Using
ADOBE FLEX 4.6

Legal notices
For legal notices, see http://help.adobe.com/en US/legalnotices/index.html.

Last updated 9/25/2015

http://help.adobe.com/en_US/legalnotices/index.html

Contents

Chapter 1: Introduction to Flex 4.6

Getting Started With FIEX 4.6 ..ottt et et e e et e e e e e e et e e e e e e 1
[D7<Y7<] o) o oY=t Yl Yo 3 oY g o =3 B 2
1Y/ LT = 1 N 2

Chapter 2: Getting started

Developing applications i IMXIVIL ...t et e e e et ettt e et e e e e 4
D - 21
[0 LT Yt o o Yol o P 32
Y= 01 54
L)l T TV =1 4o o 96

Chapter 3: Application architecture

Application developmeENnt Phaseso e 100
2 o] o] [ar=Y o) o TE-3 {8 et U1 P 107
=0 13 17
1Y ToTe [0 =T o o] oF= o o L3 138
Developing and loading sub-applications e 176
FleX A X Bridge ettt e e 222
CommUNICAtiNg With the WIapPEr ot et e e e e e e e e et e e e e eeens 226
Runtime Shared LIbraries ooui i e et et e 253

Chapter 4: Building the user interface

RV U] R el 4T oo o 1= o1 280
[o 13T 113V 299
INtrOdUCHION 10 CONTAINEIS ...ttt ettt et ettt e e e et et et et et ettt e e e et a e e e eeens 326
Laying OUL COMPONENTS ..ttt ettt ettt ettt ettt ettt ettt et et e e ettt et et e e et e e e et eeaeenns 359
Y o] o] TeF- T oI e o1 -1 0 =T <3 393
1Y = 1 Qe 01 711 =T &3 417
(@IS o0 Y o -1 4 L (=] I =] e [=] =T 3 470
SPArk list-based CONTIOlSttt e ettt e ettt e et e e e 514
Spark DataGrid and Grid CONTIOIS ...ttt ettt e e ettt ettt e e ettt e e e et ie e e 545
1D Yo T el 1 11T 574
X NAVIgatOr CONTAINEIS .ttt ettt ettt ettt e et e e e e et et e et et e et et e e et e e a e eneaeenens 628
L e e 643
Y 4 =2 o 171 3 734
L (=t o o] -3 R 805
UsiNg the FIEX AR COMPONENTS L.ttt ettt ettt e e e e e e et e e e e e ettt e e e e e e eaenens 834
Dynamically repeating controls and CONTAINErSottt et e e e et ie e eeens 867

Chapter 5: Using data-driven Ul components

RePresenting data iiuiit s 885
L] e T e - - 889
Data providers and COllECHIONS u ittt et ettt e e e et et e e e e e e 898

Last updated 9/25/2015

USING FLEX

Contents

MX data-driVen CONTIOIS ...ttt ettt ettt e e ettt e e e e e e e et et e et e e e et e e ee e eeens 943
1= o TU o TY=Te I o] o1 4o)3 985
MX item renderers and itemM @AItOrS uu ittt et 1006
Advanced data display with MX item editors —c.iiiii i e e 1048
[0 goTe [et o I o X o - 1 P 1075
[T 0 38/ o 1= 1123
oY 42 = YT T e o - P 1169
Displaying data and labels in Chartso e e 1246
Events and effects in Charts oo e 1324
AdvancedDataGrid CONTIOLottt e et e e e et e e e e e e e e e 1397
(O] o - =T o el e 1454

Chapter 6: Enhancing the user interface

11877 L= T e R =T =T P 1492
FONTS o e e 1568
Ak SKINNING Lo e e e 1602
SKINNING MX COMPONENTS oottt ettt ettt e ettt e e e e et e ettt et et e e e et e e et e e et e e eieeeanas 1655
3] o< Lo 113 Yo TR T3] {3 P 1699
FXG and MXML graphics ..ottt et et e ettt e e e e e e e 1714
INtrodUCtion T0 ffECES ..o e 1784
B o 1= T =T =T o €3 1805
USING MX @ 0SS oottt et e e e et e e e e e e e 1828
RS L (< 1847
LIS L1511 o 3 -3 1870
[D7 To 1 o e oo N P 1893

Chapter 7: Enhancing usability

QLo Lo LT e 214 o) -3 1933
(@ 1Yo T 1Y o T o = 1959
Validating Datattt e e e 1964
FOrMatting Data ...ttt ettt et et e e e e e e 2004
[=TT o 111 Ve PO 2022
PN EiNG e e e e e e 2037
[e 1 =1 4o T o P 2055
Mirroring and bidirectional teXtot e e 2067
ReSOUICE BUNAIES o e 2091
ACCESSIDIE AP PIICAtIONS .ottt e 2122

Chapter 8: Developer tools

BUIIAING OV VW ettt ettt e et e e e e e e e e e 2161
1o el 3o 11 P 2164
Command-liNe deDUGGEr ... e e e e e e e 2209
[0T T 11 T R 2222
VL= 657 0] 01 1 T XY 2238
T o 2241

Last updated 9/25/2015

USING FLEX
Contents

Chapter 9: Testing and automation

Creating apPlications fOr TESTING ..o .ttt ettt ettt e e e e e e e 2270
(0] o] {13141 a T - o] o] T 1 e o T3 2299
IMProVINgG StartUP PeIOIMANCE ...ttt ettt ettt e et e et et e e e e e e e e et e et et 2333
2 =T 2343

Chapter 10: Custom components

(@I T o g T 1= Qoo 4o oo o T=Y o1 3 2356
CUSTOM ACTIONSCIIPT COMPONENTS ottt ettt ettt ettt et et e et et et et e e e te e e e e tete e aeaaeneeneanenenennenens 2363
LT (T3 == | 2369
Metadata tags in CUSTOM COMPONENTS ..ttt ettt e ettt ettt e et et et e e e e e e e e e e e e ee e e ee e eneaneanas 2376
ComMPONENt COMPIIATION oLttt e ettt e e 2392
SIMPIE MXML COMPONENTS ettt ettt et ettt ettt e et et e et et ettt e et e e e e e e e e e et e e e e eaeenanaanas 2399
Advanced MXML COMPONENTS ...ttt ittt ettt e et e et e e e et e e et e et e e e e e e e et e e e e eeeeeanens 2412
Create simple visual components in ACtIONSCIIPtot e 2433
Create advanced Spark visual components in ACtIONSCIIPt ...ttt e e e eenes 2451
Create advanced MX visual components in ACLIONSCHPT ...ttt et e et e i eaaenas 2475
[T 0] T4 L=l o] o) o T=] 1= P 2501
L= 00 o] T (=3 ele) 4T oo o =T o | 2507
QUL (o] o o] 03P (=] £ PR 2513
CUSTOM Validators ..ot 2520
LT o] 0 =1 & =Tt - 2525

Chapter 11: Deploying applications
(D27 oY () V7 oo - o o] er=1 o 2 -7 P 2544
(@=L 14T 1o TR TR o oY= 2552

Last updated 9/25/2015

Chapter 1: Introduction to Flex 4.6

Adobe® Flex® 4.6 introduces new features and continues to build upon the major architectural changes in Flex 4.

If you are a new Flex developer, and have not previously developed applications in Flex, you can use the many available
resources to learn more about Flex. For more information on the resources available for new Flex developers, see
“Getting started with Flex 4.6” on page 1 and What's new in Flex 4.6 SDK.

If you are an existing Flex developer, you can use the information in “Migration” on page 2 to decide how best to
upgrade your applications to the newest SDK.

Getting started with Flex 4.6

Adobe and the Flex developer community provide many resources that you can use to get started with Flex
development. These resources are helpful for new users, and for experienced users seeking to increase their knowledge
of Flex.

The Flex Developer Center contains many resources that you can help you start using Flex 4.6, including:

 Getting Started articles, links and tutorials

+ Samples of real applications built in Flex

+ The Flex Cookbook, which contains answers to common coding problems

+ Links to the Flex community and to other sites devoted to Flex

As a new Flex user, there are other Adobe sites that you can also use to get familiar with Flex, including the following:
+ Adobe Flex in a Week at http://www.adobe.com/devnet/flex/videotraining/

+ Flex Test Drive at http://www.adobe.com/devnet/flex/testdrive.html

+ Flex video training at Adobe Flex TV

Features new for Flex 4.6

Flex 4.6 contains several new features, including:

+ More Spark mobile components including: SplitViewNavigator, CalloutButton, Callout, SpinnerList, DateSpinner,
and ToggleSwitch

+ Better performance

+ Updated platform support

+ Enhanced Tooling - Flash Builder 4.6
+ Text Enhancements

For more information on additional features, see What's new in Flex 4.6 SDK and What's New in Flash Builder 4.6.

Last updated 9/25/2015

http://www.adobe.com/go/learn_flex_whatsnew46_en
http://www.adobe.com/go/learn_flex_devnet_en
http://www.adobe.com/devnet/flex/videotraining/
http://www.adobe.com/devnet/flex/testdrive.html
http://www.adobe.com/go/learn_adobe_tv_flex_en
http://www.adobe.com/go/learn_flex_whatsnew46_en
http://www.adobe.com/go/learn_flashbuilder_whatsnew46_en

USING FLEX
Introduction to Flex 4.6

Features new for Flex 4.5

Flex 4.5 contains several new features, including:

Support for mobile applications

More Spark UI components including: Image, DataGrid, and Form
Integration with Flash Player’s globalization classes

RSL enhancements

TLF 2.0

OSMF 1.0 integration

Spark validators and formatters

This list is a subset of the new features in Flex 4.5 SDK. For more information on additional features, see What's New
in Flex 4.5 SDK. You can get more information about productivity enhancements in Flash Builder 4.5 at What's New
in Flash Builder 4.5.

Development tools for Flex 4.6

Flex developers typically use two development tools:

Adobe® Flash® Builder™

Flash Builderis an integrated development environment (IDE) for building cross-platform, rich Internet
applications (RIAs). Using Flash Builder, you build applications that use the Adobe Flex framework, MXML,
Adobe Flash Player, Adobe AIR, ActionScript 3.0, Adobe® LiveCycle® Data Services ES, and the Adobe Flex
Charting components. Flash Builder also includes testing, debugging, and profiling tools that lead to increased
levels of productivity and effectiveness.

For more information on Flash Builder, see About Flash Builder.
Adobe® Flash® Catalyst™

Catalyst makes it easy for designers to create Flex-based RIA UT's from artwork imported from Adobe® Creative
Suite® tools, and to define interactions and behaviors within Catalyst. The applications created in Catalyst are Flex
applications. Flash Builder provides a simple workflow for importing these applications, which allows designers to
collaborate with developers more easily than ever before.

For more information on Flash Catalyst, see About Flash Catalyst.

Migration

If you are an existing Flex customer, you might migrate your existing applications from Flex 4 to Flex 4.6, or even from
Flex 3.

For Flex 4 users, migrating to Flex 4.6 is relatively simple. The differences are largely cosmetic and are summarized in
Flex Backwards Compatibility.

Last updated 9/25/2015

http://www.adobe.com/go/learn_flex_whatsnew_en
http://www.adobe.com/go/learn_flex_whatsnew_en
http://www.adobe.com/go/learn_flashbuilder_whatsnew_en
http://www.adobe.com/go/learn_flashbuilder_whatsnew_en
http://www.adobe.com/go/catalyst
http://www.adobe.com/go/learn_flex_backcomp_en

USING FLEX
Introduction to Flex 4.6

For Flex 3 users, before starting the migration process, you should be aware of all new Flex 4 and 4.6 features, and be
familiar with changes to existing features. The greatest differences are from Flex 3 to Flex 4. For information on
migrating applications from Flex 3 to Flex 4, see the Adobe Flex 4 Features and Migration Guideat
http://www.adobe.com/go/learn_flex4_featuremigrate_en.

If you upgrade to a new version of Flash Builder to take advantage of new features in the IDE but do not want to use
the new compiler features, you can downgrade the output application. You do this by setting the player-version
compiler option. You can also select an older SDK to compile against. For more information, see “Backward
compatibility” on page 2239.

Last updated 9/25/2015

http://www.adobe.com/go/learn_flex4_featuremigrate_en

Chapter 2: Getting started

Developing applications in MXML

®

MXML is an XML language that you use to lay out user interface components for applications built in Adobe® Flex".
You also use MXML to declaratively define nonvisual aspects of an application, such as access to server-side data
sources and data bindings between user interface components and server-side data sources.

For information on MXML syntax, see “MXML syntax” on page 21.

About MXML

You use two languages to write applications in Flex: MXML and ActionScript. MXML is an XML markup language
that you use to lay out user interface components. You also use MXML to declaratively define nonvisual aspects of an
application, such as access to data sources on the server and data bindings between user interface components and data
sources on the server.

Like HTML, MXML provides tags that define user interfaces. MXML will seem very familiar if you have worked with
HTML. However, MXML is more structured than HTML, and it provides a much richer tag set. For example, MXML
includes tags for visual components such as data grids, trees, tab navigators, accordions, and menus, as well as
nonvisual components that provide web service connections, data binding, and animation effects. You can also extend
MXML with custom components that you reference as MXML tags.

One of the biggest differences between MXML and HTML is that MXML-defined applications are compiled into SWF
files and rendered by Adobe® Flash® Player or Adobe® AIR™, which provides a richer and more dynamic user interface
than page-based HTML applications.

You can write an MXML application in a single file or in multiple files. MXML also supports custom components
written in MXML and ActionScript files.

Using Spark and MX component sets

Flex defines two sets of components: MX and Spark. The MX component set was included in previous releases of Flex,
and is defined in the mx.* packages. The Spark component set is new for Flex 4 and is defined in the spark.* packages.
The Spark components use a new architecture for skinning and have other advantages over the MX components.

The MX and Spark component sets contain many of the same components. For example, both component sets defines
a Button control, TextInput control, and List control. However, while you can use MX components to perform most
of the same actions that you can perform by using the Spark components, Adobe recommends that you use the Spark
components when possible.

Writing a simple application in MXML

Because MXML files are ordinary XML files, you have a wide choice of development environments. You can write
MXML code in a simple text editor, a dedicated XML editor, or an integrated development environment (IDE) that
supports text editing. Flex supplies a dedicated IDE, called Adobe® Flash™ Builder™, that you can use to develop your
applications.

Last updated 9/25/2015

USING FLEX 5
Getting started

The following example shows a simple “Hello World” application that contains just an <s:Applications> tag and
three child tags, the <s: Panel> tag and the <s:Label> tags, plus a <s:layout> tag. The <s:Application> tag
defines the Application container that is always the root tag of an application. The <s: Panel> tag defines a Panel
container that includes a title bar, a title, a status message, a border, and a content area for its children. The <s: Label>
tag represents a Label control, a very simple user interface component that displays text.

<?xml version="1.0"?>
<!-- mxml\HellowWorld.mxml -->
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:layout>
<s:Verticallayout/>
</s:layout>
<s:Panel title="My Application"s>
<s:Label text="Hello World" fontWeight="bold" fontSize="24"/>
</s:Panel>
</s:Application>

Save this code to a file named hello.mxml. MXML filenames must end in a lowercase .mxml file extension.

About XML encoding

The first line of the document specifies an optional declaration of the XML version. It is good practice to include
encoding information that specifies how the MXML file is encoded. Many editors let you select from a range of file
encoding options. On North American operating systems, ISO-8859-1 is the dominant encoding format, and most
programs use that format by default. You can use the UTF-8 encoding format to ensure maximum platform
compatibility. UTF-8 provides a unique number for every character in a file, and it is platform-, program-, and
language-independent.

If you specify an encoding format, it must match the file encoding you use. The following example shows an XML
declaration tag that specifies the UTF-8 encoding format:

<?xml version="1.0" encoding="utf-8"?>

About the <s:Application> tag

In addition to being the root tag of an application, the <s : Applications tag represents a Spark Application container.
A container is a user-interface component that contains other component sets, and uses layout rules for positioning its
child components. By default, the Spark Application container lets that you set the position of its children. In the
previous example, you set the layout of the container to VerticalLayout so that the Application container automatically
lays out its children in a vertical column.

You can nest other types of containers inside an Application container, such as the Panel container shown above, to
position user interface components according to other rules. For more information, see “Visual components” on
page 280.

About namespaces
In an XML document, tags are associated with a namespace. XML namespaces let you refer to more than one set of
XML tags in the same XML document. The xmlns property in an MXML tag specifies an XML namespace.

In Flex, you typically define three namespaces:

+ xmlns:fx="http://ns.adobe.com/mxml/2009" The namespace for top-level ActionScript elements, such as
Object and Array, and for tags built into the MXML compiler, such as <fx:Scripts.

e xmlns:mx="library://ns.adobe.com/flex/mx" Therunnespacefbrthehﬁwannponentset

Last updated 9/25/2015

USING FLEX
Getting started

+ xmlns:s="library://ns.adobe.com/flex/spark" The namespace for the Spark component set.

In general, you include the Spark and MX component namespaces so that you can use any components from those
sets. Where possible, use the Spark components. However, not all MX components have Spark counterparts, so the
components in the MX namespace are also sometimes necessary.

You can define additional namespaces for your custom component libraries. For more information on namespaces,
see “Using XML namespaces” on page 10.

About MXML tag properties

The properties of an MXML tag, such as the text, fontWeight, and fontSize properties of the <s: Labels tag, let
you declaratively configure the initial state of the component. You can use ActionScript code in an <fx:Script> tag
to change the state of a component at run time. For more information, see “Using ActionScript” on page 32.

Compiling MXML to SWF Files

If you are using Flash Builder, you compile and run the compiled SWF file from within Flash Builder. After your
application executes correctly, you deploy it by copying it to a directory on your web server or application server.

You can deploy your application as a compiled SWF file, as a SWF file included in an AIR application or, if you have
Adobe LiveCycle Data Services ES, you can deploy your application as a set of MXML and AS files.

End users of the application do not typically reference the SWF file directly in an HTTP request. Instead, you embed
the application SWF file in an HTML page. The HTML page then uses a script to load the SWF file. Collectively, the
HTML page and the script are known as the wrapper.

When the SWF file is embedded in the HTML page, users then access the deployed SWF file by making an HTTP
request to the HTML page, in the form:

http://hostname/path/filename.html
For more information on wrappers, see “Creating a wrapper” on page 2552.

Flex also provides a command-line MXML compiler, mxmlc, that lets you compile MXML files. You can use mxmlc
to compile hello.mxml from a command line, as the following example shows:

cd flex install dir/bin
mxmlc --show-actionscript-warnings=true --strict=true c:/app dir/hello.mxml

In this example, flex_install_dir is the Flex installation directory, and app_dir is the directory containing hello.mxml.
The resultant SWF file, hello.swf, is written to the same directory as hello.mxml.

For more information about mxmlc, see “Flex compilers” on page 2164.

The relationship of MXML tags to ActionScript classes

Adobe implemented Flex as an ActionScript class library. That class library contains components (containers and
controls), manager classes, data-service classes, and classes for all other features. You develop applications by using the
MXML and ActionScript languages with the class library.

MXML tags correspond to ActionScript classes or properties of classes. Flex parses MXML tags and compiles a SWF
file that contains the corresponding ActionScript objects. For example, Flex provides the ActionScript Button class
that defines the Flex Button control. In MXML, you create a Button control by using the following MXML statement:

<s:Button label="Submit"/>

When you declare a control using an MXML tag, you create an instance of that class. This MXML statement creates a
Button object, and initializes the 1abel property of the Button object to the string "submit".

Last updated 9/25/2015

USING FLEX
Getting started

An MXML tag that corresponds to an ActionScript class uses the same naming conventions as the ActionScript class.
Class names begin with an uppercase letter, and uppercase letters separate the words in class names. Every MXML tag
attribute corresponds to a property of the ActionScript object, a style applied to the object, or an event listener for the
object. For a complete description of the Flex class library and MXML tag syntax, see the ActionScript 3.0 Reference for
the Adobe Flash Platform.

Understanding the structure of an application built with Flex

You can write an MXML application in a single file or in multiple files. You typically define a main file that contains
the <s:Application> tag. From within your main file, you can then reference additional files written in MXML,
ActionScript, or a combination of the two languages.

A common coding practice is to divide your Flex application into functional units, or modules, where each module
performs a discrete task. In Flex, you can divide your application into separate MXML files and ActionScript files,
where each file corresponds to a different module. By dividing your application into modules, you provide many
benefits, including the following:

Ease of development Different developers or development groups can develop and debug modules independently of
each other.

Reusability You can reuse modules in different applications so that you do not have to duplicate your work.
Maintainability You can isolate and debug errors faster than if your application is developed in a single file.

In Flex, a module corresponds to a custom component implemented either in MXML or in ActionScript. These
custom components can reference other custom components. There is no restriction on the level of nesting of
component references in Flex. You define your components as required by your application.

You can also use sub-applications rather than modules to develop applications that are not monolithic.

Developing applications

MXML development is based on the same iterative process used for other types of web application files such as HTML,
JavaServer Pages (JSP), Active Server Pages (ASP), and ColdFusion Markup Language (CFML). Developing a useful
Flex application is as easy as opening your favorite text editor, typing some XML tags, saving the file, requesting the

file’s URL in a web browser, and then repeating the same process.

Flex also provides tools for code debugging. For more information, see “Command-line debugger” on page 2209.

Laying out a user interface using containers

In the Flex model-view design pattern, user interface components represent the view. The MXML language supports
two types of user interface components: controls and containers. Controls are form elements, such as buttons, text
fields, and list boxes. Containers are rectangular regions of the screen that contain controls and other containers.

You use container components for laying out a user interface, and for controlling user navigation through the
application. Examples of layout containers include the HGroup container for laying out child components
horizontally and the VGroup container for laying out child components vertically. Examples of navigator containers
include the MX TabNavigator container for creating tabbed panels and the MX Accordion navigator container for
creating collapsible panels. Typical properties of a container tag include id, width, and height. For more information
about the standard Flex containers, see “Introduction to containers” on page 326.

The following example application contains a Spark List control on the left side of the user interface and an MX
TabNavigator container on the right side. Both controls are enclosed in a Spark Panel container:

Last updated 9/25/2015

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- mxml/LayoutExample.mxml -->
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<s:Panel title="My Application">
<s:HGroup>
<!-- List with three items -->
<g:List>
<s:dataProviders>
<mx:ArrayCollection>
<fx:String>Item 1l</fx:String>
<fx:String>Item 2</fx:String>
<fx:String>Item 3</fx:String>
</mx:ArrayCollection>
</s:dataProviders>
</s:List>
<!-- First pane of TabNavigator -->
<mx:TabNavigator borderStyle="solid"s>
<s:NavigatorContent label="Panel" width="300">
<s:layout>
<s:Verticallayout/>
</s:layout>
<s:TextArea text="Hello World"/>
<s:Button label="Submit"/>
</s:NavigatorContent>

<!-- Second pane of TabNavigator -->
<s:NavigatorContent label="Pane2" width="300" height="150">
<!-- Stock view goes here -->

</s:NavigatorContent>
</mx:TabNavigators>
</s:HGroup>
</s:Panel>
</s:Application>

The List control and TabNavigator container are laid out side by side because they are in an HGroup container. The
controls in the TabNavigator container are laid out from top to bottom because they are in a NavigatorContent
containers that use the VerticalLayout class.

For more information about laying out user interface components, see “Visual components” on page 280.

Adding user interface controls

Flex includes a large selection of user interface components, such as Button, TextInput, and ComboBox controls. After
you define the layout and navigation of your application by using container components, you add the user interface
controls.

The following example contains an HGroup (horizontal group) container with two child controls, a TextInput control
and a Button control. An HGroup container lays out its children horizontally.

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>

<!-- mxml/AddUIControls.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">

<fx:Script>
<! [CDATA[
private function storeZipInDatabase (s:String) :void
// event handler code here

11>
</fx:Scripts>
<s:HGroup>
<s:TextInput id="myText"/>
<s:Button click="storeZipInDatabase (myText.text);"/>
</s:HGroup>
</s:Application>

Typical properties of a control tag include id, width, height, fontSize, color, event listeners for events such as
clickand change, and effect triggers such as showEffect and rol1l0verEffect. For information about the standard
Flex controls, see “UI Controls” on page 643.

Using the id property with MXML tags
With a few exceptions (see “MXML tag rules” on page 32), an MXML tag has an optional id property, which must be
unique within the MXML file. If a tag has an id property, you can reference the corresponding object in ActionScript.

The following example uses the trace () function to write the value of the text property of a TextInput control to the
log file:

<?xml version="1.0"?>

<!-- mxml/UseIDProperty.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">

<fx:Script>
<! [CDATA [
private function writeToLog () :void {
trace (myText.text) ;

11>
</fx:Script>
<s:VGroup id="myVGroup"s>
<s:TextInput id="myText"
text="Hello World!" />
<s:Button id="mybutton"
label="Get Weather"
click="writeToLog();"/>
</s:VGroup>
</s:Application>

This code causes the MXML compiler to generate a public variable named myText that contains a reference to the
TextInput instance. This variable lets you access the component instance in ActionScript. You can explicitly refer to
the TextInput control’s instance with its id instance reference in any ActionScript class or script block. By referring to
a component’s instance, you can modify its properties and call its methods.

Last updated 9/25/2015

USING FLEX 10
Getting started

Because each id value in an MXML file is unique, all objects in a file are part of the same flat namespace. You do not
qualify an object by referencing its parent with dot notation, as in myvVGroup . myText . text .

For more information, see “Referring to components” on page 36.

Using XML namespaces
The xmlns property in an MXML tag specifies an XML namespace. To use the default namespace, specify no prefix.
Typically, you specify a tag prefix and a namespace.

For example, the xmlns properties in the following <s: Application> tag indicates that tags corresponding to the
Spark component set use the prefix s:.

<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark" >

Flex defines the following Universal Resource Identifiers (URI) for the Flex namespaces:

e xmlns:fx="http://ns.adobe.com/mxml/2009"

The MXML language namespace URI. This namespace includes the top-level ActionScript language elements, such
as Object, Number, Boolean, and Array. For a complete list of the top-level elements, see the Top Level package in
the ActionScript 3.0 Reference for the Adobe Flash Platform.

This namespace also includes the tags built in to the MXML compiler, such as <fx: Script>, <fx:Declarationss,
and <fx:Style> tags. For a list of the compiler elements, see the MXML Only Tags appendix in the ActionScript
3.0 Reference for the Adobe Flash Platform.

This namespace does not include the MX or Spark component sets.

The complete list of top-level ActionScript language elements included in this namespace is defined by the
frameworks\mxml-2009-manifest.xml manifest file in your Flex SDK installation directory. Note that this file does
not list the MXML compiler tags because they are built in to the MXML compiler.

¢ xmlns:mx="library://ns.adobe.com/flex/mx"

The MX component set namespace URI. This namespace includes all of the components in the Flex mx.* packages,
the Flex charting components, and the Flex data visualization components.

The complete list of elements included in this namespace is defined by the frameworks\mx-manifest.xml manifest
file in your Flex SDK installation directory.

¢ xmlns:s="library://ns.adobe.com/flex/spark"

The Spark component set namespace URI. This namespace includes all of the components in the Flex spark.*
packages and the text framework classes in the flashx.* packages.

This namespace includes the RPC classes for the WebService, HTTPService, and RemoteObject components and
additional classes to support the RPC components. These classes are included in the mx: namespace, but are
provided as a convenience so that you can also reference them by using the s: namespace.

This namespace also includes several graphics, effect, and state classes from the mx.* packages. These classes are
included in the mx : namespace, but are provided as a convenience so that you can also reference them by using the
s: namespace.

The complete list of elements included in this namespace is defined by the frameworks\spark-manifest.xml
manifest file in your Flex SDK installation directory.

The following table lists the classes from the mx.* packages included in this namespace:

Last updated 9/25/2015

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/

USING FLEX
Getting started

Category

Class

RPC classes

mx.messaging.channels.AMFChannel
mx.rpc.CallResponder

mx.messaging.ChannelSet

mx.messaging.Consumer
mx.messaging.channels.HTTPChannel
mx.rpc.http.mxml.HTTPService
mx.messaging.Producer
mx.rpc.remoting.mxml.RemoteObject
mx.rpc.remoting.mxml.Operation
mx.messaging.channels.RTMPChannel
mx.messaging.channels.SecureAMFChannel
mx.messaging.channels.SecureStreamingAMFChannel
mx.messaging.channels.SecureHTTPChannel
mx.messaging.channels.SecureStreamingHTTPChannel
mx.messaging.channels.SecureRTMPChannel
mx.messaging.channels.StreamingAMFChannel
mx.messaging.channels.StreamingHTTPChannel
mx.rpc.soap.mxml.WebService
mx.rpc.soap.mxml.Operation

mx.data.mxml.DataService

Graphics classes

mx.graphics.BitmapFill
mx.geom.CompoundTransform
mx.graphics.GradientEntry
mx.graphics.LinearGradient
mx.graphics.LinearGradientStroke
mx.graphics.RadialGradient
mx.graphics.RadialGradientStroke
mx.graphics.SolidColor
mx.graphics.SolidColorStroke
mx.graphics.Stroke

mx.geom.Transform

Last updated 9/25/2015

11

USING FLEX
Getting started

Category Class

Effect classes mx.effects.Parallel
mx.effects.Sequence
mx.states.Transition

mx.effects.Wait

States classes mx.states.State

mx.states.AddItems

Component classes mx.controls.Spacer

mx.controls.SWFLoader

XML namespaces give you the ability to use classes in custom packages that are not in the Flex namespaces. The
following example shows an application that contains a custom component called CustomBox. The namespace value
myComponents . boxes . * indicates that an MXML component called CustomBox is in the myComponents/boxes
directory.

<?xml version="1.0"7?>

<!-- mxml/XMLNamespaces.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns :MyComps="myComponents.boxes.*">

<s:Panel title="My Application"
height="150">
<MyComps : CustomBox/ >
</s:Panel>
</s:Application>

The myComponents/boxes directory can be a subdirectory of the directory that contains the application file, or it can
be a subdirectory of one of the ActionScript source path directories assigned in the flex-config.xml file. If copies of the
same file exist in both places, Flex uses the file in the application file directory. The prefix name is arbitrary, but it must
be used as declared.

When using a component contained in a SWC file, the package name and the namespace must match, even though
the SWC file is in the same directory as the MXML file that uses it. A SWC file is an archive file for Flex components.
SWC files make it easy to exchange components among Flex developers. You exchange only a single file, rather than
the MXML or ActionScript files and images, along with other resource files. Also, the SWF file inside a SWC file is
compiled, which means that the source code is obfuscated from casual view.

For more information on SWC files, see “Flex compilers” on page 2164.

Using MXML to trigger run-time code

Flex applications are driven by run-time events, such as when a user selects a Button control. You can specify event
listeners, which consist of code for handling run-time events, in the event properties of MXML tags. For example, the
<s:Button> taghasa click event property in which you can specify ActionScript code that executes when the Button
control is clicked at run time. You can specify simple event listener code directly in event properties. To use more
complex code, you can specify the name of an ActionScript function defined in an <fx:Script> tag.

The following example shows an application that contains a Button control and a TextArea control. The click
property of the Button control contains a simple event listener that sets the value of the TextArea control’s text
property to the text Hello World.

Last updated 9/25/2015

12

USING FLEX
Getting started

<?xml version="1.0"?>

<!-- mxml/TriggerCodeExample.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">

<s:Panel title="My Application"s>
<s:layout>
<s:VerticallLayout/>
</s:layout>
<s:TextArea id="textareal"/>
<s:Button label="Submit"
click="textareal.text='Hello World';"/>
</s:Panel>
</s:Application>

The following example shows the code for a version of the application in which the event listener is contained in an
ActionScript function in an <fx:Script> tag:

<?xml version="1.0"?>

<!-- mxml/TriggerCodeExample2.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">

<fx:Script>
<! [CDATA[
private function hello() :void
textareal.text="Hello World";

11>
</fx:Scripts>

<s:Panel title="My Application"s>
<s:layout>
<s:VerticallLayout/>
</s:layout>
<s:TextArea id="textareal"/>
<s:Button label="Submit"
click="hello();"/>
</s:Panel>
</s:Application>

For more information about using ActionScript with MXML, see “Using ActionScript” on page 32.

Binding data between components

Flex provides simple syntax for binding the properties of components to each other. In the following example, the
value inside the curly braces ({ }) binds the text property of a TextArea control to the text property of a TextInput
control. When the application initializes, both controls display the text He11o. When the user clicks the Button control,
both controls display the text Goodbye.

Last updated 9/25/2015

13

USING FLEX 14
Getting started

<?xml version="1.0"?>

<!-- mxml/BindingExample.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">

<s:Panel title="My Application"s>
<s:VGroup left="10" right="10" top="10" bottom="10">
<s:Label text="Enter Text:"/>
<s:TextInput id="textinputl"
text="Hello"/>
<s:Label text="Bind Text to the TextArea control:"/>
<s:TextArea id="textareal"
text="{textinputl.text}"/>
<s:Button label="Submit"
click="textinputl.text="'Goodbye';"/>
</s:VGroup>
</s:Panel>
</s:Application>

As an alternative to the curly braces ({ }) syntax, you can use the <£x:Bindings> tag, in which you specify the source
and destination of a binding. For more information about data binding, see “Data binding” on page 299.

Using RPC services
Remote-procedure-call (RPC) services let your application interact with remote servers to provide data to your
applications, or for your application to send data to a server.

Flex is designed to interact with several types of RPC services that provide access to local and remote server-side logic.
For example, a Flex application can connect to a web service that uses the Simple Object Access Protocol (SOAP), a
Java object residing on the same application server as Flex using AMF, or an HTTP URL that returns XML.

The MXML components that provide data access are called RPC components. MXML includes the following types of
RPC components:

+ WebService provides access to SOAP-based web services.
« HTTPService provides access to HT'TP URLs that return data.
+ RemoteObject provides access to Java objects using the AMF protocol (Adobe LiveCycle Data Services ES only).

In MXML, define the RPC components in an <fx:Declarations> tag. You use the <fx:Declarations> tag to
declare non-visual components an MXML file.

The following example shows an application that calls a web service that provides weather information, and displays
the current temperature for a given ZIP code. The application binds the ZIP code that a user enters in a TextInput
control to a web service input parameter. It binds the current temperature value contained in the web service result to
a TextArea control.

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>

<!-- mxml/RPCExample.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">

<fx:Declarations>
<!-- Define the web service connection
(the specified WSDL URL is not functional). -->
<s:WebService id="WeatherService"
wsdl="http:/example.com/ws/WeatherService?wsdl"
useProxy="false">
<!-- Bind the value of the ZIP code entered in the TextInput control
to the ZipCode parameter of the GetWeather operation. -->
<s:operation name="GetWeather">
<s:request>
<ZipCode>{zip.text}</ZipCode>
</s:request>
</s:operation>
</s:WebServices>
</fx:Declarations>

<s:Panel title="My Application"s>
<s:VGroup left="10" right="10" top="10" bottom="10">

<!-- Provide a ZIP code in a TextInput control. -->

<s:TextInput id="zip" width="200" text="Zipcode please?"/>

<!-- Call the web service operation with a Button click. -->

<s:Button width="60" label="Get Weather"
click="WeatherService.GetWeather.send();"/>

<!-- Display the location for the specified ZIP code. -->

<s:Label text="Location:"/>
<s:TextArea text="{WeatherService.GetWeather.lastResult.Location}"/>
<!-- Display the current temperature for the specified ZIP code. -->
<s:Label text="Temperature:"/>
<s:TextArea
text="{WeatherService.GetWeather.lastResult.CurrentTemp}"/>
</s:VGroup>
</s:Panel>
</s:Application>

For more information about using RPC services, see Accessing Server-Side Data with Flex.

Storing data in a data model

You can use a data model to store application-specific data. A data model is an ActionScript object that provides
properties for storing data, and optionally contains methods for additional functionality. Data models provide a way
to store data in the Flex application before it is sent to the server, or to store data sent from the server before using it
in the application.

You can declare a simple data model that does not require methods in an <fx:Model>, <£x:XML>, O <fx:XMLList>
tag. In MXML, define a data model in an <fx:Declarations> tag. You use the <fx:Declarations> tag to declare
non-visual components an MXML file.

The following example shows an application that contains TextInput controls for entering personal contact
information and a data model, represented by the <fx:Model> tag, for storing the contact information:

Last updated 9/25/2015

15

http://www.adobe.com/go/learn_flex45_datadriven_en

USING FLEX 16
Getting started

<?xml version="1.0"7?>
<!-- mxml/StoringData.mxml -->
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<fx:Declarations>
<!-- A data model called "contact" stores contact information.
The text property of each TextInput control shown above
is passed to a field of the data model by using data binding. -->
<fx:Model id="contact">
<info>
<homePhone>{homePhoneInput.text }</homePhone>
<cellPhone>{cellPhoneInput.text}</cellPhone>
<email>{emailInput.text}</email>
</info>
</fx:Model>
</fx:Declarations>
<s:Panel title="My Application"s>
<s:VGroup left="10" right="10" top="10" bottom="10">
<!-- The user enters contact information in TextInput controls. -->
<s:TextInput id="homePhoneInput"
text="This isn't a valid phone number."/>
<s:TextInput id="cellPhoneInput"
text="(999)999-999"/>
<s:TextInput id="emailInput"
text="me@somewhere.net"/>
</s:VGroup>
</s:Panel>
</s:Application>

This example uses data binding in the model definition to automatically copy data from the UI controls to the data
model.

Validating data

Flex includes a set of standard validator components for data such as phone numbers, social security numbers, and
ZIP codes. You can also create your own custom validator.

In MXML, define validators in an <fx:Declarations> tag. You use the <fx:Declarations> tag to declare non-
visual components an MXML file.

The following example uses validator components for validating that the expected type of data is entered in the
TextInput fields. In this example, you validate a phone number by using the PhoneNumberValidator class and an e-
mail address by using the EmailValidator class. Validation is triggered automatically when the user edits a TextInput
control. If validation fails, the user receives immediate visual feedback.

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>

<!-- mxml/ValidatingExample.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">

<fx:Declarations>
<!-- Validator components validate data entered into the TextInput controls. -->
<mx : PhoneNumberValidator id="pnV"
source="{homePhoneInput}" property="text"/>
<mx:Emailvalidator id="emv"
source:"{emaillnput}" property="text" />
</fx:Declarations>
<s:Panel title="My Application"s>
<s:VGroup left="10" right="10" top="10" bottom="10">
<s:Label text="Enter phone number:"/>
<s:TextInput id="homePhoneInput"/>
<s:Label text="Enter email address:"/>
<s:TextInput id="emailInput"/>
</s:VGroup>
</s:Panel>
</s:Application>

A component with a validation failure displays a red border. If the component has focus, it also displays a validation
error message. Set the component to a valid value to remove the error indication.

For more information about using data models, see “Storing data” on page 889. For more information on validators,
see “Validating Data” on page 1964.

Formatting data

Formatter components are ActionScript components that perform a one-way conversion of raw data to a formatted
string. They are triggered just before data is displayed in a text field. Flex includes a set of standard formatters. You can
also create your own formatters.

In MXML, define formatters in an <fx:Declarations> tag. You use the <fx:Declarations> tag to declare non-
visual components an MXML file.

The following example shows an application that uses the standard ZipCodeFormatter component to format the value
of a variable:

Last updated 9/25/2015

17

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- mxml/FormatterExample.mxml -->
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<fx:Script>
<! [CDATA[
[Bindable]
private var storedZipCode:Number=123456789;
11>
</fx:Script>
<fx:Declarations>
<!-- Declare a ZipCodeFormatter and define parameters. -->
<mx:ZipCodeFormatter id="ZipCodeDisplay" formatString="#####-H##H##"/>
</fx:Declarations>
<s:Panel title="My Application"s>
<!-- Trigger the formatter while populating a string with data. --»>
<s:TextInput text="{ZipCodeDisplay.format (storedZipCode)}"/>
</s:Panel>
</s:Application>

For more information about formatter components, see “Formatting Data” on page 2004.

Using Cascading Style Sheets (CSS)
You can use style sheets based on the CSS standard to declare styles to Flex components. The MXML <fx:Style> tag
contains inline style definitions or a reference to an external file that contains style definitions.

The <£x:style>tag must be an immediate child of the root tag of the MXML file. You can apply styles to an individual
component using a class selector, or to all components of a certain type using a type selector.

Namespace qualification is required for type selectors in the <£x: Styles tag. Prefix the namespace qualification with
the@namespacetag

The following example defines a class selector and a type selector in the <£x: Style> tag. Both the class selector and
the type selector are applied to the Button control.

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>

<!-- mxml/CSSExample.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">

<fx:Style>
@namespace s "library://ns.adobe.com/flex/spark";
@namespace mx "library://ns.adobe.com/flex/mx";

/* class selector */
.myClass {
color: Red

}

/* type selector */
s|Button {
font-size: 18pt
1
</fx:Style>
<s:Panel title="My Application">
<s:Button styleName="myClass" label="This is red 18 point text."/>
</s:Panel>
</s:Application>

A class selector in a style definition, defined as a label preceded by a period, defines a new named style, such asmyClass
in the preceding example. After you define it, you can apply the style to any component by using the styleName
property. In the preceding example, you apply the style to the Button control to set the font color to red.

A type selector applies a style to all instances of a particular component type. In the preceding example, you set the
font size for all Spark Button controls to 18 points.

For more information about using Cascading Style Sheets, see “Styles and themes” on page 1492.

Using skins

Skinning is the process of changing the appearance of a component by modifying or replacing its visual elements.
These elements can be made up of bitmap images, SWF files, or class files that contain drawing methods that define
vector images. Skins can define the entire appearance, or only a part of the appearance, of a component in various
states.

One of the big differences between Spark and MX components is that Spark components rely on the component skin
to define its layout and appearance. When working with Spark components, you often define a custom skin to modify
the component appearance.

MX components use a combination of CSS styles and skins to control their appearance. With MX components, you
can use styles to modify much of the appearance of the component without having to define a custom skin.

For more information about using Spark skins, see “Spark Skinning” on page 1602. For more information about using
MX skins, see “Skinning MX components” on page 1655.

Using effects

An effect is a change to a component that occurs over a brief period of time. Examples of effects are fading, resizing,
and moving a component. In MXML, you apply effects as properties of a control or container. Flex provides a set of
built-in effects with default properties.

Last updated 9/25/2015

19

USING FLEX 20
Getting started

In MXML, define effects in an <fx:Declarations> tag. You use the <fx:Declarations> tag to declare non-visual
components an MXML file.

The following example shows an application that contains a Button control with its c1ick property set to use the
Resize effect when the user moves the mouse over it:

<?xml version="1.0"?>

<!-- behaviors\TargetProp.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">

<fx:Declarations>
<s:Resize id="myResize"
heightBy="25"
widthBy="50"
target="{myButton}"/>
</fx:Declarations>

<s:Button id="myButton"
label="Resize target"
click="myResize.end () ;myResize.play();"/>
</s:Application>

For more information about effects, see “Introduction to effects” on page 1784.

Defining custom MXML components

Custom MXML components are MXML files that you create and use as custom MXML tags in other MXML files. They
encapsulate and extend the functionality of existing Flex components. Just like MXML application files, MXML
component files can contain a mix of MXML tags and ActionScript code. The name of the MXML file becomes the
class name with which you refer to the component in another MXML file.

The following example shows a custom ComboBox control that is prepopulated with list items:

<?xml version="1.0"?>

<!-- mxml/myComponents/boxes/MyComboBox.mxml -->

<s:VGroup xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">

<s:ComboBox>
<s:dataProviders>
<s:ArrayCollection>
<fx:String>Dogs</fx:String>
<fx:String>Cats</fx:String>
<fx:String>Mice</fx:String>
</s:ArrayCollection>
</s:dataProviders>
</s:ComboBox>
</s:VGroup>

The following example shows an application that uses the MyComboBox component as a custom tag. The value
myComponents .boxes . * assigns the MyComps namespace to the myComponents/boxes sub-directory. To run this
example, store the MyComboBox.mxml file in that sub-directory.

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- mxml/CustomMXMLComponent .mxml -->
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns :MyComps="myComponents.boxes.*">
<s:Panel title="My Application"
height="150">
<MyComps : M\yComboBox/ >
</s:Panel>
</s:Application>

For more information about MXML components, see “Simple MXML components” on page 2399. You can also define
custom Flex components in ActionScript. For more information, see “Create simple visual components in
ActionScript” on page 2433.

MXML syntax

MXML is an XML language that you use to lay out user-interface components for Adobe® Flex® applications.

Basic MXML syntax

Most MXML tags correspond to ActionScript 3.0 classes or properties of classes. Flex parses MXML tags and compiles
a SWFE file that contains the corresponding ActionScript objects.

ActionScript 3.0 uses syntax based on the ECMAScript edition 4 draft language specification. ActionScript 3.0 includes
the following features:

+ Formal class definition syntax

« Formal packages structure

+ Typing of variables, parameters, and return values (compile-time only)
« Implicit getters and setters that use the get and set keywords

+ Inheritance

+ Public and private members

« Static members

» Cast operator

For more information about ActionScript 3.0, see “Using ActionScript” on page 32.

Naming MXML files

MXML filenames must adhere to the following naming conventions:

« Filenames must be valid ActionScript identifiers, which means they must start with a letter or underscore character
(L), and they can only contain letters, numbers, and underscore characters after that.

« Filenames must not be the same as ActionScript class names, component id values, or the word application. Do not
use filenames that match the names of MXML tags that are in the £x:, s:, or mx: namespace.

+ Filenames must end with a lowercase .mxml file extension.

Last updated 9/25/2015

USING FLEX 22
Getting started

Using tags that represent ActionScript classes

An MXML tag that corresponds to an ActionScript class uses the same naming conventions as the ActionScript class.
Class names begin with a capital letter, and capital letters separate the words in class names. For example, when a tag
corresponds to an ActionScript class, its properties correspond to the properties and events of that class.

Setting component properties

In MXML, a component property uses the same naming conventions as the corresponding ActionScript property. A
property name begins with a lowercase letter, and capital letters separate words in the property names.

You can set most component properties as tag attributes, in the form:
<s:Label width="50" height="25" text="Hello World"/>
You can set all component properties as child tags, in the form:

<s:Label>
<s:width>50</s:width>
<s:height>25</s:height>
<s:text>Hello World</s:texts>
</s:Label>

You often use child tags when setting the value of a property to a complex Object because it is not possible to specify
a complex Object as the value of tag attribute. In the following example, you use child tags to set the data provider of
a Spark List control to an ArrayCollection object:

<s:List>
<s:dataProvider>
<s:ArrayCollection>
<fx:String>AK</fx:String>
<fx:String>AL</fx:String>
<fx:String>AR</fx:String>
</s:ArrayCollection>
</s:dataProvider>
</s:List>

The one restriction on setting properties that use child tags is that the namespace prefix of a child tag, s: in the
previous example, must match the namespace prefix of the component tag. Note that the value of the property in the
previous example does not have to use the same namespace as the property tag.

Each of a component’s properties is one of the following types:

« Scalar properties, such as a number or string

« Array of scalar values, such as an array of numbers or strings
+ ActionScript object

« Array of ActionScript objects

» ActionScript properties

+ XML data

Adobe recommends that you assign scalar values using tag attributes, and that you assign complex types, such as
ActionScript objects, by using child tags.

Setting scalar properties
You usually specify the value of a scalar property as a property of a component tag, as the following example shows:

Last updated 9/25/2015

USING FLEX 23
Getting started

<s:Label width="50" height="25" text="Hello World"/>

Setting properties using constants

The valid values of many component properties are defined by static constants, where these static constants are defined
in an ActionScript class. In MXML, you can either use the static constant to set the property value, or use the value of
the static constant, as the following example shows:

<!-- Set the property using the static constant. -->
<s:Wipe direction="{spark.effects.WipeDirection.LEFT}">

</s:Wipe>

<!-- Set the property using the value of the static constant. -->
<s:Wipe direction="left">

</s:Wipe>

The Wipe effect defines a property named direction that defines the direction of the wipe effect. In this example, you
explicitly set the direction property to cause the wipe effect to move left.

In the first example, you set the direction property using a static constant named LEFT, which is defined in the
spark.effects. WipeDirection class. In MXML, you must use data binding syntax when setting a property value to a
static constant. The advantage of using the static constant is that the Flex compiler recognizes incorrect property
values, and issues an error message at compile time.

Alternatively, you can set the value of the direction property to the value of the static constant. The value of the LEFT
static constant is "left". When you use the value of the static constant to set the property value, the Flex compiler
cannot determine if you used an unsupported value. If you incorrectly set the property, you will not know until you
get a run-time error.

In ActionScript, you should use static constants to set property values whenevera possible, as the following example
shows:

var myWipe:Wipe = new Wipe () ;
myWipe.direction=spark.effects.WipeDirection.LEFT;

Setting the default property

Many Flex components define a single default property. The default property is the MXML tag that is implicit for
content inside of the MXML tag if you do not explicitly specify a property. For example, consider the following MXML
tag definition:

<s:SomeTag>
anything here
</s:SomeTag>

If this tag defines a default property named default_property, the preceding tag definition is equivalent to the
following code:

<s:SomeTag>
<s:default property>
anything here
</s:default property>
</s:SomeTag>

It is also equivalent to the following code:

<s:SomeTag default property="anything here"/>

Last updated 9/25/2015

USING FLEX
Getting started

The default property provides a shorthand mechanism for setting a single property. For a Spark List, the default
property is the dataprovider property. Therefore, the two List definitions in the following code are equivalent:

<?xml version="1.0"?>
<!-- mxml\DefProp.mxml -->
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:layout>
<s:HorizontalLayout/>
</s:layout>
<!-- Omit the default property. -->
<s:List>
<s:ArrayCollection>
<fx:String>AK</fx:String>
<fx:String>AL</fx:String>
<fx:String>AR</fx:String>
</s:ArrayCollection>
</s:List>

<!-- Explicitly speficy the default property. -->
<s:List>
<s:dataProvider>
<s:ArrayCollection>
<fx:String>AK</fx:String>
<fx:String>AL</fx:String>
<fx:String>AR</fx:String>
</s:ArrayCollection>
</s:dataProviders>
</s:List>

</s:Application>

Not all Flex components define a default property. To determine the default property for each component, see the
ActionScript 3.0 Reference for the Adobe Flash Platform.

You can also define a default property when you create a custom component. For more information, see “Metadata
tags in custom components” on page 2376.

Escaping characters using the backslash character
When setting a property value in MXML, you can escape a reserved character by prefixing it with the backslash
character (1), as the following example shows:

<?xml version="1.0"?>

<!-- mxml\EscapeChar.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:Label text="\{\}"/>

</s:Application>

In this example, you want to use literal curly brace characters ({ }) in a text string. But Flex uses curly braces to indicate
a data binding operation. Therefore, you prefix each curly brace with the backslash character to cause the MXML
compiler to interpret them as literal characters.

Last updated 9/25/2015

24

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/

USING FLEX
Getting started

Setting String properties using the backslash character

The MXML compiler automatically escapes the backslash character in MXML when the character is part of the value
specified for a property of type String. Therefore, it always converts "\ " to "\\".

This is necessary because the ActionScript compiler recognizes "\\ " as the character sequence for a literal "\"
character, and strips out the leading backslash when it initializes the property value.

Note: Do not use the backslash character (\) as a separator in the path to an application asset. You should always use a
forward slash character (/) as the separator.

Including a newline character in a String value

For properties of type String, you can insert a newline character in the String in several ways:

+ By using data binding with the "\n' characters in your String value in MXML

« By inserting the  code in your String value in MXML

« By inserting "\n" in an ActionScript String variable used to initialize the MXML property

To use data binding, wrap the newline character in curly brace characters ({ }), as the following example shows:
<s:TextArea width="100%" text="Display{'\n'}Content"/>

To use the  code to insert a newline character, include that code in the property value in MXML, as the following
example shows:

<s:TextArea width="100%" text="DisplayContent"/>

To use an ActionScript String variable to insert a newline character, create an ActionScript variable, and then use data
binding to set the property in MXML, as the following example shows:

<fx:Script>
<! [CDATA [
[Bindable]
public var myText:String = "Display" + "\n" + "Content";
11>
</fx:Scripts>

<s:TextArea width="100%" text="{myText}"/>
In this example, you set the text property of the TextArea control to a value that includes a newline character.

Notice that this example includes the [Bindable] metadata tag before the property definition. This metadata tag
specifies that the myText property can be used as the source of a data binding expression. Data binding automatically
copies the value of a source property of one object to the destination property of another object at run time when the
source property changes.

If you omit this metadata tag, the compiler issues a warning message specifying that the property cannot be used as the
source for data binding. For more information, see “Data binding” on page 299.

Mixing content types

Flex supports the mixing of content for attribute values. The attribute must correspond to a property of type Object or
Array. Mixed content consists of non white space character data and MXML tags, as the following example shows:

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- mxml\DefPropMixed.mxml -->
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">
<s:RichText fontFamily="Verdana" fontWeight="bold">
<s:content>
<fx:String>Hello World!</fx:String><s:br/>
<fx:String>Hello Universe</fx:String><s:br/>
Hello Flex!
</s:content>
</s:RichText>
</s:Application>

In this example, the RichText . content property is of type Object. The property value contains values defined by
<fx:String> tag, and by character data (“Hello Flex!”). Character data is almost always converted to a value of type
String. However, an Array property may be defined to support an explicit data type for its values. In that case, the
compiler converts the character data to the appropriate data type.

Setting Arrays of scalar values
When a class has a property that takes an Array as its value, you can represent the property in MXML using child tags.
The component in the following example has a children property that contains an Array of numbers:

<mynamespace :MyComponent >
<mynamespace:children>
<fx:Array>
<fx:Number>94062</fx:Number>
<fx:Number>14850</fx:Number>
<fx:Number>53402</fx:Number>
</fx:Array>
</mynamespace:children>
</mynamespace : MyComponent >

The <fx:Array> and </fx:Array> tags around the Array elements are optional. Therefore, you can also write this
example as the following code shows:

<mynamespace : MyComponent >
<mynamespace:children>
<fx:Number>94062</fx:Number>
<fx:Number>14850</fx:Number>
<fx:Number>53402</fx:Number>
</mynamespace:children>
</mynamespace : MyComponent >

In this example, since the data type of the children property is defined as Array, Flex automatically converts the three
number definitions into a three-element array.

Component developers may have specified additional information within the component definition that defines the
data type of the Array elements. For example, if the developer specified that the dataProvider property supports only
String elements, this example would cause a compiler error because you specified numbers to it. The ActionScript 3.0
Reference for the Adobe Flash Platform documents the Array properties that define a required data type for the Array
elements.

Setting Object properties

When a component has a property that takes an object as its value, you can represent the property in MXML using a
child tag with tag attributes, as the following example shows:

Last updated 9/25/2015

26

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/

USING FLEX 27
Getting started

<mynamespace :MyComponent >
<mynamespace :nameOfPropertys>
<mynamespace: typeOfObject propl="vall" prop2="val2"/>
</mynamespace :nameOf Property>
</mynamespace : MyComponent >

The following example shows an ActionScript class that defines an Address object. This object is used as a property of
the PurchaseOrder component in the next example.

class Address
public var name:String;
public var street:String;
public var city:String;
public var state:String;
public var zip:Number;

}

The following example shows an ActionScript class that defines a PurchaseOrder component that has a property type
of Address:

import example.Address;

class PurchaseOrder {
public var shippingAddress:Address;
public var quantity:Number;

}
In MXML, you define the PurchaseOrder component as the following example shows:

<mynamespace:PurchaseOrder quantity="3" xmlns:e="example">
<mynamespace:shippingAddresss>
<mynamespace:Address name="Fred" street="123 Elm St."/>
</mynamespace: shippingAddress>
</mynamespace : PurchaseOrder>

If the value of the shippingAddress property is a subclass of Address (such as DomesticAddress), you can declare the
property value, as the following example shows:

<mynamespace: PurchaseOrder quantity="3" xmlns:e="example">
<mynamespace: shippingAddress>
<mynamespace:DomesticAddress name="Fred" street="123 Elm St."/>
</mynamespace: shippingAddresss>
</mynamespace : PurchaseOrder>

If the property is explicitly typed as Object like the value property in the following example, you can specify an
anonymous object using the <fx:0bject> tag.

class ObjectHolder {
public var value:0Object

}
The following example shows how you specify an anonymous object as the value of the value property:

<mynamespace:ObjectHolder>
<mynamespace:value>
<fx:0bject foo='bar'/>
</mynamespace:values>
</mynamespace :ObjectHolder>

Last updated 9/25/2015

USING FLEX 28
Getting started

Populating an Object with an Array
When a component has a property of type Object that takes an Array as its value, you can represent the property in
MXML using child tags, as the following example shows:

<mynamespace : MyComponent >
<mynamespace :nameOfObjectProperty>
<fx:Array>
<fx:Number>94062</fx:Number>
<fx:Number>14850</fx:Number>
<fx:Number>53402</fx:Number>
</fx:Array>
</mynamespace :nameOfObjectProperty>
</mynamespace :MyComponent >

In this example, you initialize the Object property to a three-element array of numbers.

As described in the section “Setting Arrays of scalar values” on page 26, the <fx:Array> tag and the </£x: Array> tag
around the Array elements are optional and may be omitted, as the following example shows:

<mynamespace :MyComponent >
<mynamespace :nameOfObjectProperty>
<fx:Number>94062</fx:Number>
<fx:Number>14850</fx:Number>
<fx:Number>53402</fx:Numbers>
</mynamespace :nameOfObjectProperty>
</mynamespace :MyComponent >

The only exception to this rule is when you specify a single Array element for the Object property. In that case, Flex
does not create an Object containing a single-element array, but instead creates an object and sets it to the specified
value. This is a difference between the following two lines:

object=[element] // Object containing a one-element array
object=element // object equals value

If you want to create a single-element array, include the <£x:Array>and </ fx: Array> tags around the array element,
as the following example shows:

<mynamespace :MyComponent >
<mynamespace :nameOfObjectProperty>
<fx:Array>
<fx:Number>94062</fx:Number>
</fx:Array>
</mynamespace :nameOfObjectProperty>
</mynamespace :MyComponent >

Populating Arrays of objects
When a component has a property that takes an Array of objects as its value, you can represent the property in MXML
using child tags, as the following example shows:

<mynamespace :MyComponent >
<mynamespace :nameOfPropertys>
<fx:Array>
<mynamespace:objectType propl="vall" prop2="val2"/>
<mynamespace:objectType propl="vall" prop2="val2"/>
<mynamespace:objectType propl="vall" prop2="val2"/>
</fx:Array>
</mynamespace :nameOf Property>
</mynamespace : MyComponent >

Last updated 9/25/2015

USING FLEX 29
Getting started

The component in the following example contains an Array of ListItem objects. Each ListItem object has properties
named label and data.

<mynamespace :MyComponent >
<mynamespace:dataProviders>
<fx:Array>
<mynamespace:ListItem label="One" data="1"/>
<mynamespace:ListItem label="Two" data="2"/>
</fx:Array>
</mynamespace:dataProvider>
</mynamespace : MyComponent >

The following example shows how you specify an anonymous object as the value of the dataProvider property:

<mynamespace : MyComponent >
<mynamespace:dataProviders>
<fx:Array>
<fx:0bject label="One" data="1"/>
<fx:0bject label="Two" data="2"/>
</fx:Array>
</mynamespace:dataProvider>
</mynamespace : MyComponent >

As described in the section “Setting Arrays of scalar values” on page 26, the <fx:Array> tag and the </£x : Array> tag
around the Array elements are optional and may be omitted, as the following example shows:

<mynamespace : MyComponent >
<mynamespace:dataProvider>
<fx:0bject label="One" data="1"/>
<fx:0bject label="Two" data="2"/>
</mynamespace:dataProvider>
</mynamespace : MyComponent >

Populating a Vector

The Vector class lets you access and manipulate a vector. A Vector is an array whose elements all have the same data
type. The data type of a Vector's elements is known as the Vector's base type. The base type can be any class, including
built in classes and custom classes. The base type is specified when declaring a Vector variable as well as when creating
an instance by calling the class constructor.

In MXML, define an instance of a Vector class in a <fx:Declarationss> block, as the following example shows:

<fx:Declarations>
<fx:Vector type="String">
<fx:String>one</fx:String>
<fx:String>two</fx:String>
<fx:String>three</fx:String>
</fx:Vectors>

<fx:Vector type="Vector.<String>">
<fx:Vector type="String"s>
<fx:String>one</fx:String>
<fx:String>two</fx:String>
<fx:String>three</fx:String>
</fx:Vector>
</fx:Vector>
</fx:Declarations>

Last updated 9/25/2015

USING FLEX 30
Getting started

The first example defines a Vector with a base type of String. The second example defines a Vector of Vectors of type
String. Notice that you use the HTML escape characters &1t ; and > ; , instead of < and >, in the nested Vector. This
syntax is necessary to conform to XML syntax rules.

Setting properties that contain XML data
If a component contains a property that takes XML data, the value of the property is an XML fragment to which you
can apply a namespace. In the following example, the value property of the MyComponent object is XML data:

<mynamespace : MyComponent >
<mynamespace:value xmlns:a="http://www.example.com/myschema">
<fx:XML>
<a:purchaseorder>
<a:billingaddress>

</a:billingaddress>

</a:purchaseorder>
</fx:XML>
</mynamespace:value>
</mynamespace :MyComponent >

Setting style properties in MXML

A style property of an MXML tag differs from other properties because it corresponds to an ActionScript style, rather
than to a property of an ActionScript class. You set these properties in ActionScript using the setstyle (stylename,
value) method rather than object . property=value notation.

For example, you can set the fontFamily style property in MXML, as the following code shows:
<s:TextArea id="myText" text="hello world" fontFamily="Tahoma"/>

This MXML code is equivalent to the following ActionScript code:

myText .setStyle ("fontFamily", "Tahoma") ;

You define style properties in custom ActionScript classes by using the [Style] metadata tags, rather than defining
them as ActionScript variables or setter/getter methods. For more information, see “Metadata tags in custom
components” on page 2376.

Setting event properties in MXML
An event property of an MXML tag lets you specify the event listener function for an event. This property corresponds
to setting the event listener in ActionScript using the addEventListener () method.

For example, you can set the creationComplete event property in MXML, as the following code shows:
<s:TextArea id="myText" creationComplete="creationCompleteHandler();"/>

This MXML code is equivalent to the following ActionScript code:

myText .addEventListener ("creationComplete", creationCompleteHandler) ;

You define event properties in custom ActionScript classes by using the [Event] metadata tags, rather than defining
them as ActionScript variables or setter/getter methods. For more information, see “Metadata tags in custom
components” on page 2376.

Last updated 9/25/2015

USING FLEX 31
Getting started

Specifying a URL value

Some MXML tags, such as the <fx:Script> tag, have a property that takes a URL of an external file as a value. For
example, you can use the source property in an <fx: Script> tag to reference an external ActionScript file instead of
typing ActionScript directly in the body of the <fx:script> tag.

Note: You specify a script in the source property of an <fx:Script>tag. You do not specify ActionScript classes in the
source property. For information on using ActionScript classes, see “Creating ActionScript components” on page 49.

MXML supports the following types of URLs:

« Absolute, as in the following example:
<fx:Style source="http://www.somesite.com/mystyles.css">

+ A path used at compile time that is relative to the application, as in the following example:
<fx:Script source="/myscript.as"/>

+ Relative to the current file location, as in the following example:
<fx:Script source="../myscript.as"/>

+ A path used at run time that is relative to the context root of the Java web application in which a Flex application is
running. For example:

<mx :HTTPService url="@ContextRoot ()/directory/myfile.xml"/>

You can only use the @ContextRoot () token if you are using the web-tier compiler or if you set the value of the
context-root compiler argument

Specifying a RegExp value

For a property of type RegExp, you can specify its value in MXML using the following format:
"/pattern/flags"

pattern Specifies the regular expression within the two slashes. Both slashes are required.

flags (Optional) Specifies any flags for the regular expression.

For example, the regExpression property of an MXML component is of type RegExp. Therefore, you can set its value
as the following example shows:

<mynamespace :MyComponent regExpression="/\Wcat/gi"/>
Or set it using child tags, as the following example shows:

<mynamespace :MyComponent >
<mynamespace:regExpression>/\Wcat/gi</mynamespace:regExpression>
</mynamespace : MyComponent >

The flags portion of the regular expression is optional, so you can also specify it as the following example shows:

<mynamespace:MyComponent regExpression="/\Wcat/"/>

Using compiler tags

Compiler tags are tags that do not directly correspond to ActionScript objects or properties. They include the following:
e <fx:Binding>

¢ <fx:Component>

¢ <fx:Declarations>

Last updated 9/25/2015

USING FLEX
Getting started

e <fx:Definition>
e <fx:DesignlLayer>
* <fx:Librarys>

¢ <fx:Metadata>

¢ <fx:Model>

e <fx:Privates

e <fx:Reparent>

e <fx:Scripts>

e <fx:Style>

MXML tag rules
MXML has the following syntax requirements:

« The id property is not required on any tag.

+ The id property is not allowed on the root tag.

+ Boolean properties take only true and false values.

+ The <fx:Binding> tag requires both source and destination properties.

+ The <fx:Binding> tag cannot contain an id property.

Using ActionScript

Flex developers can use ActionScript to extend the functionality of their Adobe® Flex® applications. ActionScript
provides flow control and object manipulation features that are not available in MXML. For a complete introduction
to ActionScript and a reference for using the language, see ActionScript 3.0 Developer's Guide and ActionScript 3.0
Reference for the Adobe Flash Platform.

Using ActionScript in applications

Flex developers can use ActionScript to implement custom behavior within their applications. You first use MXML
tags to declare things like the containers, controls, effects, formatters, validators, and web services that your application
requires, and to lay out its user interface. Each of these components provides the standard behavior you’d expect. For
example, a button automatically highlights when you roll over it, without requiring you to write any ActionScript. But
a declarative language like MXML is not appropriate for coding what you want to happen when the user clicks a
button. For that, you need to use a procedural language like ActionScript, which offers executable methods, various
types of storage variables, and flow control such as conditionals and loops. In a general sense, MXML implements the
static aspects of your application, and ActionScript implements its dynamic aspects.

ActionScript is an object-oriented procedural programming language, based on the ECMAScript (ECMA-262) edition
4 draft language specification. You can use a variety of methods to mix ActionScript and MXML, including the
following:

« Define event listeners inside MXML event attributes.
+ Add script blocks using the <fx:Script> tag.

+ Include external ActionScript files.

Last updated 9/25/2015

32

http://www.adobe.com/go/learn_flex_programmingAS3_en
http://www.adobe.com/go/learn_flex4_apiref_en
http://www.adobe.com/go/learn_flex4_apiref_en

USING FLEX
Getting started

« Import ActionScript classes.

+ Create ActionScript components.

ActionScript compilation

Although a simple application can be written in a single MXML or ActionScript (AS) file, most applications will be
broken into multiple files. For example, it is common to move the <fx:Script>and <£x:Style> blocks into separate
AS and CSS files that the application then includes.

It is also common for an application to import custom MXML and ActionScript components. These must be defined
in other files, and MXML components may put their own <£x: Script> blocks into yet more AS files that they include.
Components may also be imported from precompiled SWC files rather than source code. Finally, SWF files containing
executable code can also be embedded in an application. The end result of all these input files is a single SWF file.

The Flex compiler transforms the main MXML file and other files it includes into a single ActionScript class. As a
result, you cannot define classes or use statements outside of functions in the MXML files and the included
ActionScript files.

You can reference imported ActionScript classes from your MXML application files, and those classes are added to the
final SWF file. When the transformation to an ActionScript file is complete, Flex links all the ActionScript components
and includes those classes in the final SWF file.

About generated ActionScript

When you write an MXML file and compile it, the Flex compiler creates a class and generates ActionScript that the
class uses. MXML tags and ActionScript are used by the resulting class in several ways. This information is useful for
understanding what is happening in the background of the application.

An MXML application (a file that starts with the <s:Application> tag) defines a subclass of the Spark Application
class. Similarly, an MXML component (a file that starts with some other component’s tag, such as <s:Button>)
defines a subclass of that component.

The name of the subclass is the name of the file. The base class is the class of the top-level tag. An MXML application
actually defines the following:

class MyApp extends Application

If MyButton.mxml starts with <s:Buttons>, you are actually defining the following:

class MyButton extends Button

The variable and function declarations in an <fx: Script> block define properties and methods of the subclass.

Setting an id property on a component instance within a class results in a public variable being autogenerated in the
subclass that contains a reference to that component instance. For example, if the <s:Button id="myButton"/> tag
is nested deeply inside several containers, you can still refer to it as myButton.

Event attributes become the bodies of autogenerated event listener methods in the subclass. For example:
<s:Button id="myButton" click="foo = 1; doSomething()">
becomes

private function _ myButton click (event:MouseEvent) :void {
foo = 1;
doSomething ()

}

The event attributes become method bodies, so they can access the other properties and methods of the subclass.

Last updated 9/25/2015

USING FLEX 34
Getting started

All the ActionScript anywhere in an MXML file, whether in its <fx:Script> block or inside tags, executes with the
this keyword referring to an instance of the subclass.

The public properties and methods of the class are accessible by ActionScript code in other components, as long as that
Code“dotsdownf’ﬁbrexanqﬂe,myCheckoutAccordion.myAddressForm.firstNameTextInput.text)Orreaches
up using the parentDocument, parentApplication, or FlexGlobals.topLevelApplication properties to specify
which component the property or method exists on.

Using ActionScript in MXML event handlers

One way to use ActionScript code in an application is to include it within the MXML tag’s event handler, as the
following example shows:

<?xml version="1.0"?>
<!-- usingas/HelloWorldAS.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">
<s:layout>
<s:BasicLayout/>
</s:layout>
<s:Panel title="My Application" height="128" x="226" y="24">
<s:TextArea id="textareal" width="155" x="0" y="0"/>
<s:Button label="Click Me"
click="textareal.text='Hello World';"
width="92"
x="31.5" y="56"/>
</s:Panel>
</s:Application>

In this example, you include ActionScript code for the body of the click event handler of the Button control. The
MXML compiler takes the attribute c1ick="..." and generates the following event handler method:

public function _ myButton click (event:MouseEvent) :void {
textareal.text='Hello World';

}

When the user clicks the button, this code sets the value of the TextArea control’s text property to the String "Hello
World." In most cases, you do not need to look at the generated code, but it is useful to understand what happens
when you write an inline event handler.

To see the generated code, set the value of the keep-generated-actionscript compiler option to true. The
compiler then stores the *.as helper file in the /generated directory, which is a subdirectory of the location of the SWF
file.

For more information about events, see “Events” on page 54. For more information on using the command-line
compilers, see “Flex compilers” on page 2164.

Using ActionScript blocks in MXML files

You use the <fx:Script> tag to insert an ActionScript block in an MXML file. ActionScript blocks can contain
ActionScript functions and variable declarations used in MXML applications. Code inside <£x: Script > tags can also
declare constants (with the const statement) and namespaces (with namespace), include ActionScript files (with
include), import declarations (with import), and use namespaces (with use namespace).

The <fx:Script> tag must be a child of the <s:Application> or other top-level component tag.

Last updated 9/25/2015

USING FLEX
Getting started

Statements and expressions are allowed only if they are wrapped in a function. In addition, you cannot define new
classes or interfaces in <fx:Script> blocks. Instead, you must place new classes or interfaces in separate AS files and
import them.

All ActionScript in the block is added to the enclosing file’s class when Flex compiles the application. The following
example declares a variable and sets the value of that variable inside a function:

<?xml version="1.0"?>
<!-- usingas/StatementSyntax.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="doSomething() ">
<s:layout>
<s:VerticallLayout/>
</s:layout>

<fx:Script>
<! [CDATA [
public var s:Boolean;

public function doSomething() :void ({
// The following statements must be inside a function.
s = labell.visible;
labell.text = "labell.visible = " + String(s);

1
11>
</fx:Scripts>

<s:Label id="labell"/>

</s:Application>

Most ActionScript statements must be inside functions in an <fx: Script > block. However, the following statements
can be outside functions:

¢ import

e var

e include

* const

* namespace

* use namespace

When using an <fx: Script > block, you should wrap the contents in a CDATA construct. This prevents the compiler
from interpreting the contents of the script block as XML, and allows the ActionScript to be properly generated. Adobe
recommends that you write all your <£x:Script> open and close tags as the following example shows:

<fx:Script>
<! [CDATA [

11>
</fx:Scripts>

Last updated 9/25/2015

USING FLEX
Getting started

Flex does not parse text in a CDATA construct, which means that you can use XML-parsed characters such as angle
brackets (< and >) and ampersand (&). For example, the following script that includes a greater-than (>) comparison
must be in a CDATA construct:

<?xml version="1.0"?>
<!-- usingas/UsingCDATA.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark"
creationComplete="doSomething() ">
<s:layout>
<s:VerticalLayout/>
</s:layout>
<fx:Script>
<! [CDATA [
public var m:Number;
public var n:Number;

public function doSomething() :void {

n = 40;
m = 42;
labell.text = "40 < 42 = " + String(n < m);

1
11>
</fx:Scripts>

<s:Label id="labell"/>

</s:Application>

Accessing ActionScript documentation

The ActionScript 3.0 programming language can be used from within several development environments, including
Adobe® Flash® Professional and Adobe® Flash® Builder™.

The Flex documentation includes ActionScript 3.0 Developer's Guide, which describes the ActionScript language. The
ActionScript API reference is included as part of the ActionScript 3.0 Reference for the Adobe Flash Platform.

Working with components

The primary use of ActionScript in your applications is probably going to be for working with the visual controls and
containers in your application. Flex provides several techniques for doing this, including referencing a Flex control in
ActionScript and manipulating properties during the instantiation of controls and containers.

Referring to components
To work with a component in ActionScript, you usually define an id property for that component in the MXML tag.
For example, the following code sets the id property of the Button control to the String "myButton™:

<s:Button id="myButton" label="Click Me"/>

This property is optional if you do not want to access the component with ActionScript.

Last updated 9/25/2015

36

http://www.adobe.com/go/learn_flex_programmingAS3_en
http://www.adobe.com/go/learn_flex4_apiref_en

USING FLEX 37
Getting started

This code causes the MXML compiler to autogenerate a public variable named myBut ton that contains a reference to
that Button instance. This autogenerated variable lets you access the component instance in ActionScript. You can
explicitly refer to the Button control’s instance with its id instance reference in any ActionScript class or script block.
By referring to a component’s instance, you can modify its properties and call its methods.

For example, the following ActionScript block changes the value of the Button control’s 1abel property when the user
clicks the button:

<?xml version="1.0"?>
<!-- usingas/ButtonExample.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">
<s:layout>
<s:Verticallayout/>
</s:layout>
<fx:Script>
<! [CDATA[
private function setLabel () :void ({
if (myButton.label=="Click Me") {

myButton.label = "Clicked";
} else {
myButton.label = "Click Me";

}
}
11>
</fx:Script>
<s:Button id="myButton" label="Click Me" click="setLabel();"/>

</s:Application>

The IDs for all tags in an MXML component, no matter how deeply nested they are, generate public variables of the
component being defined. As a result, all 1d properties must be unique within a document. This also means that if you
specified an ID for a component instance, you can access that component from anywhere in the application: from
functions, external class files, imported ActionScript files, or inline scripts.

You can refer to a component if it does not have an id property by using methods of the component’s Spark container,
such as the getElementat () method. For MX containers, you can use the getChildat () method.

You can refer to the current enclosing document or current object using the this keyword.

You can also get a reference to a component when you have a String that matches the name. To access an object on the
application, you use the this keyword, followed by square brackets, with the String inside the square brackets. The
result is a reference to the objects whose name matches the String.

The following example changes style properties on each Button control using a compound String to get a reference to
the object:

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- usingas/FlexComponents.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script><! [CDATA [
private var newFontStyle:String;
private var newFontSize:int;
public function changeLabel (s:String) :void {
s = "myButton" + s;
if (this[s].getStyle("fontStyle")=="normal") {
newFontStyle = "italic";
newFontSize = 18;
} else {
newFontStyle = "normal";
newFontSize = 10;
1
this[s] .setStyle("fontStyle",newFontStyle) ;
this[s] .setStyle("fontSize",newFontSize) ;
}
11>
</fx:Scripts>
<s:Button id="myButtonl"
click="changeLabel ('2')™"
label="Change Other Button's Styles"/>
<s:Button id="myButton2"
click="changeLabel ('1')"
label="Change Other Button's Styles"/>
</s:Application>

This technique is especially useful if you use a Repeater control or when you create objects in ActionScript and do not
necessarily know the names of the objects you want to refer to prior to run time. However, when you instantiate an
object in ActionScript, to add that object to the properties array, you must declare the variable as public and declare it
in the class’s scope, not inside a function.

The following example uses ActionScript to declare two Label controls in the application scope. During initialization,
the labels are instantiated and their text properties are set. The example then gets a reference to the Label controls by
appending the passed-in variable to the String when the user clicks the Button controls.

Last updated 9/25/2015

38

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- usingas/ASLabels.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="initLabels () ">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.controls.Label;
public var labell:Label;
public var label2:Label;
// Objects must be declared in the application scope. Adds the names to
// the application's properties array.
public function initLabels():void ({
labell = new Label() ;

labell.text = "Change Me";
label2 = new Label () ;
label2.text = "Change Me";

addElement (labell) ;
addElement (label?2) ;
1
public function changeLabel (s:String) :void
// Create a String that matches the name of the Label control.
s = "label" + s;
// Get a reference to the label control using the
// application's properties array.
this[s] .text = "Changed";
1
11>
</fx:Script>
<s:Button id="bl" click="changeLabel('2')" label="Change Other Label"/>
<s:Button id="b2" click="changeLabel ('1l')" label="Change Other Label"/>
</s:Application>

Calling component methods

You can invoke the public methods of a component instance in your application by using the following dot-notation

syntax:

componentInstance.method ([parameters]) ;

The following example invokes the adjust Thumb () method when the user clicks the button, which invokes the public

setThumbValueAt () method of the HSlider control:

Last updated 9/25/2015

39

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- usingas/ComponentMethods.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
public function adjustThumb (s:HSlider) :void
var randomNumber:int = (Math.floor (Math.random() * 10));
s.setThumbValueAt (0, randomNumber) ;

1
11>
</fx:Script>
<mx:HSlider id="sliderl" tickInterval="1"
labels="[1,2,3,4,5,6,7,8,9,10]" width="282"/>
<s:Button id="myButton"
label="Change Thumb Position"
click="adjustThumb (sliderl) ;"/>
</s:Application>

To invoke a method from a child document (such as a custom MXML component), you can use the
parentApplication, parentDocument, Or FlexGlobals.topLevelApplication properties. For more
information, see “Application containers” on page 393.

Note: Because Flex invokes the initialize event before drawing the component, you cannot access size and position
information of that component from within the initialize event handler unless you use the creationComplete event
handler. For more information on the order of initialization events, see “About startup order” on page 2334.

Creating visual components in ActionScript

You can use ActionScript to programmatically create visual components using the new operator, in the same way that
you create instances of any ActionScript class. The created component has default values for its properties, but it does
not yet have a parent or any children (including any kind of internal DisplayObjects), and it is not yet on the display
list in Flash Player or Adobe® AIR™, so you can’t see it. After creating the component, you should use standard
assignment statements to set any properties whose default values aren’t appropriate.

Finally, you must add the new component to a container, by using the Spark container’s addElement () or
addElementAt () methods, so that it becomes part of the visual hierarchy of an application. (For MX containers, you
can use the addchild () or addchildat () methods.) The first time that it is added to a container, a component’s
children are created. Children are created late in the component’s life cycle so that you can set properties that can affect
children as they are created.

When creating visual controls, you must import the appropriate package. In most cases, this is the mx.controls
package, although you should check the ActionScript 3.0 Reference for the Adobe Flash Platform.

The following example creates a Button control inside the HGroup container:

Last updated 9/25/2015

40

http://www.adobe.com/go/learn_flex4_apiref_en

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- usingas/ASVisualComponent .mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA [
import spark.components.Button;
public var button2:Button;
public function createObject () :void {
button2 = new Button() ;
button2.label = "Click Me";
hbl.addElement (button2) ;

}
11>
</fx:Scripts>
<s:HGroup id="hbl">
<s:Button label="Create Object" click="createObject()"/>
</s:HGroup>
</s:Application>

Flex creates the new child as the last child in the container. If you do not want the new child to be the last in the Spark
container, use the addElementat () method to change the order. You can use the set ItemIndex () method after the
call to the addElement () method, but this is less efficient. For MX containers, you use the addchildat (),
setChildIndex (), and addchild() methods.

You should declare an instance variable for each dynamically created component and store a reference to the newly
created component in it, just as the MXML compiler does when you set an id property for a component instance tag.
You can then access your dynamically created components in the same way as those declaratively created in MXML.

To programmatically remove a control in Spark containers, you can use the removeElement (), removeElementAt (),
and removeAllElements () methods. For MX containers, you use the removeChild () or removeChildAt ()
methods. You can also use the removeaAllchildren () method to remove all child controls from a container.

Calling the “remove” methods does not actually delete the objects from memory. If you do not have any other
references to the child, Flash Player includes the object in garbage collection at some future point. But if you have a
reference to that child, the child is not garbage collected.

In some cases, you declaratively define a component with an MXML tag. You can set the creationPolicy property
of the component’s container to none to defer the creation of the controls inside that container. You can then create
the component programmatically rather than declaratively. For information on using the creationpPolicy property,
see “Improving startup performance” on page 2333.

The only component you can pass to the addElement () method is a class that implements the IVisualElement
interface. In other words, if you create a new object that is not a subclass of mx.core.IVisualElement, you must wrap it
in a class that implments IVisualElement before you can attach it to a container. The following example creates a new
Sprite object, which is not a subclass of IVisualElement, and adds it as a child of the UIComponent (which implements
IVisualElement) before adding it to the Panel container:

Last updated 9/25/2015

41

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- usingas/AddingChildrenAsUIComponents.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA [
import flash.display.Sprite;
import mx.core.UIComponent;
private var xLoc:int = 20;
private var yLoc:int = 20;
private var circleColor:Number = OxXFFCCOO;
private function addChildToPanel () :void ({
var circle:Sprite = new Sprite();
circle.graphics.beginFill (circleColor) ;
circle.graphics.drawCircle (xLoc, yLoc, 15);
var c:UIComponent = new UIComponent () ;
c.addChild (circle) ;
panell.addElement (c) ;
xLoc = xLoc 5;
1;
circleColor = circleColor + 20;

yLoc = yLoc

1
11>
</fx:Scripts>
<s:Panel id="panell" height="250" width="300"/>
<s:Button id="myButton" label="Click Me" click="addChildToPanel();"/>

</s:Application>

About scope

Scoping in ActionScript is largely a description of what the this keyword refers to at a particular point. In your
application’s core MXML file, you can access the Application object by using the this keyword. In a file defining an
MXML component, this is a reference to the current instance of that component.

In an ActionScript class file, the this keyword refers to the instance of that class. In the following example, the this
keyword refers to an instance of myClass. Because this is implicit, you do not have to include it, but it is shown here
to illustrate its meaning.

Last updated 9/25/2015

42

USING FLEX
Getting started

class myClass {
var _x:Number = 3;
function get x () :Number
return this._x;
}
function set x(y:Number):void {
if (y > 0) {
this. x = y;
} else {
this. x = 0;

}

However, in custom ActionScript and MXML components or external ActionScript class files, Flex executes in the
context of those objects and classes, and the this keyword refers to the current scope and not the Application object
scope.

Flex includes a FlexGlobals. topLevelApplication property that you can use to access the root application. In
some cases, you can also use the parentDocument property to access the next level up in the document chain of an
application, or the parentApplication property to access the next level up in the application chain when one
Application object loads another Application object.

You cannot use these properties to access the root application if the loaded application was loaded into a separate
ApplicationDomain or SecurityDomain, as is the case with sandboxed and multi-versioned applications. For more
information, see “Accessing the main application from sub-applications” on page 197.

If you write ActionScript in a component’s event listener, the scope is not the component but rather the application.
For example, the following code changes the label of the Button control to "clicked" once the Button control is
pressed:

<?xml version="1.0"?>
<!-- usingas/ButtonScope.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:layout>
<s:BasicLayout/>
</s:layout>
<s:Panel width="250" height="100" x="65" y="24">
<s:Button id="myButton"
label="Click Me"
click="myButton.label='Clicked'"
x="79.5" y="20"/>
</s:Panel>
<s:Button label="Reset"
x="158" y="149"
click="myButton.label='Click Me'"/>
</s:Application>

Contrast the previous example with the following code:

Last updated 9/25/2015

43

USING FLEX 44
Getting started

<?xml version="1.0"?>

<!-- usingas/AppScope.mxml -->

<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">
<s:layout>

<s:VerticallLayout/>

</s:layout>

<!-- The following throws a compiler error because the app level scope does

not have a label to set. -->
<!-- <s:Button id="myButton" label="Click Me" click="{this.label='Clicked'}"/> -->
<!-- <s:Button label="Reset" click="myButton.label='Click Me'"/> -->

</s:Application>

This code does not work because when an event listener executes, the this keyword does not refer to the Button
instance; the this keyword refers to the Application or other top-level component instance. The second example
attempts to set the 1abel property of the Application object, not the 1abel property of the Button.

Variables declared within a function are locally scoped to that function. These variables can share the same name as
variables in outer scopes, and they do not affect the outer-scoped variable. If a variable is just used temporarily by a
single method, make it a local variable of that method rather than an instance variable. Use instance variables only for
storing the state of an instance, because each instance variable will take up memory for the entire lifetime of the
instance. You can refer to the outer-scoped variable with the this. prefix.

Including versus importing ActionScript code

To make your MXML code more readable, you can reference ActionScript files in your <£x: Script > tags, rather than
insert large blocks of script. You can either include or import ActionScript files.

There is a distinct difference between including and importing code in ActionScript. Including copies lines of code
from one file into another, as if they had been pasted at the position of the include statement. Importing adds a
reference to a class file or package so that you can access objects and properties defined by external classes. Files that
you import must be found in the source path. Files that you include must be located relative to the file that uses the
include statement, or you must use an absolute path.

You use the include statement or the <fx:Script source="filename"> tag to add ActionScript code to your
applications.

You use import statements in an <£x: Script > block to define the locations of ActionScript classes and packages that
your applications might use.

Including ActionScript files

To include ActionScript code, you reference an external ActionScript file in your <£x: Script> tags. At compile time,
the compiler copies the entire contents of the file into your MXML application, as if you had actually typed it. As with
ActionScript in an <fx:Script> block, ActionScript statements can only be inside functions. Included files can also
declare constants and namespaces, include other ActionScript files, import declarations, and use namespaces. You
cannot define classes in included files.

Variables and functions defined in an included ActionScript file are available to any component in the MXML file. An
included ActionScript file is not the same as an imported ActionScript class. Flex provides access to the included file’s
variables and functions, but does not add a new class, because the MXML file itself is a class.

Included ActionScript files do not need to be in the same directory as the MXML file. However, you should organize
your ActionScript files in a logical directory structure.

Last updated 9/25/2015

USING FLEX 45
Getting started

There are two ways to include an external ActionScript file in your application:

+ The source attribute of the <fx:Script> tag. This is the preferred method for including external ActionScript
class files.

« The include statement inside <fx:Script> blocks.

Using the source attribute to include ActionScript files
You use the source attribute of the <£x: Script> tag to include external ActionScript files in your applications. This
provides a way to make your MXML files less cluttered and promotes code reuse across different applications.

Do not give the script file the same name as the application file. This causes a compiler error.
The following example shows the contents of the IncludedFile.as file:

// usingas/includes/IncludedFile.as
public function computeSum(a:Number, b:Number) :Number {
return a + b;

}

The following example uses the <fx: Script> tag to include the contents of the IncludedFile.as file. This file is located
in the /includes subdirectory.

<?xml version="1.0"7?>
<!-- usingas/SourceInclude.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">
<s:layout>
<s:Verticallayout/>
</s:layout>
<fx:Script source="includes/IncludedFile.as"/>
<s:TextInput id="talst" text="3" width="40" x="170" y="24" textAlign="right"/>
<s:TextInput id="ta2nd" text="3" width="40" x="170" y="52" textAlign="right"/>
<s:TextArea id="taMain" height="25" width="78" x="132" y="82" teXtAlign:"right"/>
<s:Button id="bl" label="Compute Sum"
click="taMain.text=String (computeSum (Number (talst.text), Number (ta2nd.text))) ;"
x="105" y="115"/>
<s:Label x="148" y="52" text="+" fontWeight="bold" fontSize="17" width="23"/>
</s:Application>

The source attribute of the <fx:Script> tag supports both relative and absolute paths. For more information, see
“Referring to external files that have been included” on page 46.

You cannot use the source attribute of an <fx: Script> tag and wrap ActionScript code inside that same
<fx:Script> tag. To include a file and write ActionScript in the MXML file, use two <fx:Script> tags.

Using the include directive
The include directive is an ActionScript statement that copies the contents of the specified file into your MXML file.
The include directive uses the following syntax:

include "file name";

The following example includes the myfunctions.as file:

Last updated 9/25/2015

USING FLEX 46
Getting started

<?xml version="1.0"?>
<!-- usingas/IncludeASFile.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
/* The myfunctions.as file defines two methods that
return Strings. */
include "includes/myfunctions.as";
11>
</fx:Script>
<s:Button id="myButton"
label="Call Methods in Included File"
click="tal.text=doSomething() ;tal.text+=doSomethingElse()"/>
<s:TextArea width="268" id="tal"/>
<s:Button label="Clear" click="tal.text=''"/>
</s:Application>

You can specify only a single file for each include directive, but you can use any number of include directives. You
can nest include directives; files with include directives can include files that have include directives.

The include directive supports only relative paths. For more information, see “Referring to external files that have
been included” on page 46.

You can use the include only where multiple statements are allowed. For example, the following is not allowed:

if (expr)
include "foo.as"; // First statement is guarded by IF, but rest are not.

The following is allowed:

if (expr) {
include "foo.as"; // All statements inside { } are guarded by IF.

}

The use of curly braces ({ }) allows multiple statements because you can add multiple statements inside the braces.

Adobe recommends that you not use the include directive if you use a large number of included ActionScript files.
You should try to break the code into separate class files where appropriate and store them in logical package
structures.

Referring to external files that have been included

The source attribute of the <fx:Script> tag and the include directive refer to files in different ways.
The following are the valid paths to external files that are referenced in an <fx:Script> tag’s source attribute:

+ Absolute URLs, such as http://www.macromedia.com or file:///C|/site_flashteam/foo.gif.

+ Relative URLs, such as ../myscript.as. A relative URL that does not start with a slash is resolved relative to the file
thatusesﬁ.Hfhetag<fx:Script source="../IncludedFile.as"> is included in
“mysite/myfiles/myapp.mxml,” the system searches for “mysite/IncludedFile.as”.

For an ActionScript include directive, you can reference only relative URLs.

Last updated 9/25/2015

USING FLEX 47
Getting started

Flex searches the source path for imported classes and packages. Flex does not search the source path for files that are
included using the include directive or the source attribute of the <fx:Script> tag.

Importing classes and packages

If you create many utility classes or include multiple ActionScript files to access commonly used functions, you might
want to store them in a set of classes in their own package. You can import ActionScript classes and packages using
the import statement. By doing this, you do not have to explicitly enter the fully qualified class names when accessing
classes within ActionScript.

The following example imports the MyClass class in the MyPackage.Util package:

<?xml version="1.0"7?>
<!-- usingas/AccessingPackagedClasses.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">
<s:layout>
<s:VerticalLayout/>
</s:layout>
<fx:Script>
<! [CDATA [
import MyPackage.Util.MyClass;
private var mc:MyClass = new MyClass;
11>
</fx:Script>
<s:Button id="myButton" label="Click Me" click="myButton.label=mc.returnAString()"/>
</s:Application>

In your ActionScript code, instead of referring to the class with its fully qualified package name
(MyPackage.Util. MyClass), you refer to it as MyClass.

You can also use the wildcard character (*) to import the entire package. For example, the following statement imports
the entire MyPackage.Util package:

import MyPackage.Util.*;

Flex searches the source path for imported files and packages, and includes only those that are used in the final SWF
file.

It is not sufficient to simply specify the fully qualified class name. You should use fully qualified class names only when
necessary to distinguish two classes with the same class name that reside in different packages.

If you import a class but do not use it in your application, the class is not included in the resulting SWEF file’s bytecode.
As a result, importing an entire package with a wildcard does not create an unnecessarily large SWF file.

Techniques for separating ActionScript from MXML

The following sample application, which calls a single function, shows several methods of separating ActionScript
from the MXML.

The Temperature application takes input from a single input field and uses a function to convert the input from
Fahrenheit to Celsius. It then displays the resulting temperature in a Label control.

One MXML document (event handling logic in event attribute)
The following code shows the ActionScript event handling logic inside the MXML tag’s c1ick event:

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- usingas/ASOneFile.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
width="700">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<s:Panel title="Temperature Application" width="90%">
<s:HGroup>
<s:Label text="Temperature in Fahrenheit:"/>
<s:TextInput id="fahrenheit" width="120"/>
<s:Button label="Convert"
click="celsius.text=String(Math.round ((Number (fahrenheit.text)-32)/1.8 *
10)/10);"/>
<s:Label text="Temperature in Celsius:"/>
<s:Label id="celsius" width="120" fontSize="24"/>
</s:HGroup>
</s:Panel>
</s:Application>

One MXML document (event handling logic in <fx:Script> block)

In this example, the logic for the function is inside an <£x : Script > block in the MXML document, and is called from
the MXML tag’s click event, as the following code shows:

<?xml version="1.0"?>
<!-- usingas/ASScriptBlock.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
width="700">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA [
public function calculate () :void ({
var n:Number = Number (fahrenheit.text) ;
var t:Number = Math.round((n-32)/1.8%10)/10;
celsius.text=String(t) ;
1
11>
</fx:Script>
<s:Panel title="Temperature Application" width="90%">
<s:HGroup>
<s:Label text="Temperature in Fahrenheit:"/»>
<s:TextInput id="fahrenheit" width="120"/>
<s:Button label="Convert" click="calculate();" />
<s:Label text="Temperature in Celsius:"/>
<s:Label id="celsius" width="120" fontSize="24"/>
</s:HGroup>
</s:Panel>
</s:Application>

Last updated 9/25/2015

48

USING FLEX
Getting started

One MXML document and one ActionScript file (event handling logic in separate script file)

Here, the function call is in an MXML event attribute, and the function is defined in a separate ActionScript file, as the
following code shows:

<?xml version="1.0"?>
<!-- usingas/ASSourceFile.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark"
width="700">
<s:layout>
<s:Verticallayout/>
</s:layout>
<!-- Specify the ActionScript file that contains the function. -->
<fx:Script source="includes/Sample3Script.as"/>
<s:Panel title="Temperature Application" width="90%">
<s:HGroup>
<s:Label text="Temperature in Fahrenheit:"/>
<s:TextInput id="fahrenheit" width="120"/>
<s:Button label="Convert" click="celsius.text=calculate (fahrenheit.text);"/>
<s:Label text="Temperature in Celsius:"/>
<s:Label id="celsius" width="120" fontSize="24"/>
</s:HGroup>
</s:Panel>
</s:Application>

The Sample3Script.as ActionScript file contains the following code:

// usingas/includes/Sample3Script.as

public function calculate(s:String) :String
var n:Number = Number(s) ;
var t:Number = Math.round((n-32)/1.8%*10)/10;
return String(t) ;

Creating ActionScript components

You can create reusable components that use ActionScript and reference these components in your applications as
MXML tags. Components created in ActionScript can contain graphical elements, define custom business logic, or
extend existing components. They can inherit from any components available in Flex.

Defining your own components in ActionScript has several benefits. Components let you divide your applications into
individual modules that you can develop and maintain separately. By implementing commonly used logic within
custom components, you can build a suite of reusable components that you can share among multiple applications.

Also, you can base your custom components on the set of components by extending from the Flex class hierarchy. You
can create custom versions of Flex visual controls, as well as custom versions on nonvisual components, such as data
validators, formatters, and effects.

For example, you can define a custom button, derived from the Button control, in the myControls package, as the
following example shows:

Last updated 9/25/2015

USING FLEX 50
Getting started

package myControls {
import mx.controls.Button;
public class MyButton extends Button {
public function MyButton() {

}

In this example, you write your MyButton control to the MyButton.as file, and you store the file in the myControls
subdirectory of the root directory of your application. The fully qualified class name of your component reflects its
location. In this example, the component’s fully qualified class name is myControls.MyButton.

You can reference your custom Button control from an application file, such as MyApp.mxml, as the following
example shows:

<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:cmp="myControls.*">
<cmp :MyButton label="Jack"/>
</s:Applications>

In this example, you define the cmp namespace that defines the location of your custom component in the application’s
directory structure. You then reference the component as an MXML tag using the namespace prefix.

Typically, you put custom ActionScript components in directories that are in the source path. These include any
directory that you specify in the source path.

You can also create custom components using MXML. For more information, see “Custom components” on
page 2356.

Types of custom components
You can create the following types of components in ActionScript:

User-interface components User-interface components contain both processing logic and visual elements. These
components usually extend the component hierarchy. You can extend from the UIComponent classes, or any of the
components, such as Button, ComboBox, or DataGrid. Your custom ActionScript component inherits all of the public
methods, along with public and protected properties of its base class.

Nonvisual components Nonvisual components define no visual elements. A nonvisual component is an ActionScript
class that does not extend the UIComponent class. They can provide greater efficiency at run time.

Performing object introspection

Object introspection is a technique for determining the elements of a class at run time, such as its properties and
methods. There are two ways to do introspection in ActionScript:

« Using for. .inloops
+ Using the introspection API

You might find object introspection a useful technique when debugging your application. For example, you might
write a method that takes a generic object of type Object as an argument. You can use introspection to output all of the
properties and methods of the Object to determine exactly what your application passed to it.

Last updated 9/25/2015

USING FLEX 51
Getting started

Using for..in loops

You can use a for. . in loop to iterate over objects and output their properties and their values. A for. .in loop
enumerates only dynamically added properties. Declared variables and methods of classes are not enumerated in
for. .inloops. This means that most classes in the ActionScript API will not display any propertiesina for. . inloop.
However, the generic type Object is still a dynamic object and will display properties in a for. . in loop.

The following example creates a generic Object, adds properties to that object, and then iterates over that object when
you click the button to inspect its properties:

<?xml version="1.0"?>
<!-- usingas/IntrospectionForIn.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="initApp () ">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
private var obj:0Object = new Object() ;
private function initApp () :void {
// Create the object.

obj.a = "Schotten Totten";
obj.b = "Taj Majal";
obj.c = "Durche die Wuste";

}
public function dumpObj () :void
for (var p:String in obj) {
tal.text += p + ":" + obj[p] + "\n";

}
11>
</fx:Scripts>
<s:TextArea id="tal" width="400" height="200"/>
<s:Button label="Dump Object" click="dumpObj ()"/>
</s:Application>

You can also use the mx.utils.ObjectUtil.toString() method to print all the dynamically added properties of
an object, for example:

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- usingas/ObjectUtilToString.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="initApp () ">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.utils.ObjectUtil;
private var obj:0Object = new Object() ;
private function initApp () :void {
// Create the object.

obj.a = "Schotten Totten";
obj.b = "Taj Majal";
obj.c = "Durche die Wuste";

}

public function dumpObj () :void
tal.text = ObjectUtil.toString(obj) ;

1
11>
</fx:Scripts>
<s:TextArea id="tal" width="400" height="200"/>
<s:Button label="Dump Object" click="dumpObj ()"/>
</s:Application>

The mx.utils.ObjectUtil class has other useful methods such as compare (), copy (), and issimple (). For more
information, see the ActionScript 3.0 Reference for the Adobe Flash Platform.

Using the introspection API

If you want to list all the public properties and methods of a nondynamic (or sealed) class or class instance, use the
describeType () method and parse the results using the E4X API The describeType () method is in the flash.utils
package. The method’s only parameter is the target object that you want to introspect. You can pass it any ActionScript
value, including all available ActionScript types such as object instances, primitive types such as uint, and class
objects. The return value of the describeType () method is an E4X XML object that contains an XML description of
the object’s type.

The describeType () method returns only public members. The method does not return private members of the
caller’s superclass or any other class where the caller is not an instance. If you call describeType (this), the method
returns information only about nonstatic members of the class. If you call

describeType (getDefinitionByName ("MyClass")), the method returns information only about the target’s static
members.

The following example introspects the Button control and prints the details to TextArea controls:

Last updated 9/25/2015

52

http://www.adobe.com/go/learn_flex4_apiref_en

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- usingas/IntrospectionAPI.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="getDetails () ">
<s:layout>
<s:VerticallLayout/>
</s:layout>

<fx:Script>
<! [CDATA[
import flash.utils.*;
public function getDetails() :void {
// Get the Button control's E4X XML object description.
var classInfo:XML = describeType (buttonl) ;
// Dump the entire E4X XML object into ta2.
ta2.text = classInfo.toString() ;
// List the class name.
tal.text = "Class " + classInfo.@name.toString() + "\n";
// List the object's variables, their values, and their types.
for each (var v:XML in classInfo..variable) {
tal.text += "Variable " + v.@name + "=" + buttonl[v.@name] +
" (" + v.etype + ")\n";
1
// List accessors as properties.
for each (var a:XML in classInfo..accessor)
// Do not get the property value if it is write only.

if (a.@access == 'writeonly') {
tal.text += "Property " + a.@name + " (" + a.etype +")\n";
else {
tal.text += "Property " + a.@name + "=" +
buttonl[a.@name] + " (" + a.@type +")\n";

}

// List the object's methods.
for each (var m:XML in classInfo..method) {
tal.text += "Method " + m.@name + "():" + m.@returnType + "\n";

}
11>
</fx:Scripts>
<s:Button label="This Button Does Nothing" id="buttonl"/»>
<s:TextArea id="tal" width="400" height="200"/>
<s:TextArea id="ta2" width="400" height="200"/>
</s:Application>

The output displays accessors, variables, and methods of the Button control, and appears similar to the following:

Last updated 9/25/2015

53

USING FLEX
Getting started

Class mx.controls::Button

Variable id=buttonl (String)
Variable _ width=66 (Number)
Variable layoutWidth=66 (Number)
Variable _ height=22 (Number)
Variable layoutHeight=22 (Number)

Property label=Submit (String)
Property enabled=true (Boolean)
Property numChildren=2 (uint)

Property enabled=true (Boolean)
Property visible=true (Boolean)
Property toolTip=null (String)

Method dispatchEvent () :Boolean
Method hasEventListener () :Boolean
Method layoutContents () :void

Method getInheritingStyle() :Object
Method getNonInheritingStyle() :Object

Another useful method is the ObjectUtil’s getClassInfo () method. This method returns an Object with the name
and properties of the target object. The following example uses the getClassInfo () and toString () methods to
show the properties of the Button control:

<?xml version="1.0"?>
<!-- usingas/IntrospectionObjectUtil.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
height="650">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script><! [CDATA [
import mx.controls.Alert;
import mx.utils.ObjectUtil;
private function showProps (b:Button) :void ({
var o:0bject = ObjectUtil.getClassInfo(b);
tal.text = ObjectUtil.toString(o) ;
}
11>
</fx:Scripts>
<s:Button id="bl" label="Show Properties" click="showProps (bl)"/>
<s:TextArea id="tal" width="300" height="500"/>
</s:Application>

For more information about using E4X, see Working with XML.

Events

One of the most important parts of your Adobe® Flex™ application is handling events by using controls and
ActionScript.

Last updated 9/25/2015

USING FLEX 55
Getting started

About Flex events

Events let a developer know when something happens within an application. They can be generated by user devices,
such as the mouse and keyboard, or other external input, such as the return of a web service call. Events are also
triggered when changes happen in the appearance or life cycle of a component, such as the creation or destruction of
a component or when the component is resized.

Any user interaction with your application can generate events. Events can also occur without any direct user
interaction, such as when data finishes loading from a server or when an attached camera becomes active. You can
“handle” these events in your code by adding an event handler. Event handlers are the functions or methods that you
write to respond to specific events. They are also sometimes referred to as event listeners.

The Flex event model is based on the Document Object Model (DOM) Level 3 events model. Although Flex does not
adhere specifically to the DOM standard, the implementations are very similar. The event model in Flex comprises the
Event object and its subclasses, and the event dispatching model. For a quick start in using events in Flex, see the
sample code in “Using events” on page 57.

Components generate and dispatch events and consume (listen to) other events. An object that requires information
about another object’s events registers a listener with that object. When an event occurs, the object dispatches the event
to all registered listeners by calling a function that was requested during registration. To receive multiple events from
the same object, you must register your listener for each event.

Components have built-in events that you can handle in ActionScript blocks in your MXML applications. You can also
take advantage of the Flex event system’s dispatcher-listener model to define your own event listeners outside of your
applications, and define which methods of your custom listeners will listen to certain events. You can register listeners
with the target object so that when the target object dispatches an event, the listeners get called.

All visual objects, including Flex controls and containers, are subclasses of the DisplayObject class. They are in a tree
of visible objects that make up your application. The root of the tree is the Stage. Below that is the SystemManager
object, and then the Application object. Child containers and components are leaf nodes of the tree. That tree is known
as the display list. An object on the display list is analogous to a node in the DOM hierarchical structure. The terms
display list object and node are used interchangeably.

For information about each component’s events, see the component’s description in “UI Controls” on page 643 or the
control’s entry in ActionScript 3.0 Reference for the Adobe Flash Platform.

For a detailed description of a component’s startup life cycle, including major events in that life cycle, see “Create
advanced MX visual components in ActionScript” on page 2475.

About the event flow

You can instruct any container or control to listen for events dispatched by another container or control. When
Adobe® Flash® Player dispatches an Event object, that Event object makes a roundtrip journey from the root of the
display list to the target node, checking each node for registered listeners. The target node is the node in the display list
where the event occurred. For example, if a user clicks a Button control named Child1, Flash Player dispatches an
Event object with Child1 defined as the target node.

The event flow is conceptually divided into three parts: the capturing phase, the targeting phase, and the bubbling
phase, as briefly described next. For more information about the event flow, see “Event propagation” on page 81.

Last updated 9/25/2015

http://www.adobe.com/go/learn_flex4_apiref_en

USING FLEX 56
Getting started

About the capturing phase

The first part of the event flow is called the capturing phase. This phase comprises all of the nodes from the root node
to the parent of the target node. During this phase, Flash Player examines each node, starting with the root, to see if it
has a listener registered to handle the event. If it does, Flash Player sets the appropriate values of the Event object and
then calls that listener. Flash Player stops after it reaches the target node’s parent and calls any listeners registered on
the parent. For more information, see “Capturing phase” on page 82.

About the targeting phase

The second part of the event flow, the targeting phase, consists solely of the target node. Flash Player sets the
appropriate values on the Event object, checks the target node for registered event listeners, and then calls those
listeners. For more information, see “Targeting phase” on page 83.

About the bubbling phase

The third part of the event flow, the bubbling phase, comprises all of the nodes from the target node’s parent to the root
node. Starting with the target node’s parent, Flash Player sets the appropriate values on the Event object and then calls
event listeners on each of these nodes. Flash Player stops after calling any listeners on the root node. For more
information about the bubbling phase, see “Bubbling phase” on page 83.

About the Event class

The Event class is an ActionScript class with properties that contain information about the event that occurred. An
Event object is an implicitly created object, similar to the request and response objects in a JavaServer Page (JSP) that
are implicitly created by the application server.

Flex creates an Event object each time an event is dispatched. You can use the Event object inside an event listener to
access details about the event that was dispatched, or about the component that dispatched the event. Passing an Event
object to, and using it in, an event listener is optional. However, if you want to access the Event object’s properties
inside your event listeners, you must pass the Event object to the listener.

Flex creates only one Event object when an event is dispatched. During the bubbling and capturing phases, Flex
changes the values on the Event object as it moves up or down the display list, rather than creating a new Event object
for each node.

About event subclasses

There are many classes that extend the flash.events.Event class. These classes are defined mostly in the following
packages:

+ spark.events.*
+ mx.events.*
+ flash.events.*

The mx.events package defines event classes that are specific to most Flex controls, including the DataGridEvent,
DragEvent, and ColorPickerEvent. The spark.events package defines event classes that are specific to a few Spark
controls, including the TextOperationEvent and VideoEvent. The flash.events package describes events that are not
unique to Flex but are instead defined by Flash Player. These event classes include MouseEvent, DataEvent, and
TextEvent. All of these events are commonly used in applications.

In addition to these packages, some packages also define their own event objects: for example,
mx.messaging.events.ChannelEvent and mx.logging.LogEvent.

Last updated 9/25/2015

USING FLEX
Getting started

Child classes of the Event class have additional properties and methods that may be unique to them. In some cases, you
will want to use a more specific event type rather than the generic Event object so that you can access these unique
properties or methods. For example, the LogEvent class has a getLevelstring () method that the Event class does not.

For information on using Event subclasses, see “Using event subclasses” on page 89.

About the EventDispatcher class

Every object in the display list can trace its class inheritance back to the DisplayObject class. The DisplayObject class,
in turn, inherits from the EventDispatcher class. The EventDispatcher class is a base class that provides important
event model functionality for every object on the display list. Because the DisplayObject class inherits from the
EventDispatcher class, any object on the display list has access to the methods of the EventDispatcher class.

This is significant because every item on the display list can participate fully in the event model. Every object on the
display list can use its addEventListener () method—inherited from the EventDispatcher class—to listen for a
particular event, but only if the listening object is part of the event flow for that event.

Although the name EventDispatcher seems to imply that this class’s main purpose is to send (or dispatch) Event
objects, the methods of this class are used much more frequently to register event listeners, check for event listeners,
and remove event listeners.

The EventDispatcher class implements the IEventDispatcher interface. This allows developers who create custom
classes that cannot inherit from EventDispatcher or one of its subclasses to implement the IEventDispatcher interface
to gain access to its methods.

The addEventListener () method is the most commonly used method of this class. You use it to register your event
listeners. For information on using the addEventListener () method, see “Using the addEventListener() method” on
page 64.

Advanced programmers use the dispatchEvent () method to manually dispatch an event or to send a custom Event
object into the event flow. For more information, see “Manually dispatching events” on page 78.

Several other methods of the EventDispatcher class provide useful information about the existence of event listeners.
The hasEventListener () method returns true if an event listener is found for that specific event type on a particular
display list object. The willTrigger () method checks for event listeners on a particular display list object, but it also
checks for listeners on all of that display list object’s ancestors for all phases of the event flow. The method returns true
if it finds one.

Using events

Using events in Flex is a two-step process. First, you write a function or class method, known as an event listener or
event handler, that responds to events. The function often accesses the properties of the Event object or some other
settings of the application state. The signature of this function usually includes an argument that specifies the event
type being passed in.

The following example shows a simple event listener function that reports when a control triggers the event that it is
listening for:

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- events/SimpleEventHandler.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="initApp () ;">
<fx:Script>
<! [CDATA[
import mx.controls.Alert;
private function initApp () :void {
bl.addEventListener (MouseEvent.CLICK, myEventHandler) ;
1
private function myEventHandler (event:Event) :void
Alert.show ("An event occurred.");
1
11>
</fx:Scripts>
<s:Button id="bl" label="Click Me"/>
</s:Application>

As you can see in this example, you also register that function or class method with a display list object by using the
addEventListener() method.

Most Flex controls simplify listener registration by letting you specify the listener inside the MXML tag. For example,
instead of using the addEventListener () method to specify a listener function for the Button control’s c1ick event,
you specify it in the click attribute of the <mx : Buttons> tag:

<?xml version="1.0"?>

<!-- events/SimplerEventHandler.mxml -->

<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">

<fx:Script>
<! [CDATA [
import mx.controls.Alert;
private function myEventHandler (event:Event) :void
Alert.show ("An event occurred.");

}
11>
</fx:Scripts>
<s:Button id="bl" label="Click Me" click="myEventHandler (event)"/>
</s:Application>

This is equivalent to the addEventListener () method in the previous code example. However, it is best practice to
use the addEventListener () method. This method gives you greater control over the event by letting you configure
the priority and capturing settings, and use event constants. In addition, if you use addEventListener () to add an

event handler, you can use removeEventListener () to remove the handler when you no longer need it. If you add

an event handler inline, you cannot call removeEventListener () on that handler.

Each time a control generates an event, Flex creates an Event object that contains information about that event,
including the type of event and a reference to the dispatching control. To use the Event object, you specify it as a
parameter in the event handler function, as the following example shows:

Last updated 9/25/2015

58

USING FLEX 59
Getting started

<?xml version="1.0"?>
<!-- events/EventTypeHandler.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<fx:Script>
<! [CDATA[
import mx.controls.Alert;
private function myEventHandler (e:Event) :void {
Alert.show("An event of type '" + e.type + "' occurred.");
}
11>
</fx:Scripts>
<s:Button id="bl" label="Click Me" click="myEventHandler (event)"/>
</s:Application>

If you want to access the Event object in an event handler that was triggered by an inline event, you must add the event
keyword inside the MXML tag so that Flex explicitly passes it to the handler, as in the following:

<mx:Button id="bl" label="Click Me" click="myEventHandler (event)"/>

You are not required to use the Event object in a handler function. The following example creates two event handler
functions and registers them with the events of a ComboBox control. The first event handler, openEvt (), takes no
arguments. The second event handler, changeEvt (), takes the Event object as an argument and uses this object to
access the value and selectedIndex of the ComboBox control that triggered the event.

<?xml version="1.0"?>
<!-- events/MultipleEventHandlers.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script><! [CDATA [
private function openEvt () :void {
forChange.text="";
1
private function changeEvt (e:Event) :void ({
forChange.text =
"Value: " + e.currentTarget.selectedItem + "\n" +
"Index: " + e.currentTarget.selectedIndex;
1
1]1></fx:Script>
<s:ComboBox open="openEvt ()" change="changeEvt (event) ">
<s:dataProvider>
<s:ArrayList>
<fx:String>AK</fx:String>
<fx:String>AL</fx:String>
<fx:String>AR</fx:String>
</s:ArraylList>
</s:dataProviders>
</s:ComboBox>
<s:TextArea id="forChange" width="150" height="100"/>
</s:Application>

Last updated 9/25/2015

USING FLEX 60
Getting started

This example shows accessing the target property of the Event object. For more information, see “Accessing the
currentTarget property” on page 60.

Specifying the Event object

You specify the object in a listener function’s signature as type Event, as the following example shows:
function myEventListener (e:Event):void { ... }

However, if you want to access properties that are specific to the type of event that was dispatched, you must instead
specify a more specific event type, such as ToolTipEvent or KeyboardEvent, as the following example shows:

import mx.events.ToolTip
function myEventListener (e:ToolTipEvent) :void { ... }

In some cases, you must import the event’s class in your ActionScript block.

Most objects have specific events that are associated with them, and most of them can dispatch more than one type of
event.

If you declare an event of type Event, you can cast it to a more specific type to access its event-specific properties. For
more information, see “Using event subclasses” on page 89.

Accessing the currentTarget property

Event objects include a reference to the instance of the dispatching component (or target), which means that you can
access all the properties and methods of that instance in an event listener. The following example accesses the id of the
Button control that triggered the event:

<?xml version="1.0"?>
<!-- events/AccessingCurrentTarget.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">
<fx:Scripts>
<! [CDATA[
import mx.controls.Alert;
private function myEventHandler (e:Event) :void {
Alert.show("The button '" + e.currentTarget.id + "' was clicked.");

11>
</fx:Script>
<s:Button id="bl" label="Click Me" click="myEventHandler (event)"/>
</s:Application>

You can access members of the currentTarget. If you do not cast the current target to a specific type, the compiler
assumes that it is of type Object. Objects can have any property or method because the Object type is dynamic in
ActionScript. Therefore, when accessing methods and properties of the currentTarget, it is best practice to cast
currentTarget to whatever class you anticipate will dispatch that event. This gives you strong type checking at
compile time, and helps avoid the risk of throwing a run-time error.

The following example casts the current target to a TextInput class before calling the selectRange () method, but
does not cast it before trying to set the tmesis property. The tmesis property does not exist on the TextInput class.
This illustrates that you will get a run-time error but not a compile-time error when you try to access members that
don’t exist, unless you cast currentTarget to a specific type so that type checking can occur:

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"7?>
<!-- events/InvokingOnCurrentTarget.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
width="500">
<fx:Script>
<! [CDATA[
import mx.core.UIComponent ;
private function tiHandler (e:Event) :void ({
/*
The following enforces type checking:
*/
TextInput (e.currentTarget) .selectRange (0, 3) ;
/*
The following throws a run-time error but not a compile-time error:
e.currentTarget.tmesis = 4;
*/
/*
unless you cast it to the expected type like the following. Then
the compiler throws an error.
TextInput (e.currentTarget) .tmesis = 4;
*/
}
11>
</fx:Scripts>
<s:TextInput id="til" click="tiHandler (event)"
text="When you click on this control, the first three characters are selected."
width="400"/>
</s:Application>

You could also cast currentTarget to UIComponent or some other more general class that still has methods of
display objects. That way, if you don’t know exactly which control will dispatch an event, at least you can ensure there
is some type checking.

You can also access methods and properties of the target property, which contains a reference to the current node in
the display list. For more information, see “About the target and currentTarget properties” on page 81.

Registering event handlers
There are several strategies that you can employ when you register event handlers with your Flex controls:

1 Define an event handler inline. This binds a call to the handler function to the control that triggers the event.

Last updated 9/25/2015

61

USING FLEX
Getting started

<?xml version="1.0"?>

<!-- events/SimplerEventHandler.mxml -->

<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">

<fx:Script>
<! [CDATA[
import mx.controls.Alert;
private function myEventHandler (event:Event) :void
Alert.show ("An event occurred.") ;
}
11>
</fx:Scripts>
<s:Button id="bl" label="Click Me" click="myEventHandler (event)"/>
</s:Application>

In this example, whenever the user clicks the Button control, Flex calls the myClickHandler () function.
For more information on defining event handlers inline, see “Defining event listeners inline” on page 63.

2 Use the addEventListener () method, as follows:

<?xml version="1.0"?>
<!-- events/SimpleEventHandler.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="initApp () ;">
<fx:Scripts>
<! [CDATA[
import mx.controls.Alert;
private function initApp () :void {
bl.addEventListener (MouseEvent .CLICK, myEventHandler) ;
}
private function myEventHandler (event:Event) :void {
Alert.show ("An event occurred.");
1
11>
</fx:Script>
<s:Button id="bl" label="Click Me"/>
</s:Application>

As with the previous example, whenever the user clicks the Button control, Flex calls the myclickHandler ()
handler function. However, registering your event handlers using this method provides more flexibility. You can
register multiple components with this event handler, add multiple handlers to a single component, or remove the
handler. For more information, see “Using the addEventListener() method” on page 64.

3 Create an event handler class and register components to use the class for event handling. This approach to event
handling promotes code reuse and lets you centralize event handling outside your MXML files. For more
information on creating custom event handler classes, see “Creating event handler classes” on page 69.

Last updated 9/25/2015

USING FLEX
Getting started

Defining event listeners inline

The simplest method of defining event handlers in applications is to point to a handler function in the component’s
MXML tag. To do this, you add any of the component’s events as a tag attribute followed by an ActionScript statement
or function call.

You add an event handler inline using the following syntax:
<s:tag nameevent name="handler function"/>

For example, to listen for a Button control’s c1lick event, you add a statement in the <mx:Button> tag’s click
attribute. If you add a function, you define that function in an ActionScript block. The following example defines the
submitForm() function as the handler for the Button control’s c1ick event:

<fx:Script><! [CDATA [
function submitForm() :void {
// Do something.

}

11></fx:Script>
<s:Button label="Submit" click="submitForm();"/>

Event handlers can include any valid ActionScript code, including code that calls global functions or sets a component
property to the return value. The following example calls the trace () global function:

<s:Button label="Get Ver" click="trace('The button was clicked');"/>

There is one special parameter that you can pass in an inline event handler definition: the event parameter. If you add
the event keyword as a parameter, Flex passes the Event object and inside the handler function, you can then access
all the properties of the Event object.

The following example passes the Event object to the submitForm () handler function and specifies it as type
MouseEvent:

<?xml version="1.0"?>
<!-- events/MouseEventHandler.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<fx:Scripts>
<! [CDATA[
import mx.controls.Alert;

private function myEventHandler (event:MouseEvent) :void ({
// Do something with the MouseEvent object.
Alert.show("An event of type '" + event.type + "' occurred.");

}
11>
</fx:Script>
<s:Button id="bl" label="Click Me" click="myEventHandler (event)"/>
</s:Application>

It is best practice to include the event keyword when you define all inline event listeners and to specify the most
stringent Event object type in the resulting listener function (for example, specify MouseEvent instead of Event).

You can use the Event object to access a reference to the target object (the object that dispatched the event), the type
of event (for example, click), or other relevant properties, such as the row number and value in a list-based control.
You can also use the Event object to access methods and properties of the target component, or the component that
dispatched the event.

Last updated 9/25/2015

USING FLEX
Getting started

Although you will most often pass the entire Event object to an event listener, you can just pass individual properties,
as the following example shows:

<?xml version="1.0"?>
<!-- events/PropertyHandler.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">
<fx:Script>
<! [CDATA[
import mx.controls.Alert;

private function myEventHandler (s:String) :void ({
Alert.show ("Current Target: " + s);

}
11>
</fx:Scripts>
<s:Button id="bl" label="Click Me" click="myEventHandler (event.currentTarget.id)"/>
</s:Application>

Registering an event listener inline provides less flexibility than using the addEventListener () method to register
event listeners. The drawbacks are that you cannot set the usecapture or priority properties on the Event object
and that you cannot remove the listener once you add it.

Using the addEventListener() method

The addEventListener() method lets you register event listener functions with the specified control or object. The
following example adds the myclickListener () function to the bl instance of a Button control. When the user clicks
b1, Flex calls the myclickListener () method:

bl.addEventListener (MouseEvent.CLICK, myClickListener) ;
The addEventListener () method has the following signature:

componentInstance.addEventListener (
event type:String,
event listener:Function,
use_capture:Boolean,
priority:int,
weakRef:Boolean

)

The event_type argument is the kind of event that this component dispatches. This can be either the event type String
(for example, “click” or “mouseOut”) or the event type static constant (such as MouseEvent . CLICK or
MouseEvent .MOUSE_ouT). This argument is required.

The constants provide an easy way to refer to specific event types. You should use these constants instead of the strings
that they represent. If you misspell a constant name in your code, the compiler catches the mistake. If you instead use
strings and make a typographical error, it can be harder to debug and could lead to unexpected behavior.

You should use the constants wherever possible. For example, when you are testing to see whether an Event object is
of a certain type, use the following code:

if (myEventObject.type == MouseEvent.CLICK) {/* your code here */}
Do not use the following code:

if (myEventObject.type == "click") {/* your code here */}

Last updated 9/25/2015

USING FLEX 65
Getting started

The event_listener argument is the function that handles the event. This argument is required.

The use_capture parameter of the addEventListener () method lets you control the phase in the event flow in
which your listener will be active. It sets the value of the usecapture property of the Event object. If usecapture is
set to true, your listener is active during the capturing phase of the event flow. If usecapture is set to false, your
listener is active during the targeting and bubbling phases of the event flow, but not during the capturing phase. The
default value is determined by the type of event, but is false in most cases.

To listen for an event during all phases of the event flow, you must call addEventListener () twice, once with the
useCapture parameter set to true, and again with use_capture set to false. This argument is optional. For more
information, see “Capturing phase” on page 82.

The priority parameter sets the priority for that event listener. The higher the number, the sooner that event handler

executes relative to other event listeners for the same event. Event listeners with the same priority are executed in the
order that they were added. This parameter sets the priority property of the Event object. The default value is 0, but
you can set it to negative or positive integer values. If several event listeners are added without priorities, the earlier a
listener is added, the sooner it is executed. For more information on setting priorities, see “Event priorities” on page 88.

The weakRef parameter provides you with some control over memory resources for listeners. A strong reference (when
weakRef is false) prevents the listener from being garbage collected. A weak reference (when weakRef is true) does
not. The default value is false.

When you add a listener function and that function is invoked, Flex implicitly creates an Event object for you and
passes it to the listener function. You must declare the Event object in the signature of your listener function.

If you add an event listener by using the addEventListener () method, you are required to declare an event object as
a parameter of the 1istener function, as the following example shows:

bl.addEventListener (MouseEvent .CLICK, performAction) ;
In the listener function, you declare the Event object as a parameter, as follows:

public function performAction (e:MouseEvent) :void {

}

The following example defines a new handler function myclickListener (). It then registers the click event of the
Button control with that handler. When the user clicks the button, Flex calls the myclickHandler () function.

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- events/AddEventListenerExample.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
initialize="createListener() ">
<fx:Script>
<! [CDATA[
import mx.controls.Alert;
private function createListener () :void ({
bl.addEventListener (MouseEvent.CLICK, myClickHandler, false, 0);
1
private function myClickHandler (e:MouseEvent) :void
Alert.show ("The button was clicked.");

11>
</fx:Scripts>
<s:Button label="Click Me" id="bl"/>
</s:Application>

Using addEventListener() inside an MXML tag

You can add event listeners with the addEventListener () method inline with the component definition. The
following Button control definition adds the call to the addEventListener () method inline with the Button control’s
initialize property:

<?xml version="1.0"?>
<!-- events/CallingAddEventListenerInline.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<fx:Script>
<! [CDATA[
import mx.controls.Alert;
private function myClickHandler (event:Event) :void
Alert.show ("The button was clicked.");

11>
</fx:Script>
<s:Button id='bl'

label="Click Me"

initialize='bl.addEventListener (MouseEvent .CLICK, myClickHandler, false, 1);'
/>
</s:Application>

This is the equivalent of defining the event handler inline. However, defining a handler by using the
addEventListener () method rather than setting click="handler function" lets you set the value of the
useCapture and priority properties of the Event object. Furthermore, you cannot remove a handler added inline,

but when you use the addEventListener () method to add a handler, you can call the removeEventListener ()
method to remove that handler.

Using nested inner functions as event listeners

Rather than passing the name of an event listener function to the addEventListener () method, you can define an
inner function (also known as a closure).

Last updated 9/25/2015

66

USING FLEX
Getting started

In the following example, the nested inner function is called when the button is clicked:

<?xml version="1.0"?>
<!-- events/AddingInnerFunctionListener.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="initApp () ">
<fx:Script>
<! [CDATA[
import mx.controls.Alert;
private function initApp () :void ({
bl.addEventListener ("click",
function (e:Event) :void
Alert.show ("The button was clicked.");

)
1
11>
</fx:Script>
<s:Button id='bl' label="Click Me"/>
</s:Application>

Function closures are created any time a function is executed apart from an object or a class. They retain the scope in
which they were defined. This creates interesting results when a function is passed as an argument or a return value
into a different scope.

For example, the following code creates two functions: foo (), which returns a nested function named rectarea ()
that calculates the area of a rectangle, and bar (), which calls foo () and stores the returned function closure in a
variable named myProduct. Even though the bar () function defines its own local variable x (with a value of 2), when
the function closure myProduct () is called, it retains the variable x (with a value of 40) defined in function foo (). The
bar () function therefore returns the product of the numbers in the TextInput controls, rather than 8.

<?xml version="1.0"?>
<!l-- events/FunctionReturnsFunction.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="foo () ">
<s:layout>
<s:VerticalLayout/>
</s:layout>
<fx:Scripts>
<! [CDATA [
[Bindable]
private var answer:String;
private function foo() :Function ({
var X:int = int(til.text);
function rectArea(y:int):int { // function closure defined
return x * y;

}

return rectArea;

}

private function bar () :void {

Last updated 9/25/2015

USING FLEX 68
Getting started

var x:int = 2; // ignored

var y:int = 4; // ignored

var myProduct:Function = foo() ;

answer = myProduct (int (ti2.text)); // function closure called

11>
</fx:Scripts>
<s:Form width="107">
<s:FormItem label="X">
<s:TextInput id="til" text="10" width="37" textAlign="right "/
</s:FormItem>
<s:FormItem label="Y" width="71">
<s:TextInput id="ti2" text="20" width="38" textAlign="right"/>
</s:FormItem>
<s:Label id="labell" text="{answer}" width="71" textAlign="right"/>
</s:Form>
<s:Button id='bl' label="Compute Product" click="bar()"/>

</s:Application>

If the listener that you pass to addEventListener () method is a nested inner function, you should not pass true for
the useWeakReference argument. For example:

addEventListener ("anyEvent",
function(e:Event) { /* My listener function. */ },
false, 0, true);

In this example, passing t rue as the last argument can lead to unexpected results. To Flex, an inner function is actually
an object, and can be freed by the garbage collector. If you set the value of the useWeakReference argument to true,
as shown in the previous example, there are no persistent references at all to the inner function. The next time the
garbage collector runs, it might free the function, and the function will not be called when the event is triggered.

If there are other references to the inner function (for example, if you saved it in another variable), the garbage collector
will not free it.

Regular class-level member functions are not subject to garbage collection; as a result, you can set the value of the
useWeakReference argument to true and they will not be garbage collected.

Removing event handlers

Itis a good idea to remove any handlers that will no longer be used. This removes references to objects so that they can
be targeted for garbage collection. You can use the removeEventListener () method to remove an event handler that
you no longer need. All components that can call addEventListener () can also call the removeEventListener ()
method. The syntax for the removeEventListener () method is as follows:

componentInstance.removeEventListener (event type:String, listener function:Function,
use_capture:Boolean)

For example, consider the following code:
myButton.removeEventListener (MouseEvent .CLICK, myClickHandler) ;

The event_type and listener_function parameters are required. These are the same as the required parameters for the
addEventListener () method.

Last updated 9/25/2015

USING FLEX 69
Getting started

The use_capture parameter is also identical to the parameter used in the addEventListener () method. Recall that
you can listen for events during all event phases by calling addEventListener () twice: once with use_capture set to
true, and again with it set to £alse. To remove both event listeners, you must call removeEventListener () twice:
once with use_capture set to true, and again with it set to false.

You can remove only event listeners that you added with the addEventListener () method in an ActionScript block.
You cannot remove an event listener that was defined in the MXML tag, even if it was registered using a call to the
addEventListener () method that was made inside a tag attribute.

The following sample application shows what type of handler can be removed and what type cannot:

<?xml version="1.0"?>
<!-- events/RemoveEventListenerExample.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
initialize="createHandler (event) ">
<s:layout>
<s:Verticallayout/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.controls.Alert;
private function createHandler (e:Event) :void
bl.addEventListener (MouseEvent .CLICK, myClickHandler) ;
}
private function removeMyHandlers (e:Event) :void {
/* Remove listener for bl's click event because it was added
with the addEventListener () method. */
bl.removeEventListener (MouseEvent .CLICK, myClickHandler) ;
/* Does NOT remove the listener for b2's click event because it
was added inline in an MXML tag. */
b2.removeEventListener (MouseEvent .CLICK, myClickHandler) ;
1
private function myClickHandler (e:Event) :void {
Alert.show("The button was clicked.");
1
11>
</fx:Scripts>
<s:Button id="bl" label="Click Me"/>
<s:Button label="Click Me Too" id="b2" click="myClickHandler (event)"/>
<s:Button label="Remove Event Listeners" id="b3" click="removeMyHandlers (event)"/>
</s:Application>

Creating event handler classes

You can create an external class file and use the methods of this class as event handlers. Objects themselves cannot be
event handlers, but methods of an object can be. By defining one class that handles all your event handlers, you can
use the same event handling logic across applications, which can make your MXML applications more readable and
maintainable.

To create a class that handles events, you usually import the flash.events.Event class. You also usually write an empty
constructor. The following ActionScript class file calls the Alert control’s show () method whenever it handles an event
with the handleallEvents () method:

Last updated 9/25/2015

USING FLEX 70
Getting started

// events/MyEventHandler.as
package { // Empty package.
import flash.events.Event;
import mx.controls.Alert;
public class MyEventHandler ({
public function MyEventHandler () ({
// Empty constructor.
}
public function handleAllEvents (event:Event) :void
Alert.show ("Some event happened.") ;

}

In your MXML file, you declare a new instance of MyEventHandler and use the addEventListener () method to

register its handleAllEvents () method as a handler to the Button control’s c1ick event, as the following example
shows:

<?xml version="1.0"?>
<!-- events/CustomHandler.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
initialize="createHandler () ">
<fx:Script>
<! [CDATA[
private var myListener:MyEventHandler = new MyEventHandler () ;
private function createHandler () :void {
bl.addEventListener (MouseEvent .CLICK, myListener.handleAllEvents) ;

11>
</fx:Scripts>
<s:Button label="Submit" id="bl"/>
</s:Application>

The best approach is to define the event handler’s method as static. When you make the event handler method static,
you are not required to instantiate the class inside your MXML application. The following createHandler () function
registers the handleallEvents () method as an event handler without instantiating the MyStaticEventHandler class:

<?xml version="1.0"?>
<!-- events/CustomHandlerStatic.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
initialize="createHandler () ">
<fx:Script>
<! [CDATA[
private function createHandler () :void {

bl.addEventListener (MouseEvent.CLICK, MyStaticEventHandler.handleAllEvents) ;

11>
</fx:Script>
<s:Button label="Submit" id="bl"/>
</s:Application>

In the class file, you just add the static keyword to the method signature:

Last updated 9/25/2015

USING FLEX 71
Getting started

// events/MyStaticEventHandler.as
package { // Empty package.
import flash.events.Event;
import mx.controls.Alert;
public class MyStaticEventHandler ({
public function MyStaticEventHandler () {
// Empty constructor.
1
public static function handleAllEvents (event:Event) :void
Alert.show ("Some event happened.") ;

}

Store your event listener class in a directory in your source path. You can also store your ActionScript class in the same
directory as your MXML file, although Adobe does not recommend this.

Defining multiple listeners for a single event

You can define multiple event handler functions for a single event in two ways. When defining events inside MXML
tags, you separate each new handler function with a semicolon. The following example adds the submitForm() and
debugMessage () functions as handlers of the click event:

<?xml version="1.0"?>
<!-- events/MultipleEventHandlersInline.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:layout>
<s:VerticalLayout/>
</s:layout>
<fx:Script><! [CDATA [
[Bindable]
private var s:String = "";

private function submitForm(e:Event) :void {
// Handle event here.
s += "The submitForm() method was called. ";
1
private function debugMessage (e:Event) :void
// Handle event here.
s += "The debugMessage () method was called. ";

}

1]1></fx:Script>
<s:Button id="bl"
label="Do Both Actions"
click="'submitForm(event); debugMessage (event) ;'
/>
<s:Label id="11" text="{s}"/>

<s:Button id="b2" label="Reset" click="s='"';"/>

</s:Application>

Last updated 9/25/2015

USING FLEX
Getting started

For events added with the addEventListener () method, you can add any number of handlers with additional calls
to the addEventListener () method. Each call adds a handler function that you want to register to the specified
object. The following example registers the submitForm () and debugMessage () handler functions with b1’s click
event:

<?xml version="1.0"?>
<!-- events/MultipleEventHandlersAS.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="createHandlers (event) ">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script><! [CDATA [
[Bindable]
private var s:String = "";
public function createHandlers (e:Event) :void {
bl.addEventListener (MouseEvent.CLICK, submitForm) ;
bl.addEventListener (MouseEvent.CLICK, debugMessage) ;
1
private function submitForm(e:Event) :void ({
// Handle event here.
s += "The submitForm() method was called. ";

}
private function debugMessage (e:Event) :void
// Handle event here.
s += "The debugMessage () method was called. ";

}

11></fx:Script>
<s:Button id="bl" label="Do Both Actions"/>
<s:Label id="11" text="{s}"/>

<s:Button id="b2" label="Reset" click="s='';"/>
</s:Application>

You can mix the methods of adding event handlers to any component; alternatively, you can add handlers inline and
with the addEventListener () method. The following example adds a c1ick event handler inline for the Button
control, which calls the performaction () method. It then conditionally adds a second c1ick handler to call the
logAction () method, depending on the state of the CheckBox control.

Last updated 9/25/2015

72

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- events/ConditionalHandlers.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
initialize="initApp (event) ">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.controls.Alert;
private function initApp (e:Event) :void {
cbl.addEventListener (MouseEvent .CLICK, handleCheckBoxChange) ;
bl.addEventListener (MouseEvent .CLICK, logAction) ;
1
private function handleCheckBoxChange (e:Event) :void {
if (cbl.selected) {
bl.addEventListener (MouseEvent.CLICK, logAction) ;
tal.text += "Added log listener." + "\n";
} else {
bl.removeEventListener (MouseEvent.CLICK, logAction);
tal.text += "Removed log listener." + "\n";

}

private function performAction (e:Event) :void {
Alert.show("You performed the action.");

}

private function logAction (e:Event) :void ({
tal.text += "Action performed: " + e.type + ".\n";

11>
</fx:Script>
<s:Button label="Perform Action" id="bl" click="performAction (event)"/>
<s:CheckBox id="cbl" label="Log?" selected="true"/>
<s:TextArea id="tal" height="200" width="300"/>
</s:Application>

You can set the order in which event listeners are called by using the priority parameter of the
addEventListener () method. You cannot set a priority for a listener function if you added the event listener using
MXML inline. For more information on setting priorities, see “Event priorities” on page 88.

Registering a single listener with multiple components

You can register the same listener function with any number of events of the same component, or events of different
components. The following example registers a single listener function, submitForm (), with two different buttons:

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- events/OneHandlerTwoComponentsInline.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.controls.Alert;
private function submitForm(e:Event):void {
// Handle event here.
Alert.show ("Current Target: " + e.currentTarget.id);
1
11>
</fx:Scripts>
<s:Button id="bl"
label="Click Me"
click="submitForm(event)"/>
<s:Button id="b2"
label="Click Me, Too"
click="submitForm(event)"/>

</s:Application>

When you use the addEventListener () method to register a single listener to handle the events of multiple

components, you must use a separate call to the addEventListener () method for each instance, as the following
example shows:

<?xml version="1.0"?>
<!-- events/OneHandlerTwoComponentsAS.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="createHandlers (event) ">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Scripts>
<! [CDATA[
import mx.controls.Alert;
public function createHandlers (e:Event) :void {
bl.addEventListener (MouseEvent.CLICK, submitForm) ;
b2.addEventListener (MouseEvent .CLICK, submitForm) ;
}
private function submitForm(e:Event):void {
// Handle event here.
Alert.show("Current Target: " + e.currentTarget.id);
1
11>
</fx:Script>
<s:Button id="bl" label="Click Me"/>
<s:Button id="b2" label="Click Me, Too"/>
</s:Application>

Last updated 9/25/2015

USING FLEX 75
Getting started

When doing this, you should add logic to the event listener that processes the type of event. The event target (or object
that dispatched the event) is added to the Event object for you. No matter what triggered the event, you can
conditionalize the event processing based on the target or type properties of the Event object. Flex adds these two
properties to all Event objects.

The following example registers a single listener function (myEventHandler ()) to the click event of a Button control
and the click event of a CheckBox control. To detect what type of object called the event listener, the listener checks
the className property of the target in the Event object in a case statement.

<?xml version="1.0"7?>
<!-- events/ConditionalTargetHandler.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark"
creationComplete="initApp () ">
<s:layout>
<s:VerticalLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.controls.Alert;

public function initApp () :void
buttonl.addEventListener (MouseEvent .CLICK, myEventHandler) ;
cbl.addEventListener (MouseEvent .CLICK, myEventHandler) ;
1
public function myEventHandler (event:Event) :void ({
switch (event.currentTarget.className)
case "Button":
// Process Button click.
Alert.show ("You clicked the Button control.");
break;
case "CheckBox":
// Process CheckBox click.
Alert.show("You clicked the CheckBox control.");
break;

1
11>
</fx:Script>
<s:Button label="Click Me" id="buttonl"/>
<s:CheckBox label="Select Me" id="cbl"/>
</s:Application>

Passing additional parameters to listener functions

You can pass additional parameters to listener functions depending on how you add the listeners. If you add a listener
with the addEventListener () method, you cannot pass any additional parameters to the listener function by
arbitrarily adding new parameters to the function signature. The default listener function can declare only a single
argument, the Event object (or one of its subclasses).

For example, the following code throws an error because the clickListener () method expects two arguments:

Last updated 9/25/2015

USING FLEX 76
Getting started

<fx:Script>
public function addListeners () :void ({
bl.addEventListener (MouseEvent .CLICK,clickListener) ;
}
public function clickListener (e:MouseEvent, a:String):void { ... }
</fx:Scripts>
<mx:Button id="bl"/>

Because the second parameter of the addEventListener () method is a function, you can define that function and

pass the event object plus any additional parameters through to a different handler. The following example creates a
new function in the addEventListener () method, add two parameters to the new handler’s call, and then handles
all of the parameters in the myClickListener () method.

<?xml version="1.0" encoding="utf-8"?>
<!-- events/CustomListenerFunction.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="initApp (event) ">
<s:layout>
<s:VerticalLayout/>
</s:layout>
<fx:Script>
<! [CDATA [
private var specialParaml:String;
private var specialParam2:String = "42";
private function initApp (e:Event) :void {
assignSpecialParam(e) ;

/* Change the value of specialParam whenever the user changes it
in the TextInput and clicks the button. */
til.addEventListener ("focusOut", assignSpecialParam) ;

/* Define the pass-through method in the addEventListener () method call.
You can add any number of parameters, as long as teh target method's
signature agrees. */

myButton.addEventListener (MouseEvent .CLICK, function (e:MouseEvent) :void {

myClickListener (e, specialParaml, specialParam2) ;

private function assignSpecialParam(e:Event) :void
specialParaml = til.text;

/* This method acts as the event listener, and it has any
number of parameters that we defined in the addEventListener() call. */
private function myClickListener (e:MouseEvent, sl:String, s2:String) : void {
myButton.label = s1 + " " + s2;

11>
</fx:Script>
<s:Button id="myButton" label="Click Me"/>
<s:TextInput id="til" text="Enter a custom String here." width="250"/>
</s:Application>

Last updated 9/25/2015

USING FLEX 77
Getting started

Another approach to passing additional parameters to the listener function is to define them in the listener function
and then call the final method with those parameters. If you define an event listener inline (inside the MXML tag), you
can add any number of parameters as long as the listener function’s signature agrees with that number of parameters.

The following example passes a string and the Event object to the runMove () method:

<?xml version="1.0"?>

<!-- events/MultipleHandlerParametersInline.mxml -->

<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">

<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
public function runMove (dir:String, e:Event):void
if (dir == "up") {
moveableButton.y = moveableButton.y - 5;
} else if (dir == "down") {
moveableButton.y = moveableButton.y + 5;
} else if (dir == "left") {
moveableButton.x = moveableButton.x - 5;
} else if (dir == "right") {
moveableButton.x = moveableButton.x + 5;

1
11>
</fx:Script>
<mx:Canvas height="100%" width="100%">
<s:Button id="moveableButton"
label="{moveableButton.x.toString() }, {moveableButton.y.toString() }"

x="75"
y="100"
width="80"

/>
</mx:Canvas>
<s:VGroup horizontalAlign="center"s>

Last updated 9/25/2015

USING FLEX
Getting started

<s:Button id="bl"

label="Up"
click="'runMove ("up",event) ;'
width="75"/>
<s:HGroup horizontalAlign="center"s>

<mx:Button id="b2"

label="Left"

click='runMove ("left",event) ;'

width="75"/>

<s:Button id="b3"

label="Right"

click="'runMove ("right",event) ;'

width="75"/>
</s:HGroup>

<s:Button id="b4"
label="Down"
click="'runMove ("down", event) ;'
width="75"/>
</s:VGroup>
</s:Application>

Manually dispatching events

You can manually dispatch events using a component instance’s dispatchEvent() method. All components that extend
UIComponent have this method. The method is inherited from the EventDispatcher class, which UIComponent
extends.

The syntax for the dispatchEvent () method is as follows:
objectInstance.dispatchEvent (event:Event) :Boolean

When dispatching an event, you must create a new Event object. The syntax for the Event object constructor is as
follows:

Event (event_type:String, bubbles:Boolean, cancelable:Boolean)

The event_type parameter is the type property of the Event object. The bubbles and cancelable parameters are optional
and both default to false. For information on bubbling and capturing, see “Event propagation” on page 81.

You can use the dispatchEvent () method to dispatch any event you want, not just a custom event. You can dispatch
a Button control’s click event, even though the user did not click a Button control, as in the following example:

Last updated 9/25/2015

78

USING FLEX
Getting started

<?xml version="1.0"?>

<!-- events/DispatchEventExample.mxml -->

<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
initialize="createListener (event) ;">

<fx:Script><! [CDATA [
import mx.controls.Alert;
private function createlListener (e:Event) :void {
bl.addEventListener (MouseEvent .MOUSE_OVER, myEventHandler) ;
bl.addEventListener (MouseEvent.CLICK, myClickHandler) ;
}
private function myEventHandler (e:Event) :void {
var result:Boolean = bl.dispatchEvent (new MouseEvent (MouseEvent .CLICK, true, false)) ;
}
private function myClickHandler (e:Event) :void {
Alert.show ("The event dispatched by the MOUSE_OVER was of type '" + e.type + "'.");
}
1]1></fx:Scripts>
<s:Button id="bl" label="Click Me"/>
</s:Application>

You can also manually dispatch an event in an MXML tag. In the following example, moving the mouse pointer over
the button triggers the button’s click event:

<?xml version="1.0"7?>
<!-- events/DispatchEventExampleInline.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
initialize="createListener (event) ;">
<fx:Script>
<! [CDATA[
import mx.controls.Alert;
private function createlListener (e:Event) :void {
bl.addEventListener (MouseEvent .CLICK, myClickHandler) ;
1
private function myClickHandler (e:Event) :void {
Alert.show ("The event dispatched by the MOUSE_OVER was of type '" + e.type + "'.");
1
11>
</fx:Script>
<s:Button id="bl"
label="Click Me"
mouseOver="bl.dispatchEvent (new MouseEvent (MouseEvent.CLICK, true, false));"
/>
</s:Application>

Your application is not required to handle the newly dispatched event. If you trigger an event that has no listeners, Flex
ignores the event.

Last updated 9/25/2015

79

USING FLEX
Getting started

You can set properties of the Event object in ActionScript, but you cannot add new properties because the object is not
dynamic. The following example intercepts a c1ick event. It then creates a new MouseEvent object and dispatches it
as a doubleClick event. In addition, it sets the value of the shiftKey property of the MouseEvent object to true, to
simulate a Shift-click on the keyboard.

<?xml version="1.0"?>

<!-- events/DispatchCustomizedEvent .mxml -->

<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="addListeners () ">

<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script><! [CDATA [
private function customLogEvent (e:MouseEvent) :void
1l.text = String(e.currentTarget.id) ;
12.text = String(e.type);
13.text = String(e.shiftKey) ;
// Remove current listener to avoid recursion.
e.currentTarget .removeEventListener ("doubleClick", customLogEvent) ;
1
private function handleEvent (e:MouseEvent) :void {
// Add new handler for custom event about to be dispatched.
e.currentTarget.addEventListener ("doubleClick", customLogEvent) ;
// Create new event object.
var mev:MouseEvent = new MouseEvent ("doubleClick") ;
// Customize event object.
mev.shiftKey = true;
// Dispatch custom event.
e.currentTarget.dispatchEvent (mev) ;
1
private function addListeners() :void
bl.addEventListener ("click", handleEvent) ;
b2.addEventListener ("click", handleEvent) ;
1
11></fx:Script>
<s:Button id="bl" label="Click Me (bl)"/>
<s:Button id="b2" label="Click Me (b2)"/>

<s:Form>
<s:FormItem label="Current Target:">
<s:Label id="11"/>
</s:FormItem>
<s:FormItem label="Event Type:">
<s:Label id="12"/>
</s:FormItem>
<s:FormItem label="Shift Key Pressed:">
<s:Label id="13"/>
</s:FormItem>
</s:Form>
</s:Application>

Last updated 9/25/2015

USING FLEX
Getting started

If you want to add custom properties to an Event object, you must extend the Event object and define the new
properties in your own custom class. You can then manually dispatch your custom events with the dispatchEvent ()
method, as you would any event.

If you create a custom ActionScript class that dispatches its own events but does not extend UIComponent, you can
extend the flash.events.EventDispatcher class to get access to the addEventListener (), removeEventListener (),
and dispatchEvent () methods.

To make your code more efficient, you can check to see if the intended target of a dispatched event is listening for the
event. If it is not, then there is no reason to dispatch the event. This is especially true if the event bubbles because that
means many calls will be made by the system while it searches for a target. You can check by using the
hasEventListner () and willTrigger () methods. Peter deHaan has a blog post on using these methods.

Event propagation

When events are triggered, there are three phases in which Flex checks whether there are event listeners. These phases
occur in the following order:

« Capturing
 Targeting
 Bubbling

During each of these phases, the nodes have a chance to react to the event. For example, assume the user clicks a Button
control that is inside a VBox container. During the capturing phase, Flex checks the Application object and the VBox
for listeners to handle the event. Flex then triggers the Button’s listeners in the target phase. In the bubbling phase, the
VBox and then the Application are again given a chance to handle the event but now in the reverse order from the
order in which they were checked in the capturing phase.

In ActionScript 3.0, you can register event listeners on a target node and on any node along the event flow. Not all
events, however, participate in all three phases of the event flow. Some types of events are dispatched directly to the
target node and participate in neither the capturing nor the bubbling phases. All events can be captured unless they
are dispatched from the top node.

Other events may target objects that are not on the display list, such as events dispatched to an instance of the Socket
class. These event objects flow directly to the target node, without participating in the capturing or bubbling phases.
You can also cancel an event as it flows through the event model so that even though it was supposed to continue to
the other phases, you stopped it from doing so. You can do this only if the cancelable property is set to true.

Capturing and bubbling happen as the Event object moves from node to node in the display list: parent-to-child for
capturing and child-to-parent for bubbling. This process has nothing to do with the inheritance hierarchy. Only
DisplayObject objects (visual objects such as containers and controls) can have a capturing phase and a bubbling phase
in addition to the targeting phase.

Mouse events and keyboard events are among those that bubble. Any event can be captured, but no DisplayObject
objects listen during the capturing phase unless you explicitly instruct them to do so. In other words, capturing is

disabled by default.

When a faceless event dispatcher, such as a Validator, dispatches an event, there is only a targeting phase, because there
is no visual display list for the Event object to capture or bubble through.

About the target and currentTarget properties

Every Event objecthas a target and a currentTarget property that help you to keep track of where it is in the process
of propagation. The target property refers to the dispatcher of the event. The currentTarget property refers to the
current node that is being examined for event listeners.

Last updated 9/25/2015

81

http://blog.flexexamples.com/2008/08/20/determining-if-an-item-is-listening-for-a-specific-event/

USING FLEX 82
Getting started

When you handle a mouse event such as MouseEvent . CLICK by writing a listener on some component, the
event .target property does not necessarily refer to that component; it is often a subcomponent, such as the Button
control’s UlTextField, that defines the label.

When Flash Player or Adobe® AIR™ dispatches an event, it dispatches the event from the frontmost object under the
mouse. Because children are in front of parents, that means the player or AIR might dispatch the event from an internal
subcomponent, such as the UITextField of a Button.

The event. target property is set to the object that dispatched the event (in this case, UITextField), not the object
that is being listened to (in most cases, you have a Button control listen for a c1ick event).

MouseEvent events bubble up the parent chain, and can be handled on any ancestor. As the event bubbles, the value
of the event . target property stays the same (UITextField), but the value of the event . currentTarget property is
set at each level to be the ancestor that is handling the event. Eventually, the currentTarget will be Button, at which
time the Button control’s event listener will handle the event. For this reason, you should use the

event .currentTarget property rather than the event . target property; for example:

<mx:Button label="OK" click="trace (event.currentTarget.label)"/>

In this case, in the Button event’s click event listener, the event . current Target property always refers to the Button,
while event . target might be either the Button or its UITextField, depending on where on the Button control the
user clicked.

Capturing phase

In the capturing phase, Flex examines an event target’s ancestors in the display list to see which ones are registered as
a listener for the event. Flex starts with the root ancestor and continues down the display list to the direct ancestor of
the target. In most cases, the root ancestors are the Stage, then the SystemManager, and then the Application object.

For example, if you have an application with a Panel container that contains a TitleWindow container, which in turn
contains a Button control, the structure appears as follows:

Application
Panel
TitleWindow
Button

If your listener is on the c1ick event of the Button control, the following steps occur during the capturing phase if
capturing is enabled:

1 Check the Application container for click event listeners.
2 Check the Panel container for click event listeners.
3 Check the TitleWindow container for click event listeners.

During the capturing phase, Flex changes the value of the currentTarget property on the Event object to match the
current node whose listener is being called. The target property continues to refer to the dispatcher of the event.

By default, no container listens during the capturing phase. The default value of the use_capture argument is false.
The only way to add a listener during this phase is to pass true for the use_capture argument when calling the
addEventListener () method, as the following example shows:

myPanel .addEventListener (MouseEvent .MOUSE_DOWN, clickHandler, true);

If you add an event listener inline with MXML, Flex sets this argument to false; you cannot override it.

Last updated 9/25/2015

USING FLEX 83
Getting started

If you set the use_capture argument to t rue—in other words, if an event is propagated through the capturing phase—
the event can still bubble, but capture phase listeners will not react to it. If you want your event to traverse both the
capturing and bubbling phases, you must call addEventListener () twice: once with use_capture set to true, and
then again with use_capture set to false.

The capturing phase is very rarely used, and it can also be computationally intensive. By contrast, bubbling is much
more common.

Targeting phase

In the targeting phase, Flex invokes the event dispatcher’s listeners. No other nodes on the display list are examined
for event listeners. The values of the currentTarget and the target properties on the Event object during the
targeting phase are the same.

Bubbling phase

In the bubbling phase, Flex examines an event’s ancestors for event listeners. Flex starts with the dispatcher’s
immediate ancestor and continues up the display list to the root ancestor. This is the reverse of the capturing phase.

For example, if you have an application with a Panel container that contains a TitleWindow container that contains a
Button control, the structure appears as follows:

Application
Panel
TitleWindow
Button

If your listener is on the c1ick event of the Button control, the following steps occur during the bubble phase if
bubbling is enabled:

1 Check the TitleWindow container for click event listeners.
2 Check the Panel container for click event listeners.
3 Check the Application container for click event listeners.

An event only bubbles if its bubbles property is set to t rue. Mouse events and keyboard events are among those that
bubble; it is less common for higher-level events that are dispatched by Flex to bubble. Events that can be bubbled
include change, click, doubleClick, keyDown, keyUp, mouseDown, and mouseUp. To determine whether an event
bubbles, see the event’s entry in the ActionScript 3.0 Reference for the Adobe Flash Platform.

During the bubbling phase, Flex changes the value of the currentTarget property on the Event object to match the
current node whose listener is being called. The target property continues to refer to the dispatcher of the event.

When Flex invokes an event listener, the Event object might have actually been dispatched by an object deeper in the
display list. The object that originally dispatched the event is the target. The object that the event is currently
bubbling through is the currentTarget. So, you should generally use the currentTarget property instead of the
target property when referring to the current object in your event listeners.

If you set the usecapture property to true—in other words, if an event is propagated through the capturing phase—
then it does not bubble, regardless of its default bubbling behavior. If you want your event to traverse both the
capturing and bubbling phases, you must call addEventListener () twice: once with useCapture set to true, and
then again with useCapture set to false.

An event only bubbles up the parent’s chain of ancestors in the display list. Siblings, such as two Button controls inside
the same container, do not intercept each other’s events.

Last updated 9/25/2015

http://www.adobe.com/go/learn_flex4_apiref_en

USING FLEX
Getting started

Detecting the event phase

You can determine what phase you are in by using the Event object’s event Phase property. This property contains an
integer that represents one of the following constants:

« 1 — Capturing phase (CAPTURING_PHASE)

« 2 — Targeting phase (AT_TARGET)

+ 3 — Bubbling phase (RUBBLING PHASE)

The following example displays the current phase and information about the current target:

<?xml version="1.0"?>
<!-- events/DisplayCurrentTargetInfo.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<fx:Script><! [CDATA [
import mx.controls.Alert;
private function showInfo (e:MouseEvent) :void {

Alert.show("Phase: " + e.eventPhase + "\n" +
"ID: " + e.currentTarget.id + "\n" +
"Label: " + e.currentTarget.label + "\n" +
"Font Size: " + e.currentTarget.getStyle("fontSize"), "Current Target Info");

}

11></fx:Script>
<s:Button id="bl" label="Click Me" click="showInfo(event)"/>
</s:Application>

Stopping propagation

During any phase, you can stop the traversal of the display list by calling one of the following methods on the Event
object:

« stopPropagation()

« stopImmediatePropagation()

You can call either the event’s stopPropagation () method or the stopImmediatePropagation () method to
prevent an Event object from continuing on its way through the event flow. The two methods are nearly identical and
differ only in whether the current node’s remaining event listeners are allowed to execute. The stopPropagation ()

method prevents the Event object from moving on to the next node, but only after any other event listeners on the
current node are allowed to execute.

The stopImmediatePropagation () method also prevents the Event objects from moving on to the next node, but it
does not allow any other event listeners on the current node to execute.

The following example creates a TitleWindow container inside a Panel container. Both containers are registered to
listen for a mouseDown event. As a result, if you click on the TitleWindow container, the showalert () method is called
twice unless you add a call to the stopImmediatePropagation () method, as the following example shows:

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- events/StoppingPropagation.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
initialize="init (event) ;">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.controls.Alert;
import flash.events.MouseEvent;
import flash.events.Event;
public function init (e:Event) :void
pl.addEventListener (MouseEvent .MOUSE DOWN, showAlert) ;
twl.addEventListener (MouseEvent .MOUSE_DOWN, showAlert) ;
twl.addEventListener (Event .CLOSE, closeWindow) ;
p2.addEventListener (MouseEvent .MOUSE DOWN, showAlertWithoutStoppingPropagation) ;
tw2.addEventListener (MouseEvent .MOUSE_DOWN, showAlertWithoutStoppingPropagation) ;
tw2.addEventListener (Event.CLOSE, closeWindow) ;
1
public function showAlert (e:Event) :void {
Alert.show("Alert!\n" + "Current Target: " + e.currentTarget + "\n" +
"Phase: " + e.eventPhase) ;
e.stopImmediatePropagation () ;
1
public function showAlertWithoutStoppingPropagation (e:Event) :void {
Alert.show("Alert!\n" + "Current Target: " + e.currentTarget + "\n" +
"Phase: " + e.eventPhase) ;
1
public function closeWindow (e:Event) :void
pl.removeChild (twl) ;
1
11>
</fx:Scripts>
<s:Panel id="pl" title="Stops Propagation">

Last updated 9/25/2015

85

USING FLEX
Getting started

<mx:TitleWindow id="twl"
width="300"
height="100"
showCloseButton="true"
title="Title Window 1">
<s:Button label="Click Me"/>
<s:TextArea id="tal"/>
</mx:TitleWindow>
</s:Panel>
<s:Panel id="p2" title="Does Not Stop Propagation"s>
<mx:TitleWindow id="tw2"
width="300"
height="100"
showCloseButton="true"
title="Title Window 2">
<s:Button label="Click Me"/>
<s:TextArea id="ta2"/>
</mx:TitleWindow>
</s:Panel>
</s:Application>

Note: A call to either the Event . stopPropogation () orthe Event.stopImmediatePropogation () methods does
not prevent default behavior from occurring.

Event examples

In the following example, the parent container’s click handler disables the target control after the target handles the

event. It shows that you can reuse the logic of a single listener (click the HGroup container) for multiple events (all the
clicks).

Last updated 9/25/2015

86

USING FLEX 87
Getting started

<?xml version="1.0"?>
<!-- events/NestedHandlers.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script><! [CDATA [
public function disableControl (event:MouseEvent) :void {
// Use this same logic for all events.
event.currentTarget.enabled = false;
1
public function doSomething (event:MouseEvent) :void
bl.label = "clicked";
tal.text += "Something happened.";
}
public function doSomethingElse (event:MouseEvent) :void {
b2.label = "clicked";
tal.text += "Something happened again.";
1
11></fx:Script>
<s:HGroup id="hbl" height="200" click="disableControl (event) ">
<s:Button id='bl' label="Click Me" click="doSomething(event)"/>
<s:Button id='b2' label="Click Me" click="doSomethingElse (event)"/>
<s:TextArea id="tal"/>
</s:HGroup>
<s:Button id="resetButton"
label="Reset"
click="hbl.enabled=true;bl.enabled=true;b2.enabled=true;bl.label="'Click
Me';b2.label='Click Me';"/>
</s:Application>

By having a single listener on a parent control instead of many listeners (one on each child control), you can reduce
your code size and make your applications more efficient. Reducing the number of calls to the addEventListener ()
method potentially reduces application startup time and memory usage.

The following example registers an event handler for the Panel container, rather than registering a listener for each
link. All children of the Panel container inherit this event handler. Since Flex invokes the handler on a bubbled event,
you use the target property rather than the currentTarget property. In this handler, the currentTarget property
would refer to the Panel control, whereas the target property refers to the LinkButton control, which has the label
that you want.

Last updated 9/25/2015

USING FLEX 88
Getting started

<?xml version="1.0"?>

<!-- events/SingleRegisterHandler.mxml -->

<s:Application xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="createLinkHandler () ;">
<s:layout>

<s:VerticallLayout/>

</s:layout>
<fx:Script>

<! [CDATA [
private function linkHandler (event:MouseEvent) :void {
try {

var url:URLRequest = new URLRequest ("http://finance.google.com/finance?g=" +
event.target.label) ;
navigateToURL (url) ;
} catch (e:Error) (
/**
* Do nothing; just want to catch the error that occurs when a user clicks on
* the Panel and not one of the LinkButtons.

**/

}

private function createLinkHandler () :void ({
pl.addEventListener (MouseEvent .CLICK, linkHandler) ;

}
11>
</fx:Script>

<s:Panel id="pl" title="Click on a stock ticker symbol"s>

<s:layout>
<s:HorizontalLayout/>

</s:layout>
<mx:LinkButton label="ADBE"/>
<mx:LinkButton label="GE"/>
<mx:LinkButton label="IBM"/>
<mx:LinkButton label="INTC"/>

</s:Panel>

</s:Application>

Event priorities

You can register any number of event listeners with a single event. Flex registers event listeners in the order in which
the addEventListener() methods are called. Flex then typically calls the listener functions when the event occurs in the
order in which they were registered. However, if you register some event listeners inline and some with the
addEventListener () method, the order in which the listeners are called for a single event can be unpredictable.

You can change the order in which Flex calls event listeners by using the priority parameter of the
addEventListener () method. It is the fourth argument of the addEventListener () method.

Flex calls event listeners in priority order, from highest to lowest. The highest priority event is called first. In the
following example, Flex calls the verifyInputData () method before the saveInputbata () function. The
verifyInputData () method has the highest priority. The last method to be called is returnResult () because the
value of its priority parameter is lowest.

Last updated 9/25/2015

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- events/ShowEventPriorities.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="initApp () ">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
private function returnResult (e:Event) :void {
tal.text += "returnResult () method called last (priority 1)\n";

}
private function verifyInputData (e:Event) :void ({
tal.text += "verifyInputData() method called first (priority 3)\n";

}

private function savelInputData (e:Event) :void {
tal.text += "saveInputData () method called second (priority 2)\n";

1

private function initApp () :void {
bl.addEventListener (MouseEvent .CLICK, returnResult, false, 1);
bl.addEventListener (MouseEvent.CLICK, savelInputData, false, 2);
bl.addEventListener (MouseEvent.CLICK, verifyInputData, false, 3);

1
11>
</fx:Script>
<s:Button id="bl" label="Click Me"/>

<s:TextArea id="tal" height="200" width="300"/>

</s:Application>

You can set the event priority to any valid integer, positive or negative. The default value is 0. If multiple listeners have
the same priority, Flex typically calls them in the order in which they were registered, although the order is not
guaranteed.

If you want to change the priority of an event listener once the event listener has already been defined, you must
remove the listener by calling the removeEventListener () method. You add the event again with the new priority.

The priority parameter of the addEventListener () method is not an official part of the DOM Level 3 events model.
ActionScript 3.0 provides it so that programmers can be more flexible when organizing their event listeners.

If your listeners rely on a specific order of execution, you can call one listener function from within another, or
dispatch a new event from within the first event listener. For more information on manually dispatching events, see
“Manually dispatching events” on page 78.

Using event subclasses

Depending on the event type, the Event object can have a wide range of properties. These properties are based on those
defined in the W3C specification http://www.w3.0org/TR/DOM-Level-3-Events/), but Flex does not implement all of
these.

When you declare an Event object in a listener function, you can declare it of type Event, or you can specify a subclass
of the Event object. In the following example, you specify the event object as type MouseEvent:

Last updated 9/25/2015

89

http://www.w3.org/TR/DOM-Level-3-Events/

USING FLEX 20
Getting started

public function performAction (e:MouseEvent) :void {

}

Most controls generate an object that is of a specific event type; for example, a mouse click generates an object of type
MouseEvent. By specifying a more specific event type, you can access specific properties without having to cast the
Event object to something else. In addition, some subclasses of the Event object have methods that are unique to them.
For example, the LogEvent has a get Levelstring () method, which returns the log level as a String. The generic
Event object does not have this method.

An event object that you define at run time can be a subclass of the compile-time type. You can access the event-specific
properties inside an event listener even if you did not declare the specific event type, as long as you cast the Event object
to a specific type. In the following example, the function defines the object type as Event. However, inside the function,
in order to access the 1ocalx and localy properties, which are specific to the MouseEvent class, you must cast the
Event object to be of type MouseEvent.

<?xml version="1.0"7?>
<!-- events/AccessEventSpecificProperties.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
initialize="addListeners() ">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.controls.Alert;
private function customLogEvent (e:Event) :void {
var a:MouseEvent = MouseEvent (e) ;
Alert.show ("Y: " + a.localY + "\n" + "X: " 4+ a.localX);
1
private function addListeners() :void
bl.addEventListener (MouseEvent .CLICK, customLogEvent) ;

11>
</fx:Scripts>
<s:Button id="bl" label="Click Me"/>
</s:Application>

If you declare the Event object as a specific type, you are not required to cast that object in the handler, as the following
example shows:

private function customLogEvent (e:MouseEvent) :void { ... }

In the previous example, you can also cast the Event object for only the property access, using the syntax shown in the
following example:

Last updated 9/25/2015

USING FLEX 91
Getting started

<?xml version="1.0"?>
<!-- events/SinglePropertyAccess.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark"
initialize="addListeners()">
<fx:Script>
<! [CDATA[
import mx.controls.Alert;
private function customLogEvent (e:Event) :void {
Alert.show("Y: " + MouseEvent (e).localY + "\n" + "X: " + MouseEvent (e).localX) ;

}

private function addListeners() :void {
bl.addEventListener (MouseEvent.CLICK, customLogEvent) ;

1
11>
</fx:Scripts>

<s:Button id="bl" label="Click Me"/>
</s:Application>

This approach can use less memory and system resources, but it is best to declare the event’s type as specifically as
possible.

Each of the Event object’s subclasses provides additional properties and event types that are unique to that category of
events. The MouseEvent class defines several event types related to that input device, including the cLICK,
DOUBLE_CLICK, MOUSE_DOWN, and MOUSE_UP event types.

For a list of types for each Event subclass, see the subclass’s entry in ActionScript 3.0 Reference for the Adobe Flash
Platform.

About keyboard events

It is common for applications to respond to a key or series of keys and perform some action—for example, Control+q
to quit the application. While Flash Player supports all the basic functionality of key combinations from the underlying
operating system, it also lets you override or trap any key or combination of keys to perform a custom action.

Handling keyboard events

In some cases, you want to trap keys globally, meaning no matter where the user is in the application, their keystrokes
are recognized by the application and the action is performed. Flex recognizes global keyboard events whether the user
is hovering over a button or the focus is inside a TextInput control.

A common way to handle global key presses is to create a listener for the KeyboardEvent . KEY DOWN or
KeyboardEvent . KEY_UP event on the application. Listeners on the application container are triggered every time a
key is pressed, regardless of where the focus is (as long as the focus is in the application on not in the browser controls
or outside of the browser). Inside the handler, you can examine the key code or the character code using the charcode
and keyCode properties of the KeyboardEvent class, as the following example shows:

Last updated 9/25/2015

http://www.adobe.com/go/learn_flex4_apiref_en
http://www.adobe.com/go/learn_flex4_apiref_en

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- events/TrapAllKeys.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark"
creationComplete="initApp () ;">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.core.FlexGlobals;

private function initApp () :void {
FlexGlobals.topLevelApplication.addEventListener (KeyboardEvent .KEY UP, keyHandler) ;

}

private function keyHandler (event:KeyboardEvent) :void {
tl.text = event.keyCode + "/" + event.charCode;

}
11>
</fx:Script>
<s:TextInput id="myTextInput"/>

<s:Label id="t1"/>
</s:Application>

To run this example, you must first set the focus to something inside the application, such as the TextInput control,
by clicking on it.

Because any class that extends UIComponent dispatches the keyUp and keyDown events, you can also trap keys pressed
when the focus is on an individual component.

Understanding the keyCode and charCode properties

You can access the keyCode and charCode properties to determine what key was pressed and trigger other actions as
aresult. The keyCode property is a numeric value that corresponds to the value of a key on the keyboard. The
charCode property is the numeric value of that key in the current character set (the default character set is UTF-8,
which supports ASCII). The primary difference between the key code and character values is that a key code value
represents a particular key on the keyboard (the 1 on a keypad is different than the 1 in the top row, but the 1 on the
keyboard and the key that generates the ! are the same key), and the character value represents a particular character
(the R and r characters are different).

The mappings between keys and key codes are device and operating system dependent. ASCII values, on the other
hand, are available in the ActionScript documentation.

The following example shows the character and key code values for the keys you press. When you run this example,
you must be sure to put the focus in the application before beginning.

Last updated 9/25/2015

92

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- charts/ShowCharAndKeyCodes.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="init ()"
width="650">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script><! [CDATA [
import flash.events.KeyboardEvent;
private function init () :void {
til.setFocus() ;

this.addEventListener (KeyboardEvent .KEY DOWN, trapKeys) ;

private function trapKeys (e:KeyboardEvent) :void {
tal.text = String(e.toString()) ;

11l.text = numToChar (e.charCode) + " (" + String(e.charCode) + ")";

12.text = numToChar (e.keyCode) + " (" + String(e.keyCode) + ")";

private function numToChar (num:int) :String
if (num > 47 && num < 58) {
var strNums:String = "0123456789";
return strNums.charAt (num - 48);
} else if (num > 64 && num < 91)

7

var strCaps:String = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

return strCaps.charAt (num - 65);
} else if (num > 96 && num < 123) {

var strLow:String = "abcdefghijklmnopgrstuvwxyz";

return strLow.charAt (num - 97);
} else {
return num.toString() ;

}
1]1></fx:Script>
<s:TextInput width="50%" id="til"/>

<s:Panel id="mainPanel" width="100%" height="100%">
<s:Form>
<s:FormItem label="Char (Code)">
<s:Label id="11"/>
</s:FormItem>
<s:FormItem label="Key (Code)">
<s:Label id="12"/>
</s:FormItem>
<s:FormItem label="Key Event"s
<s:TextArea id="tal" width="500" height="200"
</s:FormItem>
</s:Form>
</s:Panel>

</s:Application>

Last updated 9/25/2015

editable="false"/>

USING FLEX
Getting started

You can listen for specific keys or combinations of keys by using a conditional operator in the KeyboardEvent handler.
The following example listens for the combination of the Shift key plus the q key and prompts the user to close the
browser window if they press those keys at the same time:

<?xml version="1.0"?>
<!-- events/TrapQKey.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="initApp () ;">
<s:layout>
<s:VerticalLayout/>
</s:layout>
<fx:Script>
<! [CDATA [
import mx.core.FlexGlobals;

private function initApp () :void {
FlexGlobals.topLevelApplication.addEventListener (KeyboardEvent .KEY UP, keyHandler) ;

// Set the focus somewhere inside the application.
tal.setFocus () ;
}
//This function quits the application if the user presses Shift+Q.
private function keyHandler (event:KeyboardEvent) :void {
var bShiftPressed:Boolean = event.shiftKey;
if (bShiftPressed) ({
var curKeyCode:int = event.keyCode;
if (curKeyCode == 81) { // 81 is the keycode value for the Q key
/* Quit the application by closing the browser using JavaScript.
This may not work in all browsers. */
var url:URLRequest = new
URLRequest ("javascript:window.close () ") ;
navigateToURL (url," self");

1
11>
</fx:Script>
<s:TextArea id="tal" text="Focus here so that Shift+Q will quit the browser."/>
</s:Application>

Notice that this application must have focus when you run it in a browser so that the application can capture keyboard
events.

Understanding KeyboardEvent precedence

If you define keyUp or keyDown event listeners for both a control and its parent, you will notice that the keyboard event
is dispatched for each component because the event bubbles. The only difference is that the currentTarget property
of the KeyboardEvent object is changed.

In the following example, the application, the my vgroup container, and themy_textinput control all dispatch keyup
events to the keyHandler () event listener function:

Last updated 9/25/2015

94

USING FLEX
Getting started

<?xml version="1.0"?>
<!-- events/KeyboardEventPrecedence.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark"
creationComplete="initApp () ;"
width="650">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script><! [CDATA [
import mx.core.FlexGlobals;

private function initApp () :void {
FlexGlobals.topLevelApplication.addEventListener (KeyboardEvent .KEY UP, keyHandler) ;
my vgroup.addEventListener (KeyboardEvent .KEY UP, keyHandler) ;
my_ textinput.addEventListener (KeyboardEvent.KEY UP, keyHandler) ;
// Set the focus somewhere inside the application.
my_ textinput.setFocus() ;

1
private function keyHandler (event:KeyboardEvent) :void {
tal.text += event.target + " (" + event.currentTarget + "): " +
event .keyCode + "/" + event.charCode + "\n";

}

]1></fx:Script>

<s:VGroup id="my vgroup"s>
<s:TextInput id="my textinput"/>
</s:VGroup>
<s:TextArea id="tal" height="300" width="550"/>
</s:Application>

When you examine the output, you will notice that the target property of the KeyboardEvent object stays the same
because it refers to the original dispatcher of the event (in this case, my_textinput). But the currentTarget property
changes depending on what the current node is during the bubbling (in this case, it changes from my_textinput to
my_vgroup to the application itself).

The order of calls to the event listener is determined by the object hierarchy and not the order in which the
addEventListener () methods were called. Child controls dispatch events before their parents. In this example, for
each key pressed, the TextInput control dispatches the event first, the VGroup container next, and finally the
application.

When handling a key or key combination that the underlying operating system or browser recognizes, the operating
system or browser generally processes the event first. For example, in Microsoft Internet Explorer, pressing Control+w
closes the browser window. If you trap that combination in your application, Internet Explorer users never know it,
because the browser closes before the ActiveX Flash Player has a chance to react to the event.

Handling keyboard-related mouse events

The MouseEvent class and all MouseEvent subclasses (such as ChartItemEvent, DragEvent, and LegendMouseEvent)
have the following properties that you can use to determine if a specific key was held down when the event occurred:

Last updated 9/25/2015

95

USING FLEX
Getting started

Property Description

altKey Is set to true if the Alt key was held down when the user pressed the mouse button; otherwise, false.
ctrlKey Is set to true if the Control key was held down when the user pressed mouse button; otherwise, false.
shiftKey Is set to true if the Shift key was held down when the user pressed mouse button; otherwise, false.

The following example deletes Button controls, based on whether the user holds down the Shift key while pressing the
mouse button:

<?xml version="1.0"?>
<!-- events/DetectingShiftClicks.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="initApp () ;">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script><! [CDATA [
import spark.components.Button;
private function initApp () :void {
var bl:Button = new Button() ;

bl.label = "Button 1";
var b2:Button = new Button() ;
b2.label = "Button 2";

bl.addEventListener (MouseEvent.CLICK, removeButtons) ;
b2.addEventListener (MouseEvent.CLICK, removeButtons) ;
vgl.addElement (bl) ;
vgl.addElement (b2) ;
1
private function removeButtons (event:MouseEvent) :void {
if (event.shiftKey) ({
vgl.removeElement (Button (event.currentTarget)) ;
} else {
event.currentTarget.toolTip = "Shift+click to remove this button.";

}
11></fx:Script>
<s:VGroup id="vgl"/>

<s:Button id="resetButton" label="Reset" click="initApp();"/>
</s:Application>

SDK configuration

Use the configuration files included with Adobe® Flex” SDK to configure the compilers and other aspects of Flex.

Last updated 9/25/2015

96

USING FLEX 97
Getting started

About configuration files

Root variables
For Flex SDK, the flex_install_dir variable is the top-level directory where you installed the SDK. Under this directory

are the bin, frameworks, lib, and samples directories. The flex_app_root directory is the top level location for many
files.

Configuration files layout

The layout of the configuration files for Flex SDK is simple. It includes a jvm.config file, fdb command-line debugger
shell script, and the mxmlc and compc command-line compiler shell scripts for configuring the JVM that the compiler
uses. It also includes the flex-config.xml file that sets the compiler options, as well as executable files for fdb, mxmlc,
and compc.

The layout of the configuration files for Flex SDK is as follows:

sdk_install dir/
bin/jvm.config
bin/mxmlc
bin/mxmlc.exe
bin/compc
bin/compc.exe
bin/fdb
bin/fdb.exe
frameworks/flex-config.xml

Flex SDK configuration

Flex SDK includes the mxmlc and compc command-line compilers. You use mxmlc to compile applications from
MXML, ActionScript, and other source files. You use the compc compiler to compile component libraries, Runtime
Shared Libraries (RSLs), and theme files.

The compilers are located in the sdk_install_dir/bin directory. You can configure the compiler options with the flex-
config.xml file or command line options.

The compilers use the Java JRE. As a result, you can also configure settings such as memory allocation and source path
with the JVM arguments.

Note: You must use a 32-bit version of the JDK, version 1.5 or later. The command line compilers do not work with a 64-
bit JDK.

Command-line compiler configuration

The flex-config.xml file defines the default compiler options for the compc and mxmlc command-line compilers. You
can use this file to set options such as debugging, SWF file metadata, and themes to apply to your application. For a
complete list of compiler options, see “Using mxmlc, the application compiler” on page 2174 and “Using compc, the
component compiler” on page 2194.

The flex-config.xml file is located in the sdk_install_dir/frameworks directory. If you change the location of this file
relative to the location of the command-line compilers, you can use the load-config compiler option to point to its
new location.

Last updated 9/25/2015

USING FLEX 98
Getting started

You can also use a local configuration file that overrides the compiler options of the flex-config.xml file. You give this
local configuration file the same name as the MXML file, plus “-config.xml” and store it in the same directory. For
example, MyApp-config.xml. When you compile your MXML file, the compiler looks for a local configuration file
first, then the flex-config.xml file.

For more information on compiler configuration files, see “About configuration files” on page 2171.

JVM configuration

The Flex compilers use the Java JRE. Configuring the JVM can result in faster and more efficient compilations.
Without a JVM, you cannot use the mxmlc and compc command-line compilers. You can configure JVM settings such
as the Java source path, Java library path, and memory settings.

You must use JDK 1.5 or later with the command-line compilers. These compilers are 32-bit executables and cannot
launch 64-bit processes. As a result, they require a 32-bit version of Java to run. If you have both a 32-bit and 64-bit
JDK installed, you can use several techniques to target the 32-bit version for compilation, including:

« Using the Java_HOME environment variable to point to the 32-bit version of the JDK when you compile with mxmlc
or compc

+ Modifying the Flex SDK’s jvm.config file to point to the 32-bit version of the JDK
« Using batch files that point to the 32-bit version of the JDK to launch the compilers

On Windows, you use the compc.exe and mxmlc.exe executable files in the bin directory to compile Flex applications
and component libraries. You use the fdb.exe executable file in the bin directory to debug applications. The executable
files use the jvm.config file to set JVM arguments. The jvm.config file is in the same directory as the executable files. If
you move it or the executable files to another directory, they use their default settings and not the settings defined in
the jvm.config file.

The fdb, compc, and mxmlc shell scripts (for UNIX, Linux, or Windows systems running a UNIX-shell emulator such
as Cygwin) do not take a configuration file. You set the JVM arguments inside the shell script file.

The jvm.config file is used by the Java process opened by the mxmlc and compc command-line executable files. The
file is located in sdk_install_dir/bin.

Changing the JVM heap size

The most common JVM configuration is to set the size of the Java heap. The Java heap is the amount of memory
reserved for the JVM. The actual size of the heap during run time varies as classes are loaded and unloaded. If the heap
requires more memory than the maximum amount allocated, performance will suffer as the JVM performs garbage
collection to maintain enough free memory for the applications to run.

You can set the initial heap size (or minimum) and the maximum heap size on most JVMs. By providing a larger heap
size, you give the JVM more memory with which to defer garbage collection. However, you must not assign all of the
system’s memory to the Java heap so that other processes can run optimally.

To set the initial heap size on the Sun HotSpot JVM, change the value of the xms property. To change the maximum
heap size, change the value of the xmx property. The following example sets the initial heap size to 256M and the
maximum heap size to 512M:

java.args=-Xms256m -Xmx512m -Dsun.io.useCanonCaches=false

In addition to increasing your JVM’s heap size, you can tune the JVM in other ways. Some JVMs provide more
granular control over garbage collecting, threading, and logging. For more information, consult your JVM
documentation or view the options on the command line. If you are using the Sun HotSpot JVM, for example, you can
enter java -X or java -D on the command line to see a list of configuration options.

Last updated 9/25/2015

USING FLEX 929
Getting started

In many cases, you can also use a different JVM. Benchmark your Flex application and the application server on several
different JVMs. Choose the JVM that provides you with the best performance.

Setting the useCanonCaches argument to false is required to support Windows file names.

Flash Player configuration

You can use the standard version or the debugger version of Adobe® Flash® Player as clients for your Flex applications.
The debugger version of Flash Player can log output from the trace () global method as well as data services messages
and custom log events.

You enable and disable logging and configure the location of the output file in the mm.cfg file. For more information
on locating and editing the mm.cfg file, see “Editing the mm.cfg file” on page 2224.

You can configure the standard version and the debugger version of Flash Player to use auto-update and other settings
by using the mms.cfg file. This file is in the same directory as the mm.cfg file. For more information on auto-update,
see the Flash Player documentation.

Last updated 9/25/2015

100

Chapter 3: Application architecture

Application development phases

Design phase

In the design phase, you make basic decisions about how to write code for reusability, how your application interacts
with its environment, how your application accesses application resources, and many other decisions. In the design
phase, also define your development and deployment environments, including the directory structure of your
application.

Although these design decisions specify how your application interacts with its environment, you also have
architectural issues to decide. For example, you might choose to develop your application based on a particular design
pattern, such as Model-View-Controller (MVC).

About design patterns

One common starting point of the design phase is to identify one or more design patterns relevant for your application.
A design pattern describes a solution to a common programming problem or scenario. Although the design pattern
might give you insight into how to approach an application design, it does not necessarily define how to write code for
that solution.

Many types of design patterns have been catalogued and documented. For example, the Functional design pattern
specifies that each module of your application performs a single action, with little or no side effects for the other
modules in your application. The design pattern does not specify what a module is, commonly though it corresponds
to a class or method.

About MVC

The goal of the Model-View-Controller (MVC) architecture is that by creating components with a well-defined and
limited scope in your application, you increase the reusability of the components and improve the maintainability of
the overall system. Using the MV C architecture, you can partition your system into three categories of components:

Model components Encapsulates data and behaviors related to the data processed by the application. The model
might represent an address, the contents of a shopping cart, or the description of a product.

View components Defines your application’s user interface, and the user’s view of application data. The view might
contain a form for entering an address, a DataGrid control for showing the contents of a shopping cart, or an image
of a product.

Controller components Handles data interconnectivity in your application. The Controller provides application
management and the business logic of the application. The Controller does not necessarily have any knowledge of the
View or the Model.

For example, with the MVC design, you could implement a data-entry form that has three distinct pieces:

+ The model consists of XML data files or the remote data service calls to hold the form data.
+ The view is the presentation of any data and display of all user interface elements.

+ The controller contains logic that manipulates the model and sends the model to the view.

Last updated 9/25/2015

USING FLEX 101
Application architecture

The promise of the MVC architecture is that by creating components with a well-defined and limited scope, you
increase the reusability of these components and improve the maintainability of the overall system. In addition, you
can modify components without affecting the entire system.

Although you can consider a Flex application as part of the View in a distributed MVC architecture, you can use
Flex to implement the entire MV C architecture on the client. A Flex application has its own view components that
define the user interface, model components that represent data, and controller components that communicate
with back-end systems.

About Struts

Struts is an open-source framework that facilitates the development of web applications based on Java servlets and
other related technologies. Because it provides a solution to many of the common problems that developers face when
building these applications, Struts has been widely adopted in a large variety of development efforts, from small
projects to large-scale enterprise applications.

Struts is based on a Model-View-Controller (MVC) architecture, with a focus on the controller part of the MVC
architecture. In addition, it provides JSP tag libraries to help you create the view in a traditional JSP/HTML
environment.

Configure phase

Before you write your first line of application code, or before you deploy an application, you must ensure that you
configure your environment correctly. Configuration is a broad term and encompasses several different tasks.

For example, you must configure your development and deployment environments to ensure that your application
can access the required resources and data services. If your application requires access to a web service, ensure that
your application has the correct access rights to the web service. If your application runs outside a firewall, ensure that
it can access resources inside the firewall.

The following sections contain an overview of configuration tasks.

About run-time configuration

Most run-time configuration has to do with configuring access to remote data services, such as web services. For
example, during application development, you run your application behind a firewall, where the application has access
to all necessary resources and data services. However, when you deploy the application, you must ensure that an
executing application can still access the necessary resources when the application runs outside of the firewall.

One configuration issue for Flex SDK applications is the placement of a crossdomain.xml file. For security, by default
Flash Player does not allow an application to access a remote data service from a domain other than the domain from
which the application was served. Therefore, a server that hosts a data service must be in the same domain as the server
hosting your application, or the remote server must define a crossdomain.xml file. A crossdomain.xml file is an XML
file that provides a way for a server to indicate that its data and documents are available to SWF files served from
specific domains, or from all domains. By default, place the crossdomain.xml at the root directory of the server that is
serving the data.

Flex SDK does not include a server-side proxy for handling data service requests. Therefore, you must ensure that you
configure data services for direct access by your application, or make data service requests through your own proxy
server.

Last updated 9/25/2015

USING FLEX 102
Application architecture

Build phase

Building your application is an iterative process that includes three main tasks:
1 Compile

2 Debug

3 Test

About compiling

Compiling your application converts your application files and assets into a single SWF file. During compilation, you
set compiler options to enable accessibility, enable debug information in the output, set library paths, and set other
options. You can configure the compiler as part of configuring your project in Flash Builder, by using command-line
arguments to the compiler, or by setting options in a configuration file.

When you compile your application, the Flex compiler creates a single SWF file from all of the application files
(Adobe® MXML", AS, RSL, SWC, and asset files), as the following example shows:

main.mxml cogrl\%})%rgnts Compiler/Linker Web Server Client

<s:Application> L Actionscript

N
.
MXML

RSL files
. AS
Use <‘ix,Scnpt> _»
to write, import,
orinclude

ActionScript

SWCand RSL files

Flex provides two compilers: mxmlc and compc. You can use the compc and mxmlc compilers from within Flash
Builder or from a command line.

You use mxmlc to compile MXML, ActionScript, SWC, and RSL files into a single SWF file. After your application is
compiled and deployed on your web or application server, a user can make an HTTP request to download and play
the SWF file on their computer.

You use compc to create resources that you use to create the application. For example, you can compile components,
classes, and other files into SWC files or into RSLs, and then statically or dynamically link these libraries to your
application.

For more information, see “Flex compilers” on page 2164.

About debugging an application
Flex provides several tools that you use to debug your application, including the following:

AIR Debug Launcher (ADL) A command line version of the Adobe® AIR™ debugger that you can use outside of Adobe®
Flex™ Builder™.

Flash Player You can run Flex applications in two different versions of Adobe® Flash® Player: the standard version,
which the general public uses, and the debugger version, which application developers use to debug their applications
during the development process.

Last updated 9/25/2015

USING FLEX 103
Application architecture

Flash Builder visual debugger The Flash Builder debugger allows you to run and debug applications. You can use the
debugger to set and manage breakpoints; control application execution by suspending, resuming, and terminating the
application; step into and over the code; watch variables; evaluate expressions; and so on.

Flex Command-line debugger A command line version of the debugger that you can use outside of Flash Builder.

For more information, see “Command-line debugger” on page 2209.

About testing an application

Due to the size, complexity, and large amounts of data handled by applications, maintaining the quality of a large
software application can be difficult. To help with this task, you can use automated testing tools that test and validate
application behavior without human intervention.

The Flex Automation Package provides developers with the ability to create Flex applications that use the Automation
APL You can use this API to create automation agents or to ensure that your applications are ready for testing. In
addition, the Flex Automation Package includes support for HP QuickTest Professional (QTP) automation tool. For
more information, see “Creating applications for testing” on page 2270.

Deploy phase

When you deploy your application, you make it available to customers. Typically, you deploy the application asa SWF
file on a web server so that users can access it by using an HTTP request to the SWF file.

When you deploy the application’s SWF file, you must also deploy all of the assets required by the application. For
example, if the application requires access to video or image files, or to XML data files, you must make sure to deploy
those assets as well. If the application uses an RSL, you must also deploy the RSL.

Deploying assets may not necessarily be as simple as copying the assets to a location on your web server. Flash Player
has built-in security features that controls the access of application assets at run time.

This section contains an overview of the deployment phase. For more information, see “Deploying applications” on
page 2544.

What happens during a request to a SWF file
When a customer requests the SWF file, the web server or application server returns the SWF file to the client
computer. The SWEF file then runs locally on the client.

In some cases, a request to a Flex SWF file can cause multiple requests to multiple SWF files. For example, if your
application uses Runtime Shared Libraries (RSLs), the web server or application server returns an RSL as a SWC file
to the client along with the application SWF file.

Server-side caching

Your web server or application server typically caches the SWF file on the first request, and then serves the cached file
on subsequent requests. You configure server-side caching by using the options available in your web server or
application server.

Client-side caching

The SWE file returned to the client is typically cached by the customer’s browser on first request. Depending on the
browser configuration, the SWF file typically remains in the cache until the browser closes. When the browser reopens,
the next request to the SWF file must reload it from the server.

Last updated 9/25/2015

USING FLEX 104
Application architecture

Integrating Flex applications with your web application
To incorporate a Flex application into a website, you typically embed the SWF file in an HTML, JSP, Adobe®
ColdFusion®, or other type of web page. The page that embeds the SWF file is known as the wrapper.

A wrapper consists of an <object> tag and an <embed> tag that format the SWF file on the page, define data object
locations, and pass run-time variables to the SWF file. In addition, the wrapper can include support for deep linking
and Flash Player version detection and deployment.

When you compile an application with Flash Builder, it automatically creates a wrapper file for you in the bin directory
associated with the Flash Builder project. You can copy the contents of the wrapper file into your HTML pages to
reference the SWF file. Flash Builder uses the SWFODbject 2 library to embed the SWF file in the HTML page.

You can edit the wrapper to manipulate how Flex appears in the browser. You can also add JavaScript or other logic
in the page to communicate with Flex or generate customized pages.

When using the mxmlc command-line compiler, you generally write the wrapper yourself. You can also use the
wrapper included with Flex as a template for creating your own. If you use ant to compile your applications, you can
use the html-wrapper ant task.

More Help topics
“Creating a wrapper” on page 2552

“Using the html-wrapper task” on page 2350

Secure phase

Security is not necessarily a phase of the application development process, but is an issue that you should take into
consideration during the entire development process. That is, you do not configure, build, test, and deploy an
application, and then define the security issues. Rather, you take security into consideration during all phases.

Building security into your application often takes the following main efforts:
« Using the security features built into Flash Player
+ Building security into your application

Flash Player has several security features built into it, including sandbox security, that you can take advantage of
because you are building applications for Flash Player.

But, Flash Player security is not enough for many application requirements. For example, your application may require
the user to log in, or perform authentication in some other way, before accessing data services. When you must handle
security issues beyond those built into Flash Player, design them into your application from the initial design phase,
test them during the compile phase, and verify them during the deploy phase.

For more information on security, see “Security” on page 117.

About the security model
The Flex security model protects both the client and the server. Consider the following general aspects of security when
you deploy Flex applications:

« Flash Player operating in a sandbox on the client
« Authorizing and authenticating users who access a server’s resources

Flash Player runs inside a security sandbox that prevents the client from being hijacked by malicious application
code. This sandbox prevents a user from running a Flex application that can access system files and perform other
tasks.

Last updated 9/25/2015

USING FLEX 105
Application architecture

Flash Player security
Flash Player has an extensive list of features that ensure Flash content is secure, including the following:

+ Uses the encryption capabilities of SSL in the browser to encrypt all communications between a Flash application
and the server

+ Includes an extensive sandbox security system that limits transfer of information that might pose a risk to security
or privacy

+ Does not allow applications to read data from the local drive, except for SharedObjects that were created by that
domain

+ Does not allow writing any data to the disk except for data that is encapsulated in SharedObjects

+ Does not allow web content to read any data from a server that is not from the same domain, unless that server
explicitly allows access

+ Enables the user to disable the storage of information for any domain

+ Does not allow data to be sent from a camera or microphone unless the user gives permission

Application Development in Flex SDK

The following example shows a typical development environment for a Flex SDK application:

Flex application
running on
client machine

)

HTTP/SOAP
Web server

webserver.example.com

Proxy server Web services server

Application server > a l ' .I l

appserver.example.com finance.example.com

In this example, application development happens in an environment that is behind a firewall, and you deploy your
application SWEF file on webserver.example.com. To run the application, you make a request to it from a computer that
is also within the firewall. The executing SWF file can access resources on any other server as necessary. In the
development environment, the SWF file can directly access web services, or it can access them through a proxy server.

Last updated 9/25/2015

USING FLEX
Application architecture

The following example shows a typical deployment environment for a Flex SDK application:

Flex applications on
client machine

/ HTTP/SOAP
I

Firewall/Router/DNS server

v

Web server

webserver.example.com

Proxy server Web services server
Application server D m— a a a
appserver.example.com finance.example.com

In this example, the customer requests the application SWF file from webserver.example.com, the server returns the
SWEF file to the customer, and the SWF file plays. The executing SWF file must be able to access the necessary resources
from outside the firewall.

Design phase

With Flex SDK, one of your first design decisions might be to choose a design pattern that fits your application
requirements. That design pattern might have implications on how you structure your development environment,
determine the external data services that your application must access, and define how you integrate your Flex
application into a larger web application.

Configure phase

For run-time configuration, you ensure that your executing SWF file can access the necessary resources including asset
files (such as image files) and external data services. If you access a resource on a domain other than the domain from
which the SWF file is served, you must define a crossdomain.xml file on the target server, or make the request through
a proxy server.

Build phase
To build an application for Flex SDK, you define a directory structure on your development system for application
files, and define the location of application assets. You then compile, debug, and test your application.

The compile-time configuration for a Flex SDK application is primarily a process of setting compiler options to define
the location of SWC and RSLs, to create a SWF file with debug information, or to set additional compiler options.
When compiling applications, you compile your application into a single SWF file, and then deploy the SWF file to a
web server or application server for testing.

Deploy phase

With Flex SDK, you deploy your application SWEF file on your web server or application server. Users then access the
deployed SWFE file by making an HTTP request in the form:

Last updated 9/25/2015

106

USING FLEX 107
Application architecture

http://hostname/path/filename.swf

If you embed your SWF file in an HTML or other type of web page using a wrapper, users request the wrapper page.
The request to the wrapper page causes the web server or application server to return the SWF file along with the
wrapper page.

Secure phase

Security issues for Flex SDK applications often have to do with how the application accesses external resources. For
example, you might require a user to log in to access resources, or you might want the application to be able to access
external data services that implement some other form of access control.

Application structure

Installation directory structure

Before you can begin to set up your application development environment, be familiar with the Flex installation
directory structure for the following products:

« Flex SDK
« Adobe ° Flash® Builder™

Flex SDK installation directory structure

When you install Flex SDK, the installer creates the following directory structure under the installation directory:

Directory Description

/ant Contains the Flex Ant tasks, which provide a convenient way to build your Flex projects.

/asdoc Contains ASDoc, a command-line tool that you can use to create APl language reference
documentation as HTML pages from the classes in your Flex application.

/bin Contains the executable files, such as the mxmlc and compc compilers.

/frameworks Contains configuration files, such as flex-config.xml and default.css.

/frameworks/libs

Contains the library SWC files. You use the files to compile your application.

/frameworks/locale

Contains the localization resource files.

/frameworks/projects

Contains the Flex framework source code.

/frameworks/rsls

Contains the RSL for the Flex framework.

/frameworks/themes Contains the theme files that define the basic look and feel of all Flex components.

/lib Contains JAR files.

/runtimes Contains the standard and debugger versions of Adobe ® Flash® Player and the Adobe®
AIR™ components.

/samples Contains sample applications.

/templates Contains template HTML wrapper files. This includes history management files for deep

linking as well as the playerProductinstall.swf file for Player updating.

Last updated 9/25/2015

USING FLEX

Application architecture

Flash Builder installation directory structure

When you install Flash Builder, you install Flex SDK plus Flash Builder. The installer creates the following directory

structure:

Directory

Description

Flash Builder 4.6

The top-level directory for Flash Builder.

/configuration

A standard Eclipse folder that contains the config.ini file and error logs.

/features A standard Eclipse folder that contains the plug-ins corresponding to features of Flash
Builder.

/jre Contains the Java Runtime Environment installed with Flash Builder used by default when
you run the stand-alone version of Flash Builder.

/player Contains the different versions of Flash Player—the standard version and the debugger
version.

/plugins Contains the Eclipse plugins used by Flash Builder.

/sdks Contains the different Flex SDKs. For a directory description, see “Flex SDK installation

directory structure” on page 107.

Development directory structure

As part of the process of setting up the directory structure of your development environment, you define the directory
location for application-specific assets, assets shared across applications, and the location of other application files and

assets.

Flex file types

A Flex application consists of many different file types. Consider the following options when you decide where to place

each type of file.

The following table describes the different Flex file types:

File format

Extension

Description

MXML

.mxml

Your application typically has one main application MXML file that contains the
<s:Applications tag, and one or more MXML files that implement your custom
MXML components.

ActionScript

.as

A utility class, Flex custom component class, or other logic implemented as an
ActionScript file.

SwWC

SWC

A custom library file, or a custom componentimplemented as an MXML or ActionScript
file, then packaged as a SWCfile.

A SWC file contains components that you package and reuse among multiple
applications. The SWCfile is then statically linked into your application at compile time
when you create the application’s SWF file.

RSL

SWC

A custom library implemented as an MXML or ActionScript file, and then deployed as
a Runtime Shared Library (RSL). An RSL is a stand-alone SWC file that is downloaded
separately from your application’s SWF file, cached on the client computer for use with
multiple application SWF files, and dynamically linked to your application.

CSSfile

.CSS

A text file template for creating a Cascading Style Sheets file.

Assets

flv, . mp3, jpg, .gif, .swf,
.png, .svg, xml, other

The assets required by your application, including image, skin, sound, and video files.

Last updated 9/25/2015

108

USING FLEX
Application architecture

Flex SDK directory structure

A typical Flex application consists of a main MXML file (the file that contains the <s : Applications> tag), one or more
MXML files that implement custom MXML components, one or more ActionScript files that contains custom
components and custom logic, and asset files.

The following example shows an example of the directory structure of a simple Flex application:
appRoot

———— mainApp.mxml

——— myValidators

——— PriceValidator.mxml

L AddressValidator.as

——— myFormatters

——— PriceFormatter.mxml

L——— StringFormatter.as
———— assets

|——— logo.gif

L splashScreen.gif
——— .settings (Flash Builder only)

——— bin-debug (Flash Builder only)
—— html-template (Flash Builder only)

—— libs (Flash Builder only)

—— src (Flash Builder only)

This application consists of a root application directory and directories for different types of files. Everything required
to compile and run the application is contained in the directory structure of the application.

Flash Builder adds additional directories to the application that are not present for Flex SDK applications:
.settings Contains the preference settings for your Flash Builder project
bin-debug Contains the debug SWF and debug wrapper files

bin-release Contains the generated SWF file and wrapper file, created by Flash Builder when you select File > Export
> Release Version

html-template Contains additional files used by specific Flex features, such as deep linking or Player detection. Flash
Builder uses these files to generate an HTML wrapper for your SWF file.

libs Contains additional SWC files and other files used by the application.

src Contains the application source code.

Last updated 9/25/2015

109

USING FLEX 110
Application architecture

There are no inherent restrictions in Flex for the location of the root directory of your application, so you can put it
almost anywhere in the file system of your computer. If you are using Flash Builder, the default location of the
application root directory in Microsoft Windows is My Documents\Flash Builder 4.6\project_name (for example,
C:\Documents and Settings\userName\My Documents\Flash Builder 4.6\myFlexApp).

Sharing assets among applications

Typically, you do not develop a single application in isolation from all other applications. Your application shares files
and assets with other applications.

The following example shows two Flex applications, appRoot1 and appRoot2. Each application has a directory for local
assets, and can access shared assets from a directory outside of the application’s directory structure:

myApps
— appRoot1
|— localAssets
— appRoot2
|— localAssets
— sharedAssets

The location of the shared assets does not have to be at the same level as the root directories of the Flex applications.
It only needs to be somewhere accessible by the applications at compile time.

In the following example, you use the Image control in an MXML file in the appRoot1 directory to access an asset from
the shared assets directory:

<?xml version="1.0" encoding="utf-8"?>

<!-- apparch/EmbedExample.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx" >
<s:layout>

<s:Verticallayout/>

</s:layout>

<s:Image id="loaderl"
source="@Embed (source="'../assets/butterfly.gif')"/>
</s:Application>

Consideration for accessing application assets
One of the decisions that you must make when you create a Flex application is whether to load your assets at run time,
or to embed the assets within the application’s SWF file.

When you embed an asset, you compile it into your application’s SWF file. The advantage to embedding an asset is
that it is included in the SWEF file, and can be accessed faster than having to load it from a remote location at run time.
The disadvantage of embedding is that your SWF file is larger than if you load the asset at run time.

Last updated 9/25/2015

USING FLEX 111
Application architecture

If you decide to access an asset at run time, you can load it from the local file system of the computer on which the
SWE file runs, or you can access a remote asset, typically though an HTTP request over a network.

A SWF file can access one type of external asset: local or over a network; the SWF file cannot access both types. You
determine the type of access allowed by the SWF file by using the use-network flag when you compile your

application. When you set the use-network flag to false, you can access assets in the local file system, but not over
the network. The default value is t rue, which lets you access assets over the network, but not in the local file system.

For more information on the use-network flag, see “Flex compilers” on page 2164. For more information on
embedding application assets, see “Embedding assets” on page 1699.

Sharing MXML and ActionScript files among applications

You can build an entire Flex application in a single MXML file that contains both your MXML code and any
supporting ActionScript code. As your application gets larger, your single file also grows in size and complexity. This
type of application would soon become difficult to understand and debug, and very difficult for multiple developers
to work on simultaneously.

Flex supports a component-based development model. You use the predefined components included with Flex to
build your applications, and create components for your specific application requirements. You can create custom
components using MXML or ActionScript.

Defining your own components has several benefits. One advantage is that components let you divide your
applications into modules that you can develop and maintain separately. By implementing commonly used logic
within custom components, you can also build a suite of reusable components that you can share among multiple Flex
applications.

Last updated 9/25/2015

USING FLEX
Application architecture

The following example shows two Flex applications, appRoot1 and appRoot2. Each application has a subdirectory for
local MXML and ActionScript components, and can also reference a library of shared components:

my Apps
— appRoot1
— myValidators
PriceValidator.mxml
AddressValidator.as
— myFormatters
PriceFormatter.mxml
StringFormatter.as
— appRoot2
— myValidators
— myFormatters
— sharedLibrary
|——— sharedValidators
SharedVal1.mxml
e SharedVal2.as
——— sharedFormatters
SharedFormatter1.mxml
SharedFormatter2.as

The Flex compiler uses the source path to determine the directories where it searches for MXML and ActionScript files.
By default, the root directory of the application is included in the source path; therefore, a Flex application can access
any MXML and ActionScript files in its main directory, or in a subdirectory.

For shared MXML and ActionScript files that are outside of the application’s directory structure, you modify the
source path to include the directories that the compiler searches for MXML and ActionScript files. The component
search order in the source path is based on the order of the directories listed in the source path.

You can set the source path as part of configuring your project in Flash Builder, in the flex-config.xml file, or set it
when you open the command-line compiler. In this example, you set the source path to:

C:\myApps\sharedLibrary

To access a component in an MXML file, you specify a namespace definition that defines the directory location of the
component relative to the source path. In the following example, an MXML file in the appRoot1 directory accesses an

MXML component in the local directory structure, and in the directory containing the shared library of components:

Last updated 9/25/2015

112

USING FLEX
Application architecture

<?xml version="1.0" encoding="utf-8"?>

<!-- apparch/ComponentNamespaces.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:MyLocalComps="myFormatters.*"
xmlns:MySharedComps="sharedFormatters.*">
<s:layout>

<s:VerticallLayout/>

</s:layout>

<MyLocalComps:PriceFormatter/>
<MySharedComps : SharedFormatter2/>
</s:Application>

The MXML tag name for a custom component is composed of two parts: the namespace prefix, in this example
MyLocalComps and MySharedComps, and the tag name. The namespace prefix tells Flex the directory in the source
path that contains the file that implements the custom component. The tag name corresponds to the filename of the
component, in this example PriceFormatter.mxml and SharedFormatter2.mxml.

Using a SWC file in a Flex SDK application
A SWC file is a Flex library file that contains one or more components implemented in MXML or ActionScript. All
Flex library files are shipped as SWC files in the frameworks/libs directory. The list of library files includes:

+ framework.swc

* IpC.Swc

« core.swc

« charts.swc

+ advanceddatagrid.swc

You can also create SWC files that you package and reuse among multiple applications. You typically use static linking
with SWC files, which means the compiler includes all components, classes, and their dependencies in the application

SWF file when you compile the application. For more information on static linking, see “About linking” on page 254.

By default, the Flex compiler includes all linked SWC files in the frameworks/libs directory when it compiles your
application. SWC files that contain only classes that are not used in your application are not included. For your custom
SWC files, you use the 1ibrary-path option of the mxmlc compiler, or set the library path in Flash Builder, to specify
the location of the SWC file.

Using an RSL in a Flex SDK application

One way to reduce the size of your application’s SWF file is by externalizing shared assets into stand-alone files that
can be separately downloaded and cached on the client. These shared assets are loaded by any number of applications
at run time, but must be transferred to the client only once. These shared files are known as Runtime Shared Libraries
or RSLs.

An RSL is a stand-alone file that the client downloads separately from your application’s SWF file, and caches on the
client computer for use with multiple application SWF files. Using an RSL reduces the resulting file size for your
applications. The benefits increase as the number of applications that use the RSL increases. If you only have one
application, putting components into RSLs does not reduce the aggregate download size, and might increase it.

You create an RSL as a SWC file that you package and reuse among multiple applications. To reference an RSL, you
use the runtime-shared-libraries option for the command-line compiler, or Flash Builder. You typically use
dynamic linking with RSLs, which means that the classes in the RSL are left in an external file that is loaded at run time.

Last updated 9/25/2015

113

USING FLEX 114
Application architecture

Every Flex application uses some aspects of the Flex framework, which is a relatively large set of ActionScript classes
that define the infrastructure of a Flex application. If a client loads two different Flex applications, the application will
likely load overlapping class definitions. To further reduce the SWF file size, you can use framework RSLs. Framework
RSLs let you externalize the framework libraries and can be used with any Flex application.

For more information on RSLs, framework RSLs, and dynamic linking, see “Runtime Shared Libraries” on page 253.

Using modaules in a Flex SDK application
Modules are SWF files that can be loaded and unloaded by an application. They cannot be run independently of an
application, but any number of applications can share the modules.

Modules let you split your application into several separate SWF files. The main application, or shell, can dynamically
load other SWF files that it requires, when it needs them. It does not have to load all modules when it starts, nor does
it have to load any modules if the user does not interact with them. When the application no longer needs a module,
it can unload the module to free up memory and resources.

For more information, see “Modular applications” on page 138.

Compiling an application

Compiling your application converts your application files and assets into a single SWF file. During compilation, you
set compiler options to enable accessibility, enable debug information in the output, set library paths, and set other
options. You can configure the compiler as part of configuring your project in Flash Builder, by using command-line
arguments to the compiler, or by setting options in a configuration file.

For more information on compiling applications, see “Flex compilers” on page 2164.

About case sensitivity during a compile

The Flex compilers use a case-sensitive file lookup on all file systems. On case-insensitive file systems, such as the
Macintosh and Windows file systems, the Flex compiler generates a case-mismatch error when you use a component
with the incorrect case. On case-sensitive file systems, such as the UNIX file system, the Flex compiler generates a
component-not-found error when you use a component with the incorrect case.

Compiling a Flex SDK application

Flex SDK includes two compilers, mxmlc and compc. You use mxmlc to compile MXML files, ActionScript files, SWC
files, and RSLs into a single SWEF file. After your application is compiled and deployed on your web or application
server, a user can make an HTTP request to download and play the SWF file on their computer. You use the compc
compiler to compile components, classes, and other files into SWC files or RSLs.

To compile an application with Flex SDK, you use the mxmlc compiler in the bin directory of your Flex SDK directory.
The most basic mxmlc example is one in which the MXML file for your application has no external dependencies (such
as components in a SWC file or ActionScript classes). In this case, you open mxmlc from the command line and point
it to your MXML file, as the following example shows:

$ mxmlc c:/myFiles/app.mxml

The mxmlc compiler has many options that you can specify on the command line, or that you can set in the flex-
config.xml file. For example, to disable warning messages, you set the warnings options to false, as the following
example shows:

$ mxmlc -warnings=false c:/myFiles/app.mxml

Last updated 9/25/2015

USING FLEX 115
Application architecture

You only specify the main application file, the file that contains the <s:Applications tag, to the compiler. The
compiler searches the default source path for any MXML and ActionScript files that your application references. If
your application references MXML and ActionScript files in directories that are not included in the default source
path, you can use the sourcepath- option to add a directory to the source path, as the following example shows:

$ mxmlc -source-path pathl path2 path3 c:/myFiles/app.mxml
In this example, you specify a list of directories, separated by spaces, and terminate that list with - -.

For more information on mxmlc options, see “Using mxmlc, the application compiler” on page 2174.

Compiling an application that uses SWC files
Often, you use SWC files when compiling MXML files. You specify the SWC files in the compiler by using the
library-path option.

The following example adds two SWC files to the 1ibrary-path when it compiles your application:

$ mxmlc -library-path+=/myLibraries/MyRotateEffect.swc;/myLibraries/MyButtonSwc.swc
c:/myFiles/app.mxml

Compiling an application that uses RSLs
To use an RSL in your application, use the runt ime-shared-1library-path compiler option. The following example
compiles an application with an RSL at the command line:

$ mxmlc -runtime-shared-library-path=../lib/mylib.swc, ../bin/library.swf Main.mxml

Compiling an application that uses modules
The way you compile modules is similar to the way you compile applications. On the command line, you use the
mxmlc command-line compiler. The result is a SWF file that you load into your application as a module.

You cannot run the module-based SWEF file as a stand-alone application or load it into a browser window. It must be
programmatically loaded by an application as a module.

For more information on compiling modules on the command line, see “Modular applications” on page 138.

Compiling a Flash Builder application

When you compile a project with Flash Builder, you run the Flex compilers from within Flash Builder itself, not from
the command line. You can build your projects manually or let Flash Builder automatically compile them for you. In
either case, the Flash Builder compiler creates the application files, generates a wrapper, places the output files in the
proper location, and alerts you to any errors encountered during compilation. You then run and debug your
applications as needed.

For mobile applications, Flash Builder creates and deploys the APK file for you.

If you must modify the default build settings, you have several options for controlling how your projects are built into
applications. For example, you can set build preferences on individual projects or on all the projects in your workspace,
modify the build output path, change the build order, and so on. You can also create custom build instructions using
third-party tools, such as Apache Ant.

When your projects are built, automatically or manually, Flash Builder places the SWF file in the project output folder
along with the wrapper. By default, this is the debug version of your application. It contains debugging information
and, therefore, is used when you debug your application. A wrapper file embeds the application SWF file and is used
to run or debug your application in a web browser. The standard version of your application SWF files, which you
generate through Export Release Version, does not include the additional debugging information and is smaller.

Last updated 9/25/2015

USING FLEX 116
Application architecture

For more information about compiling Flash Builder applications, see Build projects.

Compiling an application that uses modules
In Flash Builder, you create modules as applications and compile them by either building the project or running the
application. The result is a SWF file that you load into your application as a module.

You cannot run the module-based SWF file as a stand-alone Flex application or load it into a browser window. It must
be loaded by an application as a module. When you run it in Flash Builder to compile it, you should close the Player
or browser Window and ignore any errors. Modules should not be requested by the Player or through a browser
directly.

For information on compiling modules in Flash Builder, see “Modular applications” on page 138.

Deployment directory structure

When you deploy an application, ensure that the directory structure of the deployed application is correct.

When you deploy your application, must be aware of how your application accesses its assets. If you embedded all of
your application assets into the SWF file, you can deploy the application as a stand-alone SWE file.

However, if your application accesses assets at run time, the application requests assets during execution. You must
ensure that you deploy all of the necessary assets, in the correct location, so that you can run the application correctly.

Assets that you deploy at run time include:

Asset type More information

HTML wrapper

“Creating a wrapper” on page 2552

Deep linking files

“Deep linking” on page 2022

Express Install files

“Using Express Install in the wrapper” on page 2558

RSLs

“Runtime Shared Libraries” on page 253

Modules

“Modular applications” on page 138

Sub-applications

“Developing and loading sub-applications” on page 176

Compiled CSS SWF files

“Loading style sheets at run time” on page 1547

Resource modules

“Resource Bundles” on page 2091

Images, sound files, and other binary assets that are not embedded

Data files

In some cases, the deployed locations of these files must match the locations of the files during development. For
example, if you load modules from the same directory as your main application, then you must deploy these modules
to that directory, unless you programmatically handle alternative locations to load the modules from.

In other cases, the deployed locations of these files is specified. For example, the deep linking files history.css,
historyFrame.html, and history.js must all reside in a /history subdirectory that is located relative to the application’s

SWE file.

Last updated 9/25/2015

USING FLEX 117
Application architecture

And in other cases, you specify the eventual deployed location of these assets when you compile your application. For
example, if you compiled your application using an RSL, you must ensure that the RSL is also deployed to your web
server, along with your application’s SWF file. The directory location of the RSL must match the directory location that
you specified at compile time using the runtime-shared-libraries or runtime-shared-library-path options
for the compiler.

For more information about what assets to deploy with your application, see “Deployment checklist” on page 2548.

Security

Introduction to security

Adobe® Flash® Player runs applications built as SWEF files. Content is delivered as a series of instructions in binary
format to Flash Player over web protocols in the precisely described SWF (.swf) file format. The SWF files themselves
are typically hosted on a server and then downloaded to, and displayed on, the client computer when requested. Most
of the content consists of binary ActionScript instructions. ActionScript is the ECMA standards-based scripting
language that Flash uses that features APIs designed to allow the creation and manipulation of client-side user
interface elements and for working with data.

The Flex security model protects both client and the server. Consider the following two general aspects to security:

« Authorization and authentication of users accessing a server’s resources
« Flash Player operating in a sandbox on the client

Flex supports working with the web application security of any J2EE application server. In addition, precompiled
applications can integrate with the authentication and authorization scheme of any underlying server technology to
prevent users from accessing your applications. The Flex framework also includes several built-in security mechanisms
that let you control access to web services, HT'TP services, and server-based resources such as EJBs.

Flash Player runs inside a security sandbox that prevents the client from being hijacked by malicious application code.

Note: SWF content running in the Adobe® AIR™ follows different security rules than content running in the browser. For
details, see Adobe AIR Security.

Declarative compared to programmatic security

The two common approaches to security are declarative and programmatic. Often, declarative security is server based.
Using the server’s configuration, you provide protection to a resource or set of resources. You use the container’s
authentication and authorization schemes to protect that resource from unauthorized access.

The declarative approach to security casts a wide net. Declarative security is implemented as a separate layer from the
web components that it works with. You set up a security system, such as a set of file permissions or users, groups, and
roles, and then you plug your application's authentication mechanism into that layer.

With declarative security, either a user gains access to the resource or they do not. Usually the content cannot be
customized based on roles. In an HTML-based application, the result is that users are denied access to certain pages.
However, in a Flex environment, the typical result of declarative security is that the user is denied access to the entire
application, since the application is seen as a single resource to the container.

Declarative security lets programmers who write web applications ignore the environment in which they write.
Declarative security is typically set up and maintained by the deployer and not the developer of the application. Also,
updates to the web application do not generally require a refactoring of the security model.

Last updated 9/25/2015

USING FLEX 118
Application architecture

Programmatic security gives the developer of the application more control over access to the application and its
resources. Programmatic security can be much more detailed than declarative security. For example, a developer using
programmatic security can allow or deny a user access to a particular component inside the application.

Although programmatic security is typically configured by the developer of the application, it usually interacts with
the same systems as declarative security, so the relationship between developer and deployer of the application must
be cooperative when implementing programmatic security.

Declarative security is recommended over programmatic security for most applications because the design promotes
code reuse, making it more maintainable. Furthermore, declarative security puts the responsibility of security into the
hands of the people who specialize in its implementation; application programmers can concentrate on writing
applications and people who deploy the applications in a specific environment can concentrate on enforcing security
policies and take advantage of that context.

Client security overview

When considering security issues, you cannot think of applications as traditional web applications. Applications built
with Flex often consist of a single monolithic SWF file that is loaded by the client once, or a series of SWF files loaded
as modules or RSLs. Web applications, on the other hand, usually consist of many individual pages that are loaded one
at a time.

Most web applications access resources such as web services that are outside of the client. When an application accesses
an external resource, two factors apply:

+ Is the user authorized to access this resource?
+ Can the client load the resource, or is it prevented from loading the resource, because of its sandbox limitations?

The following basic security rules always apply by default:

+ Resources in the same security sandbox can always access each other.
« SWF files in a remote sandbox can never access local files and data.

You should consider the following security issues related to the client architecture that affect applications.

Flash Player security features

Much of Flash Player security is based on the domain of origin for loaded SWF files, media, and other assets. A SWF
file from a specific Internet domain, such as www.example.com, can always access all data from that domain. These
assets are put in the same security grouping, known as a security sandbox. For example, a SWF file can load SWF files,
bitmaps, audio, text files, and any other asset from its own domain. Also, cross-scripting between two SWF files from
the same domain is permitted, as long as both files are written using ActionScript 3.0. Cross-scripting is the ability of
one SWF file to use ActionScript to access the properties, methods, and objects in another SWF file. Cross-scripting is
not supported between SWF files written using ActionScript 3.0 and files using previous versions of ActionScript;
however, these files can communicate by using the LocalConnection class.

Memory usage and disk storage protections
Flash Player includes security protections for disk data and memory usage on the client computer.

The only type of persistent storage is through the SharedObject class, which is embodied as a file in a directory whose
name is related to that of the owning SWF file. An application cannot typically write, modify, or delete any files on the
client computer other than SharedObject data files, and it can only access SharedObject data files under the established
settings per domain.

Last updated 9/25/2015

USING FLEX 119
Application architecture

Flash Player helps limit potential denial-of-service attacks involving disk space (and system memory) through its
monitoring of the usage of SharedObject classes. Disk space is conserved through limits automatically set by Flash
Player (the default is 100K of disk space for each domain). The author can set the application to prompt the user for
more disk space, or Flash Player automatically prompts the user if an attempt is made to store data that exceeds the
limit. In either case, the disk space limit is enforced by Flash Player until the user gives explicit permission for an
increased allotment for that domain.

Flash Player contains memory and processor safeguards that help prevent applications from taking control of excess
system resources for an indefinite period of time. For example, Flash Player can detect an application that is in an
infinite loop and select it for termination by prompting the user. The resources that the application uses are
immediately released when the application closes.

Flash Player uses a garbage collector engine. The processing of new allocation requests always first ensures that
memory is cleared so that the new usage always obtains only clean memory and cannot view any previous data.

Privacy

Privacy is an important aspect of overall security. Adobe products, including Flash Player, provide very little
information that would reveal anything about a user (or their computer). Flash Player does not provide personal
information about users (such as names, e-mail addresses, and phone numbers), or provide access to other sensitive
information (such as credit card numbers or account information).

What Flash Player does provide is basically standardized hardware and software configuration information that
authors might use to enhance the user experiences in the environment encountered. The same information is often
available already from the operating system or web browser.

Information about the client environment that is available to the application includes:

+ User agent string, which typically identifies the embedding browser type and operating system of the client
+ System capabilities such as the language or the presence of an MP3 decoder (see the Capabilities class)

+ Presence of a camera and microphone

+ Keyboard and mouse input

ActionScript also includes the ability to replace the contents of the client’s Clipboard by using the setclipboard ()
method of the System class. This method does not have a corresponding getClipboard () method, so protected data
that might be stored in the Clipboard already is not accessible to Flash Player.

About sandboxes
The sandbox type indicates the type of security zone in which the SWF file is operating. In Flash Player, all SWF files
(and HTML files, for the purposes of SWF-to-HTML scripting) are placed into one of four types of sandbox:

remote All files from non-local URLs are placed in a remote sandbox. There are many such sandboxes, one for each
Internet (or intranet) domain from which files are loaded.

local-with-filesystem The default sandbox for local files. SWF files in this sandbox may not contact the Internet (or
any servers) in any way—they may not access network endpoints with addresses such as HTTP URLs.

local-with-networking SWF file in this sandbox may communicate over the network but may not read from local file
systems.

local-trusted This sandbox is not restricted. Any local file can be placed in this sandbox if given authorization by the
end user. This authorization can come in two forms: interactively through the Settings Manager or noninteractively
through an executable installer that creates Flash Player configuration files on the user’s computer.

Last updated 9/25/2015

USING FLEX
Application architecture

You can determine the current sandbox type by using the sandboxType property of the Security class, as the following
example shows:

<?xml version="1.0" encoding="utf-8"?>

<!-- security/DetectCurrentSandbox.mxml -->

<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="library://ns.adobe.com/flex/spark"
creationComplete="initApp () ">

<s:layout>
<s:VerticallLayout/>
</s:layout>

<fx:Script><! [CDATA [
[Bindable]
private var mySandboxType:String;
private function initApp () :void {
mySandboxType = String(Security.sandboxType) ;
}
11></fx:Script>
<s:HGroup>
<s:Label text="Sandbox Type: "/>
<s:Label id="tbl" text="{mySandboxType}"/>
</s:HGroup>
</s:Application>

When you compile an application, you have some control over which sandbox the application is in. This
determination is a combination of the value of the use-network compiler option (the default is t rue) and whether
the SWF file was loaded by the client over a network connection or as a local file.

The following table shows how the sandbox type is determined:

use-network Loaded Sandbox type

false locally local-with-filesystem
true locally local-with-network
true network remote

false network n/a (causes an error)

Browser security
Flash Player clients can be one of the following four types:

+ Embedded Flash Player

 Debugger version of embedded Flash Player
« Stand-alone Flash Player

+ Debugger version of stand-alone Flash Player

The stand-alone Flash Player runs on the desktop. It is typically used by people who are running applications that are
installed and maintained by an IT department that has access to the desktop on which the application runs.

Last updated 9/25/2015

120

USING FLEX 121
Application architecture

The embedded Flash Player is run within a browser. Anyone with Internet access can run applications from anywhere
with this player. For Internet Explorer, the embedded player is loaded as an ActiveX control inside the browser. For

Netscape-based browsers (including Firefox), it is loaded as a plug-in inside the browser. Using an embedded player
lets the developer use browser-based technologies such as FORM and BASIC authentication as well as SSL.

Browser APlIs
Applications hosting the Flash Player ActiveX control or Flash Player plug-in can use the EnforceLocalSecurity and

DisableLocalSecurity API calls to control security settings. If DisableLocalSecurity is opened, the application does not

benefit from the local-with-networking and local-with-file-system sandboxes. All files loaded from the local file system
are placed into the local-trusted sandbox. The default behavior for an ActiveX control hosted in a client application is
DisableLocalSecurity.

If EnforceLocalSecurity is opened, the application can use all three local sandboxes. The default behavior for the
browser plug-in is EnforceLocalSecurity.

Cross-scripting

Cross-scripting is when a SWF file communicates directly with another SWF file. This communication includes calling
methods and setting properties of the other SWF file.

SWEF file loading and cross-scripting are always permitted between SWF files that reside in the same sandbox. For
example, any local-with-filesystem SWF file can load and cross-script any other local-with-filesystem SWF file; any
local-with-networking SWF file can load and cross-script any other local-with-networking SWF file; and so on. The
restrictions appear when two SWF files from different sandboxes or two remote SWF files with different domains

attempt to cooperate.

For SWF files in the remote sandbox, if two SWEF files were loaded from the same domain, they can cross-script without
any restrictions. If both SWF files were loaded from a network, but from different domains, you must provide
permissions to allow them to cross-script.

To enable cross-scripting between SWF files, use the Security class’s allowbomain () and allowInsecureDomain ()
methods.

You call these methods from the called SWF file and specify the calling SWF file’s domain. For example, if SWF1 in
domainA.com calls a method in SWF2 in domainB, SWF2 must call the allowbomain () method and specifically allow
SWE files from domainA.com to cross-script the method, as the following example shows:

import flash.system.Security;

Security.allowDomain ("domainA.com") ;

If the SWF files are in different sandboxes (for example, if one SWF file was loaded from the local file system and the
other from a network) they must adhere to the following set of rules:

Remote SWF files (those served over HT'TP and other non-local protocols) can never load local SWF files.
Local-with-networking SWF files can never load local-with-filesystem SWF files, or vice versa.
Local-with-filesystem SWF files can never load remote SWF files.

Local-trusted SWF files can load SWF files from any sandbox.

To facilitate SWF-to-SWF communication, you can also use the LocalConnection class. For more information, see

“Using the LocalConnection class” on page 130.

Last updated 9/25/2015

USING FLEX 122
Application architecture

Externallnterface

You use the ExternalInterface API to let your application call scripts in the wrapper and to allow the wrapper to call
functions in your application. The ExternalInterface API consists primarily of the call () and addcallback ()
methods in the flash.net package.

This communication relies on the domain-based security restrictions that the allowScriptAccess and
allowNetworking properties define. You set the values of the allowScriptAccess and allowNetworking
properties in the SWF file’s wrapper. For more information, see “About the object and embed tags” on page 2564.

By default, the application and the HTML page it is calling must be in the same domain for the call () method to
succeed. For more information, see “Communicating with the wrapper” on page 226.

The navigateToURL() method

The navigateToURL() method opens or replaces a window in the Flash Player’s container application. You typically
use it to launch a new browser window, although you can also embed script in the method’s call to perform other
actions.

This usage of the navigateToURL () method relies on the domain-based security restrictions that the
allowScriptAccess and allowNetworking parameters define. You set the values of the allowScriptAccess and
allowNetworking parameters in the SWF file’s wrapper. For more information, see “About the object and embed
tags” on page 2564.

Caching

Applications reside entirely on the client. If the browser loads the application, the application SWF file, plus externally
loaded images and other media files, are stored locally on the client in the browser’s cache. These files reside in the
cache until cleared.

Storing a SWF file in the browser’s cache can potentially expose the file to people who would not otherwise be able to
see it. The following table shows some example locations of the browser’s cache files:

Browser or operating system Cache location
Internet Explorer on Windows XP C:\Documents and Settings\username\Local Settings\Temporary Internet Files
Firefox on Windows XP C:\Documents and Settings\username\Application

Data\Mozilla\Firefox\Profiles\username.default\Cache

UNIX $SHOME/.mozilla/firefox/username.default/Cache/

These files can remain in the cache even after the browser is closed.

To prevent client browsers from caching the SWF file, try setting the following HTTP headers in the SWF file’s
wrapper:

Cache-control: no-cache, no-store, must-revalidate, max-age=-1
Pragma: no-cache, no-store
Expires: -1

Note that in some cases, setting the pragma header to "no-cache" can cause a runtime error with GET requests over
SSL with the HTTPService class. In this case, setting just the cache-control header should work.

Marc Speck has a blog entry that describes the issue and presents several solutions.

Last updated 9/25/2015

http://faindu.wordpress.com/2008/04/18/ie7-ssl-xml-flex-error-2032-stream-error/

USING FLEX 123
Application architecture

Trusted sites and directories

The browser security model includes levels of trust applied to specific websites. Flash Player interacts with this model
by assigning a sandbox based on whether the browser declared the site of the SWF file’s origin trusted.

If Flash Player loads a SWF file from a trusted website, the SWF file is put in the local-trusted sandbox. The SWF file
can read from local data sources and communicate with the Internet.

You can also assign a SWF file to be in the local-trusted sandbox when you load it from the local file system. To do this,
you configure a directory as trusted by Flash Player (which results in the SWF file being put in the local-trusted
sandbox) by adding a FlashPlayerTrust configuration file that specifies the directory to trust. This requires
administrator access privileges to the client system, so it is typically used in controlled environments. Users can also
define a directory as trusted by using the Flash Player User Settings Manager. For more information, see the Flash
Player documentation.

Deploying secure applications

When you deploy an application, you make the application accessible to your users. The process of deploying an
application is dependent on your application, your application requirements, and your deployment environment. You
can employ some of the following strategies to ensure that the application you deploy is secure.

Deploying local SWF files versus network SWF files

Client computers can obtain individual SWF files from a number of sources, such as from an external website or a local
file system. When SWE files are loaded into Flash Player, they are individually assigned to security sandboxes based
on their origin.

Flash Player classifies SWF files downloaded from the network (such as from external websites) in separate sandboxes
that correspond to their website origin domains. By default, these files are authorized to access additional network
resources that come from the specific (exact domain name match) site. Network SWF files can be allowed to access
additional data from other domains by explicit website and author permissions.

A local SWFE file describes any file referenced by using the “file” protocol or a UNC path, which does not include an IP
address or a qualifying domain. For example, “\\test\test.swf” and “file:\test.swf” are considered local files, while
“W\test.com\test.swf” and “1192.168.0.1\test.swf” are not considered local files.

Local SWF files from local origins, such as local file systems or UNC network paths, are placed into one of three
sandboxes: local-with-networking, local-with-filesystem, and local-trusted.

When you compile the application, if you set the use-network compiler option to £alse, local SWF files are placed
in the local-with-filesystem sandbox. If you set the use-network compiler option to true, local SWF files are placed
in the local-with-networking sandbox.

Local SWFfiles that are registered as trusted (by users or by installer programs) are placed in the local-trusted sandbox.
Users can also reassign (move) a local SWF file to or from the local-trusted sandbox based on their security
considerations.

Deploy checklist

Before you deploy your application, ensure that your proxy servers, firewalls, and assets are configured properly.
Adobe provides a deployment checklist that you can follow. For more information, see “Deployment checklist” on
page 2548.

Remove wildcards

If your application relies on assets loaded from another domain, and that domain has a crossdomain.xml file on it,
remove wildcards from that file if possible. For example, change the following:

Last updated 9/25/2015

USING FLEX 124
Application architecture

<cross-domain-policys>
<site-control permitted-cross-domain-policies="all"/>
<allow-access-from domain="*" to-ports="*"/>
</cross-domain-policy>

to this:

<cross-domain-policy>
<site-control permitted-cross-domain-policies="by-content-type"/>
<allow-access-from domain="*.myserver.com" to-ports="80,443,8100,8080" />
</cross-domain-policys>

Also, set the value of the to-ports attribute of the allow-access-from tag to ensure that you are only allowing
necessary ports access to the resources.

Check your application for calls to the al1owDomain () and allowInsecureDomain () methods. During development,
you might pass these methods a wildcard character (*), but now restrict those methods to allowing requests only from
the necessary domains.

Deploy assets to WEB-INF

In some deployments, you want to make assets such as data files accessible to the application, but not accessible to
anyone requesting the file. If you are using a J2EE-based server, you can deploy those files to a subdirectory within the
WEB-INF directory. Based on J2EE security constraints, no J2EE server can return a resource from the WEB-INF
directory to any client request. The only way to access files in this directory is with server-side code.

Loading assets

The most common task that developers perform that requires an understanding of security is loading external assets.

Data compared to content

The Flash Player security model makes a distinction between loading content and accessing or loading data. Content
is defined as media: visual media that Flash Player can display, such as audio, video, or a SWF file that includes
displayed media. Data is defined as something that you can manipulate only with ActionScript code.

You can load data in one of two ways: by extracting data from loaded media content, or by directly loading data from
an external file (such as an XML file) or socket connection. You can extract data from loaded media by using the
BitmapData.draw()IneﬂHthheSound.idB}Hopeﬂy,ortheSoundMixer.computeSpectrum()nuﬁhod.Youcan
load data by using classes such as the SWFLoader, URLStream, URLLoader, Socket, and XMLSocket classes.

The Flash Player security model defines different rules for loading content and accessing data. Loading content has
fewer restrictions than accessing data. In general, content such as SWF files, bitmaps, MP3 files, and videos can be
loaded from anywhere, but if the content is from a domain other than that of the loading SWF file, it will be partitioned
in a separate security sandbox.

When you load sub applications into a main application with the SWFLoader control, the sandbox into which you load
it determines the level of interoperability between the applications. For more information, see “About security
domains” on page 179.

Last updated 9/25/2015

USING FLEX 125
Application architecture

Loading remote assets

Loading remote or network assets relies on three factors:

+ Type of asset. If the target asset is a content asset, such as an image file, you do not need any specific permissions
from the target domain to load its assets into your application. If the target asset is a data asset, such as an XML file,
you must have the target domain’s permission to access this asset. For more information on the types of assets, see
“Data compared to content” on page 124.

+ Target domain. If you are loading data assets from a different web domain, the target domain must provide a
crossdomain.xml policy file. This file contains a list of URLs and URL patterns that it allows access from. The calling
domain must match one of the URLs or URL patterns in that list. If the target asset is a SWF file, you can also
provide permissions by calling the 1oadPolicyFile () method and loading an alternative policy file inside that
target SWF file. For more information, see “Using cross-domain policy files” on page 125.

+ Loading SWF file’s sandbox. To load an asset from a network address, you must ensure that your SWF file is in
either the remote or local-with-networking sandbox. To ensure that a SWF file can load assets over the network,
you must set the use-network compiler option to t rue when you compile the application. This is the default. If
the application was loaded from the local file system with use-network set to £alse, the application is put in the
local-with-filesystem sandbox and it cannot load remote SWEF files.

Loading assets from a remote location that you do not control can potentially expose your users to risks. For example,
the remote website B contains a SWF file that is loaded by your website A. This SWF file normally displays an
advertisement. However, if website B is compromised and its SWF file is replaced with one that asks for a username
and password, some users might disclose their login information. To prevent data submission, the loader has a
property called allowNetworking with a default value of never.

Using cross-domain policy files

To make data available to SWF files in different domains, use a cross-domain policy file. A cross-domain policy file is
an XML file that provides a way for the server to indicate that its data and documents are available to SWF files served
from other domains. Any SWF file that is served from a domain that the server’s policy file specifies is permitted to
access data or assets from that server.

When a Flash document attempts to access data from another domain, Flash Player attempts to load a policy file from
that domain. If the domain of the Flash document that is attempting to access the data is included in the policy file, the
data is automatically accessible.

The default policy file is named crossdomain.xml and resides at the root directory of the server that is serving the data.
The following example policy file permits access to Flash documents that originate from foo.com, friendOfFoo.com,
*.foo.com, and 105.216.0.40:

<?xml version="1.0"?>

<!-- http://www.foo.com/crossdomain.xml -->

<cross-domain-policy>
<site-control permitted-cross-domain-policies="by-content-type"/>
<allow-access-from domain="www.friendOfFoo.com"/>
<allow-access-from domain="*.foo.com"/>
<allow-access-from domain="105.216.0.40"/>

</cross-domain-policys>

You can also configure ports in the crossdomain.xml file. For more information about crossdomain.xml policy files,
see Security.

You can use the loadPolicyFile () method to access a nondefault policy file.

Last updated 9/25/2015

USING FLEX 126
Application architecture

Loading local assets

In some cases, your SWF file might load assets that reside on the client’s local file system. This typically happens when
the application is embedded on the client device and loaded from a network. If the application is allowed to access local
assets, it cannot access network assets.

To ensure that an application can access assets in the local sandbox, the application must be in the local-with-
filesystem or local-trusted sandbox. To ensure this, you set the use -network compiler option to false when you
compile the application. The default value of this option is true.

When you load another SWF file that is in the local file system into your application with a class such as SWFLoader,
and you want to call methods or access properties of that SWF file, you do not need to explicitly enable cross-scripting.

If the SWF files are in different sandboxes (for example, you loaded the main SWF file into the local-with-network
sandbox, but loaded the asset SWF file from the network), you cannot cross-script because they are in different
sandboxes. Remote SWF files cannot load local SWF files, and vice versa.

Using J2EE authentication
Applications built with Flex integrates well with any server environment, including J2EE. To effectively implement

secure web applications in a J2EE environment, you should understand the following concepts:

Authentication The process of gathering user credentials (user name and password) and validating them in the
system. This requires checking the credentials against a user repository such as a database, flat file, or LDAP
implementation, and authenticating that the user is who they say they are.

Authorization The process of making sure that the authenticated user is allowed to view or access a given resource. If
a user is not authorized to view a resource, the container does not allow access.

Using container-based authentication

J2EE uses the Java Authentication and Authorization Service (JAAS), Java security manager, and policy files to enforce
access controls on users and ties this enforcement to web server roles. The authenticating mechanism is role based.
That is, all users who access a web application are assigned to one or more roles. Example roles are manager, developer,
and customer.

Application developers can assign usage roles to a web application, or to individual resources that make up the
application. Before a user is granted access to a web application resource, the container ensures that the user is
identified (logged in) and that the user is assigned to a role that has access to the resource. Any unauthorized access of
a web application results in an HTTP 401 (Unauthorized) status code.

Authentication requires a website to store information about users. This information includes the role or roles
assigned to each user. In addition, websites that authenticate user access typically implement a login mechanism that
forces verification of each user’s identity by using a password. After the website validates the user, the website can then
determine the user’s roles.

This logic is typically implemented in one of the following forms:
« JDBC Login Module

« LDAP Login Module

« Windows Login Module

+ Custom JAAS Login Module

Authentication occurs on a per-request basis. The container typically checks every request to a web application and
authenticates it.

Last updated 9/25/2015

USING FLEX 127
Application architecture

Authentication requires that the roles that the application developer defines for a web application be enforced by the
server that hosts the application.

As part of developing and deploying an application, you must configure the following application authentication
settings:

+ Access roles to applications
+ Resource protection
+ Application server validation method

The web application’s deployment descriptor, web.xml, contains the settings for controlling application
authentication. This file is stored in the web application’s WEB-INF directory.

Using authentication to control access to applications

To use authentication to prevent unauthorized access to your application, you typically use the container to set up
constraints on resources. You then challenge the user who then submits credentials. These credentials determine the
success or failure of the user’s login attempt, as the container’s authentication logic determines.

For example, you can protect the page that the application is returned with, or protect the SWF file itself. You do this
in the web.xml file by defining specific URL patterns, as the following example shows:

<web-app>
<security-constraints>
<web-resource-collection>
<web-resource-name>Payroll Application</web-resource-names>
<url-patterns/payroll/*</url-patterns>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>manager</role-name>
</auth-constraint>
</security-constraints>
</web-app>

When the browser tries to load a resource that is secured by constraints in the web.xml file, the browser either
challenges the user (if you are using BASIC authentication) or forwards the user to a login page (with FORM
authentication).

With BASIC authentication, the user enters a username and password in a popup box that the browser creates. To
specify that an application uses BASIC authentication, you use the login-config element and its auth-method
subelement in the web application’s web.xml file, as the following example shows:

<web-app>
<login-configs>
<auth-method>BASIC</auth-method>
<realm-name>Managers</realm-name>
</login-configs>

</web-app>

With FORM authentication, you must code the page that accepts the username and password, and submit them as
FORM variables named j_username and j_password. This form can be implemented in HTML or as an application
or anything that can submit a form.

Last updated 9/25/2015

USING FLEX 128
Application architecture

When you configure FORM authentication, you can specify both a login form and an error form in the web.xml file,
as the following example shows:

<web-app>
<login-configs>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login.htm</form-login-page>
<form-error-page>/loginerror.htm</form-error-page>
</form-login-configs>
</login-config>
</web-app>

You submit the results of the form validation to the j_security check action. The server executing the application
recognizes this action and processes the form.

A simple HTML-based form might appears as follows:

<form method="POST" action="j security check">
<table>
<tr><td>User</td><td><input type=text name="j username"></tr>
<tr><td>Password</td><td><input type=password name="j password"></tr>
</table>
<input type=submits>
</form>

The results are submitted to the container’s JAAS system with base-64 encoding, which means they can be read by

anyone that can view the TCP/IP traffic. Use encryption to prevent these so-called “man-in-the-middle” attacks. In
both BASIC and FORM authentication, if the user accessed the resource through SSL, the username and password

submission are encrypted, as is all traffic during that exchange.

After it is complete, the container populates the browser’s security context and provides or denies access to the
resource. Flash Player inherits the security context of the underlying browser. As a result, when you make a data service
call, the established credentials are used.

When a user fails an authentication attempt with invalid credentials, be sure not to return information about which
item was incorrect. Instead, use a generic message such as “Your login information was invalid.”

Using RPC services

You can use the RPC services classes—RemoteObject, HTTPService, and WebService—not only to control access to
the data that goes into an application, but also to control the data and actions that flow out of it. You can also use
service authentication to allow only certain users to perform certain actions. For example, if you have an application
that allows employee data to be modified through a RemoteObject call, use RemoteObject authentication to make sure
that only managers can change the employee data.

A service-based architecture makes it easy to implement several different security models for your application. You
can use programmatic security to limit access to services, or you can apply declarative security constraints to entire
services.

When accessing RPC services with Flex tags such as the <mx:WebService> and <mx:HTTPService> tags, your
application’s SWEF file must connect to the service directly, which means that it can encounter security-based
limitations. When using RPC services, one of the following must be true:

+ The RPC is in the same domain as the application that calls it.

+ The RPC’s host system has a crossdomain.xml file that explicitly allows access from the application’s domain.

Last updated 9/25/2015

USING FLEX 129
Application architecture

Using secured services

Secured services are services that are protected by resource constraints. The service itself behaves as a resource that
needs authentication and the container defines its URL pattern as requiring authorization.

You might have a protected application that calls a protected resource. In this case, with BASIC authentication and a
proxied destination, the user’s credentials are passed through to the service. The user only has to log on once when
they first start the application, and not when the application attempts to access the service.

Without a proxy, the user is challenged to enter their credentials a second time when the application attempts to access
the service.

When you use secured services, keep the following in mind:

« If possible, use HTTPS for your services when you use authentication. In BASIC and custom authentication, user
names and passwords are sent in a base-64 encoding. Using base-64 encoding hides the data only from plain view;
HTTPS actually encrypts the data. You can use HTTPS in these cases by making sure HTTPS is set up on your
server and by adding a protocol attribute with the value ht t ps on the service, and by adding a crossdomain.xml file.

+ To ensure that the WebService and HTTPService endpoints are secure, use a browser window to access the URL
you are trying to secure. This should always bring up a BASIC authentication prompt.

+ If the BASIC or custom login box appears but you can’t log in, make sure that the users and roles were added
correctly to your application server. This is often an error-prone task that is overlooked as the source of the
problem.

Making other connections

Flash Player can connect to servers, services, and load data from sources other than RPC services. Some of these
sources have security issues that you should consider.

Using RTMP

Flash Player uses the Real-Time Messaging Protocol (RTMP) for client-server communication. This is a TCP/IP
protocol designed for high-performance transmission of audio, video, and data messages. RTMP sends unencrypted
data, including authentication information (such as a name and a password).

Although RTMP in and of itself does not offer security features, Flash communications applications can perform
secure transactions and secure authentication through an SSL-enabled web server.

RTMPT connections are HTTP connections for the client to the server over which RTMP data is tunneled. When a
direct RTMP connection is unavailable, the standard and secure channels use RTMPT and tunneled RTMPS
connections, respectively, on the RTMP endpoint.

Use the secure RTMP channel to connect to the RTMP endpoint over Transport Layer Security (TLS). This channel
supports real-time messaging and server-pushed broadcasts. This channel falls back to tunneled RTMPS when a direct
connection is unavailable.

Using sockets

Sockets let you read and write raw binary or XML data with a connected server. Sockets transmit over TCP. Because
of this, Flash Player cannot take advantage of the built-in encryption capabilities of the browser. However, you can use
encryption algorithms written in ActionScript to protect the data that is being communicated.

Last updated 9/25/2015

USING FLEX 130
Application architecture

Cross-domain access to socket and XML socket connections is disabled by default. Access to socket connections in the
same domain of the SWF file on ports lower than 1024 is also disabled by default. You can permit access to these
connections by serving a cross-domain policy file from any of the following locations:

+ The same port as the main socket connection
+ A different port
+ The HTTP server on port 80 in the same domain as the socket server

For more information, see the Socket and XMLSocket classes in ActionScript 3.0 Reference for the Adobe Flash
Platform.

Using the LocalConnection class

The LocalConnection class lets you develop SWF files that can send instructions to each other. LocalConnection
objects can communicate only among SWF files that are running on the same client computer, but they can be running
in different applications—for example, a SWF file running in a browser and a SWF file running in a projector. (A
projector is a SWF file saved in a format that can run as a stand-alone application—that is, the projector doesn’t require
Flash Player to be installed since it is embedded inside the executable file.)

For every LocalConnection communication, there is a sender SWF file and a listener SWEF file. The simplest way to use
a LocalConnection object is to allow communication only between LocalConnection objects located in the same
domain because you won’t have security issues.

Applications served from different domains that need to be able to make LocalConnection calls to each other must be
granted cross-domain LocalConnection permissions. To do this, the listener must allow the sender permission by

using the LocalConnection.allowDomain () Or LocalConnection.allowInsecureDomain () methods.

Adobe does not recommend using the LocalConnection.allowInsecureDomain () method because allowing non-
HTTPS documents to access HTTPS documents compromises the security offered by HT'TPS. It is best that all Flash
SWEF files that make LocalConnection calls to HT'TPS SWF files are served over HTTPS.

For more information about using the LocalConnection class, see ActionScript 3.0 Developer's Guide.

To facilitate SWF-to-SWF communication, you can also use cross-scripting. For more information, see “Cross-
scripting” on page 121.

Using SSL

A SWF file playing in a browser has many of the same security concerns as an HTML page being displayed in a
browser. This includes the security of the SWF file while it is being loaded into the browser, as well as the security of
communication between Flash and the server after the SWF file has loaded and is playing in the browser. In particular,
data communication between the browser and the server is susceptible to being intercepted by third parties. The
solution to this issue in HTML is to encrypt the communication between the client and server to make any data
captured by third parties undecipherable and thus unusable. This encryption is done by using an SSL-enabled browser
and server.

Because a SWF file running within a browser uses the browser for almost all of its communication with the server, it
can take advantage of the browser’s built-in SSL support. This lets communication between the SWEF file and the server
be encrypted. Furthermore, the actual bytes of the SWF file are encrypted while they are being loaded into the browser.
Thus, by playing a SWF file within an SSL-enabled browser through an HTTPS connection with the server, you can
ensure that the communication between Flash Player and the server is encrypted and secure.

Last updated 9/25/2015

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html
http://www.adobe.com/go/learn_flex_programmingAS3_en

USING FLEX 131
Application architecture

The one exception to this security is the way Flash Player uses persistent sockets (through the ActionScript XMLSocket
object), which does not use the browser to communicate with the server. Because of this, SWF files that use sockets
cannot take advantage of the built-in encryption capabilities of the browser. However, you can use one-way encryption
algorithms written in ActionScript to encrypt the data being communicated.

MD5 is a one-way encryption algorithm described in RFC 1321. This algorithm has been ported to ActionScript, which
enables developers to secure one-way data by using the MD5 algorithm before it is sent from the SWEF file to the server.
For more information about RFC 1321, see www.fags.org/rfcs/rfc1321.html.

Using secure endpoints
To access HTTP services or web services through HTTPS, you can specify the protocols using “https” in the wsdl or
url properties; for example:

<mx:WebService url="https://myservice.com" .../>
<mx:HTTPService wsdl="https://myservice.com" .../>

By default, a SWF file served over an unsecure protocol, such as HTTP, cannot access other documents served over
the secure HTTPS protocol, even when those documents come from the same domain. As a result, if you loaded the
SWEF file over HTTP but want to connect to the service through HTTPS, you must add secure="false" in the
crossdomain.xml file on the services’s server, as the following example shows:

<cross-domain-policy>
<site-control permitted-cross-domain-policies="by-content-type"/>
<allow-access-from domain="*.mydomain.com" secure="false"/>
</cross-domain-policy>

If you loaded the SWF file over HTTPS, you do not have to make any changes.

Writing secure applications

When you code an application, keep the following topics in mind to ensure that the application you write is as secure
as possible.

MXML tags with security restrictions

Some MXML tags trigger operations that require security settings. Operations that trigger security checks include:
+ Referencing a URL that is outside the exact domain of the application that makes a request.

+ Referencing an HTTPS URL when the application that makes the request is not served over HTTPS.

« Referencing a resource that is in a different sandbox.

In these cases, access rights must be granted through one of the permission-granting mechanisms such as the
allowDomain () method or a crossdomain.xml file.

MXML tags that can trigger security checks include:

+ Any class that extends the Channel class.

+ RPC-related tags that use channels such as <mx : WebServices>, <mx:RemoteObject>, and <mx:HTTPServices.
« Messaging tags such as <mx: Producer> and <mx: Consumers.

+ The <mx:DataService> tag.

+ Tags that load SWF files such as <mx: SWFLoader> and <s:ModuleLoaders.

In addition to these tags and their underlying classes, many Flash classes trigger security checks including
ExternalInterface, Loader, NetStream, SoundMixer, URLLoader, and URLRequest.

Last updated 9/25/2015

http://www.faqs.org/rfcs/rfc1321.html

USING FLEX 132
Application architecture

Disabling viewSourceURL

If you enabled the view source feature by setting the value of the viewSourceURL property on the <s:Application>
tag, you must be sure to remove it before you put your application into production.

This functionality applies only to Flash Builder users.

Remove sensitive information from SWF files

Applications built with Flash share many of the same concerns and issues as web pages when it comes to protecting
the security of data. Because the SWF file format is an open format, you can extract data and algorithms contained
within a SWE file. This is similar to how HTML and JavaScript code can be easily viewed by users. However, SWF files
make viewing the code more difficult. A SWF file is compiled and is not human-readable like HTML or JavaScript.

But security is not obtained through obscurity. A number of third-party tools can extract data from compiled SWF
files. As a result, do not consider that any data, variables, or ActionScript code compiled into an application are secure.
You can use a number of techniques to secure sensitive information and still make it available for use in your SWF files.

To help ensure a secure environment, use the following general guidelines:
+ Do not include sensitive information, such as user names, passwords, or SQL statements in SWF files.
+ Do not use client-side username and password checks for authentication.

+ Remove debug code, unused code, and comments from code before compiling to minimize the amount of
information about your application that is available to someone with a decompiler or a debugger version of Flash
Player.

« Ifyour SWF file needs access to sensitive information, load the information into the SWF file from the server at run
time. The data will not be part of the compiled SWF file and thus cannot be extracted by decompiling the SWF file.
Use a secure transfer mechanism, such as SSL, when you load the data.

« Implement sensitive algorithms on the server instead of in ActionScript.
+ Use SSL whenever possible.

+ Only deploy your web applications from a trusted server. Otherwise, the server-side aspect of your application
could be compromised.

Input validation

Input validation means ensuring that input is what it says it is or is what it is supposed to be. If your application is
expecting name and address information, but it gets SQL commands, have a validation mechanism in your application
that checks for and filters out SQL-specific characters and strings before passing the data to the execute method.

In many cases, you want users to provide input in TextInput, TextArea, and other controls that accept user input. If
you use the input from these controls in operations inside the application, make sure that the input is free of possible
malicious characters or code.

One approach to enforcing input validation is to use the validator classes. Validators ensure that the input conforms
to a predetermined pattern. For example, the NumberValidator class ensures that a string represents a valid number.
This validator can ensure that the input falls within a given range (specified by the minvalue and maxvalue
properties), is an integer (specified by the domain property), is non-negative (specified by the allowNegative
property), and does not exceed the specified precision.

In typical client-server environments, data validation occurs on the server after data is submitted to it from the client.
One advantage of using validators in Flex is that they execute on the client, which lets you validate input data before
transmitting it to the server. By using validators, you eliminate the need to transmit data to and receive error messages
back from the server, which improves the overall responsiveness of your application.

Last updated 9/25/2015

USING FLEX 133
Application architecture

You can also write your own ActionScript filters that remove potentially harmful code from input. Common
approaches include stripping out dollar sign ($), quotation mark ("), semi-colon (;) and apostrophe (') characters
because they have special meaning in most programming languages. Because Flex also renders HTML in some
controls, also filter out characters that can be used to inject script into HTML, such as the left and right angle brackets
(“<” and “>”), by converting these characters to their HTML entities “&It;” and “>”. Also filter out the left and right
parentheses (“("and “)”) by translating them to “(” and “)”, and the pound sign (“#”) and ampersand (“&”)

by translating them to “#” (#) and “&” (&).

Another approach to enforcing input validation is to use strongly-typed, parameterized queries in your SQL code. This
way, if someone tries to inject malicious SQL code into text that is used in a query, the SQL server will reject the query.

For more information on potentially harmful characters and conversion processes, see
http://www.cert.org/tech_tips/malicious_code_mitigation.html.

For more information about validators, see “Validating Data” on page 1964.

ActionScript

Use some of the following techniques to try to make your use of ActionScript more secure.

Handling errors

The SecurityError exception is thrown when some type of security violation takes place. Security errors include:
+ An unauthorized property access or method call was made across a security sandbox boundary.
+ An attempt was made to access a URL not permitted by the security sandbox.

+ A socket connection was attempted to an unauthorized port number, for example, a port below 1024, without a
policy file present.

+ An attempt was made to access the user’s camera or microphone, and the request to access the device was denied
by the user.

Flash Player dispatches SecurityErrorEvent objects to report the occurrence of a security error. Security error events
are the final events dispatched for any target object. This means that any other events, including generic error events,
are not dispatched for a target object that experiences a security error.

Your event listener can access the SecurityErrorEvent object’s text property to determine what operation was
attempted and any URLs that were involved, as the following example shows:

Last updated 9/25/2015

http://www.cert.org/tech_tips/malicious_code_mitigation.html

USING FLEX
Application architecture

<?xml version="1.0" encoding="utf-8"?>
<!-- security/SecurityErrorExample.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:s="1library://ns.adobe.com/flex/spark">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script><! [CDATA [
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.events.SecurityErrorEvent;
import mx.controls.Alert;
private var loader:URLLoader = new URLLoader() ;

private function triggerSecurityError () :void
var request:URLRequest = new URLRequest ("c:/temp/feeds.txt");

// Triggers a security exception if you run this SWF from a server without
// explicitly allowing local file-access permissions.

try {
loader.load (request) ;

} catch (error:SecurityError)
Alert.show(error.name + ": " + error.message) ;

}
]1></fx:Script>
<s:Button id="bl" label="Click Me To Trigger Security Error"
click="triggerSecurityError () "/>
</s:Application>
If no event listeners are present, the debugger version of Flash Player automatically displays an error message that
contains the contents of the text property.

In general, try to wrap methods that might trigger a security error in a try/catch block. This prevents users from seeing
information about destinations or other properties that you might not want to be visible.

Suppressing debug output

Flash Player writes debug output from a trace () method or the Logging API to a log file on the client. Any client can
be running the debugger version of Flash Player. As a result, remove calls to the trace () method and Logging API
calls that produce debugging output so that clients cannot view your logged information.

If you use the Logging API in your custom components and classes, set the value of the LogEventLevel to NONE before
compilation, as the following example shows:

myTraceTarget.level = LogEventLevel.NONE;

For more information about the Logging API, see “Using the logging API” on page 2229.
Using host-based authentication

IP addresses and HTTP headers are sometimes used to perform host-based authentication. For example, you might
check the Referer header or the client IP address to ensure that a request comes from a trusted source.

Last updated 9/25/2015

134

USING FLEX
Application architecture

However, request headers such as Referer can be spoofed easily. This means that clients can pretend to be something
they are not by settings headers or faking IP addresses. The solution to the problem of client spoofing is to not use
HTTP header data as an authentication mechanism.

Using passwords

Using passwords in your application is a common way to protect resources from unauthorized access. Test the validity
of the password on the server rather than the client, because the client has access to all the logic in the local SWF file.

Never store passwords locally. For example, do not store username and password combinations in local
SharedObjects. These are stored in plain-text and unencrypted, just as cookie files are. Anyone with access to the user’s
computer can access the information inside a SharedObject.

To ensure that passwords are transmitted from the client to the server safely, enforce the use of SSL or some other
secure transport-level protocol.

When you ask for a password in a TextArea or TextInput control, set the displayAsPassword property to true. This
displays the password as asterisks as it is typed. This also prevents copy/paste operations from accessing the underlying
characters in the text field.

Storing persistent data with the SharedObject class

Flash Player supports persistent shared objects through the SharedObject class. The SharedObject class stores data on
users’ computers. This data is usually local, meaning that it was obtained with the Sharedobject .getLocal ()
method. You can also create persistent remote data with the SharedObject class; this requires Adobe® Flash® Media
Server.

Each remote sandbox has an associated store of persistent SharedObject directory on the client. For example, when
any SWF from domainl.com reads or writes data with the SharedObject class, Flash Player reads or writes that object
in the domainl.com object store. Likewise for a SWF from domain2.com, Flash Player uses the domain2.com store.
To avoid name collisions, the directory path defaults to the full path in the URL of the creating SWF file. This process
can be shortened by using the 1ocalPath parameter of the Sharedobject.getLocal () method, which allows other
SWE files from the same domain to access a shared object after it is created.

Every domain has a maximum amount of data that a SharedObject class can save in the object store. This is an
allocation of the user’s disk space in which applications from that domain can store persistent data. Users can change
the quota for a domain at any time by choosing Settings from the Flash Player context menu. When an application tries
to store data with a SharedObject class that causes Flash Player to exceed its domain’s quota, a dialog box appears,
asking the user whether to increase the domain quota.

Configuring client security settings

Some security control features in Flash Player target user choices, and some target the modern corporate and
enterprise environments, such as when the IT department would like to install Flash Player across the enterprise but
has concerns about IT security and privacy. To help address these types of requirements, Flash Player provides various
installation-time configuration choices. For example, some corporations do not want Flash Player to have access to the
computer’s audio and video hardware; other environments do not want Flash Player to have any read or write access
to the local file system.

Three groups can make security choices: the application author (using developer controls), the administrative user
(using administrator controls), and the local user (with user controls).

Last updated 9/25/2015

USING FLEX 136
Application architecture

About the mm.cfg file

You configure the debugger version of Flash Player by using the settings in the mm.cfg text file. You must create this
file when you first configure the debugger version of Flash Player.

The settings in this file let you enable or disable trace () logging, set the location of the trace () file’s output, and
configure client-side error and warning logging.

For more information, see “Editing the mm.cfg file” on page 2224.

About the mms.cfg file

The primary purpose for the security configuration file (mms.cfg) is to support the corporate and enterprise
environments where the IT department wants to install Flash Player across the enterprise, while enforcing some
common global security and privacy settings (supported with installation-time configuration choices).

On operating systems that support the concept of user security levels, the file is flagged as requiring system
administrator (or root) permissions to modify or delete it. The following table shows the location of the mm:s.cfg file,
depending on the operating system:

Operating System Location of mms.cfg file

Macintosh OS X /Library/Application Support/Macromedia
Windows XP/Vista C:\WINDOWS\system32\Macromed\Flash
Windows 2000 C:\WINNT\System32\Macromed\Flash
Windows 95/98/ME C:\WINDOWS\System\Macromed\Flash
Linux /etc/adobe

You can use this file to configure security settings that deal with data loading, privacy, and local file access. The settings
include:

e FileDownloadDisable
e FileUploadDisable
¢ LocalStorageLimit
¢ AVHardwareDisable

For a complete list of options and their descriptions, see http://www.adobe.com/go/fp9_admin.

About FlashPlayerTrust files

Flash Player provides a way for administrative users to register certain local files so that they are always loaded into the
local-trusted sandbox. Often an installer for a native application or an application that includes many SWF files will
do this. Depending on whether Flash Player will be embedded in a nonbrowser application, one of two strategies can
be appropriate: register SWF files and HTML files to be trusted, or register applications to be trusted. Only applications
that embed the browser plug-ins can be trusted—the stand-alone players and standard browsers do not check to see if
they were trusted.

The installer creates files in a directory called FlashPlayerTrust. These files list paths of trusted files. This directory,
known as the Global Flash Player Trust directory, is alongside the mms.cfg file, in the following location, which
requires administrator access:

« Windows: system\Macromed\Flash\FlashPlayerTrust (for example,
C:\winnt\system32\Macromed\Flash\FlashPlayerTrust)

Last updated 9/25/2015

http://www.adobe.com/go/fp9_admin.

USING FLEX 137
Application architecture

« OS X: app support/Macromedia/FlashPlayerTrust (for example, /Library/Application
Support/Macromedia/FlashPlayerTrust)

These settings affect all users of the computer. If an installer is installing an application for all users, the installer can
register its SWF files as trusted for all users.

For more information about FlashPlayerTrust files, see
http://www.adobe.com/devnet/flashplayer/articles/flash_player10_security_wp.html.

About the Settings Manager

The Settings Manager allows the individual user to specify various security, privacy, and resource usage settings for
applications executing on their client computer. For example, the user can control application access to select facilities
(such as their camera and microphone), or control the amount of disk space allotted to a SWF file’s domain. The
settings it manages are persistent and controlled by the user.

The user can indicate their personal choices for their Flash Player settings in a number of areas, either globally (for
Flash Player itself and all applications built with Flash) or specifically (applying to specific domains only). To designate
choices, the user can select from the six tab categories along the top of the Settings Manager dialog box:

+ Global Privacy Settings

+ Global Storage Settings

+ Global Security Settings

+ Flash Player Update Settings

« Privacy Settings for Individual Websites

« Storage Settings for Individual Websites

Access the Settings Manager for your Flash Player
1 Open an application in Flash Player.

2 Right-click and select Settings.

The Adobe Flash Player Settings dialog box appears.
3 Select the Privacy tab (on the far left).
4 Click the Advanced button.

Flash Player launches a new browser window and loads the Settings Manager help page.

Other resources

The following table lists resources that are useful in understanding the Flash Player security model and implementing
security in your applications:

Resource name Location

Security Topic Center http://www.adobe.com/devnet/security

Security Bulletins and Advisories http://www.adobe.com/support/security

Flash Player Security & Privacy http://www.adobe.com/products/flashplayer/security

Security Resource Center http://www.adobe.com/resources/security

Flash Player 10 Security white paper http://www.adobe.com/devnet/flashplayer/articles/flash_player10_security_wp.html

Last updated 9/25/2015

http://www.adobe.com/devnet/flashplayer/articles/flash_player10_security_wp.html
http://www.adobe.com/devnet/security
http://www.adobe.com/support/security
http://www.adobe.com/products/flashplayer/security
http://www.adobe.com/resources/security
http://www.adobe.com/devnet/flashplayer/articles/flash_player10_security_wp.html

USING FLEX
Application architecture

Resource name Location

Flash Player 10 Security changes http://www.adobe.com/go/fp10_security

“Flash Player Security” http://www.adobe.com/go/progAS3_security

“Networking and Communications” http://www.adobe.com/go/AS3_networking_and_communications
Settings Manager http://www.adobe.com/support/flashplayer/help/settings/

Modular applications

Modules quick start

Modules are SWF files that are similar to applications. You use modules to externalize functionality and load it only
when it is needed. Applications can load and unload modules at run time, which can save start up time and memory
because the applications can be smaller and download faster.

The most common use of modules is in a navigator container. Typically, each view in a navigator container is a
module. When the user navigates to a new view, a new module is loaded.

You compile modules just as you would any application file. On the command line, you create a new module and
compile it with the mxmlc compiler. In Flash Builder, you create a new module by selecting File > New > MXML
Module.

Modules are MXML documents with <s:Module> as the root tag. Within that tag, you can use any child tags that you
can use in a <s:Application> tag. The following examples shows two modules:

HorizontalLayoutModule.mxml:

<?xml version="1.0" encoding="utf-8"?>
<!-- modules/mxmlmodules/HorizontallLayoutModule.mxml -->
<s:Module xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
minWidth="955" minHeight="600"
>
<fx:Declarations>
</fx:Declarations>
<fx:Style>
</fx:Style>

<fx:Script>

<! [CDATA[

11>
</fx:Scripts>
<s:layout>

<s:Horizontallayout />
</s:layout>
<s:Label text="label three"/>
<s:Button label="button three"/>
<s:Label text="label four"/>
<s:Button label="button four"/>

</s:Module>

VerticalLayoutModule.mxml:

Last updated 9/25/2015

138

http://www.adobe.com/go/fp10_security
http://www.adobe.com/go/AS3_security
http://www.adobe.com/go/AS3_networking_and_communications
http://www.adobe.com/support/flashplayer/help/settings/

USING FLEX
Application architecture

<?xml version="1.0" encoding="utf-8"?>
<!-- modules/mxmlmodules/VerticalLayoutModule.mxml -->
<s:Module xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
minWidth="955" minHeight="600">
<fx:Declarations>
</fx:Declarations>
<fx:Style>
</fx:Style>

<fx:Script>
<! [CDATA[
11>
</fx:Scripts>
<s:layout>
<s:VerticallLayout />
</s:layout>
<s:Label text="label one"/>
<s:TextInput />
<s:Label text="label two"/>
<s:TextArea/>
</s:Module>

To load modules in an application, you use a <s : ModuleLoader> tag inside a container. The container can be an MX
container (such as a TabNavigator container), or a Spark container (such as a Group). The following example
application uses a TabNavigator container:

<?xml version="1.0" encoding="utf-8"?>

<!-- modules/SimplelLoader.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
minWidth="955" minHeight="600">

<mx:TabNavigator width="500" height="300">
<s:ModuleLoader label="Tab One" url="mxmlmodules/VerticallLayoutModule.swf"/>
<s:ModuleLoader label="Tab Two" url="mxmlmodules/HorizontalLayoutModule.swf"/>
</mx:TabNavigators>
</s:Application>

When the application first loads, Flash Player loads the first module in the first view of the container. When the user
navigates to the second view of the container, Flash Player loads the second module.

The Spark ModuleLoader class implements the INavigatorContent interface. As a result, it provides some convenience
properties for working with navigator containers. For example, you can use the 1abel property to set a label on the
tab in a TabNavigator container, or you can use the icon property to instead add an icon to the tab.

The ModuleLoader class also provides a creationPolicy property. You can use this property to instruct the
application when to load the module.

More Help topics

“Using mxmlc, the application compiler” on page 2174

“About the creationPolicy property” on page 2336

Last updated 9/25/2015

139

USING FLEX 140
Application architecture

Modular applications overview

About modules

Modules are SWF files that can be loaded and unloaded by an application. They cannot be run independently of an
application, but any number of applications can share the modules.

Modules let you split your application into several pieces, or modules. The main application, or shell, can dynamically
load other modules that it requires, when it needs them. It does not have to load all modules when it starts, nor does
it have to load any modules if the user does not interact with them. When the application no longer needs a module,
it can unload the module to free up memory and resources.

Modular applications have the following benefits:

+ Smaller initial download size of the SWF file.
+ Less memory use of overall application when modules are unloaded.
+ Shorter load time due to smaller SWF file size.

+ Better encapsulation of related aspects of an application. For example, a “reporting” feature can be separated into
a module that you can then work on independently.

Modules and sub-applications are similar in many ways. Before deciding on an architecture for your applications, see
the comparison of these two approaches in “Comparing loaded applications to modules” on page 187.

Benefits of modules

A module is a special type of dynamically loadable SWF file that contains an IFlexModuleFactory class factory. This
allows an application to load code at run time and create class instances without requiring that the class
implementations be linked into the main application.

Modules are similar to Runtime Shared Libraries (RSLs) in that they separate code from an application into separately
loaded SWF files. Modules are very flexible because modules can be loaded and unloaded at run time and compiled
without the application.

Two common scenarios in which using modules is beneficial are a large application with different user paths and a
portal application.

An example of the first common scenario is an enormous insurance application that includes thousands of screens, for
life insurance, car insurance, health insurance, dental insurance, travel insurance, and veterinary pet insurance.

By using a traditional approach to Rich Internet Application (RIA) design, you might build a monolithic application
with a hierarchical tree of MXML classes. Memory use and start-up time for the application would be significant, and
the SWF file size would grow with each new set of functionality.

When using this application, however, any user accesses only a subset of the screens. By refactoring the screens into
small groups of modules that are loaded on demand, you can improve the perceived performance of the main
application and reduce the memory use. Also, when the application is separated into modules, developers’ productivity
may increase due to better encapsulation of design. When rebuilding the application, the developers also have to
recompile only the single module instead of the entire application.

An example of the second common scenario is a system with a main portal application, written in ActionScript 3.0,
that provides services for numerous portlets. Portlets are configured based on data that is downloaded on a per-user
basis. By using the traditional approach, you might build an application that compiles in all known portlets. This is
inefficient, both for deployment and development.

Last updated 9/25/2015

USING FLEX 141
Application architecture

By using modules, you can establish an interface that contains portal services, and a generic portlet interface. You can
use XML data to determine which modules to load for a given session. When the module is loaded, you obtain a handle
to a class factory inside the module, and from that you create an instance of a class that implements the portlet
interface. In this scenario, full recompilation is necessary only if the interfaces change.

Module API details

Modules implement a class factory with a standard interface. The product of that class factory implements an interface
known to the shell, or the shell implements an interface known to the modules. These shared interfaces reduce hard

dependencies between the shell and the module. This provides type-safe communication and enforces an abstraction
layer without adding significantly to the SWF file size.

The following image shows the relationship between the shell and the module’s interfaces:

Application
ConcreteShell
Manager AbstractClient
l I Module
AbstractFactory AbstractProduct
ConcreteFactory ConcreteProduct

The ModuleManager manages the set of loaded modules, which are treated as a map of Singletons that are indexed by
the module URL. Loading a module triggers a series of events that let clients monitor the status of the module. Modules
are only ever loaded once, but subsequent reloads also dispatch events so that client code can be simplified and rely on
using the READY event to know that the module’s class factory is available for use.

The ModuleLoader class is a thin layer on top of the ModuleManager API that is intended to act similarly to the
mx.controls.SWFLoader class for modules that only define a single visual UIComponent. The ModuleLoader class is
the easiest class to use when implementing a module-based architecture, but the ModuleManager provides greater
control over the modules.

The ModuleLoader class implements the INavigatorContent interface so that it can be used directly by MX-based
navigator containers (such as TabNavigator). The ModuleLoader class does not have any UI associated with it. All UI
is defined by the module that it loads.

The Spark Module class extends the SkinnableContainer class. This means you can skin it and add visual components,
including graphics, as children.

Module domains and sharing class libraries

By default, a module is loaded into a child domain of the current application domain. You can specify a different
application domain by using the applicationDomain property of the ModuleLoader class.

Because a module is loaded into a child domain, it owns class definitions that are not in the main application’s domain.
For example, the first module to load the PopUpManager class becomes the owner of the PopUpManager class for the
entire application because it registers the manager with the SingletonManager. If another module later tries to use the
PopUpManager, Adobe ° Flash® Player throws an exception.

Last updated 9/25/2015

USING FLEX 142
Application architecture

One solution is to use framework RSLs when compiling your applications and modules (RSLs are enabled by default).
The definitions of the manager classes will be loaded in the framework RSL by the main application. Then, all the
modules and sub-applications can share it. For more information about using framework RSLs with modules, see
“Using RSLs with modules” on page 145.

If you do not use RSLs, the solution is to ensure that managers such as PopUpManager and DragManager and any
other shared services are defined by the main application (or loaded late into the shell’s application domain). When
you promote one of those classes to the main application, the class can then be used by all modules. Typically, this is
done by adding the following to a script block in the main application:

import mx.managers.PopUpManager;
import mx.managers.DragManager;
import mx.managers.ToolTipManager;
import mx.managers.CursorManager;
import mx.core.EmbeddedFontRegistry;

private var popUpManager :PopUpManager;

private var dragManager:DragManager;

private var tooltipManager:ToolTipManager;

private var cursorManager:CursorManager;

private var embeddedFontRegistry:EmbeddedFontRegistry;

You should only define these classes in your main application if your modules use the related functionality. For
example, define the EmbeddedFontRegistry class in your main application if one or more of your modules uses
embedded fonts.

This technique also applies to components. The module that first uses the component owns that component’s class
definition in its domain. As a result, if another module tries to use a component that has already been used by another
module, its definition will not match the existing definition.

To avoid a mismatch of component definitions, create an instance of the component in the main application. The
result is that the definition of the component is owned by the main application and can be used by modules in any
child domain.

By default, modules do not share the main application’s StyleManager, however. They have their own instances of the
IStyleManager?2 class. As a result, modules can define their own styles. For example, style properties set on a Button
control in one module are not applied to the Button control in another module or to the main application.

Because a module must be in the same security domain as the application (SWF) that loads it, when you're using
modules in an AIR application, any module SWF must be located in the same directory as the main application SWF
or one of its subdirectories, which ensures that, like the main application SWF, the module SWF is in the AIR
application security sandbox. One way to verify this is to ensure that a relative URL for the module’s location doesn’t
require "../" ("up one level") notation to navigate outside the application directory or one of its subdirectories.

For more information about application domains, see “Developing and loading sub-applications” on page 176.

Create a modular application
To create a modular application, you create separate classes for each module, and an application that loads the
modules. Adobe® Flash® Builder™ provides some mechanisms for making module use easier.

1 Create any number of modules. An MXML-based module file’s root tag is <s :Modules. ActionScript-based
modules extend either the Module or ModuleBase class.

2 Compile each module as if it were an application. You can do this by using the mxmlc command-line compiler or
the compiler built into Adobe Flash Builder.

Last updated 9/25/2015

USING FLEX 143
Application architecture

3 Create an Application class. This is typically an MXML file whose root tag is <s:Applications>, but it can also be
an ActionScript-only application.

4 In the Application file, use an <s:ModuleLoaders> tag to load each of the modules. You can also load modules by
using methods of the spark.modules.ModuleLoader and mx.modules.ModuleManager classes in ActionScript.

Using styles with modules

When you set styles on modules, the style properties are set on the local StyleManager. Each module has its own
instance of the IStyleManager2 class. This means that each module can load its own set of styles, and its styles do not
necessarily affect the styles of other modules.

After an application finishes loading a module, the module’s styles are merged with the styles of the application. The
module’s StyleManager walks the chain of parent modules and applications, up to the top-level StyleManager, and
merges its styles with those set on the StyleManagers above it.

If during a style merge, a module encounters a style that it already sets on itself, the style is ignored. If the module
encounters a style not set on itself, the style is added to the merged style definition. The styles set on the StyleManager
that is closest to the module wins.

The following example loads two modules. The main application sets the color and cornerRadius style properties
on the Button control type selector. The modules each set the color property on the Button control type selector. The
merged styles result in the Buttons having a corner radius of 10, with colors set by each module. This shows how style
merges work.

<?xml version="1.0"?>
<!-- modules/StyleModLoaderApp.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1ibrary://ns.adobe.com/flex/mx" >
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Style>
@namespace s "library://ns.adobe.com/flex/spark";
s|Button {
color:blue;
cornerRadius:10;
1
</fx:Style>
<8:VGroup>
<s:Label id="11" text="Module 1"/>
<s:ModuleLoader id="mll" url="mxmlmodules/StyleModl.swf"/>
</s:VGroup>
<s:VGroup>
<s:Label id="12" text="Module 2"/>
<s:Moduleloader id="ml2" url="mxmlmodules/StyleMod2.swf"/>
</s:VGroup>
<s:Button id="myButton" label="Main App Button"/>
</s:Application>

Module 1:

Last updated 9/25/2015

USING FLEX
Application architecture

<?xml version="1.0"?>
<!-- modules/mxmlmodules/StyleModl.mxml -->
<s:Module
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1ibrary://ns.adobe.com/flex/mx" >
<fx:Style>
@namespace s "library://ns.adobe.com/flex/spark";
s|Button {
color:red;

}

</fx:Style>

<s:Button label="StyleModl"/>
</s:Module>

Module 2:

<?xml version="1.0"7?>
<!-- modules/mxmlmodules/StyleMod2.mxml -->
<s:Module
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx" >
<fx:Style>
@namespace s "library://ns.adobe.com/flex/spark";
s|Button {
color:green;

}

</fx:Style>

<s:Button label="StyleMod2"/>
</s:Module>

To prevent style merges, set the isolate-styles compiler argument to £alse. By doing this, you might trigger type
coercion errors when loading skins. Modules also might not be properly garbage collected when they are unloaded.
This is because the main application’s StyleManager will maintain references to the module even after is is unloaded.
When you set isolate-styes to false, if more than one module loads a style, the first one loaded wins. In this case,
styles set on modules can be overridden by those set on other modules.

In the previous example, if you set the isolate-styles compiler argument to £alse, the color of the Button controls’
labels in both modules would be red, because that is definition that is first loaded.

The getStyleDeclarations () method returns only the local style definitions. To get the merged style definitions,
you can use the getMergedstyleDeclaration () method. All methods that modify style definitions affect only the
local style definitions and not the merged style definitions.

Style properties are merged when the module is loaded. This means that style properties set on the main application
and all child applications and modules are set on the module if the module does not override that style. Merged styles
are set on a per-property basis, starting with the closest StyleManager and working upwards to the top-level
StyleManager.

Even when using merged styles, child modules still inherit their parent module or application’s inheritable style
properties when those settings are applied at runtime. Their StyleManager is not changed, but the values of the
properties are inherited and applied where applicable. If you set a property at run time on the main application, the
modules inherit that style immediately, as the following example shows:

Last updated 9/25/2015

144

USING FLEX 145
Application architecture

<?xml version="1.0"?>
<!-- modules/StyleModLoaderApp2.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/mx">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
/* When you set this style in the main application, the modules immediately
inherit the value. */
private function changeStyle () :void {
styleManager.getStyleDeclaration ("spark.components.Button") .setStyle ("fontSize",
15);
1
</fx:Script>
<fx:Style>
@namespace s "library://ns.adobe.com/flex/spark";
s|Button {
color:blue;
cornerRadius:10;
1
</fx:Style>
<s:VGroup>
<s:Label id="11" text="Module 1"/>
<s:ModuleLoader id="mll" url="mxmlmodules/StyleModl.swf"/>
</s:VGroup>
<s:VGroup>
<s:Label id="12" text="Module 2"/>
<s:ModuleLoader id="ml2" url="mxmlmodules/StyleMod2.swf"/>
</s:VGroup>
<s:Button label="Change Styles" click="changeStyle()"/>
</s:Application>

For information on using run-time style sheets with modules, see “Using run-time style sheets with modules and sub-
applications” on page 1554.

If you use run-time resource bundles with loaded modules, you should consider setting the addResourceBundle ()
method’s useWeakReferences parameter to true. For more information, see “Preventing memory leaks in modules
and sub-applications” on page 2118.

Using RSLs with modules

Starting with Flex 4.5, modules work much more efficiently with RSLs. Modules will not load RSLs that the main
application has already loaded, and modules can share RSLs with other modules.

The application only loads those framework RSLs that are needed at startup, and creates placeholders for all remaining
framework RSLs. When a module is loaded, it does not try to load RSLs that are already loaded by the main application.
If the module needs a framework RSL that is not initially loaded by the main application (and has a placeholder), then
the module loads the RSL.

In addition, when a module loads an RSL, you can specify which domain the RSL is loaded into with the
application-domain compiler argument. This lets you load an RSL into the parent, current, or top-level application
domains. This applies to both framework RSLs and custom RLSs.

Last updated 9/25/2015

USING FLEX 146
Application architecture

For more information about using modules and RSLs, see “Using RSLs with modules and sub-applications” on
page 258.

Using pop-ups with modules

When using modules as pop-ups, you might not be able to click or drag the pop-up. The solution is to create a subclass
of the pop-up (such as a TitleWindow container) that you use as the top-level MXML tag in the Module.

For more information, see Alex's Flex Closet.

Writing modules

Modules are classes just like application files. You can create them either in ActionScript or by extending a Flex class
by using MXML tags. You can create modules in MXML and in ActionScript.

After you compile a module, you can load it into an application or another module. Typically, you use one of the
following techniques to load MXML-based modules:

+ ModuleLoader — The ModuleLoader class provides the highest-level API for handling modules. For more
information, see “Using the ModuleLoader class to load modules” on page 150.

+ ModuleManager — The ModuleManager class provides a lower-level API for handling modules than the
ModuleLoader class does. For more information, see “Using the ModuleManager class to load modules” on
page 152.

Creating MXML-based modules

To create a module in MXML, you extend the spark.modules.Module class by creating a file whose root tag is
<s:Module>. In that tag, ensure that you add any namespaces that are used in that module. You must also include an
XML type declaration tag at the beginning of the file, such as the following:

<?xml version="1.0"?>
The following example is a module that includes a Chart control:

<?xml version="1.0"?>

<!-- modules/ColumnChartModule.mxml -->

<s:Module
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
width="100%" height="100%" >

<s:layout>
<s:VerticalLayout/>
</s:layout>

<fx:Script><! [CDATA [
import mx.collections.ArrayCollection;
[Bindable]
public var expenses:ArrayCollection = new ArrayCollection([
{Month:"Jan", Profit:2000, Expenses:1500},
{Month:"Feb", Profit:1000, Expenses:200},
{Month:"Mar", Profit:1500, Expenses:500}
1)
]1></fx:Script>

Last updated 9/25/2015

http://blogs.adobe.com/aharui/2007/08/popup_dialogs_as_modules.html

USING FLEX
Application architecture

<mx:ColumnChart id="myChart" dataProvider="{expenses}">
<mx:horizontalAxis>
<mx:CategoryAxis
dataProvider="{expenses}"
categoryField="Month"/>
</mx:horizontalAxis>
<mx:series>
<mx:ColumnSeries
xField="Month"
yField="Profit"
displayName="Profit"/>
<mx:ColumnSeries
xField="Month"
yField="Expenses"
displayName="Expenses"/>
</mx:series>
</mx:ColumnChart>
<mx:Legend dataProvider="{myChart}"/>
</s:Module>

After you create a module, you compile it as if it were an application. For more information on compiling modules,
see “Compiling modules” on page 148.

Creating ActionScript-based modules
To create a module in ActionScript, you can create a file that extends either the spark.modules.Module class or the
mx.modules.ModuleBase class.

Extending the Module class is the same as using the <s :Module> tagin an MXML file. You should extend this class if
your module interacts with the framework; this typically means that it adds objects to the display list or otherwise
interacts with visible objects.

To see an example of an ActionScript class that extends the Module class, create an MXML file with the root tag of
<s:Module>. When you compile this file, set the value of the keep-generated-actionscript compiler property to
true. The Flex compiler stores the generated ActionScript class in a directory called generated. You will notice that
this generated class contains code that you probably will not understand. As a result, you should not write
ActionScript-based modules that extend the Module class; instead, you should use MXML to write such modules.

If your module does not include any framework code, you can create a class that extends ModuleBase. If you use the
ModuleBase class, your module will typically be smaller than if you use a module based on the Module class because
it does not have any framework class dependencies.

The following example creates a simple module that does not contain any framework code and therefore extends the
ModuleBase class:

Last updated 9/25/2015

147

USING FLEX 148
Application architecture

// modules/asmodules/SimpleModule.as
package {
import mx.modules.ModuleBase;
public class SimpleModule extends ModuleBase {
public function SimpleModule() {
trace ("SimpleModule created") ;

}

public function computeAnswer (a:Number, b:Number) :Number {
return a + b;

}
}

To call the computeanswer () method on the ActionScript module, you can use one of the techniques shown in
“Accessing modules from the parent application” on page 173.

Compiling modules

The way you compile modules is similar to the way you compile applications. On the command line, you use the
mxmlc command-line compiler; for example:

mxmlc MyModule.mxml
In Flash Builder, you compile all modules in a project when you compile the main application in that project.

The result of compiling a module is a SWF file that you load into your application. You cannot run the module-based
SWE file as a stand-alone application or load it into a browser window. It must be loaded by an application as a module.
Modules should not be opened directly by Adobe® Flash® Player or Adobe® AIR,™ or requested through a browser
directly.

When you compile your module, you should try to remove redundancies between the module and the application that
uses it. To do this on the command line, you create a link report for the application, and then externalize any assets in
the module that appear in that report. Flash Builder can do this for you automatically. For more information, see
“Reducing module size” on page 148.

Reducing module size

Module size varies based on the components and classes that are used in the module. By default, a module externalizes
all framework code that its components depend on by using RSLs. However, other custom classes and libraries are not
externalized by default, which can cause modules to be larger than necessary by linking classes that overlap with the

application’s classes.

To reduce the size of the modules, you can optimize the module by instructing the compiler to externalize classes that
are included by the application. This includes custom classes and framework classes. The result is that the module
includes only the classes it requires, while the framework code and other dependencies are included in the application.

By default, Flash Builder optimizes modules by externalizing classes against the default application in the module’s
project. If your project has multiple applications, you might need to change the application that a module is compiled
against. Otherwise, if you try to load a module that was compiled against one application into another application, you
could get run time errors claiming that classes are not found.

If you want to use a module with more than one application, you might want to optimize it for no applications so that
it contains all the class references necessary to run, regardless of the parent application.

Last updated 9/25/2015

USING FLEX
Application architecture

Change the application that a module is optimized for in Flash Builder
1 Select Project > Properties.

2 Select Flex Modules.
3 Select the module in the list and click the Edit button.

4 To change the application that a module is optimized for, select the Optimize For Application option, and select
the new application from the drop down list.

To not optimize the module for any application, select the Do Not Optimize option.

Create and use a linker report with the command-line compiler

To externalize framework classes with the command-line compiler, you generate a linker report from the application
that loads the modules. You then use this report as input to the module’s 1oad-externs compiler option. The
compiler externalizes all classes from the module for which the application contains definitions. This process is also
necessary if your modules are in a separate project from your main application in Flash Builder.

1 Generate the linker report and compile the application:

mxmlc -link-report=report.xml MyApplication.mxml

The default output location of the linker report is the same directory as the compiler. In this case, it would be in the
bin directory.

2 Compile the module and pass the linker report to the 1oad-externs option:

mxmlc -load-externs=report.xml MyModule.mxml

Recompiling modules

If you change a module, you do not have to recompile the application that uses the module if that module is in the same
project. This is because the application loads the module at run time and does not check against it at compile time.
Similarly, if you make changes to the application, you do not have to recompile the module. Just as the application does
not check against the module at compile time, the module does not check against the application until run time.

If the module is in a separate project than the application that loads it, you must recompile the module separately.

However, if you make changes that might affect the linker report or common code, you should recompile both the
application and the modules.

Note: If you externalize the module’s dependencies by using the 1oad-externs or optimize option, your module might
not be compatible with future versions of Adobe Flex. You might be required to recompile the module. To ensure that a
future application can use a module, compile that module with all the classes it requires. This also applies to applications
that you load inside other applications.

Debugging modules

To debug an application that uses modules, you set the debug compiler option to true for the modules when you
compile them. Otherwise, you will not be able to set breakpoints in the modules or gather other debugging information
from them. In Flash Builder, debugging is enabled by default. On the command line, debugging is disabled by default.
You must also set the debug option to true when you compile the application that loads the modules that you want
to debug.

Last updated 9/25/2015

USING FLEX 150
Application architecture

A common issue that occurs when using multiple modules is that modules sometimes own the class definitions that
the other modules want to use. Because they are in sibling application domains, the module that loaded the class
definition first owns the definition for that class, but other modules will experience errors when they try to use that
class. The solution is to promote the class definition to the main application domain so that all modules can use the
class. For more information, see “Module domains and sharing class libraries” on page 141.

Loading and unloading modules

There are several techniques you can use to load and unload modules in your applications. These techniques include:

+ ModuleLoader — The ModuleLoader class provides the highest-level API for handling modules. For more
information, see “Using the ModuleLoader class to load modules” on page 150.

+ ModuleManager — The ModuleManager class provides a lower-level API for handling modules than the
ModuleLoader class does. For more information, see “Using the ModuleManager class to load modules” on
page 152.

When you’re using modules in an AIR application, the module SWF file must be located in the same directory as the
main application SWF file or one of its subdirectories.

Using the ModuleLoader class to load modules

You can use the ModuleLoader class to load a module in an application or other module. The easiest way to do this in
an MXML application is to use the <s :ModuleLoader> tag. You set the value of the url property to point to the
location of the module’s SWF file. The following example loads the module when the application first starts:

<?xml version="1.0"?>

<!-- modules/MySimplestModuleLoader.mxml -->

<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx" >

<s:ModuleLoader url="ColumnChartModule.swf"/>
</s:Application>

You can change the timing of when the module loads by setting the value of the ur1l property at some other time, such
as in response to an event. Setting the target URL of a ModuleLoader object triggers a call to the loadModule ()
method. This occurs when you first create a ModuleLoader object with the url property set. It also occurs if you
change the value of that property.

If you set the value of the url property to an empty string (") or null, the ModuleLoader object unloads the current
module by calling the release () method.

You can have multiple instances of the ModuleLoader class in a single application. The following example loads the
modules when the user navigates to the appropriate tabs in the TabNavigator container:

Last updated 9/25/2015

USING FLEX

Application architecture

<?xml version="1.0"?>

<!-- modules/URLModuleLoaderApp.mxml -->

<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/mx">

<s:Panel title="Module Example" width="100%" height="100%">

<s:layout>

</s:

<mx

<s:VerticallLayout/>
layout>

:TabNavigator id="tn"

paddingTop="10"
paddingLeft="10"
paddingRight="10"
paddingBottom="10"
width="100%" height="100%"
creationPolicy="auto">
<s:ModuleLoader id="ml1l"
label="ColumnChart Module"
url="ColumnChartModule.swf"/>
<s:ModuleLoader id="ml2"
label="BarChart Module"
url="BarChartModule.swf"/>

</mx:TabNavigators>

</s:Panel>

</s:Application>

You can also use the ModuleLoader API to load and unload modules with the 1oadModule () and unloadModule ()
methods. These methods take no parameters; the ModuleLoader class loads or unloads the module that matches the

value of the current url property.

The following example loads and unloads the module when you click the button:

<?xml version="1.0"?>

<!-- modules/ASModuleLoaderApp.mxml -->

<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="1library://ns.adobe.com/flex/mx">

<s:layout>

<s:VerticallLayout/>

</s:layout>

<fx:Script>
<! [CDATA [
import spark.modules.ModuleLoader;

public function createModule (m:ModuleLoader, s:String):void {

public function removeModule (m:ModuleLoader) :void

if (!m.url) {
m.url = s;

}

m.loadModule () ;

m.unloadModule () ;

Last updated 9/25/2015

151

USING FLEX
Application architecture

</fx:Scripts>
<s:Panel title="Module Example" width="100%" height="100%">
<mx:TabNavigator id="tn"
paddingTop="10"
paddingLeft="10"
paddingRight="10"
paddingBottom="10"
width="100%" height="100%"
creationPolicy="auto">
<s:NavigatorContent label="ColumnChartModule">
<s:layout>
<s:VerticallLayout paddingTop="10" paddingLeft="5"/>
</s:layout>
<s:Button label="Load"
click="createModule (chartModulelLoader, 1l1l.text)"/>
<s:Button label="Unload"
click="removeModule (chartModuleLoader)"/>
<s:Label id="11" text="ColumnChartModule.swf"/>
<s:ModulelLoader id="chartModulelLoader"/>
</s:NavigatorContent>
<s:NavigatorContent label="FormModule"s>
<s:layout>
<s:Verticallayout paddingTop="10" paddinglLeft="5"/>
</s:layout>
<s:Button label="Load"
click="createModule (formModuleLoader, 1l2.text)"/>
<s:Button label="Unload"
click="removeModule (formModuleLoader) " />
<s:Label id="12" text="FormModule.swf"/>
<s:ModulelLoader id="formModulel.cader"/>
</s:NavigatorContent>
</mx:TabNavigators>
</s:Panel>
</s:Application>

When you load a module, Flex ensures that there is only one copy of a module loaded, no matter how many times you

call the 10ad () method for that module.

Using the ModuleManager class to load modules
You can use the ModuleManager class to load the module. This technique is less abstract than using the

<s:ModuleLoaders> tag, but it does provide you with greater control over how and when the module is loaded.

To use the ModuleManager to load a module in ActionScript:

1 Get a reference to the module’s IModulelnfo interface by using the ModuleManager getModule () method.

2 Call the interface’s 1oad () method.

The application that loads the module should pass in its moduleFactory property. This lets the module know who
its parent style manager is. When using the 1oad () method, you can specify the application’s moduleFactory with

the fourth parameter, as the following example shows:

info.load(null, null, null, moduleFactory) ;

3 Use the factory property of the interface to call the create () method and cast the return value as the module’s
class. If you are adding the module to a container, you can cast the return value as an IVisualElement (for Spark

containers) or a DisplayObject (for MX containers) so that they can be added to the display list.

Last updated 9/25/2015

152

USING FLEX
Application architecture

The following example shell application loads the ColumnChartModule.swf file

to the display list so that it appears when the application starts:

<?xml version="1.0"?>

<!-- modules/ModulelLoaderApp.mxml -->

<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="1library://ns.adobe.com/flex/mx"

creationComplete="initApp () ">

<s:layout>

</s:
<fx:

<s:VerticallLayout/>

layout>

Scripts>

<! [CDATA [

import mx.events.ModuleEvent;
import mx.modules.ModuleManager;
import mx.modules.IModuleInfo;
import mx.core.IVisualElement;
public var info:IModulelInfo;

private function initApp () :void {
info = ModuleManager.getModule ("ColumnChartModule.swf") ;
info.addEventListener (ModuleEvent .READY, modEventHandler) ;
/* Load the module into memory. Calling load() makes the
IFlexModuleFactory available. You can then get an
instance of the class using the factory's create()
method. */
info.load(null, null, null, moduleFactory) ;
1
/* Add an instance of the module's class to the display list. */
private function modEventHandler (e:ModuleEvent) :void {
/* For MX containers, cast to a DisplayObject. */
vbl.addChild(info.factory.create() as DisplayObject) ;
/* For Spark containers, cast to a UIComponent. */
vgl.addElement (info.factory.create() as IVisualElement) ;
1
11>

</fx:Script>

<!-- MX container -->

<mx:

VBox id="vbl">
<s:Label text="Module loaded in MX VBox container:"/>

</mx:VBox>

<!-- Spark container -->

<s:VGroup id="vgl"s>

</s:

<s:Label text="Module loaded in Spark VGroup container:"/>
VGroup>

</s:Application>

The IModulelnfo class’s 1oad () method also optionally takes an ApplicationDomain and a SecurityDomain as
arguments. If you do not specify either of these (or set them to nu11), then the module is loaded into a new child

domain.

MXML-based modules can load other modules. Those modules can load other modules, and so on.

Be sure to define the module instance outside of a function, so that it is not in the function’s local scope. Otherwise,
the object might be garbage collected and the associated event listeners might never be invoked.

Last updated 9/25/2015

. The example then adds the modules

153

USING FLEX 154
Application architecture

If you remove all references to the module, it will be garbage collected. You do not need to call the unload () method
when adding and removing modules using the IModulelInfo class. You just need to set the IModuleInfo instance to null.

Loading modules from different servers
To load a module from one server into an application running on a different server, you must establish trust between
the module and the application that loads it.

Access applications across domains

1 Inyour loading application, you must call the allowDomain () method and specify the target domain from which
you load a module. So, specify the target domain in the preinitialize event handler of your application to ensure that
the application is set up before the module is loaded.

2 In the cross-domain file of the remote server where your module is, add an entry that specifies the server on which
the loading application is running.

3 Load the cross-domain file on the remote server in the preinitialize event handler of your loading application.
4 In the loaded module, call the allowDomain () method so that it can communicate with the loader.
The following example shows the init () method of the loading application:

public function setup() :void {
Security.allowDomain ("remoteservername") ;
Security.loadPolicyFile ("http://remoteservername/crossdomain.xml") ;
var request:URLRequest = new URLRequest("http://remoteservername/crossdomain.xml");
var loader:URLLoader = new URLLoader () ;
loader.load (request) ;

}
The following example shows the loaded module’s init () method:

public function initMod() :void {
Security.allowDomain ("loaderservername") ;

}
The following example shows the cross-domain file that resides on the remote server:

<!-- crossdomain.xml file located at the root of the server -->
<cross-domain-policys>
<site-control permitted-cross-domain-policies="all"/>
<allow-access-from domain="loaderservername" to-ports="*"/>
</cross-domain-policy>

For more information about using the cross-domain policy file, see “Security” on page 117.

Preloading modules

When you first start an application that uses modules, the application’s file size should be smaller than a similar
application that does not use modules. As a result, there should be a reduction in wait time because the application can
be loaded into memory and run before the modules’ SWF files are even transferred across the network. However, there
will be a delay when the user navigates to a part in the application that uses the module. This is because the modules
are not by default preloaded, but rather loaded when they are first requested.

When a module is loaded by the application for the first time, the module’s SWF file is transferred across the network
and stored in the browser’s cache. If the application unloads that module, but then later reloads it, there should be less
wait time because Flash Player loads the module from the cache rather than across the network.

Last updated 9/25/2015

USING FLEX
Application architecture

Module SWF files, like all SWFE files, reside in the browser’s cache unless and until a user clears them. As a result,
modules can be loaded by the main application across several sessions, reducing load time; but this depends on how
frequently the browser’s cache is flushed.

You can preload modules at any time so that you can have the modules’ SWF files in memory even if the module is not
currently being used.

To preload modules on application startup, use the IModuleInfo class 1oad () method. This loads the module into
memory but does not create an instance of the module.

The following example loads the BarChartModule.swf module when the application starts up, even though it will not
be displayed until the user navigates to the second pane of the TabNavigator container. Without preloading, the user
would wait for the SWF file to be transferred across the network when they navigated to the second pane of the
TabNavigator.

<?xml version="1.0"?>
<!-- modules/PreloadModulesApp.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/mx"
creationComplete="preloadModules () ">
<s:layout>
<s:VerticallLayout/>
</s:layout>

<fx:Script>
<! [CDATA[
import mx.events.ModuleEvent;
import mx.modules.ModuleManager;
import mx.modules.IModulelInfo;

private function preloadModules () :void {
/* Get a reference to the module's interface. */
var info:IModuleInfo =
ModuleManager.getModule ("BarChartModule.swf") ;
info.addEventListener (ModuleEvent .READY, modEventHandler) ;

/* Load the module into memory. The module will be
displayed when the user navigates to the second
tab of the TabNavigator. */

info.load() ;

Last updated 9/25/2015

155

USING FLEX
Application architecture

private function modEventHandler (e:ModuleEvent) :void {

trace ("module event: " + e.type);

}
11>
</fx:Script>

<s:Panel title="Module Example" width="100%" height="100%">

<mx:TabNavigator id="tn"
paddingTop="10"
paddingLeft="10"
paddingRight="10"
paddingBottom="10"
width="100%" height="100%"
creationPolicy="auto">

<s:ModuleLoader label="ColumnChartModule"

url="ColumnChartModule.swf"/>

<s:ModuleLoader label="BarChartModule"

url="BarChartModule.swf"/>
</mx:TabNavigators>
</s:Panel>
</s:Application>

Using ModuleLoader events

The ModuleLoader class triggers several events, including setup, ready, loading, unload, progress, error, and
urlChanged. You can use these events to track the loading process, and find out when a module has been unloaded or

when the ModuleLoader target URL has changed.

The following example uses a custom ModuleLoader component. This component reports all the events of the

modules as they are loaded by the main application.
Custom ModuleLoader:

<?xml version="1.0" encoding="1s0-8859-1"7?>
<!-- modules/CustomModulelLoader.mxml -->
<s:ModuleLoader

xmlns: fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="1library://ns.adobe.com/flex/mx"
Xmlns= Mm%k n

creationComplete="init () ">

<fx:Script>
<! [CDATA [
import mx.core.UIComponent;

public var standin:UIComponent;
public function init () :void {

addEventListener ("urlChanged", onUrlChanged) ;
addEventListener ("loading", onLoading) ;
addEventListener ("progress", onProgress) ;

addEventListener ("ready", onReady) ;

addEventListener

(
(
(
addEventListener ("setup", onSetup) ;
(
(
(

addEventListener ("unload", onUnload) ;

standin = panel;
removeElement (standin) ;

Last updated 9/25/2015

"error", onError) ;

156

USING FLEX 157
Application architecture

public function onUrlChanged (event:Event) :void {
if (url == null) {
if (contains (standin))
removeElement (standin) ;
} else {
if (!contains(standin))
addElement (standin) ;
1
progress.indeterminate=true;
unload.enabled=false;
reload.enabled=false;
}
public function onLoading (event:Event) :void {
progress.label="Loading module " + url;
if (!contains(standin))
addElement (standin) ;
progress.indeterminate=true;
unload.enabled=false;
reload.enabled=false;
1
public function onProgress (event:Event) :void {
progress.label="Loaded %1 of %2 bytes...";
progress.indeterminate=false;
unload.enabled=true;
reload.enabled=false;
1
public function onSetup (event:Event) :void ({
progress.label="Module " + url + " initialized!";
progress.indeterminate=false;
unload.enabled=true;
reload.enabled=true;
1
public function onReady (event:Event) :void
progress.label="Module " + url + " successfully loaded!";
unload.enabled=true;
reload.enabled=true;
if (contains (standin))
removeElement (standin) ;
1
public function onError (event:Event) :void
progress.label="Error loading module " + url;
unload.enabled=false;
reload.enabled=true;
1
public function onUnload (event:Event) :void
if (url == null) {
if (contains(standin))
removeElement (standin) ;
} else {
if (!contains(standin))

Last updated 9/25/2015

USING FLEX
Application architecture

addElement (standin) ;
1
progress.indeterminate=true;
progress.label="Module " + url + " was unloaded!";
unload.enabled=false;
reload.enabled=true;

11>
</fx:Scripts>
<s:Panel id="panel" width="100%" title="Status & Operations">
<s:layout>
<s:VerticalLayout/>
</s:layout>
<mx:ProgressBar width="100%" id="progress" source="{this}"/>
<s:HGroup width="100%">
<s:Button id="unload" label="Unload Module" click="unloadModule()"/>
<s:Button id="reload" label="Reload Module" click="unloadModule () ;loadModule()"/>
</s:HGroup>
</s:Panel>
</s:Moduleloader>

Main application:

<?xml version="1.0"?>
<!-- modules/EventApp.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns="*">
<s:layout>
<s:Verticallayout/>
</s:layout>
<fx:Script>
<! [CDATA[
[Bindable]
public var selectedModule:Object;
11>
</fx:Script>
<s:ComboBox width="215" labelField="label" prompt="Select Coverage"
close="selectedModule=ComboBox (event .target) .selectedItem">
<s:dataProviders>
<s:ArrayCollection>

Last updated 9/25/2015

158

USING FLEX
Application architecture

<fx:0bject label="Life Insurance"
module="insurancemodules/LifeInsurance.swf"/>
<fx:0bject label="Auto Insurance"
module="insurancemodules/AutoInsurance.swf"/>
<fx:0bject label="Home Insurance"
module="insurancemodules/HomeInsurance.swf"/>
</s:ArrayCollection>
</s:dataProviders>
</s:ComboBox>
<s:Panel width="100%" height="100%" title="Custom Module Loader">
<s:layout>
<s:VerticalLayout/>
</s:layout>
<CustomModuleLoader id="mod" width="100%" url="{selectedModule.module}"/>
</s:Panel>
<s:HGroup>
<s:Button label="Unload" click="mod.unloadModule()"/>
<s:Button label="Nullify" click="mod.url=null"/>
</s:HGroup>
</s:Application>

The insurance modules used in this example are simple forms, such as the following:

<?xml version="1.0" encoding="utf-8"?>
<!-- modules/insurancemodules/AutoInsurance.mxml -->
<s:Module
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
backgroundColor="#ffffff"
width="100%" height="100%">
<s:Label x="147" y="50" text="Auto Insurance"
fontSize="28" fontFamily="Myriad Pro"/>
<s:Form left="47" top="80">
<s:FormHeading label="Coverage"/>
<s:FormItem label="Latte Spillage">
<s:TextInput id="latte" width="200"/>
</s:FormItem>
<s:FormItem label="Shopping Cart to the Door"s
<s:TextInput id="cart" width="200"/>
</s:FormItem>
<s:FormItem label="Irate Moose">
<s:TextInput id="moose" width="200"/>
</s:FormItem>
<s:FormItem label="Color Fade">
<mx:ColorPicker/>
</s:FormItem>
</s:Form>
</s:Module>

Using the error event

The error event gives you an opportunity to gracefully fail when a module does not load for some reason. In the
following example, you can load and unload a module by using the Button controls. To trigger an error event, change
the URL in the TextInput control to a module that does not exist. The error handler displays a message to the user and
writes the error message to the trace log.

Last updated 9/25/2015

159

USING FLEX
Application architecture

<?xml version="1.0"?>
<!-- modules/ErrorEventHandler.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/mx">
<s:layout>
<s:VerticalLayout
paddingTop="10"
paddingLeft="10"
paddingRight="10"
paddingBottom="10"/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.events.ModuleEvent;
import spark.modules.ModuleLoader;
import spark.modules.Module;
import mx.controls.Alert;

private function errorHandler (e:ModuleEvent) :void
Alert.show("There was an error loading the module." +
" Please contact the Help Desk.\n" +
e.errorText) ;

public function createModule () :void

if (chartModuleLoader.url == til.text) {
/* If they are the same, call the loadModule() method. */
chartModuleLoader.loadModule () ;

} else {
/* If they are not the same, then change the url,

which then triggers a call to the loadModule() method. */

chartModuleLoader.url = til.text;

public function removeModule () :void {
chartModuleLoader.unloadModule () ;
1
11>
</fx:Scripts>
<s:Panel title="Module Example" height="90%" width="90%">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<s:HGroup>
<s:Label text="URL:"/>
<s:TextInput width="200" id="til" text="ColumnChartModule.swf"/>
<s:Button label="Load" click="createModule()"/>
<s:Button label="Unload" click="removeModule()"/>
</s:HGroup>
<s:ModuleLoader id="chartModulelLoader" error="errorHandler (event)"/>
</s:Panel>
</s:Application>

Last updated 9/25/2015

160

USING FLEX 161
Application architecture

Using the progress event

You can use the progress event to track the progress of a module as it loads. When you add a listener for the progress
event, Flex calls that listener at regular intervals during the module’s loading process. Each time the listener is called,
you can look at the bytesLoaded property of the event. You can compare this to the bytesTotal property to get a
percentage of completion.

The following example reports the level of completion during the module’s loading process. It also produces a simple
progress bar that shows users how close the loading is to being complete.

<?xml version="1.0"?>
<!-- modules/SimpleProgressEventHandler.mxml -->
<s:Application
creationComplete="initApp ()"
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA [
import mx.events.ModuleEvent;
import flash.events.ProgressEvent;
import spark.modules.Module;
import spark.modules.ModuleLoader;

[Bindable]

public var progBar:String = "";
[Bindable]

public var progMessage:String = "";

private function progressEventHandler (e:ProgressEvent) :void {
progBar += ".";
progMessage =
"Module " +
Math.round ((e.bytesLoaded/e.bytesTotal) * 100) +
"% loaded";
}
public function initApp () :void {
chartModulelLoader.url = "ColumnChartModule.swf";
}
public function createModule () :void
chartModuleLoader.loadModule () ;

public function removeModule () :void {
chartModuleLoader.unloadModule () ;
progBar = "";

Last updated 9/25/2015

USING FLEX
Application architecture

progMessage = "";
}
11>
</fx:Script>
<s:Panel title="Module Example" height="90%" width="90%">
<s:layout>
<s:VerticallLayout
paddingTop="10" paddingLeft="10"
paddingRight="10" paddingBottom="10"/>
</s:layout>
<s:HGroup>
<s:Label id="12" text:"{progMessage}"/>
<s:Label id="11" text="{progBar}"/>
</s:HGroup>
<s:Button label="Load" click="createModule()"/>
<s:Button label="Unload" click="removeModule ()"/>
<s:ModuleLoader id="chartModuleLoader"
progress="progressEventHandler (event) " />
</s:Panel>
</s:Application>

You can also connect a module loader to a ProgressBar control. The following example creates a custom component
for the ModuleLoader that includes a ProgressBar control. The ProgressBar control displays the progress of the
module loading.

<?xml version="1.0"?>
<!-- modules/MySimpleModuleLoader.mxml -->
<s:ModuleLoader
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/mx">
<s:layout>
<s:VerticalLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
private function clickHandler () :void {
if (lurl) {
url="ColumnChartModule.swf";

}

loadModule () ;

11>

</fx:Scripts>
<mx:ProgressBar id="progress" width="100%" source="{this}"/>
<s:HGroup width="100%">

<s:Button id="load" label="Load" click="clickHandler()"/>

<s:Button id="unload" label="Unload" click="unloadModule()"/>

<s:Button id="reload" label="Reload" click="unloadModule () ;loadModule();"/>
</s:HGroup>

</s:Moduleloader>

You can use this module in a simple application, as the following example shows:

Last updated 9/25/2015

162

USING FLEX 163
Application architecture

<?xml version="1.0"?>
<!-- modules/ComplexProgressEventHandler.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1ibrary://ns.adobe.com/flex/mx"
xmlns:local="*">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<s:Panel title="Module Example" height="90%" width="90%">
<s:layout>
<s:VerticallLayout
paddingTop="10" paddingLeft="10"
paddingRight="10" paddingBottom="10"/>
</s:layout>
<s:Label text="Use the buttons below to load and unload the module."/>
<local:MySimpleModuleLoader id="customLoader"/>
</s:Panel>

</s:Application>

This example does not change the ProgressBar 1abel property for all events. For example, if you load and then unload
the module, the 1abel property remains at "LOADING 100%". To adjust the label properly, you must define other
event handlers for the ModuleLoader events, such as unload and error.

Passing data to modules

Communication between modules and the parent application, and among modules, is possible. You can use the
following approaches to facilitate inter-module, application-to-module, and module-to-application communication:

« Interfaces — You can create ActionScript interfaces that define the methods and properties that modules and
applications can access. This gives you greater control over module and application interaction. It also prevents you
from creating dependencies between modules and applications. For more information, see “Using interfaces for
module communication” on page 164.

* Query string parameters — Modules are loaded with a URL; you can pass parameters on this URL and then parse
those parameters in the module. This is only a way to pass simple data, and is not appropriate for complex data. For
more information, see “Passing data to modules with the query string” on page 166.

+ ModuleLoader's child, ModuleManager ‘s factory, and Application’s parentApplication properties — You
can use these properties to access modules and applications. However, by using these properties, you create a
tightly-coupled design that prevents code reuse and is easily broken. In addition, you also create dependencies
among modules and applications that cause class sizes to be bigger. For more information, see “Accessing modules
from the parent application” on page 173, “Accessing the parent application from modules” on page 169, and
“Accessing modules from other modules” on page 171.

The following techniques for accessing methods and properties apply to parent applications as well as modules.
Modules can load other modules, which makes the loading module similar to the parent application in the simpler
examples.

Last updated 9/25/2015

USING FLEX 164
Application architecture

Using interfaces for module communication

You can use an interface to provide module-to-application communication. Your modules implement the interface
and your application calls its methods or sets its properties. The interface defines stubs for the methods and properties
that you want the application and module to share. The module implements an interface known to the application, or
the application implements an interface known to the module. This lets you avoid so-called hard dependencies
between the module and the application.

In the main application, when you want to call methods on the module, you cast the ModuleLoader class’s child
property to an instance of the custom interface.

The following example application lets you customize the appearance of the module that it loads by calling methods
on the custom IModulelnterface interface. The application also calls the getModuleName () method. This method
returns a value from the module and sets a local property to that value.

<?xml version="1.0"7?>
<!-- modules/interfaceexample/MainModuleApp.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns="*">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.events.ModuleEvent;
import mx.modules.ModuleManager;

[Bindable]

public var selectedItem:Object;
[Bindable]

public var currentModuleName:String;

private function applyModuleSettings (e:Event) :void {
/* Cast the Moduleloader's child to the interface.
This child is an instance of the module.
You can now call methods on that instance. */
var ichild:* = mod.child as IModulelInterface;
if (mod.child != null) {
/* Call setters in the module to adjust its
appearance when it loads. */
ichild.setAdjusterID (myId.text) ;
ichild.setBackgroundColor (myColor.selectedColor) ;
} else {
trace ("Uh oh. The mod.child property is null");
1
/* Set the value of a local variable by calling a method
on the interface. */
currentModuleName = ichild.getModuleName () ;

private function reloadModule () :void {
// Reset the ColorPicker control:
myColor.selectedColor = OxXFFFFFF;

Last updated 9/25/2015

USING FLEX
Application architecture

// Reload the module:
mod.unloadModule () ;
mod. loadModule () ;

11>
</fx:Scripts>

<s:Form>
<s:FormItem label="Current Module:">
<s:Label id="11" text="{currentModuleName}"/>
</s:FormItem>
<s:FormItem label="Adjuster ID:">
<s:TextInput id="myId" text="Enter your ID"/>
</s:FormItem>
<s:FormItem label="Background Color:">
<mx:ColorPicker id="myColor"
selectedColor="0xFFFFFF"
change="applyModuleSettings (event)"/>
</s:FormItem>
</s:Form>

<s:Label text="Long Shot Insurance" fontSize="24"/>
<s:ComboBox labelField="1label" prompt="Select Module"
close="selectedItem=ComboBox (event.target) .selectedItem">
<s:dataProviders>
<s:ArrayList>

<fx:0bject label="Auto Insurance" module="AutoInsurance2.swf"/>

</s:ArraylList>
</s:dataProviders>
</s:ComboBox>
<s:Panel width="100%" height="100%">
<s:ModuleLoader id="mod"
width="80%" height="80%"
url="{selectedItem.module}"
ready="applyModuleSettings (event)"/>
</s:Panel>
<s:Button id="bl" label="Reload Module" click="reloadModule()"/>
</s:Application>

The following example defines a simple interface that has two getters and one setter. This interface is used by the

application in the previous example.

// modules/interfaceexample/IModuleInterface.as

package

{

import flash.events.IEventDispatcher;
public interface IModuleInterface extends IEventDispatcher ({

function getModuleName () :String;

function setAdjusterID(s:String) :void;
function setBackgroundColor (n:Number) :void;

}

The following example defines the module that is loaded by the previous example. It implements the custom

IModulelnterface interface.

Last updated 9/25/2015

165

USING FLEX 166
Application architecture

<?xml version="1.0"?>
<!-- modules/interfaceexample/AutoInsurance2.mxml -->
<s:Module
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
width="100%" height="100%" implements="IModuleInterface">

<s:Panel id="pl" title="Auto Insurance"
width="100%" height="100%"
backgroundColor="{bgcolor}">
<s:Label id="myLabel" text="ID: {adjuster}"/>
</s:Panel>
<fx:Script>
<! [CDATA[
[Bindable]
private var adjuster:String;
[Bindable]
private var bgcolor:Number;
public function setAdjusterID(s:String):void {
adjuster = s;

public function setBackgroundColor (n:Number) :void {
/* Use a bindable property to set values of controls
in the module. This ensures that the property will be set
even if Flex applies the property after the module is
loaded but before it is rendered by the player. */
bgcolor = n;

/* Don't do this. The backgroundColor style might not be set
by the time the ModulelLoader triggers the READY
event: */

// pl.setStyle ("backgroundColor", n);

public function getModuleName () :String {
return "Auto Insurance";

11>
</fx:Script>
</s:Module>

In general, if you want to set properties on controls in the module by using external values, you should create variables
that are bindable. You then set the values of those variables in the interface’s implemented methods. If you try to set
properties of the module’s controls directly by using external values, the controls might not be instantiated by the time
the module is loaded and the attempt to set the properties might fail.

Passing data to modules with the query string

One way to pass data to a module is to append query string parameters to the URL that you use to load the module.
You can then parse the query string by using ActionScript to access the data.

Last updated 9/25/2015

USING FLEX 167
Application architecture

In the module, you can access the URL by using the 1oaderInfo property. This property points to the LoaderInfo
object of the loading SWF (in this case, the main application). The information provided by the LoaderInfo object
includes load progress, the URLs of the loader and loaded content, the file size of the application, and the height and
width of the application.

The following example application builds a unique query string for the module that it loads. The query string includes
a firstName and lastName parameter.

<?xml version="1.0"7?>
<!-- modules/QueryStringApp.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
height="500" width="400">
<s:layout>
<s:VerticalLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
public function initModule () :void
// Build query string so that it looks something like this:
// "QueryStringModule.swf?firstName=Nick&lastName=Danger"
var s:String = "QueryStringModule.swf?" + "firstName=" +
til.text + "&lastName=" + ti2.text;
// Changing the url property of the ModuleLoader causes
// the ModulelLoader to load a new module.
ml.url = s;

11>
</fx:Scripts>
<s:Form>
<s:FormItem id="fil" label="First Name:">
<s:TextInput id="til"/>
</s:FormItem>
<s:FormItem id="fi2" label="Last Name:">
<s:TextInput id="ti2"/>
</s:FormItem>
</s:Form>
<s:ModuleLoader id="ml"/>

<s:Button id="bl" label="Submit" click="initModule()"/>
</s:Application>

The following example module parses the query string that was used to load it. If the firstName and lastName
parameters are set, the module prints the results in a TextArea. The module also traces some additional information
available through the LoaderInfo object:

Last updated 9/25/2015

USING FLEX
Application architecture

<?xml version="1.0"?>

<!-- modules/QueryStringModule.mxml -->

<s:Module
xmlns: fx="http://ns

.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

xmlns:mx="1library://ns.adobe.com/flex/mx"

creationComplete="parseString() ">

<s:layout>

<s:VerticallLayout/>

</s:layout>
<fx:Script>
<! [CDATA[

import mx.utils.*;

[Bindable]
private var

salutation:String;

public var o:0bject = {};

public function parseString() :void

try {

/* Remove everything before the question mark,

var
var

s =

the question mark. */

myPattern:RegExp = /.*\?/;
s:String = this.loaderInfo.url.toString() ;
s.replace (myPattern, "");

/* Create an Array of name=value Strings. */

var

params:Array = s.split("&");

/* Print the params that are in the Array. */

var
var
var
for

}

keyStr:String;

valueStr:String;

paramObj:0bject = params;

(keyStr in paramObj) {

valueStr = String(paramObj [keyStr]) ;

tal.text += keyStr + ":" + valueStr + "\n";

/* Set the values of the salutation. */

for

if

(var i:int = 0; 1 < params.length; i++) {
var tempA:Array = params[i] .split("=");
if (tempA[0] == "firstName") (
o.firstName = tempA[l];
}
if (tempA[0] == "lastName")
o.lastName = tempA[l];

(StringUtil.trim(o.firstName) != "" &&
StringUtil.trim(o.lastName) != "") {

Last updated 9/25/2015

including

168

USING FLEX
Application architecture

salutation = "Welcome " +
o.firstName + " " + o.lastName + "!";
} else {
salutation = "Full name not entered."

}

} catch (e:Error) {
trace (e) ;

}

/* Show some of the information available through loaderInfo: */

ta2.text = "AS version: " + this.loaderInfo.actionScriptVersion;
ta2.text += "\nApp height: " + this.loaderInfo.height;

ta2.text += "\nApp width: " + this.loaderInfo.width;

ta2.text += "\nApp bytes: " + this.loaderInfo.bytesTotal;

11>
</fx:Script>
<s:Label text="{salutation}"/>
<s:TextArea height="75" width="250" id="tal"/>
<s:TextArea height="200" width="250" id="ta2"/>
</s:Module>

This example uses methods of the String and StringUtil classes, plus a for-in loop to parse the URLs. You can also use
methods of the URLUtil and URLVariables classes to do this.

Modules are cached by their URL, including the query string. As a result, you will load a new module if you change the
URL or any of the query string parameters in the URL. This can be useful if you want multiple instances of a module
based on the parameters that you pass in the URL with the ModuleLoader.

Accessing the parent application from modules

Modules can access properties and methods of the parent application by using a reference to the parentaApplication
property. In most cases, you should avoid doing this as it creates a close coupling between the module and the
application. Having this coupling directly negates some of the benefits of using modules.

The following example accesses the expenses property of the parent application when the module first loads. The
module then uses this property, an ArrayCollection, as the source for its chart’s data. When the user clicks the button,

the module calls the getNewData () method of the parent application that returns a new ArrayCollection for the chart:

Last updated 9/25/2015

169

USING FLEX
Application architecture

<?xml version="1.0"?>
<!-- modules/ChartChildModule.mxml -->
<s:Module
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
width="100%" height="100%"
creationComplete="getDataFromParent () ">
<s:layout>
<s:VerticallLayout/>
</s:layout>

<fx:Script>
<! [CDATA[
import mx.collections.ArrayCollection;
[Bindable]
private var expenses:ArrayCollection;
// Access properties of the parent application.
private function getDataFromParent () :void {
expenses = parentApplication.expenses;

11>
</fx:Script>

<mx:ColumnChart id="myChart" dataProvider="{expenses}">
<mx:horizontalAxis>
<mx:CategoryAxis dataProvider="{expenses}" categoryField="Month"/>
</mx:horizontalAxis>
<mx:series>
<mx:ColumnSeries xField="Month" yField="Profit"
displayName="Profit"/>
<mx:ColumnSeries xField="Month" yField="Expenses"
displayName="Expenses"/>
</mx:series>
</mx:ColumnChart>
<mx:Legend dataProvider="{myChart}"/>

<s:Button id="bl"
click="expenses = parentApplication.getNewData () ;"

label="Get New Data"/>

</s:Module>

The following example shows the parent application that the previous example module uses:

Last updated 9/25/2015

170

USING FLEX 171
Application architecture

<?xml version="1.0"?>
<!-- modules/ChartChildModulelLoader.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1ibrary://ns.adobe.com/flex/mx" >
<fx:Script>
<! [CDATA[
import mx.collections.ArrayCollection;
[Bindable]
public var expenses:ArrayCollection = new ArrayCollection ([
Month:"Jan", Profit: , Expenses:15 ,
h fi 2000 00
Month:"Feb", Profit: , Expenses: ,
h b fi 1000 200
onth: ar", rofit: , xpenses:
M h:"Mar", Profi 1500, E 500
1):
public function getNewData () :ArrayCollection
return new ArrayCollection([
Month:"Apr", Profit:1 , Expenses:11 ,
h fi 000 00
{Month:"May", Profit:1300, Expenses:500},
{Month:"Jun", Profit:1200, Expenses:600}
1):

11>
</fx:Scripts>

<s:ModuleLoader url="ChartChildModule.swf" id="ml"/>
</s:Application>

You can also call methods and access properties on other modules. For more information, see “Accessing modules
from other modules” on page 171.

The drawback to this approach is that it can create dependencies on the parent application inside the module. In
addition, the modules are no longer portable across multiple applications unless you ensure that you replicate the
behavior of the applications.

To avoid these drawbacks, you should use interfaces that secure a contract between the application and its modules.
This contract defines the methods and properties that you can access. Having an interface lets you reuse the application
and modules as long as you keep the interface updated. For more information, see “Using interfaces for module
communication” on page 164.

Accessing modules from other modules

You can access properties and methods of other modules by using references to the other modules through the parent
application. You do this by using the ModuleLoader class’s child property. This property points to an instance of the
module’s class, which lets you call methods and access properties. In most cases, you should avoid doing this as it
creates a close coupling among the modules. Having this coupling directly negates some of the benefits of using
modules in the first place.

The following example defines a single application that loads two modules. The InterModulel module defines a
method that returns a String. The InterModule2 module calls that method and sets the value of its Label to the return
value of that method.

Main application:

Last updated 9/25/2015

USING FLEX
Application architecture

<?xml version="1.0"?>
<!-- modules/InterModuleloader.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/mx">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
11>
</fx:Scripts>

<s:ModuleLoader url="InterModulel.swf" id="ml"/>

<s:ModuleLoader url="InterModule2.swf" id="m2"/>
</s:Application>

Module 1:

<?xml version="1.0"?>

<!-- modules/InterModulel . mxml -->

<s:Module
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
width="100%" height="100%">

<fx:Script>
<! [CDATA[

/* Defines the method that the other module calls.

public function getNewTitle () :String {
return "New Title";

11>
</fx:Script>
</s:Module>

Module 2:

Last updated 9/25/2015

*/

172

USING FLEX 173
Application architecture

<?xml version="1.0"?>

<!-- modules/InterModule2.mxml -->

<s:Module
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1ibrary://ns.adobe.com/flex/mx"
width="100%" height="100%">
<s:layout>

<s:VerticallLayout/>

</s:layout>

<fx:Script>
<! [CDATA [
[Bindable]
private var title:String = "Original Title";
// Call method of another module.
private function changeTitle () :void {
title = parentApplication.ml.child.getNewTitle() ;

}

11>
</fx:Scripts>
<s:HGroup>

<s:Label id="11" text="Title: "/>

<s:Label id="myTitle" text="{title}"/>
</s:HGroup>
<s:Button id="bl" label="Change Title" click="changeTitle()"/>

</s:Module>

The application in this example lets the two modules communicate with each other. You could, however, define
methods and properties on the application that the modules could access. For more information, see “Accessing the
parent application from modules” on page 169.

As with accessing the parent application’s properties and methods directly, using the technique described in this
section can make your modules difficult to reuse and also can create dependencies that can cause the module to be
larger than necessary. Instead, you should use interfaces to define the contract between modules. For more
information, see “Using interfaces for module communication” on page 164.

Accessing modules from the parent application

You can access the methods and properties of a module from its parent application by getting an instance of the
module’s class. Referencing a module by its class name in an application causes the whole module and all of its
dependencies to be linked into the application. This defeats the purpose of using modules. However, using this
technique can be useful for debugging and testing.

You should only use interfaces to access the methods and properties of a module unless you want to create these
dependencies. For more information, see “Using interfaces for module communication” on page 164.

If you use the ModuleLoader to load the module, you can call methods on a module from the parent application by
referencing the ModuleLoader class’s child property, and casting it to the module’s class. The child property is an
instance of the module’s class. In this case, the module’s class is the name of the MXML file that defines the module.

The following example calls the module’s getTitle () method from the parent application:

Parent Application:

Last updated 9/25/2015

USING FLEX 174
Application architecture

<?xml version="1.0"?>
<!-- modules/ParentApplication.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/mx">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script><! [CDATA [
[Bindable]
private var s:String;

private function getTitle() :void ({
s = (ml.child as ChildModulel) .getModTitle() ;

}

11></fx:Script>

<s:Label id="11" text="{s}"/>
<s:ModuleLoader id="ml"
url="ChildModulel.swf"
ready="getTitle()"/>
</s:Application>

Module:

<?xml version="1.0"?>
<!-- modules/ChildModulel .mxml -->
<s:Module
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
width="100%" height="100%">
<fx:Script><! [CDATA [
/* Defines the method that the application calls. */
public function getModTitle() :String
return "Child Module 1";
1
11></fx:Script>
</s:Module>

If you load the module that you want to call by using the ModuleManager API, there is some additional coding in the
shell application. You use the ModuleManager factory property to get an instance of the module’s class. You can then
call the module’s method on that instance.

The following module example defines a single method, computeanswer ():

Last updated 9/25/2015

USING FLEX
Application architecture

<?xml version="1.0"?>
<!-- modules/mxmlmodules/SimpleModule.mxml -->
<s:Module
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/mx">
<fx:Script>
<! [CDATA[
public function computeAnswer (a:Number, b:Number) :Number {
return a + b;

11>
</fx:Scripts>
</s:Module>

The following example gets an instance of the SimpleModule class by using the factory property to call the create ()
method. It then calls the module’s computeaAnswer () method on that instance:

<?xml version="1.0"?>
<!-- modules/mxmlmodules/SimpleMXMLApp.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/mx"
creationComplete="initApp () ">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.modules.IModuleInfo;
import mx.modules.ModuleManager;
public var assetModule:IModuleInfo;
public var sm:0Object;

[Bindable]

public var answer:Number = 0;

public function initApp () :void
/* Get the IModuleInfo interface for the specified URL. */
assetModule = ModuleManager.getModule ("SimpleModule.swf") ;
assetModule.addEventListener ("ready", getModulelInstance) ;
assetModule.load (null, null, null, moduleFactory) ;

1

public function getModulelInstance (e:Event) :void ({
/* Get an instance of the module. */
sm = assetModule.factory.create() as SimpleModule;

public function addNumbers () :void {
var a:Number = Number (til.text) ;

Last updated 9/25/2015

175

USING FLEX
Application architecture

var b:Number = Number (ti2.text) ;
/* Call a method on the module. */
answer = sm.computeAnswer (a, b).toString() ;

11>
</fx:Script>
<s:Form>
<s:FormHeading label="Enter values to sum."/>
<s:FormItem label="First Number"s
<s:TextInput id="til" width="50"/>
</s:FormItem>
<s:FormItem label="Second Number"s>
<s:TextInput id="ti2" width="50"/>
</s:FormItem>
<s:FormItem label="Result"s>
<s:Label id="ti3" width="100" text="{answer}"/>
</s:FormItem>
<s:Button id="bl" label="Compute" click="addNumbers ()"/>
</s:Form>
</s:Application>

In this example, you should actually create a module that extends the ModuleBase class in ActionScript rather than an
MXML-based module that extends the Module class. This is because the example module does not have any visual
elements and contains only a single method that computes and returns a value. A module that extends the ModuleBase
class would be more lightweight than a class that extends Module. For more information on writing ActionScript-
based modules that extend the ModuleBase class, see “Creating ActionScript-based modules” on page 147.

Developing and loading sub-applications

About loading sub-applications

Flex lets you load and unload sub-applications in a main application. Reasons to use sub-applications as part of your
overall application architecture include the following:

+ Reduce the size of the main application

« Encapsulate related functionality into a sub-application

+ Create reusable sub-applications that can be loaded into different applications
« Integrate third-party applications into your main application

The way in which a sub-application is loaded defines the level of interoperability between the main application and the
sub-application. Consider the following factors when loading a sub-application in your main application:

Trusted applications What level of trust do the applications have? A trusted sub-application has a greater amount of
interoperability with the main application. An untrusted sub-application, while limited, can still interoperate with the
main application in some ways. In general, though, if you do not have complete control over the development and
deployment of a loaded sub-application, consider that application to be untrusted.

Versioning Are the main application and sub-application compiled with the same version of the Flex framework? The
default method of loading a sub-application assumes that all applications are compiled by the same version of the

framework. However, Flex can load a sub-application that was compiled with an older version of the framework. This
type of application is known as a multi-versioned application. A multi-versioned application has some restrictions on

Last updated 9/25/2015

176

USING FLEX 177
Application architecture

its level of interoperability with the main application that loads it. It is, however, more flexible to use in a large
application.

The level of trust and use of versioning are determined by the application domain and the security domain into which
a sub-application is loaded.

There are three main types of loaded sub-applications in Flex:

Single-versioned applications are guaranteed to have been compiled with the same version of the compiler as the
main application. They have the greatest level of interoperability with the main application, but they also require that
you have complete control over the source of the sub-applications.

Multi-versioned applications can be compiled with older versions of the Flex framework than the main application
that loads them. Their interoperability with the main application and other sub-applications is more limited than
single-versioned applications.

Sandboxed applications are loaded into their own security domains, and can be multi-versioned. Using sandboxed
applications is the recommended practice for loading third-party applications. In addition, if your sub-applications
use RPC or DataServices-related functionality, you should load them as sandboxed.

When compiling each of these types of applications, you should include the MarshallingSupport class into the main
application and sub-applications. You do this with the includes compiler argument, as the following example shows:

-includes=mx.managers.systemClasses.MarshallingSupport

Using sub-applications is in some ways like using modules. For a comparison of the two approaches, see “Comparing
loaded applications to modules” on page 187.

More Help topics
“Developing sandboxed applications” on page 205

“Developing multi-versioned applications” on page 213

“Creating and loading sub-applications” on page 191

About application domains

An application domain is a container for class definitions. Applications have a single, top-level application domain
called the system domain. Application domains are then defined as child nodes of the system domain. When you load
a sub-application into another, main application, you can load it into one of three application domains: sibling, child,
and current. When you load a sub-application into a sibling application domain, the sub-application’s application
domain has the same parent as the main application’s application domain. In addition, it is a peer of all other sibling
applications.

When you load a sub-application into a child application domain, the sub-application’s application domain is a child
of the main application’s application domain. When you load a sub-application into a current application domain, the
sub-application is loaded into the same application domain as the main application. Each of these locations defines
where the sub-application can get its class definitions from.

The default behavior of the SWFLoader and Loader controls is to load a sub-application into a child application
domain. If the sub-application and the main application are compiled with different versions of the Flex framework,
runtime errors can result. These errors occur because the applications are sometimes compiled against different
definitions of the same classes.

Last updated 9/25/2015

USING FLEX 178
Application architecture

You can specify that the main application loads a multi-versioned sub-application. It does this by loading the sub-
application into a sibling application domain. This means that the sub-application defines its own class definitions and
does not get them from its parent. It is possible for two applications to work together, even if they are compiled with
different versions of the Flex framework.

Note: In a multi-versioned application, the sub-applications must be compiled with the same or older version of the
compiler that the main application was compiled with.

You specify the application domain of a sub-application by setting the value of the 1oadForCompatibility property
on the SWFLoader. If you set the value of this property to true, then the sub-application is loaded into a sibling
application domain. If you set the value of this property to false, then the sub-application is loaded into a child
application domain. The default value of this property is £alse, so by default, sub-applications are not multi-
versioned.

You can also specify the application domain on the LoaderContext object. You do this if you specify the value of the
loaderContext property when using the SWFLoader control. For more information, see “Specifying a
LoaderContext” on page 195.

The system domain

Classes defined by Flash Player are in the system domain. The system domain parents all other application domains.
The main application’s application domain is a child of the system domain. If you load sub-applications into sibling
application domains, then they are also children of the system domain. Classes defined in the system domain are never
redefined in sub-applications or main applications. Those applications all share the common definitions of Flash
Player. These definitions include classes such as DisplayObject, Event, and Sprite. The definitions of these shared
classes are contained in the playerglobal.swc file.

Sibling application domains

The application domain that a sub-application is in determines where the sub-application gets its class definitions
from. If the main application loads a sub-application into a sibling application domain, the sub-application defines its
own non-player class definitions. This is the configuration for multi-versioned applications. Applications that are
loaded into a sibling application domain can load other applications into a sibling application domain.

sub-applications that are in sibling application domains of the main application can communicate with the main
application. Sub-applications can call methods and access properties on the applications, as long as they meet these
criteria:

+ Only strong types that are defined in Flash Player are used.
« The sub-applications are not in different security domains.

The ability for a sub-application in a sibling application domain to communicate with the main application is not as
seamless as when the sub-application is in a child application domain. For example, if the sub-application launches a
pop-up control, it passes an event to the main application that actually launches the control. This event passing limits
their communication somewhat, but does provide some measure of interoperability. For more information about
developing this type of application, see “Developing multi-versioned applications” on page 213.

Applications that are in separate security domains are automatically in separate, sibling application domains. As a
result, if you load an untrusted sub-application into a main application, that sub-application has its own class
definitions.

More Help topics

“Developing multi-versioned applications” on page 213

Last updated 9/25/2015

USING FLEX 179
Application architecture

Child application domains

If a main application loads a sub-application into a child application domain of its application domain, the sub-
application gets its class definitions from the main application. This behavior is the default for application loading. It
can result in runtime errors if the applications are compiled with different versions of the Flex framework. As the SWF
file sets up its classes, classes that are already defined are not added to the application domain. First in wins, which
means that the first class defined becomes the only definition of that class. Subsequent definitions loaded into that
application domain are ignored.

Sub-applications that are in child application domains of the main application can communicate with the main
application. They have the highest level of possible interoperability with the main application. This situation is typical
of a large application that is not multi-versioned, and it is the default behavior for the SWFLoader.

More Help topics
“Creating and loading sub-applications” on page 191

The current application domain

If you load a sub-application into the current application domain (rather than a separate, sibling application domain
or a child application domain), the sub-application’s class definitions are often ignored. This behavior is because the
first definition in a domain is used. Subsequent definitions loaded into that domain are ignored. If new class definitions
are added, the main application can use them.

Using the current application domain is typical of RSLs and other specially compiled resources, and is not typically
used when loading sub-applications.

About security domains

Security domains define the level of trust between applications. The greater the trust between applications, the greater
the amount of possible interoperability between those applications. In general, if a sub-application is loaded into the
same security domain as the main application, then the applications have the highest level of interoperability.

If a sub-application is loaded into a different security domain (as is the case with many remote or multi-versioned
applications), then the sub-application is allowed a limited amount of interaction with the main application. Sub-
applications in separate security domains are also restricted in their ability to communicate with one another. They
are known as sandboxed applications.

You determine whether a sub-application is loaded into the same security domain as the main application when you
load it. You can set the value of the trustContent property to true to load a remote sub-application into the same
security domain as the main application. This behavior only applies if that application is loaded from a different web
domain or subdomain than the main application. If the sub-application is loaded from the same web domain as the
main application, then it is by default loaded into the same security domain. Setting the value of the
loadForCompatibility property does not affect the trustContent property.

In some cases, you want to load a sub-application that is on the same domain as the main application into a separate
security domain. This might be because the sub-application is from a third party or you want you applications to have
the same level of interoperability as a sandboxed application. One way to do this is to set up a different sub domain
name on the same server, and load the sub-application from that sub domain. For more information, see “Loading
same-domain and cross-domain applications” on page 189.

When using AIR, you cannot set the value of the trustContent property to true.

If you do not set the value of the trustContent property to true, then a sub-application on a remote server is loaded
into a separate security domain by default.

Last updated 9/25/2015

USING FLEX 180
Application architecture

You can also specify the security domain on the LoaderContext object. You do this if you specify the value of the
loaderContext property when using the SWFLoader control. You can only do this if you want to load the sub-
application into the same security domain. For more information, see “Specifying a LoaderContext” on page 195.

Sandboxed applications have the greatest number of limitations on application interoperability. These restrictions
include the following:

Stage Access to the stage from the sub-application is limited to some stage properties and methods.
Mouse You cannot receive mouse events from objects in other security domains.
Pixels Applications cannot access the pixels drawn in applications that are in other security domains.

Properties While applications can get references to objects in other security domains, avoid doing this for security
reasons. Some properties are restricted, such as the Stage or any parent of a DisplayObject that another application
instantiates. In addition to these restrictions, applications that are in separate security domains are also in separate
application domains by definition. As a result, they are subject to all restrictions of that architecture. However, they
can also benefit from this situation because they can then be multi-versioned.

For more information about working with sandboxed applications, see “Developing sandboxed applications” on
page 205

Common types of applications that load sub-applications

Common types of applications that load sub-applications include:
« Large applications that are or are not multi-versioned

+ Mashups

« Portals

« Dashboards

About sandboxed applications

A sandboxed application is a common type of application that loads sub-applications. In general, sandbox applications
load applications that are compiled and hosted by third parties. The main application does not necessarily trust the
third party that developed those sub-applications. In addition, the developer of the main application does not know
the version of the Flex framework that was used to compile the sub-applications (it must have been compiled with an
older version or the same version of the compiler). As a result, sandboxed applications have the least amount of
interoperability between the main application and the sub-applications, but they are typically multi-versioned. A
common type of sandboxed application is a portal.

Sandboxed applications require the least amount of additional coding when using RPC classes and DataServices-
related functionality. Trusted multi-versioned applications often require a bootstrap loader so that RPC classes work
across applications. Sandboxed applications do not have this requirement. As a result, with many multi-versioned
applications, using sandboxed applications is actually the recommended approach.

Last updated 9/25/2015

USING FLEX
Application architecture

The following image shows the boundaries of a sandboxed application. The sub-applications are loaded into separate,
sibling application domains. This means that each application contains its own class definitions so they can

interoperate with applications that were compiled with different versions of the framework. The sub-applications are
also in separate security domains. This separation means that they do not trust each other, and therefore have limited

interoperability.
SecurityDomain 1 SecurityDomain 2
ApplicationDomain 1 AppDomz2 (sibling)
Sub_App_1.swf
Main_App.swf

SecurityDomain 3

AppDom2 (sibling)

Sub_App_1.swf

More Help topics
“Developing sandboxed applications” on page 205

About large, multi-versioned applications
A large, multi-versioned application is typically made up of many different components that are developed by different
groups within an organization. For example, a form manager.

Multi-versioned applications load the sub-applications into a sibling application domain that is alongside the main
application’s application domain. They also load sub-applications into the same security domain as the main
application.

The sub-applications loaded by the main application in a multi-versioned architecture must have compiled with the
same or older version of the compiler. You cannot load a sub-application into a main application if the sub-application
was compiled with a newer version of the compiler.

Multi-versioned applications have many of the benefits of sandboxed applications, but can require additional coding
to work with RPC classes and DataServices-related functionality. In general, if your sub-applications use these classes,
use the sandboxed application approach for loading sub-applications, even if they are trusted. For more information,
see “Using RPC and DataServices classes with multi-versioned applications” on page 214.

In deployment, the main application and the sub-applications are typically all in the same web domain, and so they
have a trusted relationship. Even if they are deployed on different web domains, the applications are typically loaded
into the same security domain to maintain the trusted relationship. This process of loading cross-domain applications
into the same security domain is known as import loading. Use this process only under rare circumstances where you
know that you can trust the source of the loaded sub-applications.

Last updated 9/25/2015

USING FLEX 182
Application architecture

Sometimes third parties compile the sub-applications that the main application loads. In this case, developers
sometimes don’t know the version of the Flex framework that was used to compile the sub-applications. The sub-
applications must be compiled with older versions of the compiler, or the same version of the compiler, but the
developers of the main application do not need to know which version. They might not have access to the source code
of the sub-applications. As a result, they would not necessarily be able to recompile them with the same version of the
framework as the main application.

The following image shows the boundaries of a large, multi-versioned application. The sub-applications are loaded
into separate, sibling application domains. This means that each application contains its own class definitions so they
can be compiled with different versions of the framework (as long as the sub-applications are compiled with the same
or older versions of the compiler that the main application was compiled with). All the applications are loaded into the
same security domain and therefore trust each other.

SecurityDomain 1

Applicati in1
pplicationDomain AppDom2 (sibling)

Sub_App_1.swf

Main_App.swf

AppDom3 (sibling)

Sub_App_2.swf

Sub-applications in a sibling application domain store their own class definitions, apart from the class definitions in
the main application. The following image shows the class definitions of a large, multi-versioned application. You can
see that the sub-application uses its own definitions, which were compiled with Flex 3.2). The main application uses
its own definitions, which were compiled with Flex 4.

Flash Player

DisplayObject MyMainApp.mxml MySubApp.mxml

4 /(UlComponent (v4)) —C UIComponent(v3.2))
/ ‘

4 mmr (v4)) C Container (v3.2))

] I
I C C_—

)
) 4)
C Application (v4)) C Application (v3.2))

!]]
) C MySubApp)

Event) C mymainapp

N N 7N 7N M)

Last updated 9/25/2015

USING FLEX
Application architecture

More Help topics

“Developing multi-versioned applications” on page 213

About large, single-versioned applications

A large application without versioning support is an application that loads sub-applications that must have been
compiled with the same version of the Flex framework. A single group within an organization typically creates these
applications. It is possible for that group to enforce Flex framework versions and other standards during the
development process.

Large, single-versioned applications are the default type of application loaded by the SWFLoader control. If you accept
the SWFLoader’s default settings when you load sub-applications into your main application, the sub-applications are
not multi-versioned. They are loaded into child application domains of the main application.

It can be difficult to maintain large, single-versioned applications. This is because all sub-applications must be
recompiled whenever any of the applications are recompiled with a new version of the framework. In addition, it is
more difficult to add third-party sub-applications because they might have been compiled with different versions of
the framework. In many cases, you do not have access to the source code to recompile them.

Large, single-versioned applications and all their sub-applications are usually deployed in the same web domain. This
is because the same group within an organization typically develops and maintains them. As a result, they have a
trusted relationship. Even if the applications are deployed on different web domains, the applications would be import
loaded into the same security domain. This results in the applications having a trusted relationship.

The following image shows the boundaries of a large application that does not support multi-versioning. Each sub-
application is loaded into a child application domain of the main application’s application domain. As a result, all the
applications use the same class definitions. If one of these applications is compiled with a different version of the
framework, then runtime errors are likely to occur when a call is made to an API that is different. All the applications
are inside the same security domain and therefore trust each other.

SecurityDomain 1

ApplicationDomain 1

Child of AppDom1

Main_App.swf

Sub_App_1.swf

Child of AppDom1

Sub_App_2.swf

Sub-applications in a child application domain inherit their class definitions from the application in the parent
application domain. If a sub-application defines one of the classes that is already defined in the main application, the
child’s definition is ignored. If multiple sub-applications define the same class that isn’t defined in the main
application, each sub-application uses its own definition.

Last updated 9/25/2015

USING FLEX 184
Application architecture

The following image shows the class definitions of a large, single-versioned application. In this image, you can see that
the sub-application gets its definitions from the main application, which was compiled with Flex 4. The class
definitions in the sub-application, which was also compiled with Flex 4, are ignored.

Flash Player

DisplayObject

MyMainApp.mxml MySubApp.mxml
UlCompgnent (v4)
>Cer)
e

Application (v4)
MyMainApp

MySubApp

More Help topics
“Creating and loading sub-applications” on page 191

About the manager classes

The manager classes handle various tasks of the application. For example, the DragManager handles all the drag-and-
drop functionality; this manager class is responsible for marshaling data, creating the DragProxy, and triggering drag-
related events.

When sub-applications are loaded into the same application domain as the main application, the application domain
contains only a single instance of each manager. When applications are in different application domains, though, there
can be more than one instance of a manager in the system domain.

Depending on the type of task, the manager classes are sometimes allowed to communicate through event passing
when a main application loads a sub-application. For example, the FocusManager in a sub-application receives control
from the FocusManager in the main application when the focus shifts to the sub-application. When the focus shifts
away from the sub-application, the sub-application’s FocusManager passes control back to the main application’s
FocusManager.

In other cases, there can only be one active instance of a manager in the system domain. Flex ensures that the sub-
application’s manager is disabled. For example, the BrowserManager cannot have multiple instances. Only the main
application can access it, and only the main application can communicate with it, unless the sub-application is in a
child application domain of the main application. If a sub-application in a separate application domain wants to
communicate with the BrowserManager, it must do so through the main application.

In this case you would have to create custom logic that handles interaction with manager classes. For example, if you want
a sub-application to use the main application’s deep linking, you can create a custom class. This custom class passes
messages from the sub-application to the main application, where the BrowserManager can be communicated with.

What typically happens is that the top-level manager handles the user interaction. This manager receives messages
from the sub-application’s manager that instructs it on what to do.

The following manager classes are linked in by all applications:
+ SystemManager

+ LayoutManager

« StyleManager

« EffectManager

Last updated 9/25/2015

USING FLEX
Application architecture

+ ResourceManager (which links in ModuleManager)
« FocusManager

+ CursorManager

+ ToolTipManager

The following manager classes are linked in only when used in an application:

+ DragManager
» BrowserManager
+ HistoryManager (deprecated)

« PopUpManager (note that if a sub-application uses pop-up controls, the main application must include a definition
of this manager)

If a main application loads sub-applications that are compiled with the same version of the framework, only one
definition of each manager is stored in the SWF file. However, if you have a sandboxed or multi-versioned sub-
application, both the main application and the sub-application store their own definitions. In many cases, the manager
classes in the sub-application pass messages to the main application’s instance of the manager. The main application’s
manager can then handle the task.

With sandboxed or multi-versioned applications, both the main application and the sub-application have their own
versions of the manager classes. In single-versioned applications, only one version of most manager classes is
necessary. You can externalize the definition of a manager in many cases for applications that are not multi-versioned.

About the SystemManager class

All applications have an instance of the SystemManager class. If an application is loaded into another application, a
SystemManager for the sub-application is still created. The SystemManager still manages the sub-application’s
application window, but it might not manage pop-up controls, tool tips, and cursors, depending on the way in which
the sub-application was loaded. The content of the SWFLoader that loaded the sub-application contains a reference to
the sub-application.

The SystemManager of the main application is important because it gives you access to many aspects of the entire
application. For example, the top-level SystemManager does the following:

« Parents all pop-up controls, ToolTip objects, and cursors in the main application and all trusted sub-applications
 Handles focus for all applications that are trusted

You can use a reference to the top-level SystemManager to register to listen for events in a sub-application. For
example, your sub-application can listen for mouse events that are outside its application domain by adding listeners
to the top-level SystemManager.

The way you access the top-level SystemManager from a sub-application depends on the type of sub-application that
you are using.

Last updated 9/25/2015

USING FLEX 186
Application architecture

To get access to the top-level SystemManager in an architecture where sub-applications are loaded into child
application domains, you use the topLevelSystemManager property of the SystemManager. The following image
shows that the sub-applications use the systemManager . topLevelSystemManager to access the SystemManager in
the main application.

SecurityDomain 1

ApplicationDomain 1

Main_App.swf

systemManager.topLevelSystemManager

Child oprpDom/ \Child of AppDom1

Sub_App_Lsw Sub_App_2.swf

SystemManager SystemManager

For a code example that uses the topLevelSystemManager property to access the main application’s SystemManager,
see “Listening for mouse events with loaded applications” on page 201.

For single-versioned applications, the topLevelSystemManager property always refers to the top-level
SystemManager in an application domain. If your applications are in separate application domains (as sandboxed or
multi-versioned applications are), use the getSandboxRoot () method to get the top-level SystemManager for that
security domain.

The following image shows that the sub-applications use the systemManager.getSandboxRoot () to get a reference
to the main application’s SystemManager, which is in a separate application domain.

SecurityDomain 1

ApplicationDomain 1

Main_App.swf

AppDomZ(sibling)/ \ AppDom3 (sibling)
Sub_App_1.swf Sub_App_2.swf

systemManager.getSandboxRoot()

Systen g Y ager

For a code example that uses the get sandboxRoot () method to access the main application’s SystemManager, see
“Listening for mouse events in multi-versioned applications” on page 216.

When a sub-application is in a different security domain as the main application (or not trusted, such as in a sandboxed
application), you cannot get a reference to the main application’s SystemManager from the sub-application. In this
case, you can listen for a SandboxMouseEvent and InterDragManagerEvent for inter-application communication.
Any application can trigger these events. The sub-application’s SystemManager gets notification of them, at which
point you can handle them in the sub-application.

Last updated 9/25/2015

USING FLEX 187
Application architecture

The following image shows an architecture where two applications, in separate security domains, communicate
through event passing. The sub-application calls the get sandboxRoot () method to get a reference to its own
SystemManager. The SystemManager can then listen for events that the main application’s SystemManager
dispatched.

SecurityDomain 1

ApplicationDomain 1

Main_App.swf

SandboxMouseEvent

systemManager.getSandboxRoot()

AppDom2 (peer) \ /
/

Sub_App_1.swfSystemManager

SecurityDomain 2

The properties of a SandboxMouseEvent object are not the same as the properties in a typical event object. For
example, the target and currentTarget properties are the SandboxBridge that dispatched the event, or the
SystemManager that redispatched it. These properties are not the specific object that dispatched the event. Untrusted
child applications should not be able to get references to objects that are typically specified by these properties.
Similarly, the stageX, stageY, localX, and localY properties are not available.

For an example that uses the SandboxMouseEvent object to handle mouse events outside a sub-application’s security
domain, see “Listening for mouse events with sandboxed applications” on page 209.

Comparing loaded applications to modules

When you design a large application, give some consideration to its architecture. If the application has one main
application that loads and unloads subordinate applications, then weigh the benefits of using either modules or sub-
application when deciding which approach to take.

Consider the example of an application composed of many forms. In a modular application, a main application loads
each form as a module with the ModuleManager. In an application that uses sub-applications, each form is a separate
application that the SWFLoader loads into the main application. These two approaches are similar in many ways, but
also have many differences.

Many of the reasons to use modules also apply to sub-applications. Main applications usually load sub-applications
rather than embed their functionality. The result is generally a smaller initial download size and shorter load time for
the main application. In addition, this promotes better encapsulation of related functionality, which can make
development and maintenance easier.

Modules and sub-applications have the following similarities:
+ Are compiled SWF files

+ Can be loaded and unloaded at run time

« Promote encapsulation of related functionality

+ Allow for an asynchronous development environment

Last updated 9/25/2015

USING FLEX 188
Application architecture

« Can be recompiled without having to recompile the main application

« Support debugging

+ Can be loaded locally or remotely (with the appropriate permissions)

« Are cached by the browser

+ Can be preloaded

+ Support progress events for getting the status while loading

+ Can dynamically access methods and properties of the main application

Modules and sub-applications are also different. The main difference is that modules typically share classes with their
host application. This sharing of classes creates a dependency between the module and the main application. Sub-
applications, on the other hand, typically have their own versions of the classes, so less dependency exists between
them and the main application.

Other differences between modules and sub-applications include the following:

File size Modules and their host applications are often smaller in file size because you can externalize shared classes.
You can’t always externalize shared classes for sub-applications. In cases where the versions of the applications are
different, each application must have its own set of classes.

Reuse Modules are more tightly bound to the host application. They use interfaces to communicate with the loading
application. This means that as your application changes, if your application uses modules, you’ll probably need to
recompile all of them if you move the main application to a later version of Flex.

Versioning Modules do not support multi-versioning. The main application and all modules must be compiled by the
same version of the Flex framework. In a mult-versioned application, the sub-applications can be compiled with
different versions of the compiler, as long as the compiler is the same or older than the compiler used to compile the
main application.

Manager classes Modules and their host applications typically share manager classes. The modules are in a child
application domain, whereas sub-applications often have their own instance of the manager class so that they can be
multi-versioned. An exception is the StyleManager class; modules each define their own instance of type
IStyleManager2.

ActionScript-only Modules can be either MXML-based or ActionScript-only; applications and sub-applications are
not typically pure ActionScript.

Application domains sub-applications can be loaded into sibling application domains or child application domains,
whereas modules must be loaded into a child application domain of the host application.

Security domains Modules must be loaded into the same security domain as their host application. Sub-applications
can be loaded into either the same security domain or a different security domain.

For more information about modules, see “Modular applications” on page 138.

Comparing the SWFLoader and Loader controls

You can use the SWFLoader and Loader classes to load sub-applications into a main application. In most
circumstances, use the SWFLoader class. This class wraps the Loader class and provides additional functionality that
makes it easier to use for loading sub-applications into main applications.

The SWFLoader control has the following features:

« Supports Flex styles and effects; the Loader class does not have any inherent support for styles and effects.

+ Lets you monitor the progress of a load inherently (if you use the Loader class, you have to first get a reference to a
LoaderInfo object).

Last updated 9/25/2015

USING FLEX
Application architecture

+ Isa UIComponent. As a result, the SWFLoader control participates in the display list and adds children to the
display list without having to write additional code.

+ Resizes and scales the contents automatically.

« Does not require that the SWF file be an instance of the Application class, it just checks if an Application exists, and
handles sizing differently.

+ Can be multi-versioned. The Loader class does not have built-in support for multi-versioning.

Communicating across domains

Whenever you have a main application and sub-applications that are in different application domains, the
recommended way to communicate between the applications is through event passing. If something that happens in
the sub-application affects the main application, the sub-application triggers an event. This event can be caught in the
main application. The event defines the properties necessary to respond to the event. For example, suppose a user
moves the mouse pointer over a control in a sub-application that has a ToolTip. The sub-application’s
ToolTipManager creates the ToolTip and sends an event that requests the main application’s ToolTipManager to
display it. This interaction works across application domains that are within the same security domain.

Communication across security domains use the LoaderInfo.sharedEvents dispatcher and custom events. This process
is largely transparent to you; you only need to know which events to register with event listeners. The
LoaderInfo.sharedEvents class dispatches events in a sub-application that should be handled by a manager in the main
application. The event contains data that define it, and that data is marshaled across the security domain. It is
important to note that custom event classes cannot be strongly typed across the security domain by the receiver. Only
classes defined by Flash Player can be strongly typed.

In many cases, communicating across security domains is transparent to the developer. The Flex framework handles
the details of event passing and data marshaling for you. For example, when using functionality managed by the
FocusManager or PopUpManager, you do not generally write additional code to make application interoperability
work. The underlying Flex classes trigger the events and marshal the data across the domains so that the experience is
seamless. In some cases, such as when you use custom classes to define objects, you must write custom code to marshal
the data across the security domain.

Loading same-domain and cross-domain applications

The level of interaction that a main application and sub-application have depends on the level of trust between them.
They can be trusted or untrusted. By default, applications that are loaded from a different web domain are untrusted,
and applications that are loaded from the same web domain are trusted. You can, however, make a cross-domain
application trusted.

Same-domain applications are applications that are loaded into the main application from the same web domain as
the main application. By default, they are loaded into the same security domain and are trusted. Trusted applications
can be loaded into the same application domain as the main application, which means they share their class definitions
with the main application. They can also be loaded into a different, sibling application domain, which means that they
contain their own definitions for all their classes and can be multi-versioned (as long as they are compiled with the
same or older version of the compiler that the main application was compiled with).

Cross-domain applications are applications that are loaded into a main application from a different web domain as the
main application. For example, if the main application is located at domainA.com, and the sub-application is located
at domainB.com, then the sub-application is a cross-domain application. Cross-domain applications are often known
as untrusted applications, although you can specify that a remote application be trusted (except when using AIR).

When loading cross-domain SWF files, consider these points:

+ The main application might have to call the security.allowbDomain () method.

Last updated 9/25/2015

USING FLEX
Application architecture

+ The sub-application’s server might require a crossdomain.xml if you try to load data from the target application.

+ The main application can define the level of trust between the main application and the sub-application by setting
the value of the trustcontent property (if the crossdomain.xml file permits it, and you are not using AIR).

Untrusted applications are loaded into a different security domain as the main application. As a result, Flash Player
provides only limited interoperability between applications that do not trust each other because of the security
concerns.

You can load the content of any SWF file from any web domain regardless of whether target web server has a policy
file, but you need permissions to read the SWF file’s data. To load a cross-domain application and access its data, the
target server that hosts the remote sub-application must have a policy file called crossdomain.xml on it. This file must
specifically allow access from the source server. In the previous example, if you wanted to access the loaded
application’s data, domainB must have a policy file on it that lets domainA load from it. Without a policy file, Flash
Player throws a security error if it tries to access the application’s data. A policy file must be in the root of the domain,
or its location must be specified explicitly in the loading application. For more information about the crossdomain.xml
file, see “Using cross-domain policy files” on page 125.

Sub-domains that are not the same, such as wwwl.domainA.com and www2.domainA.com, also apply when deciding
if a sub-application is cross-domain or not. In this example, if the main application is on wwwl.domainA.com, and
the sub-application is on www2.domainA.com, then the sub-application is considered untrusted by default. To load
data from the sub-application, the sub-application’s domain would require a policy file.

You cannot test loading cross-domain applications directly in Flash Builder because the sub-applications must be
loaded from a separate domain. As a result, to build the main application and the sub-application in Flash Builder, set
up the compilation process to deploy the applications to separate servers for testing.

Cross-domain applications can be “import loaded,” which means that they are loaded into the same security domain
as the main application. You do this by setting the trustContent flag to true on the SWFLoader, or by specifying
that the application load into the same security domain domain on the LoaderContext. You should only import load
a cross-domain application if you know for sure that it can be trusted. For more information on using the
LoaderContext to load sub-applications, see “Specifying a LoaderContext” on page 195.

Another way to load cross-domain applications into the same security domain is to use the
Security.allowDomain () method. You first load the application as a sandboxed application (from a different web
domain, without setting the trustContent property to true). In the main application, you call the allowbomain ()
method on the sub-application’s domain in the SWFLoader control’s complete event handler. In the sub-application,
you call the allowDomain () method on the main application’s domain. You must make this call early in the sub-
application’s lifecycle. For example, in the application’s preinitialize event. If you use the allowDomain () method
to load applications, you do not need a crossdomain.xml file on the target domain.

You can load a local (or same-domain) application into a different security domain. To do this, you can use a URL
string for the SWFLoader’s source property that is different from the path to the main application. For example, you
could specify an IP address for the source property. When Flash Player compares the domain names, they are
recognized as different, and the sub-application loads as an untrusted application. This is a common approach if you
want to the loaded application to be sandboxed, but deploy the applications into the same web domain. You could also
create separate sub domains on the same server to ensure that the sub-application is loaded into a separate security
domain.

Sub-applications access remote data based on the way that they were loaded. If you import load an application, the
sub-application is effectively running from within the main application’s security domain. As a result, it would now
need permissions to access data on its domain of origin. If you load a sub-application into a separate security domain,
it runs within its original domain and can access resources on that domain as normal.

Last updated 9/25/2015

USING FLEX 191
Application architecture

Creating and loading sub-applications

You use the SWFLoader control to load sub-applications into your main application. The default behavior of the
SWEFLoader control assumes that the application you are developing loads trusted sub-applications that were compiled
with the same version of the Flex framework. These applications are typically loaded from the same web domain as the
main application.

You can load the following other types of applications:

Sandboxed applications Sandboxed applications contain sub-applications that are loaded into separate security
domains. As a result, they can be multi-versioned, but are untrusted. This is the recommended approach for any third-
party application, or for many multi-versioned applications that use RPC classes or DataServices-related functionality.
For more information, see “Developing sandboxed applications” on page 205.

Multi-versioned applications Multi-versioned applications are typically very large applications that load trusted sub-
applications. The sub-applications might or might not have been compiled with the same version of the Flex
framework as the main application. They must be loaded by the same or older version of the compiler that is used for
the main application. For more information, see “Developing multi-versioned applications” on page 213.

When compiling each of these types of applications, you should include the MarshallingSupport class into the main
application and sub-applications. You do this with the includes compiler argument, as the following example shows:

-includes=mx.managers.systemClasses.MarshallingSupport

When developing large, single-versioned applications, you might consider using modules instead of sub-applications.
For more information, see “Comparing loaded applications to modules” on page 187.

Sub-applications can run independently of the main application and other sub-applications. There should be no
dependencies on the main application or other sub-applications for a sub-application to run.

When developing sub-applications in Flash Builder, you cannot just compile the main application and expect the sub-
application to also recompile. You must compile them separately. Using Ant or some other automated build process
can help. This process is different from developing modules, where if you compile the application that loads a module,
Flash Builder also compiles the module.

Loading applications with the SWFLoader control

The SWFLoader control lets you load one application into another application. It has properties that let you scale its
contents. It can also resize itself to fit the size of its contents. By default, content is scaled to fit the size of the
SWFLoader control. The SWFLoader control can also load content on demand programmatically, and monitor the
progress of a load operation.

To load a SWF file into a SWFLoader control, you set the value of the SWFLoader control’s source property. This
property defines the location of the sub-application’s SWF file. After you set the value of the source property, Flex
imports the specified SWF file and runs it. For simple examples of using the SWFLoader tag in an application, see
“Creating a SWFLoader control” on page 716.

In addition to SWF files, the SWFLoader control can also load several types of images (such as JPG, PNG, and GIF
files) as SWF files. You cannot load a module, RSL, or style module with the SWFLoader control.

The default behavior for the SWFLoader control depends on the location of the loaded SWF file. If the loaded
application is loaded locally, the default is to load the SWF file into the same security domain, and a child application
domain. This loads an application that is trusted but single-versioned.

Last updated 9/25/2015

USING FLEX 192
Application architecture

If the loaded application is loaded from a different server or in a separate sub domain than the main application, then
the default is to load the application into a separate security domain and a separate, sibling application domain. The
result is a multi-versioned application, but one that has some restrictions on it because it is untrusted by default. This
is the recommended approach for all third-party applications, or any multi-versioned applications that use RPC classes
or DataServices-related functionality.

When loading any application, you can explicitly set the values of properties on the SWFLoader control that set the
application domain and the security domain. These properties define the trust level between the main application and
the sub-application, and determine whether the applications are multi-versioned. The following table describes these
properties of the SWFLoader control.

Last updated 9/25/2015

USING FLEX 193
Application architecture

Last updated 9/25/2015

USING FLEX
Application architecture

Property

Description

loadForCompatibility

Determines if the loaded SWF file is a multi-versioned application.

Set this property to t rue to indicate that the loaded application might be compiled with a different
version of the Flex framework and you want your application to be able to interact with it. Setting
the value of the loadForCompatibility property to true also causes the LoaderContext of the
Loader to load the sub-application into a sibling application domain of the main application, rather
than a child application domain.

Note: The sub-application must be compiled with the same or older version of the
compiler than the version that the main application was compiled with.

Set this property to f£alse to disallow any version compatibility. If the loaded application was
compiled with an older version of the framework, then the application will likely experience errors at
run time (if the two applications use a shared resource whose APl has changed between versions of

the Flex framework). If the application was compiled with the same version of the framework, then
it will load and interact with the main application as normal.

The value of the 1oadForCompatibility property is ignored if you explicitly set the value of the
loaderContext property.

Setting this property has no impact on the sub-application’s security domain.
The default value of the 1oadForCompatibility propertyis false.

If you set LloadForCompatibility to true when developing your applications, use this method
of loading consistently in the future. If you change an application from one that is multi-versioned
to one that s single-versioned, or vice versa, you should not expect the application to work the same
way.

For more information, see SWFLoader.loadForCompatibility.

loaderContext

Defines the context into which the child SWF file is loaded. The context defines the application
domain and the security domain of the application.

With the loaderContext property, you can set the security domain into which the application is
loaded. You can also require that a policy file is in place before the SWF file is loaded. The default for
a local application is to load the sub-application into the same security domain as the main
application. For a remote (or cross-domain) application, the default is to load the sub-application
into a different security domain.

With the loaderContext property, you can also specify the application domain for the context. The
default is a child of the Loader’s application domain. If you want to load a multi-versioned
application, change this to a sibling application domain. In general, use the
loadForCompatibility property rather than the loaderContext property to specify the
application domain.

If you explicitly set the value of the 1oaderContext property, then the SWFLoader control ignores
the value of its loadForCompatibility and trustContent properties.

The default value of the 1oaderContext property is null.

You can only specify a LoaderContext in ActionScript. There are some restrictions on using the
loaderContext property. For more information, see “Specifying a LoaderContext” on page 195.

For more information, see SWFLoader.loaderContext.

Last updated 9/25/2015

194

USING FLEX
Application architecture

Property

Description

trustContent

Determines whether the SWF file is loaded into the main application’s security domain.

Set to true to load the SWF file into the main application’s security domain. Regardless of whether
the SWF file is same-domain or cross-domain, the SWF file is now considered trusted (assuming that
the policy file permits it to be). This means that it can access properties and methods of the main
application, and vice versa. You should not set this to t rue for any third-party application unless you
can absolutely trust the source of that application.

Set this property to false to load a cross-domain SWF file into a separate security domain. It is now
considered untrusted. The SWF file cannot access properties and methods of the main application,
nor can the main application access the SWF file's properties and methods.

The value of the trustContent property is ignored if you explicitly set the value of the
loaderContext property.

The default value of the trustContent property is false.

For more information, see SWFLoader.trustContent.

Specifying a LoaderContext

Specifying a loader context for the sub-application gives you control over the security domain and application domain
that the application is loaded into. You specify the loader context by setting the values of the securitybomain and

applicationDomain properties on the LoaderContext object.

You can only specify a loader context in ActionScript. You cannot set its value as an attribute in the <mx : SWFLoader> tag.

The following example assigns a custom LoaderContext to the SWFLoader. It defines the current security domain and
a sibling application domain for the loader. This is only applicable to sub-applications that are single-versioned. For
multi-versioned applications or sandboxed applications, you should use calls to the allowbomain () method to

establish trust between the main application and the sub-application.

Last updated 9/25/2015

195

USING FLEX
Application architecture

<?xml version="1.0" encoding="utf-8"?>
<!-- apploading/MainAppCustomLoaderContext.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
creationComplete="initApp () ">
<fx:Script>
<! [CDATA[
import flash.system.SecurityDomain;
import flash.system.ApplicationDomain;

private function initApp () :void {
var context:LoaderContext = new LoaderContext () ;

/* Specify the current application's security domain. */

context.securityDomain = SecurityDomain.currentDomain;

/* Specify a new ApplicationDomain, which loads the sub-app into a
peer ApplicationDomain. */

context.applicationDomain = new ApplicationDomain () ;

contentLoader.loaderContext = context;

contentLoader.source = "http://yourdomain.com/SubApp3.swf";

11>
</fx:Scripts>
<mx: SWFLoader id="contentLoader"/>

</s:Application>

This example triggers the initapp () method on the Application object’s creationComplete event. If you had
instead set the source property of the SWFLoader control in MXML, you would use the preinitialize event to set
the loader context. Waiting for the application’s creationComplete event to set the loader context would occur too
late in the application startup.

Setting the context . securityDomain property to the currentDomain makes the SWF file trusted by loading it into
the same security domain as the main application. To do this, though, the sub-application’s server must have a policy
file that allows you to load it. The result is that the SWF file becomes trusted, and acts as if it was loaded locally. In AIR,
you cannot specify any value for the context . securityDomain property.

Youcan(nﬂyspecﬁythevﬂueSecurityDomain.currentDomainfbrthecontext.securityDomainprOpeHy.
Attempting to pass any other security domain results in a SecurityError exception. If you do not specify any value for
the currentDomain property, then a remote SWF file is loaded into its own security domain. This occurs unless you set

the security domain in some other way, such as setting the value of the SWFLoader’s t rustContent property to true.

When specifying an application domain for the context .applicationbDomain property, you can add a sub-
application to a sibling application domain, a child application domain, or the same application domain as the loading
application. The following table describes each of these methods.

Last updated 9/25/2015

196

USING FLEX
Application architecture

Value of context.applicationDomain Result

new ApplicationDomain () Loads the sub-application into a sibling application domain that is rooted on the
same domain as the loading application. If the loading application is the top-level
application, then both the loading application and the sub-application’s
application domain will be children of the system domain.

You do this if you want to use compatibility mode, because applications thatare in
sibling application domains can each have their own class definitions. As a result,
they can be compiled by different versions of the Flex framework, as long as the
sub-applications are compiled with the same or older version of the compiler than
the main application.

new ApplicationDomain (Loads the sub-application into an application domain that is a child of the main
ApplicationDomain.currentDomain) application’s application domain. All class conflicts are resolved when the
application is loaded; the first class definition wins.

Do not use this method if you want to load a multi-versioned application. That is
because applications that are loaded into the same application domains must be
compiled by the same version of the Flex framework.

application.currentDomain Loads the sub-application into the same application domain as the main
application. You typically do not use this setting when loading sub-applications. It
is generally only used for RSLs and other specially compiled resources.

If you specify a loader context when loading a sub-application, do not load more than one application into the same
application domain. In other words, do not use the same loader context for more than one sub-application.

Unloading applications with the SWFLoader control

To unload a sub-application that you loaded with the SWFLoader control, call the SWFLoader control’s
unloadandstop () method, as the following example shows:

myLoader.unloadAndStop (true) ;

You can also set the SWFLoader’s source property to null. This results in a call to the
SWFLoader.content . loaderInfo.loader.unload () method. You can call this method explicitly, but only for
trusted applications.

To free up the memory that was used by the loaded sub-application, ensure that no references to objects or classes in
the sub-application exist. The unload () method frees the loader’s reference to the sub-application’s bytes, but if code
in the sub-application is still in use, then it is not garbage collected.

Flash Player also unloads a sub-application when the same SWFLoader control loads a new sub-application. The
original content is removed before the new application is loaded.

Typically, you load a style module into the main application’s application domain. If the sub-application contains any
user interface classes (such as skins) that are not in the main application, the styles for those classes are loaded into the
main application’s StyleManager. When you unload the sub-application, the sub-application’s memory is not freed up.
In this case, load style modules into the sub-application’s application domain.

Accessing the main application from sub-applications

There are several ways to access the methods and properties of the main application from the sub-application. These
ways only work for sub-applications that are loaded as children into a main application’s application domain. You
cannot use these for sandboxed applications, or for multi-versioned applications.

These methods include:

+ Using the application property of the Application class. This property accesses the root application from

anywhere in the application. For more information, see “Accessing document and application scopes” on page 404.

Last updated 9/25/2015

197

USING FLEX 198
Application architecture

+ Using the parentDocument property of the Application class. This is useful if you have multiple applications
embedded and want to just access the immediate parent. For more information, see “Accessing document and
application scopes” on page 404.

Be aware that you might encounter security errors if you try to access members that should not be accessed.

Accessing sub-applications from the main application

Although you can access the sub-application from the main application, you cannot directly reference methods and
properties. This is because the members of the sub-application, unless it is embedded at compile-time, are not known
by the compiler when the main application compiles.

You can, however, get a reference to the sub-application’s SystemManager. You can then treat members of the sub-
application as dynamic properties and methods of the sub-application’s object.

The following example loads a remote sub-application into the SWFLoader. It sets the value of the trustContent
property to true so that the sub-application is loaded into the same security domain as the main application. It casts
the content property of the SWFLoader to a SystemManager so that the application’s members can be accessed
dynamically. It then calls a method and accesses a property of the sub-application.

<?xml version="1.0" encoding="utf-8"?>
<!-- apploading/MainAppUsingSubAppMembers.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx" >
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA [
import mx.managers.SystemManager;
private function getValueFromSubApp () :void
/* Cast the SWFLoader's content as a SystemManager
to access the sub-application. */
var subApp:SubApp2 =
(contentLoader.content as SystemManager) .application as SubApp2;
/* Call a method and access a property of the
sub-application. */
labell.text = subApp.doSomething() + subApp.answer;

11>
</fx:Scripts>

<mx:SWFLoader id="contentLoader" visible="false"

height="0" width="0"

trustContent="true"

source="http://yourdomain.com/SubApp2.swf"/>
<mx:Panel id="myPanel2"

paddingLeft="10" paddingBottom="10"

paddingTop="10" paddingRight="10">

<s:Label id="labell"/>

<s:Button id="b2" label="Call SubApp2" click="getValueFromSubApp ()"/>
</mx:Panel>

</s:Application>

Last updated 9/25/2015

USING FLEX
Application architecture

The following example shows the sub-application that is loaded by the main application in the previous example. It
defines a public property, answer, as well as a public method, doSomething (), that returns a String.

<?xml version="1.0" encoding="utf-8"?>

<!-- apploading/SubApp2.mxml -->

<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx" >

<fx:Script>
<! [CDATA[
// Define a public property.
public var answer:int = 42;

// Define a public method that returns a String.
public function doSomething() :String {
return "The answer is ";

11>
</fx:Script>
</s:Application>

For more information about accessing sub-applications from the main application, see “SWFLoader control” on
page 715.

If the sub-application is loaded remotely, you can access its members only if it is in the same security domain as the
main application, or if you and the sub-application call the Security.allowbDomain () method. In this case, you must
call the security.allowbDomain () method from the main application on the sub-application’s domain, and the sub-
application must call this method on the main application’s domain. You must also call the allowDomain () method
early in the sub-application’s lifecycle. For example, call it in a preinitialize event handler.

Creating class instances from loaded applications

You can create instances in a main application of classes that are defined in a loaded sub-application. You can then
add these objects to your main application and interact with them as you would interact with any other object in the
display list. To access class definitions in a sub-application, you get the definitions from the sub-application’s
application domain.

Each application domain contains definitions of all the classes within it. There is an applicationDomain object that you
access with a reference to the loaded application’s LoaderContext. The ApplicationDomain object has two methods,
hasDefinition () and getDefiniton().The hasDefinition () method lets you detect if a class definition exists. If
a class definition exists, the getDefinition () method lets you create an instance of that class in your main
application.

You can’t add a UIComponent that is defined in another application domain to the main application’s display list. As
a result, to create an instance of a class that is defined in another application domain, the sub-application must be
loaded into a child application domain of the main application’s application domain (you cannot set the value of the
SWFLoader’s loadForCompatibility property to true). The sub-application must also be in the same security
domain as the main application (trustContent must be true).

You can only create the instance of the class dynamically when the class is defined in an application that is loaded at
run time. This is because the compiler does not have access to classes in loaded applications at compile time, so it
cannot check linkages. If the sub-application was embedded at compile time, then you would not have to create the
instance dynamically, the class definition would be available to the compiler. In this case, you could instead use the
new keyword with the specific class type rather than a generic Class type.

Last updated 9/25/2015

199

USING FLEX
Application architecture

The following example main application loads a sub-application with the SWFLoader control. It sets the value of the
trustContent property to true and defines a method, createClassInstance (). This method gets the definition of
the custom class from its loaded application’s application domain. The example then creates an instance of this class

and sets a property on it before adding it to the display list.

<?xml version="1.0" encoding="utf-8"?>
<!-- apploading/MainAppUsingSubAppDefinitions.mxml -->
<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx">
<s:layout>
<s:VerticalLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.core.UIComponent ;
public function createClassInstance () :void
// Check that the definition exists.
if
(contentLoader.loaderContext.applicationDomain.hasDefinition ('MyRedButton')) {
var objClass:Class =
contentLoader.loaderContext.applicationDomain.getDefinition ('MyRedButton') as Class;
if (objClass != null) {
var newObject:UIComponent = UIComponent (new objClass()) ;
// Set properties on the custom class as an associative array.
newObject ["label"] = "Click Me";

// Add the new instance to the second panel in this application.
myPanel?2.addChild (newObject) ;

11>
</fx:Script>
<!-- The SWFLoader in the first panel loads the
sub-application that contains a definition of MyRedButton. -->
<mx:Panel id="myPanel" title="SubAppl Loaded by main application"s>
<mx:SWFLoader id="contentLoader"
trustContent="true"
source="SubAppl.swf"/>
</mx:Panel>
<!-- This application adds an instance of the MyRedButton
class to the second panel after the content is loaded. -->
<mx:Panel id="myPanel2" title="Instance of a Class Defined By SubAppl"/>

</s:Application>

In this case, the hasDefinition () method returns a boolean to tell if a class is present in the loaded SWF file. If it is
present, the sub-application can obtain the Class using the getDefinition () method. You can then create instances
by using the new keyword with the returned class.

Also notice that the createcClassInstance () method is public. If it were private, the sub-application would not be
able to call it.

Last updated 9/25/2015

200

USING FLEX 201
Application architecture

The sub-application, SubApp1l.swf, statically links a custom class called MyRedButton. It also calls the parent
application’s method when it is done. You cannot call that method in the parent application’s applicationComplete
event, because that event will likely be triggered too early in the initialization process. Wait for the sub-application to
complete its loading and initialization before you create an instance of a class that is defined in it.

<?xml version="1.0" encoding="utf-8"?>

<!-- apploading/SubZppl.mxml -->

<s:Application
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
xmlns:custom="*"
creationComplete="initApp ()"
applicationComplete="mx.core.FlexGlobals.topLevelApplication.createClassInstance()">
<s:layout>

<s:VerticallLayout/>

</s:layout>

<fx:Script>
<! [CDATA [
private function initApp () :void {
var child:DisplayObject = getChildAt (0) ;
var childClassName:String = getQualifiedClassName (child) ;

// Show that the qualified class name of the custom button is MyRedButton.
trace (childClassName) ;

11>
</fx:Script>
<custom:MyRedButton id="myRedButtonId" label="Click Me"/>
</s:Application>

The MyRedButton class is a simple MXML component that extends Button and defines its color as red. The following
example shows this custom class:

<?xml version="1.0" encoding="utf-8"?>

<!-- apploading/MyRedButton.mxml -->

<s:Button
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx"
color="red">

</s:Button>

Listening for mouse events with loaded applications

It is possible to listen for mouse events in a main application from a loaded sub-application that is in a child application
domain. To listen for these events, you listen for events such as MOUSE_uUP and MOUSE_MOVE on the sub-application's
systemManager. topLevelSystemManager. When the sub-application is in a child application domain, the
topLevelSystemManager property refers to the main application’s SystemManager.

The following application shows how to access mouse events on the topLevelSystemManager in a sub-application
that was loaded into a child application domain. If the sub-application is not in a child application domain, then you
must handle access to the SystemManagers differently. For more information, see the examples in “Listening for
mouse events with sandboxed applications” on page 209 and “Listening for mouse events in multi-versioned
applications” on page 216.

Last updated 9/25/2015

USING FLEX
Application architecture

<?xml version="1.0" encoding="utf-8"?>
<!-- apploading/ZoomerPattern2.mxml -->
<s:Application
creationComplete="setup ()"
height="250"
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA [
import mx.core.UIComponent;
import mx.managers.PopUpManager;
[Bindable]
public var datal:Array = ["Ice Cream", "Fudge", "Whipped Cream",
public var zoomTool:UIComponent ;
public function setup () :void {
// Draw the zoom rectangle.
zoomWidget .graphics.lineStyle (1) ;
zoomWidget .graphics.beginFill (0, 0);
zoomWidget .graphics.drawRect (0, 0, 17, 17);
zoomWidget .graphics.endFill () ;
// Listen for mouse down events.

"Nuts"] ;

zoomWidget .addEventListener (MouseEvent .MOUSE_DOWN, zoom mouseDownHandler) ;

}

private var lastX:int;
private var lastY:int;
private function zoom mouseDownHandler (event:MouseEvent) :void {

// When the mouse is down, listen for the move and up events.

systemManager. topLevelSystemManager.addEventListener (
MouseEvent .MOUSE_MOVE, zoom mouseMoveHandler, true);

systemManager.topLevelSystemManager.addEventListener (
MouseEvent .MOUSE_UP, zoom mouseUpHandler, true);

// Update the last position of the mouse.

lastX = event.stageX;

lastY = event.stageY;

// Create and pop up the zoomTool. This is what is dragged around.
// It must be a popup so that it can float over other content.

zoomTool = new UIComponent () ;
PopUpManager .addPopUp (zoomTool, this) ;
var pt:Point = new Point (zoomWidget.transform.pixelBounds.x,
zoomWidget.transform.pixelBounds.y) ;
pt = zoomTool.parent.globalToLocal (pt) ;
zoomTool.x = pt.x;
zoomTool.y = pt.y;
zoomTool .graphics.lineStyle (1) ;
zoomTool .graphics.beginFill (0, 0);
zoomTool .graphics.drawRect (0, 0, 17, 17);
zoomTool .graphics.endFill () ;
// Hide the rectangle that was the target.
zoomWidget.visible = false;
}
private function zoom mouseMoveHandler (event:MouseEvent) :void {
// Update the position of the dragged rectangle.
zoomTool.x += event.stageX - lastX;

Last updated 9/25/2015

202

USING FLEX 203
Application architecture

zoomTool.y += event.stageY - lastY;

lastX = event.stageX;

lastY = event.stagey;

var bm:BitmapData = new BitmapData (16, 16);

// Capture the bits on the screen.

bm.draw (DisplayObject (systemManager.topLevelSystemManager), new
Matrix (1, 0, 0, 1, -zoomTool . transform.pixelBounds.x - 2,
-zoomTool . transform.pixelBounds.y - 2));

// Create a Bitmap to hold the bits.

if (zoomed.numChildren == 0)
var bmp:Bitmap = new Bitmap() ;
zoomed .addChild (bmp) ;

} else
bmp = zoomed.getChildAt (0) as Bitmap;

// Set the bits.

bmp .bitmapData = bm;

// Zoom in on the bits.

bmp.scaleX = bmp.scaleY = 8;

}
private function zoom mouseUpHandler (event:Event) :void {

// Remove the listeners.

systemManager . topLevelSystemManager .removeEventListener (
MouseEvent .MOUSE_MOVE, zoom mouseMoveHandler, true);

systemManager. topLevelSystemManager.removeEventListener (
MouseEvent .MOUSE_UP, zoom mouseUpHandler, true);

// Replace the target rectangle.

zoomWidget.visible = true;

// Remove the dragged rectangle.

PopUpManager . removePopUp (zoomTool) ;

11>
</fx:Scripts>

<mx : HBox>
<mx :HBox backgroundColor="0x00eeee" height="140" paddingTop="4" paddingRight="4">

<mx:Label text="Drag Rectangle"/>

<mx :UIComponent id="zoomWidget" width="17" height="17"/>

<mx:Canvas id="zoom"
borderStyle="solid"
width="132"
height="132"

<mx :UIComponent id="zoomed" width="128" height="128"/>
</mx:Canvas>
</mx : HBox>
<mx:List dataProvider="{datal}"/>
</mx:HBox>
</s:Application>

The following example main application loads the previous example application. It uses the default settings to load the
sub-application.

Last updated 9/25/2015

USING FLEX 204
Application architecture

<?xml version="1.0" encoding="utf-8"?>
<!-- apploading/MainZoomerPattern2.mxml -->
<s:Application
xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
xmlns:mx="1ibrary://ns.adobe.com/flex/mx" >
<s:layout>
<s:VerticallLayout/>
</s:layout>
<mx:Text text="Default (trusted application in child ApplicationDomain) :"/>

<mx:SWFLoader id="swfl" source="ZoomerPattern2.swf"/>

</s:Application>

In this example, you cannot drag the rectangle outside the sub-application’s boundaries, and the mouseUp event does
not get triggered.

This example application uses the systemManager. topLevelSystemManager property to get a reference to the main
application’s SystemManager. If the application were a stand-alone application, you could use the systemManager
property to register event listeners, as the following example shows:

systemManager.addEventListener (MouseEvent .MOUSE MOVE, zoom mouseMoveHandler, true);
systemManager.addEventListener (MouseEvent .MOUSE_UP, zoom mouseUpHandler, true);

This works when the application is a stand-alone application, but not when the application is loaded as a child. The
top-level SystemManager, which is not the sub-application’s SystemManager, parents the zoomTool class.

Embedded fonts in loaded applications

Applications and modules in the same application domain are able to use the same embedded fonts by specifying the
font name. For example, a font embedded in the main application can be used by a sub-application, as long as the
applications are in the same application domain.

Models and singletons in loaded applications
Models that are implemented as singletons, and other singletons that the main application and its sub-applications
share, do not work if the sub-application and main application are in separate application domains.

To share models and other singletons, you can write your own marshaling code or create a bootstrap loader that stores
definitions of those classes.

Adobe recommends not sharing data models and other singletons with untrusted applications.

More Help topics
“Bootstrap loading” on page 219

Using RSLs with sub-applications

Single-versioned applications can share RSLs with other sub-applications and the main application to minimize the
number of classes that are loaded. This results in faster load times and smaller file sizes. Multi-versioned or sandboxed
applications cannot share RSLs.

Starting with Flex 4.5, sub-applications work much more efficiently with RSLs. The main application only loads those
framework RSLs that are needed at startup, and creates placeholders for all remaining framework RSLs. The sub-
application does not try to load RSLs that are already loaded by the main application. If the sub-application needs one
of the framework RSLs that are not initially loaded by the main application, then the sub-application loads the RSL.

Last updated 9/25/2015

USING FLEX
Application architecture

In addition, when a sub-application loads an RSL, you can specify which domain the RSL is loaded into with the
application-domain compiler argument. This applies to both framework RSLs and custom RLSs. This lets you load
an RSL into the parent, current, or top-level application domains.

When you develop sandboxed or multi-versioned applications, you cannot always externalize overlapping class
definitions, because the class definitions might be different. For example, if two applications are compiled with
different versions of the Flex framework, then each application must have its own definition of the manager classes
(such as the LayoutManager or the CursorManager) and other classes in the framework. As a result, do not externalize
those classes by compiling the applications against the same RSLs.

In previous versions of Flex, you were required to initialize certain manager classes such as the FocusManager if you
loaded a module or sub-application into a main application that did not use those manager classes. You are no longer
required to do this if you load the sub-application into a sibling application domain where each application has its own
class definitions. However, each security domain must include a definition of the PopUpManager class in case an
untrusted sub-application displays a modal dialog box.

For information on using RSLs with sub-applications, see “Using RSLs with modules and sub-applications” on
page 258.

Developing sandboxed applications

Sandboxed applications contain sub-applications that are loaded into separate security domains. By definition, they
are therefore loaded into separate application domains as well. As a result, they can be multi-versioned, but are
untrusted. Because they are untrusted, their interoperability with the main applications is limited. Types of sandboxed
applications include portals, mashups, and dashboards.

Sandboxed applications must be compiled with the same or older version of the compiler that the main application is
compiled with.

When compiling sandboxed applications, you should include the MarshallingSupport class into the main application
and sub-applications. You do this with the includes compiler argument, as the following example shows:

-includes=mx.managers.systemClasses.MarshallingSupport

If you are using any third-party applications, you should load them as sandboxed applications. In addition, if you are
using multi-versioned applications that use RPC classes or DataServices-related functionality, you should also
consider loading them as sandboxed applications. Otherwise, you might be required to provide additional code such
as a bootstrap loader.

In a sandboxed configuration, loaded sub-applications are typically not on the same domain as the main application.
This means that the applications might not necessarily trust the loaded applications by default. In addition, all sub-
applications are not necessarily always visible at the same time, so the main sandboxed application must be able to load
and unload sub-applications at any time.

In sandboxed applications, each sub-application is loaded into a separate application domain and a separate security
domain. The interoperability across security domains is very limited. The sub-application cannot access most stage
properties, methods, and events. It cannot get mouse and keyboard events from other security domains. It also cannot
perform drag and drop operations to or from the main application, and pop-up controls are clipped at the boundaries
of the sub-application. Data sharing between the main application and sub-application requires marshaling.

If you try to use the parent chain of an application object to access properties of the main application from a sub-
application in a different security domain, you will encounter security errors at run-time. In addition, you cannot
access the application through the SWFLoader.content object.

For details about the architecture of a sandboxed application, see “About sandboxed applications” on page 180.

Last updated 9/25/2015

USING FLEX 206
Application architecture

Pop-up controls in sandboxed applications

Pop-up controls are parented by the application at the sandbox root of their security domain. This is because the
sandbox root handles requests to display a modal window from its children.

Because pop-up controls are parented by the sandbox root, centering a popup in a sandboxed application centers it in
the area of the screen occupied by the sub-application and not the entire application. It also means that pop-up
controls are sometimes clipped by scroll bars and masks on the sub-application.

A sub-application in a separate security domain from the main application has the following behavior:

Launching a modal dialog box dims the entire application, but the pop-up can only be dragged within the
boundaries of the sub-application.

Centering a pop-up centers it over the sub-application, not the main application.

« Dragging pop-up controls works over the sub-application only. If you drag a pop-up outside the sub-application,
it is clipped.

« Focus shifts to the pop-up control when you first launch a pop-up.

A sandboxed application cannot display a window or dialog box outside the bounds of its application. This rule
prevents an untrusted application from phishing for passwords by displaying a dialog box on top of all the applications.
When displaying a popup window, the PopUpManager checks if the parent application trusts it and if it trusts the
parent application before asking the parent to host the window. If the parent hosts a window it is displayed over the
parent's content as well as the child's content. If no mutual trust exists between a main and sub-application, then the
PopUpManager hosts the dialog box locally so that it can only be displayed over the content of the application itself.
But if the parent trusts the child, the dialog box is not clipped by the boundaries of the child’s application.

When a main application does not trust a sub-application, the main application’s SWFLoader uses masking with a
scrollRect and scroll bars to keep the sandboxed application’s content restricted to its own application space.

Pop-up-related controls such as ColorPicker, ComboBox, DateField, PopUpButton, PopUpMenuButton, and Menu
sometimes display their contents in unexpected ways if their normal position would cause them to be clipped.

Alert controls in sandboxed applications

Alerts, like other pop-up controls in sandboxed applications, are clipped at the edge of the loaded application. When
an Alert is being displayed, the main application and all sub-applications are covered with a modal dialog box to
prevent interaction with their controls. The blur effect only applies to the sub-application that launched the Alert box,
and its child applications. The blur effect is not applied to the parent application or sibling applications.

Styles and style modules in sandboxed applications

The StyleManager does not pass styles from a parent application to a child in a different application domain or security
domain. Similarly, a main application does not inherit styles from a sub-application. Therefore, either define styles
within your sub-application and do not depend on the sub-application inheriting styles from the main application, or
load a style module into the main application’s application domain.

Sub-applications each have their own StyleManager. When you load a style module in a sub-application, the classes
themselves should be loaded into the child ApplicationDomain. The styles are loaded into the sub-application’s
StyleManager.

If you want a main application and a sub-application to use the same runtime style sheets, load the style module into
the main application’s application domain. Sub-application’s styles are merged with the main application’s styles.
Main applications do not inherit styles that are defined in style modules that are loaded into sub-applications.

Last updated 9/25/2015

USING FLEX 207
Application architecture

A style module must be compiled with the same version of the Flex framework as the application into which it is
loaded. The main application and sub-application might not be able to load the same style module, unless they are
compiled with the same version of the framework.

When loading a style module into a sub-application, if you don’t specify an application domain, the module is loaded
into a sibling application domain of the sub-application. This can result in an error when the sub-application tries to
use classes that are defined in the style module.

To load a style module into a sub-application, load the style module into a child application domain of the sub-
application. The 1oadStyleDeclarations () method has two optional parameters, applicationDomain and
securityDomain. You use these properties to control the application domain and the security domain into which style
modules get loaded.

The following example loads a style module into a child application domain of the sub-application:

private function loadStyle() :void {
/* Load style module into a child ApplicationDomain by specifying
ApplicationDomain.currentDomain. */
var eventDispatcher:IEventDispatcher = styleManager.loadStyleDeclarations (
currentTheme + ".swf", true, false, ApplicationDomain.currentDomain) ;
eventDispatcher.addEventListener (StyleEvent .COMPLETE, completeHandler) ;

}

For more information on using style modules, see “Loading style sheets at run time” on page 1547.

Fonts in sandboxed applications

Applications that are in the same application domain are able to use the same embedded fonts by specifying the font
name. However, if the sub-application is loaded into a different application domain (as is the case with sandboxed
applications), then the sub-application must embed the font to use it.

Focus in sandboxed applications

The FocusManager class in the main application and sub-application integrate to create a seamless focus scheme.
Users can “tab through” the sub-application, regardless of whether the application is in the same or a different security
domain as the main application. Shift tabbing also works. The FocusManager class is one of the few manager classes
that supports interoperability even across security domains.

When an application is loaded, the main application keeps track of that SWF file in a list of focus candidates. When
the user moves focus into the sub-application, the sub-application’s FocusManager takes over focus duties until the
user moves focus outside the sub-application. At that time, the main application’s FocusManager resumes control.

When a pop-up is dismissed, the focus is moved to the last place that had focus. This behavior can be another pop-up
or it can be in the main application.

When focus is on a control that is in a different security sandbox, calls to the get Focus () method on that application’s
FocusManager return null. Calls to the UIComponent . getFocus () method also return null.

The FocusManager’s moveFocus () method lets you programmatically transfer focus to a control under the
jurisdiction of another FocusManager. It also lets you transfer the control of focus to another FocusManager.

Focus management across application domains works even with modal dialog boxes. When a different top-level
window is activated, the SystemManager deactivates the FocusManager in the formerly active top-level window. The
SystemManager also activates the FocusManager in the other window and changes the depth level (z-order) of the
windows.

Last updated 9/25/2015

USING FLEX 208
Application architecture

Cursors in sandboxed applications

If the applications are in different security domains, then a custom cursor in the sub-application only appears over the
area of the screen that is allocated to that sub-application. Moving the mouse outside the bounds of the sub-application
passes control of the cursor to the main application’s CursorManager.

These rules apply to the busy cursor as well. If a busy cursor is visible and you move the cursor to the main application
that is in a different security domain, the cursor changes back to the last used cursor in the main application.

Localizing sandboxed applications
As with style modules, the main application cannot access resource modules used in a sub-application, and vice versa.
Each sub-application must load its own resource modules.

Each multi-versioned application has its own ResourceManager instance. As a result, each sub-application has its own

localeChain.

If more than one sub-application has resource bundles for the same locale with the same name, then the first one in
wins. The contents of all resource bundles of that name in other sub-applications are ignored. Those sub-applications
use the one that was defined first.

Like style modules, load resource modules into the child application domain of a sub-application. You control the
application domain and the security domain into which resource bundles are loaded. The 1oadresourceModule ()
method of IResourceManager has two optional parameters, applicationDomain and securityDomain.

Also like style modules, all resource modules in an application must be compiled with the same version of the Flex
framework. Do this whether that application is a main application or a sub-application. You cannot use multiple
resource modules that were compiled with two different versions of the framework in the same main application or
sub-application.

The following example loads a resource module into a child application domain of the sub-application:

private function loadBundle () :void {
/* Load resource module into a child ApplicationDomain by specifying
ApplicationDomain.currentDomain. */
var eventDispatcher:IEventDispatcher = ResourceManager.loadResourceModule (
"MyBundle.swf", true, false, ApplicationDomain.currentDomain) ;
eventDispatcher.addEventListener (StyleEvent . COMPLETE, completeHandler) ;

}

If you use run-time resource bundles with sub-applications, you should consider setting the addResourceBundle ()
method’s useWeakReferences parameter to true. For more information, see “Preventing memory leaks in modules
and sub-applications” on page 2118.

ToolTip objects in sandboxed applications

When in a different security domain, ToolTip objects are parented by the sub-application's SystemManager and are
therefore clipped and masked by the main application. The ToolTipManager styles and positions the tip in a sub-
application so that it fits within the sub-application’s area of the screen only. If the ToolTip object is larger than the
area of the sub-application, the ToolTip object is clipped.

ToolTip styles in the main application are not inherited by ToolTip objects in the sub-application.

This applies to error tips and data tips on List objects in sandboxed sub-applications as well.

Last updated 9/25/2015

USING FLEX 209
Application architecture

Layouts in sandboxed applications

For controls that have pop-up or drop-down menus, when they are in a separate security domain, they are initially
displayed unclipped. These controls are restricted to the sub-application’s space, so if they try to go outside that
bounding area, they are clipped.

Deep linking in sandboxed applications

The BrowserManager controls deep linking support in applications built with Flex. It is a singleton within its security
domain. Sub-applications in sibling application domains cannot access the main application’s BrowserManager,
regardless of whether a sub-application is trusted or untrusted. As a result, a sub-application in a separate security
domain or application domain cannot modify the URL nor can it access the URL.

If the sub-application is untrusted, do not give it access to the URL. If the sub-application is trusted (such as with a
multi-versioned application that is not sandboxed), you can write custom code that handles the interaction between
the sub-application and the main application’s BrowserManager. Typically, you call this method in the main
application that accesses the URL, or create an interface that acts as a gatekeeper for this interaction.

If you try to get an instance of the BrowserManager from within a sub-application, Flash Player throws an error.

Dragging and dropping in sandboxed applications

When the sub-application is in a different security domain from the main application, the user cannot drag data
between the applications. The DragProxy lets the user drag an item to the edge of the sub-application's area of the
screen. At that point, the mouse cursor changes back to whatever mouse cursor is correct for the new security domain.

The proxy for the item stays at the boundary of the sub-application, and might be clipped.

Listening for mouse events with sandboxed applications

Mouse interaction between sub-applications and main applications can be confusing, especially when those events
occur in different application domains. This interaction is further muddied when the applications are in different
security domains. To listen for mouse events outside the security domain, you use the SandboxMouseEvent object.
You can listen for this event in a main application for a mouse event that is triggered from the sub-application, and
vice versa.

The following application is like the application in the topic, “Listening for mouse events in multi-versioned
applications” on page 216, with some exceptions. For example, while the MouseEvent . MOUSE_MOVE and
MouseEvent .MOUSE_UP events are registered, the sandboxMouseEvent . MOUSE_UP_SOMEWHERE event is also
registered. This event can be registered by any SystemManager within the security domain. All applications can then
receive notification if this event is triggered. To get the mouse position, this application uses the globalToLocal ()
method. You can see how to determine the absolute position of an object in a sub-application when you don’t have
access to the stage.

Last updated 9/25/2015

USING FLEX
Application architecture

<?xml version="1.0" encoding="utf-8"?>
<!-- apploading/ZoomerPattern4.mxml -->
<s:Application
creationComplete="setup ()"
height="250"
xmlns: fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="1library://ns.adobe.com/flex/mx">
<s:layout>
<s:VerticallLayout/>
</s:layout>
<fx:Script>
<! [CDATA[
import mx.core.UIComponent;
import mx.events.SandboxMouseEvent;
import mx.managers.PopUpManager;
[Bindable]

public var datal:Array = ["Ice Cream", "Fudge", "Whipped Cream", "Nuts"];

public var zoomTool:UIComponent ;

public function setup () :void {
// Draw the zoom rectangle.
zoomWidget .graphics.lineStyle (1) ;
zoomWidget .graphics.beginFill (0, 0);
zoomWidget .graphics.drawRect (0, 0, 17, 17);
zoomWidget .graphics.endFill () ;

// Listen for mouse down events.

zoomWidget .addEventListener (MouseEvent .MOUSE_DOWN, zoom mouseDownHandler) ;

}

private var lastX:int;
private var lastY:int;
private function zoom mouseDownHandler (event:MouseEvent) :void {
// When the mouse is down, listen for the move and up events.

// The getSandboxRoot () method lets you listen to all mouse activity in your

// SecurityDomain.

systemManager.getSandboxRoot () .addEventListener (
MouseEvent .MOUSE_MOVE, zoom mouseMoveHandler, true);

systemManager .getSandboxRoot () .addEventListener (
MouseEvent .MOUSE_UP, zoom mouseUpHandler, true);

// The SandboxMouseEvents provide you with some mouse information,

// but not its position
systemManager.getSandboxRoot () .addEventListener (

SandboxMouseEvent .MOUSE_UP_SOMEWHERE, zoom mouseUpHandler) ;

// Update last position of the mouse.
lastX = event.stageX;
lastY = event.stageY;

// Create and pop up the zoomTool. This is the rectangle that is dragged around.

// It must be a popup so that it can float over other content.
zoomTool = new UIComponent () ;
PopUpManager .addPopUp (zoomTool, this) ;

var pt:Point = new Point (zoomWidget.transform.pixelBounds.x,
zoomWidget