
Learning
ACTIONSCRIPT® 3.0

Last updated 5/2/2011

Legal notices

Legal notices
For legal notices, see http://help.adobe.com/en_US/legalnotices/index.html.

http://help.adobe.com/en_US/legalnotices/index.html

iii

Last updated 5/2/2011

Contents

Chapter 1: Introduction to ActionScript 3.0

About ActionScript . 1

Advantages of ActionScript 3.0 . 1

What’s new in ActionScript 3.0 . 2

Chapter 2: Getting started with ActionScript

Programming fundamentals . 5

Working with objects . 7

Common program elements . 15

Example: Animation portfolio piece (Flash Professional) . 17

Building applications with ActionScript . 19

Creating your own classes . 23

Example: Creating a basic application . 25

Chapter 3: ActionScript language and syntax

Language overview . 33

Objects and classes . 34

Packages and namespaces . 34

Variables . 44

Data types . 47

Syntax . 59

Operators . 64

Conditionals . 69

Looping . 71

Functions . 74

Chapter 4: Object-oriented programming in ActionScript

Introduction to object-oriented programming . 85

Classes . 85

Interfaces . 99

Inheritance . 101

Advanced topics . 109

Example: GeometricShapes . 115

1

Last updated 5/2/2011

Chapter 1: Introduction to ActionScript
3.0

About ActionScript

ActionScript is the programming language for the Adobe® Flash® Player and Adobe® AIR™ run-time environments. It

enables interactivity, data handling, and much more in Flash, Flex, and AIR content and applications.

ActionScript executes in the ActionScript Virtual Machine (AVM), which is part of Flash Player and AIR. ActionScript

code is typically transformed into bytecode format by a compiler. (Bytecode is a type of programming language that’s

written and understood by computers.) Examples of compilers include the one built in to Adobe® Flash® Professional

and the one that is built in to Adobe® Flash® Builder™ and available in the Adobe® Flex™ SDK. The bytecode is embedded

in SWF files, which Flash Player and AIR execute.

ActionScript 3.0 offers a robust programming model that is familiar to developers with a basic knowledge of object-

oriented programming. Some of the key features of ActionScript 3.0 that improve over previous ActionScript versions

include the following:

• A new ActionScript Virtual Machine, called AVM2, that uses a new bytecode instruction set and provides

significant performance improvements

• A more modern compiler code base that performs deeper optimizations than previous versions of the compiler

• An expanded and improved application programming interface (API), with low-level control of objects and a true

object-oriented model

• An XML API based on the ECMAScript for XML (E4X) specification (ECMA-357 edition 2). E4X is a language

extension to ECMAScript that adds XML as a native data type of the language.

• An event model based on the Document Object Model (DOM) Level 3 Events Specification

Advantages of ActionScript 3.0

ActionScript 3.0 goes beyond the scripting capabilities of previous versions of ActionScript. It is designed to facilitate

the creation of highly complex applications with large data sets and object-oriented, reusable code bases. ActionScript

3.0 is not required for content that runs in Adobe Flash Player. However, it opens the door to performance

improvements that are only available with the AVM2 (the ActionScript 3.0 virtual machine). ActionScript 3.0 code can

execute up to ten times faster than legacy ActionScript code.

The previous version of ActionScript Virtual Machine, AVM1, executes ActionScript 1.0 and ActionScript 2.0 code.

Flash Player 9 and 10 support AVM1 for backward compatibility.

2LEARNING ACTIONSCRIPT 3.0

Introduction to ActionScript 3.0

Last updated 5/2/2011

What’s new in ActionScript 3.0

ActionScript 3.0 contains many classes and features that are similar to ActionScript 1.0 and 2.0. However, ActionScript

3.0 is architecturally and conceptually different from previous versions of ActionScript. The enhancements in

ActionScript 3.0 include new features of the core language and an improved API that provides increased control of

low-level objects.

Core language features

The core language defines the basic building blocks of the programming language, such as statements, expressions,

conditions, loops, and types. ActionScript 3.0 contains many features that speed up the development process.

Run-time exceptions

ActionScript 3.0 reports more error conditions than previous versions of ActionScript. Run-time exceptions are used

for common error conditions, improving the debugging experience and enabling you to develop applications that

handle errors robustly. Run-time errors can provide stack traces annotated with source file and line number

information, helping you quickly pinpoint errors.

Run-time types

In ActionScript 3.0, type information is preserved at run time. This information is used to perform run-time type

checking, improving the system’s type safety. Type information is also used to represent variables in native machine

representations, which improves performance and reduces memory usage. By way of comparison, in ActionScript 2.0

type annotations are primarily a developer aid and all values are dynamically typed at run time.

Sealed classes

ActionScript 3.0 includes the concept of sealed classes. A sealed class possesses only the fixed set of properties and

methods that are defined at compile time; additional properties and methods cannot be added. The inability of

changing a class at run time enables stricter compile-time checking, resulting in more robust programs. It also

improves memory usage by not requiring an internal hash table for each object instance. Dynamic classes are also

possible using the dynamic keyword. All classes in ActionScript 3.0 are sealed by default, but can be declared to be

dynamic with the dynamic keyword.

Method closures

ActionScript 3.0 enables a method closure to automatically remember its original object instance. This feature is useful

for event handling. In ActionScript 2.0, method closures do not remember what object instance they were extracted

from, leading to unexpected behavior when the method closure is called.

ECMAScript for XML (E4X)

ActionScript 3.0 implements ECMAScript for XML (E4X), recently standardized as ECMA-357. E4X offers a natural,

fluent set of language constructs for manipulating XML. In contrast to traditional XML-parsing APIs, XML with E4X

performs like a native data type of the language. E4X streamlines the development of applications that manipulate

XML by drastically reducing the amount of code needed.

To view the ECMA E4X specification, go to www.ecma-international.org.

Regular expressions

ActionScript 3.0 includes native support for regular expressions so that you can quickly search for and manipulate

strings. ActionScript 3.0 implements support for regular expressions as they are defined in the ECMAScript (ECMA-

262) edition 3 language specification.

http://www.ecma-international.org/

3LEARNING ACTIONSCRIPT 3.0

Introduction to ActionScript 3.0

Last updated 5/2/2011

Namespaces

Namespaces are similar to the traditional access specifiers used to control visibility of declarations (public, private,

protected). They work as custom access specifiers, which can have names of your choice. Namespaces are outfitted

with a Universal Resource Identifier (URI) to avoid collisions, and are also used to represent XML namespaces when

you work with E4X.

New primitive types

ActionScript 3.0 contains three numeric types: Number, int, and uint. Number represents a double-precision, floating-

point number. The int type is a 32-bit signed integer that lets ActionScript code take advantage of the fast integer math

capabilities of the CPU. The int type is useful for loop counters and variables where integers are used. The uint type is

an unsigned, 32-bit integer type that is useful for RGB color values, byte counts, and more. In contrast, ActionScript

2.0 only has a single numeric type, Number.

API features

The APIs in ActionScript 3.0 contain many classes that allow you to control objects at a low level. The architecture of

the language is designed to be more intuitive than previous versions. While there are too many classes to cover in

detail, some significant differences are worth noting.

DOM3 event model

Document Object Model Level 3 event model (DOM3) provides a standard way of generating and handling event

messages. This event model is designed to allow objects within applications to interact and communicate, maintain

their state, and respond to change. The ActionScript 3.0 event model is patterned after the World Wide Web

Consortium DOM Level 3 Events Specification. This model provides a clearer and more efficient mechanism than the

event systems available in previous versions of ActionScript.

Events and error events are located in the flash.events package. The Flash Professional components and Flex

framework use the same event model, so the event system is unified across the Flash Platform.

Display list API

The API for accessing the display list—the tree that contains any visual elements in the application—consists of classes

for working with visual primitives.

The Sprite class is a lightweight building block, designed to be a base class for visual elements such as user interface

components. The Shape class represents raw vector shapes. These classes can be instantiated naturally with the new

operator and can be dynamically reparented at any time.

Depth management is automatic. Methods are provided for specifying and managing the stacking order of objects.

Handling dynamic data and content

ActionScript 3.0 contains mechanisms for loading and handling assets and data in your application that are intuitive

and consistent across the API. The Loader class provides a single mechanism for loading SWF files and image assets

and provides a way to access detailed information about loaded content. The URLLoaderclass provides a separate

mechanism for loading text and binary data in data-driven applications. The Socket class provides a means to read and

write binary data to server sockets in any format.

4LEARNING ACTIONSCRIPT 3.0

Introduction to ActionScript 3.0

Last updated 5/2/2011

Low-level data access

Various APIs provide low-level access to data. For data that is being downloaded, the URLStream class provides access

to data as raw binary data while it is being downloaded. The ByteArray class lets you optimize reading, writing, and

working with binary data. The sound API provides detailed control of sound through the SoundChannel and

SoundMixer classes. Security APIs provide information about the security privileges of a SWF file or loaded content,

enabling you to handle security errors.

Working with text

ActionScript 3.0 contains a flash.text package for all text-related APIs. The TextLineMetrics class provides detailed

metrics for a line of text within a text field; it replaces the TextFormat.getTextExtent() method in ActionScript 2.0.

The TextField class contains low-level methods that provide specific information about a line of text or a single

character in a text field. For example, the getCharBoundaries() method returns a rectangle representing the

bounding box of a character. The getCharIndexAtPoint() method returns the index of the character at a specified

point. The getFirstCharInParagraph() method returns the index of the first character in a paragraph. Line-level

methods include getLineLength(), which returns the number of characters in a specified line of text, and

getLineText(), which returns the text of the specified line. The Font class provides a means to manage embedded

fonts in SWF files.

For even lower-level control over text, the classes in the flash.text.engine package make up the Flash Text Engine. This

set of classes provide low-level control over text and are designed for creating text frameworks and components.

5

Last updated 5/2/2011

Chapter 2: Getting started with
ActionScript

Programming fundamentals

Since ActionScript is a programming language, it can help you to learn ActionScript if you first understand a few

general computer programming concepts.

What computer programs do

First of all, it’s useful to have a conceptual idea of what a computer program is and what it does. There are two main

aspects to a computer program:

• A program is a series of instructions or steps for the computer to carry out.

• Each step ultimately involves manipulating some piece of information or data.

In a general sense, a computer program is just a list of step-by-step instructions that you give to the computer, which

it performs one by one. Each individual instruction is known as a statement. In ActionScript, each statement is written

with a semicolon at the end.

In essence, all that a given instruction in a program does is manipulate some bit of data that’s stored in the computer’s

memory. A simple example is instructing the computer to add two numbers and store the result in its memory. A more

complex example is if there is a rectangle drawn on the screen and you want to write a program to move it somewhere

else on the screen. The computer remembers certain information about the rectangle: the x, y coordinates where it’s

located, how wide and tall it is, what color it is, and so on. Each of those bits of information is stored somewhere in the

computer’s memory. A program to move the rectangle to a different location would have steps like “change the x

coordinate to 200; change the y coordinate to 150.” In other words, it would specify new values for the x and y

coordinates. Behind the scenes, the computer does something with this data to actually turn those numbers into the

image that appears on the computer screen. However, at the basic level of detail it’s enough to know that the process

of “moving a rectangle on the screen” just involves changing bits of data in the computer’s memory.

Variables and constants

Programming mainly involves changing pieces of information in the computer’s memory. Consequently, it’s

important to have a way to represent a single piece of information in a program. A variable is a name that represents

a value in the computer’s memory. As you write statements to manipulate values, you write the variable’s name in place

of the value. Any time the computer sees the variable name in your program, it looks in its memory and uses the value

it finds there. For example, if you have two variables named value1 and value2, each containing a number, to add

those two numbers you could write the statement:

 value1 + value2

When it’s actually carrying out the steps, the computer looks to see the values in each variable and adds them together.

In ActionScript 3.0, a variable actually consists of three different parts:

• The variable’s name

• The type of data that can be stored in the variable

• The actual value stored in the computer’s memory

6LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

You’ve seen how the computer uses the name as a placeholder for the value. The data type is also important. When

you create a variable in ActionScript, you specify the specific type of data that it is meant to hold. From that point on,

your program’s instructions can store only that type of data in the variable. You can manipulate the value using the

particular characteristics associated with its data type. In ActionScript, to create a variable (known as declaring the

variable), you use the var statement:

 var value1:Number;

This example tells the computer to create a variable named value1, which can hold only Number data. (“Number” is

a specific data type defined in ActionScript.) You can also store a value in the variable right away:

 var value2:Number = 17;

Adobe Flash Professional

In Flash Professional, there is another way to declare a variable. When you place a movie clip symbol, button symbol,

or text field on the Stage, you can give it an instance name in the Property inspector. Behind the scenes, Flash

Professional creates a variable with the same name as the instance name. You can use that name in your ActionScript

code to represent that Stage item. Suppose, for example, that you have a movie clip symbol on the Stage and you give

it the instance name rocketShip. Whenever you use the variable rocketShip in your ActionScript code, you are in

fact manipulating that movie clip.

A constant is similar to a variable. It is a name that represents a value in the computer’s memory with a specified data

type. The difference is that a constant can only be assigned a value one time in the course of an ActionScript

application. Once a constant’s value is assigned, it is the same throughout the application. The syntax for declaring a

constant is almost the same as that for declaring a variable. The only difference is that you use the const keyword

instead of the var keyword:

 const SALES_TAX_RATE:Number = 0.07;

A constant is useful for defining a value that is used in multiple places throughout a project, which don’t change under

normal circumstances. Using a constant rather than a literal value makes your code more readable. For example,

consider two versions of the same code. One multiplies a price by SALES_TAX_RATE. The other multiplies the price by

0.07. The version that uses the SALES_TAX_RATE constant is easier to understand. In addition, suppose the value

defined by the constant does change. If you use a constant to represent that value throughout your project, you can

change the value in one place (the constant declaration). In contrast, you would have to change it in various places if

you used hard-coded literal values.

Data types

In ActionScript, there are many data types that you can use as the data type of the variables you create. Some of these

data types can be thought of as “simple” or “fundamental” data types:

• String: a textual value, like a name or the text of a book chapter

• Numeric: ActionScript 3.0 includes three specific data types for numeric data:

• Number: any numeric value, including values with or without a fraction

• int: an integer (a whole number without a fraction)

• uint: an “unsigned” integer, meaning a whole number that can’t be negative

• Boolean: a true-or-false value, such as whether a switch is on or whether two values are equal

7LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

The simple data types represent a single piece of information: for example, a single number or a single sequence of text.

However, most of the data types defined in ActionScript could are complex data types. They represent a set of values

in a single container. For example, a variable with the data type Date represents a single value (a moment in time).

Nevertheless, that date value is represented as several values: the day, month, year, hours, minutes, seconds, and so on,

all of which are individual numbers. People generally think of a date as a single value, and you can treat a date as a

single value by creating a Date variable. However, internally the computer thinks of it as a group of several values that,

put together, define a single date.

Most of the built-in data types, as well as data types defined by programmers, are complex data types. Some of the

complex data types you probably recognize are:

• MovieClip: a movie clip symbol

• TextField: a dynamic or input text field

• SimpleButton: a button symbol

• Date: information about a single moment in time (a date and time)

Two words that are often used as synonyms for data type are class and object. A class is simply the definition of a data

type. It’s like a template for all objects of the data type, like saying “all variables of the Example data type have these

characteristics: A, B, and C.” An object, on the other hand, is just an actual instance of a class. For example, a variable

whose data type is MovieClip could be described as a MovieClip object. The following are different ways of saying the

same thing:

• The data type of the variable myVariable is Number.

• The variable myVariable is a Number instance.

• The variable myVariable is a Number object.

• The variable myVariable is an instance of the Number class.

Working with objects

ActionScript is what’s known as an object-oriented programming language. Object-oriented programming is simply

an approach to programming. It’s really nothing more than a way to organize the code in a program, using objects.

Earlier the term “computer program” was defined as a series of steps or instructions that the computer performs.

Conceptually, then, you can imagine a computer program as just a single long list of instructions. However, in object-

oriented programming, the program instructions are divided among different objects. The code is grouped into

chunks of functionality, so related types of functionality or related pieces of information are grouped in one container.

Adobe Flash Professional

If you’ve worked with symbols in Flash Professional, you’re already used to working with objects. Imagine you’ve

defined a movie clip symbol such as a drawing of a rectangle and you’ve placed a copy of it on the Stage. That movie

clip symbol is also (literally) an object in ActionScript; it’s an instance of the MovieClip class.

8LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

There are various characteristics of the movie clip that you can modify. When it’s selected you can change values in

the Property inspector like its x coordinate or its width. You can also make various color adjustments like changing its

alpha (transparency) or applying a drop-shadow filter to it. Other Flash Professional tools let you make more changes,

like using the Free Transform tool to rotate the rectangle. All of these ways that you can modify a movie clip symbol

in Flash Professional are also available in ActionScript. You modify the movie clip in ActionScript by changing the

pieces of data that are all put together into a single bundle called a MovieClip object.

In ActionScript object-oriented programming, there are three types of characteristics that any class can include:

• Properties

• Methods

• Events

These elements are used to manage the pieces of data used by the program and to decide what actions are carried out

and in what order.

Properties

A property represents one of the pieces of data that are bundled together in an object. An example song object can have

properties named artist and title; the MovieClip class has properties like rotation, x, width, and alpha. You

work with properties like individual variables. In fact, you can think of properties as simply the “child” variables

contained in an object.

Here are some examples of ActionScript code that uses properties. This line of code moves the MovieClip named

square to the x coordinate 100 pixels:

 square.x = 100;

This code uses the rotation property to make the square MovieClip rotate to match the rotation of the triangle

MovieClip:

 square.rotation = triangle.rotation;

This code alters the horizontal scale of the square MovieClip making it one-and-a-half times wider than it used to be:

 square.scaleX = 1.5;

Notice the common structure: you use a variable (square, triangle) as the name of the object, followed by a period

(.) and then the name of the property (x, rotation, scaleX). The period, known as the dot operator, is used to

indicate that you’re accessing one of the child elements of an object. The whole structure together, “variable name-dot-

property name,” is used like a single variable, as a name for a single value in the computer’s memory.

Methods

A method is an action that an object can perform. For example, suppose you’ve made a movie clip symbol in Flash

Professional with several keyframes and animation on its timeline. That movie clip can play, or stop, or be instructed

to move the playhead to a particular frame.

This code instructs the MovieClip named shortFilm to start playing:

 shortFilm.play();

This line makes the MovieClip named shortFilm stop playing (the playhead stops in place, like pausing a video):

 shortFilm.stop();

9LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

This code makes a MovieClip named shortFilm move its playhead to Frame 1 and stop playing (like rewinding a

video):

 shortFilm.gotoAndStop(1);

Methods, like properties, are accessed by writing the object’s name (a variable), then a period, and then the name of

the method followed by parentheses. The parentheses are the way that you indicate that you are calling the method, or

in other words, instructing the object to perform that action. Sometimes values (or variables) are placed in the

parentheses, as a way to pass along additional information that is necessary to carry out the action. These values are

known as method parameters. For example, the gotoAndStop() method needs information about which frame to go

to, so it requires a single parameter in the parentheses. Other methods, like play() and stop(), are self-explanatory,

so they don’t require extra information. Nevertheless, they are still written with parentheses.

Unlike properties (and variables), methods aren’t used as value placeholders. However, some methods can perform

calculations and return a result that can be used like a variable. For example, the Number class’s toString() method

converts the numeric value to its text representation:

 var numericData:Number = 9;
 var textData:String = numericData.toString();

For example, you would use the toString() method if you wanted to display the value of a Number variable in a text

field on the screen. The TextField class’s text property is defined as a String, so it can contain only text values. (The

text property represents the actual text content displayed on the screen). This line of code converts the numeric value

in the variable numericData to text. It then makes the value show up on the screen in the TextField object named

calculatorDisplay:

 calculatorDisplay.text = numericData.toString();

Events

A computer program is a series of instructions that the computer carries out step-by-step. Some simple computer

programs consist of nothing more than a few steps that the computer performs, at which point the program ends.

However, ActionScript programs are designed to keep running, waiting for user input or other things to happen.

Events are the mechanism that determines which instructions the computer carries out and when.

In essence, events are things that happen that ActionScript is aware of and can respond to. Many events are related to

user interaction, such as a user clicking a button or pressing a key on the keyboard. There are also other types of events.

For example, if you use ActionScript to load an external image, there is an event that can let you know when the image

has finished loading. When an ActionScript program is running, conceptually it just sits and waits for certain things

to happen. When those things happen, the specific ActionScript code that you’ve specified for those events runs.

Basic event handling

The technique for specifying certain actions to perform in response to particular events is known as event handling.

When you are writing ActionScript code to perform event handling, there are three important elements you’ll want to

identify:

• The event source: Which object is the one the event is going to happen to? For example, which button was clicked,

or which Loader object is loading the image? The event source is also known as the event target. It has this name

because it’s the object where the computer targets the event (that is, where the event actually happens).

• The event: What is the thing that is going to happen, the thing that you want to respond to? The specific event is

important to identify, because many objects trigger several events.

• The response: What steps do you want performed when the event happens?

10LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

Any time you write ActionScript code to handle events, it requires these three elements. The code follows this basic

structure (elements in bold are placeholders you’d fill in for your specific case):

 function eventResponse(eventObject:EventType):void
 {
 // Actions performed in response to the event go here.
 }

 eventSource.addEventListener(EventType.EVENT_NAME, eventResponse);

This code does two things. First, it defines a function, which is the way to specify the actions you want performed in

response to the event. Next, it calls the addEventListener() method of the source object. Calling

addEventListener() essentially “subscribes” the function to the specified event. When the event happens, the

function’s actions are carried out. Consider each of these parts in more detail.

A function provides a way for you to group actions with a single name that is like a shortcut name to carry out the

actions. A function is identical to a method except that it isn’t necessarily associated with a specific class. (In fact, the

term “method” could be defined as a function that is associated with a particular class.) When you're creating a

function for event handling, you choose the name for the function (named eventResponse in this case). You also

specify one parameter (named eventObject in this example). Specifying a function parameter is like declaring a

variable, so you also have to indicate the data type of the parameter. (In this example, the parameter's data type is

EventType.)

Each type of event that you want to listen to has an ActionScript class associated with it. The data type you specify for

the function parameter is always the associated class of the specific event you want to respond to. For example, a click

event (triggered when the user clicks an item with the mouse) is associated with the MouseEvent class. To write a

listener function for a click event, you define the listener function with a parameter with the data type MouseEvent.

Finally, between the opening and closing curly brackets ({ ... }), you write the instructions you want the computer to

carry out when the event happens.

The event-handling function is written. Next you tell the event source object (the object that the event happens to, for

example the button) that you want it to call your function when the event happens. You register your function with

the event source object by calling the addEventListener() method of that object (all objects that have events also

have an addEventListener() method). The addEventListener() method takes two parameters:

• First, the name of the specific event you want to respond to. Each event is affiliated with a specific class. Every event

class has a special value, which is like a unique name, defined for each of its events. You use that value for the first

parameter.

• Second, the name of your event response function. Note that a function name is written without parentheses when

it’s passed as a parameter.

The event-handling process

The following is a step-by-step description of the process that happens when you create an event listener. In this case,

it’s an example of creating a listener function that is called when an object named myButton is clicked.

The actual code written by the programmer is as follows:

 function eventResponse(event:MouseEvent):void
 {
 // Actions performed in response to the event go here.
 }

 myButton.addEventListener(MouseEvent.CLICK, eventResponse);

11LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

Here is how this code would actually work when it’s running:

1 When the SWF file loads, the computer makes note of the fact that there’s a function named eventResponse().

2 The computer then runs the code (specifically, the lines of code that aren’t in a function). In this case that’s only

one line of code: calling the addEventListener() method on the event source object (named myButton) and

passing the eventResponse function as a parameter.

Internally, myButton keeps a list of functions that are listening to each of its events. When its

addEventListener() method is called, myButton stores the eventResponse() function in its list of event

listeners.

12LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

3 At some point, the user clicks the myButton object, triggering its click event (identified as MouseEvent.CLICK in

the code).

At that point, the following occurs:

a An object is created that’s an instance of the class associated with the event in question (MouseEvent in this

example). For many events, this object is an instance of the Event class. For mouse events, it is a MouseEvent

instance. For other events, it is an instance of the class that’s associated with that event. This object that’s created

is known as the event object, and it contains specific information about the event that happened: what type of

event it is, where it happened, and other event-specific information if applicable.

b The computer then looks at the list of event listeners stored by myButton. It goes through these functions one

by one, calling each function and passing the event object to the function as a parameter. Since the

eventResponse() function is one of myButton’s listeners, as part of this process the computer calls the

eventResponse() function.

13LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

c When the eventResponse() function is called, the code in that function runs, so your specified actions are

carried out.

Event-handling examples

Here are a few more concrete examples of event handling code. These examples are meant to give you an idea of some

of the common event elements and possible variations available when you write event-handling code:

• Clicking a button to start the current movie clip playing. In the following example, playButton is the instance

name of the button, and this is a special name meaning “the current object”:

 this.stop();

 function playMovie(event:MouseEvent):void
 {
 this.play();
 }

 playButton.addEventListener(MouseEvent.CLICK, playMovie);

• Detecting typing in a text field. In this example, entryText is an input text field, and outputText is a dynamic text

field:

 function updateOutput(event:TextEvent):void
 {
 var pressedKey:String = event.text;
 outputText.text = "You typed: " + pressedKey;
 }

 entryText.addEventListener(TextEvent.TEXT_INPUT, updateOutput);

• Clicking a button to navigate to a URL. In this case, linkButton is the instance name of the button:

 function gotoAdobeSite(event:MouseEvent):void
 {
 var adobeURL:URLRequest = new URLRequest("http://www.adobe.com/");
 navigateToURL(adobeURL);
 }

 linkButton.addEventListener(MouseEvent.CLICK, gotoAdobeSite);

14LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

Creating object instances

Before you can use an object in ActionScript, the object has to exist in the first place. One part of creating an object is

declaring a variable; however, declaring a variable only creates an empty place in the computer’s memory. Always

assign an actual value to the variable (create an object and store it in the variable) before you attempt to use or

manipulate it. The process of creating an object is known as instantiating the object. In other words, you create an

instance of a particular class.

One simple way to create an object instance doesn’t involve ActionScript at all. In Flash Professional place a movie clip

symbol, button symbol, or text field on the Stage and assign it an instance name. Flash Professional automatically

declares a variable with that instance name, creates an object instance, and stores that object in the variable. Similarly,

in Flex you create a component in MXML either by coding an MXML tag or by placing the component on the editor

in Flash Builder Design mode. When you assign an ID to that component, that ID becomes the name of an

ActionScript variable containing that component instance.

However, you don’t always want to create an object visually, and for non-visual objects you can’t. There are several

additional ways you can create object instances using only ActionScript.

With several ActionScript data types, you can create an instance using a literal expression, which is a value written

directly into the ActionScript code. Here are some examples:

• Literal numeric value (enter the number directly):

 var someNumber:Number = 17.239;
 var someNegativeInteger:int = -53;
 var someUint:uint = 22;

• Literal String value (surround the text with double quotation marks):

 var firstName:String = "George";
 var soliloquy:String = "To be or not to be, that is the question...";

• Literal Boolean value (use the literal values true or false):

 var niceWeather:Boolean = true;
 var playingOutside:Boolean = false;

• Literal Array value (wrap a comma-separated list of values in square brackets):

 var seasons:Array = ["spring", "summer", "autumn", "winter"];

• Literal XML value (enter the XML directly):

 var employee:XML = <employee>
 <firstName>Harold</firstName>
 <lastName>Webster</lastName>
 </employee>;

ActionScript also defines literal expressions for the Array, RegExp, Object, and Function data types.

The most common way to create an instance for any data type is to use the new operator with the class name, as shown here:

 var raceCar:MovieClip = new MovieClip();
 var birthday:Date = new Date(2006, 7, 9);

Creating an object using the new operator is often described as “calling the class’s constructor.” A constructor is a

special method that is called as part of the process of creating an instance of a class. Notice that when you create an

instance in this way, you put parentheses after the class name. Sometimes you specify parameter values in the

parentheses. These are two things that you also do when calling a method.

Even for those data types that let you create instances using a literal expression, you can also use the new operator to

create an object instance. For example, these two lines of code do the same thing:

15LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

var someNumber:Number = 6.33;
var someNumber:Number = new Number(6.33);

It’s important to be familiar with the new ClassName() way of creating objects. Many ActionScript data types don’t

have a visual representation. Consequently, they can’t be created by placing an item on the Flash Professional Stage or

the Design mode of Flash Builder’s MXML editor. You can only create an instance of any of those data types in

ActionScript using the new operator.

Adobe Flash Professional

In Flash Professional, the new operator can also be used to create an instance of a movie clip symbol that is defined in

the Library but isn’t placed on the Stage.

More Help topics

Working with arrays

Using regular expressions

Creating MovieClip objects with ActionScript

Common program elements

There are a few additional building blocks that you use to create an ActionScript program.

Operators

Operators are special symbols (or occasionally words) that are used to perform calculations. They are mostly used for

math operations, and also used when comparing values to each other. Generally, an operator uses one or more values

and “works out” to a single result. For example:

• The addition operator (+) adds two values together, resulting in a single number:

 var sum:Number = 23 + 32;

• The multiplication operator (*) multiplies one value by another, resulting in a single number:

 var energy:Number = mass * speedOfLight * speedOfLight;

• The equality operator (==) compares two values to see if they are equal, resulting in a single true-or-false (Boolean)

value:

 if (dayOfWeek == "Wednesday")
 {
 takeOutTrash();
 }

As shown here, the equality operator and the other “comparison” operators are most commonly used with the if

statement to determine whether or not certain instructions are carried out.

http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7fdc.html
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7fdb.html
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7fd2.html

16LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

Comments

As you’re writing ActionScript, you’ll often want to leave notes to yourself. For example, sometimes you want to

explain how certain lines of code work or why you made a particular choice. Code comments are a tool you can use to

write text that the computer ignores in your code. ActionScript includes two kinds of comments:

• Single-line comment: A single-line comment is designated by placing two slashes anywhere on a line. The computer

ignores everything after the slashes up to the end of that line:

 // This is a comment; it's ignored by the computer.
 var age:Number = 10; // Set the age to 10 by default.

• Multiline comments: A multiline comment includes a starting comment marker (/*), then the comment content,

and an ending comment marker (*/). The computer ignores everything between the starting and ending markers

regardless of how many lines the comment spans:

 /*
 This is a long description explaining what a particular
function is used for or explaining a section of code.

 In any case, the computer ignores these lines.
 */

Another common use of comments is to temporarily “turn off” one or more lines of code. For example, you can use

comments if you’re testing out a different way of doing something. You can also use them to try to figure out why

certain ActionScript code isn’t working the way you expect.

Flow control

Many times in a program, you want to repeat certain actions, perform only certain actions and not others, perform

alternative actions depending on certain conditions, and so on. Flow control is the control over which actions are

performed. There are several types of flow control elements available in ActionScript.

• Functions: Functions are like shortcuts. They provide a way to group a series of actions under a single name, and

can be used to perform calculations. Functions are necessary for handling events, but are also used as a general tool

for grouping a series of instructions.

• Loops: Loop structures let you designate a set of instructions that the computer performs a set number of times or

until some condition changes. Often loops are used to manipulate several related items, using a variable whose

value changes each time the computer works through the loop.

• Conditional statements: Conditional statements provide a way to designate certain instructions that are carried out

only under certain circumstances. They are also used to provide alternative sets of instructions for different

conditions. The most common type of conditional statement is the if statement. The if statement checks a value

or expression in its parentheses. If the value is true, the lines of code in curly brackets are carried out. Otherwise,

they are ignored. For example:

 if (age < 20)
 {
 // show special teenager-targeted content
 }

The if statement’s companion, the else statement, lets you designate alternative instructions that the computer

performs if the condition is not true:

17LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

 if (username == "admin")
 {
 // do some administrator-only things, like showing extra options
 }
 else
 {
 // do some non-administrator things
 }

Example: Animation portfolio piece (Flash Professional)

This example is designed to give you a first opportunity to see how you can piece together bits of ActionScript into a

complete application. The animation portfolio piece is an example of how you could take an existing linear animation

and add some minor interactive elements. For example, you could incorporate an animation created for a client into

an online portfolio. The interactive behavior that you’ll add to the animation includes two buttons the viewer can click:

one to start the animation, and one to navigate to a separate URL (such as the portfolio menu or the author’s home

page).

The process of creating this piece can be divided into these main sections:

1 Prepare the FLA file for adding ActionScript and interactive elements.

2 Create and add the buttons.

3 Write the ActionScript code.

4 Test the application.

Preparing to add interactivity

Before you can add interactive elements to your animation, it’s helpful to set up the FLA file by creating some places

to add your new content. This task includes creating actual space on the Stage where buttons can be placed. It also

includes creating “space” in the FLA file for keeping different items separate.

To set up your FLA for adding interactive elements:

1 Create a FLA file with a simple animation such as a single motion tween or shape tween. If you already have a FLA

file containing the animation that you’re showcasing in the project, open that file and save it with a new name.

2 Decide where on the screen you’ll want the two buttons to appear. One button is to start the animation and one is

to link to the author portfolio or home page. If necessary, clear or add some space on the Stage for this new content.

If the animation doesn’t already have one, you can create a startup screen on the first frame. In that case you’ll

probably want to shift the animation over so it starts on Frame 2 or later.

3 Add a new layer, above the other layers in the Timeline, and name it buttons. This layer is where you’ll add the

buttons.

4 Add a new layer, above the buttons layer, and name it actions. This layer is where you’ll add ActionScript code to

your application.

Creating and adding buttons

Next, you’ll actually create and position the buttons that form the center of the interactive application.

18LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

To create and add buttons to the FLA:

1 Using the drawing tools, create the visual appearance of your first button (the “play” button) on the buttons layer.

For example, draw a horizontal oval with text on top of it.

2 Using the Selection tool, select all the graphic parts of the single button.

3 From the main menu, choose Modify > Convert To Symbol.

4 In the dialog box, choose Button as the symbol type, give the symbol a name, and click OK.

5 With the button selected, in the Property inspector give the button the instance name playButton.

6 Repeat steps 1 through 5 to create the button that takes the viewer to the author’s home page. Name this button

homeButton.

Writing the code

The ActionScript code for this application can be divided into three sets of functionality, although you enter it all in

the same place. The three things the code does are:

• Stop the playhead as soon as the SWF file loads (when the playhead enters Frame 1).

• Listen for an event to start the SWF file playing when the user clicks the play button.

• Listen for an event to send the browser to the appropriate URL when the user clicks the author home page button.

To create code to stop the playhead when it enters Frame 1:

1 Select the keyframe on Frame 1 of the actions layer.

2 To open the Actions panel, from the main menu, choose Window > Actions.

3 In the Script pane, enter the following code:

 stop();

To write code to start the animation when the play button is clicked:

1 At the end of the code entered in the previous steps, add two empty lines.

2 Enter the following code at the bottom of the script:

 function startMovie(event:MouseEvent):void
 {
 this.play();
 }

This code defines a function called startMovie(). When startMovie() is called, it causes the main timeline to

start playing.

3 On the line following the code added in the previous step, enter this line of code:

 playButton.addEventListener(MouseEvent.CLICK, startMovie);

This line of code registers the startMovie() function as a listener for playButton’s click event. In other words,

it makes it so that whenever the button named playButton is clicked, the startMovie() function is called.

To write code to send the browser to a URL when the home page button is clicked:

1 At the end of the code entered in the previous steps, add two empty lines.

2 Enter this code at the bottom of the script:

19LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

 function gotoAuthorPage(event:MouseEvent):void
 {
 var targetURL:URLRequest = new URLRequest("http://example.com/");
 navigateToURL(targetURL);
 }

This code defines a function called gotoAuthorPage(). This function first creates a URLRequest instance

representing the URL http://example.com/. It then passes that URL to the navigateToURL() function, causing the

user’s browser to open that URL.

3 On the line following the code added in the previous step, enter this line of code:

 homeButton.addEventListener(MouseEvent.CLICK, gotoAuthorPage);

This line of code registers the gotoAuthorPage() function as a listener for homeButton’s click event. In other

words, it makes it so that whenever the button named homeButton is clicked, the gotoAuthorPage() function is

called.

Testing the application

The application is now completely functional. Let’s test it to make sure that’s the case.

To test the application:

1 From the main menu, choose Control > Test Movie. Flash Professional creates the SWF file and opens it in a Flash

Player window.

2 Try both the buttons to make sure that they do what you expect them to.

3 If the buttons don’t work, here are some things to check for:

• Do the buttons both have distinct instance names?

• Do the addEventListener() method calls use the same names as the buttons’ instance names?

• Are the correct event names used in the addEventListener() method calls?

• Is the correct parameter specified for each of the functions? (Both methods need a single parameter with the data

type MouseEvent.)

All of these mistakes and most other possible mistakes result in an error message. The error message can appear

either when you choose the Test Movie command or when you click the button while testing the project. Look in

the Compiler Errors panel for compiler errors (the ones that happen when you first choose Test Movie). Check the

Output panel for run-time errors which happen while the content is playing, such as when you click a button.

Building applications with ActionScript

The process of writing ActionScript to build an application involves more than just knowing the syntax and the names

of the classes you’ll use. Most of the Flash Platform documentation covers those two topics (syntax and using

ActionScript classes). However, to build an ActionScript application you’ll also want to know information such as:

• What programs can be used for writing ActionScript?

• How do you organize ActionScript code?

• How do you include ActionScript code in an application?

• What steps do you follow in developing an ActionScript application?

20LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

Options for organizing your code

You can use ActionScript 3.0 code to power everything from simple graphics animations to complex client-server

transaction processing systems. Depending on the type of application you’re building, use one or more of these

different ways of including ActionScript in your project.

Storing code in frames in a Flash Professional timeline

In Flash Professional, you can add ActionScript code to any frame in a timeline. This code executes while the movie is

playing back, when the playhead enters that frame.

Placing ActionScript code in frames provides a simple way to add behaviors to applications built in Flash Professional.

You can add code to any frame in the main timeline or to any frame in the timeline of any MovieClip symbol. However,

this flexibility comes with a cost. When you build larger applications, it becomes easy to lose track of which frames

contain which scripts. This complicated structure can make the application more difficult to maintain over time.

Many developers simplify the organization of their ActionScript code in the Flash Professional by placing code only

in the first frame of a timeline or on a specific layer in the Flash document. Separating your code makes it easier to

locate and maintain the code in your Flash FLA files. However, the same code can’t be used in another Flash

Professional project without copying and pasting the code into the new file.

To make it easier to use your ActionScript code in other Flash Professional projects in the future, store your code in

external ActionScript files (text files with the .as extension).

Embedding code in Flex MXML files

In a Flex development environment such as Flash Builder, you can include ActionScript code inside an <fx:Script>

tag in a Flex MXML file. However, this technique can add complexity to large projects and make it more difficult to

use the same code in another Flex project. To make it easier to use your ActionScript code in other Flex projects in the

future, store your code in external ActionScript files.

Note: You can specify a source parameter for an <fx:Script> tag. Using a source parameter lets you “import”

ActionScript code from an external file as if it was typed directly within the <fx:Script> tag. However, the source file

that you use cannot define its own class, which limits its reusability.

Storing code in ActionScript files

If your project involves significant ActionScript code, the best way to organize your code is in separate ActionScript

source files (text files with the .as extension). An ActionScript file can be structured in one of two ways, depending on

how you intend to use it in your application.

• Unstructured ActionScript code: Lines of ActionScript code, including statements or function definitions, written

as though they were entered directly in a timeline script or MXML file.

ActionScript written in this way can be accessed using the include statement in ActionScript, or the <fx:Script>

tag in Flex MXML. The ActionScript include statement tells the compiler to include the contents of an external

ActionScript file at a specific location and within a given scope in a script. The result is the same as if the code were

entered there directly. In the MXML language, using an <fx:Script> tag with a source attribute identifies an

external ActionScript that the compiler loads at that point in the application. For example, the following tag loads

an external ActionScript file named Box.as:

 <fx:Script source="Box.as" />

• ActionScript class definition: A definition of an ActionScript class, including its method and property definitions.

21LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

When you define a class you can access the ActionScript code in the class by creating an instance of the class and

using its properties, methods, and events. Using your own classes is identical to using any of the built-in

ActionScript classes, and requires two parts:

• Use the import statement to specify the full name of the class, so the ActionScript compiler knows where to find

it. For example, to use the MovieClip class in ActionScript, import the class using its full name, including

package and class:

 import flash.display.MovieClip;

Alternatively, you can import the package that contains the MovieClip class, which is equivalent to writing

separate import statements for each class in the package:

 import flash.display.*;

The top-level classes are the only exception to the rule that a class must be imported to use that class in your

code. Those classes are not defined in a package.

• Write code that specifically uses the class name. For example, declare a variable with that class as its data type

and create an instance of the class to store in the variable. By using a class in ActionScript code, you tell the

compiler to load the definition of that class. For example, given an external class called Box, this statement

creates an instance of the Box class:

 var smallBox:Box = new Box(10,20);

The first time the compiler comes across the reference to the Box class it searches the available source code to

locate the Box class definition.

Choosing the right tool

You can use one of several tools (or multiple tools together) for writing and editing your ActionScript code.

Flash Builder

Adobe Flash Builder is the premier tool for creating projects with the Flex framework or projects that primarily consist

of ActionScript code. Flash Builder also includes a full-featured ActionScript editor as well as visual layout and MXML

editing capabilities. It can be used to create Flex or ActionScript-only projects. Flex provides several benefits including

a rich set of pre-built user interface controls, flexible dynamic layout controls, and built-in mechanisms for working

with remote data and linking external data to user interface elements. However, because of the additional code

required to provide these features, projects that use Flex can have a larger SWF file size than their non-Flex

counterparts.

Use Flash Builder if you are creating full-featured data-driven rich Internet applications with Flex. Use it when you

want to edit ActionScript code, edit MXML code, and lay out your application visually, all within a single tool.

Many Flash Professional users who build ActionScript-heavy projects use Flash Professional to create visual assets and

Flash Builder as an editor for ActionScript code.

Flash Professional

In addition to its graphics and animation creation capabilities, Flash Professional includes tools for working with

ActionScript code. The code can either be attached to elements in a FLA file or in external ActionScript-only files.

Flash Professional is ideal for projects that involve significant animation or video. It is valuable when you want to

create most of the graphic assets yourself. Another reason to use Flash Professional to develop your ActionScript

project is to create visual assets and write code in the same application. Flash Professional also includes pre-built user

interface components. You can use those components to achieve smaller SWF file size and use visual tools to skin them

for your project.

22LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

Flash Professional includes two tools for writing ActionScript code:

• Actions panel: Available when working in a FLA file, this panel allows you to write ActionScript code attached to

frames on a timeline.

• Script window: The Script window is a dedicated text editor for working with ActionScript (.as) code files.

Third-party ActionScript editor

Because ActionScript (.as) files are stored as simple text files, any program that can edit plain text files can be used to

write ActionScript files. In addition to Adobe’s ActionScript products, several third-party text editing programs with

ActionScript-specific capabilities have been created. You can write an MXML file or ActionScript classes using any text

editor program. You can then create an application from those files using the Flex SDK. The project can use Flex or be

an ActionScript-only application. Alternatively, some developers use Flash Builder or a third-party ActionScript editor

for writing ActionScript classes, in combination with Flash Professional for creating graphical content.

Reasons to choose a third-party ActionScript editor include:

• You prefer to write ActionScript code in a separate program and design visual elements in Flash Professional.

• You use an application for non-ActionScript programming (such as creating HTML pages or building applications

in another programming language). You want to use the same application for your ActionScript coding as well.

• You want to create ActionScript-only or Flex projects using the Flex SDK without Flash Professional or Flash

Builder.

Some of the notable code editors providing ActionScript-specific support include:

• Adobe Dreamweaver® CS4

• ASDT

• FDT

• FlashDevelop

• PrimalScript

• SE|PY

• TextMate (with ActionScript and Flex bundles)

The ActionScript development process

Whether your ActionScript project is large or small, using a process to design and develop your application makes

work more efficient and effective. The following steps describe a basic development process for building an application

that uses ActionScript 3.0:

1 Design your application.

Describe your application in some way before you start building it.

2 Compose your ActionScript 3.0 code.

You can create ActionScript code using Flash Professional, Flash Builder, Dreamweaver, or a text editor.

3 Create a Flash or Flex project to run your code.

In Flash Professional, create a FLA file, set up the publish settings, add user interface components to the application,

and reference the ActionScript code. In Flex, define the application, add user interface components using MXML,

and reference the ActionScript code.

4 Publish and test your ActionScript application.

http://www.adobe.com/products/dreamweaver/
http://sourceforge.net/projects/aseclipseplugin/
http://fdt.powerflasher.com/
http://www.flashdevelop.org/
http://www.primalscript.com/
http://www.sephiroth.it/python/sepy.php
http://macromates.com/
http://mswallace.com/2007/07/30/installing-as3-and-flex-bundle-for-textmate/

23LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

Testing your application involves running your application from within your development environment and

making sure that it does everything you intended.

You don’t necessarily have to follow these steps in order, or completely finish one step before working on another. For

example, you can design one screen of your application (step 1) and then create the graphics, buttons, and so on (step

3) before writing ActionScript code (step 2) and testing (step 4). Or you can design part of it and then add one button

or interface element at a time, writing ActionScript for each one and testing it as it’s built. It’s helpful to remember

these four stages of the development process. However, in real-world development it’s more effective to move back

and forth among the stages as appropriate.

Creating your own classes

The process of creating classes for use in your projects can seem daunting. However, the more difficult part of creating

a class is the task of designing the class’s methods, properties, and events.

Strategies for designing a class

The topic of object-oriented design is a complex one; entire careers have been devoted to the academic study and

professional practice of this discipline. Nevertheless, here are a few suggested approaches that can help you get started.

1 Think about the role that the instances of this class play in the application. Generally, objects serve one of these

three roles:

• Value object: These objects serve primarily as containers of data. They probably have several properties and

fewer methods (or sometimes no methods). They are generally code representations of clearly defined items. For

example, a music player application could include a Song class representing a single real-world song and a

Playlist class representing a conceptual group of songs.

• Display object: These are objects that actually appear on the screen. Examples include user-interface elements

like a drop-down list or status readout, graphical elements like creatures in a video game, and so on.

• Application structure: These objects play a broad range of supporting roles in the logic or processing performed

by applications. For example, you can make an object to perform certain calculations in a biology simulation.

You can make one that’s responsible for synchronizing values between a dial control and a volume readout in a

music player application. Another one can manage the rules in a video game. Or you can make a class to load a

saved picture in a drawing application.

2 Decide the specific functionality that the class needs. The different types of functionality often become the methods

of the class.

3 If the class is intended to serve as a value object, decide the data that the instances include. These items are good

candidates for properties.

4 Since your class is being designed specifically for your project, what’s most important is that you provide the

functionality that your application needs. Try to answer these questions for yourself:

• What pieces of information is your application storing, tracking, and manipulating? Answering this question

helps you identify any value objects and properties you need.

• What sets of actions does the application perform? For example, what happens when the application first loads,

when a particular button is clicked, when a movie stops playing, and so on? These are good candidates for

methods. They can also be properties if the “actions” involve changing individual values.

• For any given action, what information is necessary to perform that action? Those pieces of information become

the parameters of the method.

24LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

• As the application proceeds to do its work, what things change in your class that other parts of your application

need to know about? These are good candidates for events.

5 Is there is an existing object that is similar to the object you need except that it’s lacking some additional

functionality you want to add? Consider creating a subclass. (A subclass is a class which builds on the functionality

of an existing class, rather than defining all of its own functionality.) For example, to create a class that is a visual

object on the screen, use the behavior of an existing display object as a basis for your class. In that case, the display

object (such as MovieClip or Sprite) would be the base class, and your class would extend that class.

Writing the code for a class

Once you have a design for your class, or at least some idea of what information it stores and what actions it carries

out, the actual syntax of writing a class is fairly straightforward.

Here are the minimum steps to create your own ActionScript class:

1 Open a new text document in your ActionScript text editor program.

2 Enter a class statement to define the name of the class. To add a class statement, enter the words public class

and then the class’s name. Add opening and closing curly brackets to contain the contents of the class (the method

and property definitions). For example:

 public class MyClass
 {
 }

The word public indicates that the class can be accessed from any other code. For other alternatives, see Access

control namespace attributes.

3 Type a package statement to indicate the name of the package that contains your class. The syntax is the word

package, followed by the full package name, followed by opening and closing curly brackets around the class

statement block) For example, change the code in the previous step to the following:

 package mypackage
 {
 public class MyClass
 {
 }
 }

4 Define each property in the class using the var statement within the class body. The syntax is the same as you use

to declare any variable (with the addition of the public modifier). For example, adding these lines between the

opening and closing curly brackets of the class definition creates properties named textProperty,

numericProperty, and dateProperty:

 public var textProperty:String = "some default value";
 public var numericProperty:Number = 17;
 public var dateProperty:Date;

5 Define each method in the class using the same syntax that’s used to define a function. For example:

• To create a myMethod() method, enter:

 public function myMethod(param1:String, param2:Number):void
 {
 // do something with parameters
 }

• To create a constructor (the special method that is called as part of the process of creating an instance of a class),

create a method whose name matches exactly the name of the class:

25LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

 public function MyClass()
 {
 // do stuff to set initial values for properties
 // and otherwise set up the object
 textVariable = "Hello there!";
 dateVariable = new Date(2001, 5, 11);
 }

If you don’t include a constructor method in your class, the compiler automatically creates an empty constructor

in your class. (In other words, a constructor with no parameters and no statements.)

There are a few more class elements that you can define. These elements are more complex.

• Accessors are a special cross between a method and a property. When you write the code to define the class, you

write the accessor like a method. You can perform multiple actions rather than just reading or assigning a value,

which is all you can do when you define a property. However, when you create an instance of your class, you

treat the accessor like a property and use the name to read or assign the value.

• Events in ActionScript aren’t defined using a specific syntax. Instead, you define events in your class using the

functionality of the EventDispatcher class.

More Help topics

Handling events

Example: Creating a basic application

ActionScript 3.0 can be used within a number of application development environments, including the Flash

Professional and Flash Builder tools or any text editor.

This example walks through the steps in creating and enhancing a simple ActionScript 3.0 application using Flash

Professional or Flash Builder. The application you’ll build presents a simple pattern for using external ActionScript 3.0

class files in Flash Professional and Flex.

Designing your ActionScript application

This example ActionScript application is a standard “Hello World” application, so its design is simple:

• The application is called HelloWorld.

• It displays a single text field containing the words “Hello World!”

• The application uses a single object-oriented class named Greeter. This design allows the class to be used from

within a Flash Professional or Flex project.

• In this example, you first create a basic version of the application. Next you add functionality to have the user enter

a user name and have the application check the name against a list of known users.

With that concise definition in place, you can start building the application itself.

Creating the HelloWorld project and the Greeter class

The design statement for the Hello World application says that its code is easy to reuse. To achieve that goal, the

application uses a single object-oriented class named Greeter. You use that class from within an application that you

create in Flash Builder or Flash Professional.

http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7fca.html

26LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

To create the HelloWorld project and Greeter class in Flex:

1 In Flash Builder, select File > New> Flex Project,

2 Type HelloWorld as the Project Name. Make sure that the Application type is set to “Web (runs in Adobe Flash

Player),” and then click Finish.

Flash Builder creates your project and displays it in the Package Explorer. By default the project already contains a

file named HelloWorld.mxml, and that file is open in the editor.

3 Now to create a custom ActionScript class file in Flash Builder, select File > New > ActionScript Class.

4 In the New ActionScript Class dialog box, in the Name field, type Greeter as the class name, and then click Finish.

A new ActionScript editing window is displayed.

Continue with adding code to the Greeter class.

To create the Greeter class in Flash Professional:

1 In Flash Professional, select File > New.

2 In the New Document dialog box, select ActionScript file, and click OK.

A new ActionScript editing window is displayed.

3 Select File > Save. Select a folder to contain your application, name the ActionScript file Greeter.as, and then click OK.

Continue with adding code to the Greeter class.

Adding code to the Greeter class

The Greeter class defines an object, Greeter, that you use in your HelloWorld application.

To add code to the Greeter class:

1 Type the following code into the new file (some of the code may have been added for you):

 package
 {
 public class Greeter
 {
 public function sayHello():String
 {
 var greeting:String;
 greeting = "Hello World!";
 return greeting;
 }
 }
 }

The Greeter class includes a single sayHello() method, which returns a string that says “Hello World!”.

2 Select File > Save to save this ActionScript file.

The Greeter class is now ready to be used in an application.

Creating an application that uses your ActionScript code

The Greeter class that you have built defines a self-contained set of software functions, but it does not represent a

complete application. To use the class, you create a Flash Professional document or Flex project.

The code needs an instance of the Greeter class. Here’s how to use the Greeter class to your application.

27LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

To create an ActionScript application using Flash Professional:

1 Select File > New.

2 In the New Document dialog box, select Flash File (ActionScript 3.0), and click OK.

A new document window is displayed.

3 Select File > Save. Select the same folder that contains the Greeter.as class file, name the Flash document

HelloWorld.fla, and click OK.

4 In the Flash Professional tools palette, select the Text tool. Drag across the Stage to define a new text field

approximately 300 pixels wide and 100 pixels high.

5 In the Properties panel, with the text field still selected on the Stage, set the text type to “Dynamic Text.” Type

mainText as the instance name of the text field.

6 Click the first frame of the main timeline. Open the Actions panel by choosing Window > Actions.

7 In the Actions panel, type the following script:

 var myGreeter:Greeter = new Greeter();
 mainText.text = myGreeter.sayHello();

8 Save the file.

Continue with Publishing and testing your ActionScript application.

To create an ActionScript application using Flash Builder:

1 Open the HelloWorld.mxml file, and add code to match the following listing:

 <?xml version="1.0" encoding="utf-8"?>
 <s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
minWidth="1024"
minHeight="768""

 creationComplete="initApp()">

 <fx:Script>
 <![CDATA[
 private var myGreeter:Greeter = new Greeter();

 public function initApp():void
 {
 // says hello at the start, and asks for the user's name
 mainTxt.text = myGreeter.sayHello();
 }
]]>
 </fx:Script>

 <s:layout>

<s:VerticalLayout/>
</s:layout>

<s:TextArea id="mainTxt" width="400"/>

 </s:Application>

This Flex project includes four MXML tags:

• An <s:Application> tag, which defines the Application container

28LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

• An <s:layout> tag, which defines the layout style (vertical layout) for the Application tag

• An <fx:Script> tag that includes some ActionScript code

• An <s:TextArea> tag, which defines a field to display text messages to the user

The code in the <fx:Script> tag defines an initApp() method that is called when the application loads. The

initApp() method sets the text value of the mainTxt TextArea to the “Hello World!” string returned by the

sayHello() method of the custom class Greeter, which you just wrote.

2 Select File > Save to save the application.

Continue with Publishing and testing your ActionScript application.

Publishing and testing your ActionScript application

Software development is an iterative process. You write some code, try to compile it, and edit the code until it compiles

cleanly. You run the compiled application and test it to see if it fulfills the intended design. If it doesn’t, you edit the

code again until it does. The Flash Professional and Flash Builder development environments offer a number of ways

to publish, test, and debug your applications.

Here are the basic steps for testing the HelloWorld application in each environment.

To publish and test an ActionScript application using Flash Professional:

1 Publish your application and watch for compilation errors. In Flash Professional, select Control > Test Movie to

compile your ActionScript code and run the HelloWorld application.

2 If any errors or warnings are displayed in the Output window when you test your application, fix these errors in the

HelloWorld.fla or HelloWorld.as files. Then try testing the application again.

3 If there are no compilation errors, you see a Flash Player window showing the Hello World application.

You have created a simple but complete object-oriented application that uses ActionScript 3.0. Continue with

Enhancing the HelloWorld application.

To publish and test an ActionScript application using Flash Builder:

1 Select Run > Run HelloWorld.

2 The HelloWorld application starts.

• If any errors or warnings are displayed in the Output window when you test your application, fix the errors in

the HelloWorld.mxml or Greeter.as files. Then try testing the application again.

• If there are no compilation errors, a browser window opens showing the Hello World application. The text

“Hello World!” appears.

You have created a simple but complete object-oriented application that uses ActionScript 3.0. Continue with

Enhancing the HelloWorld application.

Enhancing the HelloWorld application

To make the application a little more interesting, you’ll now make it ask for and validate a user name against a

predefined list of names.

First you update the Greeter class to add new functionality. Then you update the application to use the new

functionality.

29LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

To update the Greeter.as file:

1 Open the Greeter.as file.

2 Change the contents of the file to the following (new and changed lines are shown in boldface):

 package
 {
 public class Greeter
 {
 /**
 * Defines the names that receive a proper greeting.
 */
 public static var validNames:Array = ["Sammy", "Frank", "Dean"];

 /**
 * Builds a greeting string using the given name.
 */
 public function sayHello(userName:String = ""):String
 {
 var greeting:String;
 if (userName == "")
 {
 greeting = "Hello. Please type your user name, and then press "

+ "the Enter key.";
 }
 else if (validName(userName))
 {
 greeting = "Hello, " + userName + ".";
 }
 else
 {
 greeting = "Sorry " + userName + ", you are not on the list.";
 }
 return greeting;
 }

 /**
 * Checks whether a name is in the validNames list.
 */
 public static function validName(inputName:String = ""):Boolean
 {
 if (validNames.indexOf(inputName) > -1)
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 }
 }

The Greeter class now has a number of new features:

• The validNames array lists valid user names. The array is initialized to a list of three names when the Greeter class

is loaded.

30LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

• The sayHello() method now accepts a user name and changes the greeting based on some conditions. If the

userName is an empty string (""), the greeting property is set to prompt the user for a name. If the user name is

valid, the greeting becomes "Hello, userName." Finally, if either of those two conditions are not met, the

greeting variable is set to "Sorry userName, you are not on the list."

• The validName() method returns true if the inputName is found in the validNames array, and false if it is not

found. The statement validNames.indexOf(inputName) checks each of the strings in the validNames array

against the inputName string. The Array.indexOf() method returns the index position of the first instance of an

object in an array. It returns the value -1 if the object is not found in the array.

Next you edit the application file that references this ActionScript class.

To modify the application using Flash Professional:

1 Open the HelloWorld.fla file.

2 Modify the script in Frame 1 so that an empty string ("") is passed to the Greeter class’s sayHello() method:

 var myGreeter:Greeter = new Greeter();
 mainText.text = myGreeter.sayHello("");

3 Select the Text tool in the tools palette. Create two new text fields on the Stage. Place them side by side directly

under the existing mainText text field.

4 In the first new text field, which is the label, type the text User Name:.

5 Select the other new text field, and in the Property inspector, select Input Text as the type of text field. Select Single

line as the Line type. Type textIn as the instance name.

6 Click the first frame of the main timeline.

7 In the Actions panel, add the following lines to the end of the existing script:

 mainText.border = true;
 textIn.border = true;

 textIn.addEventListener(KeyboardEvent.KEY_DOWN, keyPressed);

 function keyPressed(event:KeyboardEvent):void
 {
 if (event.keyCode == Keyboard.ENTER)
 {
 mainText.text = myGreeter.sayHello(textIn.text);
 }
 }

The new code adds the following functionality:

• The first two lines simply define borders for two text fields.

• An input text field, such as the textIn field, has a set of events that it can dispatch. The addEventListener()

method lets you define a function that runs when a type of event occurs. In this case, that event is the pressing

of a key on the keyboard.

• The keyPressed() custom function checks if the key that was pressed is the Enter key. If so it calls the

sayHello() method of the myGreeter object, passing the text from the textIn text field as a parameter. That

method returns a string greeting based on the value passed in. The returned string is then assigned to the text

property of the mainText text field.

The complete script for Frame 1 is the following:

31LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

 var myGreeter:Greeter = new Greeter();
 mainText.text = myGreeter.sayHello("");

 mainText.border = true;
 textIn.border = true;

 textIn.addEventListener(KeyboardEvent.KEY_DOWN, keyPressed);

 function keyPressed(event:KeyboardEvent):void
 {
 if (event.keyCode == Keyboard.ENTER)
 {
 mainText.text = myGreeter.sayHello(textIn.text);
 }
 }

8 Save the file.

9 Select Control > Test Movie to run the application.

When you run the application, it prompts you to enter a user name. If it is valid (Sammy, Frank, or Dean), the

application displays the “hello” confirmation message.

To modify the application using Flash Builder:

1 Open the HelloWorld.mxml file.

2 Next modify the <mx:TextArea> tag to indicate to the user that it is for display only. Change the background color

to a light gray and set the editable attribute to false:

 <s:TextArea id="mainTxt" width="400" backgroundColor="#DDDDDD" editable="false" />

3 Now add the following lines right after the <s:TextArea> closing tag. These lines create a TextInput component

that lets the user enter a user name value:

 <s:HGroup width="400">
 <mx:Label text="User Name:"/>
 <s:TextInput id="userNameTxt" width="100%" enter="mainTxt.text =
myGreeter.sayHello(userNameTxt.text);" />
 </s:HGroup>

The enter attribute defines what happens when the user presses the Enter key in the userNameTxt field. In this

example, the code passes the text in the field to the Greeter.sayHello() method. The greeting in the mainTxt

field changes accordingly.

The HelloWorld.mxml file looks like the following:

32LEARNING ACTIONSCRIPT 3.0

Getting started with ActionScript

Last updated 5/2/2011

<?xml version="1.0" encoding="utf-8"?>
 <s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/halo"
minWidth="1024"
minHeight="768""

 creationComplete="initApp()">

 <fx:Script>
 <![CDATA[
 private var myGreeter:Greeter = new Greeter();

 public function initApp():void
 {
 // says hello at the start, and asks for the user's name
 mainTxt.text = myGreeter.sayHello();
 }
]]>
 </fx:Script>

 <s:layout>

<s:VerticalLayout/>
</s:layout>

 <s:TextArea id="mainTxt" width="400" backgroundColor="#DDDDDD" editable="false"/>

 <s:HGroup width="400">
 <mx:Label text="User Name:"/>
 <s:TextInput id="userNameTxt" width="100%" enter="mainTxt.text =
myGreeter.sayHello(userNameTxt.text);" />
 </s:HGroup>

 </s:Application>

4 Save the edited HelloWorld.mxml file. Select Run > Run HelloWorld to run the application.

When you run the application, the application prompts you to enter a user name. If it is valid (Sammy, Frank, or

Dean), the application displays the “ Hello, userName” confirmation message.

33

Last updated 5/2/2011

Chapter 3: ActionScript language and
syntax

ActionScript 3.0 includes both the core ActionScript language and the Adobe Flash Platform Application

Programming Interface (API). The core language is the part of ActionScript that defines the syntax of the language as

well as the top-level data types. ActionScript 3.0 provides programmatic access to the Adobe Flash Platform runtimes:

Adobe Flash Player and Adobe AIR.

Language overview

Objects lie at the heart of the ActionScript 3.0 language—they are its fundamental building blocks. Every variable you

declare, every function you write, and every class instance you create is an object. You can think of an ActionScript 3.0

program as a group of objects that carry out tasks, respond to events, and communicate with one another.

Programmers familiar with object-oriented programming (OOP) in Java or C++ may think of objects as modules that

contain two kinds of members: data stored in member variables or properties, and behavior accessible through

methods. ActionScript 3.0 defines objects in a similar but slightly different way. In ActionScript 3.0, objects are simply

collections of properties. These properties are containers that can hold not only data, but also functions or other

objects. If a function is attached to an object in this way, it is called a method.

While the ActionScript 3.0 definition may seem a little odd to programmers with a Java or C++ background, in

practice, defining object types with ActionScript 3.0 classes is very similar to the way classes are defined in Java or C++.

The distinction between the two definitions of object is important when discussing the ActionScript object model and

other advanced topics, but in most other situations the term properties means class member variables as opposed to

methods. ActionScript 3.0 Reference for the Adobe Flash Platform, for example, uses the term properties to mean

variables or getter-setter properties. It uses the term methods to mean functions that are part of a class.

One subtle difference between classes in ActionScript and classes in Java or C++ is that in ActionScript, classes are not

just abstract entities. ActionScript classes are represented by class objects that store the class’s properties and methods.

This allows for techniques that may seem alien to Java and C++ programmers, such as including statements or

executable code at the top level of a class or package.

Another difference between ActionScript classes and Java or C++ classes is that every ActionScript class has something

called a prototypeobject. In previous versions of ActionScript, prototype objects, linked together into prototype chains,

served collectively as the foundation of the entire class inheritance hierarchy. In ActionScript 3.0, however, prototype

objects play only a small role in the inheritance system. The prototype object can still be useful, however, as an

alternative to static properties and methods if you want to share a property and its value among all the instances of a

class.

In the past, advanced ActionScript programmers could directly manipulate the prototype chain with special built-in

language elements. Now that the language provides a more mature implementation of a class-based programming

interface, many of these special language elements, such as __proto__ and __resolve, are no longer part of the

language. Moreover, optimizations of the internal inheritance mechanism that provide significant performance

improvements preclude direct access to the inheritance mechanism.

34LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Objects and classes

In ActionScript 3.0, every object is defined by a class. A class can be thought of as a template or a blueprint for a type

of object. Class definitions can include variables and constants, which hold data values, and methods, which are

functions that encapsulate behavior bound to the class. The values stored in properties can be primitive values or other

objects. Primitive values are numbers, strings, or Boolean values.

ActionScript contains a number of built-in classes that are part of the core language. Some of these built-in classes,

such as Number, Boolean and String, represent the primitive values available in ActionScript. Others, such as the

Array, Math, and XML classes, define more complex objects.

All classes, whether built-in or user-defined, derive from the Object class. For programmers with previous

ActionScript experience, it is important to note that the Object data type is no longer the default data type, even though

all other classes still derive from it. In ActionScript 2.0, the following two lines of code were equivalent because the lack

of a type annotation meant that a variable would be of type Object:

 var someObj:Object;
 var someObj;

ActionScript 3.0, however, introduces the concept of untyped variables, which can be designated in the following two ways:

 var someObj:*;
 var someObj;

An untyped variable is not the same as a variable of type Object. The key difference is that untyped variables can hold

the special value undefined, while a variable of type Object cannot hold that value.

You can define your own classes using the class keyword. You can declare class properties in three ways: constants

can be defined with the const keyword, variables are defined with the var keyword, and getter and setter properties

are defined by using the get and set attributes in a method declaration. You can declare methods with the function

keyword.

You create an instance of a class by using the new operator. The following example creates an instance of the Date class

called myBirthday.

 var myBirthday:Date = new Date();

Packages and namespaces

Packages and namespaces are related concepts. Packages allow you to bundle class definitions together in a way that

facilitates code sharing and minimizes naming conflicts. Namespaces allow you to control the visibility of identifiers,

such as property and method names, and can be applied to code whether it resides inside or outside a package.

Packages let you organize your class files, and namespaces let you manage the visibility of individual properties and

methods.

Packages

Packages in ActionScript 3.0 are implemented with namespaces, but are not synonymous with them. When you

declare a package, you are implicitly creating a special type of namespace that is guaranteed to be known at compile

time. Namespaces, when created explicitly, are not necessarily known at compile time.

The following example uses the package directive to create a simple package containing one class:

35LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 package samples
 {
 public class SampleCode
 {
 public var sampleGreeting:String;
 public function sampleFunction()
 {
 trace(sampleGreeting + " from sampleFunction()");
 }
 }
 }

The name of the class in this example is SampleCode. Because the class is inside the samples package, the compiler

automatically qualifies the class name at compile time into its fully qualified name: samples.SampleCode. The compiler

also qualifies the names of any properties or methods, so that sampleGreeting and sampleFunction() become

samples.SampleCode.sampleGreeting and samples.SampleCode.sampleFunction(), respectively.

Many developers, especially those with Java programming backgrounds, may choose to place only classes at the top

level of a package. ActionScript 3.0, however, supports not only classes at the top level of a package, but also variables,

functions, and even statements. One advanced use of this feature is to define a namespace at the top level of a package

so that it is available to all classes in that package. Note, however, that only two access specifiers, public and internal,

are allowed at the top level of a package. Unlike Java, which allows you to declare nested classes as private, ActionScript

3.0 doesn’t support nested or private classes.

In many other ways, however, ActionScript 3.0 packages are similar to packages in the Java programming language.

As you can see in the previous example, fully qualified package references are expressed using the dot operator (.), just

as they are in Java. You can use packages to organize your code into an intuitive hierarchical structure for use by other

programmers. This facilitates code sharing by allowing you to create your own package to share with others, and to

use packages created by others in your code.

The use of packages also helps to ensure that the identifier names that you use are unique and do not conflict with other

identifier names. In fact, some would argue that this is the primary benefit of packages. For example, two programmers

who want to share their code with each other may have each created a class called SampleCode. Without packages, this

would create a name conflict, and the only resolution would be to rename one of the classes. With packages, however,

the name conflict is easily avoided by placing one, or preferably both, of the classes in packages with unique names.

You can also include embedded dots in your package name to create nested packages. This allows you to create a

hierarchical organization of packages. A good example of this is the flash.display package provided by ActionScript

3.0. The flash.display package is nested inside the flash package.

Most of ActionScript 3.0 is organized under the flash package. For example, the flash.display package contains the

display list API, and the flash.events package contains the new event model.

Creating packages

ActionScript 3.0 provides significant flexibility in the way you organize your packages, classes, and source files.

Previous versions of ActionScript allowed only one class per source file and required the name of the source file to

match the name of the class. ActionScript 3.0 allows you to include multiple classes in one source file, but only one

class in each file can be made available to code that is external to that file. In other words, only one class in each file

can be declared inside a package declaration. You must declare any additional classes outside your package definition,

which makes those classes invisible to code outside that source file. The name of the class declared inside the package

definition must match the name of the source file.

36LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

ActionScript 3.0 also provides more flexibility in the way you declare packages. In previous versions of ActionScript,

packages merely represented directories in which you placed source files, and you didn’t declare packages with the

package statement, but rather included the package name as part of the fully qualified class name in your class

declaration. Although packages still represent directories in ActionScript 3.0, packages can contain more than just

classes. In ActionScript 3.0, you use the package statement to declare a package, which means that you can also declare

variables, functions, and namespaces at the top level of a package. You can even include executable statements at the

top level of a package. If you do declare variables, functions, or namespaces at the top level of a package, the only

attributes available at that level are public and internal, and only one package-level declaration per file can use the

public attribute, whether that declaration is a class, variable, function, or namespace.

Packages are useful for organizing your code and for preventing name conflicts. You should not confuse the concept

of packages with the unrelated concept of class inheritance. Two classes that reside in the same package have a

namespace in common, but are not necessarily related to each other in any other way. Likewise, a nested package may

have no semantic relationship to its parent package.

Importing packages

If you want to use a class that is inside a package, you must import either the package or the specific class. This differs

from ActionScript 2.0, where importing classes was optional.

For example, consider the SampleCode class example presented previously. If the class resides in a package named

samples, you must use one of the following import statements before using the SampleCode class:

 import samples.*;

or

 import samples.SampleCode;

In general, import statements should be as specific as possible. If you plan to use only the SampleCode class from the

samples package, you should import only the SampleCode class rather than the entire package to which it belongs.

Importing entire packages may lead to unexpected name conflicts.

You must also place the source code that defines the package or class within your classpath. The classpath is a user-

defined list of local directory paths that determines where the compiler searches for imported packages and classes.

The classpath is sometimes called the build path or source path.

After you have properly imported the class or package, you can use either the fully qualified name of the class

(samples.SampleCode) or merely the class name by itself (SampleCode).

Fully qualified names are useful when identically named classes, methods, or properties result in ambiguous code, but

can be difficult to manage if used for all identifiers. For example, the use of the fully qualified name results in verbose

code when you instantiate a SampleCode class instance:

 var mySample:samples.SampleCode = new samples.SampleCode();

As the levels of nested packages increase, the readability of your code decreases. In situations where you are confident

that ambiguous identifiers are not a problem, you can make your code easier to read by using simple identifiers. For

example, instantiating a new instance of the SampleCode class is much less verbose if you use only the class identifier:

 var mySample:SampleCode = new SampleCode();

If you attempt to use identifier names without first importing the appropriate package or class, the compiler can’t find

the class definitions. On the other hand, if you do import a package or class, any attempt to define a name that conflicts

with an imported name generates an error.

37LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

When a package is created, the default access specifier for all members of that package is internal, which means that,

by default, package members are only visible to other members of that package. If you want a class to be available to

code outside the package, you must declare that class to be public. For example, the following package contains two

classes, SampleCode and CodeFormatter:

 // SampleCode.as file
 package samples
 {
 public class SampleCode {}
 }

 // CodeFormatter.as file
 package samples
 {
 class CodeFormatter {}
 }

The SampleCode class is visible outside the package because it is declared as a public class. The CodeFormatter class,

however, is visible only within the samples package itself. If you attempt to access the CodeFormatter class outside the

samples package, it generates an error, as the following example shows:

 import samples.SampleCode;
 import samples.CodeFormatter;
 var mySample:SampleCode = new SampleCode(); // okay, public class
 var myFormatter:CodeFormatter = new CodeFormatter(); // error

If you want both classes to be available outside the package, you must declare both classes to be public. You cannot

apply the public attribute to the package declaration.

Fully qualified names are useful for resolving name conflicts that may occur when using packages. Such a scenario may

arise if you import two packages that define classes with the same identifier. For example, consider the following

package, which also has a class named SampleCode:

 package langref.samples
 {
 public class SampleCode {}
 }

If you import both classes, as follows, you have a name conflict when using the SampleCode class:

 import samples.SampleCode;
 import langref.samples.SampleCode;
 var mySample:SampleCode = new SampleCode(); // name conflict

The compiler has no way of knowing which SampleCode class to use. To resolve this conflict, you must use the fully

qualified name of each class, as follows:

 var sample1:samples.SampleCode = new samples.SampleCode();
 var sample2:langref.samples.SampleCode = new langref.samples.SampleCode();

Note: Programmers with a C++ background often confuse the import statement with #include. The #include

directive is necessary in C++ because C++ compilers process one file at a time, and don’t look in other files for class

definitions unless a header file is explicitly included. ActionScript 3.0 has an include directive, but it is not designed to

import classes and packages. To import classes or packages in ActionScript 3.0, you must use the import statement and

place the source file that contains the package in the class path.

38LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Namespaces

Namespaces give you control over the visibility of the properties and methods that you create. Think of the public,

private, protected, and internal access control specifiers as built-in namespaces. If these predefined access

control specifiers do not suit your needs, you can create your own namespaces.

If you are familiar with XML namespaces, much of this discussion will not be new to you, although the syntax and

details of the ActionScript implementation are slightly different from those of XML. If you have never worked with

namespaces before, the concept itself is straightforward, but the implementation has specific terminology that you will

need to learn.

To understand how namespaces work, it helps to know that the name of a property or method always contains two

parts: an identifier and a namespace. The identifier is what you generally think of as a name. For example, the

identifiers in the following class definition are sampleGreeting and sampleFunction():

 class SampleCode
 {
 var sampleGreeting:String;
 function sampleFunction () {
 trace(sampleGreeting + " from sampleFunction()");
 }
 }

Whenever definitions are not preceded by a namespace attribute, their names are qualified by the default internal

namespace, which means they are visible only to callers in the same package. If the compiler is set to strict mode, the

compiler issues a warning that the internal namespace applies to any identifier without a namespace attribute. To

ensure that an identifier is available everywhere, you must specifically precede the identifier name with the public

attribute. In the previous example code, both sampleGreeting and sampleFunction() have a namespace value of

internal.

There are three basic steps to follow when using namespaces. First, you must define the namespace using the

namespace keyword. For example, the following code defines the version1 namespace:

 namespace version1;

Second, you apply your namespace by using it instead of an access control specifier in a property or method

declaration. The following example places a function named myFunction() into the version1 namespace:

 version1 function myFunction() {}

Third, once you’ve applied the namespace, you can reference it with the use directive or by qualifying the name of an

identifier with a namespace. The following example references the myFunction() function through the use directive:

 use namespace version1;
 myFunction();

You can also use a qualified name to reference the myFunction() function, as the following example shows:

 version1::myFunction();

Defining namespaces

Namespaces contain one value, the Uniform Resource Identifier (URI), which is sometimes called the namespace

name. A URI allows you to ensure that your namespace definition is unique.

You create a namespace by declaring a namespace definition in one of two ways. You can either define a namespace

with an explicit URI, as you would define an XML namespace, or you can omit the URI. The following example shows

how a namespace can be defined using a URI:

 namespace flash_proxy = "http://www.adobe.com/flash/proxy";

39LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

The URI serves as a unique identification string for that namespace. If you omit the URI, as in the following example,

the compiler creates a unique internal identification string in place of the URI. You do not have access to this internal

identification string.

 namespace flash_proxy;

Once you define a namespace, with or without a URI, that namespace cannot be redefined in the same scope. An

attempt to define a namespace that has been defined earlier in the same scope results in a compiler error.

If a namespace is defined within a package or a class, the namespace may not be visible to code outside that package

or class unless the appropriate access control specifier is used. For example, the following code shows the

flash_proxy namespace defined within the flash.utils package. In the following example, the lack of an access control

specifier means that the flash_proxy namespace would be visible only to code within the flash.utils package and

would not be visible to any code outside the package:

 package flash.utils
 {
 namespace flash_proxy;
 }

The following code uses the public attribute to make the flash_proxy namespace visible to code outside the package:

 package flash.utils
 {
 public namespace flash_proxy;
 }

Applying namespaces

Applying a namespace means placing a definition into a namespace. Definitions that can be placed into namespaces

include functions, variables, and constants (you cannot place a class into a custom namespace).

Consider, for example, a function declared using the public access control namespace. Using the public attribute in

a function definition places the function into the public namespace, which makes the function available to all code.

Once you have defined a namespace, you can use the namespace that you defined the same way you would use the

public attribute, and the definition is available to code that can reference your custom namespace. For example, if you

define a namespace example1, you can add a method called myFunction() using example1 as an attribute, as the

following example shows:

 namespace example1;
 class someClass
 {
 example1 myFunction() {}
 }

Declaring the myFunction() method using the namespace example1 as an attribute means that the method belongs

to the example1 namespace.

You should bear in mind the following when applying namespaces:

• You can apply only one namespace to each declaration.

• There is no way to apply a namespace attribute to more than one definition at a time. In other words, if you want

to apply your namespace to ten different functions, you must add your namespace as an attribute to each of the ten

function definitions.

• If you apply a namespace, you cannot also specify an access control specifier because namespaces and access control

specifiers are mutually exclusive. In other words, you cannot declare a function or property as public, private,

protected, or internal in addition to applying your namespace.

40LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Referencing namespaces

There is no need to explicitly reference a namespace when you use a method or property declared with any of the access

control namespaces, such as public, private, protected, and internal. This is because access to these special

namespaces is controlled by context. For example, definitions placed into the private namespace are automatically

available to code within the same class. For namespaces that you define, however, such context sensitivity does not

exist. To use a method or property that you have placed into a custom namespace, you must reference the namespace.

You can reference namespaces with the use namespace directive or you can qualify the name with the namespace

using the name qualifier (::) punctuator. Referencing a namespace with the use namespace directive “opens” the

namespace, so that it can apply to any identifiers that are not qualified. For example, if you have defined the example1

namespace, you can access names in that namespace by using use namespace example1:

 use namespace example1;
 myFunction();

You can open more than one namespace at a time. Once you open a namespace with use namespace, it remains open

throughout the block of code in which it was opened. There is no way to explicitly close a namespace.

Having more than one open namespace, however, increases the likelihood of name conflicts. If you prefer not to open

a namespace, you can avoid the use namespace directive by qualifying the method or property name with the

namespace and the name qualifier punctuator. For example, the following code shows how you can qualify the name

myFunction() with the example1 namespace:

 example1::myFunction();

Using namespaces

You can find a real-world example of a namespace that is used to prevent name conflicts in the flash.utils.Proxy class

that is part of ActionScript 3.0. The Proxy class, which is the replacement for the Object.__resolve property from

ActionScript 2.0, allows you to intercept references to undefined properties or methods before an error occurs. All of

the methods of the Proxy class reside in the flash_proxy namespace to prevent name conflicts.

To better understand how the flash_proxy namespace is used, you need to understand how to use the Proxy class.

The functionality of the Proxy class is available only to classes that inherit from it. In other words, if you want to use

the methods of the Proxy class on an object, the object’s class definition must extend the Proxy class. For example, if

you want to intercept attempts to call an undefined method, you would extend the Proxy class and then override the

callProperty() method of the Proxy class.

You may recall that implementing namespaces is usually a three-step process of defining, applying, and then

referencing a namespace. Because you never explicitly call any of the Proxy class methods, however, the flash_proxy

namespace is only defined and applied, but never referenced. ActionScript 3.0 defines the flash_proxy namespace

and applies it in the Proxy class. Your code only needs to apply the flash_proxy namespace to classes that extend the

Proxy class.

The flash_proxy namespace is defined in the flash.utils package in a manner similar to the following:

 package flash.utils
 {
 public namespace flash_proxy;
 }

The namespace is applied to the methods of the Proxy class as shown in the following excerpt from the Proxy class:

41LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 public class Proxy
 {
 flash_proxy function callProperty(name:*, ... rest):*
 flash_proxy function deleteProperty(name:*):Boolean
 ...
 }

As the following code shows, you must first import both the Proxy class and the flash_proxy namespace. You must

then declare your class such that it extends the Proxy class (you must also add the dynamic attribute if you are

compiling in strict mode). When you override the callProperty() method, you must use the flash_proxy

namespace.

 package
 {
 import flash.utils.Proxy;
 import flash.utils.flash_proxy;

 dynamic class MyProxy extends Proxy
 {
 flash_proxy override function callProperty(name:*, ...rest):*
 {
 trace("method call intercepted: " + name);
 }
 }
 }

If you create an instance of the MyProxy class and call an undefined method, such as the testing() method called in

the following example, your Proxy object intercepts the method call and executes the statements inside the overridden

callProperty() method (in this case, a simple trace() statement).

 var mySample:MyProxy = new MyProxy();
 mySample.testing(); // method call intercepted: testing

There are two advantages to having the methods of the Proxy class inside the flash_proxy namespace. First, having

a separate namespace reduces clutter in the public interface of any class that extends the Proxy class. (There are about

a dozen methods in the Proxy class that you can override, all of which are not designed to be called directly. Placing all

of them in the public namespace could be confusing.) Second, use of the flash_proxy namespace avoids name

conflicts in case your Proxy subclass contains instance methods with names that match any of the Proxy class methods.

For example, you may want to name one of your own methods callProperty(). The following code is acceptable,

because your version of the callProperty() method is in a different namespace:

 dynamic class MyProxy extends Proxy
 {
 public function callProperty() {}
 flash_proxy override function callProperty(name:*, ...rest):*
 {
 trace("method call intercepted: " + name);
 }
 }

Namespaces can also be helpful when you want to provide access to methods or properties in a way that cannot be

accomplished with the four access control specifiers (public, private, internal, and protected). For example, you

may have a few utility methods that are spread out across several packages. You want these methods available to all of

your packages, but you don’t want the methods to be public. To accomplish this, you can create a namespace and use

it as your own special access control specifier.

42LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

The following example uses a user-defined namespace to group two functions that reside in different packages. By

grouping them into the same namespace, you can make both functions visible to a class or package through a single

use namespace statement.

This example uses four files to demonstrate the technique. All of the files must be within your classpath. The first file,

myInternal.as, is used to define the myInternal namespace. Because the file is in a package named example, you must

place the file into a folder named example. The namespace is marked as public so that it can be imported into other

packages.

 // myInternal.as in folder example
 package example
 {
 public namespace myInternal = "http://www.adobe.com/2006/actionscript/examples";
 }

The second and third files, Utility.as and Helper.as, define the classes that contain methods that should be available to

other packages. The Utility class is in the example.alpha package, which means that the file should be placed inside a

folder named alpha that is a subfolder of the example folder. The Helper class is in the example.beta package, which

means that the file should be placed inside a folder named beta that is also a subfolder of the example folder. Both of

these packages, example.alpha and example.beta, must import the namespace before using it.

 // Utility.as in the example/alpha folder
 package example.alpha
 {
 import example.myInternal;

 public class Utility
 {
 private static var _taskCounter:int = 0;

 public static function someTask()
 {
 _taskCounter++;
 }

 myInternal static function get taskCounter():int
 {
 return _taskCounter;
 }
 }
 }

43LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 // Helper.as in the example/beta folder
 package example.beta
 {
 import example.myInternal;

 public class Helper
 {
 private static var _timeStamp:Date;

 public static function someTask()
 {
 _timeStamp = new Date();
 }

 myInternal static function get lastCalled():Date
 {
 return _timeStamp;
 }
 }
 }

The fourth file, NamespaceUseCase.as, is the main application class, and should be a sibling to the example folder. In

Flash Professional, this class would be used as the document class for the FLA. The NamespaceUseCase class also

imports the myInternal namespace and uses it to call the two static methods that reside in the other packages. The

example uses static methods only to simplify the code. Both static and instance methods can be placed in the

myInternal namespace.

 // NamespaceUseCase.as
 package
 {
 import flash.display.MovieClip;
 import example.myInternal; // import namespace
 import example.alpha.Utility;// import Utility class
 import example.beta.Helper;// import Helper class

 public class NamespaceUseCase extends MovieClip
 {
 public function NamespaceUseCase()
 {
 use namespace myInternal;

 Utility.someTask();
 Utility.someTask();
 trace(Utility.taskCounter); // 2

 Helper.someTask();
 trace(Helper.lastCalled); // [time someTask() was last called]
 }
 }
 }

44LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Variables

Variables allow you to store values that you use in your program. To declare a variable, you must use the var statement

with the variable name. In ActionScript 3.0, use of the var statement is always required. For example, the following

line of ActionScript declares a variable named i:

 var i;

If you omit the var statement when declaring a variable, you get a compiler error in strict mode and run-time error in

standard mode. For example, the following line of code results in an error if the variable i has not been previously

defined:

 i; // error if i was not previously defined

To associate a variable with a data type, you must do so when you declare the variable. Declaring a variable without

designating the variable’s type is legal, but generates a compiler warning in strict mode. You designate a variable’s type

by appending the variable name with a colon (:), followed by the variable’s type. For example, the following code

declares a variable i that is of type int:

 var i:int;

You can assign a value to a variable using the assignment operator (=). For example, the following code declares a

variable i and assigns the value 20 to it:

 var i:int;
 i = 20;

You may find it more convenient to assign a value to a variable at the same time that you declare the variable, as in the

following example:

 var i:int = 20;

The technique of assigning a value to a variable at the time it is declared is commonly used not only when assigning

primitive values such as integers and strings, but also when creating an array or instantiating an instance of a class. The

following example shows an array that is declared and assigned a value using one line of code.

 var numArray:Array = ["zero", "one", "two"];

You can create an instance of a class by using the new operator. The following example creates an instance of a named

CustomClass, and assigns a reference to the newly created class instance to the variable named customItem:

 var customItem:CustomClass = new CustomClass();

If you have more than one variable to declare, you can declare them all on one line of code by using the comma

operator (,) to separate the variables. For example, the following code declares three variables on one line of code:

 var a:int, b:int, c:int;

You can also assign values to each of the variables on the same line of code. For example, the following code declares

three variables (a, b, and c) and assigns each a value:

 var a:int = 10, b:int = 20, c:int = 30;

Although you can use the comma operator to group variable declarations into one statement, doing so may reduce the

readability of your code.

45LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Understanding variable scope

The scope of a variable is the area of your code where the variable can be accessed by a lexical reference. A global

variable is one that is defined in all areas of your code, whereas a local variable is one that is defined in only one part

of your code. In ActionScript 3.0, variables are always assigned the scope of the function or class in which they are

declared. A global variable is a variable that you define outside of any function or class definition. For example, the

following code creates a global variable strGlobal by declaring it outside of any function. The example shows that a

global variable is available both inside and outside the function definition.

 var strGlobal:String = "Global";
 function scopeTest()
 {
 trace(strGlobal); // Global
 }
 scopeTest();
 trace(strGlobal); // Global

You declare a local variable by declaring the variable inside a function definition. The smallest area of code for which

you can define a local variable is a function definition. A local variable declared within a function exists only in that

function. For example, if you declare a variable named str2 within a function named localScope(), that variable is

not available outside the function.

 function localScope()
 {
 var strLocal:String = "local";
 }
 localScope();
 trace(strLocal); // error because strLocal is not defined globally

If the variable name you use for your local variable is already declared as a global variable, the local definition hides (or

shadows) the global definition while the local variable is in scope. The global variable still exists outside of the function.

For example, the following code creates a global string variable named str1, and then creates a local variable of the

same name inside the scopeTest() function. The trace statement inside the function outputs the local value of the

variable, but the trace statement outside the function outputs the global value of the variable.

 var str1:String = "Global";
 function scopeTest ()
 {
 var str1:String = "Local";
 trace(str1); // Local
 }
 scopeTest();
 trace(str1); // Global

ActionScript variables, unlike variables in C++ and Java, do not have block-level scope. A block of code is any group

of statements between an opening curly bracket ({) and a closing curly bracket (}). In some programming languages,

such as C++ and Java, variables declared inside a block of code are not available outside that block of code. This

restriction of scope is called block-level scope, and does not exist in ActionScript. If you declare a variable inside a

block of code, that variable is available not only in that block of code, but also in any other parts of the function to

which the code block belongs. For example, the following function contains variables that are defined in various block

scopes. All the variables are available throughout the function.

46LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 function blockTest (testArray:Array)
 {
 var numElements:int = testArray.length;
 if (numElements > 0)
 {
 var elemStr:String = "Element #";
 for (var i:int = 0; i < numElements; i++)
 {
 var valueStr:String = i + ": " + testArray[i];
 trace(elemStr + valueStr);
 }
 trace(elemStr, valueStr, i); // all still defined
 }
 trace(elemStr, valueStr, i); // all defined if numElements > 0
 }

 blockTest(["Earth", "Moon", "Sun"]);

An interesting implication of the lack of block-level scope is that you can read or write to a variable before it is declared,

as long as it is declared before the function ends. This is because of a technique called hoisting, which means that the

compiler moves all variable declarations to the top of the function. For example, the following code compiles even

though the initial trace() function for the num variable happens before the num variable is declared:

 trace(num); // NaN
 var num:Number = 10;
 trace(num); // 10

The compiler will not, however, hoist any assignment statements. This explains why the initial trace() of num results

in NaN (not a number), which is the default value for variables of the Number data type. This means that you can assign

values to variables even before they are declared, as shown in the following example:

 num = 5;
 trace(num); // 5
 var num:Number = 10;
 trace(num); // 10

Default values

A default value is the value that a variable contains before you set its value. You initialize a variable when you set its

value for the first time. If you declare a variable, but do not set its value, that variable is uninitialized. The value of an

uninitialized variable depends on its data type. The following table describes the default values of variables, organized

by data type:

Data type Default value

Boolean false

int 0

Number NaN

Object null

String null

47LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

For variables of type Number, the default value is NaN (not a number), which is a special value defined by the IEEE-

754 standard to mean a value that does not represent a number.

If you declare a variable, but do not declare its data type, the default data type * applies, which actually means that the

variable is untyped. If you also do not initialize an untyped variable with a value, its default value is undefined.

For data types other than Boolean, Number, int, and uint, the default value of any uninitialized variable is null. This

applies to all the classes defined by ActionScript 3.0, as well as any custom classes that you create.

The value null is not a valid value for variables of type Boolean, Number, int, or uint. If you attempt to assign a value

of null to a such a variable, the value is converted to the default value for that data type. For variables of type Object,

you can assign a value of null. If you attempt to assign the value undefined to a variable of type Object, the value is

converted to null.

For variables of type Number, there is a special top-level function named isNaN() that returns the Boolean value true

if the variable is not a number, and false otherwise.

Data types

A data type defines a set of values. For example, the Boolean data type is the set of exactly two values: true and false.

In addition to the Boolean data type, ActionScript 3.0 defines several more commonly used data types, such as String,

Number, and Array. You can define your own data types by using classes or interfaces to define a custom set of values.

All values in ActionScript 3.0, whether they are primitive or complex, are objects.

A primitive value is a value that belongs to one of the following data types: Boolean, int, Number, String, and uint.

Working with primitive values is usually faster than working with complex values, because ActionScript stores

primitive values in a special way that makes memory and speed optimizations possible.

Note: For readers interested in the technical details, ActionScript stores primitive values internally as immutable objects.

The fact that they are stored as immutable objects means that passing by reference is effectively the same as passing by

value. This cuts down on memory usage and increases execution speed, because references are usually significantly

smaller than the values themselves.

A complex value is a value that is not a primitive value. Data types that define sets of complex values include Array,

Date, Error, Function, RegExp, XML, and XMLList.

Many programming languages distinguish between primitive values and their wrapper objects. Java, for example, has

an int primitive and the java.lang.Integer class that wraps it. Java primitives are not objects, but their wrappers are,

which makes primitives useful for some operations, and wrapper objects better suited for other operations. In

ActionScript 3.0, primitive values and their wrapper objects are, for practical purposes, indistinguishable. All values,

even primitive values, are objects. The runtime treats these primitive types as special cases that behave like objects but

that don’t require the normal overhead associated with creating objects. This means that the following two lines of

code are equivalent:

 var someInt:int = 3;
 var someInt:int = new int(3);

uint 0

Not declared (equivalent to type annotation *) undefined

All other classes, including user-defined classes. null

Data type Default value

48LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

All the primitive and complex data types listed above are defined by the ActionScript 3.0 core classes. The core classes

allow you to create objects using literal values instead of using the new operator. For example, you can create an array

using a literal value or the Array class constructor, as follows:

 var someArray:Array = [1, 2, 3]; // literal value
 var someArray:Array = new Array(1,2,3); // Array constructor

Type checking

Type checking can occur at either compile time or run time. Statically typed languages, such as C++ and Java, do type

checking at compile time. Dynamically typed languages, such as Smalltalk and Python, handle type checking at run

time. As a dynamically typed language, ActionScript 3.0 has run-time type checking, but also supports compile-time

type checking with a special compiler mode called strict mode. In strict mode, type checking occurs at both compile

time and run time, but in standard mode, type checking occurs only at run time.

Dynamically typed languages offer tremendous flexibility when you structure your code, but at the cost of allowing

type errors to manifest at run time. Statically typed languages report type errors at compile time, but at the cost of

requiring that type information be known at compile time.

Compile-time type checking

Compile-time type checking is often favored in larger projects because as the size of a project grows, data type

flexibility usually becomes less important than catching type errors as early as possible. This is why, by default, the

ActionScript compiler in Flash Professional and Flash Builder is set to run in strict mode.

Adobe Flash Builder

You can disable strict mode in Flash Builder through the ActionScript compiler settings in the Project Properties

dialog box.

To provide compile-time type checking, the compiler needs to know the data type information for the variables or

expressions in your code. To explicitly declare a data type for a variable, add the colon operator (:) followed by the

data type as a suffix to the variable name. To associate a data type with a parameter, use the colon operator followed

by the data type. For example, the following code adds data type information to the xParam parameter, and declares a

variable myParam with an explicit data type:

 function runtimeTest(xParam:String)
 {
 trace(xParam);
 }
 var myParam:String = "hello";
 runtimeTest(myParam);

In strict mode, the ActionScript compiler reports type mismatches as compiler errors. For example, the following code

declares a function parameter xParam, of type Object, but later attempts to assign values of type String and Number to

that parameter. This produces a compiler error in strict mode.

49LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 function dynamicTest(xParam:Object)
 {
 if (xParam is String)
 {
 var myStr:String = xParam; // compiler error in strict mode
 trace("String: " + myStr);
 }
 else if (xParam is Number)
 {
 var myNum:Number = xParam; // compiler error in strict mode
 trace("Number: " + myNum);
 }
 }

Even in strict mode, however, you can selectively opt of out compile-time type checking by leaving the right side of an

assignment statement untyped. You can mark a variable or expression as untyped by either omitting a type annotation,

or using the special asterisk (*) type annotation. For example, if the xParam parameter in the previous example is

modified so that it no longer has a type annotation, the code compiles in strict mode:

 function dynamicTest(xParam)
 {
 if (xParam is String)
 {
 var myStr:String = xParam;
 trace("String: " + myStr);
 }
 else if (xParam is Number)
 {
 var myNum:Number = xParam;
 trace("Number: " + myNum);
 }
 }
 dynamicTest(100)
 dynamicTest("one hundred");

Run-time type checking

Run-time type checking occurs in ActionScript 3.0 whether you compile in strict mode or standard mode. Consider a

situation in which the value 3 is passed as an argument to a function that expects an array. In strict mode, the compiler

will generate an error, because the value 3 is not compatible with the data type Array. If you disable strict mode, and

run in standard mode, the compiler does not complain about the type mismatch, but run-time type checking results

in a run-time error.

The following example shows a function named typeTest() that expects an Array argument but is passed a value of

3. This causes a run-time error in standard mode, because the value 3 is not a member of the parameter’s declared data

type (Array).

 function typeTest(xParam:Array)
 {
 trace(xParam);
 }
 var myNum:Number = 3;
 typeTest(myNum);
 // run-time error in ActionScript 3.0 standard mode

50LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

There may also be situations where you get a run-time type error even when you are operating in strict mode. This is

possible if you use strict mode, but opt out of compile-time type checking by using an untyped variable. When you use

an untyped variable, you are not eliminating type checking but rather deferring it until run time. For example, if the

myNum variable in the previous example does not have a declared data type, the compiler cannot detect the type

mismatch, but the code will generate a run-time error because it compares the run-time value of myNum, which is set

to 3 as a result of the assignment statement, with the type of xParam, which is set to the Array data type.

 function typeTest(xParam:Array)
 {
 trace(xParam);
 }
 var myNum = 3;
 typeTest(myNum);
 // run-time error in ActionScript 3.0

Run-time type checking also allows more flexible use of inheritance than does compile-time checking. By deferring

type checking to run time, standard mode allows you to reference properties of a subclass even if you upcast. An upcast

occurs when you use a base class to declare the type of a class instance but use a subclass to instantiate it. For example,

you can create a class named ClassBase that can be extended (classes with the final attribute cannot be extended):

 class ClassBase
 {
 }

You can subsequently create a subclass of ClassBase named ClassExtender, which has one property named

someString, as follows:

 class ClassExtender extends ClassBase
 {
 var someString:String;
 }

Using both classes, you can create a class instance that is declared using the ClassBase data type, but instantiated using

the ClassExtender constructor. An upcast is considered a safe operation, because the base class does not contain any

properties or methods that are not in the subclass.

 var myClass:ClassBase = new ClassExtender();

A subclass, however, does contain properties or methods that its base class does not. For example, the ClassExtender

class contains the someString property, which does not exist in the ClassBase class. In ActionScript 3.0 standard

mode, you can reference this property using the myClass instance without generating a compile-time error, as shown

in the following example:

 var myClass:ClassBase = new ClassExtender();
 myClass.someString = "hello";
 // no error in ActionScript 3.0 standard mode

The is operator

The is operator allows you to test whether a variable or expression is a member of a given data type. In previous

versions of ActionScript, the instanceof operator provided this functionality, but in ActionScript 3.0 the

instanceof operator should not be used to test for data type membership. The is operator should be used instead of

the instanceof operator for manual type checking, because the expression x instanceof y merely checks the

prototype chain of x for the existence of y (and in ActionScript 3.0, the prototype chain does not provide a complete

picture of the inheritance hierarchy).

51LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

The is operator examines the proper inheritance hierarchy and can be used to check not only whether an object is an

instance of a particular class, but also whether an object is an instance of a class that implements a particular interface.

The following example creates an instance of the Sprite class named mySprite and uses the is operator to test whether

mySprite is an instance of the Sprite and DisplayObject classes, and whether it implements the IEventDispatcher

interface:

 var mySprite:Sprite = new Sprite();
 trace(mySprite is Sprite); // true
 trace(mySprite is DisplayObject);// true
 trace(mySprite is IEventDispatcher); // true

The is operator checks the inheritance hierarchy and properly reports that mySprite is compatible with the Sprite

and DisplayObject classes (the Sprite class is a subclass of the DisplayObject class). The is operator also checks

whether mySprite inherits from any classes that implement the IEventDispatcher interface. Because the Sprite class

inherits from the EventDispatcher class, which implements the IEventDispatcher interface, the is operator correctly

reports that mySprite implements the same interface.

The following example shows the same tests from the previous example, but with instanceof instead of the is

operator. The instanceof operator correctly identifies that mySprite is an instance of Sprite or DisplayObject, but it

returns false when used to test whether mySprite implements the IEventDispatcher interface.

 trace(mySprite instanceof Sprite); // true
 trace(mySprite instanceof DisplayObject);// true
 trace(mySprite instanceof IEventDispatcher); // false

The as operator

The as operator also allows you to check whether an expression is a member of a given data type. Unlike the is

operator, however, the as operator does not return a Boolean value. Rather, the as operator returns the value of the

expression instead of true, and null instead of false. The following example shows the results of using the as

operator instead of the is operator in the simple case of checking whether a Sprite instance is a member of the

DisplayObject, IEventDispatcher, and Number data types.

 var mySprite:Sprite = new Sprite();
 trace(mySprite as Sprite); // [object Sprite]
 trace(mySprite as DisplayObject); // [object Sprite]
 trace(mySprite as IEventDispatcher); // [object Sprite]
 trace(mySprite as Number); // null

When you use the as operator, the operand on the right must be a data type. An attempt to use an expression other

than a data type as the operand on the right will result in an error.

Dynamic classes

A dynamic class defines an object that can be altered at run time by adding or changing properties and methods. A

class that is not dynamic, such as the String class, is a sealed class. You cannot add properties or methods to a sealed

class at run time.

You create dynamic classes by using the dynamic attribute when you declare a class. For example, the following code

creates a dynamic class named Protean:

52LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 dynamic class Protean
 {
 private var privateGreeting:String = "hi";
 public var publicGreeting:String = "hello";
 function Protean()
 {
 trace("Protean instance created");
 }
 }

If you later instantiate an instance of the Protean class, you can add properties or methods to it outside the class

definition. For example, the following code creates an instance of the Protean class and adds a property named

aString and a property named aNumber to the instance:

 var myProtean:Protean = new Protean();
 myProtean.aString = "testing";
 myProtean.aNumber = 3;
 trace(myProtean.aString, myProtean.aNumber); // testing 3

Properties that you add to an instance of a dynamic class are run-time entities, so any type checking is done at run

time. You cannot add a type annotation to a property that you add in this manner.

You can also add a method to the myProtean instance by defining a function and attaching the function to a property

of the myProtean instance. The following code moves the trace statement into a method named traceProtean():

 var myProtean:Protean = new Protean();
 myProtean.aString = "testing";
 myProtean.aNumber = 3;
 myProtean.traceProtean = function ()
 {
 trace(this.aString, this.aNumber);
 };
 myProtean.traceProtean(); // testing 3

Methods created in this way, however, do not have access to any private properties or methods of the Protean class.

Moreover, even references to public properties or methods of the Protean class must be qualified with either the this

keyword or the class name. The following example shows the traceProtean() method attempting to access the

private and public variables of the Protean class.

 myProtean.traceProtean = function ()
 {
 trace(myProtean.privateGreeting); // undefined
 trace(myProtean.publicGreeting); // hello
 };
 myProtean.traceProtean();

Data type descriptions

The primitive data types include Boolean, int, Null, Number, String, uint, and void. The ActionScript core classes also

define the following complex data types: Object, Array, Date, Error, Function, RegExp, XML, and XMLList.

Boolean data type

The Boolean data type includes two values: true and false. No other values are valid for variables of Boolean type.

The default value of a Boolean variable that has been declared but not initialized is false.

53LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

int data type

The int data type is stored internally as a 32-bit integer and includes the set of integers from

-2,147,483,648 (-231) to 2,147,483,647 (231 - 1), inclusive. Previous versions of ActionScript offered only the Number

data type, which was used for both integers and floating-point numbers. In ActionScript 3.0, you now have access to

low-level machine types for 32-bit signed and unsigned integers. If your variable does not need floating-point

numbers, using the int data type instead of the Number data type is faster and more efficient.

For integer values outside the range of the minimum and maximum int values, use the Number data type, which can

handle values between positive and negative 9,007,199,254,740,992 (53-bit integer values). The default value for

variables that are of the data type int is 0.

Null data type

The Null data type contains only one value, null. This is the default value for the String data type and all classes that

define complex data types, including the Object class. None of the other primitive data types, such as Boolean,

Number, int, and uint, contain the value null. At run time, the value null is converted to the appropriate default value

if you attempt to assign null to variables of type Boolean, Number, int, or uint. You cannot use this data type as a type

annotation.

Number data type

In ActionScript 3.0, the Number data type can represent integers, unsigned integers, and floating-point numbers.

However, to maximize performance, you should use the Number data type only for integer values larger than the 32-

bit int and uint types can store or for floating-point numbers. To store a floating-point number, include a decimal

point in the number. If you omit a decimal point, the number is stored as an integer.

The Number data type uses the 64-bit double-precision format as specified by the IEEE Standard for Binary Floating-

Point Arithmetic (IEEE-754). This standard dictates how floating-point numbers are stored using the 64 available bits.

One bit is used to designate whether the number is positive or negative. Eleven bits are used for the exponent, which

is stored as base 2. The remaining 52 bits are used to store the significand (also called the mantissa), which is the

number that is raised to the power indicated by the exponent.

By using some of its bits to store an exponent, the Number data type can store floating-point numbers significantly

larger than if it used all of its bits for the significand. For example, if the Number data type used all 64 bits to store the

significand, it could store a number as large as 265 - 1. By using 11 bits to store an exponent, the Number data type can

raise its significand to a power of 21023.

The maximum and minimum values that the Number type can represent are stored in static properties of the Number

class called Number.MAX_VALUE and Number.MIN_VALUE.

 Number.MAX_VALUE == 1.79769313486231e+308
 Number.MIN_VALUE == 4.940656458412467e-324

Although this range of numbers is enormous, the cost of this range is precision. The Number data type uses 52 bits to

store the significand, with the result that numbers that require more than 52 bits to represent precisely, such as the

fraction 1/3, are only approximations. If your application requires absolute precision with decimal numbers, you need

to use software that implements decimal floating-point arithmetic as opposed to binary floating-point arithmetic.

When you store integer values with the Number data type, only the 52 bits of the significand are used. The Number

data type uses these 52 bits and a special hidden bit to represent integers from -9,007,199,254,740,992 (-253) to

9,007,199,254,740,992 (253).

The NaN value is not only used as the default value for variables of type Number, but also as the result of any operation

that should return a number but does not. For example, if you attempt to calculate the square root of a negative

number, the result is NaN. Other special Number values include positive infinity and negative infinity.

54LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Note: The result of division by 0 is only NaN if the divisor is also 0. Division by 0 produces infinity when the dividend

is positive or -infinity when the dividend is negative.

String data type

The String data type represents a sequence of 16-bit characters. Strings are stored internally as Unicode characters,

using the UTF-16 format. Strings are immutable values, just as they are in the Java programming language. An

operation on a String value returns a new instance of the string. The default value for a variable declared with the String

data type is null. The value null is not the same as the empty string (""). The value null means that the variable has

no value stored in it, while the empty string means that the variable has a value that is a String containing no characters.

uint data type

The uint data type is stored internally as a 32-bit unsigned integer and includes the set of integers from 0 to

4,294,967,295 (232 - 1), inclusive. Use the uint data type for special circumstances that call for non-negative integers. For

example, you must use the uint data type to represent pixel color values, because the int data type has an internal sign

bit that is not appropriate for handling color values. For integer values larger than the maximum uint value, use the

Number data type, which can handle 53-bit integer values. The default value for variables that are of data type uint is 0.

void data type

The void data type contains only one value, undefined. In previous versions of ActionScript, undefined was the

default value for instances of the Object class. In ActionScript 3.0, the default value for Object instances is null. If you

attempt to assign the value undefined to an instance of the Object class, the value is converted to null. You can only

assign a value of undefined to variables that are untyped. Untyped variables are variables that either lack any type

annotation, or use the asterisk (*) symbol for type annotation. You can use void only as a return type annotation.

Object data type

The Object data type is defined by the Object class. The Object class serves as the base class for all class definitions in

ActionScript. The ActionScript 3.0 version of the Object data type differs from that of previous versions in three ways.

First, the Object data type is no longer the default data type assigned to variables with no type annotation. Second, the

Object data type no longer includes the value undefined, which used to be the default value of Object instances. Third,

in ActionScript 3.0, the default value for instances of the Object class is null.

In previous versions of ActionScript, a variable with no type annotation was automatically assigned the Object data

type. This is no longer true in ActionScript 3.0, which now includes the idea of a truly untyped variable. Variables with

no type annotation are now considered untyped. If you prefer to make it clear to readers of your code that your

intention is to leave a variable untyped, you can use the asterisk (*) symbol for the type annotation, which is equivalent

to omitting a type annotation. The following example shows two equivalent statements, both of which declare an

untyped variable x:

 var x
 var x:*

Only untyped variables can hold the value undefined. If you attempt to assign the value undefined to a variable that

has a data type, the runtime converts the value undefined to the default value of that data type. For instances of the

Object data type, the default value is null, which means that if you attempt to assign undefined to an Object instance

the value is converted to null.

55LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Type conversions

A type conversion is said to occur when a value is transformed into a value of a different data type. Type conversions

can be either implicit or explicit. Implicit conversion, which is also called coercion, is sometimes performed at run time.

For example, if the value 2 is assigned to a variable of the Boolean data type, the value 2 is converted to the Boolean

value true before assigning the value to the variable. Explicit conversion, which is also called casting, occurs when your

code instructs the compiler to treat a variable of one data type as if it belongs to a different data type. When primitive

values are involved, casting actually converts values from one data type to another. To cast an object to a different type,

you wrap the object name in parentheses and precede it with the name of the new type. For example, the following

code takes a Boolean value and casts it to an integer:

 var myBoolean:Boolean = true;
 var myINT:int = int(myBoolean);
 trace(myINT); // 1

Implicit conversions

Implicit conversions happen at run time in a number of contexts:

• In assignment statements

• When values are passed as function arguments

• When values are returned from functions

• In expressions using certain operators, such as the addition (+) operator

For user-defined types, implicit conversions succeed when the value to be converted is an instance of the

destination class or a class that derives from the destination class. If an implicit conversion is unsuccessful, an error

occurs. For example, the following code contains a successful implicit conversion and an unsuccessful implicit

conversion:

 class A {}
 class B extends A {}

 var objA:A = new A();
 var objB:B = new B();
 var arr:Array = new Array();

 objA = objB; // Conversion succeeds.
 objB = arr; // Conversion fails.

For primitive types, implicit conversions are handled by calling the same internal conversion algorithms that are

called by the explicit conversion functions.

Explicit conversions

It’s helpful to use explicit conversions, or casting, when you compile in strict mode, because there may be times when

you do not want a type mismatch to generate a compile-time error. This may be the case when you know that coercion

will convert your values correctly at run time. For example, when working with data received from a form, you may

want to rely on coercion to convert certain string values to numeric values. The following code generates a compile-

time error even though the code would run correctly in standard mode:

 var quantityField:String = "3";
 var quantity:int = quantityField; // compile time error in strict mode

If you want to continue using strict mode, but would like the string converted to an integer, you can use explicit

conversion, as follows:

56LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 var quantityField:String = "3";
 var quantity:int = int(quantityField); // Explicit conversion succeeds.

Casting to int, uint, and Number

You can cast any data type into one of the three number types: int, uint, and Number. If the number can’t be converted

for some reason, the default value of 0 is assigned for the int and uint data types, and the default value of NaN is assigned

for the Number data type. If you convert a Boolean value to a number, true becomes the value 1 and false becomes

the value 0.

 var myBoolean:Boolean = true;
 var myUINT:uint = uint(myBoolean);
 var myINT:int = int(myBoolean);
 var myNum:Number = Number(myBoolean);
 trace(myUINT, myINT, myNum); // 1 1 1
 myBoolean = false;
 myUINT = uint(myBoolean);
 myINT = int(myBoolean);
 myNum = Number(myBoolean);
 trace(myUINT, myINT, myNum); // 0 0 0

String values that contain only digits can be successfully converted into one of the number types. The number types

can also convert strings that look like negative numbers or strings that represent a hexadecimal value (for example,

0x1A). The conversion process ignores leading and trailing white space characters in the string value. You can also cast

strings that look like floating-point numbers using Number(). The inclusion of a decimal point causes uint() and

int() to return an integer, truncating the decimal and the characters following it. For example, the following string

values can be cast into numbers:

 trace(uint("5")); // 5
 trace(uint("-5")); // 4294967291. It wraps around from MAX_VALUE
 trace(uint(" 27 ")); // 27
 trace(uint("3.7")); // 3
 trace(int("3.7")); // 3
 trace(int("0x1A")); // 26
 trace(Number("3.7")); // 3.7

String values that contain non-numeric characters return 0 when cast with int() or uint() and NaN when cast with

Number(). The conversion process ignores leading and trailing white space, but returns 0 or NaN if a string has white

space separating two numbers.

 trace(uint("5a")); // 0
 trace(uint("ten")); // 0
 trace(uint("17 63")); // 0

In ActionScript 3.0, the Number() function no longer supports octal, or base 8, numbers. If you supply a string with a

leading zero to the ActionScript 2.0 Number() function, the number is interpreted as an octal number, and converted

to its decimal equivalent. This is not true with the Number() function in ActionScript 3.0, which instead ignores the

leading zero. For example, the following code generates different output when compiled using different versions of

ActionScript:

 trace(Number("044"));
 // ActionScript 3.0 44
 // ActionScript 2.0 36

Casting is not necessary when a value of one numeric type is assigned to a variable of a different numeric type. Even

in strict mode, the numeric types are implicitly converted to the other numeric types. This means that in some cases,

unexpected values may result when the range of a type is exceeded. The following examples all compile in strict mode,

though some generate unexpected values:

57LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 var myUInt:uint = -3; // Assign int/Number value to uint variable
 trace(myUInt); // 4294967293

 var myNum:Number = sampleUINT; // Assign int/uint value to Number variable
 trace(myNum) // 4294967293

 var myInt:int = uint.MAX_VALUE + 1; // Assign Number value to uint variable
 trace(myInt); // 0

 myInt = int.MAX_VALUE + 1; // Assign uint/Number value to int variable
 trace(myInt); // -2147483648

The following table summarizes the results of casting to the Number, int, or uint data type from other data types.

Casting to Boolean

Casting to Boolean from any of the numeric data types (uint, int, and Number) results in false if the numeric value

is 0, and true otherwise. For the Number data type, the value NaN also results in false. The following example shows

the results of casting the numbers -1, 0, and 1:

 var myNum:Number;
 for (myNum = -1; myNum<2; myNum++)
 {
 trace("Boolean(" + myNum +") is " + Boolean(myNum));
 }

The output from the example shows that, of the three numbers, only 0 returns a value of false:

 Boolean(-1) is true
 Boolean(0) is false
 Boolean(1) is true

Casting to Boolean from a String value returns false if the string is either null or an empty string (""). Otherwise, it

returns true.

 var str1:String; // Uninitialized string is null.
 trace(Boolean(str1)); // false

 var str2:String = ""; // empty string
 trace(Boolean(str2)); // false

 var str3:String = " "; // white space only
 trace(Boolean(str3)); // true

Casting to Boolean from an instance of the Object class returns false if the instance is null; otherwise, it returns true:

Data type or value Result of conversion to Number, int, or uint

Boolean If the value is true, 1; otherwise, 0.

Date The internal representation of the Date object, which is the number of milliseconds since midnight January 1,

1970, universal time.

null 0

Object If the instance is null and converted to Number, NaN; otherwise, 0.

String A number if the string can be converted to a number; otherwise, NaN if converted to Number, or 0 if converted

to int or uint.

undefined If converted to Number, NaN; if converted to int or uint, 0.

58LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 var myObj:Object; // Uninitialized object is null.
 trace(Boolean(myObj)); // false

 myObj = new Object(); // instantiate
 trace(Boolean(myObj)); // true

Boolean variables get special treatment in strict mode in that you can assign values of any data type to a Boolean

variable without casting. Implicit coercion from all data types to the Boolean data type occurs even in strict mode. In

other words, unlike almost all other data types, casting to Boolean is not necessary to avoid strict mode errors. The

following examples all compile in strict mode and behave as expected at run time:

 var myObj:Object = new Object(); // instantiate
 var bool:Boolean = myObj;
 trace(bool); // true
 bool = "random string";
 trace(bool); // true
 bool = new Array();
 trace(bool); // true
 bool = NaN;
 trace(bool); // false

The following table summarizes the results of casting to the Boolean data type from other data types:

Casting to String

Casting to the String data type from any of the numeric data types returns a string representation of the number.

Casting to the String data type from a Boolean value returns the string "true" if the value is true, and returns the

string "false" if the value is false.

Casting to the String data type from an instance of the Object class returns the string "null" if the instance is null.

Otherwise, casting to the String type from the Object class returns the string "[object Object]" .

Casting to String from an instance of the Array class returns a string made up of a comma-delimited list of all the array

elements. For example, the following cast to the String data type returns one string containing all three elements of the

array:

 var myArray:Array = ["primary", "secondary", "tertiary"];
 trace(String(myArray)); // primary,secondary,tertiary

Casting to String from an instance of the Date class returns a string representation of the date that the instance

contains. For example, the following example returns a string representation of the Date class instance (the output

shows result for Pacific Daylight Time):

 var myDate:Date = new Date(2005,6,1);
 trace(String(myDate)); // Fri Jul 1 00:00:00 GMT-0700 2005

The following table summarizes the results of casting to the String data type from other data types.

Data type or value Result of conversion to Boolean

String false if the value is null or the empty string (""); true otherwise.

null false

Number, int, or uint false if the value is NaN or 0; true otherwise.

Object false if the instance is null; true otherwise.

59LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Syntax

The syntax of a language defines a set of rules that must be followed when writing executable code.

Case sensitivity

ActionScript 3.0 is a case-sensitive language. Identifiers that differ only in case are considered different identifiers. For

example, the following code creates two different variables:

 var num1:int;
 var Num1:int;

Dot syntax

The dot operator (.) provides a way to access the properties and methods of an object. Using dot syntax, you can refer

to a class property or method by using an instance name, followed by the dot operator and name of the property or

method. For example, consider the following class definition:

 class DotExample
 {
 public var prop1:String;
 public function method1():void {}
 }

Using dot syntax, you can access the prop1 property and the method1() method by using the instance name created

in the following code:

 var myDotEx:DotExample = new DotExample();
 myDotEx.prop1 = "hello";
 myDotEx.method1();

You can use dot syntax when you define packages. You use the dot operator to refer to nested packages. For example,

the EventDispatcher class resides in a package named events that is nested within the package named flash. You can

refer to the events package using the following expression:

 flash.events

You can also refer to the EventDispatcher class using this expression:

 flash.events.EventDispatcher

Data type or value Result of conversion to string

Array A string made up of all array elements.

Boolean "true" or "false"

Date A string representation of the Date object.

null "null"

Number, int, or uint A string representation of the number.

Object If the instance is null, "null"; otherwise, "[object Object]".

60LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Slash syntax

Slash syntax is not supported in ActionScript 3.0. Slash syntax was used in earlier versions of ActionScript to indicate

the path of a movie clip or variable.

Literals

A literal is a value that appears directly in your code. The following examples are all literals:

 17
 "hello"
 -3
 9.4
 null
 undefined
 true
 false

Literals can also be grouped to form compound literals. Array literals are enclosed in bracket characters ([]) and use

the comma to separate array elements.

An array literal can be used to initialize an array. The following examples show two arrays that are initialized using

array literals. You can use the new statement and pass the compound literal as a parameter to the Array class

constructor, but you can also assign literal values directly when instantiating instances of the following ActionScript

core classes: Object, Array, String, Number, int, uint, XML, XMLList, and Boolean.

 // Use new statement.
 var myStrings:Array = new Array(["alpha", "beta", "gamma"]);
 var myNums:Array = new Array([1,2,3,5,8]);

 // Assign literal directly.
 var myStrings:Array = ["alpha", "beta", "gamma"];
 var myNums:Array = [1,2,3,5,8];

Literals can also be used to initialize a generic object. A generic object is an instance of the Object class. Object literals

are enclosed in curly brackets ({}) and use the comma to separate object properties. Each property is declared with the

colon character (:), which separates the name of the property from the value of the property.

You can create a generic object using the new statement, and pass the object literal as a parameter to the Object class

constructor, or you can assign the object literal directly to the instance you are declaring. The following example

demonstrates two alternative ways to create a new generic object and initialize the object with three properties (propA,

propB, and propC), each with values set to 1, 2, and 3, respectively:

 // Use new statement and add properties.
 var myObject:Object = new Object();
 myObject.propA = 1;
 myObject.propB = 2;
 myObject.propC = 3;

 // Assign literal directly.
 var myObject:Object = {propA:1, propB:2, propC:3};

61LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

More Help topics

Working with strings

Using regular expressions

Initializing XML variables

Semicolons

You can use the semicolon character (;) to terminate a statement. Alternatively, if you omit the semicolon character,

the compiler assumes that each line of code represents a single statement. Because many programmers are accustomed

to using the semicolon to denote the end of a statement, your code may be easier to read if you consistently use

semicolons to terminate your statements.

Using a semicolon to terminate a statement allows you to place more than one statement on a single line, but this may

make your code more difficult to read.

Parentheses

You can use parentheses (()) in three ways in ActionScript 3.0. First, you can use parentheses to change the order of

operations in an expression. Operations that are grouped inside parentheses are always executed first. For example,

parentheses are used to alter the order of operations in the following code:

 trace(2 + 3 * 4); // 14
 trace((2 + 3) * 4); // 20

Second, you can use parentheses with the comma operator (,) to evaluate a series of expressions and return the result

of the final expression, as shown in the following example:

 var a:int = 2;
 var b:int = 3;
 trace((a++, b++, a+b)); // 7

Third, you can use parentheses to pass one or more parameters to functions or methods, as shown in the following

example, which passes a String value to the trace() function:

 trace("hello"); // hello

Comments

ActionScript 3.0 code supports two types of comments: single-line comments and multiline comments. These

commenting mechanisms are similar to the commenting mechanisms in C++ and Java. The compiler ignores text that

is marked as a comment.

Single-line comments begin with two forward slash characters (//) and continue until the end of the line. For example,

the following code contains a single-line comment:

 var someNumber:Number = 3; // a single line comment

Multiline comments begin with a forward slash and asterisk (/*) and end with an asterisk and forward slash (*/).

 /* This is multiline comment that can span
 more than one line of code. */

http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b8d6e8-7ff2.html
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7fdb.html
http://help.adobe.com/en_US/as3/dev/WS5b3ccc516d4fbf351e63e3d118a9b90204-7f95.html

62LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Keywords and reserved words

Reserved words are words that you cannot use as identifiers in your code because the words are reserved for use by

ActionScript. Reserved words include lexical keywords, which are removed from the program namespace by the

compiler. The compiler reports an error if you use a lexical keyword as an identifier. The following table lists

ActionScript 3.0 lexical keywords.

There is a small set of keywords, called syntactic keywords, that can be used as identifiers, but that have special meaning

in certain contexts. The following table lists ActionScript 3.0 syntactic keywords.

There are also several identifiers that are sometimes referred to as future reserved words. These identifiers are not

reserved by ActionScript 3.0, though some of them may be treated as keywords by software that incorporates

ActionScript 3.0. You might be able to use many of these identifiers in your code, but Adobe recommends that you do

not use them because they may appear as keywords in a subsequent version of the language.

as break case catch

class const continue default

delete do else extends

false finally for function

if implements import in

instanceof interface internal is

native new null package

private protected public return

super switch this throw

to true try typeof

use var void while

with

each get set namespace

include dynamic final native

override static

abstract boolean byte cast

char debugger double enum

export float goto intrinsic

long prototype short synchronized

throws to transient type

virtual volatile

63LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Constants

ActionScript 3.0 supports the const statement, which you can use to create constants. Constants are properties with

a fixed value that cannot be altered. You can assign a value to a constant only once, and the assignment must occur in

close proximity to the declaration of the constant. For example, if a constant is declared as a member of a class, you

can assign a value to that constant only as part of the declaration or inside the class constructor.

The following code declares two constants. The first constant, MINIMUM, has a value assigned as part of the declaration

statement. The second constant, MAXIMUM, has a value assigned in the constructor. Note that this example only

compiles in standard mode because strict mode only allows a constant’s value to be assigned at initialization time.

 class A
 {
 public const MINIMUM:int = 0;
 public const MAXIMUM:int;

 public function A()
 {
 MAXIMUM = 10;
 }
 }

 var a:A = new A();
 trace(a.MINIMUM); // 0
 trace(a.MAXIMUM); // 10

An error results if you attempt to assign an initial value to a constant in any other way. For example, if you attempt to

set the initial value of MAXIMUM outside the class, a run-time error occurs.

 class A
 {
 public const MINIMUM:int = 0;
 public const MAXIMUM:int;
 }

 var a:A = new A();
 a["MAXIMUM"] = 10; // run-time error

ActionScript 3.0 defines a wide range of constants for your use. By convention, constants in ActionScript use all capital

letters, with words separated by the underscore character (_). For example, the MouseEvent class definition uses this

naming convention for its constants, each of which represents an event related to mouse input:

 package flash.events
 {
 public class MouseEvent extends Event
 {
 public static const CLICK:String = "click";
 public static const DOUBLE_CLICK:String = "doubleClick";
 public static const MOUSE_DOWN:String = "mouseDown";
 public static const MOUSE_MOVE:String = "mouseMove";
 ...
 }
 }

64LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Operators

Operators are special functions that take one or more operands and return a value. An operand is a value—usually a

literal, a variable, or an expression—that an operator uses as input. For example, in the following code, the addition

(+) and multiplication (*) operators are used with three literal operands (2, 3, and 4) to return a value. This value is

then used by the assignment (=) operator to assign the returned value, 14, to the variable sumNumber.

 var sumNumber:uint = 2 + 3 * 4; // uint = 14

Operators can be unary, binary, or ternary. A unary operator takes one operand. For example, the increment (++)

operator is a unary operator, because it takes only one operand. A binary operator takes two operands. For example,

the division (/) operator takes two operands. A ternary operator takes three operands. For example, the conditional

(?:) operator takes three operands.

Some operators are overloaded, which means that they behave differently depending on the type or quantity of

operands passed to them. The addition (+) operator is an example of an overloaded operator that behaves differently

depending on the data type of the operands. If both operands are numbers, the addition operator returns the sum of

the values. If both operands are strings, the addition operator returns the concatenation of the two operands. The

following example code shows how the operator behaves differently depending on the operands:

 trace(5 + 5); // 10
 trace("5" + "5"); // 55

Operators can also behave differently based on the number of operands supplied. The subtraction (-) operator is both

a unary and binary operator. When supplied with only one operand, the subtraction operator negates the operand and

returns the result. When supplied with two operands, the subtraction operator returns the difference between the

operands. The following example shows the subtraction operator used first as a unary operator, and then as a binary

operator.

 trace(-3); // -3
 trace(7 - 2); // 5

Operator precedence and associativity

Operator precedence and associativity determine the order in which operators are processed. Although it may seem

natural to those familiar with arithmetic that the compiler processes the multiplication (*) operator before the addition

(+) operator, the compiler needs explicit instructions about which operators to process first. Such instructions are

collectively referred to as operator precedence. ActionScript defines a default operator precedence that you can alter

using the parentheses (()) operator. For example, the following code alters the default precedence in the previous

example to force the compiler to process the addition operator before the multiplication operator:

 var sumNumber:uint = (2 + 3) * 4; // uint == 20

You may encounter situations in which two or more operators of the same precedence appear in the same expression.

In these cases, the compiler uses the rules of associativity to determine which operator to process first. All of the binary

operators, except the assignment operators, are left-associative, which means that operators on the left are processed

before operators on the right. The assignment operators and the conditional (?:) operator are right-associative, which

means that the operators on the right are processed before operators on the left.

For example, consider the less-than (<) and greater-than (>) operators, which have the same precedence. If both

operators are used in the same expression, the operator on the left is processed first because both operators are left-

associative. This means that the following two statements produce the same output:

 trace(3 > 2 < 1); // false
 trace((3 > 2) < 1); // false

65LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

The greater-than operator is processed first, which results in a value of true, because the operand 3 is greater than the

operand 2. The value true is then passed to the less-than operator along with the operand 1. The following code

represents this intermediate state:

 trace((true) < 1);

The less-than operator converts the value true to the numeric value 1 and compares that numeric value to the second

operand 1 to return the value false (the value 1 is not less than 1).

 trace(1 < 1); // false

You can alter the default left associativity with the parentheses operator. You can instruct the compiler to process the

less-than operator first by enclosing that operator and its operands in parentheses. The following example uses the

parentheses operator to produce a different output using the same numbers as the previous example:

 trace(3 > (2 < 1)); // true

The less-than operator is processed first, which results in a value of false because the operand 2 is not less than the

operand 1. The value false is then passed to the greater-than operator along with the operand 3. The following code

represents this intermediate state:

 trace(3 > (false));

The greater-than operator converts the value false to the numeric value 0 and compares that numeric value to the

other operand 3 to return true (the value 3 is greater than 0).

 trace(3 > 0); // true

The following table lists the operators for ActionScript 3.0 in order of decreasing precedence. Each row of the table

contains operators of the same precedence. Each row of operators has higher precedence than the row appearing below

it in the table.

Group Operators

Primary [] {x:y} () f(x) new x.y x[y] <></> @ :: ..

Postfix x++ x--

Unary ++x --x + - ~ ! delete typeof void

Multiplicative * / %

Additive + -

Bitwise shift << >> >>>

Relational < > <= >= as in instanceof is

Equality == != === !==

Bitwise AND &

Bitwise XOR ^

Bitwise OR |

Logical AND &&

Logical OR ||

Conditional ?:

Assignment = *= /= %= += -= <<= >>= >>>= &= ^= |=

Comma ,

66LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Primary operators

The primary operators include those used for creating Array and Object literals, grouping expressions, calling

functions, instantiating class instances, and accessing properties.

All the primary operators, as listed in the following table, have equal precedence. Operators that are part of the E4X

specification are indicated by the (E4X) notation.

Postfix operators

The postfix operators take one operator and either increment or decrement the value. Although these operators are

unary operators, they are classified separately from the rest of the unary operators because of their higher precedence

and special behavior. When a postfix operator is used as part of a larger expression, the expression’s value is returned

before the postfix operator is processed. For example, the following code shows how the value of the expression

xNum++ is returned before the value is incremented:

 var xNum:Number = 0;
 trace(xNum++); // 0
 trace(xNum); // 1

All the postfix operators, as listed in the following table, have equal precedence:

Unary operators

The unary operators take one operand. The increment (++) and decrement (--) operators in this group are

prefixoperators, which means that they appear before the operand in an expression. The prefix operators differ from

their postfix counterparts in that the increment or decrement operation is completed before the value of the overall

expression is returned. For example, the following code shows how the value of the expression ++xNum is returned after

the value is incremented:

Operator Operation performed

[] Initializes an array

{x:y} Initializes an object

() Groups expressions

f(x) Calls a function

new Calls a constructor

x.y x[y] Accesses a property

<></> Initializes an XMLList object (E4X)

@ Accesses an attribute (E4X)

:: Qualifies a name (E4X)

.. Accesses a descendant XML element (E4X)

Operator Operation performed

++ Increments (postfix)

-- Decrements (postfix)

67LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 var xNum:Number = 0;
 trace(++xNum); // 1
 trace(xNum); // 1

All the unary operators, as listed in the following table, have equal precedence:

Multiplicative operators

The multiplicative operators take two operands and perform multiplication, division, or modulo calculations.

All the multiplicative operators, as listed in the following table, have equal precedence:

Additive operators

The additive operators take two operands and perform addition or subtraction calculations. All the additive operators,

as listed in the following table, have equal precedence:

Bitwise shift operators

The bitwise shift operators take two operands and shift the bits of the first operand to the extent specified by the second

operand. All the bitwise shift operators, as listed in the following table, have equal precedence:

Operator Operation performed

++ Increments (prefix)

-- Decrements (prefix)

+ Unary +

- Unary - (negation)

! Logical NOT

~ Bitwise NOT

delete Deletes a property

typeof Returns type information

void Returns undefined value

Operator Operation performed

* Multiplication

/ Division

% Modulo

Operator Operation performed

+ Addition

- Subtraction

68LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Relational operators

The relational operators take two operands, compare their values, and return a Boolean value. All the relational

operators, as listed in the following table, have equal precedence:

Equality operators

The equality operators take two operands, compare their values, and return a Boolean value. All the equality operators,

as listed in the following table, have equal precedence:

Bitwise logical operators

The bitwise logical operators take two operands and perform bit-level logical operations. The bitwise logical operators

differ in precedence and are listed in the following table in order of decreasing precedence:

Operator Operation performed

<< Bitwise left shift

>> Bitwise right shift

>>> Bitwise unsigned right shift

Operator Operation performed

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

as Checks data type

in Checks for object properties

instanceof Checks prototype chain

is Checks data type

Operator Operation performed

== Equality

!= Inequality

=== Strict equality

!== Strict inequality

Operator Operation performed

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

69LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Logical operators

The logical operators take two operands and return a Boolean result. The logical operators differ in precedence and

are listed in the following table in order of decreasing precedence:

Conditional operator

The conditional operator is a ternary operator, which means that it takes three operands. The conditional operator is

a shorthand method of applying the if..else conditional statement.

Assignment operators

The assignment operators take two operands and assign a value to one operand, based on the value of the other

operand. All the assignment operators, as listed in the following table, have equal precedence:

Conditionals

ActionScript 3.0 provides three basic conditional statements that you can use to control program flow.

Operator Operation performed

&& Logical AND

|| Logical OR

Operator Operation performed

?: Conditional

Operator Operation performed

= Assignment

*= Multiplication assignment

/= Division assignment

%= Modulo assignment

+= Addition assignment

-= Subtraction assignment

<<= Bitwise left shift assignment

>>= Bitwise right shift assignment

>>>= Bitwise unsigned right shift assignment

&= Bitwise AND assignment

^= Bitwise XOR assignment

|= Bitwise OR assignment

70LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

if..else

The if..else conditional statement allows you to test a condition and execute a block of code if that condition exists,

or execute an alternative block of code if the condition does not exist. For example, the following code tests whether the

value of x exceeds 20, generates a trace() function if it does, or generates a different trace() function if it does not:

 if (x > 20)
 {
 trace("x is > 20");
 }
 else
 {
 trace("x is <= 20");
 }

If you do not want to execute an alternative block of code, you can use the if statement without the else statement.

if..else if

You can test for more than one condition using the if..else if conditional statement. For example, the following

code not only tests whether the value of x exceeds 20, but also tests whether the value of x is negative:

 if (x > 20)
 {
 trace("x is > 20");
 }
 else if (x < 0)
 {
 trace("x is negative");
 }

If an if or else statement is followed by only one statement, the statement does not need to be enclosed in curly

brackets. For example, the following code does not use curly brackets:

 if (x > 0)
 trace("x is positive");
 else if (x < 0)
 trace("x is negative");
 else
 trace("x is 0");

However, Adobe recommends that you always use curly brackets, because unexpected behavior can occur if

statements are later added to a conditional statement that lacks curly brackets. For example, in the following code the

value of positiveNums increases by 1 whether or not the condition evaluates to true:

 var x:int;
 var positiveNums:int = 0;

 if (x > 0)
 trace("x is positive");
 positiveNums++;

 trace(positiveNums); // 1

71LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

switch

The switch statement is useful if you have several execution paths that depend on the same condition expression. It

provides functionality similar to a long series of if..else if statements, but is somewhat easier to read. Instead of

testing a condition for a Boolean value, the switch statement evaluates an expression and uses the result to determine

which block of code to execute. Blocks of code begin with a case statement and end with a break statement. For

example, the following switch statement prints the day of the week, based on the day number returned by the

Date.getDay() method:

 var someDate:Date = new Date();
 var dayNum:uint = someDate.getDay();
 switch(dayNum)
 {
 case 0:
 trace("Sunday");
 break;
 case 1:
 trace("Monday");
 break;
 case 2:
 trace("Tuesday");
 break;
 case 3:
 trace("Wednesday");
 break;
 case 4:
 trace("Thursday");
 break;
 case 5:
 trace("Friday");
 break;
 case 6:
 trace("Saturday");
 break;
 default:
 trace("Out of range");
 break;
 }

Looping

Looping statements allow you to perform a specific block of code repeatedly using a series of values or variables. Adobe

recommends that you always enclose the block of code in curly brackets ({}). Although you can omit the curly brackets

if the block of code contains only one statement, this practice is not recommended for the same reason that it is not

recommended for conditionals: it increases the likelihood that statements added later are inadvertently excluded from

the block of code. If you later add a statement that you want to include in the block of code, but forget to add the

necessary curly brackets, the statement are not executed as part of the loop.

72LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

for

The for loop allows you to iterate through a variable for a specific range of values. You must supply three expressions

in a for statement: a variable that is set to an initial value, a conditional statement that determines when the looping

ends, and an expression that changes the value of the variable with each loop. For example, the following code loops

five times. The value of the variable i starts at 0 and ends at 4, and the output is the numbers 0 through 4, each on its

own line.

 var i:int;
 for (i = 0; i < 5; i++)
 {
 trace(i);
 }

for..in

The for..in loop iterates through the properties of an object, or the elements of an array. For example, you can use

a for..in loop to iterate through the properties of a generic object (object properties are not kept in any particular

order, so properties may appear in a seemingly random order):

 var myObj:Object = {x:20, y:30};
 for (var i:String in myObj)
 {
 trace(i + ": " + myObj[i]);
 }
 // output:
 // x: 20
 // y: 30

You can also iterate through the elements of an array:

 var myArray:Array = ["one", "two", "three"];
 for (var i:String in myArray)
 {
 trace(myArray[i]);
 }
 // output:
 // one
 // two
 // three

What you cannot do is iterate through the properties of an object if it is an instance of a sealed class (including built-

in classes and user-defined classes). You can only iterate through the properties of a dynamic class. Even with instances

of dynamic classes, you can only iterate through properties that are added dynamically.

for each..in

The for each..in loop iterates through the items of a collection, which can be tags in an XML or XMLList object,

the values held by object properties, or the elements of an array. For example, as the following excerpt shows, you can

use a for each..in loop to iterate through the properties of a generic object, but unlike the for..in loop, the iterator

variable in a for each..in loop contains the value held by the property instead of the name of the property:

73LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 var myObj:Object = {x:20, y:30};
 for each (var num in myObj)
 {
 trace(num);
 }
 // output:
 // 20
 // 30

You can iterate through an XML or XMLList object, as the following example shows:

 var myXML:XML = <users>
 <fname>Jane</fname>
 <fname>Susan</fname>
 <fname>John</fname>
 </users>;

 for each (var item in myXML.fname)
 {
 trace(item);
 }
 /* output
 Jane
 Susan
 John
 */

You can also iterate through the elements of an array, as this example shows:

 var myArray:Array = ["one", "two", "three"];
 for each (var item in myArray)
 {
 trace(item);
 }
 // output:
 // one
 // two
 // three

You cannot iterate through the properties of an object if the object is an instance of a sealed class. Even for instances

of dynamic classes, you cannot iterate through any fixed properties, which are properties defined as part of the class

definition.

while

The while loop is like an if statement that repeats as long as the condition is true. For example, the following code

produces the same output as the for loop example:

 var i:int = 0;
 while (i < 5)
 {
 trace(i);
 i++;
 }

74LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

One disadvantage of using a while loop instead of a for loop is that infinite loops are easier to write with while loops.

The for loop example code does not compile if you omit the expression that increments the counter variable, but the

while loop example does compile if you omit that step. Without the expression that increments i, the loop becomes

an infinite loop.

do..while

The do..while loop is a while loop that guarantees that the code block is executed at least once, because the condition

is checked after the code block is executed. The following code shows a simple example of a do..while loop that

generates output even though the condition is not met:

 var i:int = 5;
 do
 {
 trace(i);
 i++;
 } while (i < 5);
 // output: 5

Functions

Functions are blocks of code that carry out specific tasks and can be reused in your program. There are two types of

functions in ActionScript 3.0: methods and function closures. Whether a function is a called a method or a function

closure depends on the context in which the function is defined. A function is called a method if you define it as part

of a class definition or attach it to an instance of an object. A function is called a function closure if it is defined in any

other way.

Functions have always been extremely important in ActionScript. In ActionScript 1.0, for example, the class keyword

did not exist, so “classes” were defined by constructor functions. Although the class keyword has since been added

to the language, a solid understanding of functions is still important if you want to take full advantage of what the

language has to offer. This can be a challenge for programmers who expect ActionScript functions to behave similarly

to functions in languages such as C++ or Java. Although basic function definition and invocation should not present

a challenge to experienced programmers, some of the more advanced features of ActionScript functions require some

explanation.

Basic function concepts

Calling functions

You call a function by using its identifier followed by the parentheses operator (()). You use the parentheses operator

to enclose any function parameters you want to send to the function. For example, the trace() function is a top-level

function in ActionScript 3.0:

 trace("Use trace to help debug your script");

If you are calling a function with no parameters, you must use an empty pair of parentheses. For example, you can use

the Math.random() method, which takes no parameters, to generate a random number:

 var randomNum:Number = Math.random();

75LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Defining your own functions

There are two ways to define a function in ActionScript 3.0: you can use a function statement or a function expression.

The technique you choose depends on whether you prefer a more static or dynamic programming style. Define your

functions with function statements if you prefer static, or strict mode, programming. Define your functions with

function expressions if you have a specific need to do so. Function expressions are more often used in dynamic, or

standard mode, programming.

Function statements

Function statements are the preferred technique for defining functions in strict mode. A function statement begins

with the function keyword, followed by:

• The function name

• The parameters, in a comma-delimited list enclosed in parentheses

• The function body—that is, the ActionScript code to be executed when the function is called, enclosed in curly

brackets

For example, the following code creates a function that defines a parameter and then calls the function using the string

“ hello" as the parameter value:

 function traceParameter(aParam:String)
 {
 trace(aParam);
 }

 traceParameter("hello"); // hello

Function expressions

The second way to declare a function is to use an assignment statement with a function expression, which is also

sometimes called a function literal or an anonymous function. This is a more verbose method that is widely used in

earlier versions of ActionScript.

An assignment statement with a function expression begins with the var keyword, followed by:

• The function name

• The colon operator (:)

• The Function class to indicate the data type

• The assignment operator (=)

• The function keyword

• The parameters, in a comma-delimited list enclosed in parentheses

• The function body—that is, the ActionScript code to be executed when the function is called, enclosed in curly

brackets

For example, the following code declares the traceParameter function using a function expression:

 var traceParameter:Function = function (aParam:String)
 {
 trace(aParam);
 };
 traceParameter("hello"); // hello

76LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Notice that you do not specify a function name, as you do in a function statement. Another important difference

between function expressions and function statements is that a function expression is an expression rather than a

statement. This means that a function expression cannot stand on its own as a function statement can. A function

expression can be used only as a part of a statement, usually an assignment statement. The following example shows

a function expression assigned to an array element:

 var traceArray:Array = new Array();
 traceArray[0] = function (aParam:String)
 {
 trace(aParam);
 };
 traceArray[0]("hello");

Choosing between statements and expressions

As a general rule, use a function statement unless specific circumstances call for the use of an expression. Function

statements are less verbose, and they provide a more consistent experience between strict mode and standard mode

than function expressions.

Function statements are easier to read than assignment statements that contain function expressions. Function

statements make your code more concise; they are less confusing than function expressions, which require you to use

both the var and function keywords.

Function statements provide a more consistent experience between the two compiler modes in that you can use dot

syntax in both strict and standard mode to call a method declared using a function statement. This is not necessarily

true for methods declared with a function expression. For example, the following code defines a class named Example

with two methods: methodExpression(), which is declared with a function expression, and methodStatement(),

which is declared with a function statement. In strict mode, you cannot use dot syntax to call the

methodExpression() method.

 class Example
 {
 var methodExpression = function() {}
 function methodStatement() {}
 }

 var myEx:Example = new Example();
 myEx.methodExpression(); // error in strict mode; okay in standard mode
 myEx.methodStatement(); // okay in strict and standard modes

Function expressions are considered better suited to programming that focuses on run-time, or dynamic, behavior. If

you prefer to use strict mode, but also need to call a method declared with a function expression, you can use either of

two techniques. First, you can call the method using square brackets ([]) instead of the dot (.) operator. The following

method call succeeds in both strict mode and standard mode:

 myExample["methodLiteral"]();

Second, you can declare the entire class as a dynamic class. Although this allows you to call the method using the dot

operator, the downside is that you sacrifice some strict mode functionality for all instances of that class. For example,

the compiler does not generate an error if you attempt to access an undefined property on an instance of a dynamic

class.

There are some circumstances in which function expressions are useful. One common use of function expressions is

for functions that are used only once and then discarded. Another less common use is for attaching a function to a

prototype property. For more information, see The prototype object.

77LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

There are two subtle differences between function statements and function expressions that you should take into

account when choosing which technique to use. The first difference is that function expressions do not exist

independently as objects with regard to memory management and garbage collection. In other words, when you assign

a function expression to another object, such as an array element or an object property, you create the only reference

to that function expression in your code. If the array or object to which your function expression is attached goes out

of scope or is otherwise no longer available, you no longer have access to the function expression. If the array or object

is deleted, the memory that the function expression uses becomes eligible for garbage collection, which means that the

memory is eligible to be reclaimed and reused for other purposes.

The following example shows that for a function expression, once the property to which the expression is assigned is

deleted, the function is no longer available. The class Test is dynamic, which means that you can add a property named

functionExp that holds a function expression. The functionExp() function can be called with the dot operator, but

once the functionExp property is deleted, the function is no longer accessible.

 dynamic class Test {}
 var myTest:Test = new Test();

 // function expression
 myTest.functionExp = function () { trace("Function expression") };
 myTest.functionExp(); // Function expression
 delete myTest.functionExp;
 myTest.functionExp(); // error

If, on the other hand, the function is first defined with a function statement, it exists as its own object and continues

to exist even after you delete the property to which it is attached. The delete operator only works on properties of

objects, so even a call to delete the function stateFunc() itself does not work.

 dynamic class Test {}
 var myTest:Test = new Test();

 // function statement
 function stateFunc() { trace("Function statement") }
 myTest.statement = stateFunc;
 myTest.statement(); // Function statement
 delete myTest.statement;
 delete stateFunc; // no effect
 stateFunc();// Function statement
 myTest.statement(); // error

The second difference between function statements and function expressions is that function statements exist

throughout the scope in which they are defined, including in statements that appear before the function statement.

Function expressions, by contrast, are defined only for subsequent statements. For example, the following code

successfully calls the scopeTest() function before it is defined:

 statementTest(); // statementTest

 function statementTest():void
 {
 trace("statementTest");
 }

Function expressions are not available before they are defined, so the following code results in a run-time error:

78LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 expressionTest(); // run-time error

 var expressionTest:Function = function ()
 {
 trace("expressionTest");
 }

Returning values from functions

To return a value from your function, use the return statement followed by the expression or literal value that you

want to return. For example, the following code returns an expression representing the parameter:

 function doubleNum(baseNum:int):int
 {
 return (baseNum * 2);
 }

Notice that the return statement terminates the function, so that any statements below a return statement are not

executed, as follows:

 function doubleNum(baseNum:int):int {
 return (baseNum * 2);
 trace("after return"); // This trace statement will not be executed.
 }

In strict mode, you must return a value of the appropriate type if you choose to specify a return type. For example, the

following code generates an error in strict mode, because it does not return a valid value:

 function doubleNum(baseNum:int):int
 {
 trace("after return");
 }

Nested functions

You can nest functions, which means that functions can be declared within other functions. A nested function is

available only within its parent function unless a reference to the function is passed to external code. For example, the

following code declares two nested functions inside the getNameAndVersion() function:

 function getNameAndVersion():String
 {
 function getVersion():String
 {
 return "10";
 }
 function getProductName():String
 {
 return "Flash Player";
 }
 return (getProductName() + " " + getVersion());
 }
 trace(getNameAndVersion()); // Flash Player 10

When nested functions are passed to external code, they are passed as function closures, which means that the function

retains any definitions that are in scope when the function is defined. For more information, see Function scope.

79LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Function parameters

ActionScript 3.0 provides some functionality for function parameters that may seem novel for programmers new to

the language. Although the idea of passing parameters by value or reference should be familiar to most programmers,

the arguments object and the ... (rest) parameter may be new to many of you.

Passing arguments by value or by reference

In many programming languages, it’s important to understand the distinction between passing arguments by value or

by reference; the distinction can affect the way code is designed.

To be passed by value means that the value of the argument is copied into a local variable for use within the function.

To be passed by reference means that only a reference to the argument is passed instead of the actual value. No copy

of the actual argument is made. Instead, a reference to the variable passed as an argument is created and assigned to a

local variable for use within the function. As a reference to a variable outside the function, the local variable gives you

the ability to change the value of the original variable.

In ActionScript 3.0, all arguments are passed by reference, because all values are stored as objects. However, objects

that belong to the primitive data types, which includes Boolean, Number, int, uint, and String, have special operators

that make them behave as if they were passed by value. For example, the following code creates a function named

passPrimitives() that defines two parameters named xParam and yParam, both of type int. These parameters are

similar to local variables declared inside the body of the passPrimitives() function. When the function is called with

the arguments xValue and yValue, the parameters xParam and yParam are initialized with references to the int objects

represented by xValue and yValue. Because the arguments are primitives, they behave as if passed by value. Although

xParam and yParam initially contain only references to the xValue and yValue objects, any changes to the variables

within the function body generate new copies of the values in memory.

 function passPrimitives(xParam:int, yParam:int):void
 {
 xParam++;
 yParam++;
 trace(xParam, yParam);
 }

 var xValue:int = 10;
 var yValue:int = 15;
 trace(xValue, yValue);// 10 15
 passPrimitives(xValue, yValue); // 11 16
 trace(xValue, yValue);// 10 15

Within the passPrimitives() function, the values of xParam and yParam are incremented, but this does not affect

the values of xValue and yValue, as shown in the last trace statement. This would be true even if the parameters

were named identically to the variables, xValue and yValue, because the xValue and yValue inside the function

would point to new locations in memory that exist separately from the variables of the same name outside the function.

All other objects—that is, objects that do not belong to the primitive data types—are always passed by reference, which

gives you ability to change the value of the original variable. For example, the following code creates an object named

objVar with two properties, x and y. The object is passed as an argument to the passByRef() function. Because the

object is not a primitive type, the object is not only passed by reference, but also stays a reference. This means that

changes made to the parameters within the function affect the object properties outside the function.

80LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 function passByRef(objParam:Object):void
 {
 objParam.x++;
 objParam.y++;
 trace(objParam.x, objParam.y);
 }
 var objVar:Object = {x:10, y:15};
 trace(objVar.x, objVar.y); // 10 15
 passByRef(objVar); // 11 16
 trace(objVar.x, objVar.y); // 11 16

The objParam parameter references the same object as the global objVar variable. As you can see from the trace

statements in the example, changes to the x and y properties of the objParam object are reflected in the objVar object.

Default parameter values

In ActionScript 3.0, you can declare default parameter values for a function. If a call to a function with default

parameter values omits a parameter with default values, the value specified in the function definition for that

parameter is used. All parameters with default values must be placed at the end of the parameter list. The values

assigned as default values must be compile-time constants. The existence of a default value for a parameter effectively

makes that parameter an optional parameter. A parameter without a default value is considered a required parameter.

For example, the following code creates a function with three parameters, two of which have default values. When the

function is called with only one parameter, the default values for the parameters are used.

 function defaultValues(x:int, y:int = 3, z:int = 5):void
 {
 trace(x, y, z);
 }
 defaultValues(1); // 1 3 5

The arguments object

When parameters are passed to a function, you can use the arguments object to access information about the

parameters passed to your function. Some important aspects of the arguments object include the following:

• The arguments object is an array that includes all the parameters passed to the function.

• The arguments.length property reports the number of parameters passed to the function.

• The arguments.callee property provides a reference to the function itself, which is useful for recursive calls to

function expressions.

Note: The arguments object is not available if any parameter is named arguments or if you use the ... (rest)

parameter.

If the arguments object is referenced in the body of a function, ActionScript 3.0 allows function calls to include

more parameters than those defined in the function definition, but generates a compiler error in strict mode if the

number of parameters doesn’t match the number of required parameters (and optionally, any optional

parameters). You can use the array aspect of the arguments object to access any parameter passed to the function,

whether or not that parameter is defined in the function definition. The following example, which only compiles in

standard mode, uses the arguments array along with the arguments.length property to trace all the parameters

passed to the traceArgArray() function:

81LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

 function traceArgArray(x:int):void
 {
 for (var i:uint = 0; i < arguments.length; i++)
 {
 trace(arguments[i]);
 }
 }

 traceArgArray(1, 2, 3);

 // output:
 // 1
 // 2
 // 3

The arguments.callee property is often used in anonymous functions to create recursion. You can use it to add

flexibility to your code. If the name of a recursive function changes over the course of your development cycle, you

need not worry about changing the recursive call in your function body if you use arguments.callee instead of

the function name. The arguments.callee property is used in the following function expression to enable

recursion:

 var factorial:Function = function (x:uint)
 {
 if(x == 0)
 {
 return 1;
 }
 else
 {
 return (x * arguments.callee(x - 1));
 }
 }

 trace(factorial(5)); // 120

If you use the ... (rest) parameter in your function declaration, the arguments object is not available to you. Instead,

you must access the parameters using the parameter names that you declared for them.

You should also be careful to avoid using the string "arguments" as a parameter name, because it shadows the

arguments object. For example, if the function traceArgArray() is rewritten so that an arguments parameter is

added, the references to arguments in the function body refer to the parameter rather than the arguments object.

The following code produces no output:

 function traceArgArray(x:int, arguments:int):void
 {
 for (var i:uint = 0; i < arguments.length; i++)
 {
 trace(arguments[i]);
 }
 }

 traceArgArray(1, 2, 3);

 // no output

82LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

The arguments object in previous versions of ActionScript also contained a property named caller, which is a

reference to the function that called the current function. The caller property is not present in ActionScript 3.0,

but if you need a reference to the calling function, you can alter the calling function so that it passes an extra

parameter that is a reference to itself.

The ... (rest) parameter

ActionScript 3.0 introduces a new parameter declaration called the ... (rest) parameter. This parameter allows you to

specify an array parameter that accepts any number of comma- delimited arguments. The parameter can have any

name that is not a reserved word. This parameter declaration must be the last parameter specified. Use of this

parameter makes the arguments object unavailable. Although the ... (rest) parameter gives you the same functionality

as the arguments array and arguments.length property, it does not provide functionality similar to that provided

by arguments.callee. You should ensure that you do not need to use arguments.callee before using the ... (rest)

parameter.

The following example rewrites the traceArgArray() function using the ... (rest) parameter instead of the arguments

object:

 function traceArgArray(... args):void
 {
 for (var i:uint = 0; i < args.length; i++)
 {
 trace(args[i]);
 }
 }

 traceArgArray(1, 2, 3);

 // output:
 // 1
 // 2
 // 3

The ... (rest) parameter can also be used with other parameters, as long as it is the last parameter listed. The following

example modifies the traceArgArray() function so that its first parameter, x, is of type int, and the second parameter

uses the ... (rest) parameter. The output skips the first value, because the first parameter is no longer part of the array

created by the ... (rest) parameter.

 function traceArgArray(x: int, ... args)
 {
 for (var i:uint = 0; i < args.length; i++)
 {
 trace(args[i]);
 }
 }

 traceArgArray(1, 2, 3);

 // output:
 // 2
 // 3

Functions as objects

Functions in ActionScript 3.0 are objects. When you create a function, you are creating an object that not only can be

passed as a parameter to another function, but also can have properties and methods attached to it.

83LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

Functions passed as arguments to another function are passed by reference and not by value. When you pass a function

as an argument, you use only the identifier and not the parentheses operator that you use to call the method. For

example, the following code passes a function named clickListener() as an argument to the addEventListener()

method:

 addEventListener(MouseEvent.CLICK, clickListener);

Although it may seem strange to programmers new to ActionScript, functions can have properties and methods, just

as any other object can. In fact, every function has a read-only property named length that stores the number of

parameters defined for the function. This is different from the arguments.length property, which reports the

number of arguments sent to the function. Recall that in ActionScript, the number of arguments sent to a function can

exceed the number of parameters defined for that function. The following example, which compiles only in standard

mode because strict mode requires an exact match between the number of arguments passed and the number of

parameters defined, shows the difference between the two properties:

 // Compiles only in standard mode
 function traceLength(x:uint, y:uint):void
 {
 trace("arguments received: " + arguments.length);
 trace("arguments expected: " + traceLength.length);
 }

 traceLength(3, 5, 7, 11);
 /* output:
 arguments received: 4
 arguments expected: 2 */

In standard mode, you can define your own function properties by defining them outside your function body.

Function properties can serve as quasi-static properties that allow you to save the state of a variable related to the

function. For example, you may want to track the number of times a particular function is called. Such functionality

could be useful if you are writing a game and want to track the number of times a user uses a specific command,

although you could also use a static class property for this. The following example, which compiles only in standard

mode because strict mode does not allow you to add dynamic properties to functions, creates a function property

outside the function declaration and increments the property each time the function is called:

 // Compiles only in standard mode
 var someFunction:Function = function ():void
 {
 someFunction.counter++;
 }

 someFunction.counter = 0;

 someFunction();
 someFunction();
 trace(someFunction.counter); // 2

Function scope

A function’s scope determines not only where in a program that function can be called, but also what definitions the

function can access. The same scope rules that apply to variable identifiers apply to function identifiers. A function

declared in the global scope is available throughout your code. For example, ActionScript 3.0 contains global functions,

such as isNaN() and parseInt(), that are available anywhere in your code. A nested function—a function declared

within another function—can be used anywhere in the function in which it was declared.

84LEARNING ACTIONSCRIPT 3.0

ActionScript language and syntax

Last updated 5/2/2011

The scope chain

Any time a function begins execution, a number of objects and properties are created. First, a special object called an

activation object is created that stores the parameters and any local variables or functions declared in the function

body. You cannot access the activation object directly, because it is an internal mechanism. Second, a scope chain is

created that contains an ordered list of objects that the runtime checks for identifier declarations. Every function that

executes has a scope chain that is stored in an internal property. For a nested function, the scope chain starts with its

own activation object, followed by its parent function’s activation object. The chain continues in this manner until it

reaches the global object. The global object is created when an ActionScript program begins, and contains all global

variables and functions.

Function closures

A function closure is an object that contains a snapshot of a function and its lexical environment. A function’s lexical

environment includes all the variables, properties, methods, and objects in the function’s scope chain, along with their

values. Function closures are created any time a function is executed apart from an object or a class. The fact that

function closures retain the scope in which they were defined creates interesting results when a function is passed as

an argument or a return value into a different scope.

For example, the following code creates two functions: foo(), which returns a nested function named rectArea()

that calculates the area of a rectangle, and bar(), which calls foo() and stores the returned function closure in a

variable named myProduct. Even though the bar() function defines its own local variable x (with a value of 2), when

the function closure myProduct() is called, it retains the variable x (with a value of 40) defined in function foo().

The bar() function therefore returns the value 160 instead of 8.

 function foo():Function
 {
 var x:int = 40;
 function rectArea(y:int):int // function closure defined
 {
 return x * y
 }
 return rectArea;
 }
 function bar():void
 {
 var x:int = 2;
 var y:int = 4;
 var myProduct:Function = foo();
 trace(myProduct(4)); // function closure called
 }
 bar(); // 160

Methods behave similarly in that they also retain information about the lexical environment in which they were

created. This characteristic is most noticeable when a method is extracted from its instance, which creates a bound

method. The main difference between a function closure and a bound method is that the value of the this keyword

in a bound method always refers to the instance to which it was originally attached, whereas in a function closure the

value of the this keyword can change.

85

Last updated 5/2/2011

Chapter 4: Object-oriented programming
in ActionScript

Introduction to object-oriented programming

Object-oriented programming (OOP) is a way of organizing the code in a program by grouping it into objects. The

term object in this sense means an individual element that include information (data values) and functionality. When

you use an object-oriented approach to organizing a program you group particular pieces of information together with

common functionality or actions associated with that information. For example, you could group music information

like album title, track title, or artist name with functionality such as “add track to playlist” or “play all songs by this

artist”. These pieces are combined into a single item, an object (for example, an “Album” or “MusicTrack”). Bundling

values and functions together provides several benefits. One key benefit is that you only needing to use a single variable

rather than multiple ones. In addition, it keeps related functionality together. Finally, combining information and

functionality allows you to structure programs in ways that more closely match the real world.

Classes

A class is an abstract representation of an object. A class stores information about the types of data that an object can

hold and the behaviors that an object can exhibit. The usefulness of such an abstraction is not necessarily apparent

when you write small scripts that contain only a few objects interacting with one another. However, as the scope of a

program grows the number of objects that must be managed increases. In that case classes allow you to better control

how objects are created and how they interact with one another.

As far back as ActionScript 1.0, ActionScript programmers could use Function objects to create constructs that

resembled classes. ActionScript 2.0 added formal support for classes with keywords such as class and extends.

ActionScript 3.0 not only continues to support the keywords introduced in ActionScript 2.0. It also adds new

capabilities. For example, ActionScript 3.0 includes enhanced access control with the protected and internal

attributes. It also provides better control over inheritance with the final and override keywords.

For developers who have created classes in programming languages like Java, C++, or C#, ActionScript provides a

familiar experience. ActionScript shares many of the same keywords and attribute names, such as class, extends,

and public.

Note: In the Adobe ActionScript documentation, the term property means any member of an object or class, including

variables, constants, and methods. In addition, although the terms class and static are often used interchangeably, here

these terms are distinct. For example, the phrase “class properties” is used to mean all the members of a class, rather than

only the static members.

Class definitions

ActionScript 3.0 class definitions use syntax that is similar to the syntax used in ActionScript 2.0 class definitions.

Proper syntax for a class definition calls for the class keyword followed by the class name. The class body, enclosed

by curly brackets ({}), follows the class name. For example, the following code creates a class named Shape that

contains one variable, named visible:

86LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

 public class Shape
 {
 var visible:Boolean = true;
 }

One significant syntax change involves class definitions that are inside a package. In ActionScript 2.0, if a class is inside

a package, the package name must be included in the class declaration. In ActionScript 3.0, which introduces the

package statement, the package name must be included in the package declaration instead of in the class declaration.

For example, the following class declarations show how the BitmapData class, which is part of the flash.display

package, is defined in ActionScript 2.0 and ActionScript 3.0:

 // ActionScript 2.0
 class flash.display.BitmapData {}

 // ActionScript 3.0
 package flash.display
 {
 public class BitmapData {}
 }

Class attributes

ActionScript 3.0 allows you to modify class definitions using one of the following four attributes:

For each of these attributes, except for internal, you explicitly include the attribute to get the associated behavior.

For example, if you do not include the dynamic attribute when defining a class, you can’t add properties to a class

instance at run time. You explicitly assign an attribute by placing it at the beginning of the class definition, as the

following code demonstrates:

 dynamic class Shape {}

Notice that the list does not include an attribute named abstract. Abstract classes are not supported in ActionScript

3.0. Notice also that the list does not include attributes named private and protected. These attributes have meaning

only inside a class definition, and cannot be applied to classes themselves. If you do not want a class to be publicly

visible outside a package, place the class inside a package and mark the class with the internal attribute. Alternatively,

you can omit both the internal and public attributes, and the compiler automatically adds the internal attribute

for you. You can also define a class to only be visible inside the source file in which it is defined. Place the class at the

bottom of your source file, below the closing curly bracket of the package definition.

Class body

The class body is enclosed by curly brackets. It defines the variables, constants, and methods of your class. The

following example shows the declaration for the Accessibility class in ActionScript 3.0:

 public final class Accessibility
 {
 public static function get active():Boolean;
 public static function updateProperties():void;
 }

Attribute Definition

dynamic Allow properties to be added to instances at run time.

final Must not be extended by another class.

internal (default) Visible to references inside the current package.

public Visible to references everywhere.

87LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

You can also define a namespace inside a class body. The following example shows how a namespace can be defined

within a class body and used as an attribute of a method in that class:

 public class SampleClass
 {
 public namespace sampleNamespace;
 sampleNamespace function doSomething():void;
 }

ActionScript 3.0 allows you to include not only definitions in a class body, but also statements. Statements that are

inside a class body, but outside a method definition, are executed exactly once. This execution happens when the class

definition is first encountered and the associated class object is created. The following example includes a call to an

external function, hello(), and a trace statement that outputs a confirmation message when the class is defined:

 function hello():String
 {
 trace("hola");
 }
 class SampleClass
 {
 hello();
 trace("class created");
 }
 // output when class is created
 hola
 class created

In ActionScript 3.0 it is permissible to define a static property and an instance property with the same name in the same

class body. For example, the following code declares a static variable named message and an instance variable of the

same name:

 class StaticTest
 {
 static var message:String = "static variable";
 var message:String = "instance variable";
 }
 // In your script
 var myST:StaticTest = new StaticTest();
 trace(StaticTest.message); // output: static variable
 trace(myST.message); // output: instance variable

Class property attributes

In discussions of the ActionScript object model, the term property means anything that can be a member of a class,

including variables, constants, and methods. However, in the Adobe ActionScript 3.0 Reference for the Adobe Flash

Platform the term is used more narrowly. In that context the term property includes only class members that are

variables or are defined by a getter or setter method. In ActionScript 3.0, there is a set of attributes that can be used

with any property of a class. The following table lists this set of attributes.

Attribute Definition

internal (default) Visible to references inside the same package.

private Visible to references in the same class.

protected Visible to references in the same class and derived classes.

88LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Access control namespace attributes

ActionScript 3.0 provides four special attributes that control access to properties defined inside a class: public,

private, protected, and internal.

The public attribute makes a property visible anywhere in your script. For example, to make a method available to

code outside its package, you must declare the method with the public attribute. This is true for any property, whether

it is declared using the var, const, or function keywords.

The private attribute makes a property visible only to callers within the property’s defining class. This behavior

differs from that of the private attribute in ActionScript 2.0, which allowed a subclass to access a private property in

a superclass. Another significant change in behavior has to do with run-time access. In ActionScript 2.0, the private

keyword prohibited access only at compile time and was easily circumvented at run time. In ActionScript 3.0, this is

no longer true. Properties that are marked as private are unavailable at both compile time and run time.

For example, the following code creates a simple class named PrivateExample with one private variable, and then

attempts to access the private variable from outside the class.

 class PrivateExample
 {
 private var privVar:String = "private variable";
 }

 var myExample:PrivateExample = new PrivateExample();
 trace(myExample.privVar);// compile-time error in strict mode
 trace(myExample["privVar"]); // ActionScript 2.0 allows access, but in ActionScript 3.0, this
is a run-time error.

In ActionScript 3.0, an attempt to access a private property using the dot operator (myExample.privVar) results in a

compile-time error if you are using strict mode. Otherwise, the error is reported at run time, just as it is when you use

the property access operator (myExample["privVar"]).

The following table summarizes the results of attempting to access a private property that belongs to a sealed (not

dynamic) class:

In classes declared with the dynamic attribute, attempts to access a private variable do not result in a run-time error.

Instead, the variable is not visible, so the value undefined is returned. A compile-time error occurs, however, if you

use the dot operator in strict mode. The following example is the same as the previous example, except that the

PrivateExample class is declared as a dynamic class:

public Visible to references everywhere.

static Specifies that a property belongs to the class, as opposed to instances of the class.

UserDefinedNamespace Custom namespace name defined by user.

 Strict mode Standard mode

dot operator (.) compile-time error run-time error

bracket operator ([]) run-time error run-time error

Attribute Definition

89LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

 dynamic class PrivateExample
 {
 private var privVar:String = "private variable";
 }

 var myExample:PrivateExample = new PrivateExample();
 trace(myExample.privVar);// compile-time error in strict mode
 trace(myExample["privVar"]); // output: undefined

Dynamic classes generally return the value undefined instead of generating an error when code external to a class

attempts to access a private property. The following table shows that an error is generated only when the dot operator

is used to access a private property in strict mode:

The protected attribute, which is new for ActionScript 3.0, makes a property visible to callers within its own class or

in a subclass. In other words, a protected property is available within its own class or to classes that lie anywhere below

it in the inheritance hierarchy. This is true whether the subclass is in the same package or in a different package.

For those familiar with ActionScript 2.0, this functionality is similar to the private attribute in ActionScript 2.0. The

ActionScript 3.0 protected attribute is also similar to the protected attribute in Java. It differs in that the Java

version also permits access to callers within the same package. The protected attribute is useful when you have a

variable or method that your subclasses need but that you want to hide from code that is outside the inheritance chain.

The internal attribute, which is new for ActionScript 3.0, makes a property visible to callers within its own package.

This is the default attribute for code inside a package, and it applies to any property that does not have any of the

following attributes:

• public

• private

• protected

• a user-defined namespace

The internal attribute is similar to the default access control in Java, although in Java there is no explicit name for

this level of access, and it can be achieved only through the omission of any other access modifier. The internal

attribute is available in ActionScript 3.0 to give you the option of explicitly signifying your intent to make a property

visible only to callers within its own package.

static attribute

The static attribute, which can be used with properties declared with the var, const, or function keywords, allows

you to attach a property to the class rather than to instances of the class. Code external to the class must call static

properties by using the class name instead of an instance name.

Static properties are not inherited by subclasses, but the properties are part of a subclass’s scope chain. This means that

within the body of a subclass, a static variable or method can be used without referencing the class in which it was

defined.

 Strict mode Standard mode

dot operator (.) compile-time error undefined

bracket operator ([]) undefined undefined

90LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

User-defined namespace attributes

As an alternative to the predefined access control attributes, you can create a custom namespace for use as an attribute.

Only one namespace attribute can be used per definition, and you cannot use a namespace attribute in combination

with any of the access control attributes (public, private, protected, internal).

Variables

Variables can be declared with either the var or const keywords. Variables declared with the var keyword can have

their values changed multiple times throughout the execution of a script. Variables declared with the const keyword

are called constants, and can have values assigned to them only once. An attempt to assign a new value to an initialized

constant results in an error.

Static variables

Static variables are declared using a combination of the static keyword and either the var or const statement. Static

variables, which are attached to a class rather than an instance of a class, are useful for storing and sharing information

that applies to an entire class of objects. For example, a static variable is appropriate if you want to keep a tally of the

number of times a class is instantiated or if you want to store the maximum number of class instances that are allowed.

The following example creates a totalCount variable to track the number of class instantiations and a MAX_NUM

constant to store the maximum number of instantiations. The totalCount and MAX_NUM variables are static, because

they contain values that apply to the class as a whole rather than to a particular instance.

 class StaticVars
 {
 public static var totalCount:int = 0;
 public static const MAX_NUM:uint = 16;
 }

Code that is external to the StaticVars class and any of its subclasses can reference the totalCount and MAX_NUM

properties only through the class itself. For example, the following code works:

 trace(StaticVars.totalCount); // output: 0
 trace(StaticVars.MAX_NUM); // output: 16

You cannot access static variables through an instance of the class, so the following code returns errors:

 var myStaticVars:StaticVars = new StaticVars();
 trace(myStaticVars.totalCount); // error
 trace(myStaticVars.MAX_NUM); // error

Variables that are declared with both the static and const keywords must be initialized at the same time as you

declare the constant, as the StaticVars class does for MAX_NUM. You cannot assign a value to MAX_NUM inside the

constructor or an instance method. The following code generates an error, because it is not a valid way to initialize a

static constant:

 // !! Error to initialize static constant this way
 class StaticVars2
 {
 public static const UNIQUESORT:uint;
 function initializeStatic():void
 {
 UNIQUESORT = 16;
 }
 }

91LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Instance variables

Instance variables include properties declared with the var and const keywords, but without the static keyword.

Instance variables, which are attached to class instances rather than to an entire class, are useful for storing values that

are specific to an instance. For example, the Array class has an instance property named length, which stores the

number of array elements that a particular instance of the Array class holds.

Instance variables, whether declared as var or const, cannot be overridden in a subclass. You can, however, achieve

functionality that is similar to overriding variables by overriding getter and setter methods.

Methods

Methods are functions that are part of a class definition. Once an instance of the class is created, a method is bound to

that instance. Unlike a function declared outside a class, a method cannot be used apart from the instance to which it

is attached.

Methods are defined using the function keyword. As with any class property, you can apply any of the class property

attributes to methods, including private, protected, public, internal, static, or a custom namespace. You can use a

function statement such as the following:

 public function sampleFunction():String {}

Or you can use a variable to which you assign a function expression, as follows:

 public var sampleFunction:Function = function () {}

In most cases, use a function statement instead of a function expression for the following reasons:

• Function statements are more concise and easier to read.

• Function statements allow you to use the override and final keywords.

• Function statements create a stronger bond between the identifier (the name of the function) and the code within

the method body. Because the value of a variable can be changed with an assignment statement, the connection

between a variable and its function expression can be severed at any time. Although you can work around this issue

by declaring the variable with const instead of var, such a technique is not considered a best practice. It makes the

code hard to read and prevents the use of the override and final keywords.

One case in which you must use a function expression is when you choose to attach a function to the prototype object.

Constructor methods

Constructor methods, sometimes called constructors, are functions that share the same name as the class in which they

are defined. Any code that you include in a constructor method is executed whenever an instance of the class is created

with the new keyword. For example, the following code defines a simple class named Example that contains a single

property named status. The initial value of the status variable is set inside the constructor function.

 class Example
 {
 public var status:String;
 public function Example()
 {
 status = "initialized";
 }
 }

 var myExample:Example = new Example();
 trace(myExample.status); // output: initialized

92LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Constructor methods can only be public, but the use of the public attribute is optional. You cannot use any of the

other access control specifiers, including private, protected, or internal, on a constructor. You also cannot use a

user-defined namespace with a constructor method.

A constructor can make an explicit call to the constructor of its direct superclass by using the super() statement. If

the superclass constructor is not explicitly called, the compiler automatically inserts a call before the first statement in

the constructor body. You can also call methods of the superclass by using the super prefix as a reference to the

superclass. If you decide to use both super() and super in the same constructor body, be sure to call super() first.

Otherwise, the super reference does not behave as expected. The super() constructor should also be called before any

throw or return statement.

The following example demonstrates what happens if you attempt to use the super reference before calling the

super() constructor. A new class, ExampleEx, extends the Example class. The ExampleEx constructor attempts to

access the status variable defined in its superclass, but does so before calling super(). The trace() statement inside

the ExampleEx constructor produces the value null, because the status variable is not available until the super()

constructor executes.

 class ExampleEx extends Example
 {
 public function ExampleEx()
 {
 trace(super.status);
 super();
 }
 }

 var mySample:ExampleEx = new ExampleEx(); // output: null

Although it is legal to use the return statement inside a constructor, it is not permissible to return a value. In other

words, return statements must not have associated expressions or values. Accordingly, constructor methods are not

allowed to return values, which means that no return type can be specified.

If you do not define a constructor method in your class, the compiler automatically creates an empty constructor for

you. If your class extends another class, the compiler includes a super() call in the constructor it generates.

Static methods

Static methods, also called class methods, are methods that are declared with the static keyword. Static methods,

which are attached to a class rather than to an instance of a class, are useful for encapsulating functionality that affects

something other than the state of an individual instance. Because static methods are attached to a class as a whole, static

methods can be accessed only through a class and not through an instance of the class.

Static methods are useful for encapsulating functionality that is not limited to affecting the state of class instances. In

other words, a method should be static if it provides functionality that does not directly affect the value of a class

instance. For example, the Date class has a static method named parse(), which takes a string and converts it to a

number. The method is static because it does not affect an individual instance of the class. Instead, the parse()

method takes a string that represents a date value, parses the string, and returns a number in a format compatible with

the internal representation of a Date object. This method is not an instance method, because it does not make sense to

apply the method to an instance of the Date class.

Contrast the static parse() method with one of the instance methods of the Date class, such as getMonth(). The

getMonth() method is an instance method, because it operates directly on the value of an instance by retrieving a

specific component, the month, of a Date instance.

93LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Because static methods are not bound to individual instances, you cannot use the keywords this or super within the

body of a static method. Both the this reference and the super reference have meaning only within the context of an

instance method.

In contrast with some other class-based programming languages, static methods in ActionScript 3.0 are not inherited.

Instance methods

Instance methods are methods that are declared without the static keyword. Instance methods, which are attached

to instances of a class instead of the class as a whole, are useful for implementing functionality that affects individual

instances of a class. For example, the Array class contains an instance method named sort(), which operates directly

on Array instances.

Within the body of an instance method, both static and instance variables are in scope, which means that variables

defined in the same class can be referenced using a simple identifier. For example, the following class, CustomArray,

extends the Array class. The CustomArray class defines a static variable named arrayCountTotal to track the total

number of class instances, an instance variable named arrayNumber that tracks the order in which the instances were

created, and an instance method named getPosition() that returns the values of these variables.

 public class CustomArray extends Array
 {
 public static var arrayCountTotal:int = 0;
 public var arrayNumber:int;

 public function CustomArray()
 {
 arrayNumber = ++arrayCountTotal;
 }

 public function getArrayPosition():String
 {
 return ("Array " + arrayNumber + " of " + arrayCountTotal);
 }
 }

Although code external to the class must access the arrayCountTotal static variable through the class object using

CustomArray.arrayCountTotal, code that resides inside the body of the getPosition() method can refer directly

to the static arrayCountTotal variable. This is true even for static variables in superclasses. Though static properties

are not inherited in ActionScript 3.0, static properties in superclasses are in scope. For example, the Array class has a

few static variables, one of which is a constant named DESCENDING. Code that resides in an Array subclass can access

the static constant DESCENDING using a simple identifier:

 public class CustomArray extends Array
 {
 public function testStatic():void
 {
 trace(DESCENDING); // output: 2
 }
 }

The value of the this reference within the body of an instance method is a reference to the instance to which the

method is attached. The following code demonstrates that the this reference points to the instance that contains the

method:

94LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

 class ThisTest
 {
 function thisValue():ThisTest
 {
 return this;
 }
 }

 var myTest:ThisTest = new ThisTest();
 trace(myTest.thisValue() == myTest); // output: true

Inheritance of instance methods can be controlled with the keywords override and final. You can use the override

attribute to redefine an inherited method, and the final attribute to prevent subclasses from overriding a method.

Get and set accessor methods

Get and set accessor functions, also called getters and setters, allow you to adhere to the programming principles of

information hiding and encapsulation while providing an easy-to-use programming interface for the classes that you

create. Get and set functions allow you to keep your class properties private to the class, but allow users of your class

to access those properties as if they were accessing a class variable instead of calling a class method.

The advantage of this approach is that it allows you to avoid the traditional accessor functions with unwieldy names,

such as getPropertyName() and setPropertyName(). Another advantage of getters and setters is that you can avoid

having two public-facing functions for each property that allows both read and write access.

The following example class, named GetSet, includes get and set accessor functions named publicAccess() that

provide access to the private variable named privateProperty:

 class GetSet
 {
 private var privateProperty:String;

 public function get publicAccess():String
 {
 return privateProperty;
 }

 public function set publicAccess(setValue:String):void
 {
 privateProperty = setValue;
 }
 }

If you attempt to access the property privateProperty directly, an error occurs, as follows:

 var myGetSet:GetSet = new GetSet();
 trace(myGetSet.privateProperty); // error occurs

Instead, a user of the GetSet class uses something that appears to be a property named publicAccess, but that is really

a pair of get and set accessor functions that operate on the private property named privateProperty. The following

example instantiates the GetSet class, and then sets the value of the privateProperty using the public accessor named

publicAccess:

 var myGetSet:GetSet = new GetSet();
 trace(myGetSet.publicAccess); // output: null
 myGetSet.publicAccess = "hello";
 trace(myGetSet.publicAccess); // output: hello

95LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Getter and setter functions also make it possible to override properties that are inherited from a superclass, something

that is not possible when you use regular class member variables. Class member variables that are declared using the

var keyword cannot be overridden in a subclass. Properties that are created using getter and setter functions, however,

do not have this restriction. You can use the override attribute on getter and setter functions that are inherited from

a superclass.

Bound methods

A bound method, sometimes called a method closure, is simply a method that is extracted from its instance. Examples

of bound methods include methods that are passed as arguments to a function or returned as values from a function.

New in ActionScript 3.0, a bound method is similar to a function closure in that it retains its lexical environment even

when extracted from its instance. The key difference, however, between a bound method and a function closure is that

the this reference for a bound method remains linked, or bound, to the instance that implements the method. In other

words, the this reference in a bound method always points to the original object that implemented the method. For

function closures, the this reference is generic, which means that it points to whatever object the function is

associated with at the time it is called.

Understanding bound methods is important if you use the this keyword. Recall that the this keyword provides a

reference to a method’s parent object. Most ActionScript programmers expect that the this keyword always

represents the object or class that contains the definition of a method. Without method binding, however, this would

not always be true. In previous versions of ActionScript, for example, the this reference did not always refer to the

instance that implemented the method. When methods are extracted from an instance in ActionScript 2.0, not only is

the this reference not bound to the original instance, but also the member variables and methods of the instance’s

class are not available. This is not a problem in ActionScript 3.0, because bound methods are automatically created

when you pass a method as a parameter. Bound methods ensure that the this keyword always references the object

or class in which a method is defined.

The following code defines a class named ThisTest, which contains a method named foo() that defines the bound

method, and a method named bar() that returns the bound method. Code external to the class creates an instance of

the ThisTest class, calls the bar() method, and stores the return value in a variable named myFunc.

 class ThisTest
 {
 private var num:Number = 3;
 function foo():void // bound method defined
 {
 trace("foo's this: " + this);
 trace("num: " + num);
 }
 function bar():Function
 {
 return foo; // bound method returned
 }
 }

 var myTest:ThisTest = new ThisTest();
 var myFunc:Function = myTest.bar();
 trace(this); // output: [object global]
 myFunc();
 /* output:
 foo's this: [object ThisTest]
 output: num: 3 */

96LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

The last two lines of code show that the this reference in the bound method foo() still points to an instance of

ThisTest class, even though the this reference in the line just before it points to the global object. Moreover, the bound

method stored in the myFunc variable still has access to the member variables of the ThisTest class. If this same code

is run in ActionScript 2.0, the this references would match, and the num variable would be undefined.

One area where the addition of bound methods is most noticeable is with event handlers, because the

addEventListener() method requires that you pass a function or method as an argument.

Enumerations with classes

Enumerations are custom data types that you create to encapsulate a small set of values. ActionScript 3.0 does not

support a specific enumeration facility, unlike C++ with its enum keyword or Java with its Enumeration interface. You

can, however, create enumerations using classes and static constants. For example, the PrintJob class in ActionScript

3.0 uses an enumeration named PrintJobOrientation to store the values "landscape" and "portrait", as shown in

the following code:

 public final class PrintJobOrientation
 {
 public static const LANDSCAPE:String = "landscape";
 public static const PORTRAIT:String = "portrait";
 }

By convention, an enumeration class is declared with the final attribute, because there is no need to extend the class.

The class includes only static members, which means that you do not create instances of the class. Instead, you access

the enumeration values directly through the class object, as shown in the following code excerpt:

 var pj:PrintJob = new PrintJob();
 if(pj.start())
 {
 if (pj.orientation == PrintJobOrientation.PORTRAIT)
 {
 ...
 }
 ...
 }

All of the enumeration classes in ActionScript 3.0 contain only variables of type String, int, or uint. The advantage of

using enumerations instead of literal string or number values is that typographical mistakes are easier to find with

enumerations. If you mistype the name of an enumeration, the ActionScript compiler generates an error. If you use

literal values, the compiler does not complain if you spell a word incorrectly or use the wrong number. In the previous

example, the compiler generates an error if the name of the enumeration constant is incorrect, as the following excerpt

shows:

 if (pj.orientation == PrintJobOrientation.PORTRAI) // compiler error

However, the compiler does not generate an error if you misspell a string literal value, as follows:

 if (pj.orientation == "portrai") // no compiler error

A second technique for creating enumerations also involves creating a separate class with static properties for the

enumeration. This technique differs, however, in that each of the static properties contains an instance of the class instead

of a string or integer value. For example, the following code creates an enumeration class for the days of the week:

97LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

 public final class Day
 {
 public static const MONDAY:Day = new Day();
 public static const TUESDAY:Day = new Day();
 public static const WEDNESDAY:Day = new Day();
 public static const THURSDAY:Day = new Day();
 public static const FRIDAY:Day = new Day();
 public static const SATURDAY:Day = new Day();
 public static const SUNDAY:Day = new Day();
 }

This technique is not used by ActionScript 3.0 but is used by many developers who prefer the improved type checking

that the technique provides. For example, a method that returns an enumeration value can restrict the return value to

the enumeration data type. The following code shows not only a function that returns a day of the week, but also a

function call that uses the enumeration type as a type annotation:

 function getDay():Day
 {
 var date:Date = new Date();
 var retDay:Day;
 switch (date.day)
 {
 case 0:
 retDay = Day.MONDAY;
 break;
 case 1:
 retDay = Day.TUESDAY;
 break;
 case 2:
 retDay = Day.WEDNESDAY;
 break;
 case 3:
 retDay = Day.THURSDAY;
 break;
 case 4:
 retDay = Day.FRIDAY;
 break;
 case 5:
 retDay = Day.SATURDAY;
 break;
 case 6:
 retDay = Day.SUNDAY;
 break;
 }
 return retDay;
 }

 var dayOfWeek:Day = getDay();

You can also enhance the Day class so that it associates an integer with each day of the week, and provides a

toString() method that returns a string representation of the day.

98LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Embedded asset classes

ActionScript 3.0 uses special classes, called embedded asset classes, to represent embedded assets. An embedded asset is

an asset, such as a sound, image, or font, that is included in a SWF file at compile time. Embedding an asset instead of

loading it dynamically ensures that it is available at run time, but at the cost of increased SWF file size.

Using embedded asset classes in Flash Professional

To embed an asset, first place the asset into a FLA file’s library. Next, use the asset’s linkage property to provide a name

for the asset’s embedded asset class. If a class by that name cannot be found in the classpath, a class is automatically

generated for you. You can then create an instance of the embedded asset class and use any properties and methods

defined or inherited by that class. For example, the following code can be used to play an embedded sound that is

linked to an embedded asset class named PianoMusic:

 var piano:PianoMusic = new PianoMusic();
 var sndChannel:SoundChannel = piano.play();

Alternatively, you can use the [Embed] metadata tag to embed assets in a Flash Professional project, described next. If

you use the [Embed] metadata tag in your code, Flash Professional uses the Flex compiler to compile your project

instead of the Flash Professional compiler.

Using embedded asset classes using the Flex compiler

If you are compiling your code using the Flex compiler, to embed an asset in ActionScript code use the [Embed]

metadata tag. Place the asset in the main source folder or another folder that is in your project’s build path. When the

Flex compiler encounters an Embed metadata tag, it creates the embedded asset class for you. You can access the class

through a variable of data type Class that you declare immediately following the [Embed] metadata tag. For example,

the following code embeds a sound named sound1.mp3 and uses a variable named soundCls to store a reference to

the embedded asset class associated with that sound. The example then creates an instance of the embedded asset class

and calls the play() method on that instance:

 package
 {
 import flash.display.Sprite;
 import flash.media.SoundChannel;
 import mx.core.SoundAsset;

 public class SoundAssetExample extends Sprite
 {
 [Embed(source="sound1.mp3")]
 public var soundCls:Class;

 public function SoundAssetExample()
 {
 var mySound:SoundAsset = new soundCls() as SoundAsset;
 var sndChannel:SoundChannel = mySound.play();
 }
 }
 }

Adobe Flash Builder

To use the [Embed] metadata tag in a Flash Builder ActionScript project, import any necessary classes from the Flex

framework. For example, to embed sounds, import the mx.core.SoundAsset class. To use the Flex framework, include

the file framework.swc in your ActionScript build path. This increases the size of your SWF file.

99LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Adobe Flex

Alternatively, in Flex you can embed an asset with the @Embed() directive in an MXML tag definition.

Interfaces

An interface is a collection of method declarations that allows unrelated objects to communicate with one another. For

example, ActionScript 3.0 defines the IEventDispatcher interface, which contains method declarations that a class can

use to handle event objects. The IEventDispatcher interface establishes a standard way for objects to pass event objects

to one another. The following code shows the definition of the IEventDispatcher interface:

 public interface IEventDispatcher
 {
 function addEventListener(type:String, listener:Function,
 useCapture:Boolean=false, priority:int=0,
 useWeakReference:Boolean = false):void;
 function removeEventListener(type:String, listener:Function,
 useCapture:Boolean=false):void;
 function dispatchEvent(event:Event):Boolean;
 function hasEventListener(type:String):Boolean;
 function willTrigger(type:String):Boolean;
 }

Interfaces are based on the distinction between a method’s interface and its implementation. A method’s interface

includes all the information necessary to call that method, including the name of the method, all of its parameters, and

its return type. A method’s implementation includes not only the interface information, but also the executable

statements that carry out the method’s behavior. An interface definition contains only method interfaces, and any class

that implements the interface is responsible for defining the method implementations.

In ActionScript 3.0, the EventDispatcher class implements the IEventDispatcher interface by defining all of the

IEventDispatcher interface methods and adding method bodies to each of the methods. The following code is an

excerpt from the EventDispatcher class definition:

 public class EventDispatcher implements IEventDispatcher
 {
 function dispatchEvent(event:Event):Boolean
 {
 /* implementation statements */
 }

 ...
 }

The IEventDispatcher interface serves as a protocol that EventDispatcher instances use to process event objects and

pass them to other objects that have also implemented the IEventDispatcher interface.

Another way to describe an interface is to say that it defines a data type just as a class does. Accordingly, an interface

can be used as a type annotation, just as a class can. As a data type, an interface can also be used with operators, such

as the is and as operators, that require a data type. Unlike a class, however, an interface cannot be instantiated. This

distinction has led many programmers to think of interfaces as abstract data types and classes as concrete data types.

100LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Defining an interface

The structure of an interface definition is similar to that of a class definition, except that an interface can contain only

methods with no method bodies. Interfaces cannot include variables or constants but can include getters and setters.

To define an interface, use the interface keyword. For example, the following interface, IExternalizable, is part of the

flash.utils package in ActionScript 3.0. The IExternalizable interface defines a protocol for serializing an object, which

means converting an object into a format suitable for storage on a device or for transport across a network.

 public interface IExternalizable
 {
 function writeExternal(output:IDataOutput):void;
 function readExternal(input:IDataInput):void;
 }

The IExternalizable interface is declared with the public access control modifier. Interface definitions can only be

modified by the public and internal access control specifiers. The method declarations inside an interface

definition cannot have any access control specifiers.

ActionScript 3.0 follows a convention in which interface names begin with an uppercase I, but you can use any legal

identifier as an interface name. Interface definitions are often placed at the top level of a package. Interface definitions

cannot be placed inside a class definition or inside another interface definition.

Interfaces can extend one or more other interfaces. For example, the following interface, IExample, extends the

IExternalizable interface:

 public interface IExample extends IExternalizable
 {
 function extra():void;
 }

Any class that implements the IExample interface must include implementations not only for the extra() method,

but also for the writeExternal() and readExternal() methods inherited from the IExternalizable interface.

Implementing an interface in a class

A class is the only ActionScript 3.0 language element that can implement an interface. Use the implements keyword

in a class declaration to implement one or more interfaces. The following example defines two interfaces, IAlpha and

IBeta, and a class, Alpha, that implements them both:

 interface IAlpha
 {
 function foo(str:String):String;
 }

 interface IBeta
 {
 function bar():void;
 }

 class Alpha implements IAlpha, IBeta
 {
 public function foo(param:String):String {}
 public function bar():void {}
 }

In a class that implements an interface, implemented methods must do the following:

• Use the public access control identifier.

101LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

• Use the same name as the interface method.

• Have the same number of parameters, each with data types that match the interface method parameter data types.

• Use the same return type.

 public function foo(param:String):String {}

You do have some flexibility, however, in how you name the parameters of methods that you implement. Although

the number of parameters and the data type of each parameter in the implemented method must match that of the

interface method, the parameter names do not need to match. For example, in the previous example the parameter of

the Alpha.foo() method is named param:

But the parameter is named str in the IAlpha.foo() interface method:

 function foo(str:String):String;

You also have some flexibility with default parameter values. An interface definition can include function declarations

with default parameter values. A method that implements such a function declaration must have a default parameter

value that is a member of the same data type as the value specified in the interface definition, but the actual value does

not have to match. For example, the following code defines an interface that contains a method with a default

parameter value of 3:

 interface IGamma
 {
 function doSomething(param:int = 3):void;
 }

The following class definition implements the IGamma interface but uses a different default parameter value:

 class Gamma implements IGamma
 {
 public function doSomething(param:int = 4):void {}
 }

The reason for this flexibility is that the rules for implementing an interface are designed specifically to ensure data

type compatibility, and requiring identical parameter names and default parameter values is not necessary to achieve

that objective.

Inheritance

Inheritance is a form of code reuse that allows programmers to develop new classes that are based on existing classes.

The existing classes are often called base classes or superclasses, while the new classes are called subclasses. A key

advantage of inheritance is that it allows you to reuse code from a base class yet leave the existing code unmodified.

Moreover, inheritance requires no changes to the way that other classes interact with the base class. Rather than

modifying an existing class that may have been thoroughly tested or may already be in use, using inheritance you can

treat that class as an integrated module that you can extend with additional properties or methods. Accordingly, you

use the extends keyword to indicate that a class inherits from another class.

Inheritance also allows you to take advantage of polymorphism in your code. Polymorphism is the ability to use a single

method name for a method that behaves differently when applied to different data types. A simple example is a base

class named Shape with two subclasses named Circle and Square. The Shape class defines a method named area(),

which returns the area of the shape. If polymorphism is implemented, you can call the area() method on objects of

type Circle and Square and have the correct calculations done for you. Inheritance enables polymorphism by allowing

subclasses to inherit and redefine, or override, methods from the base class. In the following example, the area()

method is redefined by the Circle and Square classes:

102LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

 class Shape
 {
 public function area():Number
 {
 return NaN;
 }
 }

 class Circle extends Shape
 {
 private var radius:Number = 1;
 override public function area():Number
 {
 return (Math.PI * (radius * radius));
 }
 }

 class Square extends Shape
 {
 private var side:Number = 1;
 override public function area():Number
 {
 return (side * side);
 }
 }

 var cir:Circle = new Circle();
 trace(cir.area()); // output: 3.141592653589793
 var sq:Square = new Square();
 trace(sq.area()); // output: 1

Because each class defines a data type, the use of inheritance creates a special relationship between a base class and a

class that extends it. A subclass is guaranteed to possess all the properties of its base class, which means that an instance

of a subclass can always be substituted for an instance of the base class. For example, if a method defines a parameter

of type Shape, it is legal to pass an argument of type Circle because Circle extends Shape, as in the following:

 function draw(shapeToDraw:Shape) {}

 var myCircle:Circle = new Circle();
 draw(myCircle);

Instance properties and inheritance

An instance property, whether defined with the function, var, or const keywords, is inherited by all subclasses as

long as the property is not declared with the private attribute in the base class. For example, the Event class in

ActionScript 3.0 has a number of subclasses that inherit properties common to all event objects.

For some types of events, the Event class contains all the properties necessary to define the event. These types of events

do not require instance properties beyond those defined in the Event class. Examples of such events are the complete

event, which occurs when data has loaded successfully, and the connect event, which occurs when a network

connection has been established.

The following example is an excerpt from the Event class that shows some of the properties and methods that are

inherited by subclasses. Because the properties are inherited, an instance of any subclass can access these properties.

103LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

 public class Event
 {
 public function get type():String;
 public function get bubbles():Boolean;
 ...

 public function stopPropagation():void {}
 public function stopImmediatePropagation():void {}
 public function preventDefault():void {}
 public function isDefaultPrevented():Boolean {}
 ...
 }

Other types of events require unique properties not available in the Event class. These events are defined using

subclasses of the Event class so that new properties can be added to the properties defined in the Event class. An

example of such a subclass is the MouseEvent class, which adds properties unique to events associated with mouse

movement or mouse clicks, such as the mouseMove and click events. The following example is an excerpt from the

MouseEvent class that shows the definition of properties that exist on the subclass but not on the base class:

 public class MouseEvent extends Event
 {
 public static const CLICK:String= "click";
 public static const MOUSE_MOVE:String = "mouseMove";
 ...

 public function get stageX():Number {}
 public function get stageY():Number {}
 ...
 }

Access control specifiers and inheritance

If a property is declared with the public keyword, the property is visible to code anywhere. This means that the

public keyword, unlike the private, protected, and internal keywords, places no restrictions on property

inheritance.

If a property is declared with private keyword, it is visible only in the class that defines it, which means that it is not

inherited by any subclasses. This behavior is different from previous versions of ActionScript, where the private

keyword behaved more like the ActionScript 3.0 protected keyword.

The protected keyword indicates that a property is visible not only within the class that defines it, but also to all

subclasses. Unlike the protected keyword in the Java programming language, the protected keyword in

ActionScript 3.0 does not make a property visible to all other classes in the same package. In ActionScript 3.0, only

subclasses can access a property declared with the protected keyword. Moreover, a protected property is visible to a

subclass whether the subclass is in the same package as the base class or in a different package.

To limit the visibility of a property to the package in which it is defined, use the internal keyword or do not use any

access control specifier. The internal access control specifier is the default access control specifier that applies when

one is not specified. A property marked as internal is only inherited by a subclass that resides in the same package.

You can use the following example to see how each of the access control specifiers affects inheritance across package

boundaries. The following code defines a main application class named AccessControl and two other classes named

Base and Extender. The Base class is in a package named foo and the Extender class, which is a subclass of the Base

class, is in a package named bar. The AccessControl class imports only the Extender class and creates an instance of

Extender that attempts to access a variable named str that is defined in the Base class. The str variable is declared as

public so that the code compiles and runs as shown in the following excerpt:

104LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

 // Base.as in a folder named foo
 package foo
 {
 public class Base
 {
 public var str:String = "hello"; // change public on this line
 }
 }

 // Extender.as in a folder named bar
 package bar
 {
 import foo.Base;
 public class Extender extends Base
 {
 public function getString():String {
 return str;
 }
 }
 }

 // main application class in file named AccessControl.as
 package
 {
 import flash.display.MovieClip;
 import bar.Extender;
 public class AccessControl extends MovieClip
 {
 public function AccessControl()
 {
 var myExt:Extender = new Extender();
 trace(myExt.str);// error if str is not public
 trace(myExt.getString()); // error if str is private or internal
 }
 }
 }

To see how the other access control specifiers affect compilation and execution of the preceding example, change the

str variable’s access control specifier to private, protected, or internal after deleting or commenting out the

following line from the AccessControl class:

 trace(myExt.str);// error if str is not public

Overriding variables not permitted

Properties that are declared with the var or const keywords are inherited but cannot be overridden. To override a

property means to redefine the property in a subclass. The only type of property that can be overridden are get and set

accessors (properties declared with the function keyword). Although you cannot override an instance variable, you

can achieve similar functionality by creating getter and setter methods for the instance variable and overriding the

methods.

105LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Overriding methods

To override a method means to redefine the behavior of an inherited method. Static methods are not inherited and

cannot be overridden. Instance methods, however, are inherited by subclasses and can be overridden as long as the

following two criteria are met:

• The instance method is not declared with the final keyword in the base class. When used with an instance method,

the final keyword indicates the programmer’s intent to prevent subclasses from overriding the method.

• The instance method is not declared with the private access control specifier in the base class. If a method is

marked as private in the base class, there is no need to use the override keyword when defining an identically

named method in the subclass, because the base class method is not visible to the subclass.

To override an instance method that meets these criteria, the method definition in the subclass must use the

override keyword and must match the superclass version of the method in the following ways:

• The override method must have the same level of access control as the base class method. Methods marked as

internal have the same level of access control as methods that have no access control specifier.

• The override method must have the same number of parameters as the base class method.

• The override method parameters must have the same data type annotations as the parameters in the base class

method.

• The override method must have the same return type as the base class method.

The names of the parameters in the override method, however, do not have to match the names of the parameters in

the base class, as long as the number of parameters and the data type of each parameter matches.

The super statement

When overriding a method, programmers often want to add to the behavior of the superclass method they are

overriding instead of completely replacing the behavior. This requires a mechanism that allows a method in a subclass

to call the superclass version of itself. The super statement provides such a mechanism, in that it contains a reference

to the immediate superclass. The following example defines a class named Base that contains a method named

thanks() and a subclass of the Base class named Extender that overrides the thanks() method. The

Extender.thanks() method uses the super statement to call Base.thanks().

106LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

 package {
 import flash.display.MovieClip;
 public class SuperExample extends MovieClip
 {
 public function SuperExample()
 {
 var myExt:Extender = new Extender()
 trace(myExt.thanks()); // output: Mahalo nui loa
 }
 }
 }

 class Base {
 public function thanks():String
 {
 return "Mahalo";
 }
 }

 class Extender extends Base
 {
 override public function thanks():String
 {
 return super.thanks() + " nui loa";
 }
 }

Overriding getters and setters

Although you cannot override variables defined in a superclass, you can override getters and setters. For example, the

following code overrides a getter named currentLabel that is defined in the MovieClip class in ActionScript 3.0.:

 package
 {
 import flash.display.MovieClip;
 public class OverrideExample extends MovieClip
 {
 public function OverrideExample()
 {
 trace(currentLabel)
 }
 override public function get currentLabel():String
 {
 var str:String = "Override: ";
 str += super.currentLabel;
 return str;
 }
 }
 }

The output of the trace() statement in the OverrideExample class constructor is Override: null, which shows that

the example was able to override the inherited currentLabel property.

107LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Static properties not inherited

Static properties are not inherited by subclasses. This means that static properties cannot be accessed through an

instance of a subclass. A static property can be accessed only through the class object on which it is defined. For

example, the following code defines a base class named Base and a subclass that extends Base named Extender. A static

variable named test is defined in the Base class. The code as written in the following excerpt does not compile in strict

mode and generates a run-time error in standard mode.

 package {
 import flash.display.MovieClip;
 public class StaticExample extends MovieClip
 {
 public function StaticExample()
 {
 var myExt:Extender = new Extender();
 trace(myExt.test);// error
 }
 }
 }

 class Base {
 public static var test:String = "static";
 }

 class Extender extends Base { }

The only way to access the static variable test is through the class object, as shown in the following code:

 Base.test;

It is permissible, however, to define an instance property using the same name as a static property. Such an instance

property can be defined in the same class as the static property or in a subclass. For example, the Base class in the

preceding example could have an instance property named test. The following code compiles and executes because

the instance property is inherited by the Extender class. The code would also compile and execute if the definition of

the test instance variable is moved, but not copied, to the Extender class.

 package
 {
 import flash.display.MovieClip;
 public class StaticExample extends MovieClip
 {
 public function StaticExample()
 {
 var myExt:Extender = new Extender();
 trace(myExt.test);// output: instance
 }
 }
 }

 class Base
 {
 public static var test:String = "static";
 public var test:String = "instance";
 }

 class Extender extends Base {}

108LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Static properties and the scope chain

Although static properties are not inherited, they are within the scope chain of the class that defines them and any

subclass of that class. As such, static properties are said to be in scope of both the class in which they are defined and

any subclasses. This means that a static property is directly accessible within the body of the class that defines the static

property and any subclass of that class.

The following example modifies the classes defined in the previous example to show that the static test variable

defined in the Base class is in scope of the Extender class. In other words, the Extender class can access the static test

variable without prefixing the variable with the name of the class that defines test.

 package
 {
 import flash.display.MovieClip;
 public class StaticExample extends MovieClip
 {
 public function StaticExample()
 {
 var myExt:Extender = new Extender();
 }
 }
 }

 class Base {
 public static var test:String = "static";
 }

 class Extender extends Base
 {
 public function Extender()
 {
 trace(test); // output: static
 }

 }

If an instance property is defined that uses the same name as a static property in the same class or a superclass, the

instance property has higher precedence in the scope chain. The instance property is said to shadow the static property,

which means that the value of the instance property is used instead of the value of the static property. For example, the

following code shows that if the Extender class defines an instance variable named test, the trace() statement uses

the value of the instance variable instead of the value of the static variable.:

109LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

 package
 {
 import flash.display.MovieClip;
 public class StaticExample extends MovieClip
 {
 public function StaticExample()
 {
 var myExt:Extender = new Extender();
 }
 }
 }

 class Base
 {
 public static var test:String = "static";
 }

 class Extender extends Base
 {
 public var test:String = "instance";
 public function Extender()
 {
 trace(test); // output: instance
 }

 }

Advanced topics

History of ActionScript OOP support

Because ActionScript 3.0 builds upon previous versions of ActionScript, it may be helpful to understand how the

ActionScript object model has evolved. ActionScript began as a simple scripting mechanism for early versions of Flash

Professional. Later, programmers began building increasingly complex applications with ActionScript. In response to

the needs of such programmers, each subsequent release has added language features that facilitate the creation of

complex applications.

ActionScript 1.0

ActionScript 1.0 is the version of the language used in Flash Player 6 and earlier. Even at this early stage of

development, the ActionScript object model was based on the concept of the object as a fundamental data type. An

ActionScript object is a compound data type with a group of properties. When discussing the object model, the term

properties includes everything that is attached to an object, such as variables, functions, or methods.

Although this first generation of ActionScript does not support the definition of classes with a class keyword, you

can define a class using a special kind of object called a prototype object. Instead of using a class keyword to create

an abstract class definition that you instantiate into concrete objects, as you do in class-based languages like Java and

C++, prototype-based languages like ActionScript 1.0 use an existing object as a model (or prototype) for other objects.

While objects in a class-based language may point to a class that serves as its template, objects in a prototype-based

language point instead to another object, its prototype, that serves as its template.

110LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

To create a class in ActionScript 1.0, you define a constructor function for that class. In ActionScript, functions are

actual objects, not just abstract definitions. The constructor function that you create serves as the prototypical object

for instances of that class. The following code creates a class named Shape and defines one property named visible

that is set to true by default:

 // base class
 function Shape() {}
 // Create a property named visible.
 Shape.prototype.visible = true;

This constructor function defines a Shape class that you can instantiate with the new operator, as follows:

 myShape = new Shape();

Just as the Shape() constructor function object serves as the prototype for instances of the Shape class, it can also serve

as the prototype for subclasses of Shape—that is, other classes that extend the Shape class.

The creation of a class that is a subclass of the Shape class is a two-step process. First, create the class by defining a

constructor function for the class, as follows:

 // child class
 function Circle(id, radius)
 {
 this.id = id;
 this.radius = radius;
 }

Second, use the new operator to declare that the Shape class is the prototype for the Circle class. By default, any class

you create uses the Object class as its prototype, which means that Circle.prototype currently contains a generic

object (an instance of the Object class). To specify that Circle’s prototype is Shape instead of Object, use the following

code to change the value of Circle.prototype so that it contains a Shape object instead of a generic object:

 // Make Circle a subclass of Shape.
 Circle.prototype = new Shape();

The Shape class and the Circle class are now linked together in an inheritance relationship that is commonly known

as the prototype chain. The diagram illustrates the relationships in a prototype chain:

The base class at the end of every prototype chain is the Object class. The Object class contains a static property named

Object.prototype that points to the base prototype object for all objects created in ActionScript 1.0. The next object

in the example prototype chain is the Shape object. This is because the Shape.prototype property was never explicitly

set, so it still holds a generic object (an instance of the Object class). The final link in this chain is the Circle class, which

is linked to its prototype, the Shape class (the Circle.prototype property holds a Shape object).

If you create an instance of the Circle class, as in the following example, the instance inherits the prototype chain of

the Circle class:

 // Create an instance of the Circle class.
 myCircle = new Circle();

Object.prototype

Shape.prototype

Circle.prototype

111LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Recall that the example included a property named visible as a member of the Shape class. In this example, the

visible property does not exist as a part of the myCircle object, only as a member of the Shape object, yet the

following line of code outputs true:

 trace(myCircle.visible); // output: true

The runtime is able to ascertain that the myCircle object inherits the visible property by walking up the prototype

chain. When executing this code, the runtime first searches through the properties of the myCircle object for a

property named visible, but does not find such a property. It looks next in the Circle.prototype object, but still

does not find a property named visible. Continuing up the prototype chain, it finally finds the visible property

defined on the Shape.prototype object and outputs the value of that property.

In the interest of simplicity, many of the details and intricacies of the prototype chain are omitted. Instead the goal is

to provide enough information to help you understand the ActionScript 3.0 object model.

ActionScript 2.0

ActionScript 2.0 introduced new keywords such as class, extends, public, and private, that allowed you to define

classes in a way that is familiar to anyone who works with class-based languages like Java and C++. It’s important to

understand that the underlying inheritance mechanism did not change between ActionScript 1.0 and ActionScript 2.0.

ActionScript 2.0 merely added a new syntax for defining classes. The prototype chain works the same way in both

versions of the language.

The new syntax introduced by ActionScript 2.0, shown in the following excerpt, allows you to define classes in a way

that many programmers find more intuitive:

 // base class
 class Shape
 {
 var visible:Boolean = true;
 }

Note that ActionScript 2.0 also introduced type annotations for use with compile-time type checking. This allows you

to declare that the visible property in the previous example should contain only a Boolean value. The new extends

keyword also simplifies the process of creating a subclass. In the following example, the two-step process necessary in

ActionScript 1.0 is accomplished in one step with the extends keyword:

 // child class
 class Circle extends Shape
 {
 var id:Number;
 var radius:Number;
 function Circle(id, radius)
 {
 this.id = id;
 this.radius = radius;
 }
 }

The constructor is now declared as part of the class definition, and the class properties id and radius must also be

declared explicitly.

ActionScript 2.0 also added support for the definition of interfaces, which allow you to further refine your object-

oriented programs with formally defined protocols for inter-object communication.

112LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

The ActionScript 3.0 class object

A common object-oriented programming paradigm, most commonly associated with Java and C++, uses classes to

define types of objects. Programming languages that adopt this paradigm also tend to use classes to construct instances

of the data type that the class defines. ActionScript uses classes for both of these purposes, but its roots as a prototype-

based language add an interesting characteristic. ActionScript creates for each class definition a special class object that

allows sharing of both behavior and state. For many ActionScript programmers, however, this distinction may have

no practical coding implications. ActionScript 3.0 is designed such that you can create sophisticated object-oriented

ActionScript applications without using, or even understanding, these special class objects.

The following diagram shows the structure of a class object that represents a simple class named A that is defined with

the statement class A {}:

Each rectangle in the diagram represents an object. Each object in the diagram has a subscript character A to represent

that it belongs to class A. The class object (CA) contains references to a number of other important objects. An instance

traits object (TA) stores the instance properties that are defined within a class definition. A class traits object (TCA)

represents the internal type of the class and stores the static properties defined by the class (the subscript character C

stands for “class”). The prototype object (PA) always means the class object to which it was originally attached through

the constructor property.

The traits object

The traits object, which is new in ActionScript 3.0, was implemented with performance in mind. In previous versions

of ActionScript, name lookup could be a time-consuming process as Flash Player walked the prototype chain. In

ActionScript 3.0, name lookup is much more efficient and less time consuming, because inherited properties are

copied down from superclasses into the traits object of subclasses.

The traits object is not directly accessible to programmer code, but its presence can be felt by the improvements in

performance and memory usage. The traits object provides the AVM2 with detailed information about the layout and

contents of a class. With such knowledge, the AVM2 is able to significantly reduce execution time, because it can often

generate direct machine instructions to access properties or call methods directly without a time-consuming name

lookup.

Thanks to the traits object, an object’s memory footprint can be significantly smaller than a similar object in previous

versions of ActionScript. For example, if a class is sealed (that is, the class is not declared dynamic), an instance of the

class does not need a hash table for dynamically added properties, and can hold little more than a pointer to the traits

objects and some slots for the fixed properties defined in the class. As a result, an object that required 100 bytes of

memory in ActionScript 2.0 could require as little as 20 bytes of memory in ActionScript 3.0.

TCA

PACA

TA

Class.prototype Object.prototype

delegate

constructor

delegate

prototype

type
traits

113LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Note: The traits object is an internal implementation detail, and there is no guarantee that it will not change or even

disappear in future versions of ActionScript.

The prototype object

Every ActionScript class object has a property named prototype, which is a reference to the class’s prototype object.

The prototype object is a legacy of ActionScript’s roots as prototype-based language. For more information, see

History of ActionScript OOP support.

The prototype property is read-only, which means that it cannot be modified to point to different objects. This

differs from the class prototype property in previous versions of ActionScript, where the prototype could be

reassigned so that it pointed to a different class. Although the prototype property is read-only, the prototype object

that it references is not. In other words, new properties can be added to the prototype object. Properties added to the

prototype object are shared among all instances of the class.

The prototype chain, which was the only inheritance mechanism in previous versions of ActionScript, serves only a

secondary role in ActionScript 3.0. The primary inheritance mechanism, fixed property inheritance, is handled

internally by the traits object. A fixed property is a variable or method that is defined as part of a class definition. Fixed

property inheritance is also called class inheritance, because it is the inheritance mechanism that is associated with

keywords such as class, extends, and override.

The prototype chain provides an alternative inheritance mechanism that is more dynamic than fixed property

inheritance. You can add properties to a class’s prototype object not only as part of the class definition, but also at run

time through the class object’s prototype property. Note, however, that if you set the compiler to strict mode, you

may not be able to access properties added to a prototype object unless you declare a class with the dynamic keyword.

A good example of a class with several properties attached to the prototype object is the Object class. The Object class’s

toString() and valueOf() methods are actually functions assigned to properties of the Object class’s prototype

object. The following is an example of how the declaration of these methods could, in theory, look (the actual

implementation differs slightly because of implementation details):

 public dynamic class Object
 {
 prototype.toString = function()
 {
 // statements
 };
 prototype.valueOf = function()
 {
 // statements
 };
 }

As mentioned previously, you can attach a property to a class’s prototype object outside the class definition. For

example, the toString() method can also be defined outside the Object class definition, as follows:

 Object.prototype.toString = function()
 {
 // statements
 };

114LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Unlike fixed property inheritance, however, prototype inheritance does not require the override keyword if you want

to redefine a method in a subclass. For example. if you want to redefine the valueOf() method in a subclass of the

Object class, you have three options. First, you can define a valueOf() method on the subclass’s prototype object

inside the class definition. The following code creates a subclass of Object named Foo and redefines the valueOf()

method on Foo’s prototype object as part of the class definition. Because every class inherits from Object, it is not

necessary to use the extends keyword.

 dynamic class Foo
 {
 prototype.valueOf = function()
 {
 return "Instance of Foo";
 };
 }

Second, you can define a valueOf() method on Foo’s prototype object outside the class definition, as shown in the

following code:

 Foo.prototype.valueOf = function()
 {
 return "Instance of Foo";
 };

Third, you can define a fixed property named valueOf() as part of the Foo class. This technique differs from the

others in that it mixes fixed property inheritance with prototype inheritance. Any subclass of Foo that wants to

redefine valueOf() must use the override keyword. The following code shows valueOf() defined as a fixed

property in Foo:

 class Foo
 {
 function valueOf():String
 {
 return "Instance of Foo";
 }
 }

The AS3 namespace

The existence of two separate inheritance mechanisms, fixed property inheritance and prototype inheritance, creates

an interesting compatibility challenge with respect to the properties and methods of the core classes. Compatibility

with the ECMAScript language specification on which ActionScript is based requires the use of prototype inheritance,

which means that the properties and methods of a core class are defined on the prototype object of that class. On the

other hand, compatibility with ActionScript 3.0 calls for the use of fixed property inheritance, which means that the

properties and methods of a core class are defined in the class definition using the const, var, and function

keywords. Moreover, the use of fixed properties instead of the prototype versions can lead to significant increases in

run-time performance.

ActionScript 3.0 solves this problem by using both prototype inheritance and fixed property inheritance for the core

classes. Each core class contains two sets of properties and methods. One set is defined on the prototype object for

compatibility with the ECMAScript specification, and the other set is defined with fixed properties and the AS3

namespace for compatibility with ActionScript 3.0.

115LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

The AS3 namespace provides a convenient mechanism for choosing between the two sets of properties and methods.

If you do not use the AS3 namespace, an instance of a core class inherits the properties and methods defined on the

core class’s prototype object. If you decide to use the AS3 namespace, an instance of a core class inherits the AS3

versions because fixed properties are always preferred over prototype properties. In other words, whenever a fixed

property is available, it is always used instead of an identically named prototype property.

You can selectively use the AS3 namespace version of a property or method by qualifying it with the AS3 namespace.

For example, the following code uses the AS3 version of the Array.pop() method:

 var nums:Array = new Array(1, 2, 3);
 nums.AS3::pop();
 trace(nums); // output: 1,2

Alternatively, you can use the use namespace directive to open the AS3 namespace for all the definitions within a

block of code. For example, the following code uses the use namespace directive to open the AS3 namespace for both

the pop() and push() methods:

 use namespace AS3;

 var nums:Array = new Array(1, 2, 3);
 nums.pop();
 nums.push(5);
 trace(nums) // output: 1,2,5

ActionScript 3.0 also provides compiler options for each set of properties so that you can apply the AS3 namespace to

your entire program. The -as3 compiler option represents the AS3 namespace, and the -es compiler option

represents the prototype inheritance option (es stands for ECMAScript). To open the AS3 namespace for your entire

program, set the -as3 compiler option to true and the -es compiler option to false. To use the prototype versions,

set the compiler options to the opposite values. The default compiler settings for Flash Builder and Flash Professional

are -as3 = true and -es = false.

If you plan to extend any of the core classes and override any methods, you should understand how the AS3 namespace

can affect how you must declare an overridden method. If you are using the AS3 namespace, any method override of

a core class method must also use the AS3 namespace along with the override attribute. If you are not using the AS3

namespace and want to redefine a core class method in a subclass, you should not use the AS3 namespace or the

override keyword.

Example: GeometricShapes

The GeometricShapes sample application shows how a number of object-oriented concepts and features can be

applied using ActionScript 3.0, including:

• Defining classes

• Extending classes

• Polymorphism and the override keyword

• Defining, extending, and implementing interfaces

It also includes a “factory method” that creates class instances, showing how to declare a return value as an instance of

an interface, and use that returned object in a generic way.

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

GeometricShapes application files can be found in the folder Samples/GeometricShapes. The application consists of

the following files:

http://www.adobe.com/go/learn_programmingAS3samples_flash

116LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Defining the GeometricShapes classes

The GeometricShapes application lets the user specify a type of geometric shape and a size. It then responds with a

description of the shape, its area, and distance around its perimeter.

The application user interface is trivial, including a few controls for selecting the type of shape, setting the size, and

displaying the description. The most interesting part of this application is under the surface, in the structure of the

classes and interfaces themselves.

This application deals with geometric shapes, but it doesn’t display them graphically.

The classes and interfaces that define the geometric shapes in this example are shown in the following diagram using

Unified Modeling Language (UML) notation:

File Description

GeometricShapes.mxml

or

GeometricShapes.fla

The main application file in Flash (FLA) or Flex

(MXML).

com/example/programmingas3/geometricshapes/IGeometricShape.as The base interface defining methods to be

implemented by all GeometricShapes

application classes.

com/example/programmingas3/geometricshapes/IPolygon.as An interface defining methods to be

implemented by GeometricShapes application

classes that have multiple sides.

com/example/programmingas3/geometricshapes/RegularPolygon.as A type of geometric shape that has sides of equal

length postponed symmetrically around the

shape’s center.

com/example/programmingas3/geometricshapes/Circle.as A type of geometric shape that defines a circle.

com/example/programmingas3/geometricshapes/EquilateralTriangle.as A subclass of RegularPolygon that defines a

triangle with all sides the same length.

com/example/programmingas3/geometricshapes/Square.as A subclass of RegularPolygon defining a

rectangle with all four sides the same length.

com/example/programmingas3/geometricshapes/GeometricShapeFactory.as A class containing a factory method for creating

shapes given a shape type and size.

117LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

GeometricShapes Example Classes

Defining common behavior with interfaces

This GeometricShapes application deals with three types of shapes: circles, squares, and equilateral triangles. The

GeometricShapes class structure begins with a very simple interface, IGeometricShape, that lists methods common to

all three types of shapes:

 package com.example.programmingas3.geometricshapes
 {
 public interface IGeometricShape
 {
 function getArea():Number;
 function describe():String;
 }
 }

The interface defines two methods: the getArea() method, which calculates and returns the area of the shape, and the

describe() method, which assembles a text description of the shape’s properties.

It’s also desirable to know the distance around the perimeter of each shape. However, the perimeter of a circle is called

the circumference, and it’s calculated in a unique way, so the behavior diverges from that of a triangle or a square. Still

there is enough similarity between triangles, squares, and other polygons that it makes sense to define a new interface

class just for them: IPolygon. The IPolygon interface is also rather simple, as shown here:

 package com.example.programmingas3.geometricshapes
 {
 public interface IPolygon extends IGeometricShape
 {
 function getPerimeter():Number;
 function getSumOfAngles():Number;
 }
 }

<< interface >>

IGeometricShape

+getArea (): Number
+describe (): String

<< interface >>

IPolygon

+getPerimeter (): Number
+getSumOfAngles (): Number

Circle

+diameter:Number
+Circle () : Circle

+getArea () : Number
+describe () : String
+getCircumference () : Number

+numSides : int
+sideLength : Number

+RegularPolygon (): RegularPolygon
+getSumOfAngles (): Number
+getPerimeter (): Number
+getArea (): Number
+describe (): Stri ng

RegularPolygon

+EquilateralTriangle (): EquilateralTriangle
+getArea (): Number
+describe (): String

EquilateralTriangle

+Square (): Square
+getArea (): Number
+des cribe () : String

Square

118LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

This interface defines two methods common to all polygons: the getPerimeter() method that measures the

combined distance of all the sides, and the getSumOfAngles() method that adds up all the interior angles.

The IPolygon interface extends the IGeometricShape interface, which means that any class that implements the

IPolygon interface must declare all four methods—the two from the IGeometricShape interface, and the two from the

IPolygon interface.

Defining the shape classes

Once you have a good idea about the methods common to each type of shape, you can define the shape classes

themselves. In terms of how many methods you need to implement, the simplest shape is the Circle class, shown here:

 package com.example.programmingas3.geometricshapes
 {
 public class Circle implements IGeometricShape
 {
 public var diameter:Number;

 public function Circle(diam:Number = 100):void
 {
 this.diameter = diam;
 }

 public function getArea():Number
 {
 // The formula is Pi * radius * radius.
 var radius:Number = diameter / 2;
 return Math.PI * radius * radius;
 }

 public function getCircumference():Number
 {
 // The formula is Pi * diameter.
 return Math.PI * diameter;
 }

 public function describe():String
 {
 var desc:String = "This shape is a Circle.\n";
 desc += "Its diameter is " + diameter + " pixels.\n";
 desc += "Its area is " + getArea() + ".\n";
 desc += "Its circumference is " + getCircumference() + ".\n";
 return desc;
 }
 }
 }

The Circle class implements the IGeometricShape interface, so it must provide code for both the getArea() method

and the describe() method. In addition, it defines the getCircumference() method, which is unique to the Circle

class. The Circle class also declares a property, diameter, which won’t be found in the other polygon classes.

The other two types of shapes, squares and equilateral triangles, have some other things in common: they each have

sides of equal length, and there are common formulas you can use to calculate the perimeter and sum of interior angles

for both. In fact, those common formulas apply to any other regular polygons that you define in the future as well.

119LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

The RegularPolygon class is the superclass for both the Square class and the EquilateralTriangle class. A superclass lets

you define common methods in one place, so you don’t have to define them separately in each subclass. Here is the

code for the RegularPolygon class:

 package com.example.programmingas3.geometricshapes
 {
 public class RegularPolygon implements IPolygon
 {
 public var numSides:int;
 public var sideLength:Number;

 public function RegularPolygon(len:Number = 100, sides:int = 3):void
 {
 this.sideLength = len;
 this.numSides = sides;
 }

 public function getArea():Number
 {
 // This method should be overridden in subclasses.
 return 0;
 }

 public function getPerimeter():Number
 {
 return sideLength * numSides;
 }

 public function getSumOfAngles():Number
 {
 if (numSides >= 3)
 {
 return ((numSides - 2) * 180);
 }
 else
 {
 return 0;
 }
 }

 public function describe():String
 {
 var desc:String = "Each side is " + sideLength + " pixels long.\n";
 desc += "Its area is " + getArea() + " pixels square.\n";
 desc += "Its perimeter is " + getPerimeter() + " pixels long.\n";
 desc += "The sum of all interior angles in this shape is " + getSumOfAngles() + "
degrees.\n";
 return desc;
 }
 }
 }

First, the RegularPolygon class declares two properties that are common to all regular polygons: the length of each side

(the sideLength property) and the number of sides (the numSides property).

The RegularPolygon class implements the IPolygon interface and declares all four of the IPolygon interface methods.

It implements two of these—the getPerimeter() and getSumOfAngles() methods—using common formulas.

120LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Because the formula for the getArea() method differs from shape to shape, the base class version of the method

cannot include common logic that can be inherited by the subclass methods. Instead, it simply returns a 0 default value

to indicate that the area was not calculated. To calculate the area of each shape correctly, the subclasses of the

RegularPolygon class have to override the getArea() method themselves.

The following code for the EquilateralTriangle class show how the getArea() method is overridden:

 package com.example.programmingas3.geometricshapes
 {
 public class EquilateralTriangle extends RegularPolygon
 {
 public function EquilateralTriangle(len:Number = 100):void
 {
 super(len, 3);
 }

 public override function getArea():Number
 {
 // The formula is ((sideLength squared) * (square root of 3)) / 4.
 return ((this.sideLength * this.sideLength) * Math.sqrt(3)) / 4;
 }

 public override function describe():String
 {
 /* starts with the name of the shape, then delegates the rest
 of the description work to the RegularPolygon superclass */
 var desc:String = "This shape is an equilateral Triangle.\n";
 desc += super.describe();
 return desc;
 }
 }
 }

The override keyword indicates that the EquilateralTriangle.getArea() method intentionally overrides the

getArea() method from the RegularPolygon superclass. When the EquilateralTriangle.getArea() method is

called, it calculates the area using the formula in the preceding code, and the code in the RegularPolygon.getArea()

method never executes.

In contrast, the EquilateralTriangle class doesn’t define its own version of the getPerimeter() method. When the

EquilateralTriangle.getPerimeter() method is called, the call goes up the inheritance chain and executes the

code in the getPerimeter() method of the RegularPolygon superclass.

The EquilateralTriangle() constructor uses the super() statement to explicitly invoke the RegularPolygon()

constructor of its superclass. If both constructors had the same set of parameters, you could have omitted the

EquilateralTriangle() constructor completely, and the RegularPolygon() constructor would be executed

instead. However, the RegularPolygon() constructor needs an extra parameter, numSides. So the

EquilateralTriangle() constructor calls super(len, 3), which passes along the len input parameter and the

value 3 to indicate that the triangle has three sides.

The describe() method also uses the super() statement, but in a different way. It uses it to invoke the

RegularPolygon superclass’ version of the describe() method. The EquilateralTriangle.describe() method

first sets the desc string variable to a statement about the type of shape. Then it gets the results of the

RegularPolygon.describe() method by calling super.describe(), and it appends that result to the desc string.

The Square class isn’t described in detail here, but it is similar to the EquilateralTriangle class, providing a constructor

and its own implementations of the getArea() and describe() methods.

121LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

Polymorphism and the factory method

A set of classes that make good use of interfaces and inheritance can be used in many interesting ways. For example,

all of the shape classes described so far either implement the IGeometricShape interface or extend a superclass that

does. So if you define a variable to be an instance of IGeometricShape, you don’t have to know whether it is actually

an instance of the Circle or the Square class to call its describe() method.

The following code shows how this works:

 var myShape:IGeometricShape = new Circle(100);
 trace(myShape.describe());

When myShape.describe() is called, it executes the method Circle.describe(), because even though the variable

is defined as an instance of the IGeometricShape interface, Circle is its underlying class.

This example shows the principle of polymorphism in action: the exact same method call results in different code being

executed, depending on the class of the object whose method is being invoked.

The GeometricShapes application applies this kind of interface-based polymorphism using a simplified version of a

design pattern known as the factory method. The term factory method means a function that returns an object whose

underlying data type or contents can differ depending on the context.

The GeometricShapeFactory class shown here defines a factory method named createShape():

 package com.example.programmingas3.geometricshapes
 {
 public class GeometricShapeFactory
 {
 public static var currentShape:IGeometricShape;

 public static function createShape(shapeName:String,
 len:Number):IGeometricShape
 {
 switch (shapeName)
 {
 case "Triangle":
 return new EquilateralTriangle(len);

 case "Square":
 return new Square(len);

 case "Circle":
 return new Circle(len);
 }
 return null;
 }

 public static function describeShape(shapeType:String, shapeSize:Number):String
 {
 GeometricShapeFactory.currentShape =
 GeometricShapeFactory.createShape(shapeType, shapeSize);
 return GeometricShapeFactory.currentShape.describe();
 }
 }
 }

122LEARNING ACTIONSCRIPT 3.0

Object-oriented programming in ActionScript

Last updated 5/2/2011

The createShape() factory method lets the shape subclass constructors define the details of the instances that they

create, while returning the new objects as IGeometricShape instances so that they can be handled by the application in

a more general way.

The describeShape() method in the preceding example shows how an application can use the factory method to get

a generic reference to a more specific object. The application can get the description for a newly created Circle object

like this:

 GeometricShapeFactory.describeShape("Circle", 100);

The describeShape() method then calls the createShape() factory method with the same parameters, storing the

new Circle object in a static variable named currentShape, which was typed as an IGeometricShape object. Next, the

describe() method is called on the currentShape object, and that call is automatically resolved to execute the

Circle.describe() method, returning a detailed description of the circle.

Enhancing the sample application

The real power of interfaces and inheritance becomes apparent when you enhance or change your application.

Say that you wanted to add a new shape, a pentagon, to this sample application. You would create a Pentagon class that

extends the RegularPolygon class and defines its own versions of the getArea() and describe() methods. Then you

would add a new Pentagon option to the combo box in the application’s user interface. But that’s it. The Pentagon class

would automatically get the functionality of the getPerimeter() method and the getSumOfAngles() method from

the RegularPolygon class by inheritance. Because it inherits from a class that implements the IGeometricShape

interface, a Pentagon instance can be treated as an IGeometricShape instance too. That means that to add a new type

of shape, you do not need to change the method signature of any of the methods in the GeometricShapeFactory class

(and consequently, you don’t need to change any of the code that uses the GeometricShapeFactory class either).

You may want to add a Pentagon class to the Geometric Shapes example as an exercise, to see how interfaces and

inheritance can ease the workload of adding new features to an application.

	Legal notices
	Contents
	Chapter 1: Introduction to ActionScript 3.0
	About ActionScript
	Advantages of ActionScript 3.0
	What’s new in ActionScript 3.0
	Core language features
	API features

	Chapter 2: Getting started with ActionScript
	Programming fundamentals
	What computer programs do
	Variables and constants
	Data types

	Working with objects
	Properties
	Methods
	Events
	Basic event handling
	The event-handling process
	Event-handling examples

	Creating object instances

	Common program elements
	Operators
	Comments
	Flow control

	Example: Animation portfolio piece (Flash Professional)
	Preparing to add interactivity
	Creating and adding buttons
	Writing the code
	Testing the application

	Building applications with ActionScript
	Options for organizing your code
	Choosing the right tool
	The ActionScript development process

	Creating your own classes
	Strategies for designing a class
	Writing the code for a class

	Example: Creating a basic application
	Designing your ActionScript application
	Creating the HelloWorld project and the Greeter class
	Adding code to the Greeter class
	Creating an application that uses your ActionScript code
	Publishing and testing your ActionScript application
	Enhancing the HelloWorld application

	Chapter 3: ActionScript language and syntax
	Language overview
	Objects and classes
	Packages and namespaces
	Packages
	Creating packages
	Importing packages
	Namespaces

	Variables
	Understanding variable scope
	Default values

	Data types
	Type checking
	Compile-time type checking
	Run-time type checking
	The is operator
	The as operator

	Dynamic classes
	Data type descriptions
	Boolean data type
	int data type
	Null data type
	Number data type
	String data type
	uint data type
	void data type
	Object data type

	Type conversions

	Syntax
	Case sensitivity
	Dot syntax
	Slash syntax
	Literals
	Semicolons
	Parentheses
	Comments
	Keywords and reserved words
	Constants

	Operators
	Operator precedence and associativity
	Primary operators
	Postfix operators
	Unary operators
	Multiplicative operators
	Additive operators
	Bitwise shift operators
	Relational operators
	Equality operators
	Bitwise logical operators
	Logical operators
	Conditional operator
	Assignment operators

	Conditionals
	if..else
	if..else if
	switch

	Looping
	for
	for..in
	for each..in
	while
	do..while

	Functions
	Basic function concepts
	Function parameters
	Functions as objects
	Function scope

	Chapter 4: Object-oriented programming in ActionScript
	Introduction to object-oriented programming
	Classes
	Class definitions
	Class property attributes
	Access control namespace attributes
	static attribute
	User-defined namespace attributes

	Variables
	Methods
	Constructor methods
	Static methods
	Instance methods
	Get and set accessor methods
	Bound methods

	Enumerations with classes
	Embedded asset classes
	Using embedded asset classes in Flash Professional
	Using embedded asset classes using the Flex compiler

	Interfaces
	Defining an interface
	Implementing an interface in a class

	Inheritance
	Instance properties and inheritance
	Overriding methods
	Static properties not inherited
	Static properties and the scope chain

	Advanced topics
	History of ActionScript OOP support
	The ActionScript 3.0 class object
	The traits object
	The prototype object
	The AS3 namespace

	Example: GeometricShapes
	Defining the GeometricShapes classes
	Defining common behavior with interfaces
	Defining the shape classes
	Polymorphism and the factory method
	Enhancing the sample application

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000630072006500610074006500200049006e0073007400720075006300740069006f006e0061006c00200043006f006d006d0075006e00690063006100740069006f006e002700730020005000720069006e0074002d006f006e002d00440065006d0061006e0064002000500044004600200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e000d005b007500700064006100740065006400200033002d007300650070002d0032003000300034005d>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

