
Adobe FrameMaker
Structured Application Developer’s
Reference

2

Structured Application Developer Reference 1

Contents

Before You Begin . 5

Chapter 1 Structure Application Definition Reference 9

Contents of an application definition file9

Define an application9

Providing default information 11

Specifying the character encoding for SGML files . 11

Specifying conditional text output 13

Specifying a DOCTYPE element 13

Specifying a DTD 14

Specifying entities 14
Specifying entities through an entity catalog . 15
Specifying the location of individual entities . 16
Specifying names for external entity files . . . 17
Specifying public identifiers 18
Specifying a search path for external entity files 19

Specifying external cross reference behavior . . 20
Change file extension to .XML 20
Try alternative extensions 21

Specifying filename extensions 21

Enabling namespaces 22

Specifying a read/write rules document 22

Specifying a search path for included files in rules
documents 22

How FrameMaker searches for rules files . . . 23

Specifying a Schema for XML 23

Specifying an SGML declaration 24

Managing CSS import/export and XSL transformation
24

How the Stylesheets element affects CSS
generation. 24
How the Stylesheets element affects CSS import 25
How the Stylesheets element affects XSL
transformation 25

Specifying a FrameMaker template 27

Specifying a structure API client 27

Specifying the character encoding for XML files . 27
Display encoding 28
Encoding of CSS files 29

Exporting XML 30

Limiting the length of a log file 30

Mapping graphic notations to file types 31

Defining a Form view for the structured application 31

Specifying MathML options 32

Chapter 2 Read/Write Rules Summary 33

All Elements 33

Attributes 34

Books 35

Cross-references 35

Entities 36

Equations 36

Footnotes 37

Graphics 37

2

Markers 38

Processing instructions. 39

Markup documents 39

Tables 40

Text 41

Text insets 41

Variables 41

Chapter 3 Read/Write Rules Reference 43

anchored frame 43

attribute 46

character map. 49

convert referenced graphics 51

do not include dtd 52

do not include sgml declaration. 53

do not output book processing instructions. . . 53

drop 53

drop content 55

element 56

end vertical straddle 59

entity. 61

entity name is 63

equation 65

export dpi is 66

export to file 69

external data entity reference 72

external dtd 73

facet 74

fm attribute 76

fm element. 77

fm marker 79

fm property 80

fm variable 92

fm version 93

generate book 93

implied value is 97

include dtd 98

include sgml declaration 100

insert table part element 101

is fm attribute. 104

is fm char 107

is fm cross-reference element 109

is fm element 110

is fm equation element 111

is fm footnote element. 113

is fm graphic element 114

is fm marker element 115

is fm property. 116

is fm property value 126

is fm reference element 128

is fm rubi element 130

is fm rubi group element 131

is fm system variable element 132

is fm table element 133

is fm table part element 135

is fm text inset 136

is fm value 139

is fm variable 140

is processing instruction 141

line break 142

marker text is 143

Structured Application Developer Reference 3

notation is 145

output book processing instructions 147

preserve fm element definition 148

preserve line breaks 149

processing instruction 151

proportional width resolution is 152

put element 153

reader 153

reformat as plain text 154

reformat using target document catalogs . . . 155

retain source document formatting 156

specify size in 157

start new row 159

start vertical straddle 160

table ruling style is 161

unwrap 162

use processing instructions 163

use proportional widths 164

value 165

value is 166

write structured document 166

write structured document instance only . . . 167

writer 168

Chapter 4 Conversion Tables for Adding Structure to Documents171

How a conversion table works 171

Setting up a conversion table 172
Generating an initial conversion table 173
Setting up a conversion table from scratch . . 174
Updating a conversion table 174

Adding or modifying rules in a conversion table . 175
About tags in a conversion table 175
Specifying the root element for a structured
document 176
Identifying a document object to wrap . . . 177
Identifying an element to wrap 178

Identifying a sequence to wrap 179
Providing an attribute for an element 181
Using a qualifier with an element 181

Handling special cases 183
Promoting an anchored object 183
Flagging format overrides 184
Wrapping untagged formatted text 184
Nesting object elements 185
Building table structure from paragraph format tags
186

Testing and correcting a conversion table . . . 186

Chapter 5 CSS to EDD Mapping .189

CSS 3 to EDD Mapping 189
Basic Properties 189
CSS Selectors 201
Other examples 202

CSS 2 to EDD Mapping 206
CSS Font Properties 206
CSS text properties 208
CSS color and backgrounds properties . . . 210

CSS Formatting Model 211
CSS Pagination Properties 214
CSS generated content, automatic numbering, and
lists 215
CSS Tables 217
CSS Selectors 218

4

Chapter 6 XML Schema to DTD Mapping 221

Schema location 221
Namespace and Schema location attributes. . 222

Simple type mapping 222
Attributes of simple type elements 223

Complex type mapping 224
Group 224
Sequence 224
Choice 225
All 226
Named complex types 226

Named attribute groups 227
Abstract elements 228
Mixed content models 229

Supported Schema features 230
Defaults. 230
Any 230
Extension and restriction of complex types . . 231
Include, import, and redefine 231

Unsupported Schema features 233

Chapter 7 The CALS/OASIS Table Model235

FrameMaker properties that DO NOT have
corresponding CALS attributes 235

Element and attribute definition list declarations . 236

Element structure 238

Attribute structure 239
Inheriting attribute values 239
Orient attribute 239
Straddling attributes 239

Chapter 8 Read/Write Rules for the CALS/OASIS Table Model241

Chapter 9 SGML Declaration .245

Text of the default SGML declaration 245

SGML concrete syntax variants 247

Unsupported optional SGML features. 248

Chapter 10 ISO Public Entities .249

What you need to use ISO public entities 250
Entity declaration files 251

Entity read/write rules files 251

What happens with the declarations and rules . . 254

Chapter 11 Character Set Mapping 257

Glossary .265

Index .273

Legal notices .279

Structured Application Developer Reference 5

Before You Begin 1

This developer reference and its associated developer guide are for anybody who develops
structured FrameMaker® templates and XML or SGML applications. They are not written for end
users who author structured documents that use such templates and applications.

XML and SGML
FrameMaker can read and write XML (Extensible Markup Language) and SGML (Standard
Generalized Markup Language) documents. XML and SGML are both document markup
languages, and FrameMaker handles these markup languages in similar ways. However, there are
differences between the two, and this manual covers these differences whenever necessary.

When discussing the similarities between them, this manual refers to XML and SGML data as
markup data or markup documents. Otherwise, the manual refers to XML and SGML specifically to
draw attention to the differences between these markup languages. The majority of new
structured documentation projects are XML based, therefore XML now takes precedence over
SGML where necessary.

Developing structured FrameMaker templates
End users of FrameMaker can read, edit, format, and write structured documents—the structure
is represented by a hierarchical tree of elements. Each structured document is based on a
template that contains a catalog of element definitions. Each element definition can describe the
valid contexts for an element instance, and the formatting of element instances in various
contexts.

To support these end users, you create the catalog and accompanying structured template.

Developing XML and SGML applications
When FrameMaker reads markup data, it displays that data as a formatted, structured document.
When the software saves a structured FrameMaker document, the software can write the
document as XML or SGML.

For the end user, this process of translation between FrameMaker documents and markup data is
transparent and automatic. However, for most XML or SGML document types the translation
requires an XML or SGML application to manage the translation. You develop this application to
correspond with specific document types. When your end user opens a markup document with a
matching document type, FrameMaker invokes the appropriate structure application. If there is no

Before You Begin 6

match for a document type, the user can choose the application to use, or open the markup
document with no structure application.

A structure application primarily consists of:

•A structured template

•DTD or schema

•Read/Write rules (described in this manual)

•XSLT style sheets for pre and post process transformations (if necessary)

•An XML and SGML API client (if necessary) developed with the Frame® Developer’s Kit (FDK).

Prerequisites
The following topics, which are outside the scope of this manual, are important for you to
understand before you try to create a structured template or structure application:

•Structured document authoring in FrameMaker

•XML or SGML concepts and syntax, including how to work with a document type definition

•FrameMaker end-user concepts and command syntax

•FrameMaker template design.

In creating some XML or SGML applications, you may also need to understand the following:

•XSLT 1.0

•C programming

•FDK API usage.

If your application requires only the special rules described in this manual to modify the default
behavior of FrameMaker, you do not need programming skills. However, if you need to create an
XML and SGML API client to modify this behavior further, you need to program the client in C,
using the FDK. This manual does not discuss the creation of XML and SGML API clients. For this
information, see the Structure Import/Export API Programmer’s Guide.

Using FrameMaker documentation
FrameMaker comes with a complete set of end-user and developer documentation with which
you should be familiar. You can access the FrameMaker guides from the FrameMaker help and
support page, http://www.adobe.com/support/framemaker/.

If you use the Frame Developer’s Kit in creating your structure application, you’ll also need to be
familiar with the FDK documentation set.

Structured Application Developer Reference 7

Using this manual
This manual provides detailed reference information for application rules and properties. It can be
used in conjunction with the Structure Application Developer Guide. It does not currently include
EDD reference information. All EDD descriptive and reference information will be found in the
Developer Guide.

Typographical conventions

Using other FrameMaker documentation
The Using FrameMaker makes up the primary end-user documentation for this product. It explains
how to use the FrameMaker authoring environment for both structured and unstructured
documents. It also explains how to create templates for your documents.

In creating a structured template, you can refer to this manual for information on how your end
user interacts with the product and how to create a formatted template.

New features and changes in release 12(including those for structure applications and structured
documents) are listed and briefly described in the FrameMaker Getting Started Guide.

You will also find a range of other online documents from the FrameMaker help and support page,
http://www.adobe.com/support/framemaker/.

Monospaced font Literal values and code, such as XML, SGML, read/write
rules, filenames, and pathnames.

Italics Variables or placeholders in code. For example, in
name="myName", the text myName represents a value you
are expected to supply. Also indicates the first occurrence
of a new term.

Blue text A hyperlink you can click to go to a related section in this
book or to a URL in your web browser.

Sans-serif bold The names of FrameMaker User Interface objects (menus,
menu items, and buttons). The > symbol is used as
shorthand notation for navigating to menu items and sub
menus. For example, Element > Validate... refers to the
Validate... item in the Element menu.

Before You Begin 8

Using FDK manuals
If you create an XML and SGML API client for your XML or SGML application, you’ll need to be
familiar with the FDK. FDK documentation is written for developers with C programming
experience.

•FDK Programmer’s Guide is your manual for understanding FDK basics. This manual describes
how to use the FDK to enhance the functionality of FrameMaker and describes how to use the
FDK to work with structured documents. To make advanced modifications to the software’s
default translation behavior, refer to the Structure Import/Export API Programmer’s Guide.)

• FDK Programmer’s Reference is a reference for the functions and objects described in the FDK
Programmer’s Guide.

•Structure Import/Export API Programmer’s Guide explains how to use the FDK to make advanced
modifications to the software’s default behavior for translation between markup documents
and FrameMaker documents. This manual contains both descriptive and reference information.

For information on other FDK manuals, see “Using Frame Developer Tools” in the FDK
Programmer’s Guide.

Structured Application Developer Reference 9

1 Structure Application Definition
Reference 2

This chapter provides a comprehensive reference for all application properties that can be defined
in a structure application definition file.

Contents of an application definition file
The highest-level element in an structapps.fm file is StructuredSetup. That element’s
first child must be Version, to indicate the FrameMaker version. The Version element is
followed by zero or more SGMLApplication or XMLApplication elements, each of which
defines the pieces of a structure application. Finally, there can be an optional Defaults element,
which specifies information used unless overridden for a particular application.

The following table lists the main elements allowed in structapps.fm as children of the
StructuredSetup element. The table identifies the sections that discuss each of those
elements and the elements they may contain.

Define an application
FrameMaker collects all information pertaining to the set-up of a structured application into an
SGMLApplication or XMLApplication element. These elements have one required child
element and several optional child elements.

The first child of a parent SGMLApplication or XMLApplication element must be
ApplicationName and gives the name of the application. It looks like:

Application name: name

where name is a string used to identify your application in the Set Structure Application and Use
Structure Application dialog boxes. You cannot use the same name for multiple structure
applications.

Element Discussed in
ApplicationName “Define an application,” next

SGMLApplication “Define an application” on page 9

XMLApplication “Define an application” on page 9

Defaults “Providing default information” on page 11

Structure Application Definition Reference 10

D e f i n e a n a p p l i c a t i o n

If present, the optional child elements can occur in any order and can include the following
elements, discussed in the named sections:

Some elements provide pathnames (for entities and read/write rules files; hence
RulesSearchPaths and EntitySearchPaths elements). If the pathname is absolute, the
software looks there. If it can’t find it via the specified path, the log reports an error and the
operation is aborted. If a relative pathname is given, the software looks for the file in several
places:

• The directory containing the file being processed. For example, if you’re opening a DTD, the
software first searches the directory in which it found the DTD.

• $STRUCTDIR (for information on what directory this is, see Developer Guide, page 131:
Location of structure files).

Element Discussed in
DOCTYPE “Specifying a DOCTYPE element” on page 13

DTD “Specifying a DTD” on page 14

CharacterEncoding “Specifying the character encoding for SGML files” on page 11

ConditionalText “Specifying conditional text output” on page 13

Entities “Specifying entities” on page 14

ExternalXRef “Specifying external cross reference behavior” on page 20

FileExtensionOverride “Specifying filename extensions” on page 21

Namespace “Enabling namespaces” on page 22

ReadWriteRules “Specifying a read/write rules document” on page 22

RulesSearchPaths “Specifying a search path for included files in rules documents”
on page 22

Schema “Specifying a Schema for XML” on page 23

SGMLDeclaration “Specifying an SGML declaration” on page 24

Stylesheets “Managing CSS import/export and XSL transformation” on
page 24

Template “Specifying a FrameMaker template” on page 27

UseAPIClient,
UseDefaultAPIClient,

“Specifying a structure API client” on page 27

XMLDisplayEncoding “Specifying the character encoding for XML files” on page 27

XMLExportEncoding “Exporting XML” on page 30

XMLCharacterEncoding “Specifying the character encoding for SGML files” on page 11

XMLWriteRules “Specifying the character encoding for SGML files” on page 11

FormView “Defining a Form view for the structured application” on
page 31

MathML “Specifying MathML options” on page 32

P r o v i d i n g d e f a u l t i n f o r m a t i o n

Structured Application Developer Reference 11

• The directory from which you started FrameMaker.

If an application definition includes any of these elements, the value in the application definition
overrides any value for that element in the Defaults element. The sections following the next
section describe these elements in detail.

Providing default information
Some of the information you provide for individual applications may be common to all your
applications. For such information you can specify defaults that are used whenever an application
does not provide its own version of the information. You use the Defaults element to provide
such information.

If present, the optional child elements of Defaults can occur in any order (with the exception
of the Graphics element, which must be the last child) and can include the following elements,
which are discussed in the named sections:

Specifying the character encoding for SGML files
The CharacterEncoding element tells the software which encoding to use for the SGML text.
Typically, this is only important on non-Western systems, or in SGML applications that encounter
SGML files using double-byte text. It can contain one of the following child elements:

Element Discussed in
CharacterEncoding “Specifying the character encoding for XML files” on page 27

DTD “Specifying a DTD” on page 14

Entities “Specifying entities” on page 14

FrameDefaultAPIClient,
UseAPIClient

“Specifying a structure API client” on page 27

MaxErrorMessages “Limiting the length of a log file” on page 30

Namespace “Enabling namespaces” on page 22

ReadWriteRules “Specifying a read/write rules document” on page 22

RulesSearchPaths “Specifying a search path for included files in rules documents”
on page 22

SGMLDeclaration “Specifying an SGML declaration” on page 24

Stylesheets “Managing CSS import/export and XSL transformation” on
page 24

Template “Specifying a FrameMaker template” on page 27

XMLCharacterEncoding “Specifying the character encoding for SGML files” on page 11

XMLWriteRules “Specifying the character encoding for XML files” on page 27

Graphics “Mapping graphic notations to file types” on page 31

Structure Application Definition Reference 12

S p e c i f y i n g t h e c h a r a c t e r e n c o d i n g f o r S G M L f i l e s

ISOLatin1, ASCII, ANSI, MacASCII, ShiftJIS, KSC8EUC, GB8EUC, CNSEUC, Big5,
JIS8EUC. The CharacterEncoding element looks like this:

SGML character encoding: Iso Latin1

On a non-Western system, the text for an SGML file can contain double-byte text. This text can be
in any one of a number of different text encodings.

FrameMaker can interpret SGML files that contain double-byte text in #PCDATA, RCDATA, and
CDATA. The software expects all other text to be within the 7-bit ASCII range (which is supported
by all Asian fonts). This means that document content can be in double-byte encodings, but the
markup must be in the ASCII range. Typically, for example, the only text in a DTD that will contain
double-byte characters would be text used to specify attribute values.

To import and export SGML that contains double-byte text, you should specify the character
encoding to use, either as a default for all applications, or for a specific SGML application. For a
given SGML application there can only be one encoding. If you don’t specify an encoding for your
application, FrameMaker determines the encoding to use by considering the current default user
interface language and the current operating system; for the current language, it uses the
operating system’s default encoding. The default encodings for Windows® are:

You can have an Asian language for the user interface, but the content of the document files in
Roman fonts. In this case, any exported Roman text that falls outside of the ASCII range will be
garbled. For this reason, we recommend that you specify an encoding for any application that
might be used on a non-Western system.

The template for your application must use fonts that support the language implied by the
encoding you specify. Otherwise, the text will appear garbled when imported into the template.
You can fix this problem after the fact by specifying different fonts to use in the resulting files.

Important: For SGML documents, you should not use accented characters in element tag
names nor attribute names. If you use such characters, FrameMaker may not be able to
correctly import or export the document.

Languages Windows
Roman languages ANSI

Japanese Shift-JIS

Simplified Chinese GB8 EUC

Traditional Chinese Big5

Korean KSC8 EUC

S p e c i f y i n g c o n d i t i o n a l t e x t o u t p u t

Structured Application Developer Reference 13

Specifying conditional text output
Add a ConditionalText child to the XMLApplication element to control conditional text
output. Place a single child, OutputTextPI in this element. Then add one of the four children
listed in the following table to the OutputTextPI element:

*PIs are displayed only if the document settings are different from the template settings.

The ConditionalText element can only be a child of an XMLApplication element.

Specifying a DOCTYPE element
The DOCTYPE element specifies the generic identifier of the DOCTYPE declaration and root
element in markup documents used with this application. If you open a markup document with
the matching document element specified in the DOCTYPE declaration, FrameMaker uses this
application when translating the document. The element looks like:

DOCTYPE: doctype

where doctype identifies a document element.

For example,

DOCTYPE: chapter

matches a markup document with the following declaration:

<!DOCTYPE chapter ...>

If more than one application defined in the structapps.fm file specifies the same document
element, and the end user opens a file with that document element, the software gives the user
a choice of which of these applications to use. If the user opens a markup document for which no
application specifies its document element, the software gives the user the choice of all defined
applications.

Child of OutputTextPi FrameMaker outputs
hidden conditional text

Processing instructions
delimit conditional text

OutputAllTextWithPIs yes yes

OutputAllTextWithoutPIs yes no

OutputVisibleTextWithPIs no yes

OutputVisibleTextWithoutPIs no no

OutputAllTextWithPIsFiltered yes yes*

OutputVisibleTextWithPIsFiltered no yes*

Structure Application Definition Reference 14

S p e c i f y i n g a D T D

You can use more than one DOCTYPE element for an application, if that application is applicable
to multiple document elements. For example, if the Book application applies when the document
element is either chapter or appendix, you can use this definition:

Application name: Book
 DOCTYPE: chapter
 appendix
 . . .

The DOCTYPE element can be a child of an SGMLApplication or XMLApplication element.

Specifying a DTD
The DTD element specifies a file containing the external DTD subset that FrameMaker uses when
importing and exporting a markup document. It looks like:

DTD: dtd

where dtd is the pathname of a file containing a document type declaration subset.

Note that the file you specify with the DTD element must be an external DTD subset. It cannot be
a complete DTD. That is, the file cannot have the form:

<!DOCTYPE book [
 <!element book . . .>
 . . .
]>

Instead, it should simply have the form:

<!element book . . .>
. . .

For more information on external DTD subsets, see Developer Guide, page 89: XML and SGML
DTDs.

You can have only one DTD element for each SGMLApplication or XMLApplication. It can
also be a child of the Defaults element.

Specifying entities
To specify the location of various entities, you use the Entities element. It looks like this:

Entity locations

The possible child elements of a parent Entities element are:

Element Discussed in
EntityCatalogFile “Specifying entities through an entity catalog” on page 15

S p e c i f y i n g e n t i t i e s

Structured Application Developer Reference 15

If you use the EntityCatalogFile element, you cannot use any of the elements Entity,
FilenamePattern, or Public.

You can have only one Entities element for each application, although that Entities
element can have more than one of some of its child elements. The Entities element can also
be a child of the Defaults element.

Specifying entities through an entity catalog
The EntityCatalogFile element specifies a file containing mappings of an entity’s public
identifier or entity name to a filename. It looks like:

Entity locations
 Entity catalog file: fname

where fname is the filename of the entity catalog. Entity catalogs and their specified format are
described below.

You can specify multiple EntityCatalogFile elements in a single Entities element. If you
use this element, you cannot use any of the Entity, FilenamePattern, or Public elements.

You can use the EntityCatalogFile element both in the Entities element of the
Defaults element and in an SGMLApplication or XMLApplication element to specify
information for a particular application. When searching for an external entity, FrameMaker
searches the application’s entity catalogs before searching the default entity catalogs.

If you have an EntityCatalogFile element in an application definition, the software ignores
Entity, FilenamePattern, and Public elements in the Defaults element.

Why use entity catalogs
Technical Resolution 9401:1994 published by SGML Open discusses entity management issues
affecting how SGML documents work with each other:

• Interpreting external identifiers in entity declarations so that an SGML document can be
processed by different tools on a single computer system

• Moving SGML documents to different computers in a way that preserves the association of
external identifiers in entity declarations with the correct files or other storage objects.

The technical resolution uses entity catalogs and an interchange packaging scheme to address
these issues. FrameMaker supports such entity catalogs with the EntityCatalogFile
element.

Entity “Specifying the location of individual entities” on page 16

FileNamePattern “Specifying names for external entity files” on page 17

Public “Specifying public identifiers” on page 18

EntitySearchPaths “Specifying a search path for external entity files” on page 19

Element Discussed in

Structure Application Definition Reference 16

S p e c i f y i n g e n t i t i e s

Entity catalog format
Each entry in the entity catalog file associates a filename with information about an external entity
that appears in a markup document. For example, the following are catalog entries that associate
a public identifier with a filename:

PUBLIC "ISO 8879-1986//ENTITIES Added Latin 1//EN" "isolat1.ent"
PUBLIC "-//USA/AAP//DTD BK-1//EN" "aapbook.dtd"

In addition to entries mapping public identifiers to filenames, an entry can associate an entity
name with a filename:

ENTITY "chips" "graphics\chips.tif"

A single catalog can contain both types of entry.

If the specified filename in a catalog entry is a relative pathname, the path is relative to the
location of the catalog entry file.

For a complete description of the syntax of a catalog entry, see Technical Resolution 9401:1994
Entity Management published by SGML Open.

How FrameMaker searches entity catalogs
A single application may use multiple catalog files. When trying to locate a particular external
entity, FrameMaker searches the files one at a time until it finds the entry it is looking for. In each
file, the software first searches for an entity using the external entity’s public identifier. If the
software finds the identifier, it uses the associated filename to locate the entity. If it does not find
the public identifier, the software searches the file looking for the entity name. If it does not find
the entity name either, the software continues searching in the next catalog file.

In some circumstances, a system identifier specified in an external entity declaration may not be
valid. If so, FrameMaker uses public identifier and entity name mappings.

Specifying the location of individual entities
Instead of using an entity catalog to associate entities with files, you can use the Entity element
as a child of a parent Entities element. This element allows you to directly associate a filename
with an individual entity. It looks like:

Entity locations
 Entity name: ename
 Filename: fname

where ename is the name of an entity and fname is a filename.

You can specify multiple child Entity elements for a single Entities element. You use the
FilenamePattern and EntitySearchPaths elements to help the software find these files.

The Entity element can be a child of a parent Entities element in the Defaults element
to set default entity information, and of a parent SGMLApplication or XMLApplication

S p e c i f y i n g e n t i t i e s

Structured Application Developer Reference 17

element to specify information for a particular application. When searching for an external entity,
the software searches the application’s entity locations before searching the default entity
locations.

Specifying names for external entity files
One or more FilenamePattern elements can appear as a child of a parent Entities element
to tell the software how to locate an external entity.

A FilenamePattern element does not apply to an entity for which there is an Entity
element. Otherwise, it applies to all external entities except those with an external identifier that
includes a public identifier but no system identifier. The FilenamePattern looks like:

Entity locations:
 Filename pattern: pattern

where pattern is a string representing a device-dependent filename. The three variables that
can appear within pattern are interpreted as follows:

Case is not significant in variable names, although it may be significant in the values of the
variables. If a variable is undefined in a particular context, that variable evaluates to the empty
string.

A parent Entities element can contain multiple child FilenamePattern elements. The
software assumes the last pattern in the Entities element is:

Filename pattern: $(System)

Thus, if no FilenamePattern elements appear or even if no Entities element appears, the
software assumes system identifiers are complete pathnames and will check search paths to
locate the file.

How FrameMaker searches filename patterns
When locating an external entity, FrameMaker tests the value of the pattern arguments in
successive FilenamePattern elements that have the same parent Entities element, in the
order they occur, until it finds the name of an existing file. As it tests each pattern, it substitutes
relevant information from the entity’s declaration for variables in pattern.

You can use the FilenamePattern element both in the Entities element of the Defaults
element and in an SGMLApplication element to specify information for a particular
application. When searching for an external entity, FrameMaker tests all the filename patterns
specified for the application before it tests those in default FilenamePattern elements.

Variable Interpretation
$(System) The system identifier from the entity declaration

$(Notation) The notation name from the entity declaration of an external data entity

$(Entity) The entity name

Structure Application Definition Reference 18

S p e c i f y i n g e n t i t i e s

Example
Suppose the Entities element looks like:

Entity locations:
 Filename pattern: $(System).sgm
 Filename pattern: $(System).$(Notation)

and the markup document contains:

<!ENTITY intro SYSTEM "introduction.xml">
<!ENTITY chips SYSTEM "chipsfile" NDATA cgm>
. . .
&intro;
. . .
<graphic entity=chips>

When processing the reference to intro, the software searches for a file called
introduction.xml. It is an error if the file does not exist.

When processing the entity attribute of the graphic element, FrameMaker searches for a file
named chipsfile.cgm. If one is not found, it then looks for chipsfile.CGM, assuming that
the NAMECASE GENERAL parameter of the associated SGML declaration is NAMECASE
GENERAL YES.

Specifying public identifiers
The Public element of an Entities element tells the software how to process an external
identifier that has a public identifier but no system identifier. It looks like:

Entity locations:
 Public ID: pid
 Filename: fname

where pid is a public identifier and fname is the name of a file to be associated with the entity
using the public identifier.

You can give multiple Public elements in the same parent Entities element. If you want to
give multiple filenames to search for a particular public identifier, you can specify the same public
identifier in multiple Public elements.

Note: The NAMECASE GENERAL parameter of the SGML declaration determines the
case-sensitivity of notation names. For XML, the implied setting for this parameter is NO,
which means that names are case-sensitive.

For SGML, the value of this parameter in the reference concrete syntax is NAMECASE
GENERAL YES. With this declaration, the SGML parser forces notation names to
uppercase.

S p e c i f y i n g e n t i t i e s

Structured Application Developer Reference 19

You can use the Public element both in the Entities element of the Defaults element and
in an Entities element of an SGMLApplication or XMLApplication element to specify
information for a particular application. If a Public element occurs as a child of an
SGMLApplication or XMLApplication element, that identifier is used in preference to one
occurring as a child of the Defaults element.

Specifying a search path for external entity files
The EntitySearchPaths child of a parent Entities element tells the software what
directories to search for the files indicated by Entity, FilenamePattern, and Public
elements. It looks like:

Entity locations:
 Entity search paths
 1: directory1
 . . .
 N: directoryn

where each directoryi is a device-dependent directory name. The three variables and their
abbreviations that can be used to specify a directory are as follows:

Each directoryi value can be an absolute pathname or relative to $SRCDIR.

How FrameMaker searches for entity files
To locate an external entity, FrameMaker searches the specified directories in the order listed. You
can use the EntitySearchPaths element both in the Entities element of the Defaults
element and in an XMLApplication or SGMLApplication element. When searching for an
external entity, FrameMaker searches the directories named in the EntitySearchPaths
element for the application before it searches those in a default EntitySearchPaths element.

An Entities element can contain only one EntitySearchPaths element. The software
assumes the EntitySearchPaths element ends this way:

Entity search paths
 . . .
 N: $SRCDIR

Variable Abbreviation Interpretation
$HOME ~ The user’s home directory

$SRCDIR . The directory containing the document entity being
processed

$STRUCTDIR The structure directory in use (for information on what
directory this is, see Developer Guide, page 131: Location
of structure files)

Structure Application Definition Reference 20

S p e c i f y i n g e x t e r n a l c r o s s r e f e r e n c e b e h a v i o r

Thus, if there is no EntitySearchPaths element, the software assumes all markup files are in
the same directory.

Example
Assume the Defaults element is defined as follows:

Defaults
 Entity locations:
 Filename pattern: $(System).sgm
 Filename pattern: $(System).$(Notation)
 Entity search paths
 1: $HOME
 2: $SRCDIR

and the markup document contains:

<!ENTITY intro SYSTEM "introduction.xml">
<!ENTITY chips SYSTEM "chipsfile" NDATA cgm>
. . .
&intro;
. . .
<graphic entity=chips>

When processing the reference to intro, the software looks for the files:

$HOME/introduction.xml
$SRCDIR/introduction.xml

until it finds one of those files. When processing the graphic element, the software searches in
order for:

$HOME/chipsfile.cgm
$SRCDIR/chipsfile.cgm

Specifying external cross reference behavior
To ensure correct resolution of external cross references in XML, use the ExternalXRef
element. ExternalXRef can only be a child of XMLApplication.

Change file extension to .XML
Insert an ExternalXRef child in the XMLApplication element for the application you are
developing. In this ExternalXRef element, insert a ChangeReferenceToXML child. Finally,
insert an Enable element into the ChangeReferenceToXML element. It will look like this:

External X-Ref:
Change Reference To .XML: Enable

S p e c i f y i n g f i l e n a m e e x t e n s i o n s

Structured Application Developer Reference 21

When a document with an external cross-reference is saved to XML, FrameMaker then changes
the extension in the xref’s srcfile attribute to .xml and exports the cross-reference as:

<xref srcfile="filepath/filename.xml#elemID">

Where:

• filepath is the absolute path to the saved source XML file

• filename is the name of the saved source XML file

• elemID is the ID of the referenced element.

You can save the source file to XML before or after saving the original file to XML. In either case,
the file name specified for the XML document must be identical to the filename of the original
FrameMaker document except for the extension.

If you insert a Disable element instead of an Enable element into
ChangeReferenceToXML, FrameMaker retains the default behavior and does not change the
extension in the srcfile attribute.

Try alternative extensions
TryAlternativeExtensions specifies an option for importing external cross-references
from XML. It looks like this:

External X-Ref:
Try Alternative Extensions: Enable

If its content is Enable, and FrameMaker cannot open the file specified by the srcfile
attribute, it changes the extension and tries to open the resulting file instead. In particular, if the
original extension is .xml, FrameMaker also tries .fm; if the original extension is .fm,
FrameMaker also tries .xml. If the content of TryAlternativeExtensions is Disable,
FrameMaker creates an unresolved cross-reference if the specified file cannot be opened.
Disable is the default.

Specifying filename extensions
The FileExtensionOverride element specifies a filename extension to use when saving a
FrameMaker document as markup. This is particularly useful when saving XHTML documents.
Some web browsers that support XHTML can only read files with a .htm or .html extension.
When you save a document as XML (even using the XHTML doctype) FrameMaker gives the file a
.xml extension by default. You can use this element to specify a .htm extension when saving a
document as XHTML. The FileExtensionOverride element looks like this:

File Extension Override: extension

where extension is the string for the filename extension, minus the dot character. You can have
only one FileExtensionOverride element for each XML or SGML structure application.

Structure Application Definition Reference 22

E n a b l i n g n a m e s p a c e s

Enabling namespaces
The Namespace element specifies whether the current XML structure application supports
namespaces in XML. This element can contain either an Enable or Disable child element. The
Namespace element looks like this with namespaces enabled:

Namespace: Enable

You can have only one Namespace element for each XML structure application. It can also be a
child of the Defaults element. It is not applicable for an SGML application.

Specifying a read/write rules document
The ReadWriteRules element specifies the read/write rules document associated with the
application. It looks like:

Read/write rules: rules

where rules is the pathname of a FrameMaker read/write rules document.

You can have only one ReadWriteRules element for each application. It can also be a child of
the Defaults element.

Specifying a search path for included files in rules
documents

The RulesSearchPaths element is analogous to the EntitySearchPaths element, but it
pertains to additional files you include in a read/write rules document rather than to external
entities referenced within a markup document. Its Path child elements indicate individual
directories. It looks like:

Search paths for included read/write rules files:
 1: directory1
 . . .
 N: directoryn

Note: XML Schema: You must enable namespaces to allow FrameMaker to validate XML
against a Schema definition upon import and export. Schema allows an XML document to
reference multiple Schema locations in different namespaces. When this is the case, only
the first namespace is used. See Developer Guide, page 201: Schema location for
additional information.

S p e c i f y i n g a S c h e m a f o r X M L

Structured Application Developer Reference 23

where each directoryi is a device-dependent directory name. The two variables and their
abbreviations that can be used to specify a directory are as follows:

Each directoryi value can be an absolute pathname or relative to $RULESDIR.

How FrameMaker searches for rules files
Only one RulesSearchPaths element can occur as the child of a single parent
XMLApplication or SGMLApplication element or parent Defaults element. When
searching for a file you include in an read/write rules document, FrameMaker searches the
directories named in the RulesSearchPaths element for the application before it searches
those in the RulesSearchPaths element of the Defaults element.

The software assumes RulesSearchPaths ends in this way:

Search paths for included read/write rules files:
 . . .
 N: $RULESDIR

Thus, if there is no RulesSearchPaths element, the software assumes all files you include in
the read/write rules document are in the same directory as your rules document.

Specifying a Schema for XML
The Schema element, a direct child of XMLApplication, specifies the path and filename for an
XML Schema file that contains element declarations for XML. It look like this:

Schema: schema_path

where schema_path is the pathname of a file containing a Schema declaration file.

In order for a structure application to be selectable in the Use Structured Application list while
importing a document that is associated with a Schema, the Schema’s root element must be
included in the application’s DOCTYPE in the XmlApplication element.

Variable Abbreviation Interpretation
$HOME ~ The user’s home directory

$STRUCTDIR The structure directory in use (for information on what
directory this is, see Developer Guide, page 131: Location of
structure files)

Structure Application Definition Reference 24

S p e c i f y i n g a n S G M L d e c l a r a t i o n

Specifying an SGML declaration
The SGMLDeclaration element specifies the location of a file containing a valid SGML
declaration. It is used only for SGML applications and cannot be a child of an XMLApplication
element. The SGMLDeclaration element looks like:

SGML declaration: declaration

where declaration is the pathname of the SGML declaration file.

You can have only one SGMLDeclaration element for each SGML application. It can also be a
child of the Defaults element.

Managing CSS import/export and XSL transformation
The Stylesheets element of an XML structure application tells the software how to treat the
use of CSS stylesheets for a given XML document, and how and whether to perform XSL
transformation upon import or export of XML documents.

An XML application can have only one Stylesheets element. It can also be a child of the
Defaults element.

How the Stylesheets element affects CSS generation
You can specify whether to use an existing stylesheet, or whether FrameMaker should generate a
new one and use that for the exported XML. You can specify any number of stylesheets, and the
exported XML will include references to each one. The Stylesheets element also contains
instructions concerning the use of attributes and stylesheet processing instructions. The
Stylesheets element for CSS looks like:

CSS2 Preferences:
Generate CSS2: enable/disable
Add Fm CSS Attribute To XML: enable/disable

Retain Stylesheet Information: enable/disable
XML Stylesheet:

Type: stylesheet_type
URI: path

When you save a document to XML, FrameMaker can either use an existing stylesheet, or generate
a new one from the current EDD. How FrameMaker generates a stylesheet is determined by the
values of the children of the Stylesheets element. For more information about how
FrameMaker converts EDD information into a stylesheet, see Developer Guide, page 283: Saving
EDD Formatting Information as a CSS Stylesheet

GenerateCSS2 Specifies whether FrameMaker will generate a CSS when you save the document
as XML. It can be set to enable or disable. When this is set to enable, FrameMaker generates a CSS.
If a path is provided in StylesheetURI, FrameMaker saves the stylesheet to that location, with

M a n a g i n g C S S i m p o r t / e x p o r t a n d X S L t r a n s f o r m a t i o n

Structured Application Developer Reference 25

that filename. Otherwise, it saves the stylesheet to the same location as the XML document with
a filename xmldoc.css, where xmldoc is the name of the XML document you’re saving.

AddFmCSSAttrToXml Specifies whether FrameMaker will write instances of the fmcssattr
attribute to elements in the XML document. It can be set to enable or disable. An EDD can
include context selectors as criteria to assign format rules. CSS has no equivalent to this. When this
is set to enable, FrameMaker uses the fmcssattr attribute in certain elements so the CSS can
achieve the same formatting as the EDD.

RetainStylesheetPIs Specifies whether FrameMaker will retain the stylesheet declaration for
import and export of XML. It can be set to enable or disable. When this is set to enable,
FrameMaker does the following:

• On import, it stores the XML document’s stylesheet PI as a marker in the FrameMaker
document.

• On export, it writes the content of stylesheet PI marker in the resulting XML document.

StylesheetType Specifies the type of stylesheet. It contains a string for the stylesheet type.
Currently, you can specify CSS (upper or lower case) or XLS (upper or lower case). If you specify
XLS, FrameMaker will not generate a stylesheet.

StylesheetURI Specifies the URI for the stylesheet. It contains a string; for example,
/$STRUCTDIR/xml/xhtml/app/xhtml.css.

How the Stylesheets element affects CSS import
You can specify whether a CSS stylesheet that is referenced in an XML file is used to update the
formatting of the FrameMaker document. The ProcessStylesheetPI is an optional child of
the CssPreferences element and looks like this:

CSS2 Preferences:
ProcessStylesheetPI: enable/disable

ProcessStylesheetPI can have one of the following values: Enable or Disable. If the
value of the ProcessStylesheetPI element is Enable, then the CSS file referenced in the
XML file is used while opening the XML file. The default value of the ProcessStylesheetPI
element is Disable.

For more information about how the CSS file mentioned in the XML file is used when an XML file
is opened, see Chapter 6, “CSS to EDD Mapping.”

How the Stylesheets element affects XSL transformation
If an XML structure application specifies an XSL stylesheet, FrameMaker can apply transformations
defined in that stylesheet when importing an XML document, or when exporting a FrameMaker
document to XML. The XSLTPreferences element in the Stylesheets element allows you
to specify the XSL file to use for transformation upon import (PreProcessing), export
(PostProcessing), and smart paste (SmartPaste). StylesheetParameters elements

Structure Application Definition Reference 26

M a n a g i n g C S S i m p o r t / e x p o r t a n d X S L t r a n s f o r m a t i o n

allow you to set parameters of an XSL stylesheet at run time, before the transformation takes
place.

XSLT Preferences:
 Process Stylesheet PI: enable/disable
 Preprocessing:

Stylesheet: path
Processor: processor name
Stylesheet Parameters

Name: parameter name
Expression: exp

 Postprocessing:
Stylesheet: path
Processor: processor name
Stylesheet Parameters

Name: parameter name
Expression: exp

 SmartPaste:
Stylesheet: path
Processor: processor name
Stylesheet Parameters

Name: parameter name
Expression: exp

ProcessStylesheetPI Specifies whether FrameMaker will use the XSL file mentioned in the
xml-stylesheet PI of an XML file to transform that file. It can be set to enable or disable.
By default it is set to disable, and FrameMaker does not use the PI. Set to enable to use the PI.

PreProcessing Contains a Stylesheet element that specifies the XSL file to be used for
transformation upon import of an XML document. Transformation occurs before read rules are
applied. The XSLTPreferences element can contain 0 or 1 PreProcessing elements.

PreProcessing Contains a Stylesheet element that specifies the XSL file to be used for
transformation upon export of an XML document. Transformation occurs after write rules are
applied. The XSLTPreferences element can contain 0 or 1 PostProcessing elements.

SmartPaste Contains a Stylesheet element that specifies the XSL file to be used for
transformation upon pasting content from an external application.

Stylesheet Specifies the URI for the XSL file. It contains a string; for example,
/$STRUCTDIR/xml/xhtml/app/mystyles.xsl.

Processor Specifies the processor for the XSL file. You can either choose from the existing
options - SAXON or XALAN, or specify your own processor name.

StylesheetParameters Contains ParameterName and ParameterExpression pairs. Each
pair specifies the name of a parameter used the XSL stylesheet, and an expression that constrains
the value of that parameter for the subsequent transformation.

S p e c i f y i n g a F r a m e M a k e r t e m p l a t e

Structured Application Developer Reference 27

For more information on XSL transformation of XML, see Developer Guide, Chapter 29, Additional
XSL Transformation for XML.

Specifying a FrameMaker template
The Template element specifies the location of the FrameMaker template. It looks like:

Template: template

where template is the pathname of a FrameMaker template.

The software uses this template to create new FrameMaker documents from markup documents,
which may be single documents resulting from the Open or Import command or documents in
a book created through the Open command.

If this element is not present, the software creates new portrait documents as needed. When you
import a markup document into an existing document, the software uses the import template
only to access reference elements that are stored on the template’s reference page. (For
information about reference elements, see Developer Reference, page 332: Translating SDATA
entities as FrameMaker reference elements.)

You can have only one Template element for each application. It can also be a child of the
Defaults element.

Specifying a structure API client
In an application definition, the UseDefaultAPIClient element tells the software that your
application does not use a special client for markup translation. In the defaults section, the
FrameDefaultAPIClient element serves the same purpose. The default client is named
FmTranslator.

If you do need a structure API client, use the UseAPIClient element in either context. For
information on creating structure API clients for a structure application, see the online manual
Structure Import/Export API Programmer’s Guide.

Specifying the character encoding for XML files
The XML specification supports UNICODE characters for document content and markup tokens. In
XML the given encoding is specified in the document prolog. The following example shows a
specification for ShiftJIS character encoding:

<?xml version="1.0" encoding="Shift_JIS" ?>

The XML specification states that an XML document must either specify an encoding in the prolog,
or it must be UTF-8 or UTF-16. FrameMaker follows this specification by assuming UTF-8 by default
if there is no encoding specified in the XML file.

Structure Application Definition Reference 28

S p e c i f y i n g t h e c h a r a c t e r e n c o d i n g f o r X M L f i l e s

If you read an XML file with character encoding that does not match either the declared encoding
or the default encoding (if no encoding is declared), it is likely that the import process will
encounter a character that does not match the encoding FrameMaker uses. In that case, you will
get a parsing error that says the document is not well-formed due to a bad token.

FrameMaker uses the encoding statement in the document prolog to determine which encoding
to use. The statement must specify one of the encodings supported by your specific FrameMaker
installation. FrameMaker ships with support for the following encodings:

You can add other encodings to your FrameMaker installation—see Developer Guide, page 103:
Unicode and character encodings.

FrameMaker converts the encoding of the XML document to an internal display encoding. In this
way FrameMaker fully supports Unicode characters for text that is in #PCDATA, RCDATA, and
CDATA. For any #PCDATA character that it cannot interpret, FrameMaker uses a marker of type
UNKNOWNCHAR to represent the character. For unknown CDATA characters, FrameMaker uses XML
character references.

The following sections describe how to control the display encoding that FrameMaker uses, and
how to specify an encoding when you save a document as XML.

Display encoding
On import, FrameMaker converts the XML encoding to a display encoding that is appropriate for
a given language. However, FrameMaker cannot automatically determine which conversion to
make. Although the XML document prolog specifies an encoding, the document may contain
elements or other constructs that override the language implied by that encoding. As a result, you
should specify a display encoding for the structure application. The display encodings you can
specify are:

Big5 KSC_5601

EUC-JP Shift_JIS

EUC-KR US-ASCII

EUC-TW UTF-16

GB2312 UTF-8

ISO-8859-1 windows-1252

Display encoding: For this language:
FrameRoman Western European languages

JISX0208.ShiftJIS Japanese

BIG5 Traditional Chinese

GB2312-80.EUC Simplified Chinese

KSC5601-1992 Korean

S p e c i f y i n g t h e c h a r a c t e r e n c o d i n g f o r X M L f i l e s

Structured Application Developer Reference 29

By default, FrameMaker uses the display encoding that matches the locale of your operating
system. To specify a different display encoding, use the XmlDisplayEncoding element.
XmlDisplayEncoding can contain one child element to specify one of the supported display
encodings.

The display encoding also determines how FrameMaker interprets the characters in markup
tokens such as GIs and attribute names. If FrameMaker encounters such a token with an unknown
character, FrameMaker drops the token. For more information, see Developer Guide, page 101:
Supported characters in element and attribute names.

For example, if your operating system locale is French, German, or English FrameMaker uses
FrameRoman by default. This is true, even if the XML prolog specifies an encoding for a different
language, such as ShiftJIS. To import XML encoded as ShiftJIS, you would use the
XmlDisplayEncoding element to specify JISX0208.ShiftJIS, as follows:

XML Display Encoding: JISX0208.ShiftJIS

When you specify such an encoding, FrameMaker uses that encoding as the default for all the
#PCDATA, RCDATA, and CDATA in the imported XML. Markup tokens that include characters in the
upper range of the display encoding are interpreted correctly. If you have fonts installed for the
display encoding, then the text will appear as intended.

For another example, assume you have a version of US English FrameMaker installed on a
Traditional Chinese operating system. By default, FrameMaker uses Big5 as the display encoding.
It also supports any Big5 characters that are used in GIs and attribute names. If you are importing
an XML document that is in English, you would need to specify FrameRoman as the display
encoding.

Note that the XML standard includes the xml:lang attribute. This attribute can specify a change
of language for an element and its content. If that language is one of those listed in the table of
display encodings, a change made by this attribute take precedence over the setting made via
XmlDisplayEncoding.

Finally, the template for your application must use fonts that support the given language.
Otherwise, the text will appear garbled when imported into the template. You can fix this problem
by specifying different fonts to use in the resulting files.

Encoding of CSS files
FrameMaker supports the following encodings for CSS files: utf-8, utf-16, utf-16LE, and utf-16BE.
FrameMaker detects the encoding of a CSS file using the Byte Order Mark (BOM), and not the
“@charset” statement.

Structure Application Definition Reference 30

E x p o r t i n g X M L

Exporting XML
Your XML structure application can include an XmlExportEncoding element to specify the
encoding to use when you save a document as XML. FrameMaker determines which encoding to
use according to the following rules:

The XmlExportEncoding element contains a string for the name of an encoding. The name
you provide must conform with the IANA naming conventions. The standard installation of
FrameMaker supports the encodings that are listed at the beginning of this discussion (see
page 27).

For example, to export your document as ISOLatin1, use the XmlExportEncoding element as
follows:

XML Export Encoding: ISO-8859-1

Limiting the length of a log file
The MaxErrorMessages child element of the Defaults element allows you to limit the
length of structure error reports. It looks like:

Maximum number of error messages: n

where n is the desired limit. If n is less than 10, the software resets it to 10. This must be the last
child of the parent Defaults element.

By default, FrameMaker does not write more than 150 messages (error messages and warnings)
to a single log file.

Messages pertaining to opening and closing book components are not included in this limit.
Messages generated through your own structure API client are also not counted, although if you
wish, you can count them using your own code.

In documents that generate large numbers of messages, the 151st message is replaced with a
note that additional messages have been suppressed.

Note that processing continues, even though further messages are not reported. This message
limit is reset for every file processed and for each component of a book.

If: FrameMaker uses:
1
.

The structure application specifies a value for
XmlExportEncoding, and that encoding is
supported

The specified encoding

2
.

1 is not true, and the original XML source specified an
encoding, and that encoding is supported

The encoding that was specified in
the original XML source

3
.

1 and 2 are not true UTF-8

M a p p i n g g r a p h i c n o t a t i o n s t o f i l e t y p e s

Structured Application Developer Reference 31

Mapping graphic notations to file types
The Graphics child element of the Defaults element allows you to provide mappings from
graphic notation to file type by using the file name extension. In the example below the JPEG
notation is mapped to the .jpg extension.

Graphics
Notation: JPEG Filetypehint:jpg

The Graphics element may contain one or more Mapping elements.

Defining a Form view for the structured application
When you create a structured application, you can define a Form view for the application. Your
authors can then use FrameMaker’s Simplified XML interface. The new simplified authoring
interface provides a form-like easy-to-fill authoring environment. For more information, see the
Simplified XML section of the FrameMaker User Guide.

Form View
Configuration File: <Path to configuration (.ini) file>

Example: $STRUCTDIR\xml\DITA_1.2\app\FrameMaker\simplifiedxml\config\topic_config.ini
Template: <Path to Simplified XML template file>

Example:
$STRUCTDIR\xml\DITA_1.2\app\FrameMaker\simplifiedxml\template\topic.template.simplified
xml.fm

Template:

When you create a structured application, you create a template file that is associated with the
application. In the structured application template file, you define how to display the fields and
specify the auto-insertion rules. The auto-insertion rules are used to decide the default elements.
The auto-inserted elements are the elements that display when an author creates a new
document. You can use the structured application tem-plate file for the Simplified XML form view.
Alternatively, you can edit the auto-insertion rules change elements that display when an author
creates a new document in the Form view. However, the author will still be able to add these
elements to the structured document unless you exclude these elements using the configuration
file.

The Form view template is similar to the structured application template. You are recommended
to customize your structured application template as per the requirements of the Simplified view.
If you plan to display the same default elements in the Simplified view as the WYSIWYG view, you
can use the same template file. Alternatively, you can exclude the Template element in the Form
View construct of the structapps.fm file. If the Template element is not found in the structapps.fm
file, FrameMaker defaults to the structured application template.

Configuration File:

Structure Application Definition Reference 32

S p e c i f y i n g M a t h M L o p t i o n s

Configure the Simplified view using the configuration file. This file provides options to specify the
structured application elements to display as form fields in the Simplified view. The paragraph
format defined in the template that is used to display the form labels.

When specifying the following flags in the configuration file, you need to ensure that the
corresponding tags are defined in the Simplified XML template file:

• FormLabelPgfFormat

• RequiredFormLabelPgfFormat

• FormFieldColor

• RequiredFormFieldColor

• SelectedFormFieldColor

For details on the configuration options, see the Customize the Simplified XML authoring
environment section of the FrameMaker user guide.

To ensure that an element does not display in the form view, you can exclude the element from
the auto-insertion rules defined in the template file and from the definition in the configuration
file.

Specifying MathML options
Your structured application can include a MathML element to specify a namespace prefix for
MathML elements, and/or whether to save MathML equations as entities or Hex values. The
MathML element looks like:

MathML
Namespace Prefix: nsprefix
Export Entities As Values: true

where nsprefix is the namespace prefix that is used for all MathML elements. The Export
Entities As Values is set to true by default, which signifies that all MathML equations are
saved as Hex values. If you set it to false, then MathML equations are saved as entities.

You can have only one MathML element for each XML structure application. It can also be a child
of the Defaults element. It is not applicable for an SGML application.

Note: If you exclude an element using the configuration file but the element is included
in the auto-insertion rules, the element will display disabled (un-editable) if the element
is not empty.

Structured Application Developer Reference 33

2 Read/Write Rules Summary 3

This chapter lists the available read/write rules by category and briefly describes the purpose of
each rule. The categories, which are arranged alphabetically, are as follows:

•“All Elements” on page 33

•“Attributes” on page 34

•“Books” on page 35

•“Cross-references” on page 35

•“Entities” on page 36

•“Equations” on page 36

•“Footnotes” on page 37

•“Graphics” on page 37

•“Markers” on page 38

•“Processing instructions” on page 39

•“Markup documents” on page 39

•“Tables” on page 40

•“Text” on page 41

•“Text insets” on page 41

•“Variables” on page 41.

All Elements
To Use this rule Page

Translate a markup element element 56

Discard or unwrap a FrameMaker element on
export

fm element 77

Translate a markup element to a FrameMaker
element

is fm element 110

Translate a markup attribute within the
context of a single markup element

attribute 46

Read/Write Rules Summary 34

A t t r i b u t e s

Attributes

Inform FrameMaker not to update a
FrameMaker element’s definition when
updating an existing EDD

preserve fm element
definition

148

Discard a FrameMaker or markup
element

drop 53

Discard the content but not the structure of a
FrameMaker or markup element

drop content 55

Discard the structure but not the content of a
markup or FrameMaker element

unwrap 162

To Use this rule Page

Translate a markup attribute attribute 46

Discard a FrameMaker attribute fm attribute 76

Translate a markup attribute to a FrameMaker
attribute

is fm attribute 104

Translate a markup attribute within the
context of a single markup element

element 56

Discard a markup or FrameMaker attribute drop 53

Translate a markup attribute to a particular
FrameMaker property

is fm property 116

Translate a value for a markup attribute to a
FrameMaker property value

is fm property value 126

Translate a value of a markup notation
attribute or name token group to a value for
a FrameMaker choice attribute

is fm value 139

Translate a markup attribute value to a
FrameMaker property or a choice attribute
value

value 165

Specify the value to use for a markup implied
attribute when a document instance provides
no value

implied value is 97

To Use this rule Page

B o o k s

Structured Application Developer Reference 35

Books

Cross-references

To Use this rule Page

Specify whether to use elements or
processing instructions to indicate book
components when reading a markup
document

generate book 93

Specify elements to use to indicate book
components when reading a markup
document

put element
(described with generate book)

93

Specify the use of processing instructions to
indicate book components when reading a
markup document

use processing instructions
(described with generate book)

93

Specify whether or not to write processing
instructions that indicate book components
in a markup document

output book processing
instructions

147

To Use this rule Page

Translate markup elements to FrameMaker
cross-reference elements

is fm cross-reference
element

109

Translate FrameMaker cross-reference
properties when no markup attribute exists

fm property 80

Translate FrameMaker cross-reference
properties when no markup attribute exists

value is
(described with fm property)

80

Translate a markup attribute to a particular
FrameMaker property

is fm property 116

Translate a value for a markup attribute to a
FrameMaker property value

is fm property value 126

Translate a value of a markup notation
attribute or name token group to a value for
a FrameMaker choice attribute

is fm value 139

Translate a FrameMaker cross-reference
element to text in markup

fm element unwrap 77,
162

Read/Write Rules Summary 36

E n t i t i e s

Entities

Equations

To Use this rule Page

Translate a markup entity reference to an
appropriate FrameMaker representation

entity 61

Determine the form of names of entities
created for exported graphics

entity name is 63

Drop references to external data entities external data entity
reference

72

Translate an entity reference to a FrameMaker
variable

is fm variable 140

Translate an entity reference to a single
character

is fm char 107

Translate an entity reference to an element on
a reference page

is fm reference element 128

Translate an SDATA entity reference to a text
inset

is fm text inset 136

Determine the formatting of a text inset reformat as plain text 154

reformat using target
document catalogs

155

retain source document
formatting

156

Discard external data entity references drop 53

To Use this rule Page

Translate a markup element to a FrameMaker
equation element

is fm equation element 111

Specify export information for translating
FrameMaker equations

equation 65

Specify the filename used for exporting an
equation

export to file 69

Determine the form of names of entities
created for exported equations

entity name is 63

Specify the data content notation for an
exported equation

notation is 145

F o o t n o t e s

Structured Application Developer Reference 37

Footnotes

Graphics

Determine whether FrameMaker uses the
dpi attribute or the impsize attribute for
equations and also the resolution used

specify size in 157

Translate FrameMaker cross-reference
properties when no markup attribute exists

fm property 80

Translate FrameMaker cross-reference
properties when no markup attribute exists

value is
(described with fm property)

80

Translate FrameMaker equation properties to
markup attributes

is fm property 116

Translate a value for a markup attribute to a
FrameMaker property value

is fm property value 126

Translate a value of a markup notation
attribute or name token group to a value for
a FrameMaker choice attribute

is fm value 139

Translate a markup attribute value to a
FrameMaker property or a choice attribute
value

value 165

To Use this rule Page

Translate a markup element to a FrameMaker
footnote element

is fm footnote element 113

To Use this rule Page

Translate a markup element to a FrameMaker
graphic element

is fm graphic element 114

Specify export information for translating
FrameMaker graphics

anchored frame 43

Specify export information for translating
FrameMaker graphics that have a single inset

facet 74

Specify the filename used for exporting a
graphic or a facet of a graphic

export to file 69

Force the software to export graphic files that
were imported by reference

convert referenced graphics 51

To Use this rule Page

Read/Write Rules Summary 38

M a r k e r s

Markers

Determine the form of names of entities
created for exported graphics

entity name is 63

Specify the data content notation for an
exported graphic

notation is 145

Determine whether FrameMaker uses the
dpi attribute or the impsize attribute for
imported graphics objects and also the
resolution used

specify size in 157

Translate FrameMaker cross-reference
properties when no markup attribute exists

fm property 80

Translate FrameMaker cross-reference
properties when no markup attribute exists

value is
(described with fm property)

80

Translate FrameMaker graphic properties to
markup attributes

is fm property 116

Translate a value for a markup attribute to a
FrameMaker property value

is fm property value 126

Translate a value of a markup notation
attribute or name token group to a value for
a FrameMaker choice attribute

is fm value 139

Translate a markup attribute value to a
FrameMaker property or a choice attribute
value

value 165

To Use this rule Page

Discard FrameMaker non-element markers or
translate them to processing instructions

fm marker 79

Translate a markup element to a FrameMaker
marker element

is fm marker element 115

Determine whether marker text for marker
elements becomes content or an attribute
value in markup

marker text is 143

Drop references to external data entities external data entity
reference

72

Drop unrecognized processing instructions processing instruction 151

Translate FrameMaker non-element markers
to processing instructions

is processing instruction 141

Discard non-element markers drop 53

To Use this rule Page

P r o c e s s i n g i n s t r u c t i o n s

Structured Application Developer Reference 39

Processing instructions

Markup documents

Translate FrameMaker cross-reference
properties when no markup attribute exists

fm property 80

Translate FrameMaker cross-reference
properties when no markup attribute exists

value is
(described with fm property)

80

Translate FrameMaker marker properties to
markup attributes

is fm property 116

Translate a value for a markup attribute to a
FrameMaker property value

is fm property value 126

Translate a value of a markup notation
attribute or name token group to a value for
a FrameMaker choice attribute

is fm value 139

Translate a markup attribute value to a
FrameMaker property or a choice attribute
value

value 165

To Use this rule Page

Specify the treatment of unrecognized
processing instructions

processing instruction 151

Specify the use of processing instructions to
indicate book components when reading a
markup document

use processing instructions
(described with generate book)

93

Specify whether or not to write processing
instructions that indicate book components
in a markup document

output book processing
instructions

147

Translate FrameMaker non-element markers
to specific markup, or drop them

fm marker 79

Translate FrameMaker non-element markers
to processing instructions

is processing instruction 141

Discard processing instructions drop 53

To Use this rule Page

Specify whether or not to use an external DTD
subset to contain the DTD for a markup
document created by FrameMaker

include dtd 98

To Use this rule Page

Read/Write Rules Summary 40

T a b l e s

Tables

Specify whether or not to include an SGML
declaration in an SGML document created by
FrameMaker

include sgml declaration 100

Specify the system and public identifiers for
an external DTD subset

external dtd 73

Specify whether to create an entire markup
document or just a markup document
instance

write structured document 166

write structured document
instance only

167

To Use this rule Page

Translate a markup element to a FrameMaker
table element

is fm table element 133

Translate a markup element to a FrameMaker
element for a particular table part

is fm table part element 135

When creating a FrameMaker table, insert a
table part even if that part is empty

insert table part element 101

Specify that a particular element always
indicates a new table row

start new row 159

Indicate the start of a vertical straddle start vertical straddle 160

Indicate the end of a vertical straddle end vertical straddle 59

Specify the ruling style used for all tables table ruling style is 161

Specify the resolution used for column widths
with proportional widths

proportional width
resolution is

152

Specify that the software write the width of
table columns using proportional units

use proportional widths 164

Translate FrameMaker table properties to
markup attributes

is fm property 116

Translate a value for a markup attribute to a
FrameMaker property value

is fm property value 126

Translate a value of a markup notation
attribute or name token group to a value for
a FrameMaker choice attribute

is fm value 139

Translate a attribute’s name token value to a
FrameMaker property or choice value

value 165

To Use this rule Page

T e x t

Structured Application Developer Reference 41

Text

Text insets

Variables

To Use this rule Page

Translate an entity reference to a single
character

is fm char 107

Determine the treatment of line breaks in
reading and writing markup documents

line break 142

Define mappings between characters in the
markup and FrameMaker character sets

character map 49

To Use this rule Page

Translate an SDATA entity reference to a
FrameMaker text inset

entity

is fm text inset

61

136

Determine the formatting of a text inset reformat as plain text 154

reformat using target
document catalogs

155

retain source document
formatting

156

To Use this rule Page

Translate a markup element to a FrameMaker
system variable element

is fm system variable
element

132

Translate an entity reference to a FrameMaker
variable

is fm variable 140

Translate a markup entity reference to a
FrameMaker variable

entity 61

Determine treatment of FrameMaker non-
element variables

fm variable 92

Translate a FrameMaker system variable
element to text in markup

fm element unwrap 77,
162

Discard nonelement variables drop 53

Read/Write Rules Summary 42

T e x t

Structured Application Developer Reference 43

3 Read/Write Rules Reference 4

This chapter provides a reference to all read/write rules, listed in alphabetical order. The entry for
each rule starts with a brief explanation of the purpose of the rule and how to use it. The rule’s
description may include the following sections:

Synopsis and contexts The rule’s syntax and the context in which it can be used. If the rule
occurs as a subrule of another rule, the more general rule is shown. If the rule can be used in
multiple contexts, the synopsis shows each context. Each entry in this section shows a valid rule
that has the current rule either at the highest level or as one of its subrules.

Rule synopses use the following conventions:

•Bold portions and nonitalicized portions of a rule are entered by you as shown.

•Italicized portions of a rule indicate the rule’s arguments or possible subrules; you enter your
values.

•Brackets [] indicate optional parts of a rule; the entire form within the brackets can be included
or omitted.

Arguments The possible arguments to the rule. If an argument is optional, its default value is
provided. Some rules have subrule as one of their arguments. In these cases, a list of possible
subrules is provided. Some rule arguments allow variables. In these cases, a list of possible
variables is provided.

Details Instructions on how to use the rule and on FrameMaker behavior when the rule is not
supplied.

XSLT interaction Useful information about the relationship between FrameMaker’s Read/Write
rules and equivalent XSLT processing.

Examples Various examples of the rule.

See also Cross-references to other relevant information in the manual.

For information on how to create a Read/Write rules file and on the syntax of rules, see Developer
Guide, Chapter 18, Read/Write Rules and Their Syntax

anchored frame

Use the anchored frame rule and its subrules to define how FrameMaker handles the content
of anchored frames when writing to markup and creating a referenced graphic file. Subrules can
specify base entity name, file name construction, graphic file format, notation type and unit of

Read/Write Rules Reference 44

a n c h o r e d f r a m e

measure. The rule is used when an anchored frame contains FrameMaker graphics, more than one
imported graphic file, or a graphic file that has been copied into the document.

Synopsis and contexts

1.element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame subrule;
. . .}

2.element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame {

subrules;
}

. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag.

subrules An anchored frame rule can have one or more of the following
subrules:

entity name is, tells the software how to create the base name for
the entity associated with this element type.

export to file tells FrameMaker how to write the file name when it
creates a new graphic file, and optionally the graphic format for the file.

notation is specifies the data content notation of the entity file.

specify size in specifies the units to use when writing the file.

export dpi is tells FrameMaker the dpi setting to use for the
exported graphic file.

Details

The anchored frame rule must be a subrule of a writer rule for a graphic element.

On export, if the anchored frame contains only a single imported graphic file, FrameMaker uses
that graphic file for the resulting markup graphic element by default. If the anchored frame
contains more than one graphic file, or has been modified using FrameMaker graphics tools, the
software writes out a graphic file to be used. The default format for these graphic files is CGM. The
export format can be changed with the export to file rule. For more information about

Note: Use the facet rule for anchored frames that contain single graphic files that have
been imported by reference.

a n c h o r e d f r a m e

Structured Application Developer Reference 45

translating anchored frame contents, see Developer Guide, Chapter 23, Translating Graphics and
Equations

Examples

Assume you use the Graphic element for all graphic elements. If the graphic contains any single
facet, assume the graphic was imported as an entity and you want the default behavior. However,
if the author used FrameMaker graphic tools to create the objects in the graphic element, you
want the file written in QuickDraw PICT format.

To accomplish all this, use this rule:

element "graphic" {
 is fm graphic element;
 writer anchored frame export to file "$(docname).pic"

as "PICT";
}

Assume the FrameMaker document is named mydoc.fm. For the first graphic that is not a single
facet, the software writes out a graphic file named mydoc1.pic in the PICT format.

If the export DTD declares an entity attribute to identify the graphic file with the graphic
element, the software generates the following entity declaration:

<!ENTITY graphic1 SYSTEM "mydoc1.pic" NDATA PICT>

The corresponding graphic element in the markup could be:

<graphic entity = "graphic1"/>

If the export DTD includes only a file attribute to associate the graphic file with the graphic
element, the software uses this filename as its value:

<graphic file = "mydoc1.pic"/>

See also

Related rules “equation” on page 65

“facet” on page 74

Rules mentioned in
synopses

“element” on page 56

“is fm equation element” on page 111

“is fm graphic element” on page 114

“writer” on page 168

General information
on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

Read/Write Rules Reference 46

a t t r i b u t e

attribute

Use the attribute rule to describe how to process a markup attribute. By default, a markup
attribute translates to a FrameMaker attribute of the same name. Usually, this rule occurs as a
subrule of the element rule, to describe treatment of the attribute attr within the element gi.

Synopsis and contexts

1.[mdv] attribute "attr" {. . .
 subrule;
. . .}

2.element "gi" {. . .
 [mdv] attribute "attr" {. . .
 subrule;
. . .}
. . .}

Arguments

mdv An optional markup declared value, specifying the type of the markup
attribute. Legal values for an XML application are:

•cdata

•nmtoken

•nmtokens

•entity

•entities

•id

•idref

•idrefs

•notation

•group.

Legal values for an SGML application are:

•cdata

•name

•names

•nmtoken

•nmtokens

a t t r i b u t e

Structured Application Developer Reference 47

•number

•numbers

•nutoken

•nutokens

•entity

•entities

•notation

•id

•idref

•idrefs

• group.

attr The name of a markup attribute.

gi A markup element’s name (generic identifier).

subrule An attribute rule can have one of the following subrules:

drop discards the attribute. If this rule is used, no other attribute
subrules may be used.

or:

is fm attribute translates a markup attribute into a FrameMaker
attribute.

or:

is fm property translates a markup attribute to a FrameMaker
property such as the width of columns in a table. This subrule is applicable
only to cross-reference, marker, graphic, equation, table, and table part
elements.

An attribute rule can also have the following subrules:

implied value is specifies the value to use for an impliable attribute
for which no value is given in a document instance.

value translates one of the possible values of a markup name token,
group or a notation attribute to a specific token of a FrameMaker choice
attribute.

Details

•In some cases, the same attribute may occur in several markup elements and may require the
same treatment for most of those occurrences. In these situations, you can use the

Read/Write Rules Reference 48

a t t r i b u t e

attribute rule at the highest level to set the default treatment of the attribute. You can then
override the default in individual element rules.

• If the drop rule is used no other subrules of attribute may be used. The subrules is fm
attribute, and is fm property are mutually exclusive. That is, if you use one of these
rules, you cannot use the other rule.

Examples

•The following rule specifies that the sec attribute of the markup list element is in a name
token group and corresponds to the attribute Security on the corresponding FrameMaker
element:

element "list"
 group attribute "sec"
 is fm attribute "Security";

•Assume you have several elements that represent graphic objects. Each of them has an attribute
w, representing the width of the object. Use this rule to make the width be 3 inches unless
otherwise specified for a particular element:

attribute "w" {
 is fm property width;
 implied value is "3in";
}

•Assume you have an element team with an attribute color. The possible values for color are
r, b, and g. To change the names of these values in the corresponding FrameMaker choice
attribute, use this rule:

element "team" {
 attribute "color" {
 value "r" is fm value "Red";
 value "b" is fm value "Blue";
 value "g" is fm value "Green";
}}

See also

Related rules “fm attribute” on page 76

“is fm attribute” on page 104

Rules mentioned in
synopses

“element” on page 56

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

c h a r a c t e r m a p

Structured Application Developer Reference 49

character map

Use the character map rule to define mappings between characters in the markup and
FrameMaker character sets. Many characters can be expressed using a string; others require using
the appropriate integer character code.

Synopsis and contexts

1.character map is cmap1 [, . . ., cmapn];

2.reader character map is cmap1 [, . . ., cmapn];

3.writer character map is cmap1 [, . . ., cmapn];

Arguments

cmapi A mapping between the character set used in the markup document and
the FrameMaker character set. Each cmapi has one of the following
forms:

sgmlch = fmch;
sgmlch = trap;
trap = fmch;

sgmlch is either a 1-character string or a character code representing a
character in the markup character set. sgmlch can be a single character
only if that character has the same character code in both the
FrameMaker and markup character sets. Otherwise, you must use the
integer character code.

fmch is either a 1-character string or a character code representing a
character in the FrameMaker character set.

For information on how to represent character codes and special
characters in strings, see Developer Guide, page 278: Strings and
constants.

Details

•Some characters might be defined in only one of the two character sets. The keyword trap is
provided for this situation. By default, FrameMaker discards trapped characters.

•The character map need not be a one-to-one mapping. If a character in the input document is
mapped to multiple characters in the output character set, FrameMaker uses the output
character from the last mapping to appear in the character map rule.

Note: XML: This read/write rule is primarily for SGML. XML can use UNICODE characters
which makes this rule unnecessary.By default FrameMaker assumes UTF-8 encoding for
XML import and export. If you want to use ISOLatin encoding with an XML document,
then you may need to use this rule to map characters.

Read/Write Rules Reference 50

c h a r a c t e r m a p

•If you use the character map rule at the highest level, do not also use it inside either a
reader rule or a writer rule. If you use this rule inside a reader rule or a writer rule and
also use it at the highest level, FrameMaker ignores the highest-level character map rule.
You can only have one occurrence of this rule at the highest level.

Similarly, the character map rule can appear in one reader rule and one writer rule at
most. The software ignores any subsequent uses of the character map rule.

•If you use the character map rule at the highest level, its behavior is bidirectional. For
example, you could have this rule:

character map is 0x20 = 0x12;

This rule specifies that the ISO Latin-1 space character (character code 0x20) maps to the
FrameMaker thin space character (character code 0x12). With this rule, FrameMaker translates
a thin space to a standard space when it writes a markup document. However, this rule
translates all spaces in a markup document to thin spaces in a corresponding FrameMaker
document. This is unlikely to be the desired behavior. For this reason, instead you should use
this rule:

reader character map is 0x20 = 0x12;

•By default, FrameMaker assumes that the character set your SGML documents use is ISO Latin-1.
It provides a default mapping between those character sets. For details, see Chapter 12,
“Character Set Mapping.” For information on other character sets you can use, see Chapter 11,
“ISO Public Entities.”

•By default, on export FrameMaker produces a character in the SGML document for most printing
characters in the corresponding FrameMaker document. FrameMaker documents occasionally
include unusual characters that serve no purpose outside FrameMaker. For example, the codes
0x01 and 0x03 are nonprinting characters that represent information about the insertion
point movement. On export FrameMaker traps such characters, so that they don’t appear in an
exported SGML document.

Similarly, on import FrameMaker produces a character in the FrameMaker document for most
printing characters. It traps all control characters other than a tab or newline character.

•FrameMaker has an 8-bit character set. The SGML declaration can specify any character set that
the SGML parser can handle. Part of the character set description in the SGML declaration is
not human-readable and may not be interpretable automatically, therefore, any differences
between the native FrameMaker character set and the character set in the SGML document
must be specified with the character map rule.

•By default, FrameMaker discards trapped characters. You can provide a structure API client to
change the processing of trapped characters. For information on creating a structure API client,
see the Structure Import/Export API Programmer’s Guide.

Examples

•Both the FrameMaker and default SGML character sets have a character code for the character
ó (lowercase o with an acute accent). In FrameMaker, the character code is 0x97; in the default

c o n v e r t r e f e r e n c e d g r a p h i c s

Structured Application Developer Reference 51

SGML character set, the character code is 0xF3. If you want to trap the SGML character that
looks like ó, you might try using this rule:

character map is "ó" = trap;

Hhowever, because you enter your read/write rules in a FrameMaker document, FrameMaker
interprets that rule as:

character map is 0x97 = trap;

which is not the behavior you want. Instead, you should use this rule:

character map is 0xF3 = trap;

•By default, FrameMaker maps the SGML broken bar character to the FrameMaker solid bar
character |. The rule for doing so could be written in the following equivalent ways:

character map is 0xA6 = "|";
character map is 0xA6 = 0x7C;
character map is "\xA6" = "\x7C";

•To trap the SGML broken bar character, use this rule:

character map is 0xA6 = trap;

See also

•For information on the FrameMaker character set, see the FrameMaker Character Sets guide.

•For details of the default mapping between the FrameMaker and ISO Latin-1 character sets, see
Chapter 12, “Character Set Mapping.”

convert referenced graphics

Use the convert referenced graphics rule to force the software to write out a graphic
file when exporting a graphic element that uses a referenced graphic. By default, FrameMaker
does not write out graphic files in this case. It is usually more advantageous to simply reference
the same graphic file in both the markup and the FrameMaker document. However, you can use
this rule to convert all such graphic files to a specific format.

Synopsis and contexts

element "gi" { . . .
writer facet "facetname" convert referenced graphics;
. . . }

Arguments

There are no arguments for this rule

Details

•This rule must be a subrule of a facet rule for a graphic element.

Read/Write Rules Reference 52

d o n o t i n c l u d e d t d

•By default, if a graphic or equation element is imported by reference, the software does not
create a new graphic file for the element when exporting a FrameMaker document. You can
change that behavior using this rule.

Examples

•Assume you want to convert imported graphic files in graphic elements which have not been
edited in the FrameMaker document, to the PICT format. With the following example, the
software would create PICT files for each of these graphic elements:

element "graphic" {
 is fm graphic element;

writer {
facet default {

convert referenced graphics;
export to file "$(entity).pic" as "PICT";

}}

•For graphic elements with a single TIFF facet, the following example converts the graphic files
in the graphic element to PICT:

element "graphic" {
 is fm graphic element;
 writer facet "TIFF"{

convert referenced graphics;
export to file "$(entity).pic" as

"PICT";
}}

See also

do not include dtd
See “include dtd” on page 98.

Related rules “facet” on page 74

“export to file” on page 69

“writer” on page 168

General information
on this topic

Developer Guide, page 367: Translating Graphics and Equations

d o n o t i n c l u d e s g m l d e c l a r a t i o n

Structured Application Developer Reference 53

do not include sgml declaration
See “include sgml declaration” on page 100.

do not output book processing instructions
See “output book processing instructions” on page 147.

drop

Use the drop rule to indicate information that you want discarded. Examples of information you
might discard include a markup element or attribute that has no counterpart in FrameMaker, or a
FrameMaker non-element marker that has no counterpart in markup.

Synopsis and contexts

1.attribute "attr" drop;

2.element "gi" drop;

3.element "gi" {. . .
 attribute "attr" drop;
. . .}

4.external data entity reference drop;

5.fm attribute "attr" drop;

6.fm element "fmtag" drop;

7.fm marker type1 [, . . ., typen] drop;

8.fm variable drop;

9.processing instruction drop;

Arguments

attr The name of a markup or FrameMaker attribute. Note that fm
attribute names are case-sensitive and should appear as in the EDD.
The case of SGML attribute names depends on the setting of NAMECASE
in the SGML.dcl file—For XML attribute names are case sensitive.

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

typei A FrameMaker marker type, such as Index or Type 22.

Read/Write Rules Reference 54

d r o p

Details

•When FrameMaker encounters something to be discarded, it makes no attempt to insert the
corresponding information into the document it is creating. In the case of a dropped element,
it also discards all descendant elements.

•When creating an EDD from a DTD or schema, or a DTD from an EDD, FrameMaker does not
generate an element definition corresponding to a dropped element. It also removes any
references to the specified element in content rules for other elements unless you’ve specified
a preserve fm element definition rule for those elements.

•You can write a structure API client or XSLT stylesheet to process dropped information. Your
solution must also handle retrieving discarded information if it is needed when the document
is written back to its original format.

•If you use the drop rule in a rule, you can use no other subrules of the same rule. For example,
you cannot specify that FrameMaker both drop an attribute and translate it to a FrameMaker
property with the is fm property rule.

XSLT interaction

XSLT allows precise, context based equivalent processing to the FrameMaker drop rule. For
consistency and maintainabilty try to avoid mixing the methods used to drop FrameMaker or XML
elements.

Examples

•A markup element used instead of a processing instruction to indicate that a page or line break
is desired may be discarded when the markup document is read. Text formatting rules in the
EDD can be used to indicate a page break in FrameMaker; there is no need to mark the break
with an element. To drop the markup element break, use this rule:

element "break" drop;

•By default, FrameMaker stores processing instructions that it does not recognize in non-element
markers. In this way, even though FrameMaker does not perform special processing on the
processing instruction, when you save the FrameMaker document back to markup, the
software writes out the processing instruction so that a different application can use it. If you
don’t need to write out the processing instructions, you could use this rule:

processing instruction drop;

See also

Related rules “drop content” on page 55

“unwrap” on page 162

“preserve fm element definition” on page 148

d r o p c o n t e n t

Structured Application Developer Reference 55

drop content

Use the drop content rule to either create a FrameMaker empty element or a markup element
with no content from occurrences of gi.

Synopsis and contexts

1.element "gi" {
is fm element "fmtag";
reader drop content;
}

2.element "gi" {
is fm element "fm tag";
writer drop content;
}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

•You can use this rule when you have an element whose content is created in a system-specific
way. If you plan to rely on some system to create the content, the existing content at the time
you import or export a document may not be relevant. For example, you may have a markup
element intended to contain a chapter number. In FrameMaker, you use FrameMaker’s
formatting capabilities to have the system maintain the value. When reading in the markup
document, you can drop the current content of the number element.

Rules mentioned in
synopses

“attribute” on page 46

“element” on page 56

“external data entity reference” on page 72

“fm attribute” on page 76

“fm element” on page 77

“fm marker” on page 79

“fm variable” on page 92

“processing instruction” on page 151

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 56

e l e m e n t

•Use drop content inside a reader rule when you translate markup documents to
FrameMaker documents. Use it inside a writer rule when you translate FrameMaker
documents to markup.

XSLT interaction

XSLT allows precise, context based equivalent processing to the FrameMaker drop content
rule. For consistency and maintainabilty try to avoid mixing the methods used to drop content.

Examples

•Assume your DTD has a toc element that represents the table of contents for a markup
document. FrameMaker can automatically generate a table of contents, which means that this
markup element can have its contents dropped upon import.

element "toc" reader drop content;

•Assume the total element’s content is computed by a structure API client. Outside the
FrameMaker environment you will use a different program to perform the computation.
Consequently, you do not want the value that is current when the document is exported. To
discard the current value, use this rule:

element "total" writer drop content;

See also

element

You use the element rule as the primary rule for translating between a markup element and its
corresponding FrameMaker representation.

Synopsis and contexts

1.element "gi" {. . .
 subrule;
. . .}

Related rules “drop” on page 53

“unwrap” on page 162

Rules mentioned in
synopses

“element” on page 56

“reader” on page 153

“writer” on page 168

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Structure Import/Export API Programmer’s Guide

e l e m e n t

Structured Application Developer Reference 57

2.element "gi" {. . .
 transform;
subrule;
. . .}

Arguments

gi A markup element’s name (generic identifier).

transform The element rule can include a single transform subrule is used to map
to a FrameMaker object element.

 is fm colspec specifies that the element represents a CALS table
colspec. This subrule applies only to CALS tables.

is fm cross-reference element specifies that the element
corresponds to a FrameMaker cross-reference element.

is fm element translates the element to a particular FrameMaker
element. You use this subrule to rename the element.

is fm equation element specifies that the element corresponds
to a FrameMaker equation element.

is fm footnote element specifies that the element corresponds
to a FrameMaker footnote element.

is fm graphic element specifies that the element corresponds to
a FrameMaker graphic element.

is fm marker element specifies that the element corresponds to a
FrameMaker marker element.

is fm span spec specifies that the element represents a CALS table
spanspec. This subrule applies only to CALS tables.

is fm system variable element specifies that the element
corresponds to a FrameMaker system variable element.

is fm table element specifies that the element corresponds to a
FrameMaker table element.

is fm table part element specifies that the element corresponds
to a FrameMaker element for a particular table part, such as a table title
or cell.

subrule The subrules of element indicate the treatment of the markup element
and its attributes.

attribute specifies what to do with a markup element’s attributes.

drop discards the element.

Read/Write Rules Reference 58

e l e m e n t

fm attribute specifies what to do with attributes present in the
FrameMaker representation of the element but not in the markup
representation of it.

fm property specifies what to do with FrameMaker properties
associated with the element. This subrule applies only to elements that
correspond to graphic, equation, table, table part, cross-reference, or
marker elements.

marker text is specifies whether the text of a FrameMaker marker
element should be element content or an attribute value in markup. This
subrule applies only to marker elements.

drop content specifies that the content but not the structure of an
element should be discarded on import of a markup document.

end vertical straddle indicates that the associated table cell or
row element terminates a vertical table straddle. This subrule applies only
to table cell or row elements.

insert table part element indicates that the software should
insert the specified table part (title, heading or footing), even if the
markup element structure does not contain the corresponding element.
This subrule applies only to table elements.

line break determines whether to interpret line breaks in text
segments in elements in the markup document as forced returns or
spaces within the elements.

start new row indicates that the occurrence of the associated table
cell element always starts a new row in the table. This subrule applies only
to table cell elements.

start vertical straddle indicates that the associated table cell
element starts a vertical table straddle. This subrule applies only to table
cell elements.

unwrap indicates that the content of the element, but not the element
itself, should be included in the translated document.

anchored frame tells FrameMaker what to do with graphic elements
other than those with a single non-internal FrameMaker facet. This
subrule applies only to graphic elements.

drop content specifies that the content but not the structure of an
element should be discarded on export of a FrameMaker document.

writer equation tells FrameMaker what to do with equation
elements. This subrule applies only to equation elements.

e n d v e r t i c a l s t r a d d l e

Structured Application Developer Reference 59

writer facet tells FrameMaker what to do with a graphic element that
has a single non-internal FrameMaker facet. This subrule applies only to
graphic elements.

writer line break limits the length of lines the software generates
in the markup document.

writer notation is specifies a notation name when the element is
a graphic or equation.

writer specify size in specifies the units of measure for the size
of a graphic or equation element.

Details

If you use either the drop or unwrap subrule of an element rule, that subrule must be the
element’s only subrule. For example, you cannot both unwrap a markup element and translate it
to a FrameMaker element.

Examples

•To translate the markup element p to the FrameMaker element Paragraph, use this rule:

element "p" is fm element "Paragraph";

•To translate the markup element tab2 to a FrameMaker table element Two Table with two
columns, use this rule:

element "tab2" {
 is fm table element "Two Table";
 fm property columns value is "2";
}

See also

end vertical straddle

Use the end vertical straddle rule inside the element rule for a table row or table cell
to specify that the row (or the row containing the cell) indicates the end of a vertical straddle

Related rules “fm element” on page 77

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 60

e n d v e r t i c a l s t r a d d l e

started by some earlier table cell element. The straddle can end either before the current row or
at the current row.

Synopsis and contexts

element "gi" {
 is fm table row_or_cell element ["fmtag"];
 reader end vertical straddle "name1" [, . . . "namen"]
 [before this row];
. . .}

Arguments

gi A markup element’s name (generic identifier).

row_or_cell One of the keywords: row or cell.

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

namei A name associated with a table straddle. Each namei must occur in a
corresponding start vertical straddle rule.

Details

•Your DTD may contain elements that you want to format as tables in FrameMaker even though
the element hierarchy does not match that required by FrameMaker for tables. In such a
situation, the nature of the element hierarchy may indicate where vertical straddles begin and
end. The end vertical straddle rule allows you to specify such elements.

•Use this rule in conjunction with the start vertical straddle rule. That rule specifies
a table cell that indicates the first cell in a vertical straddle. In the start vertical
straddle rule, give a name to the particular straddle started by that element. In the end
vertical straddle rule, you must specify by name which vertical straddles started by
earlier cells are ended by the occurrence of gi.

•If you use this rule for a table cell element, you can end only one vertical straddle. If you use it
for a table row element, you can end more than one vertical straddle.

•If you use this element without the before this row keyword phrase, the cell or row (gi)
specified in the rule becomes part of the straddle. If you do include that keyword phrase, then
the straddle ends in the row above the one specified.

See also

Related rules “start vertical straddle” on page 160

General information
on this topic

Developer Guide, Chapter 22, Translating Tables

e n t i t y

Structured Application Developer Reference 61

entity

You use the entity rule to translate an entity to an appropriate FrameMaker representation.
With this rule, you can translate an entity to a particular character or set of characters, a reference
element, a text inset, or a FrameMaker variable. If you choose to translate the entity to a text inset,
you can also specify how to format that text inset in the resulting document.

Synopsis and contexts

1.entity "ename" {
 type_rule;
 [format_rule;]
. . .}

2.reader entity "ename" {
 type_rule;
 [format_rule;]
. . .}

Arguments

ename An entity name.

type_rule One of the following:

is fm char translates the entity to a particular character in
FrameMaker.

is fm reference element translates the entity to an element
whose content resides on a reference page in the FrameMaker document.

is fm text inset translates the entity to a FrameMaker text inset.

is fm variable translates the entity to a FrameMaker non-element
variable.

format_rule One of the following subrules can be specified, but only if type_rule is
is fm text inset:

reformat as plain text specifies that the software remove the
internal structure and formatting from the text of the text inset and apply
the formatting used at the insertion point.

reformat using target document catalogs specifies that the
software retain the text inset’s internal structure and apply the containing
document’s formats and element format rules to the text. This rule is
applied as if the following three options were checked when a file is
imported through the File>ImportFile menu: 1. Reformat Using Target
Document’s catalog; 2. While importing Remove: Manual Page Breaks; and
3. While Importing Remove: Other Format Overrides. For more

Read/Write Rules Reference 62

e n t i t y

information, see the section “Import text” in Chapter 9 of the Using
FrameMaker guide.

retain source document formatting specifies that the
software remove the internal structure of the text inset and retain the
formatting of the text inset as it appeared in the source document.

Details

•If you use the entity rule at the highest level, then it applies both on import and export. If you
use it inside a reader rule, then FrameMaker translates the entity as specified when importing
a markup document, but does not create an entity reference on export.

•For SGML, while you can use this rule to translate any entity type to a text inset, we recommend
you convert only SDATA entities to text insets. Note that the source file for such a text inset
must be a format FrameMaker can automatically filter. Also, such a text inset cannot use a
markup document as the source file.

•For XML and SGML, FrameMaker imports external text entities as text insets by default. The
source files for these insets can be markup or text files. The software stores entity information
on the Entity Declarations reference page so it can export the text inset as an external text
entity.

•For XML, SDATA and CDATA entities are not allowed.

Examples

•To translate the text entity mn to the FrameMaker variable Manual Name, use this rule:

entity "mn" is fm variable "Manual Name";

Suppose the text entity mn is declared as <!ENTITY mn "Developer’s Guide">, and
the template for the application does not contain a variable named Manual Name. Then the
software will create a FrameMaker variable named Manual Name defined as Developer’s
Guide and replace the reference in the text with the variable text Developer’s Guide.

However, if a FrameMaker variable named Manual Name, defined for example as My
Favorite Manual, currently exists in the template for the application, when importing
SGML, the software will not create a new variable nor modify the existing one. It will replace
the reference in the text with the variable text My Favorite Manual. When importing XML,
it does modify the variable definition.

•To have FrameMaker create a text inset for the legalese entity using the text in the file
legal.fm and to have the software format that text inset as it appears in legal.doc, use
this rule:

entity "legalese" {
 is fm text inset "legal.fm";
 retain source document formatting;
}

e n t i t y n a m e i s

Structured Application Developer Reference 63

See also

entity name is

Use the entity name is rule only in an element rule for a graphic or equation element to
provide information the software needs when writing a document containing graphics or
equations to markup. The entity name is rule determines the name FrameMaker gives an
entity reference it generates for the graphic or equation.

Synopsis and contexts

1.element "gi" {
 is fm equation element ["fmtag"];
 writer equation entity name is "ename";
. . .}}

2.element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame entity name is "ename";
. . .}}

3.element "gi" {
 is fm graphic element ["fmtag"];
 writer facet "facetname" entity name is "ename";
. . .}}

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

facetname

A facet name. The string for the facetname must exactly match the string
for the facetname in the FrameMaker document. To determine a graphic
file’s facetname, select the graphic, click Graphics>ObjectProperties, and
observe the facetname in the dialog box.

ename A string representing the base name for an entity name.

General information
on this topic

Developer Guide, Chapter 21, Translating Entities and Processing
Instructions

Developer Guide, Chapter 25, Translating Variables and System Variable
Elements

Read/Write Rules Reference 64

e n t i t y n a m e i s

Details

By default, when FrameMaker exports an external data entity for a graphic or equation, it uses the
entity name that is stored with the graphic inset. If there is no such entity name, the software
generates a name for the entity based on the element name. You use the entity name is
rule to change this behavior.

The entity name you specify is a base name FrameMaker uses to generate a unique entity name.
When it needs to create a new entity name, FrameMaker adds an integer to the name specified
by ename to create a unique name.

If the keyword facet is used, the rule applies to a graphic element that contains only a single
facet with the name specified by facetname. This occurs when the graphic element is an
anchored frame containing only a single imported graphic object whose original file was in the
facetname graphic format. You can use this rule multiple times if you want FrameMaker to treat
several file formats differently.

Examples

•Assume you have a markup element graphic that corresponds to graphic elements in
FrameMaker. Suppose further that some of the graphic elements in FrameMaker contain
imported-by-copy graphics, or contain modifications to a graphic inset using FrameMaker
graphic tools, or contain just graphic objects drawn using FrameMaker graphic tools. On
export, the software must create new graphic files for these elements and declare entities for
them. By default, FrameMaker would declare entities for these graphic elements based on the
element name "graphic," for example, graphic1, graphic2, and so on. To specify that the
names of the entities associated with such successive graphic elements have the form car1,
car2, and so on, use this rule:

element "graphic" {
 is fm graphic element;
 writer anchored frame entity name is "car";
}

•Assume with a single facet graphics in the car element sometimes use the IGES file format and
sometimes use the TIFF file format. Also assume that the DTD for the application does not
currently contain entity declarations for the imported-by-reference graphic files. By default, the
software would declare entities for all such graphics based on the element name "car," for
example, car1, car2, and so on. If you want to name the entities for the IGES graphics icar
and the entities for the TIFF graphics tcar, then use this rule:

element "car" {
 is fm graphic element;
 writer facet "IGES" entity name is "icar";
 writer facet "TIFF" entity name is "tcar";
}

e q u a t i o n

Structured Application Developer Reference 65

See also

equation

Use the equation rule only in an element rule for an equation element, to provide information
the software needs when writing to markup a document containing equations. FrameMaker
creates graphic files to represent equations. Use this rule to specify information about the files
FrameMaker creates for instances of the equation element. By default, the software creates a file
in CGM format for each equation, and the filename is based on the element name. Also, by default,
if the equation element is associated with an external data entity, then the entity name is based
on the element name.

Synopsis and contexts

element "gi" {
 is fm equation element ["fmtag"];
 writer equation subrule;
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

subrule An equation rule can have the following subrules:

Related rules “export to file” on page 69

“notation is” on page 145

“specify size in” on page 157

Rules mentioned in
synopses

“element” on page 56

“is fm graphic element” on page 114

“is fm equation element” on page 111

“anchored frame” on page 43

“equation” on page 65

“facet” on page 74

“writer” on page 168

General information
on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

Read/Write Rules Reference 66

e x p o r t d p i i s

entity name is tells the software how to create the base name for
the entity associated with this element type.

export to file tells the software to write a new file for the
associated external data entity.

notation is specifies the data content notation of the entity file.

specify size in specifies the units to use when writing the file.

Examples

Assume you have an element named math with an attribute of type Entity that is mapped to
the fm property entity for this element. If you want to create TIFF files for the equations in a
document named mytest.doc, you might use this rule:

element "math" {
 is fm equation element;
 writer equation export to file "$(docname).eqn" as "TIFF";
}

The software will create graphic files for each equation in mytest.doc named mytest1,
mytest2,...and will declare entities named math1, math2, ...for each graphic.

See also

export dpi is

You use the export dpi rule only in an element rule for a graphic or equation element, to
provide information the software needs when writing a document containing graphics or

Related rules “anchored frame” on page 43

“facet” on page 74

“is fm graphic element” on page 114

Rules mentioned in
synopses

“element” on page 56

“is fm equation element” on page 111

“writer” on page 168

General information
on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

e x p o r t d p i i s

Structured Application Developer Reference 67

equations to markup. The export dpi rule tells FrameMaker the dpi setting to use for an
exported graphic file.

Synopsis and contexts

1.element "gi" {
 is fm equation element ["fmtag"];
 writer equation
 export dpi is number;

. . .
. . .}

2.element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame
 export dpi is number;

. . .
. . .}

3.element "gi" {
 is fm graphic element ["fmtag"];
 writer facet "facetname"
 export dpi is number;

. . .
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

facetname

A facet name. The string for the facetname must exactly match the string
for the facetname in the FrameMaker document. To determine a graphic
file’s facetname, select the graphic, click Graphics>ObjectProperties, and
observe the facetname in the dialog box.

number The required dpi value.

Details

•In the absence of this rule, FrameMaker uses the dpi setting associated with the graphic file. If
there is no setting associated with the graphic, the software assumes a value of 300.

Read/Write Rules Reference 68

e x p o r t d p i i s

•In Windows, if the initialization file for a graphics filter specifies a dpi setting that setting
overrides this rule whenever that filter is used to export a graphic file.

•If the keyword facet is used, the rule applies to a graphic element that contains only a single
facet with the name specified by facetname. This occurs when the graphic element is an
anchored frame containing only a single imported graphic object whose original file was in the
facetname graphic format. You can use this rule multiple times if you want FrameMaker to
treat several file formats differently.

Examples

•Assume you export the FrameMaker file Math.doc and have the following rule:

element "eqn" {
 is fm equation element "Equation";
 writer equation

export dpi is 72;
}

When FrameMaker finds an instance of the Equation element, it exports equations as graphic
files at 72 dpi.

•Assume you have the rule:

element "imp" {
 is fm graphic element;
 writer facet “TIFF”{

convert referenced graphics;
export dpi is 1200;
export to file "$(entity).tif";

}}

This rule tells FrameMaker for every graphic element with a single TIFF facet, it should write a
new graphic file with a dpi of 1200, using the entity name as part of the graphic file’s filename.

See also

Related rules “convert referenced graphics” on page 51

“entity name is” on page 63

“notation is” on page 145

“specify size in” on page 157

e x p o r t t o f i l e

Structured Application Developer Reference 69

export to file

You use the export to file rule only in an element rule for a graphic or equation element,
to provide information the software needs when writing a document containing graphics or
equations to markup. The export to file rule tells FrameMaker how to write the file name
when it creates a new graphic file, and optionally the graphic format for the file.

Synopsis and contexts

1.element "gi" {
 is fm equation element ["fmtag"];
 writer equation
 export to file "fname" [as "format"];
. . .}

2.element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame
 export to file "fname" [as "format"];
. . .}

3.element "gi" {
 is fm graphic element ["fmtag"];
 writer facet "facetname"
 export to file "fname" [as "format"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

Rules mentioned in
synopses

“element” on page 56

“is fm graphic element” on page 114

“is fm equation element” on page 111

“anchored frame” on page 43

“equation” on page 65

“facet” on page 74

“writer” on page 168

General information
on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

Read/Write Rules Reference 70

e x p o r t t o f i l e

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

facetname A facet name. The string for the facetname must exactly match the string
for the facetname in the FrameMaker document. To determine a graphic
file’s facetname, select the graphic, click Graphics>ObjectProperties, and
observe the facetname in the dialog box.

fname A base filename which can be either absolute or relative to the output
directory. Note: If path information is included in fname, use double
backslashes to translate path backslashes correctly. The fname argument
can contain the variables $(docname) and $(entity), described
below.

format A file data content format code, such as TIFF or PICT. See Developer Guide,
Chapter 23, Translating Graphics and Equations for a complete list of
graphic format codes. format must be one of these code names.

Details

•By default, if a graphic element has a single facet (other than a FrameMaker internal facet) that
was imported by reference, FrameMaker does not create a new graphic file. On export, the
original file will be associated with a markup graphic element via the file attribute, or via the
entity attribute plus a corresponding entity declaration. You can use the convert
referenced graphics rule to force FrameMaker to export such graphic files.

•If the keyword facet is used, the rule applies to a graphic element that contains only a single
facet with the name specified by facetname. This occurs when the graphic element is an
anchored frame containing only a single imported graphic object whose original file was in the
facetname graphic format. In this case, the rule is only executed if the convert
referenced graphics rule is also used. Otherwise, it is ignored.You can use this rule
multiple times if you want FrameMaker to treat several file formats differently.

• If your rules specify the software will write a graphic file, if a graphic element has a single facet
(other than a FrameMaker internal facet), FrameMaker writes the graphic file in that format by
default. It writes the graphic file for equation elements and all other graphic elements in CGM
format by default.

If you supply a format argument, you must first make sure that the format is one known to
FrameMaker. For information on which graphic export filters the software provides and on how
to add new ones, see Developer Guide, Chapter 23, Translating Graphics and Equations.

•The fname argument can use these variables:

Variable Meaning
$(entity) The value of the corresponding markup element’s entity attribute. If the

source of the graphic inset wasn’t originally an entity, this variable defaults to
a unique name based on the name of the element. You can change this name
using the entity name is rule.

e x p o r t t o f i l e

Structured Application Developer Reference 71

•The fname argument is used as a template for the actual filename FrameMaker generates for a
particular graphic or equation element. FrameMaker takes the filename specified with the
fname argument and may append an integer to the filename to ensure uniqueness of the
filename. For an example of this behavior, see the first example below.

Examples

•Assume you export the FrameMaker file Math.fm and have the following rule:

element "eqn" {
 is fm equation element "Equation";
 writer equation
 export to file "$(docname).eqn" as "PICT";
}

When FrameMaker finds an instance of the Equation element, it generates filenames of the
form MathN.eqn until it finds a name that does not collide with an already existing file. For
example, if you already have files in the specified directory named Math1.eqn and
Math2.eqn, the software writes the first equation to a file named Math3.eqn. FrameMaker
writes the equation file in PICT format, instead of the default CGM format.

•Assume you have the rule:

element "imp" {
 is fm graphic element;
 writer facet "TIFF" {
convert referenced graphics;
export to file "$(entity).tif";
}}

This rule tells FrameMaker that if it encounters a graphic element with an imported graphic file
with a single TIFF facet, it should write that graphic to the file specified by $(entity).tif.

See also

$(docname) The name of the FrameMaker file, excluding any extension or directory
information.

Variable Meaning

Related rules “convert referenced graphics” on page 51

“entity name is” on page 63

“notation is” on page 145

“specify size in” on page 157

Read/Write Rules Reference 72

e x t e r n a l d a t a e n t i t y r e f e r e n c e

external data entity reference

Use the external data entity reference rule to drop references to all external data
entities. By default, FrameMaker stores such references as the marker text in non-element Entity
Reference markers.

Synopsis and contexts

external data entity reference drop;

ArgumentsNone.

Details

•In markup, the values of general entity name attributes, such as those used with graphics, are
not considered entity references. This rule does not affect how FrameMaker treats general
entity name attributes. In XML such entity name attributes are the only way to reference non-
parsed entities such as graphics.

•When you translate a markup document to FrameMaker, when the software encounters an
external data entity reference such as:

&door;

it stores the reference as the text of a non-element DOC Entity Reference marker by default,
with the following marker text:

door

When you translate a FrameMaker document to markup, it outputs the marker text of non-
element DOC Entity Reference markers as entity references.

Examples

To discard all external data entity references, use this rule:

external data entity reference drop;

Rules mentioned in
synopses

“element” on page 56

“is fm graphic element” on page 114

“is fm equation element” on page 111

“anchored frame” on page 43

“equation” on page 65

“facet” on page 74

“writer” on page 168

General information
on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

e x t e r n a l d t d

Structured Application Developer Reference 73

See also

external dtd

Use this rule to specify how an exported markup instance refers to the current structure
application’s DTD. By default, FrameMaker uses the name of the file containing the DTD as the
system identifier in the external identifier for the DTD. The external dtd rule provides the
software with a different external identifier. The different forms of the rule allow specification of a
system identifier, public identifier, or both.

Synopsis and contexts

1.writer external dtd is system;

2.writer external dtd is system "sysid";

3.writer external dtd is public "pubid";

4.writer external dtd is public "pubid" "sysid";

Arguments

sysid A system identifier.

pubid A public identifier.

Details

•Use this rule when you export FrameMaker documents to markup documents To use this rule,
you must have a DTD specified for the current structure application in the structapps.fm
file.

•By default, FrameMaker does not reproduce the DTD in the document type declaration subset.
Instead, it uses the filename of the DTD that was specified in the structure application to write
a document type declaration of the form:

<!DOCTYPE doctype SYSTEM "fname" [. . .

where doctype is the document type name and fname is the DTD filename specified in the
structure application. This rule allows you to specify different system and public identifiers.

•To output both external DTD and Schema with an XML document, use this rule and specify a
Schema file for output in the XML structure application (in structapps.fm). This rule
modifies how the external DTD is written.

Rules mentioned in
synopses

“drop” on page 53

General information
on this topic

Developer Guide, Chapter 21, Translating Entities and Processing
Instructions

Read/Write Rules Reference 74

f a c e t

To output Schema only, with no DTD, specify only the Schema file, not the DTD, in
structapps.fm. You do not need to use this rule.

•You cannot use the external dtd rule in the same read/write rules file as the include dtd
rule.

Examples

•To specify a local DTD as an external DTD and include the path with the filename, you could use
this rule:

writer

external dtd is
 system "/doc/dtds/manuals.dtd";

Note that the Windows platform requires two backslashes in paths in the rules file in order to
translate as one backslash.

•To specify and locate the CALS DTD as an external DTD, you could use this rule:

writer external dtd is
 public "-//USA-DOD//DTD MIL-M-38784B//EN"
 "/doc/dtds/cals.dtd";

•To specify just the CALS DTD as an external DTD using a public identifier, you could use this rule:

writer external dtd is
public “-//USA-DOD//DTD MIL-M-38784B//EN”;

You could then specify the location of the DTD in the structure application using the
EntitiesLocation element. A DTD is an entity in the strictest sense.

See also

facet

Use the facet rule only in an element rule for a graphic element, to provide information the
software needs when writing a document containing graphics to markup. The facet rule applies
only when a graphic element is an anchored frame containing only a single imported graphic

Related rules “include dtd” on page 98

“include sgml declaration” on page 100

“write structured document” on page 166

“write structured document instance only” on page 167

Rules mentioned in
synopses

“writer” on page 168

f a c e t

Structured Application Developer Reference 75

object whose original file was in the facetname graphic format. Use this rule to specify
information about the graphic file and/or entity declaration for instances of the graphic element.

Synopsis and contexts

element "gi" {
 is fm graphic element ["fmtag"];
 writer facet "facetname" subrule;
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

facetname The name of the particular facet to which this rule applies, or “default”
for all facets.

subrule A facet rule can have the following subrules:

convert referenced graphics tells the software to create new
graphic files for imported graphic files with a single facet.

entity name is tells the software how to create the base name for
the entity associated with this element type.

export to file tells the software the name to use for graphics it
creates, and optionally, the graphic format to which it should convert.

notation is specifies the data content notation of the entity.

specify size in specifies the units to use when writing the file.

Details

To specify all facets, use the keyword default for the facetname argument. For example:

element "pict" {
is fm graphic element "Picture";
writer {

facet default {
convert referenced graphics;
export to file "$(entity).tif" as "TIFF";
. . .

}}}

will convert every imported graphic file in the document to a TIFF file, no matter what its original
facet was.

Read/Write Rules Reference 76

f m a t t r i b u t e

Examples

By default, FrameMaker does not create a new graphic file for a graphic element that originated
as an external entity, and was not modified by the user in any way. Assume you want the software
to generate a graphic file for every imported TIFF file, whether it was modified or not. Then you
could use this rule:

element "pict" {
 is fm graphic element "Picture";
 writer {
 facet "TIFF" {

convert referenced graphics;
export to file "$(entity).tif" as "TIFF";

}}}

See also

fm attribute

You use the fm attribute rule with the “drop” subrule to discard an attribute that you’ve
defined for a FrameMaker element but that does not exist on the corresponding markup element.
Read/write rules do not support double-byte characters, so you cannot use this rule to drop
attributes with double-byte characters in their names.

Synopsis and contexts

1.fm attribute "attr" drop;

2.element "gi" {. . .
 fm attribute "attr" drop;
. . .}

Arguments

attr A FrameMaker attribute name.

Related rules “anchored frame” on page 43

“convert referenced graphics” on page 51

“equation” on page 65

Rules mentioned in
synopses

“element” on page 56

“is fm equation element” on page 111

“is fm graphic element” on page 114

“writer” on page 168

General information
on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

f m e l e m e n t

Structured Application Developer Reference 77

gi A markup element’s name (generic identifier).

Examples

•Assume the element chapter exists in both the markup and FrameMaker representations of
your documents. In FrameMaker, you use the XRefLabel attribute in formatting cross-
references to this element. Since this attribute exists only for formatting purposes, you don’t
want it in the markup document. To drop this attribute on export, use this rule:

element "chapter" {
 is fm element;
 fm attribute "XRefLabel" drop;
}

•If you use the XRefLabel attribute on many elements for the same purpose, you can discard
it from all elements on export with this rule:

fm attribute "XRefLabel" drop;

•If you want to keep the XRefLabel attribute on the appendix element, but drop it from all
others, use these rules:

element "appendix" {
 is fm element;
 attribute "xreflab" is fm attribute "XRefLabel";
}
fm attribute "XRefLabel" drop;

Note that the order of these rules is not important. If you reversed them, the XRefLabel
attribute would still be correctly interpreted for the appendix element, since that reference
to the attribute is more specific. Note also that case is sensitive for fm attribute names.

See also

fm element

Use the fm element rule to tell FrameMaker what to do on export with FrameMaker elements
that do not correspond to markup elements. Read/write rules do not support double-byte

Related rules “attribute” on page 46

“is fm attribute” on page 104

Rules mentioned in
synopses

“element” on page 56

“drop” on page 53

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 78

f m e l e m e n t

characters, so you cannot use this rule to process elements with double-byte characters in their
names.

Synopsis and contexts

1.fm element "fmtag" drop;

2.fm element "fmtag" unwrap;

Arguments

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

•Use this rule when you export FrameMaker documents to markup documents.

•If you use this rule, you may want to write a structure API client to handle the export of the
element or to create it on import.

•The first version of this rule discards the FrameMaker element on export. The second version
inserts the contents of fmtag in the corresponding markup document, but not fmtag itself.

•If you use this rule to unwrap FrameMaker cross-reference elements or system variable elements,
those elements become text in the resulting markup document.

XSLT interaction

XSLT allows precise, context based equivalent processing to the FrameMaker drop and unwrap
rules. For consistency and maintainabilty try to avoid mixing the methods used to drop or unwrap
FrameMaker elements.

Examples

•If Chapter Number is a FrameMaker element that you want to discard on export, use this rule:

fm element "Chapter Number" drop;

If you use this rule and want to create this element on import, you need to write a structure
API client.

•If Modification Date is a FrameMaker system variable element that you wish to translate
to text on export to markup, use this rule:

fm element "Modification Date" unwrap;

See also

Related rules “element” on page 56

“is fm element” on page 110

f m m a r k e r

Structured Application Developer Reference 79

fm marker

On export, you use the fm marker rule to tell FrameMaker what to do with non-element
markers other than markers of the type reserved for storing processing instructions, PI entities,
and external data entities. (By default, Structure PI markers are reserved for processing
instructions, and Entity Reference markers are reserved for external data entities.) In the absence
of a rule to the contrary, the software creates processing instructions for non-element markers.
You can also choose to discard them. Read/write rules do not support double-byte characters, so
you cannot use this rule to process markers with double-byte characters in their names.

Synopsis and contexts

fm marker ["type1", . . ., "typen"] drop;
fm marker ["type1", . . ., "typen"] is processing instruction;

Arguments

typei The name of a FrameMaker marker type.

Details

•If typei is specified, this rule applies only to markers of that type.

If no typei is specified, this rule applies to all non-element markers other than markers of the
reserved type. For information on what the software does with the reserved marker type, see
Developer Guide, Chapter 26, Translating Markers

•You can have multiple occurrences of this rule in a rules file, to determine different treatment for
different FrameMaker markers. You can have only one occurrence of the rule with no explicitly
listed markers. A given marker type can be explicitly mentioned in only one occurrence of this
rule.

•The order of fm marker rules is not important. A more specific occurrence of the rule always
takes precedence over a more general occurrence. For example, the following rules:

fm marker "Index" is processing instruction;
fm marker drop;

have the same effect, exporting only index markers as processing instructions, if they occur in
this order:

fm marker drop;
fm marker "Index" is processing instruction;

Rules mentioned in
synopses

“drop” on page 53

“unwrap” on page 162

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 80

f m p r o p e r t y

XSLT interaction

XSLT allows precise, context based equivalent processing to the FrameMaker drop rule. For
consistency and maintainabilty try to avoid mixing the methods used to drop FrameMaker non-
element markers.

Examples

•To discard all non-element markers, use this rule:

fm marker drop;

•To discard non-element conditional text markers but retain all others as processing instructions,
use this rule:

fm marker "Conditional Text" drop;

•To retain only Index and Hypertext markers as processing instructions and drop all other non-
element markers, use the following set of rules:

fm marker "Index", "Hypertext" is processing instruction;
fm marker drop;

See also

fm property

You use the fm property rule to determine values for properties defined for certain types of
FrameMaker constructs that you do not want to represent as markup attributes.

Synopsis and contexts

1.Cross-reference elements

element "gi" {
 is fm cross-reference element ["fmtag"];
 fm property cross-reference format value is val;
. . .}

1.1 Arguments

val A valid cross-reference format name. These names are case-sensitive and
must appear in the rule the same as in the structure application’s
template.

Related rules “is fm marker element” on page 115

Rules mentioned in
synopses

“drop” on page 53

“is processing instruction” on page 141

General information
on this topic

Developer Guide, Chapter 26, Translating Markers

f m p r o p e r t y

Structured Application Developer Reference 81

2.Graphic elements or equation elements

element "gi" {
 is fm graphic_or_equation element ["fmtag"];
 fm property prop value is "val";
. . .}
MathML equations
element "mathml" {
 is fm mathmlequation element "RuleML";
attribute "sideways" is fm property composedpi;
. . .}

2.1 Arguments

prop •alignment Indicates the anchored frame’s
horizontal alignment on the page.

val

–aleft Align left

–acenter Align center

–aright Align right

–ainside Align inside, or closest to the binding margin.

–aoutside Align ouside, or farthest from the binding margin.

•angle Indicates an angle of rotation for the anchored frame that
contains the graphic. You must specify exact multiples of 90 degrees.
Otherwise, the value is ignored and the graphic is imported at 0
degrees (default).

val examples:

–0 No rotation (default)

–90 Rotate 90 degrees clockwise

–-90 Rotate 90 degrees anticlockwise

–180 Rotate 180 degrees

–270 Rotate 270 degrees.

•baseline offset Indicates how far from the baseline of a
paragraph to place an anchored frame. Baseline offset is relevant only
for anchored frames whose position attribute is one of inline, sleft,
sright, snear, or sfar.

val A number plus a valid unit of measure, e.g. “12pt”, “10mm”. If not
supplied, the value is 0.

•cropped Indicates whether a wide graphic should be allowed to
extend past the margins of the text frame. The cropped property is

Read/Write Rules Reference 82

f m p r o p e r t y

relevant only for anchored frames whose position attribute is one
of top, below, or bottom.

val

–0 The graphic may extend past the margins of the text frame.

–1 (Default) The graphic is cropped at the margins of the text frame.

•dpi Indicates how to scale an imported graphic object.

val The value of the dpi attribute must be an integer greater than 0.
If not supplied, the default value is 72.

•entity Provides the entity name of the imported graphic. This rule
limits the graphic import to a single, fixed file for all instances of the
element.

val A valid entity name as defined in an entity declaration in the
markup instance.

•file Provides the file name of the imported graphic. This rule limits
the graphic import to a single, fixed file for the element.

val A valid file name for an imported graphic.

•floating Indicates whether the graphic should be allowed to float
from the paragraph to which it is attached. The floating property is
relevant only for anchored frames whose position property is one
of top, below, or bottom.

val

–0 (Default) No float, the graphic must stay with the paragraph.

–1 Allow float.

•height Indicates the height of the anchored frame.

val The value for a single imported graphic object is the sum of the
height of the object plus twice the value of the vertical offset property.

•horizontal offset Indicates how far the graphic object is offset
from the right and left edges of the anchored frame.

val A number with a valid unit of measure. If not supplied, the
delault value is 6.0pt.

•import angle Indicates an angle of rotation in degrees for the
graphic inside its anchored frame.

val A real number, if not supplied, the default value is 0.0.

•import by reference or copy Indicates whether an imported
graphic object remains in a separate file or is copied into the
FrameMaker document on import from markup.

val

f m p r o p e r t y

Structured Application Developer Reference 83

–ref (Default) The object is referenced and will not be copied into
the document.

–copy The object will be copied into the document.

•import size indicates the size of the imported graphic object by
specifying a width and height.

val Two numbers, separated by a space, with a valid units of
measure. The first measurement is the width and the second is the
height. If no unit of measure is supplied, points are assumed. Example:
“100mm 50mm”.

•near-side offset Indicates how far to set a frame from the text
frame to which the frame is anchored. It is relevant only for anchored
frames whose position attribute is one of sleft, sright, snear, or
sfar.

val A number plus a valid unit of measure, e.g. “12pt”, “10mm”. If not
supplied, the value is 0.

•position Indicates where on the page to put the anchored frame. If
not supplied, the value is below.

val Possible anchoring position values are as follows:

–inline At insertion point.

–top At top of column.

–below Below current line.

–bottom At bottom of column.

–sleft Outside column - left side.

–sright Outside column - right side.

–snear Outside column - right side.

–sfar Outside column - side closer to the page edge.

–sinside Outside column - side closer to the binding.

–soutside Outside column - side farther from the binding.

–tleft Outside text frame - left side.

–tright Outside text frame - right side.

–tnear Outside text frame - side closer to the page edge.

–tfar Outside text frame - side farther from the page edge.

–tinside Outside text frame - side closer to the binding.

–toutside Outside text frame - side closer to the binding.

–runin Run into paragraph.

•sideways Indicates that the imported graphic will be flipped left to
right to give a mirror image.

Read/Write Rules Reference 84

f m p r o p e r t y

val

–0 (Default) No flip.

–1 Flip left/right.

•vertical offset Indicates how far the graphic object is offset
from the top and bottom edges of the anchored frame.

val A number plus a valid unit of measure. If not supplied, the
delault value is 6.0pt.

•width Indicates the width of the anchored frame.

val The value for a single imported graphic object is the sum of the
width of the object plus twice the value of the horizontal offset
property.

•poster The name of the file displayed as the poster for an imported
media file. For SWF files, FrameMaker displays the first frame of the SWF
file as the poster. For a SWF file whose first frame cannot be read, and
for all other media types, FrameMaker displays the relevant
placeholder image.

val A valid path to the location of the poster file.

•graphic name A name assigned to the imported object, for easy
identification when linking to it.

val A string representing the graphic name.

•activate in PDF A boolean value indicating whether or not the
graphic element is activated when the PDF file containing it, is opened.
The default value is False.

val

–0 (Default) Not activated in PDF.

–1 Activated in PDF.

•open in pop-up window A boolean value indicating whether or
not the graphic element in a PDF file is displayed in a new frame, when
clicked.

val

–0 (Default) Not opened in pop-up window.

–1 Opened in pop-up window.

•javascript file The JavaScript file that is attached to the graphic
object with a U3D facet.

val A valid path to the location of the JavaScript file.

•U3D view The object perspectives available for a 3D object. The
selected view is rendered when the document is saved. All predefined

f m p r o p e r t y

Structured Application Developer Reference 85

views of the 3D object are available when the document is converted
to a PDF file. The last view that you selected in the document, before
saving, becomes the default view in the PDF.

val A valid object perspective available for the 3D object.

•background color The color of the background for the anchored
frame containing the 3D file.

val A valid color for the background.

•render mode The rendering mode for an imported 3D object. The
default value is Solid.

val A valid rendering mode.

•lighting The lighting scheme to cast a 3D object using different
light sources. The default lighting scheme for all 3D objects is Lights
From File.

val A valid lighting scheme for casting the 3D object.

•link to text A 3D object and a destination marker that links the
object to text in the document.

val Number of links from the 3D object and link name - destination
marker pairs.

For example, linktotext="2;Ground_Plane=newlink

aa;Blue_Sphere=newlink cc;"

•compose Dpi The resolution, in Dpi, of the image composed by the
MathML editor for a MathML object, displayed in FrameMaker.

val A valid resolution for the MathML object.

•alt text The text that is displayed when a graphic element cannot
be rendered.

val A string for the alternate text.

•font size The size of the font used for MathML objects.

val A valid size for the MathML object fonts.

3.Marker elements

element "gi" {
 is fm marker element ["fmtag"];
 fm property prop value is val;.
. . .}

3.1 Arguments

prop •marker text Provides a fixed text string for all instances of the
marker.

Read/Write Rules Reference 86

f m p r o p e r t y

val Any valid marker text string.

•marker type Identifies the type of marker if not provided by a
markup attribute.

val A valid marker type name.

4.Table elements

element "gi" {
 is fm table element ["fmtag"];
 fm property prop value is val;.
. . .}

4.1 Arguments

prop •column ruling Specifies whether all columns should have ruling
on their right side. This property does not specify the style or weight
of the ruling. The default ruling is defined by the relevant table format
in the structured template.

val

–0 Columns have no ruling.

–1 Columns have ruling.

•column widths The width of successive columns in the table. On
import from markup these widths are reapplied regardless of any
changes made by the user.

val Each value is either an absolute width or a width proportional to
the size of the entire table. If proportional widths are used, the pgwide
attribute or page wide property determines the table overall width.
Example for a three column table:
“22mm 40mm 100mm”.

•columns The number of columns in the table. This is essential to the
correct rendering of the table if the markup does not state the number
of columns as an attribute value.

val An integer greater than 0.

•page wide This is relevant only to tables whose columns use
proportional widths on pages with more than a single column. In this
case, the attribute indicates whether the entire table should be the
width of the column in which it is anchored, or the width of the overall
text frame.

val

–0 (Default) The table is the width of the text column.

–1 The table is the width of the text frame.

f m p r o p e r t y

Structured Application Developer Reference 87

•row ruling Specifies whether all rows should have ruling on their
bottom side. This property does not specify the style or weight of the
ruling. The default ruling is defined by the relevant table format in the
structured template.

val

–0 Rows have no ruling.

–1 Rows have ruling.

•table border ruling Specifies whether the table should have
ruling around its outside borders. This property does not specify the
style or weight of the ruling. The default ruling is defined by the
relevant table format in the structured template.

val

–all Rows have no ruling.

–top Rows have ruling.

•table format Specifies the table format for all instances of the
FrameMaker table element.

val A name of a table format that is present in the application’s
structured template.

5.Table cell elements

element "gi" {
 is fm table cell element ["fmtag"];
 fm property prop value is val;.
. . .}

5.1 Arguments

prop •column name Associates a name with a cell in a given column.

val A valid column name as defined in a colspec.

•column number Indicates the column number that the cell will start
in. This rule is used when the column number is not available in the
markup and requires each cell in a given row to have a unique element
name.

val An integer greater than 0.

•column ruling Specifies whether the cell should have ruling on its
right side. This property does not specify the style or weight of the
ruling. The default ruling is defined by the relevant table format in the
structured template.

val

–0 Cell has no right side ruling.

Read/Write Rules Reference 88

f m p r o p e r t y

–1 Cell has right side ruling.

•end column name Specifies the name of a column that ends a
straddle.

val A valid column name as defined in a colspec.

•horizontal straddle Specifies the number of columns a
straddled cell spans.

val An integer greater than 1 and no greater than the number of
columns.

•more rows Specifies the number of additional rows a straddled cell
spans.

val An integer greater than 1 and no greater than the number of
rows in the table part. The total number of rows the cell occupies is
more rows+1.

•rotate Indicates how much to rotate the contents of a cell.

val The CALS model restricts this property to a boolean value, where
1 indicates a rotation of 90 degrees anti-clockwise. FrameMaker
extends the possible values to allow rotations of 0, 90, 180, and 270
degrees.

•row ruling Specifies whether the cell should have ruling on its
bottom side. This property does not specify the style or weight of the
ruling. The default ruling is defined by the relevant table format in the
structured template.

val

–0 Cell has no bottom side ruling.

–1 Cell has bottom side ruling.

•span name Applies a predefined CALS spanspec, starting at this cell.

val A valid spanspec name.

•start column name Specifies the name of a column that begins a
horizontal straddle.

val A valid column name as defined in a colspec.

•vertical straddle Specifies the number of rows a straddled cell
spans.

val An integer greater than 1 and no greater than the number of
rows in the section (head, body or foot) of the table that contains the
starting cell.

•cell angle Specifies the angle of rotation

val The degrees.

f m p r o p e r t y

Structured Application Developer Reference 89

•use fill override Specifies whether a custom fill percentage
overrides the fill percentage specified in the table format.

val

–0 Cell has no fill override.

–1 Cell has fill override.

•fill override Specifies the fill percentage for the cell.

val A valid fill percentage.

6.Table row elements

element "gi" {
 is fm table row element ["fmtag"];
 fm property prop value is val;.
. . .}

6.1 Arguments

prop •maximum height Specifies the maximum height for each row in the
table.

val A number plus a valid unit of measure, e.g. “24pt”, “15mm”. If not
supplied, the maximum height of the row is not limited.

•minimum height Specifies the minimum height for each row in the
table.

val A number plus a valid unit of measure, e.g. “12pt”, “9mm”. If not
supplied, the minimum height of the row is not limited.

•row type Sets the row type.

val

–heading

–body

–footing

•row ruling Specifies whether the cell should have ruling on its
bottom side. This property does not specify the style or weight of the
ruling. The default ruling is defined by the relevant table format in the
structured template.

val

–0 Cell has no bottom side ruling.

–1 Cell has bottom side ruling.

Read/Write Rules Reference 90

f m p r o p e r t y

7.For CALS table colspecs:

element "gi" {
 is fm colspec;
 fm property prop value is val;
. . .}

7.1 Arguments

prop •cell alignment character

•cell alignment offset

•cell alignment type

•column name

•column number

•column ruling

•column width

•row ruling

•vertical alignment

8.element "gi" {
 is fm spanspec;
 fm property prop value is val;
. . .}

8.1 Arguments

prop •cell alignment character

•cell alignment offset

•cell alignment type

•column ruling

•end column name

•row ruling

•span name

•start column name

•vertical alignment

9.Used at the top level

fm property prop value is “val”;

9.1 Arguments

f m p r o p e r t y

Structured Application Developer Reference 91

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

•This rule applies only to an element corresponding to a cross-reference, graphic, equation,
marker, table, or table part element.

•Some FrameMaker properties have no natural markup counterparts. If you choose to not
translate such properties as markup attributes, a markup document will not contain
information on appropriate values for these properties. In this situation, you can use the fm
property rule to explicitly set property values when reading a markup document.

•This rule can be used either at the highest level to set a default or within an element rule to
specify the translation of a property for a particular element.

•If you use this rule to set a property value explicitly, you cannot also have a markup attribute
that corresponds to this property. For example, the following rule is erroneous:

element "tab2" {
 is fm table element;
 attribute "w" is fm property column widths;
 fm property column widths value is "1in 2in";
}

Examples

•To translate the markup element table to a FrameMaker table with two columns:

element "table" {
 is fm table element;
 fm property columns value is "2";
}

On import to FrameMaker, the software creates the table as a 2-column table in FrameMaker.

•Assume you have a markup element halfpage that holds a 4.5 inch by 6.5 inch graphic object;
it does not use an attribute to store the size information. You can translate this to a FrameMaker
graphic as follows:

element "halfpage" {
 is fm graphic element;
 fm property width value is "6.5";
 fm property height value is "4.5";
}

Read/Write Rules Reference 92

f m v a r i a b l e

See also

fm variable

On export, use the fm variable rule to tell FrameMaker what to do with certain variables. Use
this rule if you do not want them translated to entities. Read/write rules do not support double-
byte characters, so you cannot use this rule to process variables with double-byte characters in
their names.

Synopsis and contexts

fm variable ["var1", . . ., "varn"] drop;

Arguments

vari The name of a FrameMaker variable.

Details

•Use this rule when you export FrameMaker documents to markup documents. It applies only to
non-element variables, not to system variable elements.

•If vari is specified, this rule applies only to that variable. If no vari is specified, this rule applies
to all variables.

•If you use this rule, you may want to write a structure API client, or use an XSLT transform to
handle the export of variables or to create variables on import.

•You can have multiple occurrences of this rule in a rules document to determine different
treatment for different FrameMaker variables. You can have only one occurrence of the rule
with no explicitly listed variables. A given variable can be explicitly mentioned in only one
occurrence of this rule.

Examples

To translate the FrameMaker variables Licensor and Product as entities and discard all other
variables, use these rules:

entity "licensor" is fm variable;
entity "product" is fm variable;
fm variable drop;

Related rules “is fm property” on page 116

“is fm property value” on page 126

General information
on this topic

Developer Guide, Chapter 22, Translating Tables

Developer Guide, Chapter 23, Translating Graphics and Equations

Developer Guide, Chapter 24, Translating Cross-References

Developer Guide, Chapter 26, Translating Markers

f m v e r s i o n

Structured Application Developer Reference 93

See also

fm version

The fm version rule specifies the version of the product being run. It is required and must be
the first rule in all rules documents. If you create your rules document with the New Read/Write
Rules command, this rule automatically appears in the document.

Synopsis and contexts

fm version is "8.0";

ArgumentsNone.

Details

Note that you would use the string "8.0" in this rule even though the product version may be
an incremental release above 8.0, such as 8.0.1.

See also

generate book

Use the generate book subrule of a highest-level reader rule to specify whether FrameMaker
should use elements or processing instructions to indicate where in a markup document to start
a book and its components in the corresponding FrameMaker book.

Synopsis and contexts

1.reader generate book
 use processing instructions;

Related rules “is fm system variable element” on page 132

General information
on this topic

Developer Guide, Chapter 21, Translating Entities and Processing
Instructions

Developer Guide, Chapter 25, Translating Variables and System Variable
Elements

Structure Import/Export API Programmer’s Guide

General information
on this topic

Developer Guide, Chapter 18, Read/Write Rules and Their Syntax

Read/Write Rules Reference 94

g e n e r a t e b o o k

2.reader generate book
{
 put element "gi1" in file ["fname1"];
 . . .
 put element "giM" in file ["fnameM"];
}

3.reader generate book [for doctype "dt1" [, . . . "dtN"]]
{
 put element "gi1" in file ["fname1"];
 . . .
 put element "giM" in file ["fnameM"];
}

Arguments

dti A document type name.

gij A generic identifier.

fnamej A filename for the book component. FrameMaker adds a counter to the
name (before the suffix if there is one) as needed, to generate a unique
filename. You can use the $(bookname) variable to base the
component’s filename on the book filename (excluding any suffix). If you
do not supply this argument, the filename is gij.doc.

Details

•By default, when reading a markup document into FrameMaker, the software uses the <?FM
book ?> and <?FM document ?> processing instructions to indicate the start of a book
and of its components. The following rule confirms this default behavior:

reader generate book
 use processing instructions;

•Your DTD may be defined so that you can use elements to indicate the start of a book and its
components. When you use the second form of the generate book rule, FrameMaker
creates a book for every markup document you translate. When you use the third form of the
generate book rule, it creates a book only for markup documents whose DTD specifies the
document type you’ve listed in the rule. If you have a markup document with a different
document type, FrameMaker translates that document as a single FrameMaker document, even
if it contains elements referenced in put element rules. For example, assume you have this
rule:

reader generate book for doctype "manual"
 put element "chapter" in file;

If you translate a markup document whose highest-level element is report, that document
becomes a single FrameMaker document, even if it contains chapter descendant elements.

g e n e r a t e b o o k

Structured Application Developer Reference 95

•When it encounters one of the gij elements specified in a put element subrule, FrameMaker
starts a new book component. Since the software does not allow an element to be broken
across files, it places the entire gij element in the same file, even if another element appears
that you’ve said should start a new file. To illustrate, assume the section element can occur
either within or outside of a chapter element and you have this rule:

reader generate book {
 put element "chapter" in file;
 put element "section" in file;
}

When FrameMaker encounters a chapter element, it starts a new file. If it encounters a
section element as a child of that chapter element, it does not start a new file. It continues
with the file started by the chapter element. On the other hand, if the software encounters
a section element outside a chapter element it does start a new file for it.

•Consider these points when dividing a markup document into book components:

–Every FrameMaker document must contain exactly one highest-level element. That is, there
cannot be two elements in a single file that do not have an ancestor element in the same
file.

–A book element can contain substructure but cannot directly contain text. That is, child
elements that can contain text must occur in separate files.

Assume you have this rule:

reader generate book
 put element "chapter" in file;

And you have a markup document with the following element structure:

<manual>
<chapter>

<head>Introduction</head>
. . .

</chapter>
<appendix>

<head>The final word</head>
. . .

</appendix>
</manual>

When FrameMaker translates this document, it creates a book with manual as the highest-
level element in the book file. When it encounters the chapter element, the software starts
a new file for that element. When it encounters the appendix element, FrameMaker flags an
error, because your rules have not told it what to do with this element. It cannot put the
element in the same file as the preceding chapter element, because that would create two
highest-level elements in the same file. It also cannot put the appendix element in the book
file, because it contains text.

Read/Write Rules Reference 96

g e n e r a t e b o o k

•By default, when it writes a FrameMaker book to markup, the software writes <?FM book ?>
and <?FM document ?> processing instructions for the book and book components. It does
this even if you use the generate book rule to have particular elements specify book
components when reading a markup document. If you do not want FrameMaker to output
these processing instructions, use writer do not output book processing
instructions.

Examples

•If you know that a markup document should always correspond to a FrameMaker book and that
individual files in the book should start when the document reaches a toc or chapter
element, you can use this rule:

reader generate book {
 put element "toc" in file;
 put element "chapter" in file "ch.doc";
}

With this rule, FrameMaker creates a book for each markup document. In a markup document,
FrameMaker starts a new book component when it encounters a toc or chapter element.
For the first toc element, FrameMaker uses the filename toc1 unless a file of that name
already exists in the directory it is using. It continues that book component until it encounters
either another toc element or a chapter element. At that point, it starts a new book
component. It tries to put the first chapter element in a file called ch1.doc.

•Assume that a markup document whose highest-level element is either manual or book
should correspond to a FrameMaker book and any other markup document should correspond
to an individual FrameMaker document. Further assume that the books created from manual
and book elements should have new files for each instance of the elements chapter, front,
or toc. To accomplish all this, you can use this rule:

reader generate book for doctype "manual", "book"
{
 put element "chapter" in file "ch.doc";
 put element "front" in file;
 put element "toc" in file "$(bookname).toc";
}

With this rule, FrameMaker asks you for a name for the book file if you open a markup
document with manual as its document type. If you specify myfile.book as its name, and
the document contains two chapter elements, one front element, and one toc element,
FrameMaker creates the following files: myfile.book, ch1.doc, ch2.doc, front, and
myfile.toc.

See also

Related rules “output book processing instructions” on page 147

i m p l i e d v a l u e i s

Structured Application Developer Reference 97

implied value is

Use the implied value is rule to specify default attribute values in your EDD to correspond
with imported elements that specify no value for the attribute. For example, assume your DTD
declares an element named list, which has an attribute named style defined as
<!ATTLIST list style (bul | num) #IMPLIED>. For importing the DTD, you can use
this rule to set up a default value in the EDD for the Style attribute of the List element. Then,
if you import a list element that has no value for style, this default attribute value will be used
for formatting purposes. Also, when you export the EDD, the DTD will declare the style attribute
for the list element as #IMPLIED.

Synopsis and contexts

1.attribute "attr" {. . .
 implied value is "val";
. . .}

2.element "gi" {. . .
 attribute "attr" {. . .
 implied value is "val";
. . .} . . .}

Arguments

attr The name of an impliable attribute in markup.

val A value to use for the attr attribute.

gi A markup element’s name (generic identifier).

Details

•This rule is for importing DTDs and exporting EDDs. In FrameMaker, a default attribute value can
only be specified in the EDD, so this rule has no effect when importing a markup instance or
exporting a FrameMaker document.

•This rule specifically does not supply an attribute value for an element that has no value in the
markup instance. It only sets up a default attribute value in the EDD. This default value can be
used for formatting by attributes. When you export the document, FrameMaker will not add a
value for the attribute to the element’s start tag.

•The rule can be used in a highest-level attribute rule to specify the value to use for that
attribute in any element. Alternatively, it can be used in an attribute rule within an
element rule to specify the value for that element only.

General information
on this topic

Developer Guide, Chapter 28, Processing Multiple Files as Books

Read/Write Rules Reference 98

i n c l u d e d t d

Examples

Assume you have these declarations for a markup element used for cross-references:

<!ELEMENT xref EMPTY>
<!ATTLIST xref
 id IDREF #IMPLIED
 format CDATA #IMPLIED>

And you have this rule:

element "xref" {
 is fm cross-reference element;
 attribute "format" {
 is fm property cross-reference format;
 implied value is "Page";
}}

When FrameMaker encounters an instance of the xref element in a markup document and that
instance does not have a value for the format attribute, the software use the Page cross-
reference format for the cross-reference in the FrameMaker document.

See also

include dtd

By default, when creating a markup document, FrameMaker includes in the document type
definition an external identifier that refers to the DTD file. Therefore, it does not include a copy of
actual declarations in the document type declaration subset. The include dtd rule tells
FrameMaker to do so.

Synopsis and contexts

writer [do not] include dtd;

ArgumentsNone.

Details

•You use this rule when you export FrameMaker documents to markup documents. If this rule is
specified, FrameMaker does not generate an external identifier in the DOCTYPE declaration.

Related rules “value” on page 165

Rules mentioned in
synopses

“attribute” on page 46

“element” on page 56

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

“Default value” on page 198

i n c l u d e d t d

Structured Application Developer Reference 99

•To confirm the default behavior, you can use the opposite rule:

writer do not include dtd;

•The include dtd rule and the external dtd rule are mutually exclusive. That is, you
cannot use both of these rules in the same read/write rules file. (If you try to put both of these
rules in the same file, you will get an alert.) Also, the include dtd rule and the write
structure document instance only rule are mutually exclusive.

•To write an entire markup document, including a DTD and (for SGML) an SGML declaration with
the document instance, you must use the following rules:

writer {
include sgml declaration;
include dtd;
}

•This rule uses the DTD that is specified in the current structure application. If that DTD includes
references to external files, this rule does not expand those references as it writes out the DTD.
Instead, it writes out the references as they appear in the parent DTD file.

•You can use this rule to translate the EDD from the current document as an a DTD that is written
in the markup document. To do this, use the include dtd rule, but use a structure
application that does not specify a DTD in its definition. Be warned that if your document uses
the CALS table model, the resulting DTD may be incorrect.

•When you use this rule, no Schema information is included in the output. If you use this rule to
output an internal DTD and the XML structure application specifies a Schema file for export,
that file is converted to internal DTD (see Chapter 7, “XML Schema to DTD Mapping”) and that
DTD is saved with the markup document.

If the XML structure application specifies both a Schema file and a DTD, the DTD is output as
the internal DTD and the Schema is dropped.

If the XML structure application specifies neither a Schema file nor a DTD, an internal DTD is
created from the first of these sources that is available:

–an external DTD for the imported document;

–a DTD that is the result of conversion from a Schema in the imported document;

–the element catalog of the template.

Examples

If your document type declarations are in a file called report.dtd, then by default FrameMaker
includes this document type declaration in the document it creates on export:

<!DOCTYPE report SYSTEM "report.dtd" [
. . . more declarations specific to this document instance . . .
]>

Read/Write Rules Reference 100

i n c l u d e s g m l d e c l a r a t i o n

If you specify the include dtd rule, then FrameMaker includes this document type declaration
in the document it creates:

<!DOCTYPE report [
. . . declarations specific to this document instance . . .
. . . contents of the file, report.dtd . . .
]>

See also

include sgml declaration

By default, FrameMaker does not include an SGML declaration in a generated SGML document.
The sgml declaration rule tells FrameMaker to include one. The SGML declaration is copied
from the file in the associated application subset. To see the default SGML declaration used by
FrameMaker, see Chapter 10, “SGML Declaration.”

Synopsis and contexts

writer [do not] include sgml declaration;

ArgumentsNone.

Details

•To confirm the default behavior, you can use the opposite rule:

writer do not include sgml declaration;

•You cannot use the include sgml declaration rule in the same read/write rules file as
the write sgml document instance only rule. Note that using both rules in the
same rules file does not give an error. Also, “write sgml document instance only” takes priority,
regardless of order.

•To write an entire SGML document, including an SGML DTD and SGML declaration with the
document instance, you must use the following rules:

writer {
include sgml declaration;
include dtd;
}

Related rules “external dtd” on page 73

“include sgml declaration,” next

“write structured document” on page 166

“write structured document instance only” on page 167

Note: XML: This read/write rule is for SGML-only.

i n s e r t t a b l e p a r t e l e m e n t

Structured Application Developer Reference 101

See also

insert table part element

You use the insert table part element rule when creating a FrameMaker table element
on import of a markup document. This rule tells FrameMaker to create a table part of the
designated type, even if the markup document does not contain content for that table part.

Synopsis and contexts

element "gi" {. . .
 is fm table element ["fmtag1"];
 reader insert table part element ["fmtag2"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag1

A FrameMaker element tag for a table element. These names are case-
sensitive and must appear in the rule the same as in the EDD.

part One of the keywords: title, heading, or footing.

fmtag2 A FrameMaker element tag for a table part element.

Details

By default, as the last step in creating a table element when reading a markup document,
FrameMaker discards parts of the table that have no content, even if the general rule for the
element requires that table part. (Your EDD may supply the content, for example, by using format
rules that specify a prefix for the element.) If you do not want FrameMaker to remove the table
part element with no content, OR if you want FrameMaker to create a table part element for you
when the markup instance does not contain this element, use the insert table part
element rule.

Examples

Assume you have a markup element statetab, which you represent as a 3-column table in
FrameMaker, with the same table headings everywhere it occurs. You use formatting rules in the
EDD to specify the table headings. In this situation, the markup document does not include

Related rules “external dtd” on page 73

“include dtd,” (the previous section)

“write structured document” on page 166

“write structured document instance only” on page 167

Read/Write Rules Reference 102

i n s e r t t a b l e p a r t e l e m e n t

information that corresponds to the table headings, so you want the software to add the table
heading element when reading such a markup instance and drop it when exporting a
FrameMaker document to markup. Suppose your DTD has these declarations:

<!ELEMENT statetab ((state, pop, income)+)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT pop (#PCDATA)>
<!ELEMENT income (#PCDATA)>

and your EDD has these FrameMaker element definitions:

Element (Table): State Table
 General rule: State Head, State Body
 Text format rules
 1. In all contexts.
 Use paragraph format: TableCell

Element (Table Heading): State Head
 General rule: State Head Row
 Text format rules
 1. In all contexts.
 Default font properties
 Weight: Bold

Element (Table Row): State Head Row
 General rule: Label

Element (Table Cell): Label
 General rule: <EMPTY>
 Text format rules
 1. If context is: {first}
 Numbering properties
 Autonumber format: State
 Else if context is: {last}
 Numbering properties
 Autonumber format: Household Income
 Else
 Numbering properties
 Autonumber format: Population

Element (Table Body): State Body
 General rule: State Row+

Element (Table Row): State Row
 General rule: State, Income, Population

Element (Table Cell): State
 General rule: <TEXT>

i n s e r t t a b l e p a r t e l e m e n t

Structured Application Developer Reference 103

Element (Table Cell): Income
 General rule: <TEXT>

Element (Table Cell): Population
 General rule: <TEXT>

Note that the Label element provides the text for the column headings.

You could use these rules:

element "statetab" {
 is fm table element "State Table";
 fm property columns value is "3";
 reader insert table heading element "State Head";
}

element "state" {
 is fm table cell element;
 fm property column number value is "1";
 fm property row type value is "Body";
}

element "income" is fm table cell element;

element "pop" is fm table cell element "Population";

fm element "State Head" drop;
fm element "State Body" unwrap;
fm element "State Row" unwrap;

To convert the following instance to the desired FrameMaker document:

<statetab>
<state>Georgia</state>
<pop>15,000,000</pop>
<income>25,000</income>
<state>Mississippi</state>
<pop>8,000,000</pop>
<income>18,000</income>
</statetab>

•The first rule identifies statetab as a 3-column table element and tells it to always create a
heading element for an occurrence of this statetab.

•The second rule identifies state as a table cell that must always occur in the first column of a
body row. This ensures that FrameMaker starts a new table row whenever it encounters a
state element.

•The other element rules identify other elements used as table cells. The fm element drop
rule causes the software to drop the element that was created by FrameMaker per the insert
element rule so that it does not appear in the markup. Note also that it is necessary for the

Read/Write Rules Reference 104

i s f m a t t r i b u t e

software to have a tablerow element and a tablebody element in its table structure.
However, these do not appear in the markup document. FrameMaker creates such necessary
elements by default. Since they do not correspond to markup elements, they are unwrapped
on export to markup—not dropped, because that would lose the contents of the entire table.

See also

is fm attribute

Use the is fm attribute rule to specify that a markup attribute translates to a FrameMaker
attribute. The optional parts of this rule allow you to have the software make several changes to
the attribute during translation. Read/write rules do not support double-byte characters, so you
cannot use this rule to process attributes with double-byte characters in their names.

Synopsis and contexts

1.[mdv] attribute "attr" {. . .
 is fm [read-only] [fmtype] attribute
 ["fmattr"] [range from low to high];
. . .}

2.element "gi" {. . .
 [mdv] attribute "attr"
 is fm [read-only] [fmtype] attribute
 ["fmattr"] [range from low to high];
. . .}

Arguments

mdv An optional markup declared value, specifying the type of the markup
attribute. Legal values for an XML application are:

•cdata

•nmtoken

•nmtokens

•entity

•entities

•id

•idref

•idrefs

General information
on this topic

Developer Guide, Chapter 22, Translating Tables

i s f m a t t r i b u t e

Structured Application Developer Reference 105

•notation

•group

Legal values for an SGML application are:

•cdata

•name

•names

•nmtoken

•nmtokens

•number

•numbers

•nutoken

•nutokens

•entity

•entities

•notation

•id

•idref

•idrefs

• group.

attr A markup attribute name.

fmtype A FrameMaker attribute type. Legal values are: String, Strings, Integer,
Integers, Real, Reals, UniqueID, IDReference, IDReferences, and Choice.

fmattr A FrameMaker attribute name.

low A number, indicating the low end of a numeric range.

high A number, indicating the high end of a numeric range.

Details

•You can use the is fm attribute rule in a highest-level attribute rule to specify the
translation of that attribute in all elements for which it is defined. Or you can use it in an
attribute subrule in an element rule to specify the translation of the attribute in only
that element.

Read/Write Rules Reference 106

i s f m a t t r i b u t e

•You may want some markup attributes to become FrameMaker properties. If so, you cannot also
import them as FrameMaker attributes. For information on the defined FrameMaker properties,
see “is fm property” on page 116.

•To specify only that the attribute is an attribute in both representations, use this version:

attribute "attr" is fm attribute;

•To also rename it during translation, use this version:

attribute "attr" is fm attribute "fmattr";

•To specify that the FrameMaker attribute is read-only—that is, that an end user cannot change
the attribute’s value—use this version:

attribute "attr" is fm read-only attribute;

•To specify that an attribute that takes numeric values can have values only in a particular range,
use this version:

attribute "attr" is fm attribute range from low to high;

•To specify that a markup attribute with a particular declared value translates to a FrameMaker
attribute of a type other than the default translation, use this version:

mdv attribute "attr" is fm fmtype attribute;

•To specify that the FrameMaker direction property maps to the structured document dir
attribute, use this version:

attribute "dir" is fm attribute; is fm property direction;

•Note that you can use more than one of the optional pieces of the is fm attribute rule
at the same time. For example, you can both rename an attribute and state that it is read-only
by using this version:

attribute "attr" is fm read-only attribute "fmattr";

Examples

•To translate the markup sec attribute to the FrameMaker SecurityRanking attribute in all
elements in which it occurs, use this rule:

attribute "sec" is fm attribute "SecurityRanking";

•To translate the markup sec attribute to the FrameMaker SecurityRanking attribute in
most elements in which it occurs, but to change it to the Section attribute in the BookPart
element, use these rules:

element "BookPart"
 attribute "sec" is fm attribute "Section";

attribute "sec" is fm attribute "SecurityRanking";

i s f m c h a r

Structured Application Developer Reference 107

•Assume you have a markup attribute named perc with a declared value of CDATA, and assume
you know that this attribute always has values that are integers in the range from 0 to 100. You
can translate the perc attribute to the Percentage attribute with this rule:

cdata attribute "perc"
 is fm integer attribute "Percentage" range from 0 to 100;

•Assume that a markup element has an attribute with declared value name and that the attribute
has a defined set of allowable values. You can translate that attribute and some of its possible
values with the following rule:

element "fish" {
 name attribute "loc" {
 is fm choice attribute "CommonLocation";
 value "micro" is fm value "Micronesia";
 value "galap" is fm value "Galapagos Islands";
 value "png" is fm value "Papua New Guinea";
}}

See also

is fm char

For SGML, use the is fm char rule to translate an SGML SDATA entity to a single character
in FrameMaker. For XML, use this rule to translate an internal entity to a single character in
FrameMaker.

Synopsis and contexts

1.entity "ename" is fm char ch [in "fmchartag"];

2.reader entity "ename" is fm char ch [in "fmchartag"];

Arguments

ename An entity name.

ch A one-character string or a numeric character code (specified using the
syntax for an octal, hexadecimal, or decimal number described in
Developer Guide, page 278: Strings and constants). Note that if the

Related rules “fm attribute” on page 76

Rules mentioned in
synopses

“attribute” on page 46

“element” on page 56

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 108

i s f m c h a r

desired character is a digit or a white-space character, you must enter it
as a numeric character code.

fmchartag A FrameMaker character format tag.

Note that the character format must use a non-standard font family such
as Symbol or Zapf Dingbats for this argument to take effect.

Details

• For SGML, instead of using this rule to translate an SDATA entity, you can use a parameter
literal of a particular form. For information on how to do so, see Developer Guide, page 328:
Translating SDATA entities as special characters in FrameMaker.

•For XML, SDATA entities are not allowed. This rule translates internal entities to FrameMaker
characters, and it translates FrameMaker to internal entities.

•You can use the is fm char rule within an entity rule at the highest level to have the
translation occur in both directions. Or you can put the entity rule inside a reader rule to
have the translation occur only when reading a markup document into FrameMaker. For
example, your SGML document might use a period entity for entering some instances of the
period character in your SGML document. If you use this rule:

entity "period" is fm char ".";

then the entity references for period in the instance are translated correctly to the period
character in FrameMaker. But on export, all periods in the document become references to the
period entity (which is not likely what you had in mind). To have the period entities read
correctly when importing an instance, but have periods remain the period character on export,
use this version of the rule:

reader
 entity "period" is fm char ".";

•Without the in clause, the software translates the entity using the default character format of
the enclosing paragraph element. Frequently, however, special characters require a font
change. In these cases, you use the in clause.

•For SGML, DTDs frequently use the entity sets defined in Annex D of the SGML Standard, often
called ISO public entity sets, for providing commonly used special characters. FrameMaker
includes copies of these entity sets and provides rules to handle them for your application. For
information on how FrameMaker supports ISO public entities, see Chapter 11, “ISO Public
Entities.”

Examples

•To translate the SDATA entity sum as the mathematical summation sign in the Symbol font (S
), you could use either of these rules in your rules document:

entity "sum" is fm char "S" in "Symbol";

entity "sum" is fm char "\x53" in "Symbol";

i s f m c r o s s - r e f e r e n c e e l e m e n t

Structured Application Developer Reference 109

entity "sum" is fm char 0x53 in "Symbol";

If FrameMaker encounters a reference to the summation entity when importing a markup
document, it replaces the reference with S (assuming your FrameMaker template defines the
Symbol character format appropriately and the entity is declared in the DTD). If the software
encounters S when exporting an document, it generates a reference to the summation entity
(assuming the Symbol character format is defined appropriately and applied to the character,
and that the DTD for your application has an entity declaration for “sum”).

•To translate both the thin and en internal entity references in an XML instance to en spaces in
FrameMaker and to write all en spaces as an en entity reference, use these rules:

entity "en" is fm char 0x13;
reader entity "thin" is fm char 0x13;

See also

is fm cross-reference element

Use the is fm cross-reference element rule to identify a markup element that
translates to a cross-reference element in FrameMaker. You can choose either to have the same
name in both representations or to change the name during translation. The markup element
should have an attribute of type IDREF and declared content of EMPTY. Read/write rules do not
support double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm cross-reference element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Rules mentioned in
synopses

“entity” on page 61

General information
on this topic

Developer Guide, Chapter 21, Translating Entities and Processing
Instructions

Read/Write Rules Reference 110

i s f m e l e m e n t

Details

If you use the is fm cross-reference element rule, the other subrules of the element
rule that you can use for that markup element are as follows:

• attribute specifies what to do with a markup element’s attributes.

•fm attribute specifies what to do with attributes present in the FrameMaker representation
of the element but not in the markup representation.

•fm property specifies what to do with FrameMaker properties associated with the element.

•reader drop content specifies that the content but not the structure of an element should
be discarded on import of a markup document.

Examples

•To have the markup element xref become the FrameMaker cross-reference element Xref, use
this rule:

element "xref" is fm cross-reference element;

•To have it become the FrameMaker cross-reference element CrossRef, use this rule:

element "xref" is fm cross-reference element "CrossRef";

See also

is fm element

If you do not specify a value for fmtag, the is fm element rule specifies only that a markup
element remains an element in FrameMaker. This is the default behavior. With a value for fmtag,
this rule changes the element name when it is translated between markup and FrameMaker.

Synopsis and contexts

element "gi" {. . .
 is fm element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

Rules mentioned in
synopses

“element” on page 56

General information
on this topic

Developer Guide, Chapter 24, Translating Cross-References

i s f m e q u a t i o n e l e m e n t

Structured Application Developer Reference 111

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

If you use the is fm element rule, the other subrules of the element rule that you can use
for that markup element are as follows:

• attribute specifies what to do with a markup element’s attributes.

• fm attribute specifies what to do with attributes present in the FrameMaker representation
of the element but not in the markup representation.

• fm property specifies what to do with FrameMaker properties associated with the element.

•reader drop content specifies that the content but not the structure of an element should
be discarded on import of a markup document.

•writer drop content specifies that the content but not the structure of an element should
be discarded on export of a FrameMaker document.

XSLT interaction

XSLT allows precise, context based control over element renaming. For consistency and
maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Examples

To translate the markup element par to the FrameMaker element Paragraph, use this rule:

element "par" is fm element "Paragraph";

See also

is fm equation element

Use the is fm equation element rule to identify a markup element that translates to an
equation element in FrameMaker. You can choose either to have the same name in both
representations or to change the name during translation. Read/write rules do not support

Rules mentioned in
synopses

“element” on page 56

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 112

i s f m e q u a t i o n e l e m e n t

double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm equation element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup
element are as follows:

•attribute specifies what to do with a markup element’s attributes.

•fm attribute specifies what to do with attributes present in the FrameMaker representation
of the element but not in the markup representation.

•fm property specifies what to do with FrameMaker properties associated with the element.

•writer equation tells FrameMaker what to do with equation elements.

XSLT interaction

XSLT is not able to convert markup elements to/from FrameMaker equation elements. However,
XSLT allows precise, context based control over element renaming. For consistency and
maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Examples

•To have FrameMaker equation element Eqn become the markup element eqn, use this rule:

element "eqn" is fm equation element;

•To have FrameMaker equation element Equation become the markup element eqn, use this
rule:

element "eqn" is fm equation element "Equation";

See also

Related rules “is fm graphic element” on page 114

i s f m f o o t n o t e e l e m e n t

Structured Application Developer Reference 113

is fm footnote element

Use the is fm footnote element rule to identify a markup element that translates to a
footnote element in FrameMaker. You can choose either to have the same name in both
representations or to change the name during translation. Read/write rules do not support
double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm footnote element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup
element are as follows:

•attribute specifies what to do with a markup element’s attributes.

•fm attribute specifies what to do with attributes present in the FrameMaker representation
of the element but not in the markup representation.

XSLT interaction

XSLT is not able to convert markup elements to/from FrameMaker footnote elements. However,
XSLT allows precise, context based control over element renaming. For consistency and
maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Examples

•To translate the markup element fn to the Fn footnote element in FrameMaker, use this rule:

element "fn" is fm footnote element;

Rules mentioned in
synopses

“element” on page 56

General information
on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

Read/Write Rules Reference 114

i s f m g r a p h i c e l e m e n t

•To translate it to the Footnote footnote element, use this rule:

element "fn" is fm footnote element "Footnote";

See also

is fm graphic element

Use the is fm graphic element rule to identify a markup element that translates to a
graphic element in FrameMaker. You can choose either to have the same name in both
representations or to change the name during translation. Read/write rules do not support
double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm graphic element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup
element are as follows:

•attribute specifies what to do with a markup element’s attributes.

•fm attribute specifies what to do with attributes present in the FrameMaker representation
of the element but not in the markup representation.

•fm property specifies what to do with FrameMaker properties associated with the element.

•writer anchored frame tells FrameMaker what to do with graphic elements other than
those with a single non-internal FrameMaker facet.

Rules mentioned in
synopses

“element” on page 56

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

i s f m m a r k e r e l e m e n t

Structured Application Developer Reference 115

•writer facet tells FrameMaker what to do with an imported graphic element that has a
single non-internal FrameMaker facet.

XSLT interaction

XSLT is not able to convert markup elements to/from FrameMaker graphic elements. However,
XSLT allows precise, context based control over element renaming. For consistency and
maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Examples

•To translate the markup element pict to the Pict graphic element in FrameMaker, use this
rule:

element "pict" is fm graphic element;

•To translate it to the Picture graphic element, use this rule:

element "pict" is fm graphic element "Picture";

See also

is fm marker element

Use the is fm marker element rule to identify a markup element that translates to a
marker element in FrameMaker. You can choose either to have the same name in both
representations or to change the name during translation. Read/write rules do not support
double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm marker element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

Related rules “is fm equation element” on page 111

Rules mentioned in
synopses

“element” on page 56

General information
on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

Read/Write Rules Reference 116

i s f m p r o p e r t y

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup
element are as follows:

•attribute specifies what to do with a markup element’s attributes.

•fm attribute specifies what to do with attributes present in the FrameMaker representation
of the element but not in the markup representation.

•fm property specifies what to do with FrameMaker properties associated with the element.

•marker text is specifies whether the text of a FrameMaker marker element should be
element content or an attribute value in markup.

XSLT interaction

XSLT is not able to convert markup elements to/from FrameMaker marker elements. However,
XSLT allows precise, context based control over element renaming. For consistency and
maintainabilty try to avoid mixing the methods used to rename FrameMaker or XML elements.

Examples

•To translate the markup element m to the M marker element in FrameMaker, use this rule:

element "m" is fm marker element;

•To translate it to the Marker marker element, use this rule:

element "m" is fm marker element "Marker";

See also

is fm property

Use the is fm property rule to translate a markup attribute to a FrameMaker property. This
rule can apply in a highest-level attribute rule to set a default. Or it can apply within an
element rule for a table, table part, marker, cross-reference, graphic, or equation element, to set

Related rules “marker text is” on page 143

“fm marker” on page 79

Rules mentioned in
synopses

“element” on page 56

General information
on this topic

Developer Guide, Chapter 26, Translating Markers

i s f m p r o p e r t y

Structured Application Developer Reference 117

the property only for that element. Read/write rules do not support double-byte characters, so
you cannot use this rule to process attributes with double-byte characters in their names.

Synopsis and contexts

1.attribute "attr" {. . .
 is fm property prop;
. . .}

2.element "gi" {. . .
 attribute "attr" {. . .
 is fm property prop;
. . .} . . .}

Arguments

attr The name of a markup attribute.

gi A markup element’s name (generic identifier).

prop A FrameMaker property. Possible properties are:

•For cross-reference elements:

–cross-reference format

–cross-reference id

•For graphic and equation elements:

–alignment Indicates the anchored frame’s horizontal alignment on
the page.

–angle Indicates an angle of rotation for the anchored frame that
contains the graphic. The markup must specify exact multiples of 90
degrees. Otherwise, the value is ignored and the graphic is imported
at 0 degrees which is the default. Examples:

–0 No rotation (default).

–90 Rotate 90 degrees clockwise.

–-90 Rotate 90 degrees anticlockwise.

–180 Rotate 180 degrees.

–270 Rotate 270 degrees.

–baseline offset Indicates how far from the baseline of a
paragraph to place an anchored frame. Baseline offset is relevant
only for anchored frames whose position attribute is one of inline,
sleft, sright, snear, or sfar.

–cropped Indicates whether a wide graphic should be allowed to
extend past the margins of the text frame. The cropped property
is relevant only for anchored frames whose position attribute is
one of top, below, or bottom.

Read/Write Rules Reference 118

i s f m p r o p e r t y

–dpi Indicates how to scale an imported graphic object.

–entity Provides the entity name of the imported graphic.

–file Provides the file name of the imported graphic.

–floating Indicates whether the graphic should be allowed to float
from the paragraph to which it is attached. The floating property
is relevant only for anchored frames whose position property is
one of top, below, or bottom.

–height Indicates the height of the anchored frame. The height of a
single imported graphic object is the sum of the height of the object
plus twice the value of the vertical offset property.

–horizontal offset Indicates how far the graphic object is
offset from the right and left edges of the anchored frame.

–import angle Indicates an angle of rotation in degrees for the
graphic inside its anchored frame.

–import by reference or copy Indicates whether an
imported graphic object remains in a separate file or is copied into
the FrameMaker document on import from markup.

–import size indicates the size of the imported graphic object by
specifying a width and height.

–near-side offset Indicates how far to set a frame from the text
frame to which the frame is anchored. It is relevant only for
anchored frames whose position attribute is one of sleft,
sright, snear, or sfar.

val A number plus a valid unit of measure, e.g. “12pt”, “10mm”. If
not supplied, the value is 0.

–position Indicates where on the page to put the anchored frame.
If not supplied, the value is below. Possible anchoring position
values are as follows:

–inline At insertion point.

–top At top of column.

–below Below current line.

–bottom At bottom of column.

–sleft Outside column - left side.

–sright Outside column - right side.

–snear Outside column - right side.

–sfar Outside column - side closer to the page edge.

–sinside Outside column - side closer to the binding.

–soutside Outside column - side farther from the binding.

–tleft Outside text frame - left side.

i s f m p r o p e r t y

Structured Application Developer Reference 119

–tright Outside text frame - right side.

–tnear Outside text frame - side closer to the page edge.

–tfar Outside text frame - side farther from the page edge.

–tinside Outside text frame - side closer to the binding.

–toutside Outside text frame - side closer to the binding.

–runin Run into paragraph.

–sideways Indicates that the imported graphic will be flipped left
to right to give a mirror image.

–vertical offset Indicates how far the graphic object is offset
from the top and bottom edges of the anchored frame.

–width Indicates the width of the anchored frame. The value for a
single imported graphic object is the sum of the width of the object
plus twice the value of the horizontal offset property.

•For marker elements:

–marker text Provides the text content of the marker.

–marker type Identifies the type of marker.

•For table elements:

–column ruling Specifies whether all columns should have ruling
on their right side. This property does not specify the style or weight
of the ruling. The default ruling is defined by the relevant table
format in the structured template.

–column widths The width of successive columns in the table. On
import from markup these widths are reapplied regardless of any
changes made by the user. If proportional widths are used, the
pgwide attribute or page wide property determines the table
overall width.

–columns The number of columns in the table. This is essential for
the correct rendering of the table.

–page wide This is relevant only to tables whose columns use
proportional widths on pages with more than a single column. In
this case, the attribute indicates whether the entire table should be
the width of the column in which it is anchored, or the width of the
overall text frame.

–row ruling Specifies whether all rows should have ruling on their
bottom side. This property does not specify the style or weight of
the ruling. The default ruling is defined by the relevant table format
in the structured template.

Expected markup attribute value:

–0 Rows have no ruling.

Read/Write Rules Reference 120

i s f m p r o p e r t y

–1 Rows have ruling.

–table border ruling Specifies whether the table should have
ruling around its outside borders. This property does not specify the
style or weight of the ruling. The default ruling is defined by the
relevant table format in the structured template.

Expected markup attribute value:

–all Rows have no ruling.

–top Rows have ruling.

–table format Specifies the table format for all instances of the
FrameMaker table element.

Expected markup attribute value: A name of a table format that is
present in the application’s structured template.

•For table cell elements:

–column name Associates a name with a cell in a given column.

–column number Indicates the column number that the cell will
start in.

–column ruling Specifies whether the cell should have ruling on
its right side. This property does not specify the style or weight of
the ruling. The default ruling is defined by the relevant table format
in the structured template.

Expected markup attribute value:

–0 Cell has no right side ruling.

–1 Cell has right side ruling.

–end column name Specifies the name of a column that ends a
straddle.

–horizontal straddle Specifies the number of columns a
straddled cell spans.

–more rows Specifies the number of additional rows a straddled cell
spans.

Expected markup attribute value: An integer greater than 1 and no
greater than the number of rows in the table part. The total number
of rows the cell occupies is more rows+1.

–rotate Indicates how much to rotate the contents of a cell.

Expected markup attribute value: The CALS model restricts this
property to a boolean value, where 1 indicates a rotation of 90
degrees anti-clockwise. FrameMaker extends the possible values to
allow rotations of 0, 90, 180, and 270 degrees.

–row ruling Specifies whether the cell should have ruling on its
bottom side. This property does not specify the style or weight of

i s f m p r o p e r t y

Structured Application Developer Reference 121

the ruling. The default ruling is defined by the relevant table format
in the structured template.

Expected markup attribute value:

–0 Cell has no bottom side ruling.

–1 Cell has bottom side ruling.

–span name Applies a predefined CALS spanspec, starting at this
cell.

Expected markup attribute value: A valid spanspec name.

–start column name Specifies the name of a column that begins
a horizontal straddle.

Expected markup attribute value: A valid column name as defined in
a colspec.

–vertical straddle Specifies the number of rows a straddled
cell spans.

Expected markup attribute value: An integer greater than 1 and no
greater than the number of rows in the section (heading, body or
footing) of the table that contains the starting cell.

–use fill override Specifies whether a custom fill percentage
for the cell shading overrides the fill percentage specified in the
table format.

Expected markup attribute value:

–0 Cell has no fill override.

–1 Cell has fill override.

–fill override Specifies the fill percentage for the cell shading
that overrides the fill percentage in the table format.

Expected markup attribute value: A valid fill percentage for the cell
shading.

–use shading override Specifies whether a custom color for
the cell shading overrides the shading color specified in the table
format.

Expected markup attribute value:

–0 Cell has no shading override.

–1 Cell has shading override.

–fill override Specifies the color for cell shading that overrides
the shading color in the table format.

Expected markup attribute value: A valid shading color for the cell
shading.

Read/Write Rules Reference 122

i s f m p r o p e r t y

–use bottom ruling override Specifies whether the cell
bottom ruling overrides the bottom ruling specified in the table
format.

Expected markup attribute value:

–0 Cell has no bottom ruling override.

–1 Cell has bottom ruling override.

–bottom ruling override Specifies the style of the cell bottom
ruling that overrides the ruling in the table format.

Expected markup attribute value: A valid style for the cell bottom
ruling.

–use top ruling override Specifies whether the cell top
ruling overrides the top ruling specified in the table format.

Expected markup attribute value:

–0 Cell has no top ruling override.

–1 Cell has top ruling override.

–top ruling override Specifies the style of the cell top ruling
that overrides the ruling in the table format.

Expected markup attribute value: A valid style for the cell top ruling.

–use left ruling override Specifies whether the cell left
ruling overrides the left ruling specified in the table format.

Expected markup attribute value:

–0 Cell has no left ruling override.

–1 Cell has left ruling override.

–left ruling override Specifies the style of the cell left ruling
that overrides the ruling in the table format.

Expected markup attribute value: A valid style for the cell left ruling.

–use right ruling override Specifies whether the cell right
ruling overrides the right ruling specified in the table format.

Expected markup attribute value:

–0 Cell has no right ruling override.

–1 Cell has right ruling override.

–right ruling override Specifies the style of the cell right
ruling that overrides the ruling in the table format.

Expected markup attribute value: A valid style for the cell right ruling.

–angle Specifies the angle of rotation for the cell that overrides the
angle in the table format.

Expected markup attribute value: A valid angle of rotation for the cell.

i s f m p r o p e r t y

Structured Application Developer Reference 123

•For table row elements: maximum height, minimum height, row
type, or row ruling.

–maximum height Specifies the maximum height for each row in
the table.

Expected markup attribute value: A number plus a valid unit of
measure, e.g. “24pt”, “15mm”. If not supplied, the maximum height
of the row is not limited.

–minimum height Specifies the minimum height for each row in
the table.

Expected markup attribute value: A number plus a valid unit of
measure, e.g. “12pt”, “9mm”. If not supplied, the minimum height of
the row is not limited.

–row type Sets the row type as heading, body or footing.

–row ruling Specifies whether the cell should have ruling on its
bottom side. This property does not specify the style or weight of
the ruling. The default ruling is defined by the relevant table format
in the structured template.

Expected markup attribute value:

–0 Cell has no bottom side ruling.

–1 Cell has bottom side ruling.

–row placement Specifies the row placement in the table.

Expected markup attribute value: A valid position for the row in
the table.

–keep with prev Specifies whether the row is always on the
same page as the previous row in the table.

Expected markup attribute value:

–0 Row need not remain on the same page as the previous row.

–1 Row is always on the same page as the previous row in the
table.

–keep with next Specifies whether the row is always on the
same page as the next row in the table.

Expected markup attribute value:

–0 Row need not remain on the same page as the next row.

–1 Row is always on the same page as the next row in the table.

•For CALS table colspecs:

–cell alignment character

–cell alignment offset

–cell alignment type

Read/Write Rules Reference 124

i s f m p r o p e r t y

–column name

–column number

–column ruling

–column width

–row ruling

–vertical alignment

•For CALS table spanspecs:

–cell alignment character

–cell alignment offset

–cell alignment type

–column ruling

–end column name

–row ruling

–span name

–start column name

–vertical alignment

•For elements:

direction: Specifies the direction of an element

Expected markup attribute values:

–ltr: Position the content left-to-right

–rtl: Position the content right-to-left

–inherit: Inherit the position property of the parent element

Details

•If you use the is fm property rule to translate a markup attribute to a FrameMaker
property, the markup attribute does not also appear as a FrameMaker attribute.

•If you use this rule in a highest-level attribute rule, it applies only to elements that have that
attribute and are of the appropriate type. For example, if you have these declarations:

<!ATTLIST (graphic | table) w CDATA #IMPLIED>

and these rules:

attribute "w" is fm property width;
element "graphic" is fm graphic element;
element "table" is fm table element;

i s f m p r o p e r t y

Structured Application Developer Reference 125

the w attribute becomes the width property of the graphic element but remains an
attribute for the table element, since tables do not have a width property. If you intended
w to be the column width for tables, you should use these rules:

element "graphic" {
 is fm graphic element;
 attribute "w" is fm property width;
}

element "table" {
 is fm table element;
 attribute "w" is fm property column width;
}

Examples

•The markup attribute w may be used for multiple elements to represent the width of a table’s
columns. To translate it to the FrameMaker property column width:

attribute "w" is fm property column width;

•To translate the attribute form to the cross-reference formatting property cross-reference
format for the element xref:

element "xref" {
 is fm cross-reference element;
 attribute "form" is fm property cross-reference format;
}

•To translate the attribute dir to the direction property for an element:

attribute "dir" {
 is fm attribute;
 is fm property direction;
}

See also

Related rules “fm property” on page 80

“is fm property value,” next

Rules mentioned in
synopses

“element” on page 56

“attribute” on page 46

General information
on this topic

Developer Guide, page 345: Formatting properties for tables

Developer Guide, page 373: Anchored frame properties

Developer Guide, page 375: Other graphic properties

Developer Guide, Chapter 26, Translating Markers

Developer Guide, Chapter 24, Translating Cross-References

Read/Write Rules Reference 126

i s f m p r o p e r t y v a l u e

is fm property value

Use the is fm property value rule when a markup attribute has a name token group as
its declared value and you want to rename the individual name tokens when translating to and
from FrameMaker property values. Read/write rules do not support double-byte characters, so
you cannot use this rule to process attributes with double-byte characters in their names.

Synopsis and contexts

1.value "token" is fm property value propval;

2.attribute "attr" {. . .
 value "token" is fm property value propval;
. . .}

3.element "gi" {. . .
 attribute "attr" {. . .
 value "token" is fm property value propval;
. . .} . . .}

Arguments

token A token in a name token group.

propval A defined FrameMaker property value.

attr The name of a markup attribute.

gi A markup element’s name (generic identifier).

Details

•This rule can be used at the highest level to set a default, or within an attribute rule.

•Use this rule when the corresponding markup attribute translates to a property in FrameMaker.
If the markup attribute translates to a choice attribute instead, you need to use the is fm
value rule to specify the correspondence between markup tokens and FrameMaker attribute
choices.

i s f m p r o p e r t y v a l u e

Structured Application Developer Reference 127

•When using this rule, remember that markup does not permit a token to appear in the declared
value of more than one attribute of an element. For example, the following rule:

element "picture" {
 is fm graphic element;
 attribute "place" {
 is fm property position;
 value "left" is fm property value subcol left;
 }
 attribute "just" {
 is fm property alignment;
 value "left" is fm property value align left;
}}

corresponds to an erroneous markup ATTLIST such as:

<!ATTLIST picture
 place (left, sright, snear, . . .)
 just (left, aright, acenter, . . .)
>

• FrameMaker defines the table border ruling property for working with tables and the
alignment and vertical alignment properties for working with colspecs and
spanspecs.

If you use the CALS table model for your tables, you should use read/write rules to translate
these properties to the frame, align, and valign attributes on appropriate elements. There
is also a default correspondence between the FrameMaker property values and the defined
value in markup.

If you do not use the CALS table model, you may still choose to translate these FrameMaker
formatting properties to markup attributes. In this case, you must also determine the
translation from property value to defined value.

•If you use the CALS table model, the frame attribute has the following defined values: all,
top, bottom, topbot, sides, and none. The values for the corresponding table border
ruling property are the same as the defined values, except that the topbot defined value
is the top and bottom property value.

The align attribute and the corresponding cell alignment type property have the
following values: left, center, right, justify, and char.

The valign attribute and the corresponding vertical alignment property have the
following values: top, middle, and bottom.

Read/Write Rules Reference 128

i s f m r e f e r e n c e e l e m e n t

Examples

•To use the table border ruling property for a non-CALS table and to set its name tokens,
use this rule:

element "tab" {
 is fm table element;
 attribute "frame" {
 is fm property table border ruling;
 value "all" is fm property value all;
 value "top" is fm property value top;
 value "bottom" is fm property value bottom;
 value "topbot" is fm property value top and bottom;
 value "sides" is fm property value sides;
 value "none" is fm property value none;
}}

•To rename the FrameMaker import by reference or copy property as the refcopy
attribute, and to also change the name tokens, use this rule:

attribute "refcopy" {
 is fm property import by reference or copy;
 value "r" is fm property value reference;
 value "c" is fm property value copy;
}

See also

is fm reference element

For SGML, use the is fm reference element rule to translate an entity in markup to an
element defined on a reference page in a FrameMaker document (a reference element). For XML,
use this rule to translate an internal entity to a reference element. Read/write rules do not support
double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

1.entity "ename" is fm reference element ["fmtag"];

2.reader entity "ename" is fm reference element ["fmtag"];

Related rules “fm property” on page 80

“is fm property” on page 116

Rules mentioned in
synopses

“attribute” on page 46

“element” on page 56

“value” on page 165

i s f m r e f e r e n c e e l e m e n t

Structured Application Developer Reference 129

Arguments

ename An entity name.

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

• For SGML, instead of using this rule to translate an SDATA entity, you can use a parameter
literal of a particular form. For information on how to do so, see Developer Guide, page 332:
Translating SDATA entities as FrameMaker reference elements.

•For XML, SDATA entities are not allowed—this rule translates internal entities.

•You can use the is fm reference element rule within an entity rule at the highest
level to have the translation occur in both directions. Or you can put the entity rule inside a
reader rule to have the translation occur only when reading an SGML document into
FrameMaker. Remember that the SDATA entity must be declared in the DTD in order to use this
rule.

•The FrameMaker element must occur in a flow named Reference Elements. That flow must
be on a reference page of the application’s template file with a name that starts with SGML
Utilities Page—for example, SGML Utilities Page 1 or SGML Utilities
Page Logos. For information on working with reference pages, see the FrameMaker user
guide.

•When FrameMaker encounters references to the specified entity while translating an markup
document to FrameMaker, it copies the appropriate element from its reference page in the
FrameMaker template associated with the structure application. When it encounters an
instance of an element associated with one of the reference pages while writing a FrameMaker
document to markup, it generates an entity reference.

•When you use this rule, the fmtag element must be defined for your FrameMaker documents
and valid in the contexts in which ename occurs. If it is not, the resulting FrameMaker
document is invalid.

Examples

Assume you have an entity named legalese which contains text you need to include in many
places. The entity is too long to be a FrameMaker variable, and you don’t want to treat it as an
entire paragraph. Instead, you can choose to have the entity correspond to a text range element
called LegaleseFragment.

To do so, add the following rule to your rules document:

entity "legalese" is fm reference element "LegaleseFragment";

Read/Write Rules Reference 130

i s f m r u b i e l e m e n t

The entity declaration in your DTD looks like this for XML:

<!ENTITY legalese "">

The entity declaration in your DTD looks like this for SGML:

<!ENTITY legalese SDATA "[]">

Create a reference frame on the reference page of your application which contains the element
“LegaleseFragment” with your boilerplate text. In order for the element to be treated as a “text
range” use the appropriate TextFormatRules for this element in the EDD.

When FrameMaker translates a markup document that contains the following markup:

<para>The rules are &legalese; for this situation.</para>

It produces the following element structure:

See also

is fm rubi element

Use the is fm rubi element rule to identify a markup element that translates to a Rubi
element in FrameMaker. You can choose either to have the same name in both representations or
to change the name during translation. Read/write rules do not support double-byte characters,
so you cannot use this rule to process elements with double-byte characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm rubi element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

Para

LegaleseFragment <some lengthy text . . .>

The rules are

for this situation.

Rules mentioned in
synopses

“entity” on page 61

General information
on this topic

Developer Guide, Chapter 21, Translating Entities and Processing
Instructions

i s f m r u b i g r o u p e l e m e n t

Structured Application Developer Reference 131

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup
element are as follows:

•attribute specifies what to do with a markup element’s attributes.

•fm attribute specifies what to do with attributes present in the FrameMaker representation
of the element but not in the markup representation.

Examples

•To translate the markup element rubitext to the Rubitext element in FrameMaker, use this
rule:

element "rubitext" is fm rubi element;

•To translate it to the MyRubiTextp element, use this rule:

element "rubitext" is fm rubi element "MyRubiText";

See also

is fm rubi group element

Use the is fm rubi group element rule to identify a markup element that translates to
a Rubi group element in FrameMaker. You can choose either to have the same name in both
representations or to change the name during translation. Read/write rules do not support
double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm rubi group element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

Rules mentioned in
synopses

“element” on page 56

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 132

i s f m s y s t e m v a r i a b l e e l e m e n t

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

If you use this rule, the other subrules of the element rule that you can use for the same markup
element are as follows:

•attribute specifies what to do with a markup element’s attributes.

•fm attribute specifies what to do with attributes present in the FrameMaker representation
of the element but not in the markup representation.

Examples

•To translate the markup element rubigroup to the Rubigroup element in FrameMaker, use
this rule:

element "rubigroup" is fm rubi group element;

•To translate it to the MyRubiGroup element, use this rule:

element "rubigroup" is fm rubi group element "MyRubiGroup";

See also

is fm system variable element

Use the is fm system variable element rule to identify a markup element that
translates to a system variable element in FrameMaker. You can choose either to have the same
name in both representations or to change the name during translation. Read/write rules do not
support double-byte characters, so you cannot use this rule to process elements with double-byte
characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm system variable element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

Rules mentioned in
synopses

“element” on page 56

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

i s f m t a b l e e l e m e n t

Structured Application Developer Reference 133

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

•If you use this rule, the other subrules of the element rule that you can use for the same
markup element are:

attribute specifies what to do with a markup element’s attributes.

fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

•This rule does not apply to translating non-element FrameMaker variables.

Examples

To translate the markup element date to the Date system variable element in FrameMaker, use
this rule:

element "date" is fm system variable element;

You specify which system variable to use by adding a rule to the Date element’s definition in the
FrameMaker EDD. For example:

Element (System Variable):Date

System variable format rule

In all contexts.
Use system variable:Current Date (Long)

See also

is fm table element

Use the is fm table element rule to identify a markup element that translates to a table
element in FrameMaker. You can choose either to have the same name in both representations or

Related rules “is fm variable” on page 140

“fm variable” on page 92

Rules mentioned in
synopses

“element” on page 56

General information
on this topic

Developer Guide, Chapter 25, Translating Variables and System Variable
Elements

Read/Write Rules Reference 134

i s f m t a b l e e l e m e n t

to change the name during translation. Read/write rules do not support double-byte characters,
so you cannot use this rule to process elements with double-byte characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm table element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

•If you use the CALS table model, you do not need to use this rule to translate the CALS table
element properly.

•If your markup element declarations for a table element do not include an attribute that
corresponds to the columns property, you must use the fm property rule to specify a
number of columns for the table.

•If you use this rule, the other subrules of the element rule that you can use for the same
markup element are as follows:

–attribute specifies what to do with a markup element’s attributes.

–fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

–fm property specifies what to do with FrameMaker properties associated with the
element.

–reader insert table part element indicates that the software should insert the
indicated table part (table title, table heading, or table footing), even if the markup element
structure or instance does not contain the corresponding element.

Examples

•To translate the markup element gloss to the Gloss table element in FrameMaker, use this
rule:

element "gloss" is fm table element;

•To translate it to the Glossary table element, use this rule:

element "gloss" is fm table element "Glossary";

i s f m t a b l e p a r t e l e m e n t

Structured Application Developer Reference 135

See also

is fm table part element

Use the is fm table part element rule to identify a markup element that translates to
a table part element in FrameMaker, such as a table title element. You can choose either to have
the same name in both representations or to change the name during translation. Read/write
rules do not support double-byte characters, so you cannot use this rule to process elements with
double-byte characters in their names.

Synopsis and contexts

element "gi" {. . .
 is fm table part element ["fmtag"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

part A FrameMaker table part. One of the keywords: title, body, heading,
footing, row, cell.

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

•If you use the CALS table model, you do not need to use this rule to translate elements
representing parts of tables in CALS properly.

•If you map a markup element to a FrameMaker table part element, then the element cannot be
used anywhere in the instance except as that table part. For example, if you have a “title”
element and you use the following rule:

element “title” is fm table title element;”

Then you would not be able to insert a “title” element in a Chapter element.

•If you use this rule, the other subrules of the element rule that you can use for the same
markup element are as follows:

–attribute specifies what to do with a markup element’s attributes.

Rules mentioned in
synopses

“element” on page 56

General information
on this topic

Developer Guide, Chapter 22, Translating Tables

Read/Write Rules Reference 136

i s f m t e x t i n s e t

–fm attribute specifies what to do with attributes present in the FrameMaker
representation of the element but not in the markup representation.

–fm property specifies what to do with FrameMaker properties associated with the
element.

–reader end vertical straddle indicates that the associated table row or cell element
terminates a vertical table straddle. This subrule applies only if part is row or cell.

–reader start new row indicates that the associated table cell element indicates the start
of a new row in the table. This subrule applies only if part is cell.

–reader start vertical straddle indicates that the associated table cell element
starts a vertical table straddle. This subrule applies only if part is cell.

Examples

•To translate the markup element head as the FrameMaker table heading element Head, use this
rule:

element "head" is fm table heading element;

•To translate the markup element dfn as the FrameMaker table cell element Definition, use
this rule:

element "dfn" is fm table cell element;

See also

is fm text inset

Use the is fm text inset rule to translate a declared entity to a text inset in FrameMaker.
While you can translate any entity to a text inset, we suggest you only do this with SDATA entities
when working with SGML. Read/write rules do not support double-byte characters, so you cannot
use this rule to process elements with double-byte characters in their names.

Synopsis and contexts

1.entity "ename" is fm text inset "fname"
[in body_or_ref flow "flowname"];

Rules mentioned in
synopses

“element” on page 56

General information
on this topic

Developer Guide, Chapter 22, Translating Tables

Note: XML: The XML standard does not allow SDATA entities, so you cannot use this
rule for that purpose. FrameMaker translates external text entities as text insets by default,
so this rule is not necessary for that type of entity.

i s f m t e x t i n s e t

Structured Application Developer Reference 137

2.reader entity "ename" is fm text inset "fname"
[in body_or_ref flow "flowname"];

Arguments

ename An entity name.

fname A filename containing the text to include. This file must be a FrameMaker
document or a file of a type for which FrameMaker has a filter, for
example, a MS-Word document.

body_or_ref One of the keywords: body or reference, indicating the type of text
flow in which to find the text to include. You can specify this option only
if fname is a FrameMaker document.

flowname The name of the FrameMaker text flow.

Details

•By default, external text entities in markup are imported as text insets. For the markup to be
valid, the external text entities must be text, XML, or SGML files. In the FrameMaker document,
the text insets use these files as their sources. It is probably most advantageous to retain these
files for the text insets; you do not need to use the is fm text inset rule to import
external text entities as text insets.

•The source file for the text inset must either be a FrameMaker file or a file of a format
FrameMaker can filter automatically. You cannot use an SGML file as the source of the text inset.

• Instead of using this rule to translate an SGML SDATA entity to a text inset, you can use a
parameter literal of a particular form. For information on how to do so, see Developer Guide,
page 330: Translating SDATA entities as FrameMaker text insets.

•You can use the is fm text inset rule within an entity rule at the highest level to have
the translation occur in both directions. Or you can put the entity rule inside a reader rule
to have the translation occur only when reading an SGML document into FrameMaker.

•If fname is not a FrameMaker document, you cannot specify the in body flow or in
reference flow options. In this case, FrameMaker uses all of the text in the file specified
by fname for the text inset.

If fname is a FrameMaker document and you do not specify a flow to use, FrameMaker use the
contents of the main body flow of the specified document.

•Important: flowname must exactly match the name of a flow in the document. If there is no
match for the type of flow you specify (body or reference), then a crash will result. If there is
more than one matching flow, FrameMaker uses the first matching flow.

•By default, the software reformats the text inset to conform to the format rules of the document
containing the text inset. If the source for the text inset has element structure, FrameMaker also
retains that element structure.

Read/Write Rules Reference 138

i s f m t e x t i n s e t

You can confirm this behavior with the reformat using target document catalogs
rule. You can change this behavior using the subrules reformat as plain text or
retain source document formatting.

•FrameMaker requires that a structured flow have exactly one highest-level element. For this
reason, you cannot use a single text inset to include multiple elements at the top level of the
inset. You must use multiple text insets for this purpose.

•FrameMaker puts an end-of-paragraph symbol after a text inset. For this reason, you cannot use
a text inset to insert a range of text inside a single paragraph. To do so, you can translate the
entity either as a FrameMaker variable (with the is fm variable rule) or as a reference
element (with the is fm reference element rule).

Examples

Assume you have declared an SGML SDATA entity. You also have a single paragraph of boilerplate
text to be used in your documents. You can place this text on a reference page in a text column
with a flow called BoilerPlate in the FrameMaker template for your SGML application. If that
template is the file template.doc, you could use this rule to translate occurrences of the
boiler entity to a text inset in corresponding FrameMaker documents:

entity "boiler"
 is fm text inset "template.doc"

in reference flow "BoilerPlate";

See also

Related rules “reformat as plain text” on page 154

“reformat using target document catalogs” on page 155

“retain source document formatting” on page 156

“is fm reference element” on page 128

“is fm variable” on page 140

Rules mentioned in
synopses

“entity” on page 61

“reader” on page 153

General information
on this topic

Developer Guide, Chapter 21, Translating Entities and Processing
Instructions

i s f m v a l u e

Structured Application Developer Reference 139

is fm value

Use the is fm value rule to translate the value of a markup attribute to a particular choice for
a FrameMaker choice attribute. The attribute’s declared value must be a name token group or
NOTATION.

Synopsis and contexts

1.value "token" is fm value "val";

2.attribute "attr" {. . .
 value "token" is fm value "val";
. . .}

3.element "gi" {. . .
 attribute "attr" {. . .
 value "token" is fm value "val";
. . .} . . .}

Arguments

token A token in a name token group.

val An allowed value for a FrameMaker choice attribute.

attr The name of a markup attribute.

gi A markup element’s name (generic identifier).

Details

Use this rule when the corresponding markup attribute translates to a choice attribute in
FrameMaker. If the markup attribute translates to a FrameMaker property, you need to use the is
fm property value rule to specify the correspondence between markup tokens and
FrameMaker property values.

Examples

•If the token list (r | b | g) is used by multiple attributes, you can use these rules to
translate the individual tokens consistently:

value "r" is fm value "Red";
value "b" is fm value "Blue";
value "g" is fm value "Green";

Read/Write Rules Reference 140

i s f m v a r i a b l e

•If the token list (r | b | g) is used by several attributes as above but by the bird element
differently, you can add this rule to the above rules:

element "bird" {is fm element;
] attribute "species" {
 value "r" is fm value "Robin";
 value "b" is fm value "Blue Jay";
 value "g" is fm value "Goldfinch";
}}]

See also

is fm variable

Use the is fm variable rule to translate a declared markup text entity to a FrameMaker non-
element variable.

Synopsis and contexts

1.entity "ename" is fm variable ["var"];

2.reader entity "ename" is fm variable ["var"];

Arguments

ename An entity name.

var A FrameMaker variable name.

Details

You can use the is fm variable rule within an entity rule at the highest level to have the
translation occur in both directions. Or you can put the entity rule inside a reader rule to have
the translation occur only when reading a markup document into FrameMaker.

Examples

•To translate the markup element v to a non-element FrameMaker variable of the same name:

entity "v" is fm variable;

Related rules “is fm property value” on page 126

Rules mentioned in
synopses

“attribute” on page 46

“element” on page 56

“value” on page 165

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

i s p r o c e s s i n g i n s t r u c t i o n

Structured Application Developer Reference 141

•To translate the FrameMaker variable Licensor to the markup element lic, use this rule:

entity "lic" is fm variable "Licensor";

See also

is processing instruction

On export, you use the is processing instruction rule to tell FrameMaker to create
processing instructions for all non-element markers or for non-element markers of a particular
type. By default, FrameMaker creates processing instructions for all non-element markers. You
have the option of discarding non-element markers; you might use this rule in conjunction with
the drop rule when you want to discard some but not all non-element markers.

Synopsis and contexts

fm marker ["type1", . . ., "typen"] is processing instruction;

Arguments

typei A FrameMaker marker type, such as Index or Type 22.

Details

If you do not supply any typei arguments, this rule applies to all non-element markers other
than markers of the type reserved by FrameMaker for storing processing instructions, PI entities,
and external data entities. (By default, the reserved marker types are DOC PI, DOC Entity
Reference, and DOC Comment.)

Examples

To discard all nonelement markers other than Index markers, use these rules:

fm marker "Index" is processing instruction;
fm marker drop;

See also

Related rules “fm variable” on page 92

“is fm system variable element” on page 132

Rules mentioned in
synopses

“entity” on page 61

General information
on this topic

Developer Guide, Chapter 25, Translating Variables and System Variable
Elements

Rules mentioned in
synopses

“fm marker” on page 79

Read/Write Rules Reference 142

l i n e b r e a k

line break

Use the line break rule to tell FrameMaker about any limits on the length of lines in a markup
file it generates. You also use it to tell the software whether or not to interpret line breaks in a
markup document as FrameMaker paragraph breaks within elements.

Synopsis and contexts

1.reader line break is mode;

2.writer line break is mode;

3.element "gi" {. . .
 reader {. . .
 line break is mode;
. . .} . . .}

4.element "gi" {. . .
 writer {. . .
 line break is mode;
. . .} . . .}

Arguments

mode For writer: n characters (where n is a positive integer in C syntax).
For reader: one of forced return or space.

gi A markup element’s name (generic identifier).

Details

•This rule can be used at the highest level to set a default or within an element rule to set line
breaks for only that element.

•On export, FrameMaker behaves as follows:

When exporting the text of a paragraph, it ignores line breaks. It includes a space separating
the two words on either side of a line break and attempts to avoid generating lines longer than
n characters (the default is 80). It maintains a counter indicating how many characters it has
placed on a single line. After this counter reaches n-10, it changes the next data character
space to a record end.

It generates a markup record end at the end of every paragraph and flow in the FrameMaker
document.

If you want a start-tag for an element and its contents to appear on the same line in the markup
document, you must write aa structure API client.

General information
on this topic

Developer Guide, Chapter 26, Translating Markers

m a r k e r t e x t i s

Structured Application Developer Reference 143

•On import you have control over record ends not ignored by the underlying parser. Within a
reader rule, mode can be one of the following:

forced return informs FrameMaker that a line break within a text segment should be
converted to a forced return.

space informs FrameMaker that a line break within a text segment should be treated as a
space. This is the default.

Examples

Line breaks may need to be treated differently within different elements. For example, a line break
within an example element may need to be preserved on import, while a line break within a par
element may be a word break:

element "example" reader line break is forced return;
element "par" reader line break is space;

marker text is

Use the marker text is rule to indicate whether the text of a marker element should become
an attribute value or the content of the corresponding markup element. Note that the markup
element must not be declared as empty if you want the marker text to be translated as content.

Synopsis and contexts

element "gi" {. . .
 is fm marker element ["fmtag"];
 marker text is attr_or_content;
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

attr_or_content One of the keywords: attribute or content.

Details

•By default, FrameMaker translates a marker element in FrameMaker to a markup empty element.
It writes the marker text as the value of the markup element’s text attribute.

•Instead of the default, you can have FrameMaker translate a marker element to a markup
element whose content model is #PCDATA. The marker text becomes the element’s content.

Read/Write Rules Reference 144

m a r k e r t e x t i s

Examples

•To state that the markup element mkr corresponds to the FrameMaker element Marker and to
confirm the default behavior, you can use this rule:

element "mkr" {
 is fm marker element "Marker";
 marker text is attribute;
}

With this rule, the FrameMaker element definition:

Element (Marker): Marker

corresponds to the DTD declarations:

<!ELEMENT mkr EMPTY>
<!ATTLIST mkr
text CDATA #IMPLIED
type CDATA #IMPLIED>

In this case, if the FrameMaker document contains an instance of the Marker element whose
marker text is “Some marker text” and whose type is Type 22, the markup output includes:

<mkr text="Some marker text" type="Type 22"/>

•To state that the markup element mkr corresponds to the FrameMaker element Marker but
that the marker text should become element content in markup, you can use this rule:

element "mkr" {
 is fm marker element "Marker";
 marker text is content;
}

With this rule, the FrameMaker element definition:

Element (Marker): Marker

corresponds to the DTD declarations:

<!ELEMENT mkr (#PCDATA)>
<!ATTLIST mkr type CDATA #IMPLIED>

In this case, if the FrameMaker document contains an instance of the Marker element whose
marker text is “Some marker text” and whose type is Type 22, the output includes:

<mkr type="Type 22">
Some marker text
</mkr>

See also

Rules mentioned in
synopses

“element” on page 56

“is fm marker element” on page 115

n o t a t i o n i s

Structured Application Developer Reference 145

notation is

Use the notation is rule only in an element rule for a graphic or equation element, to
provide information the software needs when writing a document containing graphics and
equations to markup. FrameMaker uses this rule to determine the data content notation name to
include in entity declarations it generates.

Synopsis and contexts

1.element "gi" {
 is fm equation element ["fmtag"];
 writer equation notation is "notation";
. . .}}

2.element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame notation is "notation";
. . .}}

3.element "gi" {
 is fm graphic element ["fmtag"];
 writer facet "facetname" notation is "notation";
. . .}}

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

type One of the rules anchored frame, facet, or equation. If facet,
you must also supply the facetname argument.

If type is equation, the rule applies to equation elements.

If type is facet, the rule applies to a graphic element that contains only
a single facet with the name specified by facetname. This occurs when
the graphic element is an anchored frame containing only a single
imported graphic object whose original file was in the facetname
graphic format. You can use this rule with type set to facet multiple
times if you want the software to treat several file formats differently.

General information
on this topic

Developer Guide, Chapter 26, Translating Markers

Read/Write Rules Reference 146

n o t a t i o n i s

If type is anchored frame, the rule applies to a graphic element
under all other circumstances.

facetname

A facet name. The string for the facetname must exactly match the string
for the facetname in the FrameMaker document. To determine a graphic
file’s facetname, select the graphic, click Graphics>ObjectProperties, and
observe the facetname in the dialog box.

notation A string representing a data content notation name.

Details

By default, FrameMaker uses the first eight characters of the name of the facet it exports as the
data content notation. If the graphic or equation has only internal FrameMaker facets, the
software uses CGM as the data content notation.

Examples

Assume your end users use the af graphic element within FrameMaker, creating the graphics
using FrameMaker tools, but want to store them in TIFF format on export. Furthermore, you want
to name the files based on the FrameMaker document’s name, but with an extension of .gr. You
can accomplish this with the following rule:

element "af" {
 is fm graphic element;
 writer anchored frame {
 notation is "TIFF";
 export to file "$(docname).gr";
}}

If you export the FrameMaker file intro.doc, the software writes the following entity
declaration for the first instance of the af element that it finds:

<!ENTITY af1 SYSTEM "intro1.gr" NDATA TIFF>

See also

Related rules “convert referenced graphics” on page 51

“entity name is” on page 63

“export to file” on page 69

“specify size in” on page 157

o u t p u t b o o k p r o c e s s i n g i n s t r u c t i o n s

Structured Application Developer Reference 147

output book processing instructions

By default, when FrameMaker converts a FrameMaker book to markup, it puts ?FM book? and
?FM document? processing instructions in the markup document to indicate where the
individual files in the FrameMaker documents began. You use the output book processing
instructions rule to confirm or change this behavior.

Synopsis and contexts

writer [do not] output book processing instructions;

ArgumentsNone.

Details

If you use the generate book rule to tell FrameMaker to use elements to identify book
components when reading a markup document, you might choose to not have it output
processing instructions when writing the book to markup. In this case, use this rule:

writer do not output book processing instructions;

See also

Rules mentioned in
synopses

“element” on page 56

“is fm graphic element” on page 114

“is fm equation element” on page 111

“anchored frame” on page 43

“equation” on page 65

“facet” on page 74

“writer” on page 168

General information
on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

Related rules “generate book” on page 93

Read/Write Rules Reference 148

p r e s e r v e f m e l e m e n t d e f i n i t i o n

preserve fm element definition

Use the preserve fm element definition rule to tell FrameMaker, when it is updating
an EDD from a revised DTD, not to update the definition of a set of FrameMaker elements and
their attributes on the basis of the DTD and other rules.

Synopsis and contexts

reader {. . .
 preserve fm element definition "fmtag1"[, . . ., "fmtagN"];
. . .}

Arguments

fmtagi

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

FrameMaker uses the preserve fm element definition rule only when updating an
EDD from a DTD. By default, when it updates an existing EDD, the software changes the definitions
of FrameMaker elements to reflect the new DTD and all read/write rules. You may not want the
definition of the FrameMaker element to change. For example, if one of your rules is to unwrap
the element body, then any element with a definition that includes body will be modified
directly include the contents of body instead of including body.

Examples

•Assume you have the rule:

fm element "Body" unwrap;

and the element definitions:

Element (Container): Figure1
 General rule: Caption, Body

Element (Container): Figure2
 General rule: Body, Footer

Element (Container): Body
 General rule: Header, Line+

The corresponding declarations are:

<!ELEMENT figure1 (caption, header, line+)>
<!ELEMENT figure2 (header, line+, footer)>

p r e s e r v e l i n e b r e a k s

Structured Application Developer Reference 149

If you update the EDD containing the preceding definitions and use as input the DTD with the
preceding declarations, FrameMaker replaces the definitions of Figure1 and Figure2 with:

Element (Container): Figure1
General rule: Caption, Header, Line+

Element (Container): Figure2
General rule: Header, Line+, Footer

If you wish to retain the original definitions of Figure1 and Figure2 in the revised EDD,
include this rule:

reader preserve fm element definition "Figure1", "Figure2";

•Suppose you want to use a structure API client to reverse the order of child elements in
corresponding markup and FrameMaker elements. For example, assume you have the
declaration:

<!ELEMENT ex (a, b)>

and the FrameMaker element definition:

Element (Container): Ex
General rule: B, A

If you have no rules and update the EDD in this situation, FrameMaker updates the definition
of Ex to correspond to the markup declaration. To suppress this change, use this rule:

reader preserve fm element definition "Ex";

See also

preserve line breaks

Use the preserve line breaks rule to tell FrameMaker to keep line breaks for an element
when importing and exporting markup documents. When importing markup, it translates every
RE in the element as a forced return. When exporting markup, it translates forced returns as RE
characters, and the line ends FrameMaker creates when automatically wrapping the text as non-
RE line breaks in the markup file. This is useful for elements that use RE characters to insert white
space in an element’s content.

Synopsis and contexts

element {. . .
 preserve line breaks ;
. . .}

ArgumentsNone

Related rules “drop” on page 53

“unwrap” on page 162

Read/Write Rules Reference 150

p r e s e r v e l i n e b r e a k s

Details

•For an element using this rule, the software writes a an RE (line break) immediately after the
open tag and immediately before the close tag.

•For an element using this rule, on export, FrameMaker writes a space character entity reference
and an RE (line break) for each necessary line break in the markup file. See the “line break” rule
for information on how FrameMaker determines where to put these line breaks by default.
Forced returns (shift-return) translate as RE characters (line breaks) in the markup file.

•For SGML, the space character entity uses the ISO entities reference (&#SPACE).

•For XML, no entity reference is written for the space character.

•For XML, this rule adds the xml:space attribute to the affected elements, with a value of
preserved. This attribute directs XML applications to respect the whitespace characters in
the element’s content. On import this attribute is retained—if the EDD for your template does
not specify an xml:space attribute for the given element, then that attribute will be invalid.
You can either define this attribute in your EDD, or use read/write rules to drop the attribute
on import.

•For export and import to have the same results, preserve line breaks must be specified
for the same elements. For example, assume you use preserve line breaks on export
for an element named Code. FrameMaker writes a space character entity reference and an RE
(line break) when a line approaches the maximum line length, and it writes RE characters (line
breaks) for forced returns. Now assume you remove preserve line breaks from the rules for the
Code element. On import, FrameMaker will translate as spaces the space character entity
reference/RE pairs, and as spaces any RE characters (line breaks) not removed by the parser
(default behavior). Thus the forced returns (shift-return) are lost and the imported file is not the
same as the exported file.

•When importing markup, preserve line breaks overrides the line break is space
rule, if that rule is set. On import, preserve line breaks has the same effect for the
specified element as the line break is forced return rule.

Examples

The following rule preserves line breaks on import and export for the element named code:

fm element "code" {
is fm element "Code";
preserve line breaks;
}

See also

Rules mentioned in
synopses

“element” on page 56

Related rules “line break” on page 142

p r o c e s s i n g i n s t r u c t i o n

Structured Application Developer Reference 151

processing instruction

Use the processing instruction rule to drop processing instructions that are not
recognized by FrameMaker. By default, the software stores such processing instructions as the
marker text in non-element markers of type DOC PI and DOC Comment.

Synopsis and contexts

processing instruction drop;

ArgumentsNone

Details

•When you translate a markup document to FrameMaker and the software encounters an
unrecognized processing instruction such as:

<?mypi?>

it stores the processing instruction as the text of a non-element DOC PI marker by default,
with the following as the marker text:

mypi

When you translate a FrameMaker document to markup, it outputs the corresponding
processing instruction if it finds a non-element DOC PI marker with text in that format.

•This rule does not affect how FrameMaker treats the processing instructions it does recognize
for books, book components, and other non-element markers.

Examples

To discard all unrecognized processing instructions, use this rule:

processing instruction drop;

See also

Rules mentioned in
synopses

“drop” on page 53

General information
on this topic

Developer Guide, Chapter 21, Translating Entities and Processing
Instructions

Read/Write Rules Reference 152

p r o p o r t i o n a l w i d t h r e s o l u t i o n i s

proportional width resolution is

Use the proportional width resolution is rule to change the number used as the
total for proportional column widths in tables. By default, if FrameMaker writes proportional
columns widths, those widths add to 100.

Synopsis and contexts

writer proportional width resolution is "value";

Arguments

value An integer indicating the total for proportional column width values.

Details

Using this rule does not indicate that FrameMaker uses proportional widths, only that if
FrameMaker writes proportional widths, then those widths add to value instead of 100. To tell
FrameMaker to use proportional widths, you must include the use proportional widths
rule.

Examples

•Assume you do not use the proportional width resolution is rule, but have this
rule:

writer use proportional widths;

Further assume you have a 5-column table whose first two columns are 1 inch wide and whose
last three columns are 2 inches wide. If the column widths are written to the colwidth
attribute of the markup table element, then FrameMaker creates this start-tag for that table:

<table colwidth="12.5* 12.5* 25* 25* 25*">

•Assume you have the same table as in the last example and you use this rule:

writer {
 use proportional widths;
 proportional width resolution is "8";
}

FrameMaker writes this start-tag for the table:

<table colwidth="1* 1* 2* 2* 2*">

•Assume you have the same table as in the previous examples and you use this rule:

writer proportional width resolution is "8";

That is, you do not also have the use proportional widths rule. In this case,
FrameMaker ignores the “proportional width resolution” rule and writes this start-tag for the
table:

<table colwidth="1in 1in 2in 2in 2in">

p u t e l e m e n t

Structured Application Developer Reference 153

See also

put element
See “generate book” on page 93.

reader

The reader rule indicates a rule that applies only on import to FrameMaker. It can be used at the
highest level to set a default, or within an element rule to specify information particular to that
element.

Synopsis and contexts

1.element "gi" {. . .
 reader {. . .
 subrule;
. . .} . . .}

2.reader {. . .
 subrule;
. . .}

Arguments

gi A markup element’s name (generic identifier).

subrule Valid subrules:

character map changes how FrameMaker translates between
individual characters in the markup and FrameMaker character sets.
Allowed only at the highest level.

drop content imports only the element itself, not its contents.
Allowed only within an element rule.

end vertical straddle specifies the end of a vertical straddle in a
table. Allowed only within an element rule for a table cell or row
element.

entity specifies the treatment of an entity in FrameMaker. Allowed only
at the highest level.

Related rules “use proportional widths” on page 164

General information
on this topic

Developer Guide, Chapter 22, Translating Tables

Read/Write Rules Reference 154

r e f o r m a t a s p l a i n t e x t

generate book specifies how to identify book components in a
markup document. Allowed only at the highest level.

insert table part element specifies that FrameMaker should
generate a table part (table title, table heading, or table footing) even if
there is no content for that part. Allowed only within an element rule for
a table element.

line break changes the treatment of line breaks in the markup
instance which are not handled by the parser on import. Allowed at the
highest level or within an element rule.

preserve fm element definition instructs the software not to
modify a FrameMaker element definition when updating an existing EDD.
Allowed only at the highest level.

start new row specifies that this table cell element starts a new row
in the table. Allowed only within an element rule for a table row
element.

start vertical straddle specifies the start of a vertical straddle
in a table. Allowed only within an element rule for a table cell element.

table ruling style is specifies the ruling style to apply to all
tables. Allowed only at the highest level.

Examples

To change the default ruling style for tables:

reader table ruling style is "thick";

reformat as plain text

Use the reformat as plain text rule in an entity rule for an entity you want to translate
as a text inset in FrameMaker. This specifies that the software should remove any element
structure from the text inset and reformat the text using the format rules of the document into
which the text inset is placed. You specify the other choices for formatting text insets with the
rules reformat using target document catalogs and retain source
document formatting.

Synopsis and contexts

1.entity "ename" {
 is fm text inset “fname”;
 reformat as plain text;
. . .}

r e f o r m a t u s i n g t a r g e t d o c u m e n t c a t a l o g s

Structured Application Developer Reference 155

2.reader entity "ename" {
 is fm text inset “fname”;
 reformat as plain text;
. . .}

Arguments

ename An entity name.

See also

reformat using target document catalogs

Use the reformat using target document catalogs rule in an entity rule for an
entity you want to translate as a text inset in FrameMaker. This specifies that the software should
retain any element structure from the text inset and reformat the text using the format rules of
the document into which the text inset is placed. This is the default behavior for entities treated
as text insets. You specify the other choices for formatting text insets with the rules reformat
as plain text and retain source document formatting.

Synopsis and contexts

1.entity "ename" {
 is fm text inset “fname”;
 reformat using target document catalogs;
. . .}

2.reader entity "ename" {
 is fm text inset “fname”;
 reformat using target document catalogs;
. . .}

Arguments

ename An entity name.

Related rules “reformat using target document catalogs,” next

“retain source document formatting” on page 156

Rules mentioned in
synopses

“entity” on page 61

“is fm text inset” on page 136

General information
on this topic

Developer Guide, Chapter 21, Translating Entities and Processing
Instructions

Read/Write Rules Reference 156

r e t a i n s o u r c e d o c u m e n t f o r m a t t i n g

See also

retain source document formatting

Use the retain source document formatting rule in an entity rule for an entity you
want to translate as a text inset in FrameMaker. This specifies that the software should remove any
element structure from the text inset, but keep the formatting of the source document, rather
than reformatting it according to the rules of the document that contains the text inset. You
specify the other choices for formatting text insets with the rules reformat as plain text
and reformat using target document catalogs.

Synopsis and contexts

1.entity "ename" {
 is fm text inset “fname”;
 retain source document formatting;
. . .}

2.reader entity "ename" {
 is fm text inset “fname”;
 retain source document formatting;
. . .}

Arguments

ename An entity name.

See also

Related rules “reformat as plain text,” (the previous section)

“retain source document formatting” on page 156

Rules mentioned in
synopses

“entity” on page 61

“is fm text inset” on page 136

General information
on this topic

Developer Guide, Chapter 21, Translating Entities and Processing
Instructions

Related rules “reformat as plain text” on page 154

“reformat using target document catalogs,” (the previous section)

Rules mentioned in
synopses

“entity” on page 61

“is fm text inset” on page 136

General information
on this topic

Developer Guide, Chapter 21, Translating Entities and Processing
Instructions

s p e c i f y s i z e i n

Structured Application Developer Reference 157

specify size in

Use the specify size in rule only in an element rule for a graphic or equation element,
to provide information the software needs when writing a document containing graphics and
equations to markup. This rule determines which of the dpi or the impsize attribute
FrameMaker uses to indicate the size of a graphic or equation. The rule also indicates what units
are used for impsize and the resolution in which sizes are reported is always 0.001. If there is no
specify size in rule, FrameMaker uses the dpi attribute.

Synopsis and contexts

1.element "gi" {
 is fm equation element ["fmtag"];
 writer equation specify size in units
. . .}

2.element "gi" {
 is fm graphic element ["fmtag"];
 writer anchored frame specify size in units
. . .}

3.element "gi" {
 is fm graphic element ["fmtag"];
 writer facet "facetname" specify size in units
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

facetname

A facet name. The string for the facetname must exactly match the string
for the facetname in the FrameMaker document. To determine a graphic
file’s facetname, select the graphic, click Graphics>ObjectProperties, and
observe the facetname in the dialog box.

units The units in which the size of the element is coded. Valid values: cm, cc,
dd, in, mm, pc, pi, or pt.

Read/Write Rules Reference 158

s p e c i f y s i z e i n

Details

•Use this rule when you export FrameMaker documents to markup documents.

•FrameMaker reports the size of the elements in the indicated units, at a fixed resolution of 0.001.

Examples

•Suppose your document has a graphic element, graph, containing an Anchored Frame sized to
fit a FrameMaker-drawn circle with a diameter of 3.15 centimeters. Given the rule:

element "graph" {
 is fm graphic element;
 writer anchored frame specify size in cm;
}

FrameMaker generates the attribute height="3.150cm" and attribute
width="3.150cm".

•With the same graphic, if the rule is:

element "graph" {
 is fm graphic element;
 writer anchored frame specify size in mm;
}

FrameMaker generates height="31.500mm" and attribute width="31.500mm".

See also

Related rules “convert referenced graphics” on page 51

“entity name is” on page 63

“export to file” on page 69

“specify size in” on page 157

Rules mentioned in
synopses

“element” on page 56

“is fm graphic element” on page 114

“is fm equation element” on page 111

“anchored frame” on page 43

“equation” on page 65

“facet” on page 74

“writer” on page 168

General information
on this topic

Developer Guide, Chapter 23, Translating Graphics and Equations

s t a r t n e w r o w

Structured Application Developer Reference 159

start new row

Use the start new row rule in the element rule for a table cell element to specify that an
occurrence of the table cell element indicates that FrameMaker should start a new table row to
contain that cell.

Synopsis and contexts

element "gi" {. . .
 is fm table cell element ["fmtag"];
 reader start new row ["name"];
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

name An optional name to identify this row

Details

•Your DTD may contain elements that you want to format as tables in FrameMaker even though
the element hierarchy does not match that required by FrameMaker for tables. In such a
situation, the nature of the element hierarchy may indicate where new rows should begin.

•In some cases, you can use a rule such as the following to indicate that a table cell starts a new
row:

element "gi" {
 is fm table cell element;
 fm property column number value is "1";
}

With this rule, when FrameMaker encounters a gi element, it tries to place that element in the
first column of the current table row. If there is already a cell in the first column of the current
row, the software automatically creates a new row for gi. In this situation, you would not also
need the start new row rule.

However, if there is not already a cell in the first column of the current row when the software
encounters a gi element, it puts the gi cell in the current row and does not create a new row
for it. This can happen if the table has a vertical straddle in the first column. When FrameMaker
encounters a gi element on a row that should have a vertical straddle in the first column, with
only the rule above, the software puts the gi element in the same row (because that cell isn’t

Read/Write Rules Reference 160

s t a r t v e r t i c a l s t r a d d l e

occupied). To guarantee a new row starts with the occurrence of gi instead, you should use
this rule:

element "gi" {
 is fm table cell element;
 fm property column number value is "1";
 reader start new row;
}

Examples

For a complete example using the start new row rule, see Developer Guide, page 354:
Omitting explicit representation of table parts.

See also

start vertical straddle

Use the start vertical straddle rule inside the element rule for a table cell to specify
that an occurrence of the cell element indicates the start of a vertical straddle.

Synopsis and contexts

element "gi" {. . .
 is fm table cell element ["fmtag"];
 reader start vertical straddle "name";
. . .}

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

name A name associated with a table straddle. This name must occur in at least
one corresponding end vertical straddle rule.

Related rules “start vertical straddle,” next

Rules mentioned in
synopses

“element” on page 56

“is fm table part element” on page 135

“reader” on page 153

General information
on this topic

Developer Guide, Chapter 22, Translating Tables

t a b l e r u l i n g s t y l e i s

Structured Application Developer Reference 161

Details

•Your DTD may contain elements that you want to format as tables in FrameMaker even though
the element hierarchy does not match that required by FrameMaker for tables. In such a
situation, the nature of the element hierarchy may indicate where vertical straddles should
begin and end. The start vertical straddle rule allows you to specify such elements.

•Use this rule in conjunction with the end vertical straddle rule. That rule specifies a
table cell or row that indicates the end of the vertical straddle started by this rule.

•You give a name to the particular straddle started by gi. In the corresponding end vertical
straddle rule or rules, you use the same name to specify that the element ends this vertical
straddle.

Examples

For an example of the use of this rule, see Developer Guide, page 357: Creating parts of a table
even when those parts have no content.

See also

table ruling style is

You use the table ruling style is rule to specify the ruling style for all tables.

Synopsis and contexts

reader table ruling style is "style";

Arguments

style A ruling style for all tables. One of the keywords: None, Double, Medium,
Thick, Thin, or Very Thin.

Details

•This rule specifies the ruling style applied to all tables. When working with the CALS table model,
you can use the frame, colsep, and rowsep attributes to determine whether or not
portions of a table have rulings. However, these attributes have boolean values. Consequently,
you can only use them to say whether or not a table has a ruling, not what type of ruling to

Related rules “start new row,” (the previous section)

Rules mentioned in
synopses

“element” on page 56

“is fm table part element” on page 135

“reader” on page 153

General information
on this topic

Developer Guide, Chapter 22, Translating Tables

Read/Write Rules Reference 162

u n w r a p

use if it does have one. In this situation, you could use the table ruling style is rule
to set the ruling style for all tables.

•FrameMaker considers the ruling style set with this rule as custom ruling. If you re-import
formats to the FrameMaker document and remove overrides, the ruling style set with this rule
will remain. If possible, therefore, you should use table formats to specify ruling styles.

Examples

To specify that all tables should use the Thick ruling style, use this rule:

reader table ruling style is "Thick";

See also

unwrap

Use the unwrap rule when you do not want to preserve an element on translation from one
representation to another. If you specify that FrameMaker should unwrap an element (gi or
fmtag), the software places the element’s content as part of the content of the element’s parent
element, but does not make an element for gi or fmtag itself.

Synopsis and contexts

1.element "gi" unwrap;

2.fm element "fmtag" unwrap;

Arguments

gi A markup element’s name (generic identifier).

fmtag

A FrameMaker element tag. These names are case-sensitive and must
appear in the rule the same as in the EDD.

Details

•When FrameMaker encounters an element to be unwrapped, it does not insert a corresponding
element into the document it is creating. Instead, it inserts the content of an unwrapped
element.

•If you use this rule to unwrap FrameMaker cross-reference elements or system variable elements,
those elements become text in the resulting markup document.

•When importing a DTD or exporting an EDD, FrameMaker does not generate an element
definition or declaration corresponding to an element that is unwrapped. Furthermore, when

General information
on this topic

Developer Guide, Chapter 22, Translating Tables

u s e p r o c e s s i n g i n s t r u c t i o n s

Structured Application Developer Reference 163

an element uses the unwrapped element in its definition, the software replaces the name of
the unwrapped element with its content model or general rule in the general rule or content
model of the element that used it or replaces it with the list of its children in an exception. You
can change this behavior by using the preserve fm element definition rule.

•You cannot use the unwrap rule with any other subrule of the element or fm element rules.
For example, you cannot specify that a markup element both be unwrapped and be translated
to a FrameMaker element.

Examples

•A markup document used to produce both the student’s and teacher’s edition of a textbook
might include an ANSWER element used for answers to exercises. In producing the teacher’s
edition of the textbook, this element might be unwrapped into FrameMaker as text. A structure
API client could associate this element with the condition tag Answer.

•Suppose a DTD contains the following declarations:

<!ELEMENT wrapper - - (a, b)>
<!ELEMENT x - - (p, q, wrapper, r)>
<!ELEMENT y - - (#PCDATA) +(wrapper)>

and you have this rule:

element "wrapper" unwrap;

FrameMaker would generate the following element definitions:

Element (Container): X
General rule: P, Q, A, B, R

Element (Container): Y
General rule: <TEXT>
Inclusions: A, B

See also

use processing instructions
See “generate book” on page 93.

Related rules “preserve fm element definition” on page 148

“drop” on page 53

Rules mentioned in
synopses

“element” on page 56

“fm element” on page 77

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

Read/Write Rules Reference 164

u s e p r o p o r t i o n a l w i d t h s

use proportional widths

Use the use proportional widths rule to indicate that when FrameMaker writes the width
of table columns, it should use proportional measurements. By default, if the software writes the
width of table columns, it uses absolute measurements.

Synopsis and contexts

writer use proportional widths;

ArgumentsNone.

Details

•If you use this rule when writing an attribute indicating the width of one or more columns in a
table, FrameMaker writes values such as "25*", where the asterisk * indicates a proportional
measurement, instead of values such as "0.25in" which are absolute measurements.

•If you use this rule, you can also use the proportional width resolution is rule to
determine what number the values add to. Without the proportional width
resolution is rule, the proportional measurements add to 100.

Examples

•Assume you do not use the proportional width resolution is rule, but have this
rule:

writer use proportional widths;

Further assume you have a 5-column table whose first two columns are 1 inch wide and whose
last three columns are 2 inches wide. If the column widths are written to the colwidth
attribute of the markup table element, then FrameMaker creates this start-tag for that table:

<table colwidth="12.5* 12.5* 25* 25* 25*">

•Assume you have the same table as in the last example and you use this rule:

writer {
 use proportional widths;
 proportional width resolution is "8";
}

FrameMaker writes this start-tag for the table:

<table colwidth="1* 1* 2* 2* 2*">

See also

Related rules “proportional width resolution is” on page 152

General information
on this topic

Developer Guide, Chapter 22, Translating Tables

v a l u e

Structured Application Developer Reference 165

value

Use the value rule to translate the value of a markup attribute to the value of a particular
FrameMaker property or to a particular choice for a FrameMaker choice attribute. The attribute’s
declared value must be a name token group or NOTATION and a name token group.

Synopsis and contexts

1.value "token" subrule;

2.attribute "attr" {. . .
 value "token" subrule;
 . . .}

3.element "gi" {. . .
 attribute "attr" {. . .
 value "token" subrule;
 . . .} . . .}

Arguments

token A token in a name token group.

attr The name of a markup attribute.

gi A markup element’s name (generic identifier).

subrule One of the following:

is fm value translates a markup value to a particular choice for a
FrameMaker choice attribute.

is fm property value translates a markup value to the value of a
particular FrameMaker property.

Details

The rule can be used at the highest level to set a default, within a highest-level attribute rule to
set the default for all attributes that use that token, or within an element rule to set the default
for a particular token within a particular attribute in that element.

Examples

•To rename the FrameMaker import by reference or copy property as the refcopy
attribute, and to also change the name tokens, use this rule:

attribute "refcopy" {
 is fm property import by reference or copy;
 value "r" is fm property value reference;
 value "c" is fm property value copy;
}

Read/Write Rules Reference 166

v a l u e i s

•If the token list (r | b | g) is used by multiple attributes, you can use these rules to
translate the individual tokens consistently:

value "r" is fm value "Red";
value "b" is fm value "Blue";
value "g" is fm value "Green";

•If the token list (r | b | g) is used by several attributes as above, but by the bird element
differently, you can add this rule to the above rules:

element "bird" {is fm element;
] attribute "species" {
 value "r" is fm value "Robin";
 value "b" is fm value "Blue Jay";
 value "g" is fm value "Goldfinch";
 }}]

See also

value is
See “fm property” on page 80.

write structured document

By default, when you save a FrameMaker document to markup, the software writes out the
document instance, any declarations for the internal DTD subset, and a DOCTYPE statement
which references the external DTD subset, but (for SGML) not an SGML declaration nor the
declarations within the external DTD subset. If an XML structure application (in structapp.fm)
specifies a Schema file for output, that file is also written with the XML document. You can use
this rule to confirm the default behavior.

Synopsis and contexts

writer write structured document;

ArgumentsNone.

Related rules “is fm value” on page 139

“is fm element” on page 110

Rules mentioned in
synopses

“attribute” on page 46

“element” on page 56

General information
on this topic

Developer Guide, Chapter 20, Translating Elements and Their Attributes

w r i t e s t r u c t u r e d d o c u m e n t i n s t a n c e o n l y

Structured Application Developer Reference 167

Details

You cannot use the write structure document rule and the write sgml document
instance only rule in the same read/write rules file.

See also

write structured document instance only

By default, when you save a FrameMaker document to markup, the software writes out the
document instance, any declarations for the internal DTD subset, and a DOCTYPE statement
which references a file for the external DTD subset. For SGML, it does not write an SGML
declaration. This rule causes the software to write the document instance only--no external or
internal DTD, no Schema, and no SGML declarations.

Synopsis and contexts

writer write structured document instance only;

ArgumentsNone.

Details

•By default, when you translate a FrameMaker document to markup, as its last step the software
runs the parser on the markup document to check its validity. If you use this rule, FrameMaker
does not write a complete markup document and so does not send the result through the
parser.

•You cannot use the write structure document instance only rule in the same
read/write rules file as any of the write structure document, include dtd, or
include sgml declaration rules.

See also

Related rules “external dtd” on page 73

“include dtd” on page 98

“include sgml declaration” on page 100

“write structured document instance only,” next

Related rules “external dtd” on page 73

“include dtd” on page 98

“include sgml declaration” on page 100

“write structured document,” (the previous section)

Read/Write Rules Reference 168

w r i t e r

writer

The writer rule indicates a rule that applies only on export of a FrameMaker document to
markup. It can be used at the highest level to set a default or within an element rule to specify
a subrule for that element.

Synopsis and contexts

1.writer {. . .
 subrule;
. . .}

2.element "gi" {. . .
 writer {. . .
 subrule;
. . .} . . .}

Arguments

gi A markup element’s name (generic identifier).

subrule Valid subrules:

anchored frame tells FrameMaker what to do with graphic elements
other than those with a single non-internal FrameMaker facet. Allowed
only within an element rule for a graphic element.

character map determines the correspondence between individual
characters in the FrameMaker and markup character sets. Allowed only at
the highest level.

convert referenced graphics tells the software to create new
files for graphic files that were imported by reference. drop content
exports a FrameMaker element without its contents. Allowed only within
an element rule.

equation tells FrameMaker what to do with equation elements. Allowed
only with an element rule for an equation element.

external dtd specifies an external DTD to use. Allowed only at the
highest level.

facet tells FrameMaker what to do with a graphic element that has a
single non-internal FrameMaker facet. Allowed only with an element
rule for a graphic element.

[do not] include dtd specifies information to exclude or include
in the written document. Allowed only at the highest level.

w r i t e r

Structured Application Developer Reference 169

[do not] include sgml declaration specifies information to
exclude or include in the written document. Allowed only at the highest
level.

line break specifies treatment of line breaks not handled by the
parser on export. Allowed at the highest level or within an element rule.

[do not] output book processing instructions specifies
whether or not to create processing instructions that identify book
components when writing a FrameMaker book as a markup document.
Allowed only at the highest level.

proportional width resolution is specifies the total value to
which proportional widths for table columns add up. Allowed only at the
highest level.

use proportional widths specifies that the software should use
proportional values in describing the widths of table columns. Allowed
only at the highest level.

write structured document specifies that an entire SGML
document should be written, not just the document instance. This is the
default. Note that the external DTD subset is not written to the file.
Instead, a DOCTYPE statement with a reference to the external DTD file is
written. Allowed only at the highest level.

write structured document instance only specifies that
only the document instance should be written, not the DTD and SGML
declaration. Allowed only at the highest level.

Examples

•To tell FrameMaker not to use processing instructions to identify book components when
writing a FrameMaker book as a markup document, use this rule:

 writer do not output book processing instructions;

•Assume you want all graphics to be exported in TIFF format. Further assume that some of your
graphic elements were imported from the TIFF format. For these elements you don’t want to
create a new external data entity. To accomplish this, use these rules:

element "graphic" {
 is fm graphic element;
 writer facet default{
 convert referenced graphics;
 export to file “$(entity) .tif as “TIFF”;
 writer anchored frame
 export to file "$(entity).tif" as "TIFF";
}

Read/Write Rules Reference 170

w r i t e r

Structured Application Developer Reference 171

4 Conversion Tables for Adding
Structure to Documents 5

You can set up a conversion table to help end users automate the task of adding structure to
documents. The conversion table uses paragraph and character formats to identify which
unstructured document objects to wrap in elements, and element tags to identify which child
elements to wrap in parent elements. A user wraps all of a document’s contents in one move by
applying a structure command to the document and referring to one of your conversion tables.

This chapter describes how to set up a conversion table and define object and element mapping
in it. For information on the commands for adding structure to documents, see the FrameMaker
user’s manual

How a conversion table works
A conversion table contains rules for mapping between document objects and elements and
between child elements and parent elements. The table is a regular FrameMaker table, with at
least three columns and one body row. Each body row holds one rule.

The first column in a conversion table specifies a document object, a child element, or a sequence
of child elements or paragraphs to wrap in an element. A document object is a paragraph, text
range, table, table part (such as heading or row), equation, variable, footnote, Rubi group, Rubi
text, marker, cross-reference, text inset, or graphic (anchored frame or imported graphic object).

The second column in the table specifies the element in which you want to wrap the object, child
element, or sequence. The third column can specify an optional qualifier to use as a temporary
label for the element in rules that are applied later. For example:

Wrap this object In this element With this qualifier
P:BulletItem Item Bullet

E:Item[Bullet]+ BulletList

The first column uses a
one-letter code and
usually a tag to identify
an object or element.

The second column
specifies the element in
which to wrap the object
or element.

The third column can
provide a label for the
new element to be used
in later rules.

Conversion Tables for Adding Structure to Documents 172

S e t t i n g u p a c o n v e r s i o n t a b l e

To add structure to a document or book, an end user chooses the Structure Current
Document..., Structure Documents..., or Structure Current Book... command from the
StructureTools > Utilities submenu and refers to one of the conversion tables.

When you add structure to a document manually, you typically begin with the lowest-level
components and work up to the highest level. For example, to add structure to a chapter you
might start by wrapping sub-paragraph objects like text ranges and tables, then wrap the
contents of paragraphs together in Paragraph elements, then wrap sequences of Head and
Paragraph elements in Section elements, and so on until the entire document is wrapped in
a single highest-level Chapter element.

The process of adding structure with a conversion table is similar to adding structure manually.
FrameMaker begins by applying rules to document objects below the paragraph level, then
applies rules at the paragraph level, and proceeds through successively higher levels. The process
stops when FrameMaker reaches a single highest-level element or when no more rules can be
applied. To understand this process, it helps to have manually structured a document.

Using the sample table above, FrameMaker first wraps each paragraph with the paragraph format
BulletItem in an element called Item and gives the element a qualifier called Bullet. Then
it wraps each Item element with the qualifier Bullet in a parent element called BulletList.

FrameMaker tries to order the rules as much as possible. If a rule needs a building block that is
generated by a later rule, the later rule is run first so that all of the building blocks in the first rule
are available. To make a conversion table easy to interpret for a human reader, you may want to
write the rules in the order they should be applied.

Setting up a conversion table
You can have FrameMaker generate an initial conversion table for you from an unstructured
document or book, or you can create a conversion table entirely from scratch. If you already have
a document that end users need to add structure to, or a document that is similar to one users
will add structure to, you’ll probably want to let FrameMaker generate the initial table. You can
modify the rules in the table as necessary.

After creating a conversion table, you can update it from other unstructured documents. Updating
a table adds rules for any objects in the document that are not yet in the table.

A conversion table document can include the conversion table itself (which may be split up into
several tables) and text or graphics you want to include for documenting the rules. It cannot have
any tables other than conversion tables. You need to save the document before it can be used for
adding structure to other documents or books.

Each body row in a conversion table holds one mapping rule. FrameMaker reads only the
information in the first thee columns of the body rows, so you can use additional columns and
headings and footings for comments about rules.

S e t t i n g u p a c o n v e r s i o n t a b l e

Structured Application Developer Reference 173

For information on defining and modifying the rules in a table, see “Adding or modifying rules in
a conversion table” on page 175.

Generating an initial conversion table
You can have FrameMaker generate a conversion table from an unstructured document. This is
the easiest way to begin a new conversion table.

To generate an initial conversion table, choose Generate Conversion Table from the
StructureTools menu in a document with objects you want to structure. Select Generate New
Conversion Table in the dialog box and click Generate.

The software looks through the flows on body pages in the document and compiles a list of every
object that can be structured. For each object, it gives the object type and the format tag used in
the document (if the object has a format), and maps the object to an element. The element tag is
the same as the format tag, or if the object does not have a format, the element tag is a default
name such as CELL or BODY. If necessary, FrameMaker removes parentheses and other characters
to create an element tag that is valid.

The initial conversion table gives you a first pass through the document, identifying objects to
wrap in elements. It does not identify child elements to wrap in parent elements—you need to
add those rules to the table yourself.

This is an example of an initial conversion table:

For details on the object type identifiers used in the table (such as P: and TC:), see “Identifying
a document object to wrap” on page 177.

Note that if there are conflicts in a format tag from the unstructured document, an object type
identifier in lowercase is prepended to any duplicate element tag. In the example above, the

Wrap this object In this element With this qualifier
P:Head1 Head1

P:Head2 Head2

P:Body Body

P:Code Code

SV:Current Date \(Long\) CurrentDateLong

C:Code cCode

TC: CELL

TR: ROW

Conversion Tables for Adding Structure to Documents 174

S e t t i n g u p a c o n v e r s i o n t a b l e

element tag for text ranges with the Code character format is cCode because the document also
has a paragraph format called Code.

When you create an initial table, FrameMaker does not examine the document’s format catalogs—
it looks only at objects actually used in the document. For this reason, the table may not be as
complete as you need. You may want to update the table from a set of documents that together
provide all or most of the objects you need rules for. You can also add and modify rules manually.

The initial convertion table does not contain a root element for the structure hierarchy, but you
can add one manually, using the tag RE:RootElement, so that documents you convert using
the table will have a “well formed” structure in which all elements are children of the root element.
See “Specifying the root element for a structured document” on page 176.

The initial conversion table does contain elements for all defined paragraph and character formats
that are used in the unstructured document, and for all objects, including cross references,
markers, footnotes, equations, graphics, system variables, and tables. Formatting is retained in the
structured document created from the table, and carried forward into the EDD in
ParagraphFormattingTag elements.

If the original document contains format overrides or unnamed formats applied directly to text,
you can create named formats from them before conversion, or flag them for manual update in
the conversion table. See “Flagging format overrides” on page 184 and “Wrapping untagged
formatted text” on page 184.

Setting up a conversion table from scratch
You can set up a regular FrameMaker table to serve as a conversion table. The table must appear
on a body page in its own document. The document and table can be structured or unstructured.
Begin a conversion table this way if you do not yet have an unstructured document to use for
generating the table.

To set up a conversion table from scratch, create a new document and insert a table with at least
three columns and one body row. The table can have any number of heading or footing rows.

You can divide a conversion table into several smaller tables. This is helpful when you have many
rules and want to organize the rules in groups. Each table must have at least three columns and
one body row. You can add explanatory heads and paragraphs between the tables to document
the rules. Do not include tables that are not conversion tables.

Updating a conversion table
After creating a conversion table, you may want to update the table from at least one other
unstructured document to get a more complete list of objects. FrameMaker adds a rule for each
object from the document that is not already listed in the table.

To update a conversion table, choose Generate Conversion Table... from the StructureTools
menu in a document with the objects you want to structure. Select the name of the conversion
table document in the Update Conversion Table popup menu and click Generate.

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

Structured Application Developer Reference 175

When you update a conversion table, the process that FrameMaker goes through is similar to the
process of generating an initial table. The software does not examine the document’s format
catalogs—it looks only at objects actually used in the document.

Adding or modifying rules in a conversion table
Each body row in a conversion table holds one mapping rule. Follow these steps to define a
mapping rule:

1.In the first column, identify a document object, a child element, or a sequence of child
elements or paragraphs to wrap.

You use a one- or two-letter code to identify the type of item and, in most cases, a format or
element tag to narrow the definition. See “Identifying a document object to wrap” on
page 177, “Identifying an element to wrap” on page 178, or “Identifying a sequence to wrap”
on page 179.

2.In the second column, specify an element in which to wrap the object, child element, or
sequence.

Type one valid element tag. If you are writing rules for a document that already has element
definitions, use tags from the document’s Element Catalog.

If you are wrapping a table part, graphic, or inset, FrameMaker always wraps all instances of
the object in the same kind of element. The element has a default tag, such as CELL, BODY,
GRAPHIC, or INSET. Type a different tag in the second column only if you want to override
the default tag.

You can also give an element an attribute with a value. For details, see “Providing an attribute
for an element” on page 181.

3.(Optional) In the third column, add a qualifier for the new element tag.

A qualifier is a temporary label that you can attach to an element tag for the structuring
process. If you wrap the element in a parent element in a later rule, you include the qualifier
tag with the element tag. For details, see “Using a qualifier with an element” on page 181.

To make a conversion table easy to read and to help you think through the process, we
recommend that you put the rules in order from the lowest level to the highest. In the first rows
of the table, write rules that wrap individual document objects such as text ranges, tables, and
paragraphs; next add rules that wrap child elements in parent elements; then add rules that wrap
sequences in elements; and finally add rules that wrap elements in one root element.

Every flow in a document must have a highest-level element, and the element can be different for
each flow.

About tags in a conversion table
Format and element tags in a conversion table are case-sensitive and must be specified the way
they are defined in their catalogs. Qualifier tags are also case-sensitive, and two occurrences of

Conversion Tables for Adding Structure to Documents 176

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

one qualifier must match exactly. The following characters are not allowed in an element tag, but
can appear in a format or qualifier tag if you precede them with a backslash (\) in the table:

() & | , * + ? % [] : \

A space character does not need to be preceded with a backslash. For example, you can write the
tag Format A.

You can use a percentage sign (%) as a wildcard character in a format or element tag to match
zero, one, or more characters. For example, P:%Body matches paragraphs with the format tag
Body, FirstBody, or BulletBody.

Specifying the root element for a structured document
FrameMaker now allows you to specify a root element, the highest valid element in a document,
so that the converted document adheres to structured document convention.

To do so, specify the optional RE:RootElement after conversion. You must add it manually to
the conversion table, specifying the tag itself, RE:RootElement, in the first column, and the
element name that you choose in the second column.

When you generate a structured document using this manually modified conversion table, the
resulting document contains a well-formed hierarchy with a valid root element. If you convert an
entire book using the table, each document contains a valid root element.

The root element name that you choose should be unique within the document. If you specify a
name that its being already defined for some other object, the root element is ignored. You can
still generate a structured document with the table, but it will not have a valid root element, and
a message is added to the FrameMaker Log window: “Element name defined in second column
of conversion table for root element is not unique. Root element ignored.”

The root element tag should appear only once in the conversion table. If it appears anywhere else
with a different name, it is ignored and a generated document does get a root element, but if it
appears twice with the same name, both elements are ignored and a generated document will
have no root element.

If no root element is generated for a document (either because the conversion table contains no
RE:RootElement tag or because it is not specified correctly), the ‘NoName’ element appears at
the top of the element hierarchy. The rest of the elements are its children, and the hierarchy is
shown to have an invalid structure.

The RE:RootElement is particularly useful for unstructured documents that do not easily
conform to the required structure rules, maybe due to poor adherance to tagging rules or too
many manual style overrides. In these cases it may be uneconomic to tailor your conversion table
for every possible formatting variation.

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

Structured Application Developer Reference 177

Identifying a document object to wrap
To identify a document object to wrap in an element, type an object type identifier and
(optionally) a format tag in the first column of the table. Separate the identifier and format tag
with a colon.

FrameMaker finds all the objects with that type and format and wraps them in the element you
specify in the second column of the table. If you leave the format tag out of the rule, FrameMaker
finds all the objects with the specified type that are not identified in other conversion rules.

For example:

These are the object type identifiers and format tags you can use:

Object type Identifier Format tag
Paragraph P: Paragraph format tag

Text range C: Character format tag

Table T: Table format tag

Table title TT: (none)

Table heading TH: (none)

Table body TB: (none)

Table row TR: (none)

Table cell TC: (none)

System variable SV: Variable format name

User variable UV: Variable format name

Graphic (anchored frame or
imported object)

G: (none)

Footnote F: Location of footnote: Table or Flow

Rubi group RG: (none)

Rubi text R: (none)

Marker M: Marker type

Wrap this object In this element
P:Body Para

T:RulesTbl RulesTbl

T: StandardTbl

Q:Small SmallEqns

This rule wraps all tables
not named in other rules,
regardless of format tag.

Conversion Tables for Adding Structure to Documents 178

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

Table parts, graphics, and text insets do not have any formatting information, so FrameMaker
wraps all instances of those objects in the same kind of element. The element has a default tag,
such as CELL, BODY, GRAPHIC, or INSET. (Specify a different tag in the second column to
override the default tag.)

You can write identifiers and the keywords for footnote location or equation size in any
combination of uppercase and lowercase letters. The names of formats and marker types are case-
sensitive, however, and must be typed the way they are specified in their catalogs.

A system variable can be wrapped in a variable element but a user variable cannot. If you identify
a user variable, FrameMaker wraps it in a container element with the tag specified in the second
column.

FrameMaker wraps a text inset in a container.

Identifying an element to wrap
To identify a child element to wrap in a parent element, type the object type identifier E: followed
by an element tag and (optionally) a qualifier in brackets in the first column of the table. The
qualifier must already be defined for the element in a rule applied earlier.

FrameMaker finds all instances of the element and wraps them in the element you specify in the
second column of the table. You can omit the element tag if you include a qualifier.

For example:

You can type the E: identifier in either uppercase or lowercase. The element tags are case-
sensitive, however, and must be typed the way they are specified in their catalog. You can even
omit the E: identifier—when FrameMaker reads an object name with no identifier, it assumes the
object is an element.

To identify a table child element to wrap in a table parent element, type the object identifier TE:
followed by E:, an element tag, and (optionally) a qualifier in brackets in the first column of the

Cross-reference X: Cross-reference format name

Text Inset TI: (none)

Equation Q: Size of equation: Small, Medium, or Large

Object type Identifier Format tag

Wrap this object In this element
E:Item[Bullet] BulletItem

E:[1Head] ChapHead

This rule wraps all elements
with the qualifier 1Head not
named in other rules.

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

Structured Application Developer Reference 179

table. This allows you to name a table element from one or more child elements, rather than
naming it from a table format tag (with the T: identifier).

For example:

Most often, you wrap multiple elements together in one parent. You can use E: or TE: to identify
a sequence of elements for this. For more information, see “Identifying a sequence to wrap,” next.
For more information on qualifiers, see “Using a qualifier with an element” on page 181.

Identifying a sequence to wrap
You can wrap a sequence of child elements in a parent element. For example, you might wrap a
Head element followed by one or more Paragraph and List elements in a higher-level
Section.

You can also wrap a sequence of unwrapped paragraphs in an element. For example, you might
wrap a sequence of paragraphs with the format tag Body all in one Note element. (With other
unwrapped document objects such as tables, graphics, and text ranges, you can wrap only one
object in an element.)

To identify a sequence to wrap, specify object type identifiers and element tags or paragraph
format tags, and use symbols to further describe the sequence. You can mix elements and
unwrapped paragraphs together in one specification.

These are the symbols you can use:

Wrap this object In this element
TB:RulesBody RulesBody

TE:E:RulesBody RulesTbl

This rule wraps RulesBody table
child elements in a RulesTbl
table element.

Symbol Meaning
Plus sign (+) Item is required and can occur more than once.

Question mark (?) Item is optional and can occur once.

Asterisk (*) (SGML only) Item is optional and can occur more than once.

Comma (,) Items must occur in the order given.

Ampersand (&) Items can occur in any order.

Vertical bar (|) Any one of the items in the sequence can occur.

Parentheses Beginning and end of a sequence.

Conversion Tables for Adding Structure to Documents 180

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

The symbols available are the same connectors, occurrence indicators, and parentheses used in
general rules in an EDD.

For example:

Strict or loose sequence specification
If you already have a well defined or standard based application structure, you may try to use the
general rule specification as it is defined in your EDD. In many cases, with well formatted
unstructured documents, you will achieve excellent conversion results. However, in practice
unstructured documents often break the rules. You will find incorrect tagging, manual formatting
overrides and other non-standard features.

Your strict conversion table will not cope well with these souce documents. It will fail to wrap
sequences that do not match a strict specification. You can avoid these problems by providing a
less restrictive sequence specification.

The revised sequence specification must be compatible with the required structure for example if
the EDD specified this general rule:

Head, Para+, Table?, Graphic?, Section*

The strict sequence specification could be identical. However, if the conversion table encountered
a document whith no Head element or a Para between Table and Section, the entire
sequence will not be wrapped. The revised sequence specification could be:

Head?, (Para | Table| Graphic)*, Section*

This will give the correct conversion when the source document is well tagged but will also cope
with a wide range of variations.

To identify this sequence Use this specification
One or more Item elements Item+

An element tagged Item[Bullet]
followed by one or more unwrapped
paragraphs tagged Bullet

E:Item[Bullet], P:Bullet+

A ChapNum element followed by a
ChapName element

ChapNum, ChapName

A Head element followed by zero or more
Paragraph, BulletList, or
NumberList elements

Head, (Paragraph|BulletList|
NumberList)*

An Item[FirstNItem] element
followed by one or more Item[NItem]
elements

Item[FirstNItem], (Item[NItem])+
or
[FirstNItem], ([NItem])+

A RulesTitle table title element followed
by a RulesBody table body element

TE:E:RulesTitle, E:RulesBody

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

Structured Application Developer Reference 181

Providing an attribute for an element
When you specify an element in the second column of the table, you can provide an attribute for
the element. In the structured document, all the element instances will have the attribute name
and value.

To provide an attribute for an element, type the attribute name and value in brackets after the
element tag in the second column of the table. Separate the name and value with an equal sign,
and enclose the value in double quotation marks.

For example:

If the unstructured document has an Element Catalog with an element and attribute matching the
one you’re providing, the attribute is the type specified in the catalog. If the attribute does not
match an attribute already defined, the type is string.

If you need to use a double quotation mark in an attribute value, escape the quotation mark with
a backslash (\). Other restrictions on characters are determined by the attribute’s type. (The string
type allows any arbitrary text string.)

To give an element more than one attribute, separate the attribute definitions with an ampersand
(&). For example, this specification gives the element a Type attribute with the value Numbered
and a Content attribute with the value Procedure:

List [Type="Numbered" & Content="Procedure"]

For an example of an attribute that maintains formatting information from a qualifier, see “Using
a qualifier with an element,” next.

Using a qualifier with an element
Qualifiers act as temporary labels that preserve formatting information from the unstructured
document until all elements have been wrapped. Qualifiers are used only in the conversion
table—they do not show up in a final structured document.

To use a qualifier with an element specified in the second column of the table, type the qualifier
tag in the third column. Then when you wrap the element in a later rule, type the qualifier tag in
brackets after the element tag in the first column. Spell and capitalize the qualifier the same way

Wrap this object In this element
P:Intro Para[Security="Unclassified"]

P:Important Note[Label="Important"]

E:Item+ List[Type="Numbered"]

Conversion Tables for Adding Structure to Documents 182

A d d i n g o r m o d i f y i n g r u l e s i n a c o n v e r s i o n t a b l e

in the two places. FrameMaker keeps track of qualifiers separately from elements, so you can use
the same tag for an element and its qualifier.

For example:

In the example above, an unstructured document has both bulleted items and numbered items,
with paragraph formats called BulletItem and NumberItem. When adding structure to the
document, you want to wrap all the items in an Item element with a parent element of either
BulletList or NumberList. To do this, you need to keep the BulletItem and
NumberItem formatting designations long enough to determine in which list to wrap the items.
The conversion table first associates qualifiers called bulleted and numbered with new Item
elements. Then it wraps each Item element in either a BulletList or a NumberList, as
specified by its qualifier.

Note that if you specify an attribute for formatting information in the second column, you cannot
use the attribute as a label for preserving formatting during the conversion process. You still need
to use the qualifier. For example:

Wrap this object In this element With this qualifier
P:BulletItem Item bulleted

P:NumberItem Item numbered

E:Item[bulleted]+ BulletList

E:Item[numbered]+ NumberList

First specify the qualifier for the element.

Then include the qualifier with the element in later rules.

Wrap this object In this element With this qualifier
P:BulletItem Item bulleted

P:NumberItem Item numbered

E:Item[bulleted]+ List[Type="Bulleted"]

E:Item[numbered]+ List[Type="Numbered"]

H a n d l i n g s p e c i a l c a s e s

Structured Application Developer Reference 183

Handling special cases
You may need to accommodate a few special circumstances or requirements in a conversion table.

Promoting an anchored object
In an unstructured FrameMaker document, a table or an anchored graphic must be anchored in
a paragraph. The anchor specifies which paragraph to keep the object with as an author continues
to edit the document. When a user adds structure to the document, the table or graphic normally
becomes a child of the paragraph with the anchor, like this:

In a structured document, you often want a table or graphic element to be at the same level as
its surrounding paragraph elements. FrameMaker can break the table or graphic out of its
paragraph and promote the element to be a sibling of the paragraphs, like this:

To break a table or graphic out of its paragraph and promote it one level, add the keyword
promote in parentheses after the element tag for the table or graphic. (The keyword is not case-
sensitive.) For example:

Wrap this object In this element
T:Table Table (promote)

Conversion Tables for Adding Structure to Documents 184

H a n d l i n g s p e c i a l c a s e s

Note that FrameMaker promotes the object at the location of the anchor symbol in the paragraph.
If the symbol is in the middle of the paragraph, the structured document will have half of the
paragraph, then the table, and then the other half of the paragraph. Typically, you want the
symbol to be at the end of the paragraph.

Flagging format overrides
An unstructured document may have format overrides. This happens when someone uses the
Paragraph or Character Designer to make formatting changes to a paragraph or text range but
does not save the changes in the catalog format.

When an end user adds structure to a document, FrameMaker does not normally identify format
overrides. You can have FrameMaker flag all element instances in the document that have
overrides so that the user can find the overrides and decide how to handle them in a structured
context.

To flag format overrides, add the rule flag paragraph format overrides or flag
character format overrides to the first column of the table. (The rule is case-insensitive.)
This is a general instruction for the table, so you do not add anything to the second and third
columns. For example:

At each element instance that has an override in the document, FrameMaker adds an attribute
called Override with the value Yes.

Wrapping untagged formatted text
It is possible for someone to format a text range by applying commands from the Font, Size, and
Style submenus in the Format menu—and not use a character format at all. This leaves the text
formatted but without a tag that you can refer to in your conversion table.

You can have FrameMaker find text that has been formatted with the submenu commands and
wrap it in a “catch-all” element. After adding structure to a document, the end user will probably

Wrap this object In this element
flag paragraph format overrides

flag character format overrides

Note: Use the FrameMaker utility "Create and Apply Formats" before conversion to turn
format overrides and untagged formatted text into named paragraph and character
formats, which can be carried forward automatically into the structured document and
EDD.

H a n d l i n g s p e c i a l c a s e s

Structured Application Developer Reference 185

want to look at these instances and change them to other elements (such as Emphasis) that
more specifically describe the type of formatting.

To wrap untagged formatted text, add the rule untagged character formatting to the
first column of the table and add an element to the second column. (The rule is case-insensitive.)
For example:

This might also be useful while you are developing a conversion table. You can add structure to a
sample document with this rule to see if the document has any untagged formatting.

Nesting object elements
Typically, a non-paragraph object such as a table or graphic is wrapped in an object element and
then wrapped in a paragraph element. You can also wrap the object in more than one level below
the paragraph. Sometimes you need to do this to conform to a DTD that requires more hierarchy,
or you may just want to be able to use two objects together.

To nest object elements in a paragraph, define each mapping in a separate rule in the table. For
example:

In the example above, the rules wrap an index marker in an Index element and a graphic anchor
in a Graphic element, and then they wrap the two elements together in a Figure text range
element. This way, the graphics in a structured document will automatically have a marker
identifying a location to be included in an index.

Wrap this object In this element
untagged character formatting UntaggedText

Note: Use the FrameMaker utility "Create and Apply Formats" before conversion to turn
format overrides and untagged formatted text into named paragraph and character
formats, which can be carried forward automatically into the structured document and
EDD.

Wrap this object In this element
M:Index Index

G: Graphic

E:Index & E:Graphic Figure

Conversion Tables for Adding Structure to Documents 186

T e s t i n g a n d c o r r e c t i n g a c o n v e r s i o n t a b l e

Building table structure from paragraph format tags
When FrameMaker adds structure to tables, it normally wraps all instances of a table part in the
same kind of element and uses a default name for the element, such as CELL, ROW, HEADING, or
BODY. You can override the default name by providing a different element tag in the second
column of the conversion table.

If you want to have more than one kind of element for a particular table part, you can build the
structure up from the format tags used in the cells or titles. This allows you to distinguish between
different formatting used in different instances of a single table part. For example, a table may
have a few special body rows with italicized text that marks divisions in the table. Or a table may
have two titles, one of them a subtitle in a different font size.

To build table structure from paragraph format tags, for each cell or title rule use the TC: or TT:
type identifier followed by the P: identifier and a format tag in the first column of the table. For
example:

In the example above, the rules map cells that use a DividerCell paragraph format in an
element called DividerCell and map cells that use a BodyCell paragraph format in an
element called BodyCell. Then they wrap both kinds of cell elements in the same default ROW
element and continue the wrapping normally.

Testing and correcting a conversion table
You should test and correct a conversion table as you develop it. To do this, prepare a sample
document that represents the type of documents the table will apply to, and use the conversion
table to add structure to the sample. Make sure your sample document has all of the document
objects that the final documents may contain.

When a structure command reads a conversion table, it identifies any syntax errors in the rules
and displays the errors in a log file. Correct the table and test it again until no more errors are
found.

You may find it helpful to wrap only document objects for your first testing pass, without
wrapping in higher levels of hierarchy. When you’re sure that the rules for wrapping individual

Wrap this object In this element
TC: P:DividerCell DividerCell

TC: P:BodyCell BodyCell

TR:DividerCell+ ROW

TR:BodyCell+ ROW

TB:Row+ BODY

T e s t i n g a n d c o r r e c t i n g a c o n v e r s i o n t a b l e

Structured Application Developer Reference 187

objects are correct, start writing and testing the rules to wrap elements and sequences in parent
elements.

Conversion Tables for Adding Structure to Documents 188

T e s t i n g a n d c o r r e c t i n g a c o n v e r s i o n t a b l e

Structured Application Developer Reference 189

5 CSS to EDD Mapping 6

This chapter provides a reference for the CSS 3 and CSS 2 to EDD mapping feature. The CSS 3 to
EDD Mapping section contains the CSS 3 properties that are available for EDD mapping. Similarly,
CSS 2 to EDD Mapping section contains the CSS 2 properties that you can map with EDD.

CSS 3 to EDD Mapping
This section provides a reference for the Cascading Style Sheet (CSS) version 3.0 to EDD mapping
and importing feature. The topic covers the FrameMaker properties available in various pod and
their corresponding CSS property.

Each property's description includes the following headings.

FrameMaker property Name of the property in the properties pod.

CSS property The CSS 3.0 property name

CSS Property Values A simple list of the available property values.

Comments/Values Additional information about the mapping includes EDD element property
values.

While importing a CSS into an EDD, any property or selector in the CSS that cannot be mapped
to an equivalent EDD rule is ignored by FrameMaker. For example, CSS Specificity does not
consider > and “” (relational tags).

An error log is generated after completion of the import process. The default location of the log
file is:

%appdata%\adobe\framemaker\fmlogs\16\

The logs provide information about the properties that were successfully imported, failed, or
ignored by the import process.

Basic Properties
The following screenshot is of the Basic tab properties in the Paragraph Designer:

The EDD does not support all properties and selectors defined in CSS 3.0.

CSS to EDD Mapping 190

C S S 3 t o E D D M a p p i n g

The following table lists the Basic tab properties mapped to CSS3 properties along with their
supported values that can be imported into EDD:

FrameMaker
Property

CSS Property Supported CSS Property
Values

Comments/Values

Indent : First text-indent The value of this property is
equal to the font size.

Indent: Left margin-left

Indent: Right margin-right

Spacing:
Above
Paragraph

margin-top

Spacing:
Below
Paragraph

margin-bottom

Alignment text-align

C S S 3 t o E D D M a p p i n g

Structured Application Developer Reference 191

Example:

In the following CSS, the <shortdesc> element has been redefined with properties available in
the Basic tab:

shortdesc{

text-align: justify;

text-indent: 0.8in;

margin-top:2pt;

margin-left:1.2in;

margin-right:2.5in ;

margin-bottom:1pt ;

--fm-line-space:40.5pt;

--fm-allow-line-space:YES;

}

Font Properties
The following screenshot is of the Font tab properties in the Paragraph Designer:

Line Space --fm-line-space A string value. These properties are specific to
FrameMaker and not a regular
CSS3 property.Fixed Line

Space
--fm-line-space Yes | No

FrameMaker
Property

CSS Property Supported CSS Property
Values

Comments/Values

CSS to EDD Mapping 192

C S S 3 t o E D D M a p p i n g

The following table lists the Font tab properties mapped to CSS3 properties along with their
supported values that can be imported into EDD:

FrameMaker
Property

CSS Property Supported CSS Property
Values

Comments/Values

Family font-family Only a single font family name,
for example: Adobe Clean

C S S 3 t o E D D M a p p i n g

Structured Application Developer Reference 193

Size font-size The following units are
supported:
- pt (points)
- pc (picas)
- cm (centimeters)
- mm (millimeters)
- in (inches)

Absolute size with value of:
- small
- medium
- large
- x-large
- xx-large

The corresponding absolute
values in FrameMaker are
mapped as follows:
- small = 10pt
- medium = 12pt
- large = 14.4pt
- x-large = 17.3pt
- xx-large = 20.8pt

Color color name|rgb|hsl - If the name of color is specified
and that color is not defined in
FrameMaker (CSS includes 16
predefined color names), a new
color is created with that name
and is assigned the value, rgb.
- If the rgb value of the color is
specified, a new color name is
created with that value.

Background
Color

background-color name|rgb|hsl

Weight font-weight normal | bold

Angle font-style normal | italic |oblique

Variation --fm-variation Condensed | Expanded This property is specific to
FrameMaker and not a regular
CSS3 property.

Underline text-decoration-
line:underline

Underline Numeric Underline is not
supported.

Double
Underline

text-decoration-style double underline

Overline text-decoration-
line:overline

overline

FrameMaker
Property

CSS Property Supported CSS Property
Values

Comments/Values

CSS to EDD Mapping 194

C S S 3 t o E D D M a p p i n g

Example:

In the following CSS, the <ph> element has been redefined with properties available in the Fonts
tab:

ph{

font-family: "Franklin Gothic Demi Cond", "Arial Black", serif;

font-size:xx-large;

color:Maroon;

background-color:rgb(254, 254, 216);

font-style:oblique;

Strikethrough text-decoration-line Strikethrough

Letter Spacing --fm-letter-spacing A numeric value specifying the
letter spacing in percentage.

This property is specific to
FrameMaker and not a regular
CSS3 property.

Stretch font-stretch normal |
ultra-condensed|
extra-condensed|
condensed|
semi-condensed| semi-
expanded|
expanded|
extra-expanded| ultra-expanded

The corresponding absolute
values in FrameMaker are
mapped as follows:
- Normal=100
- Ultra-condensed=50
- extra-condensed=60
- condensed=72
- semi-condensed=86
- semi-expanded=120
- expanded=144
- extra-expanded=173
- ultra-expanded=207

Superscript/
Subscript

verticle-align super | sub

super | sub font-variant

Uppercase text-transform uppercase

Lowercase text-transform lowercase

Pair Kern font-kerning none | normal Values are interpreted as:
- None=No
- Normal=Yes

FrameMaker
Property

CSS Property Supported CSS Property
Values

Comments/Values

C S S 3 t o E D D M a p p i n g

Structured Application Developer Reference 195

font-stretch:280;

font-variant:small-caps;

font-weight:bold;

vertical-align: super;

font-kerning: normal;

--fm-letter-spacing:10.32126849878325;

--fm-font-variation:Wide;

text-decoration-line:line-through,overline,underline;

text-decoration-style:double;

}

The following screenshot is of a sample file before importing the CSS:

The following screenshot shows the <ph> styling after importing the CSS file:

CSS to EDD Mapping 196

C S S 3 t o E D D M a p p i n g

Pagination Properties
The following screenshot is of the Pagination tab properties in the Paragraph Designer:

The following table lists the Pagination tab properties mapped to CSS3 properties along with their
supported values that can be imported into EDD:

C S S 3 t o E D D M a p p i n g

Structured Application Developer Reference 197

Example:

In the following CSS, the <ph> element has been redefined with properties available in the
Pagination tab:

ph{

page-break-before:always;

--fm-allow-previous-paragraph:No;

FrameMaker
Property

CSS Property Supported CSS Property
Values

Comments/Values

Start page-break-before auto | always | left | right Values are interpreted as:
- auto=Anywhere
- always=Top of page
- left=Top of left page
- right=Top of right page

Keep With:
Previous
Paragraph

--fm-allow-previous-
paragraph

yes | no These properties are specific to
FrameMaker and not a regular
CSS3 property.

Keep With:
Next
Paragraph

--fm-allow-next-
paragraph

yes | no

Widow/
Orphan Lines

widows/
orphans

Format: In
Column

--fm-allow-in-colum This property is specific to
FrameMaker and not a regular
CSS3 property.

Format: Run-
In Head

display:run-in

Format: Side
Head

display:compact

Format:
Across All
Columns

--fm-allow-across-all-
colum

These properties are specific to
FrameMaker and not the regular
CSS3 properties.

Format:
Across All
Columns and
Side Heads

--fm-allow-across-all-
colum-sidehead

CSS to EDD Mapping 198

C S S 3 t o E D D M a p p i n g

--fm-allow-next-paragraph:Yes;

orphans:10;

display:run-in;

--fm-run-in-head-default-punctuation:":";

}

Advanced Properties
The following table lists the Advanced properties mapped to CSS3 properties along with their
supported values that can be imported into EDD:

FrameMaker
Property

CSS Property Supported CSS Property
Values

Comments/Values

Automatic
Hyphenation

--fm-allow-hyphenate These properties are specific to
FrameMaker and not the regular
CSS3 properties.

Maximum
Adjacent
Hyphens

--fm-max-adjacent-
hyphen

Shortest Word
Length

--fm-shortest-word-
length

Shortest Prefix --fm-shortest-prefix

Shortest Suffix --fm-shortest-suffix

Word Spacing:
Allow
Automatic
Letter Spacing

--fm-allow-letter-
spacing

Word Spacing:
Minimum

word-spacing

Word Spacing:
Maximum

--fm-word-spacing-
maximum

These properties are specific to
FrameMaker and not the regular
CSS3 properties.

Word Spacing:
optimum

--fm-word-spacing-
optimum

Frame Above
Paragraph

--fm-frame-above

Frame Below
Paragraph

--fm-frame-below

Paragraph Box --fm-pgf-box-color

C S S 3 t o E D D M a p p i n g

Structured Application Developer Reference 199

Example:

 In the following CSS, the <ph> element has been redefined with properties available in the
Advanced tab:

ph{

--fm-allow-hyphenate:Yes;

--fm-max-adjacent-hyphen:3;

--fm-shortest-word-length:6;

--fm-shortest-prefix:4;

--fm-shortest-suffix:5;

--fm-allow-letter-spacing:Yes;

--fm-word-spacing-optimum:105;

--fm-word-spacing-maximum:115;

/*--fm-word-spacing-minimum:95;*/

word-spacing:95;

--fm-frame-above:hazard.notice;

--fm-frame-below:hazard.notice;

--fm-pgf-box-color:Yellow;

}

Asian Properties
The following table lists the Asian tab properties mapped to CSS3 properties along with their
supported values that can be imported into EDD:

CSS to EDD Mapping 200

C S S 3 t o E D D M a p p i n g

Example:

In the following CSS, the <ph> element has been redefined with properties available in the Basic
tab:

ph{

--fm-western-asian-spacing-minimum:10;

--fm-western-asian-spacing-maximum:60;

--fm-western-asian-spacing-optimum:30;

--fm-asian-char-spacing-minimum:5;

--fm-asian-char-spacing-maximum:15;

FrameMaker
Property

CSS Property Supported CSS Property
Values

Comments/Values

Western/
Asian Spacing:
Minimum

--fm-western-asian-
spacing-minimum

These properties are specific to
FrameMaker and not the regular
CSS3 properties.

Western/
Asian Spacing:
Maximum

--fm-western-asian-
spacing-maximum

Western/
Asian Spacing:
Optimum

--fm-western-asian-
spacing-optimum

Asian
Character
Spacing:
Minimum

--fm-asian-char-
spacing-minimum

Asian
Character
Spacing:
Maximum

--fm-asian-char-
spacing-maximum

Asian
Character
Spacing:
Optimum

--fm-asian-char-
spacing-optimum

Squeeze
Punctuation

--fm-squeeze-
punctuation

Use Asian
Composer

--fm-allow-asian-
composer

C S S 3 t o E D D M a p p i n g

Structured Application Developer Reference 201

--fm-asian-char-spacing-optimum:6;

/*--fm-squeeze-punctuation:AlwaysSqeeze;*/

/*--fm-squeeze-punctuation:"Always Sqeeze";*/

/*--fm-squeeze-punctuation:"AlwaysSqeeze";*/

--fm-allow-asian-composer:YES;

}

CSS Selectors
The CSS selectors are mapped as in the following table:

Example:

In the following CSS, the <ph> element has been redefined with the supported CSS selectors:

/* descendant selector*/

p ph{

font-family: "Times New Roman";

font-size:x-large;

color:Green;

background-color:rgb(254, 254, 216);

font-style:oblique;

font-stretch:280;

font-kerning: normal;

text-decoration-style:double;

}

/*child selector*/

p>ph{

CSS Selector Matches
E:first-child Any element that is the first child of its parent.

:last-child Any element that is the last child of its parent.

* + E Any element that not the first element in the document tree.

E + sibling Any E element that immediately follows its sibling.

E#ID Attribute context for element with unique ID.

CSS to EDD Mapping 202

C S S 3 t o E D D M a p p i n g

font-family:"Arial";

font-size:xx-large;

color:Maroon;

background-color:rgb(254, 254, 216);

font-style:oblique;

font-kerning: normal;

text-decoration-style:Single;

}

/* Immediate sibling*/

p+ph{

font-family: "Times New Roman";

font-size:large;

color:Blue;

background-color:rgb(254, 254, 216);

font-style:oblique;

font-kerning: normal;

text-decoration-line:overline;

}

/*Any Sibling */

p~ph{

font-family: "Times New Roman";

font-size:large;

color:Red;

background-color:rgb(254, 254, 216);

font-style:oblique;

font-kerning: normal;

text-decoration-line:overline;

}

Other examples
Some other examples of mapping CSS to EDD are given below.

C S S 3 t o E D D M a p p i n g

Structured Application Developer Reference 203

Prefix and suffix

p>note::before{

content: "STARTNOTE";

background-color:Black;

color:Red;}

p>note::after{

content: "ENDNOTE";

background-color:Black;

color:Red;

}

note::after{

content: "ENDNOTE";

background-color:rgb(125, 67, 102);

color:Green;

}

note::before{

content: "STARTNOTE";

background-color:rgb(125, 67, 102);

color:Green;

}

note[outputclass="test"]::before{

content: "TestStart";

background-color:rgb(150, 114, 14);

color:yellow;

}

note[outputclass="test"]::after{

content: "TestEnd";

background-color:rgb(150, 114, 14);

color:yellow;

}

CSS to EDD Mapping 204

C S S 3 t o E D D M a p p i n g

Context rules

ph[outputclass="left"]{

text-align:left;

color:Red;

font-family:"Helvetica";

font-size:medium;

}

ph[outputclass="center"]{

text-align:left;

color:Red;

background-color:Black;

font-family:"Courier";

font-size:large;

}

ph[outputclass="right"]{

text-align:right;

color:Green;

font-family:"Arial";

font-size:x-large;

}

p >ph:first-child{

background-color: rgb(242, 238, 172);

}

ph:first-child{

background-color:rgb(235, 211, 231);

}

*+ph{

background-color:rgb(150, 114, 14);

}

ph:last-child {

C S S 3 t o E D D M a p p i n g

Structured Application Developer Reference 205

 background-color:rgb(237, 195, 192);

}

p>ph:last-child {

 background-color:rgb(209, 237, 212);

}

Basic level rules

li:--fm-level-rule-level(2):--fm-level-rule-start("ul ol"):--fm-
level-rule-stop("entry"){

color:Yellow;

background-color:rgb(206, 207, 237);

}

li:--fm-level-rule-level(1):--fm-level-rule-start("ul ol"):--fm-level-rule-stop("entry"){

color:Red;

background-color:rgb(206, 207, 237);

}

li:--fm-level-rule-level(3):--fm-level-rule-start("ul ol"):--fm-level-rule-stop("entry"){

color:Green;

background-color:rgb(206, 207, 237);

}

/* Level Rules with context*/

ul li:--fm-level-rule-level(2):--fm-level-rule-start("ul ol"):--fm-level-rule-stop("entry"){

color:Yellow;

background-color:rgb(244, 245, 225);

}

ul li:--fm-level-rule-level(1):--fm-level-rule-start("ul ol"):--fm-level-rule-stop("entry"){

color:Red;

background-color:rgb(244, 245, 225);

}

ul li:--fm-level-rule-level(3):--fm-level-rule-start("ul ol"):--fm-level-rule-stop("entry"){

color:Green;

background-color:rgb(244, 245, 225);

CSS to EDD Mapping 206

C S S 2 t o E D D M a p p i n g

}

CSS 2 to EDD Mapping
This section provides a reference for the CSS 2 to EDD mapping feature, grouped by CSS property
category. Each property’s description includes the following headings.

CSS property The CSS 2.0 property name

CSS Property Values A simple list of the available property values.

Mapped to EDD property Shows the element name of the equivalent EDD formatting property.
For table parts it shows the mapping for EDD table parts.

Comments/Values Additional information about the mapping includes EDD element property
values.

While importing a Cascading Style Sheet (CSS) into an EDD, any property or selector in the CSS
that cannot be mapped to an equivalent EDD rule is ignored by FrameMaker. No error log is
displayed and errors in the CSS file are not reported.

The EDD does not support all properties and selectors defined in CSS 2.0. While importing a CSS
into an EDD, FrameMaker will ignore any unsuported properties or selectors.

CSS Font Properties
Fonts are mapped as in the following table:

CSS property CSS Property Values Mapped to EDD property Comments/Values

font-
family

font-family

family-name |
generic-family

PropertiesFont < Family
element.

Font Set is not supported.

• Generic-Family can’t be
supported.

• Only one font-family can
be specified using the EDD
Family element.

font-size length in units

• cm (centimeters)

• ex (exs)

• in (inches)

• mm (millimeters)

• pc (picas)

• pt (points)

• px (pixels)

PropertiesFont < Size
element.

Only font-size with a length in
points is recognised, all other
length types are ignored and the

C S S 2 t o E D D M a p p i n g

Structured Application Developer Reference 207

% (percentage) % values are not mapped as
FrameMaker does not calculate
relative values proportionally.

Relative size with these
values:

• larger

• smaller

Not supported

Absolute size with value
of:

• xx-small

• x-small

• small

• medium

• large

• x-large

• xx-large

PropertiesFont < Size
element.

The corresponding absolute
values in FrameMaker are
mapped as follows:

• xx-small = 7.0pt

• x-small = 8.4pt

• small = 10pt

• medium = 12pt (Default)

• large = 14.4pt

• x-large = 17.3pt

• xx-large = 20.8pt

font-style normal | italic |
oblique

PropertiesFont < Angle
with Regular or Italic child
elements.
CSS oblique is mapped to EDD
Italic.

font-
variant

normal | small-
caps

CSS small-caps is mapped to
EDD PropertiesFont <
Case < SmallCaps.
No action for normal.

font-
weight

normal | bold |
bolder | lighter |
100 | 200 | 300 | 400 |
500 | 600 | 700 | 800 |
900

PropertiesFont <
Weight.
CSS normal and bold are
mapped to Regular and Bold
All weights <= 400 are mapped
to Regular, and > 400 are
mapped to Bold.

Relative values bolder and
lighter cannot be mapped as
FrameMaker does not calculate
relative values.

CSS property CSS Property Values Mapped to EDD property Comments/Values

CSS to EDD Mapping 208

C S S 2 t o E D D M a p p i n g

CSS text properties
The CSS text properties are mapped as in the following table:

font font-style | font-
variant | font-
weight | font-size
line-height |
font-family |
caption | icon |
menu | message-box
| small-caption |
status-bar

As listed for the individual CSS
properties above.

caption, icon, menu,
message-box, small-
caption and status-bar
fonts are not supported.

font-
stretch

normal | ultra-
condensed |
condensed | semi-
condensed | semi-
expanded |
expanded | extra-
expanded | ultra-
expanded

PropertiesFont <
Stretch.

The mappings from CSS to
FrameMaker EDD are:

• ultra-condensed = 50

• extra-condensed = 60

• condensed = 72

• semi-condensed = 86

• normal = 100

• semi-expanded = 120

• expanded = 144

• extra-expanded = 173

• ultra-expanded = 207

wider | narrower PropertiesFont <
StretchChange.

• wider = +20

• narrower = -20

font-size-
adjust

number | none @font-face is not supported.

CSS property CSS Property Values Mapped to EDD property Comments/Values

CSS property CSS Property Values Mapped to EDD property Comments/Values

text-
decoration

underline PropertiesFont <
Underline element.

 overline PropertiesFont <
Overline element.

line-through PropertiesFont <
Strikethrough element.

C S S 2 t o E D D M a p p i n g

Structured Application Developer Reference 209

blink Blink is not supported.

text-
transform

uppercase PropertiesFont < Case <
Uppercase element.

Both text-transform and
font-variant map to the
Case element of EDD. If both
these properties are used for an
element context, then only the
text-transform value is
used.

lowercase PropertiesFont < Case <
Lowercase element.

capitalize capitalize is not supported.

text-align left | right |
center | justify |
string

PropertiesBasic <
PgfAlignment.
CSS left, right, center and
justify are mapped to EDD
Left, Right, Center, and
Justified respectively.
CSS string is not supported.

text-
indent

length |
percentage

PropertiesBasic <
Indents < FirstIndent

percentage value is not
supported.

line-
height

number | length |
percentage

Not supported

word-
spacing

normal | length |
inherit

PropertiesAdvanced <
WordSpacing.
The CSS length value maps to
the EDD minimum value.

In the EDD, WordSpacing
accepts percentage values of the
font's em space. Therefore, only
an em value of CSS word-
spacing can be mapped to
EDD.

letter-
spacing

normal | length |
inherit

PropertiesAdvanced <
LetterSpacing.

In the EDD, LetterSpacing
can have a value of “yes” or
“no”. A positive value for CSS
length maps to “yes” in the
EDD.

text-
shadow

Not supported

white-
space

Not supported

CSS property CSS Property Values Mapped to EDD property Comments/Values

CSS to EDD Mapping 210

C S S 2 t o E D D M a p p i n g

CSS color and backgrounds properties
The CSS color and background properties are mapped as in the following table:

CSS property CSS Property Values Mapped to EDD property Comments/Values

color name | rgb PropertiesFont < Color • If the name of color is
specified and that color is not
defined in FrameMaker (CSS
includes 16 predefined color
names), a new color is created
with that name and is
assigned the value, rgb.

• If the rgb value of the color is
specified, a new color name is
created with that value.

background-color background color

background-image Not supported

background-attachment Not supported

background-position Not Supported

background-repeat Not Supported

background background-
color* |
background-image
| background-
repeat |
background-
attachment |
background-
position

*Mapped to EDD
property,
background color.

C S S 2 t o E D D M a p p i n g

Structured Application Developer Reference 211

CSS Formatting Model
The CSS Box Model and Formatting Model are mapped as in the following table:

CSS property CSS Property Values Mapped to EDD property Comments/Values

margin-
right

length |
percentage | auto

PropertiesBasic <
Indents < RightIndent.
The percentage value is not
supported.

margin-
left

length |
percentage | auto

PropertiesBasic <
Indents < FirstIndent
and LeftIndent.
The percentage value is not
supported.

margin-top length |
percentage | auto

PropertiesBasic <
Indents < SpaceAbove.
The percentage value is not
supported.

margin-
bottom

length |
percentage | auto

PropertiesBasic <
Indents < SpaceBelow.
The percentage value is not
supported.

margin margin-right |
margin-left |
margin-top |
margin-bottom

As listed for the individual CSS
properties above.

border,
border*

Not supported

padding,
padding*

Not supported

width Not supported

height Not supported

min-width Not supported

min-height Not supported

max-width Not supported

max-height Not supported

CSS to EDD Mapping 212

C S S 2 t o E D D M a p p i n g

float left PropertiesPagination <
Placement < SideHead <
Left

The main flow in the target
structured document must have
“room for side head” enabled to
acheive the expected result.

right Not supported

clear Not supported

CSS property CSS Property Values Mapped to EDD property Comments/Values

C S S 2 t o E D D M a p p i n g

Structured Application Developer Reference 213

display inline CSS inline elements are
supported by using the
TextRangeFormatting
element.

• When CSS inline is
specified all CSS properties
that map to EDD
PropertiesFont child
elements are retained. All
other CSS properties are
ignored.

• The default behaviour of CSS
inline is equivalent to a
FrameMaker text range.

• The default behaviour of CSS
block is equivalent to a
FrameMaker paragraph.

• If there are two different rules
for a single element in which
one of the selectors is more
specific than the other, and
both rules specify the display
property with a different
value, then in FrameMaker
the final value of the display
property is undefined, and
the corresponding element
type in the EDD is also
undefined.

block CSS block elements are
supported by using the
ParagraphFormatting
element.

run-in PropertiesPagination <
Placement < RunInHead
element

compact PropertiesPagination <
Placement < SideHead
element

The main flow in the target
structured document must have
“room for side head” enabled to
acheive the expected result.

list-item PropertiesNumbering <
AutoNumFormat

An appropriate
AutoNumFormat must be
created based on the list-
style-type property.

CSS property CSS Property Values Mapped to EDD property Comments/Values

CSS to EDD Mapping 214

C S S 2 t o E D D M a p p i n g

CSS Pagination Properties
The CSS Pagination properties are mapped as in the following table:

CSS property CSS Property Values EDD property Comments/Values

page-
break-
before

auto | always |
avoid | left | right
| inherit

PropertiesPagination <
StartPosition

CSS to EDD element mapping:

• always = TopOfpage

• left = TopOfLeftPage

• right =
TopOfRightPage.

The avoid property is not
supported.

page-break-after Not supported

page-break-inside Not supported

widows/
orphans

integer|inherit PropertiesPagination <
WidowOrphanLines

In CSS, widows and orphans are
different properties and hence
they can have different values.
But, in the EDD, a single element,
WidowOrphanLines, controls
both values, and hence they
have the same value.

marks crop | cross Not supported

@page Not supported An EDD has no control over the
page layout. In FrameMaker
page layout is designed into the
structured template.

page Not supported To acheive the required result
set up a suitable
ApplyMasterPages command.
See the Using Adobe®
FrameMaker® guide.

size length | auto |
portrait |
landscape |
inherit

An EDD has no control over the
page layout. In FrameMaker
page layout is designed into the
structured template.

C S S 2 t o E D D M a p p i n g

Structured Application Developer Reference 215

CSS generated content, automatic numbering, and lists
The CSS generated content, automatic numbering, and lists are mapped as in the following table:

CSS property CSS Property Values Mapped to EDD property Comments/Values

list-
style-type

• disc

• circle

• square

• decimal

• decimal-leading-
zero

• lower-roman

• upper-roman

• lower-alpha

• upper-alpha

• lower-latin

• upper-latin

• lower-greek

• hebrew

• armenian

• georgian

• cjk-ideograph

• hiragana

• katakana

• hiragana-iroha

• katakana-iroha

• none

Not supported This CSS property is not
supported in EDD. We have to
enhance EDD for this.

list-style-image Not supported

list-style-position Not supported

list-style list-style-type,
list-style-image,
list-style-
position

Not supported

CSS to EDD Mapping 216

C S S 2 t o E D D M a p p i n g

content string The text content of the Prefix
or Suffix element.

 string, attr(attname),
open-quote and close-
quote may be used in any
combination as required.
Separate each item with
whitespace.

• To create a Prefix use the CSS
:before psuedo element
selector

• To create a Suffix use the CSS
:after psuedo element
selector

• In CSS, the string generated
by the content property
can have any CSS style. In
contrast, EDD Prefix and
Suffix rules can have only
use font formatting (through
the PropertiesFont
element).

attr(attname) <$attribute[attname]>

open-quote "

close-quote "

counter Not supported

uri, quotes Not supported

counter-
increment

Not supported

counter-
reset

Not supported

counter Not supported

counters Not supported

marker Not supported

marker
offset

Not supported

White-
space

Not supported

position Not supported

z-index Not supported

visibility Not supported

CSS property CSS Property Values Mapped to EDD property Comments/Values

C S S 2 t o E D D M a p p i n g

Structured Application Developer Reference 217

CSS Tables
Container is the default element type in an EDD. An element can be specified in CSS as a
table component or table component group using the display property. If an
element is a Container in the EDD but the CSS specifies the element as Table/table-Tow, then
the element type in EDD is changed from Container to the corresponding table element type.

CSS property CSS Property Values Mapped to EDD property Comments/Values

display table Element < Table • FrameMaker table part
elements cannot have
PrefixRules or
SuffixRules. So, a rule
with the :after or
:before pseudo element
selector, is ignored.

• FrameMaker table part
elements cannot have
TextRangeFormatting
element in the EDD. So, the
inline value of the
display property is
ignored.

table-inline Not supported

table-row Element < TableRow

table-row-group Element < TableBody

table-header-
group

Element < TableHeading

table-footer-
group

Element < TableFooting

table-cell Element < TableCell

table-caption Element < TableTittle

colspan
rowspan

Straddling in FrameMaker core The New element needs to be
added in EDD.

border FM core supports border in
Table and Table cell.

The New element needs to be
added in EDD.

background FM core supports background in
Table and Table cell.

The New element needs to be
added in EDD.

CSS to EDD Mapping 218

C S S 2 t o E D D M a p p i n g

CSS Selectors
The CSS selectors are mapped as in the following table:

table-column
table-column-group

Not supported. Column
selectors are also not supported
as they are applied in table-
column and table-column-
group only.

caption-
side

top | bottom | left |
right

Not supported

empty-
cells

show | hide Not supported

table-
layout

auto | fixed Not supported

CSS property CSS Property Values Mapped to EDD property Comments/Values

CSS selector Matches EDD selector

* any element The * selector matches any single
element of the document tree. So,
properties specified using * are applied
to all elements in EDD.

E Any element Elem Element(Container): E

F E Any element E that is descendent of
element F

If context is: * < F

F > E Any E element that is child of F Element (Container): E
If context is: F

F + E Any E element that immediately follows
F

{after F}

* + E maps to {notfirst}.

.class any element with class “class” Not supported

#id element with ID id Element (Container): E
If context is: [IDname="id"]

:first-child Any element that is the first child of its
parent

{first}

:link

:visited

Hyperlink visited or not Ignored as it does not apply to
FrameMaker.

C S S 2 t o E D D M a p p i n g

Structured Application Developer Reference 219

:active

:hover

:focus

Any element that is activated by the user
using the mouse, etc.

Ignored as it is for an interactive browser

:lang(c) Any element whose content is in the ‘C’
language

Element (Container):E
General Rule: <ANY>
If context is: [xml:lang=”c”]

[att] Any element with attribute att Not supported

[att=val] Any element with attribute att and
value val.

Element (Container):E
General Rule: <ANY>
If context is: [att=”val”]

[att~=val] Any element that includes the word
“val” in its value.

Not supported

[att |= “val”] Any element with an att attribute value
“val-..”

Not supported

E:first-letter The first letter of any element E Not supported

E:first-line The first line of any element E Not supported

E:before

E:after

The text to be inserted at the start/end of
any element E

Maps to Prefix and Suffix rules in EDD. For
more details, see the “content”
property.

CSS selector Matches EDD selector

CSS to EDD Mapping 220

C S S 2 t o E D D M a p p i n g

Structured Application Developer Reference 221

6 XML Schema to DTD Mapping 7

When XML documents are associated with an XML Schema declaration, FrameMaker can convert
the Schema to a DTD declaration, from which you can create or modify an EDD. The content
models of Schema and DTD are not identical. This chapter shows how Schema definitions are
mapped into DTD definitions.

For details of how special objects are handled when converting Schema to DTD, see the individual
object discussions in Developer Guide, Part IV, Translating Between Markup Data and FrameMaker

If you wish to modify the DTD that is generated automatically, you can do so. If you do this,
reference the modified DTD from the original XML document. When FrameMaker imports an XML
document that references both a Schema and DTD, it uses the DTD to create the FrameMaker
elements, although it still validates the contents against the Schema.

Schema location
You can import an XML document that references a Schema file, and you can specify a Schema
file in your structure application, to use for validating a document upon export to XML.

To specify a Schema file for use in exporting to XML, modify the structapps.fm file. The
element Schema, a child of the XmlApplication element, specifies the Schema file path for
export. The property Namespace in XmlApplication must be set to true if instance
documents use namespaces. See “Specifying a Schema for XML” on page 23

For importing an XML document, include the path of the Schema file in the XML using
attributes—noNamespaceSchemaLocation or schemaLocation depending on whether
your schema includes a target namespace or not. A DTD is generated automatically when you
import the XML, and the EDD is generated from the DTD.

Schema allows an XML document to reference multiple Schema locations in different namespaces
using the root-element attribute xsi:schemaLocation, which can have multiple values. This
feature has no equivalent in DTD. If an XML document references multiple Schema locations,
FrameMaker uses only the first one for generating a DTD and for validation.

You can load XML documents that use noNamespaceSchemaLocation. For example:

<RootElementName id="RootElementID"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="MySchema.xsd">

Note: The DTD generated from Schema always uses UTF8 encoding, regardless of the
encoding used in the Schema file.

XML Schema to DTD Mapping 222

S i m p l e t y p e m a p p i n g

If an imported document references both a valid DTD location and a Schema location, the
document is validated against the Schema. If there is no Schema location value, it is validated
against the DTD. If neither location is specified, the load shows a warning similar to the one for a
document that has no DOCTYPE statement.

If an imported document references both a DTD location and a Schema location, but the
referenced DTD location is not valid, the load fails with the error “invalid external entity.”
FrameMaker does not, in this case, generate a new DTD from the referenced Schema.

Namespace and Schema location attributes
The root element is not created automatically, therefore, the conversion process adds attributes
for namespace definitions and schema location in all global elements specified in the Schema,
which are then copied into the EDD that is created from the DTD. If you do add a root element,
as recommended, these attributes are not needed, although they are not harmful.

If you wish, you can remove these extra attributes in two ways:

•After you generate an EDD from Schema, remove the extra attributes from the non-root
elements in the EDD, and create a template. In this case, you do not need to provide an external
DTD in the instance XML document.

•Remove the extra attributes from the non-root elements in the generated DTD, and save the
modified DTD as an external DTD in the instance document. This is the technique to use if you
want to modify the default mapping to DTD. In this case, you do not need a template. If you
do wish to create a template, you can remove the attributes from the EDD as well.

Simple type mapping
All simple types in Schema translate to #PCDATA in DTD, and the Schema type anyType
translates to the DTD type ANY. For example:

Schema

<xsd:element name="AString" type="xsd:string"/>
<xsd:element name="AnUnsignedInt" type="xsd:unsignedInt"/>
<xsd:element name="ABoolean" type="xsd:boolean"/>
<xsd:element name="AgYearMonth" type="xsd:gYearMonth"/>
<xsd:element name="AgMonthDay" type="xsd:gMonthDay"/>
<xsd:element name="AnyTypeElem" type="xsd:anyType"/>

S i m p l e t y p e m a p p i n g

Structured Application Developer Reference 223

DTD

<!ELEMENT AString(#PCDATA)>
<!ELEMENT AnUnsignedInt(#PCDATA)>
<!ELEMENT ABoolean (#PCDATA)>
<!ELEMENT AgYearMonth (#PCDATA)>
<!ELEMENT AgMonthDay (#PCDATA)>
<!ELEMENT AnyTypeElem (ANY)>

Attributes of simple type elements
Attribute of simple types translate to CDATA, NMTOKEN, NMTOKENS, ID, IDREFS, ENTITY, and
so on. Enumeration facets in attributes are exported to DTD. Other simple type facets, xsd:list
facets, and xsd:union facets are dropped.

Note the translation of use, fixed and default attribute combinations in the following
example:

Schema

<xsd:attribute name="ReqdAttr" type="xsd:int" use="required"/>
<xsd:attribute name="OptAttr" type="xsd:int" use="optional"/>
<xsd:attribute name="ProhAttr" type="xsd:int" use="prohibited"/>
<xsd:attribute name="FixedReqdAttr" type="xsd:int" use="required"
fixed="23"/>
<xsd:attribute name="OptDefAttr" type="xsd:int" use="optional"
default="12"/>
<xsd:attribute name="FixedOptAttr" type="xsd:int" use="optional"
fixed="25"/>
<xsd:attribute name="EnumAttr" use="optional" default="Male">
<xsd:simpleType><xsd:restriction base="xsd:string">

<xsd:enumeration value="Male"/>
<xsd:enumeration value="Female"/>

</xsd:restriction></xsd:simpleType>
</xsd:attribute>

DTD

 <!ATTLIST ElemName
FixedOptAttr NMTOKEN #FIXED "25"
EnumAttr (Male|Female) "Male"
OptDefAttr NMTOKEN "12"
ReqdAttr NMTOKEN #REQUIRED
FixedReqdAttr NMTOKEN #FIXED "23"
OptAttr NMTOKEN #IMPLIED>

XML Schema to DTD Mapping 224

C o m p l e x t y p e m a p p i n g

Complex type mapping
Complex content models in Schema translate to similar constructs in DTD, insofar as possible. If
there are any errors in the Schema that result in a content model ambiguity, the content model is
translated to ANY in DTD.

Group
The group content model in Schema translates to a group in DTD. For example:

Schema

<xsd:element name="GroupElem">
<xsd:complexType><xsd:sequence><xsd:choice>

<xsd:group ref="IntStr"/>
<xsd:element name="MMIncl" type="xsd:string"/>

</xsd:choice></xsd:sequence></xsd:complexType>
</xsd:element>

<xsd:group name="IntStr" id="Group1">
<xsd:sequence>

<xsd:element name="Int" type="xsd:int" minOccurs="2"
 maxOccurs="2"/>

<xsd:element name="Str" type="xsd:string"/>
</xsd:sequence>
</xsd:group>

DTD

<!ELEMENT GroupElem (((abc:Int,abc:Int),abc:Str)|abc:MMIncl)>

Sequence
A Schema sequence content model translates to a sequence in DTD. Note the translation of
minOccurs and maxOccurs attribute value combinations in the following example.

C o m p l e x t y p e m a p p i n g

Structured Application Developer Reference 225

Schema

<xsd:element name="TestOccurence">
<xsd:complexType>
<xsd:sequence>

<xsd:element name="Min0" type="xsd:int" minOccurs="0"/>
<xsd:element name="Max1" type="xsd:int" maxOccurs="1"/>
<xsd:element name="Min0Max1" type="xsd:int" minOccurs="0"

maxOccurs="1"/>
<xsd:element name="Min1Max1" type="xsd:int" minOccurs="1"

 maxOccurs="1"/>
<xsd:element name="Min2MaxI" type="xsd:int" minOccurs="2"

maxOccurs="unbounded"/>
<xsd:element name="Min0Max2" type="xsd:int" minOccurs="0"

maxOccurs="2"/>
<xsd:element name="Min2Max10" type="xsd:int" minOccurs="2"

maxOccurs="10"/>
<xsd:element name="Min2Max3" type="xsd:int" minOccurs="2"

maxOccurs="3"/>
</xsd:sequence>
</xsd:complexType>

DTD

<!ELEMENT TestOccurence
((Min0?,Max1,Min0Max1?,Min1Max1,(Min2MaxI,Min2MaxI,Min2MaxI*),
 (Min0Max2*),(Min2Max10,Min2Max10,Min2Max10*),
 (Min2Max3, Min2Max3, Min2Max3?))>

Choice
A Schema choice content model translates to a choice in DTD. For example:

Schema

<xsd:element name="ChoiceElem">
<xsd:complexType>

<xsd:sequence>
<xsd:choice>

<xsd:element name="Int" type="xsd:int"/>
<xsd:element name="Str" type="xsd:string"/>
<xsd:element name="MMIncl" type="xsd:int"/>

</xsd:choice>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

XML Schema to DTD Mapping 226

C o m p l e x t y p e m a p p i n g

DTD

<!ELEMENT ChoiceElem ((Int|Str)|MMIncl)>
<!ELEMENT Int (#PCDATA)>
<!ELEMENT Str (#PCDATA)>
<!ELEMENT MMIncl (#PCDATA)>

All
A Schema all content model translates to a choice of elements with multiple occurrences in DTD.
For example:

Schema

<xsd:element name="DataType">
<xsd:complexType>
<xsd:all>
<xsd:element name="AName" type="xsd:Name"/>
<xsd:element name="AQName" type="xsd:QName"/>
<xsd:element name="ANCName" type="xsd:NCName"/>
<xsd:element name="AnyURI" type="xsd:anyURI"/>
<xsd:element name="ALanguage" type="xsd:language"/>
<xsd:element name="AnID" type="xsd:ID"/>
<xsd:element name="AnIDRef" type="xsd:IDREF"/>
<xsd:element name="AIDREFS" type="xsd:IDREFS"/>
</xsd:all></xsd:complexType></xsd:element>

DTD

<!ELEMENT DataType
(AName|AQName|ANCName|AnyURI|ALanguage|AnID|AnIDRef|AIDREFS)*>

Named complex types
Named complex types in Schema are dropped, and their content model is substituted into the
corresponding DTD elements. For example:

C o m p l e x t y p e m a p p i n g

Structured Application Developer Reference 227

Schema

<xsd:element name="AddressDetails">
<xsd:complexType><xsd:sequence>

<xsd:element name="ToAddress" type="USAddress"/>
<xsd:element name="FromAddress" type="USAddress"/>

</xsd:sequence></xsd:complexType>
</xsd:element>

<xsd:complexType name="USAddress">
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:int"/>

</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
<xsd:attribute name="headquarter" type="xsd:string"

use="required"/>
</xsd:complexType>

DTD

<!ELEMENT AddressDetails (ToAddress,FromAddress)>
<!ELEMENT ToAddress ((name,street,city,state),zip)>
<!ATTLIST ToAddress country NMTOKEN #FIXED "US"

headquarter CDATA #REQUIRED >
<!ELEMENT FromAddress

((name,street,city,state),zip)>
<!ATTLIST FromAddress

country NMTOKEN #FIXED "US"
headquarter CDATA #REQUIRED >

<!ELEMENT name (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

Named attribute groups
Named attribute groups in Schema are dropped, and the attributes are put into the corresponding
DTD attribute list. For example:

XML Schema to DTD Mapping 228

C o m p l e x t y p e m a p p i n g

Schema

<xsd:element name="PersonalDetails">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="Name" type="xsd:string"/>

</xsd:sequence>
<xsd:attributeGroup ref="PersonalData"/>

</xsd:complexType>
</xsd:element>

<xsd:attributeGroup name="PersonalData">
<xsd:attribute name="Age" type="xsd:int" use="required"/>
<xsd:attribute name="Gender">

<xsd:simpleType><xsd:restriction base="xsd:string">
<xsd:enumeration value="Male"/>
<xsd:enumeration value="Female"/>

</xsd:restriction></xsd:simpleType>
</xsd:attribute>
</xsd:attributeGroup>

DTD

<!ELEMENT PersonalDetails (Name)>
<!ATTLIST PersonalDetails

Age NMTOKEN #REQUIRED
Gender (Male|Female) #IMPLIED>

<!ELEMENT Name (#PCDATA)>

Abstract elements
For an abstract element in Schema is substituted into DTD elements using its own substitution
group, if one is defined. Otherwise, the element maps directly to a DTD element. For example:

C o m p l e x t y p e m a p p i n g

Structured Application Developer Reference 229

Schema

<xsd:element name="RootElem">
<xsd:complexType><xsd:all>

<xsd:element name="Elem1" type="xsd:int" minOccurs="0"/>
<xsd:element ref="AbstractElem"/>

</xsd:all></xsd:complexType>
</xsd:element>

<xsd:element name="AbstractElem" type="xsd:string"
 abstract="true"/>

<xsd:element name="Substitute1" type="xsd:string"
 substitutionGroup="AbstractElem"/>

<xsd:element name="Substitute2" type="xsd:string"
 substitutionGroup="AbstractElem"/>

DTD

<!ELEMENT RootElem (Elem1?|(Substitute1|Substitute2))*>
<!ELEMENT Elem1 (#PCDATA)>
<!ELEMENT Substitute1 (#PCDATA)>
<!ELEMENT Substitute2 (#PCDATA)>

Mixed content models
A mixed content model translates to a multiple occurence of choice between elements in the
content model and #PCDATA. Occurence constraints associated with the elements and content
model are ignored. For example:

Schema

<xsd:element name="RootElem">
<xsd:complexType mixed="true"><xsd:sequence>

<xsd:element name="elem1" type="xsd:string"
 maxOccurs="unbounded"/>

<xsd:element name="elem2" type="xsd:positiveInteger"/>
<xsd:element name="elem3" type="xsd:string"/>
<xsd:element name="elem4" type="xsd:date" minOccurs="0"/>

</xsd:sequence></xsd:complexType>
</xsd:element>

DTD

<!ELEMENT RootElem (#PCDATA|elem1|elem2|elem3|elem4)*>
<!ELEMENT elem1 (#PCDATA)>
<!ELEMENT elem2 (#PCDATA)>
<!ELEMENT elem3 (#PCDATA)>
<!ELEMENT elem4 (#PCDATA)>

XML Schema to DTD Mapping 230

S u p p o r t e d S c h e m a f e a t u r e s

Supported Schema features
Supported element qualification features of Schema are listed below with their mapping into DTD.

Defaults
The Schema attributeFormDefault and elementFormDefault are honored wherever
they occur. For example:

Schema

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="Schema-abstract-elements"
xmlns:abc="Schema-abstract-elements"
elementFormDefault="qualified">

<xsd:element name="RootElem">
<xsd:complexType><xsd:sequence>

<xsd:element name="Elem1" type="xsd:int"/>
</xsd:sequence></xsd:complexType>
</xsd:element>

DTD

<!ELEMENT abc:RootElem (abc:Elem1)>

Any
Any content model containing the Schema <any> element translates to the DTD ANY content
model, regardless of additional content. For example:

Schema

<xsd:element name="AnyElem">
<xsd:complexType><xsd:sequence>

<xsd:element name="Elem1" type="xsd:int"/>
<xsd:any namespace="http://www.w3.org/1999/xhtml"

minOccurs="1" maxOccurs="unbounded"
processContents="skip"/>

</xsd:sequence></xsd:complexType>
</xsd:element>

DTD

<!ELEMENT AnyElem ANY>
<!ELEMENT Elem1 (#PCDATA)>

Notice in this example that the Elem1 element is translated independently, and is not part of
AnyElem in the DTD.

S u p p o r t e d S c h e m a f e a t u r e s

Structured Application Developer Reference 231

Extension and restriction of complex types
Extension and restriction of a complex type in Schema translates directly to the DTD. For example:

Schema

<xsd:element name="ElemA" type="ComplexTypeB"/>
<xsd:complexType name="ComplexTypeA">
<xsd:sequence>

<xsd:element name="elem1" type="xsd:string" maxOccurs="3"/>
<xsd:element name="elem2" type="xsd:string"/>

</xsd:sequence>
<xsd:attribute name="attr1" type="xsd:NMTOKEN"/>
<xsd:attribute name="attr2" type="xsd:string" use="required"/>
</xsd:complexType>

<xsd:complexType name="ComplexTypeB">
<xsd:complexContent>

<xsd:extension base="ComplexTypeA">
<xsd:attribute name="attr3" type="xsd:date" use="required"/>

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

DTD

<!ELEMENT ElemA ((elem1,elem1*),elem2)>
<!ATTLIST ElemA attr1 NMTOKEN #IMPLIED
 attr2 CDATA #REQUIRED
 attr3 NMTOKEN #REQUIRED >
<!ELEMENT elem1 (#PCDATA)>
<!ELEMENT elem2 (#PCDATA)>

Include, import, and redefine
The include, import and redefine constructs allow one Schema file to refer to other
Schema files. In converting to DTD, information from such referenced Schema files is included, but
all elements are output to a single DTD. For example, if a Schema file a.xsd with namespace
ns_a imports another Schema, b.xsd with namespace ns_b, the resulting DTD contains
elements from both ns_a and ns_b namespaces.

The following example shows three Schema files; the first, example.xsd, includes the file
named include.xsd, and imports the file named import.xsd. When the file example.xsd
is imported into FrameMaker, the resulting DTD includes definitions for all three files.

XML Schema to DTD Mapping 232

S u p p o r t e d S c h e m a f e a t u r e s

Schema

First file, example.xsd

<schema targetNamespace="Include-Import-Example"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:a="Include-Import-Example"
xmlns:b="Import-schema" elementFormDefault="qualified">

<include schemaLocation="./include.xsd"/>
<import namespace="Import-schema" schemaLocation="./import.xsd"/>
<element name="rootElem1">
<complexType><sequence>

<element name="elem1" type="a:complexTypeA"/>
<element ref="b:importElem1"/>
<element ref="a:includeElem3"/>
</sequence>

</complexType>
</element>
</schema>

Second file, include.xsd

<schema targetNamespace="Include-Import-Example"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:a="Include-Import-Example"
elementFormDefault="qualified">

<complexType name="complexTypeA"><sequence>
<element name="includeElem1" type="string"/>
<element name="includeElem2" type="string"/>
</sequence></complexType>
<element name="includeElem3" type="int"/>
</schema>

Third file, import.xsd

<schema targetNamespace="Import-schema"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:c="Import-schema" elementFormDefault="qualified">

<element name="importElem1" type="int"/>
<element name="importElem2" type="string"/>
</schema>

U n s u p p o r t e d S c h e m a f e a t u r e s

Structured Application Developer Reference 233

DTD

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT c:importElem1 (#PCDATA)>
<!ELEMENT c:importElem2 (#PCDATA)>
<!ELEMENT includeElem1 (#PCDATA)>
<!ELEMENT includeElem2 (#PCDATA)>
<!ELEMENT includeElem3 (#PCDATA)>
<!ELEMENT rootElem1 ((elem1,c:importElem1),includeElem3)>
<!ELEMENT elem1 (includeElem1,includeElem2)>

Unsupported Schema features
Features of Schema listed below cannot be mapped into DTD, and are dropped:

•Abstract types

•key, keyref, and unique

•Annotations

XML Schema to DTD Mapping 234

U n s u p p o r t e d S c h e m a f e a t u r e s

Structured Application Developer Reference 235

7 The CALS/OASIS Table Model 8

The CALS or the related OASIS table model is a specific set of element and attribute declarations
for defining tables, originally defined in “Markup Requirements and Generic Style Specification for
Electronic Printed Output and Exchange of Text,” MIL-M-28001B. The OASIS table model is an XML
expression of the exchange subset of the full CALS Table Model DTD. If your markup documents
use these elements and attributes or some simple variations of them, FrameMaker can translate
them to tables and table parts without the assistance of read/write rules. The CALS model can be
interpreted in various ways. This chapter describes the CALS elements and attributes as they are
interpreted by FrameMaker.

Some attributes are common to several elements in the description of the table. In these cases,
attribute values are inherited in the element hierarchy. The values of attributes associated with
<colspec> and <spanspec> elements act as though they were on the parent element for
inheritance purposes. This is, if a <tgroup> element has two <colspec> child elements and a
<thead> child element, the attributes of the <colspec> elements apply to the <thead>
element unless that element has its own <colspec> elements with attribute values that override
the inherited ones. If you want to change how FrameMaker processes any attribute of a
<colspec> or <spanspec> element, you refer to the attribute as a formatting property.

In the CALS model, the <table> element has an <orient> attribute. This attribute is not
supported in FrameMaker, because there is no way in a FrameMaker table to specify orientation
on the page.

FrameMaker properties that DO NOT have corresponding
CALS attributes

Column widths: Width of successive columns in the table. Each value is either an absolute width
or a width proportional to the size of the entire table. If proportional widths are used, the CALS -
pgwide- attribute determines the table width. For example, to specify that the first two columns
are each one-quarter the size of the table, and the third column is half the size of the table, you
could write a rule to specify your column widths as “25* 25* 50*”. Valid units and abbreviations for
the “column width” formatting property are:

FrameMaker Property For FrameMaker Elements
of Type

Corresponding CALS
Attribute

column widths table (CALS: tgroup) (none)

The CALS/OASIS Table Model 236

E l e m e n t a n d a t t r i b u t e d e f i n i t i o n l i s t d e c l a r a t i o n s

Maximum height of a row in a table.

Minimum height of a row in a table.

Whether the associated table row is a heading, footing, or body row, or the associated table cell
occurs in a row of that type.

How many columns this straddle cell spans

How many rows this straddled cell spans

Element and attribute definition list declarations
The element and attribute declarations as used by FrameMaker are as follows:

<!ENTITY % yesorno "NUMBER">

Unit Abbreviation
centimeter cm

cicero cc

didot dd

inch in (in FrameMaker dialog boxes, “ is also used, but
not for “column width” formatting property)

millimeter mm

pica pc (or pi)

point pt

FrameMaker Property For FrameMaker Elements
of Type

Corresponding CALS
Attribute

maximum height row (none)

minimum height row (none)

row type row (none)

horizontal straddle cell (none)

vertical straddle cell (none)

E l e m e n t a n d a t t r i b u t e d e f i n i t i o n l i s t d e c l a r a t i o n s

Structured Application Developer Reference 237

<!ELEMENT table - - (title?, tgroup+)>
<!ATTLIST table
 colsep %yesorno; #IMPLIED
 frame (all|top|bottom|topbot|sides|none) #IMPLIED
 pgwide %yesorno; #IMPLIED
 rowsep %yesorno; #IMPLIED
 tabstyle NMTOKEN #IMPLIED
>

<!ELEMENT title - - (#PCDATA)>

<!ELEMENT tgroup - O (colspec*, spanspec*, thead?, tfoot?, tbody)>
<!ATTLIST tgroup
 align (left|center|right|justify|char) #IMPLIED
 char CDATA #IMPLIED
 charoff NUTOKEN #IMPLIED
 colsep %yesorno; #IMPLIED
 cols NUMBER #REQUIRED
 rowsep %yesorno; #IMPLIED
 tgroupstyle NMTOKEN #IMPLIED
>

<!ELEMENT colspec - O EMPTY>
<!ATTLIST colspec
 align (left|center|right|justify|char) #IMPLIED
 char CDATA #IMPLIED
 charoff NUTOKEN #IMPLIED
 colname NMTOKEN #IMPLIED
 colnum NUMBER #IMPLIED
 colsep %yesorno; #IMPLIED
 colwidth CDATA #IMPLIED
 rowsep %yesorno; #IMPLIED
>

<!ELEMENT spanspec - O EMPTY>
<!ATTLIST spanspec
 align (left|center|right|justify|char) #IMPLIED
 char CDATA #IMPLIED
 charoff NUTOKEN #IMPLIED
 colsep %yesorno; #IMPLIED
 nameend NMTOKEN #REQUIRED
 namest NMTOKEN #REQUIRED
 rowsep %yesorno; #IMPLIED
 spanname NMTOKEN #REQUIRED
>

The CALS/OASIS Table Model 238

E l e m e n t s t r u c t u r e

<!ELEMENT thead - O (colspec*, row+)>
<!ATTLIST thead
 valign (top|middle|bottom) "bottom"
>

<!ELEMENT tfoot - O (colspec*, row+)>
<!ATTLIST tfoot
 valign (top|middle|bottom) "top"
>

<!ELEMENT tbody - O (row+)>
<!ATTLIST tbody
 valign (top|middle|bottom) "top"
>

<!ELEMENT row - O (entry+)>
<!ATTLIST row
 rowsep %yesorno; #IMPLIED
 valign (top|middle|bottom) "top"
>

<!ELEMENT entry - O (#PCDATA)>
<!ATTLIST entry
 align (left|center|right|justify|char) #IMPLIED
 char CDATA #IMPLIED
 charoff NUTOKEN #IMPLIED
 colname NMTOKEN #IMPLIED
 colsep %yesorno; #IMPLIED
 morerows NUMBER #IMPLIED
 nameend NMTOKEN #IMPLIED
 namest NMTOKEN #IMPLIED
 rotate %yesorno; #IMPLIED
 rowsep %yesorno; #IMPLIED
 spanname NMTOKEN #IMPLIED
 valign (top|middle|bottom) #IMPLIED
>

Element structure
A CALS table has an optional title followed by one or more tgroup elements. This allows, for
example, different portions of one table to have different numbers of columns. In practice, most
CALS tables have a single tgroup element. The tgroup element is the major portion of the
table. It has several optional parts: multiple colspec and spanspec elements followed by (at
most) one heading and one footing element. The only required sub-element of a tgroup
element is its body. Unlike the FrameMaker model of table structure, the CALS model has its
tgroup element appearing after the footing element.

A t t r i b u t e s t r u c t u r e

Structured Application Developer Reference 239

The colspec empty element has attributes describing characteristics of a table column. The
spanspec empty element has attributes describing straddling characteristics of a portion of a
table. These elements have no counterpart in FrameMaker. They exist only to have their attribute
values specify information about other elements in the table.

The thead and tfoot heading and footing elements contain their own optional colspec
elements followed by one or more rows.

The tbody element contains one or more rows.

As supported by FrameMaker, a table row consists of a set of cells in entry elements, each of
which can contain only text. Readers familiar with the CALS model may notice that these
declarations do not include the entrytbl element which supports creating tables within tables.
FrameMaker does not allow tables within tables, so does not support this element.

Attribute structure
Elements in the CALS table model use attributes to describe properties of the table such as cell
alignment or straddling behavior.

Inheriting attribute values
Some attributes are common to several elements in the description of a table. In these cases,
attribute values are inherited in the element hierarchy. The values of attributes associated with
colspec and spanspec elements act as though they were on the parent element for
inheritance purposes. That is, if a tgroup element has two colspec child elements and a
thead child element, the attributes of the colspec elements apply to the thead element
unless that element has its own colspec elements with attribute values that override the
inherited ones.

Orient attribute
In the CALS model, the table element has an orient attribute. This attribute is not supported
in FrameMaker, because there is no way in a FrameMaker table to specify orientation on the page.

Straddling attributes
A spanspec element describes a column range so that a straddle cell can describe which
columns it spans by referencing a spanspec through its spanname attribute.

An entry element specifies which columns it occupies by one of three methods:

•Using the namest and nameend attributes to reference columns explicitly. The namest
attribute indicates the first column in the straddle; the nameend attribute indicates the last
column.

•Using the spanname attribute as an indirect reference to the columns.

The CALS/OASIS Table Model 240

A t t r i b u t e s t r u c t u r e

•Using the colname attribute (for a non-straddled cell).

Structured Application Developer Reference 241

8 Read/Write Rules for the CALS/OASIS
Table Model 9

By default, FrameMaker can read and write CALS (or OASIS) tables without your intervention. For
information on what it does by default and how you can change that behavior with read/write
rules, see Chapter 22, “Translating Tables” in Developer Guide. FrameMaker does not use read/
write rules to implement its default interpretation of CALS tables. However, to help your
understanding of the default interpretation, this chapter contains a set of rules that encapsulate
the software’s default behavior for CALS tables.

As described in Chapter 22, “Translating Tables,” (in Developer Guide) the software’s default
behavior is different depending on whether the table element is a container element or a table
element in FrameMaker. The only difference is what type of element table becomes and what
happens to the tgroup element. All other elements and attributes always translate in the same
way.

element "table" {
 /* If table is a container element, use this subrule: */
 is fm element;

 /* If table is a table element, use this subrule: */
 is fm table element;

 /* The rest of the subrules for table are always applicable. */
 attribute "tabstyle" is fm property table format;
 attribute "tocentry" is fm attribute;
 attribute "frame"
 {
 is fm property table border ruling;
 value "top" is fm property value top;
 value "bottom" is fm property value bottom;
 value "topbot" is fm property value top and bottom;
 value "all" is fm property value all;
 value "sides" is fm property value sides;
 value "none" is fm property value none;
 }
 attribute "colsep" is fm property column ruling;
 attribute "rowsep" is fm property row ruling;
 attribute "orient" is fm attribute;
 attribute "pgwide" is fm property page wide;
}

Read/Write Rules for the CALS/OASIS Table Model 242

element "tgroup"
{

 /* If table is a container element, use this subrule: */
 is fm table element;

 /* If table is a table element, use this subrule: */
 unwrap;

 /*The rest of the subrules for tgroup are always applicable.*/
 attribute "cols" is fm property columns;
 attribute "tgroupstyle" is fm property table format;
 attribute "colsep" is fm property column ruling;
 attribute "rowsep" is fm property row ruling;
 attribute "align" is fm attribute;
 attribute "charoff" is fm attribute;
 attribute "char" is fm attribute;
}

element "colspec"
{
 is fm colspec;
 attribute "colnum" is fm property column number;
 attribute "colname" is fm property column name;
 attribute "align" is fm property cell alignment type;
 attribute "charoff" is fm property cell alignment offset;
 attribute "char" is fm property cell alignment character;
 attribute "colwidth" is fm property column width;
 attribute "colsep" is fm property column ruling;
 attribute "rowsep" is fm property row ruling;
}

element "spanspec"
{
 is fm spanspec;
 attribute "spanname" is fm property span name;
 attribute "namest" is fm property start column name;
 attribute "nameend" is fm property end column name;
 attribute "align" is fm property cell alignment type;
 attribute "charoff" is fm property cell alignment offset;
 attribute "char" is fm property cell alignment character;
 attribute "colsep" is fm property column ruling;
 attribute "rowsep" is fm property row ruling;
}

Structured Application Developer Reference 243

element "thead"
{
 is fm table heading element;
 attribute "valign" is fm attribute;
}

element "tfoot"
{
 is fm table footing element;
 attribute "valign" is fm attribute;
}

element "tbody"
{
 is fm table body element;
 attribute "valign" is fm attribute;
}

element "row"
{
 is fm table row element;
 attribute "valign" is fm attribute;
 attribute "rowsep" is fm property row ruling;
}

element "entry"
{
 is fm table cell element;
 attribute "colname" is fm property column name;
 attribute "namest" is fm property start column name;
 attribute "nameend" is fm property end column name;
 attribute "spanname" is fm property span name;
 attribute "morerows" is fm property more rows;
 attribute "colsep" is fm property column ruling;
 attribute "rowsep" is fm property row ruling;
 attribute "rotate" is fm property rotate;
 attribute "valign" is fm attribute;
 attribute "align" is fm attribute;
 attribute "charoff" is fm attribute;
 attribute "char" is fm attribute;
}

Read/Write Rules for the CALS/OASIS Table Model 244

Structured Application Developer Reference 245

9 SGML Declaration 10

To be complete, an SGML document must start with an SGML declaration. This chapter contains
the text of the SGML declaration used by FrameMaker when you do not supply one. It also
describes the variants of the concrete syntax that you can use in your SGML declaration and
unsupported optional SGML features.

When you import an SGML document, FrameMaker first searches for the declaration in the SGML
document. If the software does not find the declaration there, it looks for an SGML declaration
specified by your SGML application definition. If your definition does not specify an SGML
declaration, then the software uses the declaration described below.

When you export a FrameMaker document to SGML, FrameMaker first tries to use an SGML
declaration you specified by your application. If you haven’t specified one, it uses the SGML
declaration described below.

For information on how to specify an SGML declaration as part of an application, see Developer
Guide, page 134: Application definition file.

Text of the default SGML declaration
The SGML declaration provided by FrameMaker uses ISO Latin-1 as the character set, the reference
concrete syntax, and the reference capacity set. The declaration enables the optional features
OMITTAG, SHORTTAG, and FORMAL.

For information on the default translation between the FrameMaker and ISO Latin-1 character
sets, see Chapter 12, “Character Set Mapping.” For information on using other ISO character sets,
see Chapter 11, “ISO Public Entities.”

The text of the default SGML declaration is as follows:

<!SGML "ISO 8879:1986"

CHARSET

 BASESET "ISO Registration Number 100//CHARSET ECMA-94 Right
Part of Latin Alphabet Nr. 1//ESC 2/13 4/1"

Note: XML: The XML specification states that XML must use a specific SGML declaration.
This chapter pertains only to SGML structure applications. If you are only working with
XML markup, you may skip this chapter.

SGML Declaration 246

T e x t o f t h e d e f a u l t S G M L d e c l a r a t i o n

 DESCSET
 0 9 UNUSED
 9 2 9
 11 2 UNUSED
 13 1 13
 14 18 UNUSED
 32 95 32
 127 1 UNUSED
 128 127 128
 255 1 UNUSED

CAPACITY
 PUBLIC "ISO 8879:1986//CAPACITY Reference//EN"

SCOPE DOCUMENT

SYNTAX

 SHUNCHAR 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20
 21 22 23 24 25 26 27 28 29 30 31 127 255

 BASESET "ISO Registration Number 100//CHARSET ECMA-94 Right
Part of Latin Alphabet Nr. 1//ESC 2/13 4/1"

 DESCSET 0 256 0

 FUNCTION RE 13
 RS 10
 SPACE 32
 TAB SEPCHAR 9

 NAMING LCNMSTRT ""
 UCNMSTRT ""
 LCNMCHAR "-."
 UCNMCHAR "-."
 NAMECASE
 GENERAL YES
 ENTITY NO

 DELIM GENERAL SGMLREF
 SHORTREF SGMLREF

 NAMES SGMLREF

 QUANTITY SGMLREF

FEATURES

S G M L c o n c r e t e s y n t a x v a r i a n t s

Structured Application Developer Reference 247

 MINIMIZE DATATAG NO
 OMITTAG YES
 RANK NO
 SHORTTAG YES

 LINK SIMPLE NO
 IMPLICIT NO
 EXPLICIT NO

 OTHER CONCUR NO
 SUBDOC NO
 FORMAL YES

APPINFO NONE

>

SGML concrete syntax variants
The SGML parser used by FrameMaker allows these modifications to the SGML reference concrete
syntax:

•The NAMECASE parameter of the SGML declaration can be changed. The default settings below
specify that general names are not case sensitive (YES), and entity names are case sensitive
(NO):

NAMECASE
GENERAL YES
ENTITY NO

•Reserved names can be changed.

•Short references can, but need not, be used. If they are used, the only possible short reference
delimiter set is that of the reference concrete syntax.

•The value for the NAMELEN quantity can be increased up to 239.

•The values for the following quantities can be increased, but not to more than 30 times their
value in the reference concrete syntax:

ATTCNT
ATTSPLEN
BSEQLEN
ENTLVL
LITLEN
PILEN
TAGLEN
TAGLVL

SGML Declaration 248

U n s u p p o r t e d o p t i o n a l S G M L f e a t u r e s

•The following quantities can be increased up to 253:

GRPCNT
GRPGTCNT
GRPLVL

No SGML read/write rules are needed to provide for variant concrete syntaxes. FrameMaker
obtains the information from the SGML declaration.

The concrete syntax declared in the SGML declaration must be used for the entire document; if a
variant concrete syntax is declared, the reference concrete syntax cannot be used in the prolog.
Thus, the concrete syntax scope parameter must be:

SCOPE DOCUMENT

Unsupported optional SGML features
The SGML standard defines some features as optional, meaning that a specific implementation
does not have to accommodate these features to be considered a conforming SGML system.

The following optional SGML features are not supported by FrameMaker:

•DATATAG

•RANK

•LINK

•SUBDOC

•CONCUR

Your DTD and SGML documents cannot use any of these features. If they do, the FrameMaker
signals an error and terminates processing. You cannot change this behavior by providing an
SGML API client.

Structured Application Developer Reference 249

10 ISO Public Entities 11

Annex D of the SGML standard defines several sets of internal SDATA entities. Each entity
represents a character; each entity set is a logical grouping of these entities. DTDs frequently
include these entity sets by using parameter entity references to external entities accessed with a
public identifier. People in the SGML community frequently interchange DTDs and SGML
documents with such entity references and assume that the recipient can interpret the public
identifiers. FrameMaker includes copies of these entity sets and makes them available using the
default handling of public identifiers.

These entity sets are defined in an ISO standard and are accessed with public identifiers, so they
are commonly known as ISO public entity sets. The public entity sets fall into the following
categories:

If your application uses FrameMaker’s support of ISO entity sets, you may want to create palettes
your end user can use to enter these entities in a FrameMaker document. For information on
creating these palettes, see Developer Guide, Facilitating entry of special characters that translate
as entities.

Note: XML: The XML specification does not allow SDATA entities, but it does allow
UNICODE and predefined character entities for special characters. This chapter pertains
only to SGML structure applications. If you are only working with XML markup, you may
skip this chapter.

Entity set Description
Latin alphabetic characters Latin alphabetic characters used in Western European

languages

Greek alphabetic characters Letters of the Greek alphabet

Greek symbols Greek character names for use as variable names in technical
applications

Cyrillic alphabetic characters Cyrillic characters used in the Russian language

Numeric and special graphic
characters

Minimum data characters and reference concrete syntax
characters

Diacritical mark characters Diacritical marks

Publishing characters Well-known publishing characters

Technical symbols Technical symbols

Added math symbols Mathematical symbols

ISO Public Entities 250

W h a t y o u n e e d t o u s e I S O p u b l i c e n t i t i e s

What you need to use ISO public entities
For your end users to use characters from the ISO public entity sets, your application needs two
pieces of information for each character entity: the entity’s declaration, and an SGML read/write
rule that tells FrameMaker how to translate a reference to that entity in an SGML document to a
character or variable in a FrameMaker document. FrameMaker provides this information in two
files for each entity set.

All files used for ISO public entity sets are in the directory $STRUCTDIR/isoents. For
information on the location of this directory on your system, see Developer Guide, page 131:
Location of structure files. The files for each entity set are as follows:

Entity set Entity declaration files Read/write rules files
Latin alphabetic characters isolat1.ent

isolat2.ent
isolat1.rw
isolat2.rw

Greek alphabetic characters isogrk1.ent
isogrk2.ent

isogrk1.rw
isogrk2.rw

Greek symbols isogrk3.ent
isogrk4.ent

isogrk3.rw
isogrk4.rw

Cyrillic alphabetic characters isocyr1.ent
isocyr2.ent

isocyr1.rw
isocyr2.rw

Numeric and special graphic
characters

isonum.ent isonum.rw

Diacritical mark characters isodia.ent isodia.rw

Publishing characters isopub.ent isopub.rw

Technical symbols isobox.ent
isotech.ent

isobox.rw
isotech.rw

Added math symbols isoamso.ent
isoamsb.ent
isoamsr.ent
isoamsn.ent
isoamsa.ent
isoamsc.ent

isoamso.rw
isoamsb.rw
isoamsr.rw
isoamsn.rw
isoamsa.rw
isoamsc.rw

W h a t y o u n e e d t o u s e I S O p u b l i c e n t i t i e s

Structured Application Developer Reference 251

Entity declaration files
Each entity declaration file starts with two comment declarations that suggest both the public
identifier and the entity name by which to identify the entity set. For the ISO Latin-1 entity set,
these comments are:

<!-- (C) International Organization for Standardization 1986
 Permission to copy in any form is granted for use with
 conforming SGML systems and applications as defined in
 ISO 8879, provided this notice is included in all copies.
-->
<!-- Character entity set. Typical invocation:
 <!ENTITY % ISOlat1 PUBLIC
 "ISO 8879-1986//ENTITIES Added Latin 1//EN">
 %ISOlat1;
-->

After the initial comments, an entity declaration file consists of a sequence of entity declarations.
For example, the first few entity declarations for ISO Latin-1 are as follows:

<!ENTITY aacute SDATA "[aacute]"--=small a, acute accent-->
<!ENTITY Aacute SDATA "[Aacute]"--=capital A, acute accent-->
<!ENTITY acirc SDATA "[acirc]"--=small a, circumflex accent-->
<!ENTITY Acirc SDATA "[Acirc]"--=capital A, circumflex accent-->
<!ENTITY agrave SDATA "[agrave]"--=small a, grave accent-->
<!ENTITY Agrave SDATA "[Agrave]"--=capital A, grave accent-->
<!ENTITY aring SDATA "[aring]"--=small a, ring-->
<!ENTITY Aring SDATA "[Aring]"--=capital A, ring-->

You should never modify these files, because they provide the standard ISO public entity
declarations.

If your SGML documents use the standard invocations for ISO public entity sets, you do not have
to provide any information in your application definition on where to find these entities;
FrameMaker finds them in the default directory. If necessary, you can provide explicit public
statements to substitute alternative versions of the entity sets. For information on working with
application definitions, see Developer Guide, page 134: Application definition file.

Entity read/write rules files
FrameMaker provides read/write rules for many of the entities in the ISO public entity sets. The
rules are organized in files for each public entity set. These files are not complete rules documents.
Instead, they are simply lists of rules or comments explaining which entities do not have default
correspondences.

ISO Public Entities 252

W h a t y o u n e e d t o u s e I S O p u b l i c e n t i t i e s

You can include individual files in your application’s read/write rules document by using the
#include statement. To include the rules for all of the ISO public entity sets, use this single
statement:

#include isoall.rw

To include only the ISO Latin-1 entity set, use these statements:

#include isolat1.rw
#include isolat2.rw

For more information on read/write rules files, see Developer Guide, Chapter 18, Read/Write Rules
and Their Syntax

Format of entity rules
By default, FrameMaker has rules for each entity that can be represented in FrameMaker using the
standard FrameMaker character set, the Symbol font, or the Zapf Dingbat font and for a few (such
as the fractions in isonum) that can be represented with a FrameMaker user variable. Entities that
cannot be represented in this way do not have a default translation. Users of your application may
have more fonts available. If so, you can modify these rules files to include translations for other
entities.

The default rules for entities available in the default character sets or through variables differ
depending on how FrameMaker translates the entity.

•If the character appears in FrameMaker’s standard character set and requires no special
formatting, the rule has the following form:

entity "ename" is fm char code;

where ename is the entity name and code is the character code. For example, the following
rule is for the small letter “a” with an acute accent:

entity "aacute" is fm char 0x87;

•If the character appears in FrameMaker’s Symbol or Zapf Dingbat character set or appears in
FrameMaker’s standard character set, but requires special formatting, the rule has the following
form:

entity "ename" is fm char code in "fmtag";

where ename is the entity name, code is the character code, and fmtag is one of the
character tags defined below. For example, the following rule is for the plus-or-minus sign:

entity "plusnm" is fm char 0xb1 in "FmSymbol";

•If the character can be represented by an FrameMaker variable, the rule has the following form:

entity "ename" is fm variable "var";

where ename is the entity name and var is one of the FrameMaker variables defined below.
For example, the following rule is for the fraction one-half:

entity "frac12" is fm variable "FmFrac12";

W h a t y o u n e e d t o u s e I S O p u b l i c e n t i t i e s

Structured Application Developer Reference 253

For details on how each entity translates into a FrameMaker document, see the individual rules
files.

Character formats
As mentioned above, the rules for some character entities refer to FrameMaker character formats
or variable names. FrameMaker has default definitions for these character formats:

Variables
FrameMaker also has default definitions for these variables:

Character format Defined as
FmDenominator Default font, subscripted; other characteristics As Is

FmDingbats Zapf Dingbat font; other characteristics As Is

FmNumerator Default font, superscripted; other characteristics As Is

FmSdata Default font, underlined and in green; other characteristics As Is

FmSuperscript Default font superscripted; other characteristics As Is

FmSymbol Symbol font; other characteristics As Is

FmUnderlineSymbol Symbol font, underlined; other characteristics As Is

Variable Defined as
FmCare-of c/o
FmEmsp13 an em space

FmFrac12 1/2
FmFrac13 1/3
FmFrac14 1/4
FmFrac15 1/5
FmFrac16 1/6
FmFrac18 1/8
FmFrac23 2/3
FmFrac25 2/5
FmFrac34 3/4
FmFrac35 3/5
FmFrac38 3/8
FmFrac45 4/5
FmFrac56 5/6
FmFrac58 5/8
FmFrac78 7/8

ISO Public Entities 254

W h a t h a p p e n s w i t h t h e d e c l a r a t i o n s a n d r u l e s

Your end user’s documents may not have these character formats or variables defined. When
FrameMaker imports an SGML document with an entity reference that needs one of these formats
or variables, it checks whether the template defined in the SGML application provides the
definition. If so, it uses the information from the template. If not, it uses its own definitions,
copying the definition to the appropriate catalog of the document being processed and using it
to process the entity.

What happens with the declarations and rules
Your application may use some or all of the entity declarations and read/write rules provided with
FrameMaker. In addition, you may choose to have different declarations or rules for some or all of
the entities.

If you want to use the translations provided by FrameMaker with no changes, you do so in one of
two ways.

•If your application has no other read/write rules, then you do not have to explicitly mention the
rules for these entity sets. That is, if the definition of your application does not include a read/
write rules file, FrameMaker behaves as though it had a rules file that included only the ISO
public entity rules.

•On the other hand, if your application does have a read/write rules file, then that file must
explicitly include the rules for the ISO public entity sets in which you’re interested. If you want
all of them, add the following line to your file:

#include isoall.rw

When you create a new read/write rules file, this line is automatically included.

If you want to use only the rules that FrameMaker provides, be sure that your rules file has no
additional entity rules referring to these entities. However, you may want to have FrameMaker
translate most but not all of these entities in the way it provides, while you change the behavior
for some of them with rules or entity declarations. To do this, include an extra entity declaration
or rule for the appropriate entities.

For example, assume the DTD for your application is called myapp.dtd and includes the
following lines:

<!ENTITY % ISOlat1 PUBLIC
 "ISO 8879-1986//ENTITIES Added Latin 1//EN">
%ISOlat1;

Further, assume the application has no rules or has a rules document that contains the following
lines:

#include "isolat1.rw"
#include "isolat2.rw"

W h a t h a p p e n s w i t h t h e d e c l a r a t i o n s a n d r u l e s

Structured Application Developer Reference 255

The default version of isolat1.rw contains the rule:

entity "aacute" is fm char 0x87;

This translates references to the aacute entity as the small letter a with an acute accent. Suppose,
however, that your application needs this entity, instead, to translate as a particular bitmap that
you store as a reference element in the FrameMaker document template. You can accomplish this
by adding either a new entity declaration or a new rule.

To continue the example, assume you import an SGML document that begins as follows:

<!DOCTYPE myapp SYSTEM "myapp.dtd" [
 <!ENTITY aacute SDATA "fm ref: acute-a">
]>

This SGML document has two declarations for aacute. The parser uses the first one it encounters.
Since the parser processes the external DTD subset after it processes the internal DTD subset, it
finds the declaration that uses the reference element first and this is the entity declaration
FrameMaker uses. Since FrameMaker recognizes the fm ref in the parameter literal, it uses that
parameter literal to process the entity reference and ignores any rules that refer to the entity. The
resulting document includes the reference element for the entity reference.

Instead of including the declaration for aacute that uses the fm ref parameter literal, you can
add the following rule to your rules file:

entity "aacute" is fm reference element "acute-a";

This translates references to the aacute entity as the small letter a with an acute accent. Suppose,
however, that your application needs this entity, instead, to translate as a particular bitmap that
you store as a reference element in the FrameMaker document template. You accomplish this by
adding a rule for that entity before the #include statements, as follows:

entity "aacute" is fm reference element "acute-a";

Remember that FrameMaker uses the first rule in a rules file that applies to a particular situation.
Therefore, if you use this rule, then the line in the example that includes isolat1.rw must occur
after this rule. That is, your rules file must look like:

entity "aacute" is fm reference element "acute-a";
. . .
#include isolat1.rw
. . .

If, instead, it looks like:

#include isolat1.rw
. . .
entity "aacute" is fm reference element "acute-a";
. . .

FrameMaker finds the rule in isolat1.rw before your rule and use that to process references to
the aacute entity.

ISO Public Entities 256

W h a t h a p p e n s w i t h t h e d e c l a r a t i o n s a n d r u l e s

FrameMaker has rules for entities in the ISO public entity sets for which there is a direct
correspondence in one of its standard character sets or which can be created using a character
from those character sets. It does not provide rules for entities that would require a different
character set or a graphic.

If you reference an ISO public entity for which there is not a rule, the software treats it as it does
any other entity that does not have a corresponding rule. You can change this behavior with the
entity rule. For more information on FrameMaker’s translation of entities in the absence of rules
and for information on how you can modify this, see Developer Guide, Chapter 21, Translating
Entities and Processing Instructions

Structured Application Developer Reference 257

11 Character Set Mapping 12

FrameMaker writes SGML documents using the ISO Latin-1 character set. This character set differs
from FrameMaker’s character set. Consequently, the software uses a default character set mapping
to translate between the character sets.

FrameMaker includes copies of other ISO public entity sets and provides rules to handle them for
your application. For information on how FrameMaker supports ISO public entities, see
Chapter 11, “ISO Public Entities.”

This chapter describes the default mapping between the FrameMaker character set and the ISO
Latin-1 character set. You can change this mapping by using the character map rule as
described in “character map” on page 49.

To determine the mapping for a particular character, use the table on the next page as follows:

•For a character in the ISO Latin-1 character set, find the hexadecimal character code for the
character of interest in the leftmost column. Read the mapping in the column labelled
“Mapping from ISO Latin-1 to FrameMaker.” The entry on the left side of the equal sign is the
ISO Latin-1 character code. The entry on the right side of the equal sign is the character’s
translation in FrameMaker. For example, the character code \xA1 has the entry:

\xA1 = \xC1

This means that the ISO Latin-1 character \xA1 translates to the FrameMaker character \xC1.

•For a character in the FrameMaker character set, find the hexadecimal character code for the
character of interest in the leftmost column. Read the mapping in the column labelled
“Mapping from FrameMaker to ISO Latin-1.” The entry on the right side of the equal sign is the
FrameMaker character code. The entry on the left side of the equal sign is the character’s
translation in ISO Latin-1. For example, the character code \x10 has the entry:

\x20 = \x10

This means that the FrameMaker character \x10 translates to the ISO Latin-1 character \x20.

•If there is no row corresponding to a character code, then that character code is the same in
both character sets.

Note: XML: The XML specification allows UNICODE in content and in markup tokens, so
the use of ISO character sets is not necessary. FrameMaker supports the full range of
UNICODE in the content of an XML document, and offers limited support of characters in
markup tokens. For more information, see Developer Guide, Supported characters in
element and attribute names.

If you are only working with XML markup, you may skip this chapter.

Character Set Mapping 258

Character code Mapping from ISO Latin-1 to
FrameMaker

Mapping from FrameMaker to
ISO Latin-1

\x00 \x00 = trap trap = \x00

\x01 \x01 = trap trap = \x01

\x02 \x02 = trap trap = \x02

\x03 \x03 = trap trap = \x03

\x04 \x04 = trap trap = \x04

\x05 \x05 = trap trap = \x05

\x06 \x06 = trap trap = \x06

\x07 \x07 = trap trap = \x07

\x08 \x08 = trap \x09 = \x08

\x09 \x09 = \x08 \x0A = \x09

\x0A \x0A = \x0A \x0A = \x0A

\x0B \x0B = trap trap = \x0B

\x0C \x0C = trap trap = \x0C

\x0D \x0D = trap trap = \x0D

\x0E \x0E = trap trap = \x0E

\x0F \x0F = trap trap = \x0F

\x10 \x10 = trap \x20 = \x10

\x11 \x11 = trap \x20 = \x11

\x12 \x12 = trap \x20 = \x12

\x13 \x13 = trap \x20 = \x13

\x14 \x14 = trap \x20 = \x14

\x15 \x15 = trap \x2D = \x15

\x16 \x16 = trap trap = \x16

\x17 \x17 = trap trap = \x17

\x18 \x18 = trap trap = \x18

\x19 \x19 = trap trap = \x19

\x1A \x1A = trap trap = \x1A

\x1B \x1B = trap trap = \x1B

\x1C \x1C = trap trap = \x1C

\x1D \x1D = trap trap = \x1D

\x1E \x1E = trap trap = \x1E

\x1F \x1F = trap trap = \x1F

Structured Application Developer Reference 259

\x7F \x7F = trap trap = \x7F

\x80 \x80 = trap \xC4 = \x80

\x81 \x81 = trap \xC5 = \x81

\x82 \x82 = trap \xC7 = \x82

\x83 \x83 = trap \xC9 = \x83

\x84 \x84 = trap \xD1 = \x84

\x85 \x85 = trap \xD6 = \x85

\x86 \x86 = trap \xDC = \x86

\x87 \x87 = trap \xE1 = \x87

\x88 \x88 = trap \xE0 = \x88

\x89 \x89 = trap \xE2 = \x89

\x8A \x8A = trap \xE4 = \x8A

\x8B \x8B = trap \xE3 = \x8B

\x8C \x8C = trap \xE5 = \x8C

\x8D \x8D = trap \xE7 = \x8D

\x8E \x8E = trap \xE9 = \x8E

\x8F \x8F = trap \xE8 = \x8F

\x90 \x90 = trap \xEA = \x90

\x91 \x91 = trap \xEB = \x91

\x92 \x92 = trap \xED = \x92

\x93 \x93 = trap \xEC = \x93

\x94 \x94 = trap \xEE = \x94

\x95 \x95 = trap \xEF = \x95

\x96 \x96 = trap \xF1 = \x96

\x97 \x97 = trap \xF3 = \x97

\x98 \x98 = trap \xF2 = \x98

\x99 \x99 = trap \xF4 = \x99

\x9A \x9A = trap \xF6 = \x9A

\x9B \x9B = trap \xF5 = \x9B

\x9C \x9C = trap \xFA = \x9C

\x9D \x9D = trap \xF9 = \x9D

Character code Mapping from ISO Latin-1 to
FrameMaker

Mapping from FrameMaker to
ISO Latin-1

Character Set Mapping 260

\x9E \x9E = trap \xFB = \x9E

\x9F \x9F = trap \xFC = \x9F

\xA0 \xA0 = trap trap = \xA0

\xA1 \xA1 = \xC1 trap = \xA1

\xA2 \xA2 = \xA2 \xA2 = \xA2

\xA3 \xA3 = \xA3 \xA3 = \xA3

\xA4 \xA4 = \xDB \xA7 = \xA4

\xA5 \xA5 = \xB4 \xB7 = \xA5

\xA6 \xA6 = \x7C \xB6 = \xA6

\xA7 \xA7 = \xA4 \xDF = \xA7

\xA8 \xA8 = \xAC \xAE = \xA8

\xA9 \xA9 = \xA9 \xA9 = \xA9

\xAA \xAA = \xBB trap = \xAA

\xAB \xAB = \xC7 \xB4 = \xAB

\xAC \xAC = \xC2 \xA8 = \xAC

\xAD \xAD = \x2D trap = \xAD

\xAE \xAE = \xA8 \xC6 = \xAE

\xAF \xAF = \xF8 \xD8 = \xAF

\xB0 \xB0 = \xFB trap = \xB0

\xB1 \xB1 = trap trap = \xB1

\xB2 \xB2 = trap trap = \xB2

\xB3 \xB3 = trap trap = \xB3

\xB4 \xB4 = \xAB \xA5 = \xB4

\xB5 \xB5 = trap trap = \xB5

\xB6 \xB6 = \xA6 trap = \xB6

\xB7 \xB7 = \xA5 trap = \xB7

\xB8 \xB8 = \xFC trap = \xB8

\xB9 \xB9 = trap trap = \xB9

\xBA \xBA = \xBC trap = \xBA

\xBB \xBB = \xC8 \xAA = \xBB

\xBC \xBC = trap \xBA = \xBC

\xBD \xBD = trap trap = \xBD

Character code Mapping from ISO Latin-1 to
FrameMaker

Mapping from FrameMaker to
ISO Latin-1

Structured Application Developer Reference 261

\xBE \xBE = trap \xE6 = \xBE

\xBF \xBF = \xC0 \xF8 = \xBF

\xC0 \xC0 = \xCB \xBF = \xC0

\xC1 \xC1 = \xE7 \xA1 = \xC1

\xC2 \xC2 = \xE5 \xAC = \xC2

\xC3 \xC3 = \xCC trap = \xC3

\xC4 \xC4 = \x80 trap = \xC4

\xC5 \xC5 = \x81 trap = \xC5

\xC6 \xC6 = \xAE trap = \xC6

\xC7 \xC7 = \x82 \xAB = \xC7

\xC8 \xC8 = \xE9 \xBB = \xC8

\xC9 \xC9 = \x83 trap = \xC9

\xCA \xCA = \xE6 trap = \xCA

\xCB \xCB = \xE8 \xC0 = \xCB

\xCC \xCC = \xED \xC3 = \xCC

\xCD \xCD = \xEA \xD5 = \xCD

\xCE \xCE = \xEB trap = \xCE

\xCF \xCF = \xEC trap = \xCF

\xD0 \xD0 = trap \x2D = \xD0

\xD1 \xD1 = \x84 \x2D = \xD1

\xD2 \xD2 = \xF1 \x22 = \xD2

\xD3 \xD3 = \xEE \x22 = \xD3

\xD4 \xD4 = \xEF \x60 = \xD4

\xD5 \xD5 = \xCD \x27 = \xD5

\xD6 \xD6 = \x85 trap = \xD6

\xD7 \xD7 = trap trap = \xD7

\xD8 \xD8 = \xAF \xFF = \xD8

\xD9 \xD9 = \xF4 trap = \xD9

\xDA \xDA = \xF2 \x2F = \xDA

\xDB \xDB = \xF3 \xA4 = \xDB

\xDC \xDC = \x86 trap = \xDC

\xDD \xDD = trap trap = \xDD

Character code Mapping from ISO Latin-1 to
FrameMaker

Mapping from FrameMaker to
ISO Latin-1

Character Set Mapping 262

\xDE \xDE = trap trap = \xDE

\xDF \xDF = \xA7 trap = \xDF

\xE0 \xE0 = \x88 trap = \xE0

\xE1 \xE1 = \x87 \xB7 = \xE1

\xE2 \xE2 = \x89 \x2C = \xE2

\xE3 \xE3 = \x8B trap = \xE3

\xE4 \xE4 = \x8A trap = \xE4

\xE5 \xE5 = \x8C \xC2 = \xE5

\xE6 \xE6 = \xBE \xCA = \xE6

\xE7 \xE7 = \x8D \xC1 = \xE7

\xE8 \xE8 = \x8F \xCB = \xE8

\xE9 \xE9 = \x8E \xC8 = \xE9

\xEA \xEA = \x90 \xCD = \xEA

\xEB \xEB = \x91 \xCE = \xEB

\xEC \xEC = \x93 \xCF = \xEC

\xED \xED = \x92 \xCC = \xED

\xEE \xEE = \x94 \xD3 = \xEE

\xEF \xEF = \x95 \xD4 = \xEF

\xF0 \xF0 = trap trap = \xF0

\xF1 \xF1 = \x96 \xD2 = \xF1

\xF2 \xF2 = \x98 \xDA = \xF2

\xF3 \xF3 = \x97 \xDB = \xF3

\xF4 \xF4 = \x99 \xD9 = \xF4

\xF5 \xF5 = \x9B trap = \xF5

\xF6 \xF6 = \x9A \x5E = \xF6

\xF7 \xF7 = trap \x7E = \xF7

\xF8 \xF8 = \xBF \xAF = \xF8

\xF9 \xF9 = \x9D trap = \xF9

\xFA \xFA = \x9C trap = \xFA

\xFB \xFB = \x9E \xB0 = \xFB

\xFC \xFC = \x9F \xB8 = \xFC

\xFD \xFD = trap trap = \xFD

Character code Mapping from ISO Latin-1 to
FrameMaker

Mapping from FrameMaker to
ISO Latin-1

Structured Application Developer Reference 263

\xFE \xFE = trap trap = \xFE

\xFF \xFF = \xD8 trap = \xFF

Character code Mapping from ISO Latin-1 to
FrameMaker

Mapping from FrameMaker to
ISO Latin-1

Character Set Mapping 264

Structured Application Developer Reference 265

Glossary

This glossary contains common terms used by FrameMaker, XML, and SGML. For
references to more information about the terms, see the index.

ancestor An element that contains a given element in a document’s structure. For
example, if a Section element contains a Head element followed by a
Paragraph element, and the Paragraph contains a Variable element, the
Paragraph and Section elements are both ancestors of the Variable
element, but the Head element is not an ancestor of the Variable element. See
also descendant, child element, parent element, and sibling.

API Application Programming Interface. Enables developers to create API clients with
other applications, such as databases, document management systems, CAD
tools, and user interfaces, for automation, database publishing, HTML conversion
and other purposes.

application
definition

A data structure (and the associated files) describing part of a complete XML or
SGML application assembled with FrameMaker. You store application definitions
in the structapps.fm file.

attribute A place to supply information about an element other than its hierarchical
position and structure. An attribute value does not add content to a document.

attribute definition The construct used to define a single attribute in a FrameMaker EDD or a DTD.

attribute definition
list declaration

In markup, the declaration that provides the list of attribute definitions for one or
more elements. Also called an ATTLIST. See also element declaration.

book A grouping of FrameMaker documents that lets you work with them as a single
unit. Lets you generate a single table of contents or other file from the
documents, and simplifies printing, numbering, cross-referencing, and
formatting.

CALS Continuous Acquisition and Life Cycle Support. The US Department of Defense
standard for the electronic delivery of documents.

catalog A floating palette that stores predefined paragraph, character, or table formats.

CDATA In markup, character data. In character data, no markup is recognized, other than
the delimiters that end the character data. See also NDATA, #PCDATA, RCDATA,
and SDATA.

child element An element that is contained in a given element and that is one level below the
given element. For example, if a Section element contains a Head element
followed by a Paragraph element, and the Paragraph element contains a

Glossary 266

Variable element, the Head and Paragraph elements are both child
elements of the Section element, but the Variable element is not. See also
parent element, ancestor, descendant, and sibling.

concrete syntax In SGML, a set of choices on the markup a document will use. Since SGML does
not require any particular values for these choices, an SGML document requires
a concrete syntax so a parser can correctly interpret it. See also reference concrete
syntax.

container element In FrameMaker, an element that can contain text, other elements, or both.
Contrasts with certain specific element types—for example, a cross-reference
element, which can contain nothing other than the cross-reference.

content model In markup, the part of an element declaration that specifies both a model group
and exceptions that define the allowed content of the element. Each markup
element declaration has either a content model or declared content. See also
content rules, declared content, general rule, and model group.

content rules In FrameMaker, the part of an element declaration that specifies both the
element’s type and the kind of contents the element can have. See also format
rules, content model, and general rule.

conversion table In FrameMaker, a table associating parts of an unstructured document with their
structured counterparts, used in converting an unstructured document to a
structured document.

cross-reference A passage in one place in a document that refers to another place, its cross-
reference source, in the same or a different document.

cross-reference
source

The place referred to by a cross-reference.

data In markup, the characters of a document that represent the inherent information
content. Such characters are not recognized as markup. See also markup.

data content
notation

In markup, an application-specific interpretation of an element’s data content, or
of a data entity, that usually extends or differs from the normal meaning of the
document character set. Frequently used to identify the format of an external
entity containing a graphic.

declaration In markup, markup that controls how other markup of a document is to be
interpreted.

declared content In an markup element declaration, specifies that the defined element’s content is
one of the reserved types CDATA, RCDATA, or EMPTY.

declared value In an markup attribute definition, determines the type of attribute value, such as
ID or NUTOKEN, that is valid when the attribute is specified. Although markup
does not define the term attribute type, you can loosely think of an attribute’s
declared value as its type.

Structured Application Developer Reference 267

default value In markup, the portion of an attribute definition that indicates whether an
attribute is required and what value to use if the user does not specify one. In
FrameMaker, refers only to the value to use if a user does not supply a value for
an attribute.

delimiter In markup, a character string used to identify a piece of markup or to distinguish
markup from data. For example, > (greater-than sign) is the default closing
delimiter for element tags.

descendant Any element that is below a given element in a document’s structure. For
example, if a Section element contains a Head element followed by a
Paragraph element, and the Paragraph element contains a Variable
element, the Variable element is a descendant of both the Paragraph and
the Section elements, but not of the Head element. See also ancestor, child
element, parent element, and sibling.

DOCTYPE In markup, the reserved name that follows the opening delimiter of a DTD.
Informally used to refer to the document element.

document A collection of information that is processed as a unit. A FrameMaker document
is any file in FrameMaker format. A markup document includes an SGML
declaration (for SGML), prologue, and document instance set.

document element In markup, the highest-level element in a document. The generic identifier of this
element is specified immediately after the DOCTYPE reserved name in the DTD.

document instance In markup, the portion of a document that contains markup and data for a
particular project such as a memo or book.

document type A class of documents having similar characteristics, such as technical manual or
internal memo.

document type
declaration

In markup, a document type declaration (DTD) associates a document element
with a set of declarations (the document type declaration subset).

document type
declaration subset

In markup, a set of declarations determining such things as the markup to allow
in a document and the elements and attributes for a document set. See also
external DTD subset and internal DTD subset.

DTD See document type declaration subset.

EDD See element definition document.

element A structural unit of a document. Holds and organizes the contents of the
document.

Element Catalog In FrameMaker, the information extracted from an EDD and stored within each
structured FrameMaker document. Makes an external element definition
document unnecessary. See also element definition document.

Glossary 268

element declaration In markup, information describing a particular element. Includes both a name
(generic identifier) for the element and content rules. A markup document has an
element declaration for each allowed element.

element definition In FrameMaker, a set of rules describing an element. Includes a name (tag) for the
element, content rules, and (optionally) context-sensitive format rules. A
structured document has an element definition for each element allowed. See
also content rules and format rules.

element definition
document

A FrameMaker document that contains a set of element definitions for a class of
documents. Can also include information on system defaults and on a structure
application with which to associate this information. Also called an EDD.

element tag In FrameMaker, the name assigned to an element and stored in the Element
Catalog. See also generic identifier.

EMPTY Keyword in an element definition indicating that the element cannot have
content. In markup, EMPTY is a declared content.

end-tag In markup, the markup that indicates the end of an element.

entity In markup, a collection of characters that can be referenced as a unit. Used for
many purposes in markup, such as graphics or frequently used sets of characters.

exclusion An exception to the general rule or content model of an element. Specifies other
elements that cannot appear anywhere in the element or in its descendants.
Exclusions are not allowed in XML.

external cross-
reference

In FrameMaker, a cross-reference to a source in a different file. Markup does not
define this concept.

external DTD subset In markup, an informal term for an external entity for which an external identifier
appears at the beginning of a document type declaration and that is
automatically referenced at the end of the document type declaration subset.

external entity In markup, an entity that specifies an external object, such as a file.

facet A pictorial representation of graphical data.

FDK client In FrameMaker, any application created using the Frame Developer’s Kit. See also
Structure API client.

flow See , “text flow.”

format rules In FrameMaker, the part of an element definition that specifies which predefined
format to apply to an element. Format rules can use different formats for different
contexts in a document. See also content rules.

general entity In markup, an entity that can be referenced from within the content of an
element or an attribute value literal.

general rule In FrameMaker, a rule that specifies valid contents for an element and the order
in which the contents can appear. Equivalent to the declared content of an

Structured Application Developer Reference 269

element or the model group part of the content model of an element in markup.
See also content rules.

generic identifier In markup, the name identifying an element. See also element definition and
element tag.

highest-level rule In FrameMaker, a read/write rule that is not a subrule of another read/write rule.

HTML Hypertext Markup Language. An encoding system used to describe the content
and organization of an electronic document published on the World Wide Web.

ID attribute An attribute of type ID, frequently used as an identifier to mark the source of a
cross-reference. In a single document, a particular value for an ID attribute can
be used only once.

IDREF attribute An attribute whose value must be that of an ID attribute in the same markup
document or FrameMaker document or book. Frequently used for cross-
references.

impliable attribute In markup, an attribute whose value does not have to be supplied. If a document
does not supply a value, it is up to the processing software to correctly interpret
the attribute. Such attributes use the default value #IMPLIED.

inclusion An exception to the general rule or content model of an element. Specifies other
elements that can appear anywhere in the element or in its descendants.
Inclusions are not allowed in XML DTDs

invalid element An element with contents that do not conform to content rules. May be missing
required child elements, may not have a definition in the EDD or DTD, or may
have text or child elements in a position not allowed by its content rules or by
the exclusion and inclusion rules of its ancestors.

internal cross-
reference

In FrameMaker, a cross-reference to a source in the same file.

internal DTD subset In markup, an informal term for the declarations in a document type declaration
that occur within brackets (dso and dsc delimiters) in the markup document
entity, rather than being in an external entity.

internal entity In markup, an entity whose replacement text is determined solely by information
in its declaration.

ISO public entity In SGML, an entity that occurs in one of the entity sets defined in Annex D of the
SGML Standard. These entities provide commonly used special characters.

marker In FrameMaker, a nonprinting character an end user inserts (such as an index
entry) to indicate various types of information.

markup Text added to the data of a document in order to convey information about it,
such as hierarchical structure or formatting. This document also uses markup to
generally refer to XML and SGML.

Glossary 270

markup
minimization

In SGML, any of various conventions for omitting markup in a document,
including shortening or omitting tags and shortening entity references.

model group In markup, an ordered list that specifies valid contents for an element (such as
child elements) and the order in which the contents can appear. A model group
is similar to a FrameMaker general rule.

NAMECASE
parameter

In SGML, the part of the SGML declaration that determines case-sensitivity of
markup.

NDATA In SGML (and implicitly XML), non-SGML data. NDATA is data that needs special
processing by the markup application. NDATA is typically used, for example,
when representing graphics—in XML the graphic data would be non-parsed
data. See also CDATA, #PCDATA, RCDATA, and SDATA.

parameter entity In markup, an entity that can be referenced only within a DTD.

parent element An element that contains a given element and is one level above it in the
hierarchy. For example, if a Section element contains a Head element followed
by a Paragraph element, the Section element is the parent element of the
Head and Paragraph elements, but not of the Variable element. See also
child element, ancestor, descendant, and sibling.

parser See validating parser.

#PCDATA In markup, parsed character data. This is normal text that can include markup to
be parsed. Occurs in an markup element’s model group and corresponds to
<TEXT> in a FrameMaker element’s general rule. See also CDATA, NDATA,
RCDATA, and SDATA.

prefix Text that is automatically placed before the content of an element. In
FrameMaker, defined as part of the formatting of an element. For example, a
Quote text range element might have an open quotation mark as its prefix and
a close quotation mark as its suffix. See also suffix.

processing
instruction

In an markup document, a way of indicating that the application needs to
perform some special processing. For example, you can use a processing
instruction to indicate a location in an markup document that should have a
page break.

public identifier In markup, a way of identifying an external entity. Formal public identifiers have
a specified syntax that includes an identifier of the owner of the entity and an
indication of the markup construct it provides. Formal public identifiers are
typically available to any user of markup, not just the users at a particular
company. Informal public identifiers may be available more widely than a single
document or system, but perhaps no more widely than within a single company.
See also system identifier

Structured Application Developer Reference 271

RCDATA In markup, replaceable character data. In replaceable character data, no markup
is recognized, other than character and entity references. RCDATA is valid only in
SGML. See also CDATA, NDATA, #PCDATA, and SDATA.

read/write rule In FrameMaker, interpreted commands you supply to modify how the software
translates between FrameMaker and markup documents.

reference concrete
syntax

In SGML, a particular concrete syntax defined by the SGML standard. See also
concrete syntax.

reference page An underlying page that stores repeatedly-used graphics and formatting
information.

Rubi text Small characters that appear above Japanese-language characters to indicate
pronunciation.

rule See SGML read/write rule.

SDATA In SGML, specific character data. One common use is for specific characters that
might not be in the standard character set. See also CDATA, NDATA, #PCDATA, and
RCDATA.

SGML An acronym for Standard Generalized Markup Language.

SGML application Rules that apply SGML to a text processing application. Includes a formal
specification of the markup constructs used in the application, expressed in
SGML. Can also include non-SGML definitions of semantics, application,
conventions, and processing.

SGML declaration In SGML, the part of a document that tells a parser how to interpret markup in
the document.

SGML read/write
rule

See read/write rule.

sibling Elements at the same level in the structure and with the same parent element.
For example, if a Section element contains a Head element followed by a
Paragraph element, the Head and Paragraph elements are siblings. See also
ancestor, descendant, child element, and parent element.

source See cross-reference source.

start-tag In markup, the markup that indicates the beginning of an element.

Structure API client In FrameMaker, an FDK client created to change the translation between
FrameMaker and markup documents. See also FDK client.

subrule In FrameMaker, an read/write rule that is part of another rule.

suffix Text that is automatically placed after the content of an element. In FrameMaker,
a prefix is defined as part of the formatting of an element. See also prefix.

Glossary 272

system identifier In markup, a way of identifying an external entity that’s specific to the particular
document or system. See also public identifier.

template In FrameMaker, a document used to create new documents. A template can
include all the formats, structure descriptions, and other information you need to
create a document.

<TEXT> In a FrameMaker element’s general rule, indicates that the element can directly
contain text characters and elements included by itself or its ancestors. <TEXT>
corresponds to #PCDATA in a markup element’s model group.

Text entity An entity whose replacement text can contain both data and markup.

text flow The text in a series of connected text frames. A text flow can also be contained
in a single text frame, not connected to any other frame. A text flow with
elements is a structured text flow.

text inset Text imported by reference.

<TEXTONLY> In a FrameMaker element’s general rule, indicates that the element can directly
contain text characters and cannot contain elements included by an ancestor. By
default, on export <TEXTONLY> corresponds to a declared content of RCDATA
in an SGML element’s definition, or PCDATA in XML. On import FrameMaker
translates declared content of RCDATA or CDATA to <TEXTONLY>.

valid document A structured document that conforms to all its content rules. Every element in the
document must be valid. In FrameMaker, every structured flow must have a
highest-level element that is allowed at the highest level.

valid element An element with contents that conform to its own content rules and to the
inclusion and exclusion rules of all of its ancestors.

validating parser In markup, a software module that parses the markup of an XML or SGML
document and determines that the document structure conforms to a provided
DTD.

variable In FrameMaker, text that is defined once but can be used several times. Similar to
some varieties of XML or SGML entity.

XML An acronym for Extensible Markup Language. By definition, XML is a subset of
SGML.

XSLT An acronym for eXtensible Stylesheet Language: Transformations. It is a W3C
language for transforming one XML document into another XML document. It
can also transform an XML document into other text based formats including

MIF

.

Structured Application Developer Reference 273

Index

A
abstract types Schema mapping 233
all element Schema mapping 226
ampersand (&)

in conversion tables 179
anchored frame (rule) 43
any element Schema mapping 230
anyType Schema mapping 222
application definition files ??–30

contents of 9
default information 11
defining applications in 9
document elements 13
DTDs for import and export 14
entity catalogs 15–16
external entities 17–18
filename extensions, specifying 21
files for rules documents 22
individual entities 16
length of log files 30, 31, 32
namespaces, enabling 22
public identifiers 18
read/write rules documents 22
search path for external entities 19–20
SGML declarations 24
structure API clients 27
templates for import 27

application files
managing CSS 24
Schema, specifying 23
XSL transformation, specifying 25

asterisk (*)
in conversion tables 179

attribute (rule) 46
attributes

defaults in Schema 230
for identifying overrides 184
in conversion tables 181
mapping of Schema to DTD 227

attributes, read/write rules for 34
attribute 46
drop 53
fm attribute 76
fm element 77
implied value is 97
is fm attribute 104

is fm property 116
is fm property value 126
is fm value 139
value 165

B
books, read/write rules for 35

generate book 93
output book processing instructions 147
put element 93
use processing instructions 93

C
CALS table model 235–240

attribute structure 239
colspec elements 238, 239
element and attribute declarations 236
element structure 238
spanspec elements 238, 239

CALS tables
read/write rules for 241–243

character formats
wrapping text formatted without 184

character map (rule) 49
character set mapping 257–263
characters allowed

in conversion tables 176
choice element Schema mapping 225
comma (,)

in conversion tables 179
complex type Schema mapping 224, 231

named 226
conversion tables 171–187

adding rules to 175–182
attributes in 181
building tables from format tags with 186
columns and rows in 171, 175
documents for holding 172
flagging format overrides with 184
format and element tags in 173, 175, 177
generating initial 173
nesting graphics or tables with 185
object type identifiers in 177
order of rules in 172
promoting graphics or tables with 183

274

qualifiers for element tags in 175, 181
root element 176
setting up from scratch 174
testing and correcting 186
updating 174
wrapping elements with 178
wrapping objects with 177
wrapping sequences with 179
wrapping untagged text with 184

cross-references, read/write rules for 35
fm element unwrap 77
fm property 80
is fm cross-reference element 109
is fm property 116
is fm property value 126
is fm value 139
value is 80

CSS
managing generation 24

CSS files 29
CSS import 25

D
default

SGML declaration 245–247
defaults

mapping of Schema to DTD 230
DOCTYPE elements 13
document type declarations (DTDs)

specifying location of 14
drop (rule) 53
drop content (rule) 55
DTD 222

E
element (rule) 56
element tags

in conversion tables 173, 175, 177
elements

defaults in Schema 230
mapping of Schema to DTD 228

elements, read/write rules for all 33
attribute 46
drop 53
drop content 55
element 56
fm element 77
is fm element 110
preserve fm element definition 148, 149
unwrap 162

encoding 29
of CSS files 29

end vertical straddle (rule) 59
entities

external files for 17–18
ISO public 249–256
searching for external files 19
searching for filename patterns 17
specifying location of 16
specifying search path for 19–20

entities, read/write rules for 36
drop 53
entity 61
entity name is 63
external data entity reference 72
is fm char 107
is fm reference element 128
is fm variable 140
reformat as plain text 154
reformat using target document catalogs 155
retain source document formatting 156

entity (rule) 61
entity catalogs

format of entries in 16
searching for 16
specifying location of 15–16
uses for 15

entity name is (rule) 63
equation (rule) 65
equations

in conversion tables 178
equations, read/write rules for 36

entity name is 63
equation 65
export dpi 66
export to file 69
fm property 80
is fm equation element 111
is fm property 116
is fm property value 126
is fm value 139
notation is 145
specify size in 157
value 165
value is 80

export dpi (rule) 66
export to file (rule) 69
exporting XML

XSL transformation 26
external data entity reference (rule) 72
external dtd (rule) 73

Structured Application Developer Reference 275

F
facet (rule) 74
fm attribute (rule) 76
fm element (rule) 77
fm element unwrap (rule) 77
fm marker (rule) 79
fm property (rule) 80
fm variable (rule) 92
fm version (rule) 93
footnotes

in conversion tables 178
footnotes, read/write rules for 37

is fm footnote element 113
format overrides, flagging in conversion tables 184
format tags

in conversion tables 173, 175, 177

G
generate book (rule) 93
graphics

nesting in conversion tables 185
promoting in conversion tables 183

graphics, read/write rules for 37
anchored frame 43
entity name is 63
export dpi 66
export to file 69
facet 74
fm property 80
is fm graphic element 114
is fm property 116
is fm property value 126
is fm value 139
notation is 145
specify size in 157
value 165
value is 80

group element Schema mapping 224

I
impact of stylesheet element 25
implied value is (rule) 97
import

Schema mapping 231
importing XML

XSL transformation 26
include

Schema mapping 231
include dtd (rule) 98
include sgml declaration (rule) 100

initial conversion tables 173
insert table part element (rule) 101
is fm attribute (rule) 104
is fm char (rule) 107
is fm cross-reference element (rule) 109
is fm element (rule) 110
is fm equation element (rule) 111
is fm footnote element (rule) 113
is fm graphic element (rule) 114
is fm marker element (rule) 115
is fm property (rule) 116
is fm property value (rule) 126
is fm reference element (rule) 128
is fm rubi element (rule) 130
is fm rubi group element (rule) 131
is fm system variable element (rule) 132
is fm table element (rule) 133
is fm table part element (rule) 135
is fm value (rule) 139
is fm variable (rule) 140
is processing instruction (rule) 141
ISO Latin-1 character set 257–263
ISO public entities 249–256

declarations and rules 254–256
default character formats 253
default variable definitions 253
entity declaration files 251
entity read/write rules files 251
format of entity rules 252

K
key element Schema mapping 233

L
line break (rule) 142
log files

limiting length of 30, 31, 32

M
mapping of Schema elements 222
marker text is (rule) 143
markers, read/write rules for 38

drop 53
external data entity reference 72
fm marker 79
fm property 80
is fm marker element 115
is fm property 116
is fm property value 126

276

is fm value 139
is processing instruction 141
marker text is 143
processing instruction 151
value 165
value is 80

markup language documents, read/write rules for 39
external dtd 73
include dtd 98
write structured document instance only 167

markup languages, translation to and from
cross-references ??–21

N
named attribute group Schema mapping 227
named complex type Schema mapping 226
namespaces

and Schema 221
extra attributes from Schema mapping 222

notation is (rule) 145

O
object type identifiers, in conversion tables 177
output book processing instructions (rule) 147

P
paragraph formats

building table structure from 186
parentheses

in conversion tables 179
plus sign (+)

in conversion tables 179
PostProcessing element 26
PreProcessing element 26
preserve fm element definition (rule) 148, 149
processing instruction (rule) 151
processing instructions (PIs), read/write rules for 39

drop 53
fm marker 79
is processing instruction 141
output book processing instructions 147
processing instruction 151
use processing instructions 93

PROMOTE keyword 183
proportional width resolution is (rule) 152
public identifiers 18
put element (rule) 93

Q
qualifiers, in conversion tables 171, 175, 181
question mark (?)

in conversion tables 179
quotation marks ("), in attribute values 181

R
read/write rules

documents for 22
for CALS tables 241–243
including files with 22
summary of 33–41

reader (rule) 153
redefine Schema mapping 231
reformat as plain text (rule) 154
reformat using target document catalogs (rule) 155
retain source document formatting (rule) 156
root element 176
Rubi groups, read/write rules for

is fm rubi element 130
is fm rubi group element 131

S
Schema

and namespaces 221
extra namespace attributes 222
mapping to DTD 222
mixed content models 229
specifying file location 221
structure application element 23
types not mapped 233

sequence element Schema mapping 224
SGML

defining an application 9
optional unsupported features 248

SGML declarations
default for FrameMaker 245–247
specifying location of 24

SGML documents, read/write rules for
include sgml declaration 100

SGML parser
concrete syntax variants 247

simple type Schema mapping 222
specify size in (rule) 157
start new row (rule) 159
start vertical straddle (rule) 160
structure API clients

specifying location of 27
structure applications

defining 9

Structured Application Developer Reference 277

structure, adding to documents. See conversion tables
stylesheet element

impact on CSS import feature 25
stylesheets

XSL 25
system variables

in conversion tables 178

T
table ruling style is (rule) 161
tables

building structure from format tags 186
CALS attribute usage 235
nesting in conversion tables 185
promoting in conversion tables 183

tables, read/write rules for 40
end vertical straddle 59
fm property 80
insert table part element 101
is fm property 116
is fm property value 126
is fm table element 133
is fm table part element 135
is fm value 139
proportional width resolution is 152
start new row 159
start vertical straddle 160
table ruling style is 161
use proportional widths 164
value 165
value is 80

templates
specifying location of 27

text insets, read/write rules for 41
entity 61
reformat as plain text 154
reformat using target document catalogs 155
retain source document formatting 156

text, read/write rules for
character map 49
entity 61
is fm char 107
line break 142

U
unique element Schema mapping 233
untagged formatted text, wrapping 184
unwrap (rule) 162
use processing instructions (rule) 93
use proportional widths (rule) 164

user variables
in conversion tables 178

V
value (rule) 165
value is (rule) 80
variables, read/write rules for 41

drop 53
entity 61
fm element unwrap 77
fm variable 92
is fm system variable element 132
is fm variable 140

vertical bar (|)
in conversion tables 179

W
wildcard characters

in conversion tables 176
wrapping with conversion tables

document objects 177
elements 178
sequences of elements or paragraphs 179
untagged formatted text 184

write structured document instance only (rule) 167
writer (rule) 168

X
XML

defining an application 9
specifying Schema location 221
using CSS stylesheets 24
XSL transformations 25

XML Schema, See Schema
XSL files

associating with XML applications 25
XSL transformation (XSLT) 25

278

Structured Application Developer Reference 279

Legal notices 1

For legal notices, visit the Legal Notices page.

http://help.adobe.com/en_US/legalnotices/index.html

Legal notices 280

	Before You Begin
	Structure Application Definition Reference
	Structure Application Definition Reference
	Contents of an application definition file
	Define an application
	Providing default information
	Specifying the character encoding for SGML files
	Specifying conditional text output
	Specifying a DOCTYPE element
	Specifying a DTD
	Specifying entities
	Specifying entities through an entity catalog
	Why use entity catalogs
	Entity catalog format
	How FrameMaker searches entity catalogs

	Specifying the location of individual entities
	Specifying names for external entity files
	How FrameMaker searches filename patterns
	Example

	Specifying public identifiers
	Specifying a search path for external entity files
	How FrameMaker searches for entity files
	Example

	Specifying external cross reference behavior
	Change file extension to .XML
	Try alternative extensions

	Specifying filename extensions
	Enabling namespaces
	Specifying a read/write rules document
	Specifying a search path for included files in rules documents
	How FrameMaker searches for rules files

	Specifying a Schema for XML
	Specifying an SGML declaration
	Managing CSS import/export and XSL transformation
	How the Stylesheets element affects CSS generation
	How the Stylesheets element affects CSS import
	How the Stylesheets element affects XSL transformation

	Specifying a FrameMaker template
	Specifying a structure API client
	Specifying the character encoding for XML files
	Display encoding
	Encoding of CSS files

	Exporting XML
	Limiting the length of a log file
	Mapping graphic notations to file types
	Defining a Form view for the structured application
	Specifying MathML options

	Read/Write Rules Summary
	Read/Write Rules Summary

	Read/Write Rules Reference
	Read/Write Rules Reference
	anchored frame
	attribute
	character map
	convert referenced graphics
	do not include dtd
	do not include sgml declaration
	do not output book processing instructions
	drop
	drop content
	element
	end vertical straddle
	entity
	entity name is
	equation
	export dpi is
	export to file
	external data entity reference
	external dtd
	facet
	fm attribute
	fm element
	fm marker
	fm property
	fm variable
	fm version
	generate book
	implied value is
	include dtd
	include sgml declaration
	insert table part element
	is fm attribute
	is fm char
	is fm cross-reference element
	is fm element
	is fm equation element
	is fm footnote element
	is fm graphic element
	is fm marker element
	is fm property
	is fm property value
	is fm reference element
	is fm rubi element
	is fm rubi group element
	is fm system variable element
	is fm table element
	is fm table part element
	is fm text inset
	is fm value
	is fm variable
	is processing instruction
	line break
	marker text is
	notation is
	output book processing instructions
	preserve fm element definition
	preserve line breaks
	processing instruction
	proportional width resolution is
	put element
	reader
	reformat as plain text
	reformat using target document catalogs
	retain source document formatting
	specify size in
	start new row
	start vertical straddle
	table ruling style is
	unwrap
	use processing instructions
	use proportional widths
	value
	value is
	write structured document
	write structured document instance only
	writer

	Conversion Tables for Adding Structure to Documents
	Conversion Tables for Adding Structure to Documents
	How a conversion table works
	Setting up a conversion table
	Generating an initial conversion table
	Setting up a conversion table from scratch
	Updating a conversion table

	Adding or modifying rules in a conversion table
	About tags in a conversion table
	Specifying the root element for a structured document
	Identifying a document object to wrap
	Identifying an element to wrap
	Identifying a sequence to wrap
	Strict or loose sequence specification

	Providing an attribute for an element
	Using a qualifier with an element

	Handling special cases
	Promoting an anchored object
	Flagging format overrides
	Wrapping untagged formatted text
	Nesting object elements
	Building table structure from paragraph format tags

	Testing and correcting a conversion table

	CSS to EDD Mapping
	CSS to EDD Mapping
	CSS 3 to EDD Mapping
	Basic Properties
	Font Properties
	Pagination Properties
	Advanced Properties
	Asian Properties

	CSS Selectors
	Other examples

	CSS 2 to EDD Mapping
	CSS Font Properties
	CSS text properties
	CSS color and backgrounds properties
	CSS Formatting Model
	CSS Pagination Properties
	CSS generated content, automatic numbering, and lists
	CSS Tables
	CSS Selectors

	XML Schema to DTD Mapping
	XML Schema to DTD Mapping
	Schema location
	Namespace and Schema location attributes

	Simple type mapping
	Attributes of simple type elements

	Complex type mapping
	Group
	Sequence
	Choice
	All
	Named complex types
	Named attribute groups
	Abstract elements
	Mixed content models

	Supported Schema features
	Defaults
	Any
	Extension and restriction of complex types
	Include, import, and redefine

	Unsupported Schema features

	The CALS/OASIS Table Model
	The CALS/OASIS Table Model
	FrameMaker properties that DO NOT have corresponding CALS attributes
	Element and attribute definition list declarations
	Element structure
	Attribute structure
	Inheriting attribute values
	Orient attribute
	Straddling attributes

	Read/Write Rules for the CALS/OASIS Table Model
	Read/Write Rules for the CALS/OASIS Table Model

	SGML Declaration
	SGML Declaration
	Text of the default SGML declaration
	SGML concrete syntax variants
	Unsupported optional SGML features

	ISO Public Entities
	ISO Public Entities
	What you need to use ISO public entities
	Entity declaration files
	Entity read/write rules files
	Format of entity rules
	Character formats
	Variables

	What happens with the declarations and rules

	Character Set Mapping
	Character Set Mapping

	Glossary
	Glossary

	Index
	Legal notices

