent
By default, insertion points can be reused at the same scope, but not at the global scope. In the following example, the XDPContent labeled
“local scope” is contained in the XDP source="master.xdp element. Because the XDPContent is local to the master.xdp file, the content
is only applied to the insertion points that match in the master.xdp file.

On the other hand, because fragment="anyState" is a sibling to the XDP source="master.xdp element, the fragment is applied globally.
The result is the stitching of its siblings. That is, the global XDPContent looks for insertion points named “state_fragment_goes_here” in
the OfferSheet.xdp and master.xdp files. It also looks for any fragments inserted into master.xdp from the XDP content labeled “local
scope”.

For simplicity, the following example defines only one insertion point named state_fragment_goes_here in the master.xdp file.

<XDP result="finalform.xdp" aggregateXDPContent="false">
<XDP source="OfferSheet.xdp">
<XDP source="master.xdp">
<!-- local scope -->
<XDPContent insertionPoint="state_fragment_goes_here"

source="application:///UC_10_005/1.0/PolicyForms/Fragments"
sourceMatch="[\w]+Fragments.xdp"
fragment="inputmap:///stateName"
required=="false"/>

</XDP>
<!-- global scope -->
<XDPContent insertionPoint="state_fragment_goes_here"

source="application:///UC_10_005/1.0/PolicyForms/GenericFragments.xdp"
fragment="anyState"/>

</XDP>

ADOBE LIVECYCLE DESIGNER 11
DDX Capabilities for Dynamically Assembling Forms and Fragments Guidelines for Dynamically Assembling Customized Forms and Documents

 24

In this case, the DDX file has specified aggregateXDPContent="false" (which is also the default). If sourceMatch under
“state_fragment_goes_here” has a match, only the XDPContent matched in the local scope is inserted into the document. Because aggre-
gation is not allowed, the global scope XDPContent is ignored. However, if sourceMatch does not match any files, then the insertion point
remains available for the global scope XDPContent.

In the previous example, there are typically state specific fragments that must be added to the form. Yet, there are some states that do not
have state specific fragments. If no specific fragments for the state are found, the global scope inserts a generic anyState fragment, allowing
customization with assurance that the generic is used when no customization is found.

For a situation where you always want the global scope but there are additional fragments at the local scope based on variables, use
aggregateXDPContent="true". Using aggregateXDPContent="true" allows the insertion point to be used at both the local and global
scope until it is removed.

Generating an XDP or PDF result
Dynamically assembling forms and fragments can result in an assembled XDP file or a directly rendered PDF form. Ultimately, the XDP
file must be rendered into a form or document before distributing to users. There are two different methods to facilitate rendering of the
XDP result into a PDF form. First, the DDX file can specify a PDF result by wrapping the XDP elements inside the PDF result element.
When this DDX is processed, the XDP elements are rendered to create a PDF result. Second, an orchestration can pass the XDP result to
the Forms or Output services for rendering for finer control on render options.

The following a snippet of DDX show how to specify rendering during DDX processing by wrapping the XDP assembly into a PDF result.
To separate the dynamic assembly of the XDP files and fragments from PDF assembly, all XDP elements must be enclosed in a plain XDP
element.

<PDF result="finalform.xdp">
<XDP>

<XDP source="master.xdp"/>
<XDPContent insertionPoint="state_fragment_goes_here"

source="application:///UC_10_005/1.0/PolicyForms/GenericFragments.xdp"
fragment="anyState"/>

</XDP>
</PDF>

Processing the plain XDP element is the same as creating an intermediate result and passing it in as a PDF. Therefore, the DDX could also
have been written as follows to generate the same result.

<XDP result="finalform.xdp">
<XDP source="master.xdp"/>
<XDPContent insertionPoint="state_fragment_goes_here"

source="application:///UC_10_005/1.0/PolicyForms/GenericFragments.xdp"
fragment="anyState"/>

</XDP>

<PDF result="finalform.pdf">
<PDF source="finalform.xdp">

</PDF>

By using DDX to render the XDP, all Assembler features allowed on PDF files with XFA streams are also allowed on plain XDP elements.
This most notable limitation is the allowance of only one XFA stream in assembled PDF files. This existing limitation does not allow each
PDF file to have XFA streams to be assembled without removing the XFA. Therefore, an XDP assembly that contains an XFA stream cannot
also be assembled with a PDF file having an XFA stream without removing the XFA.

ADOBE LIVECYCLE DESIGNER 11
DDX Capabilities for Dynamically Assembling Forms and Fragments Guidelines for Dynamically Assembling Customized Forms and Documents

 25

To dynamically assemble more the one form with XFA streams, use the NoXFA element to remove the XFA stream from the resulting PDF
document. The NoXFA element is useful when the data is applied to the XDP result before removing the XFA Stream. Use the flatten
attribute to indicate whether the data be flattened into content or remain in non-XFA form fields.

<PDF result="finalform.pdf">
<PDF source="anotherXFAForm.xdp"/>
<XDP>

<XDP source="master.xdp"/>
<XDPContent insertionPoint="state_fragment_goes_here"

source="application:///UC_10_005/1.0/PolicyForms/GenericFragments.xdp"
fragment="anyState"/>

<XFAData source="customerData.xml"/>
</XDP>
<NoXFA flatten="false"/>

</PDF>

To use an orchestration for rendering, use an XDP result to assemble forms and fragments. Then, pass the resulting XDP to the Output or
Forms services process in the orchestration for rendering.

<XDP result="finalform.xdp">
<XDP source="master.xdp"/>
<XDPContent insertionPoint="state_fragment_goes_here"

source="application:///UC_10_005/1.0/PolicyForms/GenericFragments.xdp"
fragment="anyState"/>

</XDP>

You can specify how the Assembler service resolves the image references in the source XDP documents. References can be either absolute
or relative. You can choose to have all the images embedded in the resultant so that it contains no relative or absolute references. You define
this by setting the value of the resolveAssets tag, which can be none, all, relative, or absolute.

You can specify the value of the resolveAssets attribute either in the XDP source tag or in the parent XDP result tag. If the attribute is
specified for the XDP result tag, its value will be inherited by all the XDP source elements which are children of the XDP result. However,
explicitly specifying the attribute for a source element overrides the setting of the result element for that source document alone.

<XDP result="result.xdp" resolveAssets="all">
<XDP source="input1.xdp" >

<XDPContent source="fragment.xdp" insertionPoint="MyInsertionPoint" fragment="myFragment"/>
</XDP>
<XDP source="input2.xdp" />

</XDP>

ADOBE LIVECYCLE DESIGNER 11
DDX Capabilities for Dynamically Assembling Forms and Fragments Guidelines for Dynamically Assembling Customized Forms and Documents

 26

ADOBE LIVECYCLE DESIGNER 11
DDX Capabilities for Dynamically Assembling Forms and Fragments Guidelines for Dynamically Assembling Customized Forms and Documents

 27

	Contents
	About this document
	Who should read this document?
	Additional information

	Introduction
	How it works
	Create a form design
	Create one or more fragments
	Create a Document Description XML (DDX) file
	Submit the job to the Assembler service

	Dynamic Assembly Guidelines
	XDP file guidelines
	Insertion point guidelines
	Master page guidelines

	Fragment guidelines
	Using fragments created in Designer
	Floating Field Guidelines
	Manifest Guidelines
	Tab Order Guidelines

	Script Guidelines
	Form Data Guidelines
	Using name and global data binding
	Data binding using a schema

	Form Printer Directives
	DDX Capabilities for Dynamically Assembling Forms and Fragments
	Selecting variable fragments
	Input map variables
	Process variables
	sourceMatch attribute

	Aggregation of XDPContent
	Generating an XDP or PDF result

