
ACTIONSCRIPT® 3.0
Developer’s Guide

Last updated 10/9/2017

Legal notices

Legal notices
For legal notices, see http://help.adobe.com/en_US/legalnotices/index.html.

http://help.adobe.com/en_US/legalnotices/index.html

iii

Last updated 10/9/2017

Contents

Chapter 1: Working with dates and times

Managing calendar dates and times . 1

Controlling time intervals . 4

Date and time example: Simple analog clock . 6

Chapter 2: Working with strings

Basics of strings . 10

Creating strings . 11

The length property . 12

Working with characters in strings . 12

Comparing strings . 13

Obtaining string representations of other objects . 14

Concatenating strings . 14

Finding substrings and patterns in strings . 15

Converting strings between uppercase and lowercase . 19

Strings example: ASCII art . 19

Chapter 3: Working with arrays

Basics of arrays . 25

Indexed arrays . 26

Associative arrays . 37

Multidimensional arrays . 41

Cloning arrays . 42

Extending the Array class . 43

Arrays example: PlayList . 48

Chapter 4: Handling errors

Basics of error handling . 52

Types of errors . 53

Error handling in ActionScript 3.0 . 55

Working with the debugger versions of Flash runtimes . 57

Handling synchronous errors in an application . 58

Creating custom error classes . 62

Responding to error events and status . 63

Comparing the Error classes . 66

Handling errors example: CustomErrors application . 70

Chapter 5: Using regular expressions

Basics of regular expressions . 76

Regular expression syntax . 77

Methods for using regular expressions with strings . 90

Regular expressions example: A Wiki parser . 91

ivACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Contents

Last updated 10/9/2017

Chapter 6: Working with XML

Basics of XML . 95

The E4X approach to XML processing . 98

XML objects . 99

XMLList objects . 102

Initializing XML variables . 103

Assembling and transforming XML objects . 104

Traversing XML structures . 106

Using XML namespaces . 110

XML type conversion . 111

Reading external XML documents . 112

XML in ActionScript example: Loading RSS data from the Internet . 113

Chapter 7: Using native JSON functionality

Overview of the JSON API . 117

Defining custom JSON behavior . 118

Chapter 8: Handling events

Basics of handling events . 125

How ActionScript 3.0 event handling differs from earlier versions . 127

The event flow . 129

Event objects . 130

Event listeners . 134

Event handling example: Alarm Clock . 140

Chapter 9: Working with application domains

Chapter 10: Display programming

Basics of display programming . 151

Core display classes . 154

Advantages of the display list approach . 156

Working with display objects . 158

Manipulating display objects . 173

Animating objects . 192

Stage orientation . 195

Loading display content dynamically . 198

Display object example: SpriteArranger . 203

Chapter 11: Working with geometry

Basics of geometry . 210

Using Point objects . 211

Using Rectangle objects . 213

Using Matrix objects . 216

Geometry example: Applying a matrix transformation to a display object . 217

Chapter 12: Using the drawing API

Basics of the drawing API . 222

The Graphics class . 223

vACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Contents

Last updated 10/9/2017

Drawing lines and curves . 223

Drawing shapes using built-in methods . 226

Creating gradient lines and fills . 227

Using the Math class with drawing methods . 231

Animating with the drawing API . 232

Drawing API example: Algorithmic Visual Generator . 233

Advanced use of the drawing API . 235

Chapter 13: Working with bitmaps

Basics of working with bitmaps . 242

The Bitmap and BitmapData classes . 244

Manipulating pixels . 245

Copying bitmap data . 248

Compressing bitmap data . 249

Making textures with noise functions . 250

Scrolling bitmaps . 252

Taking advantage of mipmapping . 253

Bitmap example: Animated spinning moon . 254

Asynchronous decoding of bitmap images . 264

Chapter 14: Filtering display objects

Basics of filtering display objects . 267

Creating and applying filters . 268

Available display filters . 275

Filtering display objects example: Filter Workbench . 292

Chapter 15: Working with Pixel Bender shaders

Basics of Pixel Bender shaders . 300

Loading or embedding a shader . 302

Accessing shader metadata . 303

Specifying shader input and parameter values . 305

Using a shader . 310

Chapter 16: Working with movie clips

Basics of movie clips . 322

Working with MovieClip objects . 323

Controlling movie clip playback . 323

Creating MovieClip objects with ActionScript . 326

Loading an external SWF file . 329

Movie clip example: RuntimeAssetsExplorer . 331

Chapter 17: Working with motion tweens

Basics of Motion Tweens . 335

Copying motion tween scripts in Flash . 336

Incorporating motion tween scripts . 337

Describing the animation . 338

Adding filters . 340

Associating a motion tween with its display objects . 342

viACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Contents

Last updated 10/9/2017

Chapter 18: Working with inverse kinematics

Basics of Inverse Kinematics . 343

Animating IK Armatures Overview . 344

Getting information about an IK armature . 346

Instantiating an IK Mover and Limiting Its Movement . 346

Moving an IK Armature . 347

Using Springs . 348

Using IK Events . 348

Chapter 19: Working in three dimensions (3D)

Basics of 3D display objects . 350

Understanding 3D display objects in Flash Player and the AIR runtime . 351

Creating and moving 3D display objects . 353

Projecting 3D objects onto a 2D view . 355

Example: Perspective projection . 357

Performing complex 3D transformations . 360

Using triangles for 3D effects . 363

Chapter 20: Basics of Working with text

Chapter 21: Using the TextField class

Displaying text . 373

Selecting and manipulating text . 377

Capturing text input . 378

Restricting text input . 379

Formatting text . 380

Advanced text rendering . 384

Working with static text . 386

TextField Example: Newspaper-style text formatting . 387

Chapter 22: Using the Flash Text Engine

Creating and displaying text . 397

Handling Events in FTE . 401

Formatting text . 405

Working with fonts . 409

Controlling text . 411

Flash Text Engine example: News layout . 417

Chapter 23: Using the Text Layout Framework

Overview of the Text Layout Framework . 426

Using the Text Layout Framework . 427

Structuring text with TLF . 432

Formatting text with TLF . 436

Importing and exporting text with TLF . 437

Managing text containers with TLF . 437

Enabling text selection, editing, and undo with TLF . 438

Event handling with TLF . 439

Positioning images within text . 439

viiACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Contents

Last updated 10/9/2017

Chapter 24: Working with sound

Basics of working with sound . 441

Understanding the sound architecture . 442

Loading external sound files . 443

Working with embedded sounds . 446

Working with streaming sound files . 447

Working with dynamically generated audio . 448

Playing sounds . 450

Security considerations when loading and playing sounds . 454

Controlling sound volume and panning . 455

Working with sound metadata . 456

Accessing raw sound data . 457

Capturing sound input . 461

Sound example: Podcast Player . 467

Chapter 25: Working with video

Basics of video . 474

Understanding video formats . 475

Understanding the Video class . 478

Loading video files . 479

Controlling video playback . 480

Playing video in full-screen mode . 482

Streaming video files . 486

Understanding cue points . 486

Writing callback methods for metadata and cue points . 487

Using cue points and metadata . 492

Monitoring NetStream activity . 502

Advanced topics for video files . 505

Video example: Video Jukebox . 507

Using the StageVideo class for hardware accelerated presentation . 512

Chapter 26: Working with cameras

Understanding the Camera class . 521

Displaying camera content on screen . 522

Designing your camera application . 522

Connecting to a user’s camera . 522

Verifying that cameras are installed . 523

Detecting permissions for camera access . 524

Maximizing camera video quality . 526

Monitoring camera status . 527

Chapter 27: Using digital rights management

Understanding the protected content workflow . 529

DRM-related members and events of the NetStream class . 535

Using the DRMStatusEvent class . 537

Using the DRMAuthenticateEvent class . 538

Using the DRMErrorEvent class . 541

viiiACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Contents

Last updated 10/9/2017

Using the DRMManager class . 542

Using the DRMContentData class . 544

Updating Flash Player to support Adobe Access . 544

Out-of-band Licenses . 545

Domain support . 547

Playing encrypted content using domain support . 547

License preview . 548

Delivering content . 548

Open Source Media Framework . 548

Chapter 28: Adding PDF content in AIR

Detecting PDF Capability . 551

Loading PDF content . 552

Scripting PDF content . 552

Known limitations for PDF content in AIR . 554

Chapter 29: Basics of user interaction

Capturing user input . 556

Managing focus . 557

Discovering input types . 558

Chapter 30: Keyboard input

Capturing keyboard input . 560

Using the IME class . 562

Virtual keyboards . 567

Chapter 31: Mouse input

Capturing mouse input . 575

Mouse input example: WordSearch . 577

Chapter 32: Touch, multitouch and gesture input

Basics of touch input . 582

Touch support discovery . 584

Touch event handling . 585

Touch and drag . 588

Gesture event handling . 589

Troubleshooting . 593

Chapter 33: Copy and paste

Basics of copy-and-paste . 596

Reading from and writing to the system clipboard . 597

HTML copy and paste in AIR . 597

Clipboard data formats . 599

Chapter 34: Accelerometer input

Checking accelerometer support . 605

Detecting accelerometer changes . 605

ixACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Contents

Last updated 10/9/2017

Chapter 35: Drag and drop in AIR

Basics of drag and drop in AIR . 608

Supporting the drag-out gesture . 610

Supporting the drag-in gesture . 612

Drag and drop in HTML . 615

Dragging data out of an HTML element . 618

Dragging data into an HTML element . 619

Example: Overriding the default HTML drag-in behavior . 620

Handling file drops in non-application HTML sandboxes . 622

Dropping file promises . 623

Chapter 36: Working with menus

Menu basics . 632

Creating native menus (AIR) . 639

About context menus in HTML (AIR) . 641

Displaying pop-up native menus (AIR) . 642

Handling menu events . 643

Native menu example: Window and application menu (AIR) . 644

Chapter 37: Taskbar icons in AIR

About taskbar icons . 648

Dock icons . 649

System Tray icons . 649

Window taskbar icons and buttons . 651

Chapter 38: Working with the file system

Using the FileReference class . 653

Using the AIR file system API . 667

Chapter 39: Storing local data

Shared objects . 701

Encrypted local storage . 710

Chapter 40: Working with local SQL databases in AIR

About local SQL databases . 714

Creating and modifying a database . 718

Manipulating SQL database data . 725

Using synchronous and asynchronous database operations . 753

Using encryption with SQL databases . 758

Strategies for working with SQL databases . 775

Chapter 41: Working with byte arrays

Reading and writing a ByteArray . 778

ByteArray example: Reading a .zip file . 784

Chapter 42: Basics of networking and communication

Network interfaces . 791

Network connectivity changes . 792

Domain Name System (DNS) records . 794

xACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Contents

Last updated 10/9/2017

Chapter 43: Sockets

TCP sockets . 797

UDP sockets (AIR) . 808

IPv6 addresses . 810

Chapter 44: HTTP communications

Loading external data . 811

Web service requests . 820

Opening a URL in another application . 827

Chapter 45: Communicating with other Flash Player and AIR instances

About the LocalConnection class . 830

Sending messages between two applications . 832

Connecting to content in different domains and to AIR applications . 834

Chapter 46: Communicating with native processes in AIR

Overview of native process communications . 837

Launching and closing a native process . 838

Communicating with a native process . 839

Security considerations for native process communication . 840

Chapter 47: Using the external API

Basics of using the external API . 842

External API requirements and advantages . 844

Using the ExternalInterface class . 845

External API example: Communicating between ActionScript and JavaScript in a web browser . 849

Chapter 48: XML signature validation in AIR

Basics of XML signature validation . 856

About XML signatures . 861

Implementing the IURIDereferencer interface . 863

Chapter 49: Client system environment

Basics of the client system environment . 871

Using the System class . 872

Using the Capabilities class . 873

Capabilities example: Detecting system capabilities . 874

Chapter 50: AIR application invocation and termination

Application invocation . 878

Capturing command line arguments . 879

Invoking an AIR application on user login . 883

Invoking an AIR application from the browser . 884

Application termination . 886

Chapter 51: Working with AIR runtime and operating system information

Managing file associations . 888

Getting the runtime version and patch level . 889

xiACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Contents

Last updated 10/9/2017

Detecting AIR capabilities . 889

Tracking user presence . 889

Chapter 52: Working with AIR native windows

Basics of native windows in AIR . 891

Creating windows . 898

Managing windows . 907

Listening for window events . 916

Displaying full-screen windows . 917

Chapter 53: Display screens in AIR

Basics of display screens in AIR . 920

Enumerating the screens . 921

Chapter 54: Printing

Basics of printing . 924

Printing a page . 925

Flash runtime tasks and system printing . 926

Setting size, scale, and orientation . 928

Advanced printing techniques . 930

Printing example: Multiple-page printing . 932

Printing example: Scaling, cropping, and responding . 934

Printing example: Page setup and print options . 936

Chapter 55: Geolocation

Detecting geolocation changes . 938

Chapter 56: Internationalizing applications

Basics of internationalizing applications . 942

Overview of the flash.globalization package . 943

Determining the locale . 944

Formatting numbers . 946

Formatting currency values . 948

Formatting dates and times . 950

Sorting and comparing strings . 952

Case conversion . 953

Example: Internationalizing a stock ticker application . 954

Chapter 57: Localizing applications

Choosing a locale . 959

Localizing Flex content . 960

Localizing Flash content . 960

Localizing AIR applications . 960

Localizing dates, times, and currencies . 960

Chapter 58: About the HTML environment

Overview of the HTML environment . 963

AIR and WebKit . 966

xiiACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Contents

Last updated 10/9/2017

Chapter 59: Programming HTML and JavaScript in AIR

About the HTMLLoader class . 981

Avoiding security-related JavaScript errors . 983

Accessing AIR API classes from JavaScript . 987

About URLs in AIR . 989

Making ActionScript objects available to JavaScript . 989

Accessing HTML DOM and JavaScript objects from ActionScript . 991

Embedding SWF content in HTML . 992

Using ActionScript libraries within an HTML page . 995

Converting Date and RegExp objects . 997

Manipulating an HTML stylesheet from ActionScript . 997

Cross-scripting content in different security sandboxes . 999

Chapter 60: Scripting the AIR HTML Container

Display properties of HTMLLoader objects . 1003

Scrolling HTML content . 1006

Accessing the HTML history list . 1007

Setting the user agent used when loading HTML content . 1007

Setting the character encoding to use for HTML content . 1008

Defining browser-like user interfaces for HTML content . 1008

Creating subclasses of the HTMLLoader class . 1019

Chapter 61: Handling HTML-related events in AIR

HTMLLoader events . 1020

Handling DOM events with ActionScript . 1021

Responding to uncaught JavaScript exceptions . 1021

Handling runtime events with JavaScript . 1023

Chapter 62: Displaying HTML content in mobile apps

StageWebView objects . 1026

Content . 1026

Navigation events . 1028

History . 1029

Focus . 1030

Bitmap capture . 1032

Chapter 63: Using workers for concurrency

Understanding workers and concurrency . 1034

Creating and managing workers . 1035

Communicating between workers . 1037

Chapter 64: Security

Flash Platform security overview . 1042

Security sandboxes . 1044

Permission controls . 1048

Restricting networking APIs . 1056

Full-screen mode security . 1058

Full-screen interactive mode security . 1059

xiiiACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Contents

Last updated 10/9/2017

Loading content . 1060

Cross-scripting . 1063

Accessing loaded media as data . 1066

Loading data . 1068

Loading embedded content from SWF files imported into a security domain . 1071

Working with legacy content . 1071

Setting LocalConnection permissions . 1072

Controlling outbound URL access . 1072

Shared objects . 1074

Camera, microphone, clipboard, mouse, and keyboard access . 1075

AIR security . 1076

Chapter 65: How to Use ActionScript Examples

Types of examples . 1096

Running ActionScript 3.0 examples in Flash Professional . 1098

Running ActionScript 3.0 examples in Flash Builder . 1099

Running ActionScript 3.0 examples on mobile devices . 1100

Chapter 66: SQL support in local databases

Supported SQL syntax . 1105

Data type support . 1125

Chapter 67: SQL error detail messages, ids, and arguments

Chapter 68: Adobe Graphics Assembly Language (AGAL)

AGAL bytecode format . 1134

1

Last updated 10/9/2017

Chapter 1: Working with dates and times

Flash Player 9 and later, Adobe AIR 1.0 and later

Timing might not be everything, but it's usually a key factor in software applications. ActionScript 3.0 provides

powerful ways to manage calendar dates, times, and time intervals. Two main classes provide most of this timing

functionality: the Date class and the new Timer class in the flash.utils package.

Dates and times are a common type of information used in ActionScript programs. For instance, you might need to

know the current day of the week or to measure how much time a user spends on a particular screen, among many

other possibilities. In ActionScript, you can use the Date class to represent a single moment in time, including date and

time information. Within a Date instance are values for the individual date and time units, including year, month, date,

day of the week, hour, minutes, seconds, milliseconds, and time zone. For more advanced uses, ActionScript also

includes the Timer class, which you can use to perform actions after a certain delay or at repeated intervals.

More Help topics

Date

flash.utils.Timer

Managing calendar dates and times

Flash Player 9 and later, Adobe AIR 1.0 and later

All of the calendar date and time management functions in ActionScript 3.0 are concentrated in the top-level Date

class. The Date class contains methods and properties that let you handle dates and times in either Coordinated

Universal Time (UTC) or in local time specific to a time zone. UTC is a standard time definition that is essentially the

same as Greenwich Mean Time (GMT).

Creating Date objects

Flash Player 9 and later, Adobe AIR 1.0 and later

The Date class boasts one of the most versatile constructor methods of all the core classes. You can invoke it four

different ways.

First, if given no parameters, the Date() constructor returns a Date object containing the current date and time, in

local time based on your time zone. Here’s an example:

 var now:Date = new Date();

Second, if given a single numeric parameter, the Date() constructor treats that as the number of milliseconds since

January 1, 1970, and returns a corresponding Date object. Note that the millisecond value you pass in is treated as

milliseconds since January 1, 1970, in UTC. However, the Date object shows values in your local time zone, unless you

use the UTC-specific methods to retrieve and display them. If you create a new Date object using a single milliseconds

parameter, make sure you account for the time zone difference between your local time and UTC. The following

statements create a Date object set to midnight on the day of January 1, 1970, in UTC:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/Date.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/utils/Timer.html

2ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with dates and times

Last updated 10/9/2017

 var millisecondsPerDay:int = 1000 * 60 * 60 * 24;
 // gets a Date one day after the start date of 1/1/1970
 var startTime:Date = new Date(millisecondsPerDay);

Third, you can pass multiple numeric parameters to the Date() constructor. It treats those parameters as the year,

month, day, hour, minute, second, and millisecond, respectively, and returns a corresponding Date object. Those input

parameters are assumed to be in local time rather than UTC. The following statements get a Date object set to midnight

at the start of January 1, 2000, in local time:

 var millenium:Date = new Date(2000, 0, 1, 0, 0, 0, 0);

Fourth, you can pass a single string parameter to the Date() constructor. It will try to parse that string into date or

time components and then return a corresponding Date object. If you use this approach, it’s a good idea to enclose the

Date() constructor in a try..catch block to trap any parsing errors. The Date() constructor accepts a number of

different string formats (which are listed in the ActionScript 3.0 Reference for the Adobe Flash Platform). The

following statement initializes a new Date object using a string value:

 var nextDay:Date = new Date("Mon May 1 2006 11:30:00 AM");

If the Date() constructor cannot successfully parse the string parameter, it will not raise an exception. However, the

resulting Date object will contain an invalid date value.

Getting time unit values

Flash Player 9 and later, Adobe AIR 1.0 and later

You can extract the values for various units of time within a Date object using properties or methods of the Date class.

Each of the following properties gives you the value of a time unit in the Date object:

• The fullYear property

• The month property, which is in a numeric format with 0 for January up to 11 for December

• The date property, which is the calendar number of the day of the month, in the range of 1 to 31

• The day property, which is the day of the week in numeric format, with 0 standing for Sunday

• The hours property, in the range of 0 to 23

• The minutes property

• The seconds property

• The milliseconds property

In fact, the Date class gives you a number of ways to get each of these values. For example, you can get the month

value of a Date object in four different ways:

• The month property

• The getMonth() method

• The monthUTC property

• The getMonthUTC() method

All four ways are essentially equivalent in terms of efficiency, so you can use whichever approach suits your

application best.

The properties just listed all represent components of the total date value. For example, the milliseconds property

will never be greater than 999, since when it reaches 1000 the seconds value increases by 1 and the milliseconds

property resets to 0.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/Date.html#Date%28%29

3ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with dates and times

Last updated 10/9/2017

If you want to get the value of the Date object in terms of milliseconds since January 1, 1970 (UTC), you can use

the getTime() method. Its counterpart, the setTime() method, lets you change the value of an existing Date

object using milliseconds since January 1, 1970 (UTC).

Performing date and time arithmetic

Flash Player 9 and later, Adobe AIR 1.0 and later

You can perform addition and subtraction on dates and times with the Date class. Date values are kept internally in

terms of milliseconds, so you should convert other values to milliseconds before adding them to or subtracting them

from Date objects.

If your application will perform a lot of date and time arithmetic, you might find it useful to create constants that hold

common time unit values in terms of milliseconds, like the following:

 public static const millisecondsPerMinute:int = 1000 * 60;
 public static const millisecondsPerHour:int = 1000 * 60 * 60;
 public static const millisecondsPerDay:int = 1000 * 60 * 60 * 24;

Now it is easy to perform date arithmetic using standard time units. The following code sets a date value to one hour

from the current time using the getTime() and setTime() methods:

 var oneHourFromNow:Date = new Date();
 oneHourFromNow.setTime(oneHourFromNow.getTime() + millisecondsPerHour);

Another way to set a date value is to create a new Date object using a single milliseconds parameter. For example, the

following code adds 30 days to one date to calculate another:

 // sets the invoice date to today's date
 var invoiceDate:Date = new Date();

 // adds 30 days to get the due date
 var dueDate:Date = new Date(invoiceDate.getTime() + (30 * millisecondsPerDay));

Next, the millisecondsPerDay constant is multiplied by 30 to represent 30 days’ time and the result is added to the

invoiceDate value and used to set the dueDate value.

Converting between time zones

Flash Player 9 and later, Adobe AIR 1.0 and later

Date and time arithmetic comes in handy when you want to convert dates from one time zone to another. So does the

getTimezoneOffset() method, which returns the value in minutes by which the Date object’s time zone differs from

UTC. It returns a value in minutes because not all time zones are set to even-hour increments—some have half-hour

offsets from neighboring zones.

The following example uses the time zone offset to convert a date from local time to UTC. It does the conversion by

first calculating the time zone value in milliseconds and then adjusting the Date value by that amount:

 // creates a Date in local time
 var nextDay:Date = new Date("Mon May 1 2006 11:30:00 AM");

 // converts the Date to UTC by adding or subtracting the time zone offset
 var offsetMilliseconds:Number = nextDay.getTimezoneOffset() * 60 * 1000;
 nextDay.setTime(nextDay.getTime() + offsetMilliseconds);

4ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with dates and times

Last updated 10/9/2017

Controlling time intervals

Flash Player 9 and later, Adobe AIR 1.0 and later

When you develop applications using Adobe Flash CS4 Professional, you have access to the timeline, which provides

a steady, frame-by-frame progression through your application. In pure ActionScript projects, however, you must rely

on other timing mechanisms.

Loops versus timers

Flash Player 9 and later, Adobe AIR 1.0 and later

In some programming languages, you must devise your own timing schemes using loop statements like for or

do..while.

Loop statements generally execute as fast as the local machine allows, which means that the application runs faster on

some machines and slower on others. If your application needs a consistent timing interval, you need to tie it to an

actual calendar or clock time. Many applications, such as games, animations, and real-time controllers, need regular,

time-driven ticking mechanisms that are consistent from machine to machine.

The ActionScript 3.0 Timer class provides a powerful solution. Using the ActionScript 3.0 event model, the Timer class

dispatches timer events whenever a specified time interval is reached.

The Timer class

Flash Player 9 and later, Adobe AIR 1.0 and later

The preferred way to handle timing functions in ActionScript 3.0 is to use the Timer class (flash.utils.Timer), which

can be used to dispatch events whenever an interval is reached.

To start a timer, you first create an instance of the Timer class, telling it how often to generate a timer event and how

many times to do so before stopping.

For example, the following code creates a Timer instance that dispatches an event every second and continues for 60

seconds:

 var oneMinuteTimer:Timer = new Timer(1000, 60);

The Timer object dispatches a TimerEvent object each time the given interval is reached. A TimerEvent object’s event

type is timer (defined by the constant TimerEvent.TIMER). A TimerEvent object contains the same properties as a

standard Event object.

If the Timer instance is set to a fixed number of intervals, it will also dispatch a timerComplete event (defined by the

constant TimerEvent.TIMER_COMPLETE) when it reaches the final interval.

Here is a small sample application showing the Timer class in action:

5ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with dates and times

Last updated 10/9/2017

 package
 {
 import flash.display.Sprite;
 import flash.events.TimerEvent;
 import flash.utils.Timer;

 public class ShortTimer extends Sprite
 {
 public function ShortTimer()
 {
 // creates a new five-second Timer
 var minuteTimer:Timer = new Timer(1000, 5);

 // designates listeners for the interval and completion events
 minuteTimer.addEventListener(TimerEvent.TIMER, onTick);
 minuteTimer.addEventListener(TimerEvent.TIMER_COMPLETE, onTimerComplete);

 // starts the timer ticking
 minuteTimer.start();
 }

 public function onTick(event:TimerEvent):void
 {
 // displays the tick count so far
 // The target of this event is the Timer instance itself.
 trace("tick " + event.target.currentCount);
 }

 public function onTimerComplete(event:TimerEvent):void
 {
 trace("Time's Up!");
 }
 }
 }

When the ShortTimer class is created, it creates a Timer instance that will tick once per second for five seconds. Then

it adds two listeners to the timer: one that listens to each tick, and one that listens for the timerComplete event.

Next, it starts the timer ticking, and from that point forward, the onTick() method executes at one-second intervals.

The onTick() method simply displays the current tick count. After five seconds have passed, the

onTimerComplete() method executes, telling you that the time is up.

When you run this sample, you should see the following lines appear in your console or trace window at the rate of

one line per second:

 tick 1
 tick 2
 tick 3
 tick 4
 tick 5
 Time's Up!

6ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with dates and times

Last updated 10/9/2017

Timing functions in the flash.utils package

Flash Player 9 and later, Adobe AIR 1.0 and later

ActionScript 3.0 contains a number of timing functions similar to those that were available in ActionScript 2.0. These

functions are provided as package-level functions in the flash.utils package, and they operate just as they did in

ActionScript 2.0.

These functions remain in ActionScript 3.0 for backward compatibility. Adobe does not recommend that you use them

in new ActionScript 3.0 applications. In general, it is easier and more efficient to use the Timer class in your

applications.

Date and time example: Simple analog clock

Flash Player 9 and later, Adobe AIR 1.0 and later

A simple analog clock example illustrates these two date and time concepts:

• Getting the current date and time and extracting values for the hours, minutes, and seconds

• Using a Timer to set the pace of an application

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

SimpleClock application files can be found in the folder Samples/SimpleClock. The application consists of the

following files:

Function Description

clearInterval(id:uint):void Cancels a specified setInterval() call.

clearTimeout(id:uint):void Cancels a specified setTimeout() call.

getTimer():int Returns the number of milliseconds that have elapsed since Adobe® Flash® Player

or Adobe® AIR™ was initialized.

setInterval(closure:Function,
delay:Number, ... arguments):uint

Runs a function at a specified interval (in milliseconds).

setTimeout(closure:Function,
delay:Number, ... arguments):uint

Runs a specified function after a specified delay (in milliseconds).

File Description

SimpleClockApp.mxml

or

SimpleClockApp.fla

The main application file in Flash (FLA) or Flex (MXML).

com/example/programmingas3/simpleclock/SimpleClock.as The main application file.

com/example/programmingas3/simpleclock/AnalogClockFace.as Draws a round clock face and hour, minute, and seconds

hands based on the time.

http://www.adobe.com/go/learn_programmingAS3samples_flash

7ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with dates and times

Last updated 10/9/2017

Defining the SimpleClock class

Flash Player 9 and later, Adobe AIR 1.0 and later

The clock example is simple, but it’s a good idea to organize even simple applications well so you could easily expand

them in the future. To that end, the SimpleClock application uses the SimpleClock class to handle the startup and time-

keeping tasks, and then uses another class named AnalogClockFace to actually display the time.

Here is the code that defines and initializes the SimpleClock class (note that in the Flash version, SimpleClock extends

the Sprite class instead):

 public class SimpleClock extends UIComponent
 {
 /**
 * The time display component.
 */
 private var face:AnalogClockFace;

 /**
 * The Timer that acts like a heartbeat for the application.
 */
 private var ticker:Timer;

The class has two important properties:

• The face property, which is an instance of the AnalogClockFace class

• The ticker property, which is an instance of the Timer class

The SimpleClock class uses a default constructor. The initClock() method takes care of the real setup work,

creating the clock face and starting the Timer instance ticking.

Creating the clock face

Flash Player 9 and later, Adobe AIR 1.0 and later

The next lines in the SimpleClock code create the clock face that is used to display the time:

 /**
 * Sets up a SimpleClock instance.
 */
 public function initClock(faceSize:Number = 200)
 {
 // creates the clock face and adds it to the display list
 face = new AnalogClockFace(Math.max(20, faceSize));
 face.init();
 addChild(face);

 // draws the initial clock display
 face.draw();

The size of the face can be passed in to the initClock() method. If no faceSize value is passed, a default size of 200

pixels is used.

Next, the application initializes the face and then adds it to the display list using the addChild() method inherited

from the DisplayObjectContainer class. Then it calls the AnalogClockFace.draw() method to display the clock face

once, showing the current time.

8ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with dates and times

Last updated 10/9/2017

Starting the timer

Flash Player 9 and later, Adobe AIR 1.0 and later

After creating the clock face, the initClock() method sets up a timer:

 // creates a Timer that fires an event once per second
 ticker = new Timer(1000);

 // designates the onTick() method to handle Timer events
 ticker.addEventListener(TimerEvent.TIMER, onTick);

 // starts the clock ticking
 ticker.start();

First this method instantiates a Timer instance that will dispatch an event once per second (every 1000 milliseconds).

Since no second repeatCount parameter is passed to the Timer() constructor, the Timer will keep repeating

indefinitely.

The SimpleClock.onTick() method will execute once per second when the timer event is received:

 public function onTick(event:TimerEvent):void
 {
 // updates the clock display
 face.draw();
 }

The AnalogClockFace.draw() method simply draws the clock face and hands.

Displaying the current time

Flash Player 9 and later, Adobe AIR 1.0 and later

Most of the code in the AnalogClockFace class involves setting up the clock face’s display elements. When the

AnalogClockFace is initialized, it draws a circular outline, places a numeric text label at each hour mark, and then

creates three Shape objects, one each for the hour hand, the minute hand, and the second hand on the clock.

Once the SimpleClock application is running, it calls the AnalogClockFace.draw() method each second, as follows:

 /**
 * Called by the parent container when the display is being drawn.
 */
 public override function draw():void
 {
 // stores the current date and time in an instance variable
 currentTime = new Date();
 showTime(currentTime);
 }

This method saves the current time in a variable, so the time can’t change in the middle of drawing the clock hands.

Then it calls the showTime() method to display the hands, as the following shows:

9ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with dates and times

Last updated 10/9/2017

 /**
 * Displays the given Date/Time in that good old analog clock style.
 */
 public function showTime(time:Date):void
 {
 // gets the time values
 var seconds:uint = time.getSeconds();
 var minutes:uint = time.getMinutes();
 var hours:uint = time.getHours();

 // multiplies by 6 to get degrees
 this.secondHand.rotation = 180 + (seconds * 6);
 this.minuteHand.rotation = 180 + (minutes * 6);

 // Multiply by 30 to get basic degrees, then
 // add up to 29.5 degrees (59 * 0.5)
 // to account for the minutes.
 this.hourHand.rotation = 180 + (hours * 30) + (minutes * 0.5);
 }

First, this method extracts the values for the hours, minutes, and seconds of the current time. Then it uses these values

to calculate the angle for each hand. Since the second hand makes a full rotation in 60 seconds, it rotates 6 degrees each

second (360/60). The minute hand rotates the same amount each minute.

The hour hand updates every minute, too, so it can show some progress as the minutes tick by. It rotates 30 degrees

each hour (360/12), but it also rotates half a degree each minute (30 degrees divided by 60 minutes).

10

Last updated 10/9/2017

Chapter 2: Working with strings

Flash Player 9 and later, Adobe AIR 1.0 and later

The String class contains methods that let you work with text strings. Strings are important in working with many

objects. The methods described here are useful for working with strings used in objects such as TextField, StaticText,

XML, ContextMenu, and FileReference objects.

Strings are sequences of characters. ActionScript 3.0 supports ASCII and Unicode characters.

More Help topics

String

RegExp

parseFloat()

parseInt()

Basics of strings

Flash Player 9 and later, Adobe AIR 1.0 and later

In programming parlance, a string is a text value—a sequence of letters, numbers, or other characters strung together

into a single value. For instance, this line of code creates a variable with the data type String and assigns a literal string

value to that variable:

 var albumName:String = "Three for the money";

As this example shows, in ActionScript you can denote a string value by surrounding text with double or single

quotation marks. Here are several more examples of strings:

 "Hello"
 "555-7649"
 "http://www.adobe.com/"

Any time you manipulate a piece of text in ActionScript, you are working with a string value. The ActionScript String

class is the data type you can use to work with text values. String instances are frequently used for properties, method

parameters, and so forth in many other ActionScript classes.

Important concepts and terms

The following reference list contains important terms related to strings that you will encounter:

ASCII A system for representing text characters and symbols in computer programs. The ASCII system supports the

26-letter English alphabet, plus a limited set of additional characters.

Character The smallest unit of text data (a single letter or symbol).

Concatenation Joining multiple string values together by adding one to the end of the other, creating a new string

value.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/String.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/RegExp.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package.html#parseFloat%28%29
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/package.html#parseInt%28%29

11ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

Empty string A string that contains no text, white space, or other characters, written as "". An empty string value is

different from a String variable with a null value—a null String variable is a variable that does not have a String instance

assigned to it, whereas an empty string has an instance with a value that contains no characters.

String A textual value (sequence of characters).

String literal (or “literal string”) A string value written explicitly in code, written as a text value surrounded by double

quotation marks or single quotation marks.

Substring A string that is a portion of another string.

Unicode A standard system for representing text characters and symbols in computer programs. The Unicode system

allows for the use of any character in any writing system.

Creating strings

Flash Player 9 and later, Adobe AIR 1.0 and later

The String class is used to represent string (textual) data in ActionScript 3.0. ActionScript strings support both ASCII

and Unicode characters. The simplest way to create a string is to use a string literal. To declare a string literal, use

straight double quotation mark (") or single quotation mark (') characters. For example, the following two strings are

equivalent:

 var str1:String = "hello";
 var str2:String = 'hello';

You can also declare a string by using the new operator, as follows:

 var str1:String = new String("hello");
 var str2:String = new String(str1);
 var str3:String = new String(); // str3 == ""

The following two strings are equivalent:

 var str1:String = "hello";
 var str2:String = new String("hello");

To use single quotation marks (') within a string literal defined with single quotation mark (') delimiters, use the

backslash escape character (\). Similarly, to use double quotation marks (") within a string literal defined with double

quotation marks (") delimiters, use the backslash escape character (\). The following two strings are equivalent:

 var str1:String = "That's \"A-OK\"";
 var str2:String = 'That\'s "A-OK"';

You may choose to use single quotation marks or double quotation marks based on any single or double quotation

marks that exist in a string literal, as in the following:

 var str1:String = "ActionScript 3.0";
 var str2:String = '<item id="155">banana</item>';

Keep in mind that ActionScript distinguishes between a straight single quotation mark (') and a left or right single

quotation mark (' or '). The same is true for double quotation marks. Use straight quotation marks to delineate

string literals. When pasting text from another source into ActionScript, be sure to use the correct characters.

As the following table shows, you can use the backslash escape character (\) to define other characters in string literals:

12ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

The length property

Flash Player 9 and later, Adobe AIR 1.0 and later

Every string has a length property, which is equal to the number of characters in the string:

 var str:String = "Adobe";
 trace(str.length); // output: 5

An empty string and a null string both have a length of 0, as the following example shows:

 var str1:String = new String();
 trace(str1.length); // output: 0

 str2:String = '';
 trace(str2.length); // output: 0

Working with characters in strings

Flash Player 9 and later, Adobe AIR 1.0 and later

Every character in a string has an index position in the string (an integer). The index position of the first character is

0. For example, in the following string, the character y is in position 0 and the character w is in position 5:

 "yellow"

You can examine individual characters in various positions in a string using the charAt() method and the

charCodeAt() method, as in this example:

 var str:String = "hello world!";
 for (var i:int = 0; i < str.length; i++)
 {
 trace(str.charAt(i), "-", str.charCodeAt(i));
 }

Escape sequence Character

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab

\unnnn The Unicode character with the character code specified by the hexadecimal number nnnn; for

example, \u263a is the smiley character.

\\xnn The ASCII character with the character code specified by the hexadecimal number nn

\' Single quotation mark

\" Double quotation mark

\\ Single backslash character

13ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

When you run this code, the following output is produced:

 h - 104
 e - 101
 l - 108
 l - 108
 o - 111
 - 32
 w - 119
 o - 111
 r - 114
 l - 108
 d - 100
 ! - 33

You can also use character codes to define a string using the fromCharCode() method, as the following example

shows:

 var myStr:String = String.fromCharCode(104,101,108,108,111,32,119,111,114,108,100,33);
 // Sets myStr to "hello world!"

Comparing strings

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the following operators to compare strings: <, <=, !=, ==, =>, and >. These operators can be used with

conditional statements, such as if and while, as the following example shows:

 var str1:String = "Apple";
 var str2:String = "apple";
 if (str1 < str2)
 {
 trace("A < a, B < b, C < c, ...");
 }

When using these operators with strings, ActionScript considers the character code value of each character in the

string, comparing characters from left to right, as in the following:

 trace("A" < "B"); // true
 trace("A" < "a"); // true
 trace("Ab" < "az"); // true
 trace("abc" < "abza"); // true

Use the == and != operators to compare strings with each other and to compare strings with other types of objects, as

the following example shows:

 var str1:String = "1";
 var str1b:String = "1";
 var str2:String = "2";
 trace(str1 == str1b); // true
 trace(str1 == str2); // false
 var total:uint = 1;
 trace(str1 == total); // true

14ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

Obtaining string representations of other objects

Flash Player 9 and later, Adobe AIR 1.0 and later

You can obtain a String representation for any kind of object. All objects have a toString() method for this purpose:

 var n:Number = 99.47;
 var str:String = n.toString();
 // str == "99.47"

When using the + concatenation operator with a combination of String objects and objects that are not strings, you do

not need to use the toString() method. For details on concatenation, see the next section.

The String() global function returns the same value for a given object as the value returned by the object calling the

toString() method.

Concatenating strings

Flash Player 9 and later, Adobe AIR 1.0 and later

Concatenation of strings means taking two strings and joining them sequentially into one. For example, you can use

the + operator to concatenate two strings:

 var str1:String = "green";
 var str2:String = "ish";
 var str3:String = str1 + str2; // str3 == "greenish"

You can also use the += operator to the produce the same result, as the following example shows:

 var str:String = "green";
 str += "ish"; // str == "greenish"

Additionally, the String class includes a concat() method, which can be used as follows:

 var str1:String = "Bonjour";
 var str2:String = "from";
 var str3:String = "Paris";
 var str4:String = str1.concat(" ", str2, " ", str3);
 // str4 == "Bonjour from Paris"

If you use the + operator (or the += operator) with a String object and an object that is not a string, ActionScript

automatically converts the nonstring object to a String object in order to evaluate the expression, as shown in this

example:

 var str:String = "Area = ";
 var area:Number = Math.PI * Math.pow(3, 2);
 str = str + area; // str == "Area = 28.274333882308138"

However, you can use parentheses for grouping to provide context for the + operator, as the following example shows:

 trace("Total: $" + 4.55 + 1.45); // output: Total: $4.551.45
 trace("Total: $" + (4.55 + 1.45)); // output: Total: $6

15ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

Finding substrings and patterns in strings

Flash Player 9 and later, Adobe AIR 1.0 and later

Substrings are sequential characters within a string. For example, the string "abc" has the following substrings: "",

"a", "ab", "abc", "b", "bc", "c". You can use ActionScript methods to locate substrings of a string.

Patterns are defined in ActionScript by strings or by regular expressions. For example, the following regular expression

defines a specific pattern—the letters A, B, and C followed by a digit character (the forward slashes are regular

expression delimiters):

 /ABC\d/

ActionScript includes methods for finding patterns in strings and for replacing found matches with replacement

substrings. These methods are described in the following sections.

Regular expressions can define intricate patterns. For more information, see “Using regular expressions” on page 76.

Finding a substring by character position

Flash Player 9 and later, Adobe AIR 1.0 and later

The substr() and substring() methods are similar. Both return a substring of a string. Both take two parameters.

In both methods, the first parameter is the position of the starting character in the given string. However, in the

substr() method, the second parameter is the length of the substring to return, and in the substring() method, the

second parameter is the position of the character at the end of the substring (which is not included in the returned

string). This example shows the difference between these two methods:

 var str:String = "Hello from Paris, Texas!!!";
 trace(str.substr(11,15)); // output: Paris, Texas!!!
 trace(str.substring(11,15)); // output: Pari

The slice() method functions similarly to the substring() method. When given two non-negative integers as

parameters, it works exactly the same. However, the slice() method can take negative integers as parameters, in

which case the character position is taken from the end of the string, as shown in the following example:

 var str:String = "Hello from Paris, Texas!!!";
 trace(str.slice(11,15)); // output: Pari
 trace(str.slice(-3,-1)); // output: !!
 trace(str.slice(-3,26)); // output: !!!
 trace(str.slice(-3,str.length)); // output: !!!
 trace(str.slice(-8,-3)); // output: Texas

You can combine non-negative and negative integers as the parameters of the slice() method.

Finding the character position of a matching substring

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the indexOf() and lastIndexOf() methods to locate matching substrings within a string, as the

following example shows:

 var str:String = "The moon, the stars, the sea, the land";
 trace(str.indexOf("the")); // output: 10

Notice that the indexOf() method is case-sensitive.

16ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

You can specify a second parameter to indicate the index position in the string from which to start the search, as

follows:

 var str:String = "The moon, the stars, the sea, the land"
 trace(str.indexOf("the", 11)); // output: 21

The lastIndexOf() method finds the last occurrence of a substring in the string:

 var str:String = "The moon, the stars, the sea, the land"
 trace(str.lastIndexOf("the")); // output: 30

If you include a second parameter with the lastIndexOf() method, the search is conducted from that index position

in the string working backward (from right to left):

 var str:String = "The moon, the stars, the sea, the land"
 trace(str.lastIndexOf("the", 29)); // output: 21

Creating an array of substrings segmented by a delimiter

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the split() method to create an array of substrings, which is divided based on a delimiter. For example,

you can segment a comma-delimited or tab-delimited string into multiple strings.

The following example shows how to split an array into substrings with the ampersand (&) character as the delimiter:

 var queryStr:String = "first=joe&last=cheng&title=manager&StartDate=3/6/65";
 var params:Array = queryStr.split("&", 2); // params == ["first=joe","last=cheng"]

The second parameter of the split() method, which is optional, defines the maximum size of the array that is

returned.

You can also use a regular expression as the delimiter character:

 var str:String = "Give me\t5."
 var a:Array = str.split(/\s+/); // a == ["Give","me","5."]

For more information, see “Using regular expressions” on page 76 and the ActionScript 3.0 Reference for the Adobe

Flash Platform.

Finding patterns in strings and replacing substrings

Flash Player 9 and later, Adobe AIR 1.0 and later

The String class includes the following methods for working with patterns in strings:

• Use the match() and search() methods to locate substrings that match a pattern.

• Use the replace() method to find substrings that match a pattern and replace them with a specified substring.

These methods are described in the following sections.

You can use strings or regular expressions to define patterns used in these methods. For more information on regular

expressions, see “Using regular expressions” on page 76.

Finding matching substrings

The search() method returns the index position of the first substring that matches a given pattern, as shown in this

example:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

17ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

 var str:String = "The more the merrier.";
 // (This search is case-sensitive.)
 trace(str.search("the")); // output: 9

You can also use regular expressions to define the pattern to match, as this example shows:

 var pattern:RegExp = /the/i;
 var str:String = "The more the merrier.";
 trace(str.search(pattern)); // 0

The output of the trace() method is 0, because the first character in the string is index position 0. The i flag is set in

the regular expression, so the search is not case-sensitive.

The search() method finds only one match and returns its starting index position, even if the g (global) flag is set in

the regular expression.

The following example shows a more intricate regular expression, one that matches a string in double quotation marks:

 var pattern:RegExp = /"[^"]*"/;
 var str:String = "The \"more\" the merrier.";
 trace(str.search(pattern)); // output: 4

 str = "The \"more the merrier.";
 trace(str.search(pattern)); // output: -1
 // (Indicates no match, since there is no closing double quotation mark.)

The match() method works similarly. It searches for a matching substring. However, when you use the global flag in

a regular expression pattern, as in the following example, match() returns an array of matching substrings:

 var str:String = "bob@example.com, omar@example.org";
 var pattern:RegExp = /\w*@\w*\.[org|com]+/g;
 var results:Array = str.match(pattern);

The results array is set to the following:

 ["bob@example.com","omar@example.org"]

For more information on regular expressions, see “Using regular expressions” on page 76.

Replacing matched substrings

You can use the replace() method to search for a specified pattern in a string and replace matches with the specified

replacement string, as the following example shows:

 var str:String = "She sells seashells by the seashore.";
 var pattern:RegExp = /sh/gi;
 trace(str.replace(pattern, "sch")); //sche sells seaschells by the seaschore.

Note that in this example, the matched strings are not case-sensitive because the i (ignoreCase) flag is set in the

regular expression, and multiple matches are replaced because the g (global) flag is set. For more information, see

“Using regular expressions” on page 76.

You can include the following $ replacement codes in the replacement string. The replacement text shown in the

following table is inserted in place of the $ replacement code:

18ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

For example, the following shows the use of the $2 and $1 replacement codes, which represent the first and second

capturing group matched:

 var str:String = "flip-flop";
 var pattern:RegExp = /(\w+)-(\w+)/g;
 trace(str.replace(pattern, "$2-$1")); // flop-flip

You can also use a function as the second parameter of the replace() method. The matching text is replaced by the

returned value of the function.

 var str:String = "Now only $9.95!";
 var price:RegExp = /\$([\d,]+.\d+)+/i;
 trace(str.replace(price, usdToEuro));

 function usdToEuro(matchedSubstring:String, capturedMatch1:String, index:int,
str:String):String
 {
 var usd:String = capturedMatch1;
 usd = usd.replace(",", "");
 var exchangeRate:Number = 0.853690;
 var euro:Number = parseFloat(usd) * exchangeRate;
 const euroSymbol:String = String.fromCharCode(8364);
 return euro.toFixed(2) + " " + euroSymbol;
 }

When you use a function as the second parameter of the replace() method, the following arguments are passed to

the function:

• The matching portion of the string.

• Any capturing parenthetical group matches. The number of arguments passed this way will vary depending on the

number of parenthetical matches. You can determine the number of parenthetical matches by checking

arguments.length - 3 within the function code.

• The index position in the string where the match begins.

• The complete string.

$ Code Replacement Text

$$ $

$& The matched substring.

$` The portion of the string that precedes the matched substring. This code uses the straight left single quotation

mark character (`), not the straight single quotation mark (') or the left curly single quotation mark (').

$' The portion of the string that follows the matched substring. This code uses the straight single quotation mark (').

$n The nth captured parenthetical group match, where n is a single digit, 1-9, and $n is not followed by a decimal digit.

$nn The nnth captured parenthetical group match, where nn is a two-digit decimal number, 01–99. If the nnth capture

is undefined, the replacement text is an empty string.

19ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

Converting strings between uppercase and lowercase

Flash Player 9 and later, Adobe AIR 1.0 and later

As the following example shows, the toLowerCase() method and the toUpperCase() method convert alphabetical

characters in the string to lowercase and uppercase, respectively:

 var str:String = "Dr. Bob Roberts, #9."
 trace(str.toLowerCase()); // dr. bob roberts, #9.
 trace(str.toUpperCase()); // DR. BOB ROBERTS, #9.

After these methods are executed, the source string remains unchanged. To transform the source string, use the

following code:

 str = str.toUpperCase();

These methods work with extended characters, not simply a–z and A–Z:

 var str:String = "José Barça";
 trace(str.toUpperCase(), str.toLowerCase()); // JOSÉ BARÇA josé barça

Strings example: ASCII art

Flash Player 9 and later, Adobe AIR 1.0 and later

This ASCII Art example shows a number of features of working with the String class in ActionScript 3.0, including the

following:

• The split() method of the String class is used to extract values from a character-delimited string (image

information in a tab-delimited text file).

• Several string-manipulation techniques, including split(), concatenation, and extracting a portion of the string

using substring() and substr(), are used to capitalize the first letter of each word in the image titles.

• The getCharAt() method is used to get a single character from a string (to determine the ASCII character

corresponding to a grayscale bitmap value).

• String concatenation is used to build up the ASCII art representation of an image one character at a time.

The term ASCII art refers to a text representations of an image, in which a grid of monospaced font characters, such

as Courier New characters, plots the image. The following image shows an example of ASCII art produced by the

application:

20ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

The ASCII art version of the graphic is shown on the right.

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

ASCIIArt application files can be found in the folder Samples/AsciiArt. The application consists of the following files:

Extracting tab-delimited values

Flash Player 9 and later, Adobe AIR 1.0 and later

This example uses the common practice of storing application data separate from the application itself; that way, if the

data changes (for example, if another image is added or an image’s title changes), there is no need to recreate the SWF

file. In this case, the image metadata, including the image title, the URL of the actual image file, and some values that

are used to manipulate the image, are stored in a text file (the txt/ImageData.txt file in the project). The contents of the

text file are as follows:

File Description

AsciiArtApp.mxml

or

AsciiArtApp.fla

The main application file in Flash (FLA) or Flex (MXML)

com/example/programmingas3/asciiArt/AsciiArtBuilder.as The class that provides the main functionality of the

application, including extracting image metadata from a text

file, loading the images, and managing the image-to-text

conversion process.

com/example/programmingas3/asciiArt/BitmapToAsciiConverter.as A class that provides the parseBitmapData() method for

converting image data into a String version.

com/example/programmingas3/asciiArt/Image.as A class which represents a loaded bitmap image.

com/example/programmingas3/asciiArt/ImageInfo.as A class representing metadata for an ASCII art image (such as

title, image file URL, and so on).

image/ A folder containing images used by the application.

txt/ImageData.txt A tab-delimited text file, containing information on the

images to be loaded by the application.

http://www.adobe.com/go/learn_programmingAS3samples_flash

21ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

 FILENAMETITLEWHITE_THRESHHOLDBLACK_THRESHHOLD
 FruitBasket.jpgPear, apple, orange, and bananad810
 Banana.jpgA picture of a bananaC820
 Orange.jpgorangeFF20
 Apple.jpgpicture of an apple6E10

The file uses a specific tab-delimited format. The first line (row) is a heading row. The remaining lines contain the

following data for each bitmap to be loaded:

• The filename of the bitmap.

• The display name of the bitmap.

• The white-threshold and black-threshold values for the bitmaps. These are hex values above which and below

which a pixel is to be considered completely white or completely black.

As soon as the application starts, the AsciiArtBuilder class loads and parses the contents of the text file in order to

create the “stack” of images that it will display, using the following code from the AsciiArtBuilder class’s

parseImageInfo() method:

 var lines:Array = _imageInfoLoader.data.split("\n");
 var numLines:uint = lines.length;
 for (var i:uint = 1; i < numLines; i++)
 {
 var imageInfoRaw:String = lines[i];
 ...
 if (imageInfoRaw.length > 0)
 {
 // Create a new image info record and add it to the array of image info.
 var imageInfo:ImageInfo = new ImageInfo();

 // Split the current line into values (separated by tab (\t)
 // characters) and extract the individual properties:
 var imageProperties:Array = imageInfoRaw.split("\t");
 imageInfo.fileName = imageProperties[0];
 imageInfo.title = normalizeTitle(imageProperties[1]);
 imageInfo.whiteThreshold = parseInt(imageProperties[2], 16);
 imageInfo.blackThreshold = parseInt(imageProperties[3], 16);
 result.push(imageInfo);
 }
 }

The entire contents of the text file are contained in a single String instance, the _imageInfoLoader.data property.

Using the split() method with the newline character ("\n") as a parameter, the String instance is divided into an

Array (lines) whose elements are the individual lines of the text file. Next, the code uses a loop to work with each of

the lines (except the first, because it contains only headers rather than actual content). Inside the loop, the split()

method is used once again to divide the contents of the single line into a set of values (the Array object named

imageProperties). The parameter used with the split() method in this case is the tab ("\t") character, because the

values in each line are delineated by tab characters.

22ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

Using String methods to normalize image titles

Flash Player 9 and later, Adobe AIR 1.0 and later

One of the design decisions for this application is that all the image titles are displayed using a standard format, with

the first letter of each word capitalized (except for a few words that are commonly not capitalized in English titles).

Rather than assume that the text file contains properly formatted titles, the application formats the titles while they’re

being extracted from the text file.

In the previous code listing, as part of extracting individual image metadata values, the following line of code is used:

 imageInfo.title = normalizeTitle(imageProperties[1]);

In that code, the image’s title from the text file is passed through the normalizeTitle() method before it is stored in

the ImageInfo object:

 private function normalizeTitle(title:String):String
 {
 var words:Array = title.split(" ");
 var len:uint = words.length;
 for (var i:uint; i < len; i++)
 {
 words[i] = capitalizeFirstLetter(words[i]);
 }

 return words.join(" ");
 }

This method uses the split() method to divide the title into individual words (separated by the space character),

passes each word through the capitalizeFirstLetter() method, and then uses the Array class’s join() method

to combine the words back into a single string again.

As its name suggests, the capitalizeFirstLetter() method actually does the work of capitalizing the first letter of

each word:

23ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

 /**
 * Capitalizes the first letter of a single word, unless it's one of
 * a set of words that are normally not capitalized in English.
 */
 private function capitalizeFirstLetter(word:String):String
 {
 switch (word)
 {
 case "and":
 case "the":
 case "in":
 case "an":
 case "or":
 case "at":
 case "of":
 case "a":
 // Don't do anything to these words.
 break;
 default:
 // For any other word, capitalize the first character.
 var firstLetter:String = word.substr(0, 1);
 firstLetter = firstLetter.toUpperCase();
 var otherLetters:String = word.substring(1);
 word = firstLetter + otherLetters;
 }
 return word;
 }

In English, the initial character of each word in a title is not capitalized if it is one of the following words: “and,” “the,”

“in,” “an,” “or,” “at,” “of,” or “a.” (This is a simplified version of the rules.) To execute this logic, the code first uses a

switch statement to check if the word is one of the words that should not be capitalized. If so, the code simply jumps

out of the switch statement. On the other hand, if the word should be capitalized, that is done in several steps, as

follows:

1 The first letter of the word is extracted using substr(0, 1), which extracts a substring starting with the character

at index 0 (the first letter in the string, as indicated by the first parameter 0). The substring will be one character in

length (indicated by the second parameter 1).

2 That character is capitalized using the toUpperCase() method.

3 The remaining characters of the original word are extracted using substring(1), which extracts a substring

starting at index 1 (the second letter) through the end of the string (indicated by leaving off the second parameter

of the substring() method).

4 The final word is created by combining the newly capitalized first letter with the remaining letters using string

concatenation: firstLetter + otherLetters.

Generating the ASCII art text

Flash Player 9 and later, Adobe AIR 1.0 and later

The BitmapToAsciiConverter class provides the functionality of converting a bitmap image to its ASCII text

representation. This process is performed by the parseBitmapData() method, which is partially shown here:

24ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with strings

Last updated 10/9/2017

 var result:String = "";

 // Loop through the rows of pixels top to bottom:
 for (var y:uint = 0; y < _data.height; y += verticalResolution)
 {
 // Within each row, loop through pixels left to right:
 for (var x:uint = 0; x < _data.width; x += horizontalResolution)
 {
 ...

 // Convert the gray value in the 0-255 range to a value
 // in the 0-64 range (since that's the number of "shades of
 // gray" in the set of available characters):
 index = Math.floor(grayVal / 4);
 result += palette.charAt(index);
 }
 result += "\n";
 }
 return result;

This code first defines a String instance named result that will be used to build up the ASCII art version of the bitmap

image. Next, it loops through individual pixels of the source bitmap image. Using several color-manipulation

techniques (omitted here for brevity), it converts the red, green, and blue color values of an individual pixel to a single

grayscale value (a number from 0 to 255). The code then divides that value by 4 (as shown) to convert it to a value in

the 0-63 scale, which is stored in the variable index. (The 0-63 scale is used because the “palette” of available ASCII

characters used by this application contains 64 values.) The palette of characters is defined as a String instance in the

BitmapToAsciiConverter class:

 // The characters are in order from darkest to lightest, so that their
 // position (index) in the string corresponds to a relative color value
 // (0 = black).
 private static const palette:String =
"@#$%&8BMW*mwqpdbkhaoQ0OZXYUJCLtfjzxnuvcr[]{}1()|/?Il!i><+_~-;,. ";

Since the index variable defines which ASCII character in the palette corresponds to the current pixel in the bitmap

image, that character is retrieved from the palette String using the charAt() method. It is then appended to the

result String instance using the concatenation assignment operator (+=). In addition, at the end of each row of pixels,

a newline character is concatenated to the end of the result String, forcing the line to wrap to create a new row of

character “pixels.”

25

Last updated 10/9/2017

Chapter 3: Working with arrays

Flash Player 9 and later, Adobe AIR 1.0 and later

Arrays allow you to store multiple values in a single data structure. You can use simple indexed arrays that store values

using fixed ordinal integer indexes or complex associative arrays that store values using arbitrary keys. Arrays can also

be multidimensional, containing elements that are themselves arrays. Finally, you can use a Vector for an array whose

elements are all instances of the same data type.

More Help topics

Array

Vector

Basics of arrays

Flash Player 9 and later, Adobe AIR 1.0 and later

Often in programming you’ll need to work with a set of items rather than a single object. For example, in a music player

application, you might want to have a list of songs waiting to be played. You wouldn’t want to have to create a separate

variable for each song on that list. It would be preferable to have all the Song objects together in a bundle, and be able

to work with them as a group.

An array is a programming element that acts as a container for a set of items, such as a list of songs. Most commonly

all the items in an array are instances of the same class, but that is not a requirement in ActionScript. The individual

items in an array are known as the array’s elements. You can think of an array as a file drawer for variables. Variables

can be added as elements in the array, which is like placing a folder into the file drawer. You can work with the array

as a single variable (like carrying the whole drawer to a different location). You can work with the variables as a group

(like flipping through the folders one by one searching for a piece of information). You can also access them

individually (like opening the drawer and selecting a single folder).

For example, imagine you’re creating a music player application where a user can select multiple songs and add them

to a playlist. In your ActionScript code, you have a method named addSongsToPlaylist(), which accepts a single

array as a parameter. No matter how many songs you want to add to the list (a few, a lot, or even only one), you call

the addSongsToPlaylist() method only one time, passing it the array containing the Song objects. Inside the

addSongsToPlaylist() method, you can use a loop to go through the array’s elements (the songs) one by one and

actually add them to the playlist.

The most common type of ActionScript array is an indexed array. In an indexed array each item is stored in a

numbered slot (known as an index). Items are accessed using the number, like an address. Indexed arrays work well

for most programming needs. The Array class is one common class that’s used to represent an indexed array.

Often, an indexed array is used to store multiple items of the same type (objects that are instances of the same class).

The Array class doesn’t have any means for restricting the type of items it contains. The Vector class is a type of indexed

array in which all the items in a single array are the same type. Using a Vector instance instead of an Array instance

can also provide performance improvements and other benefits. The Vector class is available starting with Flash Player

10 and Adobe AIR 1.5.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/Array.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/Vector.html

26ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

A special use of an indexed array is a multidimensional array. A multidimensional array is an indexed array whose

elements are indexed arrays (which in turn contain other elements).

Another type of array is an associative array, which uses a string key instead of a numeric index to identify individual

elements. Finally, ActionScript 3.0 also includes the Dictionary class, which represents a dictionary. A dictionary is an

array that allows you to use any type of object as a key to distinguish between elements.

Important concepts and terms

The following reference list contains important terms that you will encounter when programming array and vector

handling routines:

Array An object that serves as a container to group multiple objects.

Array access ([]) operator A pair of square brackets surrounding an index or key that uniquely identifies an array

element. This syntax is used after an array variable name to specify a single element of the array rather than the entire

array.

Associative array An array that uses string keys to identify individual elements.

Base type The data type of the objects that a Vector instance is allowed to store.

Dictionary An array whose items consist of pairs of objects, known as the key and the value. The key is used instead

of a numeric index to identify a single element.

Element A single item in an array.

Index The numeric “address” used to identify a single element in an indexed array.

Indexed array The standard type of array that stores each element in a numbered position, and uses the number

(index) to identify individual elements.

Key The string or object used to identify a single element in an associative array or a dictionary.

Multidimensional array An array containing items that are arrays rather than single values.

T The standard convention that’s used in this documentation to represent the base type of a Vector instance, whatever

that base type happens to be. The T convention is used to represent a class name, as shown in the Type parameter

description. (“T” stands for “type,” as in “data type.”).

Type parameter The syntax that’s used with the Vector class name to specify the Vector’s base type (the data type of

the objects that it stores). The syntax consists of a period (.), then the data type name surrounded by angle brackets

(<>). Put together, it looks like this: Vector.<T>. In this documentation, the class specified in the type parameter is

represented generically as T.

Vector A type of array whose elements are all instances of the same data type.

Indexed arrays

Flash Player 9 and later, Adobe AIR 1.0 and later

Indexed arrays store a series of one or more values organized such that each value can be accessed using an unsigned

integer value. The first index is always the number 0, and the index increments by 1 for each subsequent element added

to the array. In ActionScript 3.0, two classes are used as indexed arrays: the Array class and the Vector class.

Indexed arrays use an unsigned 32-bit integer for the index number. The maximum size of an indexed array is 232 - 1

or 4,294,967,295. An attempt to create an array that is larger than the maximum size results in a run-time error.

27ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

To access an individual element of an indexed array, you use the array access ([]) operator to specify the index position

of the element you wish to access. For example, the following code represents the first element (the element at index

0) in an indexed array named songTitles:

songTitles[0]

The combination of the array variable name followed by the index in square brackets functions as a single identifier.

(In other words, it can be used in any way a variable name can). You can assign a value to an indexed array element by

using the name and index on the left side of an assignment statement:

songTitles[1] = "Symphony No. 5 in D minor";

Likewise, you can retrieve the value of an indexed array element by using the name and index on the right side of an

assignment statement:

var nextSong:String = songTitles[2];

You can also use a variable in the square brackets rather than providing an explicit value. (The variable must contain

a non-negative integer value such as a uint, a positive int, or a positive integer Number instance). This technique is

commonly used to “loop over” the elements in an indexed array and perform an operation on some or all the elements.

The following code listing demonstrates this technique. The code uses a loop to access each value in an Array object

named oddNumbers. It uses the trace() statement to print each value in the form “oddNumber[index] = value”:

var oddNumbers:Array = [1, 3, 5, 7, 9, 11];
var len:uint = oddNumbers.length;
for (var i:uint = 0; i < len; i++)
{

trace("oddNumbers[" + i.toString() + "] = " + oddNumbers[i].toString());
}

The Array class

The first type of indexed array is the Array class. An Array instance can hold a value of any data type. The same Array

object can hold objects that are of different data types. For example, a single Array instance can have a String value in

index 0, a Number instance in index 1, and an XML object in index 2.

The Vector class

Another type of indexed array that’s available in ActionScript 3.0 is the Vector class. A Vector instance is a typed array,

which means that all the elements in a Vector instance always have the same data type.

Note: The Vector class is available starting with Flash Player 10 and Adobe AIR 1.5.

When you declare a Vector variable or instantiate a Vector object, you explicitly specify the data type of the objects

that the Vector can contain. The specified data type is known as the Vector’s base type. At run time and at compile time

(in strict mode), any code that sets the value of a Vector element or retrieves a value from a Vector is checked. If the

data type of the object being added or retrieved doesn’t match the Vector’s base type, an error occurs.

In addition to the data type restriction, the Vector class has other restrictions that distinguish it from the Array class:

• A Vector is a dense array. An Array object may have values in indices 0 and 7 even if it has no values in positions 1

through 6. However, a Vector must have a value (or null) in each index.

• A Vector can optionally be fixed-length. This means that the number of elements the Vector contains can’t change.

• Access to a Vector’s elements is bounds-checked. You can never read a value from an index greater than the final

element (length - 1). You can never set a value with an index more than one beyond the current final index. (In

other words, you can only set a value at an existing index or at index [length].)

28ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

As a result of its restrictions, a Vector has three primary benefits over an Array instance whose elements are all

instances of a single class:

• Performance: array element access and iteration are much faster when using a Vector instance than when using an

Array instance.

• Type safety: in strict mode the compiler can identify data type errors. Examples of such errors include assigning a

value of the incorrect data type to a Vector or expecting the wrong data type when reading a value from a Vector.

At run time, data types are also checked when adding data to or reading data from a Vector object. Note, however,

that when you use the push() method or unshift() method to add values to a Vector, the arguments’ data types

are not checked at compile time. When using those methods the values are still checked at run time.

• Reliability: runtime range checking (or fixed-length checking) increases reliability significantly over Arrays.

Aside from the additional restrictions and benefits, the Vector class is very much like the Array class. The properties

and methods of a Vector object are similar—for the most part identical—to the properties and methods of an Array.

In most situations where you would use an Array in which all the elements have the same data type, a Vector instance

is preferable.

Creating arrays

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use several techniques to create an Array instance or a Vector instance. However, the techniques to create each

type of array are somewhat different.

Creating an Array instance

Flash Player 9 and later, Adobe AIR 1.0 and later

You create an Array object by calling the Array() constructor or by using Array literal syntax.

The Array() constructor function can be used in three ways. First, if you call the constructor with no arguments, you

get an empty array. You can use the length property of the Array class to verify that the array has no elements. For

example, the following code calls the Array() constructor with no arguments:

 var names:Array = new Array();
 trace(names.length); // output: 0

Second, if you use a number as the only parameter to the Array() constructor, an array of that length is created, with

each element’s value set to undefined. The argument must be an unsigned integer between the values 0 and

4,294,967,295. For example, the following code calls the Array() constructor with a single numeric argument:

 var names:Array = new Array(3);
 trace(names.length); // output: 3
 trace(names[0]); // output: undefined
 trace(names[1]); // output: undefined
 trace(names[2]); // output: undefined

Third, if you call the constructor and pass a list of elements as parameters, an array is created, with elements

corresponding to each of the parameters. The following code passes three arguments to the Array() constructor:

 var names:Array = new Array("John", "Jane", "David");
 trace(names.length); // output: 3
 trace(names[0]); // output: John
 trace(names[1]); // output: Jane
 trace(names[2]); // output: David

29ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

You can also create arrays with Array literals. An Array literal can be assigned directly to an array variable, as shown

in the following example:

 var names:Array = ["John", "Jane", "David"];

Creating a Vector instance

Flash Player 10 and later, Adobe AIR 1.5 and later

You create a Vector instance by calling the Vector.<T>() constructor. You can also create a Vector by calling the

Vector.<T>() global function. That function converts a specified object to a Vector instance. In Flash

Professional CS5 and later, Flash Builder 4 and later, and Flex 4 and later, you can also create a vector instance by using

Vector literal syntax.

Any time you declare a Vector variable (or similarly, a Vector method parameter or method return type) you specify

the base type of the Vector variable. You also specify the base type when you create a Vector instance by calling the

Vector.<T>() constructor. Put another way, any time you use the term Vector in ActionScript, it is accompanied by

a base type.

You specify the Vector’s base type using type parameter syntax. The type parameter immediately follows the word

Vector in the code. It consists of a dot (.), then the base class name surrounded by angle brackets (<>), as shown in

this example:

var v:Vector.<String>;
v = new Vector.<String>();

In the first line of the example, the variable v is declared as a Vector.<String> instance. In other words, it represents

an indexed array that can only hold String instances. The second line calls the Vector() constructor to create an

instance of the same Vector type (that is, a Vector whose elements are all String objects). It assigns that object to v.

Using the Vector.<T>() constructor

If you use the Vector.<T>() constructor without any arguments, it creates an empty Vector instance. You can test

that a Vector is empty by checking its length property. For example, the following code calls the Vector.<T>()

constructor with no arguments:

 var names:Vector.<String> = new Vector.<String>();
 trace(names.length); // output: 0

If you know ahead of time how many elements a Vector initially needs, you can pre-define the number of elements in

the Vector. To create a Vector with a certain number of elements, pass the number of elements as the first parameter

(the length parameter). Because Vector elements can’t be empty, the elements are filled with instances of the base

type. If the base type is a reference type that allows null values, the elements all contain null. Otherwise, the elements

all contain the default value for the class. For example, a uint variable can’t be null. Consequently, in the following

code listing the Vector named ages is created with seven elements, each containing the value 0:

var ages:Vector.<uint> = new Vector.<uint>(7);
trace(ages); // output: 0,0,0,0,0,0,0

Finally, using the Vector.<T>() constructor you can also create a fixed-length Vector by passing true for the second

parameter (the fixed parameter). In that case the Vector is created with the specified number of elements and the

number of elements can’t be changed. Note, however, that you can still change the values of the elements of a fixed-

length Vector.

30ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

Using the Vector literal syntax constructor

In Flash Professional CS5 and later, Flash Builder 4 and later, and Flex 4 and later, you can pass a list of values to the

Vector.<T>() constructor to specify the Vector’s initial values:

// var v:Vector.<T> = new <T>[E0, ..., En-1 ,];
// For example:
var v:Vector.<int> = new <int>[0,1,2,];

The following information applies to this syntax:

• The trailing comma is optional.

• Empty items in the array are not supported; a statement such as var v:Vector.<int> = new <int>[0,,2,]

throws a compiler error.

• You can't specify a default length for the Vector instance. Instead, the length is the same as the number of elements

in the initialization list.

• You can't specify whether the Vector instance has a fixed length. Instead, use the fixed property.

• Data loss or errors can occur if items passed as values don't match the specified type. For example:

var v:Vector.<int> = new <int>[4.2]; // compiler error when running in strict mode
trace(v[0]); //returns 4 when not running in strict mode

Using the Vector.<T>() global function

In addition to the Vector.<T>() and Vector literal syntax constructors, you can also use the Vector.<T>() global

function to create a Vector object. The Vector.<T>() global function is a conversion function. When you call the

Vector.<T>() global function you specify the base type of the Vector that the method returns. You pass a single

indexed array (Array or Vector instance) as an argument. The method then returns a Vector with the specified base

type, containing the values in the source array argument. The following code listing shows the syntax for calling the

Vector.<T>() global function:

var friends:Vector.<String> = Vector.<String>(["Bob", "Larry", "Sarah"]);

The Vector.<T>() global function performs data type conversion on two levels. First, when an Array instance is

passed to the function, a Vector instance is returned. Second, whether the source array is an Array or Vector instance

the function attempts to convert the source array’s elements to values of the base type. The conversion uses standard

ActionScript data type conversion rules. For example, the following code listing converts the String values in the source

Array to integers in the result Vector. The decimal portion of the first value ("1.5") is truncated, and the non-numeric

third value ("Waffles") is converted to 0 in the result:

var numbers:Vector.<int> = Vector.<int>(["1.5", "17", "Waffles"]);
trace(numbers); // output: 1,17,0

If any of the source elements can’t be converted, an error occurs.

When code calls the Vector.<T>() global function, if an element in the source array is an instance of a subclass of the

specified base type, the element is added to the result Vector (no error occurs). Using the Vector.<T>() global

function is the only way to convert a Vector with base type T to a Vector with a base type that’s a superclass of T.

Inserting array elements

Flash Player 9 and later, Adobe AIR 1.0 and later

The most basic way to add an element to an indexed array is to use the array access ([]) operator. To set the value of

an indexed array element, use the Array or Vector object name and index number on the left side of an assignment

statement:

31ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

songTitles[5] = "Happy Birthday";

If the Array or Vector doesn’t already have an element at that index, the index is created and the value is stored there.

If a value exists at that index, the new value replaces the existing one.

An Array object allows you to create an element at any index. However, with a Vector object you can only assign a

value to an existing index or to the next available index. The next available index corresponds to the Vector object’s

length property. The safest way to add a new element to a Vector object is to use code like this listing:

myVector[myVector.length] = valueToAdd;

Three of the Array and Vector class methods—push(), unshift(), and splice()—allow you to insert elements into

an indexed array. The push() method appends one or more elements to the end of an array. In other words, the last

element inserted into the array using the push() method will have the highest index number. The unshift() method

inserts one or more elements at the beginning of an array, which is always at index number 0. The splice() method

will insert any number of items at a specified index in the array.

The following example demonstrates all three methods. An array named planets is created to store the names of the

planets in order of proximity to the Sun. First, the push() method is called to add the initial item, Mars. Second, the

unshift() method is called to insert the item that belongs at the front of the array, Mercury. Finally, the splice()

method is called to insert the items Venus and Earth after Mercury, but before Mars. The first argument sent to

splice(), the integer 1, directs the insertion to begin at index 1. The second argument sent to splice(), the integer

0, indicates that no items should be deleted. Finally, the third and fourth arguments sent to splice(), Venus and

Earth, are the items to be inserted.

 var planets:Array = new Array();
 planets.push("Mars"); // array contents: Mars
 planets.unshift("Mercury"); // array contents: Mercury,Mars
 planets.splice(1, 0, "Venus", "Earth");
 trace(planets); // array contents: Mercury,Venus,Earth,Mars

The push() and unshift() methods both return an unsigned integer that represents the length of the modified array.

The splice() method returns an empty array when used to insert elements, which may seem strange, but makes more

sense in light of the splice() method’s versatility. You can use the splice() method not only to insert elements into

an array, but also to remove elements from an array. When used to remove elements, the splice() method returns

an array containing the elements removed.

Note: If a Vector object’s fixed property is true, the total number of elements in the Vector can’t change. If you try to

add a new element to a fixed-length Vector using the techniques described here, an error occurs.

Retrieving values and removing array elements

Flash Player 9 and later, Adobe AIR 1.0 and later

The simplest way to retrieve the value of an element from an indexed array is to use the array access ([]) operator. To

retrieve the value of an indexed array element, use the Array or Vector object name and index number on the right

side of an assignment statement:

var myFavoriteSong:String = songTitles[3];

It’s possible to attempt to retrieve a value from an Array or Vector using an index where no element exists. In that case,

an Array object returns the value undefined and a Vector throws a RangeError exception.

32ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

Three methods of the Array and Vector classes—pop(), shift(), and splice()—allow you to remove elements. The

pop() method removes an element from the end of the array. In other words, it removes the element at the highest

index number. The shift() method removes an element from the beginning of the array, which means that it always

removes the element at index number 0. The splice() method, which can also be used to insert elements, removes

an arbitrary number of elements starting at the index number specified by the first argument sent to the method.

The following example uses all three methods to remove elements from an Array instance. An Array named oceans

is created to store the names of large bodies of water. Some of the names in the Array are lakes rather than oceans, so

they need to be removed.

First, the splice() method is used to remove the items Aral and Superior, and insert the items Atlantic and

Indian. The first argument sent to splice(), the integer 2, indicates that the operation should start with the third

item in the list, which is at index 2. The second argument, 2, indicates that two items should be removed. The

remaining arguments, Atlantic and Indian, are values to be inserted at index 2.

Second, the pop() method is used to remove last element in the array, Huron. And third, the shift() method is used

to remove the first item in the array, Victoria.

 var oceans:Array = ["Victoria", "Pacific", "Aral", "Superior", "Indian", "Huron"];
 oceans.splice(2, 2, "Arctic", "Atlantic"); // replaces Aral and Superior
 oceans.pop(); // removes Huron
 oceans.shift(); // removes Victoria
 trace(oceans);// output: Pacific,Arctic,Atlantic,Indian

The pop() and shift() methods both return the item that was removed. For an Array instance, the data type of the

return value is Object because arrays can hold values of any data type. For a Vector instance, the data type of the return

value is the base type of the Vector. The splice() method returns an Array or Vector containing the values removed.

You can change the oceans Array example so that the call to splice() assigns the returned Array to a new Array

variable, as shown in the following example:

 var lakes:Array = oceans.splice(2, 2, "Arctic", "Atlantic");
 trace(lakes); // output: Aral,Superior

You may come across code that uses the delete operator on an Array object element. The delete operator sets the

value of an Array element to undefined, but it does not remove the element from the Array. For example, the

following code uses the delete operator on the third element in the oceans Array, but the length of the Array remains

5:

 var oceans:Array = ["Arctic", "Pacific", "Victoria", "Indian", "Atlantic"];
 delete oceans[2];
 trace(oceans);// output: Arctic,Pacific,,Indian,Atlantic
 trace(oceans[2]); // output: undefined
 trace(oceans.length); // output: 5

You can truncate an Array or Vector using an array’s length property. If you set the length property of an indexed

array to a length that is less than the current length of the array, the array is truncated, removing any elements stored

at index numbers higher than the new value of length minus 1. For example, if the oceans array were sorted such that

all valid entries were at the beginning of the array, you could use the length property to remove the entries at the end

of the array, as shown in the following code:

 var oceans:Array = ["Arctic", "Pacific", "Victoria", "Aral", "Superior"];
 oceans.length = 2;
 trace(oceans); // output: Arctic,Pacific

Note: If a Vector object’s fixed property is true, the total number of elements in the Vector can’t change. If you try to

remove an element from or truncate a fixed-length Vector using the techniques described here, an error occurs.

33ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

Sorting an array

Flash Player 9 and later, Adobe AIR 1.0 and later

There are three methods—reverse(), sort(), and sortOn()—that allow you to change the order of an indexed

array, either by sorting or reversing the order. All of these methods modify the existing array. The following table

summarizes these methods and their behavior for Array and Vector objects:

The reverse() method

The reverse() method takes no parameters and does not return a value, but allows you to toggle the order of your

array from its current state to the reverse order. The following example reverses the order of the oceans listed in the

oceans array:

 var oceans:Array = ["Arctic", "Atlantic", "Indian", "Pacific"];
 oceans.reverse();
 trace(oceans); // output: Pacific,Indian,Atlantic,Arctic

Basic sorting with the sort() method (Array class only)

For an Array instance, the sort() method rearranges the elements in an array using the default sort order. The default

sort order has the following characteristics:

• The sort is case-sensitive, which means that uppercase characters precede lowercase characters. For example, the

letter D precedes the letter b.

• The sort is ascending, which means that lower character codes (such as A) precede higher character codes (such as B).

• The sort places identical values adjacent to each other but in no particular order.

• The sort is string-based, which means that elements are converted to strings before they are compared (for example,

10 precedes 3 because the string "1" has a lower character code than the string "3" has).

You may find that you need to sort your Array without regard to case, or in descending order, or perhaps your array

contains numbers that you want to sort numerically instead of alphabetically. The Array class’s sort() method has an

options parameter that allows you to alter each characteristic of the default sort order. The options are defined by a

set of static constants in the Array class, as shown in the following list:

• Array.CASEINSENSITIVE: This option makes the sort disregard case. For example, the lowercase letter b precedes

the uppercase letter D.

• Array.DESCENDING: This reverses the default ascending sort. For example, the letter B precedes the letter A.

• Array.UNIQUESORT: This causes the sort to abort if two identical values are found.

• Array.NUMERIC: This causes numerical sorting, so that 3 precedes 10.

The following example highlights some of these options. An Array named poets is created that is sorted using several

different options.

Method Array behavior Vector behavior

reverse() Changes the order of the elements so that the last element becomes the

first element, the penultimate element becomes the second, and so on

Identical to Array behavior

sort() Allows you to sort the Array’s elements in a variety of predefined ways,

such as alphabetical or numeric order. You can also specify a custom

sorting algorithm.

Sorts the elements according to the custom

sorting algorithm that you specify

sortOn() Allows you to sort objects that have one or more common properties,

specifying the property or properties to use as the sort keys

Not available in the Vector class

34ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

 var poets:Array = ["Blake", "cummings", "Angelou", "Dante"];
 poets.sort(); // default sort
 trace(poets); // output: Angelou,Blake,Dante,cummings

 poets.sort(Array.CASEINSENSITIVE);
 trace(poets); // output: Angelou,Blake,cummings,Dante

 poets.sort(Array.DESCENDING);
 trace(poets); // output: cummings,Dante,Blake,Angelou

 poets.sort(Array.DESCENDING | Array.CASEINSENSITIVE); // use two options
 trace(poets); // output: Dante,cummings,Blake,Angelou

Custom sorting with the sort() method (Array and Vector classes)

In addition to the basic sorting that’s available for an Array object, you can also define a custom sorting rule. This

technique is the only form of the sort() method that is available for the Vector class. To define a custom sort, you

write a custom sort function and pass it as an argument to the sort() method.

For example, if you have a list of names in which each list element contains a person’s full name, but you want to sort

the list by last name, you must use a custom sort function to parse each element and use the last name in the sort

function. The following code shows how this can be done with a custom function that is used as a parameter to the

Array.sort() method:

 var names:Array = new Array("John Q. Smith", "Jane Doe", "Mike Jones");
 function orderLastName(a, b):int
 {
 var lastName:RegExp = /\b\S+$/;
 var name1 = a.match(lastName);
 var name2 = b.match(lastName);
 if (name1 < name2)
 {
 return -1;
 }
 else if (name1 > name2)
 {
 return 1;
 }
 else
 {
 return 0;
 }
 }
 trace(names); // output: John Q. Smith,Jane Doe,Mike Jones
 names.sort(orderLastName);
 trace(names); // output: Jane Doe,Mike Jones,John Q. Smith

The custom sort function orderLastName() uses a regular expression to extract the last name from each element to

use for the comparison operation. The function identifier orderLastName is used as the sole parameter when calling

the sort() method on the names array. The sort function accepts two parameters, a and b, because it works on two

array elements at a time. The sort function’s return value indicates how the elements should be sorted:

• A return value of -1 indicates that the first parameter, a, precedes the second parameter, b.

• A return value of 1 indicates that the second parameter, b, precedes the first, a.

• A return value of 0 indicates that the elements have equal sorting precedence.

35ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

The sortOn() method (Array class only)

The sortOn() method is designed for Array objects with elements that contain objects. These objects are expected to

have at least one common property that can be used as the sort key. The use of the sortOn() method for arrays of any

other type yields unexpected results.

Note: The Vector class does not include a sortOn() method. This method is only available for Array objects.

The following example revises the poets Array so that each element is an object instead of a string. Each object holds

both the poet’s last name and year of birth.

 var poets:Array = new Array();
 poets.push({name:"Angelou", born:"1928"});
 poets.push({name:"Blake", born:"1757"});
 poets.push({name:"cummings", born:"1894"});
 poets.push({name:"Dante", born:"1265"});
 poets.push({name:"Wang", born:"701"});

You can use the sortOn() method to sort the Array by the born property. The sortOn() method defines two

parameters, fieldName and options. The fieldName argument must be specified as a string. In the following

example, sortOn() is called with two arguments, "born" and Array.NUMERIC. The Array.NUMERIC argument is used

to ensure that the sort is done numerically instead of alphabetically. This is a good practice even when all the numbers

have the same number of digits because it ensures that the sort will continue to behave as expected if a number with

fewer or more digits is later added to the array.

 poets.sortOn("born", Array.NUMERIC);
 for (var i:int = 0; i < poets.length; ++i)
 {
 trace(poets[i].name, poets[i].born);
 }
 /* output:
 Wang 701
 Dante 1265
 Blake 1757
 cummings 1894
 Angelou 1928
 */

Sorting without modifying the original array (Array class only)

Generally, the sort() and sortOn() methods modify an Array. If you wish to sort an Array without modifying the

existing array, pass the Array.RETURNINDEXEDARRAY constant as part of the options parameter. This option directs

the methods to return a new Array that reflects the sort and to leave the original Array unmodified. The Array returned

by the methods is a simple Array of index numbers that reflects the new sort order and does not contain any elements

from the original Array. For example, to sort the poets Array by birth year without modifying the Array, include the

Array.RETURNINDEXEDARRAY constant as part of the argument passed for the options parameter.

The following example stores the returned index information in an Array named indices and uses the indices array

in conjunction with the unmodified poets array to output the poets in order of birth year:

36ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

 var indices:Array;
 indices = poets.sortOn("born", Array.NUMERIC | Array.RETURNINDEXEDARRAY);
 for (var i:int = 0; i < indices.length; ++i)
 {
 var index:int = indices[i];
 trace(poets[index].name, poets[index].born);
 }
 /* output:
 Wang 701
 Dante 1265
 Blake 1757
 cummings 1894
 Angelou 1928
 */

Querying an array

Flash Player 9 and later, Adobe AIR 1.0 and later

Four methods of the Array and Vector classes—concat(), join(), slice(), and toString()—all query the array

for information, but do not modify the array. The concat() and slice() methods both return new arrays, while the

join() and toString() methods both return strings. The concat() method takes a new array or list of elements as

arguments and combines it with the existing array to create a new array. The slice() method has two parameters,

aptly named startIndex and an endIndex, and returns a new array containing a copy of the elements “sliced” from

the existing array. The slice begins with the element at startIndex and ends with the element just before endIndex.

That bears repeating: the element at endIndex is not included in the return value.

The following example uses concat() and slice() to create new arrays using elements of other arrays:

 var array1:Array = ["alpha", "beta"];
 var array2:Array = array1.concat("gamma", "delta");
 trace(array2); // output: alpha,beta,gamma,delta

 var array3:Array = array1.concat(array2);
 trace(array3); // output: alpha,beta,alpha,beta,gamma,delta

 var array4:Array = array3.slice(2,5);
 trace(array4); // output: alpha,beta,gamma

You can use the join() and toString() methods to query the array and return its contents as a string. If no

parameters are used for the join() method, the two methods behave identically—they return a string containing a

comma-delimited list of all elements in the array. The join() method, unlike the toString() method, accepts a

parameter named delimiter, which allows you to choose the symbol to use as a separator between each element in

the returned string.

The following example creates an Array called rivers and calls both join() and toString() to return the values in

the Array as a string. The toString() method is used to return comma-separated values (riverCSV), while the

join() method is used to return values separated by the + character.

 var rivers:Array = ["Nile", "Amazon", "Yangtze", "Mississippi"];
 var riverCSV:String = rivers.toString();
 trace(riverCSV); // output: Nile,Amazon,Yangtze,Mississippi
 var riverPSV:String = rivers.join("+");
 trace(riverPSV); // output: Nile+Amazon+Yangtze+Mississippi

37ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

One issue to be aware of with the join() method is that any nested Array or Vector instances are always returned with

comma-separated values, no matter what separator you specify for the main array elements, as the following example

shows:

 var nested:Array = ["b","c","d"];
 var letters:Array = ["a",nested,"e"];
 var joined:String = letters.join("+");
 trace(joined); // output: a+b,c,d+e

Associative arrays

Flash Player 9 and later, Adobe AIR 1.0 and later

An associative array, sometimes called a hash or map, uses keys instead of a numeric index to organize stored values.

Each key in an associative array is a unique string that is used to access a stored value. An associative array is an

instance of the Object class, which means that each key corresponds to a property name. Associative arrays are

unordered collections of key and value pairs. Your code should not expect the keys of an associative array to be in a

specific order.

ActionScript 3.0 also includes an advanced type of associative array called a dictionary. Dictionaries, which are

instances of the Dictionary class in the flash.utils package, use keys that can be of any data type. In other words,

dictionary keys are not limited to values of type String.

Associative arrays with string keys

Flash Player 9 and later, Adobe AIR 1.0 and later

There are two ways to create associative arrays in ActionScript 3.0. The first way is to use an Object instance. By using

an Object instance you can initialize your array with an object literal. An instance of the Object class, also called a

generic object, is functionally identical to an associative array. Each property name of the generic object serves as the

key that provides access to a stored value.

The following example creates an associative array named monitorInfo, using an object literal to initialize the array

with two key and value pairs:

 var monitorInfo:Object = {type:"Flat Panel", resolution:"1600 x 1200"};
 trace(monitorInfo["type"], monitorInfo["resolution"]);
 // output: Flat Panel 1600 x 1200

If you do not need to initialize the array at declaration time, you can use the Object constructor to create the array, as

follows:

 var monitorInfo:Object = new Object();

After the array is created using either an object literal or the Object class constructor, you can add new values to the

array using either the array access ([]) operator or the dot operator (.). The following example adds two new values

to monitorArray:

 monitorInfo["aspect ratio"] = "16:10"; // bad form, do not use spaces
 monitorInfo.colors = "16.7 million";
 trace(monitorInfo["aspect ratio"], monitorInfo.colors);
 // output: 16:10 16.7 million

38ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

Note that the key named aspect ratio contains a space character. This is possible with the array access ([]) operator,

but generates an error if attempted with the dot operator. Using spaces in your key names is not recommended.

The second way to create an associative array is to use the Array constructor (or the constructor of any dynamic class)

and then use either the array access ([]) operator or the dot operator (.) to add key and value pairs to the array. If you

declare your associative array to be of type Array, you cannot use an object literal to initialize the array. The following

example creates an associative array named monitorInfo using the Array constructor and adds a key called type and

a key called resolution, along with their values:

 var monitorInfo:Array = new Array();
 monitorInfo["type"] = "Flat Panel";
 monitorInfo["resolution"] = "1600 x 1200";
 trace(monitorInfo["type"], monitorInfo["resolution"]);
 // output: Flat Panel 1600 x 1200

There is no advantage in using the Array constructor to create an associative array. You cannot use the Array.length

property or any of the methods of the Array class with associative arrays, even if you use the Array constructor or the

Array data type. The use of the Array constructor is best left for the creation of indexed arrays.

Associative arrays with object keys (Dictionaries)

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the Dictionary class to create an associative array that uses objects for keys rather than strings. Such arrays

are sometimes called dictionaries, hashes, or maps. For example, consider an application that determines the location

of a Sprite object based on its association with a specific container. You can use a Dictionary object to map each Sprite

object to a container.

The following code creates three instances of the Sprite class that serve as keys for the Dictionary object. Each key is

assigned a value of either GroupA or GroupB. The values can be of any data type, but in this example both GroupA and

GroupB are instances of the Object class. Subsequently, you can access the value associated with each key with the array

access ([]) operator, as shown in the following code:

39ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

 import flash.display.Sprite;
 import flash.utils.Dictionary;

 var groupMap:Dictionary = new Dictionary();

 // objects to use as keys
 var spr1:Sprite = new Sprite();
 var spr2:Sprite = new Sprite();
 var spr3:Sprite = new Sprite();

 // objects to use as values
 var groupA:Object = new Object();
 var groupB:Object = new Object();

 // Create new key-value pairs in dictionary.
 groupMap[spr1] = groupA;
 groupMap[spr2] = groupB;
 groupMap[spr3] = groupB;

 if (groupMap[spr1] == groupA)
 {
 trace("spr1 is in groupA");
 }
 if (groupMap[spr2] == groupB)
 {
 trace("spr2 is in groupB");
 }
 if (groupMap[spr3] == groupB)
 {
 trace("spr3 is in groupB");
 }

Iterating with object keys

You can iterate through the contents of a Dictionary object with either a for..in loop or a for each..in loop. A

for..in loop allows you to iterate based on the keys, whereas a for each..in loop allows you to iterate based on the

values associated with each key.

Use the for..in loop for direct access to the object keys of a Dictionary object. You can also access the values of the

Dictionary object with the array access ([]) operator. The following code uses the previous example of the groupMap

dictionary to show how to iterate through a Dictionary object with the for..in loop:

 for (var key:Object in groupMap)
 {
 trace(key, groupMap[key]);
 }
 /* output:
 [object Sprite] [object Object]
 [object Sprite] [object Object]
 [object Sprite] [object Object]
 */

Use the for each..in loop for direct access to the values of a Dictionary object. The following code also uses the

groupMap dictionary to show how to iterate through a Dictionary object with the for each..in loop:

40ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

 for each (var item:Object in groupMap)
 {
 trace(item);
 }
 /* output:
 [object Object]
 [object Object]
 [object Object]
 */

Object keys and memory management

Adobe® Flash® Player and Adobe® AIR™ use a garbage collection system to recover memory that is no longer used.

When an object has no references pointing to it, the object becomes eligible for garbage collection, and the memory is

recovered the next time the garbage collection system executes. For example, the following code creates a new object

and assigns a reference to the object to the variable myObject:

 var myObject:Object = new Object();

As long as any reference to the object exists, the garbage collection system will not recover the memory that the object

occupies. If the value of myObject is changed such that it points to a different object or is set to the value null, the

memory occupied by the original object becomes eligible for garbage collection, but only if there are no other

references to the original object.

If you use myObject as a key in a Dictionary object, you are creating another reference to the original object. For

example, the following code creates two references to an object—the myObject variable, and the key in the myMap

object:

 import flash.utils.Dictionary;

 var myObject:Object = new Object();
 var myMap:Dictionary = new Dictionary();
 myMap[myObject] = "foo";

To make the object referenced by myObject eligible for garbage collection, you must remove all references to it. In this

case, you must change the value of myObject and delete the myObject key from myMap, as shown in the following code:

 myObject = null;
 delete myMap[myObject];

Alternatively, you can use the useWeakReference parameter of the Dictionary constructor to make all of the

dictionary keys weak references. The garbage collection system ignores weak references, which means that an object

that has only weak references is eligible for garbage collection. For example, in the following code, you do not need to

delete the myObject key from myMap in order to make the object eligible for garbage collection:

 import flash.utils.Dictionary;

 var myObject:Object = new Object();
 var myMap:Dictionary = new Dictionary(true);
 myMap[myObject] = "foo";
 myObject = null; // Make object eligible for garbage collection.

41ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

Multidimensional arrays

Flash Player 9 and later, Adobe AIR 1.0 and later

Multidimensional arrays contain other arrays as elements. For example, consider a list of tasks that is stored as an

indexed array of strings:

 var tasks:Array = ["wash dishes", "take out trash"];

If you want to store a separate list of tasks for each day of the week, you can create a multidimensional array with one

element for each day of the week. Each element contains an indexed array, similar to the tasks array, that stores the

list of tasks. You can use any combination of indexed or associative arrays in multidimensional arrays. The examples

in the following sections use either two indexed arrays or an associative array of indexed arrays. You might want to try

the other combinations as exercises.

Two indexed arrays

Flash Player 9 and later, Adobe AIR 1.0 and later

When you use two indexed arrays, you can visualize the result as a table or spreadsheet. The elements of the first array

represent the rows of the table, while the elements of the second array represent the columns.

For example, the following multidimensional array uses two indexed arrays to track task lists for each day of the week.

The first array, masterTaskList, is created using the Array class constructor. Each element of the array represents a

day of the week, with index 0 representing Monday, and index 6 representing Sunday. These elements can be thought

of as the rows in the table. You can create each day’s task list by assigning an array literal to each of the seven elements

that you create in the masterTaskList array. The array literals represent the columns in the table.

 var masterTaskList:Array = new Array();
 masterTaskList[0] = ["wash dishes", "take out trash"];
 masterTaskList[1] = ["wash dishes", "pay bills"];
 masterTaskList[2] = ["wash dishes", "dentist", "wash dog"];
 masterTaskList[3] = ["wash dishes"];
 masterTaskList[4] = ["wash dishes", "clean house"];
 masterTaskList[5] = ["wash dishes", "wash car", "pay rent"];
 masterTaskList[6] = ["mow lawn", "fix chair"];

You can access individual items on any of the task lists using the array access ([]) operator. The first set of brackets

represents the day of the week, and the second set of brackets represents the task list for that day. For example, to

retrieve the second task from Wednesday’s list, first use index 2 for Wednesday, and then use index 1 for the second

task in the list.

 trace(masterTaskList[2][1]); // output: dentist

To retrieve the first task from Sunday’s list, use index 6 for Sunday and index 0 for the first task on the list.

 trace(masterTaskList[6][0]); // output: mow lawn

42ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

Associative array with an indexed array

Flash Player 9 and later, Adobe AIR 1.0 and later

To make the individual arrays easier to access, you can use an associative array for the days of the week and an indexed

array for the task lists. Using an associative array allows you to use dot syntax when referring to a particular day of the

week, but at the cost of extra run-time processing to access each element of the associative array. The following

example uses an associative array as the basis of a task list, with a key and value pair for each day of the week:

 var masterTaskList:Object = new Object();
 masterTaskList["Monday"] = ["wash dishes", "take out trash"];
 masterTaskList["Tuesday"] = ["wash dishes", "pay bills"];
 masterTaskList["Wednesday"] = ["wash dishes", "dentist", "wash dog"];
 masterTaskList["Thursday"] = ["wash dishes"];
 masterTaskList["Friday"] = ["wash dishes", "clean house"];
 masterTaskList["Saturday"] = ["wash dishes", "wash car", "pay rent"];
 masterTaskList["Sunday"] = ["mow lawn", "fix chair"];

Dot syntax makes the code more readable by making it possible to avoid multiple sets of brackets.

 trace(masterTaskList.Wednesday[1]); // output: dentist
 trace(masterTaskList.Sunday[0]);// output: mow lawn

You can iterate through the task list using a for..in loop, but you must use the array access ([]) operator instead of

dot syntax to access the value associated with each key. Because masterTaskList is an associative array, the elements

are not necessarily retrieved in the order that you may expect, as the following example shows:

 for (var day:String in masterTaskList)
 {
 trace(day + ": " + masterTaskList[day])
 }
 /* output:
 Sunday: mow lawn,fix chair
 Wednesday: wash dishes,dentist,wash dog
 Friday: wash dishes,clean house
 Thursday: wash dishes
 Monday: wash dishes,take out trash
 Saturday: wash dishes,wash car,pay rent
 Tuesday: wash dishes,pay bills
 */

Cloning arrays

Flash Player 9 and later, Adobe AIR 1.0 and later

The Array class has no built-in method for making copies of arrays. You can create a shallowcopy of an array by calling

either the concat() or slice() methods with no arguments. In a shallow copy, if the original array has elements that

are objects, only the references to the objects are copied rather than the objects themselves. The copy points to the same

objects as the original does. Any changes made to the objects are reflected in both arrays.

In a deep copy, any objects found in the original array are also copied so that the new array does not point to the same

objects as does the original array. Deep copying requires more than one line of code, which usually calls for the creation

of a function. Such a function could be created as a global utility function or as a method of an Array subclass.

43ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

The following example defines a function named clone() that does deep copying. The algorithm is borrowed from a

common Java programming technique. The function creates a deep copy by serializing the array into an instance of

the ByteArray class, and then reading the array back into a new array. This function accepts an object so that it can be

used with both indexed arrays and associative arrays, as shown in the following code:

 import flash.utils.ByteArray;

 function clone(source:Object):*
 {
 var myBA:ByteArray = new ByteArray();
 myBA.writeObject(source);
 myBA.position = 0;
 return(myBA.readObject());
 }

Extending the Array class

Flash Player 9 and later, Adobe AIR 1.0 and later

The Array class is one of the few core classes that is not final, which means that you can create your own subclass of

Array. This section provides an example of how to create a subclass of Array and discusses some of the issues that can

arise during the process.

As mentioned previously, arrays in ActionScript are not typed, but you can create a subclass of Array that accepts

elements of only a specific data type. The example in the following sections defines an Array subclass named

TypedArray that limits its elements to values of the data type specified in the first parameter. The TypedArray class is

presented merely as an example of how to extend the Array class and may not be suitable for production purposes for

several reasons. First, type checking occurs at run time rather than at compile time. Second, when a TypedArray

method encounters a mismatch, the mismatch is ignored and no exception is thrown, although the methods can be

easily modified to throw exceptions. Third, the class cannot prevent the use of the array access operator to insert values

of any type into the array. Fourth, the coding style favors simplicity over performance optimization.

Note: You can use the technique described here to create a typed array. However, a better approach is to use a Vector

object. A Vector instance is a true typed array, and provides performance and other improvements over the Array class

or any subclass. The purpose of this discussion is to demonstrate how to create an Array subclass.

Declaring the subclass

Use the extends keyword to indicate that a class is a subclass of Array. A subclass of Array should use the dynamic

attribute, just as the Array class does. Otherwise, your subclass will not function properly.

The following code shows the definition of the TypedArray class, which contains a constant to hold the data type, a

constructor method, and the four methods that are capable of adding elements to the array. The code for each method

is omitted in this example, but is delineated and explained fully in the sections that follow:

44ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

 public dynamic class TypedArray extends Array
 {
 private const dataType:Class;

 public function TypedArray(...args) {}

 AS3 override function concat(...args):Array {}

 AS3 override function push(...args):uint {}

 AS3 override function splice(...args) {}

 AS3 override function unshift(...args):uint {}
 }

The four overridden methods all use the AS3 namespace instead of the public attribute because this example assumes

that the compiler option -as3 is set to true and the compiler option -es is set to false. These are the default settings

for Adobe Flash Builder and for AdobeFlashProfessional.

If you are an advanced developer who prefers to use prototype inheritance, you can make two minor changes to the

TypedArray class to make it compile with the compiler option -es set to true. First, remove all occurrences of the

override attribute and replace the AS3 namespace with the public attribute. Second, substitute Array.prototype for

all four occurrences of super.

TypedArray constructor

The subclass constructor poses an interesting challenge because the constructor must accept a list of arguments of

arbitrary length. The challenge is how to pass the arguments on to the superconstructor to create the array. If you pass

the list of arguments as an array, the superconstructor considers it a single argument of type Array and the resulting

array is always 1 element long. The traditional way to handle pass-through argument lists is to use the

Function.apply() method, which takes an array of arguments as its second parameter but converts it to a list of

arguments when executing the function. Unfortunately, the Function.apply() method cannot be used with

constructors.

The only option left is to recreate the logic of the Array constructor in the TypedArray constructor. The following code

shows the algorithm used in the Array class constructor, which you can reuse in your Array subclass constructor:

45ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

 public dynamic class Array
 {
 public function Array(...args)
 {
 var n:uint = args.length
 if (n == 1 && (args[0] is Number))
 {
 var dlen:Number = args[0];
 var ulen:uint = dlen;
 if (ulen != dlen)
 {
 throw new RangeError("Array index is not a 32-bit unsigned integer ("+dlen+")");
 }
 length = ulen;
 }
 else
 {
 length = n;
 for (var i:int=0; i < n; i++)
 {
 this[i] = args[i]
 }
 }
 }
 }

The TypedArray constructor shares most of the code from the Array constructor, with only four changes to the code.

First, the parameter list includes a new required parameter of type Class that allows specification of the array’s data

type. Second, the data type passed to the constructor is assigned to the dataType variable. Third, in the else

statement, the value of the length property is assigned after the for loop so that length includes only arguments that

are the proper type. Fourth, the body of the for loop uses the overridden version of the push() method so that only

arguments of the correct data type are added to the array. The following example shows the TypedArray constructor

function:

46ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

 public dynamic class TypedArray extends Array
 {
 private var dataType:Class;
 public function TypedArray(typeParam:Class, ...args)
 {
 dataType = typeParam;
 var n:uint = args.length
 if (n == 1 && (args[0] is Number))
 {
 var dlen:Number = args[0];
 var ulen:uint = dlen
 if (ulen != dlen)
 {
 throw new RangeError("Array index is not a 32-bit unsigned integer ("+dlen+")")
 }
 length = ulen;
 }
 else
 {
 for (var i:int=0; i < n; i++)
 {
 // type check done in push()
 this.push(args[i])
 }
 length = this.length;
 }
 }
 }

TypedArray overridden methods

The TypedArray class overrides the four methods of the Array class that are capable of adding elements to an array. In

each case, the overridden method adds a type check that prevents the addition of elements that are not the correct data

type. Subsequently, each method calls the superclass version of itself.

The push() method iterates through the list of arguments with a for..in loop and does a type check on each

argument. Any argument that is not the correct type is removed from the args array with the splice() method. After

the for..in loop ends, the args array contains values only of type dataType. The superclass version of push() is then

called with the updated args array, as the following code shows:

 AS3 override function push(...args):uint
 {
 for (var i:* in args)
 {
 if (!(args[i] is dataType))
 {
 args.splice(i,1);
 }
 }
 return (super.push.apply(this, args));
 }

The concat() method creates a temporary TypedArray named passArgs to store the arguments that pass the type

check. This allows the reuse of the type check code that exists in the push() method. A for..in loop iterates through

the args array, and calls push() on each argument. Because passArgs is typed as TypedArray, the TypedArray

version of push() is executed. The concat() method then calls its own superclass version, as the following code

shows:

47ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

 AS3 override function concat(...args):Array
 {
 var passArgs:TypedArray = new TypedArray(dataType);
 for (var i:* in args)
 {
 // type check done in push()
 passArgs.push(args[i]);
 }
 return (super.concat.apply(this, passArgs));
 }

The splice() method takes an arbitrary list of arguments, but the first two arguments always refer to an index

number and the number of elements to delete. This is why the overridden splice() method does type checking only

for args array elements in index positions 2 or higher. One point of interest in the code is that there appears to be a

recursive call to splice() inside the for loop, but this is not a recursive call because args is of type Array rather than

TypedArray, which means that the call to args.splice() is a call to the superclass version of the method. After the

for..in loop concludes, the args array contains only values of the correct type in index positions 2 or higher, and

splice() calls its own superclass version, as shown in the following code:

 AS3 override function splice(...args):*
 {
 if (args.length > 2)
 {
 for (var i:int=2; i< args.length; i++)
 {
 if (!(args[i] is dataType))
 {
 args.splice(i,1);
 }
 }
 }
 return (super.splice.apply(this, args));
 }

The unshift() method, which adds elements to the beginning of an array, also accepts an arbitrary list of arguments.

The overridden unshift() method uses an algorithm very similar to that used by the push() method, as shown in

the following example code:

 AS3 override function unshift(...args):uint
 {
 for (var i:* in args)
 {
 if (!(args[i] is dataType))
 {
 args.splice(i,1);
 }
 }
 return (super.unshift.apply(this, args));
 }
 }

48ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

Arrays example: PlayList

Flash Player 9 and later, Adobe AIR 1.0 and later

The PlayList example demonstrates techniques for working with arrays, in the context of a music playlist application

that manages a list of songs. These techniques are:

• Creating an indexed array

• Adding items to an indexed array

• Sorting an array of objects by different properties, using different sorting options

• Converting an array to a character-delimited string

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

PlayList application files can be found in the Samples/PlayList folder. The application consists of the following files:

PlayList class overview

Flash Player 9 and later, Adobe AIR 1.0 and later

The PlayList class manages a set of Song objects. It has public methods with functionality for adding a song to the

playlist (the addSong() method) and sorting the songs in the list (the sortList() method). In addition, the class

includes a read-only accessor property, songList, which provides access to the actual set of songs in the playlist.

Internally, the PlayList class keeps track of its songs using a private Array variable:

 public class PlayList
 {
 private var _songs:Array;
 private var _currentSort:SortProperty = null;
 private var _needToSort:Boolean = false;
 ...
 }

In addition to the _songs Array variable, which is used by the PlayList class to keep track of its list of songs, two other

private variables keep track of whether the list needs to be sorted (_needToSort) and which property the song list is

sorted by at a given time (_currentSort).

As with all objects, declaring an Array instance is only half the job of creating an Array. Before accessing an Array

instance’s properties or methods, it must be instantiated, which is done in the PlayList class’s constructor.

File Description

PlayList.mxml

or

PlayList.fla

The main application file in Flash (FLA) or Flex (MXML).

com/example/programmingas3/playlist/PlayList.as A class representing a list of songs. It uses an Array to store the list,

and manages the sorting of the list’s items..

com/example/programmingas3/playlist/Song.as A value object representing information about a single song. The

items that are managed by the PlayList class are Song instances.

com/example/programmingas3/playlist/SortProperty.as A pseudo-enumeration whose available values represent the

properties of the Song class by which a list of Song objects can be

sorted.

http://www.adobe.com/go/learn_programmingAS3samples_flash

49ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

 public function PlayList()
 {
 this._songs = new Array();
 // Set the initial sorting.
 this.sortList(SortProperty.TITLE);
 }

The first line of the constructor instantiates the _songs variable, so that it is ready to be used. In addition, the

sortList() method is called to set the initial sort-by property.

Adding a song to the list

Flash Player 9 and later, Adobe AIR 1.0 and later

When a user enters a new song into the application, the code in the data entry form calls the PlayList class’s addSong()

method.

 /**
 * Adds a song to the playlist.
 */
 public function addSong(song:Song):void
 {
 this._songs.push(song);
 this._needToSort = true;
 }

Inside addSong(), the _songs array’s push() method is called, adding the Song object that was passed to addSong()

as a new element in that array. With the push() method, the new element is added to the end of the array, regardless

of any sorting that might have been applied previously. This means that after the push() method has been called, the

list of songs is likely to no longer be sorted correctly, so the _needToSort variable is set to true. In theory, the

sortList() method could be called immediately, removing the need to keep track of whether the list is sorted or not

at a given time. In practice, however, there is no need for the list of songs to be sorted until immediately before it is

retrieved. By deferring the sorting operation, the application doesn’t perform sorting that is unnecessary if, for

example, several songs are added to the list before it is retrieved.

Sorting the list of songs

Flash Player 9 and later, Adobe AIR 1.0 and later

Because the Song instances that are managed by the playlist are complex objects, users of the application may wish to

sort the playlist according to different properties, such as song title or year of publication. In the PlayList application,

the task of sorting the list of songs has three parts: identifying the property by which the list should be sorted, indicating

what sorting options need to be used when sorting by that property, and performing the actual sort operation.

Properties for sorting

A Song object keeps track of several properties, including song title, artist, publication year, filename, and a user-

selected set of genres in which the song belongs. Of these, only the first three are practical for sorting. As a matter of

convenience for developers, the example includes the SortProperty class, which acts as an enumeration with values

representing the properties available for sorting.

 public static const TITLE:SortProperty = new SortProperty("title");
 public static const ARTIST:SortProperty = new SortProperty("artist");
 public static const YEAR:SortProperty = new SortProperty("year");

50ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

The SortProperty class contain three constants, TITLE, ARTIST, and YEAR, each of which stores a String containing the

actual name of the associated Song class property that can be used for sorting. Throughout the rest of the code,

whenever a sort property is indicated, it is done using the enumeration member. For instance, in the PlayList

constructor, the list is sorted initially by calling the sortList() method, as follows:

 // Set the initial sorting.
 this.sortList(SortProperty.TITLE);

Because the property for sorting is specified as SortProperty.TITLE, the songs are sorted according to their title.

Sorting by property and specifying sort options

The work of actually sorting the list of songs is performed by the PlayList class in the sortList() method, as follows:

 /**
 * Sorts the list of songs according to the specified property.
 */
 public function sortList(sortProperty:SortProperty):void
 {
 ...
 var sortOptions:uint;
 switch (sortProperty)
 {
 case SortProperty.TITLE:
 sortOptions = Array.CASEINSENSITIVE;
 break;
 case SortProperty.ARTIST:
 sortOptions = Array.CASEINSENSITIVE;
 break;
 case SortProperty.YEAR:
 sortOptions = Array.NUMERIC;
 break;
 }

 // Perform the actual sorting of the data.
 this._songs.sortOn(sortProperty.propertyName, sortOptions);

 // Save the current sort property.
 this._currentSort = sortProperty;

 // Record that the list is sorted.
 this._needToSort = false;
 }

When sorting by title or artist, it makes sense to sort alphabetically, but when sorting by year, it’s most logical to

perform a numeric sort. The switch statement is used to define the appropriate sorting option, stored in the variable

sortOptions, according to the value specified in the sortProperty parameter. Here again the named enumeration

members are used to distinguish between properties, rather than hard-coded values.

With the sort property and sort options determined, the _songs array is actually sorted by calling its sortOn()

method, passing those two values as parameters. The current sort property is recorded, as is the fact that the song list

is currently sorted.

51ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with arrays

Last updated 10/9/2017

Combining array elements into a character-delimited string

Flash Player 9 and later, Adobe AIR 1.0 and later

In addition to using an array to maintain the song list in the PlayList class, in this example arrays are also used in the

Song class to help manage the list of genres to which a given song belongs. Consider this snippet from the Song class’s

definition:

 private var _genres:String;

 public function Song(title:String, artist:String, year:uint, filename:String, genres:Array)
 {
 ...
 // Genres are passed in as an array
 // but stored as a semicolon-separated string.
 this._genres = genres.join(";");
 }

When creating a new Song instance, the genres parameter that is used to specify the genre (or genres) the song

belongs to is defined as an Array instance. This makes it convenient to group multiple genres together into a single

variable that can be passed to the constructor. However, internally the Song class maintains the genres in the private

_genres variable as a semicolon-separated String instance. The Array parameter is converted into a semicolon-

separated string by calling its join() method with the literal string value ";" as the specified delimiter.

By the same token, the genres accessors allow genres to be set or retrieved as an Array:

 public function get genres():Array
 {
 // Genres are stored as a semicolon-separated String,
 // so they need to be transformed into an Array to pass them back out.
 return this._genres.split(";");
 }
 public function set genres(value:Array):void
 {
 // Genres are passed in as an array,
 // but stored as a semicolon-separated string.
 this._genres = value.join(";");
 }

The genresset accessor behaves exactly the same as the constructor; it accepts an Array and calls the join() method

to convert it to a semicolon-separated String. The get accessor performs the opposite operation: the _genres

variable’s split() method is called, splitting the String into an array of values using the specified delimiter (the literal

string value ";" as before).

52

Last updated 10/9/2017

Chapter 4: Handling errors

Flash Player 9 and later, Adobe AIR 1.0 and later

To “handle” an error means that you build logic into your application to respond to, or fix, an error. Errors are

generated either when an application is compiled or when a compiled application is running. When your application

handles errors, something occurs as a response when the error is encountered, as opposed to no response (when

whatever process created the error fails silently). Used correctly, error handling helps shield your application and its

users from otherwise unexpected behavior.

However, error handling is a broad category that includes responding to many kinds of errors that are thrown during

compilation or while an application is running. This discussion focuses on how to handle run-time errors (thrown

while an application is running), the different types of errors that can be generated, and the advantages of the error-

handling system in ActionScript 3.0.

Basics of error handling

Flash Player 9 and later, Adobe AIR 1.0 and later

A run-time error is something that goes wrong in your ActionScript code that stops the ActionScript content from

running as intended. To ensure that your ActionScript code runs smoothly for users, write code in your application

that handles the error—that fixes it, works around it, or at least lets the user know that it has happened. This process

is called error handling.

Error handling is a broad category that includes responding to many kinds of errors that are thrown during

compilation or while an application is running. Errors that happen at compile time are often easier to identify— fix

them to complete the process of creating a SWF file.

Run-time errors can be more difficult to detect, because in order for them to occur the erroneous code must actually

be run. If a segment of your program has several branches of code, like an if..then..else statement, test every

possible condition, with all the possible input values that real users might use, to confirm that your code is error-free.

Run-time errors can be divided into two categories: program errors are mistakes in your ActionScript code, such as

specifying the wrong data type for a method parameter; logical errors are mistakes in the logic (the data checking and

value manipulation) of your program, such as using the wrong formula to calculate interest rates in a banking

application. Again, both of these types of errors can often be detected and corrected ahead of time by diligently testing

your application.

Ideally, you’ll want to identify and remove all errors from your application before it is released to end users. However,

not all errors can be foreseen or prevented. For example, suppose your ActionScript application loads information

from a particular website that is outside your control. If at some point that website isn’t available, the part of your

application that depends on that external data won’t behave correctly. The most important aspect of error handling

involves preparing for these unknown cases and handling them gracefully. Users need to continue to use your

application, or at least get a friendly error message explaining why it isn’t working.

53ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

Run-time errors are represented in two ways in ActionScript:

• Error classes: Many errors have an error class associated with them. When an error occurs, the Flash runtime (such

as Flash Player or Adobe AIR) creates an instance of the specific error class that is associated with that particular

error. Your code can use the information contained in that error object to make an appropriate response to the

error.

• Error events: Sometimes an error occurs when the Flash runtime would normally trigger an event. In those cases,

an error event is triggered instead. Each error event has a class associated with it, and the Flash runtime passes an

instance of that class to the methods that are subscribed to the error event.

To determine whether a particular method can trigger an error or error event, see the method’s entry in the

ActionScript 3.0 Reference for the Adobe Flash Platform.

Important concepts and terms

The following reference list contains important terms for programming error handling routines:

Asynchronous A program command such as a method call that doesn’t provide an immediate result; instead it gives

a result (or error) in the form of an event.

Catch When an exception (a run-time error) occurs and your code becomes aware of the exception, that code is said

to catch the exception. Once an exception is caught, the Flash runtime stops notifying other ActionScript code of the

exception.

Debugger version A special version of the Flash runtime, such as the Flash Player dubugger version or the AIR Debug

Launcher (ADL), that contains code for notifying users of run-time errors. In the standard version of Flash Player or

Adobe AIR (the one that most users have), errors that aren’t handled by your ActionScript code are ignored. In the

debugger versions (which are included with Adobe Flash CS4 Professional and Adobe Flash Builder), a warning

message appears when an unhandled error happens.

Exception An error that happens while an application is running and that the Flash runtime can’t resolve on its own.

Re-throw When your code catches an exception, the Flash runtime no longer notifies other objects of the exception.

If it’s important for other objects to receive the exception, your code must re-throw the exception to start the

notification process again.

Synchronous A program command, such as a method call, that provides an immediate result (or immediately throws

an error), meaning that the response can be used within the same code block.

Throw The act of notifying a Flash runtime (and consequently, notifying other objects and ActionScript code) that an

error has occurred is known as throwing an error.

Types of errors

Flash Player 9 and later, Adobe AIR 1.0 and later

When you develop and run applications, you encounter different types of errors and error terminology. The following

list introduces the major error types and terms:

• Compile-time errors are raised by the ActionScript compiler during code compilation. Compile-time errors occur

when syntactical problems in your code prevent your application from being built.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

54ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

• Run-time errors occur when you run your application after you compile it. Run-time errors represent errors that

are caused while a SWF file plays in a Flash runtime (such as Adobe Flash Player or Adobe AIR). In most cases, you

handle run-time errors as they occur, reporting them to the user and taking steps to keep your application running.

If the error is a fatal error, such as not being able to connect to a remote website or load required data, you can use

error handling to allow your application to finish, gracefully.

• Synchronous errors are run-time errors that occur at the time a function is called—for example, when you try to use

a specific method and the argument you pass to the method is invalid, so the Flash runtime throws an exception.

Most errors occur synchronously—at the time the statement executes—and the flow of control passes immediately

to the most applicable catch statement.

For example, the following code excerpt throws a run-time error because the browse() method is not called before

the program attempts to upload a file:

 var fileRef:FileReference = new FileReference();
 try
 {
 fileRef.upload(new URLRequest("http://www.yourdomain.com/fileupload.cfm"));
 }
 catch (error:IllegalOperationError)
 {
 trace(error);
 // Error #2037: Functions called in incorrect sequence, or earlier
 // call was unsuccessful.
 }

In this case, a run-time error is thrown synchronously because Flash Player determined that the browse() method

was not called before the file upload was attempted.

For detailed information on synchronous error handling, see “Handling synchronous errors in an application” on

page 58.

• Asynchronouserrors are run-time errors that occur outside of the normal program flow. They generate events and

event listeners catch them. An asynchronous operation is one in which a function initiates an operation, but doesn’t

wait for it to complete. You can create an error event listener to wait for the application or user to try some

operation. If the operation fails, you catch the error with an event listener and respond to the error event. Then, the

event listener calls an event handler function to respond to the error event in a useful manner. For example, the

event handler could launch a dialog box that prompts the user to resolve the error.

Consider the file-upload synchronous error example presented earlier. If you successfully call the browse()

method before beginning a file upload, Flash Player would dispatch several events. For example, when an upload

starts, the open event is dispatched. When the file upload operation completes successfully, the complete event is

dispatched. Because event handling is asynchronous (that is, it does not occur at specific, known, predesignated

times), use the addEventListener() method to listen for these specific events, as the following code shows:

55ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

 var fileRef:FileReference = new FileReference();
 fileRef.addEventListener(Event.SELECT, selectHandler);
 fileRef.addEventListener(Event.OPEN, openHandler);
 fileRef.addEventListener(Event.COMPLETE, completeHandler);
 fileRef.browse();

 function selectHandler(event:Event):void
 {
 trace("...select...");
 var request:URLRequest = new URLRequest("http://www.yourdomain.com/fileupload.cfm");
 request.method = URLRequestMethod.POST;
 event.target.upload(request);
 }
 function openHandler(event:Event):void
 {
 trace("...open...");
 }
 function completeHandler(event:Event):void
 {
 trace("...complete...");
 }

For detailed information on asynchronous error handling, see “Responding to error events and status” on page 63.

• Uncaught exceptions are errors thrown with no corresponding logic (like a catch statement) to respond to them.

If your application throws an error, and no appropriate catch statement or event handler can be found at the

current or higher level to handle the error, the error is considered an uncaught exception.

When an uncaught error happens, the runtime dispatches an uncaughtError event. This event is also known as a

“global error handler.” This event is dispatched by the SWF’s UncaughtErrorEvents object, which is available

through the LoaderInfo.uncaughtErrorEvents property. If no listeners are registered for the uncaughtError

event, the runtime ignores uncaught errors and tries to continue running, as long as the error doesn’t stop the SWF.

In addition to dispatching the uncaughtError event, debugger versions of the Flash runtime respond to uncaught

errors by terminating the current script. Then, they display the uncaught error in trace statement output or

writing the error message to a log file. If the exception object is an instance of the Error class or one of its subclasses,

stack trace information is also displayed in the output. For more information about using the debugger version of

Flash runtimes, see “Working with the debugger versions of Flash runtimes” on page 57.

Note: While processing an uncaughtError event, if an error event is thrown from an uncaughtError handler, the event

handler is called multiple times. This results in an infinite loop of exceptions. It is recommended that you avoid such

a scenario.

Error handling in ActionScript 3.0

Flash Player 9 and later, Adobe AIR 1.0 and later

Since many applications can run without building the logic to handle errors, developers are tempted to postpone

building error handling into their applications. However, without error handling, an application can easily stall or

frustrate the user if something doesn’t work as expected. ActionScript 2.0 has an Error class that allows you to build

logic into custom functions to throw an exception with a specific message. Because error handling is critical for making

a user-friendly application, ActionScript 3.0 includes an expanded architecture for catching errors.

56ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

Note: While the ActionScript 3.0 Reference for the Adobe Flash Platform documents the exceptions thrown by many

methods, it might not include all possible exceptions for each method. A method might throw an exception for syntax

errors or other problems that are not noted explicitly in the method description, even when the description does list some

of the exceptions a method throws.

ActionScript 3.0 error-handling elements

Flash Player 9 and later, Adobe AIR 1.0 and later

ActionScript 3.0 includes many tools for error handling, including:

• Error classes. ActionScript 3.0 includes a broad range of Error classes to expand the scope of situations that can

produce error objects. Each Error class helps applications handle and respond to specific error conditions, whether

they are related to system errors (like a MemoryError condition), coding errors (like an ArgumentError condition),

networking and communication errors (like a URIError condition), or other situations. For more information on

each class, see “Comparing the Error classes” on page 66.

• Fewer silent failures. In earlier versions of Flash Player, errors were generated and reported only if you explicitly

used the throw statement. For Flash Player 9 and later Flash runtimes, native ActionScript methods and properties

throw run-time errors. These errors allow you to handle these exceptions more effectively when they occur, then

react to each exception, individually.

• Clear error messages displayed during debugging. When you are using the debugger version of a Flash runtime,

problematic code or situations generate robust error messages, which help you easily identify reasons why a

particular block of code fails. These messages make fixing errors more efficient. For more information, see

“Working with the debugger versions of Flash runtimes” on page 57.

• Precise errors allow for clear error messages displayed to users. In previous versions of Flash Player, the

FileReference.upload() method returned a Boolean value of false if the upload() call was unsuccessful,

indicating one of five possible errors. If an error occurs when you call the upload() method in ActionScript 3.0,

four specific errors help you display more accurate error messages to end users.

• Refined error handling. Distinct errors are thrown for many common situations. For example, in ActionScript 2.0,

before a FileReference object has been populated, the name property has the value null (so, before you can use or

display the name property, ensure that the value is set and not null). In ActionScript 3.0, if you attempt to access

the name property before it has been populated, Flash Player or AIR throws an IllegalOperationError, which

informs you that the value has not been set, and you can use try..catch..finally blocks to handle the error. For

more information see “Using try..catch..finally statements” on page 58.

• No significant performance drawbacks. Using try..catch..finally blocks to handle errors takes little or no

additional resources compared to previous versions of ActionScript.

• An ErrorEvent class that allows you to build listeners for specific asynchronous error events. For more information

see “Responding to error events and status” on page 63.

Error-handling strategies

Flash Player 9 and later, Adobe AIR 1.0 and later

As long as your application doesn’t encounter a problematic condition, it can still run successfully if you don’t build

error-handling logic into your code. However, if you don’t actively handle errors and your application does encounter

a problem, your users will never know why your application fails when it does.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

57ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

There are different ways you can approach error handling in your application. The following list summarizes the three

major options for handling errors:

• Use try..catch..finally statements. These statements catch synchronous errors as they occur. You can nest

your statements into a hierarchy to catch exceptions at various levels of code execution. For more information, see

“Using try..catch..finally statements” on page 58.

• Create your own custom error objects. You can use the Error class to create your own custom error objects to track

specific operations in your application that are not covered by built-in error types. Then you can use

try..catch..finally statements on your custom error objects. For more information see “Creating custom

error classes” on page 62.

• Write event listeners and handlers to respond to error events. By using this strategy, you can create global error

handlers that let you handle similar events without duplicating much code in try..catch..finally blocks. You

are also more likely to catch asynchronous errors using this approach. For more information, see “Responding to

error events and status” on page 63.

Working with the debugger versions of Flash runtimes

Flash Player 9 and later, Adobe AIR 1.0 and later

Adobe provides developers with special editions of the Flash runtimes to assist debugging efforts. You obtain a copy

of the debugger version of Flash Player when you install Adobe Flash Professional or Adobe Flash Builder. You also

obtain a utility for the debugging of Adobe AIR applications, which is called ADL, when you install either of those

tools, or as part of the Adobe AIR SDK.

There is a notable difference in how the debugger versions and the release versions of Flash Player and Adobe AIR

indicate errors. The debugger versions shows the error type (such as a generic Error, IOError, or EOFError), error

number, and a human-readable error message. The release versions shows only the error type and error number. For

example, consider the following code:

 try
 {
 tf.text = myByteArray.readBoolean();
 }
 catch (error:EOFError)
 {
 tf.text = error.toString();
 }

If the readBoolean() method throws an EOFError in the debugger version of Flash Player, the following message

displays in the tf text field: “EOFError: Error #2030: End of file was encountered.”

The same code in a release version of Flash Player or Adobe AIR would display the following text: “EOFError: Error

#2030.”

Note: The debugger players broadcast an event named "allComplete"; avoid creating custom events with the name

“allComplete”. Otherwise, you will encounter unpredictable behavior when debugging.

To keep resources and size to a minimum in the release versions, error message strings are not present. You can look

up the error number in the documentation (the appendixes of the ActionScript 3.0 Reference for the Adobe Flash

Platform) to correlate to an error message. Alternatively, you can reproduce the error using the debugger versions of

Flash Player and AIR to see the full message.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/runtimeErrors.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/runtimeErrors.html

58ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

Handling synchronous errors in an application

Flash Player 9 and later, Adobe AIR 1.0 and later

The most common error handling is synchronous error-handling logic, where you insert statements into your code to

catch synchronous errors while an application is running. This type of error handling lets your application notice and

recover from run-time errors when functions fail. The logic for catching a synchronous error includes

try..catch..finally statements, which literally try an operation, catch any error response from the Flash runtime,

and finally execute some other operation to handle the failed operation.

Using try..catch..finally statements

Flash Player 9 and later, Adobe AIR 1.0 and later

When you work with synchronous run-time errors, use the try..catch..finally statements to catch errors. When

a run-time error occurs, the Flash runtime throws an exception, which means that it suspends normal execution and

creates a special object of type Error. The Error object is then thrown to the first available catch block.

The try statement encloses statements that have the potential to create errors. You always use the catch statement

with a try statement. If an error is detected in one of the statements in the try statement block, the catch statements

that are attached to that try statement run.

The finally statement encloses statements that run whether an error occurs in the try block. If there is no error, the

statements within the finally block execute after the try block statements complete. If there is an error, the

appropriate catch statement executes first, followed by the statements in the finally block.

The following code demonstrates the syntax for using the try..catch..finally statements:

 try
 {
 // some code that could throw an error
 }
 catch (err:Error)
 {
 // code to react to the error
 }
 finally
 {
 // Code that runs whether an error was thrown. This code can clean
 // up after the error, or take steps to keep the application running.
 }

Each catch statement identifies a specific type of exception that it handles. The catch statement can specify only error

classes that are subclasses of the Error class. Each catch statement is checked in order. Only the first catch statement

that matches the type of error thrown runs. In other words, if you first check the higher-level Error class and then a

subclass of the Error class, only the higher-level Error class matches. The following code illustrates this point:

59ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

 try
 {
 throw new ArgumentError("I am an ArgumentError");
 }
 catch (error:Error)
 {
 trace("<Error> " + error.message);
 }
 catch (error:ArgumentError)
 {
 trace("<ArgumentError> " + error.message);
 }

The previous code displays the following output:

 <Error> I am an ArgumentError

To correctly catch the ArgumentError, make sure that the most specific error types are listed first and the more generic

error types are listed later, as the following code shows:

 try
 {
 throw new ArgumentError("I am an ArgumentError");
 }
 catch (error:ArgumentError)
 {
 trace("<ArgumentError> " + error.message);
 }
 catch (error:Error)
 {
 trace("<Error> " + error.message);
 }

Several methods and properties in the ActionScript API throw run-time errors if they encounter errors while they

execute. For example, the close() method in the Sound class throws an IOError if the method is unable to close the

audio stream, as demonstrated in the following code:

 var mySound:Sound = new Sound();
 try
 {
 mySound.close();
 }
 catch (error:IOError)
 {
 // Error #2029: This URLStream object does not have an open stream.
 }

As you become more familiar with the ActionScript 3.0 Reference for the Adobe Flash Platform, you’ll notice which

methods throw exceptions, as detailed in each method’s description.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

60ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

The throw statement

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash runtimes throw exceptions when they encounter errors in your running application. In addition, you can

explicitly throw exceptions yourself using the throw statement. When explicitly throwing errors, Adobe recommends

that you throw instances of the Error class or its subclasses. The following code demonstrates a throw statement that

throws an instance of the Error class, MyErr, and eventually calls a function, myFunction(), to respond after the error

is thrown:

 var MyError:Error = new Error("Encountered an error with the numUsers value", 99);
 var numUsers:uint = 0;
 try
 {
 if (numUsers == 0)
 {
 trace("numUsers equals 0");
 }
 }
 catch (error:uint)
 {
 throw MyError; // Catch unsigned integer errors.
 }
 catch (error:int)
 {
 throw MyError; // Catch integer errors.
 }
 catch (error:Number)
 {
 throw MyError; // Catch number errors.
 }
 catch (error:*)
 {
 throw MyError; // Catch any other error.
 }
 finally
 {
 myFunction(); // Perform any necessary cleanup here.
 }

Notice that the catch statements are ordered so that the most specific data types are listed first. If the catch statement

for the Number data type is listed first, neither the catch statement for the uint data type nor the catch statement for

the int data type is ever run.

Note: In the Java programming language, each function that can throw an exception must declare this fact, listing the

exception classes it can throw in a throws clause attached to the function declaration. ActionScript does not require you

to declare the exceptions thrown by a function.

Displaying a simple error message

Flash Player 9 and later, Adobe AIR 1.0 and later

One of the biggest benefits of the new exception and error event model is that it allows you to tell users when and why

an action has failed. Your part is to write the code to display the message and offer options in response.

The following code shows a simple try..catch statement to display the error in a text field:

61ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

 package
 {
 import flash.display.Sprite;
 import flash.text.TextField;

 public class SimpleError extends Sprite
 {
 public var employee:XML =
 <EmpCode>
 <costCenter>1234</costCenter>
 <costCenter>1-234</costCenter>
 </EmpCode>;

 public function SimpleError()
 {
 try
 {
 if (employee.costCenter.length() != 1)
 {
 throw new Error("Error, employee must have exactly one cost center assigned.");
 }
 }
 catch (error:Error)
 {
 var errorMessage:TextField = new TextField();
 errorMessage.autoSize = TextFieldAutoSize.LEFT;
 errorMessage.textColor = 0xFF0000;
 errorMessage.text = error.message;
 addChild(errorMessage);
 }
 }
 }
 }

Using a wider range of error classes and built-in compiler errors, ActionScript 3.0 offers more information than

previous versions of ActionScript about why something has failed. This information enables you to build more stable

applications with better error handling.

Rethrowing errors

Flash Player 9 and later, Adobe AIR 1.0 and later

When you build applications, there are several occasions in which you need to rethrow an error if you are unable to

handle the error properly. For example, the following code shows a nested try..catch block, which rethrows a

custom ApplicationError if the nested catch block is unable to handle the error:

62ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

 try
 {
 try
 {
 trace("<< try >>");
 throw new ApplicationError("some error which will be rethrown");
 }
 catch (error:ApplicationError)
 {
 trace("<< catch >> " + error);
 trace("<< throw >>");
 throw error;
 }
 catch (error:Error)
 {
 trace("<< Error >> " + error);
 }
 }
 catch (error:ApplicationError)
 {
 trace("<< catch >> " + error);
 }

The output from the previous snippet would be the following:

 << try >>
 << catch >> ApplicationError: some error which will be rethrown
 << throw >>
 << catch >> ApplicationError: some error which will be rethrown

The nested try block throws a custom ApplicationError error that is caught by the subsequent catch block. This

nested catch block can try to handle the error, and if unsuccessful, throw the ApplicationError object to the enclosing

try..catch block.

Creating custom error classes

Flash Player 9 and later, Adobe AIR 1.0 and later

You can extend one of the standard Error classes to create your own specialized error classes in ActionScript. There

are a number of reasons to create your own error classes:

• To identify specific errors or groups of errors that are unique to your application.

For example, take different actions for errors thrown by your own code, in addition to those errors trapped by a

Flash runtime. You can create a subclass of the Error class to track the new error data type in try..catch blocks.

• To provide unique error display capabilities for errors generated by your application.

For example, you can create a new toString() method that formats your error messages in a certain way. You can

also define a lookupErrorString() method that takes an error code and retrieves the proper message based on

the user’s language preference.

A specialized error class must extend the core ActionScript Error class. Here is an example of a specialized AppError

class that extends the Error class:

63ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

 public class AppError extends Error
 {
 public function AppError(message:String, errorID:int)
 {
 super(message, errorID);
 }
 }

The following shows an example of using AppError in your project:

 try
 {
 throw new AppError("Encountered Custom AppError", 29);
 }
 catch (error:AppError)
 {
 trace(error.errorID + ": " + error.message)
 }

Note: If you want to override the Error.toString() method in your subclass, give it one ...(rest) parameter. The

ECMAScript language specification on which ActionScript 3.0 is based defines the Error.toString() method that way,

and ActionScript 3.0 defines it the same way for backward compatibility. Therefore, when you override the

Error.toString() method, match the parameters exactly. You do not want to pass any parameters to your

toString() method at runtime, because those parameters are ignored.

Responding to error events and status

Flash Player 9 and later, Adobe AIR 1.0 and later

One of the most noticeable improvements to error handling in ActionScript 3.0 is the support for error event handling

for responding to asynchronous errors while an application is running. (For a definition of asynchronous errors, see

“Types of errors” on page 53.)

You can create event listeners and event handlers to respond to the error events. Many classes dispatch error events

the same way they dispatch other events. For example, an instance of the XMLSocket class normally dispatches three

types of events: Event.CLOSE, Event.CONNECT, and DataEvent.DATA. However, when a problem occurs, the

XMLSocket class can dispatch the IOErrorEvent.IOError or the SecurityErrorEvent.SECURITY_ERROR. For

more information about event listeners and event handlers, see “Handling events” on page 125.

Error events fit into one of two categories:

• Error events that extend the ErrorEvent class

The flash.events.ErrorEvent class contains the properties and methods for managing errors related to networking

and communication operations in a running application. The AsyncErrorEvent, IOErrorEvent, and

SecurityErrorEvent classes extend the ErrorEvent class. If you’re using the debugger version of a Flash runtime, a

dialog box informs you at run-time of any error events without listener functions that the player encounters.

• Status-based error events

The status-based error events are related to the netStatus and status properties of the networking and

communication classes. If a Flash runtime encounters a problem when reading or writing data, the value of the

netStatus.info.level or status.level properties (depending on the class object you’re using) is set to the

value "error". You respond to this error by checking if the level property contains the value "error" in your

event handler function.

64ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

Working with error events

Flash Player 9 and later, Adobe AIR 1.0 and later

The ErrorEvent class and its subclasses contain error types for handling errors dispatched by Flash runtimes as they

try to read or write data.

The following example uses both a try..catch statement and error event handlers to display any errors detected

while trying to read a local file. You can add more sophisticated handling code to provide a user with options or

otherwise handle the error automatically in the places indicated by the comment “your error-handling code here”:

 package
 {
 import flash.display.Sprite;
 import flash.errors.IOError;
 import flash.events.IOErrorEvent;
 import flash.events.TextEvent;
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.net.URLRequest;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;

 public class LinkEventExample extends Sprite
 {
 private var myMP3:Sound;
 public function LinkEventExample()
 {
 myMP3 = new Sound();
 var list:TextField = new TextField();
 list.autoSize = TextFieldAutoSize.LEFT;
 list.multiline = true;
 list.htmlText = "Track 1
";
 list.htmlText += "Track 2
";
 addEventListener(TextEvent.LINK, linkHandler);
 addChild(list);
 }

 private function playMP3(mp3:String):void
 {
 try
 {
 myMP3.load(new URLRequest(mp3));
 myMP3.play();
 }
 catch (err:Error)

65ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

 {
 trace(err.message);
 // your error-handling code here
 }
 myMP3.addEventListener(IOErrorEvent.IO_ERROR, errorHandler);
 }

 private function linkHandler(linkEvent:TextEvent):void
 {
 playMP3(linkEvent.text);
 // your error-handling code here
 }

 private function errorHandler(errorEvent:IOErrorEvent):void
 {
 trace(errorEvent.text);
 // your error-handling code here
 }
 }
 }

Working with status change events

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash runtimes dynamically change the value of the netStatus.info.level or status.level properties for the

classes that support the level property while an application is running. The classes that have the

netStatus.info.level property are NetConnection, NetStream, and SharedObject. The classes that have the

status.level property are HTTPStatusEvent, Camera, Microphone, and LocalConnection. You can write a handler

function to respond to the change in level value and track communication errors.

The following example uses a netStatusHandler() function to test the value of the level property. If the level

property indicates that an error has been encountered, the code traces the message “Video stream failed”.

 package
 {
 import flash.display.Sprite;
 import flash.events.NetStatusEvent;
 import flash.events.SecurityErrorEvent;
 import flash.media.Video;
 import flash.net.NetConnection;
 import flash.net.NetStream;

 public class VideoExample extends Sprite
 {
 private var videoUrl:String = "Video.flv";
 private var connection:NetConnection;
 private var stream:NetStream;

 public function VideoExample()
 {
 connection = new NetConnection();
 connection.addEventListener(NetStatusEvent.NET_STATUS, netStatusHandler);
 connection.addEventListener(SecurityErrorEvent.SECURITY_ERROR, securityErrorHandler);
 connection.connect(null);
 }

66ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

 private function netStatusHandler(event:NetStatusEvent):void
 {
 if (event.info.level == "error")
 {
 trace("Video stream failed")
 }
 else
 {
 connectStream();
 }
 }

 private function securityErrorHandler(event:SecurityErrorEvent):void
 {
 trace("securityErrorHandler: " + event);
 }

 private function connectStream():void
 {
 var stream:NetStream = new NetStream(connection);
 var video:Video = new Video();
 video.attachNetStream(stream);
 stream.play(videoUrl);
 addChild(video);
 }
 }
 }

Comparing the Error classes

Flash Player 9 and later, Adobe AIR 1.0 and later

ActionScript provides a number of predefined Error classes. But, you can also use the same Error classes in your own

code. There are two main types of Error classes in ActionScript 3.0: ActionScript core Error classes and flash.error

package Error classes. The flash.error package contains additional classes to aid ActionScript 3.0 application

development and debugging.

Core Error classes

Flash Player 9 and later, Adobe AIR 1.0 and later

The core error classes include the Error, ArgumentError, EvalError, RangeError, ReferenceError, SecurityError,

SyntaxError, TypeError, URIError, and VerifyError classes. Each of these classes are located in the top-level

namespace.

67ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

Class name Description Notes

Error The Error class is for throwing exceptions, and is the

base class for the other exception classes defined in

ECMAScript: EvalError, RangeError, ReferenceError,

SyntaxError, TypeError, and URIError.

The Error class serves as the base class for all run-time errors,

and is the recommended base class for any custom error

classes.

ArgumentError The ArgumentError class represents an error that

occurs when the parameter values supplied during a

function call do not match the parameters defined for

that function.

Some examples of argument errors include the following:

• Too few or too many arguments are supplied to a method.

• An argument was expected to be a member of an

enumeration and was not.

EvalError An EvalError exception is thrown if any parameters

are passed to the Function class’s constructor or if

user code calls the eval() function.

In ActionScript 3.0, support for the eval() function has been

removed and attempts to use the function result in an error.

Earlier versions of Flash Player used the eval() function to

access variables, properties, objects, or movie clips by name.

RangeError A RangeError exception is thrown if a numeric value

falls outside an acceptable range.

For example, a RangeError is thrown by the Timer class if a delay

was either negative or was not finite. A RangeError could also be

thrown if you attempted to add a display object at an invalid

depth.

ReferenceError A ReferenceError exception is thrown when a

reference to an undefined property is attempted on a

sealed (nondynamic) object. Versions of the

ActionScript compiler before ActionScript 3.0 did not

throw an error when access was attempted to a

property that was undefined. However ActionScript

3.0 throws the ReferenceError exception in this

condition.

Exceptions for undefined variables point to potential bugs,

helping you improve software quality. However, if you are not

used to having to initialize your variables, this new ActionScript

behavior requires some changes in your coding habits.

SecurityError The SecurityError exception is thrown when a security

violation takes place and access is denied.

Some examples of security errors include the following:

• An unauthorized property access or method call is made

across a security sandbox boundary.

• An attempt was made to access a URL not permitted by the

security sandbox.

• A socket connection was attempted to a port but the

necessary socket policy file wasn’t present.

• An attempt was made to access the user's camera or

microphone, and the user denide the access to the device .

SyntaxError A SyntaxError exception is thrown when a parsing

error occurs in your ActionScript code.

A SyntaxError can be thrown under the following

circumstances:

• ActionScript throws SyntaxError exceptions when the

RegExp class parses an invalid regular expression.

• ActionScript throws SyntaxError exceptions when the

XMLDocument class parses invalid XML.

68ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

flash.error package Error classes

Flash Player 9 and later, Adobe AIR 1.0 and later

The flash.error package contains Error classes that are considered part of the Flash runtime API. In contrast to the

Error classes described, the flash.error package communicates errors events that are specific to Flash runtimes (such

as Flash Player and Adobe AIR).

TypeError The TypeError exception is thrown when the actual

type of an operand is different from the expected

type.

A TypeError can be thrown under the following circumstances:

• An actual parameter of a function or method could not be

coerced to the formal parameter type.

• A value is assigned to a variable and cannot be coerced to the

variable’s type.

• The right side of the is or instanceof operator is not a

valid type.

• The super keyword is used illegally.

• A property lookup results in more than one binding, and is

therefore ambiguous.

• A method is called on an incompatible object. For example, a

TypeError exception is thrown if a method in the RegExp class

is “grafted” onto a generic object and then called.

URIError The URIError exception is thrown when one of the

global URI handling functions is used in a way that is

incompatible with its definition.

A URIError can be thrown under the following circumstances:

An invalid URI is specified for a Flash Player API function that

expects a valid URI, such as Socket.connect().

VerifyError A VerifyError exception is thrown when a malformed

or corrupted SWF file is encountered.

When a SWF file loads another SWF file, the parent SWF file can

catch a VerifyError generated by the loaded SWF file.

Class name Description Notes

69ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

Class name Description Notes

EOFError An EOFError exception is thrown when you

attempt to read past the end of the available data.

For example, an EOFError is thrown when one of the

read methods in the IDataInput interface is called and

there is insufficient data to satisfy the read request.

IllegalOperationError An IllegalOperationError exception is thrown

when a method is not implemented or the

implementation doesn't cover the current usage.

Examples of illegal operation error exceptions include

the following:

• A base class, such as DisplayObjectContainer,

provides more functionality than the Stage can

support. For example, if you attempt to get or set a

mask on the Stage (using stage.mask), the Flash

runtime throws an IllegalOperationError with the

message “The Stage class does not implement this

property or method.”

• A subclass inherits a method it does not require and

does not want to support.

• Certain accessibility methods are called when Flash

Player is compiled without accessibility support.

• Authoring-only features are called from a run-time

version of Flash Player.

• You attempt to set the name of an object placed on

the timeline.

IOError An IOError exception is thrown when some type of

I/O exception occurs.

You get this error, for example, when a read-write

operation is attempted on a socket that is not

connected or that has become disconnected.

MemoryError A MemoryError exception is thrown when a

memory allocation request fails.

By default, ActionScript Virtual Machine 2 does not

impose a limit on how much memory an ActionScript

program allocates. On a desktop system, memory

allocation failures are infrequent. You see an error

thrown when the system is unable to allocate the

memory required for an operation. So, on a desktop

system, this exception is rare unless an allocation

request is extremely large; for example, a request for 3

billion bytes is impossible because a 32-bit Microsoft®

Windows® program can access only 2 GB of address

space.

ScriptTimeoutError A ScriptTimeoutError exception is thrown when a

script timeout interval of 15 seconds is reached. By

catching a ScriptTimeoutError exception, you can

handle the script timeout more gracefully. If there

is no exception handler, the uncaught exception

handler displays a dialog box with an error

message.

To prevent a malicious developer from catching the

exception and staying in an infinite loop, only the first

ScriptTimeoutError exception thrown in the course of

a particular script can be caught. A subsequent

ScriptTimeoutError exception cannot be caught by

your code and immediately goes to the uncaught

exception handler.

StackOverflowError The StackOverflowError exception is thrown when

the stack available to the script has been

exhausted.

A StackOverflowError exception might indicate that

infinite recursion has occurred.

70ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

Handling errors example: CustomErrors application

Flash Player 9 and later, Adobe AIR 1.0 and later

The CustomErrors application demonstrates techniques for working with custom errors when building an

application. These techniques are:

• Validating an XML packet

• Writing a custom error

• Throwing custom errors

• Notifying users when an error is thrown

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

CustomErrors application files can be found in the Samples/CustomError folder. The application consists of the

following files:

CustomErrors application overview

Flash Player 9 and later, Adobe AIR 1.0 and later

When the application loads, the initApp() method is called for Flex applications or the timeline (non-function) code

is executed for Flash Professional applications. This code defines a sample XML packet to be verified by the Validator

class. The following code is run:

 employeeXML =
 <employee id="12345">
 <firstName>John</firstName>
 <lastName>Doe</lastName>
 <costCenter>12345</costCenter>
 <costCenter>67890</costCenter>
 </employee>;
 }

The XML packet is later displayed in a TextArea component instance on the Stage. This step allows you to modify the

XML packet before attempting to revalidate it.

File Description

CustomErrors.mxml

or

CustomErrors.fla

The main application file in Flash (FLA) or Flex (MXML)

com/example/programmingas3/errors/ApplicationError.as A class that serves as the base error class for both the FatalError and

WarningError classes.

com/example/programmingas3/errors/FatalError.as A class that defines a FatalError errorthrown by the application. This class

extends the custom ApplicationError class.

com/example/programmingas3/errors/Validator.as A class that defines a single method that validates a user-supplied

employee XML packet.

com/example/programmingas3/errors/WarningError.as A class that defines a WarningError error thrown by the application. This

class extends the custom ApplicationError class.

http://www.adobe.com/go/learn_programmingAS3samples_flash

71ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

When the user clicks the Validate button, the validateData() method is called. This method validates the employee

XML packet using the validateEmployeeXML() method in the Validator class. The following code shows the

validateData() method:

 function validateData():void
 {
 try
 {
 var tempXML:XML = XML(xmlText.text);
 Validator.validateEmployeeXML(tempXML);
 status.text = "The XML was successfully validated.";
 }
 catch (error:FatalError)
 {
 showFatalError(error);
 }
 catch (error:WarningError)
 {
 showWarningError(error);
 }
 catch (error:Error)
 {
 showGenericError(error);
 }
 }

First, a temporary XML object is created using the contents of the TextArea component instance xmlText. Next, the

validateEmployeeXML() method in the custom Validator class (com.example.programmingas3/errors/Validator.as)

is called and passes the temporary XML object as a parameter. If the XML packet is valid, the status Label component

instance displays a success message and the application exits. If the validateEmployeeXML() method throws a

custom error (that is, a FatalError, WarningError, or a generic Error occurs), the appropriate catch statement

executes and calls either the showFatalError(), showWarningError(), or showGenericError() methods. Each of

these methods displays an appropriate message in a text area named statusText to notify the user of the specific error

that occurred. Each method also updates the status Label component instance with a specific message.

If a fatal error occurs during an attempt to validate the employee XML packet, the error message is displayed in the

statusText text area, and the xmlText TextArea component instance and validateBtn Button component instance

are disabled, as the following code shows:

 function showFatalError(error:FatalError):void
 {
 var message:String = error.message + "\n\n";
 var title:String = error.getTitle();
 statusText.text = message + " " + title + "\n\nThis application has ended.";
 this.xmlText.enabled = false;
 this.validateBtn.enabled = false;
 hideButtons();
 }

If a warning error instead of a fatal error occurs, the error message is displayed in the statusText TextArea instance,

but the xmlText TextField and Button component instances aren’t disabled. The showWarningError() method

displays the custom error message in the statusText text area. The message also asks the user to decide if they want

to proceed with validating the XML or cancel the script. The following excerpt shows the showWarningError()

method:

72ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

 function showWarningError(error:WarningError):void
 {
 var message:String = error.message + "\n\n" + "Do you want to exit this application?";
 showButtons();
 var title:String = error.getTitle();
 statusText.text = message;
 }

When the user clicks either the Yes or No button, the closeHandler() method is called. The following excerpt shows

the closeHandler() method:

 function closeHandler(event:CloseEvent):void
 {
 switch (event.detail)
 {
 case yesButton:
 showFatalError(new FatalError(9999));
 break;
 case noButton:
 statusText.text = "";
 hideButtons();
 break;
 }
 }

If the user chooses to cancel the script by clicking Yes, a FatalError is thrown, causing the application to terminate.

Building a custom validator

Flash Player 9 and later, Adobe AIR 1.0 and later

The custom Validator class contains a single method, validateEmployeeXML(). The validateEmployeeXML()

method takes a single argument, employee, which is the XML packet that you want to validate. The

validateEmployeeXML() method is as follows:

 public static function validateEmployeeXML(employee:XML):void
 {
 // checks for the integrity of items in the XML
 if (employee.costCenter.length() < 1)
 {
 throw new FatalError(9000);
 }
 if (employee.costCenter.length() > 1)
 {
 throw new WarningError(9001);
 }
 if (employee.ssn.length() != 1)
 {
 throw new FatalError(9002);
 }
 }

To be validated, an employee must belong to one (and only one) cost center. If the employee doesn’t belong to any cost

centers, the method throws a FatalError, which bubbles up to the validateData() method in the main application

file. If the employee belongs to more than one cost center, a WarningError is thrown. The final check in the XML

validator is that the user has exactly one social security number defined (the ssn node in the XML packet). If there is

not exactly one ssn node, a FatalError error is thrown.

73ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

You can add additional checks to the validateEmployeeXML() method—for example, to ensure that the ssn node

contains a valid number, or that the employee has at least one phone number and e-mail address defined, and that both

values are valid. You can also modify the XML so that each employee has a unique ID and specifies the ID of their

manager.

Defining the ApplicationError class

Flash Player 9 and later, Adobe AIR 1.0 and later

The ApplicationError class serves as the base class for both the FatalError and WarningError classes. The

ApplicationError class extends the Error class, and defines its own custom methods and properties, including defining

an error ID, severity, and an XML object that contains the custom error codes and messages. This class also defines

two static constants that are used to define the severity of each error type.

The ApplicationError class’s constructor method is as follows:

 public function ApplicationError()
 {
 messages =
 <errors>
 <error code="9000">
 <![CDATA[Employee must be assigned to a cost center.]]>
 </error>
 <error code="9001">
 <![CDATA[Employee must be assigned to only one cost center.]]>
 </error>
 <error code="9002">
 <![CDATA[Employee must have one and only one SSN.]]>
 </error>
 <error code="9999">
 <![CDATA[The application has been stopped.]]>
 </error>
 </errors>;
 }

Each error node in the XML object contains a unique numeric code and an error message. Error messages can be easily

looked up by their error code using E4X, as seen in the following getMessageText() method:

 public function getMessageText(id:int):String
 {
 var message:XMLList = messages.error.(@code == id);
 return message[0].text();
 }

The getMessageText() method takes a single integer argument, id, and returns a string. The id argument is the error

code for the error to look up. For example, passing an id of 9001 retrieves the error saying that employees must be

assigned to only one cost center. If more than one error has the same error code, ActionScript returns the error

message only for the first result found (message[0] in the returned XMLList object).

The next method in this class, getTitle(), doesn’t take any parameters and returns a string value that contains the

error ID for this specific error. This value is used to help you easily identify the exact error that occurred during

validation of the XML packet. The following excerpt shows the getTitle() method:

 public function getTitle():String
 {
 return "Error #" + id;
 }

74ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

The final method in the ApplicationError class is toString(). This method overrides the function defined in the

Error class so that you can customize the presentation of the error message. The method returns a string that identifies

the specific error number and message that occurred.

 public override function toString():String
 {
 return "[APPLICATION ERROR #" + id + "] " + message;
 }

Defining the FatalError class

Flash Player 9 and later, Adobe AIR 1.0 and later

The FatalError class extends the custom ApplicationError class and defines three methods: the FatalError constructor,

getTitle(), and toString(). The first method, the FatalError constructor, takes a single integer argument,

errorID, and sets the error’s severity using the static constant values defined in the ApplicationError class, and gets

the specific error’s error message by calling the getMessageText() method in the ApplicationError class. The

FatalError constructor is as follows:

 public function FatalError(errorID:int)
 {
 id = errorID;
 severity = ApplicationError.FATAL;
 message = getMessageText(errorID);
 }

The next method in the FatalError class, getTitle(), overrides the getTitle() method defined earlier in the

ApplicationError class, and appends the text “-- FATAL” in the title to inform the user that a fatal error has occurred.

The getTitle() method is as follows:

 public override function getTitle():String
 {
 return "Error #" + id + " -- FATAL";
 }

The final method in this class, toString(), overrides the toString() method defined in the ApplicationError class.

The toString() method is

 public override function toString():String
 {
 return "[FATAL ERROR #" + id + "] " + message;
 }

Defining the WarningError class

Flash Player 9 and later, Adobe AIR 1.0 and later

The WarningError class extends the ApplicationError class and is nearly identical to the FatalError class, except for a

couple minor string changes and sets the error severity to ApplicationError.WARNING instead of

ApplicationError.FATAL, as seen in the following code:

75ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling errors

Last updated 10/9/2017

 public function WarningError(errorID:int)
 {
 id = errorID;
 severity = ApplicationError.WARNING;
 message = super.getMessageText(errorID);
 }

76

Last updated 10/9/2017

Chapter 5: Using regular expressions

Flash Player 9 and later, Adobe AIR 1.0 and later

A regular expression describes a pattern that is used to find and manipulate matching text in strings. Regular

expressions resemble strings, but they can include special codes to describe patterns and repetition. For example, the

following regular expression matches a string that starts with the character A followed by one or more sequential digits:

 /A\d+/

The following topics describe the basic syntax for constructing regular expressions. However, regular expressions can

have many complexities and nuances. You can find detailed resources on regular expressions on the web and in

bookstores. Keep in mind that different programming environments implement regular expressions in different ways.

ActionScript 3.0 implements regular expressions as defined in the ECMAScript edition 3 language specification

(ECMA-262).

More Help topics

RegExp

Basics of regular expressions

Flash Player 9 and later, Adobe AIR 1.0 and later

A regular expression describes a pattern of characters. Regular expressions are typically used to verify that a text value

conforms to a particular pattern (such as verifying that a user-entered phone number has the proper number of digits)

or to replace portions of a text value that matches a particular pattern.

Regular expressions can be simple. For example, suppose you wanted to confirm that a particular string matches

“ABC,” or wanted to replace every occurrence of “ABC” in a string with some other text. In that case, you could use

the following regular expression, which defines the pattern consisting of the letters A, B, and C in sequence:

 /ABC/

Note that the regular expression literal is delineated with the forward slash (/) character.

Regular expression patterns can also be complex, and sometimes cryptic in appearance, such as the following

expression to match a valid e-mail address:

 /([0-9a-zA-Z]+[-._+&])*[0-9a-zA-Z]+@([-0-9a-zA-Z]+[.])+[a-zA-Z]{2,6}/

Most commonly you will use regular expressions to search for patterns in strings and to replace characters. In those

cases, you will create a regular expression object and use it as a parameter for one of several String class methods. The

following methods of the String class take regular expressions as parameters: match(), replace(), search(), and

split(). For more information on these methods, see “Finding patterns in strings and replacing substrings” on

page 16.

The RegExp class includes the following methods: test() and exec(). For more information, see “Methods for using

regular expressions with strings” on page 90.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/RegExp.html

77ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

Important concepts and terms

The following reference list contains important terms that are relevant to this feature:

Escape character A character indicating that the character that follows should be treated as a metacharacter rather

than a literal character. In regular expression syntax, the backslash character (\) is the escape character, so a backslash

followed by another character is a special code rather than just the character itself.

Flag A character that specifies some option about how the regular expression pattern should be used, such as whether

to distinguish between uppercase and lowercase characters.

Metacharacter A character that has special meaning in a regular expression pattern, as opposed to literally

representing that character in the pattern.

Quantifier A character (or several characters) indicating how many times a part of the pattern should repeat. For

example, a quantifier would be used to designate that a United States postal code should contain five or nine numbers.

Regular expression A program statement defining a pattern of characters that can be used to confirm whether other

strings match that pattern or to replace portions of a string.

Regular expression syntax

Flash Player 9 and later, Adobe AIR 1.0 and later

This section describes all of the elements of ActionScript regular expression syntax. As you’ll see, regular expressions

can have many complexities and nuances. You can find detailed resources on regular expressions on the web and in

bookstores. Keep in mind that different programming environments implement regular expressions in different ways.

ActionScript 3.0 implements regular expressions as defined in the ECMAScript edition 3 language specification

(ECMA-262).

Generally, you use regular expressions that match more complicated patterns than a simple string of characters. For

example, the following regular expression defines the pattern consisting of the letters A, B, and C in sequence followed

by any digit:

 /ABC\d/

The \d code represents “any digit.” The backslash (\) character is called the escape character, and combined with the

character that follows it (in this case the letter d), it has special meaning in the regular expression.

The following regular expression defines the pattern of the letters ABC followed by any number of digits (note the

asterisk):

 /ABC\d*/

The asterisk character (*) is a metacharacter. A metacharacter is a character that has special meaning in regular

expressions. The asterisk is a specific type of metacharacter called a quantifier, which is used to quantify the amount

of repetition of a character or group of characters. For more information, see “Quantifiers” on page 82.

In addition to its pattern, a regular expression can contain flags, which specify how the regular expression is to be

matched. For example, the following regular expression uses the i flag, which specifies that the regular expression

ignores case sensitivity in matching strings:

 /ABC\d*/i

For more information, see “Flags and properties” on page 87.

78ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

You can use regular expressions with the following methods of the String class: match(), replace(), and search().

For more information on these methods, see “Finding patterns in strings and replacing substrings” on page 16.

Creating an instance of a regular expression

Flash Player 9 and later, Adobe AIR 1.0 and later

There are two ways to create a regular expression instance. One way uses forward slash characters (/) to delineate the

regular expression; the other uses the new constructor. For example, the following regular expressions are equivalent:

 var pattern1:RegExp = /bob/i;
 var pattern2:RegExp = new RegExp("bob", "i");

Forward slashes delineate a regular expression literal in the same way as quotation marks delineate a string literal. The

part of the regular expression within the forward slashes defines the pattern. The regular expression can also include

flags after the final delineating slash. These flags are considered to be part of the regular expression, but they are

separate from its pattern.

When using the new constructor, you use two strings to define the regular expression. The first string defines the

pattern, and the second string defines the flags, as in the following example:

 var pattern2:RegExp = new RegExp("bob", "i");

When including a forward slash within a regular expression that is defined by using the forward slash delineators, you

must precede the forward slash with the backslash (\) escape character. For example, the following regular expression

matches the pattern 1/2:

 var pattern:RegExp = /1\/2/;

To include quotation marks within a regular expression that is defined with the new constructor, you must add

backslash (\) escape character before the quotation marks (just as you would when defining any String literal). For

example, the following regular expressions match the pattern eat at "joe's":

 var pattern1:RegExp = new RegExp("eat at \"joe's\"", "");
 var pattern2:RegExp = new RegExp('eat at "joe\'s"', "");

Do not use the backslash escape character with quotation marks in regular expressions that are defined by using the

forward slash delineators. Similarly, do not use the escape character with forward slashes in regular expressions that

are defined with the new constructor. The following regular expressions are equivalent, and they define the pattern 1/2

"joe's":

 var pattern1:RegExp = /1\/2 "joe's"/;
 var pattern2:RegExp = new RegExp("1/2 \"joe's\"", "");
 var pattern3:RegExp = new RegExp('1/2 "joe\'s"', '');

Also, in a regular expression that is defined with the new constructor, to use a metasequence that begins with the

backslash (\) character, such as \d (which matches any digit), type the backslash character twice:

 var pattern:RegExp = new RegExp("\\d+", ""); // matches one or more digits

You must type the backlash character twice in this case, because the first parameter of the RegExp() constructor

method is a string, and in a string literal you must type a backslash character twice to have it recognized as a single

backslash character.

The sections that follow describe syntax for defining regular expression patterns.

For more information on flags, see “Flags and properties” on page 87.

79ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

Characters, metacharacters, and metasequences

Flash Player 9 and later, Adobe AIR 1.0 and later

The simplest regular expression is one that matches a sequence of characters, as in the following example:

 var pattern:RegExp = /hello/;

However, the following characters, known as metacharacters, have special meanings in regular expressions:

 ̂ $ \ . * + ? () [] { } |

For example, the following regular expression matches the letter A followed by zero or more instances of the letter B

(the asterisk metacharacter indicates this repetition), followed by the letter C:

 /AB*C/

To include a metacharacter without its special meaning in a regular expression pattern, you must use the backslash (\)

escape character. For example, the following regular expression matches the letter A followed by the letter B, followed

by an asterisk, followed by the letter C:

 var pattern:RegExp = /AB*C/;

A metasequence, like a metacharacter, has special meaning in a regular expression. A metasequence is made up of more

than one character. The following sections provide details on using metacharacters and metasequences.

About metacharacters

The following table summarizes the metacharacters that you can use in regular expressions:

Metacharacter Description

^ (caret) Matches at the start of the string. With the m (multiline) flag set, the caret matches the start of a line as

well (see “Flags and properties” on page 87). Note that when used at the start of a character class, the caret

indicates negation, not the start of a string. For more information, see “Character classes” on page 81.

$(dollar sign) Matches at the end of the string. With the m (multiline) flag set, $ matches the position before a newline

(\n) character as well. For more information, see “Flags and properties” on page 87.

\ (backslash) Escapes the special metacharacter meaning of special characters.

Also, use the backslash character if you want to use a forward slash character in a regular expression literal,

as in /1\/2/ (to match the character 1, followed by the forward slash character, followed by the character

2).

. (dot) Matches any single character.

A dot matches a newline character (\n) only if the s (dotall) flag is set. For more information, see “Flags

and properties” on page 87.

* (star) Matches the previous item repeated zero or more times.

For more information, see “Quantifiers” on page 82.

+ (plus) Matches the previous item repeated one or more times.

For more information, see “Quantifiers” on page 82.

? (question mark) Matches the previous item repeated zero times or one time.

For more information, see “Quantifiers” on page 82.

80ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

About metasequences

Metasequences are sequences of characters that have special meaning in a regular expression pattern. The following

table describes these metasequences:

(and) Defines groups within the regular expression. Use groups for the following:

• To confine the scope of the | alternator: /(a|b|c)d/

• To define the scope of a quantifier: /(walla.){1,2}/

• In backreferences. For example, the \1 in the following regular expression matches whatever matched

the first parenthetical group of the pattern:

• /(\w*) is repeated: \1/

For more information, see “Groups” on page 84.

[and] Defines a character class, which defines possible matches for a single character:

/[aeiou]/ matches any one of the specified characters.

Within character classes, use the hyphen (-) to designate a range of characters:

/[A-Z0-9]/ matches uppercase A through Z or 0 through 9.

Within character classes, insert a backslash to escape the] and

- characters:

/[+\-]\d+/ matches either + or - before one or more digits.

Within character classes, other characters, which are normally metacharacters, are treated as normal

characters (not metacharacters), without the need for a backslash:

/[$]/£ matches either $or £.

For more information, see “Character classes” on page 81.

| (pipe) Used for alternation, to match either the part on the left side or the part on the right side:

/abc|xyz/ matches either abc or xyz.

Metasequence Description

{n}

{n,}

and

{n,n}

Specifies a numeric quantifier or quantifier range for the previous item:

/A{27}/ matches the character A repeated 27 times.

/A{3,}/ matches the character A repeated 3 or more times.

/A{3,5}/ matches the character A repeated 3 to 5 times.

For more information, see “Quantifiers” on page 82.

\b Matches at the position between a word character and a nonword character. If the first or last character in

the string is a word character, also matches the start or end of the string.

\B Matches at the position between two word characters. Also matches the position between two nonword

characters.

\d Matches a decimal digit.

\D Matches any character other than a digit.

\f Matches a form feed character.

\n Matches the newline character.

Metacharacter Description

81ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

Character classes

Flash Player 9 and later, Adobe AIR 1.0 and later

You use character classes to specify a list of characters to match one position in the regular expression. You define

character classes with square brackets ([and]). For example, the following regular expression defines a character

class that matches bag, beg, big, bog, or bug:

 /b[aeiou]g/

Escape sequences in character classes

Most metacharacters and metasequences that normally have special meanings in a regular expression do not have

those same meanings inside a character class. For example, in a regular expression, the asterisk is used for repetition,

but this is not the case when the asterisk appears in a character class. The following character class matches the asterisk

literally, along with any of the other characters listed:

 /[abc*123]/

However, the three characters listed in the following table do function as metacharacters, with special meaning, in

character classes:

For any of these characters to be recognized as literal characters (without the special metacharacter meaning), you

must precede the character with the backslash escape character. For example, the following regular expression includes

a character class that matches any one of four symbols ($, \,], or -):

 /[$\\\]\-]/

In addition to the metacharacters that retain their special meanings, the following metasequences function as

metasequences within character classes:

\r Matches the return character.

\s Matches any white-space character (a space, tab, newline, or return character).

\S Matches any character other than a white-space character.

\t Matches the tab character.

\unnnn Matches the Unicode character with the character code specified by the hexadecimal number nnnn. For

example, \u263a is the smiley character.

\v Matches a vertical feed character.

\w Matches a word character (AZ–, az–, 0-9, or _). Note that \w does not match non-English characters, such

as é , ñ , or ç .

\W Matches any character other than a word character.

\\xnn Matches the character with the specified ASCII value, as defined by the hexadecimal number nn.

Metacharacter Meaning in character classes

] Defines the end of the character class.

- Defines a range of characters (see the following section “Ranges of characters in character classes”).

\ Defines metasequences and undoes the special meaning of metacharacters.

Metasequence Description

82ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

Other regular expression metasequences and metacharacters are treated as normal characters within a character class.

Ranges of characters in character classes

Use the hyphen to specify a range of characters, such as A-Z, a-z, or 0-9. These characters must constitute a valid range

in the character set. For example, the following character class matches any one of the characters in the range a-z or

any digit:

 /[a-z0-9]/

You can also use the \\xnn ASCII character code to specify a range by ASCII value. For example, the following

character class matches any character from a set of extended ASCII characters (such as é and ê):

 \\x

Negated character classes

When you use a caret (^) character at the beginning of a character class, it negates that class—any character not listed

is considered a match. The following character class matches any character except for a lowercase letter (az–) or a digit:

 /[^a-z0-9]/

You must type the caret (^) character at the beginning of a character class to indicate negation. Otherwise, you are

simply adding the caret character to the characters in the character class. For example, the following character class

matches any one of a number of symbol characters, including the caret:

 /[!.,#+*%$&^]/

Quantifiers

Flash Player 9 and later, Adobe AIR 1.0 and later

You use quantifiers to specify repetitions of characters or sequences in patterns, as follows:

Metasequence Meaning in character classes

\n Matches a newline character.

\r Matches a return character.

\t Matches a tab character.

\unnnn Matches the character with the specified Unicode code point value (as defined by the hexadecimal number

nnnn).

\\xnn Matches the character with the specified ASCII value (as defined by the hexadecimal number nn).

Quantifier metacharacter Description

* (star) Matches the previous item repeated zero or more times.

+ (plus) Matches the previous item repeated one or more times.

? (question mark) Matches the previous item repeated zero times or one time.

{n}

{n,}

and

{n,n}

Specifies a numeric quantifier or quantifier range for the previous item:

/A{27}/ matches the character A repeated 27 times.

/A{3,}/ matches the character A repeated 3 or more times.

/A{3,5}/ matches the character A repeated 3 to 5 times.

83ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

You can apply a quantifier to a single character, to a character class, or to a group:

• /a+/ matches the character a repeated one or more times.

• /\d+/ matches one or more digits.

• /[abc]+/ matches a repetition of one or more character, each of which is either a, b, or c.

• /(very,)*/ matches the word very followed by a comma and a space repeated zero or more times.

You can use quantifiers within parenthetical groupings that have quantifiers applied to them. For example, the

following quantifier matches strings such as word and word-word-word:

 /\w+(-\w+)*/

By default, regular expressions perform what is known as greedy matching. Any subpattern in the regular expression

(such as .*) tries to match as many characters in the string as possible before moving forward to the next part of the

regular expression. For example, consider the following regular expression and string:

 var pattern:RegExp = /<p>.*<\/p>/;
 str:String = "<p>Paragraph 1</p> <p>Paragraph 2</p>";

The regular expression matches the entire string:

 <p>Paragraph 1</p> <p>Paragraph 2</p>

Suppose, however, that you want to match only one <p>...</p> grouping. You can do this with the following:

 <p>Paragraph 1</p>

Add a question mark (?) after any quantifier to change it to what is known as a lazy quantifier. For example, the

following regular expression, which uses the lazy *? quantifier, matches <p> followed by the minimum number of

characters possible (lazy), followed by </p>:

 /<p>.*?<\/p>/

Keep in mind the following points about quantifiers:

• The quantifiers {0} and {0,0} do not exclude an item from a match.

• Do not combine multiple quantifiers, as in /abc+*/.

• The dot (.) does not span lines unless the s (dotall) flag is set, even if it is followed by a * quantifier. For example,

consider the following code:

 var str:String = "<p>Test\n";
 str += "Multiline</p>";
 var re:RegExp = /<p>.*<\/p>/;
 trace(str.match(re)); // null;

 re = /<p>.*<\/p>/s;
 trace(str.match(re));
 // output: <p>Test
 // Multiline</p>

For more information, see “Flags and properties” on page 87.

Alternation

Flash Player 9 and later, Adobe AIR 1.0 and later

Use the | (pipe) character in a regular expression to have the regular expression engine consider alternatives for a

match. For example, the following regular expression matches any one of the words cat, dog, pig, rat:

84ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

 var pattern:RegExp = /cat|dog|pig|rat/;

You can use parentheses to define groups to restrict the scope of the | alternator. The following regular expression

matches cat followed by nap or nip:

 var pattern:RegExp = /cat(nap|nip)/;

For more information, see “Groups” on page 84.

The following two regular expressions, one using the | alternator, the other using a character class (defined with [and

]), are equivalent:

 /1|3|5|7|9/
 /[13579]/

For more information, see “Character classes” on page 81.

Groups

Flash Player 9 and later, Adobe AIR 1.0 and later

You can specify a group in a regular expression by using parentheses, as follows:

 /class-(\d*)/

A group is a subsection of a pattern. You can use groups to do the following things:

• Apply a quantifier to more than one character.

• Delineate subpatterns to be applied with alternation (by using the | character).

• Capture substring matches (for example, by using \1 in a regular expression to match a previously matched group,

or by using $1 similarly in the replace() method of the String class).

The following sections provide details on these uses of groups.

Using groups with quantifiers

If you do not use a group, a quantifier applies to the character or character class that precedes it, as the following shows:

 var pattern:RegExp = /ab*/ ;
 // matches the character a followed by
 // zero or more occurrences of the character b

 pattern = /a\d+/;
 // matches the character a followed by
 // one or more digits

 pattern = /a[123]{1,3}/;
 // matches the character a followed by
 // one to three occurrences of either 1, 2, or 3

However, you can use a group to apply a quantifier to more than one character or character class:

85ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

 var pattern:RegExp = /(ab)*/;
 // matches zero or more occurrences of the character a
 // followed by the character b, such as ababab

 pattern = /(a\d)+/;
 // matches one or more occurrences of the character a followed by
 // a digit, such as a1a5a8a3

 pattern = /(spam){1,3}/;
 // matches 1 to 3 occurrences of the word spam followed by a space

For more information on quantifiers, see “Quantifiers” on page 82.

Using groups with the alternator (|) character

You can use groups to define the group of characters to which you want to apply an alternator (|) character, as follows:

 var pattern:RegExp = /cat|dog/;
 // matches cat or dog

 pattern = /ca(t|d)og/;
 // matches catog or cadog

Using groups to capture substring matches

When you define a standard parenthetical group in a pattern, you can later refer to it in the regular expression. This is

known as a backreference, and these sorts of groups are known as capturing groups. For example, in the following

regular expression, the sequence \1 matches whatever substring matched the capturing parenthetical group:

 var pattern:RegExp = /(\d+)-by-\1/;
 // matches the following: 48-by-48

You can specify up to 99 of these backreferences in a regular expression by typing \1, \2, ... , \99.

Similarly, in the replace() method of the String class, you can use $1$99– to insert captured group substring matches

in the replacement string:

 var pattern:RegExp = /Hi, (\w+)\./;
 var str:String = "Hi, Bob.";
 trace(str.replace(pattern, "$1, hello."));
 // output: Bob, hello.

Also, if you use capturing groups, the exec() method of the RegExp class and the match() method of the String class

return substrings that match the capturing groups:

 var pattern:RegExp = /(\w+)@(\w+).(\w+)/;
 var str:String = "bob@example.com";
 trace(pattern.exec(str));
 // bob@example.com,bob,example,com

Using noncapturing groups and lookahead groups

A noncapturing group is one that is used for grouping only; it is not “collected,” and it does not match numbered

backreferences. Use (?: and) to define noncapturing groups, as follows:

 var pattern = /(?:com|org|net);

For example, note the difference between putting (com|org) in a capturing versus a noncapturing group (the exec()

method lists capturing groups after the complete match):

86ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

 var pattern:RegExp = /(\w+)@(\w+).(com|org)/;
 var str:String = "bob@example.com";
 trace(pattern.exec(str));
 // bob@example.com,bob,example,com

 //noncapturing:
 var pattern:RegExp = /(\w+)@(\w+).(?:com|org)/;
 var str:String = "bob@example.com";
 trace(pattern.exec(str));
 // bob@example.com,bob,example

A special type of noncapturing group is the lookahead group, of which there are two types: the positive lookahead group

and the negative lookahead group.

Use (?= and) to define a positive lookahead group, which specifies that the subpattern in the group must match at the

position. However, the portion of the string that matches the positive lookahead group can match remaining patterns

in the regular expression. For example, because (?=e) is a positive lookahead group in the following code, the

character e that it matches can be matched by a subsequent part of the regular expression—in this case, the capturing

group, \w*):

 var pattern:RegExp = /sh(?=e)(\w*)/i;
 var str:String = "Shelly sells seashells by the seashore";
 trace(pattern.exec(str));
 // Shelly,elly

Use (?! and) to define a negative lookahead group that specifies that the subpattern in the group must not match at

the position. For example:

 var pattern:RegExp = /sh(?!e)(\w*)/i;
 var str:String = "She sells seashells by the seashore";
 trace(pattern.exec(str));
 // shore,ore

Using named groups

A named group is a type of group in a regular expression that is given a named identifier. Use (?P<name> and) to

define the named group. For example, the following regular expression includes a named group with the identifier

named digits:

 var pattern = /[a-z]+(?P<digits>\d+)[a-z]+/;

When you use the exec() method, a matching named group is added as a property of the result array:

 var myPattern:RegExp = /([a-z]+)(?P<digits>\d+)[a-z]+/;
 var str:String = "a123bcd";
 var result:Array = myPattern.exec(str);
 trace(result.digits); // 123

Here is another example, which uses two named groups, with the identifiers name and dom:

 var emailPattern:RegExp =
 /(?P<name>(\w|[_.\-])+)@(?P<dom>((\w|-)+))+\.\w{2,4}+/;
 var address:String = "bob@example.com";
 var result:Array = emailPattern.exec(address);
 trace(result.name); // bob
 trace(result.dom); // example

Note: Named groups are not part of the ECMAScript language specification. They are an added feature in ActionScript 3.0.

87ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

Flags and properties

Flash Player 9 and later, Adobe AIR 1.0 and later

The following table lists the five flags that you can set for regular expressions. Each flag can be accessed as a property

of the regular expression object.

Note that these properties are read-only. You can set the flags (g, i, m, s, x) when you set a regular expression variable,

as follows:

 var re:RegExp = /abc/gimsx;

However, you cannot directly set the named properties. For instance, the following code results in an error:

 var re:RegExp = /abc/;
 re.global = true; // This generates an error.

By default, unless you specify them in the regular expression declaration, the flags are not set, and the corresponding

properties are also set to false.

Additionally, there are two other properties of a regular expression:

• The lastIndex property specifies the index position in the string to use for the next call to the exec() or test()

method of a regular expression.

• The source property specifies the string that defines the pattern portion of the regular expression.

The g (global) flag

When the g (global) flag is not included, a regular expression matches no more than one match. For example, with

the g flag not included in the regular expression, the String.match() method returns only one matching substring:

 var str:String = "she sells seashells by the seashore.";
 var pattern:RegExp = /sh\w*/;
 trace(str.match(pattern)) // output: she

When the g flag is set, the Sting.match() method returns multiple matches, as follows:

 var str:String = "she sells seashells by the seashore.";
 var pattern:RegExp = /sh\w*/g;
 // The same pattern, but this time the g flag IS set.
 trace(str.match(pattern)); // output: she,shells,shore

The i (ignoreCase) flag

By default, regular expression matches are case-sensitive. When you set the i (ignoreCase) flag, case sensitivity is

ignored. For example, the lowercase s in the regular expression does not match the uppercase letter S, the first

character of the string:

Flag Property Description

g global Matches more than one match.

i ignoreCase Case-insensitive matching. Applies to the A—Z and a—z characters, but not to extended characters

such as É and é .

m multiline With this flag set, $ and ^ can match the beginning of a line and end of a line, respectively.

s dotall With this flag set, . (dot) can match the newline character (\n).

x extended Allows extended regular expressions. You can type spaces in the regular expression, which are ignored

as part of the pattern. This lets you type regular expression code more legibly.

88ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

 var str:String = "She sells seashells by the seashore.";
 trace(str.search(/sh/)); // output: 13 -- Not the first character

With the i flag set, however, the regular expression does match the capital letter S:

 var str:String = "She sells seashells by the seashore.";
 trace(str.search(/sh/i)); // output: 0

The i flag ignores case sensitivity only for the A–Z and a–z characters, but not for extended characters such as É and é .

The m (multiline) flag

If the m (multiline) flag is not set, the ^ matches the beginning of the string and the $ matches the end of the string.

If the m flag is set, these characters match the beginning of a line and end of a line, respectively. Consider the following

string, which includes a newline character:

 var str:String = "Test\n";
 str += "Multiline";
 trace(str.match(/^\w*/g)); // Match a word at the beginning of the string.

Even though the g (global) flag is set in the regular expression, the match() method matches only one substring, since

there is only one match for the ^—the beginning of the string. The output is:

 Test

Here is the same code with the m flag set:

 var str:String = "Test\n";
 str += "Multiline";
 trace(str.match(/^\w*/gm)); // Match a word at the beginning of lines.

This time, the output includes the words at the beginning of both lines:

 Test,Multiline

Note that only the \n character signals the end of a line. The following characters do not:

• Return (\r) character

• Unicode line-separator (\u2028) character

• Unicode paragraph-separator (\u2029) character

The s (dotall) flag

If the s (dotall or “dot all”) flag is not set, a dot (.) in a regular expression pattern does not match a newline character

(\n). So for the following example, there is no match:

 var str:String = "<p>Test\n";
 str += "Multiline</p>";
 var re:RegExp = /<p>.*?<\/p>/;
 trace(str.match(re));

However, if the s flag is set, the dot matches the newline character:

 var str:String = "<p>Test\n";
 str += "Multiline</p>";
 var re:RegExp = /<p>.*?<\/p>/s;
 trace(str.match(re));

In this case, the match is the entire substring within the <p> tags, including the newline character:

 <p>Test
 Multiline</p>

89ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

The x (extended) flag

Regular expressions can be difficult to read, especially when they include a lot of metasymbols and metasequences. For

example:

 /<p(>|(\s*[^>]*>)).*?<\/p>/gi

When you use the x (extended) flag in a regular expression, any blank spaces that you type in the pattern are ignored.

For example, the following regular expression is identical to the previous example:

 / <p (> | (\s* [^>]* >)) .*? <\/p> /gix

If you have the x flag set and do want to match a blank space character, precede the blank space with a backslash. For

example, the following two regular expressions are equivalent:

 /foo bar/
 /foo \ bar/x

The lastIndex property

The lastIndex property specifies the index position in the string at which to start the next search. This property

affects the exec() and test() methods called on a regular expression that has the g flag set to true. For example,

consider the following code:

 var pattern:RegExp = /p\w*/gi;
 var str:String = "Pedro Piper picked a peck of pickled peppers.";
 trace(pattern.lastIndex);
 var result:Object = pattern.exec(str);
 while (result != null)
 {
 trace(pattern.lastIndex);
 result = pattern.exec(str);
 }

The lastIndex property is set to 0 by default (to start searches at the beginning of the string). After each match, it is

set to the index position following the match. Therefore, the output for the preceding code is the following:

 0
 5
 11
 18
 25
 36
 44

If the global flag is set to false, the exec() and test() methods do not use or set the lastIndex property.

The match(), replace(), and search() methods of the String class start all searches from the beginning of the string,

regardless of the setting of the lastIndex property of the regular expression used in the call to the method. (However,

the match() method does set lastIndex to 0.)

You can set the lastIndex property to adjust the starting position in the string for regular expression matching.

The source property

The source property specifies the string that defines the pattern portion of a regular expression. For example:

 var pattern:RegExp = /foo/gi;
 trace(pattern.source); // foo

90ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

Methods for using regular expressions with strings

Flash Player 9 and later, Adobe AIR 1.0 and later

The RegExp class includes two methods: exec() and test().

In addition to the exec() and test() methods of the RegExp class, the String class includes the following methods

that let you match regular expressions in strings: match(), replace(), search(), and splice().

The test() method

Flash Player 9 and later, Adobe AIR 1.0 and later

The test() method of the RegExp class simply checks the supplied string to see if it contains a match for the regular

expression, as the following example shows:

 var pattern:RegExp = /Class-\w/;
 var str = "Class-A";
 trace(pattern.test(str)); // output: true

The exec() method

Flash Player 9 and later, Adobe AIR 1.0 and later

The exec() method of the RegExp class checks the supplied string for a match of the regular expression and returns

an array with the following:

• The matching substring

• Substring matches for any parenthetical groups in the regular expression

The array also includes an index property, indicating the index position of the start of the substring match.

For example, consider the following code:

 var pattern:RegExp = /\d{3}\-\d{3}-\d{4}/; //U.S phone number
 var str:String = "phone: 415-555-1212";
 var result:Array = pattern.exec(str);
 trace(result.index, " - ", result);
 // 7-415-555-1212

Use the exec() method multiple times to match multiple substrings when the g (global) flag is set for the regular

expression:

 var pattern:RegExp = /\w*sh\w*/gi;
 var str:String = "She sells seashells by the seashore";
 var result:Array = pattern.exec(str);

 while (result != null)
 {
 trace(result.index, "\t", pattern.lastIndex, "\t", result);
 result = pattern.exec(str);
 }
 //output:
 // 0 3 She
 // 10 19 seashells
 // 27 35 seashore

91ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

String methods that use RegExp parameters

Flash Player 9 and later, Adobe AIR 1.0 and later

The following methods of the String class take regular expressions as parameters: match(), replace(), search(),

and split(). For more information on these methods, see “Finding patterns in strings and replacing substrings” on

page 16.

Regular expressions example: A Wiki parser

Flash Player 9 and later, Adobe AIR 1.0 and later

This simple Wiki text conversion example illustrates a number of uses for regular expressions:

• Converting lines of text that match a source Wiki pattern to the appropriate HTML output strings.

• Using a regular expression to convert URL patterns to HTML <a> hyperlink tags.

• Using a regular expression to convert U.S. dollar strings (such as "$9.95") to euro strings (such as "8.24 €").

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

WikiEditor application files can be found in the folder Samples/WikiEditor. The application consists of the following

files:

Defining the WikiParser class

Flash Player 9 and later, Adobe AIR 1.0 and later

The WikiParser class includes methods that convert Wiki input text into the equivalent HTML output. This is not a

very robust Wiki conversion application, but it does illustrate some good uses of regular expressions for pattern

matching and string conversion.

The constructor function, along with the setWikiData() method, simply initializes a sample string of Wiki input text,

as follows:

 public function WikiParser()
 {
 wikiData = setWikiData();
 }

File Description

WikiEditor.mxml

or

WikiEditor.fla

The main application file in Flash (FLA) or Flex (MXML).

com/example/programmingas3/regExpExamples/WikiParser.as A class that includes methods that use regular expressions

to convert Wiki input text patterns to the equivalent HTML

output.

com/example/programmingas3/regExpExamples/URLParser.as A class that includes methods that use regular expressions

to convert URL strings to HTML <a> hyperlink tags.

com/example/programmingas3/regExpExamples/CurrencyConverter.as A class that includes methods that use regular expressions

to convert U.S. dollar strings to euro strings.

http://www.adobe.com/go/learn_programmingAS3samples_flash

92ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

When the user clicks the Test button in the sample application, the application invokes the parseWikiString()

method of the WikiParser object. This method calls a number of other methods, which in turn assemble the resulting

HTML string.

 public function parseWikiString(wikiString:String):String
 {
 var result:String = parseBold(wikiString);
 result = parseItalic(result);
 result = linesToParagraphs(result);
 result = parseBullets(result);
 return result;
 }

Each of the methods called—parseBold(), parseItalic(), linesToParagraphs(), and parseBullets()—uses

the replace() method of the string to replace matching patterns, defined by a regular expression, in order to

transform the input Wiki text into HTML-formatted text.

Converting boldface and italic patterns

The parseBold() method looks for a Wiki boldface text pattern (such as '''foo''') and transforms it into its HTML

equivalent (such as foo), as follows:

 private function parseBold(input:String):String
 {
 var pattern:RegExp = /'''(.*?)'''/g;
 return input.replace(pattern, "$1");
 }

Note that the (.?*) portion of the regular expression matches any number of characters (*) between the two defining

''' patterns. The ? quantifier makes the match nongreedy, so that for a string such as '''aaa''' bbb '''ccc''',

the first matched string will be '''aaa''' and not the entire string (which starts and ends with the ''' pattern).

The parentheses in the regular expression define a capturing group, and the replace() method refers to this group

by using the $1 code in the replacement string. The g (global) flag in the regular expression ensures that the

replace() method replaces all matches in the string (not simply the first one).

The parseItalic() method works similarly to the parseBold() method, except that it checks for two apostrophes

('') as the delimiter for italic text (not three):

 private function parseItalic(input:String):String
 {
 var pattern:RegExp = /''(.*?)''/g;
 return input.replace(pattern, "<i>$1</i>");
 }

Converting bullet patterns

As the following example shows, the parseBullet() method looks for the Wiki bullet line pattern (such as * foo)

and transforms it into its HTML equivalent (such as foo):

 private function parseBullets(input:String):String
 {
 var pattern:RegExp = /^*(.*)/gm;
 return input.replace(pattern, "$1");
 }

The ̂ symbol at the beginning of the regular expression matches the beginning of a line. The m (multiline) flag in the

regular expression causes the regular expression to match the ^ symbol against the start of a line, not simply the start

of the string.

93ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

The * pattern matches an asterisk character (the backslash is used to signal a literal asterisk instead of a * quantifier).

The parentheses in the regular expression define a capturing group, and the replace() method refers to this group

by using the $1 code in the replacement string. The g (global) flag in the regular expression ensures that the

replace() method replaces all matches in the string (not simply the first one).

Converting paragraph Wiki patterns

The linesToParagraphs() method converts each line in the input Wiki string to an HTML <p> paragraph tag. These

lines in the method strip out empty lines from the input Wiki string:

 var pattern:RegExp = /^$/gm;
 var result:String = input.replace(pattern, "");

The ^ and $ symbols the regular expression match the beginning and end of a line. The m (multiline) flag in the

regular expression causes the regular expression to match the ^ symbol against the start of a line, not simply the start

of the string.

The replace() method replaces all matching substrings (empty lines) with an empty string (""). The g (global) flag

in the regular expression ensures that the replace() method replaces all matches in the string (not simply the first one).

Converting URLs to HTML <a> tags

Flash Player 9 and later, Adobe AIR 1.0 and later

When the user clicks the Test button in the sample application, if the user selected the urlToATag check box, the

application calls the URLParser.urlToATag() static method to convert URL strings from the input Wiki string into

HTML <a> tags.

 var protocol:String = "((?:http|ftp)://)";
 var urlPart:String = "([a-z0-9_-]+\.[a-z0-9_-]+)";
 var optionalUrlPart:String = "(\.[a-z0-9_-]*)";
 var urlPattern:RegExp = new RegExp(protocol + urlPart + optionalUrlPart, "ig");
 var result:String = input.replace(urlPattern, "<u>$1$2$3</u>");

The RegExp() constructor function is used to assemble a regular expression (urlPattern) from a number of

constituent parts. These constituent parts are each strings that define part of the regular expression pattern.

The first part of the regular expression pattern, defined by the protocol string, defines an URL protocol: either

http:// or ftp://. The parentheses define a noncapturing group, indicated by the ? symbol. This means that the

parentheses are simply used to define a group for the | alternation pattern; the group will not match backreference

codes ($1, $2, $3) in the replacement string of the replace() method.

The other constituent parts of the regular expression each use capturing groups (indicated by parentheses in the

pattern), which are then used in the backreference codes ($1, $2, $3) in the replacement string of the replace()

method.

The part of the pattern defined by the urlPart string matches at least one of the following characters: a-z, 0-9, _, or

-. The + quantifier indicates that at least one character is matched. The \. indicates a required dot (.) character. And

the remainder matches another string of at least one of these characters: a-z, 0-9, _, or -.

The part of the pattern defined by the optionalUrlPart string matches zero or more of the following: a dot (.)

character followed by any number of alphanumeric characters (including _ and -). The * quantifier indicates that zero

or more characters are matched.

The call to the replace() method employs the regular expression and assembles the replacement HTML string, using

backreferences.

94ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using regular expressions

Last updated 10/9/2017

The urlToATag() method then calls the emailToATag() method, which uses similar techniques to replace e-mail

patterns with HTML <a> hyperlink strings. The regular expressions used to match HTTP, FTP, and e-mail URLs in

this sample file are fairly simple, for the purposes of exemplification; there are much more complicated regular

expressions for matching such URLs more correctly.

Converting U.S. dollar strings to euro strings

Flash Player 9 and later, Adobe AIR 1.0 and later

When the user clicks the Test button in the sample application, if the user selected the dollarToEuro check box, the

application calls the CurrencyConverter.usdToEuro() static method to convert U.S. dollar strings (such as

"$9.95") to euro strings (such as "8.24 €"), as follows:

 var usdPrice:RegExp = /\$([\d,]+.\d+)+/g;
 return input.replace(usdPrice, usdStrToEuroStr);

The first line defines a simple pattern for matching U.S. dollar strings. Notice that the $ character is preceded with the

backslash (\) escape character.

The replace() method uses the regular expression as the pattern matcher, and it calls the usdStrToEuroStr()

function to determine the replacement string (a value in euros).

When a function name is used as the second parameter of the replace() method, the following are passed as

parameters to the called function:

• The matching portion of the string.

• Any captured parenthetical group matches. The number of arguments passed this way varies depending on the

number of captured parenthetical group matches. You can determine the number of captured parenthetical group

matches by checking arguments.length - 3 within the function code.

• The index position in the string where the match begins.

• The complete string.

The usdStrToEuroStr() method converts U.S. dollar string patterns to euro strings, as follows:

 private function usdToEuro(...args):String
 {
 var usd:String = args[1];
 usd = usd.replace(",", "");
 var exchangeRate:Number = 0.828017;
 var euro:Number = Number(usd) * exchangeRate;
 trace(usd, Number(usd), euro);
 const euroSymbol:String = String.fromCharCode(8364); // €
 return euro.toFixed(2) + " " + euroSymbol;
 }

Note that args[1] represents the captured parenthetical group matched by the usdPrice regular expression. This is

the numerical portion of the U.S. dollar string: that is, the dollar amount without the $ sign. The method applies an

exchange rate conversion and returns the resulting string (with a trailing € symbol instead of a leading $ symbol).

95

Last updated 10/9/2017

Chapter 6: Working with XML

Flash Player 9 and later, Adobe AIR 1.0 and later

ActionScript 3.0 includes a group of classes based on the ECMAScript for XML (E4X) specification (ECMA-357

edition 2). These classes include powerful and easy-to-use functionality for working with XML data. Using E4X, you

will be able to develop code with XML data faster than was possible with previous programming techniques. As an

added benefit, the code you produce will be easier to read.

More Help topics

XML class

ECMA-357 specification

Basics of XML

Flash Player 9 and later, Adobe AIR 1.0 and later

XML is a standard way of representing structured information so that it is easy for computers to work with and

reasonably easy for people to write and understand. XML is an abbreviation for eXtensible Markup Language. The

XML standard is available at www.w3.org/XML/.

XML offers a standard and convenient way to categorize data, to make it easier to read, access, and manipulate. XML

uses a tree structure and tag structure that is similar to HTML. Here is a simple example of XML data:

 <song>
 <title>What you know?</title>
 <artist>Steve and the flubberblubs</artist>
 <year>1989</year>
 <lastplayed>2006-10-17-08:31</lastplayed>
 </song>

XML data can also be more complex, with tags nested in other tags as well as attributes and other structural

components. Here is a more complex example of XML data:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/XML.html
http://www.ecma-international.org/publications/standards/Ecma-357.htm
http://www.w3.org/XML/

96ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

 <album>
 <title>Questions, unanswered</title>
 <artist>Steve and the flubberblubs</artist>
 <year>1989</year>
 <tracks>
 <song tracknumber="1" length="4:05">
 <title>What do you know?</title>
 <artist>Steve and the flubberblubs</artist>
 <lastplayed>2006-10-17-08:31</lastplayed>
 </song>
 <song tracknumber="2" length="3:45">
 <title>Who do you know?</title>
 <artist>Steve and the flubberblubs</artist>
 <lastplayed>2006-10-17-08:35</lastplayed>
 </song>
 <song tracknumber="3" length="5:14">
 <title>When do you know?</title>
 <artist>Steve and the flubberblubs</artist>
 <lastplayed>2006-10-17-08:39</lastplayed>
 </song>
 <song tracknumber="4" length="4:19">
 <title>Do you know?</title>
 <artist>Steve and the flubberblubs</artist>
 <lastplayed>2006-10-17-08:44</lastplayed>
 </song>
 </tracks>
 </album>

Notice that this XML document contains other complete XML structures within it (such as the song tags with their

children). It also demonstrates other XML structures such as attributes (tracknumber and length in the song tags),

and tags that contain other tags rather than containing data (such as the tracks tag).

Getting started with XML

If you have little or no experience with XML, here is a brief description of the most common aspects of XML data. XML

data is written in plain-text form, with a specific syntax for organizing the information into a structured format.

Generally, a single set of XML data is known as an XML document. In XML format, data is organized into elements

(which can be single data items or containers for other elements) using a hierarchical structure. Every XML document

has a single element as the top level or main item; inside this root element there may be a single piece of information,

although there are more likely to be other elements, which in turn contain other elements, and so forth. For example,

this XML document contains the information about a music album:

 <song tracknumber="1" length="4:05">
 <title>What do you know?</title>
 <artist>Steve and the flubberblubs</artist>
 <mood>Happy</mood>
 <lastplayed>2006-10-17-08:31</lastplayed>
 </song>

Each element is distinguished by a set of tags—the element’s name wrapped in angle brackets (less-than and greater-

than signs). The opening tag, indicating the start of the element, has the element name:

 <title>

The closing tag, which marks the end of the element, has a forward slash before the element’s name:

 </title>

97ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

If an element contains no content, it can be written as an empty element (sometimes called a self-closing element). In

XML, this element:

 <lastplayed/>

is identical to this element:

 <lastplayed></lastplayed>

In addition to the element’s content contained between the opening and closing tags, an element can also include other

values, known as attributes, defined in the element’s opening tag. For example, this XML element defines a single

attribute named length, with the value "4:19" :

 <song length="4:19"></song>

Each XML element has content, which is either a single value, one or more XML elements, or nothing (for an empty

element).

Learning more about XML

To learn more about working with XML, there are a number of additional books and resources for learning more about

XML, including these web sites:

• W3Schools XML Tutorial: http://w3schools.com/xml/

• XMLpitstop tutorials, discussion lists, and more: http://xmlpitstop.com/

ActionScript classes for working with XML

ActionScript 3.0 includes several classes that are used for working with XML-structured information. The two main

classes are as follows:

• XML: Represents a single XML element, which can be an XML document with multiple children or a single-value

element within a document.

• XMLList: Represents a set of XML elements. An XMLList object is used when there are multiple XML elements that

are “siblings” (at the same level, and contained by the same parent, in the XML document’s hierarchy). For instance,

an XMLList instance would be the easiest way to work with this set of XML elements (presumably contained in an

XML document):

 <artist type="composer">Fred Wilson</artist>
 <artist type="conductor">James Schmidt</artist>
 <artist type="soloist">Susan Harriet Thurndon</artist>

For more advanced uses involving XML namespaces, ActionScript also includes the Namespace and QName classes.

For more information, see “Using XML namespaces” on page 110.

In addition to the built-in classes for working with XML, ActionScript 3.0 also includes several operators that provide

specific functionality for accessing and manipulating XML data. This approach to working with XML using these

classes and operators is known as ECMAScript for XML (E4X), as defined by the ECMA-357 edition 2 specification.

Important concepts and terms

The following reference list contains important terms you will encounter when programming XML handling routines:

Element A single item in an XML document, identified as the content contained between a starting tag and an ending

tag (including the tags). XML elements can contain text data or other elements, or can be empty.

Empty element An XML element that contains no child elements. Empty elements are often written as self-closing

tags (such as <element/>).

http://w3schools.com/xml/
http://xmlpitstop.com/

98ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

Document A single XML structure. An XML document can contain any number of elements (or can consist only of a

single empty element); however, an XML document must have a single top-level element that contains all the other

elements in the document.

Node Another name for an XML element.

Attribute A named value associated with an element that is written into the opening tag of the element in

attributename="value" format, rather than being written as a separate child element nested inside the element.

The E4X approach to XML processing

Flash Player 9 and later, Adobe AIR 1.0 and later

The ECMAScript for XML specification defines a set of classes and functionality for working with XML data. These

classes and functionality are known collectively as E4X. ActionScript 3.0 includes the following E4X classes: XML,

XMLList, QName, and Namespace.

The methods, properties, and operators of the E4X classes are designed with the following goals:

• Simplicity—Where possible, E4X makes it easier to write and understand code for working with XML data.

• Consistency—The methods and reasoning behind E4X are internally consistent and consistent with other parts of

ActionScript.

• Familiarity—You manipulate XML data with well-known operators, such as the dot (.) operator.

Note: There is a different XML class in ActionScript 2.0. In ActionScript 3.0 that class has been renamed as

XMLDocument, so that the name does not conflict with the ActionScript 3.0 XML class that is part of E4X. In

ActionScript 3.0, the legacy classes—XMLDocument, XMLNode, XMLParser, and XMLTag—are included in the

flash.xml package primarily for legacy support. The new E4X classes are core classes; you need not import a package to

use them. For details on the legacy ActionScript 2.0 XML classes, see the flash.xml packagein the ActionScript 3.0

Reference for the Adobe Flash Platform.

Here is an example of manipulating data with E4X:

 var myXML:XML =
 <order>
 <item id='1'>
 <menuName>burger</menuName>
 <price>3.95</price>
 </item>
 <item id='2'>
 <menuName>fries</menuName>
 <price>1.45</price>
 </item>
 </order>

Often, your application will load XML data from an external source, such as a web service or a RSS feed. However, for

clarity, the code examples provided here assign XML data as literals.

As the following code shows, E4X includes some intuitive operators, such as the dot (.) and attribute identifier (@)

operators, for accessing properties and attributes in the XML:

 trace(myXML.item[0].menuName); // Output: burger
 trace(myXML.item.(@id==2).menuName); // Output: fries
 trace(myXML.item.(menuName=="burger").price); // Output: 3.95

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/xml/package-detail.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

99ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

Use the appendChild() method to assign a new child node to the XML, as the following snippet shows:

 var newItem:XML =
 <item id="3">
 <menuName>medium cola</menuName>
 <price>1.25</price>
 </item>

 myXML.appendChild(newItem);

Use the @ and . operators not only to read data, but also to assign data, as in the following:

 myXML.item[0].menuName="regular burger";
 myXML.item[1].menuName="small fries";
 myXML.item[2].menuName="medium cola";

 myXML.item.(menuName=="regular burger").@quantity = "2";
 myXML.item.(menuName=="small fries").@quantity = "2";
 myXML.item.(menuName=="medium cola").@quantity = "2";

Use a for loop to iterate through nodes of the XML, as follows:

 var total:Number = 0;
 for each (var property:XML in myXML.item)
 {
 var q:int = Number(property.@quantity);
 var p:Number = Number(property.price);
 var itemTotal:Number = q * p;
 total += itemTotal;
 trace(q + " " + property.menuName + " $" + itemTotal.toFixed(2))
 }
 trace("Total: $", total.toFixed(2));

XML objects

Flash Player 9 and later, Adobe AIR 1.0 and later

An XML object may represent an XML element, attribute, comment, processing instruction, or text element.

An XML object is classified as having either simple content or complex content. An XML object that has child nodes is

classified as having complex content. An XML object is said to have simple content if it is any one of the following: an

attribute, a comment, a processing instruction, or a text node.

For example, the following XML object contains complex content, including a comment and a processing instruction:

100ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

 XML.ignoreComments = false;
 XML.ignoreProcessingInstructions = false;
 var x1:XML =
 <order>
 <!--This is a comment. -->
 <?PROC_INSTR sample ?>
 <item id='1'>
 <menuName>burger</menuName>
 <price>3.95</price>
 </item>
 <item id='2'>
 <menuName>fries</menuName>
 <price>1.45</price>
 </item>
 </order>

As the following example shows, you can now use the comments() and processingInstructions() methods to

create new XML objects, a comment and a processing instruction:

 var x2:XML = x1.comments()[0];
 var x3:XML = x1.processingInstructions()[0];

XML properties

Flash Player 9 and later, Adobe AIR 1.0 and later

The XML class has five static properties:

• The ignoreComments and ignoreProcessingInstructions properties determine whether comments or

processing instructions are ignored when the XML object is parsed.

• The ignoreWhitespace property determines whether white space characters are ignored in element tags and

embedded expressions that are separated only by white space characters.

• The prettyIndentand prettyPrinting properties are used to format the text that is returned by the toString()

and toXMLString() methods of the XML class.

For details on these properties, see the ActionScript 3.0 Reference for the Adobe Flash Platform.

XML methods

Flash Player 9 and later, Adobe AIR 1.0 and later

The following methods allow you to work with the hierarchical structure of XML objects:

• appendChild()

• child()

• childIndex()

• children()

• descendants()

• elements()

• insertChildAfter()

• insertChildBefore()

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

101ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

• parent()

• prependChild()

The following methods allow you to work with XML object attributes:

• attribute()

• attributes()

The following methods allow you to you work with XML object properties:

• hasOwnProperty()

• propertyIsEnumerable()

• replace()

• setChildren()

The following methods are for working with qualified names and namespaces:

• addNamespace()

• inScopeNamespaces()

• localName()

• name()

• namespace()

• namespaceDeclarations()

• removeNamespace()

• setLocalName()

• setName()

• setNamespace()

The following methods are for working with and determining certain types of XML content:

• comments()

• hasComplexContent()

• hasSimpleContent()

• nodeKind()

• processingInstructions()

• text()

The following methods are for conversion to strings and for formatting XML objects:

• defaultSettings()

• setSettings()

• settings()

• normalize()

• toString()

• toXMLString()

102ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

There are a few additional methods:

• contains()

• copy()

• valueOf()

• length()

For details on these methods, see the ActionScript 3.0 Reference for the Adobe Flash Platform.

XMLList objects

Flash Player 9 and later, Adobe AIR 1.0 and later

An XMLList instance represents an arbitrary collection of XML objects. It can contain full XML documents, XML

fragments, or the results of an XML query.

The following methods allow you to work with the hierarchical structure of XMLList objects:

• child()

• children()

• descendants()

• elements()

• parent()

The following methods allow you to work with XMLList object attributes:

• attribute()

• attributes()

The following methods allow you to you work with XMLList properties:

• hasOwnProperty()

• propertyIsEnumerable()

The following methods are for working with and determining certain types of XML content:

• comments()

• hasComplexContent()

• hasSimpleContent()

• processingInstructions()

• text()

The following are for conversion to strings and for formatting the XMLList object:

• normalize()

• toString()

• toXMLString()

There are a few additional methods:

• contains()

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

103ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

• copy()

• length()

• valueOf()

For details on these methods, see the ActionScript 3.0 Reference for the Adobe Flash Platform.

For an XMLList object that contains exactly one XML element, you can use all properties and methods of the XML

class, because an XMLList with one XML element is treated the same as an XML object. For example, in the following

code, because doc.div is an XMLList object containing one element, you can use the appendChild() method from

the XML class:

 var doc:XML =
 <body>
 <div>
 <p>Hello</p>
 </div>
 </body>;
 doc.div.appendChild(<p>World</p>);

For a list of XML properties and methods, see “XML objects” on page 99.

Initializing XML variables

Flash Player 9 and later, Adobe AIR 1.0 and later

You can assign an XML literal to an XML object, as follows:

 var myXML:XML =
 <order>
 <item id='1'>
 <menuName>burger</menuName>
 <price>3.95</price>
 </item>
 <item id='2'>
 <menuName>fries</menuName>
 <price>1.45</price>
 </item>
 </order>

As the following snippet shows, you can also use the new constructor to create an instance of an XML object from a

string that contains XML data:

 var str:String = "<order><item id='1'><menuName>burger</menuName>"
 + "<price>3.95</price></item></order>";
 var myXML:XML = new XML(str);

If the XML data in the string is not well formed (for example, if a closing tag is missing), you will see a run-time error.

You can also pass data by reference (from other variables) into an XML object, as the following example shows:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

104ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

 var tagname:String = "item";
 var attributename:String = "id";
 var attributevalue:String = "5";
 var content:String = "Chicken";
 var x:XML = <{tagname} {attributename}={attributevalue}>{content}</{tagname}>;
 trace(x.toXMLString())
 // Output: <item id="5">Chicken</item>

To load XML data from a URL, use the URLLoader class, as the following example shows:

 import flash.events.Event;
 import flash.net.URLLoader;
 import flash.net.URLRequest;

 var externalXML:XML;
 var loader:URLLoader = new URLLoader();
 var request:URLRequest = new URLRequest("xmlFile.xml");
 loader.load(request);
 loader.addEventListener(Event.COMPLETE, onComplete);

 function onComplete(event:Event):void
 {
 var loader:URLLoader = event.target as URLLoader;
 if (loader != null)
 {
 externalXML = new XML(loader.data);
 trace(externalXML.toXMLString());
 }
 else
 {
 trace("loader is not a URLLoader!");
 }
 }

To read XML data from a socket connection, use the XMLSocket class. For more information, see the XMLSocket class

in the ActionScript 3.0 Reference for the Adobe Flash Platform.

Assembling and transforming XML objects

Flash Player 9 and later, Adobe AIR 1.0 and later

Use the prependChild() method or the appendChild() method to add a property to the beginning or end of an XML

object’s list of properties, as the following example shows:

 var x1:XML = <p>Line 1</p>
 var x2:XML = <p>Line 2</p>
 var x:XML = <body></body>
 x = x.appendChild(x1);
 x = x.appendChild(x2);
 x = x.prependChild(<p>Line 0</p>);
 // x == <body><p>Line 0</p><p>Line 1</p><p>Line 2</p></body>

Use the insertChildBefore() method or the insertChildAfter() method to add a property before or after a

specified property, as follows:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/XMLSocket.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

105ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

 var x:XML =
 <body>
 <p>Paragraph 1</p>
 <p>Paragraph 2</p>
 </body>
 var newNode:XML = <p>Paragraph 1.5</p>
 x = x.insertChildAfter(x.p[0], newNode)
 x = x.insertChildBefore(x.p[2], <p>Paragraph 1.75</p>)

As the following example shows, you can also use curly brace operators ({ and }) to pass data by reference (from other

variables) when constructing XML objects:

 var ids:Array = [121, 122, 123];
 var names:Array = [["Murphy","Pat"], ["Thibaut","Jean"], ["Smith","Vijay"]]
 var x:XML = new XML("<employeeList></employeeList>");

 for (var i:int = 0; i < 3; i++)
 {
 var newnode:XML = new XML();
 newnode =
 <employee id={ids[i]}>
 <last>{names[i][0]}</last>
 <first>{names[i][1]}</first>
 </employee>;

 x = x.appendChild(newnode)
 }

You can assign properties and attributes to an XML object by using the = operator, as in the following:

 var x:XML =
 <employee>
 <lastname>Smith</lastname>
 </employee>
 x.firstname = "Jean";
 x.@id = "239";

This sets the XML object x to the following:

 <employee id="239">
 <lastname>Smith</lastname>
 <firstname>Jean</firstname>
 </employee>

You can use the + and += operators to concatenate XMLList objects:

 var x1:XML = <a>test1
 var x2:XML = test2
 var xList:XMLList = x1 + x2;
 xList += <c>test3</c>

This sets the XMLList object xList to the following:

 <a>test1
 test2
 <c>test3</c>

106ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

Traversing XML structures

Flash Player 9 and later, Adobe AIR 1.0 and later

One of the powerful features of XML is its ability to provide complex, nested data via a linear string of text characters.

When you load data into an XML object, ActionScript parses the data and loads its hierarchical structure into memory

(or it sends a run-time error if the XML data is not well formed).

The operators and methods of the XML and XMLList objects make it easy to traverse the structure of XML data.

Use the dot (.) operator and the descendent accessor (..) operator to access child properties of an XML object. Consider

the following XML object:

 var myXML:XML =
 <order>
 <book ISBN="0942407296">
 <title>Baking Extravagant Pastries with Kumquats</title>
 <author>
 <lastName>Contino</lastName>
 <firstName>Chuck</firstName>
 </author>
 <pageCount>238</pageCount>
 </book>
 <book ISBN="0865436401">
 <title>Emu Care and Breeding</title>
 <editor>
 <lastName>Case</lastName>
 <firstName>Justin</firstName>
 </editor>
 <pageCount>115</pageCount>
 </book>
 </order>

The object myXML.book is an XMLList object containing child properties of the myXML object that have the name book.

These are two XML objects, matching the two book properties of the myXML object.

The object myXML..lastName is an XMLList object containing any descendent properties with the name lastName.

These are two XML objects, matching the two lastName of the myXML object.

The object myXML.book.editor.lastName is an XMLList object containing any children with the name lastName

of children with the name editor of children with the name book of the myXML object: in this case, an XMLList object

containing only one XML object (the lastName property with the value "Case").

Accessing parent and child nodes

Flash Player 9 and later, Adobe AIR 1.0 and later

The parent() method returns the parent of an XML object.

You can use the ordinal index values of a child list to access specific child objects. For example, consider an XML object

myXML that has two child properties named book. Each child property named book has an index number associated

with it:

 myXML.book[0]
 myXML.book[1]

107ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

To access a specific grandchild, you can specify index numbers for both the child and grandchild names:

 myXML.book[0].title[0]

However, if there is only one child of x.book[0] that has the name title, you can omit the index reference, as follows:

 myXML.book[0].title

Similarly, if there is only one book child of the object x, and if that child object has only one title object, you can omit

both index references, like this:

 myXML.book.title

You can use the child() method to navigate to children with names based on a variable or expression, as the following

example shows:

 var myXML:XML =
 <order>
 <book>
 <title>Dictionary</title>
 </book>
 </order>;

 var childName:String = "book";

 trace(myXML.child(childName).title) // output: Dictionary

Accessing attributes

Flash Player 9 and later, Adobe AIR 1.0 and later

Use the @ symbol (the attribute identifier operator) to access attributes in an XML or XMLList object, as shown in the

following code:

 var employee:XML =
 <employee id="6401" code="233">
 <lastName>Wu</lastName>
 <firstName>Erin</firstName>
 </employee>;
 trace(employee.@id); // 6401

You can use the * wildcard symbol with the @ symbol to access all attributes of an XML or XMLList object, as in the

following code:

 var employee:XML =
 <employee id="6401" code="233">
 <lastName>Wu</lastName>
 <firstName>Erin</firstName>
 </employee>;
 trace(employee.@*.toXMLString());
 // 6401
 // 233

You can use the attribute() or attributes() method to access a specific attribute or all attributes of an XML or

XMLList object, as in the following code:

108ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

 var employee:XML =
 <employee id="6401" code="233">
 <lastName>Wu</lastName>
 <firstName>Erin</firstName>
 </employee>;
 trace(employee.attribute("id")); // 6401
 trace(employee.attribute("*").toXMLString());
 // 6401
 // 233
 trace(employee.attributes().toXMLString());
 // 6401
 // 233

Note that you can also use the following syntax to access attributes, as the following example shows:

 employee.attribute("id")
 employee["@id"]
 employee.@["id"]

These are each equivalent to employee.@id. However, the syntax employee.@id is the preferred approach.

Filtering by attribute or element value

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the parentheses operators— (and) —to filter elements with a specific element name or attribute value.

Consider the following XML object:

 var x:XML =
 <employeeList>
 <employee id="347">
 <lastName>Zmed</lastName>
 <firstName>Sue</firstName>
 <position>Data analyst</position>
 </employee>
 <employee id="348">
 <lastName>McGee</lastName>
 <firstName>Chuck</firstName>
 <position>Jr. data analyst</position>
 </employee>
 </employeeList>

The following expressions are all valid:

• x.employee.(lastName == "McGee")—This is the second employee node.

• x.employee.(lastName == "McGee").firstName—This is the firstName property of the second employee node.

• x.employee.(lastName == "McGee").@id—This is the value of the id attribute of the second employee node.

• x.employee.(@id == 347)—The first employee node.

• x.employee.(@id == 347).lastName—This is the lastName property of the first employee node.

• x.employee.(@id > 300)—This is an XMLList with both employee properties.

• x.employee.(position.toString().search("analyst") > -1)—This is an XMLList with both position

properties.

If you try to filter on attributes or elements that do not exist, an exception is thrown. For example, the final line of the

following code generates an error, because there is no id attribute in the second p element:

109ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

 var doc:XML =
 <body>
 <p id='123'>Hello, Bob.</p>
 <p>Hello.</p>
 </body>;
 trace(doc.p.(@id == '123'));

Similarly, the final line of following code generates an error because there is no b property of the second p element:

 var doc:XML =
 <body>
 <p id='123'>Hello, Bob.</p>
 <p>Hello.</p>
 </body>;
 trace(doc.p.(b == 'Bob'));

To avoid these errors, you can identify the properties that have the matching attributes or elements by using the

attribute() and elements() methods, as in the following code:

 var doc:XML =
 <body>
 <p id='123'>Hello, Bob.</p>
 <p>Hello.</p>
 </body>;
 trace(doc.p.(attribute('id') == '123'));
 trace(doc.p.(elements('b') == 'Bob'));

You can also use the hasOwnProperty() method, as in the following code:

 var doc:XML =
 <body>
 <p id='123'>Hello, Bob.</p>
 <p>Hello.</p>
 </body>;
 trace(doc.p.(hasOwnProperty('@id') && @id == '123'));
 trace(doc.p.(hasOwnProperty('b') && b == 'Bob'));

Using the for..in and the for each..in statements

Flash Player 9 and later, Adobe AIR 1.0 and later

ActionScript 3.0 includes the for..in statement and the for each..in statement for iterating through XMLList

objects. For example, consider the following XML object, myXML, and the XMLList object, myXML.item. The XMLList

object, myXML.item, consists of the two item nodes of the XML object.

 var myXML:XML =
 <order>
 <item id='1' quantity='2'>
 <menuName>burger</menuName>
 <price>3.95</price>
 </item>
 <item id='2' quantity='2'>
 <menuName>fries</menuName>
 <price>1.45</price>
 </item>
 </order>;

The for..in statement lets you iterate over a set of property names in an XMLList:

110ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

 var total:Number = 0;
 for (var pname:String in myXML.item)
 {
 total += myXML.item.@quantity[pname] * myXML.item.price[pname];
 }

The for each..in statement lets you iterate through the properties in the XMLList:

 var total2:Number = 0;
 for each (var prop:XML in myXML.item)
 {
 total2 += prop.@quantity * prop.price;
 }

Using XML namespaces

Flash Player 9 and later, Adobe AIR 1.0 and later

Namespaces in an XML object (or document) identify the type of data that the object contains. For example, in sending

and delivering XML data to a web service that uses the SOAP messaging protocol, you declare the namespace in the

opening tag of the XML:

 var message:XML =
 <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <soap:Body xmlns:w="http://www.test.com/weather/">
 <w:getWeatherResponse>
 <w:tempurature >78</w:tempurature>
 </w:getWeatherResponse>
 </soap:Body>
 </soap:Envelope>;

The namespace has a prefix, soap, and a URI that defines the namespace,

http://schemas.xmlsoap.org/soap/envelope/.

ActionScript 3.0 includes the Namespace class for working with XML namespaces. For the XML object in the previous

example, you can use the Namespace class as follows:

 var soapNS:Namespace = message.namespace("soap");
 trace(soapNS); // Output: http://schemas.xmlsoap.org/soap/envelope/

 var wNS:Namespace = new Namespace("w", "http://www.test.com/weather/");
 message.addNamespace(wNS);
 var encodingStyle:XMLList = message.@soapNS::encodingStyle;
 var body:XMLList = message.soapNS::Body;

 message.soapNS::Body.wNS::GetWeatherResponse.wNS::tempurature = "78";

The XML class includes the following methods for working with namespaces: addNamespace(),

inScopeNamespaces(), localName(), name(), namespace(), namespaceDeclarations(), removeNamespace(),

setLocalName(), setName(), and setNamespace().

The default xml namespace directive lets you assign a default namespace for XML objects. For example, in the

following, both x1 and x2 have the same default namespace:

111ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

 var ns1:Namespace = new Namespace("http://www.example.com/namespaces/");
 default xml namespace = ns1;
 var x1:XML = <test1 />;
 var x2:XML = <test2 />;

XML type conversion

Flash Player 9 and later, Adobe AIR 1.0 and later

You can convert XML objects and XMLList objects to String values. Similarly, you can convert strings to XML objects

and XMLList objects. Also, keep in mind that all XML attribute values, names, and text values are strings. The

following sections discuss all these forms of XML type conversion.

Converting XML and XMLList objects to strings

Flash Player 9 and later, Adobe AIR 1.0 and later

The XML and XMLList classes include a toString() method and a toXMLString() method. The toXMLString()

method returns a string that includes all tags, attributes, namespace declarations, and content of the XML object. For

XML objects with complex content (child elements), the toString() method does exactly the same as the

toXMLString() method. For XML objects with simple content (those that contain only one text element), the

toString() method returns only the text content of the element, as the following example shows:

 var myXML:XML =
 <order>
 <item id='1' quantity='2'>
 <menuName>burger</menuName>
 <price>3.95</price>
 </item>
 <order>;

 trace(myXML.item[0].menuName.toXMLString());
 // <menuName>burger</menuName>
 trace(myXML.item[0].menuName.toString());
 // burger

If you use the trace() method without specifying toString() or toXMLString(), the data is converted using the

toString() method by default, as this code shows:

 var myXML:XML =
 <order>
 <item id='1' quantity='2'>
 <menuName>burger</menuName>
 <price>3.95</price>
 </item>
 <order>;

 trace(myXML.item[0].menuName);
 // burger

When using the trace() method to debug code, you will often want to use the toXMLString() method so that the

trace() method outputs more complete data.

112ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

Converting strings to XML objects

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the new XML() constructor to create an XML object from a string, as follows:

 var x:XML = new XML("<a>test");

If you attempt to convert a string to XML from a string that represents invalid XML or XML that is not well formed,

a run-time error is thrown, as follows:

 var x:XML = new XML("<a>test"); // throws an error

Converting attribute values, names, and text values from strings

Flash Player 9 and later, Adobe AIR 1.0 and later

All XML attribute values, names, and text values are String data types, and you may need to convert these to other data

types. For example, the following code uses the Number() function to convert text values to numbers:

 var myXML:XML =
 <order>
 <item>
 <price>3.95</price>
 </item>
 <item>
 <price>1.00</price>
 </item>
 </order>;

 var total:XML = <total>0</total>;
 myXML.appendChild(total);

 for each (var item:XML in myXML.item)
 {
 myXML.total.children()[0] = Number(myXML.total.children()[0])
 + Number(item.price.children()[0]);
 }
 trace(myXML.total); // 4.95;

If this code did not use the Number() function, the code would interpret the + operator as the string concatenation

operator, and the trace() method in the last line would output the following:

 01.003.95

Reading external XML documents

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the URLLoader class to load XML data from a URL. To use the following code in your applications, replace

the XML_URL value in the example with a valid URL:

113ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

 import flash.events.Event;
import flash.net.URLLoader;

var myXML:XML = new XML();
 var XML_URL:String = "http://www.example.com/Sample3.xml";
 var myXMLURL:URLRequest = new URLRequest(XML_URL);
 var myLoader:URLLoader = new URLLoader(myXMLURL);
 myLoader.addEventListener(Event.COMPLETE, xmlLoaded);

 function xmlLoaded(event:Event):void
 {
 myXML = XML(myLoader.data);
 trace("Data loaded.");
 }

You can also use the XMLSocket class to set up an asynchronous XML socket connection with a server. For more

information, see the ActionScript 3.0 Reference for the Adobe Flash Platform.

XML in ActionScript example: Loading RSS data from the
Internet

Flash Player 9 and later, Adobe AIR 1.0 and later

The RSSViewer sample application shows a number of features of working with XML in ActionScript, including the

following:

• Using XML methods to traverse XML data in the form of an RSS feed.

• Using XML methods to assemble XML data in the form of HTML to use in a text field.

The RSS format is widely used to syndicate news via XML. A simple RSS data file may look like the following:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

114ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

 <?xml version="1.0" encoding="UTF-8" ?>
 <rss version="2.0" xmlns:dc="http://purl.org/dc/elements/1.1/">
 <channel>
 <title>Alaska - Weather</title>
 <link>http://www.nws.noaa.gov/alerts/ak.html</link>
 <description>Alaska - Watches, Warnings and Advisories</description>

 <item>
 <title>
 Short Term Forecast - Taiya Inlet, Klondike Highway (Alaska)
 </title>
 <link>
 http://www.nws.noaa.gov/alerts/ak.html#A18.AJKNK.1900
 </link>
 <description>
 Short Term Forecast Issued At: 2005-04-11T19:00:00
 Expired At: 2005-04-12T01:00:00 Issuing Weather Forecast Office
 Homepage: http://pajk.arh.noaa.gov
 </description>
 </item>
 <item>
 <title>
 Short Term Forecast - Haines Borough (Alaska)
 </title>
 <link>
 http://www.nws.noaa.gov/alerts/ak.html#AKZ019.AJKNOWAJK.190000
 </link>
 <description>
 Short Term Forecast Issued At: 2005-04-11T19:00:00
 Expired At: 2005-04-12T01:00:00 Issuing Weather Forecast Office
 Homepage: http://pajk.arh.noaa.gov
 </description>
 </item>
 </channel>
 </rss>

The SimpleRSS application reads RSS data from the Internet, parses the data for headlines (titles), links, and

descriptions, and returns that data. The SimpleRSSUI class provides the UI and calls the SimpleRSS class, which does

all of the XML processing.

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

RSSViewer application files can be found in the folder Samples/RSSViewer. The application consists of the following

files:

File Description

RSSViewer.mxml

or

RSSViewer.fla

The main application file in Flash (FLA) or Flex (MXML).

com/example/programmingas3/rssViewer/RSSParser.as A class that contains methods that use E4X to traverse RSS (XML) data and

generate a corresponding HTML representation.

RSSData/ak.rss A sample RSS file. The application is set up to read RSS data from the web, at

a Flex RSS feed hosted by Adobe. However, you can easily change the

application to read RSS data from this document, which uses a slightly

different schema than that of the Flex RSS feed.

http://www.adobe.com/go/learn_programmingAS3samples_flash

115ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

Reading and parsing XML data

Flash Player 9 and later, Adobe AIR 1.0 and later

The RSSParser class includes an xmlLoaded() method that converts the input RSS data, stored in the rssXML variable,

into an string containing HTML-formatted output, rssOutput.

Near the beginning of the method, code sets the default XML namespace if the source RSS data includes a default

namespace:

 if (rssXML.namespace("") != undefined)
 {
 default xml namespace = rssXML.namespace("");
 }

The next lines then loop through the contents of the source XML data, examining each descendant property named item:

 for each (var item:XML in rssXML..item)
 {
 var itemTitle:String = item.title.toString();
 var itemDescription:String = item.description.toString();
 var itemLink:String = item.link.toString();
 outXML += buildItemHTML(itemTitle,
 itemDescription,
 itemLink);
 }

The first three lines simply set string variables to represent the title, description and link properties of the item

property of the XML data. The next line then calls the buildItemHTML() method to get HTML data in the form of an

XMLList object, using the three new string variables as parameters.

Assembling XMLList data

Flash Player 9 and later, Adobe AIR 1.0 and later

The HTML data (an XMLList object) is of the following form:

 itemTitle
 <p>
 itemDescription

 More...

 </p>

The first lines of the method clear the default xml namespace:

 default xml namespace = new Namespace();

The default xml namespace directive has function block-level scope. This means that the scope of this declaration

is the buildItemHTML() method.

The lines that follow assemble the XMLList, based on the string arguments passed to the function:

116ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with XML

Last updated 10/9/2017

 var body:XMLList = new XMLList();
 body += new XML("" + itemTitle + "");
 var p:XML = new XML("<p>" + itemDescription + "</p>");

 var link:XML = <a>;
 link.@href = itemLink; // <link href="itemLinkString"></link>
 link.font.@color = "#008000";
 //
 // 0x008000 = green
 link.font = "More...";

 p.appendChild(
);
 p.appendChild(link);
 body += p;

This XMLList object represents string data suitable for an ActionScript HTML text field.

The xmlLoaded() method uses the return value of the buildItemHTML() method and converts it to a string:

 XML.prettyPrinting = false;
 rssOutput = outXML.toXMLString();

Extracting the title of the RSS feed and sending a custom event

Flash Player 9 and later, Adobe AIR 1.0 and later

The xmlLoaded() method sets a rssTitle string variable, based on information in the source RSS XML data:

 rssTitle = rssXML.channel.title.toString();

Finally, the xmlLoaded() method generates an event, which notifies the application that the data is parsed and

available:

 dataWritten = new Event("dataWritten", true);

117

Last updated 10/9/2017

Chapter 7: Using native JSON
functionality

ActionScript 3.0 provides a native API for encoding and decoding ActionScript objects using JavaScript Object

Notation (JSON) format. The JSON class and supporting member functions follow the ECMA-262 5th edition

specification with few variances.

Community member Todd Anderson provides a comparison of the native JSON API and the third-party

as3corelib JSON class. See Working with Native JSON in Flash Player 11.

More Help topics

JSON

Overview of the JSON API

The ActionScript JSON API consists of the JSON class and toJSON() member functions on a few native classes. For

applications that require a custom JSON encoding for any class, the ActionScript framework provides ways to override

the default encoding.

The JSON class internally handles import and export for any ActionScript class that does not provide a toJSON()

member. For such cases, JSON traverses the public properties of each object it encounters. If an object contains other

objects, JSON recurses into the nested objects and performs the same traversal. If any object provides a toJSON()

method, JSON uses that custom method instead of its internal algorithm.

The JSON interface consists of an encoding method, stringify(), and a decoding method, parse(). Each of these

methods provides a parameter that lets you insert your own logic into the JSON encoding or decoding workflow. For

stringify(), this parameter is named replacer; for parse(), it is reviver. These parameters take a function

definition with two arguments using the following signature:

function(k, v):*

toJSON() methods

The signature for toJSON() methods is

public function toJSON(k:String):*

JSON.stringify() calls toJSON(), if it exists, for each public property that it encounters during its traversal of an

object. A property consists of a key-value pair. When stringify() calls toJSON(), it passes in the key, k, of the

property that it is currently examining. A typical toJSON() implementation evaluates each property name and returns

the desired encoding of its value.

The toJSON() method can return a value of any type (denoted as *)—not just a String. This variable return type allows

toJSON() to return an object if appropriate. For example, if a property of your custom class contains an object from

another third-party library, you can return that object when toJSON() encounters your property. JSON then recurses

into the third-party object. The encoding process flow behaves as follows:

• If toJSON() returns an object that doesn’t evaluate to a string, stringify() recurses into that object.

http://blog.infrared5.com/2011/07/working-with-native-json-in-flash-player-11/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/JSON.html

118ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using native JSON functionality

Last updated 10/9/2017

• If toJSON() returns a string, stringify() wraps that value in another string, returns the wrapped string, and then

moves to the next value.

In many cases, returning an object is preferable to returning a JSON string created by your application. Returning an

object takes leverages the built-in JSON encoding algorithm and also allows JSON to recurse into nested objects.

The toJSON()method is not defined in the Object class or in most other native classes. Its absence tells JSON to

perform its standard traversal over the object's public properties. If you like, you can also use toJSON() to expose your

object’s private properties.

A few native classes pose challenges that the ActionScript libraries can't solve effectively for all use cases. For these

classes, ActionScript provides a trivial implementation that clients can reimplement to suit their needs. The classes that

provide trivial toJSON() members include:

• ByteArray

• Date

• Dictionary

• XML

You can subclass the ByteArray class to override its toJSON() method, or you can redefine its prototype. The Date and

XML classes, which are declared final, require you to use the class prototype to redefine toJSON(). The Dictionary

class is declared dynamic, which gives you extra freedom in overriding toJSON().

Defining custom JSON behavior

To implement your own JSON encoding and decoding for native classes, you can choose from several options:

• Defining or overriding toJSON()on your custom subclass of a non-final native class

• Defining or redefining toJSON() on the class prototype

• Defining a toJSON property on a dynamic class

• Using the JSON.stringify() replacer and JSON.parser() reviver parameters

More Help topics

ECMA-262, 5th Edition

Defining toJSON() on the prototype of a built-in class

The native JSON implementation in ActionScript mirrors the ECMAScript JSON mechanism defined in ECMA-262,

5th edition. Since ECMAScript doesn't support classes, ActionScript defines JSON behavior in terms of prototype-

based dispatch. Prototypes are precursors to ActionScript 3.0 classes that allow simulated inheritance as well as

member additions and redefinitions.

ActionScript allows you to define or redefine toJSON() on the prototype of any class. This privilege applies even to

classes that are marked final. When you define toJSON() on a class prototype, your definition becomes current for all

instances of that class within the scope of your application. For example, here's how you can define a toJSON() method

on the MovieClip prototype:

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

119ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using native JSON functionality

Last updated 10/9/2017

MovieClip.prototype.toJSON = function(k):* {
trace("prototype.toJSON() called.");
return "toJSON";

}

When your application then calls stringify() on any MovieClip instance, stringify() returns the output of your

toJSON() method:

var mc:MovieClip = new MovieClip();
var js:String = JSON.stringify(mc); //"prototype toJSON() called."
trace("js: " + js); //"js: toJSON"

You can also override toJSON() in native classes that define the method. For example, the following code overrides

Date.toJSON():

Date.prototype.toJSON = function (k):* {
 return "any date format you like via toJSON: "+
 "this.time:"+this.time + " this.hours:"+this.hours;
}
var dt:Date = new Date();
trace(JSON.stringify(dt));
// "any date format you like via toJSON: this.time:1317244361947 this.hours:14"

Defining or overriding toJSON() at the class level

Applications aren't always required to use prototypes to redefine toJSON(). You can also define toJSON() as a

member of a subclass if the parent class is not marked final. For example, you can extend the ByteArray class and define

a public toJSON() function:

package {

import flash.utils.ByteArray;
public class MyByteArray extends ByteArray
{

public function MyByteArray() {
}

public function toJSON(s:String):*
{

return "MyByteArray";
}

}

}

var ba:ByteArray = new ByteArray();
trace(JSON.stringify(ba)); //"ByteArray"
var mba:MyByteArray = new MyByteArray(); //"MyByteArray"
trace(JSON.stringify(mba)); //"MyByteArray"

If a class is dynamic, you can add a toJSON property to an object of that class and assign a function to it as follows:

var d:Dictionary = new Dictionary();
trace(JSON.stringify((d))); // "Dictionary"
d.toJSON = function(){return {c : "toJSON override."};} // overrides existing function
trace(JSON.stringify((d))); // {"c":"toJSON override."}

120ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using native JSON functionality

Last updated 10/9/2017

You can override, define, or redefine toJSON() on any ActionScript class. However, most built-in ActionScript classes

don't define toJSON(). The Object class does not define toJSON in its default prototype or declare it as a class member.

Only a handful of native classes define the method as a prototype function. Thus, in most classes you can’t override

toJSON() in the traditional sense.

Native classes that don’t define toJSON() are serialized to JSON by the internal JSON implementation. Avoid

replacing this built-in functionality if possible. If you define a toJSON() member, the JSON class uses your logic

instead of its own functionality.

Using the JSON.stringify() replacer parameter

Overriding toJSON() on the prototype is useful for changing a class’s JSON export behavior throughout an

application. In some cases, though, your export logic might apply only to special cases under transient conditions. To

accommodate such small-scope changes, you can use the replacer parameter of the JSON.stringify() method.

The stringify() method applies the function passed through the replacer parameter to the object being encoded.

The signature for this function is similar to that of toJSON():

function (k,v):*

Unlike toJSON(), the replacer function requires the value, v, as well as the key, k. This difference is necessary

because stringify() is defined on the static JSON object instead of the object being encoded. When

JSON.stringify() calls replacer(k,v), it is traversing the original input object. The implicit this parameter

passed to the replacer function refers to the object that holds the key and value. Because JSON.stringify() does

not modify the original input object, that object remains unchanged in the container being traversed. Thus, you can

use the code this[k]to query the key on the original object. The v parameter holds the value that toJSON() converts.

Like toJSON(), the replacer function can return any type of value. If replacer returns a string, the JSON engine

escapes the contents in quotes and then wraps those escaped contents in quotes as well. This wrapping guarantees that

stringify() receives a valid JSON string object that remains a string in a subsequent call to JSON.parse().

The following code uses the replacer parameter and the implicit this parameter to return the time and hours values

of a Date object:

JSON.stringify(d, function (k,v):* {
 return "any date format you like via replacer: "+
 "holder[k].time:"+this[k].time + " holder[k].hours:"+this[k].hours;
});

Using the JSON.parse() reviver parameter

The reviver parameter of the JSON.parse() method does the opposite of the replacer function: It converts a JSON

string into a usable ActionScript object. The reviver argument is a function that takes two parameters and returns

any type:

function (k,v):*

In this function, k is a key, and v is the value of k. Like stringify(), parse() traverses the JSON key-value pairs and

applies the reviver function—if one exists—to each pair. A potential problem is the fact that the JSON class does not

output an object’s ActionScript class name. Thus, it can be challenging to know which type of object to revive. This

problem can be especially troublesome when objects are nested. In designing toJSON(), replacer, and reviver

functions, you can devise ways to identify the ActionScript objects that are exported while keeping the original objects

intact.

121ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using native JSON functionality

Last updated 10/9/2017

Parsing example

The following example shows a strategy for reviving objects parsed from JSON strings. This example defines two

classes: JSONGenericDictExample and JSONDictionaryExtnExample. Class JSONGenericDictExample is a custom

dictionary class. Each record contains a person’s name and birthday, as well as a unique ID. Each time the

JSONGenericDictExample constructor is called, it adds the newly created object to an internal static array with a

statically incrementing integer as its ID. Class JSONGenericDictExample also defines a revive() method that extracts

just the integer portion from the longer id member. The revive() method uses this integer to look up and return the

correct revivable object.

Class JSONDictionaryExtnExample extends the ActionScript Dictionary class. Its records have no set structure and

can contain any data. Data is assigned after a JSONDictionaryExtnExample object is constructed, rather than as class-

defined properties. JSONDictionaryExtnExample records use JSONGenericDictExample objects as keys. When a

JSONDictionaryExtnExample object is revived, the JSONGenericDictExample.revive() function uses the ID

associated with JSONDictionaryExtnExample to retrieve the correct key object.

Most importantly, the JSONDictionaryExtnExample.toJSON() method returns a marker string in addition to the

JSONDictionaryExtnExample object. This string identifies the JSON output as belonging to the

JSONDictionaryExtnExample class. This marker leaves no doubt as to which object type is being processed during

JSON.parse().

package {
// Generic dictionary example:
public class JSONGenericDictExample {
 static var revivableObjects = [];
 static var nextId = 10000;
 public var id;
 public var dname:String;
 public var birthday;

 public function JSONGenericDictExample(name, birthday) {

revivableObjects[nextId] = this;
this.id = "id_class_JSONGenericDictExample_" + nextId;
this.dname = name;
this.birthday = birthday;
nextId++;

 }
 public function toString():String { return this.dname; }
 public static function revive(id:String):JSONGenericDictExample {

var r:RegExp = /^id_class_JSONGenericDictExample_([0-9]*)$/;
var res = r.exec(id);
return JSONGenericDictExample.revivableObjects[res[1]];

 }
}

}

package {

import flash.utils.Dictionary;
import flash.utils.ByteArray;

// For this extension of dictionary, we serialize the contents of the
// dictionary by using toJSON
public final class JSONDictionaryExtnExample extends Dictionary {
 public function toJSON(k):* {

var contents = {};
for (var a in this) {

122ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using native JSON functionality

Last updated 10/9/2017

contents[a.id] = this[a];
}

// We also wrap the contents in an object so that we can
// identify it by looking for the marking property "class E"
// while in the midst of JSON.parse.
return {"class JSONDictionaryExtnExample": contents};

 }

 // This is just here for debugging and for illustration
 public function toString():String {

var retval = "[JSONDictionaryExtnExample <";
var printed_any = false;
for (var k in this) {

retval += k.toString() + "=" +
"[e="+this[k].earnings +
",v="+this[k].violations + "], "
printed_any = true;

}
if (printed_any)

retval = retval.substring(0, retval.length-2);
retval += ">]"
return retval;

 }
}

}

When the following runtime script calls JSON.parse() on a JSONDictionaryExtnExample object, the reviver

function calls JSONGenericDictExample.revive() on each object in JSONDictionaryExtnExample. This call

extracts the ID that represents the object key. The JSONGenericDictExample.revive()function uses this ID to

retrieve and return the stored JSONDictionaryExtnExample object from a private static array.

import flash.display.MovieClip;
import flash.text.TextField;

var a_bob1:JSONGenericDictExample = new JSONGenericDictExample("Bob", new
Date(Date.parse("01/02/1934")));
var a_bob2:JSONGenericDictExample = new JSONGenericDictExample("Bob", new
Date(Date.parse("05/06/1978")));
var a_jen:JSONGenericDictExample = new JSONGenericDictExample("Jen", new
Date(Date.parse("09/09/1999")));

var e = new JSONDictionaryExtnExample();
e[a_bob1] = {earnings: 40, violations: 2};
e[a_bob2] = {earnings: 10, violations: 1};
e[a_jen] = {earnings: 25, violations: 3};

trace("JSON.stringify(e): " + JSON.stringify(e)); // {"class JSONDictionaryExtnExample":

//{"id_class_JSONGenericDictExample_10001":
//{"earnings":10,"violations":1},
//"id_class_JSONGenericDictExample_10002":
//{"earnings":25,"violations":3},
//"id_class_JSONGenericDictExample_10000":
// {"earnings":40,"violations":2}}}

var e_result = JSON.stringify(e);

123ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using native JSON functionality

Last updated 10/9/2017

var e1 = new JSONDictionaryExtnExample();
var e2 = new JSONDictionaryExtnExample();

// It's somewhat easy to convert the string from JSON.stringify(e) back
// into a dictionary (turn it into an object via JSON.parse, then loop
// over that object's properties to construct a fresh dictionary).
//
// The harder exercise is to handle situations where the dictionaries
// themselves are nested in the object passed to JSON.stringify and
// thus does not occur at the topmost level of the resulting string.
//
// (For example: consider roundtripping something like
// var tricky_array = [e1, [[4, e2, 6]], {table:e3}]
// where e1, e2, e3 are all dictionaries. Furthermore, consider
// dictionaries that contain references to dictionaries.)
//
// This parsing (or at least some instances of it) can be done via
// JSON.parse, but it's not necessarily trivial. Careful consideration
// of how toJSON, replacer, and reviver can work together is
// necessary.

var e_roundtrip =
 JSON.parse(e_result,
 // This is a reviver that is focused on rebuilding JSONDictionaryExtnExample objects.
 function (k, v) {

if ("class JSONDictionaryExtnExample" in v) { // special marker tag;
//see JSONDictionaryExtnExample.toJSON().

 var e = new JSONDictionaryExtnExample();
 var contents = v["class JSONDictionaryExtnExample"];
 for (var i in contents) {

 // Reviving JSONGenericDictExample objects from string
 // identifiers is also special;
 // see JSONGenericDictExample constructor and
 // JSONGenericDictExample's revive() method.

 e[JSONGenericDictExample.revive(i)] = contents[i];
 }
 return e;
 } else {
 return v;

124ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using native JSON functionality

Last updated 10/9/2017

 }
 });

trace("// == Here is an extended Dictionary that has been round-tripped ==");
trace("// == Note that we have revived Jen/Jan during the roundtrip. ==");
trace("e: " + e); //[JSONDictionaryExtnExample <Bob=[e=40,v=2], Bob=[e=10,v=1],

 //Jen=[e=25,v=3]>]
trace("e_roundtrip: " + e_roundtrip); //[JSONDictionaryExtnExample <Bob=[e=40,v=2],

 //Bob=[e=10,v=1], Jen=[e=25,v=3]>]
trace("Is e_roundtrip a JSONDictionaryExtnExample? " + (e_roundtrip is
JSONDictionaryExtnExample)); //true
trace("Name change: Jen is now Jan");
a_jen.dname = "Jan"

trace("e: " + e); //[JSONDictionaryExtnExample <Bob=[e=40,v=2], Bob=[e=10,v=1],

 //Jan=[e=25,v=3]>]
trace("e_roundtrip: " + e_roundtrip); //[JSONDictionaryExtnExample <Bob=[e=40,v=2],

 //Bob=[e=10,v=1], Jan=[e=25,v=3]>]

125

Last updated 10/9/2017

Chapter 8: Handling events

Flash Player 9 and later, Adobe AIR 1.0 and later

An event-handling system allows programmers to respond to user input and system events in a convenient way. The

ActionScript 3.0 event model is not only convenient, but also standards-compliant, and well integrated with the

display list. Based on the Document Object Model (DOM) Level 3 Events Specification, an industry-standard event-

handling architecture, the new event model provides a powerful yet intuitive event-handling tool for ActionScript

programmers.

The ActionScript 3.0 event-handling system interacts closely with the display list. To gain a basic understanding of the

display list, read “Display programming” on page 151.

More Help topics

flash.events package

Document Object Model (DOM) Level 3 Events Specification

Basics of handling events

Flash Player 9 and later, Adobe AIR 1.0 and later

You can think of events as occurrences of any kind in your SWF file that are of interest to you as a programmer. For

example, most SWF files support user interaction of some sort—whether it's something as simple as responding to a

mouse click or something more complex, such as accepting and processing data entered into a form. Any such user

interaction with your SWF file is considered an event. Events can also occur without any direct user interaction, such

as when data has finished loading from a server or when an attached camera has become active.

In ActionScript 3.0, each event is represented by an event object, which is an instance of the Event class or one of its

subclasses. An event object not only stores information about a specific event, but also contains methods that facilitate

manipulation of the event object. For example, when Flash Player or AIR detects a mouse click, it creates an event

object (an instance of the MouseEvent class) to represent that particular mouse click event.

After creating an event object, Flash Player or AIR dispatches it, which means that the event object is passed to the

object that is the target of the event. An object that serves as the destination for a dispatched event object is called an

event target. For example, when an attached camera becomes active, Flash Player dispatches an event object directly to

the event target, which in this case is the object that represents the camera. If the event target is on the display list,

however, the event object is passed down through the display list hierarchy until it reaches the event target. In some

cases, the event object then “bubbles” back up the display list hierarchy along the same route. This traversal of the

display list hierarchy is called the event flow.

You can “listen” for event objects in your code using event listeners. Event listeners are the functions or methods that

you write to respond to specific events. To ensure that your program responds to events, you must add event listeners

either to the event target or to any display list object that is part of an event object’s event flow.

Any time you write event listener code, it follows this basic structure (elements in bold are placeholders you’d fill in

for your specific case):

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/package-detail.html
http://www.w3.org/TR/DOM-Level-3-Events/

126ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

 function eventResponse(eventObject:EventType):void
 {
 // Actions performed in response to the event go here.
 }

 eventTarget.addEventListener(EventType.EVENT_NAME, eventResponse);

This code does two things. First, it defines a function, which is the way to specify the actions that will be performed in

response to the event. Next, it calls the addEventListener() method of the source object, in essence “subscribing”

the function to the specified event so that when the event happens, the function’s actions are carried out. When the

event actually happens, the event target checks its list of all the functions and methods that are registered as event

listeners. It then calls each one in turn, passing the event object as a parameter.

You need to alter four things in this code to create your own event listener. First, you must change the name of the

function to the name you want to use (this must be changed in two places, where the code says eventResponse).

Second, you must specify the appropriate class name of the event object that is dispatched by the event you want to

listen for (EventType in the code), and you must specify the appropriate constant for the specific event

(EVENT_NAME in the listing). Third, you must call the addEventListener() method on the object that will

dispatch the event (eventTarget in this code). Optionally, you can change the name of the variable used as the

function’s parameter (eventObject in this code).

Important concepts and terms

The following reference list contains important terms that you will encounter when writing event-handling routines:

Bubbling Bubbling occurs for some events so that a parent display object can respond to events dispatched by its

children.

Bubbling phase The part of the event flow in which an event propagates up to parent display objects. The bubbling

phase occurs after the capture and target phases.

Capture phase The part of the event flow in which an event propagates down from the most general target to the most

specific target object. The capture phase occurs before the target and bubbling phases.

Default behavior Some events include a behavior that normally happens along with the event, known as the default

behavior. For example, when a user types text in a text field, a text input event is raised. The default behavior for that

event is to actually display the character that was typed into the text field—but you can override that default behavior

(if for some reason you don’t want the typed character to be displayed).

Dispatch To notify event listeners that an event has occurred.

Event Something that happens to an object that the object can tell other objects about.

Event flow When events happen to an object on the display list (an object displayed on the screen), all the objects that

contain the object are notified of the event and notify their event listeners in turn. This process starts with the Stage

and proceeds through the display list to the actual object where the event occurred, and then proceeds back to the Stage

again. This process is known as the event flow.

Event object An object that contains information about a particular event’s occurrence, which is sent to all listeners

when an event is dispatched.

Event target The object that actually dispatches an event. For example, if the user clicks a button that is inside a Sprite

that is in turn inside the Stage, all those objects dispatch events, but the event target is the one where the event actually

happened—in this case, the clicked button.

Listener An object or function that has registered itself with an object, to indicate that it should be notified when a

specific event takes place.

127ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

Target phase The point of the event flow at which an event has reached the most specific possible target. The target

phase occurs between the capture and the bubbling phases.

How ActionScript 3.0 event handling differs from earlier
versions

Flash Player 9 and later, Adobe AIR 1.0 and later

The most noticeable difference between event handling in ActionScript 3.0 and event handling in previous versions of

ActionScript is that in ActionScript 3.0 there is only one system for event handling, whereas in previous versions of

ActionScript there are several different event-handling systems. This section begins with an overview of how event

handling worked in previous versions of ActionScript, and then discusses how event handling has changed for

ActionScript 3.0.

Event handling in previous versions of ActionScript

Flash Player 9 and later, Adobe AIR 1.0 and later

Versions of ActionScript before ActionScript 3.0 provided a number of different ways to handle events:

• on() event handlers that can be placed directly on Button and MovieClip instances

• onClipEvent() handlers that can be placed directly on MovieClip instances

• Callback function properties, such as XML.onload and Camera.onActivity

• Event listeners that you register using the addListener() method

• The UIEventDispatcher class that partially implemented the DOM event model.

Each of these mechanisms presents its own set of advantages and limitations. The on() and onClipEvent() handlers

are easy to use, but make subsequent maintenance of projects more difficult because code placed directly on buttons

and movie clips can be difficult to find. Callback functions are also simple to implement, but limit you to only one

callback function for any given event. Event listeners are more difficult to implement—they require not only the

creation of a listener object and function, but also the registration of the listener with the object that generates the

event. This increased overhead, however, enables you to create several listener objects and register them all for the

same event.

The development of components for ActionScript 2.0 engendered yet another event model. This new model,

embodied in the UIEventDispatcher class, was based on a subset of the DOM Events Specification. Developers who

are familiar with component event handling will find the transition to the new ActionScript 3.0 event model relatively

painless.

Unfortunately, the syntax used by the various event models overlap in various ways, and differ in others. For example,

in ActionScript 2.0, some properties, such as TextField.onChanged, can be used as either a callback function or an

event listener. However, the syntax for registering listener objects differs depending on whether you are using one of

the six classes that support listeners or the UIEventDispatcher class. For the Key, Mouse, MovieClipLoader, Selection,

Stage, and TextField classes, you use the addListener() method, but for components event handling, you use a

method called addEventListener().

Another complexity introduced by the different event-handling models was that the scope of the event handler

function varied widely depending on the mechanism used. In other words, the meaning of the this keyword was not

consistent among the event-handling systems.

128ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

Event handling in ActionScript 3.0

Flash Player 9 and later, Adobe AIR 1.0 and later

ActionScript 3.0 introduces a single event-handling model that replaces the many different event-handling

mechanisms that existed in previous versions of the language. The new event model is based on the Document Object

Model (DOM) Level 3 Events Specification. Although the SWF file format does not adhere specifically to the

Document Object Model standard, there are sufficient similarities between the display list and the structure of the

DOM to make implementation of the DOM event model possible. An object on the display list is analogous to a node

in the DOM hierarchical structure, and the terms display list object and node are used interchangeably throughout this

discussion.

The Flash Player and AIR implementation of the DOM event model includes a concept named default behaviors. A

default behavior is an action that Flash Player or AIR executes as the normal consequence of certain events.

Default behaviors

Developers are usually responsible for writing code that responds to events. In some cases, however, a behavior is so

commonly associated with an event that Flash Player or AIR automatically executes the behavior unless the developer

adds code to cancel it. Because Flash Player or AIR automatically exhibits the behavior, such behaviors are called

default behaviors.

For example, when a user enters text into a TextField object, the expectation that the text will be displayed in that

TextField object is so common that the behavior is built into Flash Player and AIR. If you do not want this default

behavior to occur, you can cancel it using the new event-handling system. When a user inputs text into a TextField

object, Flash Player or AIR creates an instance of the TextEvent class to represent that user input. To prevent Flash

Player or AIR from displaying the text in the TextField object, you must access that specific TextEvent instance and

call that instance’s preventDefault() method.

Not all default behaviors can be prevented. For example, Flash Player and AIR generate a MouseEvent object when a

user double-clicks a word in a TextField object. The default behavior, which cannot be prevented, is that the word

under the cursor is highlighted.

Many types of event objects do not have associated default behaviors. For example, Flash Player dispatches a connect

event object when a network connection is established, but there is no default behavior associated with it. The API

documentation for the Event class and its subclasses lists each type of event and describes any associated default

behavior, and whether that behavior can be prevented.

It is important to understand that default behaviors are associated only with event objects dispatched by Flash Player

or AIR, and do not exist for event objects dispatched programmatically through ActionScript. For example, you can

use the methods of the EventDispatcher class to dispatch an event object of type textInput, but that event object will

not have a default behavior associated with it. In other words, Flash Player and AIR will not display a character in a

TextField object as a result of a textInput event that you dispatched programmatically.

What’s new for event listeners in ActionScript 3.0

For developers with experience using the ActionScript 2.0 addListener() method, it may be helpful to point out the

differences between the ActionScript 2.0 event listener model and the ActionScript 3.0 event model. The following list

describes a few major differences between the two event models:

• To add event listeners in ActionScript 2.0, you use addListener() in some cases and addEventListener() in

others, whereas in ActionScript 3.0, you use addEventListener() in all situations.

• There is no event flow in ActionScript 2.0, which means that the addListener() method can be called only on the

object that broadcasts the event, whereas in ActionScript 3.0, the addEventListener() method can be called on

any object that is part of the event flow.

129ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

• In ActionScript 2.0, event listeners can be either functions, methods, or objects, whereas in ActionScript 3.0, only

functions or methods can be event listeners.

The event flow

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash Player or AIR dispatches event objects whenever an event occurs. If the event target is not on the display list,

Flash Player or AIR dispatches the event object directly to the event target. For example, Flash Player dispatches the

progress event object directly to a URLStream object. If the event target is on the display list, however, Flash Player

dispatches the event object into the display list, and the event object travels through the display list to the event target.

The event flow describes how an event object moves through the display list. The display list is organized in a hierarchy

that can be described as a tree. At the top of the display list hierarchy is the Stage, which is a special display object

container that serves as the root of the display list. The Stage is represented by the flash.display.Stage class and can only

be accessed through a display object. Every display object has a property named stage that refers to the Stage for that

application.

When Flash Player or AIR dispatches an event object for a display list-related event, that event object makes a round-

trip journey from the Stage to the target node. The DOM Events Specification defines the target node as the node

representing the event target. In other words, the target node is the display list object where the event occurred. For

example, if a user clicks on a display list object named child1, Flash Player or AIR will dispatch an event object using

child1 as the target node.

The event flow is conceptually divided into three parts. The first part is called the capture phase; this phase comprises

all of the nodes from the Stage to the parent of the target node. The second part is called the target phase, which consists

solely of the target node. The third part is called the bubbling phase. The bubbling phase comprises the nodes

encountered on the return trip from the parent of the target node back to the Stage.

The names of the phases make more sense if you conceive of the display list as a vertical hierarchy with the Stage at the

top, as shown in the following diagram:

Stage

Parent Node

Child1 Node Child2 Node

130ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

If a user clicks on Child1 Node, Flash Player or AIR dispatches an event object into the event flow. As the following

image shows, the object’s journey starts at Stage, moves down to Parent Node, then moves to Child1 Node, and

then “bubbles” back up to Stage, moving through Parent Node again on its journey back to Stage.

In this example, the capture phase comprises Stage and Parent Node during the initial downward journey. The target

phase comprises the time spent at Child1 Node. The bubbling phase comprises Parent Node and Stage as they are

encountered during the upward journey back to the root node.

The event flow contributes to a more powerful event-handling system than that previously available to ActionScript

programmers. In previous versions of ActionScript, the event flow does not exist, which means that event listeners can

be added only to the object that generates the event. In ActionScript 3.0, you can add event listeners not only to a target

node, but also to any node along the event flow.

The ability to add event listeners along the event flow is useful when a user interface component comprises more than

one object. For example, a button object often contains a text object that serves as the button’s label. Without the ability

to add a listener to the event flow, you would have to add a listener to both the button object and the text object to

ensure that you receive notification about click events that occur anywhere on the button. The existence of the event

flow, however, allows you to place a single event listener on the button object that handles click events that occur either

on the text object or on the areas of the button object that are not obscured by the text object.

Not every event object, however, participates in all three phases of the event flow. Some types of events, such as the

enterFrame and init event types, are dispatched directly to the target node and participate in neither the capture

phase nor the bubbling phase. Other events may target objects that are not on the display list, such as events dispatched

to an instance of the Socket class. These event objects will also flow directly to the target object, without participating

in the capture and bubbling phases.

To find out how a particular event type behaves, you can either check the API documentation or examine the event

object's properties. Examining the event object’s properties is described in the following section.

Event objects

Flash Player 9 and later, Adobe AIR 1.0 and later

Event objects serve two main purposes in the new event-handling system. First, event objects represent actual events

by storing information about specific events in a set of properties. Second, event objects contain a set of methods that

allow you to manipulate event objects and affect the behavior of the event-handling system.

To facilitate access to these properties and methods, the Flash Player API defines an Event class that serves as the base

class for all event objects. The Event class defines a fundamental set of properties and methods that are common to all

event objects.

Stage

Parent Node

Child1 Node Child2 Node

Capture

Phase

Bubbling

Phase

Target Phase

131ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

This section begins with a discussion of the Event class properties, continues with a description of the Event class

methods, and concludes with an explanation of why subclasses of the Event class exist.

Understanding Event class properties

Flash Player 9 and later, Adobe AIR 1.0 and later

The Event class defines a number of read-only properties and constants that provide important information about an

event object.The following are especially important:

• Event object types are represented by constants and stored in the Event.type property.

• Whether an event’s default behavior can be prevented is represented by a Boolean value and stored in the

Event.cancelable property.

• Event flow information is contained in the remaining properties.

Event object types

Every event object has an associated event type. Event types are stored in the Event.type property as string values. It

is useful to know the type of an event object so that your code can distinguish objects of different types from one

another. For example, the following code specifies that the clickHandler() listener function should respond to any

mouse click event objects that are passed to myDisplayObject:

 myDisplayObject.addEventListener(MouseEvent.CLICK, clickHandler);

Some two dozen event types are associated with the Event class itself and are represented by Event class constants,

some of which are shown in the following excerpt from the Event class definition:

 package flash.events
 {
 public class Event
 {
 // class constants
 public static const ACTIVATE:String = "activate";
 public static const ADDED:String= "added";
 // remaining constants omitted for brevity
 }
 }

These constants provide an easy way to refer to specific event types. You should use these constants instead of the

strings they represent. If you misspell a constant name in your code, the compiler will catch the mistake, but if you

instead use strings, a typographical error may not manifest at compile time and could lead to unexpected behavior that

could be difficult to debug. For example, when adding an event listener, use the following code:

 myDisplayObject.addEventListener(MouseEvent.CLICK, clickHandler);

rather than:

 myDisplayObject.addEventListener("click", clickHandler);

Default behavior information

Your code can check whether the default behavior for any given event object can be prevented by accessing the

cancelable property. The cancelable property holds a Boolean value that indicates whether or not a default

behavior can be prevented. You can prevent, or cancel, the default behavior associated with a small number of events

using the preventDefault() method. For more information, see Canceling default event behavior under

“Understanding Event class methods” on page 133.

132ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

Event flow information

The remaining Event class properties contain important information about an event object and its relationship to the

event flow, as described in the following list:

• The bubbles property contains information about the parts of the event flow in which the event object participates.

• The eventPhase property indicates the current phase in the event flow.

• The target property stores a reference to the event target.

• The currentTarget property stores a reference to the display list object that is currently processing the event

object.

The bubbles property

An event is said to bubble if its event object participates in the bubbling phase of the event flow, which means that the

event object is passed from the target node back through its ancestors until it reaches the Stage. The Event.bubbles

property stores a Boolean value that indicates whether the event object participates in the bubbling phase. Because all

events that bubble also participate in the capture and target phases, any event that bubbles participates in all three of

the event flow phases. If the value is true, the event object participates in all three phases. If the value is false, the

event object does not participate in the bubbling phase.

The eventPhase property

You can determine the event phase for any event object by investigating its eventPhase property. The eventPhase

property contains an unsigned integer value that represents one of the three phases of the event flow. The Flash Player

API defines a separate EventPhase class that contains three constants that correspond to the three unsigned integer

values, as shown in the following code excerpt:

 package flash.events
 {
 public final class EventPhase
 {
 public static const CAPTURING_PHASE:uint = 1;
 public static const AT_TARGET:uint = 2;
 public static const BUBBLING_PHASE:uint= 3;
 }
 }

These constants correspond to the three valid values of the eventPhase property. You can use these constants to make

your code more readable. For example, if you want to ensure that a function named myFunc() is called only if the event

target is in the target stage, you can use the following code to test for this condition:

 if (event.eventPhase == EventPhase.AT_TARGET)
 {
 myFunc();
 }

The target property

The target property holds a reference to the object that is the target of the event. In some cases, this is straightforward,

such as when a microphone becomes active, the target of the event object is the Microphone object. If the target is on

the display list, however, the display list hierarchy must be taken into account. For example, if a user inputs a mouse

click on a point that includes overlapping display list objects, Flash Player and AIR always choose the object that is

farthest away from the Stage as the event target.

133ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

For complex SWF files, especially those in which buttons are routinely decorated with smaller child objects, the

target property may not be used frequently because it will often point to a button’s child object instead of the button.

In these situations, the common practice is to add event listeners to the button and use the currentTarget property

because it points to the button, whereas the target property may point to a child of the button.

The currentTarget property

The currentTarget property contains a reference to the object that is currently processing the event object. Although

it may seem odd not to know which node is currently processing the event object that you are examining, keep in mind

that you can add a listener function to any display object in that event object's event flow, and the listener function can

be placed in any location. Moreover, the same listener function can be added to different display objects. As a project

increases in size and complexity, the currentTarget property becomes more and more useful.

Understanding Event class methods

Flash Player 9 and later, Adobe AIR 1.0 and later

There are three categories of Event class methods:

• Utility methods, which can create copies of an event object or convert it to a string

• Event flow methods, which remove event objects from the event flow

• Default behavior methods, which prevent default behavior or check whether it has been prevented

Event class utility methods

There are two utility methods in the Event class. The clone() method allows you to create copies of an event object.

The toString() method allows you to generate a string representation of the properties of an event object along with

their values. Both of these methods are used internally by the event model system, but are exposed to developers for

general use.

For advanced developers creating subclasses of the Event class, you must override and implement versions of both

utility methods to ensure that the event subclass will work properly.

Stopping event flow

You can call either the Event.stopPropagation() method or the Event.stopImmediatePropagation() method

to prevent an event object from continuing on its way through the event flow. The two methods are nearly identical

and differ only in whether the current node’s other event listeners are allowed to execute:

• The Event.stopPropagation() method prevents the event object from moving on to the next node, but only after

any other event listeners on the current node are allowed to execute.

• The Event.stopImmediatePropagation() method also prevents the event object from moving on to the next

node, but does not allow any other event listeners on the current node to execute.

Calling either of these methods has no effect on whether the default behavior associated with an event occurs. Use the

default behavior methods of the Event class to prevent default behavior.

Canceling default event behavior

The two methods that pertain to canceling default behavior are the preventDefault() method and the

isDefaultPrevented() method. Call the preventDefault() method to cancel the default behavior associated with

an event. To check whether preventDefault() has already been called on an event object, call the

isDefaultPrevented() method, which returns a value of true if the method has already been called and false

otherwise.

134ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

The preventDefault() method will work only if the event’s default behavior can be cancelled. You can check

whether this is the case by referring to the API documentation for that event type, or by using ActionScript to examine

the cancelable property of the event object.

Canceling the default behavior has no effect on the progress of an event object through the event flow. Use the event

flow methods of the Event class to remove an event object from the event flow.

Subclasses of the Event class

Flash Player 9 and later, Adobe AIR 1.0 and later

For many events, the common set of properties defined in the Event class is sufficient. Other events, however, have

unique characteristics that cannot be captured by the properties available in the Event class. For these events,

ActionScript 3.0 defines several subclasses of the Event class.

Each subclass provides additional properties and event types that are unique to that category of events. For example,

events related to mouse input have several unique characteristics that cannot be captured by the properties defined in

the Event class. The MouseEvent class extends the Event class by adding ten properties that contain information such

as the location of the mouse event and whether specific keys were pressed during the mouse event.

An Event subclass also contains constants that represent the event types that are associated with the subclass. For

example, the MouseEvent class defines constants for several mouse event types, include the click, doubleClick,

mouseDown, and mouseUp event types.

As described in the section on Event class utility methods under “Event objects” on page 130, when creating an Event

subclass you must override the clone() and toString() methods to provide functionality specific to the subclass.

Event listeners

Flash Player 9 and later, Adobe AIR 1.0 and later

Event listeners, which are also called event handlers, are functions that Flash Player and AIR execute in response to

specific events. Adding an event listener is a two-step process. First, you create a function or class method for Flash

Player or AIR to execute in response to the event. This is sometimes called the listener function or the event handler

function. Second, you use the addEventListener() method to register your listener function with the target of the

event or any display list object that lies along the appropriate event flow.

Creating a listener function

Flash Player 9 and later, Adobe AIR 1.0 and later

The creation of listener functions is one area where the ActionScript 3.0 event model deviates from the DOM event

model. In the DOM event model, there is a clear distinction between an event listener and a listener function: an event

listener is an instance of a class that implements the EventListener interface, whereas a listener function is a method

of that class named handleEvent(). In the DOM event model, you register the class instance that contains the listener

function rather than the actual listener function.

In the ActionScript 3.0 event model, there is no distinction between an event listener and a listener function.

ActionScript 3.0 does not have an EventListener interface, and listener functions can be defined outside a class or as

part of a class. Moreover, listener functions do not have to be named handleEvent()—they can be named with any

valid identifier. In ActionScript 3.0, you register the name of the actual listener function.

135ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

Listener function defined outside of a class

The following code creates a simple SWF file that displays a red square shape. A listener function named

clickHandler(), which is not part of a class, listens for mouse click events on the red square.

 package
 {
 import flash.display.Sprite;

 public class ClickExample extends Sprite
 {
 public function ClickExample()
 {
 var child:ChildSprite = new ChildSprite();
 addChild(child);
 }
 }
 }

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 class ChildSprite extends Sprite
 {
 public function ChildSprite()
 {
 graphics.beginFill(0xFF0000);
 graphics.drawRect(0,0,100,100);
 graphics.endFill();
 addEventListener(MouseEvent.CLICK, clickHandler);
 }
 }

 function clickHandler(event:MouseEvent):void
 {
 trace("clickHandler detected an event of type: " + event.type);
 trace("the this keyword refers to: " + this);
 }

When a user interacts with the resulting SWF file by clicking on the square, Flash Player or AIR generates the following

trace output:

 clickHandler detected an event of type: click
 the this keyword refers to: [object global]

Notice that the event object is passed as an argument to clickHandler(). This allows your listener function to

examine the event object. In this example, you use the event object's type property to ascertain that the event is a click

event.

The example also checks the value of the this keyword. In this case, this represents the global object, which makes

sense because the function is defined outside of any custom class or object.

Listener function defined as a class method

The following example is identical to the previous example that defines the ClickExample class except that the

clickHandler() function is defined as a method of the ChildSprite class:

136ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

 package
 {
 import flash.display.Sprite;

 public class ClickExample extends Sprite
 {
 public function ClickExample()
 {
 var child:ChildSprite = new ChildSprite();
 addChild(child);
 }
 }
 }

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 class ChildSprite extends Sprite
 {
 public function ChildSprite()
 {
 graphics.beginFill(0xFF0000);
 graphics.drawRect(0,0,100,100);
 graphics.endFill();
 addEventListener(MouseEvent.CLICK, clickHandler);
 }
 private function clickHandler(event:MouseEvent):void
 {
 trace("clickHandler detected an event of type: " + event.type);
 trace("the this keyword refers to: " + this);
 }
 }

When a user interacts with the resulting SWF file by clicking on the red square, Flash Player or AIR generates the

following trace output:

 clickHandler detected an event of type: click
 the this keyword refers to: [object ChildSprite]

Note that the this keyword refers to the ChildSprite instance named child. This is a change in behavior from

ActionScript 2.0. If you used components in ActionScript 2.0, you may remember that when a class method was passed

in to UIEventDispatcher.addEventListener(), the scope of the method was bound to the component that

broadcast the event instead of the class in which the listener method was defined. In other words, if you used this

technique in ActionScript 2.0, the this keyword would refer to the component broadcasting the event instead of the

ChildSprite instance.

This was a significant issue for some programmers because it meant that they could not access other methods and

properties of the class containing the listener method. As a workaround, ActionScript 2.0 programmers could use the

mx.util.Delegate class to change the scope of the listener method. This is no longer necessary, however, because

ActionScript 3.0 creates a bound method when addEventListener() is called. As a result, the this keyword refers

to the ChildSprite instance named child, and the programmer has access to the other methods and properties of the

ChildSprite class.

137ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

Event listener that should not be used

There is a third technique in which you create a generic object with a property that points to a dynamically assigned

listener function, but it is not recommended. It is discussed here because it was commonly used in ActionScript 2.0,

but should not be used in ActionScript 3.0. This technique is not recommended because the this keyword will refer

to the global object instead of your listener object.

The following example is identical to the previous ClickExample class example, except that the listener function is

defined as part of a generic object named myListenerObj:

 package
 {
 import flash.display.Sprite;

 public class ClickExample extends Sprite
 {
 public function ClickExample()
 {
 var child:ChildSprite = new ChildSprite();
 addChild(child);
 }
 }
 }

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 class ChildSprite extends Sprite
 {
 public function ChildSprite()
 {
 graphics.beginFill(0xFF0000);
 graphics.drawRect(0,0,100,100);
 graphics.endFill();
 addEventListener(MouseEvent.CLICK, myListenerObj.clickHandler);
 }
 }

 var myListenerObj:Object = new Object();
 myListenerObj.clickHandler = function (event:MouseEvent):void
 {
 trace("clickHandler detected an event of type: " + event.type);
 trace("the this keyword refers to: " + this);
 }

The results of the trace will look like this:

 clickHandler detected an event of type: click
 the this keyword refers to: [object global]

You would expect that this would refer to myListenerObj and that the trace output would be [object Object],

but instead it refers to the global object. When you pass in a dynamic property name as an argument to

addEventListener(), Flash Player or AIR is unable to create a bound method. This is because what you are passing

as the listener parameter is nothing more than the memory address of your listener function, and Flash Player and

AIR have no way to link that memory address with the myListenerObj instance.

138ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

Managing event listeners

Flash Player 9 and later, Adobe AIR 1.0 and later

You can manage your listener functions using the methods of the IEventDispatcher interface. The IEventDispatcher

interface is the ActionScript 3.0 version of the EventTarget interface of the DOM event model. Although the name

IEventDispatcher may seem to imply that its main purpose is to send (or dispatch) event objects, the methods of this

class are actually used much more frequently to register event listeners, check for event listeners, and remove event

listeners. The IEventDispatcher interface defines five methods, as shown in the following code:

 package flash.events
 {
 public interface IEventDispatcher
 {
 function addEventListener(eventName:String,
 listener:Object,
 useCapture:Boolean=false,
 priority:Integer=0,
 useWeakReference:Boolean=false):Boolean;

 function removeEventListener(eventName:String,
 listener:Object,
 useCapture:Boolean=false):Boolean;

 function dispatchEvent(eventObject:Event):Boolean;

 function hasEventListener(eventName:String):Boolean;
 function willTrigger(eventName:String):Boolean;
 }
 }

The Flash Player API implements the IEventDispatcher interface with the EventDispatcher class, which serves as a

base class for all classes that can be event targets or part of an event flow. For example, the DisplayObject class inherits

from the EventDispatcher class. This means that any object on the display list has access to the methods of the

IEventDispatcher interface.

Adding event listeners

The addEventListener() method is the workhorse of the IEventDispatcher interface. You use it to register your

listener functions. The two required parameters are type and listener. You use the type parameter to specify the

type of event. You use the listener parameter to specify the listener function that will execute when the event occurs.

The listener parameter can be a reference to either a function or a class method.

Do not use parentheses when you specify the listener parameter. For example, the clickHandler() function is

specified without parentheses in the following call to the addEventListener() method:

addEventListener(MouseEvent.CLICK, clickHandler)

The useCapture parameter of the addEventListener() method allows you to control the event flow phase on which

your listener will be active. If useCapture is set to true, your listener will be active during the capture phase of the

event flow. If useCapture is set to false, your listener will be active during the target and bubbling phases of the event

flow. To listen for an event during all phases of the event flow, you must call addEventListener() twice, once with

useCapture set to true, and then again with useCapture set to false.

139ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

The priority parameter of the addEventListener() method is not an official part of the DOM Level 3 event model.

It is included in ActionScript 3.0 to provide you with more flexibility in organizing your event listeners. When you call

addEventListener(), you can set the priority for that event listener by passing an integer value as the priority

parameter. The default value is 0, but you can set it to negative or positive integer values. The higher the number, the

sooner that event listener will be executed. Event listeners with the same priority are executed in the order that they

were added, so the earlier a listener is added, the sooner it will be executed.

The useWeakReference parameter allows you to specify whether the reference to the listener function is weak or

normal. Setting this parameter to true allows you to avoid situations in which listener functions persist in memory

even though they are no longer needed. Flash Player and AIR use a technique called garbage collection to clear objects

from memory that are no longer in use. An object is considered no longer in use if no references to it exist. The garbage

collector disregards weak references, which means that a listener function that has only a weak reference pointing to

it is eligible for garbage collection.

Removing event listeners

You can use the removeEventListener() method to remove an event listener that you no longer need. It is a good

idea to remove any listeners that will no longer be used. Required parameters include the eventName and listener

parameters, which are the same as the required parameters for the addEventListener() method. Recall that you can

listen for events during all event phases by calling addEventListener() twice, once with useCapture set to true,

and then again with it set to false. To remove both event listeners, you would need to call removeEventListener()

twice, once with useCapture set to true, and then again with it set to false.

Dispatching events

The dispatchEvent() method can be used by advanced programmers to dispatch a custom event object into the

event flow. The only parameter accepted by this method is a reference to an event object, which must be an instance

of the Event class or a subclass of the Event class. Once dispatched, the target property of the event object is set to

the object on which dispatchEvent() was called.

Checking for existing event listeners

The final two methods of the IEventDispatcher interface provide useful information about the existence of event

listeners. The hasEventListener() method returns true if an event listener is found for a specific event type on a

particular display list object. The willTrigger() method also returns true if a listener is found for a particular

display list object, but willTrigger() checks for listeners not only on that display object, but also on all of that display

list object’s ancestors for all phases of the event flow.

140ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

Error events without listeners

Flash Player 9 and later, Adobe AIR 1.0 and later

Exceptions, rather than events, are the primary mechanism for error handling in ActionScript 3.0, but exception

handling does not work for asynchronous operations such as loading files. If an error occurs during such an

asynchronous operation, Flash Player and AIR dispatch an error event object. If you do not create a listener for the

error event, the debugger versions of Flash Player and AIR will bring up a dialog box with information about the error.

For example, the debugger version of Flash Player produces the following dialog box describing the error when the

application attempts to load a file from an invalid URL:

Most error events are based on the ErrorEvent class, and as such will have a property named text that is used to store

the error message that Flash Player or AIR displays. The two exceptions are the StatusEvent and NetStatusEvent

classes. Both of these classes have a level property (StatusEvent.level and NetStatusEvent.info.level).

When the value of the level property is "error", these event types are considered to be error events.

An error event will not cause a SWF file to stop running. It will manifest only as a dialog box on the debugger versions

of the browser plug-ins and stand-alone players, as a message in the output panel in the authoring player, and as an

entry in the log file for Adobe Flash Builder. It will not manifest at all in the release versions of Flash Player or AIR.

Event handling example: Alarm Clock

Flash Player 9 and later, Adobe AIR 1.0 and later

The Alarm Clock example consists of a clock that allows the user to specify a time at which an alarm will go off, as well

as a message to be displayed at that time. The Alarm Clock example builds on the SimpleClock application from

“Working with dates and times” on page 1 Alarm Clock illustrates several aspects of working with events in

ActionScript 3.0, including:

• Listening and responding to an event

• Notifying listeners of an event

• Creating a custom event type

To get the Flash Professional application files for this sample, see

http://www.adobe.com/go/learn_programmingAS3samples_flash. To get the Flex application files for this sample, see

http://www.adobe.com/go/as3examples. The Alarm Clock application files can be found in the Samples/AlarmClock

folder. The application includes these files:

http://www.adobe.com/go/learn_programmingAS3samples_flash
http://www.adobe.com/go/as3examples

141ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

Alarm Clock overview

Flash Player 9 and later, Adobe AIR 1.0 and later

The primary functionality of the clock in this example, including tracking the time and displaying the clock face, reuses

the SimpleClock application code, which is described in “Date and time example: Simple analog clock” on page 6. The

AlarmClock class extends the SimpleClock class from that example by adding the functionality required for an alarm

clock, including setting the alarm time and providing notification when the alarm “goes off.”

Providing notification when something happens is the job that events are made for. The AlarmClock class exposes the

Alarm event, which other objects can listen for in order to perform desired actions. In addition, the AlarmClock class

uses an instance of the Timer class to determine when to trigger its alarm. Like the AlarmClock class, the Timer class

provides an event to notify other objects (an AlarmClock instance, in this case) when a certain amount of time has

passed. As with most ActionScript applications, events form an important part of the functionality of the Alarm Clock

sample application.

Triggering the alarm

Flash Player 9 and later, Adobe AIR 1.0 and later

As mentioned previously, the only functionality that the AlarmClock class actually provides relates to setting and

triggering the alarm. The built-in Timer class (flash.utils.Timer) provides a way for a developer to define code that will

be executed after a specified amount of time. The AlarmClock class uses a Timer instance to determine when to set off

the alarm.

File Description

AlarmClockApp.mxml

or

AlarmClockApp.fla

The main application file in Flash (FLA) or Flex (MXML).

com/example/programmingas3/clock/AlarmClock.as A class which extends the SimpleClock class, adding alarm clock

functionality.

com/example/programmingas3/clock/AlarmEvent.as A custom event class (a subclass of flash.events.Event) which serves as

the event object for the AlarmClock class’s alarm event.

com/example/programmingas3/clock/AnalogClockFace.as Draws a round clock face and hour, minute, and seconds hands based

on the time (described in the SimpleClock example).

com/example/programmingas3/clock/SimpleClock.as A clock interface component with simple timekeeping functionality

(described in the SimpleClock example).

142ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

 import flash.events.TimerEvent;
 import flash.utils.Timer;

 /**
 * The Timer that will be used for the alarm.
 */
 public var alarmTimer:Timer;
 ...
 /**
 * Instantiates a new AlarmClock of a given size.
 */
 public override function initClock(faceSize:Number = 200):void
 {
 super.initClock(faceSize);
 alarmTimer = new Timer(0, 1);
 alarmTimer.addEventListener(TimerEvent.TIMER, onAlarm);
 }

The Timer instance defined in the AlarmClock class is named alarmTimer. The initClock() method, which

performs necessary setup operations for the AlarmClock instance, does two things with the alarmTimer variable.

First, the variable is instantiated with parameters instructing the Timer instance to wait 0 milliseconds and only trigger

its timer event one time. After instantiating alarmTimer, the code calls that variable’s addEventListener() method

to indicate that it wants to listen to that variable’s timer event. A Timer instance works by dispatching its timer event

after a specified amount of time has passed. The AlarmClock class will need to know when the timer event is

dispatched in order to set off its own alarm. By calling addEventListener(), the AlarmClock code registers itself as

a listener with alarmTimer. The two parameters indicate that the AlarmClock class wants to listen for the timer event

(indicated by the constant TimerEvent.TIMER), and that when the event happens, the AlarmClock class’s onAlarm()

method should be called in response to the event.

In order to actually set the alarm, the AlarmClock class’s setAlarm() method is called, as follows:

143ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

 /**
 * Sets the time at which the alarm should go off.
 * @param hour The hour portion of the alarm time.
 * @param minutes The minutes portion of the alarm time.
 * @param message The message to display when the alarm goes off.
 * @return The time at which the alarm will go off.
 */
 public function setAlarm(hour:Number = 0, minutes:Number = 0, message:String = "Alarm!"):Date
 {
 this.alarmMessage = message;
 var now:Date = new Date();
 // Create this time on today's date.
 alarmTime = new Date(now.fullYear, now.month, now.date, hour, minutes);

 // Determine if the specified time has already passed today.
 if (alarmTime <= now)
 {
 alarmTime.setTime(alarmTime.time + MILLISECONDS_PER_DAY);
 }

 // Stop the alarm timer if it's currently set.
 alarmTimer.reset();
 // Calculate how many milliseconds should pass before the alarm should
 // go off (the difference between the alarm time and now) and set that
 // value as the delay for the alarm timer.
 alarmTimer.delay = Math.max(1000, alarmTime.time - now.time);
 alarmTimer.start();

 return alarmTime;
 }

This method does several things, including storing the alarm message and creating a Date object (alarmTime)

representing the actual moment in time when the alarm is to go off. Of most relevance to the current discussion, in the

final several lines of the method, the alarmTimer variable’s timer is set and activated. First, its reset() method is

called, stopping the timer and resetting it in case it is already running. Next, the current time (represented by the now

variable) is subtracted from the alarmTime variable’s value to determine how many milliseconds need to pass before

the alarm goes off. The Timer class doesn’t trigger its timer event at an absolute time, so it is this relative time

difference that is assigned to the delay property of alarmTimer. Finally, the start() method is called to actually start

the timer.

Once the specified amount of time has passed, alarmTimer dispatches the timer event. Because the AlarmClock class

registered its onAlarm() method as a listener for that event, when the timer event happens, onAlarm() is called.

 /**
 * Called when the timer event is dispatched.
 */
 public function onAlarm(event:TimerEvent):void
 {
 trace("Alarm!");
 var alarm:AlarmEvent = new AlarmEvent(this.alarmMessage);
 this.dispatchEvent(alarm);
 }

144ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

A method that is registered as an event listener must be defined with the appropriate signature (that is, the set of

parameters and return type of the method). To be a listener for the Timer class’s timer event, a method must define

one parameter whose data type is TimerEvent (flash.events.TimerEvent), a subclass of the Event class. When the Timer

instance calls its event listeners, it passes a TimerEvent instance as the event object.

Notifying others of the alarm

Flash Player 9 and later, Adobe AIR 1.0 and later

Like the Timer class, the AlarmClock class provides an event that allows other code to receive notifications when the

alarm goes off. For a class to use the event-handling framework built into ActionScript, that class must implement the

flash.events.IEventDispatcher interface. Most commonly, this is done by extending the flash.events.EventDispatcher

class, which provides a standard implementation of IEventDispatcher (or by extending one of EventDispatcher’s

subclasses). As described previously, the AlarmClock class extends the SimpleClock class, which (through a chain of

inheritance) extends the EventDispatcher class. All of this means that the AlarmClock class already has built-in

functionality to provide its own events.

Other code can register to be notified of the AlarmClock class’s alarm event by calling the addEventListener()

method that AlarmClock inherits from EventDispatcher. When an AlarmClock instance is ready to notify other code

that its alarm event has been raised, it does so by calling the dispatchEvent() method, which is also inherited from

EventDispatcher.

 var alarm:AlarmEvent = new AlarmEvent(this.alarmMessage);
 this.dispatchEvent(alarm);

These lines of code are taken from the AlarmClock class’s onAlarm() method (shown in its entirety previously). The

AlarmClock instance’s dispatchEvent() method is called, which in turn notifies all the registered listeners that the

AlarmClock instance’s alarm event has been triggered. The parameter that is passed to dispatchEvent() is the event

object that will be passed along to the listener methods. In this case, it is an instance of the AlarmEvent class, an Event

subclass created specifically for this example.

Providing a custom alarm event

Flash Player 9 and later, Adobe AIR 1.0 and later

All event listeners receive an event object parameter with information about the particular event being triggered. In

many cases, the event object is an instance of the Event class. However, in some cases it is useful to provide additional

information to event listeners. A common way to accomplish this is to define a new class, a subclass of the Event class,

and use an instance of that class as the event object. In this example, an AlarmEvent instance is used as the event object

when the AlarmClock class’s alarm event is dispatched. The AlarmEvent class, shown here, provides additional

information about the alarm event, specifically the alarm message:

145ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

 import flash.events.Event;

 /**
 * This custom Event class adds a message property to a basic Event.
 */
 public class AlarmEvent extends Event
 {
 /**
 * The name of the new AlarmEvent type.
 */
 public static const ALARM:String = "alarm";

 /**
 * A text message that can be passed to an event handler
 * with this event object.
 */
 public var message:String;

 /**
 *Constructor.
 *@param message The text to display when the alarm goes off.
 */
 public function AlarmEvent(message:String = "ALARM!")
 {
 super(ALARM);
 this.message = message;
 }
 ...
 }

The best way to create a custom event object class is to define a class that extends the Event class, as shown in the

preceding example. To supplement the inherited functionality, the AlarmEvent class defines a property message that

contains the text of the alarm message associated with the event; the message value is passed in as a parameter in the

AlarmEvent constructor. The AlarmEvent class also defines the constant ALARM, which can be used to refer to the

specific event (alarm) when calling the AlarmClock class’s addEventListener() method.

In addition to adding custom functionality, every Event subclass must override the inherited clone() method as part

of the ActionScript event-handling framework. Event subclasses can also optionally override the inherited

toString() method to include the custom event’s properties in the value returned when the toString() method is

called.

146ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling events

Last updated 10/9/2017

 /**
 * Creates and returns a copy of the current instance.
 * @return A copy of the current instance.
 */
 public override function clone():Event
 {
 return new AlarmEvent(message);
 }

 /**
 * Returns a String containing all the properties of the current
 * instance.
 * @return A string representation of the current instance.
 */
 public override function toString():String
 {
 return formatToString("AlarmEvent", "type", "bubbles", "cancelable", "eventPhase",
"message");
 }

The overridden clone() method needs to return a new instance of the custom Event subclass, with all the custom

properties set to match the current instance. In the overridden toString() method, the utility method

formatToString() (inherited from Event) is used to provide a string with the name of the custom type, as well as the

names and values of all its properties.

147

Last updated 10/9/2017

Chapter 9: Working with application
domains

Flash Player 9 and later, Adobe AIR 1.0 and later

The purpose of the ApplicationDomain class is to store a table of ActionScript 3.0 definitions. All code in a SWF file

is defined to exist in an application domain. You use application domains to partition classes that are in the same

security domain. This allows multiple definitions of the same class to exist and also lets children reuse parent

definitions.

You can use application domains when loading an external SWF file written in ActionScript 3.0 using the Loader class

API. (Note that you cannot use application domains when loading an image or SWF file written in ActionScript 1.0 or

ActionScript 2.0.) All ActionScript 3.0 definitions contained in the loaded class are stored in the application domain.

When loading the SWF file, you can specify that the file be included in the same application domain as that of the

Loader object, by setting the applicationDomain parameter of the LoaderContext object to

ApplicationDomain.currentDomain. By putting the loaded SWF file in the same application domain, you can

access its classes directly. This can be useful if you are loading a SWF file that contains embedded media, which you

can access via their associated class names, or if you want to access the loaded SWF file’s methods.

The following example assumes it has access to a separate Greeter.swf file that defines a public method named

welcome():

148ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with application domains

Last updated 10/9/2017

 package
 {
 import flash.display.Loader;
 import flash.display.Sprite;
 import flash.events.*;
 import flash.net.URLRequest;
 import flash.system.ApplicationDomain;
 import flash.system.LoaderContext;

 public class ApplicationDomainExample extends Sprite
 {
 private var ldr:Loader;
 public function ApplicationDomainExample()
 {
 ldr = new Loader();
 var req:URLRequest = new URLRequest("Greeter.swf");
 var ldrContext:LoaderContext = new LoaderContext(false,
ApplicationDomain.currentDomain);
 ldr.contentLoaderInfo.addEventListener(Event.COMPLETE, completeHandler);
 ldr.load(req, ldrContext);
 }
 private function completeHandler(event:Event):void
 {
 var myGreeter:Class = ApplicationDomain.currentDomain.getDefinition("Greeter") as
Class;
 var myGreeter:Greeter = Greeter(event.target.content);
 var message:String = myGreeter.welcome("Tommy");
 trace(message); // Hello, Tommy
 }
 }
 }

Also see the ApplicationDomain class example of the ActionScript 3.0 Reference for the Adobe Flash Platform.

Other things to keep in mind when you work with application domains include the following:

• All code in a SWF file is defined to exist in an application domain. The current domain is where your main

application runs. The system domain contains all application domains, including the current domain, which means

that it contains all Flash Player classes.

• All application domains, except the system domain, have an associated parent domain. The parent domain for your

main application's application domain is the system domain. Loaded classes are defined only when their parent

doesn't already define them. You cannot override a loaded class definition with a newer definition.

The following diagram shows an application that loads content from various SWF files within a single domain,

domain1.com. Depending on the content you load, different application domains can be used. The text that follows

describes the logic used to set the appropriate application domain for each SWF file in the application.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/ApplicationDomain.html#includeExamplesSummary
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/ApplicationDomain.html#includeExamplesSummary

149ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with application domains

Last updated 10/9/2017

A. Usage A B. Usage B C. Usage C

The main application file is application1.swf. It contains Loader objects that load content from other SWF files. In this

scenario, the current domain is Application domain 1. Usage A, usage B, and usage C illustrate different techniques

for setting the appropriate application domain for each SWF file in an application.

Usage A Partition the child SWF file by creating a child of the system domain. In the diagram, Application domain 2

is created as a child of the system domain.The application2.swf file is loaded in Application domain 2, and its class

definitions are thus partitioned from the classes defined in application1.swf.

One use of this technique is to have an old application dynamically loading a newer version of the same application

without conflict. There is no conflict because although the same class names are used, they are partitioned into

different application domains.

The following code creates an application domain that is a child of the system domain, and starts loading a SWF using

that application domain:

 var appDomainA:ApplicationDomain = new ApplicationDomain();

 var contextA:LoaderContext = new LoaderContext(false, appDomainA);
 var loaderA:Loader = new Loader();
 loaderA.load(new URLRequest("application2.swf"), contextA);

Usage B: Add new class definitions to current class definitions. The application domain of module1.swf is set to the

current domain (Application domain 1). This lets you add to the application’s current set of class definitions with new

class definitions. This could be used for a run-time shared library of the main application. The loaded SWF is treated

as a remote shared library (RSL). Use this technique to load RSLs by a preloader before the application starts.

The following code loads a SWF, setting its application domain to the current domain:

Loader

Loader

Loader

Application

Loader

Stage

Module

Module

Application domain 1

Security domain: domain1.com

module1.swf

module3.swf

Application domain 3

A

C

B

Module

application2.swf

application1.swf

Application domain 2
mx.core.Application

mx.core.Application

150ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with application domains

Last updated 10/9/2017

 var appDomainB:ApplicationDomain = ApplicationDomain.currentDomain;

 var contextB:LoaderContext = new LoaderContext(false, appDomainB);
 var loaderB:Loader = new Loader();
 loaderB.load(new URLRequest("module1.swf"), contextB);

Usage C: Use the parent’s class definitions by creating a new child domain of the current domain. The application

domain of module3.swf is a child of the current domain, and the child uses the parent's versions of all classes. One use

of this technique might be a module of a multiple-screen rich Internet application (RIA), loaded as a child of the main

application, that uses the main application's types. If you can ensure that all classes are always updated to be backward

compatible, and that the loading application is always newer than the things it loads, the children will use the parent

versions. Having a new application domain also allows you to unload all the class definitions for garbage collection, if

you can ensure that you do not continue to have references to the child SWF.

This technique lets loaded modules share the loader's singleton objects and static class members.

The following code creates a new child domain of the current domain, and starts loading a SWF using that application

domain:

 var appDomainC:ApplicationDomain = new ApplicationDomain(ApplicationDomain.currentDomain);

 var contextC:LoaderContext = new LoaderContext(false, appDomainC);
 var loaderC:Loader = new Loader();
 loaderC.load(new URLRequest("module3.swf"), contextC);

151

Last updated 10/9/2017

Chapter 10: Display programming

Flash Player 9 and later, Adobe AIR 1.0 and later

Visual elements are programmed in Adobe® ActionScript® 3.0 by working with display objects on the display stage. For

example, you can add, move, remove, and order display objects, apply filters and masks, draw vector and bitmap

graphics, and perform three-dimensional transformations using the ActionScript display programming API. The

primary classes used for display programming are part of the flash.display package.

Note: Adobe® AIR™ provides the HTMLoader object for rendering and displaying HTML content. The HTMLLoader

renders the visual elements of the HTML DOM as a single display object. You cannot access the individual elements of

the DOM directly through the ActionScript display list hierarchy. Instead, you access these DOM elements using the

separate DOM API provided by the HTMLLoader.

Basics of display programming

Flash Player 9 and later, Adobe AIR 1.0 and later

Each application built with ActionScript 3.0 has a hierarchy of displayed objects known as the display list, illustrated

below. The display list contains all the visible elements in the application.

Display Object
 Container

Display ObjectDisplay Object
 Container

Display Object
 Container

Instance of
the main class of

 the SWF file

StageStage

Display Object
 ContainerDisplay Object

Display Object

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/package-detail.html

152ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

As the illustration shows, display elements fall into one or more of the following groups:

• The Stage

The Stage is the base container of display objects. Each application has one Stage object, which contains all on-

screen display objects. The Stage is the top-level container and is at the top of the display list hierarchy:

Each SWF file has an associated ActionScript class, known as the main class of the SWF file. When a SWF file opens

in Flash Player or Adobe AIR, Flash Player or AIR calls the constructor function for that class and the instance that

is created (which is always a type of display object) is added as a child of the Stage object. The main class of a SWF

file always extends the Sprite class (for more information, see “Advantages of the display list approach” on

page 156).

You can access the Stage through the stage property of any DisplayObject instance. For more information, see

“Setting Stage properties” on page 164.

• Display objects

In ActionScript 3.0, all elements that appear on screen in an application are types of display objects. The

flash.display package includes a DisplayObject class, which is a base class extended by a number of other classes.

These different classes represent different types of display objects, such as vector shapes, movie clips, and text fields,

to name a few. For an overview of these classes, see “Advantages of the display list approach” on page 156.

• Display object containers

Display object containers are special types of display objects that, in addition to having their own visual

representation, can also contain child objects that are also display objects.

The DisplayObjectContainer class is a subclass of the DisplayObject class. A DisplayObjectContainer object can

contain multiple display objects in its childlist. For example, the following illustration shows a type of

DisplayObjectContainer object known as a Sprite that contains various display objects:

A. A SimpleButton object. This type of display object has different “up,” “down,” and “over” states. B. A Bitmap object. In this case, the
Bitmap object was loaded from an external JPEG through a Loader object. C. A Shape object. The “picture frame” contains a rounded
rectangle that is drawn in ActionScript. This Shape object has a Drop Shadow filter applied to it. D. A TextField object.

In the context of discussing display objects, DisplayObjectContainer objects are also known as display object

containers or simply containers. As noted earlier, the Stage is a display object container.

A

B

DC

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/DisplayObject.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/DisplayObjectContainer.html

153ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Although all visible display objects inherit from the DisplayObject class, the type of each is of a specific subclass of

DisplayObject class. For example, there is a constructor function for the Shape class or the Video class, but there is

no constructor function for the DisplayObject class.

Important concepts and terms

The following reference list contains important terms that you will encounter when programming ActionScript

graphics:

Alpha The color value representing the amount of transparency (or more correctly, the amount of opacity) in a color.

For example, a color with an alpha channel value of 60% only shows 60% of its full strength, and is 40% transparent.

Bitmap graphic A graphic that is defined in the computer as a grid (rows and columns) of colored pixels. Commonly

bitmap graphics include digital photos and similar images.

Blending mode A specification of how the contents of two overlapping images should interact. Commonly an opaque

image on top of another image simply blocks the image underneath so that it isn’t visible at all; however, different

blending modes cause the colors of the images to blend together in different ways so the resulting content is some

combination of the two images.

Display list The hierarchy of display objects that will be rendered as visible screen content by Flash Player and AIR.

The Stage is the root of the display list, and all the display objects that are attached to the Stage or one of its children

form the display list (even if the object isn’t actually rendered, for example if it’s outside the boundaries of the Stage).

Display object An object which represents some type of visual content in Flash Player or AIR. Only display objects can

be included in the display list, and all display object classes are subclasses of the DisplayObject class.

Display object container A special type of display object which can contain child display objects in addition to

(generally) having its own visual representation.

Main class of the SWF file The class that defines the behavior for the outermost display object in a SWF file, which

conceptually is the class for the SWF file itself. For instance, in a SWF created in Flash authoring, the main class is the

document class. It has a “main timeline” which contains all other timelines; the main class of the SWF file is the class

of which the main timeline is an instance.

Masking A technique of hiding from view certain parts of an image (or conversely, only allowing certain parts of an

image to display). The portions of the mask image become transparent, so content underneath shows through. The

term is related to painter’s masking tape that is used to prevent paint from being applied to certain areas.

Stage The visual container that is the base or background of all visual content in a SWF.

Transformation An adjustment to a visual characteristic of a graphic, such as rotating the object, altering its scale,

skewing or distorting its shape, or altering its color.

Vector graphic A graphic that is defined in the computer as lines and shapes drawn with particular characteristics

(such as thickness, length, size, angle, and position).

154ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Core display classes

Flash Player 9 and later, Adobe AIR 1.0 and later

The ActionScript 3.0 flash.display package includes classes for visual objects that can appear in Flash Player or AIR.

The following illustration shows the subclass relationships of these core display object classes.

The illustration shows the class inheritance of display object classes. Note that some of these classes, specifically

StaticText, TextField, and Video, are not in the flash.display package, but they still inherit from the DisplayObject class.

All classes that extend the DisplayObject class inherit its methods and properties. For more information, see

“Properties and methods of the DisplayObject class” on page 158.

You can instantiate objects of the following classes contained in the flash.display package:

• Bitmap—You use the Bitmap class to define bitmap objects, either loaded from external files or rendered through

ActionScript. You can load bitmaps from external files through the Loader class. You can load GIF, JPG, or PNG

files. You can also create a BitmapData object with custom data and then create a Bitmap object that uses that data.

You can use the methods of the BitmapData class to alter bitmaps, whether they are loaded or created in

ActionScript. For more information, see “Loading display objects” on page 198 and “Working with bitmaps” on

page 242.

• Loader—You use the Loader class to load external assets (either SWF files or graphics). For more information, see

“Loading display content dynamically” on page 198.

• Shape—You use the Shape class to create vector graphics, such as rectangles, lines, circles, and so on. For more

information, see “Using the drawing API” on page 222.

• SimpleButton—A SimpleButton object is the ActionScript representation of a button symbol created in the Flash

authoring tool. A SimpleButton instance has four button states: up, down, over, and hit test (the area that responds

to mouse and keyboard events).

• Sprite—A Sprite object can contain graphics of its own, and it can contain child display objects. (The Sprite class

extends the DisplayObjectContainer class). For more information, see “Working with display object containers” on

page 159 and “Using the drawing API” on page 222.

MorphShape

DisplayObject

AVM1Movie Shape StaticText Video

DisplayObjectContainer TextField

Bitmap InteractiveObject

SimpleButton

StageLoader

MovieClip

Sprite

155ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

• MovieClip—A MovieClip object is the ActionScript form of a movie clip symbol created in the Flash authoring

tool. In practice, a MovieClip is similar to a Sprite object, except that it also has a timeline. For more information,

see “Working with movie clips” on page 322.

The following classes, which are not in the flash.display package, are subclasses of the DisplayObject class:

• The TextField class, included in the flash.text package, is a display object for text display and input. For more

information, see “Basics of Working with text” on page 371.

• The TextLine class, included in the flash.text.engine package, is the display object used to display lines of text

composed by the Flash Text Engine and the Text Layout Framework. For more information, see “Using the Flash

Text Engine” on page 397 and “Using the Text Layout Framework” on page 426.

• The Video class, included in the flash.media package, is the display object used for displaying video files. For more

information, see “Working with video” on page 474.

The following classes in the flash.display package extend the DisplayObject class, but you cannot create instances of

them. Instead, they serve as parent classes for other display objects, combining common functionality into a single

class.

• AVM1Movie—The AVM1Movie class is used to represent loaded SWF files that are authored in ActionScript 1.0

and 2.0.

• DisplayObjectContainer—The Loader, Stage, Sprite, and MovieClip classes each extend the

DisplayObjectContainer class. For more information, see “Working with display object containers” on page 159.

• InteractiveObject—InteractiveObject is the base class for all objects used to interact with the mouse and keyboard.

SimpleButton, TextField, Loader, Sprite, Stage, and MovieClip objects are all subclasses of the InteractiveObject

class. For more information on creating mouse and keyboard interaction, see “Basics of user interaction” on

page 556.

• MorphShape—These objects are created when you create a shape tween in the Flash authoring tool. You cannot

instantiate them using ActionScript, but they can be accessed from the display list.

• Stage—The Stage class extends the DisplayObjectContainer class. There is one Stage instance for an application,

and it is at the top of the display list hierarchy. To access the Stage, use the stage property of any DisplayObject

instance. For more information, see “Setting Stage properties” on page 164.

Also, the StaticText class, in the flash.text package, extends the DisplayObject class, but you cannot create an instance

of it in code. Static text fields are created only in Flash.

The following classes are not display objects or display object containers, and do not appear in the display list, but do

display graphics on the stage. These classes draw into a rectangle, called a viewport, positioned relative to the stage.

• StageVideo—The StageVideo class displays video content, using hardware acceleration, when possible. This class

is available starting in Flash Player 10.2. For more information, see “Using the StageVideo class for hardware

accelerated presentation” on page 512.

• StageWebView—The StageWebView class displays HTML content. This class is available starting in AIR 2.5. For

more information, see “StageWebView objects” on page 1026.

The following fl.display classes provide functionality that parallels the flash.display.Loader and LoaderInfo classes. Use

these classes instead of their flash.display counterparts if you are developing in the Flash Professional environment

(CS5.5 or later). In that environment, these classes help solve issues involving TLF with RSL preloading. For more

information, see “Using the ProLoader and ProLoaderInfo classes” on page 202.

• fl.display.ProLoader—Analogous to flash.display.Loader

• fl.display.ProLoaderInfo—Analogous to flash.display.LoaderInfo

156ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Advantages of the display list approach

Flash Player 9 and later, Adobe AIR 1.0 and later

In ActionScript 3.0, there are separate classes for different types of display objects. In ActionScript 1.0 and 2.0, many

of the same types of objects are all included in one class: the MovieClip class.

This individualization of classes and the hierarchical structure of display lists have the following benefits:

• More efficient rendering and reduced memory usage

• Improved depth management

• Full traversal of the display list

• Off-list display objects

• Easier subclassing of display objects

More efficient rendering and smaller file sizes

Flash Player 9 and later, Adobe AIR 1.0 and later

In ActionScript 1.0 and 2.0, you could draw shapes only in a MovieClip object. In ActionScript 3.0, there are simpler

display object classes in which you can draw shapes. Because these ActionScript 3.0 display object classes do not

include the full set of methods and properties that a MovieClip object includes, they are less taxing on memory and

processor resources.

For example, each MovieClip object includes properties for the timeline of the movie clip, whereas a Shape object does

not. The properties for managing the timeline can use a lot of memory and processor resources. In ActionScript 3.0,

using the Shape object results in better performance. The Shape object has less overhead than the more complex

MovieClip object. Flash Player and AIR do not need to manage unused MovieClip properties, which improves speed

and reduces the memory footprint the object uses.

Improved depth management

Flash Player 9 and later, Adobe AIR 1.0 and later

In ActionScript 1.0 and 2.0, depth was managed through a linear depth management scheme and methods such as

getNextHighestDepth().

ActionScript 3.0 includes the DisplayObjectContainer class, which has more convenient methods and properties for

managing the depth of display objects.

In ActionScript 3.0, when you move a display object to a new position in the child list of a DisplayObjectContainer

instance, the other children in the display object container are repositioned automatically and assigned appropriate

child index positions in the display object container.

Also, in ActionScript 3.0 it is always possible to discover all of the child objects of any display object container. Every

DisplayObjectContainer instance has a numChildren property, which lists the number of children in the display object

container. And since the child list of a display object container is always an indexed list, you can examine every object

in the list from index position 0 through the last index position (numChildren - 1). This was not possible with the

methods and properties of a MovieClip object in ActionScript 1.0 and 2.0.

157ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

In ActionScript 3.0, you can easily traverse the display list sequentially; there are no gaps in the index numbers of a

child list of a display object container. Traversing the display list and managing the depth of objects is much easier than

was possible in ActionScript 1.0 and 2.0. In ActionScript 1.0 and 2.0, a movie clip could contain objects with

intermittent gaps in the depth order, which could make it difficult to traverse the list of object. In ActionScript 3.0,

each child list of a display object container is cached internally as an array, resulting in very fast lookups (by index).

Looping through all children of a display object container is also very fast.

In ActionScript 3.0, you can also access children in a display object container by using the getChildByName() method

of the DisplayObjectContainer class.

Full traversal of the display list

Flash Player 9 and later, Adobe AIR 1.0 and later

In ActionScript 1.0 and 2.0, you could not access some objects, such as vector shapes, that were drawn in the Flash

authoring tool. In ActionScript 3.0, you can access all objects on the display list—both those created using ActionScript

and all display objects created in the Flash authoring tool. For details, see “Traversing the display list” on page 163.

Off-list display objects

Flash Player 9 and later, Adobe AIR 1.0 and later

In ActionScript 3.0, you can create display objects that are not on the visible display list. These are known as off-list

display objects. A display object is added to the visible display list only when you call the addChild() or

addChildAt() method of a DisplayObjectContainer instance that has already been added to the display list.

You can use off-list display objects to assemble complex display objects, such as those that have multiple display object

containers containing multiple display objects. By keeping display objects off-list, you can assemble complicated

objects without using the processing time to render these display objects. You can then add an off-list display object

to the display list when it is needed. Also, you can move a child of a display object container on and off the display list

and to any desired position in the display list at will.

Easier subclassing of display objects

Flash Player 9 and later, Adobe AIR 1.0 and later

In ActionScript 1.0 and 2.0, you would often have to add new MovieClip objects to a SWF file to create basic shapes

or to display bitmaps. In ActionScript 3.0, the DisplayObject class includes many built-in subclasses, including Shape

and Bitmap. Because the classes in ActionScript 3.0 are more specialized for specific types of objects, it is easier to

create basic subclasses of the built-in classes.

For example, in order to draw a circle in ActionScript 2.0, you could create a CustomCircle class that extends the

MovieClip class when an object of the custom class is instantiated. However, that class would also include a number

of properties and methods from the MovieClip class (such as totalFrames) that do not apply to the class. In

ActionScript 3.0, however, you can create a CustomCircle class that extends the Shape object, and as such does not

include the unrelated properties and methods that are contained in the MovieClip class. The following code shows an

example of a CustomCircle class:

158ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 import flash.display.*;

 public class CustomCircle extends Shape
 {
 var xPos:Number;
 var yPos:Number;
 var radius:Number;
 var color:uint;
 public function CustomCircle(xInput:Number,
 yInput:Number,
 rInput:Number,
 colorInput:uint)
 {
 xPos = xInput;
 yPos = yInput;
 radius = rInput;
 color = colorInput;
 this.graphics.beginFill(color);
 this.graphics.drawCircle(xPos, yPos, radius);
 }
 }

Working with display objects

Flash Player 9 and later, Adobe AIR 1.0 and later

Now that you understand the basic concepts of the Stage, display objects, display object containers, and the display list,

this section provides you with some more specific information about working with display objects in ActionScript 3.0.

Properties and methods of the DisplayObject class

Flash Player 9 and later, Adobe AIR 1.0 and later

All display objects are subclasses of the DisplayObject class, and as such they inherit the properties and methods of the

DisplayObject class. The properties inherited are basic properties that apply to all display objects. For example, each

display object has an x property and a y property that specifies the object’s position in its display object container.

You cannot create a DisplayObject instance using the DisplayObject class constructor. You must create another type

of object (an object that is a subclass of the DisplayObject class), such as a Sprite, to instantiate an object with the new

operator. Also, if you want to create a custom display object class, you must create a subclass of one of the display object

subclasses that has a usable constructor function (such as the Shape class or the Sprite class). For more information,

see the DisplayObject class description in the ActionScript 3.0 Reference for the Adobe Flash Platform.

Adding display objects to the display list

Flash Player 9 and later, Adobe AIR 1.0 and later

When you instantiate a display object, it will not appear on-screen (on the Stage) until you add the display object

instance to a display object container that is on the display list. For example, in the following code, the myText

TextField object would not be visible if you omitted the last line of code. In the last line of code, the this keyword must

refer to a display object container that is already added to the display list.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/DisplayObject.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/DisplayObject.html

159ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 import flash.display.*;
 import flash.text.TextField;
 var myText:TextField = new TextField();
 myText.text = "Buenos dias.";
 this.addChild(myText);

When you add any visual element to the Stage, that element becomes a child of the Stage object. The first SWF file

loaded in an application (for example, the one that you embed in an HTML page) is automatically added as a child of

the Stage. It can be an object of any type that extends the Sprite class.

Any display objects that you create without using ActionScript—for example, by adding an MXML tag in a Flex MXML

file or by placing an item on the Stage in Flash Professional—are added to the display list. Although you do not add

these display objects through ActionScript, you can access them through ActionScript. For example, the following

code adjusts the width of an object named button1 that was added in the authoring tool (not through ActionScript):

 button1.width = 200;

Working with display object containers

Flash Player 9 and later, Adobe AIR 1.0 and later

If a DisplayObjectContainer object is deleted from the display list, or if it is moved or transformed in some other way,

each display object in the DisplayObjectContainer is also deleted, moved, or transformed.

A display object container is itself a type of display object—it can be added to another display object container. For

example, the following image shows a display object container, pictureScreen, that contains one outline shape and

four other display object containers (of type PictureFrame):

160ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

A. A shape defining the border of the pictureScreen display object container B. Four display object containers that are children of the
pictureScreen object

In order to have a display object appear in the display list, you must add it to a display object container that is on the

display list. You do this by using the addChild() method or the addChildAt() method of the container object. For

example, without the final line of the following code, the myTextField object would not be displayed:

 var myTextField:TextField = new TextField();
 myTextField.text = "hello";
 this.root.addChild(myTextField);

In this code sample, this.root points to the MovieClip display object container that contains the code. In your actual

code, you may specify a different container.

Use the addChildAt() method to add the child to a specific position in the child list of the display object container.

These zero-based index positions in the child list relate to the layering (the front-to-back order) of the display objects.

For example, consider the following three display objects. Each object was created from a custom class called Ball.

A B

161ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

The layering of these display objects in their container can be adjusted using the addChildAt() method. For example,

consider the following code:

 ball_A = new Ball(0xFFCC00, "a");
 ball_A.name = "ball_A";
 ball_A.x = 20;
 ball_A.y = 20;
 container.addChild(ball_A);

 ball_B = new Ball(0xFFCC00, "b");
 ball_B.name = "ball_B";
 ball_B.x = 70;
 ball_B.y = 20;
 container.addChild(ball_B);

 ball_C = new Ball(0xFFCC00, "c");
 ball_C.name = "ball_C";
 ball_C.x = 40;
 ball_C.y = 60;
 container.addChildAt(ball_C, 1);

After executing this code, the display objects are positioned as follows in the container DisplayObjectContainer

object. Notice the layering of the objects.

To reposition an object to the top of the display list, simply re-add it to the list. For example, after the previous code,

to move ball_A to the top of the stack, use this line of code:

 container.addChild(ball_A);

This code effectively removes ball_A from its location in container’s display list, and re-adds it to the top of the list—

which has the end result of moving it to the top of the stack.

You can use the getChildAt() method to verify the layer order of the display objects. The getChildAt() method

returns child objects of a container based on the index number you pass it. For example, the following code reveals

names of display objects at different positions in the child list of the container DisplayObjectContainer object:

 trace(container.getChildAt(0).name); // ball_A
 trace(container.getChildAt(1).name); // ball_C
 trace(container.getChildAt(2).name); // ball_B

If you remove a display object from the parent container’s child list, the higher elements on the list each move down a

position in the child index. For example, continuing with the previous code, the following code shows how the display

object that was at position 2 in the container DisplayObjectContainer moves to position 1 if a display object that is

lower in the child list is removed:

162ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 container.removeChild(ball_C);
 trace(container.getChildAt(0).name); // ball_A
 trace(container.getChildAt(1).name); // ball_B

The removeChild() and removeChildAt() methods do not delete a display object instance entirely. They simply

remove it from the child list of the container. The instance can still be referenced by another variable. (Use the delete

operator to completely remove an object.)

Because a display object has only one parent container, you can add an instance of a display object to only one display

object container. For example, the following code shows that the display object tf1 can exist in only one container (in

this case, a Sprite, which extends the DisplayObjectContainer class):

 tf1:TextField = new TextField();
 tf2:TextField = new TextField();
 tf1.name = "text 1";
 tf2.name = "text 2";

 container1:Sprite = new Sprite();
 container2:Sprite = new Sprite();

 container1.addChild(tf1);
 container1.addChild(tf2);
 container2.addChild(tf1);

 trace(container1.numChildren); // 1
 trace(container1.getChildAt(0).name); // text 2
 trace(container2.numChildren); // 1
 trace(container2.getChildAt(0).name); // text 1

If you add a display object that is contained in one display object container to another display object container, it is

removed from the first display object container’s child list.

In addition to the methods described above, the DisplayObjectContainer class defines several methods for working

with child display objects, including the following:

• contains(): Determines whether a display object is a child of a DisplayObjectContainer.

• getChildByName(): Retrieves a display object by name.

• getChildIndex(): Returns the index position of a display object.

• setChildIndex(): Changes the position of a child display object.

• removeChildren(): Removes multiple child display objects.

• swapChildren(): Swaps the front-to-back order of two display objects.

• swapChildrenAt(): Swaps the front-to-back order of two display objects, specified by their index values.

For more information, see the relevant entries in the ActionScript 3.0 Reference for the Adobe Flash Platform.

Recall that a display object that is off the display list—one that is not included in a display object container that is a

child of the Stage—is known as an off-list display object.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/DisplayObjectContainer.html
http://www.adobe.com/go/learn_flashcs4_langref_en

163ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Traversing the display list

Flash Player 9 and later, Adobe AIR 1.0 and later

As you’ve seen, the display list is a tree structure. At the top of the tree is the Stage, which can contain multiple display

objects. Those display objects that are themselves display object containers can contain other display objects, or display

object containers.

The DisplayObjectContainer class includes properties and methods for traversing the display list, by means of the child

lists of display object containers. For example, consider the following code, which adds two display objects, title and

pict, to the container object (which is a Sprite, and the Sprite class extends the DisplayObjectContainer class):

 var container:Sprite = new Sprite();
 var title:TextField = new TextField();
 title.text = "Hello";
 var pict:Loader = new Loader();
 var url:URLRequest = new URLRequest("banana.jpg");
 pict.load(url);
 pict.name = "banana loader";
 container.addChild(title);
 container.addChild(pict);

The getChildAt() method returns the child of the display list at a specific index position:

 trace(container.getChildAt(0) is TextField); // true

You can also access child objects by name. Each display object has a name property, and if you don’t assign it, Flash

Player or AIR assigns a default value, such as "instance1". For example, the following code shows how to use the

getChildByName() method to access a child display object with the name "banana loader":

Display Object
 Container

Display ObjectDisplay Object
 Container

Display Object
 Container

Instance of
the main class of

 the SWF file

StageStage

Display Object
 ContainerDisplay Object

Display Object

164ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 trace(container.getChildByName("banana loader") is Loader); // true

Using the getChildByName() method can result in slower performance than using the getChildAt() method.

Since a display object container can contain other display object containers as child objects in its display list, you can

traverse the full display list of the application as a tree. For example, in the code excerpt shown earlier, once the load

operation for the pict Loader object is complete, the pict object will have one child display object, which is the

bitmap, loaded. To access this bitmap display object, you can write pict.getChildAt(0). You can also write

container.getChildAt(0).getChildAt(0) (since container.getChildAt(0) == pict).

The following function provides an indented trace() output of the display list from a display object container:

 function traceDisplayList(container:DisplayObjectContainer,indentString:String = ""):void
 {
 var child:DisplayObject;
 for (var i:uint=0; i < container.numChildren; i++)
 {
 child = container.getChildAt(i);
 trace(indentString, child, child.name);
 if (container.getChildAt(i) is DisplayObjectContainer)
 {
 traceDisplayList(DisplayObjectContainer(child), indentString + "")
 }
 }
 }

Adobe Flex

If you use Flex, you should know that Flex defines many component display object classes, and these classes override

the display list access methods of the DisplayObjectContainer class. For example, the Container class of the mx.core

package overrides the addChild() method and other methods of the DisplayObjectContainer class (which the

Container class extends). In the case of the addChild() method, the class overrides the method in such a way that you

cannot add all types of display objects to a Container instance in Flex. The overridden method, in this case, requires

that the child object that you are adding be a type of mx.core.UIComponent object.

Setting Stage properties

Flash Player 9 and later, Adobe AIR 1.0 and later

The Stage class overrides most properties and methods of the DisplayObject class. If you call one of these overridden

properties or methods, Flash Player and AIR throw an exception. For example, the Stage object does not have x or y

properties, since its position is fixed as the main container for the application. The x and y properties refer to the

position of a display object relative to its container, and since the Stage is not contained in another display object

container, these properties do not apply.

Note: Some properties and methods of the Stage class are only available to display objects that are in the same security

sandbox as the first SWF file loaded. For details, see “Stage security” on page 1064.

Controlling the playback frame rate

Flash Player 9 and later, Adobe AIR 1.0 and later

The frameRate property of the Stage class is used to set the frame rate for all SWF files loaded into the application.

For more information, see the ActionScript 3.0 Reference for the Adobe Flash Platform.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Stage.html#frameRate

165ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Controlling Stage scaling

Flash Player 9 and later, Adobe AIR 1.0 and later

When the portion of the screen representing Flash Player or AIR is resized, the runtime automatically adjusts the Stage

contents to compensate. The Stage class’s scaleMode property determines how the Stage contents are adjusted. This

property can be set to four different values, defined as constants in the flash.display.StageScaleMode class:

• StageScaleMode.EXACT_FIT scales the SWF to fill the new stage dimensions without regard for the original

content aspect ratio. The scale factors might not be the same for width and height, so the content can appear

squeezed or stretched if the aspect ratio of the stage is changed.

• StageScaleMode.SHOW_ALL scales the SWF to fit entirely within the new stage dimensions without changing the

content aspect ratio. This scale mode displays all of the content, but can result in “letterbox” borders, like the black

bars that appear when viewing a wide-screen movie on a standard television.

• StageScaleMode.NO_BORDER scales the SWF to entirely fill the new stage dimensions without changing the aspect

ratio of the content. This scale mode makes full use of the stage display area, but can result in cropping.

• StageScaleMode.NO_SCALE — does not scale the SWF. If the new stage dimensions are smaller, the content is

cropped; if larger, the added space is blank.

In the StageScaleMode.NO_SCALE scale mode only, the stageWidth and stageHeight properties of the Stage class

can be used to determine the actual pixel dimensions of the resized stage. (In the other scale modes, the stageWidth

and stageHeight properties always reflect the original width and height of the SWF.) In addition, when

scaleMode is set to StageScaleMode.NO_SCALE and the SWF file is resized, the Stage class’s resize event is

dispatched, allowing you to make adjustments accordingly.

Consequently, having scaleMode set to StageScaleMode.NO_SCALE allows you to have greater control over how

the screen contents adjust to the window resizing if you desire. For example, in a SWF containing a video and a

control bar, you might want to make the control bar stay the same size when the Stage is resized, and only change

the size of the video window to accommodate the Stage size change. This is demonstrated in the following example:

166ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 // mainContent is a display object containing the main content;
// it is positioned at the top-left corner of the Stage, and
 // it should resize when the SWF resizes.

 // controlBar is a display object (e.g. a Sprite) containing several
 // buttons; it should stay positioned at the bottom-left corner of the
 // Stage (below mainContent) and it should not resize when the SWF
 // resizes.

 import flash.display.Stage;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;
 import flash.events.Event;

 var swfStage:Stage = mainContent.stage;
 swfStage.scaleMode = StageScaleMode.NO_SCALE;
 swfStage.align = StageAlign.TOP_LEFT;
 swfStage.addEventListener(Event.RESIZE, resizeDisplay);

 function resizeDisplay(event:Event):void
 {
 var swfWidth:int = swfStage.stageWidth;
 var swfHeight:int = swfStage.stageHeight;

 // Resize the main content area
 var newContentHeight:Number = swfHeight - controlBar.height;
 mainContent.height = newContentHeight;
 mainContent.scaleX = mainContent.scaleY;

 // Reposition the control bar.
 controlBar.y = newContentHeight;
 }

Setting the stage scale mode for AIR windows

The stage scaleMode property determines how the stage scales and clips child display objects when a window is

resized. Only the noScale mode should be used in AIR. In this mode, the stage is not scaled. Instead, the size of the

stage changes directly with the bounds of the window. Objects may be clipped if the window is resized smaller.

The stage scale modes are designed for use in a environments such as a web browser where you don't always have

control over the size or aspect ratio of the stage. The modes let you choose the least bad compromise when the stage

does not match the ideal size or aspect ratio of your application. In AIR, you always have control of the stage, so in

most cases re-laying out your content or adjusting the dimensions of your window will give you better results than

enabling stage scaling.

In the browser and for the initial AIR window, the relationship between the window size and the initial scale factor is

read from the loaded SWF file. However, when you create a NativeWindow object, AIR chooses an arbitrary

relationship between the window size and the scale factor of 72:1. Thus, if your window is 72x72 pixels, a 10x10

rectangle added to the window is drawn the correct size of 10x10 pixels. However, if the window is 144x144 pixels, then

a 10x10 pixel rectangle is scaled to 20x20 pixels. If you insist on using a scaleMode other than noScale for a window

stage, you can compensate by setting the scale factor of any display objects in the window to the ratio of 72 pixels to

the current width and height of the stage. For example, the following code calculates the required scale factor for a

display object named client:

167ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

if(newWindow.stage.scaleMode != StageScaleMode.NO_SCALE){
client.scaleX = 72/newWindow.stage.stageWidth;
client.scaleY = 72/newWindow.stage.stageHeight;
}

Note: Flex and HTML windows automatically set the stage scaleMode to noScale. Changing the scaleMode disturbs

the automatic layout mechanisms used in these types of windows.

Working with full-screen mode

Flash Player 9 and later, Adobe AIR 1.0 and later

Full-screen mode allows you to set a movie’s stage to fill a viewer’s entire monitor without any container borders or

menus. The Stage class’s displayState property is used to toggle full-screen mode on and off for a SWF. The

displayState property can be set to one of the values defined by the constants in the flash.display.StageDisplayState

class. To turn on full-screen mode, set the displayState property to StageDisplayState.FULL_SCREEN:

 stage.displayState = StageDisplayState.FULL_SCREEN;

To turn on full-screen interactive mode (new in Flash Player 11.3), set the displayState property to

StageDisplayState.FULL_SCREEN_INTERACTIVE:

 stage.displayState = StageDisplayState.FULL_SCREEN_INTERACTIVE;

In Flash Player, full-screen mode can only be initiated through ActionScript in response to a mouse click (including

right-click) or keypress. AIR content running in the application security sandbox does not require that full-screen

mode be entered in response to a user gesture.

To exit full-screen mode, set the displayState property to StageDisplayState.NORMAL.

 stage.displayState = StageDisplayState.NORMAL;

In addition, a user can choose to leave full-screen mode by switching focus to a different window or by using one of

several key combinations: the Esc key (all platforms), Control-W (Windows), Command-W (Mac), or Alt-F4

(Windows).

Enabling full-screen mode in Flash Player

To enable full-screen mode for a SWF file embedded in an HTML page, the HTML code to embed Flash Player must

include a param tag and embed attribute with the name allowFullScreen and value true, like this:

 <object>
 ...
 <param name="allowFullScreen" value="true" />
 <embed ... allowFullScreen="true" />
 </object>

In the Flash authoring tool, select File -> Publish Settings and in the Publish Settings dialog box, on the HTML tab,

select the Flash Only - Allow Full Screen template.

In Flex, ensure that the HTML template includes <object> and <embed> tags that support full screen.

If you are using JavaScript in a web page to generate the SWF-embedding tags, you must alter the JavaScript to add the

allowFullScreen param tag and attribute. For example, if your HTML page uses the AC_FL_RunContent() function

(which is used in HTML pages generated by Flash Professional and Flash Builder), you should add the

allowFullScreen parameter to that function call as follows:

168ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 AC_FL_RunContent(
 ...
 'allowFullScreen','true',
 ...
); //end AC code

This does not apply to SWF files running in the stand-alone Flash Player.

Note: If you set the Window Mode (wmode in the HTML) to Opaque Windowless (opaque) or Transparent Windowless

(transparent), the full-screen window is always opaque

There are also security-related restrictions for using full-screen mode with Flash Player in a browser. These restrictions

are described in “Security” on page 1042.

Enabling full-screen interactive mode in Flash Player 11.3 and higher

Flash Player 11.3 and higher support full-screen interactive mode, which enables full support for all keyboard keys

(except for Esc, which exits full-screen interactive mode). Full-screen interactive mode is useful for gaming (for

example, to enable chat in a multi-player game or WASD keyboard controls in a first-person shooter game.)

To enable full-screen interactive mode for a SWF file embedded in an HTML page, the HTML code to embed Flash

Player must include a param tag and embed attribute with the name allowFullScreenInteractive and value true,

like this:

 <object>
 ...
 <param name="allowFullScreenInteractive" value="true" />
 <embed ... allowFullScreenInteractive="true" />
 </object>

In the Flash authoring tool, select File -> Publish Settings and in the Publish Settings dialog box, on the HTML tab,

select the Flash Only - Allow Full Screen Interactive template.

In Flash Builder and Flex, ensure that the HTML templates include <object> and <embed> tags that support full

screen interactive mode.

If you are using JavaScript in a web page to generate the SWF-embedding tags, you must alter the JavaScript to add the

allowFullScreenInteractive param tag and attribute. For example, if your HTML page uses the

AC_FL_RunContent() function (which is used in HTML pages generated by Flash Professional and Flash Builder),

you should add the allowFullScreenInteractive parameter to that function call as follows:

 AC_FL_RunContent(
 ...
 'allowFullScreenInteractive','true',
 ...
); //end AC code

This does not apply to SWF files running in the stand-alone Flash Player.

Full screen stage size and scaling

The Stage.fullScreenHeight and Stage.fullScreenWidth properties return the height and the width of the

monitor that’s used when going to full-screen size, if that state is entered immediately. These values can be incorrect

if the user has the opportunity to move the browser from one monitor to another after you retrieve these values but

before entering full-screen mode. If you retrieve these values in the same event handler where you set the

Stage.displayState property to StageDisplayState.FULL_SCREEN, the values are correct.For users with multiple

169ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

monitors, the SWF content expands to fill only one monitor. Flash Player and AIR use a metric to determine which

monitor contains the greatest portion of the SWF, and uses that monitor for full-screen mode. The fullScreenHeight

and fullScreenWidth properties only reflect the size of the monitor that is used for full-screen mode. For more

information, see Stage.fullScreenHeight and Stage.fullScreenWidth in the ActionScript 3.0 Reference for the

Adobe Flash Platform.

Stage scaling behavior for full-screen mode is the same as under normal mode; the scaling is controlled by the Stage

class’s scaleMode property. If the scaleMode property is set to StageScaleMode.NO_SCALE, the Stage’s stageWidth

and stageHeight properties change to reflect the size of the screen area occupied by the SWF (the entire screen, in

this case); if viewed in the browser the HTML parameter for this controls the setting.

You can use the Stage class’s fullScreen event to detect and respond when full-screen mode is turned on or off. For

example, you might want to reposition, add, or remove items from the screen when entering or leaving full-screen

mode, as in this example:

 import flash.events.FullScreenEvent;

 function fullScreenRedraw(event:FullScreenEvent):void
 {
 if (event.fullScreen)
 {
 // Remove input text fields.
 // Add a button that closes full-screen mode.
 }
 else
 {
 // Re-add input text fields.
 // Remove the button that closes full-screen mode.
 }
 }

 mySprite.stage.addEventListener(FullScreenEvent.FULL_SCREEN, fullScreenRedraw);

As this code shows, the event object for the fullScreen event is an instance of the flash.events.FullScreenEvent class,

which includes a fullScreen property indicating whether full-screen mode is enabled (true) or not (false).

Keyboard support in full-screen mode

When Flash Player runs in a browser, all keyboard-related ActionScript, such as keyboard events and text entry in

TextField instances, is disabled in full-screen mode. The exceptions (the keys that are enabled) are:

• Selected non-printing keys, specifically the arrow keys, space bar, and tab key

• Keyboard shortcuts that terminate full-screen mode: Esc (Windows and Mac), Control-W (Windows), Command-

W (Mac), and Alt-F4

These restrictions are not present for SWF content running in the stand-alone Flash Player or in AIR. AIR supports

an interactive full-screen mode that allows keyboard input.

Mouse support in full-screen mode

By default, mouse events in full-screen mode work the same way as when not in full-screen mode. However, in full-

screen mode, you can optionally set the Stage.mouseLock property to enable mouse locking. Mouse locking disables

the cursor and enables unbounded mouse movement.

Note: You can only enable mouse locking in full-screen mode for desktop applications. Setting it on applications not in

full-screen mode, or for applications on mobile devices, throws an exception.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Stage.html#fullScreenHeight
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Stage.html#fullScreenWidth
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Stage.html#fullScreenHeight
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Stage.html#fullScreenHeight

170ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Mouse locking is disabled automatically and the mouse cursor is made visible again when:

• The user exits full-screen mode by using the Escape key (all platforms), Control-W (Windows), Command-W

(Mac), or Alt-F4 (Windows).

• The application window loses focus.

• Any settings UI is visible, including all privacy dialog boxes.

• A native dialog box is shown, such as a file upload dialog box.

Events associated with mouse movement, such as the mouseMove event, use the MouseEvent class to represent the

event object. When mouse locking is disabled, use the MouseEvent.localX and MouseEvent.localY properties to

determine the location of the mouse.When mouse locking is enabled, use the MouseEvent.movementX and

MouseEvent.movementY properties to determine the location of the mouse. The movementX and movementY

properties contain changes in the position of the mouse since the last event, instead of absolute coordinates of the

mouse location.

Hardware scaling in full-screen mode

You can use the Stage class’s fullScreenSourceRect property to set Flash Player or AIR to scale a specific region of

the stage to full-screen mode. Flash Player and AIR scale in hardware, if available, using the graphics and video card

on a user's computer, and generally display content more quickly than software scaling.

To take advantage of hardware scaling, you set the whole stage or part of the stage to full-screen mode. The following

ActionScript 3.0 code sets the whole stage to full-screen mode:

 import flash.geom.*;
 {

 stage.fullScreenSourceRect = new Rectangle(0,0,320,240);
 stage.displayState = StageDisplayState.FULL_SCREEN;
 }

When this property is set to a valid rectangle and the displayState property is set to full-screen mode, Flash Player

and AIR scale the specified area. The actual Stage size in pixels within ActionScript does not change. Flash Player and

AIR enforce a minimum limit for the size of the rectangle to accommodate the standard “Press Esc to exit full-screen

mode” message. This limit is usually around 260 by 30 pixels but can vary depending on platform and Flash Player

version.

The fullScreenSourceRect property can only be set when Flash Player or AIR is not in full-screen mode. To use

this property correctly, set this property first, then set the displayState property to full-screen mode.

To enable scaling, set the fullScreenSourceRect property to a rectangle object.

 stage.fullScreenSourceRect = new Rectangle(0,0,320,240);

To disable scaling, set the fullScreenSourceRect property to null.

 stage.fullScreenSourceRect = null;

To take advantage of all hardware acceleration features with Flash Player, enable it through the Flash Player Settings

dialog box. To load the dialog box, right-click (Windows) or Control-click (Mac) inside Flash Player content in your

browser. Select the Display tab, which is the first tab, and click the checkbox: Enable hardware acceleration.

Direct and GPU-compositing window modes

Flash Player 10 introduces two window modes, direct and GPU compositing, which you can enable through the

publish settings in the Flash authoring tool. These modes are not supported in AIR. To take advantage of these modes,

you must enable hardware acceleration for Flash Player.

171ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Direct mode uses the fastest, most direct path to push graphics to the screen, which is advantageous for video playback.

GPU Compositing uses the graphics processing unit on the video card to accelerate compositing. Video compositing

is the process of layering multiple images to create a single video image. When compositing is accelerated with the

GPU it can improve the performance of YUV conversion, color correction, rotation or scaling, and blending. YUV

conversion refers to the color conversion of composite analog signals, which are used for transmission, to the RGB

(red, green, blue) color model that video cameras and displays use. Using the GPU to accelerate compositing reduces

the memory and computational demands that are otherwise placed on the CPU. It also results in smoother playback

for standard-definition video.

Be cautious in implementing these window modes. Using GPU compositing can be expensive for memory and CPU

resources. If some operations (such as blend modes, filtering, clipping or masking) cannot be carried out in the GPU,

they are done by the software. Adobe recommends limiting yourself to one SWF file per HTML page when using these

modes and you should not enable these modes for banners. The Flash Test Movie facility does not use hardware

acceleration but you can use it through the Publish Preview option.

Setting a frame rate in your SWF file that is higher than 60, the maximum screen refresh rate, is useless. Setting the

frame rate from 50 through 55 allows for dropped frames, which can occur for various reasons from time to time.

Using direct mode requires Microsoft DirectX 9 with VRAM 128 MB on Windows and OpenGL for Apple Macintosh,

Mac OS X v10.2 or higher. GPU compositing requires Microsoft DirectX 9 and Pixel Shader 2.0 support on Windows

with 128 MB of VRAM. On Mac OS X and Linux, GPU compositing requires OpenGL 1.5 and several OpenGL

extensions (framebuffer object, multitexture, shader objects, shading language, fragment shader).

You can activate direct and gpu acceleration modes on a per-SWF basis through the Flash Publish Settings dialog

box, using the Hardware Acceleration menu on the Flash tab. If you choose None, the window mode reverts to

default, transparent, or opaque, as specified by the Window Mode setting on the HTML tab.

Handling events for display objects

Flash Player 9 and later, Adobe AIR 1.0 and later

The DisplayObject class inherits from the EventDispatcher class. This means that every display object can participate

fully in the event model (described in “Handling events” on page 125). Every display object can use its

addEventListener() method—inherited from the EventDispatcher class—to listen for a particular event, but only if

the listening object is part of the event flow for that event.

When Flash Player or AIR dispatches an event object, that event object makes a round-trip journey from the Stage to

the display object where the event occurred. For example, if a user clicks on a display object named child1, Flash

Player dispatches an event object from the Stage through the display list hierarchy down to the child1 display object.

The event flow is conceptually divided into three phases, as illustrated in this diagram:

Stage

Parent Node

Child1 Node Child2 Node

Capture
Phase

Bubbling
Phase

Target Phase

172ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

For more information, see “Handling events” on page 125.

One important issue to keep in mind when working with display object events is the effect that event listeners can have

on whether display objects are automatically removed from memory (garbage collected) when they’re removed from

the display list. If a display object has objects subscribed as listeners to its events, that display object will not be removed

from memory even when it’s removed from the display list, because it will still have references to those listener objects.

For more information, see “Managing event listeners” on page 138.

Choosing a DisplayObject subclass

Flash Player 9 and later, Adobe AIR 1.0 and later

With several options to choose from, one of the important decisions you’ll make when you’re working with display

objects is which display object to use for what purpose. Here are some guidelines to help you decide. These same

suggestions apply whether you need an instance of a class or you’re choosing a base class for a class you’re creating:

• If you don’t need an object that can be a container for other display objects (that is, you just need one that serves as

a stand-alone screen element), choose one of these DisplayObject or InteractiveObject subclasses, depending on

what it will be used for:

• Bitmap for displaying a bitmap image.

• TextField for adding text.

• Video for displaying video.

• Shape for a “canvas” for drawing content on-screen. In particular, if you want to create an instance for drawing

shapes on the screen, and it won’t be a container for other display objects, you’ll gain significant performance

benefits using Shape instead of Sprite or MovieClip.

• MorphShape, StaticText, or SimpleButton for items created by the Flash authoring tool. (You can’t create

instances of these classes programmatically, but you can create variables with these data types to refer to items

created using the Flash authoring tool.)

• If you need a variable to refer to the main Stage, use the Stage class as its data type.

• If you need a container for loading an external SWF file or image file, use a Loader instance. The loaded content

will be added to the display list as a child of the Loader instance. Its data type will depend on the nature of the loaded

content, as follows:

• A loaded image will be a Bitmap instance.

• A loaded SWF file written in ActionScript 3.0 will be a Sprite or MovieClip instance (or an instance of a subclass

of those classes, as specified by the content creator).

• A loaded SWF file written in ActionScript 1.0 or ActionScript 2.0 will be an AVM1Movie instance.

• If you need an object to serve as a container for other display objects (whether or not you’ll also be drawing onto

the display object using ActionScript), choose one of the DisplayObjectContainer subclasses:

• Sprite if the object will be created using only ActionScript, or as the base class for a custom display object that

will be created and manipulated solely with ActionScript.

• MovieClip if you’re creating a variable to refer to a movie clip symbol created in the Flash authoring tool.

• If you are creating a class that will be associated with a movie clip symbol in the Flash library, choose one of these

DisplayObjectContainer subclasses as your class’s base class:

• MovieClip if the associated movie clip symbol has content on more than one frame

• Sprite if the associated movie clip symbol has content only on the first frame

173ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Manipulating display objects

Flash Player 9 and later, Adobe AIR 1.0 and later

Regardless of which display object you choose to use, there are a number of manipulations that all display objects have

in common as elements that are displayed on the screen. For example, they can all be positioned on the screen, moved

forward or backward in the stacking order of display objects, scaled, rotated, and so forth. Because all display objects

inherit this functionality from their common base class (DisplayObject), this functionality behaves the same whether

you’re manipulating a TextField instance, a Video instance, a Shape instance, or any other display object. The

following sections detail several of these common display object manipulations.

Changing position

Flash Player 9 and later, Adobe AIR 1.0 and later

The most basic manipulation to any display object is positioning it on the screen. To set a display object’s position,

change the object’s x and y properties.

 myShape.x = 17;
 myShape.y = 212;

The display object positioning system treats the Stage as a Cartesian coordinate system (the common grid system with

a horizontal x axis and vertical y axis). The origin of the coordinate system (the 0,0 coordinate where the x and y axes

meet) is at the top-left corner of the Stage. From there, x values are positive going right and negative going left, while

(in contrast to typical graphing systems) y values are positive going down and negative going up. For example, the

previous lines of code move the object myShape to the x coordinate 17 (17 pixels to the right of the origin) and y

coordinate 212 (212 pixels below the origin).

By default, when a display object is created using ActionScript, the x and y properties are both set to 0, placing the

object at the top-left corner of its parent content.

Changing position relative to the Stage

It’s important to remember that the x and y properties always refer to the position of the display object relative to the

0,0 coordinate of its parent display object’s axes. So for a Shape instance (such as a circle) contained inside a Sprite

instance, setting the Shape object’s x and y properties to 0 will place the circle at the top-left corner of the Sprite, which

is not necessarily the top-left corner of the Stage. To position an object relative to the global Stage coordinates, you can

use the globalToLocal() method of any display object to convert coordinates from global (Stage) coordinates to local

(display object container) coordinates, like this:

174ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 // Position the shape at the top-left corner of the Stage,
 // regardless of where its parent is located.

 // Create a Sprite, positioned at x:200 and y:200.
 var mySprite:Sprite = new Sprite();
 mySprite.x = 200;
 mySprite.y = 200;
 this.addChild(mySprite);

 // Draw a dot at the Sprite's 0,0 coordinate, for reference.
 mySprite.graphics.lineStyle(1, 0x000000);
 mySprite.graphics.beginFill(0x000000);
 mySprite.graphics.moveTo(0, 0);
 mySprite.graphics.lineTo(1, 0);
 mySprite.graphics.lineTo(1, 1);
 mySprite.graphics.lineTo(0, 1);
 mySprite.graphics.endFill();

 // Create the circle Shape instance.
 var circle:Shape = new Shape();
 mySprite.addChild(circle);

 // Draw a circle with radius 50 and center point at x:50, y:50 in the Shape.
 circle.graphics.lineStyle(1, 0x000000);
 circle.graphics.beginFill(0xff0000);
 circle.graphics.drawCircle(50, 50, 50);
 circle.graphics.endFill();

 // Move the Shape so its top-left corner is at the Stage's 0, 0 coordinate.
 var stagePoint:Point = new Point(0, 0);
 var targetPoint:Point = mySprite.globalToLocal(stagePoint);
 circle.x = targetPoint.x;
 circle.y = targetPoint.y;

You can likewise use the DisplayObject class’s localToGlobal() method to convert local coordinates to Stage

coordinates.

Moving display objects with the mouse

You can let a user move display objects with mouse using two different techniques in ActionScript. In both cases, two

mouse events are used: when the mouse button is pressed down, the object is told to follow the mouse cursor, and when

it’s released, the object is told to stop following the mouse cursor.

Note: Flash Player 11.3 and higher, AIR 3.3 and higher: You can also use the MouseEvent.RELEASE_OUTSIDE event to

cover the case of a user releasing the mouse button outside the bounds of the containing Sprite.

The first technique, using the startDrag() method, is simpler, but more limited. When the mouse button is pressed,

the startDrag() method of the display object to be dragged is called. When the mouse button is released, the

stopDrag() method is called. The Sprite class defines these two functions, so the object moved must be a Sprite or one

of its subclasses.

175ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 // This code creates a mouse drag interaction using the startDrag()
 // technique.
 // square is a MovieClip or Sprite instance).

 import flash.events.MouseEvent;

 // This function is called when the mouse button is pressed.
 function startDragging(event:MouseEvent):void
 {
 square.startDrag();
 }

 // This function is called when the mouse button is released.
 function stopDragging(event:MouseEvent):void
 {
 square.stopDrag();
 }

 square.addEventListener(MouseEvent.MOUSE_DOWN, startDragging);
 square.addEventListener(MouseEvent.MOUSE_UP, stopDragging);

This technique suffers from one fairly significant limitation: only one item at a time can be dragged using

startDrag(). If one display object is being dragged and the startDrag() method is called on another display object,

the first display object stops following the mouse immediately. For example, if the startDragging() function is

changed as shown here, only the circle object will be dragged, in spite of the square.startDrag() method call:

 function startDragging(event:MouseEvent):void
 {
 square.startDrag();
 circle.startDrag();
 }

As a consequence of the fact that only one object can be dragged at a time using startDrag(), the stopDrag()

method can be called on any display object and it stops whatever object is currently being dragged.

If you need to drag more than one display object, or to avoid the possibility of conflicts where more than one object

might potentially use startDrag(), it’s best to use the mouse-following technique to create the dragging effect. With

this technique, when the mouse button is pressed, a function is subscribed as a listener to the mouseMove event of the

Stage. This function, which is then called every time the mouse moves, causes the dragged object to jump to the x, y

coordinate of the mouse. Once the mouse button is released, the function is unsubscribed as a listener, meaning it is

no longer called when the mouse moves and the object stops following the mouse cursor. Here is some code that

demonstrates this technique:

176ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 // This code moves display objects using the mouse-following
 // technique.
 // circle is a DisplayObject (e.g. a MovieClip or Sprite instance).

 import flash.events.MouseEvent;

 var offsetX:Number;
 var offsetY:Number;

 // This function is called when the mouse button is pressed.
 function startDragging(event:MouseEvent):void
 {
 // Record the difference (offset) between where
 // the cursor was when the mouse button was pressed and the x, y
 // coordinate of the circle when the mouse button was pressed.
 offsetX = event.stageX - circle.x;
 offsetY = event.stageY - circle.y;

 // tell Flash Player to start listening for the mouseMove event
 stage.addEventListener(MouseEvent.MOUSE_MOVE, dragCircle);
 }

 // This function is called when the mouse button is released.
 function stopDragging(event:MouseEvent):void
 {
 // Tell Flash Player to stop listening for the mouseMove event.
 stage.removeEventListener(MouseEvent.MOUSE_MOVE, dragCircle);
 }

 // This function is called every time the mouse moves,
 // as long as the mouse button is pressed down.
 function dragCircle(event:MouseEvent):void
 {
 // Move the circle to the location of the cursor, maintaining
 // the offset between the cursor's location and the
 // location of the dragged object.
 circle.x = event.stageX - offsetX;
 circle.y = event.stageY - offsetY;

 // Instruct Flash Player to refresh the screen after this event.
 event.updateAfterEvent();
 }

 circle.addEventListener(MouseEvent.MOUSE_DOWN, startDragging);
 circle.addEventListener(MouseEvent.MOUSE_UP, stopDragging);

In addition to making a display object follow the mouse cursor, it is often desirable to move the dragged object to the

front of the display, so that it appears to be floating above all the other objects. For example, suppose you have two

objects, a circle and a square, that can both be moved with the mouse. If the circle happens to be below the square on

the display list, and you click and drag the circle so that the cursor is over the square, the circle will appear to slide

behind the square, which breaks the drag-and-drop illusion. Instead, you can make it so that when the circle is clicked,

it moves to the top of the display list, and thus always appears on top of any other content.

177ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

The following code (adapted from the previous example) allows two display objects, a circle and a square, to be moved

with the mouse. Whenever the mouse button is pressed over either one, that item is moved to the top of the Stage’s

display list, so that the dragged item always appears on top. (Code that is new or changed from the previous listing

appears in boldface.)

 // This code creates a drag-and-drop interaction using the mouse-following
 // technique.
 // circle and square are DisplayObjects (e.g. MovieClip or Sprite
 // instances).

 import flash.display.DisplayObject;
 import flash.events.MouseEvent;

 var offsetX:Number;
 var offsetY:Number;
 var draggedObject:DisplayObject;

 // This function is called when the mouse button is pressed.
 function startDragging(event:MouseEvent):void
 {
 // remember which object is being dragged
 draggedObject = DisplayObject(event.target);

 // Record the difference (offset) between where the cursor was when
 // the mouse button was pressed and the x, y coordinate of the
 // dragged object when the mouse button was pressed.
 offsetX = event.stageX - draggedObject.x;
 offsetY = event.stageY - draggedObject.y;

 // move the selected object to the top of the display list
 stage.addChild(draggedObject);

 // Tell Flash Player to start listening for the mouseMove event.
 stage.addEventListener(MouseEvent.MOUSE_MOVE, dragObject);
 }

 // This function is called when the mouse button is released.
 function stopDragging(event:MouseEvent):void
 {
 // Tell Flash Player to stop listening for the mouseMove event.
 stage.removeEventListener(MouseEvent.MOUSE_MOVE, dragObject);
 }

178ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 // This function is called every time the mouse moves,
 // as long as the mouse button is pressed down.
 function dragObject(event:MouseEvent):void
 {
 // Move the dragged object to the location of the cursor, maintaining
 // the offset between the cursor's location and the location
 // of the dragged object.
 draggedObject.x = event.stageX - offsetX;
 draggedObject.y = event.stageY - offsetY;

 // Instruct Flash Player to refresh the screen after this event.
 event.updateAfterEvent();
 }

 circle.addEventListener(MouseEvent.MOUSE_DOWN, startDragging);
 circle.addEventListener(MouseEvent.MOUSE_UP, stopDragging);

 square.addEventListener(MouseEvent.MOUSE_DOWN, startDragging);
 square.addEventListener(MouseEvent.MOUSE_UP, stopDragging);

To extend this effect further, such as for a game where tokens or cards are moved among piles, you could add the

dragged object to the Stage’s display list when it’s “picked up,” and then add it to another display list—such as the “pile”

where it is dropped—when the mouse button is released.

Finally, to enhance the effect, you could apply a drop shadow filter to the display object when it is clicked (when you

start dragging it) and remove the drop shadow when the object is released. For details on using the drop shadow filter

and other display object filters in ActionScript, see “Filtering display objects” on page 267.

Panning and scrolling display objects

Flash Player 9 and later, Adobe AIR 1.0 and later

If you have a display object that is too large for the area in which you want it to display it, you can use the scrollRect

property to define the viewable area of the display object. In addition, by changing the scrollRect property in

response to user input, you can cause the content to pan left and right or scroll up and down.

The scrollRect property is an instance of the Rectangle class, which is a class that combines the values needed to

define a rectangular area as a single object. To initially define the viewable area of the display object, create a new

Rectangle instance and assign it to the display object’s scrollRect property. Later, to scroll or pan, you read the

scrollRect property into a separate Rectangle variable, and change the desired property (for instance, change the

Rectangle instance’s x property to pan or y property to scroll). Then you reassign that Rectangle instance to the

scrollRect property to notify the display object of the changed value.

For example, the following code defines the viewable area for a TextField object named bigText that is too tall to fit

in the SWF file’s boundaries. When the two buttons named up and down are clicked, they call functions that cause the

contents of the TextField object to scroll up or down by modifying the y property of the scrollRect Rectangle

instance.

179ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 import flash.events.MouseEvent;
 import flash.geom.Rectangle;

 // Define the initial viewable area of the TextField instance:
 // left: 0, top: 0, width: TextField's width, height: 350 pixels.
 bigText.scrollRect = new Rectangle(0, 0, bigText.width, 350);

 // Cache the TextField as a bitmap to improve performance.
 bigText.cacheAsBitmap = true;

 // called when the "up" button is clicked
 function scrollUp(event:MouseEvent):void
 {
 // Get access to the current scroll rectangle.
 var rect:Rectangle = bigText.scrollRect;
 // Decrease the y value of the rectangle by 20, effectively
 // shifting the rectangle down by 20 pixels.
 rect.y -= 20;
 // Reassign the rectangle to the TextField to "apply" the change.
 bigText.scrollRect = rect;
 }

 // called when the "down" button is clicked
 function scrollDown(event:MouseEvent):void
 {
 // Get access to the current scroll rectangle.
 var rect:Rectangle = bigText.scrollRect;
 // Increase the y value of the rectangle by 20, effectively
 // shifting the rectangle up by 20 pixels.
 rect.y += 20;
 // Reassign the rectangle to the TextField to "apply" the change.
 bigText.scrollRect = rect;
 }

 up.addEventListener(MouseEvent.CLICK, scrollUp);
 down.addEventListener(MouseEvent.CLICK, scrollDown);

As this example illustrates, when you work with the scrollRect property of a display object, it’s best to specify that

Flash Player or AIR should cache the display object’s content as a bitmap, using the cacheAsBitmap property. When

you do so, Flash Player and AIR don’t have to re-draw the entire contents of the display object each time it is scrolled,

and can instead use the cached bitmap to render the necessary portion directly to the screen. For details, see “Caching

display objects” on page 182.

Manipulating size and scaling objects

Flash Player 9 and later, Adobe AIR 1.0 and later

You can measure and manipulate the size of a display object in two ways, using either the dimension properties (width

and height) or the scale properties (scaleX and scaleY).

Every display object has a width property and a height property, which are initially set to the size of the object in

pixels. You can read the values of those properties to measure the size of the display object. You can also specify new

values to change the size of the object, as follows:

180ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 // Resize a display object.
 square.width = 420;
 square.height = 420;

 // Determine the radius of a circle display object.
 var radius:Number = circle.width / 2;

Changing the height or width of a display object causes the object to scale, meaning its contents stretch or squeeze

to fit in the new area. If the display object contains only vector shapes, those shapes will be redrawn at the new scale,

with no loss in quality. Any bitmap graphic elements in the display object will be scaled rather than redrawn. So, for

example, a digital photo whose width and height are increased beyond the actual dimensions of the pixel information

in the image will be pixelated, making it look jagged.

When you change the width or height properties of a display object, Flash Player and AIR update the scaleX and

scaleY properties of the object as well.

Note: TextField objects are an exception to this scaling behavior. Text fields need to resize themselves to accommodate

text wrapping and font sizes, so they reset their scaleX or scaleY values to 1 after resizing. However, if you adjust the scaleX

or scaleY values of a TextField object, the width and height values change to accommodate the scaling values you provide.

These properties represent the relative size of the display object compared to its original size. The scaleX and scaleY

properties use fraction (decimal) values to represent percentage. For example, if a display object’s width has been

changed so that it’s half as wide as its original size, the object’s scaleX property will have the value .5, meaning 50

percent. If its height has been doubled, its scaleY property will have the value 2, meaning 200 percent.

 // circle is a display object whose width and height are 150 pixels.
 // At original size, scaleX and scaleY are 1 (100%).
 trace(circle.scaleX); // output: 1
 trace(circle.scaleY); // output: 1

 // When you change the width and height properties,
 // Flash Player changes the scaleX and scaleY properties accordingly.
 circle.width = 100;
 circle.height = 75;
 trace(circle.scaleX); // output: 0.6622516556291391
 trace(circle.scaleY); // output: 0.4966887417218543

Size changes are not proportional. In other words, if you change the height of a square but not its width, its

proportions will no longer be the same, and it will be a rectangle instead of a square. If you want to make relative

changes to the size of a display object, you can set the values of the scaleX and scaleY properties to resize the object,

as an alternative to setting the width or height properties. For example, this code changes the width of the display

object named square, and then alters the vertical scale (scaleY) to match the horizontal scale, so that the size of the

square stays proportional.

 // Change the width directly.
 square.width = 150;

 // Change the vertical scale to match the horizontal scale,
 // to keep the size proportional.
 square.scaleY = square.scaleX;

181ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Controlling distortion when scaling

Flash Player 9 and later, Adobe AIR 1.0 and later

Normally when a display object is scaled (for example, stretched horizontally), the resulting distortion is spread equally

across the object, so that each part is stretched the same amount. For graphics and design elements, this is probably

what you want. However, sometimes it’s preferable to have control over which portions of the display object stretch

and which portions remain unchanged. One common example of this is a button that’s a rectangle with rounded

corners. With normal scaling, the corners of the button will stretch, making the corner radius change as the button

resizes.

However, in this case it would be preferable to have control over the scaling—to be able to designate certain areas

which should scale (the straight sides and middle) and areas which shouldn’t (the corners)—so that scaling happens

without visible distortion.

You can use 9-slice scaling (Scale-9) to create display objects where you have control over how the objects scale. With

9-slice scaling, the display object is divided into nine separate rectangles (a 3 by 3 grid, like the grid of a tic-tac-toe

board). The rectangles aren’t necessarily the same size—you designate where the grid lines are placed. Any content that

lies in the four corner rectangles (such as the rounded corners of a button) will not be stretched or compressed when

the display object scales. The top-center and bottom-center rectangles will scale horizontally but not vertically, while

the left-middle and right-middle rectangles will scale vertically but not horizontally. The center rectangle will scale

both horizontally and vertically.

Keeping this in mind, if you’re creating a display object and you want certain content to never scale, you just have to

make sure that the dividing lines of the 9-slice scaling grid are placed so that the content ends up in one of the corner

rectangles.

In ActionScript, setting a value for the scale9Grid property of a display object turns on 9-slice scaling for the object

and defines the size of the rectangles in the object’s Scale-9 grid. You use an instance of the Rectangle class as the value

for the scale9Grid property, as follows:

 myButton.scale9Grid = new Rectangle(32, 27, 71, 64);

182ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

The four parameters of the Rectangle constructor are the x coordinate, y coordinate, width, and height. In this

example, the rectangle’s top-left corner is placed at the point x: 32, y: 27 on the display object named myButton. The

rectangle is 71 pixels wide and 64 pixels tall (so its right edge is at the x coordinate 103 on the display object and its

bottom edge is at the y coordinate 92 on the display object).

The actual area contained in the region defined by the Rectangle instance represents the center rectangle of the Scale-

9 grid. The other rectangles are calculated by Flash Player and AIR by extending the sides of the Rectangle instance, as

shown here:

In this case, as the button scales up or down, the rounded corners will not stretch or compress, but the other areas will

adjust to accommodate the scaling.

A. myButton.width = 131;myButton.height = 106; B. myButton.width = 73;myButton.height = 69; C. myButton.width = 54;myButton.height
= 141;

Caching display objects

Flash Player 9 and later, Adobe AIR 1.0 and later

As your designs in Flash grow in size, whether you are creating an application or complex scripted animations, you

need to consider performance and optimization. When you have content that remains static (such as a rectangle Shape

instance), Flash Player and AIR do not optimize the content. Therefore, when you change the position of the rectangle,

Flash Player or AIR redraws the entire Shape instance.

You can cache specified display objects to improve the performance of your SWF file. The display object is a surface,

essentially a bitmap version of the instance’s vector data, which is data that you do not intend to change much over the

course of your SWF file. Therefore, instances with caching turned on are not continually redrawn as the SWF file plays,

letting the SWF file render quickly.

Note: You can update the vector data, at which time the surface is recreated. Therefore, the vector data cached in the

surface does not need to remain the same for the entire SWF file.

Setting a display object’s cacheAsBitmap property to true makes the display object cache a bitmap representation of

itself. Flash Player or AIR creates a surface object for the instance, which is a cached bitmap instead of vector data. If

you change the bounds of the display object, the surface is recreated instead of resized. Surfaces can nest within other

surfaces. The child surface copies its bitmap onto its parent surface. For more information, see “Enabling bitmap

caching” on page 184.

CBA

183ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

The DisplayObject class’s opaqueBackground property and scrollRect property are related to bitmap caching using

the cacheAsBitmap property. Although these three properties are independent of each other, the opaqueBackground

and scrollRect properties work best when an object is cached as a bitmap—you see performance benefits for the

opaqueBackground and scrollRect properties only when you set cacheAsBitmap to true. For more information

about scrolling display object content, see “Panning and scrolling display objects” on page 178. For more information

about setting an opaque background, see “Setting an opaque background color” on page 185.

For information on alpha channel masking, which requires you to set the cacheAsBitmap property to true, see

“Masking display objects” on page 190.

When to enable caching

Flash Player 9 and later, Adobe AIR 1.0 and later

Enabling caching for a display object creates a surface, which has several advantages, such as helping complex vector

animations to render fast. There are several scenarios in which you will want to enable caching. It might seem as

though you would always want to enable caching to improve the performance of your SWF files; however, there are

situations in which enabling caching does not improve performance, or can even decrease it. This section describes

scenarios in which caching should be used, and when to use regular display objects.

Overall performance of cached data depends on how complex the vector data of your instances are, how much of the

data you change, and whether or not you set the opaqueBackground property. If you are changing small regions, the

difference between using a surface and using vector data could be negligible. You might want to test both scenarios

with your work before you deploy the application.

When to use bitmap caching

The following are typical scenarios in which you might see significant benefits when you enable bitmap caching.

• Complex background image: An application that contains a detailed and complex background image of vector data

(perhaps an image where you applied the trace bitmap command, or artwork that you created in Adobe

Illustrator®). You might animate characters over the background, which slows the animation because the

background needs to continuously regenerate the vector data. To improve performance, you can set the

opaqueBackground property of the background display object to true. The background is rendered as a bitmap

and can be redrawn quickly, so that your animation plays much faster.

• Scrolling text field: An application that displays a large amount of text in a scrolling text field. You can place the

text field in a display object that you set as scrollable with scrolling bounds (the scrollRect property). This enables

fast pixel scrolling for the specified instance. When a user scrolls the display object instance, Flash Player or AIR

shifts the scrolled pixels up and generates the newly exposed region instead of regenerating the entire text field.

• Windowing system: An application with a complex system of overlapping windows. Each window can be open or

closed (for example, web browser windows). If you mark each window as a surface (by setting the cacheAsBitmap

property to true), each window is isolated and cached. Users can drag the windows so that they overlap each other,

and each window doesn’t need to regenerate the vector content.

• Alpha channel masking: When you are using alpha channel masking, you must set the cacheAsBitmap property

to true. For more information, see “Masking display objects” on page 190.

Enabling bitmap caching in all of these scenarios improves the responsiveness and interactivity of the application by

optimizing the vector graphics.

In addition, whenever you apply a filter to a display object, cacheAsBitmap is automatically set to true, even if you

explicitly set it to false. If you clear all the filters from the display object, the cacheAsBitmap property returns to the

value it was last set to.

184ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

When to avoid using bitmap caching

Using this feature in the wrong circumstances can negatively affect the performance of your SWF file. When you use

bitmap caching, remember the following guidelines:

• Do not overuse surfaces (display objects with caching enabled). Each surface uses more memory than a regular

display object, which means that you should only enable surfaces when you need to improve rendering

performance.

A cached bitmap can use significantly more memory than a regular display object. For example, if a Sprite instance

on the Stage is 250 pixels by 250 pixels in size, when cached it might use 250 KB instead of 1 KB when it’s a regular

(un-cached) Sprite instance.

• Avoid zooming into cached surfaces. If you overuse bitmap caching, a large amount of memory is consumed (see

previous bullet), especially if you zoom in on the content.

• Use surfaces for display object instances that are largely static (non-animating). You can drag or move the instance,

but the contents of the instance should not animate or change a lot. (Animation or changing content are more likely

with a MovieClip instance containing animation or a Video instance.) For example, if you rotate or transform an

instance, the instance changes between the surface and vector data, which is difficult to process and negatively

affects your SWF file.

• If you mix surfaces with vector data, it increases the amount of processing that Flash Player and AIR (and

sometimes the computer) need to do. Group surfaces together as much as possible—for example, when you create

windowing applications.

• Do not cache objects whose graphics change frequently. Every time you scale, skew, rotate the display object,

change the alpha or color transform, move child display objects, or draw using the graphics property, the bitmap

cache is redrawn. If this happens every frame, the runtime must draw the object into a bitmap and then copy that

bitmap onto the stage—which results in extra work compared to just drawing the uncached object to the stage. The

performance tradeoff of caching versus update frequency depends on the complexity and size of the display object

and can only be determined by testing the specific content.

Enabling bitmap caching

Flash Player 9 and later, Adobe AIR 1.0 and later

To enable bitmap caching for a display object, you set its cacheAsBitmap property to true:

 mySprite.cacheAsBitmap = true;

After you set the cacheAsBitmap property to true, you might notice that the display object automatically pixel-snaps

to whole coordinates. When you test the SWF file, you should notice that any animation performed on a complex

vector image renders much faster.

A surface (cached bitmap) is not created, even if cacheAsBitmap is set to true, if one or more of the following occurs:

• The bitmap is greater than 2880 pixels in height or width.

• The bitmap fails to allocate (because of an out-of-memory error).

Cached bitmap transform matrices

Adobe AIR 2.0 and later (mobile profile)

In AIR applications for mobile devices, you should set the cacheAsBitmapMatrix property whenever you set the

cacheAsBitmap property. Setting this property allows you to apply a wider range of transformations to the display

object without triggering rerendering.

185ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 mySprite.cacheAsBitmap = true;
mySprite.cacheAsBitmapMatrix = new Matrix();

When you set this matrix property, you can apply the following additional transformation to the display object without

recaching the object:

• Move or translate without pixel-snapping

• Rotate

• Scale

• Skew

• Change alpha (between 0 and 100% transparency)

These transformations are applied directly to the cached bitmap.

Setting an opaque background color

Flash Player 9 and later, Adobe AIR 1.0 and later

You can set an opaque background for a display object. For example, when your SWF has a background that contains

complex vector art, you can set the opaqueBackground property to a specified color (typically the same color as the

Stage). The color is specified as a number (commonly a hexadecimal color value). The background is then treated as a

bitmap, which helps optimize performance.

When you set cacheAsBitmap to true, and also set the opaqueBackground property to a specified color, the

opaqueBackground property allows the internal bitmap to be opaque and rendered faster. If you do not set

cacheAsBitmap to true, the opaqueBackground property adds an opaque vector-square shape to the background of

the display object. It does not create a bitmap automatically.

The following example shows how to set the background of a display object to optimize performance:

 myShape.cacheAsBitmap = true;
 myShape.opaqueBackground = 0xFF0000;

In this case, the background color of the Shape named myShape is set to red (0xFF0000). Assuming the Shape instance

contains a drawing of a green triangle, on a Stage with a white background, this would show up as a green triangle with

red in the empty space in the Shape instance’s bounding box (the rectangle that completely encloses the Shape).

Of course, this code would make more sense if it were used with a Stage with a solid red background. On another

colored background, that color would be specified instead. For example, in a SWF with a white background, the

opaqueBackground property would most likely be set to 0xFFFFFF, or pure white.

186ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Applying blending modes

Flash Player 9 and later, Adobe AIR 1.0 and later

Blending modes involve combining the colors of one image (the base image) with the colors of another image (the

blend image) to produce a third image—the resulting image is the one that is actually displayed on the screen. Each

pixel value in an image is processed with the corresponding pixel value of the other image to produce a pixel value for

that same position in the result.

Every display object has a blendMode property that can be set to one of the following blending modes. These are

constants defined in the BlendMode class. Alternatively, you can use the String values (in parentheses) that are the

actual values of the constants.

• BlendMode.ADD ("add"): Commonly used to create an animated lightening dissolve effect between two images.

• BlendMode.ALPHA ("alpha"): Commonly used to apply the transparency of the foreground on the background.

(Not supported under GPU rendering.)

• BlendMode.DARKEN ("darken"): Commonly used to superimpose type. (Not supported under GPU rendering.)

• BlendMode.DIFFERENCE ("difference"): Commonly used to create more vibrant colors.

• BlendMode.ERASE ("erase"): Commonly used to cut out (erase) part of the background using the foreground

alpha. (Not supported under GPU rendering.)

• BlendMode.HARDLIGHT ("hardlight"): Commonly used to create shading effects. (Not supported under GPU

rendering.)

• BlendMode.INVERT ("invert"): Used to invert the background.

• BlendMode.LAYER ("layer"): Used to force the creation of a temporary buffer for precomposition for a particular

display object. (Not supported under GPU rendering.)

• BlendMode.LIGHTEN ("lighten"): Commonly used to superimpose type. (Not supported under GPU rendering.)

• BlendMode.MULTIPLY ("multiply"): Commonly used to create shadows and depth effects.

• BlendMode.NORMAL ("normal"): Used to specify that the pixel values of the blend image override those of the base

image.

• BlendMode.OVERLAY ("overlay"): Commonly used to create shading effects. (Not supported under GPU

rendering.)

• BlendMode.SCREEN ("screen"): Commonly used to create highlights and lens flares.

• BlendMode.SHADER ("shader"): Used to specify that a Pixel Bender shader is used to create a custom blending

effect. For more information about using shaders, see “Working with Pixel Bender shaders” on page 300. (Not

supported under GPU rendering.)

• BlendMode.SUBTRACT ("subtract"): Commonly used to create an animated darkening dissolve effect between

two images.

187ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Adjusting DisplayObject colors

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the methods of the ColorTransform class (flash.geom.ColorTransform) to adjust the color of a display

object. Each display object has a transform property, which is an instance of the Transform class, and contains

information about various transformations that are applied to the display object (such as rotation, changes in scale or

position, and so forth). In addition to its information about geometric transformations, the Transform class also

includes a colorTransform property, which is an instance of the ColorTransform class, and provides access to make

color adjustments to the display object. To access the color transformation information of a display object, you can use

code such as this:

 var colorInfo:ColorTransform = myDisplayObject.transform.colorTransform;

Once you’ve created a ColorTransform instance, you can read its property values to find out what color

transformations have already been applied, or you can set those values to make color changes to the display object. To

update the display object after any changes, you must reassign the ColorTransform instance back to the

transform.colorTransform property.

 var colorInfo:ColorTransform = myDisplayObject.transform.colorTransform;

 // Make some color transformations here.

 // Commit the change.
 myDisplayObject.transform.colorTransform = colorInfo;

Setting color values with code

Flash Player 9 and later, Adobe AIR 1.0 and later

The color property of the ColorTransform class can be used to assign a specific red, green, blue (RGB) color value to

the display object. The following example uses the color property to change the color of the display object named

square to blue, when the user clicks a button named blueBtn:

 // square is a display object on the Stage.
 // blueBtn, redBtn, greenBtn, and blackBtn are buttons on the Stage.

 import flash.events.MouseEvent;
 import flash.geom.ColorTransform;

 // Get access to the ColorTransform instance associated with square.
 var colorInfo:ColorTransform = square.transform.colorTransform;

 // This function is called when blueBtn is clicked.
 function makeBlue(event:MouseEvent):void
 {
 // Set the color of the ColorTransform object.
 colorInfo.color = 0x003399;
 // apply the change to the display object
 square.transform.colorTransform = colorInfo;
 }

 blueBtn.addEventListener(MouseEvent.CLICK, makeBlue);

188ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Note that when you change a display object’s color using the color property, it completely changes the color of the

entire object, regardless of whether the object previously had multiple colors. For example, if there is a display object

containing a green circle with black text on top, setting the color property of that object’s associated ColorTransform

instance to a shade of red will make the entire object, circle and text, turn red (so the text will no longer be

distinguishable from the rest of the object).

Altering color and brightness effects with code

Flash Player 9 and later, Adobe AIR 1.0 and later

Suppose you have a display object with multiple colors (for example, a digital photo) and you don’t want to completely

recolor the object; you just want to adjust the color of a display object based on the existing colors. In this scenario, the

ColorTransform class includes a series of multiplier and offset properties that you can use to make this type of

adjustment. The multiplier properties, named redMultiplier, greenMultiplier, blueMultiplier, and

alphaMultiplier, work like colored photographic filters (or colored sunglasses), amplifying or diminishing certain

colors in the display object. The offset properties (redOffset, greenOffset, blueOffset, and alphaOffset) can be

used to add extra amounts of a certain color to the object, or to specify the minimum value that a particular color can

have.

These multiplier and offset properties are identical to the advanced color settings that are available for movie clip

symbols in the Flash authoring tool when you choose Advanced from the Color pop-up menu on the Property

inspector.

The following code loads a JPEG image and applies a color transformation to it, which adjusts the red and green

channels as the mouse pointer moves along the x axis and y axis. In this case, because no offset values are specified, the

color value of each color channel displayed on screen will be a percentage of the original color value in the image—

meaning that the most red or green displayed in any given pixel will be the original amount of red or green in that pixel.

189ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 import flash.display.Loader;
 import flash.events.MouseEvent;
 import flash.geom.Transform;
 import flash.geom.ColorTransform;
 import flash.net.URLRequest;

 // Load an image onto the Stage.
 var loader:Loader = new Loader();
 var url:URLRequest = new URLRequest("http://www.helpexamples.com/flash/images/image1.jpg");
 loader.load(url);
 this.addChild(loader);

 // This function is called when the mouse moves over the loaded image.
 function adjustColor(event:MouseEvent):void
 {
 // Access the ColorTransform object for the Loader (containing the image)
 var colorTransformer:ColorTransform = loader.transform.colorTransform;

 // Set the red and green multipliers according to the mouse position.
 // The red value ranges from 0% (no red) when the cursor is at the left
 // to 100% red (normal image appearance) when the cursor is at the right.
 // The same applies to the green channel, except it's controlled by the
 // position of the mouse in the y axis.
 colorTransformer.redMultiplier = (loader.mouseX / loader.width) * 1;
 colorTransformer.greenMultiplier = (loader.mouseY / loader.height) * 1;

 // Apply the changes to the display object.
 loader.transform.colorTransform = colorTransformer;
 }

 loader.addEventListener(MouseEvent.MOUSE_MOVE, adjustColor);

Rotating objects

Flash Player 9 and later, Adobe AIR 1.0 and later

Display objects can be rotated using the rotation property. You can read this value to find out whether an object has

been rotated, or to rotate the object you can set this property to a number (in degrees) representing the amount of

rotation to be applied to the object. For instance, this line of code rotates the object named square 45 degrees (one

eighth of one complete revolution):

 square.rotation = 45;

Alternatively, you can rotate a display object using a transformation matrix, described in “Working with geometry” on

page 210.

Fading objects

Flash Player 9 and later, Adobe AIR 1.0 and later

You can control the transparency of a display object to make it partially (or completely transparent), or change the

transparency to make the object appear to fade in or out. The DisplayObject class’s alpha property defines the

transparency (or more accurately, the opacity) of a display object. The alpha property can be set to any value between

0 and 1, where 0 is completely transparent, and 1 is completely opaque. For example, these lines of code make the

object named myBall partially (50 percent) transparent when it is clicked with the mouse:

190ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 function fadeBall(event:MouseEvent):void
 {
 myBall.alpha = .5;
 }
 myBall.addEventListener(MouseEvent.CLICK, fadeBall);

You can also alter the transparency of a display object using the color adjustments available through the

ColorTransform class. For more information, see “Adjusting DisplayObject colors” on page 187.

Masking display objects

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use a display object as a mask to create a hole through which the contents of another display object are visible.

Defining a mask

To indicate that a display object will be the mask for another display object, set the mask object as the mask property

of the display object to be masked:

 // Make the object maskSprite be a mask for the object mySprite.
 mySprite.mask = maskSprite;

The masked display object is revealed under all opaque (nontransparent) areas of the display object acting as the mask.

For instance, the following code creates a Shape instance containing a red 100 by 100 pixel square and a Sprite instance

containing a blue circle with a radius of 25 pixels. When the circle is clicked, it is set as the mask for the square, so that

the only part of the square that shows is the part that is covered by the solid part of the circle. In other words, only a

red circle will be visible.

 // This code assumes it's being run within a display object container
 // such as a MovieClip or Sprite instance.

 import flash.display.Shape;

 // Draw a square and add it to the display list.
 var square:Shape = new Shape();
 square.graphics.lineStyle(1, 0x000000);
 square.graphics.beginFill(0xff0000);
 square.graphics.drawRect(0, 0, 100, 100);
 square.graphics.endFill();
 this.addChild(square);

 // Draw a circle and add it to the display list.
 var circle:Sprite = new Sprite();
 circle.graphics.lineStyle(1, 0x000000);
 circle.graphics.beginFill(0x0000ff);
 circle.graphics.drawCircle(25, 25, 25);
 circle.graphics.endFill();
 this.addChild(circle);

 function maskSquare(event:MouseEvent):void
 {
 square.mask = circle;
 circle.removeEventListener(MouseEvent.CLICK, maskSquare);
 }

 circle.addEventListener(MouseEvent.CLICK, maskSquare);

191ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

The display object that is acting as a mask can be draggable, animated, resized dynamically, and can use separate shapes

within a single mask. The mask display object doesn’t necessarily need to be added to the display list. However, if you

want the mask object to scale when the Stage is scaled or if you want to enable user interaction with the mask (such as

user-controlled dragging and resizing), the mask object must be added to the display list. The actual z-index (front-to-

back order) of the display objects doesn’t matter, as long as the mask object is added to the display list. (The mask

object will not appear on the screen except as a mask.) If the mask object is a MovieClip instance with multiple frames,

it plays all the frames in its timeline, the same as it would if it were not serving as a mask. You can remove a mask by

setting the mask property to null:

 // remove the mask from mySprite
 mySprite.mask = null;

You cannot use a mask to mask another mask. You cannot set the alpha property of a mask display object. Only fills

are used in a display object that is used as a mask; strokes are ignored.

AIR 2

If a masked display object is cached by setting the cacheAsBitmap and cacheAsBitmapMatrix properties, the mask

must be a child of the masked display object. Similarly, if the masked display object is a descendent of a display object

container that is cached, both the mask and the display object must be descendents of that container. If the masked

object is a descendent of more than one cached display object container, the mask must be a descendent of the cached

container closest to the masked object in the display list.

About masking device fonts

You can use a display object to mask text that is set in a device font. When you use a display object to mask text set in

a device font, the rectangular bounding box of the mask is used as the masking shape. That is, if you create a non-

rectangular display object mask for device font text, the mask that appears in the SWF file is the shape of the

rectangular bounding box of the mask, not the shape of the mask itself.

Alpha channel masking

Alpha channel masking is supported if both the mask and the masked display objects use bitmap caching, as shown here:

 // maskShape is a Shape instance which includes a gradient fill.
 mySprite.cacheAsBitmap = true;
 maskShape.cacheAsBitmap = true;
 mySprite.mask = maskShape;

For instance, one application of alpha channel masking is to use a filter on the mask object independently of a filter

that is applied to the masked display object.

In the following example, an external image file is loaded onto the Stage. That image (or more accurately, the Loader

instance it is loaded into) will be the display object that is masked. A gradient oval (solid black center fading to

transparent at the edges) is drawn over the image; this will be the alpha mask. Both display objects have bitmap caching

turned on. The oval is set as a mask for the image, and it is then made draggable.

192ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 // This code assumes it's being run within a display object container
 // such as a MovieClip or Sprite instance.

 import flash.display.GradientType;
 import flash.display.Loader;
 import flash.display.Sprite;
 import flash.geom.Matrix;
 import flash.net.URLRequest;

 // Load an image and add it to the display list.
 var loader:Loader = new Loader();
 var url:URLRequest = new URLRequest("http://www.helpexamples.com/flash/images/image1.jpg");
 loader.load(url);
 this.addChild(loader);

 // Create a Sprite.
 var oval:Sprite = new Sprite();
 // Draw a gradient oval.
 var colors:Array = [0x000000, 0x000000];
 var alphas:Array = [1, 0];
 var ratios:Array = [0, 255];
 var matrix:Matrix = new Matrix();
 matrix.createGradientBox(200, 100, 0, -100, -50);
 oval.graphics.beginGradientFill(GradientType.RADIAL,
 colors,
 alphas,
 ratios,
 matrix);
 oval.graphics.drawEllipse(-100, -50, 200, 100);
 oval.graphics.endFill();
 // add the Sprite to the display list
 this.addChild(oval);

 // Set cacheAsBitmap = true for both display objects.
 loader.cacheAsBitmap = true;
 oval.cacheAsBitmap = true;
 // Set the oval as the mask for the loader (and its child, the loaded image)
 loader.mask = oval;

 // Make the oval draggable.
 oval.startDrag(true);

Animating objects

Flash Player 9 and later, Adobe AIR 1.0 and later

Animation is the process of making something move, or alternatively, of making something change over time. Scripted

animation is a fundamental part of video games, and is often used to add polish and useful interaction clues to other

applications.

193ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

The fundamental idea behind scripted animation is that a change needs to take place, and that change needs to be

divided into increments over time. It’s easy to make something repeat in ActionScript, using a common looping

statement. However, a loop will run through all its iterations before updating the display. To create scripted animation,

you need to write ActionScript that performs some action repeatedly over time and also updates the screen each time

it runs.

For example, imagine you want to create a simple animation, such as making a ball travel across the screen.

ActionScript includes a simple mechanism that allows you to track the passage of time and update the screen

accordingly—meaning you could write code that moves the ball a small amount each time, until it reaches its

destination. After each move the screen would update, making the cross-Stage motion visible to the viewer.

From a practical standpoint, it makes sense to synchronize scripted animation with the SWF file’s frame rate (in other

words, make one animation change each time a new frame displays or would display), since that defines how

frequently Flash Player or AIR updates the screen. Each display object has an enterFrame event that is dispatched

according to the frame rate of the SWF file—one event per frame. Most developers who create scripted animation use

the enterFrame event as a way to create actions that repeat over time. You could write code that listens to the

enterFrame event, moving the animated ball a certain amount each frame, and as the screen is updated (each frame),

the ball would be redrawn in its new location, creating motion.

Note: Another way to perform an action repeatedly over time is to use the Timer class. A Timer instance triggers an event

notification each time a specified amount of time has past. You could write code that performs animation by handling

the Timer class’s timer event, setting the time interval to a small one (some fraction of a second). For more information

about using the Timer class, see “Controlling time intervals” on page 4.

In the following example, a circle Sprite instance, named circle, is created on the Stage. When the user clicks the

circle, a scripted animation sequence begins, causing circle to fade (its alpha property is decreased) until it is

completely transparent:

194ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.MouseEvent;

 // draw a circle and add it to the display list
 var circle:Sprite = new Sprite();
 circle.graphics.beginFill(0x990000);
 circle.graphics.drawCircle(50, 50, 50);
 circle.graphics.endFill();
 addChild(circle);

 // When this animation starts, this function is called every frame.
 // The change made by this function (updated to the screen every
 // frame) is what causes the animation to occur.
 function fadeCircle(event:Event):void
 {
 circle.alpha -= .05;

 if (circle.alpha <= 0)
 {
 circle.removeEventListener(Event.ENTER_FRAME, fadeCircle);
 }
 }

 function startAnimation(event:MouseEvent):void
 {
 circle.addEventListener(Event.ENTER_FRAME, fadeCircle);
 }

 circle.addEventListener(MouseEvent.CLICK, startAnimation);

When the user clicks the circle, the function fadeCircle() is subscribed as a listener of the enterFrame event,

meaning it begins to be called once per frame. That function fades circle by changing its alpha property, so once per

frame the circle’s alpha decreases by .05 (5 percent) and the screen is updated. Eventually, when the alpha value is 0

(circle is completely transparent), the fadeCircle() function is removed as an event listener, ending the animation.

The same code could be used, for example, to create animated motion instead of fading. By substituting a different

property for alpha in the function that is an enterFrame event listener, that property will be animated instead. For

example, changing this line

 circle.alpha -= .05;

to this code

 circle.x += 5;

will animate the x property, causing the circle to move to the right across the Stage. The condition that ends the

animation could be changed to end the animation (that is, unsubscribe the enterFrame listener) when the desired x

coordinate is reached.

195ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Stage orientation

AIR 2.0 and later

Mobile devices typically re-orient the user interface to keep the display upright when the user rotates the device. If you

enable auto-orientation in your application, the device keeps the display properly oriented, but it is up to you to make

sure that your content looks okay when the aspect ratio of the stage changes. If you disable auto-orientation, then the

device display remains fixed unless you change the orientation manually.

AIR applications run on a number of different mobile devices and operating systems. The underlying orientation

behavior can vary across operating systems, and even across different devices on the same operating system. A simple

design strategy, that works well across all devices and operating systems, is to enable auto-orientation and to listen for

Stage resize events to determine when you need to refresh the application layout.

Alternately, if your application only supports the portrait aspect ratio or only supports the landscape aspect ratio, you

can turn off auto-orientation and set the supported aspect ratio in the AIR application descriptor. This design strategy

provides consistent behavior and selects the “best” orientation for the selected aspect ratio. For example, if you specify

the landscape aspect ratio, the orientation chosen is appropriate for devices with landscape-mode, slide-out keyboards.

Getting the current Stage orientation and aspect ratio

Orientation is reported relative to the normal position of the device. On most devices there is a clear, upright position.

This position is considered the default orientation. The other three possible orientations are then: rotated left, rotated

right, and upside down. The StageOrientation class defines string constants to use when setting or comparing

orientation values.

The Stage class defines two properties that report orientation:

• Stage.deviceOrientation — Reports the physical orientation of the device relative to the default position.

Note: The deviceOrientation is not always available when your application first starts up or when the device is lying

flat. In these cases, the device orientation is reported as unknown.

• Stage.orientation — Reports the orientation of the Stage relative to the default position. When auto-orientation is

enabled, the stage rotates in the opposite direction as the device to remain upright. Thus, the right and left positions

reported by the orientation property are the opposite of those reported by the deviceOrientation property.

For example, when deviceRotation reports rotated right, orientation reports rotated left.

The aspect ratio of the stage can be derived by simply comparing the current width and height of the stage:

var aspect:String = this.stage.stageWidth >= this.stage.stageHeight ?
StageAspectRatio.LANDSCAPE : StageAspectRatio.PORTRAIT;

Automatic orientation

When auto-orientation is on and a user rotates their device, the operating system re-orients the entire user interface,

including the system taskbar and your application. As a result, the aspect ratio of the stage changes from portrait to

landscape or landscape to portrait. When the aspect ratio changes, the stage dimensions also change.

Enable or disable auto-orientation at runtime, by setting the Stage autoOrients property to true or false. You can

set the initial value of this property in the AIR application descriptor with the <autoOrients> element. (Note that

prior to AIR 2.6, autoOrients is a read-only property and can only be set in the application descriptor.)

If you specify an aspect ratio of landscape or portrait and also enable auto-orientation, AIR constrains auto-orientation

to the specified aspect ratio.

196ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Stage dimension changes

When the stage dimensions change, the stage contents are scaled and repositioned as specified by the scaleMode and

align properties of the Stage object. In most cases, relying on the automatic behavior provided by the Stage

scaleMode settings does not produce good results. Instead you must re-layout or redraw your graphics and

components to support more than one aspect ratio. (Providing flexible layout logic also means that your application

will work better across devices with different screen sizes and aspect ratios.)

The following illustration demonstrates the effects of the different scaleMode settings when rotating a typical mobile

device:

Rotation from landscape to portrait aspect ratio

The illustration demonstrates the scaling behavior that occurs when rotating from a landscape aspect ratio to a portrait

aspect ratio with different scale modes. Rotating from portrait to landscape causes a similar set of effects.

Orientation change events

The Stage object dispatches two types of events that you can use to detect and react to orientation changes. Both stage

resize and orientationChange events are dispatched when auto-orientation is enabled.

The resize event is the best event to use when you are relying on auto-orientation to keep the display upright. When

the stage dispatches a resize event, relayout or redraw your content, as needed. The resize event is only dispatched

when the stage scale mode is set to noScale.

The orientationChange event can also be used to detect orientation changes. The orientationChange event is only

dispatched when auto-orientation is enabled.

Note: On some mobile platforms, the stage dispatches a cancelable orientationChanging event before dispatching the

resize or orientationChange events. Since the event is not supported on all platforms, avoid relying on it.

197ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Manual orientation

AIR 2.6 and later

You can control the stage orientation using the Stage setOrientation() or setAspectRatio() methods.

Setting the stage orientation

You can set the stage orientation at runtime using the setOrientation() method of the Stage object. Use the string

constants defined by the StageOrientation class to specify the desired orientation:

this.stage.setOrientation(StageOrientation.ROTATED_RIGHT);

Not every device and operating system supports every possible orientation. For example, Android 2.2 does not support

programmatically choosing the rotated-left orientation on portrait-standard devices and does not support the upside-

down orientation at all. The supportedOrientations property of the stage provides a list of the orientations that can

be passed to the setOrientation() method:

var orientations:Vector.<String> = this.stage.supportedOrientations;
for each(var orientation:String in orientations)
{

trace(orientation);
}

Setting the stage aspect ratio

If you are primarily concerned about the aspect ratio of the stage, you can set the aspect ratio to portrait or landscape.

You can set the aspect ratio in either the AIR application descriptor or, at run time, using the Stage setAspectRatio()

method:

this.stage.setAspectRatio(StageAspectRatio.LANDSCAPE);

The runtime chooses one of the two possible orientations for the specified aspect ratio. This may not match the current

device orientation. For example, the default orientation is chosen in preference to the upside-down orientation (AIR

3.2 and earlier) and the orientation appropriate for the slide-out keyboard is chosen in preference to the opposite

orientation.

(AIR 3.3 and higher) Starting with AIR 3.3 (SWF version 16), you can also use the StageAspectRatio.ANY constant.

If Stage.autoOrients is set to true and you call setAspectRatio(StageAspectRatio.ANY), your application has

the capability to re-orient to all orientations (landscape-left, landscape-right, portait, and portrait-upside-down). Also

new in AIR 3.3, the aspect ratio is persistent, and further rotation of the device is constrained to the specified

orientation.

Example: Setting the stage orientation to match the device orientation

The following example illustrates a function that updates the stage orientation to match the current device orientation.

The stage deviceOrientation property indicates the physical orientation of the device, even when auto-orientation

is turned off.

198ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

function refreshOrientation(theStage:Stage):void
{

switch (theStage.deviceOrientation)
{

case StageOrientation.DEFAULT:
theStage.setOrientation(StageOrientation.DEFAULT);
break;

case StageOrientation.ROTATED_RIGHT:
theStage.setOrientation(StageOrientation.ROTATED_LEFT);
break;

case StageOrientation.ROTATED_LEFT:
theStage.setOrientation(StageOrientation.ROTATED_RIGHT);
break;

case StageOrientation.UPSIDE_DOWN:
theStage.setOrientation(StageOrientation.UPSIDE_DOWN);
break;

default:
//No change

}
}

The orientation change is asynchronous. You can listen for the orientationChange event dispatched by the stage to

detect the completion of the change. If an orientation is not supported on a device, the setOrientation() call fails

without throwing an error.

Loading display content dynamically

Flash Player 9 and later, Adobe AIR 1.0 and later

You can load any of the following external display assets into an ActionScript 3.0 application:

• A SWF file authored in ActionScript 3.0—This file can be a Sprite, MovieClip, or any class that extends Sprite. In

AIR applications on iOS, only SWF files that do not contain ActionScript bytecode can be loaded. This means that

SWF files containing embedded data, such as images and sound can be loaded, but not SWF files containing

executable code.

• An image file—This includes JPG, PNG, and GIF files.

• An AVM1 SWF file—This is a SWF file written in ActionScript 1.0 or 2.0. (not supported in mobile AIR

applications)

You load these assets by using the Loader class.

Loading display objects

Flash Player 9 and later, Adobe AIR 1.0 and later

Loader objects are used to load SWF files and graphics files into an application. The Loader class is a subclass of the

DisplayObjectContainer class. A Loader object can contain only one child display object in its display list—the display

object representing the SWF or graphic file that it loads. When you add a Loader object to the display list, as in the

following code, you also add the loaded child display object to the display list once it loads:

199ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 var pictLdr:Loader = new Loader();
 var pictURL:String = "banana.jpg"
 var pictURLReq:URLRequest = new URLRequest(pictURL);
 pictLdr.load(pictURLReq);
 this.addChild(pictLdr);

Once the SWF file or image is loaded, you can move the loaded display object to another display object container, such

as the container DisplayObjectContainer object in this example:

 import flash.display.*;
 import flash.net.URLRequest;
 import flash.events.Event;
 var container:Sprite = new Sprite();
 addChild(container);
 var pictLdr:Loader = new Loader();
 var pictURL:String = "banana.jpg"
 var pictURLReq:URLRequest = new URLRequest(pictURL);
 pictLdr.load(pictURLReq);
 pictLdr.contentLoaderInfo.addEventListener(Event.COMPLETE, imgLoaded);
 function imgLoaded(event:Event):void
 {
 container.addChild(pictLdr.content);
 }

Monitoring loading progress

Flash Player 9 and later, Adobe AIR 1.0 and later

Once the file has started loading, a LoaderInfo object is created. A LoaderInfo object provides information such as load

progress, the URLs of the loader and loadee, the number of bytes total for the media, and the nominal height and width

of the media. A LoaderInfo object also dispatches events for monitoring the progress of the load.

The following diagram shows the different uses of the LoaderInfo object—for the instance of the main class of the SWF

file, for a Loader object, and for an object loaded by the Loader object:

Stage

Instance of
the main class of

the SWF file

Loader object

LoaderInfo object

content

contentLoaderInfo property

loaderInfo property

LoaderInfo object

loaderInfo property

200ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

The LoaderInfo object can be accessed as a property of both the Loader object and the loaded display object. As soon

as loading begins, the LoaderInfo object can be accessed through the contentLoaderInfo property of the Loader

object. Once the display object has finished loading, the LoaderInfo object can also be accessed as a property of the

loaded display object through the display object’s loaderInfo property. The loaderInfo property of the loaded

display object refers to the same LoaderInfo object as the contentLoaderInfo property of the Loader object. In other

words, a LoaderInfo object is shared between a loaded object and the Loader object that loaded it (between loader and

loadee).

In order to access properties of loaded content, you will want to add an event listener to the LoaderInfo object, as in

the following code:

 import flash.display.Loader;
 import flash.display.Sprite;
 import flash.events.Event;

 var ldr:Loader = new Loader();
 var urlReq:URLRequest = new URLRequest("Circle.swf");
 ldr.load(urlReq);
 ldr.contentLoaderInfo.addEventListener(Event.COMPLETE, loaded);
 addChild(ldr);

 function loaded(event:Event):void
 {
 var content:Sprite = event.target.content;
 content.scaleX = 2;
 }

For more information, see “Handling events” on page 125.

Specifying loading context

Flash Player 9 and later, Adobe AIR 1.0 and later

When you load an external file into Flash Player or AIR through the load() or loadBytes() method of the Loader

class, you can optionally specify a context parameter. This parameter is a LoaderContext object.

The LoaderContext class includes three properties that let you define the context of how the loaded content can be

used:

• checkPolicyFile: Use this property only when loading an image file (not a SWF file). If you set this property to

true, the Loader checks the origin server for a policy file (see “Website controls (policy files)” on page 1051). This

is necessary only for content originating from domains other than that of the SWF file containing the Loader object.

If the server grants permission to the Loader domain, ActionScript from SWF files in the Loader domain can access

data in the loaded image; in other words, you can use the BitmapData.draw() command to access data in the

loaded image.

Note that a SWF file from other domains than that of the Loader object can call Security.allowDomain() to

permit a specific domain.

• securityDomain: Use this property only when loading a SWF file (not an image). Specify this for a SWF file from

a domain other than that of the file containing the Loader object. When you specify this option, Flash Player checks

for the existence of a policy file, and if one exists, SWF files from the domains permitted in the cross-policy file can

cross-script the loaded SWF content. You can specify flash.system.SecurityDomain.currentDomain as this

parameter.

201ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

• applicationDomain: Use this property only when loading a SWF file written in ActionScript 3.0 (not an image or

a SWF file written in ActionScript 1.0 or 2.0). When loading the file, you can specify that the file be included in the

same application domain as that of the Loader object, by setting the applicationDomain parameter to

flash.system.ApplicationDomain.currentDomain. By putting the loaded SWF file in the same application

domain, you can access its classes directly. This can be useful if you are loading a SWF file that contains embedded

media, which you can access via their associated class names. For more information, see “Working with application

domains” on page 147.

Here’s an example of checking for a policy file when loading a bitmap from another domain:

 var context:LoaderContext = new LoaderContext();
 context.checkPolicyFile = true;
 var urlReq:URLRequest = new URLRequest("http://www.[your_domain_here].com/photo11.jpg");
 var ldr:Loader = new Loader();
 ldr.load(urlReq, context);

Here’s an example of checking for a policy file when loading a SWF from another domain, in order to place the file in

the same security sandbox as the Loader object. Additionally, the code adds the classes in the loaded SWF file to the

same application domain as that of the Loader object:

 var context:LoaderContext = new LoaderContext();
 context.securityDomain = SecurityDomain.currentDomain;
 context.applicationDomain = ApplicationDomain.currentDomain;
 var urlReq:URLRequest = new URLRequest("http://www.[your_domain_here].com/library.swf");
 var ldr:Loader = new Loader();
 ldr.load(urlReq, context);

For more information, see the LoaderContext class in the ActionScript 3.0 Reference for the Adobe Flash Platform.

Loading SWF files in AIR for iOS

Adobe AIR 3.6 and later, iOS only

On iOS devices, there are restrictions on loading and compiling code at runtime. Because of these restrictions, there

are some necessary differences in the task of loading external SWF files into your application:

• All SWF files that contain ActionScript code must be included in the application package. No SWF containing code

can be loaded from an external source such as over a network. As part of packaging the application, all ActionScript

code in all SWF files in the application package is compiled to native code for iOS devices.

• You can’t load, unload, and then re-load a SWF file. If you attempt to do this, an error occurs.

• The behavior of loading into memory and then unloading it is the same as with desktop platforms. If you load a

SWF file then unload it, all visual assets contained in the SWF are unloaded from memory. However, any class

references to an ActionScript class in the loaded SWF remain in memory and can be accessed in ActionScript code.

• All loaded SWF files must be loaded in the same application domain as the main SWF file. This is not the default

behavior, so for each SWF you load you must create a LoaderContext object specifying the main application

domain, and pass that LoaderContext object to the Loader.load() method call. If you attempt to load a SWF in an

application domain other than the main SWF application domain, an error occurs. This is true even if the loaded

SWF only contains visual assets and no ActionScript code.

The following example shows the code to use to load a SWF from the application package into the main SWF’s

application domain:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/LoaderContext.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/LoaderContext.html

202ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

var loader:Loader = new Loader();
var url:URLRequest = new URLRequest("swfs/SecondarySwf.swf");
var loaderContext:LoaderContext = new LoaderContext(false, ApplicationDomain.currentDomain,
null);
loader.load(url, loaderContext);

A SWF file containing only assets and no code can be loaded from the application package or over a network. In either

case, the SWF file must still be loaded into the main application domain.

For AIR versions prior to AIR 3.6, all code is stripped from SWFs other than the main application SWF during the

compilation process. SWF files containing only visual assets can be included in the application package and loaded at

runtime, but no code. If you attempt to load a SWF that contains ActionScript code, an error occurs. The error causes

an “Uncompiled ActionScript” error dialog to appear in the application.

See also

Packaging and loading multiple SWFs in AIR apps on iOS

Using the ProLoader and ProLoaderInfo classes

Flash Player 9 and later, Adobe AIR 1.0 and later, and requires Flash Professional CS5.5

To help with remote shared library (RSL) preloading, Flash Professional CS5.5 introduces the fl.display.ProLoader and

fl.display.ProLoaderInfo classes. These classes mirror the flash.display.Loader and flash.display.LoaderInfo classes but

provide a more consistent loading experience.

In particular, ProLoader helps you load SWF files that use the Text Layout Framework (TLF) with RSL preloading. At

runtime, SWF files that preload other SWF files or SWZ files, such as TLF, require an internal-only SWF wrapper file.

The extra layer of complexity imposed by the SWF wrapper file can result in unwanted behavior. ProLoader solves this

complexity to load these files as though they were ordinary SWF files. The solution used by the ProLoader class is

transparent to the user and requires no special handling in ActionScript. In addition, ProLoader loads ordinary SWF

content correctly.

In Flash Professional CS5.5 and later, you can safely replace all usages of the Loader class with the ProLoader class.

Then, export your application to Flash Player 10.2 or higher so that ProLoader can access the required ActionScript

functionality. You can also use ProLoader while targeting earlier versions of Flash Player that support ActionScript 3.0.

However, you get full advantage of ProLoader features only with Flash Player 10.2 or higher. Always use ProLoader

when you use TLF in Flash Professional CS5.5 or later. ProLoader is not needed in environments other than Flash

Professional.

Important: For SWF files published in Flash Professional CS5.5 and later, you can always use the fl.display.ProLoader

and fl.display.ProLoaderInfo classes instead of flash.display.Loader and flash.display.LoaderInfo.

Issues addressed by the ProLoader class

The ProLoader class addresses issues that the legacy Loader class was not designed to handle. These issues stem from

RSL preloading of TLF libraries. Specifically, they apply to SWF files that use a Loader object to load other SWF files.

Addressed issues include the following:

• Scripting between the loading file and the loaded file does not behave as expected. The ProLoader class

automatically sets the loading SWF file as the parent of the loaded SWF file. Thus, communications from the

loading SWF file go directly to the loaded SWF file.

• The SWF application must actively manage the loading process. Doing so requires implementation of extra

events, such as added, removed, addedToStage, and removedFromStage. If your application targets Flash Player

10.2 or later, ProLoader removes the need for this extra work.

http://blogs.adobe.com/airodynamics/2012/11/09/packaging-and-loading-multiple-swfs-in-air-apps-on-ios/

203ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Updating code to use ProLoader instead of Loader

Because ProLoader mirrors the Loader class, you can easily switch the two classes in your code. The following example

shows how to update existing code to use the new class:

import flash.display.Loader;
import flash.events.Event;
var l:Loader = new Loader();

addChild(l);
l.contentLoaderInfo.addEventListener(Event.COMPLETE, loadComplete);
l.load("my.swf");
function loadComplete(e:Event) {

trace('load complete!');
}

This code can be updated to use ProLoader as follows:

import fl.display.ProLoader;
import flash.events.Event;
var l:ProLoader = new ProLoader();

addChild(l);
l.contentLoaderInfo.addEventListener(Event.COMPLETE, loadComplete);
l.load("my.swf");
function loadComplete(e:Event) {

trace('load complete!');
}

Display object example: SpriteArranger

Flash Player 9 and later, Adobe AIR 1.0 and later

The SpriteArranger sample application builds upon the Geometric Shapes sample application described separately in

Learning ActionScript 3.0.

The SpriteArranger sample application illustrates a number of concepts for dealing with display objects:

• Extending display object classes

• Adding objects to the display list

• Layering display objects and working with display object containers

• Responding to display object events

• Using properties and methods of display objects

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

SpriteArranger application files can be found in the folder Examples/SpriteArranger. The application consists of the

following files:

http://www.adobe.com/go/learn_programmingAS3samples_flash

204ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

Defining the SpriteArranger classes

Flash Player 9 and later, Adobe AIR 1.0 and later

The SpriteArranger application lets the user add a variety of display objects to the on-screen “canvas.”

The DrawingCanvas class defines a drawing area, a type of display object container, to which the user can add on-

screen shapes. These on-screen shapes are instances of one of the subclasses of the GeometricSprite class.

The DrawingCanvas class

In Flex, all child display objects added to a Container object must be of a class that descends from the

mx.core.UIComponent class. This application adds an instance of the DrawingCanvas class as a child of an

mx.containers.VBox object, as defined in MXML code in the SpriteArranger.mxml file. This inheritance is defined in

the DrawingCanvas class declaration, as follows:

File Description

SpriteArranger.mxml

or

SpriteArranger.fla

The main application file in Flash (FLA) or Flex

(MXML).

com/example/programmingas3/SpriteArranger/CircleSprite.as A class defining a type of Sprite object that renders

a circle on-screen.

com/example/programmingas3/SpriteArranger/DrawingCanvas.as A class defining the canvas, which is a display

object container that contains GeometricSprite

objects.

com/example/programmingas3/SpriteArranger/SquareSprite.as A class defining a type of Sprite object that renders

a square on-screen.

com/example/programmingas3/SpriteArranger/TriangleSprite.as A class defining a type of Sprite object that renders

a triangle on-screen.

com/example/programmingas3/SpriteArranger/GeometricSprite.as A class that extends the Sprite object, used to

define an on-screen shape. The CircleSprite,

SquareSprite, and TriangleSprite each extend this

class.

com/example/programmingas3/geometricshapes/IGeometricShape.as The base interface defining methods to be

implemented by all geometric shape classes.

com/example/programmingas3/geometricshapes/IPolygon.as An interface defining methods to be implemented

by geometric shape classes that have multiple

sides.

com/example/programmingas3/geometricshapes/RegularPolygon.as A type of geometric shape that has sides of equal

length positioned symmetrically around the

shape’s center.

com/example/programmingas3/geometricshapes/Circle.as A type of geometric shape that defines a circle.

com/example/programmingas3/geometricshapes/EquilateralTriangle.as A subclass of RegularPolygon that defines a

triangle with all sides the same length.

com/example/programmingas3/geometricshapes/Square.as A subclass of RegularPolygon defining a rectangle

with all four sides the same length.

com/example/programmingas3/geometricshapes/GeometricShapeFactory.as A class containing a “factory method” for creating

shapes given a shape type and size.

205ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 public class DrawingCanvas extends UIComponent

The UIComponent class inherits from the DisplayObject, DisplayObjectContainer, and Sprite classes, and the code in

the DrawingCanvas class uses methods and properties of those classes.

The DrawingCanvas class extends the Sprite class, and this inheritance is defined in the DrawingCanvas class

declaration, as follows:

 public class DrawingCanvas extends Sprite

The Sprite class is a subclass of the DisplayObjectContainer and DisplayObject classes, and the DrawingCanvas class

uses methods and properties of those classes.

The DrawingCanvas() constructor method sets up a Rectangle object, bounds, which is property that is later used in

drawing the outline of the canvas. It then calls the initCanvas() method, as follows:

 this.bounds = new Rectangle(0, 0, w, h);
 initCanvas(fillColor, lineColor);

AS the following example shows, the initCanvas() method defines various properties of the DrawingCanvas object,

which were passed as arguments to the constructor function:

 this.lineColor = lineColor;
 this.fillColor = fillColor;
 this.width = 500;
 this.height = 200;

The initCanvas() method then calls the drawBounds() method, which draws the canvas using the DrawingCanvas

class’s graphics property. The graphics property is inherited from the Shape class.

 this.graphics.clear();
 this.graphics.lineStyle(1.0, this.lineColor, 1.0);
 this.graphics.beginFill(this.fillColor, 1.0);
 this.graphics.drawRect(bounds.left - 1,
 bounds.top - 1,
 bounds.width + 2,
 bounds.height + 2);
 this.graphics.endFill();

The following additional methods of the DrawingCanvas class are invoked based on user interactions with the

application:

• The addShape() and describeChildren() methods, which are described in “Adding display objects to the

canvas” on page 206

• The moveToBack(), moveDown(), moveToFront(), and moveUp() methods, which are described in “Rearranging

display object layering” on page 208

• The onMouseUp() method, which is described in “Clicking and dragging display objects” on page 207

The GeometricSprite class and its subclasses

Each display object the user can add to the canvas is an instance of one of the following subclasses of the

GeometricSprite class:

• CircleSprite

• SquareSprite

• TriangleSprite

The GeometricSprite class extends the flash.display.Sprite class:

206ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 public class GeometricSprite extends Sprite

The GeometricSprite class includes a number of properties common to all GeometricSprite objects. These are set in

the constructor function based on parameters passed to the function. For example:

 this.size = size;
 this.lineColor = lColor;
 this.fillColor = fColor;

The geometricShape property of the GeometricSprite class defines an IGeometricShape interface, which defines the

mathematical properties, but not the visual properties, of the shape. The classes that implement the IGeometricShape

interface are defined in the GeometricShapes sample application described in Learning ActionScript 3.0.

The GeometricSprite class defines the drawShape() method, which is further refined in the override definitions in

each subclass of GeometricSprite. For more information, see the “Adding display objects to the canvas” section, which

follows.

The GeometricSprite class also provides the following methods:

• The onMouseDown() and onMouseUp() methods, which are described in “Clicking and dragging display objects”

on page 207

• The showSelected() and hideSelected() methods, which are described in “Clicking and dragging display

objects” on page 207

Adding display objects to the canvas

Flash Player 9 and later, Adobe AIR 1.0 and later

When the user clicks the Add Shape button, the application calls the addShape() method of the DrawingCanvas class.

It instantiates a new GeometricSprite by calling the appropriate constructor function of one of the GeometricSprite

subclasses, as the following example shows:

 public function addShape(shapeName:String, len:Number):void
 {
 var newShape:GeometricSprite;
 switch (shapeName)
 {
 case "Triangle":
 newShape = new TriangleSprite(len);
 break;

 case "Square":
 newShape = new SquareSprite(len);
 break;

 case "Circle":
 newShape = new CircleSprite(len);
 break;
 }
 newShape.alpha = 0.8;
 this.addChild(newShape);
 }

Each constructor method calls the drawShape() method, which uses the graphics property of the class (inherited

from the Sprite class) to draw the appropriate vector graphic. For example, the drawShape() method of the

CircleSprite class includes the following code:

207ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 this.graphics.clear();
 this.graphics.lineStyle(1.0, this.lineColor, 1.0);
 this.graphics.beginFill(this.fillColor, 1.0);
 var radius:Number = this.size / 2;
 this.graphics.drawCircle(radius, radius, radius);

The second to last line of the addShape() function sets the alpha property of the display object (inherited from the

DisplayObject class), so that each display object added to the canvas is slightly transparent, letting the user see the

objects behind it.

The final line of the addChild() method adds the new display object to the child list of the instance of the

DrawingCanvas class, which is already on the display list. This causes the new display object to appear on the Stage.

The interface for the application includes two text fields, selectedSpriteTxt and outputTxt. The text properties of

these text fields are updated with information about the GeometricSprite objects that have been added to the canvas

or selected by the user. The GeometricSprite class handles this information-reporting task by overriding the

toString() method, as follows:

 public override function toString():String
 {
 return this.shapeType + " of size " + this.size + " at " + this.x + ", " + this.y;
 }

The shapeType property is set to the appropriate value in the constructor method of each GeometricSprite subclass.

For example, the toString() method might return the following value for a CircleSprite instance recently added to

the DrawingCanvas instance:

 Circle of size 50 at 0, 0

The describeChildren() method of the DrawingCanvas class loops through the canvas’s child list, using the

numChildren property (inherited from the DisplayObjectContainer class) to set the limit of the for loop. It generates

a string listing each child, as follows:

 var desc:String = "";
 var child:DisplayObject;
 for (var i:int=0; i < this.numChildren; i++)
 {
 child = this.getChildAt(i);
 desc += i + ": " + child + '\n';
 }

The resulting string is used to set the text property of the outputTxt text field.

Clicking and dragging display objects

Flash Player 9 and later, Adobe AIR 1.0 and later

When the user clicks on a GeometricSprite instance, the application calls the onMouseDown() event handler. As the

following shows, this event handler is set to listen for mouse down events in the constructor function of the

GeometricSprite class:

 this.addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);

The onMouseDown() method then calls the showSelected() method of the GeometricSprite object. If it is the first

time this method has been called for the object, the method creates a new Shape object named selectionIndicator

and it uses the graphics property of the Shape object to draw a red highlight rectangle, as follows:

208ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

 this.selectionIndicator = new Shape();
 this.selectionIndicator.graphics.lineStyle(1.0, 0xFF0000, 1.0);
 this.selectionIndicator.graphics.drawRect(-1, -1, this.size + 1, this.size + 1);
 this.addChild(this.selectionIndicator);

If this is not the first time the onMouseDown() method is called, the method simply sets the selectionIndicator

shape’s visible property (inherited from the DisplayObject class), as follows:

 this.selectionIndicator.visible = true;

The hideSelected() method hides the selectionIndicator shape of the previously selected object by setting its

visible property to false.

The onMouseDown() event handler method also calls the startDrag() method (inherited from the Sprite class),

which includes the following code:

 var boundsRect:Rectangle = this.parent.getRect(this.parent);
 boundsRect.width -= this.size;
 boundsRect.height -= this.size;
 this.startDrag(false, boundsRect);

This lets the user drag the selected object around the canvas, within the boundaries set by the boundsRect rectangle.

When the user releases the mouse button, the mouseUp event is dispatched. The constructor method of the

DrawingCanvas sets up the following event listener:

 this.addEventListener(MouseEvent.MOUSE_UP, onMouseUp);

This event listener is set for the DrawingCanvas object, rather than for the individual GeometricSprite objects. This is

because when the GeometricSprite object is dragged, it could end up behind another display object (another

GeometricSprite object) when the mouse is released. The display object in the foreground would receive the mouse up

event but the display object the user is dragging would not. Adding the listener to the DrawingCanvas object ensures

that the event is always handled.

The onMouseUp() method calls the onMouseUp() method of the GeometricSprite object, which in turn calls the

stopDrag() method of the GeometricSprite object.

Rearranging display object layering

Flash Player 9 and later, Adobe AIR 1.0 and later

The user interface for the application includes buttons labeled Move Back, Move Down, Move Up, and Move to Front.

When the user clicks one of these buttons, the application calls the corresponding method of the DrawingCanvas class:

moveToBack(), moveDown(), moveUp(), or moveToFront(). For example, the moveToBack() method includes the

following code:

 public function moveToBack(shape:GeometricSprite):void
 {
 var index:int = this.getChildIndex(shape);
 if (index > 0)
 {
 this.setChildIndex(shape, 0);
 }
 }

The method uses the setChildIndex() method (inherited from the DisplayObjectContainer class) to position the

display object in index position 0 in the child list of the DrawingCanvas instance (this).

209ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display programming

Last updated 10/9/2017

The moveDown() method works similarly, except that it decrements the index position of the display object by 1 in the

child list of the DrawingCanvas instance:

 public function moveDown(shape:GeometricSprite):void
 {
 var index:int = this.getChildIndex(shape);
 if (index > 0)
 {
 this.setChildIndex(shape, index - 1);
 }
 }

The moveUp() and moveToFront() methods work similarly to the moveToBack() and moveDown() methods.

210

Last updated 10/9/2017

Chapter 11: Working with geometry

Flash Player 9 and later, Adobe AIR 1.0 and later

The flash.geom package contains classes that define geometric objects such as points, rectangles, and transformation

matrixes. You use these classes to define the properties of objects that are used in other classes.

More Help topics

flash.geom package

Basics of geometry

Flash Player 9 and later, Adobe AIR 1.0 and later

The flash.geom package contains classes that define geometric objects such as points, rectangles, and transformation

matrixes. These classes don’t necessarily provide functionality by themselves; however, they are used to define the

properties of objects that are used in other classes.

All the geometry classes are based around the notion that locations on the screen are represented as a two-dimensional

plane. The screen is treated like a flat graph with a horizontal (x) axis and a vertical (y) axis. Any location (or point) on

the screen can be represented as a pair of x and y values—the coordinates of that location.

Every display object, including the Stage, has its own coordinate space. The coordinate space is an object’s own graph

for plotting the locations of child display objects, drawings, and so on. The origin is at coordinate location 0, 0 (where

the x and y-axes meet), and is placed at the upper-left corner of the display object. While this origin location is always

true for the Stage, it is not necessarily true for other display objects. Values on the x-axis get bigger going toward the

right, and smaller going toward the left. For locations to the left of the origin, the x coordinate is negative. However,

contrary to traditional coordinate systems, Flash runtime coordinate values on the y-axis get bigger going down the

screen and smaller going up the screen. Values above the origin have a negative y coordinate value). Since the upper-

left corner of the Stage is the origin of its coordinate space, most objects on the Stage have an x coordinate greater than

0 and smaller than the Stage width. And the same object has a y coordinate larger than 0 and smaller than the Stage

height.

You can use Point class instances to represent individual points in a coordinate space. You can create a Rectangle

instance to represent a rectangular region in a coordinate space. For advanced users, you can use a Matrix instance to

apply multiple or complex transformations to a display object. Many simple transformations, such as rotation,

position, and scale changes, can be applied directly to a display object using that object’s properties. For more

information on applying transformations using display object properties, see “Manipulating display objects” on

page 173.

Important concepts and terms

The following reference list contains important geometry terms:

Cartesian coordinates Coordinates are commonly written as a pair of number (like 5, 12 or 17, -23). The two numbers

are the x coordinate and the y coordinate, respectively.

Coordinate space The graph of coordinates contained in a display object, on which its child elements are positioned.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/package-detail.html

211ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with geometry

Last updated 10/9/2017

Origin The point in a coordinate space where the x-axis meets the y-axis. This point has the coordinate 0, 0.

Point A single location in a coordinate space. In the 2-d coordinate system used in ActionScript, the location along

the x-axis and the y-axis (the point’s coordinates) define the point.

Registration point In a display object, the origin (0, 0 coordinate) of its coordinate space.

Scale The size of an object relative to its original size. When used as a verb, to scale an object means to change its size

by stretching or shrinking the object.

Translate To change a point’s coordinates from one coordinate space to another.

Transformation An adjustment to a visual characteristic of a graphic, such as rotating the object, altering its scale,

skewing or distorting its shape, or altering its color.

X-axis The horizontal axis in the 2-d coordinate system used in ActionScript.

Y-axis The vertical axis in the 2-d coordinate system used in ActionScript.

Using Point objects

Flash Player 9 and later, Adobe AIR 1.0 and later

A Point object defines a Cartesian pair of coordinates. It represents location in a two-dimensional coordinate system,

where x represents the horizontal axis and y represents the vertical axis.

To define a Point object, you set its x and y properties, as follows:

 import flash.geom.*;
 var pt1:Point = new Point(10, 20); // x == 10; y == 20
 var pt2:Point = new Point();
 pt2.x = 10;
 pt2.y = 20;

Finding the distance between two points

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the distance() method of the Point class to find the distance between two points in a coordinate space.

For example, the following code finds the distance between the registration points of two display objects, circle1 and

circle2, in the same display object container:

 import flash.geom.*;
 var pt1:Point = new Point(circle1.x, circle1.y);
 var pt2:Point = new Point(circle2.x, circle2.y);
 var distance:Number = Point.distance(pt1, pt2);

Translating coordinate spaces

Flash Player 9 and later, Adobe AIR 1.0 and later

If two display objects are in different display object containers, they can be in different coordinate spaces. You can use

the localToGlobal() method of the DisplayObject class to translate the coordinates to the same (global) coordinate

space, that of the Stage. For example, the following code finds the distance between the registration points of two

display objects, circle1 and circle2, in the different display object containers:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/Point.html

212ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with geometry

Last updated 10/9/2017

 import flash.geom.*;
 var pt1:Point = new Point(circle1.x, circle1.y);
 pt1 = circle1.localToGlobal(pt1);
 var pt2:Point = new Point(circle2.x, circle2.y);
 pt2 = circle2.localToGlobal(pt2);
 var distance:Number = Point.distance(pt1, pt2);

Similarly, to find the distance of the registration point of a display object named target from a specific point on the

Stage, use the localToGlobal() method of the DisplayObject class:

 import flash.geom.*;
 var stageCenter:Point = new Point();
 stageCenter.x = this.stage.stageWidth / 2;
 stageCenter.y = this.stage.stageHeight / 2;
 var targetCenter:Point = new Point(target.x, target.y);
 targetCenter = target.localToGlobal(targetCenter);
 var distance:Number = Point.distance(stageCenter, targetCenter);

Moving a display object by a specified angle and distance

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the polar() method of the Point class to move a display object a specific distance by a specific angle. For

example, the following code moves the myDisplayObject object 100 pixels by 60°:

 import flash.geom.*;
 var distance:Number = 100;
 var angle:Number = 2 * Math.PI * (90 / 360);
 var translatePoint:Point = Point.polar(distance, angle);
 myDisplayObject.x += translatePoint.x;
 myDisplayObject.y += translatePoint.y;

Other uses of the Point class

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use Point objects with the following methods and properties:

Class Methods or properties Description

DisplayObjectContainer areInaccessibleObjectsUnderPoint()getObject
sUnderPoint()

Used to return a list of objects under a point in

a display object container.

BitmapData hitTest() Used to define the pixel in the BitmapData

object as well as the point that you are

checking for a hit.

213ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with geometry

Last updated 10/9/2017

Using Rectangle objects

Flash Player 9 and later, Adobe AIR 1.0 and later

A Rectangle object defines a rectangular area. A Rectangle object has a position, defined by the x and y coordinates of

its upper-left corner, a width property, and a height property. You can define these properties for a new Rectangle

object by calling the Rectangle() constructor function, as follows:

 import flash.geom.Rectangle;
 var rx:Number = 0;
 var ry:Number = 0;
 var rwidth:Number = 100;
 var rheight:Number = 50;
 var rect1:Rectangle = new Rectangle(rx, ry, rwidth, rheight);

Resizing and repositioning Rectangle objects

Flash Player 9 and later, Adobe AIR 1.0 and later

There are a number of ways to resize and reposition Rectangle objects.

You can directly reposition the Rectangle object by changing its x and y properties. This change has no effect on the

width or height of the Rectangle object.

 import flash.geom.Rectangle;
 var x1:Number = 0;
 var y1:Number = 0;
 var width1:Number = 100;
 var height1:Number = 50;
 var rect1:Rectangle = new Rectangle(x1, y1, width1, height1);
 trace(rect1) // (x=0, y=0, w=100, h=50)
 rect1.x = 20;
 rect1.y = 30;
 trace(rect1); // (x=20, y=30, w=100, h=50)

BitmapData applyFilter()

copyChannel()

merge()

paletteMap()

pixelDissolve()

threshold()

Used to define the positions of rectangles that

define the operations.

Matrix deltaTransformPoint()

transformPoint()

Used to define points for which you want to

apply a transformation.

Rectangle bottomRight

size

topLeft

Used to define these properties.

Class Methods or properties Description

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/Rectangle.html

214ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with geometry

Last updated 10/9/2017

As the following code shows, when you change the left or top property of a Rectangle object, the rectangle is

repositioned. The rectangle’s x and y properties match the left and top properties, respectively. However, the

position of the lower-left corner of the Rectangle object does not change, so it is resized.

 import flash.geom.Rectangle;
 var x1:Number = 0;
 var y1:Number = 0;
 var width1:Number = 100;
 var height1:Number = 50;
 var rect1:Rectangle = new Rectangle(x1, y1, width1, height1);
 trace(rect1) // (x=0, y=0, w=100, h=50)
 rect1.left = 20;
 rect1.top = 30;
 trace(rect1); // (x=20, y=30, w=80, h=20)

Similarly, as the following example shows, if you change the bottom or right property of a Rectangle object, the

position of its upper-left corner does not change. The rectangle is resized accordingly:

 import flash.geom.Rectangle;
 var x1:Number = 0;
 var y1:Number = 0;
 var width1:Number = 100;
 var height1:Number = 50;
 var rect1:Rectangle = new Rectangle(x1, y1, width1, height1);
 trace(rect1) // (x=0, y=0, w=100, h=50)
 rect1.right = 60;
 trect1.bottom = 20;
 trace(rect1); // (x=0, y=0, w=60, h=20)

You can also reposition a Rectangle object by using the offset() method, as follows:

 import flash.geom.Rectangle;
 var x1:Number = 0;
 var y1:Number = 0;
 var width1:Number = 100;
 var height1:Number = 50;
 var rect1:Rectangle = new Rectangle(x1, y1, width1, height1);
 trace(rect1) // (x=0, y=0, w=100, h=50)
 rect1.offset(20, 30);
 trace(rect1); // (x=20, y=30, w=100, h=50)

The offsetPt() method works similarly, except that it takes a Point object as its parameter, rather than x and y offset

values.

You can also resize a Rectangle object by using the inflate() method, which includes two parameters, dx and dy.

The dx parameter represents the number of pixels that the left and right sides of the rectangle moves from the center.

The dy parameter represents the number of pixels that the top and bottom of the rectangle moves from the center:

 import flash.geom.Rectangle;
 var x1:Number = 0;
 var y1:Number = 0;
 var width1:Number = 100;
 var height1:Number = 50;
 var rect1:Rectangle = new Rectangle(x1, y1, width1, height1);
 trace(rect1) // (x=0, y=0, w=100, h=50)
 rect1.inflate(6,4);
 trace(rect1); // (x=-6, y=-4, w=112, h=58)

215ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with geometry

Last updated 10/9/2017

The inflatePt() method works similarly, except that it takes a Point object as its parameter, rather than dx and dy

values.

Finding unions and intersections of Rectangle objects

Flash Player 9 and later, Adobe AIR 1.0 and later

You use the union() method to find the rectangular region formed by the boundaries of two rectangles:

 import flash.display.*;
 import flash.geom.Rectangle;
 var rect1:Rectangle = new Rectangle(0, 0, 100, 100);
 trace(rect1); // (x=0, y=0, w=100, h=100)
 var rect2:Rectangle = new Rectangle(120, 60, 100, 100);
 trace(rect2); // (x=120, y=60, w=100, h=100)
 trace(rect1.union(rect2)); // (x=0, y=0, w=220, h=160)

You use the intersection() method to find the rectangular region formed by the overlapping region of two

rectangles:

 import flash.display.*;
 import flash.geom.Rectangle;
 var rect1:Rectangle = new Rectangle(0, 0, 100, 100);
 trace(rect1); // (x=0, y=0, w=100, h=100)
 var rect2:Rectangle = new Rectangle(80, 60, 100, 100);
 trace(rect2); // (x=120, y=60, w=100, h=100)
 trace(rect1.intersection(rect2)); // (x=80, y=60, w=20, h=40)

You use the intersects() method to find out whether two rectangles intersect. You can also use the intersects()

method to find out whether a display object is in a certain region of the Stage. For the following code example, assume

the coordinate space of the display object container that contains the circle object is the same as that of the Stage.

The example shows how to use the intersects() method to determine if a display object, circle, intersects specified

regions of the Stage, defined by the target1 and target2 Rectangle objects:

 import flash.display.*;
 import flash.geom.Rectangle;
 var circle:Shape = new Shape();
 circle.graphics.lineStyle(2, 0xFF0000);
 circle.graphics.drawCircle(250, 250, 100);
 addChild(circle);
 var circleBounds:Rectangle = circle.getBounds(stage);
 var target1:Rectangle = new Rectangle(0, 0, 100, 100);
 trace(circleBounds.intersects(target1)); // false
 var target2:Rectangle = new Rectangle(0, 0, 300, 300);
 trace(circleBounds.intersects(target2)); // true

Similarly, you can use the intersects() method to find out whether the bounding rectangles of two display objects

overlap. Use the getRect() method of the DisplayObject class to include any additional space that the strokes of a

display object add to a bounding region.

Other uses of Rectangle objects

Flash Player 9 and later, Adobe AIR 1.0 and later

Rectangle objects are used in the following methods and properties:

216ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with geometry

Last updated 10/9/2017

Using Matrix objects

Flash Player 9 and later, Adobe AIR 1.0 and later

The Matrix class represents a transformation matrix that determines how to map points from one coordinate space to

another. You can perform various graphical transformations on a display object by setting the properties of a Matrix

object, applying that Matrix object to the matrix property of a Transform object, and then applying that Transform

object as the transform property of the display object. These transformation functions include translation (x and y

repositioning), rotation, scaling, and skewing.

Although you could define a matrix by directly adjusting the properties (a, b, c, d, tx, ty) of a Matrix object, it is easier

to use the createBox() method. This method includes parameters that let you directly define the scaling, rotation,

and translation effects of the resulting matrix. For example, the following code creates a Matrix object that scales an

object horizontally by 2.0, scales it vertically by 3.0, rotates it by 45°, moving (translating) it 10 pixels to the right, and

moving it 20 pixels down:

 var matrix:Matrix = new Matrix();
 var scaleX:Number = 2.0;
 var scaleY:Number = 3.0;
 var rotation:Number = 2 * Math.PI * (45 / 360);
 var tx:Number = 10;
 var ty:Number = 20;
 matrix.createBox(scaleX, scaleY, rotation, tx, ty);

You can also adjust the scaling, rotation, and translation effects of a Matrix object by using the scale(), rotate(),

and translate() methods. Note that these methods combine with the values of the existing Matrix object. For

example, the following code sets a Matrix object that scales an object by a factor of 4 and rotates it 60°, since the

scale() and rotate() methods are called twice:

Class Methods or properties Description

BitmapData applyFilter(), colorTransform(),
copyChannel(), copyPixels(), draw(),
drawWithQuality(), encode(), fillRect(),
generateFilterRect(), getColorBoundsRect(),
getPixels(), merge(), paletteMap(),
pixelDissolve(), setPixels(), and
threshold()

Used as the type for some parameters to define a region

of the BitmapData object.

DisplayObject getBounds(), getRect(), scrollRect,
scale9Grid

Used as the data type for the property or the data type

returned.

PrintJob addPage() Used to define the printArea parameter.

Sprite startDrag() Used to define the bounds parameter.

TextField getCharBoundaries() Used as the return value type.

Transform pixelBounds Used as the data type.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/Matrix.html

217ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with geometry

Last updated 10/9/2017

 var matrix:Matrix = new Matrix();
 var rotation:Number = 2 * Math.PI * (30 / 360); // 30°
 var scaleFactor:Number = 2;
 matrix.scale(scaleFactor, scaleFactor);
 matrix.rotate(rotation);
 matrix.scale(scaleX, scaleY);
 matrix.rotate(rotation);

 myDisplayObject.transform.matrix = matrix;

To apply a skew transformation to a Matrix object, adjust its b or c property. Adjusting the b property skews the matrix

vertically, and adjusting the c property skews the matrix horizontally. The following code skews the myMatrix Matrix

object vertically by a factor of 2:

 var skewMatrix:Matrix = new Matrix();
 skewMatrix.b = Math.tan(2);
 myMatrix.concat(skewMatrix);

You can apply a Matrix transformation to the transform property of a display object. For example, the following code

applies a matrix transformation to a display object named myDisplayObject:

 var matrix:Matrix = myDisplayObject.transform.matrix;
 var scaleFactor:Number = 2;
 var rotation:Number = 2 * Math.PI * (60 / 360); // 60°
 matrix.scale(scaleFactor, scaleFactor);
 matrix.rotate(rotation);

 myDisplayObject.transform.matrix = matrix;

The first line sets a Matrix object to the existing transformation matrix used by the myDisplayObject display object

(the matrix property of the transformation property of the myDisplayObject display object). This way, the Matrix

class methods that you call have a cumulative effect on the display object’s existing position, scale, and rotation.

Note: The ColorTransform class is also included in the flash.geometry package. This class is used to set the

colorTransform property of a Transform object. Since it does not apply any geometrical transformation, it is not

discussed, in detail, here. For more information, see the ColorTransform class in the ActionScript 3.0 Reference for the

Adobe Flash Platform.

Geometry example: Applying a matrix transformation
to a display object

Flash Player 9 and later, Adobe AIR 1.0 and later

The DisplayObjectTransformer sample application shows a number of features of using the Matrix class to transform

a display object, including the following:

• Rotating the display object

• Scaling the display object

• Translating (repositioning) the display object

• Skewing the display object

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/ColorTransform.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/ColorTransform.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/ColorTransform.html

218ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with geometry

Last updated 10/9/2017

The application provides an interface for adjusting the parameters of the matrix transformation, as follows:

When the user clicks the Transform button, the application applies the appropriate transformation.

The original display object, and the display object rotated by -45° and scaled by 50%

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

DisplayObjectTransformer application files can be found in the folder Samples/DisplayObjectTransformer. The

application consists of the following files:

File Description

DisplayObjectTransformer.mxml

or

DisplayObjectTransformer.fla

The main application file in Flash (FLA) or Flex (MXML)

com/example/programmingas3/geometry/MatrixTransformer.as A class that contains methods for applying matrix

transformations.

img/ A directory containing sample image files used by the

application.

http://www.adobe.com/go/learn_programmingAS3samples_flash

219ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with geometry

Last updated 10/9/2017

Defining the MatrixTransformer class

Flash Player 9 and later, Adobe AIR 1.0 and later

The MatrixTransformer class includes static methods that apply geometric transformations of Matrix objects.

The transform() method

The transform() method includes parameters for each of the following:

• sourceMatrix—The input matrix, which the method transforms

• xScale and yScale—The x and y scale factor

• dx and dy—The x and y translation amounts, in pixels

• rotation—The rotation amount, in degrees

• skew—The skew factor, as a percentage

• skewType—The direction in which the skew, either "right" or "left"

The return value is the resulting matrix.

The transform() method calls the following static methods of the class:

• skew()

• scale()

• translate()

• rotate()

Each returns the source matrix with the applied transformation.

The skew() method

The skew() method skews the matrix by adjusting the b and c properties of the matrix. An optional parameter, unit,

determines the units used to define the skew angle, and if necessary, the method converts the angle value to radians:

 if (unit == "degrees")
 {
 angle = Math.PI * 2 * angle / 360;
 }
 if (unit == "gradients")
 {
 angle = Math.PI * 2 * angle / 100;
 }

A skewMatrix Matrix object is created and adjusted to apply the skew transformation. Initially, it is the identity

matrix, as follows:

 var skewMatrix:Matrix = new Matrix();

The skewSide parameter determines the side to which the skew is applied. If it is set to "right", the following code

sets the b property of the matrix:

 skewMatrix.b = Math.tan(angle);

Otherwise, the bottom side is skewed by adjusting the c property of the Matrix, as follows:

 skewMatrix.c = Math.tan(angle);

220ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with geometry

Last updated 10/9/2017

The resulting skew is then applied to the existing matrix by concatenating the two matrixes, as the following example

shows:

 sourceMatrix.concat(skewMatrix);
 return sourceMatrix;

The scale() method

The following example shows the scale() method adjusts the scale factor if it is provided as a percentage, first, and

then uses the scale() method of the matrix object:

 if (percent)
 {
 xScale = xScale / 100;
 yScale = yScale / 100;
 }
 sourceMatrix.scale(xScale, yScale);
 return sourceMatrix;

The translate() method

The translate() method simply applies the dx and dy translation factors by calling the translate() method of the

matrix object, as follows:

 sourceMatrix.translate(dx, dy);
 return sourceMatrix;

The rotate() method

The rotate() method converts the input rotation factor to radians (if it is provided in degrees or gradients), and then

calls the rotate() method of the matrix object:

 if (unit == "degrees")
 {
 angle = Math.PI * 2 * angle / 360;
 }
 if (unit == "gradients")
 {
 angle = Math.PI * 2 * angle / 100;
 }
 sourceMatrix.rotate(angle);
 return sourceMatrix;

Calling the MatrixTransformer.transform() method from the application

Flash Player 9 and later, Adobe AIR 1.0 and later

The application contains a user interface for getting the transformation parameters from the user. It then passes these

values, along with the matrix property of the transform property of the display object, to the Matrix.transform()

method, as follows:

221ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with geometry

Last updated 10/9/2017

 tempMatrix = MatrixTransformer.transform(tempMatrix,
 xScaleSlider.value,
 yScaleSlider.value,
 dxSlider.value,
 dySlider.value,
 rotationSlider.value,
 skewSlider.value,
 skewSide);

The application then applies the return value to the matrix property of the transform property of the display object,

triggering the transformation:

 img.content.transform.matrix = tempMatrix;

222

Last updated 10/9/2017

Chapter 12: Using the drawing API

Flash Player 9 and later, Adobe AIR 1.0 and later

Although imported images and artwork are important, the functionality known as the drawing API, which allows you

to draw lines and shapes in ActionScript, gives you the freedom to start an application with the computer equivalent

of a blank canvas, on which you can create whatever images you wish. The ability to create your own graphics opens

up broad possibilities for your applications. With the techniques covered here you can create a drawing program, make

animated, interactive art, or programmatically create your own user interface elements, among many possibilities.

More Help topics

flash.display.Graphics

Basics of the drawing API

Flash Player 9 and later, Adobe AIR 1.0 and later

The drawing API is the name for the functionality built into ActionScript that allows you to create vector graphics—

lines, curves, shapes, fills, and gradients—and display them on the screen using ActionScript. The

flash.display.Graphics class provides this functionality. You can draw with ActionScript on any Shape, Sprite, or

MovieClip instance, using the graphics property defined in each of those classes. (Each of those classes’ graphics

property is in fact an instance of the Graphics class.)

If you’re just getting started with drawing with code, the Graphics class includes several methods that make it easy to

draw common shapes like circles, ellipses, rectangles, and rectangles with rounded corners. You can draw them as

empty lines or filled shapes. When you need more advanced functionality, the Graphics class also includes methods

for drawing lines and quadratic Bézier curves, which you can use in conjunction with the trigonometry functions in

the Math class to create any shape you need.

Flash runtimes (such as Flash Player 10 and Adobe AIR 1.5 and later versions) add an additional API for drawing,

which allow you to programmatically draw entire shapes with a single command. Once you’re familiar with the

Graphics class and tasks covered in “Basics of using the drawing API”, continue to “Advanced use of the drawing API”

on page 235 to learn more about these drawing API features.

Important concepts and terms

The following reference list contains important terms that you will encounter while using the drawing API:

Anchor point One of the two end points of a quadratic Bézier curve.

Control point The point that defines the direction and amount of curve of a quadratic Bézier curve. The curved line

never reaches the control point; however, the line curves as though being drawn toward the control point.

Coordinate space The graph of coordinates contained in a display object, on which its child elements are positioned.

Fill The solid inner portion of a shape that has a line filled in with color, or all of a shape that has no outline.

Gradient A color that consists of a gradual transition from one color to one or more other colors (as opposed to a solid

color).

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Graphics.html

223ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

Point A single location in a coordinate space. In the 2-d coordinate system used in ActionScript, a point is defined by

its location along the x axis and the y axis (the point’s coordinates).

Quadratic Bézier curve A type of curve defined by a particular mathematical formula. In this type of curve, the shape

of the curve is calculated based on the positions of the anchor points (the end points of the curve) and a control point

that defines the amount and direction of the curve.

Scale The size of an object relative to its original size. When used as a verb, to scale an object means to change its size

by stretching or shrinking the object.

Stroke The outline portion of a shape that has a line filled in with color, or the lines of an un-filled shape.

Translate To change a point’s coordinates from one coordinate space to another.

X axis The horizontal axis in the 2-d coordinate system used in ActionScript.

Y axis The vertical axis in the 2-d coordinate system used in ActionScript.

The Graphics class

Flash Player 9 and later, Adobe AIR 1.0 and later

Each Shape, Sprite, and MovieClip object has a graphics property, which is an instance of the Graphics class. The

Graphics class includes properties and methods for drawing lines, fills, and shapes. If you want a display object to use

solely as a canvas for drawing content, you can use a Shape instance. A Shape instance will perform better than other

display objects for drawing, because it doesn’t have the overhead of the additional functionality in the Sprite and

MovieClip classes. If you want a display object on which you can draw graphical content and also want that object to

contain other display objects, you can use a Sprite instance. For more information on determining which display object

to use for various tasks, see “Choosing a DisplayObject subclass” on page 172.

Drawing lines and curves

Flash Player 9 and later, Adobe AIR 1.0 and later

All drawing that you do with a Graphics instance is based on basic drawing with lines and curves. Consequently, all

ActionScript drawing must be performed using the same series of steps:

• Define line and fill styles

• Set the initial drawing position

• Draw lines, curves, and shapes (optionally moving the drawing point)

• If necessary, finish creating a fill

224ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

Defining line and fill styles

Flash Player 9 and later, Adobe AIR 1.0 and later

To draw with the graphics property of a Shape, Sprite, or MovieClip instance, you must first define the style (line size

and color, fill color) to use when drawing. Just like when you use the drawing tools in Adobe® Flash® Professional or

another drawing application, when you’re using ActionScript to draw you can draw with or without a stroke, and with

or without a fill color. You specify the appearance of the stroke using the lineStyle() or lineGradientStyle()

method. To create a solid line, use the lineStyle() method. When calling this method, the most common values

you’ll specify are the first three parameters: line thickness, color, and alpha. For example, this line of code tells the

Shape named myShape to draw lines that are 2 pixels thick, red (0x990000), and 75% opaque:

 myShape.graphics.lineStyle(2, 0x990000, .75);

The default value for the alpha parameter is 1.0 (100%), so you can leave that parameter off if you want a completely

opaque line. The lineStyle() method also accepts two additional parameters for pixel hinting and scale mode; for

more information about using those parameters see the description of the Graphics.lineStyle() method in the

ActionScript 3.0 Reference for the Adobe Flash Platform.

To create a gradient line, use the lineGradientStyle() method. This method is described in “Creating gradient lines

and fills” on page 227.

If you want to create a filled shape, you call the beginFill(), beginGradientFill(), beginBitmapFill(), or

beginShaderFill() methods before starting the drawing. The most basic of these, the beginFill() method, accepts

two parameters: the fill color, and (optionally) an alpha value for the fill color. For example, if you want to draw a shape

with a solid green fill, you would use the following code (assuming you’re drawing on an object named myShape):

 myShape.graphics.beginFill(0x00FF00);

Calling any fill method implicitly ends any previous fill before starting a new one. Calling any method that specifies a

stroke style replaces the previous stroke, but does not alter a previously specified fill, and vice versa.

Once you have specified the line style and fill properties, the next step is to indicate the starting point for your drawing.

The Graphics instance has a drawing point, like the tip of a pen on a piece of paper. Wherever the drawing point is

located, that is where the next drawing action will begin. Initially a Graphics object begins with its drawing point at the

point 0, 0 in the coordinate space of the object on which it’s drawing. To start the drawing at a different point, you can

first call the moveTo() method before calling one of the drawing methods. This is analogous to lifting the pen tip off

of the paper and moving it to a new position.

With the drawing point in place you draw using a series of calls to the drawing methods lineTo() (for drawing

straight lines) and curveTo() (for drawing curved lines).

While you are drawing, you can call the moveTo() method at any time to move the drawing point to a new position

without drawing.

While drawing, if you have specified a fill color, you can close off the fill by calling the endFill() method. If you have

not drawn a closed shape (in other words, if at the time you call endFill() the drawing point is not at the starting

point of the shape), when you call the endFill() method the Flash runtime automatically closes the shape by drawing

a straight line from the current drawing point to the location specified in the most recent moveTo() call. If you have

started a fill and not called endFill(), calling beginFill() (or one of the other fill methods) closes the current fill

and starts the new one.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Graphics.html#lineStyle()

225ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

Drawing straight lines

Flash Player 9 and later, Adobe AIR 1.0 and later

When you call the lineTo() method, the Graphics object draws a straight line from the current drawing point to the

coordinates you specify as the two parameters in the method call, drawing with the line style you have specified. For

example, this line of code puts the drawing point at the point 100, 100 then draws a line to the point 200, 200:

 myShape.graphics.moveTo(100, 100);
 myShape.graphics.lineTo(200, 200);

The following example draws red and green triangles with a height of 100 pixels:

 var triangleHeight:uint = 100;
 var triangle:Shape = new Shape();

 // red triangle, starting at point 0, 0
 triangle.graphics.beginFill(0xFF0000);
 triangle.graphics.moveTo(triangleHeight / 2, 0);
 triangle.graphics.lineTo(triangleHeight, triangleHeight);
 triangle.graphics.lineTo(0, triangleHeight);
 triangle.graphics.lineTo(triangleHeight / 2, 0);

 // green triangle, starting at point 200, 0
 triangle.graphics.beginFill(0x00FF00);
 triangle.graphics.moveTo(200 + triangleHeight / 2, 0);
 triangle.graphics.lineTo(200 + triangleHeight, triangleHeight);
 triangle.graphics.lineTo(200, triangleHeight);
 triangle.graphics.lineTo(200 + triangleHeight / 2, 0);

 this.addChild(triangle);

Drawing curves

Flash Player 9 and later, Adobe AIR 1.0 and later

The curveTo() method draws a quadratic Bézier curve. This draws an arc that connects two points (called anchor

points) while bending toward a third point (called the control point). The Graphics object uses the current drawing

position as the first anchor point. When you call the curveTo() method, you pass four parameters: the x and y

coordinates of the control point, followed by the x and y coordinates of the second anchor point. For example, the

following code draws a curve starting at point 100, 100 and ending at point 200, 200. Because the control point is at

point 175, 125, this creates a curve that moves to the right and then downward:

 myShape.graphics.moveTo(100, 100);
 myShape.graphics.curveTo(175, 125, 200, 200);

The following example draws red and green circular objects with a width and height of 100 pixels. Note that due to the

nature of the quadratic Bézier equation, these are not perfect circles:

226ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

 var size:uint = 100;
 var roundObject:Shape = new Shape();

 // red circular shape
 roundObject.graphics.beginFill(0xFF0000);
 roundObject.graphics.moveTo(size / 2, 0);
 roundObject.graphics.curveTo(size, 0, size, size / 2);
 roundObject.graphics.curveTo(size, size, size / 2, size);
 roundObject.graphics.curveTo(0, size, 0, size / 2);
 roundObject.graphics.curveTo(0, 0, size / 2, 0);

 // green circular shape
 roundObject.graphics.beginFill(0x00FF00);
 roundObject.graphics.moveTo(200 + size / 2, 0);
 roundObject.graphics.curveTo(200 + size, 0, 200 + size, size / 2);
 roundObject.graphics.curveTo(200 + size, size, 200 + size / 2, size);
 roundObject.graphics.curveTo(200, size, 200, size / 2);
 roundObject.graphics.curveTo(200, 0, 200 + size / 2, 0);

 this.addChild(roundObject);

Drawing shapes using built-in methods

Flash Player 9 and later, Adobe AIR 1.0 and later

For convenience when drawing common shapes such as circles, ellipses, rectangles, and rectangles with rounded

corners, ActionScript 3.0 has methods that draw these common shapes for you. These are the drawCircle(),

drawEllipse(), drawRect(), and drawRoundRect() methods of the Graphics class. These methods may be used in

place of the lineTo() and curveTo() methods. Note, however, that you must still specify line and fill styles before

calling these methods.

The following example recreates the example of drawing red, green, and blue squares with width and height of 100

pixels. This code uses the drawRect() method, and additionally specifies that the fill color has an alpha of 50% (0.5):

 var squareSize:uint = 100;
 var square:Shape = new Shape();
 square.graphics.beginFill(0xFF0000, 0.5);
 square.graphics.drawRect(0, 0, squareSize, squareSize);
 square.graphics.beginFill(0x00FF00, 0.5);
 square.graphics.drawRect(200, 0, squareSize, squareSize);
 square.graphics.beginFill(0x0000FF, 0.5);
 square.graphics.drawRect(400, 0, squareSize, squareSize);
 square.graphics.endFill();
 this.addChild(square);

In a Sprite or MovieClip object, the drawing content created with the graphics property always appears behind all

child display objects that are contained by the object. Also, the graphics property content is not a separate display

object so it does not appear in the list of a Sprite or MovieClip object’s children. For example, the following Sprite

object has a circle drawn with its graphics property, and it has a TextField object in its list of child display objects:

227ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

 var mySprite:Sprite = new Sprite();
 mySprite.graphics.beginFill(0xFFCC00);
 mySprite.graphics.drawCircle(30, 30, 30);
 var label:TextField = new TextField();
 label.width = 200;
 label.text = "They call me mellow yellow...";
 label.x = 20;
 label.y = 20;
 mySprite.addChild(label);
 this.addChild(mySprite);

Note that the TextField appears on top of the circle drawn with the graphics object.

Creating gradient lines and fills

Flash Player 9 and later, Adobe AIR 1.0 and later

The graphics object can also draw strokes and fills with gradients rather than solid colors. A gradient stroke is created

with the lineGradientStyle() method and a gradient fill is created with the beginGradientFill() method.

Both methods accept the same parameters. The first four are required: type, colors, alphas, and ratios. The remaining

four are optional but are useful for advanced customizing.

• The first parameter specifies the type of gradient you are creating. Acceptable values are GradientType.LINEAR or

GradientType.RADIAL.

• The second parameter specifies the array of the color values to use. In a linear gradient, the colors will be arranged

from left to right. In a radial gradient, they will be arranged from inside to outside. The order of the colors of the

array represents the order that the colors will be drawn in the gradient.

• The third parameter specifies the alpha transparency values of the corresponding colors in the previous parameter.

• The fourth parameter specifies ratios, or the emphasis each color has within the gradient. Acceptable values range

from 0-255. These values do not represent any width or height, but rather the position within the gradient; 0

represents the beginning of the gradient, 255 represents the end of the gradient. The array of ratios must increase

sequentially and have the same number of entries as both the color and alpha arrays specified in the second and

third parameters.

Although the fifth parameter, the transformation matrix, is optional, it is commonly used because it provides an easy

and powerful way to control the gradient’s appearance. This parameter accepts a Matrix instance. The easiest way to

create a Matrix object for a gradient is to use the Matrix class’s createGradientBox() method.

Defining a Matrix object for use with a gradient

Flash Player 9 and later, Adobe AIR 1.0 and later

You use the beginGradientFill() and lineGradientStyle() methods of the flash.display.Graphics class to define

gradients for use in shapes. When you define a gradient, you supply a matrix as one of the parameters of these methods.

228ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

The easiest way to define the matrix is by using the Matrix class’s createGradientBox() method, which creates a

matrix that is used to define the gradient. You define the scale, rotation, and position of the gradient using the

parameters passed to the createGradientBox() method. The createGradientBox() method accepts the following

parameters:

• Gradient box width: the width (in pixels) to which the gradient will spread

• Gradient box height: the height (in pixels) to which the gradient will spread

• Gradient box rotation: the rotation (in radians) that will be applied to the gradient

• Horizontal translation: how far (in pixels) the gradient is shifted horizontally

• Vertical translation: how far (in pixels) the gradient is shifted vertically

For example, consider a gradient with the following characteristics:

• GradientType.LINEAR

• Two colors, green and blue, with the ratios array set to [0, 255]

• SpreadMethod.PAD

• InterpolationMethod.LINEAR_RGB

The following examples show gradients in which the rotation parameter of the createGradientBox() method

differs as indicated, but all other settings stay the same:

The following examples show the effects on a green-to-blue linear gradient in which the rotation, tx, and ty

parameters of the createGradientBox() method differ as indicated, but all other settings stay the same:

width = 100;

height = 100;

rotation = 0;

tx = 0;

ty = 0;

width = 100;

height = 100;

rotation = Math.PI/4; // 45°

tx = 0;

ty = 0;

width = 100;

height = 100;

rotation = Math.PI/2; // 90°

tx = 0;

ty = 0;

229ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

The width, height, tx, and ty parameters of the createGradientBox() method affect the size and position of a

radial gradient fill as well, as the following example shows:

The following code produces the last radial gradient illustrated:

width = 50;

height = 100;

rotation = 0;

tx = 0;

ty = 0;

width = 50;

height = 100;

rotation = 0

tx = 50;

ty = 0;

width = 100;

height = 50;

rotation = Math.PI/2; // 90°

tx = 0;

ty = 0;

width = 100;

height = 50;

rotation = Math.PI/2; // 90°

tx = 0;

ty = 50;

width = 50;

height = 100;

rotation = 0;

tx = 25;

ty = 0;

230ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

 import flash.display.Shape;
 import flash.display.GradientType;
 import flash.geom.Matrix;

 var type:String = GradientType.RADIAL;
 var colors:Array = [0x00FF00, 0x000088];
 var alphas:Array = [1, 1];
 var ratios:Array = [0, 255];
 var spreadMethod:String = SpreadMethod.PAD;
 var interp:String = InterpolationMethod.LINEAR_RGB;
 var focalPtRatio:Number = 0;

 var matrix:Matrix = new Matrix();
 var boxWidth:Number = 50;
 var boxHeight:Number = 100;
 var boxRotation:Number = Math.PI/2; // 90°
 var tx:Number = 25;
 var ty:Number = 0;
 matrix.createGradientBox(boxWidth, boxHeight, boxRotation, tx, ty);

 var square:Shape = new Shape;
 square.graphics.beginGradientFill(type,
 colors,
 alphas,
 ratios,
 matrix,
 spreadMethod,
 interp,
 focalPtRatio);
 square.graphics.drawRect(0, 0, 100, 100);
 addChild(square);

Note that the width and height of the gradient fill is determined by the width and height of the gradient matrix rather

than the width or height that is drawn using the Graphics object. When drawing with the Graphics object, you draw

what exists at those coordinates in the gradient matrix. Even if you use one of the shape methods of a Graphics object

such as drawRect(), the gradient does not stretch itself to the size of the shape that is drawn—the gradient’s size must

be specified in the gradient matrix itself.

The following illustrates the visual difference between the dimensions of the gradient matrix and the dimensions of

the draw itself:

 var myShape:Shape = new Shape();
 var gradientBoxMatrix:Matrix = new Matrix();
 gradientBoxMatrix.createGradientBox(100, 40, 0, 0, 0);
 myShape.graphics.beginGradientFill(GradientType.LINEAR, [0xFF0000, 0x00FF00, 0x0000FF], [1,
1, 1], [0, 128, 255], gradientBoxMatrix);
 myShape.graphics.drawRect(0, 0, 50, 40);
 myShape.graphics.drawRect(0, 50, 100, 40);
 myShape.graphics.drawRect(0, 100, 150, 40);
 myShape.graphics.endFill();
 this.addChild(myShape);

This code draws three gradients with the same fill style, specified with an equal distribution of red, green, and blue.

The gradients are drawn using the drawRect() method with pixel widths of 50, 100, and 150 respectively. The gradient

matrix which is specified in the beginGradientFill() method is created with a width of 100 pixels. This means that

the first gradient will encompass only half of the gradient spectrum, the second will encompass all of it, and the third

will encompass all of it and have an additional 50 pixels of blue extending to the right.

231ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

The lineGradientStyle() method works similarly to beginGradientFill() except that in addition to defining the

gradient, you must specify the thickness of the stroke using the lineStyle() method before drawing. The following

code draws a box with a red, green, and blue gradient stroke:

 var myShape:Shape = new Shape();
 var gradientBoxMatrix:Matrix = new Matrix();
 gradientBoxMatrix.createGradientBox(200, 40, 0, 0, 0);
 myShape.graphics.lineStyle(5, 0);
 myShape.graphics.lineGradientStyle(GradientType.LINEAR, [0xFF0000, 0x00FF00, 0x0000FF], [1,
1, 1], [0, 128, 255], gradientBoxMatrix);
 myShape.graphics.drawRect(0, 0, 200, 40);
 this.addChild(myShape);

For more information on the Matrix class, see “Using Matrix objects” on page 216.

Using the Math class with drawing methods

Flash Player 9 and later, Adobe AIR 1.0 and later

A Graphics object draws circles and squares, but can also draw more complex forms, particularly when the drawing

methods are used in combination with the properties and methods of the Math class. The Math class contains

constants of common mathematical interest, such as Math.PI (approximately 3.14159265...), a constant for the ratio

of the circumference of a circle to its diameter. It also contains methods for trigonometry functions, including

Math.sin(), Math.cos(), and Math.tan() among others. Drawing shapes using these methods and constants create

more dynamic visual effects, particularly when used with repetition or recursion.

Many methods of the Math class expect circular measurements in units of radians rather than degrees. Converting

between these two types of units is a common use of the Math class:

 var degrees = 121;
 var radians = degrees * Math.PI / 180;
 trace(radians) // 2.111848394913139

The following example creates a sine wave and a cosine wave, to highlight the difference between the Math.sin() and

Math.cos() methods for a given value.

 var sinWavePosition = 100;
 var cosWavePosition = 200;
 var sinWaveColor:uint = 0xFF0000;
 var cosWaveColor:uint = 0x00FF00;
 var waveMultiplier:Number = 10;
 var waveStretcher:Number = 5;

 var i:uint;
 for(i = 1; i < stage.stageWidth; i++)
 {
 var sinPosY:Number = Math.sin(i / waveStretcher) * waveMultiplier;
 var cosPosY:Number = Math.cos(i / waveStretcher) * waveMultiplier;

 graphics.beginFill(sinWaveColor);
 graphics.drawRect(i, sinWavePosition + sinPosY, 2, 2);
 graphics.beginFill(cosWaveColor);
 graphics.drawRect(i, cosWavePosition + cosPosY, 2, 2);
 }

232ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

Animating with the drawing API

Flash Player 9 and later, Adobe AIR 1.0 and later

One advantage of creating content with the drawing API is that you are not limited to positioning your content once.

What you draw can be modified by maintaining and modifying the variables you use to draw. You can convey

animation by changing variables and redrawing, either over a period of frames or with a timer.

For example, the following code changes the display with each passing frame (by listening to the Event.ENTER_FRAME

event), incrementing the current degree count, and directs the graphics object to clear and redraw with the updated

position.

 stage.frameRate = 31;

 var currentDegrees:Number = 0;
 var radius:Number = 40;
 var satelliteRadius:Number = 6;

 var container:Sprite = new Sprite();
 container.x = stage.stageWidth / 2;
 container.y = stage.stageHeight / 2;
 addChild(container);
 var satellite:Shape = new Shape();
 container.addChild(satellite);

 addEventListener(Event.ENTER_FRAME, doEveryFrame);

 function doEveryFrame(event:Event):void
 {
 currentDegrees += 4;
 var radians:Number = getRadians(currentDegrees);
 var posX:Number = Math.sin(radians) * radius;
 var posY:Number = Math.cos(radians) * radius;
 satellite.graphics.clear();
 satellite.graphics.beginFill(0);
 satellite.graphics.drawCircle(posX, posY, satelliteRadius);
 }
 function getRadians(degrees:Number):Number
 {
 return degrees * Math.PI / 180;
 }

To produce a significantly different result, you can experiment by modifying the initial seed variables at the beginning

of the code, currentDegrees, radius, and satelliteRadius. For example, try shrinking the radius variable and/or

increasing the totalSatellites variable. This is only one example of how the drawing API can create a visual display

whose complexity conceals the simplicity of its creation.

233ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

Drawing API example: Algorithmic Visual Generator

Flash Player 9 and later, Adobe AIR 1.0 and later

The Algorithmic Visual Generator example dynamically draws to the stage several “satellites”, or circles moving in a

circular orbit. Among the features explored are:

• Using the drawing API to draw a basic shape with dynamic appearances

• Connecting user interaction with the properties that are used in a draw

• Conveying animation by clearing the stage on each frame and redrawing

The example in the previous subsection animated a solitary “satellite” using the Event.ENTER_FRAME event. This

example expands upon this, building a control panel with series of sliders that immediately update the visual display

of several satellites. This example formalizes the code into external classes and wraps the satellite creation code into a

loop, storing a reference to each satellite in a satellites array.

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

application files can be found in the folder Samples/AlgorithmicVisualGenerator. This folder contains the following

files:

Setting the listeners

Flash Player 9 and later, Adobe AIR 1.0 and later

The application first creates three listeners. The first listens for a dispatched event from the control panel that a rebuild

of the satellites is necessary. The second listens to changes to the size of the SWF file’s stage. The third listens for each

passing frame in the SWF file and to redraw using the doEveryFrame() function.

Creating the satellites

Flash Player 9 and later, Adobe AIR 1.0 and later

Once these listeners are set, the build() function is called. This function first calls the clear() function, which

empties the satellites array and clears any previous draws to the stage. This is necessary since the build() function

could be recalled whenever the control panel sends an event to do so, such as when the color settings have been

changed. In such a case, the satellites must be removed and recreated.

File Description

AlgorithmicVisualGenerator.fla The main application file in Flash Professional (FLA).

com/example/programmingas3/algorithmic/AlgorithmicVisualGenerator.as The class that provides the main functionality of the

application, including drawing satellites on the stage

and responding to events from the control panel to

update the variables that affect the drawing of

satellites.

com/example/programmingas3/algorithmic/ControlPanel.as A class that manages user interaction with several

sliders and dispatching events when this occurs.

com/example/programmingas3/algorithmic/Satellite.as A class which represents the display object that rotates

in an orbit around a central point and contains

properties related to its current draw state.

http://www.adobe.com/go/learn_programmingAS3samples_flash

234ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

The function then creates the satellites, setting the initial properties needed for creation, such as a the position

variable, which starts at a random position in the orbit, and the color variable, which in this example does not change

once the satellite has been created.

As each satellite is created, a reference to it is added to the satellites array. When the doEveryFrame() function is

called, it will update to all satellites in this array.

Updating the satellite position

Flash Player 9 and later, Adobe AIR 1.0 and later

The doEveryFrame() function is the heart of the application’s animation process. It is called for every frame, at a rate

equal the framerate of the SWF file. Because the variables of the draw change slightly, this conveys the appearance of

animation.

The function first clears all previous draws and redraws the background. Then, it loops through each satellite container

and increments the position property of each satellite, and updates the radius and orbitRadius properties that

may have changed from user interaction with the control panel. Finally, the satellite updates to its new position by

calling the draw() method of the Satellite class.

Note that the counter, i, only increments up to the visibleSatellites variable. This is because if the user has

limited the amount of satellites that are displayed through the control panel, the remaining satellites in the loop should

not be redrawn but should instead be hidden. This occurs in a loop which immediately follows the loop responsible

for drawing.

When the doEveryFrame() function completes, the number of visibleSatellites update in position across the

screen.

Responding to user interaction

Flash Player 9 and later, Adobe AIR 1.0 and later

User interaction occurs via the control panel, which is managed by the ControlPanel class. This class sets a listener

along with the individual minimum, maximum, and default values of each slider. As the user moves these sliders, the

changeSetting() function is called. This function updates the properties of the control panel. If the change requires

a rebuild of the display, an event is dispatched which is then handled in the main application file. As the control panel

settings change, the doEveryFrame() function draws each satellite with the updated variables.

Customizing further

Flash Player 9 and later, Adobe AIR 1.0 and later

This example is only a basic schematic of how to generate visuals using the drawing API. It uses relatively few lines of

code to create an interactive experience that appears quite complex. Even so, this example could be extended with

minor changes. A few ideas:

• The doEveryFrame() function could increment the color value of the satellite.

• The doEveryFrame() function could shrink or expand the satellite radius over time.

• The satellite radius does not have to be circular; it could use the Math class to move according to a sine wave, for

example.

• Satellites could use hit detection with other satellites.

235ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

The drawing API can be used as an alternative to creating visual effects in the Flash authoring environment, drawing

basic shapes at run time. But it can also be used to create visual effects of a variety and scope that are not possible to

create by hand. Using the drawing API and a bit of mathematics, the ActionScript author can give life to many

unexpected creations.

Advanced use of the drawing API

Flash Player 10 and later, Adobe AIR 1.5 and later

Flash Player 10, Adobe AIR 1.5, and later Flash runtimes, support an advanced set of drawing features. The drawing

API enhancements for these runtimes expand upon the drawing methods from previous releases so you can establish

data sets to generate shapes, alter shapes at runtime, and create three-dimensional effects. The drawing API

enhancements consolidate existing methods into alternative commands. These commands leverage vector arrays and

enumeration classes to provide data sets for drawing methods. Using vector arrays allows for more complex shapes to

render quickly and for developers to change the array values programmatically for dynamic shape rendering at

runtime.

The drawing features introduced in Flash Player 10 are described in the following sections: “Drawing Paths” on

page 236, “Defining winding rules” on page 237, “Using graphics data classes” on page 239, and “About using

drawTriangles()” on page 241.

The following tasks are things you’ll likely want to accomplish using the advanced drawing API in ActionScript:

• Using Vector objects to store data for drawing methods

• Defining paths for drawing shapes programmatically in a single operation

• Defining winding rules to determine how overlapping shapes are filled

• Reading the vector graphics content of a display object, such as to serialize and save the graphics data, to generate

a spritesheet at runtime, or to draw a copy of the vector graphics content

• Using triangles and drawing methods for three-dimensional effects

Important concepts and terms

The following reference list contains important terms that you will encounter in this section:

• Vector: An array of values all of the same data type. A Vector object can store an array of values that drawing

methods use to construct lines and shapes with a single command. For more information on Vector objects, see

“Indexed arrays” on page 26.

• Path: A path is made up of one or more straight or curved segments. The beginning and end of each segment are

marked by coordinates, which work like pins holding a wire in place. A path can be closed (for example, a circle),

or open, with distinct endpoints (for example, a wavy line).

• Winding: The direction of a path as interpreted by the renderer; either positive (clockwise) or negative (counter-

clockwise).

• GraphicsStroke: A class for setting the line style. While the term “stroke” isn’t part of the drawing API

enhancements, the use of a class to designate a line style with its own fill property is part of the new drawing API.

You can dynamically adjust a line’s style using the GraphicsStroke class.

236ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

• Fill object: Objects created using display classes like flash.display.GraphicsBitmapFill and

flash.display.GraphicsGradientFill that are passed to the drawing command Graphics.drawGraphicsData(). Fill

objects and the enhanced drawing commands introduce a more object-oriented programming approach to

replicating Graphics.beginBitmapFill() and Graphics.beginGradientFill().

Drawing Paths

Flash Player 10 and later, Adobe AIR 1.5 and later

The section on drawing lines and curves (see “Drawing lines and curves” on page 223) introduced the commands for

drawing a single line (Graphics.lineTo()) or curve (Graphics.curveTo()) and then moving the line to another

point (Graphics.moveTo()) to form a shape. The Graphics.drawPath() and Graphics.drawTriangles()

methods accept a set of objects representing those same drawing commands as a parameter. With these methods, you

can provide a series of Graphics.lineTo(), Graphics.curveTo(), or Graphics.moveTo() commands for the Flash

runtime to execute in a single statement.

The GraphicsPathCommand enumeration class defines a set of constants that correspond to drawing commands. You

pass a series of these constants (wrapped in a Vector instance) as a parameter for the Graphics.drawPath() method.

Then with a single command you can render an entire shape, or several shapes. You can also alter the values passed to

these methods to change an existing shape.

In addition to the Vector of drawing commands, the drawPath() method needs a set of coordinates that correspond

to the coordinates for each drawing command. Create a Vector instance containing coordinates (Number instances)

and pass it to the drawPath() method as the second (data) argument.

Note: The values in the vector are not Point objects; the vector is a series of numbers where each group of two numbers

represents an x/y coordinate pair.

The Graphics.drawPath() method matches each command with its respective point values (a collection of two or

four numbers) to generate a path in the Graphics object:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Graphics.html#drawPath()
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Graphics.html#drawTriangles()
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/GraphicsPathCommand.html

237ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

package
{

import flash.display.*;

public class DrawPathExample extends Sprite
{

public function DrawPathExample(){

var squareCommands:Vector.<int> = new Vector.<int>(5, true);
squareCommands[0] = GraphicsPathCommand.MOVE_TO;
squareCommands[1] = GraphicsPathCommand.LINE_TO;
squareCommands[2] = GraphicsPathCommand.LINE_TO;
squareCommands[3] = GraphicsPathCommand.LINE_TO;
squareCommands[4] = GraphicsPathCommand.LINE_TO;

var squareCoord:Vector.<Number> = new Vector.<Number>(10, true);
squareCoord[0] = 20; //x
squareCoord[1] = 10; //y
squareCoord[2] = 50;
squareCoord[3] = 10;
squareCoord[4] = 50;
squareCoord[5] = 40;
squareCoord[6] = 20;
squareCoord[7] = 40;
squareCoord[8] = 20;
squareCoord[9] = 10;

graphics.beginFill(0x442266);//set the color
graphics.drawPath(squareCommands, squareCoord);

}
}

}

Defining winding rules

Flash Player 10 and later, Adobe AIR 1.5 and later

The enhanced drawing API also introduces the concept of path “winding”: the direction for a path. The winding for a

path is either positive (clockwise) or negative (counter-clockwise). The order in which the renderer interprets the

coordinates provided by the vector for the data parameter determines the winding.

Positive and negative winding
A. Arrows indicate drawing direction B. Positively wound (clockwise) C. Negatively wound (counter-clockwise)

Additionally, notice that the Graphics.drawPath() method has an optional third parameter called “winding”:

B

1

23

0

1 2

30

C

A

238ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

drawPath(commands:Vector.<int>, data:Vector.<Number>, winding:String = "evenOdd"):void

In this context, the third parameter is a string or a constant that specifies the winding or fill rule for intersecting paths.

(The constant values are defined in the GraphicsPathWinding class as GraphicsPathWinding.EVEN_ODD or

GraphicsPathWinding.NON_ZERO.) The winding rule is important when paths intersect.

The even-odd rule is the standard winding rule and is the rule used by the legacy drawing API. The Even-odd rule is

also the default rule for the Graphics.drawPath() method. With the even-odd winding rule, any intersecting paths

alternate between open and closed fills. If two squares drawn with the same fill intersect, the area in which the

intersection occurs is filled. Generally, adjacent areas are neither both filled nor both unfilled.

The non-zero rule, on the other hand, depends on winding (drawing direction) to determine whether areas defined by

intersecting paths are filled. When paths of opposite winding intersect, the area defined is unfilled, much like with

even-odd. For paths of the same winding, the area that would be unfilled is filled:

Winding rules for intersecting areas
A. Even-odd winding rule B. Non-zero winding rule

Winding rule names

Flash Player 10 and later, Adobe AIR 1.5 and later

The names refer to a more specific rule that defines how these fills are managed. Positively wound paths are assigned

a value of +1; negatively wound paths are assigned a value of -1. Starting from a point within an enclosed area of a

shape, draw a line from that point extending out indefinitely. The number of times that line crosses a path, and the

combined values of those paths, are used to determine the fill. For even-odd winding, the count of times the line crosses

a path is used. When the count is odd, the area is filled. For even counts, the area is unfilled. For non-zero winding, the

values assigned to the paths are used. When the combined values of the path are not 0, the area is filled. When the

combined value is 0, the area is unfilled.

Winding rule counts and fills
A. Even-odd winding rule B. Non-zero winding rule

A B

A B

239ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

Using winding rules

Flash Player 10 and later, Adobe AIR 1.5 and later

These fill rules are complicated, but in some situations they are necessary. For example, consider drawing a star shape.

With the standard even-odd rule, the shape would require ten different lines. With the non-zero winding rule, those

ten lines are reduced to five. Here is the ActionScript for a star with five lines and a non-zero winding rule:

graphics.beginFill(0x60A0FF);
graphics.drawPath(Vector.<int>([1,2,2,2,2]), Vector.<Number>([66,10, 23,127, 122,50, 10,49,
109,127]), GraphicsPathWinding.NON_ZERO);

And here is the star shape:

A star shape using different winding rules
A. Even-odd 10 lines B. Even-odd 5 lines C. Non-zero 5 lines

And, as images are animated or used as textures on three-dimensional objects and overlap, the winding rules become

more important.

Using graphics data classes

Flash Player 10 and later, Adobe AIR 1.5 and later

The enhanced drawing API includes a set of classes in the flash.display package that implement the IGraphicsData

interface. These classes act as value objects (data containers) that represent the drawing methods of the drawing API.

The following classes implement the IGraphicsData interface:

• GraphicsBitmapFill

• GraphicsEndFill

• GraphicsGradientFill

• GraphicsPath

• GraphicsShaderFill

• GraphicsSolidFill

• GraphicsStroke

• GraphicsTrianglePath

With these classes, you can store a complete drawing in a Vector object of IGraphicsData type

(Vector.<IGraphicsData>). You can then reuse the graphics data as the data source for other shape instances or to store

drawing information for later use.

Notice you have multiple fill classes for each style of fill, but only one stroke class. ActionScript has only one stroke

IGraphicsData class because the stroke class uses the fill classes to define its style. So every stroke is actually defined by

a combination of the stroke class and a fill class. Otherwise, the API for these graphics data classes mirror the methods

they represent in the flash.display.Graphics class:

A B C

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/IGraphicsData.html

240ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

In addition, the GraphicsPath class has its own GraphicsPath.moveTo(), GraphicsPath.lineTo(),

GraphicsPath.curveTo(), GraphicsPath.wideLineTo(), and GraphicsPath.wideMoveTo() utility methods to

easily define those commands for a GraphicsPath instance. These utility methods simplify the task of defining or

updating the commands and data values directly.

Drawing with vector graphics data

Once you have a collection of IGraphicsData instances, use the Graphics class’s drawGraphicsData() method to

render the graphics. The drawGraphicsData() method carries out a set of drawing instructions from a vector of

IGraphicsData instances in sequential order:

// stroke object
var stroke:GraphicsStroke = new GraphicsStroke(3);
stroke.joints = JointStyle.MITER;
stroke.fill = new GraphicsSolidFill(0x102020);// solid stroke

// fill object
var fill:GraphicsGradientFill = new GraphicsGradientFill();
fill.colors = [0x0000FF, 0xEEFFEE];
fill.matrix = new Matrix();
fill.matrix.createGradientBox(70, 70, Math.PI/2);
// path object
var path:GraphicsPath = new GraphicsPath(new Vector.<int>(), new Vector.<Number>());
path.commands.push(GraphicsPathCommand.MOVE_TO, GraphicsPathCommand.LINE_TO,
GraphicsPathCommand.LINE_TO);
path.data.push(125,0, 50,100, 175,0);

// combine objects for complete drawing
var drawing:Vector.<IGraphicsData> = new Vector.<IGraphicsData>();
drawing.push(stroke, fill, path);

// draw the drawing
graphics.drawGraphicsData(drawing);

Graphics Method Corresponding Class

beginBitmapFill() GraphicsBitmapFill

beginFill() GraphicsSolidFill

beginGradientFill() GraphicsGradientFill

beginShaderFill() GraphicsShaderFill

lineBitmapStyle() GraphicsStroke + GraphicsBitmapFill

lineGradientStyle() GraphicsStroke + GraphicsGradientFill

lineShaderStyle() GraphicsStroke + GraphicsShaderFill

lineStyle() GraphicsStroke + GraphicsSolidFill

moveTo()

lineTo()

curveTo()

drawPath()

GraphicsPath

drawTriangles() GraphicsTrianglePath

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/GraphicsPath.html

241ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the drawing API

Last updated 10/9/2017

By modifying one value in the path used by the drawing in the example, the shape can be redrawn multiple times for

a more complex image:

// draw the drawing multiple times
// change one value to modify each variation
graphics.drawGraphicsData(drawing);
path.data[2] += 200;
graphics.drawGraphicsData(drawing);
path.data[2] -= 150;
graphics.drawGraphicsData(drawing);
path.data[2] += 100;
graphics.drawGraphicsData(drawing);
path.data[2] -= 50;graphicsS.drawGraphicsData(drawing);

Though IGraphicsData objects can define fill and stroke styles, the fill and stroke styles are not a requirement. In other

words, Graphics class methods can be used to set styles while IGraphicsData objects can be used to draw a saved

collection of paths, or vice-versa.

Note: Use the Graphics.clear() method to clear out a previous drawing before starting a new one; unless you're adding

on to the original drawing, as seen in the example above. As you change a single portion of a path or collection of

IGraphicsData objects, redraw the entire drawing to see the changes.

When using graphics data classes, the fill is rendered whenever three or more points are drawn, because the shape is

inherently closed at that point. Even though the fill closes, the stroke does not, and this behavior is different than when

using multiple Graphics.lineTo() or Graphics.moveTo() commands.

Reading vector graphics data

Flash Player 11.6 and later, Adobe AIR 3.6 and later

In addition to drawing vector content to a display object, in Flash Player 11.6 and Adobe AIR 3.6 and later you can use

the Graphics class’s readGraphicsData() method to obtain a data representation of the vector graphics content of a

display object. This can be used to create a snapshot of a graphic to save, copy, create a spritesheet at run time, and more.

Calling the readGraphicsData() method returns a Vector instance containing IGraphicsData objects. These are the

same objects used to draw vector graphics with the drawGraphicsData() method.

There are several limitations to reading vector graphics with the readGraphicsData() method. For more

information, see the readGraphicsData() entry in the ActionScript Language Reference.

About using drawTriangles()

Flash Player 10 and later, Adobe AIR 1.5 and later

Another advanced method introduced in Flash Player 10 and Adobe AIR 1.5, Graphics.drawTriangles(), is like the

Graphics.drawPath() method. The Graphics.drawTriangles() method also uses a Vector.<Number> object to

specify point locations for drawing a path.

However, the real purpose for the Graphics.drawTriangles() method is to facilitate three-dimensional effects

through ActionScript. For information about using Graphics.drawTriangles() to produce three-dimensional

effects, see “Using triangles for 3D effects” on page 363.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Graphics.html#readGraphicsData()
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Graphics.html#drawTriangles()
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Graphics.html#drawPath()

242

Last updated 10/9/2017

Chapter 13: Working with bitmaps

Flash Player 9 and later, Adobe AIR 1.0 and later

In addition to its vector drawing capabilities, ActionScript 3.0 includes the ability to create bitmap images or

manipulate the pixel data of external bitmap images that are loaded into a SWF. With the ability to access and change

individual pixel values, you can create your own filter-like image effects and use the built-in noise functions to create

textures and random noise.

• Renaun Erickson: Rendering game assets in ActionScript using blitting techniques

• Bitmap programming: Chapter 26 of Essential ActionScript 3 by Colin Moock (O'Reilly Media, 2007)

• Mike Jones: Working with Sprites in Pushbutton Engine

• Flash & Math: Pixel Particles Made Simple

• Flixel

Basics of working with bitmaps

Flash Player 9 and later, Adobe AIR 1.0 and later

When you work with digital images, you’re likely to encounter two main types of graphics: bitmap and vector. Bitmap

graphics, also known as raster graphics, are composed of tiny squares (pixels) that are arranged in a rectangular grid

formation. Vector graphics are composed of mathematically generated geometric shapes such as lines, curves, and

polygons.

Bitmap images are defined by the width and height of the image, measured in pixels, and the number of bits contained

in each pixel, which represents the number of colors a pixel can contain. In the case of a bitmap image that utilizes the

RGB color model, the pixels are made up of three bytes: red, green, and blue. Each of these bytes contains a value

ranging from 0 to 255. When the bytes are combined within the pixel, they produce a color similar to an artist mixing

paint colors. For example, a pixel containing byte values of red-255, green-102 and blue-0 would produce a vibrant

orange color.

The quality of a bitmap image is determined by combining the resolution of the image with its color depth bit value.

Resolution relates to the number of pixels contained within an image. The greater the number of pixels, the higher the

resolution and the finer the image appears. Color depth relates to the amount of information a pixel can contain. For

example, an image that has a color depth value of 16 bits per pixel cannot represent the same number of colors as an

image that has a color depth of 48 bits. As a result, the 48-bit image will have smoother degrees of shading than its 16-

bit counterpart.

Because bitmap graphics are resolution-dependent, they don’t scale very well. This is most noticeable when bitmap

images are scaled up in size. Scaling up a bitmap usually results in a loss of detail and quality.

Bitmap file formats

Bitmap images are grouped into a number of common file formats. These formats use different types of compression

algorithms to reduce file size, as well as optimize image quality based on the end purpose of the image. The bitmap

image formats supported by Adobe runtimes are BMP, GIF, JPG, PNG, and TIFF.

http://www.adobe.com/devnet/flex/articles/actionscript_blitting.html
http://my.safaribooksonline.com/0596526946/bitmap_programming
http://blog.flashgen.com/2011/03/22/working-with-sprites-in-pushbutton-engine/
http://www.flashandmath.com/intermediate/pixtut/
http://flixel.org/

243ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

BMP

The BMP (bit mapped) format is a default image format used by the Microsoft Windows operating system. It does not

use any form of compression algorithm and as such usually results in large file sizes.

GIF

The Graphics Interchange Format (GIF) was originally developed by CompuServe in 1987 as a means to transmit

images with 256 colors (8-bit color). The format provides small file sizes and is ideal for web-based images. Because of

this format’s limited color palette, GIF images are generally not suitable for photographs, which typically require high

degrees of shading and color gradients. GIF images permit single-bit transparency, which allows colors to be mapped

as clear (or transparent). This results in the background color of a web page showing through the image where the

transparency has been mapped.

JPEG

Developed by the Joint Photographic Experts Group (JPEG), the JPEG (often written JPG) image format uses a lossy

compression algorithm to allow 24-bit color depth with a small file size. Lossy compression means that each time the

image is saved, the image loses quality and data but results in a smaller file size. The JPEG format is ideal for

photographs because it is capable of displaying millions of colors. The ability to control the degree of compression

applied to an image allows you to manipulate image quality and file size.

PNG

The Portable Network Graphics (PNG) format was produced as an open-source alternative to the patented GIF file

format. PNGs support up to 64-bit color depth, allowing for up to 16 million colors. Because PNG is a relatively new

format, some older browsers don’t support PNG files. Unlike JPGs, PNGs use lossless compression, which means that

none of the image data is lost when the image is saved. PNG files also support alpha transparency, which allows for up

to 256 levels of transparency.

TIFF

The Tagged Image File Format (TIFF) was the cross-platform format of choice before the PNG was introduced. The

drawback with the TIFF format is that because of the many different varieties of TIFF, there is no single reader that

can handle every version. In addition, no web browsers currently support the format. TIFF can use either lossy or

lossless compression, and is able to handle device-specific color spaces (such as CMYK).

Transparent bitmaps and opaque bitmaps

Bitmap images that use either the GIF or PNG formats can have an extra byte (alpha channel) added to each pixel. This

extra pixel byte represents the transparency value of the pixel.

GIF images allow single-bit transparency, which means that you can specify a single color, from a 256-color palette, to

be transparent. PNG images, on the other hand, can have up to 256 levels of transparency. This function is especially

beneficial when images or text are required to blend into backgrounds.

ActionScript 3.0 replicates this extra transparency pixel byte within the BitmapData class. Similar to the PNG

transparency model, ActionScript offers up to 256 levels of transparency.

Important concepts and terms

The following list contains important terms that you will encounter when learning about bitmap graphics:

Alpha The level of transparency (or more accurately, opacity) in a color or an image. The amount of alpha is often

described as the alpha channel value.

ARGB color A color scheme where each pixel’s color is a mixture of red, green, and blue color values, and its

transparency is specified as an alpha value.

244ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

Color channel Commonly, colors are represented as a mixture of a few basic colors—usually (for computer graphics)

red, green, and blue. Each basic color is considered a color channel; the amount of color in each color channel, mixed

together, determines the final color.

Color depth Also known as bit depth, this refers to the amount of computer memory that is devoted to each pixel,

which in turn determines the number of possible colors that can be represented in the image.

Pixel The smallest unit of information in a bitmap image—essentially a dot of color.

Resolution The pixel dimensions of an image, which determines the level of fine-grained detail contained in the

image. Resolution is often expressed in terms of width and height in number of pixels.

RGB color A color scheme where each pixel’s color is represented as a mixture of red, green, and blue color values.

The Bitmap and BitmapData classes

Flash Player 9 and later, Adobe AIR 1.0 and later

The main ActionScript 3.0 classes for working with bitmap images are the Bitmap class, which is used to display

bitmap images on the screen, and the BitmapData class, which is used to access and manipulate the raw image data of

a bitmap.

More Help topics

flash.display.Bitmap

flash.display.BitmapData

Understanding the Bitmap class

Flash Player 9 and later, Adobe AIR 1.0 and later

As a subclass of the DisplayObject class, the Bitmap class is the main ActionScript 3.0 class used for displaying bitmap

images. These images may have been loaded via the flash.display.Loader class or created dynamically using the

Bitmap() constructor. When loading an image from an external source, a Bitmap object can only use GIF, JPEG, or

PNG format images. Once instantiated, the Bitmap instance can be considered a wrapper for a BitmapData object that

needs to be rendered to the Stage. Because a Bitmap instance is a display object, all the characteristics and functionality

of display objects can be used to manipulate a Bitmap instance as well. For more information about working with

display objects, see “Display programming” on page 151.

Pixel snapping and smoothing

Flash Player 9 and later, Adobe AIR 1.0 and later

In addition to the functionality common to all display objects, the Bitmap class provides some additional features that

are specific to bitmap images.

The pixelSnapping property of the Bitmap class determines whether or not a Bitmap object snaps to its nearest pixel.

This property accepts one of three constants defined in the PixelSnapping class: ALWAYS, AUTO, and NEVER.

The syntax for applying pixel snapping is as follows:

 myBitmap.pixelSnapping = PixelSnapping.ALWAYS;

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Bitmap.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/BitmapData.html

245ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

Often, when bitmap images are scaled, they become blurred and distorted. To help reduce this distortion, use the

smoothing property of the BitmapData class. This Boolean property, when set to true, smooths, or anti-aliases, the

pixels within the image when it is scaled. This gives the image a clearer and more natural appearance.

Understanding the BitmapData class

Flash Player 9 and later, Adobe AIR 1.0 and later

The BitmapData class, which is in the flash.display package, can be likened to a photographic snapshot of the pixels

contained within a loaded or dynamically created bitmap image. This snapshot is represented by an array of pixel data

within the object. The BitmapData class also contains a series of built-in methods that are useful for creation and

manipulation of pixel data.

To instantiate a BitmapData object, use the following code:

 var myBitmap:BitmapData = new BitmapData(width:Number, height:Number, transparent:Boolean,
fillColor:uinit);

The width and height parameters specify the size of the bitmap. Starting with AIR 3 and Flash player 11, the size

limits for a BitmapData object have been removed. The maximum size of a bitmap is dependent on the operating

system.

In AIR 1.5 and Flash Player 10, the maximum size for a BitmapData object is 8,191 pixels in width or height, and the

total number of pixels cannot exceed 16,777,215 pixels. (So, if a BitmapData object is 8,191 pixels wide, it can only be

2,048 pixels high.) In Flash Player 9 and earlier and AIR 1.1 and earlier, the limitation is 2,880 pixels in height and 2,880

in width.

The transparent parameter specifies whether the bitmap data includes an alpha channel (true) or not (false). The

fillColor parameter is a 32-bit color value that specifies the background color, as well as the transparency value (if

it has been set to true). The following example creates a BitmapData object with an orange background that is 50

percent transparent:

 var myBitmap:BitmapData = new BitmapData(150, 150, true, 0x80FF3300);

To render a newly created BitmapData object to the screen, assign it to or wrap it in a Bitmap instance. To do this, you

can either pass the BitmapData object as a parameter of the Bitmap object’s constructor, or you can assign it to the

bitmapData property of an existing Bitmap instance. You must also add the Bitmap instance to the display list by

calling the addChild() or addChildAt() methods of the display object container that will contain the Bitmap

instance. For more information on working with the display list, see “Adding display objects to the display list” on

page 158.

The following example creates a BitmapData object with a red fill, and displays it in a Bitmap instance:

 var myBitmapDataObject:BitmapData = new BitmapData(150, 150, false, 0xFF0000);
 var myImage:Bitmap = new Bitmap(myBitmapDataObject);
 addChild(myImage);

Manipulating pixels

Flash Player 9 and later, Adobe AIR 1.0 and later

The BitmapData class contains a set of methods that allow you to manipulate pixel data values.

246ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

Manipulating individual pixels

Flash Player 9 and later, Adobe AIR 1.0 and later

When changing the appearance of a bitmap image at a pixel level, you first need to get the color values of the pixels

contained within the area you wish to manipulate. You use the getPixel() method to read these pixel values.

The getPixel() method retrieves an RGB value from a set of x, y (pixel) coordinates that are passed as a parameter.

If any of the pixels that you want to manipulate include transparency (alpha channel) information, you need to use the

getPixel32() method. This method also retrieves an RGB value, but unlike with getPixel(), the value returned by

getPixel32() contains additional data that represents the alpha channel (transparency) value of the selected pixel.

Alternatively, if you simply want to change the color or transparency of a pixel contained within a bitmap, you can use

the setPixel() or setPixel32() method. To set a pixel’s color, simply pass in the x, y coordinates and the color

value to one of these methods.

The following example uses setPixel() to draw a cross on a green BitmapData background. It then uses getPixel()

to retrieve the color value from the pixel at the coordinate 50, 50 and traces the returned value.

 import flash.display.Bitmap;
 import flash.display.BitmapData;

 var myBitmapData:BitmapData = new BitmapData(100, 100, false, 0x009900);

 for (var i:uint = 0; i < 100; i++)
 {
 var red:uint = 0xFF0000;
 myBitmapData.setPixel(50, i, red);
 myBitmapData.setPixel(i, 50, red);
 }

 var myBitmapImage:Bitmap = new Bitmap(myBitmapData);
 addChild(myBitmapImage);

 var pixelValue:uint = myBitmapData.getPixel(50, 50);
 trace(pixelValue.toString(16));

If you want to read the value of a group of pixels, as opposed to a single pixel, use the getPixels() method. This

method generates a byte array from a rectangular region of pixel data that is passed as a parameter. Each of the

elements of the byte array (in other words, the pixel values) are unsigned integers—32-bit, unmultiplied pixel values.

Conversely, to change (or set) the value of a group of pixels, use the setPixels() method. This method expects two

parameters (rect and inputByteArray), which are combined to output a rectangular region (rect) of pixel data

(inputByteArray).

As data is read (and written) out of the inputByteArray, the ByteArray.readUnsignedInt() method is called for

each of the pixels in the array. If, for some reason, the inputByteArray doesn't contain a full rectangle worth of pixel

data, the method stops processing the image data at that point.

It's important to remember that, for both getting and setting pixel data, the byte array expects 32-bit alpha, red, green,

blue (ARGB) pixel values.

The following example uses the getPixels() and setPixels() methods to copy a group of pixels from one

BitmapData object to another:

247ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.utils.ByteArray;
 import flash.geom.Rectangle;

 var bitmapDataObject1:BitmapData = new BitmapData(100, 100, false, 0x006666FF);
 var bitmapDataObject2:BitmapData = new BitmapData(100, 100, false, 0x00FF0000);

 var rect:Rectangle = new Rectangle(0, 0, 100, 100);
 var bytes:ByteArray = bitmapDataObject1.getPixels(rect);

 bytes.position = 0;
 bitmapDataObject2.setPixels(rect, bytes);

 var bitmapImage1:Bitmap = new Bitmap(bitmapDataObject1);
 addChild(bitmapImage1);
 var bitmapImage2:Bitmap = new Bitmap(bitmapDataObject2);
 addChild(bitmapImage2);
 bitmapImage2.x = 110;

Pixel-level collision detection

Flash Player 9 and later, Adobe AIR 1.0 and later

The BitmapData.hitTest() method performs pixel-level collision detection between the bitmap data and another

object or point.

The BitmapData.hitTest() method accepts five parameters:

• firstPoint (Point): This parameter refers to the pixel position of the upper-left corner of the first BitmapData

upon which the hit test is being performed.

• firstAlphaThreshold (uint): This parameter specifies the highest alpha channel value that is considered opaque

for this hit test.

• secondObject (Object): This parameter represents the area of impact. The secondObject object can be a

Rectangle, Point, Bitmap, or BitmapData object. This object represents the hit area on which the collision detection

is being performed.

• secondBitmapDataPoint (Point): This optional parameter is used to define a pixel location in the second

BitmapData object. This parameter is used only when the value of secondObject is a BitmapData object. The

default is null.

• secondAlphaThreshold (uint): This optional parameter represents the highest alpha channel value that is

considered opaque in the second BitmapData object. The default value is 1. This parameter is only used when the

value of secondObject is a BitmapData object and both BitmapData objects are transparent.

When performing collision detection on opaque images, keep in mind that ActionScript treats the image as though it

were a fully opaque rectangle (or bounding box). Alternatively, when performing pixel-level hit testing on images that

are transparent, both of the images are required to be transparent. In addition to this, ActionScript uses the alpha

threshold parameters to determine at what point the pixels change from being transparent to opaque.

The following example creates three bitmap images and checks for pixel collision using two different collision points

(one returns false, the other true):

248ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.geom.Point;

 var bmd1:BitmapData = new BitmapData(100, 100, false, 0x000000FF);
 var bmd2:BitmapData = new BitmapData(20, 20, false, 0x00FF3300);

 var bm1:Bitmap = new Bitmap(bmd1);
 this.addChild(bm1);

 // Create a red square.
 var redSquare1:Bitmap = new Bitmap(bmd2);
 this.addChild(redSquare1);
 redSquare1.x = 0;

 // Create a second red square.
 var redSquare2:Bitmap = new Bitmap(bmd2);
 this.addChild(redSquare2);
 redSquare2.x = 150;
 redSquare2.y = 150;

 // Define the point at the top-left corner of the bitmap.
 var pt1:Point = new Point(0, 0);
 // Define the point at the center of redSquare1.
 var pt2:Point = new Point(20, 20);
 // Define the point at the center of redSquare2.
 var pt3:Point = new Point(160, 160);

 trace(bmd1.hitTest(pt1, 0xFF, pt2)); // true
 trace(bmd1.hitTest(pt1, 0xFF, pt3)); // false

Copying bitmap data

Flash Player 9 and later, Adobe AIR 1.0 and later

To copy bitmap data from one image to another, you can use several methods: clone(), copyPixels(),

copyChannel(), draw(), and drawWithQuality()(drawWithQuality method available in Flash Player 11.3 and

higher; AIR 3.3 and higher).

As its name suggests, the clone() method lets you clone, or sample, bitmap data from one BitmapData object to

another. When called, the method returns a new BitmapData object that is an exact clone of the original instance it

was copied from.

The following example clones a copy of an orange (parent) square and places the clone beside the original parent

square:

249ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

 import flash.display.Bitmap;
 import flash.display.BitmapData;

 var myParentSquareBitmap:BitmapData = new BitmapData(100, 100, false, 0x00ff3300);
 var myClonedChild:BitmapData = myParentSquareBitmap.clone();

 var myParentSquareContainer:Bitmap = new Bitmap(myParentSquareBitmap);
 this.addChild(myParentSquareContainer);

 var myClonedChildContainer:Bitmap = new Bitmap(myClonedChild);
 this.addChild(myClonedChildContainer);
 myClonedChildContainer.x = 110;

The copyPixels() method is a quick and easy way of copying pixels from one BitmapData object to another. The

method takes a rectangular snapshot (defined by the sourceRect parameter) of the source image and copies it to

another rectangular area (of equal size). The location of the newly “pasted” rectangle is defined within the destPoint

parameter.

The copyChannel() method samples a predefined color channel value (alpha, red, green, or blue) from a source

BitmapData object and copies it into a channel of a destination BitmapData object. Calling this method does not affect

the other channels in the destination BitmapData object.

The draw() and drawWithQuality() methods draw, or render, the graphical content from a source sprite, movie clip,

or other display object on to a new bitmap. Using the matrix, colorTransform, blendMode, and destination

clipRect parameters, you can modify the way in which the new bitmap is rendered. This method uses the vector

renderer in Flash Player and AIR to generate the data.

When you call draw() or drawWithQuality(), you pass the source object (sprite, movie clip, or other display object)

as the first parameter, as demonstrated here:

 myBitmap.draw(movieClip);

If the source object has had any transformations (color, matrix, and so forth) applied to it after it was originally loaded,

these transformations are not copied across to the new object. If you want to copy the transformations to the new

bitmap, then you need to copy the value of the transform property from the original object to the transform property

of the Bitmap object that uses the new BitmapData object.

Compressing bitmap data

Flash Player 11.3 and later, AIR 3.3 and later

The flash.display.BitmapData.encode() method lets you natively compress bitmap data into one of the

following image compression formats:

• PNG - Uses PNG compression, optionally using fast compression, which emphasizes compression speed over file

size. To use PNG compression, pass a new flash.display.PNGEncoderOptions object as the second parameter

of the BitmapData.encode() method.

• JPEG - Uses JPEG compression, optionally specifying image quality. To use JPEG compression, pass a new

flash.display.JPEGEncoderOptions object as the second parameter of the BitmapData.encode() method.

• JPEGXR - Uses JPEG Extended Range (XR) compression, optionally specifying color channel, lossy, and entropy

settings. To use JPEGXR compression, pass a new flash.display.JPEGXREncoderOptions object as the second

parameter of the BitmapData.encode() method.

250ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

You can use this feature for image processing as part of a server upload or download workflow.

The following example snippet compresses a BitmapData object using JPEGEncoderOptions:

// Compress a BitmapData object as a JPEG file.
var bitmapData:BitmapData = new BitmapData(640,480,false,0x00FF00);
var byteArray:ByteArray = new ByteArray();
bitmapData.encode(new Rectangle(0,0,640,480), new flash.display.JPEGEncoderOptions(),
byteArray);

Making textures with noise functions

Flash Player 9 and later, Adobe AIR 1.0 and later

To modify the appearance of a bitmap, you can apply a noise effect to it, using either the noise() method or the

perlinNoise() methods. A noise effect can be likened to the static that appears on an untuned television screen.

To apply a noise effect to a a bitmap, use the noise() method. This method applies a random color value to pixels

within a specified area of a bitmap image.

This method accepts five parameters:

• randomSeed (int): The random seed number that determines the pattern. Despite its name, this number actually

creates the same results if the same number is passed. To get a true random result, use the Math.random() method

to pass a random number for this parameter.

• low (uint): This parameter refers to the lowest value to be generated for each pixel (0 to 255). The default value is

0. Setting this value lower results in a darker noise pattern, while setting it to a higher value results in a brighter

pattern.

• high (uint): This parameter refers to the highest value to be generated for each pixel (0 to 255). The default value

is 255. Setting this value lower results in a darker noise pattern, while setting it to a higher value results in a brighter

pattern.

• channelOptions (uint): This parameter specifies to which color channel of the bitmap object the noise pattern will

be applied. The number can be a combination of any of the four color channel ARGB values. The default value is 7.

• grayScale (Boolean): When set to true, this parameter applies the randomSeed value to the bitmap pixels,

effectively washing all color out of the image. The alpha channel is not affected by this parameter. The default value

is false.

The following example creates a bitmap image and applies a blue noise pattern to it:

251ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

 package
{

import flash.display.Sprite;
import flash.display.Bitmap;
import flash.display.BitmapData;
import flash.display.BitmapDataChannel;

public class BitmapNoise1 extends Sprite
{

public function BitmapNoise1()
{

var myBitmap:BitmapData = new BitmapData(250, 250,false, 0xff000000);
myBitmap.noise(500, 0, 255, BitmapDataChannel.BLUE,false);
var image:Bitmap = new Bitmap(myBitmap);
addChild(image);

}
}

}

If you want to create a more organic-looking texture, use the perlinNoise() method. The perlinNoise() method

produces realistic, organic textures that are ideal for smoke, clouds, water, fire, or even explosions.

Because it is generated by an algorithm, the perlinNoise() method uses less memory than bitmap-based textures.

However, it can still have an impact on processor usage, slowing down your content and causing the screen to be

redrawn more slowly than the frame rate, especially on older computers. This is mainly due to the floating-point

calculations that need to occur to process the perlin noise algorithms.

The method accepts nine parameters (the first six are required):

• baseX (Number): Determines the x (size) value of patterns created.

• baseY (Number): Determines the y (size) value of the patterns created.

• numOctaves (uint): Number of octaves or individual noise functions to combine to create this noise. Larger

numbers of octaves create images with greater detail but also require more processing time.

• randomSeed (int): The random seed number works exactly the same way as it does in the noise() function. To get

a true random result, use the Math.random() method to pass a random number for this parameter.

• stitch (Boolean): If set to true, this method attempts to stitch (or smooth) the transition edges of the image to

create seamless textures for tiling as a bitmap fill.

• fractalNoise (Boolean): This parameter relates to the edges of the gradients being generated by the method. If

set to true, the method generates fractal noise that smooths the edges of the effect. If set to false, it generates

turbulence. An image with turbulence has visible discontinuities in the gradient that can make it better approximate

sharper visual effects, like flames and ocean waves.

• channelOptions (uint): The channelOptions parameter works exactly the same way as it does in the noise()

method. It specifies to which color channel (of the bitmap) the noise pattern is applied. The number can be a

combination of any of the four color channel ARGB values. The default value is 7.

• grayScale (Boolean): The grayScale parameter works exactly the same way as it does in the noise() method. If

set to true, it applies the randomSeed value to the bitmap pixels, effectively washing all color out of the image. The

default value is false.

• offsets (Array): An array of points that correspond to x and y offsets for each octave. By manipulating the offset

values, you can smoothly scroll the layers of the image. Each point in the offset array affects a specific octave noise

function. The default value is null.

252ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

The following example creates a 150 x 150 pixel BitmapData object that calls the perlinNoise() method to generate

a green and blue cloud effect:

 package
{

import flash.display.Sprite;
import flash.display.Bitmap;
import flash.display.BitmapData;
import flash.display.BitmapDataChannel;

public class BitmapNoise2 extends Sprite
{

public function BitmapNoise2()
{

var myBitmapDataObject:BitmapData =
new BitmapData(150, 150, false, 0x00FF0000);

var seed:Number = Math.floor(Math.random() * 100);
var channels:uint = BitmapDataChannel.GREEN | BitmapDataChannel.BLUE
myBitmapDataObject.perlinNoise(100, 80, 6, seed, false, true, channels, false, null);

var myBitmap:Bitmap = new Bitmap(myBitmapDataObject);
addChild(myBitmap);

}
}

}

Scrolling bitmaps

Flash Player 9 and later, Adobe AIR 1.0 and later

Imagine you have created a street mapping application where each time the user moves the map you are required to

update the view (even if the map has been moved by just a few pixels).

One way to create this functionality would be to re-render a new image containing the updated map view each time

the user moves the map. Alternatively, you could create a large single image and use the scroll() method.

The scroll() method copies an on-screen bitmap and then pastes it to a new offset location—specified by (x, y)

parameters. If a portion of the bitmap happens to reside off-stage, this gives the effect that the image has shifted. When

combined with a timer function (or an enterFrame event), you can make the image appear to be animating or

scrolling.

The following example takes the previous perlin noise example and generates a larger bitmap image (three-fourths of

which is rendered off-stage). The scroll() method is then applied, along with an enterFrame event listener that

offsets the image by one pixel in a diagonally downward direction. This method is called each time the frame is entered

and as a result, the off screen portions of the image are rendered to the Stage as the image scrolls down.

253ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

 import flash.display.Bitmap;
 import flash.display.BitmapData;

 var myBitmapDataObject:BitmapData = new BitmapData(1000, 1000, false, 0x00FF0000);
 var seed:Number = Math.floor(Math.random() * 100);
 var channels:uint = BitmapDataChannel.GREEN | BitmapDataChannel.BLUE;
 myBitmapDataObject.perlinNoise(100, 80, 6, seed, false, true, channels, false, null);

 var myBitmap:Bitmap = new Bitmap(myBitmapDataObject);
 myBitmap.x = -750;
 myBitmap.y = -750;
 addChild(myBitmap);

 addEventListener(Event.ENTER_FRAME, scrollBitmap);

 function scrollBitmap(event:Event):void
 {
 myBitmapDataObject.scroll(1, 1);
 }

Taking advantage of mipmapping

Flash Player 9 and later, Adobe AIR 1.0 and later

MIP maps (also known as mipmaps), are bitmaps grouped together and associated with a texture to increase runtime

rendering quality and performance. Each bitmap image in the MIP map is a version of the main bitmap image, but at

a reduced level of detail from the main image.

For example, you can have a MIP map that includes at the highest quality a main image at 64 × 64 pixels. Lower quality

images in the MIP map would be 32 × 32, 16 × 16, 8 × 8, 4 × 4, 2 × 2, and 1 × 1 pixels.

Texture streaming is the ability to load the lowest quality bitmap first, and then to progressively display higher quality

bitmaps as the bitmaps are loaded. Because lower quality bitmaps are small, they load faster than the main image.

Therefore, application users can view image in an application before the main, high quality bitmap loads.

Flash Player 9.115.0 and later versions and AIR implement this technology (the process is called mipmapping), by

creating optimized versions of varying scale of each bitmap (starting at 50%).

Flash Player 11.3 and AIR 3.3 support texture streaming through the streamingLevels parameter of the

Context3D.createCubeTexture() and Context3D.createTexture() methods.

Texture compression lets you store texture images in compressed format directly on the GPU, which saves GPU

memory and memory bandwidth. Typically, compressed textures are compressed offline and uploaded to the GPU in

compressed format. However, Flash Player 11.4 and AIR 3.4 support runtime texture compression, which is useful in

certain situations, such as when rendering dynami textures from vector art. To use runtime texture compression,

perform the following steps:

• Create the texture object by calling the Context3D.createTexture() method, passing either

flash.display3D.Context3DTextureFormat.COMPRESSED or

flash.display3D.Context3DTextureFormat.COMPRESSED_ALPHA in the third parameter.

254ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

• Using the flash.display3D.textures.Texture instance returned by createTexture(), call either

flash.display3D.textures.Texture.uploadFromBitmapData() or

flash.display3D.textures.Texture.uploadFromByteArray(). These methods upload and compress the

texture in one step.

MIP maps are created for the following types of bitmaps:

• a bitmap (JPEG, GIF, or PNG files) displayed using the ActionScript 3.0 Loader class

• a bitmap in the library of a Flash Professional document

• a BitmapData object

• a bitmap displayed using the ActionScript 2.0 loadMovie() function

MIP maps are not applied to filtered objects or bitmap-cached movie clips. However, MIP maps are applied if you have

bitmap transformations within a filtered display object, even if the bitmap is within masked content.

Mipmapping happens automatically, but you can follow a few guidelines to make sure your images take advantage of

this optimization:

• For video playback, set the smoothing property to true for the Video object (see the Video class).

• For bitmaps, the smoothing property does not have to be set to true, but the quality improvements are more

visible when bitmaps use smoothing.

• Use bitmap sizes that are divisible by 4 or 8 for two-dimensional images (such as 640 x 128, which can be reduced

as follows: 320 x 64 > 160 x 32 > 80 x 16 > 40 x 8 > 20 x 4 > 10 x 2 > 5 x 1).

For three-dimensional textures, use MIP maps where each image is at a resolution that is a power of 2 (meaning

2^n). For example, the main image is at a resolution of 1024 x 1024 pixels. The lower quality images in the MIP

map would then be at 512 x 512, 256 x 256, 128 x 128 down to 1 x 1 pixels for a total of 11 images in the MIP map.

Note that mipmapping does not occur for bitmap content with an odd width or height.

Bitmap example: Animated spinning moon

Flash Player 9 and later, Adobe AIR 1.0 and later

The Animated spinning moon example demonstrates techniques for working with Bitmap objects and bitmap image

data (BitmapData objects). The example creates an animation of a spinning, spherical moon using a flat image of the

moon’s surface as the raw image data. The following techniques are demonstrated:

• Loading an external image and accessing its raw image data

• Creating animation by repeatedly copying pixels from different parts of a source image

• Creating a bitmap image by setting pixel values

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

Animated spinning moon application files can be found in the Samples/SpinningMoon folder. The application

consists of the following files:

http://www.adobe.com/go/learn_programmingAS3samples_flash

255ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

Loading an external image as bitmap data

Flash Player 9 and later, Adobe AIR 1.0 and later

The first main task this sample performs is loading an external image file, which is a photograph of the moon’s surface.

The loading operation is handled by two methods in the MoonSphere class: the MoonSphere() constructor, where the

loading process is initiated, and the imageLoadComplete() method, which is called when the external image is

completely loaded.

Loading an external image is similar to loading an external SWF; both use an instance of the flash.display.Loader class

to perform the loading operation. The actual code in the MoonSphere() method that starts loading the image is as

follows:

 var imageLoader:Loader = new Loader();
 imageLoader.contentLoaderInfo.addEventListener(Event.COMPLETE, imageLoadComplete);
 imageLoader.load(new URLRequest("moonMap.png"));

The first line declares the Loader instance named imageLoader. The third line actually starts the loading process by

calling the Loader object’s load() method, passing a URLRequest instance representing the URL of the image to load.

The second line sets up the event listener that will be triggered when the image has completely loaded. Notice that the

addEventListener() method is not called on the Loader instance itself; instead, it’s called on the Loader object’s

contentLoaderInfo property. The Loader instance itself doesn’t dispatch events relating to the content being loaded.

Its contentLoaderInfo property, however, contains a reference to the LoaderInfo object that’s associated with the

content being loaded into the Loader object (the external image in this case). That LoaderInfo object does provide

several events relating to the progress and completion of loading the external content, including the complete event

(Event.COMPLETE) that will trigger a call to the imageLoadComplete() method when the image has completely

loaded.

While starting the external image loading is an important part of the process, it’s equally important to know what to

do when it finishes loading. As shown in the code above, the imageLoadComplete() function is called when the image

is loaded. That function does several things with the loaded image data, described subsequently. However, to use the

image data, it needs to access that data. When a Loader object is used to load an external image, the loaded image

becomes a Bitmap instance, which is attached as a child display object of the Loader object. In this case, the Loader

instance is available to the event listener method as part of the event object that’s passed to the method as a parameter.

The first lines of the imageLoadComplete() method are as follows:

 private function imageLoadComplete(event:Event):void
 {
 textureMap = event.target.content.bitmapData;
 ...
 }

File Description

SpinningMoon.mxml

or

SpinningMoon.fla

The main application file in Flex (MXML) or Flash (FLA).

com/example/programmingas3/moon/MoonSphere.as Class that performs the functionality of loading, displaying, and

animating the moon.

moonMap.png Image file containing a photograph of the moon’s surface, which is

loaded and used to create the animated, spinning moon.

256ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

Notice that the event object parameter is named event, and it’s an instance of the Event class. Every instance of the

Event class has a target property, which refers to the object triggering the event (in this case, the LoaderInfo instance

on which the addEventListener() method was called, as described previously). The LoaderInfo object, in turn, has

a content property that (once the loading process is complete) contains the Bitmap instance with the loaded bitmap

image. If you want to display the image directly on the screen, you can attach this Bitmap instance

(event.target.content) to a display object container. (You could also attach the Loader object to a display object

container). However, in this sample, the loaded content is used as a source of raw image data rather than being

displayed on the screen. Consequently, the first line of the imageLoadComplete() method reads the bitmapData

property of the loaded Bitmap instance (event.target.content.bitmapData) and stores it in the instance variable

named textureMap, which is used as a source of the image data to create the animation of the rotating moon. This is

described next.

Creating animation by copying pixels

Flash Player 9 and later, Adobe AIR 1.0 and later

A basic definition of animation is the illusion of motion, or change, created by changing an image over time. In this

sample, the goal is to create the illusion of a spherical moon rotating around its vertical axis. However, for the purposes

of the animation, you can ignore the spherical distortion aspect of the sample. Consider the actual image that’s loaded

and used as the source of the moon image data:

As you can see, the image is not one or several spheres; it’s a rectangular photograph of the surface of the moon.

Because the photo was taken exactly at the moon’s equator, the parts of the image that are closer to the top and bottom

of the image are stretched and distorted. To remove the distortion from the image and make it appear spherical, we

will use a displacement map filter, as described later. However, because this source image is a rectangle, to create the

illusion that the sphere is rotating, the code simply needs to slide the moon surface photo horizontally.

Notice that the image actually contains two copies of the moon surface photograph next to each other. This image is

the source image from which image data is copied repeatedly to create the appearance of motion. By having two copies

of the image next to each other, a continuous, uninterrupted scrolling effect can more easily be created. Let’s walk

through the process of the animation step-by-step to see how this works.

The process actually involves two separate ActionScript objects. First, there is the loaded source image, which in the

code is represented by the BitmapData instance named textureMap. As described previously, textureMap is

populated with image data as soon as the external image loads, using this code:

 textureMap = event.target.content.bitmapData;

The content of textureMap is the rectangle moon image. In addition, to create the animated rotation, the code uses a

Bitmap instance named sphere, which is the actual display object that shows the moon image onscreen. Like

textureMap, the sphere object is created and populated with its initial image data in the imageLoadComplete()

method, using the following code:

257ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

 sphere = new Bitmap();
 sphere.bitmapData = new BitmapData(textureMap.width / 2, textureMap.height);
 sphere.bitmapData.copyPixels(textureMap,
 new Rectangle(0, 0, sphere.width, sphere.height),
 new Point(0, 0));

As the code shows, sphere is instantiated. Its bitmapData property (the raw image data that is displayed by sphere)

is created with the same height and half the width of textureMap. In other words, the content of sphere will be the

size of one moon photo (since the textureMap image contains two moon photos side-by-side). Next the bitmapData

property is filled with image data using its copyPixels() method. The parameters in the copyPixels() method call

indicate several things:

• The first parameter indicates that the image data is copied from textureMap.

• The second parameter, a new Rectangle instance, specifies from which part of textureMap the image snapshot

should be taken; in this case the snapshot is a rectangle starting from the top left corner of textureMap (indicated

by the first two Rectangle() parameters: 0, 0) and the rectangle snapshot’s width and height match the width

and height properties of sphere.

• The third parameter, a new Point instance with x and y values of 0, defines the destination of the pixel data—in this

case, the top-left corner (0, 0) of sphere.bitmapData.

Represented visually, the code copies the pixels from textureMap outlined in the following image and pastes them

onto sphere. In other words, the BitmapData content of sphere is the portion of textureMap highlighted here:

Remember, however, that this is just the initial state of sphere—the first image content that’s copied onto sphere.

With the source image loaded and sphere created, the final task performed by the imageLoadComplete() method is

to set up the animation. The animation is driven by a Timer instance named rotationTimer, which is created and

started by the following code:

 var rotationTimer:Timer = new Timer(15);
 rotationTimer.addEventListener(TimerEvent.TIMER, rotateMoon);
 rotationTimer.start();

The code first creates the Timer instance named rotationTimer; the parameter passed to the Timer() constructor

indicates that rotationTimer should trigger its timer event every 15 milliseconds. Next, the addEventListener()

method is called, specifying that when the timer event (TimerEvent.TIMER) occurs, the method rotateMoon() is

called. Finally, the timer is actually started by calling its start() method.

Because of the way rotationTimer is defined, approximately every 15 milliseconds Flash Player calls the

rotateMoon() method in the MoonSphere class, which is where the animation of the moon happens. The source code

of the rotateMoon() method is as follows:

258ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

 private function rotateMoon(event:TimerEvent):void
 {
 sourceX += 1;
 if (sourceX > textureMap.width / 2)
 {
 sourceX = 0;
 }

 sphere.Data.copyPixels(textureMap,
 new Rectangle(sourceX, 0, sphere.width, sphere.height),
 new Point(0, 0));

 event.updateAfterEvent();
 }

The code does three things:

1 The value of the variable sourceX (initially set to 0) increments by 1.

 sourceX += 1;

As you’ll see, sourceX is used to determine the location in textureMap from which the pixels will be copied onto

sphere, so this code has the effect of moving the rectangle one pixel to the right on textureMap. Going back to the

visual representation, after several cycles of animation the source rectangle will have moved several pixels to the

right, like this:

After several more cycles, the rectangle will have moved even farther:

This gradual, steady shift in the location from which the pixels are copied is the key to the animation. By slowly and

continuously moving the source location to the right, the image that is displayed on the screen in sphere appears

to continuously slide to the left. This is the reason why the source image (textureMap) needs to have two copies of

the moon surface photo. Because the rectangle is continually moving to the right, most of the time it is not over one

single moon photo but rather overlaps the two moon photos.

259ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

2 With the source rectangle slowly moving to the right, there is one problem. Eventually the rectangle will reach the

right edge of textureMap and it will run out of moon photo pixels to copy onto sphere:

The next lines of code address this issue:

 if (sourceX >= textureMap.width / 2)
 {
 sourceX = 0;
 }

The code checks if sourceX (the left edge of the rectangle) has reached the middle of textureMap. If so, it resets

sourceX back to 0, moving it back to the left edge of textureMap and starting the cycle over again:

3 With the appropriate sourceX value calculated, the final step in creating the animation is to actually copy the new

source rectangle pixels onto sphere. The code that does this is very similar to the code that initially populated

sphere (described previously); the only difference is that in this case, in the new Rectangle() constructor call, the

left edge of the rectangle is placed at sourceX:

 sphere.bitmapData.copyPixels(textureMap,
 new Rectangle(sourceX, 0, sphere.width, sphere.height),
 new Point(0, 0));

Remember that this code is called repeatedly, every 15 milliseconds. As the source rectangle’s location is continuously

shifted, and the pixels are copied onto sphere, the appearance on the screen is that the moon photo image represented

by sphere continuously slides. In other words, the moon appears to rotate continuously.

Creating the spherical appearance

Flash Player 9 and later, Adobe AIR 1.0 and later

The moon, of course, is a sphere and not a rectangle. Consequently, the sample needs to take the rectangular moon

surface photo, as it continuously animates, and convert it into a sphere. This involves two separate steps: a mask is used

to hide all the content except for a circular region of the moon surface photo, and a displacement map filter is used to

distort the appearance of the moon photo to make it look three-dimensional.

260ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

First, a circle-shaped mask is used to hide all the content of the MoonSphere object except for the sphere created by

the filter. The following code creates the mask as a Shape instance and applies it as the mask of the MoonSphere

instance:

 moonMask = new Shape();
 moonMask.graphics.beginFill(0);
 moonMask.graphics.drawCircle(0, 0, radius);
 this.addChild(moonMask);
 this.mask = moonMask;

Note that since MoonSphere is a display object (it is based on the Sprite class), the mask can be applied directly to the

MoonSphere instance using its inherited mask property.

Simply hiding parts of the photo using a circle-shaped mask isn’t enough to create a realistic-looking rotating-sphere

effect. Because of the way the photo of the moon’s surface was taken, its dimensions aren’t proportional; the portions

of the image that are more toward the top or bottom of the image are more distorted and stretched compared to the

portions in the equator. To distort the appearance of the moon photo to make it look three-dimensional, we’ll use a

displacement map filter.

A displacement map filter is a type of filter that is used to distort an image. In this case, the moon photo will be

“distorted” to make it look more realistic, by squeezing the top and bottom of the image horizontally, while leaving the

middle unchanged. Assuming the filter operates on a square-shaped portion of the photo, squeezing the top and

bottom but not the middle will turn the square into a circle. A side effect of animating this distorted image is that the

middle of the image seems to move farther in actual pixel distance than the areas close to the top and bottom, which

creates the illusion that the circle is actually a three-dimensional object (a sphere).

The following code is used to create the displacement map filter, named displaceFilter:

 var displaceFilter:DisplacementMapFilter;
 displaceFilter = new DisplacementMapFilter(fisheyeLens,
 new Point(radius, 0),
 BitmapDataChannel.RED,
 BitmapDataChannel.GREEN,
 radius, 0);

The first parameter, fisheyeLens, is known as the map image; in this case it is a BitmapData object that is created

programmatically. The creation of that image is described in “Creating a bitmap image by setting pixel values” on

page 261. The other parameters describe the position in the filtered image at which the filter should be applied, which

color channels will be used to control the displacement effect, and to what extent they will affect the displacement.

Once the displacement map filter is created, it is applied to sphere, still within the imageLoadComplete() method:

 sphere.filters = [displaceFilter];

261ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

The final image, with mask and displacement map filter applied, looks like this:

With every cycle of the rotating moon animation, the BitmapData content of sphere is overwritten by a new snapshot

of the source image data. However, the filter does not need to be re-applied each time. This is because the filter is

applied to the Bitmap instance (the display object) rather than to the bitmap data (the raw pixel information).

Remember, the Bitmap instance is not the actual bitmap data; it is a display object that displays the bitmap data on the

screen. To use an analogy, a Bitmap instance is like the slide projector that is used to display photographic slides on a

screen, and a BitmapData object is like the actual photographic slide that can be presented through a slide projector.

A filter can be applied directly to a BitmapData object, which would be comparable to drawing directly onto a

photographic slide to alter the image. A filter can also be applied to any display object, including a Bitmap instance;

this would be like placing a filter in front of the slide projector’s lens to distort the output shown on the screen (without

altering the original slide at all). Because the raw bitmap data is accessible through a Bitmap instance’s bitmapData

property, the filter could have been applied directly to the raw bitmap data. However, in this case, it makes sense to

apply the filter to the Bitmap display object rather than to the bitmap data.

For detailed information about using the displacement map filter in ActionScript, see “Filtering display objects” on

page 267.

Creating a bitmap image by setting pixel values

Flash Player 9 and later, Adobe AIR 1.0 and later

One important aspect of a displacement map filter is that it actually involves two images. One image, the source image,

is the image that is actually altered by the filter. In this sample, the source image is the Bitmap instance named sphere.

The other image used by the filter is known as the map image. The map image is not actually displayed on the screen.

Instead, the color of each of its pixels is used as an input to the displacement function—the color of the pixel at a certain

x, y coordinate in the map image determines how much displacement (physical shift in position) is applied to the pixel

at that x, y coordinate in the source image.

Consequently, to use the displacement map filter to create a sphere effect, the sample needs the appropriate map

image—one that has a gray background and a circle that’s filled with a gradient of a single color (red) going

horizontally from dark to light, as shown here:

262ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

Because only one map image and filter are used in this sample, the map image is only created once, in the

imageLoadComplete() method (in other words, when the external image finishes loading). The map image, named

fisheyeLens, is created by calling the MoonSphere class’s createFisheyeMap() method:

 var fisheyeLens:BitmapData = createFisheyeMap(radius);

Inside the createFisheyeMap() method, the map image is actually drawn one pixel at a time using the BitmapData

class’s setPixel() method. The complete code for the createFisheyeMap() method is listed here, followed by a

step-by-step discussion of how it works:

 private function createFisheyeMap(radius:int):BitmapData
 {
 var diameter:int = 2 * radius;

 var result:BitmapData = new BitmapData(diameter,
 diameter,
 false,
 0x808080);

 // Loop through the pixels in the image one by one
 for (var i:int = 0; i < diameter; i++)
 {
 for (var j:int = 0; j < diameter; j++)
 {
 // Calculate the x and y distances of this pixel from
 // the center of the circle (as a percentage of the radius).
 var pctX:Number = (i - radius) / radius;
 var pctY:Number = (j - radius) / radius;

 // Calculate the linear distance of this pixel from
 // the center of the circle (as a percentage of the radius).
 var pctDistance:Number = Math.sqrt(pctX * pctX + pctY * pctY);

 // If the current pixel is inside the circle,
 // set its color.
 if (pctDistance < 1)
 {
 // Calculate the appropriate color depending on the
 // distance of this pixel from the center of the circle.
 var red:int;
 var green:int;
 var blue:int;
 var rgb:uint;
 red = 128 * (1 + 0.75 * pctX * pctX * pctX / (1 - pctY * pctY));
 green = 0;
 blue = 0;
 rgb = (red << 16 | green << 8 | blue);
 // Set the pixel to the calculated color.
 result.setPixel(i, j, rgb);
 }
 }
 }
 return result;
 }

263ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

First, when the method is called it receives a parameter, radius, indicating the radius of the circle-shaped image to

create. Next, the code creates the BitmapData object on which the circle will be drawn. That object, named result, is

eventually passed back as the return value of the method. As shown in the following code snippet, the result

BitmapData instance is created with a width and height as big as the diameter of the circle, without transparency

(false for the third parameter), and pre-filled with the color 0x808080 (middle gray):

 var result:BitmapData = new BitmapData(diameter,
 diameter,
 false,
 0x808080);

Next, the code uses two loops to iterate over each pixel of the image. The outer loop goes through each column of the

image from left to right (using the variable i to represent the horizontal position of the pixel currently being

manipulated), while the inner loop goes through each pixel of the current column from top to bottom (with the

variable j representing the vertical position of the current pixel). The code for the loops (with the inner loop’s contents

omitted) is shown here:

 for (var i:int = 0; i < diameter; i++)
 {
 for (var j:int = 0; j < diameter; j++)
 {
 ...
 }
 }

As the loops cycle through the pixels one by one, at each pixel a value (the color value of that pixel in the map image)

is calculated. This process involves four steps:

1 The code calculates the distance of the current pixel from the center of the circle along the x axis (i - radius).

That value is divided by the radius to make it a percentage of the radius rather than an absolute distance ((i -

radius) / radius). That percentage value is stored in a variable named pctX, and the equivalent value for the y

axis is calculated and stored in the variable pctY, as shown in this code:

 var pctX:Number = (i - radius) / radius;
 var pctY:Number = (j - radius) / radius;

2 Using a standard trigonometric formula, the Pythagorean theorem, the linear distance between the center of the

circle and the current point is calculated from pctX and pctY. That value is stored in a variable named

pctDistance, as shown here:

 var pctDistance:Number = Math.sqrt(pctX * pctX + pctY * pctY);

3 Next, the code checks whether the distance percentage is less than 1 (meaning 100% of the radius, or in other words,

if the pixel being considered is within the radius of the circle). If the pixel falls inside the circle, it is assigned a

calculated color value (omitted here, but described in step 4); if not, nothing further happens with that pixel so its

color is left as the default middle gray:

 if (pctDistance < 1)
 {
 ...
 }

4 For those pixels that fall inside the circle, a color value is calculated for the pixel. The final color will be a shade of

red ranging from black (0% red) at the left edge of the circle to bright (100%) red at the right edge of the circle. The

color value is initially calculated in three parts (red, green, and blue), as shown here:

 red = 128 * (1 + 0.75 * pctX * pctX * pctX / (1 - pctY * pctY));
 green = 0;
 blue = 0;

264ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

Notice that only the red portion of the color (the variable red) actually has a value. The green and blue values (the

variables green and blue) are shown here for clarity, but could be omitted. Since the purpose of this method is to

create a circle that contains a red gradient, no green or blue values are needed.

Once the three individual color values are determined, they are combined into a single integer color value using a

standard bit-shifting algorithm, shown in this code:

 rgb = (red << 16 | green << 8 | blue);

Finally, with the color value calculated, that value is actually assigned to the current pixel using the setPixel()

method of the result BitmapData object, shown here:

 result.setPixel(i, j, rgb);

Asynchronous decoding of bitmap images

Flash Player 11 and later, Adobe AIR 2.6 and later

When you work with bitmap images, you can asynchronously decode and load the bitmap images to improve your

application’s perceived performance. Decoding a bitmap image asynchronously can take the same time as decoding

the image synchronously in many cases. However, the bitmap image gets decoded in a separate thread before the

associated Loader object sends the COMPLETE event. Hence, you can asynchronously decode larger images after

loading them.

The ImageDecodingPolicy class in the flash.system package, allows you to specify the bitmap loading scheme. The

default loading scheme is synchronous.

Note: If the file being loaded is a bitmap image and the decoding policy used is ON_LOAD, the image is decoded

asynchronously before the COMPLETE event is dispatched.

The following code shows the usage of the ImageDecodingPolicy class:

 var loaderContext:LoaderContext = new LoaderContext();
 loaderContext.imageDecodingPolicy = ImageDecodingPolicy.ON_LOAD
 var loader:Loader = new Loader();
loader.load(new URLRequest("http://www.adobe.com/myimage.png"), loaderContext);

Bitmap Decoding Policy Bitmap Loading Scheme Description

ImageDecodingPolicy.ON_DEMAND Synchronous Loaded images are decoded when the

image data is accessed.

Use this policy to decode smaller images.

You can also use this policy when your

application does not rely on complex

effects and transitions.

ImageDecodingPolicy.ON_LOAD Asynchronous Loaded images are decoded on load,

before the COMPLETE event is dispatched.

Ideal for larger images (greater than 10

MP). When you are developing AIR-based

mobile applications with page transitions,

use this bitmap loading policy to improve

your application’s perceived

performance.

265ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

You can still use ON_DEMAND decoding with Loader.load() and Loader.loadBytes() methods. However, all the

other methods that take a LoaderContext object as an argument, ignore any ImageDecodingPolicy value passed.

The following example shows the difference in decoding a bitmap image synchronously and asynchronously:

 package
{

import flash.display.Loader;
import flash.display.Sprite;
import flash.events.Event;
import flash.net.URLRequest;
import flash.system.ImageDecodingPolicy;
import flash.system.LoaderContext;

public class AsyncTest extends Sprite
{

private var loaderContext:LoaderContext;
private var loader:Loader;
private var urlRequest:URLRequest;
public function AsyncTest()
{

//Load the image synchronously
loaderContext = new LoaderContext();
//Default behavior.
loaderContext.imageDecodingPolicy = ImageDecodingPolicy.ON_DEMAND;
loader = new Loader();
loadImageSync();

//Load the image asynchronously
loaderContext = new LoaderContext();
loaderContext.imageDecodingPolicy = ImageDecodingPolicy.ON_LOAD;
loader = new Loader();
loadImageASync();

}

private function loadImageASync():void{

trace("Loading image asynchronously...");
urlRequest = new URLRequest("http://www.adobe.com/myimage.png");
urlRequest.useCache = false;
loader.load(urlRequest, loaderContext);
loader.contentLoaderInfo.addEventListener

(Event.COMPLETE, onAsyncLoadComplete);

266ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with bitmaps

Last updated 10/9/2017

}

private function onAsyncLoadComplete(event:Event):void{

trace("Async. Image Load Complete");
}

private function loadImageSync():void{

trace("Loading image synchronously...");
urlRequest = new URLRequest("http://www.adobe.com/myimage.png");
urlRequest.useCache = false;
loader.load(urlRequest, loaderContext);
loader.contentLoaderInfo.addEventListener

(Event.COMPLETE, onSyncLoadComplete);
}

private function onSyncLoadComplete(event:Event):void{

trace("Sync. Image Load Complete");
}

}
}

For a demonstration of the effect of the different decoding policies, see Thibaud Imbert: Asynchronous bitmap

decoding in the Adobe Flash runtimes

http://www.bytearray.org/?p=2931
http://www.bytearray.org/?p=2931

267

Last updated 10/9/2017

Chapter 14: Filtering display objects

Flash Player 9 and later, Adobe AIR 1.0 and later

Historically, the application of filter effects to bitmap images has been the domain of specialized image-editing

software such as Adobe Photoshop® and Adobe Fireworks®. ActionScript 3.0 includes the flash.filters package, which

contains a series of bitmap effect filter classes. These effects allow developers to programmatically apply filters to

bitmaps and display objects and achieve many of the same effects that are available in graphics manipulation

applications.

Basics of filtering display objects

Flash Player 9 and later, Adobe AIR 1.0 and later

One of the ways to add polish to an application is to add simple graphic effects. You can add a drop shadow behind a

photo to create the illusion of 3-d, or a glow around a button to show that it is active. ActionScript 3.0 includes ten

filters that you can apply to any display object or to a BitmapData instance. The built-in filters range from basic, such

as the drop shadow and glow filters, to complex, such as the displacement map filter and the convolution filter.

Note: In addition to the built-in filters, you can also program custom filters and effects using Pixel Bender. See “Working

with Pixel Bender shaders” on page 300.

Important concepts and terms

The following reference list contains important terms that you might encounter when creating filters:

Bevel An edge created by lightening pixels on two sides and darkening pixels on the opposite two sides. This effect

creates the appearance of a three-dimensional border. The effect is commonly used for raised or indented buttons and

similar graphics.

Convolution Distorting pixels in an image by combining each pixel’s value with the values of some or all of its

neighboring pixels, using various ratios.

Displacement Shifting or moving pixels in an image to a new position.

Matrix A grid of numbers used to perform certain mathematical calculations by applying the numbers in the grid to

various values, then combining the results.

More Help topics

flash.filters package

flash.display.DisplayObject.filters

flash.display.BitmapData.applyFilter()

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filters/package-detail.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/DisplayObject.html#filters
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/BitmapData.html#applyFilter()

268ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

Creating and applying filters

Flash Player 9 and later, Adobe AIR 1.0 and later

Filters allow you to apply a range of effects to bitmap and display objects, ranging from drop shadows to bevels and

blurs. Each filter is defined as a class, so applying filters involves creating instances of filter objects, which is no different

from constructing any other object. Once you’ve created an instance of a filter object, it can easily be applied to a

display object by using the object’s filters property, or in the case of a BitmapData object, by using the

applyFilter() method.

Creating a filter

Flash Player 9 and later, Adobe AIR 1.0 and later

To create a filter object, simply call the constructor method of your selected filter class. For example, to create a

DropShadowFilter object, use the following code:

 import flash.filters.DropShadowFilter;
 var myFilter:DropShadowFilter = new DropShadowFilter();

Although not shown here, the DropShadowFilter() constructor (like all the filter classes’ constructors) accepts

several optional parameters that can be used to customize the appearance of the filter effect.

Applying a filter

Flash Player 9 and later, Adobe AIR 1.0 and later

Once you've constructed a filter object, you can apply it to a display object or a BitmapData object; how you apply the

filter depends on the object to which you’re applying it.

Applying a filter to a display object

When you apply filter effects to a display object, you apply them through the filters property. The filters

property of a display object is an Array instance, whose elements are the filter objects applied to the display object. To

apply a single filter to a display object, create the filter instance, add it to an Array instance, and assign that Array object

to the display object’s filters property:

269ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.filters.DropShadowFilter;

 // Create a bitmapData object and render it to screen
 var myBitmapData:BitmapData = new BitmapData(100,100,false,0xFFFF3300);
 var myDisplayObject:Bitmap = new Bitmap(myBitmapData);
 addChild(myDisplayObject);

 // Create a DropShadowFilter instance.
 var dropShadow:DropShadowFilter = new DropShadowFilter();

 // Create the filters array, adding the filter to the array by passing it as
 // a parameter to the Array() constructor.
 var filtersArray:Array = new Array(dropShadow);

 // Assign the filters array to the display object to apply the filter.
 myDisplayObject.filters = filtersArray;

If you want to assign multiple filters to the object, simply add all the filters to the Array instance before assigning it to

the filters property. You can add multiple objects to an Array by passing them as parameters to its constructor. For

example, this code applies a bevel filter and a glow filter to the previously created display object:

 import flash.filters.BevelFilter;
 import flash.filters.GlowFilter;

 // Create the filters and add them to an array.
 var bevel:BevelFilter = new BevelFilter();
 var glow:GlowFilter = new GlowFilter();
 var filtersArray:Array = new Array(bevel, glow);

 // Assign the filters array to the display object to apply the filter.
 myDisplayObject.filters = filtersArray;

When you’re creating the array containing the filters, you can create it using the new Array() constructor (as shown

in the previous examples) or you can use Array literal syntax, wrapping the filters in square brackets ([]). For instance,

this line of code:

var filters:Array = new Array(dropShadow, blur);

does the same thing as this line of code:

var filters:Array = [dropShadow, blur];

If you apply multiple filters to display objects, they are applied in a cumulative, sequential manner. For example, if a

filters array has two elements, a bevel filter added first and a drop shadow filter added second, the drop shadow filter

is applied to both the bevel filter and the display object. This is because of the drop shadow filter’s second position in

the filters array. If you want to apply filters in a noncumulative manner, apply each filter to a new copy of the display

object.

If you’re only assigning one or a few filters to a display object, you can create the filter instance and assign it to the

object in a single statement. For example, the following line of code applies a blur filter to a display object called

myDisplayObject:

 myDisplayObject.filters = [new BlurFilter()];

The previous code creates an Array instance using Array literal syntax (square braces), creates a BlurFilter instance as

an element in the Array, and assigns that Array to the filters property of the display object named

myDisplayObject.

270ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

Removing filters from a display object

Removing all filters from a display object is as simple as assigning a null value to the filters property:

 myDisplayObject.filters = null;

If you’ve applied multiple filters to an object and want to remove only one of the filters, you must go through several

steps to change the filters property array. For more information, see “Potential issues for working with filters” on

page 270.

Applying a filter to a BitmapData object

Applying a filter to a BitmapData object requires the use of the BitmapData object’s applyFilter() method:

 var rect:Rectangle = new Rectangle();
var origin:Point = new Point();
myBitmapData.applyFilter(sourceBitmapData, rect, origin, new BlurFilter());

The applyFilter() method applies a filter to a source BitmapData object, producing a new, filtered image. This

method does not modify the original source image; instead, the result of the filter being applied to the source image is

stored in the BitmapData instance on which the applyFilter() method is called.

How filters work

Flash Player 9 and later, Adobe AIR 1.0 and later

Display object filtering works by caching a copy of the original object as a transparent bitmap.

Once a filter has been applied to a display object, the runtime caches the object as a bitmap for as long as the object has

a valid filter list. This source bitmap is then used as the original image for all subsequently applied filter effects.

Each display object usually contains two bitmaps: one with the original unfiltered source display object and another

for the final image after filtering. The final image is used when rendering. As long as the display object does not change,

the final image does not need updating.

Potential issues for working with filters

Flash Player 9 and later, Adobe AIR 1.0 and later

There are several potential sources of confusion or trouble to keep in mind when you’re working with filters.

Filters and bitmap caching

To apply a filter to a display object, bitmap caching must be enabled for that object. When you apply a filter to a display

object whose cacheAsBitmap property is set to false, the object’s cacheAsBitmap property is automatically set to

true. If you later remove all the filters from the display object, the cacheAsBitmap property is reset to the last value

it was set to.

271ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

Changing filters at run time

If a display object already has one or more filters applied to it, you can’t change the set of filters by adding additional

filters to or removing filters from the filters property array. Instead, to add to or change the set of filters being

applied, you must make your changes to a separate array, then assign that array to the filters property of the display

object for the filters to be applied to the object. The simplest way to do this is to read the filters property array into

an Array variable and make your modifications to this temporary array. You then reassign this array back to the

filters property of the display object. In more complex cases, you might need to keep a separate master array of

filters. You make any changes to that master filter array, and reassign the master array to the display object’s filters

property after each change.

Adding an additional filter

The following code demonstrates the process of adding an additional filter to a display object that already has one or

more filters applied to it. Initially, a glow filter is applied to the display object named myDisplayObject; later, when

the display object is clicked, the addFilters() function is called. In this function, two additional filters are applied to

myDisplayObject:

 import flash.events.MouseEvent;
 import flash.filters.*;

 myDisplayObject.filters = [new GlowFilter()];

 function addFilters(event:MouseEvent):void
 {
 // Make a copy of the filters array.
 var filtersCopy:Array = myDisplayObject.filters;

 // Make desired changes to the filters (in this case, adding filters).
 filtersCopy.push(new BlurFilter());
 filtersCopy.push(new DropShadowFilter());

 // Apply the changes by reassigning the array to the filters property.
 myDisplayObject.filters = filtersCopy;
 }

 myDisplayObject.addEventListener(MouseEvent.CLICK, addFilters);

Removing one filter from a set of filters

If a display object has multiple filters applied to it, and you want to remove one of the filters while the other filters

continue to be applied to the object, you copy the filters into a temporary array, remove the unwanted filter from that

array, and reassign the temporary array to the display object’s filters property. Several ways to remove one or more

elements from any array are described in “Retrieving values and removing array elements” on page 31.

The most straightforward situation is to remove the top-most filter on the object (the last filter applied to the object).

You use the Array class’s pop() method to remove the filter from the array:

272ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 // Example of removing the top-most filter from a display object
 // named "filteredObject".

 var tempFilters:Array = filteredObject.filters;

 // Remove the last element from the Array (the top-most filter).
 tempFilters.pop();

 // Apply the new set of filters to the display object.
 filteredObject.filters = tempFilters;

Similarly, to remove the bottom-most filter (the first one applied to the object) you use the same code, substituting the

Array class’s shift() method in place of the pop() method.

To remove a filter from the middle of an array of filters (assuming that the array has more than two filters) you can use

the splice() method. You must know the index (the position in the array) of the filter you want to remove. For

example, the following code removes the second filter (the filter at index 1) from a display object:

 // Example of removing a filter from the middle of a stack of filters
 // applied to a display object named "filteredObject".

 var tempFilters:Array = filteredObject.filters;

 // Remove the second filter from the array. It's the item at index 1
 // because Array indexes start from 0.
 // The first "1" indicates the index of the filter to remove; the
 // second "1" indicates how many elements to remove.
 tempFilters.splice(1, 1);

 // Apply the new set of filters to the display object.
 filteredObject.filters = tempFilters;

Determining a filter’s index

You need to know which filter to remove from the array, so that you know the index of the filter. You must either know

(by virtue of the way the application is designed), or calculate the index of the filter to remove.

The best approach is to design your application so that the filter you want to remove is always in the same position in

the set of filters. For example, if you have a single display object with a convolution filter and a drop-shadow filter

applied to it (in that order), and you want to remove the drop-shadow filter but keep the convolution filter, the filter

is in a known position (the top-most filter) so that you can know ahead of time which Array method to use (in this

case Array.pop() to remove the drop-shadow filter).

If the filter you want to remove is always a certain type, but not necessarily always in the same position in the set of

filters, you can check the data type of each filter in the array to determine which one to remove. For example, the

following code determines which of a set of filters is a glow filter, and removes that filter from the set.

273ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 // Example of removing a glow filter from a set of filters, where the
//filter you want to remove is the only GlowFilter instance applied
 // to the filtered object.

 var tempFilters:Array = filteredObject.filters;

 // Loop through the filters to find the index of the GlowFilter instance.
 var glowIndex:int;
 var numFilters:int = tempFilters.length;
 for (var i:int = 0; i < numFilters; i++)
 {
 if (tempFilters[i] is GlowFilter)
 {
 glowIndex = i;
 break;
 }
 }

 // Remove the glow filter from the array.
 tempFilters.splice(glowIndex, 1);

 // Apply the new set of filters to the display object.
 filteredObject.filters = tempFilters;

In a more complex case, such as if the filter to remove is selected at runtime, the best approach is to keep a separate,

persistent copy of the filter array that serves as the master list of filters. Any time you make a change to the set of filters,

change the master list then apply that filter array as the filters property of the display object.

For example, in the following code listing, multiple convolution filters are applied to a display object to create different

visual effects, and at a later point in the application one of those filters is removed while the others are retained. In this

case, the code keeps a master copy of the filters array, as well as a reference to the filter to remove. Finding and

removing the specific filter is similar to the preceding approach, except that instead of making a temporary copy of the

filters array, the master copy is manipulated and then applied to the display object.

274ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 // Example of removing a filter from a set of
 // filters, where there may be more than one
 // of that type of filter applied to the filtered
 // object, and you only want to remove one.

 // A master list of filters is stored in a separate,
 // persistent Array variable.
 var masterFilterList:Array;

 // At some point, you store a reference to the filter you
 // want to remove.
 var filterToRemove:ConvolutionFilter;

 // ... assume the filters have been added to masterFilterList,
 // which is then assigned as the filteredObject.filters:
 filteredObject.filters = masterFilterList;

 // ... later, when it's time to remove the filter, this code gets called:

 // Loop through the filters to find the index of masterFilterList.
 var removeIndex:int = -1;
 var numFilters:int = masterFilterList.length;
 for (var i:int = 0; i < numFilters; i++)
 {
 if (masterFilterList[i] == filterToRemove)
 {
 removeIndex = i;
 break;
 }
 }

 if (removeIndex >= 0)
 {
 // Remove the filter from the array.
 masterFilterList.splice(removeIndex, 1);

 // Apply the new set of filters to the display object.
 filteredObject.filters = masterFilterList;
 }

In this approach (when you’re comparing a stored filter reference to the items in the filters array to determine which

filter to remove), you must keep a separate copy of the filters array—the code does not work if you compare the stored

filter reference to the elements in a temporary array copied from the display object’s filters property. This is because

internally, when you assign an array to the filters property, the runtime makes a copy of each filter object in the

array. Those copies (rather than the original objects) are applied to the display object, and when you read the filters

property into a temporary array, the temporary array contains references to the copied filter objects rather than

references to the original filter objects. Consequently, if in the preceding example you try to determine the index of

filterToRemove by comparing it to the filters in a temporary filters array, no match is found.

Filters and object transformations

No filtered region—a drop shadow, for example—outside of a display object’s bounding box rectangle is considered

to be part of the surface for the purposes of hit detection (determining if an instance overlaps or intersects with another

instance). Because the DisplayObject class’s hit detection methods are vector-based, you cannot perform a hit

detection on the bitmap result. For example, if you apply a bevel filter to a button instance, hit detection is not available

on the beveled portion of the instance.

275ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

Scaling, rotating, and skewing are not supported by filters; if the filtered display object itself is scaled (if scaleX and

scaleY are not 100%), the filter effect does not scale with the instance. This means that the original shape of the

instance rotates, scales, or skews; however, the filter does not rotate, scale, or skew with the instance.

You can animate an instance with a filter to create realistic effects, or nest instances and use the BitmapData class to

animate filters to achieve this effect.

Filters and Bitmap objects

When you apply any filter to a BitmapData object, the cacheAsBitmap property is automatically set to true. In this

way, the filter is actually applied to the copy of the object rather than to the original.

This copy is then placed on the main display (over the original object) as close as possible to the nearest pixel. If the

bounds of the original bitmap change, the filtered copy bitmap is recreated from the original, rather than being

stretched or distorted.

If you clear all filters for a display object, the cacheAsBitmap property is reset to what it was before the filter was

applied.

Available display filters

Flash Player 9 and later, Adobe AIR 1.0 and later

ActionScript 3.0 includes ten filter classes that you can apply to display objects and BitmapData objects:

• Bevel filter (BevelFilter class)

• Blur filter (BlurFilter class)

• Drop shadow filter (DropShadowFilter class)

• Glow filter (GlowFilter class)

• Gradient bevel filter (GradientBevelFilter class)

• Gradient glow filter (GradientGlowFilter class)

• Color matrix filter (ColorMatrixFilter class)

• Convolution filter (ConvolutionFilter class)

• Displacement map filter (DisplacementMapFilter class)

• Shader filter (ShaderFilter class)

The first six filters are simple filters that can be used to create one specific effect, with some customization of the effect

available. Those six filters can be applied using ActionScript, and can also be applied to objects in Flash Professional

using the Filters panel. Consequently, even if you’re applying filters using ActionScript, if you have Flash Professional

you can use the visual interface to quickly try out different filters and settings to figure out how to create a desired

effect.

The final four filters are available in ActionScript only. Those filters, the color matrix filter, convolution filter,

displacement map filter, and shader filter, are much more flexible in the types of effects that they can be used to create.

Rather than being optimized for a single effect, they provide power and flexibility. For example, by selecting different

values for its matrix, the convolution filter can be used to create effects such as blurring, embossing, sharpening,

finding color edges, transformations, and more.

276ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

Each of the filters, whether simple or complex, can be customized using their properties. Generally, you have two

choices for setting filter properties. All the filters let you set the properties by passing parameter values to the filter

object’s constructor. Alternatively, whether or not you set the filter properties by passing parameters, you can adjust

the filters later by setting values for the filter object’s properties. Most of the example code listings set the properties

directlyto make the example easier to follow. Nevertheless, you could usually achieve the same result in fewer lines of

code by passing the values as parameters in the filter object’s constructor. For more details on the specifics of each

filter, its properties and its constructor parameters, see the listings for the flash.filters package in the ActionScript 3.0

Reference for the Adobe Flash Platform.

Bevel filter

Flash Player 9 and later, Adobe AIR 1.0 and later

The BevelFilter class allows you to add a 3D beveled edge to the filtered object. This filter makes the hard corners or

edges of your object look like they have been chiseled, or beveled, away.

The BevelFilter class properties allow you to customize the appearance of the bevel. You can set highlight and shadow

colors, bevel edge blurs, bevel angles, and bevel edge placement; you can even create a knockout effect.

The following example loads an external image and applies a bevel filter to it.

 import flash.display.*;
 import flash.filters.BevelFilter;
 import flash.filters.BitmapFilterQuality;
 import flash.filters.BitmapFilterType;
 import flash.net.URLRequest;

 // Load an image onto the Stage.
 var imageLoader:Loader = new Loader();
 var url:String = "http://www.helpexamples.com/flash/images/image3.jpg";
 var urlReq:URLRequest = new URLRequest(url);
 imageLoader.load(urlReq);
 addChild(imageLoader);

 // Create the bevel filter and set filter properties.
 var bevel:BevelFilter = new BevelFilter();

 bevel.distance = 5;
 bevel.angle = 45;
 bevel.highlightColor = 0xFFFF00;
 bevel.highlightAlpha = 0.8;
 bevel.shadowColor = 0x666666;
 bevel.shadowAlpha = 0.8;
 bevel.blurX = 5;
 bevel.blurY = 5;
 bevel.strength = 5;
 bevel.quality = BitmapFilterQuality.HIGH;
 bevel.type = BitmapFilterType.INNER;
 bevel.knockout = false;

 // Apply filter to the image.
 imageLoader.filters = [bevel];

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filters/package-detail.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filters/package-detail.html

277ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

Blur filter

Flash Player 9 and later, Adobe AIR 1.0 and later

The BlurFilter class smears, or blurs, a display object and its contents. Blur effects are useful for giving the impression

that an object is out of focus or for simulating fast movement, as in a motion blur. By setting the quality property of

the blur filter too low, you can simulate a softly out-of-focus lens effect. Setting the quality property to high results

in a smooth blur effect similar to a Gaussian blur.

The following example creates a circle object using the drawCircle() method of the Graphics class and applies a blur

filter to it:

 import flash.display.Sprite;
 import flash.filters.BitmapFilterQuality;
 import flash.filters.BlurFilter;

 // Draw a circle.
 var redDotCutout:Sprite = new Sprite();
 redDotCutout.graphics.lineStyle();
 redDotCutout.graphics.beginFill(0xFF0000);
 redDotCutout.graphics.drawCircle(145, 90, 25);
 redDotCutout.graphics.endFill();

 // Add the circle to the display list.
 addChild(redDotCutout);

 // Apply the blur filter to the rectangle.
 var blur:BlurFilter = new BlurFilter();
 blur.blurX = 10;
 blur.blurY = 10;
 blur.quality = BitmapFilterQuality.MEDIUM;
 redDotCutout.filters = [blur];

Drop shadow filter

Flash Player 9 and later, Adobe AIR 1.0 and later

Drop shadows give the impression that there is a separate light source situated above a target object. The position and

intensity of this light source can be modified to produce a variety of different drop shadow effects.

The DropShadowFilter class uses an algorithm that is similar to the blur filter’s algorithm. The main difference is that

the drop shadow filter has a few more properties that you can modify to simulate different light-source attributes (such

as alpha, color, offset and brightness).

The drop shadow filter also allows you to apply custom transformation options on the style of the drop shadow,

including inner or outer shadow and knockout (also known as cutout) mode.

The following code creates a square box sprite and applies a drop shadow filter to it:

278ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 import flash.display.Sprite;
 import flash.filters.DropShadowFilter;

 // Draw a box.
 var boxShadow:Sprite = new Sprite();
 boxShadow.graphics.lineStyle(1);
 boxShadow.graphics.beginFill(0xFF3300);
 boxShadow.graphics.drawRect(0, 0, 100, 100);
 boxShadow.graphics.endFill();
 addChild(boxShadow);

 // Apply the drop shadow filter to the box.
 var shadow:DropShadowFilter = new DropShadowFilter();
 shadow.distance = 10;
 shadow.angle = 25;

 // You can also set other properties, such as the shadow color,
 // alpha, amount of blur, strength, quality, and options for
 // inner shadows and knockout effects.

 boxShadow.filters = [shadow];

Glow filter

Flash Player 9 and later, Adobe AIR 1.0 and later

The GlowFilter class applies a lighting effect to display objects, making it appear that a light is being shined up from

underneath the object to create a soft glow.

Similar to the drop shadow filter, the glow filter includes properties to modify the distance, angle, and color of the light

source to produce varying effects. The GlowFilter also has several options for modifying the style of the glow, including

inner or outer glow and knockout mode.

The following code creates a cross using the Sprite class and applies a glow filter to it:

279ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 import flash.display.Sprite;
 import flash.filters.BitmapFilterQuality;
 import flash.filters.GlowFilter;

 // Create a cross graphic.
 var crossGraphic:Sprite = new Sprite();
 crossGraphic.graphics.lineStyle();
 crossGraphic.graphics.beginFill(0xCCCC00);
 crossGraphic.graphics.drawRect(60, 90, 100, 20);
 crossGraphic.graphics.drawRect(100, 50, 20, 100);
 crossGraphic.graphics.endFill();
 addChild(crossGraphic);

 // Apply the glow filter to the cross shape.
 var glow:GlowFilter = new GlowFilter();
 glow.color = 0x009922;
 glow.alpha = 1;
 glow.blurX = 25;
 glow.blurY = 25;
 glow.quality = BitmapFilterQuality.MEDIUM;

 crossGraphic.filters = [glow];

Gradient bevel filter

Flash Player 9 and later, Adobe AIR 1.0 and later

The GradientBevelFilter class lets you apply an enhanced bevel effect to display objects or BitmapData objects. Using

a gradient color on the bevel greatly improves the spatial depth of the bevel, giving edges a more realistic, 3D

appearance.

The following code creates a rectangle object using the drawRect() method of the Shape class and applies a gradient

bevel filter to it.

280ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 import flash.display.Shape;
 import flash.filters.BitmapFilterQuality;
 import flash.filters.GradientBevelFilter;

 // Draw a rectangle.
 var box:Shape = new Shape();
 box.graphics.lineStyle();
 box.graphics.beginFill(0xFEFE78);
 box.graphics.drawRect(100, 50, 90, 200);
 box.graphics.endFill();

 // Apply a gradient bevel to the rectangle.
 var gradientBevel:GradientBevelFilter = new GradientBevelFilter();

 gradientBevel.distance = 8;
 gradientBevel.angle = 225; // opposite of 45 degrees
 gradientBevel.colors = [0xFFFFCC, 0xFEFE78, 0x8F8E01];
 gradientBevel.alphas = [1, 0, 1];
 gradientBevel.ratios = [0, 128, 255];
 gradientBevel.blurX = 8;
 gradientBevel.blurY = 8;
 gradientBevel.quality = BitmapFilterQuality.HIGH;

 // Other properties let you set the filter strength and set options
 // for inner bevel and knockout effects.

 box.filters = [gradientBevel];

 // Add the graphic to the display list.
 addChild(box);

Gradient glow filter

Flash Player 9 and later, Adobe AIR 1.0 and later

The GradientGlowFilter class lets you apply an enhanced glow effect to display objects or BitmapData objects. The

effect gives you greater color control of the glow, and in turn produces a more realistic glow effect. Additionally, the

gradient glow filter allows you to apply a gradient glow to the inner, outer, or upper edges of an object.

The following example draws a circle on the Stage, and applies a gradient glow filter to it. As you move the mouse

further to the right and down, the amount of blur increases in the horizontal and vertical directions respectively. In

addition, any time you click on the Stage, the strength of the blur increases.

281ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 import flash.events.MouseEvent;
 import flash.filters.BitmapFilterQuality;
 import flash.filters.BitmapFilterType;
 import flash.filters.GradientGlowFilter;

 // Create a new Shape instance.
 var shape:Shape = new Shape();

 // Draw the shape.
 shape.graphics.beginFill(0xFF0000, 100);
 shape.graphics.moveTo(0, 0);
 shape.graphics.lineTo(100, 0);
 shape.graphics.lineTo(100, 100);
 shape.graphics.lineTo(0, 100);
 shape.graphics.lineTo(0, 0);
 shape.graphics.endFill();

 // Position the shape on the Stage.
 addChild(shape);
 shape.x = 100;
 shape.y = 100;

 // Define a gradient glow.
 var gradientGlow:GradientGlowFilter = new GradientGlowFilter();
 gradientGlow.distance = 0;
 gradientGlow.angle = 45;
 gradientGlow.colors = [0x000000, 0xFF0000];
 gradientGlow.alphas = [0, 1];
 gradientGlow.ratios = [0, 255];
 gradientGlow.blurX = 10;
 gradientGlow.blurY = 10;
 gradientGlow.strength = 2;
 gradientGlow.quality = BitmapFilterQuality.HIGH;
 gradientGlow.type = BitmapFilterType.OUTER;

 // Define functions to listen for two events.
 function onClick(event:MouseEvent):void
 {
 gradientGlow.strength++;
 shape.filters = [gradientGlow];
 }

 function onMouseMove(event:MouseEvent):void
 {
 gradientGlow.blurX = (stage.mouseX / stage.stageWidth) * 255;
 gradientGlow.blurY = (stage.mouseY / stage.stageHeight) * 255;
 shape.filters = [gradientGlow];
 }
 stage.addEventListener(MouseEvent.CLICK, onClick);
 stage.addEventListener(MouseEvent.MOUSE_MOVE, onMouseMove);

282ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

Example: Combining basic filters

Flash Player 9 and later, Adobe AIR 1.0 and later

The following code example uses several basic filters, combined with a Timer for creating repeating actions, to create

an animated traffic light simulation.

 import flash.display.Shape;
 import flash.events.TimerEvent;
 import flash.filters.BitmapFilterQuality;
 import flash.filters.BitmapFilterType;
 import flash.filters.DropShadowFilter;
 import flash.filters.GlowFilter;
 import flash.filters.GradientBevelFilter;
 import flash.utils.Timer;

 var count:Number = 1;
 var distance:Number = 8;
 var angleInDegrees:Number = 225; // opposite of 45 degrees
 var colors:Array = [0xFFFFCC, 0xFEFE78, 0x8F8E01];
 var alphas:Array = [1, 0, 1];
 var ratios:Array = [0, 128, 255];
 var blurX:Number = 8;
 var blurY:Number = 8;
 var strength:Number = 1;
 var quality:Number = BitmapFilterQuality.HIGH;
 var type:String = BitmapFilterType.INNER;
 var knockout:Boolean = false;

 // Draw the rectangle background for the traffic light.
 var box:Shape = new Shape();
 box.graphics.lineStyle();
 box.graphics.beginFill(0xFEFE78);
 box.graphics.drawRect(100, 50, 90, 200);
 box.graphics.endFill();

 // Draw the 3 circles for the three lights.
 var stopLight:Shape = new Shape();
 stopLight.graphics.lineStyle();
 stopLight.graphics.beginFill(0xFF0000);
 stopLight.graphics.drawCircle(145,90,25);
 stopLight.graphics.endFill();

 var cautionLight:Shape = new Shape();
 cautionLight.graphics.lineStyle();
 cautionLight.graphics.beginFill(0xFF9900);
 cautionLight.graphics.drawCircle(145,150,25);
 cautionLight.graphics.endFill();

 var goLight:Shape = new Shape();
 goLight.graphics.lineStyle();
 goLight.graphics.beginFill(0x00CC00);
 goLight.graphics.drawCircle(145,210,25);
 goLight.graphics.endFill();

 // Add the graphics to the display list.
 addChild(box);

283ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 addChild(stopLight);
 addChild(cautionLight);
 addChild(goLight);

 // Apply a gradient bevel to the traffic light rectangle.
 var gradientBevel:GradientBevelFilter = new GradientBevelFilter(distance, angleInDegrees,
colors, alphas, ratios, blurX, blurY, strength, quality, type, knockout);
 box.filters = [gradientBevel];

 // Create the inner shadow (for lights when off) and glow
 // (for lights when on).
 var innerShadow:DropShadowFilter = new DropShadowFilter(5, 45, 0, 0.5, 3, 3, 1, 1, true,
false);
 var redGlow:GlowFilter = new GlowFilter(0xFF0000, 1, 30, 30, 1, 1, false, false);
 var yellowGlow:GlowFilter = new GlowFilter(0xFF9900, 1, 30, 30, 1, 1, false, false);
 var greenGlow:GlowFilter = new GlowFilter(0x00CC00, 1, 30, 30, 1, 1, false, false);

 // Set the starting state of the lights (green on, red/yellow off).
 stopLight.filters = [innerShadow];
 cautionLight.filters = [innerShadow];
 goLight.filters = [greenGlow];

 // Swap the filters based on the count value.
 function trafficControl(event:TimerEvent):void
 {
 if (count == 4)
 {
 count = 1;
 }

 switch (count)
 {
 case 1:
 stopLight.filters = [innerShadow];
 cautionLight.filters = [yellowGlow];
 goLight.filters = [innerShadow];
 break;
 case 2:
 stopLight.filters = [redGlow];
 cautionLight.filters = [innerShadow];
 goLight.filters = [innerShadow];
 break;
 case 3:
 stopLight.filters = [innerShadow];
 cautionLight.filters = [innerShadow];
 goLight.filters = [greenGlow];
 break;
 }

 count++;
 }

 // Create a timer to swap the filters at a 3 second interval.
 var timer:Timer = new Timer(3000, 9);
 timer.addEventListener(TimerEvent.TIMER, trafficControl);
 timer.start();

284ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

Color matrix filter

Flash Player 9 and later, Adobe AIR 1.0 and later

The ColorMatrixFilter class is used to manipulate the color and alpha values of the filtered object. This allows you to

create saturation changes, hue rotation (shifting a palette from one range of colors to another), luminance-to-alpha

changes, and other color manipulation effects using values from one color channel and potentially applying them to

other channels.

Conceptually, the filter goes through the pixels in the source image one by one and separates each pixel into its red,

green, blue, and alpha components. It then multiplies values provided in the color matrix by each of these values,

adding the results together to determine the resulting color value that will be displayed on the screen for that pixel. The

matrix property of the filter is an array of 20 numbers that are used in calculating the final color. For details of the

specific algorithm used to calculate the color values, see the entry describing the ColorMatrixFilter class’s matrix

property in the ActionScript 3.0 Reference for the Adobe Flash Platform.

Convolution filter

Flash Player 9 and later, Adobe AIR 1.0 and later

The ConvolutionFilter class can be used to apply a wide range of imaging transformations to BitmapData objects or

display objects, such as blurring, edge detection, sharpening, embossing, and beveling.

The convolution filter conceptually goes through each pixel in the source image one by one and determines the final

color of that pixel using the value of the pixel and its surrounding pixels. A matrix, specified as an array of numeric

values, indicates to what degree the value of each particular neighboring pixel affects the final resulting value.

Consider the most commonly used type of matrix, which is a three by three matrix. The matrix includes nine values:

 N N N
 N P N
 N N N

When the convolution filter is applied to a certain pixel, it will look at the color value of the pixel itself (“P” in the

example), as well as the values of the surrounding pixels (labeled “N” in the example). However, by setting values in

the matrix, you specify how much priority certain pixels have in affecting the resulting image.

For example, the following matrix, applied using a convolution filter, will leave an image exactly as it was:

 0 0 0
 0 1 0
 0 0 0

The reason the image is unchanged is because the original pixel’s value has a relative strength of 1 in determining the

final pixel color, while the surrounding pixels’ values have relative strength of 0—meaning their colors don’t affect the

final image.

Similarly, this matrix will cause the pixels of an image to shift one pixel to the left:

 0 0 0
 0 0 1
 0 0 0

Notice that in this case, the pixel itself has no effect on the final value of the pixel displayed in that location on the final

image—only the value of the pixel to the right is used to determine the pixel’s resulting value.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filters/ColorMatrixFilter.html

285ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

In ActionScript, you create the matrix as a combination of an Array instance containing the values and two properties

specifying the number of rows and columns in the matrix. The following example loads an image and, when the image

finishes loading, applies a convolution filter to the image using the matrix in the previous listing:

 // Load an image onto the Stage.
 var loader:Loader = new Loader();
 var url:URLRequest = new URLRequest("http://www.helpexamples.com/flash/images/image1.jpg");
 loader.load(url);
 this.addChild(loader);

 function applyFilter(event:MouseEvent):void
 {
 // Create the convolution matrix.
 var matrix:Array = [0, 0, 0,
 0, 0, 1,
 0, 0, 0];

 var convolution:ConvolutionFilter = new ConvolutionFilter();
 convolution.matrixX = 3;
 convolution.matrixY = 3;
 convolution.matrix = matrix;
 convolution.divisor = 1;

 loader.filters = [convolution];
 }

 loader.addEventListener(MouseEvent.CLICK, applyFilter);

Something that isn’t obvious in this code is the effect of using values other than 1 or 0 in the matrix. For example, the

same matrix, with the number 8 instead of 1 in the right-hand position, performs the same action (shifting the pixels

to the left). In addition, it affects the colors of the image, making them 8 times brighter. This is because the final pixel

color values are calculated by multiplying the matrix values by the original pixel colors, adding the values together, and

dividing by the value of the filter’s divisor property. Notice that in the example code, the divisor property is set to

1. As a general rule, if you want the brightness of the colors to stay about the same as in the original image, you should

make the divisor equal to the sum of the matrix values. So with a matrix where the values add up to 8, and a divisor of

1, the resulting image is going to be roughly 8 times brighter than the original image.

Although the effect of this matrix isn’t very noticeable, other matrix values can be used to create various effects. Here

are several standard sets of matrix values for different effects using a three by three matrix:

• Basic blur (divisor 5):

 0 1 0
 1 1 1
 0 1 0

• Sharpening (divisor 1):

 0, -1, 0
 -1, 5, -1
 0, -1, 0

• Edge detection (divisor 1):

 0, -1, 0
 -1, 4, -1
 0, -1, 0

• Embossing effect (divisor 1):

286ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 -2, -1, 0
 -1, 1, 1
 0, 1, 2

Notice that with most of these effects, the divisor is 1. This is because the negative matrix values added to the

positive matrix values result in 1 (or 0 in the case of edge detection, but the divisor property’s value cannot be 0).

Displacement map filter

Flash Player 9 and later, Adobe AIR 1.0 and later

The DisplacementMapFilter class uses pixel values from a BitmapData object (known as the displacement map image)

to perform a displacement effect on a new object. The displacement map image is typically different than the actual

display object or BitmapData instance to which the filter is being applied. A displacement effect involves displacing

pixels in the filtered image—in other words, shifting them away from their original location to some extent. This filter

can be used to create a shifted, warped, or mottled effect.

The location and amount of displacement applied to a given pixel is determined by the color value of the displacement

map image. When working with the filter, in addition to specifying the map image, you specify the following values to

control how the displacement is calculated from the map image:

• Map point: The location on the filtered image at which the upper-left corner of the displacement filter will be

applied. You can use this if you only want to apply the filter to part of an image.

• X component: Which color channel of the map image affects the x position of pixels.

• Y component: Which color channel of the map image affects the y position of pixels.

• X scale: A multiplier value that specifies how strong the x axis displacement is.

• Y scale: A multiplier value that specifies how strong the y axis displacement is.

• Filter mode: Determines what to do in any empty spaces created by pixels being shifted away. The options, defined

as constants in the DisplacementMapFilterMode class, are to display the original pixels (filter mode IGNORE), to

wrap the pixels around from the other side of the image (filter mode WRAP, which is the default), to use the nearest

shifted pixel (filter mode CLAMP), or to fill in the spaces with a color (filter mode COLOR).

To understand how the displacement map filter works, consider a basic example. In the following code, an image is

loaded, and when it finishes loading it is centered on the Stage and a displacement map filter is applied to it, causing

the pixels in the entire image to shift horizontally to the left.

287ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 import flash.display.BitmapData;
 import flash.display.Loader;
 import flash.events.MouseEvent;
 import flash.filters.DisplacementMapFilter;
 import flash.geom.Point;
 import flash.net.URLRequest;

 // Load an image onto the Stage.
 var loader:Loader = new Loader();
 var url:URLRequest = new URLRequest("http://www.helpexamples.com/flash/images/image3.jpg");
 loader.load(url);
 this.addChild(loader);

 var mapImage:BitmapData;
 var displacementMap:DisplacementMapFilter;

 // This function is called when the image finishes loading.
 function setupStage(event:Event):void
 {
 // Center the loaded image on the Stage.
 loader.x = (stage.stageWidth - loader.width) / 2;
 loader.y = (stage.stageHeight - loader.height) / 2;

 // Create the displacement map image.
 mapImage = new BitmapData(loader.width, loader.height, false, 0xFF0000);

 // Create the displacement filter.
 displacementMap = new DisplacementMapFilter();
 displacementMap.mapBitmap = mapImage;
 displacementMap.mapPoint = new Point(0, 0);
 displacementMap.componentX = BitmapDataChannel.RED;
 displacementMap.scaleX = 250;
 loader.filters = [displacementMap];
 }

 loader.contentLoaderInfo.addEventListener(Event.COMPLETE, setupStage);

The properties used to define the displacement are as follows:

• Map bitmap: The displacement bitmap is a new BitmapData instance created by the code. Its dimensions match the

dimensions of the loaded image (so the displacement is applied to the entire image). It is filled with solid red pixels.

• Map point: This value is set to the point 0, 0—again, causing the displacement to be applied to the entire image.

• X component: This value is set to the constant BitmapDataChannel.RED, meaning the red value of the map bitmap

will determine how much the pixels are displaced (how much they move) along the x axis.

• X scale: This value is set to 250. The full amount of displacement (from the map image being completely red) only

displaces the image by a small amount (roughly one-half of a pixel), so if this value was set to 1 the image would

only shift .5 pixels horizontally. By setting it to 250, the image shifts by approximately 125 pixels.

288ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

These settings cause the filtered image’s pixels to shift 250 pixels to the left. The direction (left or right) and amount of

shift is based on the color value of the pixels in the map image. Conceptually, the filter goes through the pixels of the

filtered image one by one (at least, the pixels in the region where the filter is applied, which in this case means all the

pixels), and does the following with each pixel:

1 It finds the corresponding pixel in the map image. For example, when the filter calculates the displacement amount

for the pixel in the upper-left corner of the filtered image, it looks at the pixel in the upper-left corner of the map

image.

2 It determines the value of the specified color channel in the map pixel. In this case, the x component color channel

is the red channel, so the filter looks to see what the value of the red channel of the map image is at the pixel in

question. Since the map image is solid red, the pixel’s red channel is 0xFF, or 255. This is used as the displacement

value.

3 It compares the displacement value to the “middle” value (127, which is halfway between 0 and 255). If the

displacement value is lower than the middle value, the pixel shifts in a positive direction (to the right for x

displacement; down for y displacement). On the other hand, if the displacement value is higher than the middle

value (as in this example), the pixel shifts in a negative direction (to the left for x displacement; up for y

displacement). To be more precise, the filter subtracts the displacement value from 127, and the result (positive or

negative) is the relative amount of displacement that is applied.

4 Finally, it determines the actual amount of displacement by determining what percentage of full displacement the

relative displacement value represents. In this case, full red means 100% displacement. That percentage is then

multiplied by the x scale or y scale value to determine the number of pixels of displacement that will be applied. In

this example, 100% times a multiplier of 250 determines the amount of displacement—roughly 125 pixels to the left.

Because no values are specified for y component and y scale, the defaults (which cause no displacement) are used—

that’s why the image doesn’t shift at all in the vertical direction.

The default filter mode setting, WRAP, is used in the example, so as the pixels shift to the left the empty space on the

right is filled in by the pixels that shifted off the left edge of the image. You can experiment with this value to see the

different effects. For example, if you add the following line to the portion of code where the displacement properties

are being set (before the line loader.filters = [displacementMap]), it will make the image look as though it has

been smeared across the Stage:

 displacementMap.mode = DisplacementMapFilterMode.CLAMP;

For a more complex example, the following listing uses a displacement map filter to create a magnifying glass effect on

an image:

289ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.display.BitmapDataChannel;
 import flash.display.GradientType;
 import flash.display.Loader;
 import flash.display.Shape;
 import flash.events.MouseEvent;
 import flash.filters.DisplacementMapFilter;
 import flash.filters.DisplacementMapFilterMode;
 import flash.geom.Matrix;
 import flash.geom.Point;
 import flash.net.URLRequest;

 // Create the gradient circles that will together form the
 // displacement map image
 var radius:uint = 50;

 var type:String = GradientType.LINEAR;
 var redColors:Array = [0xFF0000, 0x000000];
 var blueColors:Array = [0x0000FF, 0x000000];
 var alphas:Array = [1, 1];
 var ratios:Array = [0, 255];
 var xMatrix:Matrix = new Matrix();
 xMatrix.createGradientBox(radius * 2, radius * 2);
 var yMatrix:Matrix = new Matrix();
 yMatrix.createGradientBox(radius * 2, radius * 2, Math.PI / 2);

 var xCircle:Shape = new Shape();
 xCircle.graphics.lineStyle(0, 0, 0);
 xCircle.graphics.beginGradientFill(type, redColors, alphas, ratios, xMatrix);
 xCircle.graphics.drawCircle(radius, radius, radius);

 var yCircle:Shape = new Shape();
 yCircle.graphics.lineStyle(0, 0, 0);
 yCircle.graphics.beginGradientFill(type, blueColors, alphas, ratios, yMatrix);
 yCircle.graphics.drawCircle(radius, radius, radius);

 // Position the circles at the bottom of the screen, for reference.
 this.addChild(xCircle);
 xCircle.y = stage.stageHeight - xCircle.height;
 this.addChild(yCircle);
 yCircle.y = stage.stageHeight - yCircle.height;
 yCircle.x = 200;

 // Load an image onto the Stage.
 var loader:Loader = new Loader();
 var url:URLRequest = new URLRequest("http://www.helpexamples.com/flash/images/image1.jpg");
 loader.load(url);
 this.addChild(loader);

 // Create the map image by combining the two gradient circles.
 var map:BitmapData = new BitmapData(xCircle.width, xCircle.height, false, 0x7F7F7F);
 map.draw(xCircle);
 var yMap:BitmapData = new BitmapData(yCircle.width, yCircle.height, false, 0x7F7F7F);
 yMap.draw(yCircle);
 map.copyChannel(yMap, yMap.rect, new Point(0, 0), BitmapDataChannel.BLUE,
BitmapDataChannel.BLUE);

290ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 yMap.dispose();

 // Display the map image on the Stage, for reference.
 var mapBitmap:Bitmap = new Bitmap(map);
 this.addChild(mapBitmap);
 mapBitmap.x = 400;
 mapBitmap.y = stage.stageHeight - mapBitmap.height;

 // This function creates the displacement map filter at the mouse location.
 function magnify():void
 {
 // Position the filter.
 var filterX:Number = (loader.mouseX) - (map.width / 2);
 var filterY:Number = (loader.mouseY) - (map.height / 2);
 var pt:Point = new Point(filterX, filterY);
 var xyFilter:DisplacementMapFilter = new DisplacementMapFilter();
 xyFilter.mapBitmap = map;
 xyFilter.mapPoint = pt;
 // The red in the map image will control x displacement.
 xyFilter.componentX = BitmapDataChannel.RED;
 // The blue in the map image will control y displacement.
 xyFilter.componentY = BitmapDataChannel.BLUE;
 xyFilter.scaleX = 35;
 xyFilter.scaleY = 35;
 xyFilter.mode = DisplacementMapFilterMode.IGNORE;
 loader.filters = [xyFilter];
 }

 // This function is called when the mouse moves. If the mouse is
 // over the loaded image, it applies the filter.
 function moveMagnifier(event:MouseEvent):void
 {
 if (loader.hitTestPoint(loader.mouseX, loader.mouseY))
 {
 magnify();
 }
 }
 loader.addEventListener(MouseEvent.MOUSE_MOVE, moveMagnifier);

291ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

The code first generates two gradient circles, which are combined together to form the displacement map image. The

red circle creates the x axis displacement (xyFilter.componentX = BitmapDataChannel.RED), and the blue circle

creates the y axis displacement (xyFilter.componentY = BitmapDataChannel.BLUE). To help you understand

what the displacement map image looks like, the code adds the original circles as well as the combined circle that serves

as the map image to the bottom of the screen.

The code then loads an image and, as the mouse moves, applies the displacement filter to the portion of the image that’s

under the mouse. The gradient circles used as the displacement map image causes the displaced region to spread out

away from the pointer. Notice that the gray regions of the displacement map image don’t cause any displacement. The

gray color is 0x7F7F7F. The blue and red channels of that shade of gray exactly match the middle shade of those color

channels, so there is no displacement in a gray area of the map image. Likewise, in the center of the circle there is no

displacement. Although the color there isn’t gray, that color’s blue channel and red channel are identical to the blue

channel and red channel of medium gray, and since blue and red are the colors that cause displacement, no

displacement happens there.

Shader filter

Flash Player 10 and later, Adobe AIR 1.5 and later

The ShaderFilter class lets you use a custom filter effect defined as a Pixel Bender shader. Because the filter effect is

written as a Pixel Bender shader, the effect can be completely customized. The filtered content is passed in to the shader

as an image input, and the result of the shader operation becomes the filter result.

Note: The Shader filter is available in ActionScript starting with Flash Player 10 and Adobe AIR 1.5.

To apply a shader filter to an object, you first create a Shader instance representing the Pixel Bender shader that you

are using. For details on the procedure for creating a Shader instance and on how to specify input image and parameter

values, see “Working with Pixel Bender shaders” on page 300.

When using a shader as a filter, there are three important things to keep in mind:

• The shader must be defined to accept at least one input image.

• The filtered object (the display object or BitmapData object to which the filter is applied) is passed to the shader as

the first input image value. Because of this, do not manually specify a value for the first image input.

292ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

• If the shader defines more that one input image, the additional inputs must be specified manually (that is, by setting

the input property of any ShaderInput instance that belongs to the Shader instance).

Once you have a Shader object for your shader, you create a ShaderFilter instance. This is the actual filter object that

you use like any other filter. To create a ShaderFilter that uses a Shader object, call the ShaderFilter() constructor

and pass the Shader object as an argument, as shown in this listing:

var myFilter:ShaderFilter = new ShaderFilter(myShader);

For a complete example of using a shader filter, see “Using a shader as a filter” on page 318.

Filtering display objects example: Filter Workbench

Flash Player 9 and later, Adobe AIR 1.0 and later

The Filter Workbench provides a user interface to apply different filters to images and other visual content and see the

resulting code that can be used to generate the same effect in ActionScript. In addition to providing a tool for

experimenting with filters, this application demonstrates the following techniques:

• Creating instances of various filters

• Applying multiple filters to a display object

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The Filter

Workbench application files can be found in the Samples/FilterWorkbench folder. The application consists of the

following files:

File Description

com/example/programmingas3/filterWorkbench/FilterWorkbenchController.as Class that provides the main functionality of the

application, including switching content to which

filters are applied, and applying filters to content.

com/example/programmingas3/filterWorkbench/IFilterFactory.as Interface defining common methods that are

implemented by each of the filter factory classes.

This interface defines the common functionality that

the FilterWorkbenchController class uses to interact

with the individual filter factory classes.

in folder com/example/programmingas3/filterWorkbench/:

BevelFactory.as

BlurFactory.as

ColorMatrixFactory.as

ConvolutionFactory.as

DropShadowFactory.as

GlowFactory.as

GradientBevelFactory.as

GradientGlowFactory.as

Set of classes, each of which implements the

IFilterFactory interface. Each of these classes

provides the functionality of creating and setting

values for a single type of filter. The filter property

panels in the application use these factory classes to

create instances of their particular filters, which the

FilterWorkbenchController class retrieves and

applies to the image content.

com/example/programmingas3/filterWorkbench/IFilterPanel.as Interface defining common methods that are

implemented by classes that define the user

interface panels that are used to manipulate filter

values in the application.

http://www.adobe.com/go/learn_programmingAS3samples_flash

293ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

com/example/programmingas3/filterWorkbench/ColorStringFormatter.as Utility class that includes a method to convert a

numeric color value to hexadecimal String format

com/example/programmingas3/filterWorkbench/GradientColor.as Class that serves as a value object, combining into a

single object the three values (color, alpha, and

ratio) that are associated with each color in the

GradientBevelFilter and GradientGlowFilter

User interface (Flex)

FilterWorkbench.mxml The main file defining the application’s user

interface.

flexapp/FilterWorkbench.as Class that provides the functionality for the main

application’s user interface; this class is used as the

code-behind class for the application MXML file.

In folder flexapp/filterPanels:

BevelPanel.mxml

BlurPanel.mxml

ColorMatrixPanel.mxml

ConvolutionPanel.mxml

DropShadowPanel.mxml

GlowPanel.mxml

GradientBevelPanel.mxml

GradientGlowPanel.mxml

Set of MXML components that provide the

functionality for each panel that is used to set

options for a single filter.

flexapp/ImageContainer.as A display object that serves as a container for the

loaded image on the screen

flexapp/controls/BGColorCellRenderer.as Custom cell renderer used to change the

background color of a cell in the DataGrid

component

flexapp/controls/QualityComboBox.as Custom control defining a combo box that can be

used for the Quality setting in several filter panels.

flexapp/controls/TypeComboBox.as Custom control defining a combo box that can be

used for the Type setting in several filter panels.

User interface (Flash)

FilterWorkbench.fla The main file defining the application’s user

interface.

flashapp/FilterWorkbench.as Class that provides the functionality for the main

application’s user interface; this class is used as the

document class for the application FLA file.

File Description

294ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

Experimenting with ActionScript filters

Flash Player 9 and later, Adobe AIR 1.0 and later

The Filter Workbench application is designed to help you experiment with various filter effects and generate the

relevant ActionScript code for that effect. The application lets you select from three different files containing visual

content, including bitmap images and an animation created by Flash, and apply eight different ActionScript filters to

the selected image, either individually or in combination with other filters. The application includes the following

filters:

• Bevel (flash.filters.BevelFilter)

• Blur (flash.filters.BlurFilter)

• Color matrix (flash.filters.ColorMatrixFilter)

• Convolution (flash.filters.ConvolutionFilter)

• Drop shadow (flash.filters.DropShadowFilter)

• Glow (flash.filters.GlowFilter)

• Gradient bevel (flash.filters.GradientBevelFilter)

In folder flashapp/filterPanels:

BevelPanel.as

BlurPanel.as

ColorMatrixPanel.as

ConvolutionPanel.as

DropShadowPanel.as

GlowPanel.as

GradientBevelPanel.as

GradientGlowPanel.as

Set of classes that provide the functionality for each

panel that is used to set options for a single filter.

For each class, there is also an associated MovieClip

symbol in the library of the main application FLA file,

whose name matches the name of the class (for

example, the symbol “BlurPanel” is linked to the

class defined in BlurPanel.as). The components that

make up the user interface are positioned and

named within those symbols.

flashapp/ImageContainer.as A display object that serves as a container for the

loaded image on the screen

flashapp/BGColorCellRenderer.as Custom cell renderer used to change the

background color of a cell in the DataGrid

component

flashapp/ButtonCellRenderer.as Custom cell renderer used to include a button

component in a cell in the DataGrid component

Filtered image content

com/example/programmingas3/filterWorkbench/ImageType.as This class serves as a value object containing the

type and URL of a single image file to which the

application can load and apply filters. The class also

includes a set of constants representing the actual

image files available.

images/sampleAnimation.swf,

images/sampleImage1.jpg,

images/sampleImage2.jpg

Images and other visual content to which filters are

applied in the application.

File Description

295ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

• Gradient glow (flash.filters.GradientGlowFilter)

Once a user has selected an image and a filter to apply to that image, the application displays a panel with controls for

setting the specific properties of the selected filter. For example, the following image shows the application with the

Bevel filter selected:

As the user adjusts the filter properties, the preview updates in real time. The user can also apply multiple filters by

customizing one filter, clicking the Apply button, customizing another filter, clicking the Apply button, and so forth.

There are a few features and limitations in the application’s filter panels:

• The color matrix filter includes a set of controls for directly manipulating common image properties including

brightness, contrasts, saturation, and hue. In addition, custom color matrix values can be specified.

• The convolution filter, which is only available using ActionScript, includes a set of commonly used convolution

matrix values, or custom values can be specified. However, while the ConvolutionFilter class accepts a matrix of

any size, the Filter Workbench application uses a fixed 3 x 3 matrix, the most commonly used filter size.

• The displacement map filter and shader filter, which are only available in ActionScript, are not available in the Filter

Workbench application.

Creating filter instances

Flash Player 9 and later, Adobe AIR 1.0 and later

The Filter Workbench application includes a set of classes, one for each of the available filters, which are used by the

individual panels to create the filters. When a user selects a filter, the ActionScript code associated with the filter panel

creates an instance of the appropriate filter factory class. (These classes are known as factory classes because their

purpose is to create instances of other objects, much like a real-world factory creates individual products.)

296ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

Whenever the user changes a property value on the panel, the panel’s code calls the appropriate method in the factory

class. Each factory class includes specific methods that the panel uses to create the appropriate filter instance. For

example, if the user selects the Blur filter, the application creates a BlurFactory instance. The BlurFactory class includes

a modifyFilter() method that accepts three parameters: blurX, blurY, and quality, which together are used to

create the desired BlurFilter instance:

 private var _filter:BlurFilter;

 public function modifyFilter(blurX:Number = 4, blurY:Number = 4, quality:int = 1):void
 {
 _filter = new BlurFilter(blurX, blurY, quality);
 dispatchEvent(new Event(Event.CHANGE));
 }

On the other hand, if the user selects the Convolution filter, that filter allows for much greater flexibility and

consequently has a larger set of properties to control. In the ConvolutionFactory class, the following code is called

when the user selects a different value on the filter panel:

 private var _filter:ConvolutionFilter;

 public function modifyFilter(matrixX:Number = 0,
 matrixY:Number = 0,
 matrix:Array = null,
 divisor:Number = 1.0,
 bias:Number = 0.0,
 preserveAlpha:Boolean = true,
 clamp:Boolean = true,
 color:uint = 0,
 alpha:Number = 0.0):void
 {
 _filter = new ConvolutionFilter(matrixX, matrixY, matrix, divisor, bias, preserveAlpha,
clamp, color, alpha);
 dispatchEvent(new Event(Event.CHANGE));
 }

Notice that in each case, when the filter values are changed, the factory object dispatches an Event.CHANGE event to

notify listeners that the filter’s values have changed. The FilterWorkbenchController class, which does the work of

actually applying filters to the filtered content, listens for that event to ascertain when it needs to retrieve a new copy

of the filter and re-apply it to the filtered content.

The FilterWorkbenchController class doesn’t need to know specific details of each filter factory class—it just needs to

know that the filter has changed and to be able to access a copy of the filter. To support this, the application includes

an interface, IFilterFactory, that defines the behavior a filter factory class needs to provide so the application’s

FilterWorkbenchController instance can do its job. The IFilterFactory defines the getFilter() method that’s used in

the FilterWorkbenchController class:

 function getFilter():BitmapFilter;

Notice that the getFilter() interface method definition specifies that it returns a BitmapFilter instance rather than

a specific type of filter. The BitmapFilter class does not define a specific type of filter. Rather, BitmapFilter is the base

class on which all the filter classes are built. Each filter factory class defines a specific implementation of the

getFilter() method in which it returns a reference to the filter object it has built. For example, here is an abbreviated

version of the ConvolutionFactory class’s source code:

297ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 public class ConvolutionFactory extends EventDispatcher implements IFilterFactory
 {
 // ------- Private vars -------
 private var _filter:ConvolutionFilter;
 ...
 // ------- IFilterFactory implementation -------
 public function getFilter():BitmapFilter
 {
 return _filter;
 }
 ...
 }

In the ConvolutionFactory class’s implementation of the getFilter() method, it returns a ConvolutionFilter

instance, although any object that calls getFilter() doesn’t necessarily know that—according to the definition of the

getFilter() method that ConvolutionFactory follows, it must return any BitmapFilter instance, which could be an

instance of any of the ActionScript filter classes.

Applying filters to display objects

Flash Player 9 and later, Adobe AIR 1.0 and later

As explained previously, the Filter Workbench application uses an instance of the FilterWorkbenchController class

(hereafter referred to as the “controller instance”), which performs the actual task of applying filters to the selected

visual object. Before the controller instance can apply a filter, it first needs to know what image or visual content the

filter should be applied to. When the user selects an image, the application calls the setFilterTarget() method in

the FilterWorkbenchController class, passing in one of the constants defined in the ImageType class:

 public function setFilterTarget(targetType:ImageType):void
 {
 ...
 _loader = new Loader();
 ...
 _loader.contentLoaderInfo.addEventListener(Event.COMPLETE, targetLoadComplete);
 ...
 }

Using that information the controller instance loads the designated file, storing it in an instance variable named

_currentTarget once it loads:

 private var _currentTarget:DisplayObject;

 private function targetLoadComplete(event:Event):void
 {
 ...
 _currentTarget = _loader.content;
 ...
 }

When the user selects a filter, the application calls the controller instance’s setFilter() method, giving the controller

a reference to the relevant filter factory object, which it stores in an instance variable named _filterFactory.

298ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 private var _filterFactory:IFilterFactory;

 public function setFilter(factory:IFilterFactory):void
 {
 ...

 _filterFactory = factory;
 _filterFactory.addEventListener(Event.CHANGE, filterChange);
 }

Notice that, as described previously, the controller instance doesn’t know the specific data type of the filter factory

instance that it is given; it only knows that the object implements the IFilterFactory instance, meaning it has a

getFilter() method and it dispatches a change (Event.CHANGE) event when the filter changes.

When the user changes a filter’s properties in the filter’s panel, the controller instance finds out that the filter has

changed through the filter factory’s change event, which calls the controller instance’s filterChange() method. That

method, in turn, calls the applyTemporaryFilter() method:

 private function filterChange(event:Event):void
 {
 applyTemporaryFilter();
 }

 private function applyTemporaryFilter():void
 {
 var currentFilter:BitmapFilter = _filterFactory.getFilter();

 // Add the current filter to the set temporarily
 _currentFilters.push(currentFilter);

 // Refresh the filter set of the filter target
 _currentTarget.filters = _currentFilters;

 // Remove the current filter from the set
 // (This doesn't remove it from the filter target, since
 // the target uses a copy of the filters array internally.)
 _currentFilters.pop();
 }

The work of applying the filter to the display object occurs within the applyTemporaryFilter() method. First, the

controller retrieves a reference to the filter object by calling the filter factory’s getFilter() method.

 var currentFilter:BitmapFilter = _filterFactory.getFilter();

The controller instance has an Array instance variable named _currentFilters, in which it stores all the filters that

have been applied to the display object. The next step is to add the newly updated filter to that array:

 _currentFilters.push(currentFilter);

Next, the code assigns the array of filters to the display object’s filters property, which actually applies the filters to

the image:

 _currentTarget.filters = _currentFilters;

Finally, since this most recently added filter is still the “working” filter, it shouldn’t be permanently applied to the

display object, so it is removed from the _currentFilters array:

299ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Filtering display objects

Last updated 10/9/2017

 _currentFilters.pop();

Removing this filter from the array doesn’t affect the filtered display object, because a display object makes a copy of

the filters array when it is assigned to the filters property, and it uses that internal array rather than the original one.

For this reason, any changes that are made to the array of filters don’t affect the display object until the array is assigned

to the display object’s filters property again.

300

Last updated 10/9/2017

Chapter 15: Working with Pixel Bender
shaders

Flash Player 10 and later, Adobe AIR 1.5 and later

Adobe Pixel Bender Toolkit allows developers to write shaders that create graphical effects and perform other image

and data processing. The Pixel Bender bytecode can be executed in ActionScript to apply the effect to image data or

visual content. Using Pixel Bender shaders in ActionScript gives you the capability to create custom visual effects and

perform data processing beyond the built-in capabilities in ActionScript.

Note: Pixel Bender support is available starting in Flash Player 10 and Adobe AIR 1.5. Pixel Bender blends, filters, and

fills are not supported under GPU rendering.

More Help topics

Adobe Pixel Bender Technology Center

Pixel Bender Developer's Guide

 Pixel Bender Reference

flash.display.Shader

flash.filters.ShaderFilter

Pixel Bender basics for Flash

Pixel Bender basics for Flex

Basics of Pixel Bender shaders

Flash Player 10 and later, Adobe AIR 1.5 and later

Adobe Pixel Bender is a programming language that is used to create or manipulate image content. Using Pixel Bender

you create a kernel, also known as a shader. The shader defines a single function that executes on each of the pixels of

an image individually. The result of each call to the function is the output color at that pixel coordinate in the image.

Input images and parameter values can be specified to customize the operation. In a single execution of a shader, input

and parameter values are constant. The only thing that varies is the coordinate of the pixel whose color is the result of

the function call.

Where possible, the shader function is called for multiple output pixel coordinates in parallel. This improves shader

performance and can provide high-performance processing.

In ActionScript, three types of effects can be easily created using a shader:

• drawing fill

• blend mode

• filter

http://www.adobe.com/devnet/pixelbender/
http://www.adobe.com/content/dam/Adobe/en/devnet/pixelbender/pdfs/pixelbender_guide.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/pixelbender/pdfs/pixelbender_reference.pdf
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Shader.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filters/ShaderFilter.html
http://www.adobe.com/devnet/flash/articles/pixel_bender_basics.html
http://www.adobe.com/devnet/flex/articles/pixel_bender_basics_flex_air.html

301ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

A shader can also be executed in stand-alone mode. Using stand-alone mode a shader’s result is accessed directly

rather than pre-specifying its intended use. The result can be accessed as image data or as binary or number data. The

data need not be image data at all. In this way you can give a shader a set of data as an input. The shader processes the

data, and you can access the result data returned by the shader.

Pixel Bender support is available starting in Flash Player 10 and Adobe AIR 1.5. Pixel Bender blends, filters, and fills

are not supported under GPU rendering. On mobile devices, Pixel Bender shaders do run under CPU rendering.

However, performance is not at the same level as on a desktop computer. Many shader programs may only execute at

a few frames per second.

Important concepts and terms

The following reference list contains important terms that you will encounter when creating and using Pixel Bender

shaders:

Kernel For Pixel Bender, a kernel is the same thing as a shader. Using Pixel Bender your code defines a kernel, which

defines a single function that executes on each of the pixels of an image individually.

Pixel Bender bytecode When a Pixel Bender kernel is compiled it is transformed into Pixel Bender bytecode. The

bytecode is accessed and executed at run time.

Pixel Bender language The programming language used to create a Pixel Bender kernel.

Pixel Bender Toolkit The application that is used to create a Pixel Bender bytecode file from Pixel Bender source code.

The toolkit allows you to write, test, and compile Pixel Bender source code.

Shader For the purposes of this document, a shader is a set of functionality written in the Pixel Bender language. A

shader’s code creates a visual effect or performs a calculation. In either case, the shader returns a set of data (usually

the pixels of an image). The shader performs the same operation on each data point, with the only difference being the

coordinates of the output pixel.The shader is not written in ActionScript. It is written in the Pixel Bender language and

compiled into Pixel Bender bytecode. It can be embedded into a SWF file at compile time or loaded as an external file

at run time. In either case it is accessed in ActionScript by creating a Shader object and linking that object to the shader

bytecode.

Shader input A complex input, usually bitmap image data, that is provided to a shader to use in its calculations. For

each input variable defined in a shader, a single value (that is, a single image or set of binary data) is used for the entire

execution of the shader.

Shader parameter A single value (or limited set of values) that is provided to a shader to use in its calculations. Each

parameter value is defined for a single shader execution, and the same value is used throughout the shader execution.

Working through the code examples

You may want to test the example code listings that are provided. Testing the code involves running the code and

viewing the results in the SWF that’s created. All the examples create content using the drawing API which uses or is

modified by the shader effect.

Most of the example code listings include two parts. One part is the Pixel Bender source code for the shader used in

the example. You must first use the Pixel Bender Toolkit to compile the source code to a Pixel Bender bytecode file.

Follow these steps to create the Pixel Bender bytecode file:

1 Open Adobe Pixel Bender Toolkit. If necessary, from the Build menu choose “Turn on Flash Player warnings and

errors.”

2 Copy the Pixel Bender code listing and paste it into the code editor pane of the Pixel Bender Toolkit.

3 From the File menu, choose “Export kernel filter for Flash Player.”

302ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

4 Save the Pixel Bender bytecode file in the same directory as the Flash document. The file’s name should match the

name specified in the example description.

The ActionScript part of each example is written as a class file. To test the example in Flash Professional:

1 Create an empty Flash document and save it to your computer.

2 Create a new ActionScript file and save it in the same directory as the Flash document. The file’s name should match

the name of the class in the code listing. For instance, if the code listing defines a class named MyApplication, use

the name MyApplication.as to save the ActionScript file.

3 Copy the code listing into the ActionScript file and save the file.

4 In the Flash document, click a blank part of the Stage or work space to activate the document Property inspector.

5 In the Property inspector, in the Document Class field, enter the name of the ActionScript class you copied from

the text.

6 Run the program using Control > Test Movie

You will see the results of the example in the preview window.

These techniques for testing example code listings are explained in more detail in “How to Use ActionScript Examples”

on page 1096.

Loading or embedding a shader

Flash Player 10 and later, Adobe AIR 1.5 and later

The first step in using a Pixel Bender shader in ActionScript is to get access to the shader in your ActionScript code.

Because a shader is created using the Adobe Pixel Bender Toolkit, and written in the Pixel Bender language, it cannot

be directly accessed in ActionScript. Instead, you create an instance of the Shader class that represents the Pixel Bender

shader to ActionScript. The Shader object allows you to find out information about the shader, such as whether it

expects parameters or input image values. You pass the Shader object to other objects to actually use the shader. For

example, to use the shader as a filter you assign the Shader object to a ShaderFilter object’s shader property.

Alternatively, to use the shader as a drawing fill, you pass the Shader object as an argument to the

Graphics.beginShaderFill() method.

Your ActionScript code can access a shader created by Adobe Pixel Bender Toolkit (a .pbj file) in two ways:

• Loaded at run time: the shader file can be loaded as an external asset using a URLLoader object. This technique is

like loading an external asset such as a text file. The following example demonstrates loading a shader bytecode file

at run time and linking it to a Shader instance:

303ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

var loader:URLLoader = new URLLoader();
loader.dataFormat = URLLoaderDataFormat.BINARY;
loader.addEventListener(Event.COMPLETE, onLoadComplete);
loader.load(new URLRequest("myShader.pbj"));

var shader:Shader;

function onLoadComplete(event:Event):void {

// Create a new shader and set the loaded data as its bytecode
shader = new Shader();
shader.byteCode = loader.data;

// You can also pass the bytecode to the Shader() constructor like this:
// shader = new Shader(loader.data);

 // do something with the shader

}

• Embedded in the SWF file: the shader file can be embedded in the SWF file at compile time using the [Embed]

metadata tag. The [Embed] metadata tag is only available if you use the Flex SDK to compile the SWF file. The

[Embed] tag’s source parameter points to the shader file, and its mimeType parameter is "application/octet-

stream", as in this example:

[Embed(source="myShader.pbj", mimeType="application/octet-stream")]
var MyShaderClass:Class;

// ...

// create a shader and set the embedded shader as its bytecode
var shader:Shader = new Shader();
shader.byteCode = new MyShaderClass();

// You can also pass the bytecode to the Shader() constructor like this:
// var shader:Shader = new Shader(new MyShaderClass());

// do something with the shader

In either case, you link the raw shader bytecode (the URLLoader.data property or an instance of the [Embed] data

class) to the Shader instance. As the previous examples demonstrate, you can assign the bytecode to the Shader

instance in two ways. You can pass the shader bytecode as an argument to the Shader() constructor. Alternatively,

you can set it as the Shader instance's byteCode property.

Once a Pixel Bender shader has been created and linked to a Shader object, you can use the shader to create effects in

several ways. You can use it as a filter, a blend mode, a bitmap fill, or for stand-alone processing of bitmap or other

data. You can also use the Shader object’s data property to access the shader’s metadata, specify input images, and set

parameter values.

Accessing shader metadata

Flash Player 10 and later, Adobe AIR 1.5 and later

While creating a Pixel Bender shader kernel, the author can specify metadata about the shader in the Pixel Bender

source code. While using a shader in ActionScript, you can examine the shader and extract its metadata.

304ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

When you create a Shader instance and link it to a Pixel Bender shader, a ShaderData object containing data about the

shader is created and stored in the Shader object’s data property. The ShaderData class doesn’t define any properties

of its own. However, at run time a property is dynamically added to the ShaderData object for each metadata value

defined in the shader source code. The name given to each property is the same as the name specified in the metadata.

For example, suppose the source code of a Pixel Bender shader includes the following metadata definition:

namespace : "Adobe::Example";
vendor : "Bob Jones";
version : 1;
description : "Creates a version of the specified image with the specified brightness.";

The ShaderData object created for that shader is created with the following properties and values:

• namespace (String): "Adobe::Example"

• vendor (String): "Bob Jones"

• version (String): "1"

• description (String): "Creates a version of the specified image with the specified brightness"

Because metadata properties are dynamically added to the ShaderData object, you can use a for..in loop to examine

the ShaderData object. Using this technique you can find out whether the shader has any metadata and what the

metadata values are. In addition to metadata properties, a ShaderData object can have properties representing inputs

and parameters that are defined in the shader. When you use a for..in loop to examine a ShaderData object, check

the data type of each property to determine whether the property is an input (a ShaderInput instance), a parameter (a

ShaderParameter instance), or a metadata value (a String instance). The following example shows how to use a

for..in loop to examine the dynamic properties of a shader’s data property. Each metadata value is added to a Vector

instance named metadata. Note that this example assumes a Shader instance named myShader is already created:

var shaderData:ShaderData = myShader.data;
var metadata:Vector.<String> = new Vector.<String>();

for (var prop:String in shaderData)
{

if (!(shaderData[prop] is ShaderInput) && !(shaderData[prop] is ShaderParameter))
{

metadata[metadata.length] = shaderData[prop];
}

}

// do something with the metadata

For a version of this example that also extracts shader inputs and parameters, see “Identifying shader inputs and

parameters” on page 305. For more information about input and parameter properties, see “Specifying shader input

and parameter values” on page 305.

305ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

Specifying shader input and parameter values

Flash Player 10 and later, Adobe AIR 1.5 and later

Many Pixel Bender shaders are defined to use one or more input images that are used in the shader processing. For

example, it’s common for a shader to accept a source image and output that image with a particular effect applied to

it. Depending on how the shader is used the input value may be specified automatically or you may need to explicitly

provide a value. Similarly, many shaders specify parameters that are used to customize the output of the shader. You

must also explicitly set a value for each parameter before using the shader.

You use the Shader object’s data property to set shader inputs and parameters and to determine whether a particular

shader expects inputs or parameters. The data property is a ShaderData instance.

Identifying shader inputs and parameters

Flash Player 10 and later, Adobe AIR 1.5 and later

The first step in specifying shader input and parameter values is to find out whether the particular shader you’re using

expects any input images or parameters. Each Shader instance has a data property containing a ShaderData object. If

the shader defines any inputs or parameters, they are accessed as properties of that ShaderData object. The properties’

names match the names specified for the inputs and parameters in the shader source code. For example, if a shader

defines an input named src, the ShaderData object has a property named src representing that input. Each property

that represents an input is a ShaderInput instance, and each property that represents a parameter is a ShaderParameter

instance.

Ideally, the author of the shader provides documentation for the shader, indicating what input image values and

parameters the shader expects, what they represent, the appropriate values, and so forth.

However, if the shader isn’t documented (and you don’t have its source code) you can inspect the shader data to

identify the inputs and parameters. The properties representing inputs and parameters are dynamically added to the

ShaderData object. Consequently, you can use a for..in loop to examine the ShaderData object to find out whether

its associated shader defines any inputs or parameters. As described in “Accessing shader metadata” on page 303, any

metadata value defined for a shader is also accessed as a dynamic property added to the Shader.data property. When

you use this technique to identify shader inputs and parameters, check the data type of the dynamic properties. If a

property is a ShaderInput instance it represents an input. If it is a ShaderParameter instance it represents a parameter.

Otherwise, it is a metadata value. The following example shows how to use a for..in loop to examine the dynamic

properties of a shader’s data property. Each input (ShaderInput object) is added to a Vector instance named inputs.

Each parameter (ShaderParameter object) is added to a Vector instance named parameters. Finally, any metadata

properties are added to a Vector instance named metadata. Note that this example assumes a Shader instance named

myShader is already created:

306ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

var shaderData:ShaderData = myShader.data;
var inputs:Vector.<ShaderInput> = new Vector.<ShaderInput>();
var parameters:Vector.<ShaderParameter> = new Vector.<ShaderParameter>();
var metadata:Vector.<String> = new Vector.<String>();

for (var prop:String in shaderData)
{

if (shaderData[prop] is ShaderInput)
{

inputs[inputs.length] = shaderData[prop];
}
else if (shaderData[prop] is ShaderParameter)
{

parameters[parameters.length] = shaderData[prop];
}
else
{

metadata[metadata.length] = shaderData[prop];
}

}

// do something with the inputs or properties

Specifying shader input values

Flash Player 10 and later, Adobe AIR 1.5 and later

Many shaders expect one or more input images that are used in the shader processing. However, in many cases an

input is specified automatically when the Shader object is used. For example, suppose a shader requires one input, and

that shader is used as a filter. When the filter is applied to a display object or BitmapData object, that object is

automatically set as the input. In that case you do not explicitly set an input value.

However, in some cases, especially if a shader defines multiple inputs, you do explicitly set a value for an input. Each

input that is defined in a shader is represented in ActionScript by a ShaderInput object. The ShaderInput object is a

property of the ShaderData instance in the Shader object’s data property, as described in “Identifying shader inputs

and parameters” on page 305. For example, suppose a shader defines an input named src, and that shader is linked to

a Shader object named myShader. In that case you access the ShaderInput object corresponding to the src input using

the following identifier:

myShader.data.src

Each ShaderInput object has an input property that is used to set the value for the input. You set the input property

to a BitmapData instance to specify image data. You can also set the input property to a BitmapData or

Vector.<Number> instance to specify binary or number data. For details and restrictions on using a BitmapData or

Vector.<Number> instance as an input, see the ShaderInput.input listing in the ActionScript 3.0 Reference for the

Adobe Flash Platform.

In addition to the input property, a ShaderInput object has properties that can be used to determine what type of

image the input expects. These properties include the width, height, and channels properties. Each ShaderInput

object also has an index property that is useful for determining whether an explicit value must be provided for the

input. If a shader expects more inputs than the number that are automatically set, then you set values for those inputs.

For details on the different ways to use a shader, and whether input values are automatically set, see “Using a shader”

on page 310.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/ShaderInput.html#input
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/ShaderInput.html#input

307ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

Specifying shader parameter values

Flash Player 10 and later, Adobe AIR 1.5 and later

Some shaders define parameter values that the shader uses in creating its result. For example, a shader that alters the

brightness of an image might specify a brightness parameter that determines how much the operation affects the

brightness. A single parameter defined in a shader can expect a single value or multiple values, according to the

parameter definition in the shader. Each parameter that is defined in a shader is represented in ActionScript by a

ShaderParameter object. The ShaderParameter object is a property of the ShaderData instance in the Shader object’s

data property, as described in “Identifying shader inputs and parameters” on page 305. For example, suppose a shader

defines a parameter named brightness, and that shader is represented by a Shader object named myShader. In that

case you access the ShaderParameter corresponding to the brightness parameter using the following identifier:

myShader.data.brightness

To set a value (or values) for the parameter, create an ActionScript array containing the value or values and assign that

array to the ShaderParameter object’s value property. The value property is defined as an Array instance because it’s

possible that a single shader parameter requires multiple values. Even if the shader parameter only expects a single

value, you must wrap the value in an Array object to assign it to the ShaderParameter.value property. The following

listing demonstrates setting a single value as the value property:

myShader.data.brightness.value = [75];

If the Pixel Bender source code for the shader defines a default value for the parameter, an array containing the default

value or values is created and assigned to the ShaderParameter object’s value property when the Shader object is

created. Once an array has been assigned to the value property (including if it’s the default array) the parameter value

can be changed by changing the value of the array element. You do not need to create a new array and assign it to the

value property.

The following example demonstrates setting a shader’s parameter value in ActionScript. In this example the shader

defines a parameter named color. The color parameter is declared as a float4 variable in the Pixel Bender source

code, which means it is an array of four floating point numbers. In the example, the color parameter value is changed

continuously, and each time it changes the shader is used to draw a colored rectangle on the screen. The result is an

animated color change.

Note: The code for this example was written by Ryan Taylor. Thank you Ryan for sharing this example. You can see

Ryan’s portfolio and read his writing at www.boostworthy.com/.

The ActionScript code centers around three methods:

• init(): In the init() method the code loads the Pixel Bender bytecode file containing the shader. When the file

loads, the onLoadComplete() method is called.

• onLoadComplete(): In the onLoadComplete() method the code creates the Shader object named shader. It also

creates a Sprite instance named texture. In the renderShader() method, the code draws the shader result into

texture once per frame.

• onEnterFrame(): The onEnterFrame() method is called once per frame, creating the animation effect. In this

method, the code sets the shader parameter value to the new color, then calls the renderShader() method to draw

the shader result as a rectangle.

• renderShader(): In the renderShader() method, the code calls the Graphics.beginShaderFill() method to

specify a shader fill. It then draws a rectangle whose fill is defined by the shader output (the generated color) For

more information on using a shader in this way, see “Using a shader as a drawing fill” on page 310.

The following is the ActionScript code for this example. Use this class as the main application class for an ActionScript-

only project in Flash Builder, or as the document class for the FLA file in Flash Professional:

http://www.boostworthy.com/

308ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

package
{

import flash.display.Shader;
import flash.display.Sprite;
import flash.events.Event;
import flash.net.URLLoader;
import flash.net.URLLoaderDataFormat;
import flash.net.URLRequest;

public class ColorFilterExample extends Sprite
{

private const DELTA_OFFSET:Number = Math.PI * 0.5;
private var loader:URLLoader;
private var shader:Shader;
private var texture:Sprite;
private var delta:Number = 0;

public function ColorFilterExample()
{

init();
}

private function init():void
{

loader = new URLLoader();
loader.dataFormat = URLLoaderDataFormat.BINARY;
loader.addEventListener(Event.COMPLETE, onLoadComplete);
loader.load(new URLRequest("ColorFilter.pbj"));

}

private function onLoadComplete(event:Event):void
{

shader = new Shader(loader.data);

texture = new Sprite();

addChild(texture);

addEventListener(Event.ENTER_FRAME, onEnterFrame);

}
private function onEnterFrame(event:Event):void
{

309ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

shader.data.color.value[0] = 0.5 + Math.cos(delta - DELTA_OFFSET) * 0.5;
shader.data.color.value[1] = 0.5 + Math.cos(delta) * 0.5;
shader.data.color.value[2] = 0.5 + Math.cos(delta + DELTA_OFFSET) * 0.5;
// The alpha channel value (index 3) is set to 1 by the kernel's default
// value. This value doesn't need to change.

delta += 0.1;

renderShader();

}

private function renderShader():void
{

texture:graphics.clear();
texture.graphics.beginShaderFill(shader);
texture.graphics.drawRect(0, 0, stage.stageWidth, stage.stageHeight);
texture.graphics.endFill();

}
}

}

The following is the source code for the ColorFilter shader kernel, used to create the “ColorFilter.pbj” Pixel Bender

bytecode file:

<languageVersion : 1.0;>
kernel ColorFilter
<

namespace : "boostworthy::Example";
vendor : "Ryan Taylor";
version : 1;
description : "Creates an image where every pixel has the specified color value.";

>
{

output pixel4 result;

parameter float4 color
<

minValue:float4(0, 0, 0, 0);
maxValue:float4(1, 1, 1, 1);
defaultValue:float4(0, 0, 0, 1);

>;

void evaluatePixel()
{

result = color;
}

}

If you’re using a shader whose parameters aren’t documented, you can figure out how many elements of what type

must be included in the array by checking the ShaderParameter object’s type property. The type property indicates

the data type of the parameter as defined in the shader itself. For a list of the number and type of elements expected by

each parameter type, see the ShaderParameter.value property listing in the ActionScript 3.0 Reference.

310ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

Each ShaderParameter object also has an index property that indicates where the parameter fits in the order of the

shader’s parameters. In addition to these properties, a ShaderParameter object can have additional properties

containing metadata values provided by the shader’s author. For example, the author can specify metadata values such

as minimum, maximum, and default values for a parameter. Any metadata values that the author specifies are added

to the ShaderParameter object as dynamic properties. To examine those properties, use a for..in loop to loop over

the ShaderParameter object’s dynamic properties to identify its metadata. The following example shows how to use a

for..in loop to identify a ShaderParameter object’s metadata. Each metadata value is added to a Vector instance

named metadata. Note that this example assumes a Shader instance named myShader is already created, and that it is

known to have a parameter named brightness:

var brightness:ShaderParameter = myShader.data.brightness;
var metadata:Vector.<String> = new Vector.<String>();

for (var prop:String in brightness)
{

if (brightness[prop] is String)
{

metadata[metadata.length] = brightness[prop];
}

}

// do something with the metadata

Using a shader

Flash Player 10 and later, Adobe AIR 1.5 and later

Once a Pixel Bender shader is available in ActionScript as a Shader object, it can be used in several ways:

• Shader drawing fill: The shader defines the fill portion of a shape drawn using the drawing api

• Blend mode: The shader defines the blend between two overlapping display objects

• Filter: The shader defines a filter that modifies the appearance of visual content

• Stand-alone shader processing: The shader processing runs without specifying the intended use of the output. The

shader can optionally run in the background, with the result is available when the processing completes. This

technique can be used to generate bitmap data and also to process non-visual data.

Using a shader as a drawing fill

Flash Player 10 and later, Adobe AIR 1.5 and later

When you use a shader to create a drawing fill, you use the drawing api methods to create a vector shape. The shader’s

output is used to fill in the shape, in the same way that any bitmap image can be used as a bitmap fill with the drawing

api. To create a shader fill, at the point in your code at which you want to start drawing the shape, call the Graphics

object’s beginShaderFill() method. Pass the Shader object as the first argument to the beginShaderFill()

method, as shown in this listing:

var canvas:Sprite = new Sprite();
canvas.graphics.beginShaderFill(myShader);
canvas.graphics.drawRect(10, 10, 150, 150);
canvas.graphics.endFill();
// add canvas to the display list to see the result

311ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

When you use a shader as a drawing fill, you set any input image values and parameter values that the shader requires.

The following example demonstrates using a shader as a drawing fill. In this example, the shader creates a three-point

gradient. This gradient has three colors, each at the point of a triangle, with a gradient blend between them. In addition,

the colors rotate to create an animated spinning color effect.

Note: The code for this example was written by Petri Leskinen. Thank you Petri for sharing this example. You can see

more of Petri’s examples and tutorials at http://pixelero.wordpress.com/.

The ActionScript code is in three methods:

• init(): The init() method is called when the application loads. In this method the code sets the initial values for

the Point objects representing the points of the triangle. The also code creates a Sprite instance named canvas.

Later, in the updateShaderFill(), the code draws the shader result into canvas once per frame. Finally, the code

loads the shader bytecode file.

• onLoadComplete(): In the onLoadComplete() method the code creates the Shader object named shader. It also

sets the initial parameter values. Finally, the code adds the updateShaderFill() method as a listener for the

enterFrame event, meaning that it is called once per frame to create an animation effect.

• updateShaderFill(): The updateShaderFill() method is called once per frame, creating the animation effect.

In this method, the code calculates and sets the shader parameters’ values. The code then calls the

beginShaderFill() method to create a shader fill and calls other drawing api methods to draw the shader result

in a triangle.

The following is the ActionScript code for this example. Use this class as the main application class for an ActionScript-

only project in Flash Builder, or as the document class for a FLA file in Flash Professional:

http://pixelero.wordpress.com/

312ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

package
{

import flash.display.Shader;
import flash.display.Sprite;
import flash.events.Event;
import flash.geom.Point;
import flash.net.URLLoader;
import flash.net.URLLoaderDataFormat;
import flash.net.URLRequest;

public class ThreePointGradient extends Sprite
{

private var canvas:Sprite;
private var shader:Shader;
private var loader:URLLoader;

private var topMiddle:Point;
private var bottomLeft:Point;
private var bottomRight:Point;

private var colorAngle:Number = 0.0;
private const d120:Number = 120 / 180 * Math.PI; // 120 degrees in radians

public function ThreePointGradient()
{

init();
}

private function init():void
{

canvas = new Sprite();
addChild(canvas);

var size:int = 400;
topMiddle = new Point(size / 2, 10);
bottomLeft = new Point(0, size - 10);
bottomRight = new Point(size, size - 10);

loader = new URLLoader();
loader.dataFormat = URLLoaderDataFormat.BINARY;
loader.addEventListener(Event.COMPLETE, onLoadComplete);
loader.load(new URLRequest("ThreePointGradient.pbj"));

}

private function onLoadComplete(event:Event):void
{

shader = new Shader(loader.data);

shader.data.point1.value = [topMiddle.x, topMiddle.y];
shader.data.point2.value = [bottomLeft.x, bottomLeft.y];
shader.data.point3.value = [bottomRight.x, bottomRight.y];

addEventListener(Event.ENTER_FRAME, updateShaderFill);

}

private function updateShaderFill(event:Event):void

313ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

{
colorAngle += .06;

var c1:Number = 1 / 3 + 2 / 3 * Math.cos(colorAngle);
var c2:Number = 1 / 3 + 2 / 3 * Math.cos(colorAngle + d120);
var c3:Number = 1 / 3 + 2 / 3 * Math.cos(colorAngle - d120);

shader.data.color1.value = [c1, c2, c3, 1.0];
shader.data.color2.value = [c3, c1, c2, 1.0];
shader.data.color3.value = [c2, c3, c1, 1.0];

canvas.graphics.clear();
canvas.graphics.beginShaderFill(shader);

canvas.graphics.moveTo(topMiddle.x, topMiddle.y);
canvas.graphics.lineTo(bottomLeft.x, bottomLeft.y);
canvas.graphics.lineTo(bottomRight.x, bottomLeft.y);

canvas.graphics.endFill();

}
}

}

The following is the source code for the ThreePointGradient shader kernel, used to create the

“ThreePointGradient.pbj” Pixel Bender bytecode file:

<languageVersion : 1.0;>
kernel ThreePointGradient
<

namespace : "Petri Leskinen::Example";
vendor : "Petri Leskinen";
version : 1;
description : "Creates a gradient fill using three specified points and colors.";

>
{

parameter float2 point1 // coordinates of the first point
<

minValue:float2(0, 0);
maxValue:float2(4000, 4000);
defaultValue:float2(0, 0);

>;

parameter float4 color1 // color at the first point, opaque red by default
<

defaultValue:float4(1.0, 0.0, 0.0, 1.0);
>;

parameter float2 point2 // coordinates of the second point
<

minValue:float2(0, 0);
maxValue:float2(4000, 4000);
defaultValue:float2(0, 500);

>;

parameter float4 color2 // color at the second point, opaque green by default
<

defaultValue:float4(0.0, 1.0, 0.0, 1.0);

314ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

>;

parameter float2 point3 // coordinates of the third point
<

minValue:float2(0, 0);
maxValue:float2(4000, 4000);
defaultValue:float2(0, 500);

>;

parameter float4 color3 // color at the third point, opaque blue by default
<

defaultValue:float4(0.0, 0.0, 1.0, 1.0);
>;

output pixel4 dst;

void evaluatePixel()
{

float2 d2 = point2 - point1;
float2 d3 = point3 - point1;

// transformation to a new coordinate system
// transforms point 1 to origin, point2 to (1, 0), and point3 to (0, 1)
float2x2 mtrx = float2x2(d3.y, -d2.y, -d3.x, d2.x) / (d2.x * d3.y - d3.x * d2.y);
float2 pNew = mtrx * (outCoord() - point1);

// repeat the edge colors on the outside
pNew.xy = clamp(pNew.xy, 0.0, 1.0); // set the range to 0.0 ... 1.0

// interpolating the output color or alpha value
dst = mix(mix(color1, color2, pNew.x), color3, pNew.y);

}
}

Note: If you use a shader fill when rendering under the graphics processing unit (GPU), the filled area will be colored cyan.

For more information about drawing shapes using the drawing api, see “Using the drawing API” on page 222.

Using a shader as a blend mode

Flash Player 10 and later, Adobe AIR 1.5 and later

Using a shader as a blend mode is like using other blend modes. The shader defines the appearance resulting from two

display objects being blended together visually. To use a shader as a blend mode, assign your Shader object to the

blendShader property of the foreground display object. Assigning a value other than null to the blendShader

property automatically sets the display object’s blendMode property to BlendMode.SHADER. The following listing

demonstrates using a shader as a blend mode. Note that this example assumes that there is a display object named

foreground contained in the same parent on the display list as other display content, with foreground overlapping

the other content:

foreground.blendShader = myShader;

315ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

When you use a shader as a blend mode, the shader must be defined with at least two inputs. As the example shows,

you do not set the input values in your code. Instead, the two blended images are automatically used as shader inputs.

The foreground image is set as the second image. (This is the display object to which the blend mode is applied.) A

background image is created by taking the composite of all the pixels behind the foreground image’s bounding box.

This background image is set as the first input image. If you use a shader that expects more than two inputs, you

provide a value for any input beyond the first two.

The following example demonstrates using a shader as a blend mode. This example uses a lighten blend mode based

on luminosity. The result of the blend is that the lightest pixel value from either of the blended objects becomes the

pixel that’s displayed.

Note: The code for this example was written by Mario Klingemann. Thank you Mario for sharing this example. You can

see more of Mario’s work and read his writing at www.quasimondo.com/.

The important ActionScript code is in these two methods:

• init(): The init() method is called when the application loads. In this method the code loads the shader

bytecode file.

• onLoadComplete(): In the onLoadComplete() method the code creates the Shader object named shader. It then

draws three objects. The first, backdrop, is a dark gray background behind the blended objects. The second,

backgroundShape, is a green gradient ellipse. The third object, foregroundShape, is an orange gradient ellipse.

The foregroundShape ellipse is the foreground object of the blend. The background image of the blend is formed

by the part of backdrop and the part of backgroundShape that are overlapped by the foregroundShape object’s

bounding box. The foregroundShape object is the front-most object in the display list. It partially overlaps

backgroundShape and completely overlaps backdrop. Because of this overlap, without a blend mode applied, the

orange ellipse (foregroundShape) shows completely and part of the green ellipse (backgroundShape) is hidden

by it:

However, with the blend mode applied, the brighter part of the green ellipse “shows through” because it is lighter

than the portion of foregroundShape that overlaps it:

The following is the ActionScript code for this example. Use this class as the main application class for an ActionScript-

only project in Flash Builder, or as the document class for the FLA file in Flash Professional:

http://www.quasimondo.com/

316ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

package
{

import flash.display.BlendMode;
import flash.display.GradientType;
import flash.display.Graphics;
import flash.display.Shader;
import flash.display.Shape;
import flash.display.Sprite;
import flash.events.Event;
import flash.geom.Matrix;
import flash.net.URLLoader;
import flash.net.URLLoaderDataFormat;
import flash.net.URLRequest;

public class LumaLighten extends Sprite
{

private var shader:Shader;
private var loader:URLLoader;

public function LumaLighten()
{

init();
}

private function init():void
{

loader = new URLLoader();
loader.dataFormat = URLLoaderDataFormat.BINARY;
loader.addEventListener(Event.COMPLETE, onLoadComplete);
loader.load(new URLRequest("LumaLighten.pbj"));

}

private function onLoadComplete(event:Event):void
{

shader = new Shader(loader.data);

var backdrop:Shape = new Shape();
var g0:Graphics = backdrop.graphics;
g0.beginFill(0x303030);
g0.drawRect(0, 0, 400, 200);
g0.endFill();
addChild(backdrop);

var backgroundShape:Shape = new Shape();
var g1:Graphics = backgroundShape.graphics;
var c1:Array = [0x336600, 0x80ff00];
var a1:Array = [255, 255];
var r1:Array = [100, 255];
var m1:Matrix = new Matrix();
m1.createGradientBox(300, 200);
g1.beginGradientFill(GradientType.LINEAR, c1, a1, r1, m1);
g1.drawEllipse(0, 0, 300, 200);

317ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

g1.endFill();
addChild(backgroundShape);

var foregroundShape:Shape = new Shape();
var g2:Graphics = foregroundShape.graphics;
var c2:Array = [0xff8000, 0x663300];
var a2:Array = [255, 255];
var r2:Array = [100, 255];
var m2:Matrix = new Matrix();
m2.createGradientBox(300, 200);
g2.beginGradientFill(GradientType.LINEAR, c2, a2, r2, m2);
g2.drawEllipse(100, 0, 300, 200);
g2.endFill();
addChild(foregroundShape);

foregroundShape.blendShader = shader;
foregroundShape.blendMode = BlendMode.SHADER;

}
}

}

The following is the source code for the LumaLighten shader kernel, used to create the “LumaLighten.pbj” Pixel

Bender bytecode file:

<languageVersion : 1.0;>
kernel LumaLighten
<

namespace : "com.quasimondo.blendModes";
vendor : "Quasimondo.com";
version : 1;
description : "Luminance based lighten blend mode";

>
{

input image4 background;
input image4 foreground;

output pixel4 dst;

const float3 LUMA = float3(0.212671, 0.715160, 0.072169);

void evaluatePixel()
{

float4 a = sampleNearest(foreground, outCoord());
float4 b = sampleNearest(background, outCoord());
float luma_a = a.r * LUMA.r + a.g * LUMA.g + a.b * LUMA.b;
float luma_b = b.r * LUMA.r + b.g * LUMA.g + b.b * LUMA.b;

dst = luma_a > luma_b ? a : b;

}
}

For more information on using blend modes, see “Applying blending modes” on page 186.

318ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

Note: When a Pixel Bender shader program is run as a blend in Flash Player or AIR, the sampling and outCoord()

functions behave differently than in other contexts.In a blend, a sampling function will always return the current pixel

being evaluated by the shader. You cannot, for example, use add an offset to outCoord() in order to sample a

neighboring pixel. Likewise, if you use the outCoord() function outside a sampling function, its coordinates always

evaluate to 0. You cannot, for example, use the position of a pixel to influence how the blended images are combined.

Using a shader as a filter

Flash Player 10 and later, Adobe AIR 1.5 and later

Using a shader as a filter is like using any of the other filters in ActionScript. When you use a shader as a filter, the

filtered image (a display object or BitmapData object) is passed to the shader. The shader uses the input image to create

the filter output, which is usually a modified version of the original image. If the filtered object is a display object the

shader’s output is displayed on the screen in place of the filtered display object. If the filtered object is a BitmapData

object, the shader’s output becomes the content of the BitmapData object whose applyFilter() method is called.

To use a shader as a filter, you first create the Shader object as described in “Loading or embedding a shader” on

page 302. Next you create a ShaderFilter object linked to the Shader object. The ShaderFilter object is the filter that is

applied to the filtered object. You apply it to an object in the same way that you apply any filter. You pass it to the

filters property of a display object or you call the applyFilter() method on a BitmapData object. For example,

the following code creates a ShaderFilter object and applies the filter to a display object named homeButton.

var myFilter:ShaderFilter = new ShaderFilter(myShader);
homeButton.filters = [myFilter];

When you use a shader as a filter, the shader must be defined with at least one input. As the example shows, you do

not set the input value in your code. Instead, the filtered display object or BitmapData object is set as the input image.

If you use a shader that expects more than one input, you provide a value for any input beyond the first one.

In some cases, a filter changes the dimensions of the original image. For example, a typical drop shadow effect adds

extra pixels containing the shadow that’s added to the image. When you use a shader that changes the image

dimensions, set the leftExtension, rightExtension, topExtension, and bottomExtension properties to indicate

by how much you want the image size to change.

The following example demonstrates using a shader as a filter. The filter in this example inverts the red, green, and

blue channel values of an image. The result is the “negative” version of the image.

Note: The shader that this example uses is the invertRGB.pbk Pixel Bender kernel that is included with the Pixel Bender

Toolkit. You can load the source code for the kernel from the Pixel Bender Toolkit installation directory. Compile the

source code and save the bytecode file in the same directory as the source code.

The important ActionScript code is in these two methods:

• init(): The init() method is called when the application loads. In this method the code loads the shader

bytecode file.

319ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

• onLoadComplete(): In the onLoadComplete() method the code creates the Shader object named shader. It then

creates and draws the contents of an object named target. The target object is a rectangle filled with a linear

gradient color that is red on the left, yellow-green in the middle, and light blue on the right. The unfiltered object

looks like this:

With the filter applied the colors are inverted, making the rectangle look like this:

The shader that this example uses is the “invertRGB.pbk” sample Pixel Bender kernel that is included with the Pixel

Bender Toolkit. The source code is available in the file “invertRGB.pbk” in the Pixel Bender Toolkit installation

directory. Compile the source code and save the bytecode file with the name “invertRGB.pbj” in the same directory as

your ActionScript source code.

The following is the ActionScript code for this example. Use this class as the main application class for an ActionScript-

only project in Flash Builder, or as the document class for the FLA file in Flash Professional:

package
{

import flash.display.GradientType;
import flash.display.Graphics;
import flash.display.Shader;
import flash.display.Shape;
import flash.display.Sprite;
import flash.filters.ShaderFilter;
import flash.events.Event;
import flash.geom.Matrix;
import flash.net.URLLoader;
import flash.net.URLLoaderDataFormat;
import flash.net.URLRequest;

public class InvertRGB extends Sprite
{

private var shader:Shader;
private var loader:URLLoader;

public function InvertRGB()

320ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

{
init();

}

private function init():void
{

loader = new URLLoader();
loader.dataFormat = URLLoaderDataFormat.BINARY;
loader.addEventListener(Event.COMPLETE, onLoadComplete);
loader.load(new URLRequest("invertRGB.pbj"));

}

private function onLoadComplete(event:Event):void
{

shader = new Shader(loader.data);

var target:Shape = new Shape();
addChild(target);

var g:Graphics = target.graphics;
var c:Array = [0x990000, 0x445500, 0x007799];
var a:Array = [255, 255, 255];
var r:Array = [0, 127, 255];
var m:Matrix = new Matrix();
m.createGradientBox(w, h);
g.beginGradientFill(GradientType.LINEAR, c, a, r, m);
g.drawRect(10, 10, w, h);
g.endFill();

var invertFilter:ShaderFilter = new ShaderFilter(shader);
target.filters = [invertFilter];

}
}

}

For more information on applying filters, see “Creating and applying filters” on page 268.

Using a shader in stand-alone mode

Flash Player 10 and later, Adobe AIR 1.5 and later

When you use a shader in stand-alone mode, the shader processing runs independent of how you intend to use the

output. You specify a shader to execute, set input and parameter values, and designate an object into which the result

data is placed. You can use a shader in stand-alone mode for two reasons:

• Processing non-image data: In stand-alone mode, you can choose to pass arbitrary binary or number data to the

shader rather than bitmap image data. You can choose to have the shader result be returned as binary data or

number data in addition to bitmap image data.

• Background processing: When you run a shader in stand-alone mode, by default the shader executes

asynchronously. This means that the shader runs in the background while your application continues to run, and

your code is notified when the shader processing finishes. You can use a shader that takes a long time to run and it

doesn’t freeze up the application user interface or other processing while the shader is running.

321ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with Pixel Bender shaders

Last updated 10/9/2017

You use a ShaderJob object to execute a shader in stand-alone mode. First you create the ShaderJob object and link it

to the Shader object representing the shader to execute:

var job:ShaderJob = new ShaderJob(myShader);

Next, you set any input or parameter values that the shader expects. If you are executing the shader in the background,

you also register a listener for the ShaderJob object’s complete event. Your listener is called when the shader finishes

its work:

function completeHandler(event:ShaderEvent):void
{

// do something with the shader result
}

job.addEventListener(ShaderEvent.COMPLETE, completeHandler);

Next, you create an object into which the shader operation result is written when the operation finishes. You assign

that object to the ShaderJob object’s target property:

var jobResult:BitmapData = new BitmapData(100, 75);
job.target = jobResult;

Assign a BitmapData instance to the target property if you are using the ShaderJob to perform image processing. If

you are processing binary or number data, assign a ByteArray object or Vector.<Number> instance to the target

property. In that case, you must set the ShaderJob object’s width and height properties to specify the amount of data

to output to the target object.

Note: You can set the ShaderJob object’s shader, target,width, and height properties in one step by passing arguments

to the ShaderJob() constructor, like this:var job:ShaderJob = new ShaderJob(myShader, myTarget, myWidth,

myHeight);

When you are ready to execute the shader, you call the ShaderJob object’s start() method:

job.start();

By default calling start() causes the ShaderJob to execute asynchronously. In that case program execution continues

immediately with the next line of code rather than waiting for the shader to finish. When the shader operation finishes,

the ShaderJob object calls its complete event listeners, notifying them that it is done. At that point (that is, in the body

of your complete event listener) the target object contains the shader operation result.

Note: Instead of using the target property object, you can retrieve the shader result directly from the event object that’s

passed to your listener method. The event object is a ShaderEvent instance. The ShaderEvent object has three properties

that can be used to access the result, depending on the data type of the object you set as the target property:

ShaderEvent.bitmapData, ShaderEvent.byteArray, and ShaderEvent.vector.

Alternatively, you can pass a true argument to the start() method. In that case the shader operation executes

synchronously. All code (including interaction with the user interface and any other events) pauses while the shader

executes. When the shader finishes, the target object contains the shader result and the program continues with the

next line of code.

job.start(true);

322

Last updated 10/9/2017

Chapter 16: Working with movie clips

Flash Player 9 and later, Adobe AIR 1.0 and later

The MovieClip class is the core class for animation and movie clip symbols that you create in your Adobe® Flash®

development environment. It has all the behaviors and functionality of display objects, but with additional properties

and methods for controlling its timeline.

Basics of movie clips

Flash Player 9 and later, Adobe AIR 1.0 and later

Movie clips are a key element for people who create animated content with the Flash authoring tool and want to

control that content with ActionScript. Whenever you create a movie clip symbol in Flash, Flash adds the symbol to

the library of that Flash document. By default, this symbol becomes an instance of the MovieClip class, and as such has

the properties and methods of the MovieClip class.

When an instance of a movie clip symbol is placed on the Stage, the movie clip automatically progresses through its

timeline (if it has more than one frame) unless its playback is altered using ActionScript. It is this timeline that

distinguishes the MovieClip class, allowing you to create animation through motion or shape tweens through the Flash

authoring tool. By contrast, with a display object that is an instance of the Sprite class, you can create animation only

by programmatically changing the object’s values.

In previous versions of ActionScript, the MovieClip class was the base class of all instances on the Stage. In

ActionScript 3.0, a movie clip is only one of many display objects that can appear on the screen. If a timeline is not

necessary for the function of a display object, using the Shape class or Sprite class in lieu of the MovieClip class may

improve rendering performance. For more information on choosing the appropriate display object for a task, see

“Choosing a DisplayObject subclass” on page 172.

Important concepts and terms

The following reference list contains important terms related to movie clips:

AVM1 SWF A SWF file created using ActionScript 1.0 or ActionScript 2.0, usually targeting Flash Player 8 or earlier.

AVM2 SWF A SWF file created using ActionScript 3.0 for Adobe Flash Player 9 or later or Adobe AIR.

External SWF A SWF file that is created separately from the project SWF file and is intended to be loaded into the

project SWF file and played back within that SWF file.

Frame The smallest division of time on the timeline. As with a motion picture filmstrip, each frame is like a snapshot

of the animation in time, and when frames are played quickly in sequence, the effect of animation is created.

Timeline The metaphorical representation of the series of frames that make up a movie clip’s animation sequence. The

timeline of a MovieClip object is equivalent to the timeline in the Flash authoring tool.

Playhead A marker identifying the location (frame) in the timeline that is being displayed at a given moment.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/MovieClip.html

323ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with movie clips

Last updated 10/9/2017

Working with MovieClip objects

Flash Player 9 and later, Adobe AIR 1.0 and later

When you publish a SWF file, Flash converts all movie clip symbol instances on the Stage to MovieClip objects. You

can make a movie clip symbol available to ActionScript by giving it an instance name in the Instance Name field of the

Property inspector. When the SWF file is created, Flash generates the code that creates the MovieClip instance on the

Stage and declares a variable using the instance name. If you have named movie clips that are nested inside other named

movie clips, those child movie clips are treated like properties of the parent movie clip—you can access the child movie

clip using dot syntax. For example, if a movie clip with the instance name childClip is nested within another clip with

the instance name parentClip, you can make the child clip’s timeline animation play by calling this code:

 parentClip.childClip.play();

Note: : Children instances placed on the Stage in the Flash authoring tool cannot be accessed by code from within the

constructor of a parent instance since they have not been created at that point in code execution. Before accessing the

child, the parent must instead either create the child instance by code or delay access to a callback function that listens

for the child to dispatch its Event.ADDED_TO_STAGE event.

While some legacy methods and properties of the ActionScript 2.0 MovieClip class remain the same, others have

changed. All properties prefixed with an underscore have been renamed. For example, _width and _height

properties are now accessed as width and height, while _xscale and _yscale are now accessed as scaleX and

scaleY. For a complete list of the properties and methods of the MovieClip class, consult the ActionScript 3.0

Reference for the Adobe Flash Platform .

Controlling movie clip playback

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash uses the metaphor of a timeline to convey animation or a change in state. Any visual element that employs a

timeline must be either a MovieClip object or extend from the MovieClip class. While ActionScript can direct any

movie clip to stop, play, or go to another point on the timeline, it cannot be used to dynamically create a timeline or

add content at specific frames; this is only possible using the Flash authoring tool.

When a MovieClip is playing, it progresses along its timeline at a speed dictated by the frame rate of the SWF file.

Alternatively, you can override this setting by setting the Stage.frameRate property in ActionScript.

Playing movie clips and stopping playback

Flash Player 9 and later, Adobe AIR 1.0 and later

The play() and stop() methods allow basic control of a movie clip across its timeline. For example, suppose you have

a movie clip symbol on the Stage which contains an animation of a bicycle moving across the screen, with its instance

name set to bicycle. If the following code is attached to a keyframe on the main timeline,

 bicycle.stop();

the bicycle will not move (its animation will not play). The bicycle’s movement could start through some other user

interaction. For example, if you had a button named startButton, the following code on a keyframe on the main

timeline would make it so that clicking the button causes the animation to play:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/MovieClip.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/MovieClip.html

324ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with movie clips

Last updated 10/9/2017

 // This function will be called when the button is clicked. It causes the
 // bicycle animation to play.
 function playAnimation(event:MouseEvent):void
 {
 bicycle.play();
 }
 // Register the function as a listener with the button.
 startButton.addEventListener(MouseEvent.CLICK, playAnimation);

Fast-forwarding and rewinding

Flash Player 9 and later, Adobe AIR 1.0 and later

The play() and stop() methods are not the only way of controlling playback in a movie clip. You can also move the

playhead forward or backward along the timeline manually by using the nextFrame() and prevFrame() methods.

Calling either of these methods stops playback and moves the playhead one frame forward or backward, respectively.

Using the play() method is analogous to calling nextFrame() every time the movie clip object’s enterFrame event

is triggered. Along these lines, you could make the bicycle movie clip play backwards by creating an event listener

for the enterFrame event and telling bicycle to go to its previous frame in the listener function, as follows:

 // This function is called when the enterFrame event is triggered, meaning
 // it's called once per frame.
 function everyFrame(event:Event):void
 {
 if (bicycle.currentFrame == 1)
 {
 bicycle.gotoAndStop(bicycle.totalFrames);
 }
 else
 {
 bicycle.prevFrame();
 }
 }
 bicycle.addEventListener(Event.ENTER_FRAME, everyFrame);

In normal playback, if a movie clip contains more than a single frame, it will loop indefinitely when playing; that is, it

will return to Frame 1 if it progresses past its final frame. When you use prevFrame() or nextFrame(), this behavior

does not happen automatically (calling prevFrame() when the playhead is on Frame 1 doesn’t move the playhead to

the last frame). The if condition in the example above checks to see if the playhead has progressed backwards to the

first frame, and sets the playhead ahead to its final frame, effectively creating a continuous loop of the movie clip

playing backwards.

Jumping to a different frame and using frame labels

Flash Player 9 and later, Adobe AIR 1.0 and later

Sending a movie clip to a new frame is a simple affair. Calling either gotoAndPlay() or gotoAndStop() will jump the

movie clip to the frame number specified as a parameter. Alternatively, you can pass a string that matches the name of

a frame label. Any frame on the timeline can be assigned a label. To do this, select a frame on the timeline and then

enter a name in the Frame Label field on the Property inspector.

325ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with movie clips

Last updated 10/9/2017

The advantages of using frame labels instead of numbers are particularly evident when creating a complex movie clip.

When the number of frames, layers, and tweens in an animation becomes large, consider labeling important frames

with explanatory descriptions that represent shifts in the behavior of the movie clip (for example, “off,” “walking,” or

“running”). This improves code readability and also provides flexibility, since ActionScript calls that go to a labeled

frame are pointers to a single reference—the label—rather than a specific frame number. If later on you decide to move

a particular segment of the animation to a different frame, you will not need to change your ActionScript code as long

as you keep the same label for the frames in the new location.

To represent frame labels in code, ActionScript 3.0 includes the FrameLabel class. Each instance of this class represents

a single frame label, and has a name property representing the name of the frame label as specified in the Property

inspector, and a frame property representing the frame number of the frame where the label is placed on the timeline.

In order to get access to the FrameLabel instances associated with a movie clip instance, the MovieClip class includes

two properties that directly return FrameLabel objects. The currentLabels property returns an array that consists of

all FrameLabel objects across the entire timeline of a movie clip. The currentLabel property returns a string

containing the name of the frame label encountered most recently along the timeline.

Suppose you were creating a movie clip named robot and had labeled the various states of its animation. You could

set up a condition that checks the currentLabel property to access the current state of robot, as in the following code:

 if (robot.currentLabel == "walking")
 {
 // do something
 }

Flash Player 11.3 and AIR 3.3 added the frameLabel event to the FrameLabel class. You can assign an event handler

to the FrameLabel instance that represents a frame label. The event is dispatched when the playhead enters the frame.

The following example creates a FrameLabel instance for the second frame label in the Array of frame labels for the

MovieClip. It then registers an event handler for the frameLabel event:

var myFrameLabel:FrameLabel = robot.currentLabels[1];
myFrameLabel.addEventListener(Event.FRAME_LABEL, onFrameLabel);

function onFrameLabel(e:Event):void {

//do something
}

Working with scenes

Flash Player 9 and later, Adobe AIR 1.0 and later

In the Flash authoring environment, you can use scenes to demarcate a series of timelines that a SWF file will progress

through. Using the second parameter of the gotoAndPlay() or gotoAndStop() methods, you can specify a scene to

send the playhead to. All FLA files start with only the initial scene, but you can create new scenes.

Using scenes is not always the best approach because scenes have a number of drawbacks. A Flash document that

contains multiple scenes can be difficult to maintain, particularly in multiauthor environments. Multiple scenes can

also be inefficient in bandwidth, because the publishing process merges all scenes into a single timeline. This causes a

progressive download of all scenes, even if they are never played. For these reasons, use of multiple scenes is often

discouraged except for organizing lengthy multiple timeline-based animations.

The scenes property of the MovieClip class returns an array of Scene objects representing all the scenes in the SWF

file. The currentScene property returns a Scene object that represents the scene that is currently playing.

326ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with movie clips

Last updated 10/9/2017

The Scene class has several properties that give information about a scene. The labels property returns an array of

FrameLabel objects representing the frame labels in that scene. The name property returns the scene’s name as a string.

The numFrames property returns an int representing the total number of frames in the scene.

Creating MovieClip objects with ActionScript

Flash Player 9 and later, Adobe AIR 1.0 and later

One way of adding content to the screen in Flash is by dragging assets from the library onto the Stage, but that is not

the only workflow. For complex projects, experienced developers commonly prefer to create movie clips

programatically. This approach brings several advantages: easier re-use of code, faster compile-time speed, and more

sophisticated modifications that are available only to ActionScript.

The display list API of ActionScript 3.0 streamlines the process of dynamically creating MovieClip objects. The ability

to instantiate a MovieClip instance directly, separate from the process of adding it to the display list, provides flexibility

and simplicity without sacrificing control.

In ActionScript 3.0, when you create a movie clip (or any other display object) instance programatically, it is not visible

on the screen until it is added to the display list by calling the addChild() or the addChildAt() method on a display

object container. This allows you to create a movie clip, set its properties, and even call methods before it is rendered

to the screen. For more information on working with the display list, see “Working with display object containers” on

page 159.

Exporting library symbols for ActionScript

Flash Player 9 and later, Adobe AIR 1.0 and later

By default, instances of movie clip symbols in a Flash document’s library cannot be dynamically created (that is,

created using only ActionScript). This is because each symbol that is exported for use in ActionScript adds to the size

of your SWF file, and it’s recognized that some symbols might not be intended for use on the stage. For this reason, in

order to make a symbol available in ActionScript, you must specify that the symbol should be exported for

ActionScript.

To export a symbol for ActionScript:

1 Select the symbol in the Library panel and open its Symbol Properties dialog box.

2 If necessary, activate the Advanced settings.

3 In the Linkage section, activate the Export for ActionScript checkbox.

This will activate the Class and Base Class fields.

By default, the Class field is populated with the symbol name, with spaces removed (for example, a symbol named

“Tree House” would become “TreeHouse”). To specify that the symbol should use a custom class for its behavior,

enter the full name of the class including its package in this field. If you want to be able to create instances of the

symbol in ActionScript, but don’t need to add any additional behavior, you can leave the class name as-is.

The Base Class field’s value defaults to flash.display.MovieClip. If you want your symbol to extend the

functionality of another customer class, you can specify that class’s name instead, as long as that class extends the

Sprite (or MovieClip) class.

4 Press the OK button to save the changes.

327ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with movie clips

Last updated 10/9/2017

At this point, if Flash can’t find a linked SWC file or an external ActionScript file with a definition for the specified

class (for instance, if you didn’t need to add additional behavior for the symbol), a warning is displayed:

A definition for this class could not be found in the classpath, so one will be automatically generated in the SWF file

upon export.

You can disregard this warning if your library symbol does not require unique functionality beyond the

functionality of the MovieClip class.

If you do not provide a class for your symbol, Flash will create a class for your symbol equivalent to this one:

 package
 {
 import flash.display.MovieClip;

 public class ExampleMovieClip extends MovieClip
 {
 public function ExampleMovieClip()
 {
 }
 }
 }

If you do want to add extra ActionScript functionality to your symbol, add the appropriate properties and methods to

the code structure below. For example, suppose you have a movie clip symbol containing a circle of 50 pixels width

and 50 pixels height, and the symbol is specified to be exported for ActionScript with a class named Circle. The

following code, when placed in a Circle.as file, extends the MovieClip class and provides the symbol with the additional

methods getArea() and getCircumference():

 package
 {
 import flash.display.MovieClip;

 public class Circle extends MovieClip
 {
 public function Circle()
 {
 }

 public function getArea():Number
 {
 // The formula is Pi times the radius squared.
 return Math.PI * Math.pow((width / 2), 2);
 }

 public function getCircumference():Number
 {
 // The formula is Pi times the diameter.
 return Math.PI * width;
 }
 }
 }

The following code, placed on a keyframe on Frame 1 of the Flash document, will create an instance of the symbol and

display it on the screen:

328ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with movie clips

Last updated 10/9/2017

 var c:Circle = new Circle();
 addChild(c);
 trace(c.width);
 trace(c.height);
 trace(c.getArea());
 trace(c.getCircumference());

This code demonstrates ActionScript-based instantiation as an alternative to dragging individual assets onto the Stage.

It creates a circle that has all of the properties of a movie clip and also has the custom methods defined in the Circle

class. This is a very basic example—your library symbol can specify any number of properties and methods in its class.

ActionScript-based instantiation is powerful, because it allows you to dynamically create large quantities of instances

that would be tedious to arrange manually. It is also flexible, because you can customize each instance’s properties as

it is created. You can get a sense of both of these benefits by using a loop to dynamically create several Circle instances.

With the Circle symbol and class described previously in your Flash document’s library, place the following code on a

keyframe on Frame 1:

 import flash.geom.ColorTransform;

 var totalCircles:uint = 10;
 var i:uint;
 for (i = 0; i < totalCircles; i++)
 {
 // Create a new Circle instance.
 var c:Circle = new Circle();
 // Place the new Circle at an x coordinate that will space the circles
 // evenly across the Stage.
 c.x = (stage.stageWidth / totalCircles) * i;
 // Place the Circle instance at the vertical center of the Stage.
 c.y = stage.stageHeight / 2;
 // Change the Circle instance to a random color
 c.transform.colorTransform = getRandomColor();
 // Add the Circle instance to the current timeline.
 addChild(c);
 }

 function getRandomColor():ColorTransform
 {
 // Generate random values for the red, green, and blue color channels.
 var red:Number = (Math.random() * 512) - 255;
 var green:Number = (Math.random() * 512) - 255;
 var blue:Number = (Math.random() * 512) - 255;

 // Create and return a ColorTransform object with the random colors.
 return new ColorTransform(1, 1, 1, 1, red, green, blue, 0);
 }

This demonstrates how you can create and customize multiple instances of a symbol quickly using code. Each instance

is positioned based on the current count within the loop, and each instance is given a random color by setting its

transform property (which Circle inherits by extending the MovieClip class).

329ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with movie clips

Last updated 10/9/2017

Loading an external SWF file

Flash Player 9 and later, Adobe AIR 1.0 and later

In ActionScript 3.0, SWF files are loaded using the Loader class. To load an external SWF file, your ActionScript needs

to do four things:

1 Create a new URLRequest object with the url of the file.

2 Create a new Loader object.

3 Call the Loader object’s load() method, passing the URLRequest instance as a parameter.

4 Call the addChild() method on a display object container (such as the main timeline of a Flash document) to add

the Loader instance to the display list.

Ultimately, the code looks like this:

 var request:URLRequest = new URLRequest("http://www.[yourdomain].com/externalSwf.swf");
 var loader:Loader = new Loader()
 loader.load(request);
 addChild(loader);

This same code can be used to load an external image file such as a JPEG, GIF, or PNG image, by specifying the image

file’s url rather than a SWF file’s url. A SWF file, unlike an image file, may contain ActionScript. Thus, although the

process of loading a SWF file may be identical to loading an image, when loading an external SWF file both the SWF

file doing the loading and the SWF file being loaded must reside in the same security sandbox if Flash Player or AIR is

playing the SWF and you plan to use ActionScript to communicate in any way to the external SWF file. Additionally,

if the external SWF file contains classes that share the same namespace as classes in the loading SWF file, you may need

to create a new application domain for the loaded SWF file in order to avoid namespace conflicts. For more

information on security and application domain considerations, see “Working with application domains” on page 147

and “Loading content” on page 1060.

When the external SWF file is successfully loaded, it can be accessed through the Loader.content property. If the

external SWF file is published for ActionScript 3.0, this will be either a movie clip or a sprite, depending on which class

it extends.

There are a few differences for loading a SWF file in Adobe AIR for iOS versus other platforms. For more information,

see “Loading SWF files in AIR for iOS” on page 201.

Considerations for loading an older SWF file

Flash Player 9 and later, Adobe AIR 1.0 and later

If the external SWF file has been published with an older version of ActionScript, there are important limitations to

consider. Unlike an ActionScript 3.0 SWF file that runs in AVM2 (ActionScript Virtual Machine 2), a SWF file

published for ActionScript 1.0 or 2.0 runs in AVM1 (ActionScript Virtual Machine 1).

330ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with movie clips

Last updated 10/9/2017

There are important differences when loading an ActionScript 1.0 or 2.0 SWF file into an ActionScript 3.0 SWF file

(compared to loading an ActionScript 3.0 SWF file). Flash Player provides full backward compatibility with previously

published content. Any content that runs in previous versions of Flash Player runs in Flash Player versions that

support ActionScript 3.0. However, the following limitations apply:

• ActionScript 3.0 code can load a SWF file written in ActionScript 1.0 or 2.0. When an ActionScript 1.0 or 2.0 SWF

file is successfully loaded, the loaded object (the Loader.content property) is an AVM1Movie object. An

AVM1Movie instance is not the same as a MovieClip instance. It is a display object, but unlike a movie clip, it does

not include timeline-related methods or properties. The parent AVM2 SWF file cannot access the properties,

methods, or objects of the loaded AVM1Movie object.

• SWF files written in ActionScript 1.0 or 2.0 cannot load SWF files written in ActionScript 3.0. This means that SWF

files authored in Flash 8 or Flex Builder 1.5 or earlier versions cannot load ActionScript 3.0 SWF files.

The only exception to this rule is that an ActionScript 2.0 SWF file can replace itself with an ActionScript 3.0 SWF

file, as long as the ActionScript 2.0 SWF file hasn't previously loaded anything into any of its levels. An ActionScript

2.0 SWF file can do this through a call to loadMovieNum(), passing a value of 0 to the level parameter.

• In general, SWF files written in ActionScript 1.0 or 2.0 must be migrated if they are to work together with SWF files

written in ActionScript 3.0. For example, suppose you created a media player using ActionScript 2.0. The media

player loads various content that was also created using ActionScript 2.0. You cannot create new content in

ActionScript 3.0 and load it in the media player. You must migrate the video player to ActionScript 3.0.

If, however, you create a media player in ActionScript 3.0, that media player can perform simple loads of your

ActionScript 2.0 content.

The following tables summarize the limitations of previous versions of Flash Player in relation to loading newer

content and executing code, as well as the limitations for cross-scripting between SWF files written in different

versions of ActionScript.

In the following table, “Supported functionality” refers to content running in Flash Player 9 or later. Content running

in Flash Player 8 or earlier can load, display, execute, and cross-script only ActionScript 1.0 and 2.0.

Supported functionality Flash Player 7 Flash Player 8 Flash Player 9 and 10

Can load SWFs published for 7 and earlier 8 and earlier 9 (or 10) and earlier

Contains this AVM AVM1 AVM1 AVM1 and AVM2

Runs SWFs written in ActionScript 1.0 and 2.0 1.0 and 2.0 1.0 and 2.0, and 3.0

Supported functionality Content created in ActionScript 1.0 and 2.0 Content created in ActionScript 3.0

Can load content and execute code in

content created in

ActionScript 1.0 and 2.0 only ActionScript 1.0 and 2.0, and ActionScript 3.0

Can cross script content created in ActionScript 1.0 and 2.0 only (ActionScript 3.0

through Local Connection)

ActionScript 1.0 and 2.0 through

LocalConnection.

ActionScript 3.0

331ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with movie clips

Last updated 10/9/2017

Movie clip example: RuntimeAssetsExplorer

Flash Player 9 and later, Adobe AIR 1.0 and later

The Export for ActionScript functionality can be especially advantageous for libraries that may be useful across more

than one project. If Flash Player or AIR executes a SWF file, symbols that have been exported to ActionScript are

available to any SWF file within the same security sandbox as the SWF that loads it. In this way, a single Flash

document can generate a SWF file that is designated for the sole purpose of holding graphical assets. This technique is

particularly useful for larger projects where designers working on visual assets can work in parallel with developers

who create a “wrapper” SWF file that then loads the graphical assets SWF file at run time. You can use this method to

maintain a series of versioned files where graphical assets are not dependent upon the progress of programming

development.

The RuntimeAssetsExplorer application loads any SWF file that is a subclass of RuntimeAsset and allows you to

browse the available assets of that SWF file. The example illustrates the following:

• Loading an external SWF file using Loader.load()

• Dynamic creation of a library symbol exported for ActionScript

• ActionScript control of MovieClip playback

Before beginning, note that each of the SWF files to run in Flash Player must be located in the same security sandbox.

For more information, see “Security sandboxes” on page 1044.

To get the application files for this sample, download the Flash Professional Samples. The RuntimeAssetsExplorer

application files can be found in the folder Samples/RuntimeAssetsExplorer. The application consists of the following

files:

File Description

RuntimeAssetsExample.mxml

or

RuntimeAssetsExample.fla

The user interface for the application for Flex (MXML)

or Flash (FLA).

RuntimeAssetsExample.as Document class for the Flash (FLA) application.

GeometricAssets.as An example class that implements the RuntimeAsset

interface.

GeometricAssets.fla A FLA file linked to the GeometricAssets class (the

document class of the FLA) containing symbols that

are exported for ActionScript.

com/example/programmingas3/runtimeassetexplorer/RuntimeLibrary.as An interface that defines the required methods

expected of all run-time asset SWF files that will be

loaded into the explorer container.

com/example/programmingas3/runtimeassetexplorer/AnimatingBox.as The class of the library symbol in the shape of a

rotating box.

com/example/programmingas3/runtimeassetexplorer/AnimatingStar.as The class of the library symbol in the shape of a

rotating star.

http://help.adobe.com/support/documentation/en/flash/10/Flash_ActionScript3.0_samples_CS4.zip
http://www.adobe.com/go/learn_programmingAS3samples_flash

332ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with movie clips

Last updated 10/9/2017

Establishing a run-time library interface

Flash Player 9 and later, Adobe AIR 1.0 and later

In order for the explorer to properly interact with a SWF library, the structure of the run-time asset libraries must be

formalized. We will accomplish this by creating an interface, which is similar to a class in that it’s a blueprint of

methods that demarcate an expected structure, but unlike a class it includes no method bodies. The interface provides

a way for both the run-time library and the explorer to communicate to one another. Each SWF of run-time assets that

is loaded in our browser will implement this interface. For more information about interfaces and how they can be

useful, see Interfaces in Learning ActionScript 3.0.

The RuntimeLibrary interface will be very simple—we merely require a function that can provide the explorer with an

array of classpaths for the symbols to be exported and available in the run-time library. To this end, the interface has

a single method: getAssets().

 package com.example.programmingas3.runtimeassetexplorer
 {
 public interface RuntimeLibrary
 {
 function getAssets():Array;
 }
 }

Creating the asset library SWF file

Flash Player 9 and later, Adobe AIR 1.0 and later

By defining the RuntimeLibrary interface, it’s possible to create multiple asset library SWF files that can be loaded into

another SWF file. Making an individual SWF library of assets involves four tasks:

• Creating a class for the asset library SWF file

• Creating classes for individual assets contained in the library

• Creating the actual graphic assets

• Associating graphic elements with classes and publishing the library SWF

Creating a class to implement the RuntimeLibrary interface

Next, we’ll create the GeometricAssets class that will implement the RuntimeLibrary interface. This will be the

document class of the FLA. The code for this class is very similar to the RuntimeLibrary interface—the difference

between them is that in the class definition the getAssets() method has a method body.

333ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with movie clips

Last updated 10/9/2017

 package
 {
 import flash.display.Sprite;
 import com.example.programmingas3.runtimeassetexplorer.RuntimeLibrary;

 public class GeometricAssets extends Sprite implements RuntimeLibrary
 {
 public function GeometricAssets() {

 }
 public function getAssets():Array {
 return ["com.example.programmingas3.runtimeassetexplorer.AnimatingBox",
 "com.example.programmingas3.runtimeassetexplorer.AnimatingStar"];
 }
 }
 }

If we were to create a second run-time library, we could create another FLA based upon another class (for example,

AnimationAssets) that provides its own getAssets() implementation.

Creating classes for each MovieClip asset

For this example, we’ll merely extend the MovieClip class without adding any functionality to the custom assets. The

following code for AnimatingStar is analogous to that of AnimatingBox:

 package com.example.programmingas3.runtimeassetexplorer
 {
 import flash.display.MovieClip;

 public class AnimatingStar extends MovieClip
 {
 public function AnimatingStar() {
 }
 }
 }

Publishing the library

We’ll now connect the MovieClip-based assets to the new class by creating a new FLA and entering GeometricAssets

into the Document Class field of the Property inspector. For the purposes of this example, we’ll create two very basic

shapes that use a timeline tween to make one clockwise rotation over 360 frames. Both the animatingBox and

animatingStar symbols are set to Export for ActionScript and have the Class field set to the respective classpaths

specified in the getAssets() implementation. The default base class of flash.display.MovieClip remains, as we

want to subclass the standard MovieClip methods.

After setting up your symbol’s export settings, publish the FLA. You now have your first run-time library. This SWF

file could be loaded into another AVM2 SWF file and the AnimatingBox and AnimatingStar symbols would be

available to the new SWF file.

Loading the library into another SWF file

Flash Player 9 and later, Adobe AIR 1.0 and later

The last functional piece to deal with is the user interface for the asset explorer. In this example, the path to the run-

time library is hard-coded as a variable named ASSETS_PATH. Alternatively, you could use the FileReference class—for

example, to create an interface that browses for a particular SWF file on your hard drive.

334ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with movie clips

Last updated 10/9/2017

When the run-time library is successfully loaded, Flash Player calls the runtimeAssetsLoadComplete() method:

 private function runtimeAssetsLoadComplete(event:Event):void
 {
 var rl:* = event.target.content;
 var assetList:Array = rl.getAssets();
 populateDropdown(assetList);
 stage.frameRate = 60;
 }

In this method, the variable rl represents the loaded SWF file. The code calls the getAssets() method of the loaded

SWF file, obtaining the list of assets that are available, and uses them to populate a ComboBox component with a list

of available assets by calling the populateDropDown() method. That method in turn stores the full classpath of each

asset. Clicking the Add button on the user interface triggers the addAsset() method:

 private function addAsset():void
 {
 var className:String = assetNameCbo.selectedItem.data;
 var AssetClass:Class = getDefinitionByName(className) as Class;
 var mc:MovieClip = new AssetClass();
 ...
 }

which gets the classpath of whichever asset is currently selected in the ComboBox

(assetNameCbo.selectedItem.data), and uses the getDefinitionByName() function (from the flash.utils

package) to obtain an actual reference to the asset’s class in order to create a new instance of that asset.

335

Last updated 10/9/2017

Chapter 17: Working with motion tweens

Flash Player 9 and later, Adobe AIR 1.0 and later, requires Flash CS3 or later

“Animating objects” on page 192 describes how to implement scripted animation in ActionScript.

Here we describe a different technique for creating animation: motion tweens. This technique lets you create

movement by setting up motion interactively in a document using Adobe® Flash® Professional. Then you can use that

motion in your dynamic ActionScript-based animation at runtime.

Flash Professional automatically generates the ActionScript that implements the motion tween and makes it available

for you to copy and reuse.

To create motion tweens, you must have a license for Flash Professional.

More Help topics

fl.motion package

Basics of Motion Tweens

Flash Player 9 and later, Adobe AIR 1.0 and later, requires Flash CS3 or later

Motion tweens provide an easy way to create animation.

A motion tween modifies display object properties, such as position or rotation, on a frame-to-frame basis. A motion

tween can also change the appearance of a display object while it moves by applying various filters and other

properties. You create the motion tween interactively with Flash Professional, which generates the ActionScript for the

motion tween. From within Flash, use the Copy Motion as ActionScript 3.0 command to copy the ActionScript that

created the motion tween. Then you can reuse the ActionScript to create movement in your own dynamic animation

at runtime.

See the Motion Tweens section in Using Flash Professional for information about creating a motion tween.

Important concepts and terms

The following is an important term that is relevant to this feature:

Motion tween A construct that generates intermediate frames of a display object in different states at different times;

gives the appearance that the first state evolves smoothly into the second. Used to move a display object across the

stage, as well as make it grow, shrink, rotate, fade, or change color over time.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/fl/motion/package-detail.html

336ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with motion tweens

Last updated 10/9/2017

Copying motion tween scripts in Flash

Flash Player 9 and later, Adobe AIR 1.0 and later, requires Flash CS3 or later

A tween generates intermediate frames that show a display object in different states in two different frames on a

timeline. It creates the appearance that the image in the first frame evolves smoothly into the image in the second. In

a motion tween, the change in appearance typically involves changing the position of the display object, thus creating

movement. In addition to repositioning the display object, a motion tween can also rotate, skew, resize, or apply filters

to it.

Create a motion tween in Flash by moving a display object between keyframes along the timeline. Flash automatically

generates the ActionScript code that describes the tween, which you can copy and save in a file. See the Motion Tweens

section in Using Flash Professional for information about creating a motion tween.

You can access the Copy Motion as ActionScript 3.0 command in Flash two ways. The first way is from a tween context

menu on the stage:

1 Select the motion tween on the stage.

2 Right-click (Windows) or Control-click (Macintosh).

3 Choose Copy Motion as ActionScript 3.0 . . .

The second way is to choose the command directly from the Flash Edit menu:

1 Select the motion tween on the stage.

337ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with motion tweens

Last updated 10/9/2017

2 Select Edit > Timeline >Copy Motion as ActionScript 3.0.

After copying the script, paste it into a file and save it.

After creating a motion tween and copying and saving the script, you can reuse it as is or modify it in your own

dynamic ActionScript-based animation.

Incorporating motion tween scripts

Flash Player 9 and later, Adobe AIR 1.0 and later, requires Flash CS3 or later

The header in the ActionScript code that you copy from Flash lists all the modules required to support the motion

tween.

Motion tween classes

Flash Player 9 and later, Adobe AIR 1.0 and later, requires Flash CS3 or later

The essential motion tween classes are the AnimatorFactory, MotionBase, and Motion classes from the fl.motion

package. You could need additional classes, depending on the properties that the motion tween manipulates. For

example, if the motion tween transforms or rotates the display object, import the appropriate flash.geom classes. If

it applies filters, import the flash.filter classes. In ActionScript, a motion tween is an instance of the Motion class.

The Motion class stores a keyframe animation sequence that can be applied to a visual object. The animation data

includes position, scale, rotation, skew, color, filters, and easing.

The following ActionScript was copied from a motion tween that was created in Flash to animate a display object

whose instance name is Symbol1_2. It declares a variable for a MotionBase object named __motion_Symbol1_2. The

MotionBase class is the parent of the Motion class.

var __motion_Symbol1_2:MotionBase;

Then the script creates the Motion object:

__motion_Symbol1_2 = new Motion();

338ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with motion tweens

Last updated 10/9/2017

Motion object names

Flash Player 9 and later, Adobe AIR 1.0 and later, requires Flash CS3 or later

In the previous case, Flash automatically generated the name __motion_Symbol1_2 for the Motion object. It attached

the prefix __motion_ to the display object name. Thus, the automatically generated name is based on the instance

name of the target object of the motion tween in Flash. The duration property of the Motion object indicates the total

number of frames in the motion tween:

__motion_Symbol1_2.duration = 200;

By default, Flash automatically names the display object instance whose motion tween is copied, if it does not already

have an instance name.

When you reuse ActionScript created by Flash in your own animation, you can keep the name that Flash automatically

generates for the tween or you can substitute a different name. If you change the tween name, make sure that you

change it throughout the script.

Alternately, in Flash you can assign a name of your choosing to the target object of the motion tween. Then create the

motion tween and copy the script. Whichever naming approach you use, make sure that each Motion object in your

ActionScript code has a unique name.

Describing the animation

Flash Player 9 and later, Adobe AIR 1.0 and later, requires Flash CS3 or later

The addPropertyArray() method of the MotionBase class adds an array of values to describe every tweened

property.

Potentially the array contains one array item for every keyframe in the motion tween. Often some of these arrays

contain fewer items than the total number of keyframes in the motion tween. This situation occurs when the last value

in the array does not change for the remaining frames.

If the length of the array argument is greater than the duration property of the Motion object, addPropertyArray()

adjusts the value of the duration property accordingly. It does not add keyframes for the properties that were

previously added. The newly added keyframes persist for the extra frames of the animation.

The x and y properties of the Motion object describe the changing position of the tweened object as the animation is

running. These coordinates are the values that are most likely to change in every keyframe, if the position of the display

object changes. You can add additional motion properties with the addPropertyArray() method. For example, add

the scaleX and scaleY values if the tweened object is resized. Add the scewX and skewY values if it is skewed. Add the

rotationConcat property if it rotates.

Use the addPropertyArray() method to define the following tween properties:

x horizontal position of the transformation point of the object in the coordinate space of its parent

y vertical position of the transformation point of the object in the coordinate space of its parent

z depth (z-axis) position of the transformation point of the object in the coordinate space of its parent

scaleX horizontal scale as a percentage of the object as applied from the transformation point

scaleY vertical scale as a percentage of the object as applied from the transformation point

339ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with motion tweens

Last updated 10/9/2017

The properties that are added in the automatically generated script depend on the properties that were assigned to the

motion tween in Flash. You can add, remove, or modify some of these properties when customizing your own version

of the script.

The following code assigns values to the properties of a motion tween named __motion_Wheel. In this case, the

tweened display object does not change location but rather spins in place throughout the 29 frames in the motion

tween. The multiple values assigned to the rotationConcat array define the rotation. The other property values of

this motion tween do not change.

__motion_Wheel = new Motion();
__motion_Wheel.duration = 29;
__motion_Wheel.addPropertyArray("x", [0]);
__motion_Wheel.addPropertyArray("y", [0]);
__motion_Wheel.addPropertyArray("scaleX", [1.00]);
__motion_Wheel.addPropertyArray("scaleY", [1.00]);
__motion_Wheel.addPropertyArray("skewX", [0]);
__motion_Wheel.addPropertyArray("skewY", [0]);
__motion_Wheel.addPropertyArray("rotationConcat",

[
0,-13.2143,-26.4285,-39.6428,-52.8571,-66.0714,-79.2857,-92.4999,-105.714,
-118.929,-132.143,-145.357,-158.571,-171.786,-185,-198.214,-211.429,-224.643,
-237.857,-251.071,-264.286,-277.5,-290.714,-303.929,-317.143,-330.357,
-343.571,-356.786,-370

]
);
__motion_Wheel.addPropertyArray("blendMode", ["normal"]);

In the next example, the display object named Leaf_1 moves across the stage. Its x and y property arrays contain

different values for each of the 100 frames of the animation. In addition, the object rotates on its z axis as it moves

across the stage. The multiple items in the rotationZ property array determine the rotation.

skewX horizontal skew angle of the object in degrees as applied from the transformation point

skewY vertical skew angle of the object in degrees as applied from the transformation point

rotationX rotation of the object around the x-axis from its original orientation

rotationY rotation of the object around the y-axis from its original orientation

rotationConcat rotation (z-axis) values of the object in the motion relative to previous orientation as applied from the

transformation point

useRotationConcat If set, causes the target object to rotate when addPropertyArray() supplies data for motion

blendMode BlendMode class value specifying mixture the colors of the object with graphics underneath

matrix3D matrix3D property if one exists for the keyframe; used for 3D tweens; if used, all the previous transform properties

are ignored

rotationZ z-axis rotation of the object, in degrees, from its original orientation relative to the 3D parent container; used for 3D

tweens instead of rotationConcat

340ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with motion tweens

Last updated 10/9/2017

__motion_Leaf_1 = new MotionBase();
__motion_Leaf_1.duration = 100;
__motion_Symbol1_4.addPropertyArray("y",

[
0,5.91999,11.84,17.76,23.68,29.6,35.52,41.44,47.36,53.28,59.2,65.12,71.04,
76.96,82.88,88.8,94.72,100.64,106.56,112.48,118.4,124.32,130.24,136.16,142.08,
148,150.455,152.909,155.364,157.818,160.273,162.727,165.182,167.636,170.091,
172.545,175,177.455,179.909,182.364,184.818,187.273,189.727,192.182,194.636,
197.091,199.545,202,207.433,212.865,218.298,223.73,229.163,234.596,240.028,
245.461,250.893,256.326,261.759,267.191,272.624,278.057,283.489,
288.922,294.354,299.787,305.22,310.652,316.085,321.517,326.95,330.475,334,
337.525,341.05,344.575,348.1,351.625,355.15,358.675,362.2,365.725,369.25,
372.775,376.3,379.825,383.35,386.875,390.4,393.925,397.45,400.975,404.5,
407.5,410.5,413.5,416.5,419.5,422.5,425.5

]
);
__motion_Symbol1_4.addPropertyArray("scaleX", [1.00]);
__motion_Symbol1_4.addPropertyArray("scaleY", [1.00]);
__motion_Symbol1_4.addPropertyArray("skewX", [0]);
__motion_Symbol1_4.addPropertyArray("skewY", [0]);
__motion_Symbol1_4.addPropertyArray("z",

[
0,
0,
0,0

]
);
__motion_Symbol1_4.addPropertyArray("rotationX", [64.0361]);
__motion_Symbol1_4.addPropertyArray("rotationY", [41.9578]);
__motion_Symbol1_4.addPropertyArray("rotationZ",

[
-18.0336,-17.5536,-17.0736,-16.5936,-16.1136,-15.6336,-15.1536,-14.6736,
-14.1936,-13.7136,-13.2336,-12.7536,-12.2736,-11.7936,-11.3136,-10.8336,
-10.3536,-9.8736,-9.3936,-8.9136,-8.4336,-7.9536,-7.4736,-6.9936,-6.5136,
-6.0336,-7.21542,-8.39723,-9.57905,-10.7609,-11.9427,-13.1245,-14.3063,
-15.4881,-16.67,-17.8518,-19.0336,-20.2154,-21.3972,-22.5791,-23.7609,
-24.9427,-26.1245,-27.3063,-28.4881,-29.67,-30.8518,-32.0336,-31.0771,
-30.1206,-29.164,-28.2075,-27.251,-26.2945,-25.338,-24.3814,-23.4249,
-22.4684,-21.5119,-20.5553,-19.5988,-18.6423,-17.6858,-16.7293,-15.7727
-14.8162,-13.8597,-12.9032,-11.9466,-10.9901,-10.0336,-10.9427,-11.8518,
-12.7609,-13.67,-14.5791,-15.4881,-16.3972,-17.3063,-18.2154,-19.1245,
-20.0336,-20.9427,-21.8518,-22.7609,-23.67,-24.5791,-25.4881,-26.3972,
-27.3063,-28.2154,-29.1245,-30.0336,-28.3193,-26.605,-24.8907,-23.1765,
-21.4622,-19.7479,-18.0336

]
);
__motion_Symbol1_4.addPropertyArray("blendMode", ["normal"]);

Adding filters

Flash Player 9 and later, Adobe AIR 1.0 and later, requires Flash CS3 or later

If the target object of a motion tween contains filters, those filters are added using the initFilters() and

addFilterPropertyArray() methods of the Motion class.

341ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with motion tweens

Last updated 10/9/2017

Initializing the filters array

Flash Player 9 and later, Adobe AIR 1.0 and later, requires Flash CS3 or later

The initFilters() method initializes the filters. Its first argument is an array of the fully qualified class names of all

the filters applied to the display object. This array of filter names is generated from the filters list for the motion tween

in Flash. In your copy of the script, you can remove or add any of the filters in the flash.filters package to this

array. The following call initializes the filters list for the target display object. It applies the DropShadowFilter,

GlowFilter, and BevelFilter and copies the list to each keyframe in the Motion object.

__motion_Box.initFilters(["flash.filters.DropShadowFilter", "flash.filters.GlowFilter",
"flash.filters.BevelFilter"], [0, 0, 0]);

Adding filters

Flash Player 9 and later, Adobe AIR 1.0 and later, requires Flash CS3 or later

The addFilterPropertyArray() method describes the properties of an initialized filter with the following

arguments:

1 Its first argument identifies a filter by index. The index refers to the position of the filter name in the filter class

names array passed in a previous call to initFilters().

2 Its second argument is the filter property to store for that filter in each keyframe.

3 Its third argument is the value of the specified filter property.

Given the previous call to initFilters(), the following calls to addFilterPropertyArray() assign a value of 5 to

the blurX and blurY properties of the DropShadowFilter. The DropShadowFilter is the first (index 0) item in the

initialized filters array:

__motion_Box.addFilterPropertyArray(0, "blurX", [5]);
__motion_Box.addFilterPropertyArray(0, "blurY", [5]);

The next three calls assign values to the quality, alpha, and color properties of the GlowFilter, the second item (index

1) in the initialized filter array:

__motion_Box.addFilterPropertyArray(1, "quality", [BitmapFilterQuality.LOW]);
__motion_Box.addFilterPropertyArray(1, "alpha", [1.00]);
__motion_Box.addFilterPropertyArray(1, "color", [0xff0000]);

The next four calls assign values to the shadowAlpha, shadowColor, highlightAlpha, and highlightColor of the

BevelFilter, the third (index 2) item in the initialized filters array:

__motion_Box.addFilterPropertyArray(2, "shadowAlpha", [1.00]);
__motion_Box.addFilterPropertyArray(2, "shadowColor", [0x000000]);
__motion_Box.addFilterPropertyArray(2, "highlightAlpha", [1.00]);
__motion_Box.addFilterPropertyArray(2, "highlightColor", [0xffffff]);

Adjusting color with the ColorMatrixFilter

Flash Player 9 and later, Adobe AIR 1.0 and later, requires Flash CS3 or later

After the ColorMatrixFilter has been initialized, you can set the appropriate AdjustColor properties to adjust the

brightness, contrast, saturation, and hue of the tweened display object. Typically, the AdjustColor filter is applied

when the motion tween is created in Flash; you can fine-tune it in your copy of the ActionScript. The following

example transforms the hue and saturation of the display object as it moves.

342ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with motion tweens

Last updated 10/9/2017

__motion_Leaf_1.initFilters(["flash.filters.ColorMatrix"], [0], -1, -1);
__motion_Leaf_1.addFilterPropertyArray(0, "adjustColorBrightness", [0], -1, -1);
__motion_Leaf_1.addFilterPropertyArray(0, "adjustColorContrast", [0], -1, -1);
__motion_Leaf_1.addFilterPropertyArray(0, "adjustColorSaturation",

[
0,-0.589039,1.17808,-1.76712,-2.35616,-2.9452,-3.53424,-4.12328,
-4.71232,-5.30136,-5.89041, 6.47945,-7.06849,-7.65753,-8.24657,
-8.83561,-9.42465,-10.0137,-10.6027,-11.1918,11.7808,-12.3699,
-12.9589,-13.5479,-14.137,-14.726,-15.3151,-15.9041,-16.4931,
17.0822,-17.6712,-18.2603,-18.8493,-19.4383,-20.0274,-20.6164,
-21.2055,-21.7945,22.3836,-22.9726,-23.5616,-24.1507,-24.7397,
-25.3288,-25.9178,-26.5068,-27.0959,27.6849,-28.274,-28.863,-29.452,
-30.0411,-30.6301,-31.2192,-31.8082,-32.3973,32.9863,-33.5753,
-34.1644,-34.7534,-35.3425,-35.9315,-36.5205,-37.1096,-37.6986,
38.2877,-38.8767,-39.4657,-40.0548,-40.6438,-41.2329,-41.8219,
-42.411,-43

],
-1, -1);

__motion_Leaf_1.addFilterPropertyArray(0, "adjustColorHue",
[

0,0.677418,1.35484,2.03226,2.70967,3.38709,4.06451,4.74193,5.41935,
6.09677,6.77419,7.45161,8.12903,8.80645,9.48387,10.1613,10.8387,11.5161,
12.1935,12.871,13.5484,14.2258,14.9032,15.5806,16.2581,16.9355,17.6129,
18.2903,18.9677,19.6452,20.3226,21,22.4286,23.8571,25.2857,26.7143,28.1429,
29.5714,31,32.4286,33.8571,35.2857,36.7143,38.1429,39.5714,41,42.4286,43.8571,
45.2857,46.7143,48.1429,49.5714,51,54,57,60,63,66,69,72,75,78,81,84,87,
90,93,96,99,102,105,108,111,114

],
-1, -1);

Associating a motion tween with its display objects

Flash Player 9 and later, Adobe AIR 1.0 and later, requires Flash CS3 or later

The last task is to associate the motion tween with the display object or objects that it manipulates.

The AnimatorFactory class manages the association between a motion tween and its target display objects. The

argument to the AnimatorFactory constructor is the Motion object:

var __animFactory_Wheel:AnimatorFactory = new AnimatorFactory(__motion_Wheel);

Use the addTarget() method of the AnimatorFactory class to associate the target display object with its motion

tween. The ActionScript copied from Flash comments out the addTarget() line and does not specify an instance

name:

// __animFactory_Wheel.addTarget(<instance name goes here>, 0);

In your copy, specify the display object to associate with the motion tween. In the following example, the targets are

specified as greenWheel and redWheel:

__animFactory_Wheel.AnimatorFactory.addTarget(greenWheel, 0);
__animFactory_Wheel.AnimationFactory.addTarget(redWheel, 0);

You can associate multiple display objects with the same motion tween using multiple calls to addTarget().

343

Last updated 10/9/2017

Chapter 18: Working with inverse
kinematics

Flash Player 10 and later, Adobe AIR 1.5 and later, requires Flash CS4 or later

Inverse kinematics (IK) is a great technique for creating realistic motion.

IK lets you create coordinated movements within a chain of connected parts called an IK armature, so that the parts

move together in a lifelike way. The parts of the armature are its bones and joints. Given the end point of the armature,

IK calculates the angles for the joints that are required to reach that end point.

Calculating those angles manually yourself would be challenging. The beauty of this feature is that you can create

armatures interactively using Adobe® Flash® Professional. Then animate them using ActionScript. The IK engine

included with Flash Professional performs the calculations to describe the movement of the armature. You can limit

the movement to certain parameters in your ActionScript code.

New to the Flash Professional CS5 version of IK is the concept of bone spring, typically associated with high-end

animation applications. Used with the new dynamic Physics Engine, this feature lets you configure life-like movement.

And, this effect is visible both at runtime and during authoring.

To create inverse kinematics armatures, you must have a license for Flash Professional.

More Help topics

fl.ik package

Basics of Inverse Kinematics

Flash Player 10 and later, Adobe AIR 1.5 and later, requires Flash CS4 or later

Inverse kinematics (IK) lets you create life-like animation by linking parts so they move in relation to one another in

a realistic manner.

For example, using IK you can move a leg to a certain position by articulating the movements of the joints in the leg

required to achieve the desired pose. IK uses a framework of bones chained together in a structure called an IK

armature. The fl.ik package helps you create animations resembling natural motion. It lets you animate multiple IK

armatures seamlessly without having to know a lot about the physics behind the IK algorithms.

Create the IK armature with its ancillary bones and joints with Flash Professional. Then you can access the IK classes

to animate them at runtime.

See the Using inverse kinematics section in Using Flash Professional for detailed instructions on how to create an IK

armature.

Important concepts and terms

The following reference list contains important terms that are relevant to this feature:

Armature A kinematic chain, consisting of bones and joints, used in computer animation to simulate realistic motion.

Bone A rigid segment in an armature, analogous to a bone in an animal skeleton.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/fl/ik/package-detail.html

344ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with inverse kinematics

Last updated 10/9/2017

Inverse Kinematics (IK) Process of determining the parameters of a jointed flexible object called a kinematic chain or

armature.

Joint The location at which two bones make contact, constructed to enable movement of the bones; analogous to a

joint in an animal.

Physics Engine A package of physics-related algorithms used to provide life-like actions to animation.

Spring The quality of a bone that moves and reacts when the parent bone is moved and then incrementally diminishes

over time.

Animating IK Armatures Overview

Flash Player 10 and later, Adobe AIR 1.5 and later, requires Flash CS4 or later

After creating an IK armature in Flash Professional, use the fl.ik classes to limit its movement, track its events, and

animate it at runtime.

The following figure shows a movie clip named Wheel. The axle is an instance of an IKArmature named Axle. The

IKMover class moves the armature in synchronization with the rotation of wheel. The IKBone, ikBone2, in the

armature is attached to the wheel at its tail joint.

A. Wheel B. Axle C. ikBone2

B

A

C

345ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with inverse kinematics

Last updated 10/9/2017

At runtime, the wheel spins in association with the __motion_Wheel motion tween discussed in “Describing the

animation” on page 338. An IKMover object initiates and controls the movement of the axle. The following figure

shows two snapshots of the axle armature attached to the spinning wheel at different frames in the rotation.

At runtime, the following ActionScript:

• Gets information about the armature and its components

• Instantiates an IKMover object

• Moves the axle in conjunction with the rotation of the wheel

import fl.ik.*

var tree:IKArmature = IKManager.getArmatureByName("Axle");
var bone:IKBone = tree.getBoneByName("ikBone2");
var endEffector:IKJoint = bone.tailJoint;
var pos:Point = endEffector.position;

var ik:IKMover = new IKMover(endEffector, pos);
ik.limitByDistance = true;
ik.distanceLimit = 0.1;
ik.limitByIteration = true;
ik.iterationLimit = 10;

Wheel.addEventListener(Event.ENTER_FRAME, frameFunc);

function frameFunc(event:Event)
{

if (Wheel != null)
{

var mat:Matrix = Wheel.transform.matrix;
var pt = new Point(90, 0);
pt = mat.transformPoint(pt);

ik.moveTo(pt);

}
}

346ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with inverse kinematics

Last updated 10/9/2017

The IK classes used to move the axle are:

• IKArmature: describes the armature, a tree structure consisting of bones and joints; must be created with Flash

Professional

• IKManager: container class for all the IK armatures in the document; must be created with Flash Professional

• IKBone: a segment of an IK armature

• IKJoint: a connection between two IK bones

• IKMover: initiates and controls IK movement of armatures

For complete and detailed descriptions of these classes, see the ik package.

Getting information about an IK armature

Flash Player 10 and later, Adobe AIR 1.5 and later, requires Flash CS4 or later

First, declare variables for the armature, the bone, and the joint that make up the parts that you want to move.

The following code uses the getArmatureByName() method of the IKManager class to assign the value of the Axle

armature to the IKArmature variable tree. The Axle armature was previously created with Flash Professional.

var tree:IKArmature = IKManager.getArmatureByName("Axle");

Similarly, the following code uses the getBoneByName() method of the IKArmature class to assign to the IKBone

variable the value of the ikBone2 bone.

var bone:IKBone = tree.getBoneByName("ikBone2");

The tail joint of the ikBone2 bone is the part of the armature that attaches to the spinning wheel.

The following line declares the variable endEffector and assigns to it the tailjoint property of the ikBone2 bone:

var endEffector:IKJoint = home.tailjoint;

The variable pos is a point that stores the current position of the endEffector joint.

var pos:Point = endEffector.position;

In this example, pos is the position of the joint at the end of the axle where it connects to the wheel. The original value

of this variable is obtained from the position property of the IKJoint.

Instantiating an IK Mover and Limiting Its Movement

Flash Player 10 and later, Adobe AIR 1.5 and later, requires Flash CS4 or later

An instance of the IKMover class moves the axle.

The following line instantiates the IKMover object ik, passing to its constructor the element to move and the starting

point for the movement:

var ik:IKMover = new IKMover(endEffector, pos);

The properties of the IKMover class let you limit the movement of an armature. You can limit movement based on the

distance, iterations, and time of the movement.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/fl/ik/package-detail.html

347ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with inverse kinematics

Last updated 10/9/2017

The following pairs of properties enforce these limits. The pairs consist of a Boolean value that indicates whether the

movement is limited and an integer that specifies the limit:

By default, all the Boolean values are set to false, so movement is not limited unless you explicitly set a Boolean value

to true. To enforce a limit, set the appropriate property to true and then specify a value for the corresponding integer

property. If you set the limit to a value without setting its corresponding Boolean property, the limit is ignored. In this

case, the IK engine continues to move the object until another limit or the target position of the IKMover is reached.

In the following example, the maximum distance of the armature movement is set to 0.1 pixels per iteration. The

maximum number of iterations for every movement is set to ten.

ik.limitByDistance = true;
ik.distanceLimit = 0.1;
ik.limitByIteration = true;
ik.iterationLimit = 10;

Moving an IK Armature

Flash Player 10 and later, Adobe AIR 1.5 and later, requires Flash CS4 or later

The IKMover moves the axle inside the event listener for the wheel. On each enterFrame event of the wheel, a new

target position for the armature is calculated. Using its moveTo() method, the IKMover moves the tail joint to its

target position or as far as it can within the constraints set by its limitByDistance, limitByIteration, and

limitByTime properties.

Wheel.addEventListener(Event.ENTER_FRAME, frameFunc);

function frameFunc(event:Event)
{

if (Wheel != null)
{

var mat:Matrix = Wheel.transform.matrix;
var pt = new Point(90,0);
pt = mat.transformPoint(pt);

ik.moveTo(pt);

}
}

Boolean property Integer property Limit set

limitByDistance:Boolean distanceLimit:int Sets the maximum distance in pixels that the IK engine moves for each

iteration.

limitByIteration:Boolean iterationLimit:int Sets the maximum number of iterations the IK engine performs for each

movement.

limitByTime:Boolean timeLimit:int Sets the maximum time in milliseconds allotted to the IK engine to

perform the movement.

348ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with inverse kinematics

Last updated 10/9/2017

Using Springs

Flash Player 10 and later, Adobe AIR 1.5 and later, requires Flash CS5 or later

Inverse kinematics in Flash Professional CS5 supports bone spring. Bone spring can be set during authoring, and bone

spring attributes can be added or modified at runtime. Spring is a property of a bone and its joints. It has two attributes:

IKJoint.springStrength, which sets the amount of spring, and IKJoint.springDamping, which adds resistance

to the strength value and changes the rate of decay of the spring.

Spring strength is a percent value from the default 0 (completely rigid) to 100 (very loose and controlled by physics).

Bones with spring react to the movement of their joint. If no other translation (rotation, x, or y) is enabled, the spring

settings have no effect.

Spring damping is a percent value from the default 0 (no resistance) to 100 (heavily damped). Damping changes the

amount of time between a bone’s initial movement and its return to a rest position.

You can check to see if springs are enabled for an IKArmature object by checking its IKArmature.springsEnabled

property. The other spring properties and methods belong to individual IKJoint objects. A joint can be enabled for

angular rotation and translation along the x- and y-axes. You can position a rotational joint’s spring angle with

IKJoint.setSpringAngle and a translational joint’s spring position with IKJoint.setSpringPt.

This example selects a bone by name and identifies its tailJoint. The code tests the parent armature to see if springs are

enabled and then sets spring properties for the joint.

var arm:IKArmature = IKManager.getArmatureAt(0);
var bone:IKBone = arm.getBoneByName("c");
var joint:IKJoint = bone.tailJoint;
if (arm.springsEnabled) {

joint.springStrength = 50; //medium spring strength
joint.springDamping = 10; //light damping resistance
if (joint.hasSpringAngle) {

joint.setSpringAngle(30); //set angle for rotational spring
}

}

Using IK Events

Flash Player 10 and later, Adobe AIR 1.5 and later, requires Flash CS4 or later

The IKEvent class lets you create an event object that contains information about IK Events. IKEvent information

describes motion that has terminated because the specified time, distance, or iteration limit was exceeded.

The following code shows an event listener and handler for tracking time limit events. This event handler reports on

the time, distance, iteration count, and joint properties of an event that fires when the time limit of the IKMover is

exceeded.

349ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with inverse kinematics

Last updated 10/9/2017

var ikmover:IKMover = new IKMover(endjoint, pos);
ikMover.limitByTime = true;
ikMover.timeLimit = 1000;

ikmover.addEventListener(IKEvent.TIME_LIMIT, timeLimitFunction);

function timeLimitFunction(evt:IKEvent):void
{

trace("timeLimit hit");
trace("time is " + evt.time);
trace("distance is " + evt.distance);
trace("iterationCount is " + evt.iterationCount);
trace("IKJoint is " + evt.joint.name);

}

350

Last updated 10/9/2017

Chapter 19: Working in three dimensions
(3D)

Flash Player 10 and later, Adobe AIR 1.5 and later

The Flash Player and AIR runtimes support 3D graphics in two ways. You can use three-dimensional display objects

on the Flash display list. This is appropriate for adding three-dimensional effects to Flash content and for low polygon-

count objects. In Flash Player 11and AIR 3, or later, you can render complex 3D scenes using the Stage3D API.

A Stage3D viewport is not a display object. Instead, the 3D graphics are rendered to a viewport that is displayed

underneath the Flash display list (and above any StageVideo viewport planes). Rather than using the Flash

DisplayObject classes to create a scene, you use a programmable 3D-pipeline (similar to OpenGL and Direct3D). This

pipeline takes triangle data and textures as input and renders the scene using shader programs that you provide.

Hardware acceleration is used when a compatible graphics processing unit (GPU) with supported drivers, is available

on the client computer.

Stage3D provides a very low-level API. In an application, you are encouraged to use a 3D framework that supports

Stage3D. You can create your own framework or use one of several commercial and open source frameworks already

available.

For more information about developing 3D applications using Stage3D and about available 3D frameworks, visit the

Flash Player Developer Center: Stage 3D.

Basics of 3D display objects

Flash Player 10 and later, Adobe AIR 1.5 and later

The main difference between a two-dimensional (2D) object and a three-dimensional (3D) object projected on a two-

dimensional screen is the addition of a third dimension to the object. The third dimension allows the object to move

toward and away from viewpoint of the user.

When you explicitly set the z property of a display object to a numeric value, the object automatically creates a 3D

transformation matrix. You can alter this matrix to modify the 3D transformation settings of that object.

In addition, 3D rotation differs from 2D rotation. In 2D the axis of rotation is always perpendicular to the x/y plane -

in other words, on the z-axis. In 3D the axis of rotation can be around any of the x, y, or z axes. Setting the rotation

and scaling properties of a display object enable it to move in 3D space.

Important concepts and terms

The following reference list contains important terms that you will encounter when programming 3-dimensional

graphics:

Perspective In a 2D plane, representation of parallel lines as converging on a vanishing point to give the illusion of

depth and distance.

Projection The production of a 2D image of a higher-dimensional object; 3D projection maps 3D points to a 2D plane.

Rotation Changing the orientation (and often the position) of an object by moving every point included in the object

in a circular motion.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Stage3D.html
http://goo.gl/hlzhB

351ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

Transformation Altering 3D points or sets of points by translation, rotation, scale, skew, or a combination of these

actions.

Translation Changing the position of an object by moving every point included in the object by the same amount in

the same direction.

Vanishing point Point at which receding parallel lines seem to meet when represented in linear perspective.

Vector A 3D vector represents a point or a location in the three-dimensional space using the Cartesian coordinates x,

y, and z.

Vertex A corner point.

Textured mesh Any point defining an object in 3D space.

UV mapping A way to apply a texture or bitmap to a 3D surface. UV mapping assigns values to coordinates on an

image as percentages of the horizontal (U) axis and vertical (V) axis.

T value The scaling factor for determining the size of a 3D object as the object moves toward, or away from, the current

point of view.

Culling Rendering, or not, surfaces with specific winding. Using culling you can hide surfaces that are not visible to

the current point of view.

Understanding 3D display objects in Flash Player and
the AIR runtime

Flash Player 10 and later, Adobe AIR 1.5 and later

In Flash Player versions prior to Flash Player 10 and Adobe AIR versions prior to Adobe AIR 1.5, display objects have

two properties, x and y, for positioning them on a 2D plane. Starting with Flash Player 10 and Adobe AIR 1.5, every

ActionScript display object has a z property that lets you position it along the z-axis, which is generally used to indicate

depth or distance.

Flash Player 10 and Adobe AIR 1.5 introduced support for 3D effects. However, display objects are inherently flat.

Each display object, such as a MovieClip object or a Sprite object, ultimately renders itself in two dimensions, on a

single plane. The 3D features let you place, move, rotate, and otherwise transform these planar objects in all three

dimensions. They also let you manage 3D points and convert them to 2D x, y coordinates, so you can project 3D

objects onto a 2D view. You can simulate many kinds of 3D experiences using these features.

The 3D coordinate system used by ActionScript differs from other systems. When you use 2D coordinates in

ActionScript, the value of x increases as you move to the right along the x-axis, and the value of y increases as you move

down along the y-axis. The 3D coordinate system retains those conventions and adds a z-axis whose value increases

as you move away from the viewpoint.

352ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

The positive directions of the x, y, and z axes in the ActionScript 3D coordinate system.
A. + Z axis B. Origin C. +X axis D. +Y axis

Note: Be aware that Flash Player and AIR always represent 3D in layers. This means that if object A is in front of object

B on the display list, Flash Player or AIR always renders A in front of B regardless of the z-axis values of the two objects.

To resolve this conflict between the display list order and the z-axis order, use the transform.getRelativeMatrix3D()

method to save and then re-order the layers of 3D display objects. For more information, see “Using Matrix3D objects for

reordering display” on page 362.

The following ActionScript classes support the new 3D-related features:

1 The flash.display.DisplayObject class contains the z property and new rotation and scaling properties for

manipulating display objects in 3D space. The DisplayObject.local3DToGlobal() method offers a simple way

to project 3D geometry onto a 2D plane.

2 The flash.geom.Vector3D class can be used as a data structure for managing 3D points. It also supports vector

mathematics.

3 The flash.geom.Matrix3D class supports complex transformations of 3D geometry, such as rotation, scaling, and

translation.

4 The flash.geom.PerspectiveProjection class controls the parameters for mapping 3D geometry onto a 2D view.

There are two different approaches to simulating 3D images in ActionScript:

1 Arranging and animating planar objects in 3D space. This approach involves animating display objects using the x,

y and z properties of display objects, or setting rotation and scaling properties using the DisplayObject class. More

complex motion can be achieved using the DisplayObject.transform.matrix3D object. The

DisplayObject.transform.perspectiveProjection object customizes how the display objects are drawn in 3D

perspective. Use this approach when you want to animate 3D objects that consist primarily of planes. Examples of

this approach include 3D image galleries or 2D animation objects arranged in 3D space.

2 Generating 2D triangles from 3D geometry, and rendering those triangles with textures. To use this approach you

must first define and manage data about 3D objects and then convert that data into 2D triangles for rendering.

Bitmap textures can be mapped to these triangles, and then the triangles are drawn to a graphics object using the

Graphics.drawTriangles() method. Examples of this approach include loading 3D model data from a file and

rendering the model on the screen, or generating and drawing 3D terrain as triangle meshes.

A

C
B

(0,0,0)

D

353ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

Creating and moving 3D display objects

Flash Player 10 and later, Adobe AIR 1.5 and later

To convert a 2D display object into a 3D display object, you can explicitly set its z property to a numeric value. When

you assign a value to the z property, a new Transform object is created for the display object. Setting the

DisplayObject.rotationX or DisplayObject.rotationY properties also creates a new Transform object. The

Transform object contains a Matrix3D property that governs how the display object is represented in 3D space.

The following code sets the coordinates for a display object called “leaf”:

leaf.x = 100; leaf.y = 50; leaf.z = -30;

You can see these values, as well as properties derived from these values, in the matrix3D property of the Transform

object of the leaf:

var leafMatrix:Matrix3D = leaf.transform.matrix3D;

trace(leafMatrix.position.x);
trace(leafMatrix.position.y);
trace(leafMatrix.position.z);
trace(leafMatrix.position.length);
trace(leafMatrix.position.lengthSquared);

For information about the properties of the Transform object, see the Transformclass. For information about the

properties of the Matrix3D object, see the Matrix3D class.

Moving an object in 3D space

Flash Player 10 and later, Adobe AIR 1.5 and later

You can move an object in 3D space by changing the values of its x, y, or z properties. When you change the value

of the z property the object appears to move closer or farther away from the viewer.

The following code moves two ellipses back and forth along their z-axes by changing the value of their z properties in

response to an event. ellipse2 moves faster than ellipse1: its z property is increased by a multiple of 20 on each

Frame event while the z property of ellipse1 is increased by a multiple of 10:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/Transform.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/Matrix3D.html

354ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

var depth:int = 1000;

function ellipse1FrameHandler(e:Event):void
{

ellipse1Back = setDepth(e, ellipse1Back);
e.currentTarget.z += ellipse1Back * 10;

}
function ellipse2FrameHandler(e:Event):void
{

ellipse2Back = setDepth(e, ellipse1Back);
e.currentTarget.z += ellipse1Back * 20;

}
function setDepth(e:Event, d:int):int
{

if(e.currentTarget.z > depth)
{

e.currentTarget.z = depth;
d = -1;

}
else if (e.currentTarget.z < 0)
{

e.currentTarget.z = 0;
d = 1;

}
}

Rotating an object in 3D space

Flash Player 10 and later, Adobe AIR 1.5 and later

You can rotate an object in three different ways, depending on how you set the object’s rotation properties: rotationX,

rotationY, and rotationZ.

The figure below shows two squares that are not rotated:

The next figure shows the two squares when you increment the rotationY property of the container of the squares to

rotate them on the y- axis. Rotating the container, or parent display object, of the two squares rotates both squares:

container.rotationY += 10;

355ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

The next figure shows what happens when you set the rotationX property of the container for the squares. This

rotates the squares on the x- axis.

The next figure shows what happens when you increment the rotationZ property of the container of the squares.This

rotates the squares on the z-axis.

A display object can simultaneously move and rotate in 3D space.

Projecting 3D objects onto a 2D view

Flash Player 10 and later, Adobe AIR 1.5 and later

The PerspectiveProjection class in the flash.geom package provides a simple way of applying rudimentary

perspective when moving display objects through 3D space.

If you do not explicitly create a perspective projection for your 3D space, the 3D engine uses a default

PerspectiveProjection object that exists on the root and is propagated to all its children.

The three properties that define how a PerspectiveProjection object displays 3D space are:

• fieldOfView

• projectionCenter

• focalLength

Modifying the value of the fieldOfView automatically modifies the value of the focalLength and vice-versa, since

they are interdependent.

The formula used to calculate the focalLength given the fieldOfView value is:

focalLength = stageWidth/2 * (cos(fieldOfView/2) / sin(fieldOfView/2)

Typically you would modify the fieldOfView property explicitly.

Field of view

Flash Player 10 and later, Adobe AIR 1.5 and later

By manipulating the fieldOfView property of the PerspectiveProjection class, you can make a 3D display object

approaching the viewer appear larger and an object receding from the viewer appear smaller.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/geom/PerspectiveProjection.html

356ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

The fieldOfView property specifies an angle between 0 and 180 degrees that determines the strength of the

perspective projection. The greater the value, the stronger the distortion applied to a display object moving along its

z-axis. A low fieldOfView value results in very little scaling and causes objects to appear to move only slightly back

in space. A high fieldOfView value causes more distortion and the appearance of greater movement. The maximum

value of 179.9999... degrees results in an extreme fish-eye camera lens effect. The maximum value of fieldOfView is

179.9999... and the minimum is 0.00001... Exactly 0 and 180 are illegal values.

Projection center

Flash Player 10 and later, Adobe AIR 1.5 and later

The projectionCenter property represents the vanishing point in the perspective projection. It is applied as an offset

to the default registration point (0,0) in the upper-left corner of the stage.

As an object appears to move further from the viewer, it skews towards the vanishing point and eventually vanishes.

Imagine an infinitely long hall. As you look down the hall, the edges of the walls converge to a vanishing point far down

the hall.

If the vanishing point is at the center of the stage, the hall disappears towards a point in the center. The default value

for the projectionCenter property is the center of the stage. If, for example, you want elements to appear on the left

of the stage and a 3D area to appear on the right, set the projectionCenter to a point on the right of the stage to make

that the vanishing point of your 3D viewing area.

Focal length

Flash Player 10 and later, Adobe AIR 1.5 and later

The focalLength property represents the distance between the origin of the viewpoint (0,0,0) and the location of the

display object on its z-axis.

A long focal length is like a telephoto lens with a narrow view and compressed distances between objects. A short focal

length is like a wide angle lens, with which you get a wide view with a lot of distortion. A medium focal length

approximates what the human eye sees.

Typically the focalLength is re-calculated dynamically during perspective transformation as the display object

moves, but you can set it explicitly.

Default perspective projection values

Flash Player 10 and later, Adobe AIR 1.5 and later

The default PerspectiveProjection object created on the root has the following values:

• fieldOfView: 55

• perspectiveCenter: stagewidth/2, stageHeight/2

• focalLength: stageWidth/ 2 * (cos(fieldOfView/2) / sin(fieldOfView/2))

These are the values that are used if you do not create your own PerspectiveProjection object.

357ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

You can instantiate your own PerspectiveProjection object with the intention of modifying the projectionCenter

and fieldOfView yourself. In this case, the default values of the newly created object are the following, based on a

default stage size of 500 by 500:

• fieldOfView: 55

• perspectiveCenter: 250,250

• focalLength: 480.24554443359375

Example: Perspective projection

Flash Player 10 and later, Adobe AIR 1.5 and later

The following example demonstrates the use of perspective projection to create 3D space. It shows how you can modify

the vanishing point and change the perspective projection of the space through the projectionCenter property. This

modification forces the recalculation of the focalLength and fieldOfView with its concomitant distortion of the 3D

space.

This example:

1 Creates a sprite named center, as a circle with cross hairs

2 Assigns the coordinates of the center sprite to the projectionCenter property of the perspectiveProjection

property of the transform property of the root

3 Adds event listeners for mouse events that call handlers that modify the projectionCenter so that it follows the

location of the center object

4 Creates four accordion-style boxes that form the walls of the perspective space

When you test this example, ProjectionDragger.swf, drag the circle around to different locations. The vanishing point

follows the circle, landing wherever you drop it. Watch the boxes that enclose the space stretch and become distorted

when you move the projection center far from the center of the stage.

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

ProjectionDragger application files are in the Samples/ProjectionDragger folder.

http://www.adobe.com/go/learn_programmingAS3samples_flash

358ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

package
{

import flash.display.Sprite;
import flash.display.Shape;
import flash.geom.Point;
import flash.events.*;
public class ProjectionDragger extends Sprite
{

private var center : Sprite;
private var boxPanel:Shape;
private var inDrag:Boolean = false;

 public function ProjectionDragger():void
{

createBoxes();
createCenter();

}
 public function createCenter():void

 {
 var centerRadius:int = 20;

 center = new Sprite();

 // circle
 center.graphics.lineStyle(1, 0x000099);
 center.graphics.beginFill(0xCCCCCC, 0.5);
 center.graphics.drawCircle(0, 0, centerRadius);
 center.graphics.endFill();
 // cross hairs
 center.graphics.moveTo(0, centerRadius);
 center.graphics.lineTo(0, -centerRadius);
 center.graphics.moveTo(centerRadius, 0);
 center.graphics.lineTo(-centerRadius, 0);
 center.x = 175;
 center.y = 175;
 center.z = 0;
 this.addChild(center);

 center.addEventListener(MouseEvent.MOUSE_DOWN, startDragProjectionCenter);
 center.addEventListener(MouseEvent.MOUSE_UP, stopDragProjectionCenter);
 center.addEventListener(MouseEvent.MOUSE_MOVE, doDragProjectionCenter);
 root.transform.perspectiveProjection.projectionCenter = new Point(center.x,

center.y);
}
public function createBoxes():void
{

// createBoxPanel();
var boxWidth:int = 50;
var boxHeight:int = 50;
var numLayers:int = 12;
var depthPerLayer:int = 50;

// var boxVec:Vector.<Shape> = new Vector.<Shape>(numLayers);
for (var i:int = 0; i < numLayers; i++)
{

this.addChild(createBox(150, 50, (numLayers - i) * depthPerLayer, boxWidth,
boxHeight, 0xCCCCFF));

359ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

this.addChild(createBox(50, 150, (numLayers - i) * depthPerLayer, boxWidth,
boxHeight, 0xFFCCCC));

this.addChild(createBox(250, 150, (numLayers - i) * depthPerLayer, boxWidth,
boxHeight, 0xCCFFCC));

this.addChild(createBox(150, 250, (numLayers - i) * depthPerLayer, boxWidth,
boxHeight, 0xDDDDDD));

}
}

public function createBox(xPos:int = 0, yPos:int = 0, zPos:int = 100, w:int = 50, h:int

= 50, color:int = 0xDDDDDD):Shape
{

var box:Shape = new Shape();
box.graphics.lineStyle(2, 0x666666);
box.graphics.beginFill(color, 1.0);
box.graphics.drawRect(0, 0, w, h);
box.graphics.endFill();
box.x = xPos;
box.y = yPos;
box.z = zPos;
return box;

}
public function startDragProjectionCenter(e:Event)
{

center.startDrag();
inDrag = true;

}

public function doDragProjectionCenter(e:Event)
{

if (inDrag)
{

root.transform.perspectiveProjection.projectionCenter = new Point(center.x,
center.y);

}
}

public function stopDragProjectionCenter(e:Event)
{

center.stopDrag();
root.transform.perspectiveProjection.projectionCenter = new Point(center.x,

center.y);
inDrag = false;

}
}

}

For more complex perspective projection, use the Matrix3D class.

360ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

Performing complex 3D transformations

Flash Player 10 and later, Adobe AIR 1.5 and later

The Matrix3D class lets you transform 3D points within a coordinate space or map 3D points from one coordinate

space to another.

You don't need to understand matrix mathematics to use the Matrix3D class. Most of the common transformation

operations can be handled using the methods of the class. You don't have to worry about explicitly setting or

calculating the values of each element in the matrix.

After you set the z property of a display object to a numeric value, you can retrieve the object’s transformation matrix

using the Matrix3D property of the display object’s Transform object:

var leafMatrix:Matrix3D = this.transform.matrix3D;

You can use the methods of the Matrix3D object to perform translation, rotation, scaling, and perspective projection

on the display object.

Use the Vector3D class with its x, y, and z properties for managing 3D points. It can also represent a spatial vector in

physics, which has a direction and a magnitude. The methods of the Vector3D class let you perform common

calculations with spatial vectors, such as addition, dot product, and cross product calculations.

Note: The Vector3D class is not related to the ActionScript Vector class. The Vector3D class contains properties and

methods for defining and manipulating 3D points, while the Vector class supports arrays of typed objects.

Creating Matrix3D objects

Flash Player 10 and later, Adobe AIR 1.5 and later

There are three main ways of creating or retrieving Matrix3D objects:

• Use the Matrix3D() constructor method to instantiate a new matrix. The Matrix3D() constructor takes a Vector

object containing 16 numeric values and places each value into a cell of the matrix. For example:

var rotateMatrix:Matrix3D = new Matrix3D(1,0,0,1, 0,1,0,1, 0,0,1,1, 0,0,0,1);

• Set the value the z property of a display object. Then retrieve the transformation matrix from the

transform.matrix3D property of that object.

• Retrieve the Matrix3D object that controls the display of 3D objects on the stage by calling the

perspectiveProjection.toMatrix3D() method on the root display object.

Applying multiple 3D transformations

Flash Player 10 and later, Adobe AIR 1.5 and later

You can apply many 3D transformations at once using a Matrix3D object. For example if you wanted to rotate, scale,

and then move a cube, you could apply three separate transformations to each point of the cube. However it is much

more efficient to precalculate multiple transformations in one Matrix3D object and then perform one matrix

transformation on each of the points.

Note: The order in which matrix transformations are applied is important. Matrix calculations are not commutative. For

example, applying a rotation followed by a translation gives a different result than applying the same translation followed

by the same rotation.

361ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

The following example shows two ways of performing multiple 3D transformations.

package {
import flash.display.Sprite;
import flash.display.Shape;
import flash.display.Graphics;
import flash.geom.*;

public class Matrix3DTransformsExample extends Sprite

{
private var rect1:Shape;
private var rect2:Shape;

public function Matrix3DTransformsExample():void
{

var pp:PerspectiveProjection = this.transform.perspectiveProjection;
pp.projectionCenter = new Point(275,200);
this.transform.perspectiveProjection = pp;

rect1 = new Shape();
rect1.x = -70;
rect1.y = -40;
rect1.z = 0;
rect1.graphics.beginFill(0xFF8800);
rect1.graphics.drawRect(0,0,50,80);
rect1.graphics.endFill();
addChild(rect1);

rect2 = new Shape();
rect2.x = 20;
rect2.y = -40;
rect2.z = 0;
rect2.graphics.beginFill(0xFF0088);
rect2.graphics.drawRect(0,0,50,80);
rect2.graphics.endFill();
addChild(rect2);

doTransforms();

}

private function doTransforms():void
{

rect1.rotationX = 15;
rect1.scaleX = 1.2;
rect1.x += 100;
rect1.y += 50;
rect1.rotationZ = 10;

var matrix:Matrix3D = rect2.transform.matrix3D;
matrix.appendRotation(15, Vector3D.X_AXIS);
matrix.appendScale(1.2, 1, 1);
matrix.appendTranslation(100, 50, 0);
matrix.appendRotation(10, Vector3D.Z_AXIS);
rect2.transform.matrix3D = matrix;

}
}

}

362ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

In the doTransforms() method the first block of code uses the DisplayObject properties to change the rotation,

scaling, and position of a rectangle shape. The second block of code uses the methods of the Matrix3D class to do the

same transformations.

The main advantage of using the Matrix3D methods is that all of the calculations are performed in the matrix first,.

Then they are applied to the display object only once, when its transform.matrix3D property is set. Setting

DisplayObject properties make the source code a bit simpler to read. However each time a rotation or scaling property

is set, it causes multiple calculations and changes multiple display object properties.

If your code will apply the same complex transformations to display objects more than once, save the Matrix3D object

as a variable and then reapply it over and over.

Using Matrix3D objects for reordering display

Flash Player 10 and later, Adobe AIR 1.5 and later

As mentioned previously, the layering order of display objects in the display list determines the display layering order,

regardless of their relative z-axes. If your animation transforms the properties of display objects into an order that

differs from the display list order, the viewer might see display object layering that does not correspond to the z-axis

layering. So, an object that should appear further away from the viewer might appear in front of an object that is closer

to the viewer.

To ensure that the layering of 3D display objects corresponds to the relative depths of the objects, use an approach like

the following:

1 Use the getRelativeMatrix3D() method of the Transform object to get the relative z-axes of the child 3D

display objects.

2 Use the removeChild() method to remove the objects from the display list.

3 Sort the display objects based on their relative z-axis values.

4 Use the addChild() method to add the children back to the display list in reverse order.

This reordering ensures that your objects display in accordance with their relative z-axes.

The following code enforces the correct display of the six faces of a 3D box. It reorders the faces of the box after

rotations have been applied to the it:

public var faces:Array; . . .

public function ReorderChildren()
{

for(var ind:uint = 0; ind < 6; ind++)
{

faces[ind].z = faces[ind].child.transform.getRelativeMatrix3D(root).position.z;
this.removeChild(faces[ind].child);

}
faces.sortOn("z", Array.NUMERIC | Array.DESCENDING);
for (ind = 0; ind < 6; ind++)
{

this.addChild(faces[ind].child);
}

}

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

application files are in the Samples/ReorderByZ folder.

http://www.adobe.com/go/learn_programmingAS3samples_flash

363ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

Using triangles for 3D effects

Flash Player 10 and later, Adobe AIR 1.5 and later

In ActionScript, you perform bitmap transformations using the Graphics.drawTriangles() method, because 3D

models are represented by a collection of triangles in space. (However, Flash Player and AIR do not support a depth

buffer, so display objects are still inherently flat, or 2D. This is described in “Understanding 3D display objects in Flash

Player and the AIR runtime” on page 351.) The Graphics.drawTriangles() method is like the

Graphics.drawPath() method, as it takes a set of coordinates to draw a triangle path.

To familiarize yourself with using Graphics.drawPath(), see “Drawing Paths” on page 236.

The Graphics.drawTriangles() method uses a Vector.<Number> to specify the point locations for the triangle path:

drawTriangles(vertices:Vector.<Number>, indices:Vector.<int> = null, uvtData:Vector.<Number>
= null, culling:String = "none"):void

The first parameter of drawTriangles() is the only required parameter: the vertices parameter. This parameter is

a vector of numbers defining the coordinates through which your triangles are drawn. Every three sets of coordinates

(six numbers) represents a triangle path. Without the indices parameter, the length of the vector should always be a

factor of six, since each triangle requires three coordinate pairs (three sets of two x/y values). For example:

graphics.beginFill(0xFF8000);
graphics.drawTriangles(
 Vector.<Number>([
 10,10, 100,10, 10,100,
 110,10, 110,100, 20,100]));

Neither of these triangles share any points, but if they did, the second drawTriangles() parameter, indices, could

be used to reuse values in the vertices vector for more than one triangle.

When using the indices parameter, be aware that the indices values are point indices, not indices that relate directly

to the vertices array elements. In other words, an index in the vertices vector as defined by indices is actually the

real index divided by 2. For the third point of a vertices vector, for example, use an indices value of 2, even though

the first numeric value of that point starts at the vector index of 4.

For example, merge two triangles to share the diagonal edge using the indices parameter:

graphics.beginFill(0xFF8000);
graphics.drawTriangles(

Vector.<Number>([10,10, 100,10, 10,100, 100,100]),
Vector.<int>([0,1,2, 1,3,2]));

Notice that though a square has now been drawn using two triangles, only four points were specified in the vertices

vector. Using indices, the two points shared by the two triangles are reused for each triangle. This reduces the overall

vertices count from 6 (12 numbers) to 4 (8 numbers):

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Graphics.html#drawTriangles()

364ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

A square drawn with two triangles using the vertices parameter

This technique becomes useful with larger triangle meshes where most points are shared by multiple triangles.

All fills can be applied to triangles. The fills are applied to the resulting triangle mesh as they would to any other shape.

Transforming bitmaps

Flash Player 10 and later, Adobe AIR 1.5 and later

Bitmap transformations provide the illusion of perspective or "texture" on a three-dimensional object. Specifically, you

can distort a bitmap toward a vanishing point so the image appears to shrink as it moves toward the vanishing point.

Or, you can use a two-dimensional bitmap to create a surface for a three-dimensional object, providing the illusion of

texture or “wrapping” on that three-dimensional object.

A two-dimensional surface using a vanishing point and a three-dimensional object wrapped with a bitmap.

UV mapping

Flash Player 10 and later, Adobe AIR 1.5 and later

Once you start working with textures, you'll want to make use of the uvtData parameter of drawTriangles(). This

parameter allows you to set up UV mapping for bitmap fills.

UV mapping is a method for texturing objects. It relies on two values, a U horizontal (x) value and a V vertical (y)

value. Rather than being based on pixel values, they are based on percentages. 0 U and 0 V is the upper-left of an image

and 1 U and 1 V is the lower-right:

0 1

2 3

365ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

The UV 0 and 1 locations on a bitmap image

Vectors of a triangle can be given UV coordinates to associate themselves with the respective locations on an image:

The UV coordinates of a triangular area of a bitmap image

The UV values stay consistent with the points of the triangle:

The vertices of the triangle move and the bitmap distorts to keep the UV values for an individual point the same

As ActionScript 3D transformations are applied to the triangle associated with the bitmap, the bitmap image is applied

to the triangle based on the UV values. So, instead of using matrix calculations, set or adjust the UV values to create a

three-dimensional effect.

The Graphics.drawTriangles() method also accepts an optional piece of information for three-dimensional

transformations: the T value. The T value in uvtData represents the 3D perspective, or more specifically, the scale

factor of the associated vertex. UVT mapping adds perspective correction to UV mapping. For example, if an object is

positioned in 3D space away from the viewpoint so that it appears to be 50% its “original” size, the T value of that object

would be 0.5. Since triangles are drawn to represent objects in 3D space, their locations along the z-axis determine their

T values. The equation that determines the T value is:

T = focalLength/(focalLength + z);

In this equation, focalLength represents a focal length or calculated "screen" location which dictates the amount of

perspective provided in the view.

366ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

The focal length and z value
A. viewpoint B. screen C. 3D object D. focalLength value E. z value

The value of T is used to scale basic shapes to make them seem further in the distance. It is usually the value used to

convert 3D points to 2D points. In the case of UVT data, it is also used to scale a bitmap between the points within a

triangle with perspective.

When you define UVT values, the T value directly follows the UV values defined for a vertex. With the inclusion of T,

every three values in the uvtData parameter (U, V, and T) match up with every two values in the vertices parameter

(x, and y). With UV values alone, uvtData.length == vertices.length. With the inclusion of a T value, uvtData.length =

1.5*vertices.length.

The following example shows a plane being rotated in 3D space using UVT data. This example uses an image called

ocean.jpg and a “helper” class, ImageLoader, to load the ocean.jpg image so it can be assigned to the BitmapData

object.

Here is the ImageLoader class source (save this code into a file named ImageLoader.as):

D E

BA C

367ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

package {
 import flash.display.*
 import flash.events.*;
 import flash.net.URLRequest;

public class ImageLoader extends Sprite {
 public var url:String;

public var bitmap:Bitmap;
public function ImageLoader(loc:String = null) {

if (loc != null){
url = loc;
loadImage();

}
}
public function loadImage():void{

if (url != null){
var loader:Loader = new Loader();
loader.contentLoaderInfo.addEventListener(Event.COMPLETE, onComplete);
loader.contentLoaderInfo.addEventListener(IOErrorEvent.IO_ERROR, onIoError);

var req:URLRequest = new URLRequest(url);
loader.load(req);

}
}

private function onComplete(event:Event):void {
 var loader:Loader = Loader(event.target.loader);
 var info:LoaderInfo = LoaderInfo(loader.contentLoaderInfo);
 this.bitmap = info.content as Bitmap;

this.dispatchEvent(new Event(Event.COMPLETE));
}

private function onIoError(event:IOErrorEvent):void {

 trace("onIoError: " + event);
}

 }
}

And here is the ActionScript that uses triangles, UV mapping, and T values to make the image appear as if it is

shrinking toward a vanishing point and rotating. Save this code in a file named Spinning3dOcean.as:

368ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

package {
import flash.display.*
import flash.events.*;
import flash.utils.getTimer;

public class Spinning3dOcean extends Sprite {

// plane vertex coordinates (and t values)
var x1:Number = -100,y1:Number = -100,z1:Number = 0,t1:Number = 0;
var x2:Number = 100,y2:Number = -100,z2:Number = 0,t2:Number = 0;
var x3:Number = 100,y3:Number = 100,z3:Number = 0,t3:Number = 0;
var x4:Number = -100,y4:Number = 100,z4:Number = 0,t4:Number = 0;
var focalLength:Number = 200;
// 2 triangles for 1 plane, indices will always be the same
var indices:Vector.<int>;

var container:Sprite;

var bitmapData:BitmapData; // texture
var imageLoader:ImageLoader;
public function Spinning3dOcean():void {

indices = new Vector.<int>();
indices.push(0,1,3, 1,2,3);

container = new Sprite(); // container to draw triangles in
container.x = 200;
container.y = 200;
addChild(container);

imageLoader = new ImageLoader("ocean.jpg");
imageLoader.addEventListener(Event.COMPLETE, onImageLoaded);

}
function onImageLoaded(event:Event):void {

bitmapData = imageLoader.bitmap.bitmapData;
// animate every frame
addEventListener(Event.ENTER_FRAME, rotatePlane);

}
function rotatePlane(event:Event):void {

// rotate vertices over time
var ticker = getTimer()/400;
z2 = z3 = -(z1 = z4 = 100*Math.sin(ticker));
x2 = x3 = -(x1 = x4 = 100*Math.cos(ticker));

// calculate t values

369ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

t1 = focalLength/(focalLength + z1);
t2 = focalLength/(focalLength + z2);
t3 = focalLength/(focalLength + z3);
t4 = focalLength/(focalLength + z4);

// determine triangle vertices based on t values
var vertices:Vector.<Number> = new Vector.<Number>();
vertices.push(x1*t1,y1*t1, x2*t2,y2*t2, x3*t3,y3*t3, x4*t4,y4*t4);
// set T values allowing perspective to change
// as each vertex moves around in z space
var uvtData:Vector.<Number> = new Vector.<Number>();
uvtData.push(0,0,t1, 1,0,t2, 1,1,t3, 0,1,t4);

// draw
container.graphics.clear();
container.graphics.beginBitmapFill(bitmapData);
container.graphics.drawTriangles(vertices, indices, uvtData);

}
}

}

To test this example, save these two class files in the same directory as an image named “ocean.jpg”. You can see how

the original bitmap is transformed to appear as if it is vanishing in the distance and rotating in 3D space.

Culling

Flash Player 10 and later, Adobe AIR 1.5 and later

Culling is the process that determines which surfaces of a three-dimensional object the renderer should not render

because they are hidden from the current viewpoint. In 3D space, the surface on the “back” of a three-dimensional

object is hidden from the viewpoint:

The back of a 3D object is hidden from the viewpoint.
A. viewpoint B. 3D object C. the back of a three dimensional object

Inherently all triangles are always rendered no matter their size, shape, or position. Culling insures that Flash Player

or AIR renders your 3D object correctly. In addition, to save on rendering cycles, sometimes you want some triangles

to be skipped by the render. Consider a cube rotating in space. At any given time, you'll never see more than three sides

of that cube since the sides not in view would be facing the other direction on the other side of the cube. Since those

sides are not going to be seen, the renderer shouldn't draw them. Without culling, Flash Player or AIR renders both

the front and back sides.

BA

C

370ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working in three dimensions (3D)

Last updated 10/9/2017

A cube has sides not visible from the current viewpoint

So, the Graphics.drawTriangles() method has a fourth parameter to establish a culling value:

public function drawTriangles(vertices:Vector.<Number>, indices:Vector.<int> = null,
uvtData:Vector.<Number> = null, culling:String = "none"):void

The culling parameter is a value from the TriangleCulling enumeration class: TriangleCulling.NONE,

TriangleCulling.POSITIVE, and TriangleCulling.NEGATIVE. These values are dependent upon the direction of

the triangle path defining the surface of the object. The ActionScript API for determining the culling assumes that all

out-facing triangles of a 3D shape are drawn with the same path direction. Once a triangle face is turned around, the

path direction also changes. At that point, the triangle can be culled (removed from rendering).

So, a TriangleCulling value of POSITIVE removes triangles with positive path direction (clockwise). A

TriangleCulling value of NEGATIVE removes triangles with a negative (counterclockwise) path direction. In the case

of a cube, while the front facing surfaces have a positive path direction, the back facing surfaces have a negative path

direction:

A cube “unwrapped” to show the path direction. When “wrapped”, the back side path direction is reversed.

To see how culling works, start with the earlier example from “UV mapping” on page 364, set the culling parameter of

the drawTriangles() method to TriangleCulling.NEGATIVE:

container.graphics.drawTriangles(vertices, indices, uvtData, TriangleCulling.NEGATIVE);

Notice the “back” side of the image is not rendered as the object rotates.

371

Last updated 10/9/2017

Chapter 20: Basics of Working with text

Flash Player 9 and later, Adobe AIR 1.0 and later

To display text on the screen in Adobe® Flash® Player or Adobe® AIR™, use an instance of the TextField class or use the

Flash Text Engine classes. These classes allow you to create, display, and format text. Alternatively, you can use the

Text Layout Framework (TLF) — a component library based on the Flash Text Engine classes, but designed for ease

of use. On mobile devices, you can use the StageText class for text input.

You can establish specific content for text fields, or designate the source for the text, and then set the appearance of

that text. You can also respond to user events as the user inputs text or clicks a hypertext link.

Both the TextField class and the Flash Text Engine classes allow you to display and manage text in Flash Player and

AIR.You can use the TextField class to create text objects for display and input. The TextField class provides the basis

for other text-based components, such as TextArea and TextInput. You can use the TextFormat class to set character

and paragraph formatting for TextField objects and you can apply Cascading Style Sheets (CSS) using the

Textfield.styleSheet property and the StyleSheet class. You can assign HTML-formatted text, which can contain

embedded media (movie clips, SWF files, GIF files, PNG files, and JPEG files), directly to a text field.

The Flash Text Engine, available starting with Flash Player 10 and Adobe AIR 1.5, provides low-level support for

sophisticated control of text metrics, formatting, and bi-directional text. It also offers improved text flow and enhanced

language support. While you can use the Flash Text Engine to create and manage text elements, it is primarily designed

as the foundation for creating text-handling components and requires greater programming expertise.The Text

Layout Framework, which includes a text-handling component based on the Flash Text Engine, provides an easier way

to use the advanced features of the new text engine. The Text Layout Framework is an extensible library built entirely

in ActionScript 3.0. You can use the existing TLF component, or use the framework to build your own text component.

The StageText class, available starting in AIR 3, provides a native text input field. Because this field is provided by the

device operating system, it provides the experience with which users of a device are most familiar. A StageText instance

is not a display object. Instead of adding it to the display list, you assign an instance a stage and a display area on that

stage called a viewport. The StageText instance displays in front of any display objects.

For more information on these topics, see:

• “Using the TextField class” on page 373

• “Using the Flash Text Engine” on page 397

• “Using the Text Layout Framework” on page 426

• Native text input with StageText

Important concepts and terms

The following reference list contains important terms involved with text handling:

Cascading style sheets A standard syntax for specifying styles and formatting for content that’s structured in XML (or

HTML) format.

Device font A font that is installed on the user’s machine.

Dynamic text field A text field whose contents can be changed by ActionScript but not by user input.

Embedded font A font that has its character outline data stored in the application SWF file.

http://goo.gl/A0L15

372ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Basics of Working with text

Last updated 10/9/2017

HTML text Text content entered into a text field using ActionScript that includes HTML formatting tags along with

actual text content.

Input text field A text field whose contents can be changed either by user input or by ActionScript.

Kerning An adjustment of the spacing between pairs of characters to make the spacing in words more proportional

and the text easier to read.

Static text field A text field created in the authoring tool, whose content cannot change when the SWF file is running.

Text line metrics Measurements of the size of various parts of the text content in a text field, such as the baseline of the

text, the height of the top of the characters, size of descenders (the part of some lowercase letters that extends below

the baseline), and so on.

Tracking An adjustment of spacing between groups of letters or blocks of text to increase or decrease the density and

make the text more readable.

373

Last updated 10/9/2017

Chapter 21: Using the TextField class

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use an instance of the TextField class to display text or create a text input field on the screen in Adobe® Flash®

Player or Adobe® AIR™. The TextField class is the basis for other text-based components, such as the TextArea

components or the TextInput components.

Text field content can be pre-specified in the SWF file, loaded from a text file or database, or entered by a user

interacting with your application. Within a text field, the text can appear as rendered HTML content, with images

embedded in the rendered HTML. After you create an instance of a text field, you can use flash.text classes, such as

TextFormat and StyleSheet, to control the appearance of the text. The flash.text package contains nearly all the classes

related to creating, managing, and formatting text in ActionScript.

You can format text by defining the formatting with a TextFormat object and assigning that object to the text field. If

your text field contains HTML text, you can apply a StyleSheet object to the text field to assign styles to specific pieces

of the text field content. The TextFormat object or StyleSheet object contains properties defining the appearance of the

text, such as color, size, and weight. The TextFormat object assigns the properties to all the content within a text field

or to a range of text. For example, within the same text field, one sentence can be bold red text and the next sentence

can be blue italic text.

In addition to the classes in the flash.text package, you can use the flash.events.TextEvent class to respond to user

actions related to text.

More Help topics

“Assigning text formats” on page 380

“Displaying HTML text” on page 375

“Applying cascading style sheets” on page 380

Displaying text

Flash Player 9 and later, Adobe AIR 1.0 and later

Although authoring tools like Adobe Flash Builder and Flash Professional provide several options for displaying text,

including text-related components or text tools, the simplest way to display text programmatically is through a text

field.

Types of text

Flash Player 9 and later, Adobe AIR 1.0 and later

The type of text within a text field is characterized by its source:

• Dynamic text

Dynamic text includes content that is loaded from an external source, such as a text file, an XML file, or even a

remote web service.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/text/package-detail.html

374ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

• Input text

Input text is any text entered by a user or dynamic text that a user can edit. You can set up a style sheet to format

input text, or use the flash.text.TextFormat class to assign properties to the text field for the input content. For more

information, see “Capturing text input” on page 378.

• Static text

Static text is created through Flash Professional only. You cannot create a static text instance using ActionScript

3.0. However, you can use ActionScript classes like StaticText and TextSnapshot to manipulate an existing static

text instance. For more information, see “Working with static text” on page 386.

Modifying the text field contents

Flash Player 9 and later, Adobe AIR 1.0 and later

You can define dynamic text by assigning a string to the flash.text.TextField.text property. You assign a string

directly to the property, as follows:

 myTextField.text = "Hello World";

You can also assign the text property a value from a variable defined in your script, as in the following example:

 package
 {
 import flash.display.Sprite;
 import flash.text.*;

 public class TextWithImage extends Sprite
 {
 private var myTextBox:TextField = new TextField();
 private var myText:String = "Hello World";

 public function TextWithImage()
 {
 addChild(myTextBox);
 myTextBox.text = myText;
 }
 }
 }

Alternatively, you can assign the text property a value from a remote variable. You have three options for loading text

values from remote sources:

• The flash.net.URLLoader and flash.net.URLRequest classes load variables for the text from a local or remote

location.

• The FlashVars attribute is embedded in the HTML page hosting the SWF file and can contain values for text

variables.

• The flash.net.SharedObject class manages persistent storage of values. For more information, see “Storing local

data” on page 701.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/text/TextField.html#text

375ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

Displaying HTML text

Flash Player 9 and later, Adobe AIR 1.0 and later

The flash.text.TextField class has an htmlText property that you can use to identify your text string as one containing

HTML tags for formatting the content. As in the following example, you must assign your string value to the htmlText

property (not the text property) for Flash Player or AIR to render the text as HTML:

 var myText:String = "<p>This is some content to <i>render</i> as <u>HTML</u> text.</p>";
 myTextBox.htmlText = myText;

Flash Player and AIR support a subset of HTML tags and entities for the htmlText property. The

flash.text.TextField.htmlText property description in the ActionScript 3.0 Reference provides detailed

information about the supported HTML tags and entities.

Once you designate your content using the htmlText property, you can use style sheets or the textformat tag to

manage the formatting of your content. For more information, see “Formatting text” on page 380.

Using images in text fields

Flash Player 9 and later, Adobe AIR 1.0 and later

Another advantage to displaying your content as HTML text is that you can include images in the text field. You can

reference an image, local or remote, using the img tag and have it appear within the associated text field.

The following example creates a text field named myTextBox and includes a JPG image of an eye, stored in the same

directory as the SWF file, within the displayed text:

 package
 {
 import flash.display.Sprite;
 import flash.text.*;

 public class TextWithImage extends Sprite
 {
 private var myTextBox:TextField;
 private var myText:String = "<p>This is some content to <i>test</i> and
<i>see</i></p><p></p><p>what can be
rendered.</p><p>You should see an eye image and some <u>HTML</u> text.</p>";

 public function TextWithImage()
 {
 myTextBox.width = 200;
 myTextBox.height = 200;
 myTextBox.multiline = true;
 myTextBox.wordWrap = true;
 myTextBox.border = true;

 addChild(myTextBox);
 myTextBox.htmlText = myText;
 }
 }
 }

The img tag supports JPEG, GIF, PNG, and SWF files.

376ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

Scrolling text in a text field

Flash Player 9 and later, Adobe AIR 1.0 and later

In many cases, your text can be longer than the text field displaying the text. Or you may have an input field that allows

a user to input more text than can be displayed at one time. You can use the scroll-related properties of the

flash.text.TextField class to manage lengthy content, either vertically or horizontally.

The scroll-related properties include TextField.scrollV, TextField.scrollH and maxScrollV and maxScrollH.

Use these properties to respond to events, like a mouse click or a keypress.

The following example creates a text field that is a set size and contains more text than the field can display at one time.

As the user clicks the text field, the text scrolls vertically.

 package
 {
 import flash.display.Sprite;
 import flash.text.*;
 import flash.events.MouseEvent;

 public class TextScrollExample extends Sprite
 {
 private var myTextBox:TextField = new TextField();
 private var myText:String = "Hello world and welcome to the show. It's really nice to
meet you. Take your coat off and stay a while. OK, show is over. Hope you had fun. You can go
home now. Don't forget to tip your waiter. There are mints in the bowl by the door. Thank you.
Please come again.";

 public function TextScrollExample()
 {
 myTextBox.text = myText;
 myTextBox.width = 200;
 myTextBox.height = 50;
 myTextBox.multiline = true;
 myTextBox.wordWrap = true;
 myTextBox.background = true;
 myTextBox.border = true;

 var format:TextFormat = new TextFormat();
 format.font = "Verdana";
 format.color = 0xFF0000;
 format.size = 10;

 myTextBox.defaultTextFormat = format;
 addChild(myTextBox);
 myTextBox.addEventListener(MouseEvent.MOUSE_DOWN, mouseDownScroll);
 }

 public function mouseDownScroll(event:MouseEvent):void
 {
 myTextBox.scrollV++;
 }
 }
 }

377ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

Selecting and manipulating text

Flash Player 9 and later, Adobe AIR 1.0 and later

You can select dynamic or input text. Since the text selection properties and methods of the TextField class use index

positions to set the range of text to manipulate, you can programmatically select dynamic or input text even if you

don’t know the content.

Note: In Flash Professional, if you choose the selectable option on a static text field, the text field that is exported and

placed on the display list is a regular, dynamic text field.

Selecting text

Flash Player 9 and later, Adobe AIR 1.0 and later

The flash.text.TextField.selectable property is true by default, and you can programmatically select text

using the setSelection() method.

For example, you can set specific text within a text field to be selected when the user clicks the text field:

 var myTextField:TextField = new TextField();
 myTextField.text = "No matter where you click on this text field the TEXT IN ALL CAPS is selected.";
 myTextField.autoSize = TextFieldAutoSize.LEFT;
 addChild(myTextField);
 addEventListener(MouseEvent.CLICK, selectText);

 function selectText(event:MouseEvent):void
 {
 myTextField.setSelection(49, 65);
 }

Similarly, if you want text within a text field to be selected as the text is initially displayed, create an event handler

function that is called as the text field is added to the display list.

Capturing user-selected text

Flash Player 9 and later, Adobe AIR 1.0 and later

The TextField selectionBeginIndex and selectionEndIndex properties, which are “read-only” so they can’t be set

to programmatically select text, can be used to capture whatever the user has currently selected. Additionally, input

text fields can use the caretIndex property.

For example, the following code traces the index values of user-selected text:

378ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

 var myTextField:TextField = new TextField();
 myTextField.text = "Please select the TEXT IN ALL CAPS to see the index values for the first
and last letters.";
 myTextField.autoSize = TextFieldAutoSize.LEFT;
 addChild(myTextField);
 addEventListener(MouseEvent.MOUSE_UP, selectText);

 function selectText(event:MouseEvent):void
 {
 trace("First letter index position: " + myTextField.selectionBeginIndex);
 trace("Last letter index position: " + myTextField.selectionEndIndex);
 }

You can apply a collection of TextFormat object properties to the selection to change the text appearance. For more

information about applying a collection of TextFormat properties to selected text, see “Formatting ranges of text

within a text field” on page 383.

Capturing text input

Flash Player 9 and later, Adobe AIR 1.0 and later

By default, the type property of a text field is set to dynamic. If you set the type property to input using the

TextFieldType class, you can collect user input and save the value for use in other parts of your application. Input text

fields are useful for forms and any application that wants the user to define a text value for use elsewhere in the

program.

For example, the following code creates an input text field called myTextBox. As the user enters text in the field, the

textInput event is triggered. An event handler called textInputCapture captures the string of text entered and

assigns it a variable. Flash Player or AIR displays the new text in another text field, called myOutputBox.

 package
 {
 import flash.display.Sprite;
 import flash.display.Stage;
 import flash.text.*;
 import flash.events.*;

 public class CaptureUserInput extends Sprite
 {
 private var myTextBox:TextField = new TextField();
 private var myOutputBox:TextField = new TextField();
 private var myText:String = "Type your text here.";

 public function CaptureUserInput()
 {
 captureText();
 }

 public function captureText():void
 {
 myTextBox.type = TextFieldType.INPUT;
 myTextBox.background = true;
 addChild(myTextBox);

379ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

 myTextBox.text = myText;
 myTextBox.addEventListener(TextEvent.TEXT_INPUT, textInputCapture);
 }

 public function textInputCapture(event:TextEvent):void
 {
 var str:String = myTextBox.text;
 createOutputBox(str);
 }

 public function createOutputBox(str:String):void
 {
 myOutputBox.background = true;
 myOutputBox.x = 200;
 addChild(myOutputBox);
 myOutputBox.text = str;
 }

 }
 }

Restricting text input

Flash Player 9 and later, Adobe AIR 1.0 and later

Since input text fields are often used for forms or dialog boxes in applications, you may want to limit the types of

characters a user can enter in a text field, or even keep the text hidden —for example, for a password. The

flash.text.TextField class has a displayAsPassword property and a restrict property that you can set to control user

input.

The displayAsPassword property simply hides the text (displaying it as a series of asterisks) as the user types it. When

displayAsPassword is set to true, the Cut and Copy commands and their corresponding keyboard shortcuts do not

function. As the following example shows, you assign the displayAsPassword property just as you would other

properties, such as background and color:

 myTextBox.type = TextFieldType.INPUT;
 myTextBox.background = true;
 myTextBox.displayAsPassword = true;
 addChild(myTextBox);

The restrict property is a little more complicated since you must specify which characters the user is allowed to type

in an input text field. You can allow specific letters, numbers, or ranges of letters, numbers, and characters. The

following code allows the user to enter only uppercase letters (and not numbers or special characters) in the text field:

 myTextBox.restrict = "A-Z";

ActionScript 3.0 uses hyphens to define ranges, and carets to define excluded characters. For more information about

defining what is restricted in an input text field, see the flash.text.TextField.restrict property entry in the

ActionScript 3.0 Reference.

Note: If you use the flash.text.TextField.restrict property, the runtime automatically converts restricted letters

to the allowed case. If you use the fl.text.TLFTextField.restrict property (that is, if you use a TLF text field), the

runtime ignores restricted letters.

380ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

Formatting text

Flash Player 9 and later, Adobe AIR 1.0 and later

You have several options for programmatically formatting the display of text. You can set properties directly on the

TextField instance—for example, the TextFIeld.thickness, TextField.textColor, and TextField.textHeight

properties.Or you can designate the content of the text field using the htmlText property and use the supported

HTML tags, such as b, i, and u. But you can also apply TextFormat objects to text fields containing plain text, or

StyleSheet objects to text fields containing the htmlText property. Using TextFormat and StyleSheet objects provides

the most control and consistency over the appearance of text throughout your application. You can define a

TextFormat or StyleSheet object and apply it to many or all text fields in your application.

Assigning text formats

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the TextFormat class to set a number of different text display properties and to apply them to the entire

contents of a TextField object, or to a range of text.

The following example applies one TextFormat object to an entire TextField object and applies a second TextFormat

object to a range of text within that TextField object:

 var tf:TextField = new TextField();
 tf.text = "Hello Hello";

 var format1:TextFormat = new TextFormat();
 format1.color = 0xFF0000;

 var format2:TextFormat = new TextFormat();
 format2.font = "Courier";

 tf.setTextFormat(format1);
 var startRange:uint = 6;
 tf.setTextFormat(format2, startRange);

 addChild(tf);

The TextField.setTextFormat() method only affects text that is already displayed in the text field. If the content

in the TextField changes, your application might need to call the TextField.setTextFormat() method again to

reapply the formatting. You can also set the TextField defaultTextFormat property to specify the format to be used

for user-entered text.

Applying cascading style sheets

Flash Player 9 and later, Adobe AIR 1.0 and later

Text fields can contain either plain text or HTML-formatted text. Plain text is stored in the text property of the

instance, and HTML text is stored in the htmlText property.

You can use CSS style declarations to define text styles that you can apply to many different text fields. CSS style

declarations can be created in your application code or loaded in at run time from an external CSS file.

381ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

The flash.text.StyleSheet class handles CSS styles. The StyleSheet class recognizes a limited set of CSS properties. For a

detailed list of the style properties that the StyleSheet class supports, see the flash.textStylesheet entry in the

ActionScript 3.0 Reference.

As the following example shows, you can create CSS in your code and apply those styles to HTML text by using a

StyleSheet object:

 var style:StyleSheet = new StyleSheet();

 var styleObj:Object = new Object();
 styleObj.fontSize = "bold";
 styleObj.color = "#FF0000";
 style.setStyle(".darkRed", styleObj);

 var tf:TextField = new TextField();
 tf.styleSheet = style;
 tf.htmlText = "Red apple";

 addChild(tf);

After creating a StyleSheet object, the example code creates a simple object to hold a set of style declaration properties.

Then it calls the StyleSheet.setStyle() method, which adds the new style to the style sheet with the name

“.darkred”. Next, it applies the style sheet formatting by assigning the StyleSheet object to the TextField styleSheet

property.

For CSS styles to take effect, the style sheet should be applied to the TextField object before the htmlText property is set.

By design, a text field with a style sheet is not editable. If you have an input text field and assign a style sheet to it, the

text field shows the properties of the style sheet, but the text field does not allow users to enter new text into it. Also,

you cannot use the following ActionScript APIs on a text field with an assigned style sheet:

• The TextField.replaceText() method

• The TextField.replaceSelectedText() method

• The TextField.defaultTextFormat property

• The TextField.setTextFormat() method

If a text field has a style sheet assigned to it, but later the TextField.styleSheet property is set to null, the contents

of both TextField.text and TextField.htmlText properties add tags and attributes to their content to incorporate

the formatting from the previously assigned style sheet. To preserve the original htmlText property, save it in a

variable before setting the style sheet to null.

Loading an external CSS file

Flash Player 9 and later, Adobe AIR 1.0 and later

The CSS approach to formatting is more powerful when you can load CSS information from an external file at run

time. When the CSS data is external to the application itself, you can change the visual style of text in your application

without having to change your ActionScript 3.0 source code. After your application has been deployed, you can change

an external CSS file to change the look of the application, without having to redeploy the application SWF file.

The StyleSheet.parseCSS() method converts a string that contains CSS data into style declarations in the

StyleSheet object. The following example shows how to read an external CSS file and apply its style declarations to a

TextField object.

First, here is the content of the CSS file to be loaded, which is named example.css:

382ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

 p {
 font-family: Times New Roman, Times, _serif;
 font-size: 14;
 }

 h1 {
 font-family: Arial, Helvetica, _sans;
 font-size: 20;
 font-weight: bold;
 }

 .bluetext {
 color: #0000CC;
 }

Next is the ActionScript code for a class that loads the example.css file and applies the styles to TextField content:

 package
 {
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.net.URLLoader;
 import flash.net.URLRequest;
 import flash.text.StyleSheet;
 import flash.text.TextField;
 import flash.text.TextFieldAutoSize;

 public class CSSFormattingExample extends Sprite
 {
 var loader:URLLoader;
 var field:TextField;
 var exampleText:String = "<h1>This is a headline</h1>" +
 "<p>This is a line of text. " +
 "This line of text is colored blue.</p>";

 public function CSSFormattingExample():void
 {
 field = new TextField();
 field.width = 300;

383ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

 field.autoSize = TextFieldAutoSize.LEFT;
 field.wordWrap = true;
 addChild(field);

 var req:URLRequest = new URLRequest("example.css");

 loader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, onCSSFileLoaded);
 loader.load(req);
 }

 public function onCSSFileLoaded(event:Event):void
 {
 var sheet:StyleSheet = new StyleSheet();
 sheet.parseCSS(loader.data);
 field.styleSheet = sheet;
 field.htmlText = exampleText;
 }
 }
 }

When the CSS data is loaded, the onCSSFileLoaded() method executes and calls the StyleSheet.parseCSS()

method to transfer the style declarations to the StyleSheet object.

Formatting ranges of text within a text field

Flash Player 9 and later, Adobe AIR 1.0 and later

A useful method of the flash.text.TextField class is the setTextFormat() method. Using setTextFormat(), you can

assign specific properties to the contents of a part of a text field to respond to user input, such as forms that need to

remind users that certain entries are required or to change the emphasis of a subsection of a passage of text within a

text field as a user selects parts of the text.

The following example uses TextField.setTextFormat() on a range of characters to change the appearance of part

of the content of myTextField when the user clicks the text field:

 var myTextField:TextField = new TextField();
 myTextField.text = "No matter where you click on this text field the TEXT IN ALL CAPS changes
format.";
 myTextField.autoSize = TextFieldAutoSize.LEFT;
 addChild(myTextField);
 addEventListener(MouseEvent.CLICK, changeText);

 var myformat:TextFormat = new TextFormat();
 myformat.color = 0xFF0000;
 myformat.size = 18;
 myformat.underline = true;

 function changeText(event:MouseEvent):void
 {
 myTextField.setTextFormat(myformat, 49, 65);
 }

384ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

Advanced text rendering

Flash Player 9 and later, Adobe AIR 1.0 and later

ActionScript 3.0 provides a variety of classes in the flash.text package to control the properties of displayed text,

including embedded fonts, anti-aliasing settings, alpha channel control, and other specific settings. The ActionScript

3.0 Reference provides detailed descriptions of these classes and properties, including the CSMSettings, Font, and

TextRenderer classes.

Using embedded fonts

Flash Player 9 and later, Adobe AIR 1.0 and later

When you specify a specific font for a TextField in your application, Flash Player or AIR look for a device font (a font

that resides on the user’s computer) with the same name. If it doesn’t find that font on the system, or if the user has a

slightly different version of a font with that name, the text display could look very different from what you intend. By

default, the text appears in a Times Roman font.

To make sure the user sees exactly the right font, you can embed that font in your application SWF file. Embedded

fonts have a number of benefits:

• Embedded font characters are anti-aliased, making their edges appear smoother, especially for larger text.

• You can rotate text that uses embedded fonts.

• Embedded font text can be made transparent or semitransparent.

• You can use the kerning CSS style with embedded fonts.

The biggest limitation to using embedded fonts is that they increase the file size or download size of your application.

The exact method of embedding a font file into your application SWF file varies according to your development

environment.

Once you have embedded a font you can make sure a TextField uses the correct embedded font:

• Set the embedFonts property of the TextField to true.

• Create a TextFormat object, set its fontFamily property to the name of the embedded font, and apply the

TextFormat object to the TextField. When specifying an embedded font, the fontFamily property should only

contain a single name; it cannot use a comma-delimited list of multiple font names.

• If using CSS styles to set fonts for TextFields or components, set the font-family CSS property to the name of the

embedded font. The font-family property must contain a single name and not a list of names if you want to

specify an embedded font.

Embedding a font in Flash

Flash Professional lets you embed almost any font you have installed on your system, including TrueType fonts and

Type 1 Postscript fonts.

You can embed fonts in an application in many ways, including:

• Setting the font and style properties of a TextField on the Stage and clicking the Embed Fonts checkbox

• Creating and referencing a font symbol

• Creating and using a run-time shared library containing embedded font symbols

385ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

For more details about how to embed fonts in applications, see “Embedded fonts for dynamic or input text fields” in

Using Flash.

Embedding a font in Flex

You can embed fonts in a Flex application in many ways, including:

• Using the [Embed] metadata tag in a script

• Using the @font-face style declaration

• Establish a class for the font and use the [Embed] tag to embed it.

You can only embed TrueType fonts directly in a Flex application. Fonts in other formats, such as Type 1 Postscript

fonts, can first be embedded in a SWF file using Flash Professional and then that SWF file can be used in your Flex

application. For more details about using embedded fonts from SWF files in Flex, see “Embedding fonts from SWF

files” in Using Flex 4.

More Help topics

Embed fonts for consistent text appearance

Peter deHaan: Embedding fonts

Divillysausages.com: AS3 Font embedding masterclass

Controlling sharpness, thickness, and anti-aliasing

Flash Player 9 and later, Adobe AIR 1.0 and later

By default, Flash Player or AIR determines the settings for text display controls like sharpness, thickness, and anti-

aliasing as text resizes, changes color, or is displayed on various backgrounds. In some cases, like when you have very

small or very large text, or text on a variety of unique backgrounds, you might want to maintain control over these

settings. You can override Flash Player or AIR settings using the flash.text.TextRenderer class and its associated

classes, like the CSMSettings class. These classes give you precise control over the rendering quality of embedded text.

For more information about embedded fonts, see “Using embedded fonts” on page 384.

Note: The flash.text.TextField.antiAliasType property must have the value AntiAliasType.ADVANCED in order

for you to set the sharpness, thickness, or the gridFitType property, or to use the

TextRenderer.setAdvancedAntiAliasingTable() method.

The following example applies custom continuous stroke modulation (CSM) properties and formatting to displayed

text using an embedded font called myFont. When the user clicks the displayed text, Flash Player or Adobe AIR applies

the custom settings:

http://help.adobe.com/en_US/flash/cs/using/WSb03e830bd6f770ee21a3597d124daee0526-8000.html
http://www.adobe.com/devnet/flash/quickstart/embedding_fonts.html
http://divillysausages.com/blog/as3_font_embedding_masterclass

386ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

 var format:TextFormat = new TextFormat();
 format.color = 0x336699;
 format.size = 48;
 format.font = "myFont";

 var myText:TextField = new TextField();
 myText.embedFonts = true;
 myText.autoSize = TextFieldAutoSize.LEFT;
 myText.antiAliasType = AntiAliasType.ADVANCED;
 myText.defaultTextFormat = format;
 myText.selectable = false;
 myText.mouseEnabled = true;
 myText.text = "Hello World";
 addChild(myText);
 myText.addEventListener(MouseEvent.CLICK, clickHandler);

 function clickHandler(event:Event):void
 {
 var myAntiAliasSettings = new CSMSettings(48, 0.8, -0.8);
 var myAliasTable:Array = new Array(myAntiAliasSettings);
 TextRenderer.setAdvancedAntiAliasingTable("myFont", FontStyle.ITALIC,
TextColorType.DARK_COLOR, myAliasTable);
 }

Working with static text

Flash Player 9 and later, Adobe AIR 1.0 and later

Static text is created only within Flash Professional. You cannot programmatically instantiate static text using

ActionScript. Static text is useful if the text is short and is not intended to change (as dynamic text can). Think of static

text as similar to a graphic element like a circle or square drawn on the Stage in Flash Professional. While static text is

more limited than dynamic text, ActionScript 3.0 does allow you to read the property values of static text using the

StaticText class. You can also use the TextSnapshot class to read values out of the static text.

Accessing static text fields with the StaticText class

Flash Player 9 and later, Adobe AIR 1.0 and later

Typically, you use the flash.text.StaticText class in the Actions panel of Flash Professional to interact with a static text

instance placed on the Stage. You may also work in ActionScript files that interact with a SWF file containing static

text. In either case, you can’t instantiate a static text instance programmatically. Static text is created in Flash

Professional.

To create a reference to an existing static text field, iterate over the items in the display list and assign a variable. For

example:

387ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

 for (var i = 0; i < this.numChildren; i++) {
 var displayitem:DisplayObject = this.getChildAt(i);
 if (displayitem instanceof StaticText) {
 trace("a static text field is item " + i + " on the display list");
 var myFieldLabel:StaticText = StaticText(displayitem);
 trace("and contains the text: " + myFieldLabel.text);
 }
 }

Once you have a reference to a static text field, you can use the properties of that field in ActionScript 3.0. The following

code is attached to a frame in the Timeline, and assumes that a variable named myFieldLabel is assigned to a static

text reference. A dynamic text field named myField is positioned relative to the x and y values of myFieldLabel and

displays the value of myFieldLabel again.

 var myField:TextField = new TextField();
 addChild(myField);
 myField.x = myFieldLabel.x;
 myField.y = myFieldLabel.y + 20;
 myField.autoSize = TextFieldAutoSize.LEFT;
 myField.text = "and " + myFieldLabel.text

Using the TextSnapshot class

Flash Player 9 and later, Adobe AIR 1.0 and later

If you want to programmatically work with an existing static text instance, you can use the flash.text.TextSnapshot

class to work with the textSnapshot property of a flash.display.DisplayObjectContainer. In other words, you create

a TextSnapshot instance from the DisplayObjectContainer.textSnapshot property. You can then apply methods

to that instance to retrieve values or select parts of the static text.

For example, place a static text field that contains the text "TextSnapshot Example" on the Stage. Add the following

ActionScript to Frame 1 of the Timeline:

 var mySnap:TextSnapshot = this.textSnapshot;
 var count:Number = mySnap.charCount;
 mySnap.setSelected(0, 4, true);
 mySnap.setSelected(1, 2, false);
 var myText:String = mySnap.getSelectedText(false);
 trace(myText);

The TextSnapshot class is useful for getting the text out of static text fields in a loaded SWF file, if you want to use the

text as a value in another part of an application.

TextField Example: Newspaper-style text formatting

Flash Player 9 and later, Adobe AIR 1.0 and later

The News Layout example formats text to look something like a story in a printed newspaper. The input text can

contain a headline, a subtitle, and the body of the story. Given a display width and height, this News Layout example

formats the headline and the subtitle to take the full width of the display area. The story text is distributed across two

or more columns.

388ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

This example illustrates the following ActionScript programming techniques:

• Extending the TextField class

• Loading and applying an external CSS file

• Converting CSS styles into TextFormat objects

• Using the TextLineMetrics class to get information about text display size

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The News

Layout application files can be found in the folder Samples/NewsLayout. The application consists of the following files:

Reading the external CSS file

Flash Player 9 and later, Adobe AIR 1.0 and later

The News Layout application starts by reading story text from a local XML file. Then it reads an external CSS file that

provides the formatting information for the headline, subtitle, and main text.

The CSS file defines three styles, a standard paragraph style for the story, and the h1 and h2 styles for the headline and

subtitle respectively.

File Description

NewsLayout.mxml

or

NewsLayout.fla

The user interface for the application for Flex (MXML) or Flash (FLA).

com/example/programmingas3/ne

wslayout/StoryLayoutComponent.a

s

A Flex UIComponent class that places the StoryLayout instance.

com/example/programmingas3/ne

wslayout/StoryLayout.as

The main ActionScript class that arranges all the components of a news story for display.

com/example/programmingas3/ne

wslayout/FormattedTextField.as

A subclass of the TextField class that manages its own TextFormat object.

com/example/programmingas3/ne

wslayout/HeadlineTextField.as

A subclass of the FormattedTextField class that adjusts font sizes to fit a desired width.

com/example/programmingas3/ne

wslayout/MultiColumnTextField.as

An ActionScript class that splits text across two or more columns.

story.css A CSS file that defines text styles for the layout.

http://www.adobe.com/go/learn_programmingAS3samples_flash

389ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

 p {
 font-family: Georgia, "Times New Roman", Times, _serif;
 font-size: 12;
 leading: 2;
 text-align: justify;
 indent: 24;
 }

 h1 {
 font-family: Verdana, Arial, Helvetica, _sans;
 font-size: 20;
 font-weight: bold;
 color: #000099;
 text-align: left;
 }

 h2 {
 font-family: Verdana, Arial, Helvetica, _sans;
 font-size: 16;
 font-weight: normal;
 text-align: left;
 }

The technique used to read the external CSS file is the same as the technique described in “Loading an external CSS

file” on page 381. When the CSS file has been loaded the application executes the onCSSFileLoaded() method, shown

below.

 public function onCSSFileLoaded(event:Event):void
 {
 this.sheet = new StyleSheet();
 this.sheet.parseCSS(loader.data);

 h1Format = getTextStyle("h1", this.sheet);
 if (h1Format == null)
 {
 h1Format = getDefaultHeadFormat();
 }
 h2Format = getTextStyle("h2", this.sheet);
 if (h2Format == null)
 {
 h2Format = getDefaultHeadFormat();
 h2Format.size = 16;
 }
 pFormat = getTextStyle("p", this.sheet);
 if (pFormat == null)
 {
 pFormat = getDefaultTextFormat();
 pFormat.size = 12;
 }
 displayText();
 }

The onCSSFileLoaded() method creates a StyleSheet object and has it parse the input CSS data. The main text for the

story is displayed in a MultiColumnTextField object, which can use a StyleSheet object directly. However, the headline

fields use the HeadlineTextField class, which uses a TextFormat object for its formatting.

390ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

The onCSSFileLoaded() method calls the getTextStyle() method twice to convert a CSS style declaration into a

TextFormat object for use with each of the two HeadlineTextField objects.

 public function getTextStyle(styleName:String, ss:StyleSheet):TextFormat
 {
 var format:TextFormat = null;

 var style:Object = ss.getStyle(styleName);
 if (style != null)
 {
 var colorStr:String = style.color;
 if (colorStr != null && colorStr.indexOf("#") == 0)
 {
 style.color = colorStr.substr(1);
 }
 format = new TextFormat(style.fontFamily,
 style.fontSize,
 style.color,
 (style.fontWeight == "bold"),
 (style.fontStyle == "italic"),
 (style.textDecoration == "underline"),
 style.url,
 style.target,
 style.textAlign,
 style.marginLeft,
 style.marginRight,
 style.indent,
 style.leading);

 if (style.hasOwnProperty("letterSpacing"))
 {
 format.letterSpacing = style.letterSpacing;
 }
 }
 return format;
 }

The property names and the meaning of the property values differ between CSS style declarations and TextFormat

objects. The getTextStyle() method translates CSS property values into the values expected by the TextFormat

object.

Arranging story elements on the page

Flash Player 9 and later, Adobe AIR 1.0 and later

The StoryLayout class formats and lays out the headline, subtitle, and main text fields into a newspaper-style

arrangement. The displayText() method initially creates and places the various fields.

391ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

 public function displayText():void
 {
 headlineTxt = new HeadlineTextField(h1Format);
 headlineTxt.wordWrap = true;
 headlineTxt.x = this.paddingLeft;
 headlineTxt.y = this.paddingTop;
 headlineTxt.width = this.preferredWidth;
 this.addChild(headlineTxt);

 headlineTxt.fitText(this.headline, 1, true);

 subtitleTxt = new HeadlineTextField(h2Format);
 subtitleTxt.wordWrap = true;
 subtitleTxt.x = this.paddingLeft;
 subtitleTxt.y = headlineTxt.y + headlineTxt.height;
 subtitleTxt.width = this.preferredWidth;
 this.addChild(subtitleTxt);

 subtitleTxt.fitText(this.subtitle, 2, false);

 storyTxt = new MultiColumnText(this.numColumns, 20,
 this.preferredWidth, 400, true, this.pFormat);
 storyTxt.x = this.paddingLeft;
 storyTxt.y = subtitleTxt.y + subtitleTxt.height + 10;
 this.addChild(storyTxt);

 storyTxt.text = this.content;
 ...

Each field is placed below the previous field by setting its y property to equal the y property of the previous field plus

its height. This dynamic placement calculation is needed because HeadlineTextField objects and

MultiColumnTextField objects can change their height to fit their contents.

Altering font size to fit the field size

Flash Player 9 and later, Adobe AIR 1.0 and later

Given a width in pixels and a maximum number of lines to display, the HeadlineTextField alters the font size to make

the text fit the field. If the text is short, the font size is large, creating a tabloid-style headline. If the text is long, the font

size is smaller.

The HeadlineTextField.fitText() method shown below does the font sizing work:

392ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

 public function fitText(msg:String, maxLines:uint = 1, toUpper:Boolean = false,
targetWidth:Number = -1):uint
 {
 this.text = toUpper ? msg.toUpperCase() : msg;

 if (targetWidth == -1)
 {
 targetWidth = this.width;
 }

 var pixelsPerChar:Number = targetWidth / msg.length;

 var pointSize:Number = Math.min(MAX_POINT_SIZE, Math.round(pixelsPerChar * 1.8 * maxLines));

 if (pointSize < 6)
 {
 // the point size is too small
 return pointSize;
 }

 this.changeSize(pointSize);

 if (this.numLines > maxLines)
 {
 return shrinkText(--pointSize, maxLines);
 }
 else
 {
 return growText(pointSize, maxLines);
 }
 }

 public function growText(pointSize:Number, maxLines:uint = 1):Number
 {
 if (pointSize >= MAX_POINT_SIZE)
 {
 return pointSize;
 }

 this.changeSize(pointSize + 1);

 if (this.numLines > maxLines)
 {
 // set it back to the last size
 this.changeSize(pointSize);
 return pointSize;
 }
 else
 {
 return growText(pointSize + 1, maxLines);
 }

393ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

 }

 public function shrinkText(pointSize:Number, maxLines:uint=1):Number
 {
 if (pointSize <= MIN_POINT_SIZE)
 {
 return pointSize;
 }

 this.changeSize(pointSize);

 if (this.numLines > maxLines)
 {
 return shrinkText(pointSize - 1, maxLines);
 }
 else
 {
 return pointSize;
 }
 }

The HeadlineTextField.fitText() method uses a simple recursive technique to size the font. First it guesses an

average number of pixels per character in the text and from there calculates a starting point size. Then it changes the

font size and checks whether the text has word wrapped to create more than the maximum number of text lines. If

there are too many lines it calls the shrinkText() method to decrease the font size and try again. If there are not too

many lines it calls the growText() method to increase the font size and try again. The process stops at the point where

incrementing the font size by one more point would create too many lines.

Splitting text across multiple columns

Flash Player 9 and later, Adobe AIR 1.0 and later

The MultiColumnTextField class spreads text among multiple TextField objects which are then arranged like

newspaper columns.

The MultiColumnTextField() constructor first creates an array of TextField objects, one for each column, as shown here:

 for (var i:int = 0; i < cols; i++)
 {
 var field:TextField = new TextField();
 field.multiline = true;
 field.autoSize = TextFieldAutoSize.NONE;
 field.wordWrap = true;
 field.width = this.colWidth;
 field.setTextFormat(this.format);
 this.fieldArray.push(field);
 this.addChild(field);
 }

Each TextField object is added to the array and added to the display list with the addChild() method.

Whenever the StoryLayout text property or styleSheet property changes, it calls the layoutColumns() method to

redisplay the text. The layoutColumns() method calls the getOptimalHeight() method, to figure out the correct

pixel height that is needed to fit all of the text within the given layout width.

394ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

 public function getOptimalHeight(str:String):int
 {
 if (field.text == "" || field.text == null)
 {
 return this.preferredHeight;
 }
 else
 {
 this.linesPerCol = Math.ceil(field.numLines / this.numColumns);

 var metrics:TextLineMetrics = field.getLineMetrics(0);
 this.lineHeight = metrics.height;
 var prefHeight:int = linesPerCol * this.lineHeight;

 return prefHeight + 4;
 }
 }

First the getOptimalHeight() method calculates the width of each column. Then it sets the width and htmlText

property of the first TextField object in the array. The getOptimalHeight() method uses that first TextField object

to discover the total number of word-wrapped lines in the text, and from that it identifies how many lines should be

in each column. Next it calls the TextField.getLineMetrics() method to retrieve a TextLineMetrics object that

contains details about size of the text in the first line. The TextLineMetrics.height property represents the full

height of a line of text, in pixels, including the ascent, descent, and leading. The optimal height for the

MultiColumnTextField object is then the line height multiplied by the number of lines per column, plus 4 to account

for the two-pixel border at the top and the bottom of a TextField object.

Here is the code for the full layoutColumns() method:

 public function layoutColumns():void
 {
 if (this._text == "" || this._text == null)
 {
 return;
 }

 var field:TextField = fieldArray[0] as TextField;
 field.text = this._text;
 field.setTextFormat(this.format);

 this.preferredHeight = this.getOptimalHeight(field);

 var remainder:String = this._text;
 var fieldText:String = "";
 var lastLineEndedPara:Boolean = true;

 var indent:Number = this.format.indent as Number;

 for (var i:int = 0; i < fieldArray.length; i++)
 {
 field = this.fieldArray[i] as TextField;

 field.height = this.preferredHeight;
 field.text = remainder;

 field.setTextFormat(this.format);

395ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

 var lineLen:int;
 if (indent > 0 && !lastLineEndedPara && field.numLines > 0)
 {
 lineLen = field.getLineLength(0);
 if (lineLen > 0)
 {
 field.setTextFormat(this.firstLineFormat, 0, lineLen);
 }
 }

 field.x = i * (colWidth + gutter);
 field.y = 0;

 remainder = "";
 fieldText = "";

 var linesRemaining:int = field.numLines;
 var linesVisible:int = Math.min(this.linesPerCol, linesRemaining);

 for (var j:int = 0; j < linesRemaining; j++)
 {
 if (j < linesVisible)
 {
 fieldText += field.getLineText(j);
 }
 else
 {
 remainder +=field.getLineText(j);
 }
 }

 field.text = fieldText;

 field.setTextFormat(this.format);

 if (indent > 0 && !lastLineEndedPara)
 {
 lineLen = field.getLineLength(0);
 if (lineLen > 0)
 {
 field.setTextFormat(this.firstLineFormat, 0, lineLen);
 }
 }

 var lastLine:String = field.getLineText(field.numLines - 1);
 var lastCharCode:Number = lastLine.charCodeAt(lastLine.length - 1);

396ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the TextField class

Last updated 10/9/2017

 if (lastCharCode == 10 || lastCharCode == 13)
 {
 lastLineEndedPara = true;
 }
 else
 {
 lastLineEndedPara = false;
 }

 if ((this.format.align == TextFormatAlign.JUSTIFY) &&
 (i < fieldArray.length - 1))
 {
 if (!lastLineEndedPara)
 {
 justifyLastLine(field, lastLine);
 }
 }
 }
 }

After the preferredHeight property has been set by calling the getOptimalHeight() method, the

layoutColumns() method iterates through the TextField objects, setting the height of each to the preferredHeight

value. The layoutColumns() method then distributes just enough lines of text to each field so that no scrolling occurs

in any individual field, and the text in each successive field begins where the text in the previous field ended. If the text

alignment style has been set to “justify” then the justifyLastLine() method is called to justify the final line of text

in a field. Otherwise that last line would be treated as an end-of-paragraph line and not justified.

397

Last updated 10/9/2017

Chapter 22: Using the Flash Text Engine

Flash Player 10 and later, Adobe AIR 1.5 and later

The Adobe® Flash® Text Engine (FTE), available starting with Flash Player 10 and Adobe® AIR™1.5, provides low-level

support for sophisticated control of text metrics, formatting, and bi-directional text. It offers improved text flow and

enhanced language support. While it can be used to create and manage simple text elements, the FTE is primarily

designed as a foundation for developers to create text-handling components. As such, Flash Text Engine assumes a

more advanced level of programming expertise. To display simple text elements, see “Using the TextField class” on

page 373.

The Text Layout Framework, which includes a text-handling component based on the FTE, provides an easier way to

use its advanced features. The Text Layout Framework is an extensible library built entirely in ActionScript 3.0. You

can use the existing TLF component, or use the framework to build your own text component. For more information,

see “Using the Text Layout Framework” on page 426.

More Help topics

flash.text.engine package

Creating and displaying text

Flash Player 10 and later, Adobe AIR 1.5 and later

The classes that make up the Flash Text Engine enable you to create, format, and control text. The following classes

are the basic building blocks for creating and displaying text with the Flash Text Engine:

• TextElement/GraphicElement/GroupElement - contain the content of a TextBlock instance

• ElementFormat - specifies formatting attributes for the content of a TextBlock instance

• TextBlock - the factory for building a paragraph of text

• TextLine - a line of text created from the TextBlock

To display text, create a TextElement object from a String, using an ElementFormat object to specify the formatting

characteristics. Assign the TextElement to the content property of a TextBlock object. Create the lines of text for

display by calling the TextBlock.createTextLine() method. The createTextLine() method returns a TextLine

object containing as much of the string as will fit in the specified width. Call the method repeatedly until the entire

string has been formatted into lines. When there are no more lines to be created, the textLineCreationResult property

of the TextBlock object is assigned the value: TextLineCreationResult.COMPLETE. To show the lines, add them to

the display list (with appropriate x and y position values).

The following code, for example, uses these FTE classes to display, "Hello World! This is Flash Text Engine!", using

default format and font values. In this simple example, only a single line of text is created.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/text/engine/package-detail.html

398ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

package
{

import flash.text.engine.*;
import flash.display.Sprite;

public class HelloWorldExample extends Sprite
{

public function HelloWorldExample()
{

var str = "Hello World! This is Flash Text Engine!";
var format:ElementFormat = new ElementFormat();
var textElement:TextElement = new TextElement(str, format);
var textBlock:TextBlock = new TextBlock();
textBlock.content = textElement;

var textLine1:TextLine = textBlock.createTextLine(null, 300);
addChild(textLine1);
textLine1.x = 30;
textLine1.y = 30;

}
}

}

The parameters for createTextLine() specify the line from which to begin the new line and the width of the line in

pixels. The line from which to begin the new line is usually the previous line but, in the case of the first line, it is null.

Adding GraphicElement and GroupElement objects

Flash Player 10 and later, Adobe AIR 1.5 and later

You can assign a GraphicElement object to a TextBlock object to display an image or a graphic element. Simply create

an instance of the GraphicElement class from a graphic or an image and assign the instance to the

TextBlock.content property. Create the text line by calling TextBlock.createTextline() as you normally would.

The following example creates two text lines, one with a GraphicElement object and one with a TextElement object.

package
{

import flash.text.engine.*;
import flash.display.Sprite;
import flash.display.Shape;
import flash.display.Graphics;

public class GraphicElementExample extends Sprite
{

public function GraphicElementExample()
{

var str:String = "Beware of Dog!";

var triangle:Shape = new Shape();
triangle.graphics.beginFill(0xFF0000, 1);
triangle.graphics.lineStyle(3);
triangle.graphics.moveTo(30, 0);
triangle.graphics.lineTo(60, 50);
triangle.graphics.lineTo(0, 50);
triangle.graphics.lineTo(30, 0);
triangle.graphics.endFill();

399ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

var format:ElementFormat = new ElementFormat();
format.fontSize = 20;

var graphicElement:GraphicElement = new GraphicElement(triangle, triangle.width,

triangle.height, format);
var textBlock:TextBlock = new TextBlock();
textBlock.content = graphicElement;
var textLine1:TextLine = textBlock.createTextLine(null, triangle.width);
textLine1.x = 50;
textLine1.y = 110;
addChild(textLine1);

var textElement:TextElement = new TextElement(str, format);
textBlock.content = textElement;
var textLine2 = textBlock.createTextLine(null, 300);
addChild(textLine2);
textLine2.x = textLine1.x - 30;
textLine2.y = textLine1.y + 15;

}
}

}

You can create a GroupElement object to create a group of TextElement, GraphicElement, and other GroupElement

objects. A GroupElement can be assigned to the content property of a TextBlock object. The parameter to the

GroupElement() constructor is a Vector, which points to the text, graphic, and group elements that make up the

group. The following example groups two graphic elements and a text element and assigns them as a unit to a text

block.

package
{

import flash.text.engine.*;
import flash.display.Sprite;
import flash.display.Shape;
import flash.display.Graphics;

public class GroupElementExample extends Sprite
{

public function GroupElementExample()
{

var str:String = "Beware of Alligators!";

var triangle1:Shape = new Shape();
triangle1.graphics.beginFill(0xFF0000, 1);
triangle1.graphics.lineStyle(3);
triangle1.graphics.moveTo(30, 0);
triangle1.graphics.lineTo(60, 50);
triangle1.graphics.lineTo(0, 50);
triangle1.graphics.lineTo(30, 0);
triangle1.graphics.endFill();

var triangle2:Shape = new Shape();
triangle2.graphics.beginFill(0xFF0000, 1);
triangle2.graphics.lineStyle(3);
triangle2.graphics.moveTo(30, 0);
triangle2.graphics.lineTo(60, 50);
triangle2.graphics.lineTo(0, 50);

400ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

triangle2.graphics.lineTo(30, 0);
triangle2.graphics.endFill();

var format:ElementFormat = new ElementFormat();
format.fontSize = 20;
var graphicElement1:GraphicElement = new GraphicElement(triangle1,

triangle1.width, triangle1.height, format);
var textElement:TextElement = new TextElement(str, format);
var graphicElement2:GraphicElement = new GraphicElement(triangle2,

triangle2.width, triangle2.height, format);
var groupVector:Vector.<ContentElement> = new Vector.<ContentElement>();
groupVector.push(graphicElement1, textElement, graphicElement2);
var groupElement = new GroupElement(groupVector);
var textBlock:TextBlock = new TextBlock();
textBlock.content = groupElement;
var textLine:TextLine = textBlock.createTextLine(null, 800);
addChild(textLine);
textLine.x = 100;
textLine.y = 200;

}
}

}

Replacing text

Flash Player 10 and later, Adobe AIR 1.5 and later

You can replace text in a TextBlock instance by calling TextElement.replaceText() to replace text in the

TextElement that you assigned to the TextBlock.content property.

The following example uses replaceText() to first, insert text at the beginning of the line, then, to append text to the

end of the line, and, finally, to replace text in the middle of the line.

401ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

package
{

import flash.text.engine.*;
import flash.display.Sprite;

public class ReplaceTextExample extends Sprite
{

public function ReplaceTextExample()
{

var str:String = "Lorem ipsum dolor sit amet";
var fontDescription:FontDescription = new FontDescription("Arial");
var format:ElementFormat = new ElementFormat(fontDescription);
format.fontSize = 14;
var textElement:TextElement = new TextElement(str, format);
var textBlock:TextBlock = new TextBlock();
textBlock.content = textElement;
createLine(textBlock, 10);
textElement.replaceText(0, 0, "A text fragment: ");
createLine(textBlock, 30);
textElement.replaceText(43, 43, "...");
createLine(textBlock, 50);
textElement.replaceText(23, 28, "(ipsum)");
createLine(textBlock, 70);

}

function createLine(textBlock:TextBlock, y:Number):void {
var textLine:TextLine = textBlock.createTextLine(null, 300);
textLine.x = 10;
textLine.y = y;
addChild(textLine);

}
}

}

The replaceText() method replaces the text specified by the beginIndex and endIndex parameters with the text

specified by the newText parameter. If the values of the beginIndex and endIndex parameters are the same,

replaceText() inserts the specified text at that location. Otherwise it replaces the characters specified by beginIndex

and endIndex with the new text.

Handling Events in FTE

Flash Player 10 and later, Adobe AIR 1.5 and later

You can add event listeners to a TextLine instance just as you can to other display objects. For example, you can detect

when a user rolls the mouse over a text line or a user clicks the line. The following example detects both of these events.

When you roll the mouse over the line, the cursor changes to a button cursor and when you click the line, it changes

color.

402ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

package
{

import flash.text.engine.*;
import flash.ui.Mouse;
import flash.display.Sprite
import flash.events.MouseEvent;
import flash.events.EventDispatcher;

public class EventHandlerExample extends Sprite
{

var textBlock:TextBlock = new TextBlock();

public function EventHandlerExample():void
{

var str:String = "I'll change color if you click me.";
var fontDescription:FontDescription = new FontDescription("Arial");
var format:ElementFormat = new ElementFormat(fontDescription, 18);
var textElement = new TextElement(str, format);
textBlock.content = textElement;
createLine(textBlock);

}

private function createLine(textBlock:TextBlock):void
{

var textLine:TextLine = textBlock.createTextLine(null, 500);
textLine.x = 30;
textLine.y = 30;
addChild(textLine);
textLine.addEventListener("mouseOut", mouseOutHandler);
textLine.addEventListener("mouseOver", mouseOverHandler);
textLine.addEventListener("click", clickHandler);

}

private function mouseOverHandler(event:MouseEvent):void
{

Mouse.cursor = "button";
}

private function mouseOutHandler(event:MouseEvent):void
{

Mouse.cursor = "arrow";
}

function clickHandler(event:MouseEvent):void {

if(textBlock.firstLine)
removeChild(textBlock.firstLine);

var newFormat:ElementFormat = textBlock.content.elementFormat.clone();

403ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

switch(newFormat.color)
{

case 0x000000:
newFormat.color = 0xFF0000;
break;

case 0xFF0000:
newFormat.color = 0x00FF00;
break;

case 0x00FF00:
newFormat.color = 0x0000FF;
break;

case 0x0000FF:
newFormat.color = 0x000000;
break;

}
textBlock.content.elementFormat = newFormat;
createLine(textBlock);

}
}

}

Mirroring events

Flash Player 10 and later, Adobe AIR 1.5 and later

You can also mirror events on a text block, or on a portion of a text block, to an event dispatcher. First, create an

EventDispatcher instance and then assign it to the eventMirror property of a TextElement instance. If the text block

consists of a single text element, the text engine mirrors events for the entire text block. If the text block consists of

multiple text elements, the text engine mirrors events only for the TextElement instances that have the eventMirror

property set. The text in the following example consists of three elements: the word "Click", the word "here", and the

string "to see me in italic". The example assigns an event dispatcher to the second text element, the word "here", and

adds an event listener, the clickHandler() method. The clickHandler() method changes the text to italic. It also

replaces the content of the third text element to read, "Click here to see me in normal font!".

package
{

import flash.text.engine.*;
import flash.ui.Mouse;
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.events.EventDispatcher;

public class EventMirrorExample extends Sprite
{

var fontDescription:FontDescription = new FontDescription("Helvetica", "bold");
var format:ElementFormat = new ElementFormat(fontDescription, 18);
var textElement1 = new TextElement("Click ", format);
var textElement2 = new TextElement("here ", format);
var textElement3 = new TextElement("to see me in italic! ", format);
var textBlock:TextBlock = new TextBlock();

public function EventMirrorExample()
{

var myEvent:EventDispatcher = new EventDispatcher();

404ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

myEvent.addEventListener("click", clickHandler);
myEvent.addEventListener("mouseOut", mouseOutHandler);
myEvent.addEventListener("mouseOver", mouseOverHandler);

textElement2.eventMirror=myEvent;

var groupVector:Vector.<ContentElement> = new Vector.<ContentElement>;
groupVector.push(textElement1, textElement2, textElement3);
var groupElement:GroupElement = new GroupElement(groupVector);

textBlock.content = groupElement;
createLines(textBlock);

}

private function clickHandler(event:MouseEvent):void
{

var newFont:FontDescription = new FontDescription();
newFont.fontWeight = "bold";

var newFormat:ElementFormat = new ElementFormat();
newFormat.fontSize = 18;
if(textElement3.text == "to see me in italic! ") {

newFont.fontPosture = FontPosture.ITALIC;
textElement3.replaceText(0,21, "to see me in normal font! ");

}
else {

newFont.fontPosture = FontPosture.NORMAL;
textElement3.replaceText(0, 26, "to see me in italic! ");

}
newFormat.fontDescription = newFont;
textElement1.elementFormat = newFormat;
textElement2.elementFormat = newFormat;
textElement3.elementFormat = newFormat;
createLines(textBlock);

}

private function mouseOverHandler(event:MouseEvent):void
{

Mouse.cursor = "button";
}

private function mouseOutHandler(event:MouseEvent):void
{

Mouse.cursor = "arrow";
}

private function createLines(textBlock:TextBlock):void
{

if(textBlock.firstLine)
removeChild (textBlock.firstLine);

var textLine:TextLine = textBlock.createTextLine (null, 300);
textLine.x = 15;
textLine.y = 20;
addChild (textLine);

}
}

}

405ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

The mouseOverHandler() and mouseOutHandler() functions set the cursor to a button cursor when it's over the

word "here" and back to an arrow when it's not.

Formatting text

Flash Player 10 and later, Adobe AIR 1.5 and later

A TextBlock object is a factory for creating lines of text. The content of a TextBlock is assigned via the TextElement

object. An ElementFormat object handles the formatting for the text. The ElementFormat class defines such

properties as baseline alignment, kerning, tracking, text rotation, and font size, color, and case. It also includes a

FontDescription, which is covered in detail in “Working with fonts” on page 409.

Using the ElementFormat object

Flash Player 10 and later, Adobe AIR 1.5 and later

The constructor for the ElementFormat object takes any of a long list of optional parameters, including a

FontDescription. You can also set these properties outside the constructor. The following example shows the

relationship of the various objects in defining and displaying a simple text line:

 package
 {
 import flash.display.Sprite;
 import flash.text.*;

 public class ElementFormatExample extends Sprite
 {
 private var tb:TextBlock = new TextBlock();

private var te:TextElement;
private var ef:ElementFormat;

 private var fd:FontDescription = new FontDescription();
private var str:String;
private var tl:TextLine;

 public function ElementFormatExample()
 {
 fd.fontName = "Garamond";

ef = new ElementFormat(fd);
ef.fontSize = 30;
ef.color = 0xFF0000;
str = "This is flash text";
te = new TextElement(str, ef);
tb.content = te;
tl = tb.createTextLine(null,600);
addChild(tl);

 }
 }
 }

406ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

Font color and transparency (alpha)

Flash Player 10 and later, Adobe AIR 1.5 and later

The color property of the ElementFormat object sets the font color. The value is an integer representing the RGB

components of the color; for example, 0xFF0000 for red and 0x00FF00 for green. The default is black (0x000000).

The alpha property sets the alpha transparency value for an element (both TextElement and GraphicElement).

Values can range from 0 (fully transparent) to 1 (fully opaque, which is the default). Elements with an alpha of 0 are

invisible, but still active. This value is multiplied by any inherited alpha values, thus making the element more

transparent.

 var ef:ElementFormat = new ElementFormat();
ef.alpha = 0.8;
ef.color = 0x999999;

Baseline alignment and shift

Flash Player 10 and later, Adobe AIR 1.5 and later

The font and size of the largest text in a line determine its dominant baseline. You can override these values by setting

TextBlock.baselineFontDescription and TextBlock.baselineFontSize. You can align the dominant baseline

with one of several baselines within the text. These baselines include the ascent line and the descent line or the

ideographic top, center, or bottom.

A. Ascent B. Baseline C. Descent D. x-height

In the ElementFormat object, three properties determine baseline and alignment characteristics. The

alignmentBaseline property sets the main baseline of a TextElement or GraphicElement. This baseline is the

“snap-to” line for the element, and it’s to this position that the dominant baseline of all text aligns.

The dominantBaseline property specifies which of the various baselines of the element to use, which determines the

vertical position of the element on the line. The default value is TextBaseline.ROMAN, but it can also be set to have

the IDEOGRAPHIC_TOP or IDEOGRAPHIC_BOTTOM baselines be dominant.

The baselineShift property moves the baseline by a set number of pixels on the y-axis. In normal (non-rotated) text,

a positive value moves the baseline down and a negative value moves it up.

Typographic Case

Flash Player 10 and later, Adobe AIR 1.5 and later

The TypographicCase property of ElementFormat specifies text case, such as uppercase, lowercase, or small caps.

D

A

CB

407ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

var ef_Upper:ElementFormat = new ElementFormat();
ef_Upper.typographicCase = TypographicCase.UPPERCASE;

var ef_SmallCaps:ElementFormat = new ElementFormat();
ef_SmallCaps.typographicCase = TypographicCase.SMALL_CAPS;

Rotating text

Flash Player 10 and later, Adobe AIR 1.5 and later

You can rotate a block of text or the glyphs within a segment of text in increments of 90°. The TextRotation class

defines the following constants for setting both text block and glyph rotation:

To rotate the lines of text in a text block, set the TextBlock.lineRotation property before calling the

TextBlock.createTextLine() method to create the text line.

To rotate the glyphs within a block of text or a segment, set the ElementFormat.textRotation property to the

number of degrees that you want the glyphs to rotate. A glyph is the shape that makes up a character, or a part of a

character that consists of multiple glyphs. The letter “a” and the dot on an “i”, for example, are glyphs.

Rotating glyphs is relevant in some Asian languages in which you want to rotate the lines to vertical but not rotate the

characters within the lines. For more information on rotating Asian text, see “Justifying East Asian text” on page 413.

Here is an example of rotating both a block of text and the glyphs within, as you would with Asian text. The example

also uses a Japanese font:

Constant Value Description

AUTO “auto” Specifies 90 degree counter-clockwise rotation. Typically used with vertical Asian text to

rotate only glyphs that require rotation.

ROTATE_0 “rotate_0” Specifies no rotation.

ROTATE_180 “rotate_180” Specifies 180 degree rotation.

ROTATE_270 “rotate_270” Specifies 270 degree rotation.

ROTATE_90 “rotate_90” Specifies 90 degree clockwise rotation.

408ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

 package
 {
 import flash.display.Sprite;
 import flash.text.*;

 public class RotationExample extends Sprite
 {
 private var tb:TextBlock = new TextBlock();

private var te:TextElement;
private var ef:ElementFormat;

 private var fd:FontDescription = new FontDescription();
private var str:String;
private var tl:TextLine;

 public function RotationExample()
 {
 fd.fontName = "MS Mincho";

ef = new ElementFormat(fd);
ef.textRotation = TextRotation.AUTO;
str = "This is rotated Japanese text";
te = new TextElement(str, ef);
tb.lineRotation = TextRotation.ROTATE_90;
tb.content = te;
tl = tb.createTextLine(null,600);
addChild(tl);

 }
 }
 }

Locking and cloning ElementFormat

Flash Player 10 and later, Adobe AIR 1.5 and later

When an ElementFormat object is assigned to any type of ContentElement, its locked property is automatically set

to true. Attempting to modify a locked ElementFormat object throws an IllegalOperationError. The best

practice is to fully define such an object before assigning it to a TextElement instance.

If you want to modify an existing ElementFormat instance, first check its locked property. If it’s true, use the

clone()method to create an unlocked copy of the object. The properties of this unlocked object can be changed, and

it can then be assigned to the TextElement instance. Any new lines created from it have the new formatting. Previous

lines created from this same object and using the old format are unchanged.

409ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

 package
 {
 import flash.display.Sprite;
 import flash.text.*;

 public class ElementFormatCloneExample extends Sprite
 {
 private var tb:TextBlock = new TextBlock();

private var te:TextElement;
private var ef1:ElementFormat;
private var ef2:ElementFormat;

 private var fd:FontDescription = new FontDescription();

 public function ElementFormatCloneExample()
 {
 fd.fontName = "Garamond";

ef1 = new ElementFormat(fd);
ef1.fontSize = 24;
var str:String = "This is flash text";
te = new TextElement(str, ef);
tb.content = te;
var tx1:TextLine = tb.createTextLine(null,600);
addChild(tx1);

ef2 = (ef1.locked) ? ef1.clone() : ef1;
ef2.fontSize = 32;
tb.content.elementFormat = ef2;
var tx2:TextLine = tb.createTextLine(null,600);
addChild(tx2);

 }
 }
 }

Working with fonts

Flash Player 10 and later, Adobe AIR 1.5 and later

The FontDescription object is used in conjunction with ElementFormat to identify a font face and define some of

its characteristics. These characteristics include the font name, weight, posture, rendering, and how to find the font

(device versus embedded).

Note: FTE does not support Type 1 fonts or bitmap fonts such as Type 3, ATC, sfnt-wrapped CID, or Naked CID.

410ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

Defining font characteristics (FontDescription object)

Flash Player 10 and later, Adobe AIR 1.5 and later

The fontName property of the FontDescription object can be a single name or a comma-separated list of names. For

example, in a list such as “Arial, Helvetica, _sans”, the text engine looks for “Arial” first, then “Helvetica”, and finally

“_sans”, if it can’t find either of the first two fonts. The set of font names include three generic device font names:

“_sans”, “_serif”, and “_typewriter”. They map to specific device fonts, depending on the playback system. It is good

practice to specify default names such as these in all font descriptions that use device fonts. If no fontName is specified,

“_serif” is used as the default.

The fontPosture property can either be set to the default (FontPosture.NORMAL) or to italics

(FontPosture.ITALIC). The fontWeight property can be set to the default (FontWeight.NORMAL) or to bold

(FontWeight.BOLD).

var fd1:FontDescription = new FontDescription();
fd1.fontName = "Arial, Helvetica, _sans";
fd1.fontPosture = FontPosture.NORMAL;
fd1.fontWeight = FontWeight.BOLD;

Embedded versus device fonts

Flash Player 10 and later, Adobe AIR 1.5 and later

The fontLookup property of the FontDescription object specifies whether the text engine looks for a device font or

embedded font to render text. If a device font (FontLookup.DEVICE) is specified, the runtime looks for the font on the

playback system. Specifying an embedded font (FontLookup.EMBEDDED_CFF) causes the runtime to look for an

embedded font with the specified name in the SWF file. Only embedded CFF (Compact Font Format) fonts work with

this setting. If the specified font is not found, a fallback device font is used.

Device fonts result in a smaller SWF file size. Embedded fonts give you greater fidelity across platforms.

var fd1:FontDescription = new FontDescription();
fd1.fontLookup = FontLookup.EMBEDDED_CFF;
fd1.fontName = "Garamond, _serif";

Rendering mode and hinting

Flash Player 10 and later, Adobe AIR 1.5 and later

CFF (Compact Font Format) rendering is available starting with Flash Player 10 and Adobe AIR 1.5. This type of font

rendering makes text more legible, and permits higher-quality display of fonts at small sizes. This setting only applies

to embedded fonts. FontDescription defaults to this setting (RenderingMode.CFF) for the renderingMode

property. You can set this property to RenderingMode.NORMAL to match the type of rendering used by Flash Player

7 or earlier versions.

When CFF rendering is selected, a second property, cffHinting, controls how a font’s horizontal stems are fit to the

subpixel grid. The default value, CFFHinting.HORIZONTAL_STEM, uses CFF hinting. Setting this property to

CFFHinting.NONE removes hinting, which is appropriate for animation or for large font sizes.

var fd1:FontDescription = new FontDescription();
fd1.renderingMode = RenderingMode.CFF;
fd1.cffHinting = CFFHinting.HORIZONTAL_STEM;

411ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

Locking and cloning FontDescription

Flash Player 10 and later, Adobe AIR 1.5 and later

When a FontDescription object is assigned to an ElementFormat, its locked property is automatically set to true.

Attempting to modify a locked FontDescription object throws an IllegalOperationError. The best practice is to

fully define such an object before assigning it to a ElementFormat.

If you want to modify an existing FontDescription, first check its locked property. If it’s true, use the

clone()method to create an unlocked copy of the object. The properties of this unlocked object can be changed, and

it can then be assigned to the ElementFormat. Any new lines created from this TextElement have the new formatting.

Previous lines created from this same object are unchanged.

 package
 {
 import flash.display.Sprite;
 import flash.text.*;

 public class FontDescriptionCloneExample extends Sprite
 {
 private var tb:TextBlock = new TextBlock();

private var te:TextElement;
private var ef1:ElementFormat;
private var ef2:ElementFormat;

 private var fd1:FontDescription = new FontDescription();
private var fd2:FontDescription;

 public function FontDescriptionCloneExample()
 {
 fd1.fontName = "Garamond";

ef1 = new ElementFormat(fd);
var str:String = "This is flash text";
te = new TextElement(str, ef);
tb.content = te;
var tx1:TextLine = tb.createTextLine(null,600);
addChild(tx1);

fd2 = (fd1.locked) ? fd1.clone() : fd1;
fd2.fontName = "Arial";
ef2 = (ef1.locked) ? ef1.clone() : ef1;
ef2.fontDescription = fd2;
tb.content.elementFormat = ef2;
var tx2:TextLine = tb.createTextLine(null,600);
addChild(tx2);

 }
 }
 }

Controlling text

Flash Player 10 and later, Adobe AIR 1.5 and later

FTE gives you a new set of text formatting controls to handle justification and character spacing (kerning and

tracking). There are also properties for controlling that way lines are broken and for setting tab stops within lines.

412ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

Justifying text

Flash Player 10 and later, Adobe AIR 1.5 and later

Justifying text makes all lines in a paragraph the same length by adjusting the spacing between words and sometimes

between letters. The effect is to align the text on both sides, while the spacing between words and letters varies.

Columns of text in newspapers and magazines are frequently justified.

The lineJustfication property in the SpaceJustifier class allows you to control the justification of lines in a block

of text. The LineJustification class defines constants that you can use to specify a justification option: ALL_BUT_LAST

justifies all but the last line of text; ALL_INCLUDING_LAST justifies all text, including the last line; UNJUSTIFIED, which

is the default, leaves the text unjustified.

To justify text, set the lineJustification property to an instance of the SpaceJustifier class and assign that instance

to the textJustifier property of a TextBlock instance. The following example creates a paragraph in which all but

the last line of text is justified.

package
{

import flash.text.engine.*;
import flash.display.Sprite;

public class JustifyExample extends Sprite
{

public function JustifyExample()
{

var str:String = "Lorem ipsum dolor sit amet, consectetur adipisicing elit, " +
"sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut " +
"enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut " +
"aliquip ex ea commodo consequat.";

var format:ElementFormat = new ElementFormat();
var textElement:TextElement=new TextElement(str,format);
var spaceJustifier:SpaceJustifier=new

SpaceJustifier("en",LineJustification.ALL_BUT_LAST);

var textBlock:TextBlock = new TextBlock();
textBlock.content=textElement;
textBlock.textJustifier=spaceJustifier;
createLines(textBlock);

}

private function createLines(textBlock:TextBlock):void {
var yPos=20;
var textLine:TextLine=textBlock.createTextLine(null,150);

while (textLine) {

addChild(textLine);
textLine.x=15;
yPos+=textLine.textHeight+2;
textLine.y=yPos;
textLine=textBlock.createTextLine(textLine,150);

}
}

}
}

413ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

To vary spacing between letters as well as between words, set the SpaceJustifier.letterspacing property to true.

Turning on letterspacing can reduce the occurrences of unsightly gaps between words, which can sometimes occur

with simple justification.

Justifying East Asian text

Flash Player 10 and later, Adobe AIR 1.5 and later

Justifying East Asian text entails additional considerations. It can be written from top to bottom and some characters,

known as kinsoku, cannot appear at the beginning or end of a line. The JustificationStyle class defines the following

constants, which specify the options for handling these characters. PRIORITIZE_LEAST_ADJUSTMENT bases

justification on either expanding or compressing the line, depending on which one produces the most desirable result.

PUSH_IN_KINSOKU bases justification on compressing kinsoku at the end of the line, or expanding it if no kinsoku

occurs, or if that space is insufficient.

PUSH_OUT_ONLY bases justification on expanding the line. To create a block of vertical Asian text, set the

TextBlock.lineRotation property to TextRotation.ROTATE_90 and set the ElementFormat.textRotation

property to TextRotation.AUTO, which is the default. Setting the textRotation property to AUTO causes the glyphs

in the text to remain vertical instead of turning on their side when the line is rotated. The AUTO setting rotates 90°

counter-clockwise for full width and wide glyphs only, as determined by the Unicode properties of the glyph. The

following example displays a vertical block of Japanese text and justifies it using the PUSH_IN_KINSOKU option.

package
{

import flash.text.engine.*;
import flash.display.Stage;
import flash.display.Sprite;
import flash.system.Capabilities;

public class EastAsianJustifyExample extends Sprite
{

public function EastAsianJustifyExample()
{

var Japanese_txt:String = String.fromCharCode(
0x5185, 0x95A3, 0x5E9C, 0x304C, 0x300C, 0x653F, 0x5E9C, 0x30A4,
0x30F3, 0x30BF, 0x30FC, 0x30CD, 0x30C3, 0x30C8, 0x30C6, 0x30EC,
0x30D3, 0x300D, 0x306E, 0x52D5, 0x753B, 0x914D, 0x4FE1, 0x5411,
0x3051, 0x306B, 0x30A2, 0x30C9, 0x30D3, 0x30B7, 0x30B9, 0x30C6,
0x30E0, 0x30BA, 0x793E, 0x306E)
var textBlock:TextBlock = new TextBlock();
var font:FontDescription = new FontDescription();
var format:ElementFormat = new ElementFormat();
format.fontSize = 12;
format.color = 0xCC0000;
format.textRotation = TextRotation.AUTO;
textBlock.baselineZero = TextBaseline.IDEOGRAPHIC_CENTER;
var eastAsianJustifier:EastAsianJustifier = new EastAsianJustifier("ja",

LineJustification.ALL_BUT_LAST);
eastAsianJustifier.justificationStyle = JustificationStyle.PUSH_IN_KINSOKU;
textBlock.textJustifier = eastAsianJustifier;
textBlock.lineRotation = TextRotation.ROTATE_90;
var linePosition:Number = this.stage.stageWidth - 75;
if (Capabilities.os.search("Mac OS") > -1)

// set fontName: Kozuka Mincho Pro R

414ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

font.fontName = String.fromCharCode(0x5C0F, 0x585A, 0x660E, 0x671D) + " Pro R";
else

font.fontName = "Kozuka Mincho Pro R";
textBlock.content = new TextElement(Japanese_txt, format);
var previousLine:TextLine = null;

while (true)
{

var textLine:TextLine = textBlock.createTextLine(previousLine, 200);
if (textLine == null)

break;
textLine.y = 20;
textLine.x = linePosition;
linePosition -= 25;
addChild(textLine);
previousLine = textLine;

}
}

}
}

Kerning and tracking

Flash Player 10 and later, Adobe AIR 1.5 and later

Kerning and tracking affect the distance between adjacent pairs of characters in a text block. Kerning controls how

character pairs “fit” together, such as the pairs “WA” or “Va”. Kerning is set in the ElementFormat object. It is enabled

by default (Kerning.ON), and can be set to OFF or AUTO, in which case kerning is only applied between characters if

neither is Kanji, Hiragana, or Katakana.

Tracking adds or subtracts a set number of pixels between all characters in a text block, and is also set in the

ElementFormat object. It works with both embedded and device fonts. FTE supports two tracking properties,

trackingLeft, which adds/subtracts pixels from the left side of a character, and trackingRight, which

adds/subtracts from the right side. If kerning is being used, the tracking value is added to or subtracted from kerning

values for each character pair.

A. Kerning.OFF B. TrackingRight=5, Kerning.OFF C. TrackingRight=-5, Kerning.OFF D. Kerning.ON E. TrackingRight=-5, Kerning.ON
F. TrackingRight=-5, Kerning.ON

VAY
VAY
VAY

VAY
VAY
VAY

A

B

C

D

E

F

415ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

var ef1:ElementFormat = new ElementFormat();
ef1.kerning = Kerning.OFF;

var ef2:ElementFormat = new ElementFormat();
ef2.kerning = Kerning.ON;
ef2.trackingLeft = 0.8;
ef2.trackingRight = 0.8;

var ef3:ElementFormat = new ElementFormat();
ef3.trackingRight = -0.2;

Line breaks for wrapped text

Flash Player 10 and later, Adobe AIR 1.5 and later

The breakOpportunity property of the ElementFormat object determines which characters can be used for breaking

when wrapping text is broken into multiple lines. The default, BreakOpportunity.AUTO, uses standard Unicode

properties, such as breaking between words and on hyphens. Using BreakOpportunity.ALL allows any character to

be treated as a line break opportunity, which is useful for creating effects like text along a path.

var ef:ElementFormat = new ElementFormat();
ef.breakOpportunity = BreakOpportunity.ALL;

Tab stops

Flash Player 10 and later, Adobe AIR 1.5 and later

To set tab stops in a text block, define the tab stops by creating instances of the TabStop class. The parameters to the

TabStop() constructor specify how the text aligns with the tab stop. These parameters specify the position of the tab

stop, and for decimal alignment, the value on which to align, expressed as a string. Typically, this value is a decimal

point but it could also be a comma, a dollar sign, or the symbol for the Yen or the Euro, for example. The following

line of code creates a tab stop called tab1.

var tab1:TabStop = new TabStop(TabAlignment.DECIMAL, 50, ".");

Once you've created the tab stops for a text block, assign them to the tabStops property of a TextBlock instance.

Because the tabStops property requires a Vector, though, first create a Vector and add the tab stops to it. The Vector

allows you to assign a set of tab stops to the text block. The following example creates a Vector<TabStop> instance

and adds a set of TabStop objects to it. Then it assigns the tab stops to the tabStops property of a TextBlock instance.

var tabStops:Vector.<TabStop> = new Vector.<TabStop>();
tabStops.push(tab1, tab2, tab3, tab4);
textBlock.tabStops = tabStops

For more information on Vectors, see “Working with arrays” on page 25.

The following example shows the effect of each of the TabStop alignment options.

416ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

package {

import flash.text.engine.*;
import flash.display.Sprite;

public class TabStopExample extends Sprite
{

public function TabStopExample()
{

var format:ElementFormat = new ElementFormat();
format.fontDescription = new FontDescription("Arial");
format.fontSize = 16;

var tabStops:Vector.<TabStop> = new Vector.<TabStop>();
tabStops.push(

new TabStop(TabAlignment.START, 20),
new TabStop(TabAlignment.CENTER, 140),
new TabStop(TabAlignment.DECIMAL, 260, "."),
new TabStop(TabAlignment.END, 380));

var textBlock:TextBlock = new TextBlock();
textBlock.content = new TextElement(

"\tt1\tt2\tt3\tt4\n" +
"\tThis line aligns on 1st tab\n" +
"\t\t\t\tThis is the end\n" +
"\tThe following fragment centers on the 2nd tab:\t\t\n" +
"\t\tit's on me\t\t\n" +
"\tThe following amounts align on the decimal point:\n" +
"\t\t\t45.00\t\n" +
"\t\t\t75,320.00\t\n" +
"\t\t\t6,950.00\t\n" +
"\t\t\t7.01\t\n", format);

textBlock.tabStops = tabStops;
var yPosition:Number = 60;
var previousTextLine:TextLine = null;
var textLine:TextLine;
var i:int;
for (i = 0; i < 10; i++) {

textLine = textBlock.createTextLine(previousTextLine, 1000, 0);
textLine.x = 20;
textLine.y = yPosition;
addChild(textLine);
yPosition += 25;
previousTextLine = textLine;

}
}

}
}

417ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

Flash Text Engine example: News layout

Flash Player 10 and later, Adobe AIR 1.5 and later

This programming example shows the Flash Text Engine in use laying out a simple newspaper page. The page includes

a large headline, a subhead, and a multicolumn body section.

First, create an FLA file, and attach the following code to frame #2 of the default layer:

import com.example.programmingas3.newslayout.StoryLayout ;
// frame sc ript - create a 3-columned arti cle layout
var story:StoryLayout = new StoryLayout(720, 500, 3, 10);
story.x = 20;
story.y = 80;
addChild(story);
stop();

StoryLayout.as is the controller script for this example. It sets the content, reads in style information from an external

style sheet, and assigns those styles to ElementFormat objects. It then creates the headline, subhead and multicolumn

text elements.

package com.example.programmingas3.newslayout
{

import flash.display.Sprite;
import flash.text.StyleSheet;
import flash.text.engine.*;

import flash.events.Event;
import flash.net.URLRequest;
import flash.net.URLLoader;
import flash.display.Sprite;
import flash.display.Graphics;

public class StoryLayout extends Sprite
{

public var headlineTxt:HeadlineTextField;
public var subtitleTxt:HeadlineTextField;
public var storyTxt:MultiColumnText;
public var sheet:StyleSheet;
public var h1_ElFormat:ElementFormat;
public var h2_ElFormat:ElementFormat;
public var p_ElFormat:ElementFormat;

private var loader:URLLoader;

public var paddingLeft:Number;
public var paddingRight:Number;
public var paddingTop:Number;
public var paddingBottom:Number;

public var preferredWidth:Number;
public var preferredHeight:Number;

public var numColumns:int;

public var bgColor:Number = 0xFFFFFF;

418ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

public var headline:String = "News Layout Example";
public var subtitle:String = "This example formats text like a newspaper page using the

Flash Text Engine API. ";

public var rawTestData:String =
"From the part Mr. Burke took in the American Revolution, it was natural that I should

consider him a friend to mankind; and as our acquaintance commenced on that ground, it would
have been more agreeable to me to have had cause to continue in that opinion than to change it. " +

"At the time Mr. Burke made his violent speech last winter in the English Parliament
against the French Revolution and the National Assembly, I was in Paris, and had written to him
but a short time before to inform him how prosperously matters were going on. Soon after this I
saw his advertisement of the Pamphlet he intended to publish: As the attack was to be made in a
language but little studied, and less understood in France, and as everything suffers by
translation, I promised some of the friends of the Revolution in that country that whenever Mr.
Burke's Pamphlet came forth, I would answer it. This appeared to me the more necessary to be
done, when I saw the flagrant misrepresentations which Mr. Burke's Pamphlet contains; and that
while it is an outrageous abuse on the French Revolution, and the principles of Liberty, it is
an imposition on the rest of the world. " +

"I am the more astonished and disappointed at this conduct in Mr. Burke, as (from the
circumstances I am going to mention) I had formed other expectations. " +

"I had seen enough of the miseries of war, to wish it might never more have existence
in the world, and that some other mode might be found out to settle the differences that should
occasionally arise in the neighbourhood of nations. This certainly might be done if Courts were
disposed to set honesty about it, or if countries were enlightened enough not to be made the
dupes of Courts. The people of America had been bred up in the same prejudices against France,
which at that time characterised the people of England; but experience and an acquaintance with
the French Nation have most effectually shown to the Americans the falsehood of those prejudices;
and I do not believe that a more cordial and confidential intercourse exists between any two
countries than between America and France. ";

public function StoryLayout(w:int = 400, h:int = 200, cols:int = 3, padding:int =

10):void
{

this.preferredWidth = w;
this.preferredHeight = h;

this.numColumns = cols;

this.paddingLeft = padding;
this.paddingRight = padding;
this.paddingTop = padding;
this.paddingBottom = padding;

var req:URLRequest = new URLRequest("story.css");
loader = new URLLoader();
loader.addEventListener(Event.COMPLETE, onCSSFileLoaded);
loader.load(req);

}

public function onCSSFileLoaded(event:Event):void
{

this.sheet = new StyleSheet();
this.sheet.parseCSS(loader.data);

// convert headline styles to ElementFormat objects
h1_ElFormat = getElFormat("h1", this.sheet);

419ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

h1_ElFormat.typographicCase = TypographicCase.UPPERCASE;
h2_ElFormat = getElFormat("h2", this.sheet);
p_ElFormat = getElFormat("p", this.sheet);
displayText();

}

public function drawBackground():void
{
 var h:Number = this.storyTxt.y + this.storyTxt.height +

this.paddingTop + this.paddingBottom;
 var g:Graphics = this.graphics;
 g.beginFill(this.bgColor);
 g.drawRect(0, 0, this.width + this.paddingRight + this.paddingLeft, h);
 g.endFill();
}

/**
 * Reads a set of style properties for a named style and then creates
 * a TextFormat object that uses the same properties.
 */

 public function getElFormat(styleName:String, ss:StyleSheet):ElementFormat
 {
 var style:Object = ss.getStyle(styleName);
 if (style != null)
 {
 var colorStr:String = style.color;
 if (colorStr != null && colorStr.indexOf("#") == 0)
 {
 style.color = colorStr.substr(1);
 }

var fd:FontDescription = new FontDescription(
style.fontFamily,
style.fontWeight,
FontPosture.NORMAL,
FontLookup.DEVICE,
RenderingMode.NORMAL,
CFFHinting.NONE);

 var format:ElementFormat = new ElementFormat(fd,
 style.fontSize,
 style.color,
 1,
 TextRotation.AUTO,
 TextBaseline.ROMAN,
 TextBaseline.USE_DOMINANT_BASELINE,
 0.0,
 Kerning.ON,
 0.0,
 0.0,
 "en",

 BreakOpportunity.AUTO,
 DigitCase.DEFAULT,
 DigitWidth.DEFAULT,

 LigatureLevel.NONE,
 TypographicCase.DEFAULT);

 if (style.hasOwnProperty("letterSpacing"))
 {

420ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

 format.trackingRight = style.letterSpacing;
 }
 }
 return format;
 }

 public function displayText():void
 {
 headlineTxt = new HeadlineTextField(h1_ElFormat,headline,this.preferredWidth);
 headlineTxt.x = this.paddingLeft;
 headlineTxt.y = 40 + this.paddingTop;

headlineTxt.fitText(1);
this.addChild(headlineTxt);

 subtitleTxt = new HeadlineTextField(h2_ElFormat,subtitle,this.preferredWidth);
 subtitleTxt.x = this.paddingLeft;
 subtitleTxt.y = headlineTxt.y + headlineTxt.height;

subtitleTxt.fitText(2);
 this.addChild(subtitleTxt);

 storyTxt = new MultiColumnText(rawTestData, this.numColumns,

20, this.preferredWidth, this.preferredHeight, p_ElFormat);
 storyTxt.x = this.paddingLeft;
 storyTxt.y = subtitleTxt.y + subtitleTxt.height + 10;
 this.addChild(storyTxt);

 drawBackground();
 }

}
}

FormattedTextBlock.as is used as a base class for creating blocks of text. It also includes utility functions for changing

font size and case.

package com.example.programmingas3.newslayout
{

import flash.text.engine.*;
import flash.display.Sprite;

public class FormattedTextBlock extends Sprite
{

public var tb:TextBlock;
private var te:TextElement;
private var ef1:ElementFormat;
private var textWidth:int;
public var totalTextLines:int;
public var blockText:String;
public var leading:Number = 1.25;
public var preferredWidth:Number = 720;
public var preferredHeight:Number = 100;

public function FormattedTextBlock(ef:ElementFormat,txt:String, colW:int = 0)
{

this.textWidth = (colW==0) ? preferredWidth : colW;
blockText = txt;
ef1 = ef;
tb = new TextBlock();

421ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

tb.textJustifier = new SpaceJustifier("en",LineJustification.UNJUSTIFIED,false);
te = new TextElement(blockText,this.ef1);
tb.content = te;
this.breakLines();

}

private function breakLines()
{

var textLine:TextLine = null;
var y:Number = 0;
var lineNum:int = 0;
while (textLine = tb.createTextLine(textLine,this.textWidth,0,true))
{

textLine.x = 0;
textLine.y = y;
y += this.leading*textLine.height;
this.addChild(textLine);

}
for (var i:int = 0; i < this.numChildren; i++)
{

TextLine(this.getChildAt(i)).validity = TextLineValidity.STATIC;
}
this.totalTextLines = this.numChildren;

}

private function rebreakLines()
{

this.clearLines();
this.breakLines();

}

private function clearLines()
{

while(this.numChildren)
{

this.removeChildAt(0);
}

}

422ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

public function changeSize(size:uint=12):void
{

if (size > 5)
{

var ef2:ElementFormat = ef1.clone();
ef2.fontSize = size;
te.elementFormat = ef2;
this.rebreakLines();

}
}

public function changeCase(newCase:String = "default"):void
{

var ef2:ElementFormat = ef1.clone();
ef2.typographicCase = newCase;
te.elementFormat = ef2;

}
}

}

HeadlineTextBlock.as extends the FormattedTextBlock class and is used for creating headlines. It includes a function

for fitting text within a defined space on the page.

package com.example.programmingas3.newslayout
{

import flash.text.engine.*;
public class HeadlineTextField extends FormattedTextBlock
{

public static var MIN_POINT_SIZE:uint = 6;
public static var MAX_POINT_SIZE:uint = 128;

public function HeadlineTextField(te:ElementFormat,txt:String,colW:int = 0)
{

super(te,txt);
}

public function fitText(maxLines:uint = 1, targetWidth:Number = -1):uint
{

if (targetWidth == -1)
{

targetWidth = this.width;
}

var pixelsPerChar:Number = targetWidth / this.blockText.length;
var pointSize:Number = Math.min(MAX_POINT_SIZE,

Math.round(pixelsPerChar * 1.8 * maxLines));

if (pointSize < 6)
{

// the point size is too small
return pointSize;

}

this.changeSize(pointSize);
if (this.totalTextLines > maxLines)

423ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

{
return shrinkText(--pointSize, maxLines);

}
else
{

return growText(pointSize, maxLines);
}

}

public function growText(pointSize:Number, maxLines:uint = 1):Number
{

if (pointSize >= MAX_POINT_SIZE)
{

return pointSize;
}

this.changeSize(pointSize + 1);
if (this.totalTextLines > maxLines)
{

// set it back to the last size
this.changeSize(pointSize);
return pointSize;

}
else
{

return growText(pointSize + 1, maxLines);
}

}

public function shrinkText(pointSize:Number, maxLines:uint=1):Number
{

if (pointSize <= MIN_POINT_SIZE)
{

return pointSize;
}
this.changeSize(pointSize);

if (this.totalTextLines > maxLines)
{

return shrinkText(pointSize - 1, maxLines);
}
else
{

return pointSize;
}

}
}

}

MultiColumnText.as handles formatting text within a multicolumn design. It demonstrates the flexible use a

TextBlock object as a factory for creating, formatting, and placing text lines.

424ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

package com.example.programmingas3.newslayout
{

import flash.display.Sprite;
import flash.text.engine.*;

public class MultiColumnText extends Sprite
{

private var tb:TextBlock;
private var te:TextElement;
private var numColumns:uint = 2;
private var gutter:uint = 10;
private var leading:Number = 1.25;
private var preferredWidth:Number = 400;
private var preferredHeight:Number = 100;
private var colWidth:int = 200;

public function MultiColumnText(txt:String = "",cols:uint = 2,

gutter:uint = 10, w:Number = 400, h:Number = 100,
ef:ElementFormat = null):void

{
this.numColumns = Math.max(1, cols);
this.gutter = Math.max(1, gutter);

this.preferredWidth = w;
this.preferredHeight = h;

this.setColumnWidth();

var field:FormattedTextBlock = new FormattedTextBlock(ef,txt,this.colWidth);
var totLines:int = field.totalTextLines;
field = null;
var linesPerCol:int = Math.ceil(totLines/cols);

tb = new TextBlock();
te = new TextElement(txt,ef);
tb.content = te;
var textLine:TextLine = null;
var x:Number = 0;
var y:Number = 0;
var i:int = 0;
var j:int = 0;
while (textLine = tb.createTextLine(textLine,this.colWidth,0,true))
{

textLine.x = Math.floor(i/(linesPerCol+1))*(this.colWidth+this.gutter);
textLine.y = y;
y += this.leading*textLine.height;

425ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Flash Text Engine

Last updated 10/9/2017

j++;
if(j>linesPerCol)
{

y = 0;
j = 0;

}
i++;

this.addChild(textLine);

}
}

private function setColumnWidth():void
{

 this.colWidth = Math.floor((this.preferredWidth -
 ((this.numColumns - 1) * this.gutter)) / this.numColumns);

}

}
}

426

Last updated 10/9/2017

Chapter 23: Using the Text Layout
Framework

Flash Player 10 and later, Adobe AIR 1.5 and later

Overview of the Text Layout Framework

Flash Player 10 and later, Adobe AIR 1.5 and later

The Text Layout Framework (TLF) is an extensible ActionScript library. The TLF is built on the text engine in Adobe®

Flash® Player 10 and Adobe® AIR® 1.5. The TLF provides advanced typographic and text layout features for innovative

typography on the web. The framework can be used with Adobe® Flex® or Adobe® Flash® Professional. Developers can

use or extend existing components, or they can use the framework to create their own text components.

The TLF includes the following capabilities:

• Bidirectional text, vertical text, and over 30 writing scripts including Arabic, Hebrew, Chinese, Japanese, Korean,

Thai, Lao, Vietnamese, and others

• Selection, editing, and flowing text across multiple columns and linked containers

• Vertical text, Tate-Chu-Yoko (horizontal within vertical text) and justifier for East Asian typography

• Rich typographical controls, including kerning, ligatures, typographic case, digit case, digit width, and

discretionary hyphens

• Cut, copy, paste, undo, and standard keyboard and mouse gestures for editing

• Rich developer APIs to manipulate text content, layout, and markup and create custom text components

• Robust list support including custom markers and numbering formats

• Inline images and positioning rules

The TLF is an ActionScript 3.0 library built on the Flash Text Engine (FTE) introduced in Flash Player 10. FTE can be

accessed through the flash.text.engine package, which is part of the Flash Player 10 Application Programming

Interface (API).

The Flash Player API, however, provides low-level access to the text engine, which means that some tasks can require

a relatively large amount of code. The TLF encapsulates the low-level code into simpler APIs. The TLF also provides

a conceptual architecture that organizes the basic building blocks defined by FTE into a system that is easier to use.

Unlike FTE, the TLF is not built in to Flash Player. Rather, it is an independent component library written entirely in

ActionScript 3.0. Because the framework is extensible, it can be customized for specific environments. Both Flash

Professional and the Flex SDK include components that are based on the TLF framework.

More Help topics

"Flow" TLF markup application

http://sourceforge.net/projects/tlf.adobe/files/current/Flow.swf/download

427ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

Complex script support

Flash Player 10 and later, Adobe AIR 1.5 and later

The TLF provides complex script support. Complex script support includes the ability to display and edit right-to-left

scripts. The TLF also provides the ability to display and edit a mixture of left-to-right and right-to-left scripts such as

Arabic and Hebrew. The framework not only supports vertical text layout for Chinese, Japanese, and Korean, but also

supports tate-chu-yoko (TCY elements). TCY elements are blocks of horizontal text embedded into vertical runs of

text. The following scripts are supported:

• Latin (English, Spanish, French, Vietnamese, and so on)

• Greek, Cyrillic, Armenian, Georgian, and Ethiopic

• Arabic and Hebrew

• Han ideographs and Kana (Chinese, Japanese, and Korean) and Hangul Johab (Korean)

• Thai, Lao, and Khmer

• Devanagari, Bengali, Gurmukhi, Malayalam, Telugu, Tamil, Gujarati, Oriya, Kannada, and Tibetan

• Tifinagh, Yi, Cherokee, Canadian Syllabics, Deseret, Shavian, Vai, Tagalog, Hanunoo, Buhid, and Tagbanwa

Using the Text Layout Framework in Flash Professional and Flex

You can use the TLF classes directly to create custom components in Flash. In addition, Flash Professional CS5

provides a new class, fl.text.TLFTextField, that encapsulates the TLF functionality. Use the TLFTextField class to create

text fields in ActionScript that use the advanced text display features of the TLF. Create a TLFTextField object the same

way you create a text field with the TextField class. Then, use the textFlow property to assign advanced formatting

from the TLF classes.

You can also use Flash Professional to create the TLFTextField instance on the stage using the text tool. Then you can

use ActionScript to control the formatting and layout of the text field content using the TLF classes. For more

information, see TLFTextField in the ActionScript 3.0 Reference for the Adobe Flash Platform.

If you are working in Flex, use the TLF classes. For more information, see “Using the Text Layout Framework” on

page 427.

Using the Text Layout Framework

Flash Player 10 and later, Adobe AIR 1.5 and later

If you are working in Flex or are building custom text components, use the TLF classes. The TLF is an ActionScript

3.0 library contained entirely within the textLayout.swc library. The TLF library contains about 100 ActionScript 3.0

classes and interfaces organized into ten packages. These packages are subpackages of the flashx.textLayout package.

The Text Layout Framework classes

Flash Player 10 and later, Adobe AIR 1.5 and later

The TLF classes can be grouped into three categories:

• Data structures and formatting classes

428ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

• Rendering classes

• User interaction classes

Data structures and formatting classes

The following packages contain the data structures and formatting classes for the TLF:

• flashx.textLayout.elements

• flashx.textLayout.formats

• flashx.textLayout.conversion

The main data structure of the TLF is the text flow hierarchy, which is defined in the elements package. Within this

structure, you can assign styles and attributes to runs of text with the formats package. You can also control how text

is imported to, and exported from, the data structure with the conversion package.

Rendering classes

The following packages contain the rendering classes for the TLF:

• flashx.textLayout.factory

• flashx.textLayout.container

• flashx.textLayout.compose

The classes in these packages facilitate the rendering of text for display by Flash Player. The factory package provides

a simple way to display static text. The container package includes classes and interfaces that define display containers

for dynamic text. The compose package defines techniques for positioning and displaying dynamic text in containers.

User interaction classes

The following packages contain the user interaction classes for the TLF:

• flashx.textLayout.edit

• flashx.textLayout.operations

• flashx.textLayout.events

 The edit and operations packages define classes that you can use to allow editing of text stored in the data structures.

The events package contains event handling classes.

General steps for creating text with the Text Layout Framework

The following steps describe the general process for creating text with the Text Layout Format:

1 Import formatted text into the TLF data structures. For more information, see “Structuring text with TLF” on

page 432 and “Formatting text with TLF” on page 436.

2 Create one or more linked display object containers for the text. For more information, see “Managing text

containers with TLF” on page 437.

3 Associate the text in the data structures with the containers and set editing and scrolling options. For more

information, see “Enabling text selection, editing, and undo with TLF” on page 438.

4 Create an event handler to reflow the text in response to resize (or other) events. For more information, see “Event

handling with TLF” on page 439.

429ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

Text Layout Framework example: News layout

Flash Player 10 and later, Adobe AIR 1.5 and later

The following example demonstrates using the TLF to lay out a simple newspaper page. The page includes a large

headline, a subhead, and a multicolumn body section:

package
{

import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.Event;
import flash.geom.Rectangle;

import flashx.textLayout.compose.StandardFlowComposer;
import flashx.textLayout.container.ContainerController;
import flashx.textLayout.container.ScrollPolicy;
import flashx.textLayout.conversion.TextConverter;
import flashx.textLayout.elements.TextFlow;
import flashx.textLayout.formats.TextLayoutFormat;

public class TLFNewsLayout extends Sprite
{

private var hTextFlow:TextFlow;
private var headContainer:Sprite;
private var headlineController:ContainerController;
private var hContainerFormat:TextLayoutFormat;

private var bTextFlow:TextFlow;
private var bodyTextContainer:Sprite;
private var bodyController:ContainerController;
private var bodyTextContainerFormat:TextLayoutFormat;

private const headlineMarkup:String = "<flow:TextFlow

xmlns:flow='http://ns.adobe.com/textLayout/2008'><flow:p textAlign='center'><flow:span
fontFamily='Helvetica' fontSize='18'>TLF News Layout Example</flow:span><flow:br/><flow:span
fontFamily='Helvetica' fontSize='14'>This example formats text like a newspaper page with a
headline, a subtitle, and multiple columns</flow:span></flow:p></flow:TextFlow>";

private const bodyMarkup:String = "<flow:TextFlow

xmlns:flow='http://ns.adobe.com/textLayout/2008' fontSize='12' textIndent='10' marginBottom='15'
paddingTop='4' paddingLeft='4'><flow:p marginBottom='inherit'><flow:span>There are many
</flow:span><flow:span fontStyle='italic'>such</flow:span><flow:span> lime-kilns in that tract
of country, for the purpose of burning the white marble which composes a large part of the
substance of the hills. Some of them, built years ago, and long deserted, with weeds growing in
the vacant round of the interior, which is open to the sky, and grass and wild-flowers rooting
themselves into the chinks of the stones, look already like relics of antiquity, and may yet be
overspread with the lichens of centuries to come. Others, where the lime-burner still feeds his
daily and nightlong fire, afford points of interest to the wanderer among the hills, who seats
himself on a log of wood or a fragment of marble, to hold a chat with the solitary man. It is a
lonesome, and, when the character is inclined to thought, may be an intensely thoughtful
occupation; as it proved in the case of Ethan Brand, who had mused to such strange purpose, in
days gone by, while the fire in this very kiln was burning.</flow:span></flow:p><flow:p
marginBottom='inherit'><flow:span>The man who now watched the fire was of a different order, and
troubled himself with no thoughts save the very few that were requisite to his business. At
frequent intervals, he flung back the clashing weight of the iron door, and, turning his face

430ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

from the insufferable glare, thrust in huge logs of oak, or stirred the immense brands with a
long pole. Within the furnace were seen the curling and riotous flames, and the burning marble,
almost molten with the intensity of heat; while without, the reflection of the fire quivered on
the dark intricacy of the surrounding forest, and showed in the foreground a bright and ruddy
little picture of the hut, the spring beside its door, the athletic and coal-begrimed figure of
the lime-burner, and the half-frightened child, shrinking into the protection of his father's
shadow. And when again the iron door was closed, then reappeared the tender light of the half-
full moon, which vainly strove to trace out the indistinct shapes of the neighboring mountains;
and, in the upper sky, there was a flitting congregation of clouds, still faintly tinged with the
rosy sunset, though thus far down into the valley the sunshine had vanished long and long
ago.</flow:span></flow:p></flow:TextFlow>";

public function TLFNewsLayout()
{

//wait for stage to exist
addEventListener(Event.ADDED_TO_STAGE, onAddedToStage);

}

private function onAddedToStage(evtObj:Event):void
{

removeEventListener(Event.ADDED_TO_STAGE, onAddedToStage);
stage.scaleMode = StageScaleMode.NO_SCALE;
stage.align = StageAlign.TOP_LEFT;

// Headline text flow and flow composer
hTextFlow = TextConverter.importToFlow(headlineMarkup,

TextConverter.TEXT_LAYOUT_FORMAT);

// initialize the headline container and controller objects
headContainer = new Sprite();
headlineController = new ContainerController(headContainer);
headlineController.verticalScrollPolicy = ScrollPolicy.OFF;
hContainerFormat = new TextLayoutFormat();
hContainerFormat.paddingTop = 4;
hContainerFormat.paddingRight = 4;
hContainerFormat.paddingBottom = 4;
hContainerFormat.paddingLeft = 4;

headlineController.format = hContainerFormat;
hTextFlow.flowComposer.addController(headlineController);
addChild(headContainer);
stage.addEventListener(flash.events.Event.RESIZE, resizeHandler);

// Body text TextFlow and flow composer
bTextFlow = TextConverter.importToFlow(bodyMarkup,

TextConverter.TEXT_LAYOUT_FORMAT);

// The body text container is below, and has three columns
bodyTextContainer = new Sprite();
bodyController = new ContainerController(bodyTextContainer);
bodyTextContainerFormat = new TextLayoutFormat();
bodyTextContainerFormat.columnCount = 3;
bodyTextContainerFormat.columnGap = 30;

bodyController.format = bodyTextContainerFormat;
bTextFlow.flowComposer.addController(bodyController);
addChild(bodyTextContainer);

431ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

resizeHandler(null);
}

private function resizeHandler(event:Event):void
{

const verticalGap:Number = 25;
const stagePadding:Number = 16;
var stageWidth:Number = stage.stageWidth - stagePadding;
var stageHeight:Number = stage.stageHeight - stagePadding;
var headlineWidth:Number = stageWidth;
var headlineContainerHeight:Number = stageHeight;

// Initial compose to get height of headline after resize
headlineController.setCompositionSize(headlineWidth,

headlineContainerHeight);
hTextFlow.flowComposer.compose();
var rect:Rectangle = headlineController.getContentBounds();
headlineContainerHeight = rect.height;

// Resize and place headline text container
// Call setCompositionSize() again with updated headline height
headlineController.setCompositionSize(headlineWidth, headlineContainerHeight);
headlineController.container.x = stagePadding / 2;
headlineController.container.y = stagePadding / 2;
hTextFlow.flowComposer.updateAllControllers();

// Resize and place body text container
var bodyContainerHeight:Number = (stageHeight - verticalGap -

headlineContainerHeight);
bodyController.format = bodyTextContainerFormat;
bodyController.setCompositionSize(stageWidth, bodyContainerHeight);
bodyController.container.x = (stagePadding/2);
bodyController.container.y = (stagePadding/2) + headlineContainerHeight +

verticalGap;
bTextFlow.flowComposer.updateAllControllers();

}
}

}

The TLFNewsLayout class uses two text containers. One container displays a headline and subhead, and the other

displays three-column body text. For simplicity, the text is hard-coded into the example as TLF Markup text. The

headlineMarkup variable contains both the headline and the subhead, and the bodyMarkup variable contains the

body text. For more information on TLF Markup, see “Structuring text with TLF” on page 432.

After some initialization, the onAddedToStage() function imports the headline text into a TextFlow object, which is

the main data structure of the TLF:

hTextFlow = TextConverter.importToFlow(headlineMarkup, TextConverter.TEXT_LAYOUT_FORMAT);

Next, a Sprite object is created for the container, and a controller is created and associated with the container:

headContainer = new Sprite();
headlineController = new ContainerController(headContainer);

The controller is initialized to set formatting, scrolling, and other options. The controller contains geometry that

defines the bounds of the container that the text flows into. A TextLayoutFormat object contains the formatting

options:

432ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

hContainerFormat = new TextLayoutFormat();

The controller is assigned to the flow composer and the function adds the container to the display list. The actual

composition and display of the containers is deferred to the resizeHandler() method. The same sequence of steps

is performed to initialize the body TextFlow object.

The resizeHandler() method measures the space available for rendering the containers and sizes the containers

accordingly. An initial call to the compose() method allows for the calculation of the proper height of the headline

container. The resizeHandler() method can then place and display the headline container with the

updateAllControllers() method. Finally, the resizeHandler() method uses the size of the headline container to

determine the placement of the body text container.

Structuring text with TLF

The TLF uses a hierarchical tree to represent text. Each node in the tree is an instance of a class defined in the elements

package. For example, the root node of the tree is always an instance of the TextFlow class. The TextFlow class

represents an entire story of text. A story is a collection of text and other elements that is treated as one unit, or flow.

A single story can require more than one column or text container to display.

Apart from the root node, the remaining elements are loosely based on XHTML elements. The following diagram

shows the hierarchy of the framework:

TextFlow Hierarchy

Text Layout Framework markup

Understanding the structure of the TLF is also helpful when dealing with TLF Markup. TLF Markup is an XML

representation of text that is part of the TLF. Although the framework also supports other XML formats, TLF Markup

is unique in that it is based specifically on the structure of the TextFlow hierarchy. If you export XML from a TextFlow

using this markup format, the XML is exported with this hierarchy intact.

TLF Markup provides the highest fidelity representation of text in a TextFlow hierarchy. The markup language

provides tags for each of the TextFlow hierarchy’s basic elements, and also provides attributes for all formatting

properties available in the TextLayoutFormat class.

The following table contains the tags that can be used in TLF Markup.

433ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

More Help topics

TLF 2.0 Lists Markup

TLF 2.0 SubParagraphGroupElements and typeName

Using numbered and bulleted lists

You can use the ListElement and ListItemElement classes to add bulleted lists to your text controls. The bulleted lists

can be nested and can be customized to use different bullets (or markers) and auto-numbering, as well as outline-style

numbering.

To create lists in your text flows, use the <list> tag. You then use tags within the <list> tag for each list item

in the list. You can customize the appearance of the bullets by using the ListMarkerFormat class.

The following example creates simple lists:

Element Description Children Class

textflow The root element of the markup. div, p TextFlow

div A division within a TextFlow. May contain a

group of paragraphs.

div, list, p DivElement

p A paragraph. a, tcy, span, img, tab, br,

g

ParagraphElement

a A link. tcy, span, img, tab, br, g LinkElement

tcy A run of horizontal text (used in a vertical

TextFlow).

a, span, img, tab, br, g TCYElement

span A run of text within a paragraph. SpanElement

img An image in a paragraph. InlineGraphicElement

tab A tab character. TabElement

br A break character. Used for ending a line

within a paragraph; text continues on the

next line, but remains in the same paragraph.

BreakElement

linkNormalFormat Defines the formatting attributes used for

links in normal state.

TextLayoutFormat TextLayoutFormat

linkActiveFormat Defines the formatting attributes used for

links in active state, when the mouse is down

on a link.

TextLayoutFormat TextLayoutFormat

linkHoverFormat Defines the formatting attributes used for

links in hover state, when the mouse is within

the bounds (rolling over) a link.

TextLayoutFormat TextLayoutFormat

li A list item element. Must be inside a list

element.

div, li, list, p ListItemElement

list A list. Lists can be nested, or placed adjacent

to each other. Different labeling or

numbering schemes can be applied to the list

items.

div, li, list, p ListElement

g A group element. Used for grouping

elements in a paragraph. The lets you nest

elements below the paragraph level.

a, tcy, span, img, tab, br,

g

SubParagraphGroupE

lement

http://blogs.adobe.com/tlf/2010/07/tlf-20-lists-markup.html
http://blogs.adobe.com/tlf/2011/01/tlf-2-0-changes-subparagraphgroupelements-and-typename-applied-to-textfieldhtmlimporter-and-cssformatresolver.html

434ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

<flow:list paddingRight="24" paddingLeft="24">
<flow:li>Item 1</flow:li>
<flow:li>Item 2</flow:li>
<flow:li>Item 3</flow:li>

</flow:list>

You can nest lists within other lists, as the following example shows:

<flow:list paddingRight="24" paddingLeft="24">
<flow:li>Item 1</flow:li>
<flow:list paddingRight="24" paddingLeft="24">

<flow:li>Item 1a</flow:li>
<flow:li>Item 1b</flow:li>
<flow:li>Item 1c</flow:li>

</flow:list>
<flow:li>Item 2</flow:li>
<flow:li>Item 3</flow:li>

</flow:list>

To customize the type of marker in the list, use the listStyleType property of the ListElement. This property can be

any value defined by the ListStyleType class (such as check, circle, decimal, and box). The following example

creates lists with various marker types and a custom counter increment:

<flow:list paddingRight="24" paddingLeft="24" listStyleType="upperAlpha">
<flow:li>upperAlpha item</flow:li> <flow:li>another</flow:li> </flow:list> <flow:list
paddingRight="24" paddingLeft="24" listStyleType="lowerAlpha"> <flow:li>lowerAlpha
item</flow:li> <flow:li>another</flow:li> </flow:list> <flow:list paddingRight="24"
paddingLeft="24" listStyleType="upperRoman"> <flow:li>upperRoman item</flow:li>
<flow:li>another</flow:li> </flow:list> <flow:list paddingRight="24" paddingLeft="24"
listStyleType="lowerRoman"> <flow:listMarkerFormat> <!-- Increments the list by 2s rather than
1s. --> <flow:ListMarkerFormat counterIncrement="ordered 2"/> </flow:listMarkerFormat>
<flow:li>lowerRoman item</flow:li> <flow:li>another</flow:li> </flow:list>

You use the ListMarkerFormat class to define the counter. In addition to defining the increment of a counter, you can

also customize the counter by resetting it with the counterReset property.

You can further customize the appearance of the markers in your lists by using the beforeContent and

afterContent properties of the ListMarkerFormat. These properties apply to content that appears before and after

the content of the marker.

The following example adds the string “XX” before the marker, and the string “YY” after the marker:

<flow:list listStyleType="upperRoman" paddingLeft="36" paddingRight="24">
<flow:listMarkerFormat>

<flow:ListMarkerFormat fontSize="16"
beforeContent="XX"
afterContent="YY"
counterIncrement="ordered -1"/>

</flow:listMarkerFormat>
<flow:li>Item 1</flow:li>
<flow:li>Item 2</flow:li>
<flow:li>Item 3</flow:li>

</flow:list>

The content property itself can define further customizations of the marker format. The following example displays

an ordered, uppercase Roman numeral marker:

435ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

<flow:list listStyleType="disc" paddingLeft="96" paddingRight="24">
<flow:listMarkerFormat>

<flow:ListMarkerFormat fontSize="16"
beforeContent="Section "
content="counters(ordered,"*",upperRoman)"
afterContent=": "/>

</flow:listMarkerFormat>
<flow:li>Item 1
<flow:li>Item 2
<flow:li>Item 3

</flow:list>

As the previous example shows, the content property can also insert a suffix: a string that appears after the marker,

but before the afterContent. To insert this string when providing XML content to the flow, wrap the string in

"e; HTML entities rather than quotation marks ("<string>").

More Help topics

TLF 2.0 Lists Markup

Using padding in TLF

Each FlowElement supports padding properties that you use to control the position of each element’s content area,

and the space between the content areas.

The total width of an element is the sum of its content’s width, plus the paddingLeft and paddingRight properties.

The total height of an element is the sum of its content’s height, plus the paddingTop and paddingBottom properties.

The padding is the space between the border and the content. The padding properties are paddingBottom,

paddingTop, paddingLeft, and paddingRight. Padding can be applied to the TextFlow object, as well as the

following child elements:

• div

• img

• li

• list

• p

Padding properties cannot be applied to span elements.

The following example sets padding properties on the TextFlow:

<flow:TextFlow version="2.0.0" xmlns:flow="http://ns.adobe.com/textLayout/2008" fontSize="14"
textIndent="15" paddingTop="4" paddingLeft="4" fontFamily="Times New Roman">

Valid values for the padding properties are a number (in pixels), “auto”, or “inherit”. The default value is “auto”, which

means it is calculated automatically and set to 0, for all elements except the ListElement. For ListElements, “auto” is 0

except on the start side of the list where the value of the listAutoPadding property is used. The default value of

listAutoPadding is 40, which gives lists a default indent.

The padding properties do not, by default, inherit. The “auto” and “inherit” values are constants defined by the

FormatValue class.

Padding properties can be negative values.

http://blogs.adobe.com/tlf/2010/07/tlf-20-lists-markup.html

436ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

More Help topics

Padding changes in TLF 2.0

Formatting text with TLF

Flash Player 10 and later, Adobe AIR 1.5 and later

The flashx.textLayout.formats package contains interfaces and classes that allow you to assign formats to any

FlowElement in the text flow hierarchy tree. There are two ways to apply formatting. You can assign a specific format

individually or assign a group of formats simultaneously with a special formatting object.

The ITextLayoutFormat interface contains all of the formats that can be applied to a FlowElement. Some formats apply

to an entire container or paragraph of text, but do not logically apply to individual characters. For example, formats

such as justification and tab stops apply to whole paragraphs, but are not applicable to individual characters.

Assigning formats to a FlowElement with properties

Flash Player 10 and later, Adobe AIR 1.5 and later

You can set formats on any FlowElement through property assignment. The FlowElement class implements the

ITextLayoutFormat interface, so any subclass of the FlowElement class must also implement that interface.

For example, the following code shows how to assign individual formats to an instance of ParagraphElement:

var p:ParagraphElement = new ParagraphElement();
p.fontSize = 18;
p.fontFamily = "Arial";

Assigning formats to a FlowElement with the TextLayoutFormat class

Flash Player 10 and later, Adobe AIR 1.5 and later

You can apply formats to a FlowElement with the TextLayoutFormat class. You use this class to create a special

formatting object that contains all of the formatting values you want. You can then assign that object to the format

property of any FlowElement object. Both TextLayoutFormat and FlowElement implement the ITextLayoutFormat

interface. This arrangement ensures that both classes contain the same format properties.

For more information, see TextLayoutFormat in the ActionScript 3.0 Reference for the Adobe Flash Platform.

Format inheritance

Flash Player 10 and later, Adobe AIR 1.5 and later

Formats are inherited through the text flow hierarchy. If you assign an instance of TextLayoutFormat to a

FlowElement instance with children, the framework initiates a process called a cascade. During a cascade, the

framework recursively examines each node in the hierarchy that inherits from your FlowElement. It then determines

whether to assign the inherited values to each formatting property. The following rules are applied during the cascade:

1 Property values are inherited only from an immediate ancestor (sometimes called the parent).

2 Property values are inherited only if a property does not already have a value (that is, the value is undefined).

http://blogs.adobe.com/tlf/2010/11/padding-changes-in-tlf-2-0.html

437ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

3 Some attributes do not inherit values when undefined, unless the attribute’s value is set to “inherit” or the constant

flashx.textLayout.formats.FormatValue.INHERIT.

For example, if you set the fontSize value at the TextFlow level, the setting applies to all elements in the TextFlow. In

other words, the values cascade down the text flow hierarchy. You can, however, override the value in a given element

by assigning a new value directly to the element. As a counter-example, if you set the backgroundColor value for at

the TextFlow level, the children of the TextFlow do not inherit that value. The backgroundColor property is one that

does not inherit from its parent during a cascade. You can override this behavior by setting the backgroundColor

property on each child to flashx.textLayout.formats.FormatValue.INHERIT.

For more information, see TextLayoutFormat in the ActionScript 3.0 Reference for the Adobe Flash Platform.

Importing and exporting text with TLF

Flash Player 10 and later, Adobe AIR 1.5 and later

The TextConverter class in the flashx.textLayout.conversion.* package lets you import text to, and export text from,

the TLF. Use this class if you plan to load text at runtime instead of compiling the text into the SWF file. You can also

use this class to export text that is stored in a TextFlow instance into a String or XML object.

Both import and export are straightforward procedures. You call either the export() method or the importToFlow()

method, both of which are part of the TextConverter class. Both methods are static, which means that you call the

methods on the TextConverter class rather than on an instance of the TextConverter class.

The classes in the flashx.textLayout.conversion package provide considerable flexibility in where you choose to store

your text. For example, if you store your text in a database, you can import the text into the framework for display. You

can then use the classes in the flashx.textLayout.edit package to change the text, and export the changed text back to

your database.

For more information, see flashx.textLayout.conversion in the ActionScript 3.0 Reference for the Adobe Flash

Platform.

Managing text containers with TLF

Flash Player 10 and later, Adobe AIR 1.5 and later

Once text is stored in the TLF data structures, Flash Player can display it. The text that is stored in the flow hierarchy

must be converted into a format that Flash Player can display. The TLF offers two ways to create display objects from

a flow. The first, more simple approach is suitable for displaying static text. The second, more complicated approach

lets you create dynamic text that can be selected and edited. In both cases, the text is ultimately converted into instances

of the TextLine class, which is part of the flash.text.engine.* package in Flash Player 10.

Creating static text

The simple approach uses the TextFlowTextLineFactory class, which can be found in the flashx.textLayout.factory

package. The advantage of this approach, beyond its simplicity, is that it has a smaller memory footprint than does the

FlowComposer approach. This approach is advisable for static text that the user does not need to edit, select, or scroll.

For more information, see TextFlowTextLineFactory in the ActionScript 3.0 Reference for the Adobe Flash Platform.

438ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

Creating dynamic text and containers

Use a flow composer if you want to have more control over the display of text than that provided by

TextFlowTextLineFactory. For example, with a flow composer, your users can select and edit the text. For more

information, see “Enabling text selection, editing, and undo with TLF” on page 438.

A flow composer is an instance of the StandardFlowComposer class in the flashx.textLayout.compose package. A flow

composer manages the conversion of TextFlow into TextLine instances, and also the placement of those TextLine

instances into one or more containers.

An IFlowComposer has zero or more ContainerControllers

Every TextFlow instance has a corresponding object that implements the IFlowComposer interface. This

IFlowComposer object is accessible through the TextFlow.flowComposer property. You can call methods defined by

the IFlowComposer interface through this property. These methods allow you to associate the text with one or more

containers and prepare the text for display within a container.

A container is an instance of the Sprite class, which is a subclass of the DisplayObjectContainer class. Both of these

classes are part of the Flash Player display list API. A container is a more advanced form of the bounding rectangle

used in with TextLineFactory class. Like the bounding rectangle, a container defines the area where TextLine instances

appear. Unlike a bounding rectangle, a container has a corresponding “controller” object. The controller manages

scrolling, composition, linking, formatting, and event handling for a container or set of containers. Each container has

a corresponding controller object that is an instance of the ContainerController class in the

flashx.textLayout.container package.

To display text, create a controller object to manage the container and associate it with the flow composer. Once you

have the container associated, compose the text so that it can be displayed. Accordingly, containers have two states:

composition and display. Composition is the process of converting the text from the text flow hierarchy into TextLine

instances and calculating whether those instances fit into the container. Display is the process of updating the Flash

Player display list.

For more information, see IFlowComposer, StandardFlowComposer, and ContainerController in the ActionScript 3.0

Reference for the Adobe Flash Platform.

Enabling text selection, editing, and undo with TLF

Flash Player 9.0 and later, Adobe AIR 1.0 and later

The ability to select or edit text is controlled at the text flow level. Every instance of the TextFlow class has an associated

interaction manager. You can access a TextFlow object’s interaction manager through the object’s

TextFlow.interactionManager property. To enable text selection, assign an instance of the SelectionManager class

to the interactionManager property. To enable both text selection and editing, assign an instance of the

EditManager class instead of an instance of the SelectionManager class. To enable undo operations, create an instance

of the UndoManager class and include it as an argument when calling the constructor for EditManager. The

UndoManager class maintains a history of the user's most recent editing activities and lets the user undo or redo

specific edits. All three of these classes are part of the edit package.

IFlowComposer

 ContainerController

TextFlow

TextLine TextLine

Stage

Sprite

439ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

For more information, see SelectionManager, EditManager, and UndoManager in the ActionScript 3.0 Reference for

the Adobe Flash Platform.

Event handling with TLF

Flash Player 10 and later, Adobe AIR 1.5 and later

TextFlow objects dispatch events in many circumstances, including:

• When the text or layout changes

• Before an operation begins and after an operation completes

• When the status of a FlowElement object changes

• When a compose operation completes

For more information, see flashx.textLayout.events in the ActionScript 3.0 Reference for the Adobe Flash Platform.

More Help topics

TLF FlowElement and LinkElement Events and EventMirrors

Positioning images within text

To position the InlineGraphicElement within the text, you use the following properties:

• float property of the InlineGraphicElement class

• clearFloats property of the FlowElement

The float property controls the placement of the graphic and the text around it. The clearFloats property controls

the placement of the paragraph elements relative to the float.

To control the location of an image within a text element, you use the float property. The following example adds an

image to a paragraph and aligns it to the left so the text wraps around the right:

<flow:p paragraphSpaceAfter="15" >Images in a flow are a good thing. For example, here is a
float. It should show on the left: <flow:img float="left" height="50" width="19"
source="../assets/bulldog.jpg"></flow:img> Don't you agree? Another sentence here. Another
sentence here. Another sentence here. Another sentence here. Another sentence here. Another
sentence here. Another sentence here. Another sentence here.</flow:p>

Valid values for the float property are “left”, “right”, “start”, “end”, and “none”. The Float class defines these

constants. The default value is “none”.

The clearFloats property is useful in cases where you want to adjust the starting position of subsequent paragraphs

that would normally wrap around the image. For example, assume that you have an image that is larger than the first

paragraph. To be sure the second paragraph starts after the image, set the clearFloats property.

The following example uses an image that is taller than the text in the first paragraph. To get the second paragraph to

start after the image in the text block, this example sets the clearFloats property on the second paragraph to “end”.

http://blogs.adobe.com/tlf/2010/12/tlf-flowelement-linkelement-events-and-eventmirrors.html

440ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the Text Layout Framework

Last updated 10/9/2017

<flow:p paragraphSpaceAfter="15" >Here is another float, it should show up on the right:
<flow:img float="right" height="50" elementHeight="200" width="19"
source="../assets/bulldog.jpg"></flow:img>We'll add another paragraph that should clear past
it.</flow:p><flow:p clearFloats="end" >This should appear after the previous float on the
right.</flow:p>

Valid values for the clearFloats property are “left”, “right”, “end”, “start”, “none”, and “both”. The ClearFloats class

defines these constants. You can also set the clearFloats property to “inherit”, which is a constant defined by the

FormatValue class. The default value is “none”.

More Help topics

TLF Floats

http://blogs.adobe.com/tlf/2010/07/floats.html

441

Last updated 10/9/2017

Chapter 24: Working with sound

Flash Player 9 and later, Adobe AIR 1.0 and later

ActionScript is made for immersive, interactive applications—and one often overlooked element of powerfully

immersive applications is sound. You can add sound effects to a video game, audio feedback to an application user

interface, or even make a program that analyzes mp3 files loaded over the Internet, with sound at the core of the

application.

You can load external audio files and work with audio that’s embedded in a SWF. You can control the audio, create

visual representations of the sound information, and capture sound from a user’s microphone.

More Help topics

flash.media package

flash.events.SampleDataEvent

Basics of working with sound

Flash Player 9 and later, Adobe AIR 1.0 and later

Computers can capture and encode digital audio—computer representation of sound information—and can store it

and retrieve it to play back over speakers. You can play back sound using either Adobe® Flash® Player or Adobe® AIR™

and ActionScript.

When sound data is converted to digital form, it has various characteristics, such as the sound’s volume and whether

it is stereo or mono sound. When you play back a sound in ActionScript, you can adjust these characteristics as well—

make the sound louder, or make it seem to be coming from a certain direction, for instance.

Before you can control a sound in ActionScript, you need to have the sound information loaded into Flash Player or

AIR. There are five ways you can get audio data into Flash Player or AIR so that you can work with it using

ActionScript.

• Load an external sound file such as an mp3 file into the SWF.

• Embed the sound information into the SWF file directly when it’s being created.

• Capture audio from a microphone attached to a user’s computer.

• Stream audio from a server.

• Dynamically generate and play audio.

When you load sound data from an external sound file, you can begin playing back the start of the sound file while the

rest of the sound data is still loading.

Although there are various sound file formats used to encode digital audio, ActionScript 3.0, Flash Player and AIR

support sound files that are stored in the mp3 format. They cannot directly load or play sound files in other formats

like WAV or AIFF.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/media/package-detail.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/SampleDataEvent.html

442ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

While you’re working with sound in ActionScript, you’ll likely work with several classes from the flash.media package.

The Sound class is the class you use to get access to audio information by loading a sound file or assigning a function

to an event that samples sound data and then starting playback. Once you start playing a sound, Flash Player and AIR

give you access to a SoundChannel object. Since an audio file that you’ve loaded may only be one of several sounds that

you play on a user’s computer, each individual sound that’s playing uses its own SoundChannel object; the combined

output of all the SoundChannel objects mixed together is what actually plays over the computer’s speakers. You use

this SoundChannel instance to control properties of the sound and to stop its playback. Finally, if you want to control

the combined audio, the SoundMixer class gives you control over the mixed output.

You can also use several other classes to perform more specific tasks when you’re working with sound in ActionScript;

for more information on all the sound-related classes, see “Understanding the sound architecture” on page 442.

Important concepts and terms

The following reference list contains important terms that you may encounter:

Amplitude The distance of a point on the sound waveform from the zero or equilibrium line.

Bit rate The amount of data that is encoded or streamed for each second of a sound file. For mp3 files, the bit rate is usually

stated in terms of thousands of bits per second (kbps). A higher bit rate generally means a higher quality sound wave.

Buffering The receiving and storing of sound data before it is played back.

mp3 MPEG-1 Audio Layer 3, or mp3, is a popular sound compression format.

Panning The positioning of an audio signal between the left and right channels in a stereo soundfield.

Peak The highest point in a waveform.

Sampling rate Defines the number of samples per second taken from an analog audio signal to make a digital signal.

The sampling rate of standard compact disc audio is 44.1 kHz or 44,100 samples per second.

Streaming The process of playing the early portions of a sound file or video file while later portions of that file are still

being loaded from a server.

Volume The loudness of a sound.

Waveform The shape of a graph of the varying amplitudes of a sound signal over time.

Understanding the sound architecture

Flash Player 9 and later, Adobe AIR 1.0 and later

Your applications can load sound data from five main sources:

• External sound files loaded at run time

• Sound resources embedded within the application’s SWF file

• Sound data from a microphone attached to the user’s system

• Sound data streamed from a remote media server, such as Flash Media Server

• Sound data being generated dynamically through the use of the sampleData event handler

Sound data can be fully loaded before it is played back, or it can be streamed, meaning that it is played back while it is

still loading.

443ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

The ActionScript 3.0 sound classes support sound files that are stored in the mp3 format. They cannot directly load or

play sound files in other formats, such as WAV or AIFF. However, starting with Flash Player 9.0.115.0, AAC audio

files can be loaded and played using the NetStream class. This is the same technique as is used for loading and playing

video content. For more information on this technique, see “Working with video” on page 474.

Using Adobe Flash Professional, you can import WAV or AIFF sound files and then embed them into your

application’s SWF files in the mp3 format. The Flash Authoring tool also lets you compress embedded sound files to

reduce their file size, though this size reduction comes at the expense of sound quality. For more information see

“Importing Sounds” in Using Flash.

The ActionScript 3.0 sound architecture makes use of the following classes in the flash.media package.

Each sound that is loaded and played needs its own instance of the Sound class and the SoundChannel class. The

output from multiple SoundChannel instances is then mixed together by the global SoundMixer class during playback,

The Sound, SoundChannel, and SoundMixer classes are not used for sound data obtained from a microphone or from

a streaming media server like Flash Media Server.

Loading external sound files

Flash Player 9 and later, Adobe AIR 1.0 and later

Each instance of the Sound class exists to load and trigger the playback of a specific sound resource. An application

can’t reuse a Sound object to load more than one sound. If it wants to load a new sound resource, it should create a

new Sound object.

Class Description

flash.media.Sound The Sound class handles the loading of sound, manages basic sound properties, and starts a sound

playing.

flash.media.SoundChannel When an application plays a Sound object, a new SoundChannel object is created to control the

playback. The SoundChannel object controls the volume of both the left and right playback channels

of the sound. Each sound that plays has its own SoundChannel object.

flash.media.SoundLoaderContext The SoundLoaderContext class specifies how many seconds of buffering to use when loading a sound,

and whether Flash Player or AIR looks for a policy file from the server when loading a file. A

SoundLoaderContext object is used as a parameter to the Sound.load() method.

flash.media.SoundMixer The SoundMixer class controls playback and security properties that pertain to all sounds in an

application. In effect, multiple sound channels are mixed through a common SoundMixer object, so

property values in the SoundMixer object will affect all SoundChannel objects that are currently

playing.

flash.media.SoundTransform The SoundTransform class contains values that control sound volume and panning. A SoundTransform

object can be applied to an individual SoundChannel object, to the global SoundMixer object, or to a

Microphone object, among others.

flash.media.ID3Info An ID3Info object contains properties that represent ID3 metadata information that is often stored in

mp3 sound files.

flash.media.Microphone The Microphone class represents a microphone or other sound input device attached to the user’s

computer. Audio input from a microphone can be routed to local speakers or sent to a remote server.

The Microphone object controls the gain, sampling rate, and other characteristics of its own sound

stream.

flash.media.AudioPlaybackMode The AudioPlaybackMode class defines constants for the audioPlaybackMode property of the

SoundMixer class.

444ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

If you are loading a small sound file, such as a click sound to be attached to a button, your application can create a new

Sound and have it automatically load the sound file, as shown below:

 var req:URLRequest = new URLRequest("click.mp3");
 var s:Sound = new Sound(req);

The Sound() constructor accepts a URLRequest object as its first parameter. When a value for the URLRequest

parameter is supplied, the new Sound object starts loading the specified sound resource automatically.

In all but the simplest cases, your application should pay attention to the sound’s loading progress and watch for errors

during loading. For example, if the click sound is fairly large, it might not be completely loaded by the time the user

clicks the button that triggers the sound. Trying to play an unloaded sound could cause a run-time error. It’s safer to

wait for the sound to load completely before letting users take actions that might start sounds playing.

A Sound object dispatches a number of different events during the sound loading process. Your application can listen

for these events to track loading progress and make sure that the sound loads completely before playing. The following

table lists the events that can be dispatched by a Sound object.

The following code illustrates how to play a sound after it has finished loading:

 import flash.events.Event;
 import flash.media.Sound;
 import flash.net.URLRequest;

 var s:Sound = new Sound();
 s.addEventListener(Event.COMPLETE, onSoundLoaded);
 var req:URLRequest = new URLRequest("bigSound.mp3");
 s.load(req);

 function onSoundLoaded(event:Event):void
 {
 var localSound:Sound = event.target as Sound;
 localSound.play();
 }

First, the code sample creates a new Sound object without giving it an initial value for the URLRequest parameter.

Then, it listens for the Event.COMPLETE event from the Sound object, which causes the onSoundLoaded() method to

execute when all the sound data is loaded. Next, it calls the Sound.load() method with a new URLRequest value for

the sound file.

The onSoundLoaded() method executes when the sound loading is complete. The target property of the Event

object is a reference to the Sound object. Calling the play() method of the Sound object then starts the sound

playback.

Event Description

open (Event.OPEN) Dispatched right before the sound loading operation begins.

progress (ProgressEvent.PROGRESS) Dispatched periodically during the sound loading process when data is received from the file or

stream.

id3 (Event.ID3) Dispatched when ID3 data is available for an mp3 sound.

complete (Event.COMPLETE) Dispatched when all of the sound resource’s data has been loaded.

ioError (IOErrorEvent.IO_ERROR) Dispatched when a sound file cannot be located or when the loading process is interrupted before

all sound data can be received.

445ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

Monitoring the sound loading process

Flash Player 9 and later, Adobe AIR 1.0 and later

Sound files can be very large and take a long time to load. While Flash Player and AIR let your application play sounds

even before they are fully loaded, you might want to give the user an indication of how much of the sound data has

been loaded and how much of the sound has already been played.

The Sound class dispatches two events that make it relatively easy to display the loading progress of a sound:

ProgressEvent.PROGRESS and Event.COMPLETE. The following example shows how to use these events to display

progress information about the sound being loaded:

 import flash.events.Event;
 import flash.events.ProgressEvent;
 import flash.media.Sound;
 import flash.net.URLRequest;

 var s:Sound = new Sound();
 s.addEventListener(ProgressEvent.PROGRESS, onLoadProgress);
 s.addEventListener(Event.COMPLETE, onLoadComplete);
 s.addEventListener(IOErrorEvent.IO_ERROR, onIOError);

 var req:URLRequest = new URLRequest("bigSound.mp3");
 s.load(req);

 function onLoadProgress(event:ProgressEvent):void
 {
 var loadedPct:uint = Math.round(100 * (event.bytesLoaded / event.bytesTotal));
 trace("The sound is " + loadedPct + "% loaded.");
 }

 function onLoadComplete(event:Event):void
 {
 var localSound:Sound = event.target as Sound;
 localSound.play();
 }
 function onIOError(event:IOErrorEvent)
 {
 trace("The sound could not be loaded: " + event.text);
 }

This code first creates a Sound object and then adds listeners to that object for the ProgressEvent.PROGRESS and

Event.COMPLETE events. After the Sound.load() method has been called and the first data is received from the sound

file, a ProgressEvent.PROGRESS event occurs and triggers the onSoundLoadProgress() method.

The percentage of the sound data that has been loaded is equal to the value of the bytesLoaded property of the

ProgressEvent object divided by the value of the bytesTotal property. The same bytesLoaded and bytesTotal

properties are available on the Sound object as well. The example above simply shows messages about the sound

loading progress, but you can easily use the bytesLoaded and bytesTotal values to update progress bar components,

such as the ones that come with the Adobe Flex framework or the Adobe Flash authoring tool.

This example also shows how an application can recognize and respond to an error when loading sound files. For

example, if a sound file with the given filename cannot be located, an Event.IO_ERROR event is dispatched by the

Sound object. In the previous code, the onIOError() method executes and displays a brief error message when an

error occurs.

446ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

Working with embedded sounds

Flash Player 9 and later, Adobe AIR 1.0 and later

Using embedded sounds, instead of loading sound from an external file, is most useful for small sounds that are used

as indicators within your application’s user interface, such as sounds that play when buttons are clicked.

When you embed a sound file in your application, the size of the resulting SWF file increases by the size of the sound

file. In other words, embedding large sound files in your application can increase the size of your SWF file to an

undesirable size.

The exact method of embedding a sound file into your application’s SWF file varies according to your development

environment.

Using an embedded sound file in Flash

Flash Player 9 and later, Adobe AIR 1.0 and later

The Flash authoring tool lets you import sounds in a number of sound formats and store them as symbols in the

Library. You can then assign them to frames in the timeline or to the frames of a button state, use them with Behaviors,

or use them directly in ActionScript code. This section describes how to use embedded sounds in ActionScript code

with the Flash authoring tool. For information about the other ways to use embedded sounds in Flash, see “Importing

Sounds” in Using Flash.

To embed a sound file using the Flash authoring tool:

1 Select File > Import > Import to Library, and then select a sound file and import it.

2 Right-click the name of the imported file in the Library panel, and select Properties. Click the Export for

ActionScript checkbox.

3 In the Class field, enter a name to use when referring to this embedded sound in ActionScript. By default, it will use

the name of the sound file in this field. If the filename includes a period, as in the name “DrumSound.mp3”, you

must change it to something like “DrumSound”; ActionScript does not allow a period character in a class name.

The Base Class field should still show flash.media.Sound.

4 Click OK. You might see a dialog box saying that a definition for this class could not be found in the classpath. Click

OK and continue. If you entered a class name that doesn’t match the name of any of the classes in your application’s

classpath, a new class that inherits from the flash.media.Sound class is automatically generated for you.

5 To use the embedded sound, you reference the class name for that sound in ActionScript. For example, the

following code starts by creating a new instance of the automatically generated DrumSound class:

 var drum:DrumSound = new DrumSound();
 var channel:SoundChannel = drum.play();

DrumSound is a subclass of the flash.media.Sound class so it inherits the Sound class’s methods and properties,

including the play() method as shown above.

Using an embedded sound file in Flex

Flash Player 9 and later, Adobe AIR 1.0 and later

There are many ways to embed sound assets in a Flex application, including:

• Using the [Embed] metadata tag in a script

447ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

• Using the @Embed directive in MXML to assign an embedded asset as a property of a component like a Button or a

SoundEffect.

• Using the @Embed directive within a CSS file

This section describes the first option: how to embed sounds in ActionScript code within a Flex application using the

[Embed] metadata tag.

To embed an asset in ActionScript code, use the [Embed] metadata tag.

Place the sound file in the main source folder or another folder that is in your project’s build path. When the compiler

encounters an Embed metadata tag, it creates the embedded asset class for you. You can access the class through a

variable of data type Class that you declare immediately after the [Embed] metadata tag.

The following code embeds a sound named smallSound.mp3 and uses a variable named soundClass to store a

reference to the embedded asset class associated with that sound. The code then creates an instance of the embedded

asset class, casts it as an instance of the Sound class, and calls the play() method on that instance:

 package
 {
 import flash.display.Sprite;
 import flash.media.Sound;
 import flash.media.SoundChannel;

 public class EmbeddedSoundExample extends Sprite
 {
 [Embed(source="smallSound.mp3")]
 public var soundClass:Class;

 public function EmbeddedSoundExample()
 {
 var smallSound:Sound = new soundClass() as Sound;
 smallSound.play();
 }
 }
 }

To use the embedded sound to set a property of a Flex component, it should be cast as an instance of the

mx.core.SoundAsset class instead of as an instance of the Sound class. For a similar example that uses the SoundAsset

class see “Embedded asset classes” in Learning ActionScript 3.0.

Working with streaming sound files

Flash Player 9 and later, Adobe AIR 1.0 and later

When a sound file or video file is playing back while its data is still being loaded, it is said to be streaming. External

sound files that are loaded from a remote server are often streamed so that the user doesn’t have to wait for all the

sound data to load before listening to the sound.

The SoundMixer.bufferTime property represents the number of milliseconds of sound data that Flash Player or AIR

should gather before letting the sound play. In other words, if the bufferTime property is set to 5000, Flash Player or

AIR loads at least 5000 milliseconds worth of data from the sound file before the sound begins to play. The default

SoundMixer.bufferTime value is 1000.

448ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

Your application can override the global SoundMixer.bufferTime value for an individual sound by explicitly

specifying a new bufferTime value when loading the sound. To override the default buffer time, first create a new

instance of the SoundLoaderContext class, set its bufferTime property, and then pass it as a parameter to the

Sound.load() method, as shown below:

 import flash.media.Sound;
 import flash.media.SoundLoaderContext;
 import flash.net.URLRequest;

 var s:Sound = new Sound();
 var req:URLRequest = new URLRequest("bigSound.mp3");
 var context:SoundLoaderContext = new SoundLoaderContext(8000, true);
 s.load(req, context);
 s.play();

As playback continues, Flash Player and AIR try to keep the sound buffer at the same size or greater. If the sound data

loads faster than the playback speed, playback will continue without interruption. However, if the data loading rate

slows down because of network limitations, the playhead could reach the end of the sound buffer. If this happens,

playback is suspended, though it automatically resumes once more sound data has been loaded.

To find out if playback is suspended because Flash Player or AIR is waiting for data to load, use the

Sound.isBuffering property.

Working with dynamically generated audio

Flash Player 10 and later, Adobe AIR 1.5 and later

Note: The ability to dynamically generate audio is available starting with Flash Player 10 and Adobe AIR 1.5.

Instead of loading or streaming an existing sound, you can generate audio data dynamically. You can generate audio

data when you assign an event listener for the sampleData event of a Sound object. (The sampleData event is defined

in the SampleDataEvent class in the flash.events package.) In this environment, the Sound object doesn’t load sound

data from a file. Instead, it acts as a socket for sound data that is being streamed to it through the use of the function

you assign to this event.

When you add a sampleData event listener to a Sound object, the object periodically requests data to add to the sound

buffer. This buffer contains data for the Sound object to play. When you call the play() method of the Sound object,

it dispatches the sampleData event when requesting new sound data. (This is true only when the Sound object has not

loaded mp3 data from a file.)

The SampleDataEvent object includes a data property. In your event listener, you write ByteArray objects to this data

object. The byte arrays you write to this object add to buffered sound data that the Sound object plays. The byte array

in the buffer is a stream of floating-point values from -1 to 1. Each floating-point value represents the amplitude of one

channel (left or right) of a sound sample. Sound is sampled at 44,100 samples per second. Each sample contains a left

and right channel, interleaved as floating-point data in the byte array.

In your handler function, you use the ByteArray.writeFloat() method to write to the data property of the

sampleData event. For example, the following code generates a sine wave:

449ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

var mySound:Sound = new Sound();
mySound.addEventListener(SampleDataEvent.SAMPLE_DATA, sineWaveGenerator);
mySound.play();
function sineWaveGenerator(event:SampleDataEvent):void
{

for (var i:int = 0; i < 8192; i++)
{

var n:Number = Math.sin((i + event.position) / Math.PI / 4);
event.data.writeFloat(n);
event.data.writeFloat(n);

}
}

When you call Sound.play(), the application starts calling your event handler, requesting sound sample data. The

application continues to send events as the sound plays back until you stop providing data, or until you call

SoundChannel.stop().

The latency of the event varies from platform to platform, and could change in future versions of Flash Player and AIR.

Do not depend on a specific latency; calculate it instead. To calculate the latency, use the following formula:

(SampleDataEvent.position / 44.1) - SoundChannelObject.position

Provide from 2048 through 8192 samples to the data property of the SampleDataEvent object (for each call to the

event listener). For best performance, provide as many samples as possible (up to 8192). The fewer samples you

provide, the more likely it is that clicks and pops will occur during playback. This behavior can differ on various

platforms and can occur in various situations—for example, when resizing the browser. Code that works on one

platform when you provide only 2048 sample might not work as well when run on a different platform. If you require

the lowest latency possible, consider making the amount of data user-selectable.

If you provide fewer than 2048 samples (per call to the sampleData event listener), the application stops after playing

the remaining samples. The SoundChannel object then dispatches a SoundComplete event.

Modifying sound from mp3 data

Flash Player 10 and later, Adobe AIR 1.5 and later

You use the Sound.extract() method to extract data from a Sound object. You can use (and modify) that data to

write to the dynamic stream of another Sound object for playback. For example, the following code uses the bytes of a

loaded MP3 file and passes them through a filter function, upOctave():

450ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

var mySound:Sound = new Sound();
var sourceSnd:Sound = new Sound();
var urlReq:URLRequest = new URLRequest("test.mp3");
sourceSnd.load(urlReq);
sourceSnd.addEventListener(Event.COMPLETE, loaded);
function loaded(event:Event):void
{

mySound.addEventListener(SampleDataEvent.SAMPLE_DATA, processSound);
mySound.play();

}
function processSound(event:SampleDataEvent):void
{

var bytes:ByteArray = new ByteArray();
sourceSnd.extract(bytes, 8192);

 event.data.writeBytes(upOctave(bytes));
}
function upOctave(bytes:ByteArray):ByteArray
{

var returnBytes:ByteArray = new ByteArray();
bytes.position = 0;
while(bytes.bytesAvailable > 0)
{

returnBytes.writeFloat(bytes.readFloat());
returnBytes.writeFloat(bytes.readFloat());
if (bytes.bytesAvailable > 0)
{

bytes.position += 8;
}

}
return returnBytes;

}

Limitations on generated sounds

Flash Player 10 and later, Adobe AIR 1.5 and later

When you use a sampleData event listener with a Sound object, the only other Sound methods that are enabled are

Sound.extract() and Sound.play(). Calling any other methods or properties results in an exception. All methods

and properties of the SoundChannel object are still enabled.

Playing sounds

Flash Player 9 and later, Adobe AIR 1.0 and later

Playing a loaded sound can be as simple as calling the Sound.play() method for a Sound object, as follows:

 var snd:Sound = new Sound(new URLRequest("smallSound.mp3"));
 snd.play();

When playing back sounds using ActionScript 3.0, you can perform the following operations:

• Play a sound from a specific starting position

• Pause a sound and resume playback from the same position later

451ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

• Know exactly when a sound finishes playing

• Track the playback progress of a sound

• Change volume or panning while a sound plays

To perform these operations during playback, use the SoundChannel, SoundMixer, and SoundTransform classes.

The SoundChannel class controls the playback of a single sound. The SoundChannel.position property can be

thought of as a playhead, indicating the current point in the sound data that’s being played.

When an application calls the Sound.play() method, a new instance of the SoundChannel class is created to control

the playback.

Your application can play a sound from a specific starting position by passing that position, in terms of milliseconds,

as the startTime parameter of the Sound.play() method. It can also specify a fixed number of times to repeat the

sound in rapid succession by passing a numeric value in the loops parameter of the Sound.play() method.

When the Sound.play() method is called with both a startTime parameter and a loops parameter, the sound is

played back repeatedly from the same starting point each time, as shown in the following code:

 var snd:Sound = new Sound(new URLRequest("repeatingSound.mp3"));
 snd.play(1000, 3);

In this example, the sound is played from a point one second after the start of the sound, three times in succession.

Pausing and resuming a sound

Flash Player 9 and later, Adobe AIR 1.0 and later

If your application plays long sounds, like songs or podcasts, you probably want to let users pause and resume the

playback of those sounds. A sound cannot literally be paused during playback in ActionScript; it can only be stopped.

However, a sound can be played starting from any point. You can record the position of the sound at the time it was

stopped, and then replay the sound starting at that position later.

For example, let’s say your code loads and plays a sound file like this:

 var snd:Sound = new Sound(new URLRequest("bigSound.mp3"));
 var channel:SoundChannel = snd.play();

While the sound plays, the SoundChannel.position property indicates the point in the sound file that is currently

being played. Your application can store the position value before stopping the sound from playing, as follows:

 var pausePosition:int = channel.position;
 channel.stop();

To resume playing the sound, pass the previously stored position value to restart the sound from the same point it

stopped at before.

 channel = snd.play(pausePosition);

Monitoring playback

Flash Player 9 and later, Adobe AIR 1.0 and later

Your application might want to know when a sound stops playing so it can start playing another sound, or clean up

some resources used during the previous playback. The SoundChannel class dispatches an Event.SOUND_COMPLETE

event when its sound finishes playing. Your application can listen for this event and take appropriate action, as shown

below:

452ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

 import flash.events.Event;
 import flash.media.Sound;
 import flash.net.URLRequest;

 var snd:Sound = new Sound();
 var req:URLRequest = new URLRequest("smallSound.mp3");
 snd.load(req);

 var channel:SoundChannel = snd.play();
 channel.addEventListener(Event.SOUND_COMPLETE, onPlaybackComplete);

 public function onPlaybackComplete(event:Event)
 {
 trace("The sound has finished playing.");
 }

The SoundChannel class does not dispatch progress events during playback. To report on playback progress, your

application can set up its own timing mechanism and track the position of the sound playhead.

To calculate what percentage of a sound has been played, you can divide the value of the SoundChannel.position

property by the length of the sound data that’s being played:

 var playbackPercent:uint = 100 * (channel.position / snd.length);

However, this code only reports accurate playback percentages if the sound data was fully loaded before playback

began. The Sound.length property shows the size of the sound data that is currently loaded, not the eventual size of

the entire sound file. To track the playback progress of a streaming sound that is still loading, your application should

estimate the eventual size of the full sound file and use that value in its calculations. You can estimate the eventual

length of the sound data using the bytesLoaded and bytesTotal properties of the Sound object, as follows:

 var estimatedLength:int =
 Math.ceil(snd.length / (snd.bytesLoaded / snd.bytesTotal));
 var playbackPercent:uint = 100 * (channel.position / estimatedLength);

The following code loads a larger sound file and uses the Event.ENTER_FRAME event as its timing mechanism for

showing playback progress. It periodically reports on the playback percentage, which is calculated as the current

position value divided by the total length of the sound data:

453ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

 import flash.events.Event;
 import flash.media.Sound;
 import flash.net.URLRequest;

 var snd:Sound = new Sound();
 var req:URLRequest = new
 URLRequest("http://av.adobe.com/podcast/csbu_dev_podcast_epi_2.mp3");
 snd.load(req);

 var channel:SoundChannel;
 channel = snd.play();
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 channel.addEventListener(Event.SOUND_COMPLETE, onPlaybackComplete);

 function onEnterFrame(event:Event):void
 {
 var estimatedLength:int =
 Math.ceil(snd.length / (snd.bytesLoaded / snd.bytesTotal));
 var playbackPercent:uint =
 Math.round(100 * (channel.position / estimatedLength));
 trace("Sound playback is " + playbackPercent + "% complete.");
 }

 function onPlaybackComplete(event:Event)
 {
 trace("The sound has finished playing.");
 removeEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

After the sound data starts loading, this code calls the snd.play() method and stores the resulting SoundChannel

object in the channel variable. Then it adds an event listener to the main application for the Event.ENTER_FRAME

event and another event listener to the SoundChannel object for the Event.SOUND_COMPLETE event that occurs when

playback is complete.

Each time the application reaches a new frame in its animation, the onEnterFrame() method is called. The

onEnterFrame() method estimates the total length of the sound file based on the amount of data that has already been

loaded, and then it calculates and displays the current playback percentage.

When the entire sound has been played, the onPlaybackComplete() method executes, removing the event listener

for the Event.ENTER_FRAME event so that it doesn’t try to display progress updates after playback is done.

The Event.ENTER_FRAME event can be dispatched many times per second. In some cases, you won’t want to display

playback progress that frequently. In those cases, your application can set up its own timing mechanism using the

flash.util.Timer class; see “Working with dates and times” on page 1.

Stopping streaming sounds

Flash Player 9 and later, Adobe AIR 1.0 and later

There is a quirk in the playback process for sounds that are streaming—that is, for sounds that are still loading while

they are being played. When your application calls the SoundChannel.stop() method on a SoundChannel instance

that is playing back a streaming sound, the sound playback stops for one frame, and then on the next frame, it restarts

from the beginning of the sound. This occurs because the sound loading process is still underway. To stop both the

loading and the playback of a streaming sound, call the Sound.close() method.

454ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

Security considerations when loading and playing
sounds

Flash Player 9 and later, Adobe AIR 1.0 and later

Your application’s ability to access sound data can be limited according to the Flash Player or AIR security model. Each

sound is subject to the restrictions of two different security sandboxes, the sandbox for the content itself (the “content

sandbox”), and the sandbox for the application or object that loads and plays the sound (the “owner sandbox”). For

AIR application content in the application security sandbox, all sounds, including those loaded from other domains,

are accessible to content in the application security sandbox. However, content in other security security sandboxes

observe the same rules as content running in Flash Player. For more information about the Flash Player security model

in general, and the definition of sandboxes, see “Security” on page 1042.

The content sandbox controls whether detailed sound data can be extracted from the sound using the id3 property or

the SoundMixer.computeSpectrum() method. It doesn’t restrict the loading or playing of the sound file itself.

The domain of origin of the sound file defines the security limitations of the content sandbox. Generally, if a sound file

is located in the same domain or folder as the SWF file of the application or object that loads it, the application or object

will have full access to that sound file. If the sound comes from a different domain than the application does, it can still

be brought within the content sandbox by using a policy file.

Your application can pass a SoundLoaderContext object with a checkPolicyFile property as a parameter to the

Sound.load() method. Setting the checkPolicyFile property to true tells Flash Player or AIR to look for a policy

file on the server from which the sound is loaded. If a policy file exists, and it grants access to the domain of the loading

SWF file, the SWF file can load the sound file, access the id3 property of the Sound object, and call the

SoundMixer.computeSpectrum() method for loaded sounds.

The owner sandbox controls local playback of the sounds. The application or object that starts playing a sound defines

the owner sandbox.

The SoundMixer.stopAll() method silences the sounds in all SoundChannel objects that are currently playing, as

long as they meet the following criteria:

• The sounds were started by objects within the same owner sandbox.

• The sounds are from a source with a policy file that grants access to the domain of the application or object that

calls the SoundMixer.stopAll() method.

However, in an AIR application, content in the application security sandbox (content installed with the AIR

application) are not restricted by these security limitations.

To find out if the SoundMixer.stopAll() method will indeed stop all playing sounds, your application can call the

SoundMixer.areSoundsInaccessible() method. If that method returns a value of true, some of the sounds being

played are outside the control of the current owner sandbox and will not be stopped by the SoundMixer.stopAll()

method.

The SoundMixer.stopAll() method also stops the playhead from continuing for all sounds that were loaded from

external files. However, sounds that are embedded in FLA files and attached to frames in the timeline using the Flash

Authoring tool might start playing again if the animation moves to a new frame.

455ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

Controlling sound volume and panning

Flash Player 9 and later, Adobe AIR 1.0 and later

An individual SoundChannel object controls both the left and the right stereo channels for a sound. If an mp3 sound

is a monaural sound, the left and right stereo channels of the SoundChannel object will contain identical waveforms.

You can find out the amplitude of each stereo channel of the sound being played using the leftPeak and rightPeak

properties of the SoundChannel object. These properties show the peak amplitude of the sound waveform itself. They

do not represent the actual playback volume. The actual playback volume is a function of the amplitude of the sound

wave and the volume values set in the SoundChannel object and the SoundMixer class.

The pan property of a SoundChannel object can be used to specify a different volume level for each of the left and right

channels during playback. The pan property can have a value ranging from -1 to 1, where -1 means the left channel

plays at top volume while the right channel is silent, and 1 means the right channel plays at top volume while the left

channel is silent. Numeric values in between -1 and 1 set proportional values for the left and right channel values, and

a value of 0 means that both channels play at a balanced, mid-volume level.

The following code example creates a SoundTransform object with a volume value of 0.6 and a pan value of -1 (top left

channel volume and no right channel volume). It passes the SoundTransform object as a parameter to the play()

method, which applies that SoundTransform object to the new SoundChannel object that is created to control the

playback.

 var snd:Sound = new Sound(new URLRequest("bigSound.mp3"));
 var trans:SoundTransform = new SoundTransform(0.6, -1);
 var channel:SoundChannel = snd.play(0, 1, trans);

You can alter the volume and panning while a sound is playing by setting the pan or volume properties of a

SoundTransform object and then applying that object as the soundTransform property of a SoundChannel object.

You can also set global volume and pan values for all sounds at once using the soundTransform property of the

SoundMixer class, as the following example shows:

 SoundMixer.soundTransform = new SoundTransform(1, -1);

You can also use a SoundTransform object to set volume and pan values for a Microphone object (see “Capturing

sound input” on page 461) and for Sprite objects and SimpleButton objects.

The following example alternates the panning of the sound from the left channel to the right channel and back while

the sound plays.

456ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

 import flash.events.Event;
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.media.SoundMixer;
 import flash.net.URLRequest;

 var snd:Sound = new Sound();
 var req:URLRequest = new URLRequest("bigSound.mp3");
 snd.load(req);

 var panCounter:Number = 0;

 var trans:SoundTransform;
 trans = new SoundTransform(1, 0);
 var channel:SoundChannel = snd.play(0, 1, trans);
 channel.addEventListener(Event.SOUND_COMPLETE, onPlaybackComplete);

 addEventListener(Event.ENTER_FRAME, onEnterFrame);

 function onEnterFrame(event:Event):void
 {
 trans.pan = Math.sin(panCounter);
 channel.soundTransform = trans; // or SoundMixer.soundTransform = trans;
 panCounter += 0.05;
 }

 function onPlaybackComplete(event:Event):void
 {
 removeEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

This code starts by loading a sound file and then creating a new SoundTransform object with volume set to 1 (full

volume) and pan set to 0 (evenly balanced between left and right). Then it calls the snd.play() method, passing the

SoundTransform object as a parameter.

While the sound plays, the onEnterFrame() method executes repeatedly. The onEnterFrame() method uses the

Math.sin() function to generate a value between -1 and 1, a range that corresponds to the acceptable values of the

SoundTransform.pan property. The SoundTransform object’s pan property is set to the new value, and then the

channel’s soundTransform property is set to use the altered SoundTransform object.

To run this example, replace the filename bigSound.mp3 with the name of a local mp3 file. Then run the example. You

should hear the left channel volume getting louder while the right channel volume gets softer, and vice versa.

In this example, the same effect could be achieved by setting the soundTransform property of the SoundMixer class.

However, that would affect the panning of all sounds currently playing, not just the single sound being played by this

SoundChannel object.

Working with sound metadata

Flash Player 9 and later, Adobe AIR 1.0 and later

Sound files that use the mp3 format can contain additional data about the sound in the form of ID3 tags.

457ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

Not every mp3 file contains ID3 metadata. When a Sound object loads an mp3 sound file, it dispatches an Event.ID3

event if the sound file contains ID3 metadata. To prevent run-time errors, your application should wait to receive the

Event.ID3 event before accessing the Sound.id3 property for a loaded sound.

The following code shows how to recognize when the ID3 metadata for a sound file has been loaded:

 import flash.events.Event;
 import flash.media.ID3Info;
 import flash.media.Sound;

 var s:Sound = new Sound();
 s.addEventListener(Event.ID3, onID3InfoReceived);
 s.load("mySound.mp3");

 function onID3InfoReceived(event:Event)
 {
 var id3:ID3Info = event.target.id3;

 trace("Received ID3 Info:");
 for (var propName:String in id3)
 {
 trace(propName + " = " + id3[propName]);
 }
 }

This code starts by creating a Sound object and telling it to listen for the Event.ID3 event. When the sound file’s ID3

metadata is loaded, the onID3InfoReceived() method is called. The target of the Event object that is passed to the

onID3InfoReceived() method is the original Sound object, so the method then gets the Sound object’s id3 property

and then iterates through all of its named properties to trace their values.

Accessing raw sound data

Flash Player 9 and later, Adobe AIR 1.0 and later

The SoundMixer.computeSpectrum() method lets an application read the raw sound data for the waveform that is

currently being played. If more than one SoundChannel object is currently playing the

SoundMixer.computeSpectrum() method shows the combined sound data of every SoundChannel object mixed

together.

The sound data is returned as a ByteArray object containing 512 bytes of data, each of which contains a floating point

value between -1 and 1. These values represent the amplitude of the points in the sound waveform being played. The

values are delivered in two groups of 256, the first group for the left stereo channel and the second group for the right

stereo channel.

The SoundMixer.computeSpectrum() method returns frequency spectrum data rather than waveform data if the

FFTMode parameter is set to true. The frequency spectrum shows amplitude arranged by sound frequency, from

lowest frequency to highest. A Fast Fourier Transform (FFT) is used to convert the waveform data into frequency

spectrum data. The resulting frequency spectrum values range from 0 to roughly 1.414 (the square root of 2).

The following diagram compares the data returned from the computeSpectrum() method when the FFTMode

parameter is set to true and when it is set to false. The sound whose data was used for this diagram contains a loud

bass sound in the left channel and a drum hit sound in the right channel.

458ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

Values returned by the SoundMixer.computeSpectrum() method
A. fftMode=true B. fftMode=false

The computeSpectrum() method can also return data that has been resampled at a lower bit rate. Generally, this

results in smoother waveform data or frequency data at the expense of detail. The stretchFactor parameter controls

the rate at which the computeSpectrum() method data is sampled. When the stretchFactor parameter is set to 0,

the default, the sound data is sampled at a rate of 44.1 kHz. The rate is halved at each successive value of the

stretchFactor parameter, so a value of 1 specifies a rate of 22.05 kHz, a value of 2 specifies a rate of 11.025 kHz, and so

on. The computeSpectrum() method still returns 256 bytes per stereo channel when a higher stretchFactor value

is used.

The SoundMixer.computeSpectrum() method has some limitations:

• Because sound data from a microphone or from RTMP streams do not pass through the global SoundMixer object,

the SoundMixer.computeSpectrum() method will not return data from those sources.

• If one or more of the sounds being played come from sources outside the current content sandbox, security

restrictions will cause the SoundMixer.computeSpectrum() method to throw an error. For more detail about the

security limitations of the SoundMixer.computeSpectrum() method please see “Security considerations when

loading and playing sounds” on page 454and “Accessing loaded media as data” on page 1066.

However, in an AIR application, content in the application security sandbox (content installed with the AIR

application) are not restricted by these security limitations.

Building a simple sound visualizer

Flash Player 9 and later, Adobe AIR 1.0 and later

The following example uses the SoundMixer.computeSpectrum() method to show a chart of the sound waveform

that animates with each frame:

Left Channel Right Channel

Left Channel Right Channel

A

B

459ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

 import flash.display.Graphics;
 import flash.events.Event;
 import flash.media.Sound;
 import flash.media.SoundChannel;
 import flash.media.SoundMixer;
 import flash.net.URLRequest;

 const PLOT_HEIGHT:int = 200;
 const CHANNEL_LENGTH:int = 256;

 var snd:Sound = new Sound();
 var req:URLRequest = new URLRequest("bigSound.mp3");
 snd.load(req);

 var channel:SoundChannel;
 channel = snd.play();
 addEventListener(Event.ENTER_FRAME, onEnterFrame);
 snd.addEventListener(Event.SOUND_COMPLETE, onPlaybackComplete);

 var bytes:ByteArray = new ByteArray();

 function onEnterFrame(event:Event):void
 {
 SoundMixer.computeSpectrum(bytes, false, 0);

 var g:Graphics = this.graphics;

 g.clear();
 g.lineStyle(0, 0x6600CC);
 g.beginFill(0x6600CC);
 g.moveTo(0, PLOT_HEIGHT);

 var n:Number = 0;

 // left channel
 for (var i:int = 0; i < CHANNEL_LENGTH; i++)
 {
 n = (bytes.readFloat() * PLOT_HEIGHT);
 g.lineTo(i * 2, PLOT_HEIGHT - n);
 }
 g.lineTo(CHANNEL_LENGTH * 2, PLOT_HEIGHT);

460ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

 g.endFill();

 // right channel
 g.lineStyle(0, 0xCC0066);
 g.beginFill(0xCC0066, 0.5);
 g.moveTo(CHANNEL_LENGTH * 2, PLOT_HEIGHT);

 for (i = CHANNEL_LENGTH; i > 0; i--)
 {
 n = (bytes.readFloat() * PLOT_HEIGHT);
 g.lineTo(i * 2, PLOT_HEIGHT - n);
 }
 g.lineTo(0, PLOT_HEIGHT);
 g.endFill();
 }

 function onPlaybackComplete(event:Event)
 {
 removeEventListener(Event.ENTER_FRAME, onEnterFrame);
 }

This example first loads and plays a sound file and then listens for the Event.ENTER_FRAME event which will trigger

the onEnterFrame() method while the sound plays. The onEnterFrame() method starts by calling the

SoundMixer.computeSpectrum() method, which stores the sound wave data in the bytes ByteArray object.

The sound waveform is plotted using the vector drawing API. A for loop cycles through the first 256 data values,

representing the left stereo channel, and draws a line from each point to the next using the Graphics.lineTo()

method. A second for loop cycles through the next set of 256 values, plotting them in reverse order this time, from

right to left. The resulting waveform plots can produce an interesting mirror-image effect, as shown in the following

image.

461ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

Capturing sound input

Flash Player 9 and later, Adobe AIR 1.0 and later

The Microphone class lets your application connect to a microphone or other sound input device on the user’s system

and broadcast the input audio to that system’s speakers or send the audio data to a remote server, such as Flash Media

Server. You can access the raw audio data from the microphone and record or process it; you can also send the audio

directly to the system’s speakers or send compressed audio data to a remote server. You can use either Speex or

Nellymoser codec for data sent to a remote server. (The Speex codec is supported starting with Flash Player 10 and

Adobe AIR 1.5.)

More Help topics

Michael Chaize: AIR, Android, and the Microphone

Christophe Coenraets: Voice Notes for Android

Accessing a microphone

Flash Player 9 and later, Adobe AIR 1.0 and later

The Microphone class does not have a constructor method. Instead, you use the static

Microphone.getMicrophone() method to obtain a new Microphone instance, as shown below:

 var mic:Microphone = Microphone.getMicrophone();

Calling the Microphone.getMicrophone() method without a parameter returns the first sound input device

discovered on the user’s system.

A system can have more than one sound input device attached to it. Your application can use the Microphone.names

property to get an array of the names of all available sound input devices. Then it can call the

Microphone.getMicrophone() method with an index parameter that matches the index value of a device’s name in

the array.

A system might not have a microphone or other sound input device attached to it. You can use the Microphone.names

property or the Microphone.getMicrophone() method to check whether the user has a sound input device installed.

If the user doesn’t have a sound input device installed, the names array has a length of zero, and the getMicrophone()

method returns a value of null.

When your application calls the Microphone.getMicrophone() method, Flash Player displays the Flash Player

Settings dialog box, which prompts the user to either allow or deny Flash Player access to the camera and microphone

on the system. After the user clicks on either the Allow button or the Deny button in this dialog, a StatusEvent is

dispatched. The code property of that StatusEvent instance indicates whether microphone access was allowed or

denied, as shown in this example:

http://www.riagora.com/2010/08/air-android-and-the-microphone/
http://coenraets.org/blog/air-for-android-samples/voice-notes-for-android/

462ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

 import flash.media.Microphone;

 var mic:Microphone = Microphone.getMicrophone();
 mic.addEventListener(StatusEvent.STATUS, this.onMicStatus);

 function onMicStatus(event:StatusEvent):void
 {
 if (event.code == "Microphone.Unmuted")
 {
 trace("Microphone access was allowed.");
 }
 else if (event.code == "Microphone.Muted")
 {
 trace("Microphone access was denied.");
 }
 }

The StatusEvent.code property will contain “Microphone.Unmuted” if access was allowed, or

“Microphone.Muted” if access was denied.

The Microphone.muted property is set to true or false when the user allows or denies microphone access,

respectively. However, the muted property is not set on the Microphone instance until the StatusEvent has been

dispatched, so your application should also wait for the StatusEvent.STATUS event to be dispatched before checking

the Microphone.muted property.

In order for Flash Player to display the settings dialog, the application window must be large enough to display it (at

least 215 by 138 pixels). Otherwise, access is denied automatically.

Content running in the AIR application sandbox does not need the permission of the user to access the microphone.

Thus, status events for muting and unmuting the microphone are never dispatched. Content running in AIR outside

the application sandbox does require permission from the user, so these status events can be dispatched.

Routing microphone audio to local speakers

Flash Player 9 and later, Adobe AIR 1.0 and later

Audio input from a microphone can be routed to the local system speakers by calling the

Microphone.setLoopback() method with a parameter value of true.

When sound from a local microphone is routed to local speakers, there is a risk of creating an audio feedback loop,

which can cause loud squealing sounds and can potentially damage sound hardware. Calling the

Microphone.setUseEchoSuppression() method with a parameter value of true reduces, but does not completely

eliminate, the risk that audio feedback will occur. Adobe recommends you always call

Microphone.setUseEchoSuppression(true) before calling Microphone.setLoopback(true), unless you are

certain that the user is playing back the sound using headphones or something other than speakers.

The following code shows how to route the audio from a local microphone to the local system speakers:

 var mic:Microphone = Microphone.getMicrophone();
 mic.setUseEchoSuppression(true);
 mic.setLoopBack(true);

463ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

Altering microphone audio

Flash Player 9 and later, Adobe AIR 1.0 and later

Your application can alter the audio data that comes from a microphone in two ways. First, it can change the gain of

the input sound, which effectively multiplies the input values by a specified amount to create a louder or quieter sound.

The Microphone.gain property accepts numeric values between 0 and 100 inclusive. A value of 50 acts like a

multiplier of one and specifies normal volume. A value of zero acts like a multiplier of zero and effectively silences the

input audio. Values above 50 specify higher than normal volume.

Your application can also change the sample rate of the input audio. Higher sample rates increase sound quality, but

they also create denser data streams that use more resources for transmission and storage. The Microphone.rate

property represents the audio sample rate measured in kilohertz (kHz). The default sample rate is 8 kHz. You can set

the Microphone.rate property to a value higher than 8 kHz if your microphone supports the higher rate. For

example, setting the Microphone.rate property to a value of 11 sets the sample rate to 11 kHz; setting it to 22 sets the

sample rate to 22 kHz, and so on. The sample rates available depend on the selected codec. When you use the

Nellymoser codec, you can specify 5, 8, 11, 16, 22 and 44 kHz as the sample rate. When you use Speex codec (available

starting in Flash Player 10 and Adobe AIR 1.5), you can only use 16 kHz.

Detecting microphone activity

Flash Player 9 and later, Adobe AIR 1.0 and later

To conserve bandwidth and processing resources, Flash Player tries to detect when no sound is being transmitted by

a microphone. When the microphone’s activity level stays below the silence level threshold for a period of time, Flash

Player stops transmitting the audio input and dispatches a simple ActivityEvent instead. If you use the Speex codec

(available in Flash Player 10 or later and Adobe AIR 1.5 or later), set the silence level to 0, to ensure that the application

continuously transmits audio data. Speex voice activity detection automatically reduces bandwidth.

Note: A Microphone object only dispatches Activity events when your application is monitoring the microphone. Thus, if

you do not call setLoopBack(true), add a listener for sample data events, or attach the microphone to a NetStream

object, then no activity events are dispatched.

Three properties of the Microphone class monitor and control the detection of activity:

• The read-only activityLevel property indicates the amount of sound the microphone is detecting, on a scale

from 0 to 100.

• The silenceLevel property specifies the amount of sound needed to activate the microphone and dispatch an

ActivityEvent.ACTIVITY event. The silenceLevel property also uses a scale from 0 to 100, and the default

value is 10.

• The silenceTimeout property describes the number of milliseconds that the activity level must stay below the

silence level, until an ActivityEvent.ACTIVITY event is dispatched to indicate that the microphone is now silent.

The default silenceTimeout value is 2000.

Both the Microphone.silenceLevel property and the Microphone.silenceTimeout property are read only, but

their values can be changed by using the Microphone.setSilenceLevel() method.

In some cases, the process of activating the microphone when new activity is detected can cause a short delay. Keeping

the microphone active at all times can remove such activation delays. Your application can call the

Microphone.setSilenceLevel() method with the silenceLevel parameter set to zero to tell Flash Player to keep

the microphone active and keep gathering audio data, even when no sound is being detected. Conversely, setting the

silenceLevel parameter to 100 prevents the microphone from being activated at all.

464ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

The following example displays information about the microphone and reports on activity events and status events

dispatched by a Microphone object:

 import flash.events.ActivityEvent;
 import flash.events.StatusEvent;
 import flash.media.Microphone;

 var deviceArray:Array = Microphone.names;
 trace("Available sound input devices:");
 for (var i:int = 0; i < deviceArray.length; i++)
 {
 trace(" " + deviceArray[i]);
 }

 var mic:Microphone = Microphone.getMicrophone();
 mic.gain = 60;
 mic.rate = 11;
 mic.setUseEchoSuppression(true);
 mic.setLoopBack(true);
 mic.setSilenceLevel(5, 1000);

 mic.addEventListener(ActivityEvent.ACTIVITY, this.onMicActivity);
 mic.addEventListener(StatusEvent.STATUS, this.onMicStatus);

 var micDetails:String = "Sound input device name: " + mic.name + '\n';
 micDetails += "Gain: " + mic.gain + '\n';
 micDetails += "Rate: " + mic.rate + " kHz" + '\n';
 micDetails += "Muted: " + mic.muted + '\n';
 micDetails += "Silence level: " + mic.silenceLevel + '\n';
 micDetails += "Silence timeout: " + mic.silenceTimeout + '\n';
 micDetails += "Echo suppression: " + mic.useEchoSuppression + '\n';
 trace(micDetails);

 function onMicActivity(event:ActivityEvent):void
 {
 trace("activating=" + event.activating + ", activityLevel=" +
 mic.activityLevel);
 }

 function onMicStatus(event:StatusEvent):void
 {
 trace("status: level=" + event.level + ", code=" + event.code);
 }

When you run the above example, speak or makes noises into your system microphone and watch the resulting trace

statements appear in a console or debug window.

Sending audio to and from a media server

Flash Player 9 and later, Adobe AIR 1.0 and later

Additional audio capabilities are available when using ActionScript with a streaming media server such as Flash Media

Server.

465ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

In particular, your application can attach a Microphone object to a NetStream object and transmit data directly from

the user’s microphone to the server. Audio data can also be streamed from the server to an application and played back

as part of a MovieClip or by using a Video object.

The Speex codec is available starting with Flash Player 10 and Adobe AIR 1.5. To set the codec used for compressed

audio sent to the media server, set the codec property of the Microphone object. This property can have two values,

which are enumerated in the SoundCodec class. Setting the codec property to SoundCodec.SPEEX selects the Speex

codec for compressing audio. Setting the property to SoundCodec.NELLYMOSER (the default) selects the Nellymoser

codec for compressing audio.

For more information, see the Flash Media Server documentation online at www.adobe.com/go/learn_fms_docs_en.

Capturing microphone sound data

Flash Player 10.1 and later, Adobe AIR 2 and later

In Flash Player 10.1 and AIR 2, or later, you can capture data from a microphone data as a byte array of floating point

values. Each value represents a sample of monophonic audio data.

To get microphone data, set an event listener for the sampleData event of the Microphone object. The Microphone

object dispatches sampleData events periodically as the microphone buffer is filled with sound samples. The

SampleDataEvent object has a data property that is a byte array of sound samples. The samples are each represented

as floating point values, each representing a monophonic sound sample.

The following code captures microphone sound data into a ByteArray object named soundBytes:

var mic:Microphone = Microphone.getMicrophone();
mic.setSilenceLevel(0, DELAY_LENGTH);
mic.addEventListener(SampleDataEvent.SAMPLE_DATA, micSampleDataHandler);
function micSampleDataHandler(event:SampleDataEvent):void {

while(event.data.bytesAvailable) {
var sample:Number = event.data.readFloat();
soundBytes.writeFloat(sample);

}
}

You can reuse the sample bytes as playback audio for a Sound object. If you do, you should set the rate property of

the Microphone object to 44, which is the sample rate used by Sound objects. (You can also convert microphone

samples captured at a lower rate to 44 kHz rate required by the Sound object.) Also, keep in mind that the Microphone

object captures monophonic samples, whereas the Sound object uses stereo sound; so you should write each of the

bytes captured by the Microphone object to the Sound object twice. The following example captures 4 seconds of

microphone data and plays it back using a Sound object:

http://www.adobe.com/go/learn_fms_docs_en

466ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

const DELAY_LENGTH:int = 4000;
var mic:Microphone = Microphone.getMicrophone();
mic.setSilenceLevel(0, DELAY_LENGTH);
mic.gain = 100;
mic.rate = 44;
mic.addEventListener(SampleDataEvent.SAMPLE_DATA, micSampleDataHandler);

var timer:Timer = new Timer(DELAY_LENGTH);
timer.addEventListener(TimerEvent.TIMER, timerHandler);
timer.start();

function micSampleDataHandler(event:SampleDataEvent):void
{
 while(event.data.bytesAvailable)
 {
 var sample:Number = event.data.readFloat();
 soundBytes.writeFloat(sample);
 }
}
var sound:Sound = new Sound();
var channel:SoundChannel;
function timerHandler(event:TimerEvent):void
{
 mic.removeEventListener(SampleDataEvent.SAMPLE_DATA, micSampleDataHandler);
 timer.stop();
 soundBytes.position = 0;
 sound.addEventListener(SampleDataEvent.SAMPLE_DATA, playbackSampleHandler);

channel.addEventListener(Event.SOUND_COMPLETE, playbackComplete);
 channel = sound.play();
}

function playbackSampleHandler(event:SampleDataEvent):void
{
 for (var i:int = 0; i < 8192 && soundBytes.bytesAvailable > 0; i++)
 {
 trace(sample);
 var sample:Number = soundBytes.readFloat();
 event.data.writeFloat(sample);
 event.data.writeFloat(sample);
 }
}

function playbackComplete(event:Event):void
{

trace("Playback finished.");
}

For more information on playing back sounds from sound sample data, see “Working with dynamically generated

audio” on page 448.

467ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

Sound example: Podcast Player

Flash Player 9 and later, Adobe AIR 1.0 and later

A podcast is a sound file that is distributed over the Internet, on demand or by subscription. Podcasts are usually

published as part of a series, which is also called a podcast channel. Because podcast episodes can last anywhere from

one minute to many hours, they are usually streamed while playing. Podcast episodes, which are also called items, are

usually delivered in the mp3 file format. Video podcasts are also popular, but this sample application plays only audio

podcasts that use mp3 files.

This example is not a full-featured podcast aggregator application. For example, it does not manage subscriptions to

specific podcasts or remember which podcasts the user has listened to the next time the application is run. It could

serve as a starting point for a more full-featured podcast aggregator.

The Podcast Player example illustrates the following ActionScript programming techniques:

• Reading an external RSS feed and parsing its XML content

• Creating a SoundFacade class to simplify loading and playback of sound files

• Displaying sound playback progress

• Pausing and resuming sound playback

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

Podcast Player application files can be found in the folder Samples/PodcastPlayer. The application consists of the

following files:

File Description

PodcastPlayer.mxml

or

PodcastPlayer.fla

The user interface for the application for Flex (MXML) or Flash (FLA).

comp/example/progra

mmingas3/podcastplay

er/PodcastPlayer.as

Document class containing the user interface logic for the podcast player (Flash only).

SoundPlayer.mxml An MXML component that displays playback buttons and progress bars and controls sound playback, for Flex only.

main.css Styles for the application user interface (Flex only).

images/ Icons for styling the buttons (Flex only).

comp/example/progra

mmingas3/podcastplay

er/SoundPlayer.as

Class for the SoundPlayer movie clip symbol containing the user interface logic for the sound player (Flash only).

comp/example/progra

mmingas3/podcastplay

er/PlayButtonRenderer.

as

Custom cell renderer for displaying a play button in a data grid cell (Flash only).

com/example/program

mingas3/podcastplayer

/RSSBase.as

A base class that provides common properties and methods for the RSSChannel class and the RSSItem class.

com/example/program

mingas3/podcastplayer

/RSSChannel.as

An ActionScript class that holds data about an RSS channel.

http://www.adobe.com/go/learn_programmingAS3samples_flash

468ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

Reading RSS data for a podcast channel

Flash Player 9 and later, Adobe AIR 1.0 and later

The Podcast Player application starts by reading information about a number of podcast channels and their episodes:

1. First, the application reads an XML configuration file that contains a list of podcast channels and displays the list of

channels to the user.

2. When the user selects one of the podcast channels, it reads the RSS feed for the channel and displays a list of the

channel episodes.

This example uses the URLLoader utility class to retrieve text-based data from a remote location or a local file. The

Podcast Player first creates a URLLoader object to get a list of RSS feeds in XML format from the playerconfig.xml file.

Next, when the user selects a specific feed from the list, a new URLLoader object is created to read the RSS data from

that feed’s URL.

Simplifying sound loading and playback using the SoundFacade class

Flash Player 9 and later, Adobe AIR 1.0 and later

The ActionScript 3.0 sound architecture is powerful but complex. Applications that only need basic sound loading and

playback features can use a class that hides some of the complexity by providing a simpler set of method calls and

events. In the world of software design patterns, such a class is called a facade.

The SoundFacade class presents a single interface for performing the following tasks:

• Loading sound files using a Sound object, a SoundLoaderContext object, and the SoundMixer class

• Playing sound files using the Sound object and the SoundChannel object

• Dispatching playback progress events

• Pausing and resuming playback of the sound using the Sound object and the SoundChannel object

The SoundFacade class tries to offer most of the functionality of the ActionScript sound classes with less complexity.

The following code shows the class declaration, the class properties, and the SoundFacade() constructor method:

com/example/program

mingas3/podcastplayer

/RSSItem.as

An ActionScript class that holds data about an RSS item.

com/example/program

mingas3/podcastplayer

/SoundFacade.as

The main ActionScript class for the application. It encapsulates the methods and events of the Sound class and the

SoundChannel class and adds support for pausing and resuming playback.

com/example/program

mingas3/podcastplayer

/URLService.as

An ActionScript class that retrieves data from a remote URL.

playerconfig.xml An XML file containing a list of RSS feeds that represent podcast channels.

comp/example/progra

mmingas3/utils/DateUt

il.as

Class that is used for easy date formatting (Flash only).

File Description

469ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

 public class SoundFacade extends EventDispatcher
 {
 public var s:Sound;
 public var sc:SoundChannel;
 public var url:String;
 public var bufferTime:int = 1000;

 public var isLoaded:Boolean = false;
 public var isReadyToPlay:Boolean = false;
 public var isPlaying:Boolean = false;
 public var isStreaming:Boolean = true;
 public var autoLoad:Boolean = true;
 public var autoPlay:Boolean = true;

 public var pausePosition:int = 0;

 public static const PLAY_PROGRESS:String = "playProgress";
 public var progressInterval:int = 1000;
 public var playTimer:Timer;

 public function SoundFacade(soundUrl:String, autoLoad:Boolean = true,
 autoPlay:Boolean = true, streaming:Boolean = true,
 bufferTime:int = -1):void
 {
 this.url = soundUrl;

 // Sets Boolean values that determine the behavior of this object
 this.autoLoad = autoLoad;
 this.autoPlay = autoPlay;
 this.isStreaming = streaming;

 // Defaults to the global bufferTime value
 if (bufferTime < 0)
 {
 bufferTime = SoundMixer.bufferTime;
 }

 // Keeps buffer time reasonable, between 0 and 30 seconds
 this.bufferTime = Math.min(Math.max(0, bufferTime), 30000);

 if (autoLoad)
 {
 load();
 }
 }

The SoundFacade class extends the EventDispatcher class so that it can dispatch its own events. The class code first

declares properties for a Sound object and a SoundChannel object. The class also stores the value of the URL of the

sound file and a bufferTime property to use when streaming the sound. In addition, it accepts some Boolean

parameter values that affect the loading and playback behavior:

• The autoLoad parameter tells the object that sound loading should start as soon as this object is created.

• The autoPlay parameter indicates that sound playing should start as soon as enough sound data has been loaded.

If this is a streaming sound, playback will begin as soon as enough data, as specified by the bufferTime property,

has loaded.

470ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

• The streaming parameter indicates that this sound file can start playing before loading has completed.

The bufferTime parameter defaults to a value of -1. If the constructor method detects a negative value in the

bufferTime parameter, it sets the bufferTime property to the value of SoundMixer.bufferTime. This lets the

application default to the global SoundMixer.bufferTime value as desired.

If the autoLoad parameter is set to true, the constructor method immediately calls the following load() method to

start loading the sound file:

 public function load():void
 {
 if (this.isPlaying)
 {
 this.stop();
 this.s.close();
 }
 this.isLoaded = false;

 this.s = new Sound();

 this.s.addEventListener(ProgressEvent.PROGRESS, onLoadProgress);
 this.s.addEventListener(Event.OPEN, onLoadOpen);
 this.s.addEventListener(Event.COMPLETE, onLoadComplete);
 this.s.addEventListener(Event.ID3, onID3);
 this.s.addEventListener(IOErrorEvent.IO_ERROR, onIOError);
 this.s.addEventListener(SecurityErrorEvent.SECURITY_ERROR, onIOError);

 var req:URLRequest = new URLRequest(this.url);

 var context:SoundLoaderContext = new SoundLoaderContext(this.bufferTime, true);
 this.s.load(req, context);
 }

The load() method creates a new Sound object and then adds listeners for all of the important sound events. Then it

tells the Sound object to load the sound file, using a SoundLoaderContext object to pass in the bufferTime value.

Because the url property can be changed, a SoundFacade instance can be used to play different sound files in

succession: simply change the url property and call the load() method, and the new sound file will be loaded.

The following three event listener methods show how the SoundFacade object tracks loading progress and decides

when to start playing the sound:

471ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

 public function onLoadOpen(event:Event):void
 {
 if (this.isStreaming)
 {
 this.isReadyToPlay = true;
 if (autoPlay)
 {
 this.play();
 }
 }
 this.dispatchEvent(event.clone());
 }

 public function onLoadProgress(event:ProgressEvent):void
 {
 this.dispatchEvent(event.clone());
 }

 public function onLoadComplete(event:Event):void
 {
 this.isReadyToPlay = true;
 this.isLoaded = true;
 this.dispatchEvent(evt.clone());

 if (autoPlay && !isPlaying)
 {
 play();
 }
 }

The onLoadOpen() method executes when sound loading starts. If the sound can be played in streaming mode, the

onLoadComplete() method sets the isReadyToPlay flag to true right away. The isReadyToPlay flag determines

whether the application can start the sound playing, perhaps in response to a user action like clicking a Play button.

The SoundChannel class manages the buffering of sound data, so there is no need to explicitly check whether enough

data has been loaded before calling the play() method.

The onLoadProgress() method executes periodically during the loading process. It simply dispatches a clone of its

ProgressEvent object for use by code that uses this SoundFacade object.

When the sound data has been fully loaded the onLoadComplete() method executes, calling the play() method for

non-streaming sounds if needed. The play() method itself is shown below.

472ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

 public function play(pos:int = 0):void
 {
 if (!this.isPlaying)
 {
 if (this.isReadyToPlay)
 {
 this.sc = this.s.play(pos);
 this.sc.addEventListener(Event.SOUND_COMPLETE, onPlayComplete);
 this.isPlaying = true;

 this.playTimer = new Timer(this.progressInterval);
 this.playTimer.addEventListener(TimerEvent.TIMER, onPlayTimer);
 this.playTimer.start();
 }
 }
 }

The play() method calls the Sound.play() method if the sound is ready to play. The resulting SoundChannel object

is stored in the sc property. The play() method then creates a Timer object that will be used to dispatch playback

progress events at regular intervals.

Displaying playback progress

Flash Player 9 and later, Adobe AIR 1.0 and later

Creating a Timer object to drive playback monitoring is complex operation that you should only have to code once.

Encapsulating this Timer logic in a reusable class like the SoundFacade class lets applications listen to the same kinds

of progress events when a sound is loading and when it is playing.

The Timer object that is created by the SoundFacade.play() method dispatches a TimerEvent instance every second.

The following onPlayTimer() method executes whenever a new TimerEvent arrives:

 public function onPlayTimer(event:TimerEvent):void
 {
 var estimatedLength:int =
 Math.ceil(this.s.length / (this.s.bytesLoaded / this.s.bytesTotal));
 var progEvent:ProgressEvent =
 new ProgressEvent(PLAY_PROGRESS, false, false, this.sc.position, estimatedLength);
 this.dispatchEvent(progEvent);
 }

The onPlayTimer() method implements the size estimation technique described in the section “Monitoring

playback” on page 451. Then it creates a new ProgressEvent instance with an event type of

SoundFacade.PLAY_PROGRESS, with the bytesLoaded property set to the current position of the SoundChannel

object and the bytesTotal property set to the estimated length of the sound data.

Pausing and resuming playback

Flash Player 9 and later, Adobe AIR 1.0 and later

The SoundFacade.play() method shown previously accepts a pos parameter corresponding to a starting position in

the sound data. If the pos value is zero, the sound starts playing from the beginning.

The SoundFacade.stop() method also accepts a pos parameter as shown here:

473ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with sound

Last updated 10/9/2017

 public function stop(pos:int = 0):void
 {
 if (this.isPlaying)
 {
 this.pausePosition = pos;
 this.sc.stop();
 this.playTimer.stop();
 this.isPlaying = false;
 }
 }

Whenever the SoundFacade.stop() method is called, it sets the pausePosition property so that the application

knows where to position the playhead if the user wants to resume playback of the same sound.

The SoundFacade.pause() and SoundFacade.resume() methods shown below invoke the SoundFacade.stop()

and SoundFacade.play() methods respectively, passing a pos parameter value each time.

 public function pause():void
 {
 stop(this.sc.position);
 }

 public function resume():void
 {
 play(this.pausePosition);
 }

The pause() method passes the current SoundChannel.position value to the play() method, which stores that

value in the pausePosition property. The resume() method starts playing the same sound again using the

pausePosition value as the starting point.

Extending the Podcast Player example

Flash Player 9 and later, Adobe AIR 1.0 and later

This example presents a bare-bones Podcast Player that showcases the use of the reusable SoundFacade class. You

could add other features to enhance the usefulness of this application, including the following:

• Store the list of feeds and usage information about each episode in a SharedObject instance that can be used the

next time the user runs the application.

• Let the user add his or her own RSS feeds to the list of podcast channels.

• Remember the position of the playhead when the user stops or leaves an episode, so it can be restarted from that

point next time the user runs the application.

• Download mp3 files of episodes for listening offline, when the user is not connected to the Internet.

• Add subscription features that periodically check for new episodes in a podcast channel and update the episode list

automatically.

• Add podcast searching and browsing functionality using an API from a podcast hosting service like Odeo.com.

474

Last updated 10/9/2017

Chapter 25: Working with video

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash video is one of the standout technologies on the Internet. However, the traditional presentation of video—in a

rectangular screen with a progress bar and control buttons underneath—is only one possible use of video. Through

ActionScript, you have fine-tuned access to and control over video loading, presentation, and playback.

Basics of video

Flash Player 9 and later, Adobe AIR 1.0 and later

One important capability of Adobe® Flash® Player and Adobe® AIR™ is the ability to display and manipulate video

information with ActionScript in the same way that you can manipulate other visual content such as images,

animation, text, and so on. When you create a Flash Video (FLV) file in Adobe Flash CS4 Professional, you have the

option to select a skin that includes common playback controls. However, there is no reason you need to limit yourself

to the options available. Using ActionScript, you have fine-tuned control over loading, displaying, and playback of

video—meaning you could create your own video player skin, or use your video in any less traditional way that you

want. Working with video in ActionScript involves working with a combination of several classes:

• Video class: The classic video content box on the Stage is an instance of the Video class. The Video class is a display

object, so it can be manipulated using the same techniques that can be applied to other display objects, such as

positioning, applying transformations, applying filters and blending modes, and so forth.

• StageVideo class: The Video class typically uses software decoding and rendering. When GPU hardware

acceleration is available on a device, your application can take best advantage of hardware accelerated presentation

by switching to the StageVideo class. The StageVideo API includes a set of events that tell your code when to switch

between StageVideo and Video objects. Stage video imposes some minor restrictions on video playback. If your

application accepts those limitations, implement the StageVideo API. See “Guidelines and limitations” on page 514.

• NetStream class: When you’re loading a video file to be controlled by ActionScript, a NetStream instance represents

the source of the video content—in this case, a stream of video data. Using a NetStream instance also involves using

a NetConnection object, which is the connection to the video file—like the tunnel that the video data is fed through.

• Camera class: When you’re working with video data from a camera connected to the user’s computer, a Camera

instance represents the source of the video content—the user’s camera and the video data it makes available. New

in Flash Player 11.4 and AIR 3.4, you can use a camera to feed StageVideo.

When you’re loading external video, you can load the file from a standard web server for progressive download, or you

can work with streaming video delivered by a specialized server such as Adobe’s Flash® Media Server.

Important concepts and terms

Cue point A marker that can be placed at a specific moment in time in a video file, for example to act like a bookmark

for locating that point in time, or to provide additional data that is associated with that moment in time.

Encoding The process of taking video data in one format and converting it to another video data format; for example,

taking a high-resolution source video and converting it to a format that’s suitable for Internet delivery.

Frame A single segment of video information; each frame is like a still image representing a snapshot of a moment in

time. By playing frames in sequence at high speed, the illusion of motion is created.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/media/Video.html
http://help.stage.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/media/StageVideo.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/NetStream.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/media/Camera.html

475ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Keyframe A video frame which contains the full information for the frame. Other frames that follow a keyframe only

contain information about how they differ from the keyframe, rather than containing the full frame’s worth of

information.

Metadata Information about a video file that is embedded within the video file and retrieved when the video has

loaded.

Progressive download When a video file is delivered from a standard web server, the video data is loaded using

progressive download, meaning the video information loads in sequence. This has the benefit that the video can begin

playing before the entire file is downloaded; however, it prevents you from jumping ahead to a part of the video that

hasn’t loaded.

Streaming As an alternative to progressive download, a special video server can be used to deliver video over the

Internet using a technique known as streaming (sometimes called “true streaming”). With streaming, the viewer’s

computer never downloads the entire video at one time. To speed up download times, at any moment the computer

only needs a portion of the total video information. Because a special server controls the delivery of the video content,

any part of the video can be accessed at any time, rather than needing to wait for it to download before accessing it.

Understanding video formats

Flash Player 9 and later, Adobe AIR 1.0 and later

In addition to the Adobe FLV video format, Flash Player and Adobe AIR support video and audio encoded in H.264

and HE-AAC from within MPEG-4 standard file formats. These formats stream high quality video at lower bit rates.

Developers can leverage industry standard tools, including Adobe Premiere Pro and Adobe After Effects, to create and

deliver compelling video content.

More Help topics

Flash Media Server: Supported codecs

Adobe HTTP Dynamic Streaming

Encoding video for mobile devices

AIR on Android can decode a wide range of H.264 videos. However, only a small subset of H.264 videos is suited to

have a smooth playback on mobile phones. It is because many mobile phones are constrained for processing power.

Adobe Flash Player for mobile can decode H.264 videos using in-built hardware acceleration. This decoding assures

better quality at lower power consumption.

Type Format Container

Video H.264 MPEG-4: MP4, M4V, F4V, 3GPP

Video Sorenson Spark FLV file

Video ON2 VP6 FLV file

Audio AAC+ / HE-AAC / AAC v1 / AAC v2 MPEG-4:MP4, M4V, F4V, 3GPP

Audio Mp3 Mp3

Audio Nellymoser FLV file

Audio Speex FLV file

http://help.adobe.com/en_US/FlashMediaServer/3.5_TechOverview/WS5b3ccc516d4fbf351e63e3d119ed944a1a-7ffa.html#WS5b3ccc516d4fbf351e63e3d119ed944a1a-7fe7
http://help.adobe.com/en_US/HTTPStreaming/1.0/Using/index.html

476ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

H.264 standard supports several encoding techniques. Only high-end devices smoothly play videos with complex

profiles and levels. However, a majority of devices can play video encoded in baseline profile. On mobile devices,

hardware acceleration is available for a subset of these techniques. The profile and the level parameters define this

subset of encoding techniques and settings used by the encoder. For developers, it translates into encoding the video

in selected resolution which plays well on most devices.

Though resolutions that benefit from hardware acceleration vary from device to device, but most devices support the

following standard resolutions.

Note: Flash Player supports every level and profile of the H.264 standard. Adhering to these recommendations ensures

hardware acceleration and better user experience on most devices. These recommendations are not mandatory.

For a detailed discussion and encoding settings in Adobe Media Encoder CS5, see Recommendations for encoding

H.264 video for Flash Player 10.1 on mobile devices.

Note: On iOS, only video encoded with the Sorenson Spark and On2 VP6 codecs can be played back using the Video class.

You can play back H.264 encoded video in the device video player by launching the URL to the video using the

flash.net.navigateToURL() function. You can also play back H.264 video using the <video> tag in an html page

displayed in a StageWebView object.

Flash Player and AIR compatibility with encoded video files

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash Player 7 supports FLV files that are encoded with the Sorenson™ Spark™ video codec. Flash Player 8 supports FLV

files encoded with Sorenson Spark or On2 VP6 encoder in Flash Professional 8. The On2 VP6 video codec supports

an alpha channel.

Flash Player 9.0.115.0 and later versions support files derived from the standard MPEG-4 container format. These files

include F4V, MP4, M4A, MOV, MP4V, 3GP, and 3G2, if they contain H.264 video or HE-AAC v2 encoded audio, or

both. H.264 delivers higher quality video at lower bit rates when compared to the same encoding profile in Sorenson

or On2. HE-AAC v2 is an extension of AAC, a standard audio format defined in the MPEG-4 video standard. HE-

AAC v2 uses spectral band replication (SBR) and parametric stereo (PS) techniques to increase coding efficiency at

low bit rates.

The following table lists the supported codecs. It also shows the corresponding SWF file format and the versions of

Flash Player and AIR that are required to play them:

Aspect ratio Recommended resolutions

4:3 640 × 480 512 × 384 480 × 360

16:9 640 × 360 512 x 288 480 × 272

Codec SWF file format version (earliest

supported publish version)

Flash Player and AIR (earliest version required for playback)

Sorenson Spark 6 Flash Player 6, Flash Lite 3

On2 VP6 6 Flash Player 8, Flash Lite 3.

Only Flash Player 8 and later versions support publish and

playback of On2 VP6 video.

H.264 (MPEG-4 Part 10) 9 Flash Player 9 Update 3, AIR 1.0

ADPCM 6 Flash Player 6, Flash Lite 3

http://www.adobe.com/devnet/devices/articles/mobile_video_encoding.html
http://www.adobe.com/devnet/devices/articles/mobile_video_encoding.html

477ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Understanding the Adobe F4V and FLV video file formats

Flash Player 9 and later, Adobe AIR 1.0 and later

Adobe provides the F4V and FLV video file formats for streaming content to Flash Player and AIR. For a complete

description of these video file formats, see www.adobe.com/go/video_file_format.

The F4V video file format

Flash Player 9 and later, Adobe AIR 1.0 and later

Beginning with Flash Player Update 3 (9.0.115.0) and AIR 1.0, Flash Player and AIR support the Adobe F4V video

format, which is based on the ISO MP4 format, Subsets of the format support different features. Flash Player expects

a valid F4V file to begin with one of the following top-level boxes:

• ftyp

The ftyp box identifies the features that a program must support to play a particular file format.

• moov

The moov box is effectively the header of an F4V file. It contains one or more other boxes that in turn contain other

boxes that define the structure of the F4V data. An F4V file must contain one and only one moov box.

• mdat

An mdat box contains the data payload for the F4V file. An FV file contains only one mdat box. A moov box also

must be present in the file because the mdat box cannot be understood on its own.

F4V files support multibyte integers in big-endian byte order, in which the most significant byte occurs first, at the

lowest address.

The FLV video file format

Flash Player 9 and later, Adobe AIR 1.0 and later

The Adobe FLV file format contains encoded audio and video data for delivery by Flash Player. You can use an

encoder, such as Adobe Media Encoder or Sorenson™ Squeeze, to convert a QuickTime or Windows Media video file

to an FLV file.

Note: You can create FLV files by importing video into Flash and exporting it as an FLV file. You can use the FLV Export

plug-in to export FLV files from supported video-editing applications. To load FLV files from a web server, register the

filename extension and MIME type with your web server. Check your web server documentation. The MIME type for FLV

files is video/x-flv. For more information, see “About configuring FLV files for hosting on a server” on page 506.

For more information on FLV files, see “Advanced topics for video files” on page 505.

Mp3 6 Flash Player 6, Flash Lite 3

AAC (MPEG-4 Part 3) 9 Flash Player 9 Update 3, AIR 1.0

Speex (audio) 10 Flash Player 10, AIR 1.5

Nellymoser 6 Flash Player 6

Codec SWF file format version (earliest

supported publish version)

Flash Player and AIR (earliest version required for playback)

http://www.adobe.com/go/video_file_format

478ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

External vs embedded video

Flash Player 9 and later, Adobe AIR 1.0 and later

Using external video files provides certain capabilities that are not available when you use imported video:

• Longer video clips can be used in your application without slowing down playback. External video files use cached

memory, which means that large files are stored in small pieces and accessed dynamically. For this reason, external

F4V and FLV files require less memory than embedded video files.

• An external video file can have a different frame rate than the SWF file in which it plays. For example, you can set

the SWF file frame rate to 30 frames per second (fps) and the video frame rate to 21 fps. This setting gives you better

control of the video than embedded video, to ensure smooth video playback. It also allows you to play video files at

different frame rates without the need to alter existing SWF file content.

• With external video files, playback of the SWF content is not interrupted while the video file is loading. Imported

video files can sometimes interrupt document playback to perform certain functions, such as accessing a CD-ROM

drive. Video files can perform functions independently of the SWF content, without interrupting playback.

• Captioning video content is easier with external FLV files because you can access the video metadata using event

handlers.

Understanding the Video class

Flash Player 9 and later, Adobe AIR 1.0 and later

The Video class enables you to display live streaming video in an application without embedding it in your SWF file.

You can capture and play live video using the Camera.getCamera() method. You can also use the Video class to play

back video files over HTTP or from the local file system. There are several different ways to use Video in your projects:

• Load a video file dynamically using the NetConnection and NetStream classes and display the video in a Video

object.

• Capture input from the user’s camera. For more information, see “Working with cameras” on page 521.

• Use the FLVPlayback component.

• Use the VideoDisplay control.

Note: Instances of a Video object on the Stage are instances of the Video class.

Even though the Video class is in the flash.media package, it inherits from the flash.display.DisplayObject class.

Therefore, all display object functionality, such as matrix transformations and filters, also applies to Video instances.

For more information see “Manipulating display objects” on page 173, “Working with geometry” on page 210, and

“Filtering display objects” on page 267.

479ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Loading video files

Flash Player 9 and later, Adobe AIR 1.0 and later

Loading videos using the NetStream and NetConnection classes is a multistep process. As a best practice, the steps of

adding the Video object to the display list, attaching the NetStream object to the Video instance, and calling the

NetStream object’s play() method should be performed in the specified order:

1 Create a NetConnection object. If you are connecting to a local video file or one that is not using a server such as

Adobe's Flash Media Server 2, pass null to the connect() method to play the video files from either an HTTP

address or a local drive. If you are connecting to a server, set the parameter to the URI of the application that

contains the video file on the server.

 var nc:NetConnection = new NetConnection();
 nc.connect(null);

2 Create a new Video object that display the video and add it to the stage display list, as shown in the following

snippet:

 var vid:Video = new Video();
 addChild(vid);

3 Create a NetStream object, passing the NetConnection object as an argument to the constructor. The following

snippet connects a NetStream object to the NetConnection instance and sets up the event handlers for the stream:

 var ns:NetStream = new NetStream(nc);
ns.addEventListener(NetStatusEvent.NET_STATUS,netStatusHandler);
 ns.addEventListener(AsyncErrorEvent.ASYNC_ERROR, asyncErrorHandler);

function netStatusHandler(event:NetStatusEvent):void
{

// handle netStatus events, described later
}

function asyncErrorHandler(event:AsyncErrorEvent):void
 {
 // ignore error
 }

4 Attach the NetStream object to the Video object using the Video object’s attachNetStream() method, as seen in

the following snippet:

 vid.attachNetStream(ns);

5 Call the NetStream object’s play() method with the video file url as an argument to start the video playing. The

following snippet loads and plays a video file named “video.mp4” in the same directory as the SWF file:

 ns.play("video.mp4");

More Help topics

Flex: Spark VideoPlayer control

spark.components.VideoDisplay

http://help.adobe.com/en_US/flex/using/WSc78f87379113c38b-669905c51221a3b97af-8000.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/spark/components/VideoDisplay.html?allClasses=1

480ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Controlling video playback

Flash Player 9 and later, Adobe AIR 1.0 and later

The NetStream class offers four main methods for controlling video playback:

pause(): Pauses playback of a video stream. If the video is already paused, calling this method does nothing.

resume(): Resumes playback of a video stream that is paused. If the video is already playing, calling this method does

nothing.

seek(): Seeks the keyframe closest to the specified location (an offset, in seconds, from the beginning of the stream).

togglePause(): Pauses or resumes playback of a stream.

Note: There is no stop() method. In order to stop a stream you must pause playback and seek to the beginning of the

video stream.

Note: The play() method does not resume playback, it is used for loading video files.

The following example demonstrates how to control a video using several different buttons. To run the following

example, create a new document and add four button instances to your workspace (pauseBtn, playBtn, stopBtn, and

togglePauseBtn):

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/NetStream.html#pause()
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/NetStream.html#resume()
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/NetStream.html#seek()
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/NetStream.html#togglePause()

481ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

 var nc:NetConnection = new NetConnection();
 nc.connect(null);

 var ns:NetStream = new NetStream(nc);
 ns.addEventListener(AsyncErrorEvent.ASYNC_ERROR, asyncErrorHandler);
 ns.play("video.flv");
 function asyncErrorHandler(event:AsyncErrorEvent):void
 {
 // ignore error
 }

 var vid:Video = new Video();
 vid.attachNetStream(ns);
 addChild(vid);

 pauseBtn.addEventListener(MouseEvent.CLICK, pauseHandler);
 playBtn.addEventListener(MouseEvent.CLICK, playHandler);
 stopBtn.addEventListener(MouseEvent.CLICK, stopHandler);
 togglePauseBtn.addEventListener(MouseEvent.CLICK, togglePauseHandler);

 function pauseHandler(event:MouseEvent):void
 {
 ns.pause();
 }
 function playHandler(event:MouseEvent):void
 {
 ns.resume();
 }
 function stopHandler(event:MouseEvent):void
 {
 // Pause the stream and move the playhead back to
 // the beginning of the stream.
 ns.pause();
 ns.seek(0);
 }
 function togglePauseHandler(event:MouseEvent):void
 {
 ns.togglePause();
 }

Clicking on the pauseBtn button instance while the video is playing causes the video file to pause. If the video is

already paused, clicking this button has no effect. Clicking on the playBtn button instance resumes video playback if

playback was previously paused, otherwise the button has no effect if the video was already playing.

Detecting the end of a video stream

Flash Player 9 and later, Adobe AIR 1.0 and later

In order to listen for the beginning and end of a video stream, you need to add an event listener to the NetStream

instance to listen for the netStatus event. The following code demonstrates how to listen for the various codes

throughout the video’s playback:

482ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

 ns.addEventListener(NetStatusEvent.NET_STATUS, statusHandler);
 function statusHandler(event:NetStatusEvent):void
 {
 trace(event.info.code)
 }

The previous code generates the following output:

 NetStream.Play.Start
 NetStream.Buffer.Empty
 NetStream.Buffer.Full
 NetStream.Buffer.Empty
 NetStream.Buffer.Full
 NetStream.Buffer.Empty
 NetStream.Buffer.Full
 NetStream.Buffer.Flush
 NetStream.Play.Stop
 NetStream.Buffer.Empty
 NetStream.Buffer.Flush

The two codes that you want to specifically listen for are “NetStream.Play.Start” and “NetStream.Play.Stop” which

signal the beginning and end of the video’s playback. The following snippet uses a switch statement to filter these two

codes and trace a message:

 function statusHandler(event:NetStatusEvent):void
 {
 switch (event.info.code)
 {
 case "NetStream.Play.Start":
 trace("Start [" + ns.time.toFixed(3) + " seconds]");
 break;
 case "NetStream.Play.Stop":
 trace("Stop [" + ns.time.toFixed(3) + " seconds]");
 break;
 }
 }

By listening for the netStatus event (NetStatusEvent.NET_STATUS), you can build a video player which loads the

next video in a playlist once the current video has finished playing.

Playing video in full-screen mode

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash Player and AIR allow you to create a full-screen application for your video playback, and support scaling video

to full screen.

For AIR content running in full-screen mode on the desktop, the system screen saver and power-saving options are

disabled during play until either the video input stops or the user exits full-screen mode.

For full details on using full-screen mode, see “Working with full-screen mode” on page 167.

483ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Enabling full-screen mode for Flash Player in a browser

Before you can implement full-screen mode for Flash Player in a browser, enable it through the Publish template for

your application. Templates that allow full screen include <object> and <embed> tags that contain an

allowFullScreen parameter. The following example shows the allowFullScreen parameter in an <embed> tag.

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
id="fullScreen" width="100%" height="100%"
codebase="http://fpdownload.macromedia.com/get/flashplayer/current/swflash.cab">
...
<param name="allowFullScreen" value="true" />
<embed src="fullScreen.swf" allowFullScreen="true" quality="high" bgcolor="#869ca7"

width="100%" height="100%" name="fullScreen" align="middle"
play="true"
loop="false"
quality="high"
allowScriptAccess="sameDomain"
type="application/x-shockwave-flash"
pluginspage="http://www.adobe.com/go/getflashplayer">

</embed>
...

</object>

In Flash, select File -> Publish Settings and in the Publish Settings dialog box, on the HTML tab, select the Flash Only

- Allow Full Screen template.

In Flex, ensure that the HTML template includes <object> and <embed> tags that support full screen.

Initiating full-screen mode

For Flash Player content running in a browser, you initiate full-screen mode for video in response to either a mouse

click or a keypress. For example, you can initiate full-screen mode when the user clicks a button labeled Full Screen or

selects a Full Screen command from a context menu. To respond to the user, add an event listener to the object on which

the action occurs. The following code adds an event listener to a button that the user clicks to enter full-screen mode:

var fullScreenButton:Button = new Button();
fullScreenButton.label = "Full Screen";
addChild(fullScreenButton);
fullScreenButton.addEventListener(MouseEvent.CLICK, fullScreenButtonHandler);

function fullScreenButtonHandler(event:MouseEvent)
{

stage.displayState = StageDisplayState.FULL_SCREEN;

}

The code initiates full-screen mode by setting the Stage.displayState property to

StageDisplayState.FULL_SCREEN. This code scales the entire stage to full screen with the video scaling in

proportion to the space it occupies on the stage.

The fullScreenSourceRect property allows you to specify a particular area of the stage to scale to full screen. First,

define the rectangle that you want to scale to full screen. Then assign it to the Stage.fullScreenSourceRect

property. This version of the fullScreenButtonHandler() function adds two additional lines of code that scale just

the video to full screen.

484ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

private function fullScreenButtonHandler(event:MouseEvent)
{

var screenRectangle:Rectangle = new Rectangle(video.x, video.y, video.width, video.height);
stage.fullScreenSourceRect = screenRectangle;
stage.displayState = StageDisplayState.FULL_SCREEN;

}

Though this example invokes an event handler in response to a mouse click, the technique of going to full-screen mode

is the same for both Flash Player and AIR. Define the rectangle that you want to scale and then set the

Stage.displayState property. For more information, see the ActionScript 3.0 Reference for the Adobe Flash

Platform.

The complete example, which follows, adds code that creates the connection and the NetStream object for the video

and begins to play it.

package
{

import flash.net.NetConnection;
import flash.net.NetStream;
import flash.media.Video;
import flash.display.StageDisplayState;
import fl.controls.Button;
import flash.display.Sprite;
import flash.events.MouseEvent;
import flash.events.FullScreenEvent;
import flash.geom.Rectangle;

public class FullScreenVideoExample extends Sprite
{

var fullScreenButton:Button = new Button();
var video:Video = new Video();

public function FullScreenVideoExample()
{

var videoConnection:NetConnection = new NetConnection();
videoConnection.connect(null);

var videoStream:NetStream = new NetStream(videoConnection);
videoStream.client = this;

addChild(video);

video.attachNetStream(videoStream);

videoStream.play("http://www.helpexamples.com/flash/video/water.flv");

fullScreenButton.x = 100;

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

485ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

fullScreenButton.y = 270;
fullScreenButton.label = "Full Screen";
addChild(fullScreenButton);
fullScreenButton.addEventListener(MouseEvent.CLICK, fullScreenButtonHandler);

}

private function fullScreenButtonHandler(event:MouseEvent)
{

var screenRectangle:Rectangle = new Rectangle(video.x, video.y, video.width,
video.height);

stage.fullScreenSourceRect = screenRectangle;
stage.displayState = StageDisplayState.FULL_SCREEN;

}

public function onMetaData(infoObject:Object):void
{

// stub for callback function
}

}
}

The onMetaData() function is a callback function for handling video metadata, if any exists. A callback function is a

function that the runtime calls in response to some type of occurrence or event. In this example, the

onMetaData()function is a stub that satisfies the requirement to provide the function. For more information, see

“Writing callback methods for metadata and cue points” on page 487

Leaving full-screen mode

A user can leave full-screen mode by entering one of the keyboard shortcuts, such as the Escape key. You can end full-

screen mode in ActionScript by setting the Stage.displayState property to StageDisplayState.NORMAL. The

code in the following example ends full-screen mode when the NetStream.Play.Stop netStatus event occurs.

videoStream.addEventListener(NetStatusEvent.NET_STATUS, netStatusHandler);

private function netStatusHandler(event:NetStatusEvent)
{

if(event.info.code == "NetStream.Play.Stop")
stage.displayState = StageDisplayState.NORMAL;

}

Full-screen hardware acceleration

When you rescale a rectangular area of the stage to full-screen mode, Flash Player or AIR uses hardware acceleration,

if it's available and enabled. The runtime uses the video adapter on the computer to speed up scaling of the video, or a

portion of the stage, to full-screen size. Under these circumstances, Flash Player applications can often profit by

switching to the StageVideo class from the Video class (or Camera class; Flash Player 11.4/AIR 3.4 and higher).

For more information on hardware acceleration in full-screen mode, see “Working with full-screen mode” on

page 167. For more information on StageVideo, see “Using the StageVideo class for hardware accelerated

presentation” on page 512.

486ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Streaming video files

Flash Player 9 and later, Adobe AIR 1.0 and later

To stream files from Flash Media Server, you can use the NetConnection and NetStream classes to connect to a remote

server instance and play a specified stream. To specify a Real-Time Messaging Protocol (RTMP) server, you pass the

desired RTMP URL, such as “rtmp://localhost/appName/appInstance”, to the NetConnection.connect() method

instead of passing null. To play a specific live or recorded stream from the specified Flash Media Server, you pass an

identifying name for live data published by NetStream.publish(), or a recorded filename for playback to the

NetStream.play() method.

Sending video to a server

Flash Player 9 and later, Adobe AIR 1.0 and later

If you want to build more complex applications involving video or camera objects, Flash Media Server offers a

combination of streaming media capabilities and a development environment for creating and delivering media

applications to a wide audience. This combination enables developers to create applications such as Video on Demand,

live web-event broadcasts, and Mp3 streaming as well as video blogging, video messaging, and multimedia chat

environments. For more information, see the Flash Media Server documentation online at

www.adobe.com/go/learn_fms_docs_en.

Understanding cue points

Flash Player 9 and later, Adobe AIR 1.0 and later

You can embed cue points in an Adobe F4V or FLV video file during encoding. Historically, cue points were

embedded in movies to give the projectionist a visual signal that indicated the reel of film was nearing the end. In

Adobe F4V and FLV video formats, a cue point allows you to trigger one or more other actions in your application at

the time that it occurs in the video stream.

You can use several different kinds of cue points with Flash video. You can use ActionScript to interact with cue points

that you embed in a video file when you create it.

• Navigation cue points: You embed navigation cue points in the video stream and metadata packet when you encode

the video file. You use navigation cue points to let users seek to a specified part of a file.

• Event cue points: You embed event cue points in the video stream and metadata packet when you encode the video

file. You can write code to handle the events that are triggered at specified points during video playback.

• ActionScript cue points: ActionScript cue points are available only to the Flash FLVPlayback component.

ActionScript cue points are external cue points that you create and access with ActionScript code. You can write

code to trigger these cue points in relation to the video's playback. These cue points are less accurate than embedded

cue points (up to a tenth of a second), because the video player tracks them separately. If you plan to create an

application in which you want users to navigate to a cue point, you should create and embed cue points when you

encode the file instead of using ActionScript cue points. You should embed the cue points in the FLV file, because

they are more accurate.

http://www.adobe.com/go/learn_fms_docs_en

487ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Navigation cue points create a keyframe at the specified cue point location, so you can use code to move a video player's

playhead to that location. You can set particular points in a video file where you might want users to seek. For example,

your video might have multiple chapters or segments, and you can control the video by embedding navigation cue

points in the video file.

 For more information on encoding Adobe video files with cue points, see “Embed cue points” in Using Flash.

You can access cue point parameters by writing ActionScript. Cue point parameters are a part of the event object

received by the callback handler.

To trigger certain actions in your code when an FLV file reaches a specific cue point, use the NetStream.onCuePoint

event handler.

To synchronize an action for a cue point in an F4V video file, you must retrieve the cue point data from either the

onMetaData() or the onXMPData() callback functions and trigger the cue point using the Timer class in ActionScript

3.0. For more information on F4V cue points, see “Using onXMPData()” on page 498.

For more information on handling cue points and metadata, see “Writing callback methods for metadata and cue

points” on page 487.

Writing callback methods for metadata and cue points

Flash Player 9 and later, Adobe AIR 1.0 and later

You can trigger actions in your application when specific metadata is received by the player or when specific cue points

are reached. When these events occur, you must use specific callback methods as event handlers. The NetStream class

specifies the following metadata events that can occur during playback: onCuePoint (FLV files only), onImageData,

onMetaData, onPlayStatus, onTextData, and onXMPData.

You must write callback methods for these handlers, or the Flash runtime may throw errors. For example, the

following code plays an FLV file named video.flv in the same folder where the SWF file resides:

 var nc:NetConnection = new NetConnection();
 nc.connect(null);

 var ns:NetStream = new NetStream(nc);
 ns.addEventListener(AsyncErrorEvent.ASYNC_ERROR, asyncErrorHandler);
 ns.play("video.flv");
 function asyncErrorHandler(event:AsyncErrorEvent):void
 {
 trace(event.text);
 }

 var vid:Video = new Video();
 vid.attachNetStream(ns);
 addChild(vid);

The previous code loads a local video file named video.flv and listens for the asyncError

(AsyncErrorEvent.ASYNC_ERROR) to be dispatched. This event is dispatched when an exception is thrown from

native asynchronous code. In this case, it is dispatched when the video file contains metadata or cue point information,

and the appropriate listeners have not been defined. The previous code handles the asyncError event and ignores the

error if you are not interested in the video file’s metadata or cue point information. If you had an FLV with metadata

and several cue points, the trace() function would display the following error messages:

488ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

 Error #2095: flash.net.NetStream was unable to invoke callback onMetaData.
 Error #2095: flash.net.NetStream was unable to invoke callback onCuePoint.
 Error #2095: flash.net.NetStream was unable to invoke callback onCuePoint.
 Error #2095: flash.net.NetStream was unable to invoke callback onCuePoint.

The errors occur because the NetStream object was unable to find an onMetaData or onCuePoint callback method.

There are several ways to define these callback methods within your applications.

More Help topics

Flash Media Server: Handling metadata in streams

Set the NetStream object’s client property to an Object

Flash Player 9 and later, Adobe AIR 1.0 and later

By setting the client property to either an Object or a subclass of NetStream, you can reroute the onMetaData and

onCuePoint callback methods or ignore them completely. The following example demonstrates how you can use an

empty Object to ignore the callback methods without listening for the asyncError event:

 var nc:NetConnection = new NetConnection();
 nc.connect(null);

 var customClient:Object = new Object();

 var ns:NetStream = new NetStream(nc);
 ns.client = customClient;
 ns.play("video.flv");

 var vid:Video = new Video();
 vid.attachNetStream(ns);
 addChild(vid);

If you wanted to listen for either the onMetaData or onCuePoint callback methods, you would need to define methods

to handle those callback methods, as shown in the following snippet:

 var customClient:Object = new Object();
 customClient.onMetaData = metaDataHandler;
 function metaDataHandler(infoObject:Object):void
 {
 trace("metadata");
 }

The previous code listens for the onMetaData callback method and calls the metaDataHandler() method, which

traces a string. If the Flash runtime encountered a cue point, no errors would be generated even though no

onCuePoint callback method is defined.

Create a custom class and define methods to handle the callback methods

Flash Player 9 and later, Adobe AIR 1.0 and later

The following code sets the NetStream object’s client property to a custom class, CustomClient, which defines

handlers for the callback methods:

http://help.adobe.com/en_US/FlashMediaServer/3.5_Deving/WS5b3ccc516d4fbf351e63e3d11a0773d117-7fc8.html#WS5b3ccc516d4fbf351e63e3d11a0773d117-7fdb

489ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

 var nc:NetConnection = new NetConnection();
 nc.connect(null);

 var ns:NetStream = new NetStream(nc);
 ns.client = new CustomClient();
 ns.play("video.flv");

 var vid:Video = new Video();
 vid.attachNetStream(ns);
 addChild(vid);

The CustomClient class is as follows:

 package
 {
 public class CustomClient
 {
 public function onMetaData(infoObject:Object):void
 {
 trace("metadata");
 }
 }
 }

The CustomClient class defines a handler for the onMetaData callback handler. If a cue point was encountered and

the onCuePoint callback handler was called, an asyncError event (AsyncErrorEvent.ASYNC_ERROR) would be

dispatched saying “flash.net.NetStream was unable to invoke callback onCuePoint.” To prevent this error, you would

either need to define an onCuePoint callback method in your CustomClient class, or define an event handler for the

asyncError event.

Extend the NetStream class and add methods to handle the callback methods

Flash Player 9 and later, Adobe AIR 1.0 and later

The following code creates an instance of the CustomNetStream class, which is defined in a later code listing:

 var ns:CustomNetStream = new CustomNetStream();
 ns.play("video.flv");

 var vid:Video = new Video();
 vid.attachNetStream(ns);
 addChild(vid);

The following code listing defines the CustomNetStream class that extends the NetStream class, handles the creation

of the necessary NetConnection object, and handles the onMetaData and onCuePoint callback handler methods:

490ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

 package
 {
 import flash.net.NetConnection;
 import flash.net.NetStream;
 public class CustomNetStream extends NetStream
 {
 private var nc:NetConnection;
 public function CustomNetStream()
 {
 nc = new NetConnection();
 nc.connect(null);
 super(nc);
 }
 public function onMetaData(infoObject:Object):void
 {
 trace("metadata");
 }
 public function onCuePoint(infoObject:Object):void
 {
 trace("cue point");
 }
 }
 }

If you want to rename the onMetaData() and onCuePoint() methods in the CustomNetStream class, you could use

the following code:

 package
 {
 import flash.net.NetConnection;
 import flash.net.NetStream;
 public class CustomNetStream extends NetStream
 {
 private var nc:NetConnection;
 public var onMetaData:Function;
 public var onCuePoint:Function;
 public function CustomNetStream()
 {
 onMetaData = metaDataHandler;
 onCuePoint = cuePointHandler;
 nc = new NetConnection();
 nc.connect(null);
 super(nc);
 }
 private function metaDataHandler(infoObject:Object):void
 {
 trace("metadata");
 }
 private function cuePointHandler(infoObject:Object):void
 {
 trace("cue point");
 }
 }
 }

491ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Extend the NetStream class and make it dynamic

Flash Player 9 and later, Adobe AIR 1.0 and later

You can extend the NetStream class and make the subclass dynamic so that onCuePoint and onMetaData callback

handlers can be added dynamically. This is demonstrated in the following listing:

 var ns:DynamicCustomNetStream = new DynamicCustomNetStream();
 ns.play("video.flv");

 var vid:Video = new Video();
 vid.attachNetStream(ns);
 addChild(vid);

The DynamicCustomNetStream class is as follows:

 package
 {
 import flash.net.NetConnection;
 import flash.net.NetStream;
 public dynamic class DynamicCustomNetStream extends NetStream
 {
 private var nc:NetConnection;
 public function DynamicCustomNetStream()
 {
 nc = new NetConnection();
 nc.connect(null);
 super(nc);
 }
 }
 }

Even with no handlers for the onMetaData and onCuePoint callback handlers, no errors are thrown since the

DynamicCustomNetStream class is dynamic. If you want to define methods for the onMetaData and onCuePoint

callback handlers, you could use the following code:

 var ns:DynamicCustomNetStream = new DynamicCustomNetStream();
 ns.onMetaData = metaDataHandler;
 ns.onCuePoint = cuePointHandler;
 ns.play("http://www.helpexamples.com/flash/video/cuepoints.flv");

 var vid:Video = new Video();
 vid.attachNetStream(ns);
 addChild(vid);

 function metaDataHandler(infoObject:Object):void
 {
 trace("metadata");
 }
 function cuePointHandler(infoObject:Object):void
 {
 trace("cue point");
 }

492ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Set the NetStream object’s client property to this

Flash Player 9 and later, Adobe AIR 1.0 and later

By setting the client property to this, the application looks in the current scope for onMetaData() and

onCuePoint() methods. You can see this in the following example:

 var nc:NetConnection = new NetConnection();
 nc.connect(null);

 var ns:NetStream = new NetStream(nc);
 ns.client = this;
 ns.play("video.flv");

 var vid:Video = new Video();
 vid.attachNetStream(ns);
 addChild(vid);

If the onMetaData or onCuePoint callback handlers are called and no methods exist to handle the callback, no errors

are generated. To handle these callback handlers, create an onMetaData() and onCuePoint() method in your code,

as seen in the following snippet:

 function onMetaData(infoObject:Object):void
 {
 trace("metadata");
 }
 function onCuePoint(infoObject:Object):void
 {
 trace("cue point");
 }

Using cue points and metadata

Flash Player 9 and later, Adobe AIR 1.0 and later

Use the NetStream callback methods to capture and process cue point and metadata events as the video plays.

Using cue points

Flash Player 9 and later, Adobe AIR 1.0 and later

The following table describes the callback methods that you can use to capture F4V and FLV cue points in Flash Player

and AIR.

Runtime F4V FLV

Flash Player 9/ AIR1.0 OnCuePoint

OnMetaData

Flash Player 10 OnCuePoint

OnMetaData OnMetaData

OnXMPData OnXMPData

493ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

The following example uses a simple for..in loop to iterate over each of the properties in the infoObject parameter

that the onCuePoint()function receives. It calls the trace() function to display a message when it receives cue point data:

 var nc:NetConnection = new NetConnection();
 nc.connect(null);

 var ns:NetStream = new NetStream(nc);
 ns.client = this;
 ns.play("video.flv");

 var vid:Video = new Video();
 vid.attachNetStream(ns);
 addChild(vid);

 function onCuePoint(infoObject:Object):void
 {
 var key:String;
 for (key in infoObject)
 {
 trace(key + ": " + infoObject[key]);
 }
 }

The following output appears:

 parameters:
 name: point1
 time: 0.418
 type: navigation

This code uses one of several techniques to set the object on which the callback method runs. You can use other

techniques; for more information, see “Writing callback methods for metadata and cue points” on page 487.

Using video metadata

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the OnMetaData() and OnXMPData() functions to access the metadata information in your video file,

including cue points.

Using OnMetaData()

Flash Player 9 and later, Adobe AIR 1.0 and later

Metadata includes information about your video file, such as duration, width, height, and frame rate. The metadata

information that is added to your video file depends on the software you use to encode the video file.

494ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

 var nc:NetConnection = new NetConnection();
 nc.connect(null);

 var ns:NetStream = new NetStream(nc);
 ns.client = this;
 ns.play("video.flv");

 var vid:Video = new Video();
 vid.attachNetStream(ns);
 addChild(vid);

 function onMetaData(infoObject:Object):void
 {
 var key:String;
 for (key in infoObject)
 {
 trace(key + ": " + infoObject[key]);
 }
 }

The previous code generates output like the following:

 width: 320
 audiodelay: 0.038
 canSeekToEnd: true
 height: 213
 cuePoints: ,,
 audiodatarate: 96
 duration: 16.334
 videodatarate: 400
 framerate: 15
 videocodecid: 4
 audiocodecid: 2

If your video does not have audio, the audio-related metadata information (such as audiodatarate) returns

undefined because no audio information is added to the metadata during encoding.

In the previous code, the cue point information was not displaying. To display the cue point metadata, you can use the

following function which recursively displays the items in an Object:

495ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

 function traceObject(obj:Object, indent:uint = 0):void
 {
 var indentString:String = "";
 var i:uint;
 var prop:String;
 var val:*;
 for (i = 0; i < indent; i++)
 {
 indentString += "\t";
 }
 for (prop in obj)
 {
 val = obj[prop];
 if (typeof(val) == "object")
 {
 trace(indentString + " " + prop + ": [Object]");
 traceObject(val, indent + 1);
 }
 else
 {
 trace(indentString + " " + prop + ": " + val);
 }
 }
 }

Using the previous code snippet to trace the infoObject parameter in the onMetaData() method creates the

following output:

 width: 320
 audiodatarate: 96
 audiocodecid: 2
 videocodecid: 4
 videodatarate: 400
 canSeekToEnd: true
 duration: 16.334
 audiodelay: 0.038
 height: 213
 framerate: 15
 cuePoints: [Object]
 0: [Object]
 parameters: [Object]
 lights: beginning
 name: point1
 time: 0.418
 type: navigation
 1: [Object]
 parameters: [Object]
 lights: middle
 name: point2
 time: 7.748
 type: navigation
 2: [Object]
 parameters: [Object]
 lights: end
 name: point3
 time: 16.02
 type: navigation

496ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

The following example displays the metadata for an MP4 video. It assumes that there is a TextArea object called

metaDataOut, to which it writes the metadata.

package
{

import flash.net.NetConnection;
import flash.net.NetStream;
import flash.events.NetStatusEvent;
import flash.media.Video;
import flash.display.StageDisplayState;
import flash.display.Loader;
import flash.display.Sprite;
import flash.events.MouseEvent;

public class onMetaDataExample extends Sprite
{

var video:Video = new Video();

public function onMetaDataExample():void
{

var videoConnection:NetConnection = new NetConnection();
videoConnection.connect(null);

var videoStream:NetStream = new NetStream(videoConnection);
videoStream.client = this;

addChild(video);
video.x = 185;
video.y = 5;

video.attachNetStream(videoStream);

videoStream.play("video.mp4");

videoStream.addEventListener(NetStatusEvent.NET_STATUS, netStatusHandler);

}

public function onMetaData(infoObject:Object):void
{

for(var propName:String in infoObject)
{

metaDataOut.appendText(propName + "=" + infoObject[propName] + "\n");
}

}

private function netStatusHandler(event:NetStatusEvent):void
{

if(event.info.code == "NetStream.Play.Stop")
stage.displayState = StageDisplayState.NORMAL;

}
}

}

The onMetaData() function produced the following output for this video:

497ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

moovposition=731965
height=352
avclevel=21
videocodecid=avc1
duration=2.36
width=704
videoframerate=25
avcprofile=88
trackinfo=[object Object]

Using the information object

The following table shows the possible values for video metadata that are passed to the onMetaData() callback

function in the Object that they receive:

Parameter Description

aacaot AAC audio object type; 0, 1, or 2 are supported.

avclevel AVC IDC level number such as 10, 11, 20, 21, and so on.

avcprofile AVC profile number such as 55, 77, 100, and so on.

audiocodecid A string that indicates the audio codec (code/decode technique) that was used - for example “.Mp3” or “mp4a”

audiodatarate A number that indicates the rate at which audio was encoded, in kilobytes per second.

audiodelay A number that indicates what time in the FLV file "time 0" of the original FLV file exists. The video content

needs to be delayed by a small amount to properly synchronize the audio.

canSeekToEnd A Boolean value that is true if the FLV file is encoded with a keyframe on the last frame, which allows seeking

to the end of a progressive -download video file. It is false if the FLV file is not encoded with a keyframe on

the last frame.

cuePoints An array of objects, one for each cue point embedded in the FLV file. Value is undefined if the FLV file does not

contain any cue points. Each object has the following properties:

• type: a string that specifies the type of cue point as either "navigation" or "event".

• name: a string that is the name of the cue point.

• time: a number that is the time of the cue point in seconds with a precision of three decimal places

(milliseconds).

• parameters: an optional object that has name-value pairs that are designated by the user when creating

the cue points.

duration A number that specifies the duration of the video file, in seconds.

framerate A number that is the frame rate of the FLV file.

height A number that is the height of the FLV file, in pixels.

seekpoints An array that lists the available keyframes as timestamps in milliseconds. Optional.

tags An array of key-value pairs that represent the information in the “ilst” atom, which is the equivalent of ID3 tags

for MP4 files. iTunes uses these tags. Can be used to display artwork, if available.

trackinfo Object that provides information on all the tracks in the MP4 file, including their sample description ID.

videocodecid A string that is the codec version that was used to encode the video. - for example, “avc1” or “VP6F”

498ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

The following table shows the possible values for the videocodecid parameter:

The following table shows the possible values for the audiocodecid parameter:

Using onXMPData()

Flash Player 10 and later, Adobe AIR 1.5 and later

The onXMPData() callback function receives information specific to Adobe Extensible Metadata Platform (XMP) that

is embedded in the Adobe F4V or FLV video file. The XMP metadata includes cue points as well as other video

metadata. XMP metadata support is introduced with Flash Player 10 and Adobe AIR 1.5 and supported by subsequent

versions.

The following example processes cue point data in the XMP metadata:

videodatarate A number that is the video data rate of the FLV file.

videoframerate Framerate of the MP4 video.

width A number that is the width of the FLV file, in pixels.

videocodecid Codec name

2 Sorenson H.263

3 Screen video (SWF version 7 and later only)

4 VP6 (SWF version 8 and later only)

5 VP6 video with alpha channel (SWF version 8 and later only)

audiocodecid Codec Name

0 uncompressed

1 ADPCM

2 Mp3

4 Nellymoser @ 16 kHz mono

5 Nellymoser, 8kHz mono

6 Nellymoser

10 AAC

11 Speex

Parameter Description

499ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

package
{

import flash.display.*;
import flash.net.*;
import flash.events.NetStatusEvent;
import flash.media.Video;

public class onXMPDataExample extends Sprite
{

public function onXMPDataExample():void
{

var videoConnection:NetConnection = new NetConnection();
videoConnection.connect(null);

var videoStream:NetStream = new NetStream(videoConnection);
videoStream.client = this;
var video:Video = new Video();

addChild(video);

video.attachNetStream(videoStream);

videoStream.play("video.f4v");

}

public function onMetaData(info:Object):void {

trace("onMetaData fired");
}

public function onXMPData(infoObject:Object):void
{

trace("onXMPData Fired\n");
 //trace("raw XMP =\n");
 //trace(infoObject.data);

var cuePoints:Array = new Array();
var cuePoint:Object;
var strFrameRate:String;
var nTracksFrameRate:Number;
var strTracks:String = "";
var onXMPXML = new XML(infoObject.data);
// Set up namespaces to make referencing easier
var xmpDM:Namespace = new Namespace("http://ns.adobe.com/xmp/1.0/DynamicMedia/");
var rdf:Namespace = new Namespace("http://www.w3.org/1999/02/22-rdf-syntax-ns#");
for each (var it:XML in onXMPXML..xmpDM::Tracks)
{

500ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

 var strTrackName:String =
it.rdf::Bag.rdf::li.rdf::Description.@xmpDM::trackName;

 var strFrameRateXML:String =
it.rdf::Bag.rdf::li.rdf::Description.@xmpDM::frameRate;

 strFrameRate = strFrameRateXML.substr(1,strFrameRateXML.length);

 nTracksFrameRate = Number(strFrameRate);

 strTracks += it;

}
var onXMPTracksXML:XML = new XML(strTracks);
var strCuepoints:String = "";
for each (var item:XML in onXMPTracksXML..xmpDM::markers)
{

strCuepoints += item;
}
trace(strCuepoints);

}
}

}

For a short video file called startrekintro.f4v, this example produces the following trace lines. The lines show the cue

point data for navigation and event cue points in the XMP meta data:

501ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

onMetaData fired
onXMPData Fired

<xmpDM:markers xmlns:xmp="http://ns.adobe.com/xap/1.0/"
xmlns:xmpDM="http://ns.adobe.com/xmp/1.0/DynamicMedia/"
xmlns:stDim="http://ns.adobe.com/xap/1.0/sType/Dimensions#"
xmlns:xmpMM="http://ns.adobe.com/xap/1.0/mm/"
xmlns:stEvt="http://ns.adobe.com/xap/1.0/sType/ResourceEvent#"
xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#" xmlns:x="adobe:ns:meta/">
 <rdf:Seq>
 <rdf:li>
 <rdf:Description xmpDM:startTime="7695905817600" xmpDM:name="Title1"
xmpDM:type="FLVCuePoint" xmpDM:cuePointType="Navigation">
 <xmpDM:cuePointParams>
 <rdf:Seq>
 <rdf:li xmpDM:key="Title" xmpDM:value="Star Trek"/>
 <rdf:li xmpDM:key="Color" xmpDM:value="Blue"/>
 </rdf:Seq>
 </xmpDM:cuePointParams>
 </rdf:Description>
 </rdf:li>
 <rdf:li>
 <rdf:Description xmpDM:startTime="10289459980800" xmpDM:name="Title2"
xmpDM:type="FLVCuePoint" xmpDM:cuePointType="Event">
 <xmpDM:cuePointParams>
 <rdf:Seq>
 <rdf:li xmpDM:key="William Shatner" xmpDM:value="First Star"/>
 <rdf:li xmpDM:key="Color" xmpDM:value="Light Blue"/>
 </rdf:Seq>
 </xmpDM:cuePointParams>
 </rdf:Description>
 </rdf:li>
 </rdf:Seq>
</xmpDM:markers>
onMetaData fired

Note: In XMP data, time is stored as DVA Ticks rather than seconds. To compute the cue point time, divide the start

time by the framerate. For example, the start time of 7695905817600 divided by a framerate of 254016000000 equals

30:30.

To see the complete raw XMP metadata, which includes the framerate, remove the comment identifiers (//’s)

preceding the second and third trace() statements at the beginning of the onXMPData() function.

For more information on XMP, see:

• partners.adobe.com/public/developer/xmp/topic.html

• www.adobe.com/devnet/xmp/

http://partners.adobe.com/public/developer/xmp/topic.html
http://www.adobe.com/devnet/xmp/

502ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Using image metadata

Flash Player 9 and later, Adobe AIR 1.0 and later

The onImageData event sends image data as a byte array through an AMF0 data channel. The data can be in JPEG,

PNG, or GIF formats. Define an onImageData() callback method to process this information, in the same way that

you would define callback methods for onCuePoint and onMetaData. The following example accesses and displays

image data using an onImageData() callback method:

public function onImageData(imageData:Object):void
{

// display track number
trace(imageData.trackid);
var loader:Loader = new Loader();
//imageData.data is a ByteArray object
loader.loadBytes(imageData.data);
addChild(loader);

}

Using text metadata

Flash Player 9 and later, Adobe AIR 1.0 and later

The onTextData event sends text data through an AMF0 data channel. The text data is in UTF-8 format and contains

additional information about formatting, based on the 3GP timed-text specification. This specification defines a

standardized subtitle format. Define an onTextData() callback method to process this information, in the same way

that you would define callback methods for onCuePoint or onMetaData. In the following example, the onTextData()

method displays the track ID number and corresponding track text.

public function onTextData(textData:Object):void
{

// display the track number
trace(textData.trackid);
// displays the text, which can be a null string, indicating old text
// that should be erased
trace(textData.text);

}

Monitoring NetStream activity

Flash Player 10.3 and later, Adobe AIR 2.7 and later

You can monitor NetStream activity to collect the information required to support media usage analysis and reporting.

The monitoring features discussed in this section allow you to create media measurement libraries that collect data

without close coupling to the particular video player displaying the media. This allows your client developers to choose

their favorite video players when using your library. Use the NetMonitor class to monitor the creation and activity of

NetStream objects in an application. The NetMonitor class provides a list of the active NetStreams existing at any given

time and also dispatches an event whenever a NetStream object is created.

A NetStream object dispatches the events listed in the following table, depending on the type of media being played:

503ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

The NetStreamInfo object associated with a NetStream instance also stores the last metadata and XMP data objects

that were encountered in the media.

When media is played via HTTP streaming, the NetStream.Play.Start, NetStream.Play.Stop, and

NetStream.Play.Complete are not dispatched since the application has complete control of the media stream. A video

player should synthesize and dispatch these events for HTTP streams.

Likewise, NetStream.Play.Transition and NetStream.Play.TransitionComplete are not dispatched for either

progressive download or HTTP media. Dynamic bitrate switching is an RTMP feature. If a video player using an

HTTP stream supports a similar feature, the player can synthesize and dispatch transition events.

More Help topics

Adobe Developer Connection: Measuring video consumption in Flash

Monitoring NetStream events

Two types of events provide valuable usage data: netStatus and mediaTypeData. In addition, a timer can be used to

periodically log the position of the NetStream playhead.

netStatus events provide information you can use to determine how much of a stream a user viewed. Buffer and

RTMFP stream transition events also result in a netStatus event.

mediaTypeData events provide meta and XMP data information. The Netstream.Play.Complete event is dispatched

as a mediaTypeData event. Other data embedded in the stream are also available through mediaTypeData events,

including cue points, text, and images.

The following example illustrates how to create a class that monitors status and data events from any active NetStreams

in an application. Typically, such a class would upload the data it was interested in analyzing to a server for collection.

Event Progressive

download

RTMP streaming HTTP streaming

NetStream.Play.Start Yes Yes No

NetStream.Play.Stop Yes Yes No

NetStream.Play.Complete Yes Yes No

NetStream.SeekStart.Notify Yes Yes Yes

NetStream.Seek.Notify Yes Yes Yes

NetStream.Unpause.Notify Yes Yes Yes

NetStream.Unpause.Notify Yes Yes Yes

NetStream.Play.Transition Not applicable Yes Not applicable

NetStream.Play.TransitionComplete Not applicable Yes Not applicable

NetStream.Buffer.Full Yes Yes Yes

NetStream.Buffer.Flush Yes Yes Yes

NetStream.Buffer.Empty Yes Yes Yes

http://www.adobe.com/devnet/video/articles/media-measurement-flash.html

504ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

package com.adobe.example
{

import flash.events.NetDataEvent;
import flash.events.NetMonitorEvent;
import flash.events.NetStatusEvent;
import flash.net.NetMonitor;
import flash.net.NetStream;

public class NetStreamEventMonitor
{

private var netmon:NetMonitor;
private var heartbeat:Timer = new Timer(5000);

public function NetStreamEventMonitor()
{

//Create NetMonitor object
netmon = new NetMonitor();
netmon.addEventListener(NetMonitorEvent.NET_STREAM_CREATE, newNetStream);

//Start the heartbeat timer
heartbeat.addEventListener(TimerEvent.TIMER, onHeartbeat);
heartbeat.start();

}

//On new NetStream
private function newNetStream(event:NetMonitorEvent):void
{

trace("New Netstream object");
var stream:NetStream = event.netStream;
stream.addEventListener(NetDataEvent.MEDIA_TYPE_DATA, onStreamData);
stream.addEventListener(NetStatusEvent.NET_STATUS, onStatus);

}

//On data events from a NetStream object
private function onStreamData(event:NetDataEvent):void
{

var netStream:NetStream = event.target as NetStream;
trace("Data event from " + netStream.info.uri + " at " + event.timestamp);
switch(event.info.handler)
{

case "onMetaData":
//handle metadata;
break;

case "onXMPData":
//handle XMP;
break;

case "onPlayStatus":
//handle NetStream.Play.Complete

case "onImageData":
//handle image
break;

case "onTextData":
//handle text
break;

default:
//handle other events

505ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

}

}

//On status events from a NetStream object
private function onStatus(event:NetStatusEvent):void
{

trace("Status event from " + event.target.info.uri + " at " + event.target.time);
//handle status events

}
//On heartbeat timer
private function onHeartbeat(event:TimerEvent):void
{

var streams:Vector.<NetStream> = netmon.listStreams();
for(var i:int = 0; i < streams.length; i++)
{

trace("Heartbeat on " + streams[i].info.uri + " at " + streams[i].time);
//handle heartbeat event

}
}

}
}

Detecting player domain

The URL and domain of the web page on which a user is viewing media content is not always readily available. If

allowed by the hosting web site, you can use the ExternalInterface class to get the exact URL. However, some web sites

that allow third-party video players do not allow the ExternalInterface to be used. In such cases, you can get the domain

of the current web page from the pageDomain property of the Security class. The full URL is not divulged for user

security and privacy reasons.

The page domain is available from the static pageDomain property of the Security class:

var domain:String = Security.pageDomain;

Advanced topics for video files

Flash Player 9 and later, Adobe AIR 1.0 and later

The following topics address some special issues for working with FLV files.

506ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

About configuring FLV files for hosting on a server

Flash Player 9 and later, Adobe AIR 1.0 and later

When you work with FLV files, you might have to configure your server to work with the FLV file format.

Multipurpose Internet Mail Extensions (MIME) is a standardized data specification that lets you send non-ASCII files

over Internet connections. Web browsers and e-mail clients are configured to interpret numerous MIME types so that

they can send and receive video, audio, graphics, and formatted text. To load FLV files from a web server, you might

need to register the file extension and MIME type with your web server, so you should check your web server

documentation. The MIME type for FLV files is video/x-flv. The full information for the FLV file type is as follows:

• Mime Type: video/x-flv

• File extension: .flv

• Required parameters: none

• Optional parameters: none

• Encoding considerations: FLV files are binary files; some applications might require the application/octet-stream

subtype to be set

• Security issues: none

• Published specification: www.adobe.com/go/video_file_format

Microsoft changed the way streaming media is handled in Microsoft Internet Information Services (IIS) 6.0 web server

from earlier versions. Earlier versions of IIS do not require any modification to stream Flash Video. In IIS 6.0, the

default web server that comes with Windows 2003, the server requires a MIME type to recognize that FLV files are

streaming media.

When SWF files that stream external FLV files are placed on Microsoft Windows Server® 2003 and are viewed in a

browser, the SWF file plays correctly, but the FLV video does not stream. This issue affects all FLV files placed on

Windows Server 2003, including files you make with earlier versions of the Flash authoring tool, and the Macromedia

Flash Video Kit for Dreamweaver MX 2004 from Adobe. These files work correctly if you test them on other operating

systems.

For information about configuring Microsoft Windows 2003 and Microsoft IIS Server 6.0 to stream FLV video, see

www.adobe.com/go/tn_19439.

About targeting local FLV files on the Macintosh

Flash Player 9 and later, Adobe AIR 1.0 and later

If you attempt to play a local FLV from a non-system drive on an Apple® Macintosh® computer by using a path that

uses a relative slash (/), the video will not play. Non-system drives include, but are not limited to, CD-ROMs,

partitioned hard disks, removable storage media, and connected storage devices.

Note: The reason for this failure is a limitation of the operating system, not a limitation in Flash Player or AIR.

For an FLV file to play from a non-system drive on a Macintosh, refer to it with an absolute path using a colon-based

notation (:) rather than slash-based notation (/). The following list shows the difference in the two kinds of notation:

• Slash-based notation: myDrive/myFolder/myFLV.flv

• Colon-based notation: (Mac OS®) myDrive:myFolder:myFLV.flv

http://www.adobe.com/go/video_file_format
http://www.adobe.com/go/tn_19439

507ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Video example: Video Jukebox

Flash Player 9 and later, Adobe AIR 1.0 and later

The following example builds a simple video jukebox which dynamically loads a list of videos to play back in a

sequential order. This allows you to build an application that lets a user browse through a series of video tutorials, or

perhaps specifies which advertisements should be played back before delivering the user’s requested video. This

example demonstrates the following features of ActionScript 3.0:

• Updating a playhead based on a video file’s playback progress

• Listening for and parsing a video file’s metadata

• Handling specific codes in a net stream

• Loading, playing, pausing, and stopping a dynamically loaded FLV

• Resizing a video object on the display list based on the net stream’s metadata

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The Video

Jukebox application files can be found in the folder Samples/VideoJukebox. The application consists of the following

files:

Loading an external video playlist file

Flash Player 9 and later, Adobe AIR 1.0 and later

The external playlist.xml file specifies which videos to load, and the order to play them back in. In order to load the

XML file, you need to use a URLLoader object and a URLRequest object, as seen in the following code:

 uldr = new URLLoader();
 uldr.addEventListener(Event.COMPLETE, xmlCompleteHandler);
 uldr.load(new URLRequest(PLAYLIST_XML_URL));

This code is placed in the VideoJukebox class’s constructor so the file is loaded before any other code is run. As soon

as the XML file has finished loading, the xmlCompleteHandler() method is called which parses the external file into

an XML object, as seen in the following code:

 private function xmlCompleteHandler(event:Event):void
 {
 playlist = XML(event.target.data);
 videosXML = playlist.video;
 main();
 }

The playlist XML object contains the raw XML from the external file, whereas the videos XML is an XMLList object

which contains just the video nodes. A sample playlist.xml file can be seen in the following snippet:

File Description

VideoJukebox.fla

or

VideoJukebox.mxml

The main application file for Flex (MXML) or Flash (FLA).

VideoJukebox.as The class that provides the main functionality of the application.

playlist.xml A file that lists which video files will be loaded into the video jukebox.

http://www.adobe.com/go/learn_programmingAS3samples_flash

508ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

 <videos>
 <video url="video/caption_video.flv" />
 <video url="video/cuepoints.flv" />
 <video url="video/water.flv" />
 </videos>

Finally, the xmlCompleteHandler() method calls the main() method which sets up the various component instances

on the display list, as well as the NetConnection and NetStream objects which are used to load the external FLV files.

Creating the user interface

Flash Player 9 and later, Adobe AIR 1.0 and later

To build the user interface you need to drag five Button instances onto the display list and give them the following

instance names: playButton, pauseButton, stopButton, backButton, and forwardButton.

For each of these Button instances, you’ll need to assign a handler for the click event, as seen in the following snippet:

 playButton.addEventListener(MouseEvent.CLICK, buttonClickHandler);
 pauseButton.addEventListener(MouseEvent.CLICK, buttonClickHandler);
 stopButton.addEventListener(MouseEvent.CLICK, buttonClickHandler);
 backButton.addEventListener(MouseEvent.CLICK, buttonClickHandler);
 forwardButton.addEventListener(MouseEvent.CLICK, buttonClickHandler);

The buttonClickHandler() method uses a switch statement to determine which button instance was clicked, as seen

in the following code:

 private function buttonClickHandler(event:MouseEvent):void
 {
 switch (event.currentTarget)
 {
 case playButton:
 ns.resume();
 break;
 case pauseButton:
 ns.togglePause();
 break;
 case stopButton:
 ns.pause();
 ns.seek(0);
 break;
 case backButton:
 playPreviousVideo();
 break;
 case forwardButton:
 playNextVideo();
 break;
 }
 }

Next, add a Slider instance to the display list and give it an instance name of volumeSlider. The following code sets

the slider instance’s liveDragging property to true and defines an event listener for the slider instance’s change

event:

509ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

 volumeSlider.value = volumeTransform.volume;
 volumeSlider.minimum = 0;
 volumeSlider.maximum = 1;
 volumeSlider.snapInterval = 0.1;
 volumeSlider.tickInterval = volumeSlider.snapInterval;
 volumeSlider.liveDragging = true;
 volumeSlider.addEventListener(SliderEvent.CHANGE, volumeChangeHandler);

Add a ProgressBar instance to the display list and give it an instance name of positionBar. Set its mode property to

manual, as seen in the following snippet:

 positionBar.mode = ProgressBarMode.MANUAL;

Finally add a Label instance to the display list and give it an instance name of positionLabel. This Label instance’s

value will be set by the timer instance

Listening for a video object’s metadata

Flash Player 9 and later, Adobe AIR 1.0 and later

When Flash Player encounters metadata for each of the loaded videos, the onMetaData() callback handler is called on

the NetStream object’s client property. The following code initializes an Object and sets up the specified callback

handler:

 client = new Object();
 client.onMetaData = metadataHandler;

The metadataHandler() method copies its data to the meta property defined earlier in the code. This allows you to

access the metadata for the current video anytime throughout the entire application. Next, the video object on the

Stage is resized to match the dimensions returned from the metadata. Finally, the positionBar progress bar instance is

moved and resized based on the size of the currently playing video. The following code contains the entire

metadataHandler() method:

 private function metadataHandler(metadataObj:Object):void
 {
 meta = metadataObj;
 vid.width = meta.width;
 vid.height = meta.height;
 positionBar.move(vid.x, vid.y + vid.height);
 positionBar.width = vid.width;
 }

Dynamically loading a video

Flash Player 9 and later, Adobe AIR 1.0 and later

To dynamically load each of the videos, the application uses a NetConnection and a NetStream object. The following

code creates a NetConnection object and passes null to the connect() method. By specifying null, Flash Player

connects to a video on the local server instead of connecting to a server, such as a Flash Media Server.

The following code creates both the NetConnection and NetStream instances, defines an event listener for the

netStatus event, and assigns the client Object to the client property:

510ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

 nc = new NetConnection();
 nc.connect(null);

 ns = new NetStream(nc);
 ns.addEventListener(NetStatusEvent.NET_STATUS, netStatusHandler);
 ns.client = client;

The netStatusHandler() method is called whenever the status of the video is changed. This includes when a video

starts or stops playback, is buffering or if a video stream cannot be found. The following code lists the

netStatusHandler() event:

 private function netStatusHandler(event:NetStatusEvent):void
 {
 try
 {
 switch (event.info.code)
 {
 case "NetStream.Play.Start":
 t.start();
 break;
 case "NetStream.Play.StreamNotFound":
 case "NetStream.Play.Stop":
 t.stop();
 playNextVideo();
 break;
 }
 }
 catch (error:TypeError)
 {
 // Ignore any errors.
 }
 }

The previous code evaluates the code property of the info object and filters whether the code is “NetStream.Play.Start”,

“NetStream.Play.StreamNotFound”, or “NetStream.Play.Stop”. All other codes will be ignored. If the net stream is

starting the code starts the Timer instance which updates the playhead. If the net stream cannot be found or is stopped,

the Timer instance is stopped and the application attempts to play the next video in the playlist.

Every time the Timer executes, the positionBar progress bar instance updates its current position by calling the

setProgress() method of the ProgressBar class and the positionLabel Label instance is updated with the time

elapsed and total time of the current video.

 private function timerHandler(event:TimerEvent):void
 {
 try
 {
 positionBar.setProgress(ns.time, meta.duration);
 positionLabel.text = ns.time.toFixed(1) + " of " meta.duration.toFixed(1) + " seconds";
 }
 catch (error:Error)
 {
 // Ignore this error.
 }
 }

511ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Controlling the volume of the video

Flash Player 9 and later, Adobe AIR 1.0 and later

You can control the volume for the dynamically loaded video by setting the soundTransform property on the

NetStream object. The video jukebox application allows you to modify the volume level by changing the value of the

volumeSlider Slider instance. The following code shows how you can change the volume level by assigning the value

of the Slider component to a SoundTransform object which is set to the soundTransform property on the NetStream

object:

 private function volumeChangeHandler(event:SliderEvent):void
 {
 volumeTransform.volume = event.value;
 ns.soundTransform = volumeTransform;
 }

Controlling video playback

Flash Player 9 and later, Adobe AIR 1.0 and later

The rest of the application controls video playback when the video reaches the end of the video stream or the user skips

to the previous or next video.

The following method retrieves the video URL from the XMLList for the currently selected index:

 private function getVideo():String
 {
 return videosXML[idx].@url;
 }

The playVideo() method calls the play() method on the NetStream object to load the currently selected video:

 private function playVideo():void
 {
 var url:String = getVideo();
 ns.play(url);
 }

The playPreviousVideo() method decrements the current video index, calls the playVideo() method to load the

new video file and sets the progress bar to visible:

 private function playPreviousVideo():void
 {
 if (idx > 0)
 {
 idx--;
 playVideo();
 positionBar.visible = true;
 }
 }

The final method, playNextVideo(), increments the video index and calls the playVideo() method. If the current

video is the last video in the playlist, the clear() method is called on the Video object and the progress bar instance’s

visible property is set to false:

512ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

 private function playNextVideo():void
 {
 if (idx < (videosXML.length() - 1))
 {
 idx++;
 playVideo();
 positionBar.visible = true;
 }
 else
 {
 idx++;
 vid.clear();
 positionBar.visible = false;
 }
 }

Using the StageVideo class for hardware accelerated
presentation

Flash Player 10.2 and later

Flash Player optimizes video performance by using hardware acceleration for H.264 decoding. You can enhance

performance further by using the StageVideo API. Stage video lets your application take advantage of hardware

accelerated presentation.

Runtimes that support the StageVideo API include:

• Flash Player 10.2 and later

Note: In Flash Player 11.4/AIR 3.4 and higher, you can use camera input with StageVideo.

Downloadable source code and additional details for the stage video feature are available at Getting Started with

Stage Video.

For a StageVideo quick start tutorial, see Working with Stage Video.

About hardware acceleration using StageVideo

Hardware accelerated presentation—which includes video scaling, color conversion, and blitting—enhances the

performance benefits of hardware accelerated decoding. On devices that offer GPU (hardware) acceleration, you can

use a flash.media.StageVideo object to process video directly on the device hardware. Direct processing frees the CPU

to perform other tasks while the GPU handles video. The legacy Video class, on the other hand, typically uses software

presentation. Software presentation occurs in the CPU and can consume a significant share of system resources.

Currently, few devices provide full GPU acceleration. However, stage video lets applications take maximum advantage

of whatever hardware acceleration is available.

The StageVideo class does not make the Video class obsolete. Working together, these two classes provide the optimal

video display experience allowed by device resources at any given time. Your application takes advantage of hardware

acceleration by listening to the appropriate events and switching between StageVideo and Video as necessary.

http://www.adobe.com/go/learn_as3_usingstagevideo_en
http://www.adobe.com/go/learn_as3_usingstagevideo_en
http://www.adobe.com/go/learn_as3_workingwithstagevideo_en

513ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

The StageVideo class imposes certain restrictions on video usage. Before implementing StageVideo, review the

guidelines and make sure your application can accept them. If you accept the restrictions, use the StageVideo class

whenever Flash Player detects that hardware accelerated presentation is available. See “Guidelines and limitations” on

page 514.

Parallel planes: Stage video and the Flash display list

With the stage video model, Flash Player can separate video from the display list. Flash Player divides the composite

display between two Z-ordered planes:

Stage video plane The stage video plane sits in the background. It displays only hardware accelerated video. Because

of this design, this plane is not available if hardware acceleration is not supported or not available on the device. In

ActionScript, StageVideo objects handle videos played on the stage video plane.

Flash display list plane Flash display list entities are composited on a plane in front of the stage video plane. Display

list entities include anything that the runtime renders, including playback controls. When hardware acceleration is not

available, videos can be played only on this plane, using the Video class object. Stage video always displays behind Flash

display list graphics.

Video display planes

The StageVideo object appears in a non-rotated, window-aligned rectangular region of the screen. You cannot layer

objects behind the stage video plane. However, you can use the Flash display list plane to layer other graphics on top

of the stage video plane. Stage video runs concurrently with the display list. Thus, you can use the two mechanisms

together to create a unified visual effect that uses two discreet planes. For example, you can use the front plane for

playback controls that operate on the stage video running in the background.

Stage video and H.264 codec

In Flash Player applications, implementing video hardware acceleration involves two steps:

1 Encoding the video as H.264

Video 1

Video 2

Stage Video Plane (G
PU accelerated)

Contro
ls 1

Contro
ls 2

Flash Display List (C
PU only)

Other

Flash

graphics

514ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

2 Implementing the StageVideo API

For best results, perform both steps. The H.264 codec lets you take maximum advantage of hardware acceleration,

from video decoding to presentation.

Stage video eliminates GPU-to-CPU read-back. In other words, the GPU no longer sends decoded frames back to the

CPU for compositing with display list objects. Instead, the GPU blits decoded and rendered frames directly to the

screen, behind the display list objects. This technique reduces CPU and memory usage and also provides better pixel

fidelity.

More Help topics

“Understanding video formats” on page 475

Guidelines and limitations

When video is running in full screen mode, stage video is always available if the device supports hardware acceleration.

Flash Player, however, also runs within a browser. In the browser context, the wmode setting affects stage video

availability. Try to use wmode="direct" at all times if you want to use stage video. Stage video is not compatible with

other wmode settings when not in full screen mode. This restriction means that, at run time, stage video can vacillate

unpredictably between being available and unavailable. For example, if the user exits full screen mode while stage video

is running, the video context reverts to the browser. If the browser wmode parameter is not set to "direct", stage video

can suddenly become unavailable. Flash Player communicates playback context changes to applications through a set

of events. If you implement the StageVideo API, maintain a Video object as a backup when stage video becomes

unavailable.

Because of its direct relationship to hardware, stage video restricts some video features. Stage video enforces the

following constraints:

• For each SWF file, Flash Player limits the number of StageVideo objects that can concurrently display videos to

four. However, the actual limit can be lower, depending on device hardware resources.

• The video timing is not synchronized with the timing of content that the runtime displays.

• The video display area can only be a rectangle. You cannot use more advanced display areas, such as elliptical or

irregular shapes.

• You cannot rotate the video.

• You cannot bitmap cache the video or use BitmapData object to access it.

• You cannot apply filters to the video.

• You cannot apply color transforms to the video.

• You cannot apply an alpha value to the video.

• Blend modes that you apply to objects in the display list plane do not apply to stage video.

• You can place the video only on full pixel boundaries.

• Though GPU rendering is the best available for the given device hardware, it is not 100% “pixel identical” across

devices. Slight variations occur due to driver and platform differences.

• A few devices do not support all required color spaces. For example, some devices do not support BT.709, the H.264

standard. In such cases, you can use BT.601 for fast display.

• You cannot use stage video with WMODE settings such as normal, opaque, or transparent. Stage video supports

only WMODE=direct when not in full screen mode. WMODE has no effect in Safari 4 or higher and IE 9 or higher.

515ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

In most cases, these limitations do not affect video player applications. If you can accept these limitations, use stage

video whenever possible.

More Help topics

“Working with full-screen mode” on page 167

Using the StageVideo APIs

Stage video is a mechanism within the runtime that enhances video playback and device performance. The runtime

creates and maintains this mechanism; as a developer, your role is to configure your application to take advantage of it.

To use stage video, you implement a framework of event handlers that detect when stage video is and isn’t available.

When you receive notification that stage video is available, you retrieve a StageVideo object from the

Stage.stageVideos property. The runtime populates this Vector object with one or more StageVideo objects. You

can then use one of the provided StageVideo objects, rather than a Video object, to display streaming video.

On Flash Player, when you receive notification that stage video is no longer available, switch your video stream back

to a Video object.

Note: You cannot create StageVideo objects.

Stage.stageVideos property

The Stage.stageVideos property is a Vector object that gives you access to StageVideo instances. This vector can

contain up to four StageVideo objects, depending on hardware and system resources. Mobile devices can be limited to

one, or none.

When stage video is not available, this vector contains no objects. To avoid run time errors, be sure that you access

members of this vector only when the most recent StageVideoAvailability event indicates that stage video is

available.

StageVideo events

The StageVideo API framework provides the following events:

StageVideoAvailabilityEvent.STAGE_VIDEO_AVAILABILITY Sent when the Stage.stageVideos property changes.

The StageVideoAvailabilityEvent.availability property indicates either AVAILABLE or UNAVAILABLE. Use

this event to determine whether the stageVideos property contains any StageVideo objects, rather than directly

checking the length of the Stage.stageVideos vector.

StageVideoEvent.RENDER_STATE Sent when a NetStream or Camera object has been attached to a StageVideo object

and is playing. Indicates the type of decoding currently in use: hardware, software, or unavailable (nothing is

displayed). The event target contains videoWidth and videoHeight properties that are safe to use for resizing the

video viewport.

Important: Coordinates obtained from the StageVideo target object use Stage coordinates, since they are not part of the

standard display list.

VideoEvent.RENDER_STATE Sent when a Video object is being used. Indicates whether software or hardware

accelerated decoding is in use. If this event indicates hardware accelerated decoding, switch to a StageVideo object if

possible. The Video event target contains videoWidth and videoHeight properties that are safe to use for resizing the

video viewport.

516ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Workflow for implementing the StageVideo feature

Follow these top-level steps to implement the StageVideo feature:

1 Listen for the StageVideoAvailabilityEvent.STAGE_VIDEO_AVAILABILITY event to find out when the

Stage.stageVideos vector has changed. See “Using the

StageVideoAvailabilityEvent.STAGE_VIDEO_AVAILABILITY event” on page 517.

2 If the StageVideoAvailabilityEvent.STAGE_VIDEO_AVAILABILITY event reports that stage video is available,

use the Stage.stageVideos Vector object within the event handler to access a StageVideo object.

3 Attach a NetStream object using StageVideo.attachNetStream() or attach a Camera object using

StageVideo.attachCamera().

4 Play the video using NetStream.play().

5 Listen for the StageVideoEvent.RENDER_STATE event on the StageVideo object to determine the status of playing

the video. Receipt of this event also indicates that the width and height properties of the video have been initialized

or changed. See “Using the StageVideoEvent.RENDER_STATE and VideoEvent.RENDER_STATE events” on

page 519.

6 Listen for the VideoEvent.RENDER_STATE event on the Video object. This event provides the same statuses as

StageVideoEvent.RENDER_STATE, so you can also use it to determine whether GPU acceleration is available.

Receipt of this event also indicates that the width and height properties of the video have been initialized or

changed. See “Using the StageVideoEvent.RENDER_STATE and VideoEvent.RENDER_STATE events” on

page 519.

Initializing StageVideo event listeners

Set up your StageVideoAvailabilityEvent and VideoEvent listeners during application initialization. For example, you

can initialize these listeners in the flash.events.Event.ADDED_TO_STAGE event handler. This event guarantees that

your application is visible on the stage:

517ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

public class SimpleStageVideo extends Sprite
private var nc:NetConnection;
private var ns:NetStream;

public function SimpleStageVideo()
{

// Constructor for SimpleStageVideo class
// Make sure the app is visible and stage available
addEventListener(Event.ADDED_TO_STAGE, onAddedToStage);

}

private function onAddedToStage(event:Event):void
{

//...
// Connections
nc = new NetConnection();
nc.connect(null);
ns = new NetStream(nc);
ns.addEventListener(NetStatusEvent.NET_STATUS, onNetStatus);
ns.client = this;

// Screen
video = new Video();
video.smoothing = true;

// Video Events
// the StageVideoEvent.STAGE_VIDEO_STATE informs you whether
// StageVideo is available
stage.addEventListener(StageVideoAvailabilityEvent.STAGE_VIDEO_AVAILABILITY,

onStageVideoState);
// in case of fallback to Video, listen to the VideoEvent.RENDER_STATE
// event to handle resize properly and know about the acceleration mode running
video.addEventListener(VideoEvent.RENDER_STATE, videoStateChange);
//...

}

Using the StageVideoAvailabilityEvent.STAGE_VIDEO_AVAILABILITY event

In the StageVideoAvailabilityEvent.STAGE_VIDEO_AVAILABILITY handler, decide whether to use a Video or

StageVideo object based on the availability of StageVideo. If the StageVideoAvailabilityEvent.availability

property is set to StageVideoAvailability.AVAILABLE, use StageVideo. In this case, you can rely on the

Stage.stageVideos vector to contain one or more StageVideo objects. Obtain a StageVideo object from the

Stage.stageVideos property and attach the NetStream object to it. Because StageVideo objects always appear in the

background, remove any existing Video object (always in the foreground). You also use this event handler to add a

listener for the StageVideoEvent.RENDER_STATE event.

If the StageVideoAvailabilityEvent.availability property is set to

StageVideoAvailability.UNAVAILABLE, do not use StageVideo or access the Stage.stageVideos vector. In this

case, attach the NetStream object to a Video object. Finally, add the StageVideo or Video object to the stage and call

NetStream.play().

The following code shows how to handle the StageVideoAvailabilityEvent.STAGE_VIDEO_AVAILABILITY event:

518ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

private var sv:StageVideo;
private var video:Video;

private function onStageVideoState(event:StageVideoAvailabilityEvent):void
{

// Detect if StageVideo is available and decide what to do in toggleStageVideo
toggleStageVideo(event.availability == StageVideoAvailability.AVAILABLE);

}

private function toggleStageVideo(on:Boolean):void
{

// To choose StageVideo attach the NetStream to StageVideo
if (on)
{

stageVideoInUse = true;
if (sv == null)
{

sv = stage.stageVideos[0];
sv.addEventListener(StageVideoEvent.RENDER_STATE, stageVideoStateChange);

sv.attachNetStream(ns);
}

if (classicVideoInUse)
{

// If you use StageVideo, remove from the display list the
// Video object to avoid covering the StageVideo object
// (which is always in the background)
stage.removeChild (video);
classicVideoInUse = false;

}
} else
{

// Otherwise attach it to a Video object
if (stageVideoInUse)

stageVideoInUse = false;
classicVideoInUse = true;
video.attachNetStream(ns);
stage.addChildAt(video, 0);

}

if (!played)
{

played = true;
ns.play(FILE_NAME);

}
}

Important: The first time an application accesses the vector element at Stage.stageVideos[0], the default rect is set to

0,0,0,0, and pan and zoom properties use default values. Always reset these values to your preferred settings. You can use

the videoWidth and videoHeight properties of the StageVideoEvent.RENDER_STATE or

VideoEvent.RENDER_STATE event target for calculating the video viewport dimensions.

Download the full source code for this sample application at Getting Started with Stage Video.

http://www.adobe.com/go/learn_as3_usingstagevideo_en

519ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

Using the StageVideoEvent.RENDER_STATE and VideoEvent.RENDER_STATE events

StageVideo and Video objects send events that inform applications when the display environment changes. These

events are StageVideoEvent.RENDER_STATE and VideoEvent.RENDER_STATE.

A StageVideo or Video object dispatches a render state event when a NetStream object is attached and begins playing.

It also sends this event when the display environment changes; for example, when the video viewport is resized. Use

these notifications to reset your viewport to the current videoHeight and videoWidth values of the event target

object.

Reported render states include:

• RENDER_STATUS_UNAVAILABLE

• RENDER_STATUS_SOFTWARE

• RENDER_STATUS_ACCELERATED

Render states indicate when hardware accelerated decoding is in use, regardless of which class is currently playing

video. Check the StageVideoEvent.status property to learn whether the necessary decoding is available. If this

property is set to “unavailable”, the StageVideo object cannot play the video. This status requires that you immediately

reattach the NetStream object to a Video object. Other statuses inform your application of the current rendering

conditions.

The following table describes the implications of all render status values for StageVideoEvent and VideoEvent objects

in Flash Player:

Color spaces

Stage video uses underlying hardware capabilities to support color spaces. SWF content can provide metadata

indicating its preferred color space. However, the device graphics hardware determines whether that color space can

be used. One device can support several color spaces, while another supports none. If the hardware does not support

the requested color space, Flash Player attempts to find the closest match among the supported color spaces.

To query which color spaces the hardware supports, use the StageVideo.colorSpaces property. This property

returns the list of supported color spaces in a String vector:

var colorSpace:Vector.<String> = stageVideo.colorSpaces();

To learn which color space the currently playing video is using, check the StageVideoEvent.colorSpace property.

Check this property in your event handler for the StageVideoEvent.RENDER_STATE event:

VideoStatus.ACCELERATED VideoStatus.SOFTWARE VideoStatus.UNAVAILABLE

StageVideoEvent Decoding and presentation

both occur in hardware. (Best

performance.)

Presentation in hardware,

decoding in software.

(Acceptable performance.)

No GPU resources are available

to handle video, and nothing is

displayed. Fall back to a Video

object.

VideoEvent Presentation in software,

decoding in hardware.

(Acceptable performance on a

modern desktop system only.

Degraded full-screen

performance.)

Presentation in software,

decoding in software.

(Worst case performance-

wise. Degraded full-screen

performance.)

(N/A)

520ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with video

Last updated 10/9/2017

var currColorSpace:String;

//StageVideoEvent.RENDER_STATE event handler
private function stageVideoRenderState(event:Object):void
{

//...
currColorSpace = (event as StageVideoEvent).colorSpace;
//...

}

If Flash Player cannot find a substitute for an unsupported color space, stage video uses the default color space BT.601.

For example, video streams with H.264 encoding typically use the BT.709 color space. If the device hardware does not

support BT.709, the colorSpace property returns "BT601". A StageVideoEvent.colorSpace value of "unknown"

indicates that the hardware does not provide a means of querying the color space.

If your application deems the current color space unacceptable, you can choose to switch from a StageVideo object to

a Video object. The Video class supports all color spaces through software compositing.

521

Last updated 10/9/2017

Chapter 26: Working with cameras

Flash Player 9 and later, Adobe AIR 1.0 and later

A camera attached to a user’s computer can serve as a source of video data that you can display and manipulate using

ActionScript. The Camera class is the mechanism built into ActionScript for working with a computer or device

camera.

On mobile devices, you can also use the CameraUI class. The CameraUI class launches a separate camera application

to allow the user to capture a still image or video. When the user is finished, your application can access the image or

video through a MediaPromise object.

More Help topics

Christian Cantrell: How to use CameraUI in a Cross-platform Way

Michaël CHAIZE: Android, AIR and the Camera

Understanding the Camera class

Flash Player 9 and later, Adobe AIR 1.0 and later

The Camera object allows you to connect to the user’s local camera and broadcast the video either locally (back to the

user) or remotely to a server (such as Flash Media Server).

Using the Camera class, you can access the following kinds of information about the user’s camera:

• Which cameras installed on the user’s computer or device are available

• Whether a camera is installed

• Whether Flash Player is allowed or denied access to the user’s camera

• Which camera is currently active

• The width and height of the video being captured

The Camera class includes several useful methods and properties for working with camera objects. For example, the

static Camera.names property contains an array of camera names currently installed on the user’s computer. You can

also use the name property to display the name of the currently active camera.

Note: When streaming camera video across the network, you should always handle network interruptions. Network

interruptions can occur for many reasons, particularly on mobile devices.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/media/Camera.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/media/CameraUI.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/media/MediaPromise.html
http://blogs.adobe.com/cantrell/archives/2011/02/how-to-use-cameraui-in-a-cross-platform-way.html
http://www.riagora.com/2010/07/android-air-and-the-camera/

522ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with cameras

Last updated 10/9/2017

Displaying camera content on screen

Flash Player 9 and later, Adobe AIR 1.0 and later

Connecting to a camera can require less code than using the NetConnection and NetStream classes to load a video.

The camera class can also quickly become tricky because with Flash Player, you need a user’s permission to connect to

their camera before you can access it.

The following code demonstrates how you can use the Camera class to connect to a user’s local camera:

 var cam:Camera = Camera.getCamera();
 var vid:Video = new Video();
 vid.attachCamera(cam);
 addChild(vid);

Note: The Camera class does not have a constructor method. In order to create a new Camera instance you use the static

Camera.getCamera() method.

Designing your camera application

Flash Player 9 and later, Adobe AIR 1.0 and later

When writing an application that connects to a user’s camera, you need to account for the following in your code:

• Check if the user has a camera currently installed. Handle the case where no camera is available.

• For Flash Player only, check if the user has explicitly allowed access to the camera. For security reasons the player

displays the Flash Player Settings dialog which lets the user allow or deny access to their camera. This prevents Flash

Player from connecting to a user’s camera and broadcasting a video stream without their permission. If a user clicks

allow, your application can connect to the user’s camera. If the user clicks deny, your application will be unable to

access the user’s camera. Your applications should always handle both cases gracefully.

• For AIR only, check whether the Camera class is supported for the device profiles supported by your application.

• The Camera class is not supported in mobile browsers.

• The Camera class is not supported in mobile AIR apps that use the GPU rendering mode.

• On mobile devices, only one camera can be active at a time.

More Help topics

Christophe Coenraets: Multi-User Video Tic-Tac-Toe

Mark Doherty: Android Radar app (source)

Connecting to a user’s camera

Flash Player 9 and later, Adobe AIR 1.0 and later

The first step when connecting to a user’s camera is to create a new camera instance by creating a variable of type

Camera and initializing it to the return value of the static Camera.getCamera() method.

http://coenraets.org/blog/2010/08/multi-user-video-tic-tac-toe-for-android/
http://www.flashmobileblog.com/2010/10/14/facebook-connect-with-air-on-android/#comments

523ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with cameras

Last updated 10/9/2017

The next step is to create a new video object and attach the Camera object to it.

The third step is to add the video object to the display list. You need to perform steps 2 and 3 because the Camera class

does not extend the DisplayObject class so it cannot be added directly to the display list. To display the camera’s

captured video, you create a new video object and call the attachCamera() method.

The following code shows these three steps:

 var cam:Camera = Camera.getCamera();
 var vid:Video = new Video();
 vid.attachCamera(cam);
 addChild(vid);

Note that if a user does not have a camera installed, the application does not display anything.

In real life, you need to perform additional steps for your application. See “Verifying that cameras are installed” on

page 523 and “Detecting permissions for camera access” on page 524 for further information.

More Help topics

Lee Brimelow: How to access the camera on Android devices

Verifying that cameras are installed

Flash Player 9 and later, Adobe AIR 1.0 and later

Before you attempt to use any methods or properties on a camera instance, you’ll want to verify that the user has a

camera installed. There are two ways to check whether the user has a camera installed:

• Check the static Camera.names property which contains an array of camera names which are available. Typically

this array will have one or fewer strings, as most users will not likely have more than one camera installed at a time.

The following code demonstrates how you could check the Camera.names property to see if the user has any

available cameras:

 if (Camera.names.length > 0)
 {
 trace("User has at least one camera installed.");
 var cam:Camera = Camera.getCamera(); // Get default camera.
 }
 else
 {
 trace("User has no cameras installed.");
 }

• Check the return value of the static Camera.getCamera() method. If no cameras are available or installed, this

method returns null, otherwise it returns a reference to a Camera object. The following code demonstrates how

you could check the Camera.getCamera() method to see if the user has any available cameras:

http://www.gotoandlearn.com/play.php?id=124

524ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with cameras

Last updated 10/9/2017

 var cam:Camera = Camera.getCamera();
 if (cam == null)
 {
 trace("User has no cameras installed.");
 }
 else
 {
 trace("User has at least 1 camera installed.");
 }

Since the Camera class doesn’t extend the DisplayObject class, it cannot be directly added to the display list using the

addChild() method. In order to display the camera’s captured video, you need to create a new Video object and call

the attachCamera() method on the Video instance.

This snippet shows how you can attach the camera if one exists; if not, the application simply displays nothing:

 var cam:Camera = Camera.getCamera();
 if (cam != null)
 {
 var vid:Video = new Video();
 vid.attachCamera(cam);
 addChild(vid);
 }

Mobile device cameras

The Camera class is not supported in the Flash Player runtime in mobile browsers.

In AIR applications on mobile devices you can access the camera or cameras on the device. On mobile devices, you

can use both the front- and the back-facing camera, but only one camera output can be displayed at any given time.

(Attaching a second camera will detach the first.) The front-facing camera is horizontally mirrored on iOS, on

Android, it is not.

Detecting permissions for camera access

Flash Player 9 and later, Adobe AIR 1.0 and later

In the AIR application sandbox, the application can access any camera without the user's permission. On Android,

however, the application must specify the Android CAMERA permission in the application descriptor.

Before Flash Player can display a camera’s output, the user must explicitly allow Flash Player to access the camera.

When the attachCamera() method gets called Flash Player displays the Flash Player Settings dialog box which

prompts the user to either allow or deny Flash Player access to the camera and microphone. If the user clicks the Allow

button, Flash Player displays the camera’s output in the Video instance on the Stage. If the user clicks the Deny button,

Flash Player is unable to connect to the camera and the Video object does not display anything.

If you want to detect whether the user allowed Flash Player access to the camera, you can listen for the camera’s status

event (StatusEvent.STATUS), as seen in the following code:

525ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with cameras

Last updated 10/9/2017

 var cam:Camera = Camera.getCamera();
 if (cam != null)
 {
 cam.addEventListener(StatusEvent.STATUS, statusHandler);
 var vid:Video = new Video();
 vid.attachCamera(cam);
 addChild(vid);
 }
 function statusHandler(event:StatusEvent):void
 {
 // This event gets dispatched when the user clicks the "Allow" or "Deny"
 // button in the Flash Player Settings dialog box.
 trace(event.code); // "Camera.Muted" or "Camera.Unmuted"
 }

The statusHandler() function gets called as soon as the user clicks either Allow or Deny. You can detect which

button the user clicked, using one of two methods:

• The event parameter of the statusHandler() function contains a code property which contains the string

“Camera.Muted” or “Camera.Unmuted”. If the value is “Camera.Muted” the user clicked the Deny button and

Flash Player is unable to access the camera. You can see an example of this in the following snippet:

 function statusHandler(event:StatusEvent):void
 {
 switch (event.code)
 {
 case "Camera.Muted":
 trace("User clicked Deny.");
 break;
 case "Camera.Unmuted":
 trace("User clicked Accept.");
 break;
 }
 }

• The Camera class contains a read-only property named muted which specifies whether the user has denied access

to the camera (true) or allowed access (false) in the Flash Player Privacy panel. You can see an example of this in

the following snippet:

 function statusHandler(event:StatusEvent):void
 {
 if (cam.muted)
 {
 trace("User clicked Deny.");
 }
 else
 {
 trace("User clicked Accept.");
 }
 }

By checking for the status event to be dispatched, you can write code that handles the user accepting or denying access

to the camera and clean up appropriately. For example, if the user clicks the Deny button, you could display a message

to the user stating that they need to click Allow if they want to participate in a video chat, or you could instead make

sure the Video object on the display list is deleted to free up system resources.

In AIR, a Camera object does not dispatch status events since permission to use the camera is not dynamic.

526ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with cameras

Last updated 10/9/2017

Maximizing camera video quality

Flash Player 9 and later, Adobe AIR 1.0 and later

By default, new instances of the Video class are 320 pixels wide by 240 pixels high. In order to maximize video quality

you should always ensure that your video object matches the same dimensions as the video being returned by the

camera object. You can get the camera object’s width and height by using the Camera class’s width and height

properties, you can then set the video object’s width and height properties to match the camera objects dimensions,

or you can pass the camera’s width and height to the Video class’s constructor method, as seen in the following snippet:

 var cam:Camera = Camera.getCamera();
 if (cam != null)
 {
 var vid:Video = new Video(cam.width, cam.height);
 vid.attachCamera(cam);
 addChild(vid);
 }

Since the getCamera() method returns a reference to a camera object (or null if no cameras are available) you can

access the camera’s methods and properties even if the user denies access to their camera. This allows you to set the

size of the video instance using the camera’s native height and width.

 var vid:Video;
 var cam:Camera = Camera.getCamera();

 if (cam == null)
 {
 trace("Unable to locate available cameras.");
 }
 else
 {
 trace("Found camera: " + cam.name);
 cam.addEventListener(StatusEvent.STATUS, statusHandler);
 vid = new Video();
 vid.attachCamera(cam);
 }
 function statusHandler(event:StatusEvent):void
 {
 if (cam.muted)
 {
 trace("Unable to connect to active camera.");
 }
 else
 {
 // Resize Video object to match camera settings and
 // add the video to the display list.
 vid.width = cam.width;
 vid.height = cam.height;
 addChild(vid);
 }
 // Remove the status event listener.
 cam.removeEventListener(StatusEvent.STATUS, statusHandler);
 }

For information about full-screen mode, see the full-screen mode section under “Setting Stage properties” on

page 164.

527ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with cameras

Last updated 10/9/2017

Monitoring camera status

Flash Player 9 and later, Adobe AIR 1.0 and later

The camera class contains several properties which allow you to monitor the Camera object’s current status. For

example, the following code displays several of the camera’s properties using a Timer object and a text field instance

on the display list:

 var vid:Video;
 var cam:Camera = Camera.getCamera();
 var tf:TextField = new TextField();
 tf.x = 300;
 tf.autoSize = TextFieldAutoSize.LEFT;
 addChild(tf);

 if (cam != null)
 {
 cam.addEventListener(StatusEvent.STATUS, statusHandler);
 vid = new Video();
 vid.attachCamera(cam);
 }
 function statusHandler(event:StatusEvent):void
 {
 if (!cam.muted)
 {
 vid.width = cam.width;
 vid.height = cam.height;
 addChild(vid);
 t.start();
 }
 cam.removeEventListener(StatusEvent.STATUS, statusHandler);
 }

 var t:Timer = new Timer(100);
 t.addEventListener(TimerEvent.TIMER, timerHandler);
 function timerHandler(event:TimerEvent):void
 {
 tf.text = "";
 tf.appendText("activityLevel: " + cam.activityLevel + "\n");
 tf.appendText("bandwidth: " + cam.bandwidth + "\n");
 tf.appendText("currentFPS: " + cam.currentFPS + "\n");
 tf.appendText("fps: " + cam.fps + "\n");
 tf.appendText("keyFrameInterval: " + cam.keyFrameInterval + "\n");
 tf.appendText("loopback: " + cam.loopback + "\n");
 tf.appendText("motionLevel: " + cam.motionLevel + "\n");
 tf.appendText("motionTimeout: " + cam.motionTimeout + "\n");
 tf.appendText("quality: " + cam.quality + "\n");
 }

Every 1/10 of a second (100 milliseconds) the Timer object’s timer event is dispatched and the timerHandler()

function updates the text field on the display list.

528

Last updated 10/9/2017

Chapter 27: Using digital rights
management

Flash Player 10.1 and later, Adobe AIR 1.5 and later

Adobe® Access™ is a content protection solution. It lets content owners, distributors, and advertisers realize new

sources of revenue by providing seamless access to premium content. Publishers use Adobe Access to encrypt content,

create policies, and issue licenses. Adobe Flash Player and Adobe AIR incorporate a DRM library, the Adobe Access

module. This module enables the runtime to communicate with the Adobe Access license server and play back

protected content. The runtime thus completes the life cycle of content protected by Adobe Access and distributed by

Flash Media Server.

With Adobe Access, content providers can provide both free content and premium content. For example, a consumer

wants to view a television program without advertisements. The consumer registers and pays the content publisher.

The consumer can then enter their user credentials to gain access and play the program without the ads.

In another example, a consumer wants to view content offline while traveling with no Internet access. This offline

workflow is supported in AIR applications. After registering and paying the publisher for the content, the user can

access and download the content and associated AIR application from the publisher’s website. Using the AIR

application, the user can view the content offline during the permitted period. The content can also be shared with

other devices in the same device group using domains (New in 3.0).

Adobe Access also supports anonymous access, which does not require user authentication. For example, a publisher

can use anonymous access to distribute ad-supported content. Anonymous access also lets a publisher allow free access

to the current content for a specified number of days. The content provider can also specify and restrict the type and

version of the player needed for their content.

When a user tries to play protected content in Flash Player or Adobe AIR, your application must call the DRM APIs.

The DRM APIs initiate the workflow for playback of protected content. The runtime, through the Adobe Access

module, contacts the license server. The license server authenticates the user, if necessary, and issues a license to allow

playback of protected content. The runtime receives the license and decrypts the content for playback.

How to enable your application to play content protected by Adobe Access is described here. It is not necessary to

understand how to encrypt content or maintain policies using Adobe Access. However, it is assumed that you are

communicating with the Adobe Access license server to authenticate the user and retrieve the license. It is also

assumed that you are designing an application to specifically play content protected by Adobe Access.

For an overview of Adobe Access, including creating policies, see the documentation included with Adobe Access.

More Help topics

flash.net.drm package

flash.net.NetConnection

flash.net.NetStream

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/drm/package-detail.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/NetConnection.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/NetStream.html

529ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

Understanding the protected content workflow

Flash Player 10.1 and later, Adobe AIR 2.0 and later

Important: Flash Player 11.5 and above integrates the Adobe Access module, so the update step (calling

SystemUpdater.update(SystemUpdaterType.DRM)) is unnecessary. This includes the following browsers and

platforms:

• Flash Player 11.5 ActiveX control, for all platforms except Internet Explorer on Windows 8 on Intel processors

• Flash Player 11.5 plugin, for all browsers

• Adobe AIR (desktop and mobile)

This means that the update step is still required in the following cases:

• Internet Explorer on Windows 8 on Intel processors

• Flash Player 11.4 and below, except on Google Chrome 22 and above (all platforms) or 21 and above (Windows)

Note: You can still safely call SystemUpdater.update(SystemUpdaterType.DRM)on a system with Flash Player 11.5

or higher, but nothing is downloaded.

The following high-level workflow shows that how an application can retrieve and play protected content. The

workflow assumes that the application is designed specifically to play content protected by Adobe Access:

1 Get the content metadata.

2 Handle updates to Flash Player, if needed.

3 Check if a license is available locally. If so, load it and go to step 7. If not, go to step 4.

4 Check if authentication is required. If not, you can go to step 7.

5 If authentication is required, get the authentication credentials from the user and pass them to the license server.

6 If domain registration is required, join the domain (AIR 3.0 and higher).

7 Once authentication succeeds, download the license from the server.

8 Play the content.

If an error has not occurred and the user was successfully authorized to view the content, the NetStream object

dispatches a DRMStatusEvent object. The application then begins playback. The DRMStatusEvent object holds the

related voucher information, which identifies the user’s policy and permissions. For example, it holds information

regarding whether the content can be made available offline or when the license expires. The application can use this

data to inform the user of the status of their policy. For example, the application can display the number of remaining

days the user has for viewing the content in a status bar.

If the user is allowed offline access, the voucher is cached, and the encrypted content is downloaded to the user’s

machine. The content is made accessible for the duration defined in the license caching duration. The detail property

in the event contains "DRM.voucherObtained". The application decides where to store the content locally in order

for it to be available offline. You can also preload vouchers using the DRMManager class.

Note: Caching and pre-loading of vouchers is supported in both AIR and Flash Player. However, downloading and storing

encrypted content is supported only in AIR.

530ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

It is the application’s responsibility to explicitly handle the error events. These events include cases where the user

inputs valid credentials, but the voucher protecting the encrypted content restricts the access to the content. For

example, an authenticated user cannot access content if the rights have not been paid for. This case can also occur when

two registered members of the same publisher attempt to share content that only one of them has paid for. The

application must inform the user of the error and provide an alternative suggestion. A typical alternative suggestion is

instructions in how to register and pay for viewing rights.

Detailed API workflow

Flash Player 10.1 and later, AIR 2.0 and later

This workflow provides a more detailed view of the protected-content workflow. This workflow describes the specific

APIs used to play content protected by Adobe Access.

1 Using a URLLoader object, load the bytes of the protected content’s metadata file. Set this object to a variable, such

as metadata_bytes.

All content controlled by Adobe Access has Adobe Access metadata. When the content is packaged, this metadata

can be saved as a separate metadata file (.metadata) alongside the content. For more information, see the Adobe

Access documentation.

2 Create a DRMContentData instance. Put this code into a try-catch block:

new DRMContentData(metadata_bytes)

where metadata_bytes is the URLLoader object obtained in step 1.

3 (Flash Player only) The runtime checks for the Adobe Access module. If not found, an IllegalOperationError with

DRMErrorEvent error code 3344 or DRMErrorEvent error code 3343 is thrown.

To handle this error, download the Adobe Access module using the SystemUpdater API. After this module is

downloaded, the SystemUpdater object dispatches a COMPLETE event. Include an event listener for this event that

returns to step 2 when this event is dispatched. The following code demonstrates these steps:

flash.system.SystemUpdater.addEventListener(Event.COMPLETE, updateCompleteHandler);
flash.system.SystemUpdater.update(flash.system.SystemUpdaterType.DRM)

private function updateCompleteHandler (event:Event):void {
/*redo step 2*/
drmContentData = new DRMContentData(metadata_bytes);

}

If the player itself must be updated, a status event is dispatched. For more information on handling this event, see

“Listening for an update event” on page 545.

Note: In AIR applications, the AIR installer handles updating the Adobe Access module and required runtime

updates.

4 Create listeners to listen for the DRMStatusEvent and DRMErrorEvent dispatched from the DRMManager object:

DRMManager.addEventListener(DRMStatusEvent.DRM_STATUS, onDRMStatus);
DRMManager.addEventListener(DRMErrorEvent.DRM_ERROR, onDRMError);

In the DRMStatusEvent listener, check that the voucher is valid (not null). In the DRMErrorEvent listener, handle

DRMErrorEvents. See “Using the DRMStatusEvent class” on page 537 and “Using the DRMErrorEvent class” on

page 541.

5 Load the voucher (license) that is required to play the content.

First, try to load a locally stored license to play the content:

531ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

DRMManager.loadvoucher(drmContentData, LoadVoucherSetting.LOCAL_ONLY)

After loading completes, the DRMManager object dispatches DRMStatusEvent.DRM_Status.

6 If the DRMVoucher object is not null, the voucher is valid. Skip to step 13.

7 If the DRMVoucher object is null, check the authentication method required by the policy for this content. Use the

DRMContentData.authenticationMethod property.

8 If the authentication method is ANONYMOUS, go to step 13.

9 If the authentication method is USERNAME_AND_PASSWORD, your application must provide a mechanism to let the

user enter credentials. Pass these credentials to the license server to authenticate the user:

DRMManager.authenticate(metadata.serverURL, metadata.domain, username, password)

The DRMManager dispatches a DRMAuthenticationErrorEvent if authentication fails or a

DRMAuthenticationCompleteEvent if authentication succeeds. Create listeners for these events.

10 If the authentication method is UNKNOWN, a custom authentication method must be used. In this case, the content

provider has arranged for authentication to be done in an out-of-band manner by not using the ActionScript 3.0

APIs. The custom authentication procedure must produce an authentication token that can be passed to the

DRMManager.setAuthenticationToken() method.

11 If authentication fails, your application must return to step 9. Ensure that your application has a mechanism to

handle and limit repeated authentication failures. For example, after three attempts, you display a message to the

user indicating the authentication has failed and content cannot be played.

12 To use the stored token instead of prompting the user to enter credentials, set the token with

DRMManager.setAuthenticationToken() method. You then download the license from the license server and

play content as in step 8.

13 (optional) If authentication succeeds, you can capture the authentication token, which is a byte array cached in

memory. Get this token with the DRMAuthenticationCompleteEvent.token property. You can store and use the

authentication token so that the user does not have to repeatedly enter credentials for this content. The license

server determines the valid period of the authentication token.

14 If authentication succeeds, download the license from the license server:

DRMManager.loadvoucher(drmContentData, LoadVoucherSetting.FORCE_REFRESH)

After loading completes, the DRMManager object dispatches DRMStatusEvent.DRM_STATUS. Listen for this

event, and when it is dispatched, you can play the content.

15 Play the video by creating a NetStream object and then calling its play() method:

stream = new NetStream(connection);
stream.addEventListener(DRMStatusEvent.DRM _STATUS, drmStatusHandler);
stream.addEventListener(DRMErrorEvent.DRM_ERROR, drmErrorHandler);
stream.addEventListener(NetStatusEvent.NET_STATUS, netStatusHandler);
stream.client = new CustomClient();
video.attachNetStream(stream);
stream.play(videoURL);

DRMContentData and session objects

When DRMContentData is created, it will be used as a session object that refers to the Flash Player DRM module. All

the DRMManager APIs that receives this DRMContentData will use that particular DRM module. However, there are 2

DRMManager APIs that does not use DRMContentData. They are:

1 authenticate()

532ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

2 setAuthenticationToken()

Since there is no DRMContentData associated, invoking these DRMManager APIs will use the latest DRM module from

the disk. This may become a problem if an update of the DRM module happens in the middle of the application’s DRM

workflow. Consider the following scenario:

1 The application creates a DRMContentData object contentData1, which uses AdobeCP1 as the DRM module.

2 The application invokes the DRMManager.authenticate(contentData1.serverURL,...) method.

3 The application invokes the DRMManager.loadVoucher(contentData1, ...) method.

If an update happens for the DRM module before the application can get to step 2, then the

DRMManager.authenticate() method will end up authenticating using AdobeCP2 as the DRM module. The

loadVoucher() method in step 3 will fail since it is still using AdobeCP1 as the DRM module. The update may have

happened due to another application invoking the DRM module update.You can avoid this scenario by invoking the

DRM module update on application startup.

DRM-related events

The runtime dispatches numerous events when an application attempts to play protected content:

• DRMDeviceGroupErrorEvent (AIR only), dispatched by DRMManager

• DRMAuthenticateEvent (AIR only), dispatched by NetStream

• DRMAuthenticationCompleteEvent, dispatched by DRMManager

• DRMAuthenticationErrorEvent, dispatched by DRMManager

• DRMErrorEvent, dispatched by NetStream and DRMManager

• DRMStatusEvent, dispatched by NetStream and DRMManager

• StatusEvent

• NetStatusEvent. See “Listening for an update event” on page 545

To support content protected by Adobe Access, add event listeners for handling the DRM events.

Pre-loading vouchers for offline playback

Adobe AIR 1.5 and later

You can preload the vouchers (licenses) required to play content protected by Adobe Access. Pre-loaded vouchers

allow users to view the content whether they have an active Internet connection. (The preload process itself requires

an Internet connection.) You can use the NetStream class preloadEmbeddedMetadata() method and the

DRMManager class to preload vouchers. In AIR 2.0 and later, you can use a DRMContentData object to preload

vouchers directly. This technique is preferable because it lets you update the DRMContentData object independent of

the content. (The preloadEmbeddedData() method fetches DRMContentData from the content.)

533ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

Using DRMContentData

Adobe AIR 2.0 and later

The following steps describe the workflow for pre-loading the voucher for a protected media file using a

DRMContentData object.

1 Get the binary metadata for the packaged content. If using the Adobe Access Java Reference Packager, this metadata

file is automatically generated with a .metadata extension. You could, for example, download this metadata using

the URLLoader class.

2 Create a DRMContentData object, passing the metadata to the constructor function:

var drmData:DRMContentData = new DRMContentData(metadata);

3 The rest of the steps are identical to the workflow described in “Understanding the protected content workflow” on

page 529.

Using preloadEmbeddedMetadata()

Adobe AIR 1.5 and later

The following steps describe the workflow for pre-loading the voucher for a DRM-protected media file using

preloadEmbeddedMetadata():

1 Download and store the media file. (DRM metadata can only be pre-loaded from locally stored files.)

2 Create the NetConnection and NetStream objects, supplying implementations for the onDRMContentData() and

onPlayStatus() callback functions of the NetStream client object.

3 Create a NetStreamPlayOptions object and set the stream property to the URL of the local media file.

4 Call the NetStream preloadEmbeddedMetadata(), passing in the NetStreamPlayOptions object identifying the

media file to parse.

5 If the media file contains DRM metadata, then the onDRMContentData() callback function is invoked. The

metadata is passed to this function as a DRMContentData object.

6 Use the DRMContentData object to obtain the voucher using the DRMManager loadVoucher() method.

If the value of the authenticationMethod property of the DRMContentData object is

flash.net.drm.AuthenticationMethod.USERNAME_AND_PASSWORD, authenticate the user on the media rights

server before loading the voucher. The serverURL and domain properties of the DRMContentData object can be

passed to the DRMManager authenticate() method, along with the user’s credentials.

7 The onPlayStatus() callback function is invoked when file parsing is complete. If the onDRMContentData()

function has not been called, the file does not contain the metadata required to obtain a voucher. This missing call

also possibly means that Adobe Access does not protect this file.

The following code example for AIR illustrates how to preload a voucher for a local media file:

534ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

package
{
import flash.display.Sprite;
import flash.events.DRMAuthenticationCompleteEvent;
import flash.events.DRMAuthenticationErrorEvent;
import flash.events.DRMErrorEvent;
import flash.ev ents.DRMStatusEvent;
import flash.events.NetStatusEvent;
import flash.net.NetConnection;
import flash.net.NetStream;
import flash.net.NetStreamPlayOptions;
import flash.net.drm.AuthenticationMethod;
import flash.net.drm.DRMContentData;
import flash.net.drm.DRMManager;
import flash.net.drm.LoadVoucherSetting;
public class DRMPreloader extends Sprite
{
 private var videoURL:String = "app-storage:/video.flv";

private var userName:String = "user";
private var password:String = "password";
private var preloadConnection:NetConnection;
private var preloadStream:NetStream;
private var drmManager:DRMManager = DRMManager.getDRMManager();
private var drmContentData:DRMContentData;
public function DRMPreloader():void {

drmManager.addEventListener(
DRMAuthenticationCompleteEvent.AUTHENTICATION_COMPLETE,
onAuthenticationComplete);

drmManager.addEventListener(DRMAuthenticationErrorEvent.AUTHENTICATION_ERROR,
onAuthenticationError);

drmManager.addEventListener(DRMStatusEvent.DRM_STATUS, onDRMStatus);
drmManager.addEventListener(DRMErrorEvent.DRM_ERROR, onDRMError);
preloadConnection = new NetConnection();
preloadConnection.addEventListener(NetStatusEvent.NET_STATUS, onConnect);
preloadConnection.connect(null);

}

private function onConnect(event:NetStatusEvent):void
{

preloadMetadata();
}
private function preloadMetadata():void
{

preloadStream = new NetStream(preloadConnection);
preloadStream.client = this;
var options:NetStreamPlayOptions = new NetStreamPlayOptions();
options.streamName = videoURL;
preloadStream.preloadEmbeddedData(options);

}
public function onDRMContentData(drmMetadata:DRMContentData):void
{

drmContentData = drmMetadata;
if (drmMetadata.authenticationMethod == AuthenticationMethod.USERNAME_AND_PASSWORD)
{

authenticateUser();
}
else

535ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

{
getVoucher();

}
}
private function getVoucher():void
{

drmManager.loadVoucher(drmContentData, LoadVoucherSetting.ALLOW_SERVER);
}

private function authenticateUser():void
{

drmManager.authenticate(drmContentData.serverURL, drmContentData.domain, userName,
password);

}
private function onAuthenticationError(event:DRMAuthenticationErrorEvent):void
{

trace("Authentication error: " + event.errorID + ", " + event.subErrorID);
}

private function onAuthenticationComplete(event:DRMAuthenticationCompleteEvent):void
{

trace("Authenticated to: " + event.serverURL + ", domain: " + event.domain);
getVoucher();

}
private function onDRMStatus(event:DRMStatusEvent):void
{

trace("DRM Status: " + event.detail);
trace("--Voucher allows offline playback = " + event.isAvailableOffline);
trace("--Voucher already cached = " + event.isLocal);
trace("--Voucher required authentication = " + !event.isAnonymous);

}
private function onDRMError(event:DRMErrorEvent):void
{

trace("DRM error event: " + event.errorID + ", " + event.subErrorID + ", " + event.text);
}
public function onPlayStatus(info:Object):void
{

preloadStream.close();
}

}
}

DRM-related members and events of the NetStream
class

Flash Player 10.1 and later, Adobe AIR 1.0 and later

The NetStream class provides a one-way streaming connection between Flash Player or an AIR application, and either

Flash Media Server or the local file system. (The NetStream class also supports progressive download.) A NetStream

object is a channel within a NetConnection object. The NetStream class dispatches four DRM-related events:

536ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

The NetStream class includes the following DRM-specific methods, for use in AIR only:

In addition, in AIR, a NetStream object calls the onDRMContentData() and onPlayStatus() callback functions as a

result of a call to the preloadEmbeddedMetaData() method. The onDRMContentData() function is called when

DRM metadata is encountered in a media file. The onPlayStatus() function is called when the file has been parsed.

The onDRMContentData() and onPlayStatus() functions must be defined on the client object assigned to the

NetStream instance. If you use the same NetStream object to preload vouchers and play content, wait for the

onPlayStatus() call generated by preloadEmbeddedMetaData() before starting playback.

In the following code for AIR, user name (“administrator”), password (“password”) and the “drm” authentication type

are set for authenticating the user. The setDRMAuthenticationCredentials() method must provide credentials that

match credentials known and accepted by the content provider. These credentials are the same user credentials that

permit the user to view the content. The code for playing the video and making sure that a successful connection to

the video stream has been made is not included here.

Event Description

drmAuthenticate

(AIR only)

Defined in the DRMAuthenticateEvent class. This event is dispatched when a NetStream object tries to play

protected content that requires a user credential for authentication before playback.

The properties of this event include header, usernamePrompt, passwordPrompt, and urlPrompt properties

that can be used in obtaining and setting the user’s credentials. This event occurs repeatedly until the

NetStream object receives valid user credentials.

drmError Defined in the DRMErrorEvent class and dispatched when a NetStream object tries to play protected content

and encounters a DRM-related error. For example, DRM error event object is dispatched when the user

authorization fails. This error could occur because the user has not purchased the rights to view the content.

It could also occur because the content provider does not support the viewing application.

drmStatus Defined in the DRMStatusEvent class. This event is dispatched when the protected content begins playing

(when the user is authenticated and authorized to play the content). The DRMStatusEvent object contains

information related to the voucher. Voucher information includes whether the content can be made available

offline or when the voucher expires and the content can no longer be viewed.

status Defined in events.StatusEvent and only dispatched when the application attempts to play protected content,

by invoking the NetStream.play() method. The value of the status code property is "DRM.encryptedFLV".

Method Description

resetDRMVouchers() Deletes all the locally cached digital rights management (DRM) voucher data. The application

must download the vouchers again for the user to be able to access the encrypted content.

For example, the following code removes all vouchers from the cache:

NetStream.resetDRMVouchers();

setDRMAuthenticationCredentials() Passes a set of authentication credentials, namely user name, password, and authentication type,

to the NetStream object for authentication. Valid authentication types are "drm" and "proxy".

With "drm" authentication type, the credentials provided are authenticated against Adobe

Access. With "proxy" authentication type, the credentials authenticate against the proxy server

and must match the credentials required by the proxy server. For example, an enterprise can

require the application to authenticate against a proxy server before the user can access the

Internet. The proxy option allows this type of authentication. Unless anonymous authentication is

used, after the proxy authentication, the user must still authenticate against Adobe Access to

obtain the voucher and play the content. You can use

setDRMAuthenticationCredentials() a second time, with “drm" option, to authenticate

against Adobe Access.

preloadEmbeddedMetadata() Parses a local media file for embedded metadata. When DRM-related metadata is found, AIR calls

the onDRMContentData() callback function.

537ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

var connection:NetConnection = new NetConnection();
 connection.connect(null);

 var videoStream:NetStream = new NetStream(connection);

 videoStream.addEventListener(DRMAuthenticateEvent.DRM_AUTHENTICATE,
 drmAuthenticateEventHandler)

 private function drmAuthenticateEventHandler(event:DRMAuthenticateEvent):void
 {
 videoStream.setDRMAuthenticationCredentials("administrator", "password", "drm");
 }

Using the DRMStatusEvent class

Flash Player 10.1, Adobe AIR 1.0 and later

A NetStream object dispatches a DRMStatusEvent object when the content protected by Adobe Access begins playing

successfully. (Success implies that the license is verified and that the user is authenticated and authorized to view the

content). The DRMStatusEvent is also dispatched for anonymous users if they are permitted access. The license is

checked to verify whether anonymous users, who do not require authentication, are allowed access to play the content.

Anonymous users maybe denied access for various reasons. For example, an anonymous user does not have access to

the content when the license has expired.

The DRMStatusEvent object contains information related to the license. Such information includes whether the

license can be made available offline or when the voucher expires and the content can no longer be viewed. The

application can use this data to convey the user’s policy status and its permissions.

DRMStatusEvent properties

Flash Player 10.1, Adobe AIR 1.0 and later

The DRMStatusEvent class includes the following properties. Some properties became available in versions of AIR

later than 1.0. For complete version information, see the ActionScript 3.0 Reference.

For properties that aren’t supported in Flash Player 10.1, the DRMVoucher class provides similar properties for Flash

Player.

Property Description

contentData A DRMContentData object containing the DRM metadata embedded in the content.

detail (AIR only) A string explaining the context of the status event. In DRM 1.0, the only valid value is DRM.voucherObtained.

isAnonymous (AIR only) Indicates whether the content, protected with Adobe Access, is available without requiring a user to provide

authentication credentials (true) or not (false). A false value means that the user must provide a user name and

password that matches the one known and expected by the content provider.

isAvailableOffline (AIR

only)

Indicates whether the content, protected with Adobe Access, can be made available offline (true) or not

(false). In order for digitally protected content to be available offline, its voucher must be cached to the user's

local machine.

isLocal Indicates whether the voucher that is required to play the content is cached locally.

538ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

Creating a DRMStatusEvent handler

Flash Player 10.1, Adobe AIR 1.0 and later

The following example creates an event handler that outputs the DRM content status information for the NetStream

object that originated the event. Add this event handler to a NetStream object that points to protected content.

 function drmStatusEventHandler(event:DRMStatusEvent):void
 {
 trace(event);
 }
 function drmStatusEventHandler(event:DRMStatusEvent):void
 {
 trace(event);
 }

Using the DRMAuthenticateEvent class

Adobe AIR 1.0 and later

The DRMAuthenticateEvent object is dispatched when a NetStream object tries to play protected content that requires

a user credential for authentication before playback.

The DRMAuthenticateEvent handler is responsible for gathering the required credentials (user name, password, and

type) and passing the values to the NetStream.setDRMAuthenticationCredentials() method for validation. Each

AIR application must provide some mechanism for obtaining user credentials. For example, the application could

provide a user with a simple user interface to enter the user name and password values. Also, provide a mechanism for

handling and limiting repeated authentication attempts.

DRMAuthenticateEvent properties

Adobe AIR 1.0 and later

The DRMAuthenticateEvent class includes the following properties:

offlineLeasePeriod (AIR

only)

The remaining number of days that content can be viewed offline.

policies (AIR only) A custom object that can contain custom DRM properties.

voucher The DRMVoucher.

voucherEndDate (AIR only) The absolute date on which the voucher expires and the content is no longer viewable.

Property Description

539ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

The previously mentioned strings are supplied by the FMRMS server only. Adobe Access Server does not use these

strings.

Creating a DRMAuthenticateEvent handler

Adobe AIR 1.0 and later

The following example creates an event handler that passes a set of hard-coded authentication credentials to the

NetStream object that originated the event. (The code for playing the video and making sure that a successful

connection to the video stream has been made is not included here.)

var connection:NetConnection = new NetConnection();
 connection.connect(null);

 var videoStream:NetStream = new NetStream(connection);

 videoStream.addEventListener(DRMAuthenticateEvent.DRM_AUTHENTICATE,
 drmAuthenticateEventHandler)

 private function drmAuthenticateEventHandler(event:DRMAuthenticateEvent):void
 {
 videoStream.setDRMAuthenticationCredentials("administrator", "password", "drm");
 }

Creating an interface for retrieving user credentials

Adobe AIR 1.0 and later

In the case where protected content requires user authentication, the AIR application must usually retrieve the user’s

authentication credentials via a user interface.

Property Description

authenticationType Indicates whether the supplied credentials are for authenticating against Adobe Access (“drm”) or a proxy

server (“proxy”). For example, the "proxy" option allows the application to authenticate against a proxy server

if necessary before the user can access the Internet. Unless anonymous authentication is used, after the proxy

authentication, the user must still authenticate against Adobe Access to obtain the voucher and play the

content. You can use setDRMAuthenticationcredentials() a second time, with "drm" option, to authenticate

against Adobe Access.

header The encrypted content file header provided by the server. It contains information about the context of the

encrypted content.

This header string can be passed on to the Flash application to enable the application to construct a user

name-password dialog box. The header string can be used as the dialog box’s instructions. For example, the

header can be "Please type in your user name and password".

netstream The NetStream object that initiated this event.

passwordPrompt A prompt for a password credential, provided by the server. The string can include instruction for the type of

password required.

urlPrompt A prompt for a URL string, provided by the server. The string can provide the location where the user name

and password are sent.

usernamePrompt A prompt for a user name credential, provided by the server. The string can include instruction for the type of

user name required. For example, a content provider can require an e-mail address as the user name.

540ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

The following is a Flex example of a simple user interface for retrieving user credentials. It consists of a panel object

containing two TextInput objects, one for each of the user name and password credentials. The panel also contains a

button that launches the credentials() method.

<mx:Panel x="236.5" y="113" width="325" height="204" layout="absolute" title="Login">
 <mx:TextInput x="110" y="46" id="uName"/>
 <mx:TextInput x="110" y="76" id="pWord" displayAsPassword="true"/>
 <mx:Text x="35" y="48" text="Username:"/>
 <mx:Text x="35" y="78" text="Password:"/>
 <mx:Button x="120" y="115" label="Login" click="credentials()"/>
 </mx:Panel>

The credentials() method is a user-defined method that passes the user name and password values to the

setDRMAuthenticationCredentials() method. Once the values are passed, the credentials() method resets the

values of the TextInput objects.

<mx:Script>
 <![CDATA[
 public function credentials():void
 {
 videoStream.setDRMAuthenticationCredentials(uName, pWord, "drm");
 uName.text = "";
 pWord.text = "";
 }
]]>
 </mx:Script>

One way to implement this type of simple interface is to include the panel as part of a new state. The new state

originates from the base state when the DRMAuthenticateEvent object is thrown. The following example contains a

VideoDisplay object with a source attribute that points to a protected FLV file. In this case, the credentials()

method is modified so that it also returns the application to the base state. This method does so after passing the user

credentials and resetting the TextInput object values.

<?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="absolute"
 width="800"
 height="500"
 title="DRM FLV Player"
 creationComplete="initApp()" >

 <mx:states>
 <mx:State name="LOGIN">
 <mx:AddChild position="lastChild">
 <mx:Panel x="236.5" y="113" width="325" height="204" layout="absolute"
 title="Login">
 <mx:TextInput x="110" y="46" id="uName"/>
 <mx:TextInput x="110" y="76" id="pWord" displayAsPassword="true"/>
 <mx:Text x="35" y="48" text="Username:"/>
 <mx:Text x="35" y="78" text="Password:"/>
 <mx:Button x="120" y="115" label="Login" click="credentials()"/>
 <mx:Button x="193" y="115" label="Reset" click="uName.text='';
 pWord.text='';"/>
 </mx:Panel>
 </mx:AddChild>
 </mx:State>
 </mx:states>

541ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

 <mx:Script>
 <![CDATA[
 import flash.events.DRMAuthenticateEvent;
 private function initApp():void
 {
 videoStream.addEventListener(DRMAuthenticateEvent.DRM_AUTHENTICATE,
 drmAuthenticateEventHandler);
 }

 public function credentials():void
 {
 videoStream.setDRMAuthenticationCredentials(uName, pWord, "drm");
 uName.text = "";
 pWord.text = "";
 currentState='';
 }

 private function drmAuthenticateEventHandler(event:DRMAuthenticateEvent):void
 {
 currentState='LOGIN';
 }
]]>
 </mx:Script>

 <mx:VideoDisplay id="video" x="50" y="25" width="700" height="350"
 autoPlay="true"
 bufferTime="10.0"
 source="http://www.example.com/flv/Video.flv" />
 </mx:WindowedApplication>

Using the DRMErrorEvent class

Flash Player 10.1 and later, Adobe AIR 1.0 and later

Adobe Flash Player and Adobe AIR dispatch a DRMErrorEvent object when a NetStream object, trying to play

protected content, encounters a DRM-related error. If user credentials are invalid in an AIR application, the

DRMAuthenticateEvent object repeatedly dispatches until the user enters valid credentials or the application denies

further attempts. The application is responsible for listening to any other DRM error events to detect, identify, and

handle the DRM-related errors.

Even with valid user credentials, the terms of the content’s voucher can still prevent a user from viewing the encrypted

content. For example, a user can be denied access for attempting to view content in an unauthorized application. An

unauthorized application is one that the publisher of the encrypted content has not validated. In this case, a

DRMErrorEvent object is dispatched.

The error events can also be fired if the content is corrupted or if the application’s version does not match what the

voucher specifies. The application must provide appropriate mechanism for handling errors.

542ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

DRMErrorEvent properties

Flash Player 10.1 and later, Adobe AIR 1.0 and later

For a complete list of errors, see the Runtime Error Codes in the ActionScript 3.0 Reference. The DRM-related errors

start at error 3300.

Creating a DRMErrorEvent handler

Flash Player 10.1 and later, Adobe AIR 1.0 and later

The following example creates an event handler for the NetStream object that originated the event. It is called when

the NetStream encounters an error while attempting to play protected content. Normally, when an application

encounters an error, it performs any number of clean-up tasks. It then informs the user of the error and provides

options for solving the problem.

private function drmErrorEventHandler(event:DRMErrorEvent):void
 {
 trace(event.toString());
 }

Using the DRMManager class

Flash Player 10.1 and later, Adobe AIR 1.5 and later

Use the DRMManager class to manage vouchers and media rights server sessions in applications.

Voucher management (AIR only)

Whenever a user plays protected content, the runtime obtains and caches the license required to view the content. If

the application saves the file locally, and the license allows offline playback, the user can view the content in the AIR

application. Such local offline playback succeeds even if a connection to the media rights server is not available. Using

the DRMManager and the NetStream preloadEmbeddedMetadata() method, you can pre-cache the voucher. The

application does not have to obtain the license necessary to view the content. For example, your application could

download the media file and then obtain the voucher while the user is still online.

To preload a voucher, use the NetStream preloadEmbeddedMetadata() method to obtain a DRMContentData

object. The DRMContentData object contains the URL and domain of the media rights server that can provide the

license and describes whether user authentication is required. With this information, you can call the DRMManager

loadVoucher() method to obtain and cache the voucher. The workflow for pre-loading vouchers is described in more

detail in “Pre-loading vouchers for offline playback” on page 532.

Session management

You can also use the DRMManager to authenticate the user to a media rights server and to manage persistent sessions.

543ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

Call the DRMManager authenticate() method to establish a session with the media rights server. When

authentication is completed successfully, the DRMManager dispatches a DRMAuthenticationCompleteEvent object.

This object contains a session token. You can save this token to establish future sessions so that the user does not have

to provide their account credentials. Pass the token to the setAuthenticationToken() method to establish a new

authenticated session. (The settings of the server that generated the token determine the token expiration and other

attributes. AIR application code should not interpret the token data structure, because the structure may change in

future AIR updates.)

Authentication tokens can be transferred to other computers. To protect tokens, you can store them in the AIR

Encrypted Local Store. See “Encrypted local storage” on page 710 for more information.

DRMStatus Events

Flash Player 10.1 and later, Adobe AIR 1.5 and later

The DRMManager dispatches a DRMStatusEvent object after a call to the loadVoucher() method completes

successfully.

If a voucher is obtained, then the detail property (AIR only) of the event object has the value:

"DRM.voucherObtained", and the voucher property contains the DRMVoucher object.

If a voucher is not obtained, then the detail property (AIR only) still has the value: "DRM.voucherObtained";

however, the voucher property is null. A voucher cannot be obtained if, for example, you use the

LoadVoucherSetting of localOnly and there is no locally cached voucher.

If the loadVoucher() call does not complete successfully, perhaps because of an authentication or communication

error, then the DRMManager dispatches a DRMErrorEvent or DRMAuthenticationErrorEvent object instead.

DRMAuthenticationComplete events

Flash Player 10.1 and later, Adobe AIR 1.5 and later

The DRMManager dispatches a DRMAuthenticationCompleteEvent object when a user is successfully authenticated

through a call to the authenticate() method.

The DRMAuthenticationCompleteEvent object contains a reusable token that can be used to persist user

authentication across application sessions. Pass this token to DRMManager setAuthenticationToken() method to

re-establish the session. (The token creator sets token attributes such as expiration. Adobe does not provide an API for

examining token attributes.)

DRMAuthenticationError events

Flash Player 10.1 and later, Adobe AIR 1.5 and later

The DRMManager dispatches a DRMAuthenticationErrorEvent object when a user cannot be successfully

authenticated through a call to the authenticate() or setAuthenticationToken() methods.

544ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

Using the DRMContentData class

Flash Player 10.1 and later, Adobe AIR 1.5 and later

The DRMContentData object contains the metadata properties of content protected by Adobe Access. The

DRMContentData properties contain the information necessary to obtain a license voucher for viewing the content.

You can use the DRMContentData class to get the metadata file associated with content, as described in the “Detailed

API workflow” on page 530.

For more information, see the DRMContentData class in the ActionScript 3.0 Reference for the Adobe Flash Platform.

Updating Flash Player to support Adobe Access

Flash Player 10.1 and later

Important: Flash Player 11.5 and above integrates the Adobe Access module, so the update step (calling

SystemUpdater.update(SystemUpdaterType.DRM)) is unnecessary. This includes the following browsers and

platforms:

• Flash Player 11.5 ActiveX control, for all platforms except Internet Explorer on Windows 8

• Flash Player 11.5 plugin, for all browsers

• Adobe AIR (desktop and mobile)

This means that the update step is still required in the following cases:

• Internet Explorer on Windows 8

• Flash Player 11.4 and below, except on Google Chrome 22 and above (all platforms) or 21 and above (Windows)

Note: You can still safely call SystemUpdater.update(SystemUpdaterType.DRM)on a system with Flash Player 11.5

or higher, but nothing is downloaded.

To support Adobe Access, Flash Player requires the Adobe Access module. When Flash Player tries to play protected

content, the runtime indicates if the module or a new version of Flash Player must be downloaded. In this way, Flash

Player allows SWF developers the option of not updating if desired.

In most cases, to play protected content, SWF developers update to the required Adobe Access module or player. To

update, you can use the SystemUpdater API to get the latest version of the Adobe Access module or of Flash Player.

The SystemUpdater API permits only one update at a time. The error code 2202 indicates that an update is already

occurring in the current runtime instance or another instance. For example, if an update is occurring in a Flash Player

instance in Internet Explorer, an update cannot proceed in a Flash Player instance running in Firefox.

The SystemUpdater API is supported for desktop platforms only.

Note: For versions of Flash Player earlier than 10.1, use the update mechanism supported in earlier player versions

(manual download and install from www.adobe.com or ExpressInstall). Also, the AIR installer handles necessary updates

for Adobe Access and does not support the SystemUpdater API.

545ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

Listening for an update event

Flash Player 10.1 and later

When an update of the Adobe Access module is required, the NetStream object dispatches a NetStatusEvent with a

code value of DRM.UpdateNeeded. This value indicates that the NetStream object cannot play back the protected

stream with any of the currently installed Adobe Access modules. Listen for this event and call the following code:

SystemUpdater.update(flash.system.SystemUpdaterType.DRM)

This code updates the Adobe Access module installed in the player. User consent for this module update is not

required.

If the Adobe Access module is not found, an error is thrown. See step 3 of the “Detailed API workflow” on page 530.

Note: If play() is called on an encrypted stream in players earlier than 10.1, a NetStatusEvent with code value of

NetStream.Play.StreamNotFound is dispatched. For earlier players, use the update mechanism supported for those

players (manual download and install from www.adobe.com or ExpressInstall).

When an update of the player itself is required, the SystemUpdater object dispatches a StatusEvent with a code value

of DRM.UpdateNeededButIncompatible is dispatched. For an update of the player, user consent is required. In your

application, provide an interface for the user to agree to and initiate the update of the player. Listen for the StatusEvent

event and call the following code:

SystemUpdater.update(flash.system.SystemUpdaterType.SYSTEM);

 This code initiates the update of the player.

Additional events for the SystemUpdater class are documented in the ActionScript 3.0 Reference for the Adobe Flash

Platform.

After the player update completes, the user is redirected to the page where the update began. The Adobe Access

module is downloaded, and the stream can begin playing.

Out-of-band Licenses

Flash Player 11 and later, Adobe AIR 3.0 and later

Licenses can also be obtained out-of-band (without contacting a Adobe Access License Server) by storing the voucher

(license) on disk and in memory using the storeVoucher method.

To play encrypted videos in Flash Player and AIR, the respective runtime needs to obtain the DRM voucher for that

video. The DRM voucher contains the video’s decryption key and is generated by the Adobe Access License Server that

the customer has deployed.

The Flash Player/AIR runtime generally obtains this voucher by sending a voucher request to the Adobe Access

License Server indicated in the video’s DRM metadata (DRMContentData class). The Flash/AIR application can trigger

this license request by calling the DRMManager.loadVoucher()method. Or, the Flash Player/AIR runtime will

automatically request a license at the start of the encrypted video playback if there is no license for the content on disk

or in memory. In either case, the Flash/AIR application’s performance gets impacted by communicating with the

Adobe Access License Server.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/SystemUpdater.html#eventSummary
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/SystemUpdater.html#eventSummary

546ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

DRMManager.storeVoucher() allows the Flash/AIR application to send DRM vouchers that it has obtained out-of-

band to the Flash Player/AIR runtime. The runtime can then skip the license request process and use the forwarded

vouchers for playing encrypted videos. The DRM voucher still needs to be generated by the Adobe Access License

Server before it can be obtained out-of-band. However, you have the option of hosting the vouchers on any HTTP

server, instead of a public-facing Adobe Access license server.

DRMManager.storeVoucher() is also used to support DRM voucher sharing between multiple devices. In Adobe

Access 3.0, this feature is referred to as “Domain Support”. If your deployment supports this use case, you can register

multiple machines to a device group using the DRMManager.addToDeviceGroup() method. If there is a machine with

a valid domain-bound voucher for a given content, the AIR application can then extract the serialized DRM vouchers

using the DRMVoucher.toByteArray() method and on your other machines you can import the vouchers using the

DRMManager.storeVoucher()method.

Device registration

The DRM vouchers are bound to the end user’s machine. Hence Flash /AIR applications will need a unique ID for the

user’s machine to refer to the right serialized DRM voucher object. The following scenario depicts a device registration

process:

Assuming that you have performed the following tasks:

• You have set up the Adobe Access Server SDK.

• You have set up an HTTP server for obtaining pre-generated licenses.

• You have created a Flash application to view the protected content.

The device registration phase involves the following actions:

1 The Flash application creates a randomly generated ID.

2 The Flash application invokes the DRMManager.authenticate() method. The application must include the

randomly generated ID in the authentication request. For instance, include the ID in the username field.

3 The action mentioned in Step 2 will result in Adobe Access sending an authentication request to the customer’s

server. This request includes the device certificate.

a The server extracts the device certificate and the generated ID from the request and stores.

b The customer sub-system pre-generates licenses for this device certificate, stores them and grants access to them

in a way that associates them with the generated ID.

4 The server responds to the request with a “success” message.

5 The Flash application stores the generated ID locally in a Local Shared Object (LSO).

After the device registration, the Flash application uses the generated ID in the same way as it would have used the

device ID in the previous scheme:

1 The Flash application will try to locate the generated ID in LSO.

2 If the generated ID is found, the Flash application will use the generated ID while downloading the pre-generated

licenses. The Flash application will send the licenses to the Adobe Access client for consumption using the

DRMManager.storeVoucher() method.

3 If the generated ID is not found, the Flash application will go through the device registration procedure.

547ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

Factory reset

When the user of the device invokes the factory reset option, the device certificate will be purged. To continue playing

the protected content, the Flash application will need to go through the device registration procedure again. If the Flash

application sends an outdated pre-generated license, the Adobe Access client will reject it since the license was

encrypted for an older device ID.

Domain support

Flash Player 11 and later, Adobe AIR 3.0 and later

If the content metadata specifies that domain registration is required, the AIR application can invoke an API to join a

device group. This action triggers a domain registration request to be sent to the domain server. Once a license is issued

to a device group, the license can be exported and shared with other devices that have joined the device group.

The device group information is then used in the DRMContentData’s VoucherAccessInfo object, which will then be

used to present the information that is required to successfully retrieve and consume a voucher.

Playing encrypted content using domain support

To play encrypted content using Adobe Access, perform the following steps:

1 Using VoucherAccessInfo.deviceGroup, check if device group registration is required.

2 If authentication is required:

a Use the DeviceGroupInfo.authenticationMethod property find out if authentication is required.

b If authentication is required, authenticate the user by performing ONE of the following steps:

• Obtain user’s username and password. Invoke DRMManager.authenticate(deviceGroup.serverURL,

deviceGroup.domain, username, password).

• Obtain a cached/pre-generated authentication token and invoke

DRMManager.setAuthenticationToken().

c Invoke DRMManager.addToDeviceGroup().

3 Get the voucher for the content by performing one of the following tasks:

a Use the DRMManager.loadVoucher() method.

b Obtain the voucher from a different device registered in the same device group. Provide the voucher to the

DRMManager through the DRMManager.storeVoucher() method.

4 Play the encrypted content using the NetStream.play() method.

To export the license for the content, any of the devices can provide the license’s raw bytes using the

DRMVoucher.toByteArray() method after obtaining the license from the Adobe Access License Server. Content

providers typically limit the number of devices in a device group. If the limit is reached, you may need to call the

DRMManager.removeFromDeviceGroup() method on an unused device before registering the current device.

548ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

License preview

The Flash application can send a license preview request, meaning that the application can carry out a preview

operation before asking the user to buy the content in order to determine whether the user’s machine actually meets

all the criteria required for playback. License preview refers to the client's ability to preview the license (to see what

rights the license allows) as opposed to previewing the content (viewing a small portion of the content before deciding

to buy). Some of the parameters that are unique to each machine are: outputs available and their protection status, the

runtime/DRM version available, and the DRM client security level. The license preview mode allows the

runtime/DRM client to test the license server business logic and provide information back to the user so he can make

an informed decision. Thus the client can see what a valid license looks like but would not actually receive the key to

decrypt the content. Support for license preview is optional, and only necessary if you implement a custom application

that uses this functionality.

Delivering content

Adobe Access is agnostic to the delivery mechanism of the content as the Flash Player abstracts out the networking

layer and simply provides the protected content to the Adobe Access subsystem. Hence, content can be delivered

through HTTP, HTTP Dynamic Streaming, RTMP, or RTMPE.

However, you may get some issues due to the necessity of the protected content’s metadata (usually in the form of a

‘.metadata’ file) before Adobe Access can acquire a license to decrypt the content. Specifically, with the RTMP/RTMPE

protocol, only FLV and F4V data can be delivered to the client through the Flash Media Server (FMS). Because of this,

the client must retrieve the metadata blob by other ways. One option to solve this problem is to host the metadata on

an HTTP web server, and implement the client video player to retrieve the appropriate metadata, depending on the

content being played back.

private function getMetadata():void{

extrapolated-path-to-metadata = "http://metadatas.mywebserver.com/" + videoname;
var urlRequest : URLRequest = new URLRequest(extrapolated-path-to-the-metadata + ".metadata");
var urlStream : URLStream = new URLStream();
urlStream.addEventListener(Event.COMPLETE, handleMetadata);
urlStream.addEventListener(IOErrorEvent.NETWORK_ERROR, handleIOError);
urlStream.addEventListener(IOErrorEvent.IO_ERROR, handleIOError);
urlStream.addEventListener(IOErrorEvent.VERIFY_ERROR, handleIOError);
try{
 urlStream.load(urlRequest);
 }catch(se:SecurityError){
 videoLog.text += se.toString() + "\n";
 }catch(e:Error){
 videoLog.text += e.toString() + "\n";
 }

}

Open Source Media Framework

Open Source Media Framework (OSMF) is an ActionScript-based framework that gives you complete flexibility and

control in creating your own rich media experiences. For more information on OSMF, visit the OSMF Developer Site.

http://www.osmf.org/developers.html

549ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

Workflow for playing protected content

1 Create a MediaPlayer instance.

player = new MediaPlayer();

2 Register MediaPlayerCapabilityChangeEvent.HAS_DRM_CHANGE event to the player. This event will be

dispatched if the content is DRM protected.

player.addEventListener(MediaPlayerCapabilityChangeEvent.HAS_DRM_CHANGE,
onDRMCapabilityChange);

3 In the event handler, obtain the DRMTrait instance. DRMTrait is the interface through which you invoke DRM-

related methods, such as authenticate(). When loading a DRM-protected content, OSMF performs the DRM

validating actions and dispatches state events. Add a DRMEvent.DRM_STATE_CHANGE event handler to the

DRMTrait.

private function onDRMCapabilityChange
(event :MediaPlayerCapabilityChangeEvent) :void

{
if (event.type == MediaPlayerCapabilityChangeEvent.HAS_DRM_CHANGE

&& event.enabled)
{

drmTrait = player.media.getTrait(MediaTraitType.DRM) as DRMTrait;
drmTrait.addEventListener

(DRMEvent.DRM_STATE_CHANGE, onDRMStateChange);
}

}

4 Handle the DRM events in the onDRMStateChange() method.

private function onDRMStateChange(event :DRMEvent) :void
{

trace ("DRMState: ",event.drmState);
switch(event.drmState)
{

case DRMState.AUTHENTICATION_NEEDED:
// Identity-based content
var authPopup :AuthWindow = AuthWindow.create(_parentWin);
authPopup.serverURL = event.serverURL;
authPopup.addEventListener("dismiss", function () :void {

trace ("Authentication dismissed");
if(_drmTrait != null)
{

//Ignore authentication. Just
//try to acquire a license.
_drmTrait.authenticate(null, null);

}
});
authPopup.addEventListener("authenticate",

function (event :AuthWindowEvent) :void {
if(_drmTrait != null)
{

_drmTrait.authenticate(event.username, event.password);
}

});
authPopup.show();
break;

case DRMState.AUTHENTICATING:
//Display any authentication message.

550ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using digital rights management

Last updated 10/9/2017

trace("Authenticating...");
break;

case DRMState.AUTHENTICATION_COMPLETE:
// Start to retrieve voucher and playback.
// You can display the voucher information at this point.
if(event.token)
// You just received the authentication token.
{

trace("Authentication success. Token: \n", event.token);
}
else
// You have got the voucher.
{

trace("DRM License:");
trace("Playback window period: ",

!isNaN(event.period) ? event.period == 0 ?
"<unlimited>" : event.period : "<none>");

trace("Playback window end date: ",
event.endDate != null ? event.endDate : "<none>");

trace("Playback window start date: ",
event.startDate != null ? event.startDate : "<none>");

}
break;

case DRMState.AUTHENTICATION_ERROR:
trace ("DRM Error:", event.mediaError.errorID +

"[" + DRMErrorEventRef.getDRMErrorMnemonic
(event.mediaError.errorID) + "]");

//Stop everything.
player.media = null;
break;

case DRMState.DRM_SYSTEM_UPDATING:
Logger.log("Downloading DRM module...");
break;

case DRMState.UNINITIALIZED:
break;

}
}

551

Last updated 10/9/2017

Chapter 28: Adding PDF content in AIR

Adobe AIR 1.0 and later

Applications running in Adobe® AIR® can render not only SWF and HTML content, but also PDF content. AIR

applications render PDF content using the HTMLLoader class, the WebKit engine, and the Adobe® Reader® browser

plug-in. In an AIR application, PDF content can either stretch across the full height and width of your application or

alternatively as a portion of the interface. The Adobe Reader browser plug-in controls display of PDF files in an AIR

application. modifications to the Reader toolbar interface (such as controls for position, anchoring, and visibility)

persist in subsequent viewing of PDF files in both AIR applications and the browser.

Important: To render PDF content in AIR, the user must have Adobe Reader or Adobe® Acrobat® version 8.1 or higher

installed.

Detecting PDF Capability

Adobe AIR 1.0 and later

If the user does not have Adobe Reader or Adobe Acrobat 8.1 or higher, PDF content is not displayed in an AIR

application. To detect if a user can render PDF content, first check the HTMLLoader.pdfCapability property. This

property is set to one of the following constants of the HTMLPDFCapability class:

On Windows, if Adobe Acrobat or Adobe Reader version 7.x or above is running on the user's system, that version is

used even if a later version that supports loading PDF is installed. In this case, if the value of the pdfCapability

property is HTMLPDFCapability.STATUS_OK, when an AIR application attempts to load PDF content, the older

version of Acrobat or Reader displays an alert (and no exception is thrown in the AIR application). If this is a possible

situation for your end users, consider providing them with instructions to close Acrobat while running your

application. You may want to display these instructions if the PDF content does not load within an acceptable time

frame.

On Linux, AIR looks for Adobe Reader in the PATH exported by the user (if it contains the acroread command) and

in the /opt/Adobe/Reader directory.

The following code detects whether a user can display PDF content in an AIR application. If the user cannot display

PDF, the code traces the error code that corresponds to the HTMLPDFCapability error object:

Constant Description

HTMLPDFCapability.STATUS_OK A sufficient version (8.1 or greater) of Adobe Reader is detected and

PDF content can be loaded into an HTMLLoader object.

HTMLPDFCapability.ERROR_INSTALLED_READER_NOT_FOUND No version of Adobe Reader is detected. An HTMLLoader object

cannot display PDF content.

HTMLPDFCapability.ERROR_INSTALLED_READER_TOO_OLD Adobe Reader has been detected, but the version is too old. An

HTMLLoader object cannot display PDF content.

HTMLPDFCapability.ERROR_PREFERRED_READER_TOO_OLD A sufficient version (8.1 or later) of Adobe Reader is detected, but the

version of Adobe Reader that is set up to handle PDF content is older

than Reader 8.1. An HTMLLoader object cannot display PDF content.

552ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Adding PDF content in AIR

Last updated 10/9/2017

 if(HTMLLoader.pdfCapability == HTMLPDFCapability.STATUS_OK)
 {
 trace("PDF content can be displayed");
 }
 else
 {
 trace("PDF cannot be displayed. Error code:", HTMLLoader.pdfCapability);
 }

Loading PDF content

Adobe AIR 1.0 and later

You can add a PDF to an AIR application by creating an HTMLLoader instance, setting its dimensions, and loading

the path of a PDF.

The following example loads a PDF from an external site. Replace the URLRequest with the path to an available

external PDF.

 var request:URLRequest = new URLRequest("http://www.example.com/test.pdf");
pdf = new HTMLLoader();
pdf.height = 800;
pdf.width = 600;
pdf.load(request);
container.addChild(pdf);

You can also load content from file URLs and AIR-specific URL schemes, such as app and app-storage. For example,

the following code loads the test.pdf file in the PDFs subdirectory of the application directory:

app:/js_api_reference.pdf

For more information on AIR URL schemes, see “URI schemes” on page 813.

Scripting PDF content

Adobe AIR 1.0 and later

You can use JavaScript to control PDF content just as you can in a web page in the browser.

JavaScript extensions to Acrobat provide the following features, among others:

• Controlling page navigation and magnification

• Processing forms within the document

• Controlling multimedia events

Full details on JavaScript extensions for Adobe Acrobat are provided at the Adobe Acrobat Developer Connection at

http://www.adobe.com/devnet/acrobat/javascript.html.

http://www.adobe.com/devnet/acrobat/javascript.html

553ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Adding PDF content in AIR

Last updated 10/9/2017

HTML-PDF communication basics

Adobe AIR 1.0 and later

JavaScript in an HTML page can send a message to JavaScript in PDF content by calling the postMessage() method

of the DOM object representing the PDF content. For example, consider the following embedded PDF content:

<object id="PDFObj" data="test.pdf" type="application/pdf" width="100%" height="100%"/>

The following JavaScript code in the containing HTML content sends a message to the JavaScript in the PDF file:

pdfObject = document.getElementById("PDFObj");
 pdfObject.postMessage(["testMsg", "hello"]);

The PDF file can include JavaScript for receiving this message. You can add JavaScript code to PDF files in some

contexts, including the document-, folder-, page-, field-, and batch-level contexts. Only the document-level context,

which defines scripts that are evaluated when the PDF document opens, is discussed here.

A PDF file can add a messageHandler property to the hostContainer object. The messageHandler property is an

object that defines handler functions to respond to messages. For example, the following code defines the function to

handle messages received by the PDF file from the host container (which is the HTML content embedding the PDF

file):

 this.hostContainer.messageHandler = {onMessage: myOnMessage};

 function myOnMessage(aMessage)
 {
 if(aMessage[0] == "testMsg")
 {
 app.alert("Test message: " + aMessage[1]);
 }
 else
 {
 app.alert("Error");
 }
 }

JavaScript code in the HTML page can call the postMessage() method of the PDF object contained in the page.

Calling this method sends a message ("Hello from HTML") to the document-level JavaScript in the PDF file:

554ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Adding PDF content in AIR

Last updated 10/9/2017

 <html>
 <head>
 <title>PDF Test</title>
 <script>
 function init()
 {
 pdfObject = document.getElementById("PDFObj");
 try {
 pdfObject.postMessage(["alert", "Hello from HTML"]);
 }
 catch (e)
 {
 alert("Error: \n name = " + e.name + "\n message = " + e.message);
 }
 }
 </script>
 </head>
 <body onload='init()'>
 <object
 id="PDFObj"
 data="test.pdf"
 type="application/pdf"
 width="100%" height="100%"/>
 </body>
 </html>

For a more advanced example, and for information on using Acrobat 8 to add JavaScript to a PDF file, see Cross-

scripting PDF content in Adobe AIR.

Scripting PDF content from ActionScript

Adobe AIR 1.0 and later

ActionScript code (in SWF content) cannot directly communicate with JavaScript in PDF content. However,

ActionScript can communicate with the JavaScript in the HTML page loaded in an HTMLLoader object that loads

PDF content, and that JavaScript code can communicate with the JavaScript in the loaded PDF file. For more

information, see “Programming HTML and JavaScript in AIR” on page 981.

Known limitations for PDF content in AIR

Adobe AIR 1.0 and later

PDF content in Adobe AIR has the following limitations:

• PDF content does not display in a window (a NativeWindow object) that is transparent (where the transparent

property is set to true).

• The display order of a PDF file operates differently than other display objects in an AIR application. Although PDF

content clips correctly according to HTML display order, it will always sit on top of content in the AIR application's

display order.

http://www.adobe.com/go/learn_air_qs_pdf_script_flex_en
http://www.adobe.com/go/learn_air_qs_pdf_script_flex_en

555ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Adding PDF content in AIR

Last updated 10/9/2017

• If certain visual properties of an HTMLLoader object that contains a PDF document are changed, the PDF

document will become invisible. These properties include the filters, alpha, rotation, and scaling properties.

Changing these properties renders the PDF content invisible until the properties are reset. The PDF content is also

invisible if you change these properties of display object containers that contain the HTMLLoader object.

• PDF content is visible only when the scaleMode property of the Stage object of the NativeWindow object

containing the PDF content is set to StageScaleMode.NO_SCALE. When it is set to any other value, the PDF

content is not visible.

• Clicking links to content within the PDF file update the scroll position of the PDF content. Clicking links to content

outside the PDF file redirect the HTMLLoader object that contains the PDF (even if the target of a link is a new

window).

• PDF commenting workflows do not function in AIR.

556

Last updated 10/9/2017

Chapter 29: Basics of user interaction

Flash Player 9 and later, Adobe AIR 1.0 and later

Your application can create interactivity by using ActionScript 3.0 to respond to user activity. Note that this section

assumes that you are already familiar with the ActionScript 3.0 event model. For more information, see “Handling

events” on page 125.

Capturing user input

Flash Player 9 and later, Adobe AIR 1.0 and later

User interaction, whether by keyboard, mouse, camera, or a combination of these devices, is the foundation of

interactivity. In ActionScript 3.0, identifying and responding to user interaction primarily involves listening to events.

The InteractiveObject class, a subclass of the DisplayObject class, provides the common structure of events and

functionality necessary for handling user interaction. You do not directly create an instance of the InteractiveObject

class. Instead, display objects such as SimpleButton, Sprite, TextField, and various Flash authoring tool and Flex

components inherit their user interaction model from this class and therefore share a common structure. This means

that the techniques you learn and the code you write to handle user interaction in an object derived from

InteractiveObject are applicable to all the others.

Important concepts and terms

It’s important to familiarize yourself with the following key user interaction terms before proceeding:

Character code A numeric code representing a character in the current character set (associated with a key being

pressed on the keyboard). For example, “D” and “d” have different character codes even though they’re created by the

same key on a U.S. English keyboard.

Context menu The menu that appears when a user right-clicks or uses a particular keyboard-mouse combination.

Context menu commands typically apply directly to what has been clicked. For example, a context menu for an image

may contain a command to show the image in a separate window and a command to download it.

Focus The indication that a selected element is active and that it is the target of keyboard or mouse interaction.

Key code A numeric code corresponding to a physical key on the keyboard.

More Help topics

InteractiveObject

Keyboard

Mouse

ContextMenu

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/InteractiveObject.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/Keyboard.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/Mouse.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/ContextMenu.html

557ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Basics of user interaction

Last updated 10/9/2017

Managing focus

Flash Player 9 and later, Adobe AIR 1.0 and later

An interactive object can receive focus, either programmatically or through a user action. Additionally, if the

tabEnabled property is set to true, the user can pass focus from one object to another by pressing the Tab key. Note

that the tabEnabled value is false by default, except in the following cases:

• For a SimpleButton object, the value is true.

• For a input text field, the value is true.

• For a Sprite or MovieClip object with buttonMode set to true, the value is true.

In each of these situations, you can add a listener for FocusEvent.FOCUS_IN or FocusEvent.FOCUS_OUT to provide

additional behavior when focus changes. This is particularly useful for text fields and forms, but can also be used on

sprites, movie clips, or any object that inherits from the InteractiveObject class. The following example shows how to

enable focus cycling with the Tab key and how to respond to the subsequent focus event. In this case, each square

changes color as it receives focus.

Note: Flash Professional uses keyboard shortcuts to manage focus; therefore, to properly simulate focus management,

SWF files should be tested in a browser or AIR rather than within Flash.

 var rows:uint = 10;
 var cols:uint = 10;
 var rowSpacing:uint = 25;
 var colSpacing:uint = 25;
 var i:uint;
 var j:uint;
 for (i = 0; i < rows; i++)
 {
 for (j = 0; j < cols; j++)
 {
 createSquare(j * colSpacing, i * rowSpacing, (i * cols) + j);
 }
 }

 function createSquare(startX:Number, startY:Number, tabNumber:uint):void
 {
 var square:Sprite = new Sprite();
 square.graphics.beginFill(0x000000);
 square.graphics.drawRect(0, 0, colSpacing, rowSpacing);
 square.graphics.endFill();
 square.x = startX;

558ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Basics of user interaction

Last updated 10/9/2017

 square.y = startY;
 square.tabEnabled = true;
 square.tabIndex = tabNumber;
 square.addEventListener(FocusEvent.FOCUS_IN, changeColor);
 addChild(square);
 }
 function changeColor(event:FocusEvent):void
 {
 event.target.transform.colorTransform = getRandomColor();
 }
 function getRandomColor():ColorTransform
 {
 // Generate random values for the red, green, and blue color channels.
 var red:Number = (Math.random() * 512) - 255;
 var green:Number = (Math.random() * 512) - 255;
 var blue:Number = (Math.random() * 512) - 255;

 // Create and return a ColorTransform object with the random colors.
 return new ColorTransform(1, 1, 1, 1, red, green, blue, 0);
 }

Discovering input types

Flash Player 10.1 and later, Adobe AIR 2 and later

The Flash Player 10.1 and Adobe AIR 2 releases introduced the ability to test the runtime environment for support of

specific input types. You can use ActionScript to test if the device on which the runtime is currently deployed:

• Supports stylus or finger input (or no touch input at all).

• Has a virtual or physical keyboard for the user (or no keyboard at all).

• Displays a cursor (if not, then features that are dependent upon having a cursor hover over an object do not work).

The input discovery ActionScript APIs include:

• flash.system.Capabilities.touchscreenType property: A value provided at runtime indicating what input type is

supported in the current environment.

• flash.system.TouchscreenType class: A class of enumeration value constants for the Capabilities.touchscreenType

property.

• flash.ui.Mouse.supportsCursor property: A value provided at runtime indicating if a persistent cursor is available

or not.

• flash.ui.Keyboard.physicalKeyboardType property: A value provided at runtime indicating if a full physical

keyboard is available or a numeric keypad, only, or no keyboard at all.

• flash.ui.KeyboardType class: A class of enumeration value constants for the

flash.ui.Keyboard.physicalKeyboardType property.

• flash.ui.Keyboard.hasVirtualKeyboard property: A value provided at runtime indicating if a virtual keyboard is

provided to the user (either in place of a physical keyboard, or in addition to a physical keyboard).

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/Capabilities.html#touchscreenType
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/TouchscreenType.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/Mouse.html#supportsCursor
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/Keyboard.html#physicalKeyboardType
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/KeyboardType.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/Keyboard.html#hasVirtualKeyboard

559ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Basics of user interaction

Last updated 10/9/2017

The input discovery APIs let you take advantage of a user’s device capabilities, or provide alternatives when those

capabilities are not present. These API are especially useful for developing mobile and touch-enabled applications. For

example, if you have an interface for a mobile device that has small buttons for a stylus, you can provide an alternative

interface with larger buttons for a user using finger touches for input. The following code is for an application that has

a function called createStylusUI() that assigns one set of user interface elements appropriate for stylus interaction.

Another function, called createTouchUI(), assigns another set of user interface elements appropriate for finger

interaction:

if(Capabilities.touchscreenType == TouchscreenType.STYLUS){
//Construct the user interface using small buttons for a stylus
//and allow more screen space for other visual content
createStylusUI();

} else if(Capabilities.touchscreenType = TouchscreenType.FINGER){
//Construct the user interface using larger buttons
//to capture a larger point of contact with the device
createTouchUI();

}

When developing applications for different input environments, consider the following compatibility chart:

Note: Different device platforms can support many combinations of input types. Use this chart as a general guide.

Environment supportsCursor touchscreenType == FINGER touchscreenType == STYLUS touchscreenType == NONE

Traditional Desktop true false false true

Capacitive Touchscreen

Devices (tablets, PDAs, and

phones that detect subtle

human touch, such as the

Apple iPhone or Palm Pre)

false true false false

Resistive Touchscreen

devices (tablets, PDAs, and

phones that detect precise,

high-pressure contact,

such as the HTC Fuze)

false false true false

Non-Touchscreen devices

(feature phones and

devices that run

applications but don’t

have screens that detect

contact)

false false false true

560

Last updated 10/9/2017

Chapter 30: Keyboard input

Flash Player 9 and later, Adobe AIR 1.0 and later

Your application can capture and respond to keyboard input and can manipulate an IME to let users type non-ASCII

text characters in multibyte languages. Note that this section assumes that you are already familiar with the

ActionScript 3.0 event model. For more information, see “Handling events” on page 125.

For information on discovering what kind of keyboard support is available (such as physical, virtual, alphanumeric, or

12-button numeric) during runtime, see “Discovering input types” on page 558.

An Input Method Editor (IME) allows users to type complex characters and symbols using a standard keyboard. You

can use the IME classes to enable users to take advantage of their system IME in your applications.

More Help topics

flash.events.KeyboardEvent

flash.system.IME

Capturing keyboard input

Flash Player 9 and later, Adobe AIR 1.0 and later

Display objects that inherit their interaction model from the InteractiveObject class can respond to keyboard events

by using event listeners. For example, you can place an event listener on the Stage to listen for and respond to keyboard

input. In the following code, an event listener captures a key press, and the key name and key code properties are

displayed:

 function reportKeyDown(event:KeyboardEvent):void
 {
 trace("Key Pressed: " + String.fromCharCode(event.charCode) + " (character code: " +
event.charCode + ")");
 }
 stage.addEventListener(KeyboardEvent.KEY_DOWN, reportKeyDown);

Some keys, such as the Ctrl key, generate events even though they have no glyph representation.

In the previous code example, the keyboard event listener captured keyboard input for the entire Stage. You can also

write an event listener for a specific display object on the Stage; this event listener is triggered when the object has the

focus.

In the following example, keystrokes are reflected in the Output panel only when the user types inside the TextField

instance. Holding the Shift key down temporarily changes the border color of the TextField to red.

This code assumes there is a TextField instance named tf on the Stage.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/KeyboardEvent.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/IME.html

561ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

 tf.border = true;
 tf.type = "input";
 tf.addEventListener(KeyboardEvent.KEY_DOWN,reportKeyDown);
 tf.addEventListener(KeyboardEvent.KEY_UP,reportKeyUp);

 function reportKeyDown(event:KeyboardEvent):void
 {
 trace("Key Pressed: " + String.fromCharCode(event.charCode) + " (key code: " +
event.keyCode + " character code: " + event.charCode + ")");
 if (event.keyCode == Keyboard.SHIFT) tf.borderColor = 0xFF0000;
 }

 function reportKeyUp(event:KeyboardEvent):void
 {
 trace("Key Released: " + String.fromCharCode(event.charCode) + " (key code: " +
event.keyCode + " character code: " + event.charCode + ")");
 if (event.keyCode == Keyboard.SHIFT)
 {
 tf.borderColor = 0x000000;
 }
 }

The TextField class also reports a textInput event that you can listen for when a user enters text. For more

information, see “Capturing text input” on page 378.

Note: In the AIR runtime, a keyboard event can be canceled. In the Flash Player runtime, a keyboard event cannot be

canceled.

Key codes and character codes

Flash Player 9 and later, Adobe AIR 1.0 and later

You can access the keyCode and charCode properties of a keyboard event to determine what key was pressed and then

trigger other actions. The keyCode property is a numeric value that corresponds to the value of a key on the keyboard.

The charCode property is the numeric value of that key in the current character set. (The default character set is UTF-

8, which supports ASCII.)

The primary difference between the key code and character values is that a key code value represents a particular key

on the keyboard (the 1 on a keypad is different than the 1 in the top row, but the key that generates “1” and the key

that generates “!” are the same key) and the character value represents a particular character (the R and r characters

are different).

Note: For the mappings between keys and their character code values in ASCII, see the flash.ui.Keyboard class in the

ActionScript 3.0 Reference for the Adobe Flash Platform.

The mappings between keys and their key codes is dependent on the device and the operating system. For this reason,

you should not use key mappings to trigger actions. Instead, you should use the predefined constant values provided

by the Keyboard class to reference the appropriate keyCode properties. For example, instead of using the key mapping

for the Shift key, use the Keyboard.SHIFT constant (as shown in the preceding code sample).

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/Keyboard.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/Keyboard.html

562ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

KeyboardEvent precedence

Flash Player 9 and later, Adobe AIR 1.0 and later

As with other events, the keyboard event sequence is determined by the display object hierarchy and not the order in

which addEventListener() methods are assigned in code.

For example, suppose you place a text field called tf inside a movie clip called container and add an event listener

for a keyboard event to both instances, as the following example shows:

 container.addEventListener(KeyboardEvent.KEY_DOWN,reportKeyDown);
 container.tf.border = true;
 container.tf.type = "input";
 container.tf.addEventListener(KeyboardEvent.KEY_DOWN,reportKeyDown);

 function reportKeyDown(event:KeyboardEvent):void
 {
 trace(event.currentTarget.name + " hears key press: " + String.fromCharCode(event.charCode)
+ " (key code: " + event.keyCode + " character code: " + event.charCode + ")");
 }

Because there is a listener on both the text field and its parent container, the reportKeyDown() function is called twice

for every keystroke inside the TextField. Note that for each key pressed, the text field dispatches an event before the

container movie clip dispatches an event.

The operating system and the web browser will process keyboard events before Adobe Flash Player or AIR. For

example, in Microsoft Internet Explorer, pressing Ctrl+W closes the browser window before any contained SWF file

dispatches a keyboard event.

Using the IME class

Flash Player 9 and later, Adobe AIR 1.0 and later

The IME class lets you manipulate the operating system’s IME within Flash Player or Adobe AIR.

Using ActionScript, you can determine the following:

• If an IME is installed on the user's computer (Capabilities.hasIME)

• If the IME is enabled or disabled on the user’s computer (IME.enabled)

• The conversion mode the current IME is using (IME.conversionMode)

You can associate an input text field with a particular IME context. When you switch between input fields, you can

also switch the IME between Hiragana (Japanese), full-width numbers, half-width numbers, direct input, and so on.

An IME lets users type non-ASCII text characters in multibyte languages, such as Chinese, Japanese, and Korean.

For more information on working with IMEs, see the documentation for the operating system for which you are

developing the application. For additional resources, see the following web sites:

• http://www.msdn.microsoft.com/goglobal/

• http://developer.apple.com/library/mac/navigation/

• http://www.java.sun.com/

http://www.msdn.microsoft.com/goglobal/
http://developer.apple.com/library/mac/navigation/
http://www.java.sun.com/

563ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

Note: If an IME is not active on the user's computer, calls to IME methods or properties, other than

Capabilities.hasIME, will fail. Once you manually activate an IME, subsequent ActionScript calls to IME methods

and properties will work as expected. For example, if you are using a Japanese IME, you must activate it before you can

call any IME method or property.

Checking if an IME is installed and enabled

Flash Player 9 and later, Adobe AIR 1.0 and later

Before you call any of the IME methods or properties, you should always check to see if the user’s computer currently

has an IME installed and enabled. The following code illustrates how to check that the user has an IME both installed

and active before you call any methods:

 if (Capabilities.hasIME)
 {
 if (IME.enabled)
 {
 trace("IME is installed and enabled.");
 }
 else
 {
 trace("IME is installed but not enabled. Please enable your IME and try again.");
 }
 }
 else
 {
 trace("IME is not installed. Please install an IME and try again.");
 }

The previous code first checks to see if the user has an IME installed using the Capabilities.hasIME property. If this

property is set to true, the code then checks whether the user’s IME is currently enabled, using the IME.enabled

property.

Determining which IME conversion mode is currently enabled

Flash Player 9 and later, Adobe AIR 1.0 and later

When building multilingual applications, you may need to determine which conversion mode the user currently has

active. The following code demonstrates how to check whether the user has an IME installed, and if so, which IME

conversion mode is currently active:

564ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

 if (Capabilities.hasIME)
 {
 switch (IME.conversionMode)
 {
 case IMEConversionMode.ALPHANUMERIC_FULL:
 tf.text = "Current conversion mode is alphanumeric (full-width).";
 break;
 case IMEConversionMode.ALPHANUMERIC_HALF:
 tf.text = "Current conversion mode is alphanumeric (half-width).";
 break;
 case IMEConversionMode.CHINESE:
 tf.text = "Current conversion mode is Chinese.";
 break;
 case IMEConversionMode.JAPANESE_HIRAGANA:
 tf.text = "Current conversion mode is Japananese Hiragana.";
 break;
 case IMEConversionMode.JAPANESE_KATAKANA_FULL:
 tf.text = "Current conversion mode is Japanese Katakana (full-width).";
 break;
 case IMEConversionMode.JAPANESE_KATAKANA_HALF:
 tf.text = "Current conversion mode is Japanese Katakana (half-width).";
 break;
 case IMEConversionMode.KOREAN:
 tf.text = "Current conversion mode is Korean.";
 break;
 default:
 tf.text = "Current conversion mode is " + IME.conversionMode + ".";
 break;
 }
 }
 else
 {
 tf.text = "Please install an IME and try again.";
 }

The previous code first checks to see whether the user has an IME installed. Next it checks which conversion mode the

current IME is using by comparing the IME.conversionMode property against each of the constants in the

IMEConversionMode class.

Setting the IME conversion mode

Flash Player 9 and later, Adobe AIR 1.0 and later

When you change the conversion mode of the user’s IME, you need to make sure that the code is wrapped in a

try..catch block, because setting a conversion mode using the conversionMode property can throw an error if the

IME is unable to set the conversion mode. The following code demonstrates how to use a try..catch block when

setting the IME.conversionMode property:

565ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

 var statusText:TextField = new TextField;
 statusText.autoSize = TextFieldAutoSize.LEFT;
 addChild(statusText);
 if (Capabilities.hasIME)
 {
 try
 {
 IME.enabled = true;
 IME.conversionMode = IMEConversionMode.KOREAN;
 statusText.text = "Conversion mode is " + IME.conversionMode + ".";
 }
 catch (error:Error)
 {
 statusText.text = "Unable to set conversion mode.\n" + error.message;
 }
 }

The previous code first creates a text field, which is used to display a status message to the user. Next, if the IME is

installed, the code enables the IME and sets the conversion mode to Korean. If the user’s computer does not have a

Korean IME installed, an error is thrown by Flash Player or AIR and is caught by the try..catch block. The

try..catch block displays the error message in the previously created text field.

Disabling the IME for certain text fields

Flash Player 9 and later, Adobe AIR 1.0 and later

In some cases, you may want to disable the user’s IME while they type characters. For example, if you had a text field

that only accepts numeric input, you may not want the IME to come up and slow down data entry.

The following example demonstrates how you can listen for the FocusEvent.FOCUS_IN and FocusEvent.FOCUS_OUT

events and disable the user’s IME accordingly:

566ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

 var phoneTxt:TextField = new TextField();
 var nameTxt:TextField = new TextField();

 phoneTxt.type = TextFieldType.INPUT;
 phoneTxt.addEventListener(FocusEvent.FOCUS_IN, focusInHandler);
 phoneTxt.addEventListener(FocusEvent.FOCUS_OUT, focusOutHandler);
 phoneTxt.restrict = "0-9";
 phoneTxt.width = 100;
 phoneTxt.height = 18;
 phoneTxt.background = true;
 phoneTxt.border = true;
 addChild(phoneTxt);

 nameField.type = TextFieldType.INPUT;
 nameField.x = 120;
 nameField.width = 100;
 nameField.height = 18;
 nameField.background = true;
 nameField.border = true;
 addChild(nameField);

 function focusInHandler(event:FocusEvent):void
 {
 if (Capabilities.hasIME)
 {
 IME.enabled = false;
 }
 }
 function focusOutHandler(event:FocusEvent):void
 {
 if (Capabilities.hasIME)
 {
 IME.enabled = true;
 }
 }

This example creates two input text fields, phoneTxt and nameTxt, and then adds two event listeners to the phoneTxt

text field. When the user sets focus to the phoneTxt text field, a FocusEvent.FOCUS_IN event is dispatched and the

IME is disabled. When the phoneTxt text field loses focus, the FocusEvent.FOCUS_OUT event is dispatched to re-

enable the IME.

Listening for IME composition events

Flash Player 9 and later, Adobe AIR 1.0 and later

IME composition events are dispatched when a composition string is being set. For example, if the user has their IME

enabled and active and types a string in Japanese, the IMEEvent.IME_COMPOSITION event would dispatch as soon as

the user selects the composition string. In order to listen for the IMEEvent.IME_COMPOSITION event, you need to add

an event listener to the static ime property in the System class

(flash.system.System.ime.addEventListener(...)), as shown in the following example:

567ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

 var inputTxt:TextField;
 var outputTxt:TextField;

 inputTxt = new TextField();
 inputTxt.type = TextFieldType.INPUT;
 inputTxt.width = 200;
 inputTxt.height = 18;
 inputTxt.border = true;
 inputTxt.background = true;
 addChild(inputTxt);

 outputTxt = new TextField();
 outputTxt.autoSize = TextFieldAutoSize.LEFT;
 outputTxt.y = 20;
 addChild(outputTxt);

 if (Capabilities.hasIME)
 {
 IME.enabled = true;
 try
 {
 IME.conversionMode = IMEConversionMode.JAPANESE_HIRAGANA;
 }
 catch (error:Error)
 {
 outputTxt.text = "Unable to change IME.";
 }
 System.ime.addEventListener(IMEEvent.IME_COMPOSITION, imeCompositionHandler);
 }
 else
 {
 outputTxt.text = "Please install IME and try again.";
 }

 function imeCompositionHandler(event:IMEEvent):void
 {
 outputTxt.text = "you typed: " + event.text;
 }

The previous code creates two text fields and adds them to the display list. The first text field, inputTxt, is an input

text field that allows the user to enter Japanese text. The second text field, outputTxt, is a dynamic text field that

displays error messages to the user, or echoes the Japanese string that the user types into the inputTxt text field.

Virtual keyboards

Flash Player 10.2 and later, AIR 2.6 and later

Mobile devices, such as phones and tablets, often provide a virtual, software keyboard instead of a physical one. The

classes in the Flash API let you:

• Detect when the virtual keyboard is raised and when it closes.

• Prevent the keyboard from raising.

• Determine the area of the stage obscured by the virtual keyboard.

568ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

• Create interactive objects that raise the keyboard when they gain focus. (Not supported by AIR applications on iOS.)

• (AIR only) Disable the automatic panning behavior so that your application can modify its own display to

accommodate the keyboard.

Controlling virtual keyboard behavior

The runtime automatically opens the virtual keyboard when the user taps inside a text field or a specially configured

interactive object. When the keyboard opens, the runtime follows the native platform conventions in panning and

resizing the application content so that the user can see the text as they type.

When the keyboard opens, the focused object dispatches the following events in sequence:

softKeyboardActivating event — dispatched immediately before the keyboard begins to rise over the stage. If you

call the preventDefault() method of the dispatched event object, the virtual keyboard does not open.

softKeyboardActivate event — dispatched after softKeyboardActivating event handling has completed. When

the focused object dispatches this event, the softKeyboardRect property of the Stage object has been updated to

reflect the area of the stage obscured by the virtual keyboard. This event cannot be canceled.

Note: If the keyboard changes size, for example, when the user changes the keyboard type, the focused object dispatches a

second softKeyboardActivate event.

softKeyboardDeactivate event — dispatched when the virtual keyboard closes for any reason. This event cannot be

canceled.

The following example adds two TextField objects on the stage. The upper TextField prevents the keyboard from

raising when you tap the field and closes it if it is already raised. The lower TextField demonstrates the default behavior.

The example reports the soft keyboard events dispatched by both text fields.

package
{
import flash.display.Sprite;
import flash.text.TextField;
import flash.text.TextFieldType;
import flash.events.SoftKeyboardEvent;
public class SoftKeyboardEventExample extends Sprite
{

private var tf1:TextField = new TextField();
private var tf2:TextField = new TextField();

public function SoftKeyboardEventExample()
{

tf1.width = this.stage.stageWidth;
tf1.type = TextFieldType.INPUT;
tf1.border = true;
this.addChild(tf1);

tf1.addEventListener(SoftKeyboardEvent.SOFT_KEYBOARD_ACTIVATING, preventSoftKe

yboard);
tf1.addEventListener(SoftKeyboardEvent.SOFT_KEYBOARD_ACTIVATE, preventSoftKe

yboard);
tf1.addEventListener(SoftKeyboardEvent.SOFT_KEYBOARD_DEACTIVATE, preventSoftKeyboard

);

tf2.border = true;
tf2.type = TextFieldType.INPUT;

569ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

tf2.width = this.stage.stageWidth;
tf2.y = tf1.y + tf1.height + 30;
this.addChild(tf2);

tf2.addEventListener(SoftKeyboardEvent.SOFT_KEYBOARD_ACTIVATING, allowSoftKeyboard);
tf2.addEventListener(SoftKeyboardEvent.SOFT_KEYBOARD_ACTIVATE, allowSoftKeyboard);
tf2.addEventListener(SoftKeyboardEvent.SOFT_KEYBOARD_DEACTIVATE, allowSoftKeyboard);

}

private function preventSoftKeyboard(event:SoftKeyboardEvent):void
{

event.preventDefault();
this.stage.focus = null; //close the keyboard, if raised
trace("tf1 dispatched: " + event.type + " -- " + event.triggerType);

}
private function allowSoftKeyboard(event:SoftKeyboardEvent) :void
{

trace("tf2 dispatched: " + event.type + " -- " + event.triggerType);
}

}
}

Adding virtual keyboard support for interactive objects

Flash Player 10.2 and later, AIR 2.6 and later (but not supported on iOS)

Normally, the virtual keyboard only opens when a TextField object is tapped. You can configure an instance of the

InteractiveObject class to open the virtual keyboard when it receives focus.

To configure an InteractiveObject instance to open the soft keyboard, set its needsSoftKeyboard property to true.

Whenever the object is assigned to the stage focus property, the soft keyboard automatically opens. In addition, you

can raise the keyboard by calling the requestSoftKeyboard() method of the InteractiveObject.

The following example illustrates how you can program an InteractiveObject to act as a text entry field. The TextInput

class shown in the example sets the needsSoftKeyboard property so that the keyboard is raised when needed. The

object then listens for keyDown events and inserts the typed character into the field.

The example uses the Flash text engine to append and display any typed text and handles some important events. For

simplicity, the example does not implement a full-featured text field.

570ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

package {
import flash.geom.Rectangle;
import flash.display.Sprite;
import flash.text.engine.TextElement;
import flash.text.engine.TextBlock;
import flash.events.MouseEvent;
import flash.events.FocusEvent;
import flash.events.KeyboardEvent;
import flash.text.engine.TextLine;
import flash.text.engine.ElementFormat;
import flash.events.Event;

public class TextInput extends Sprite
{

public var text:String = " ";

 public var textSize:Number = 24;
public var textColor:uint = 0x000000;
private var _bounds:Rectangle = new Rectangle(0, 0, 100, textSize);
private var textElement: TextElement;
private var textBlock:TextBlock = new TextBlock();

public function TextInput(text:String = "")
{

this.text = text;
this.scrollRect = _bounds;
this.focusRect= false;

//Enable keyboard support
this.needsSoftKeyboard = true;
this.addEventListener(MouseEvent.MOUSE_DOWN, onSelect);
this.addEventListener(FocusEvent.FOCUS_IN, onFocusIn);
this.addEventListener(FocusEvent.FOCUS_OUT, onFocusOut);

//Setup text engine
textElement = new TextElement(text, new ElementFormat(null, textSize, textColor));
textBlock.content = textElement;
var firstLine:TextLine = textBlock.createTextLine(null, _bounds.width - 8);
firstLine.x = 4;
firstLine.y = 4 + firstLine.totalHeight;
this.addChild(firstLine);

}

private function onSelect(event:MouseEvent):void
{

stage.focus = this;
}
private function onFocusIn(event:FocusEvent):void
{

this.addEventListener(KeyboardEvent.KEY_DOWN, onKey);
}

private function onFocusOut(event:FocusEvent):void
{

this.removeEventListener(KeyboardEvent.KEY_UP, onKey);
}

571ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

private function onKey(event:KeyboardEvent):void
{

textElement.replaceText(textElement.text.length, textElement.text.length,
String.fromCharCode(event.charCode));

updateText();
}
public function set bounds(newBounds:Rectangle):void
{

_bounds = newBounds.clone();
drawBackground();
updateText();
this.scrollRect = _bounds;

//force update to focus rect, if needed
if(this.stage!= null && this.focusRect && this.stage.focus == this)

this.stage.focus = this;
}

private function updateText():void
{

//clear text lines
while(this.numChildren > 0) this.removeChildAt(0);

//and recreate them
var textLine:TextLine = textBlock.createTextLine(null, _bounds.width - 8);
while (textLine)
{

textLine.x = 4;
if(textLine.previousLine != null)
{

textLine.y = textLine.previousLine.y +
textLine.previousLine.totalHeight + 2;

}
 else

{
textLine.y = 4 + textLine.totalHeight;

}
this.addChild(textLine);
textLine = textBlock.createTextLine(textLine, _bounds.width - 8);

 }
}

private function drawBackground():void
{

//draw background and border for the field
this.graphics.clear();
this.graphics.beginFill(0xededed);
this.graphics.lineStyle(1, 0x000000);
this.graphics.drawRect(_bounds.x + 2, _bounds.y + 2, _bounds.width - 4,

_bounds.height - 4);
this.graphics.endFill();

}
}

}

572ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

The following main application class illustrates how to use the TextInput class and manage the application layout when

the keyboard is raised or the device orientation changes. The main class creates a TextInput object and sets its bounds

to fill the stage. The class adjusts the size of the TextInput object when either the soft keyboard is raised or the stage

changes size. The class listens for soft keyboard events from the TextInput object and resize events from the stage.

Irrespective of the cause of the event, the application determines the visible area of the stage and resizes the input

control to fill it. Naturally, in a real application, you would need a more sophisticated layout algorithm.

package {

import flash.display.MovieClip;
import flash.events.SoftKeyboardEvent;
import flash.geom.Rectangle;
import flash.events.Event;
import flash.display.StageScaleMode;
import flash.display.StageAlign;

public class CustomTextField extends MovieClip {

private var customField:TextInput = new TextInput("Input text: ");

public function CustomTextField() {

this.stage.scaleMode = StageScaleMode.NO_SCALE;
this.stage.align = StageAlign.TOP_LEFT;
this.addChild(customField);
customField.bounds = new Rectangle(0, 0, this.stage.stageWidth,

this.stage.stageHeight);

//track soft keyboard and stage resize events
customField.addEventListener(SoftKeyboardEvent.SOFT_KEYBOARD_ACTIVATE,

onDisplayAreaChange);
customField.addEventListener(SoftKeyboardEvent.SOFT_KEYBOARD_DEACTIVATE,

onDisplayAreaChange);
this.stage.addEventListener(Event.RESIZE, onDisplayAreaChange);

}

private function onDisplayAreaChange(event:Event):void
{

//Fill the stage if possible, but avoid the area covered by a keyboard
var desiredBounds = new Rectangle(0, 0, this.stage.stageWidth,

this.stage.stageHeight);
if(this.stage.stageHeight - this.stage.softKeyboardRect.height <

desiredBounds.height)
desiredBounds.height = this.stage.stageHeight -

this.stage.softKeyboardRect.height;

customField.bounds = desiredBounds;
}

}
}

Note: The stage only dispatches resize events in response to an orientation change when the scaleMode property is set to

noScale. In other modes, the dimensions of the stage do not change; instead, the content is scaled to compensate.

573ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

Handling application display changes

AIR 2.6 and later

In AIR, you can turn off the default panning and resizing behavior associated with raising a soft keyboard by setting

the softKeyboardBehavior element in the application descriptor to none:

<softKeyboardBehavior>none</softKeyboardBehavior>

When you turn off the automatic behavior, it is your application’s responsibility to make any necessary adjustments

to the application display. A softKeyboardActivate event is dispatched when the keyboard opens. When the

softKeyboardActivate event is dispatched, the softKeyboardRect property of the stage contains the dimensions

of the area obscured by the open keyboard. Use these dimensions to move or resize your content so that it is displayed

properly while the keyboard is open and the user is typing. (When the keyboard is closed, the dimensions of the

softKeyboardRect rectangle are all zero.)

When the keyboard closes, a softKeyboardDeactivate event is dispatched, and you can return the application

display to normal.

package {
import flash.display.MovieClip;
import flash.events.SoftKeyboardEvent;
import flash.events.Event;
import flash.display.StageScaleMode;
import flash.display.StageAlign;
import flash.display.InteractiveObject;
import flash.text.TextFieldType;
import flash.text.TextField;

public class PanningExample extends MovieClip {

private var textField:TextField = new TextField();

public function PanningExample() {

this.stage.scaleMode = StageScaleMode.NO_SCALE;
this.stage.align = StageAlign.TOP_LEFT;

textField.y = this.stage.stageHeight - 201;
textField.width = this.stage.stageWidth;
textField.height = 200;
textField.type = TextFieldType.INPUT;
textField.border = true;
textField.wordWrap = true;
textField.multiline = true;

this.addChild(textField);

//track soft keyboard and stage resize events
textField.addEventListener(SoftKeyboardEvent.SOFT_KEYBOARD_ACTIVATE,

onKeyboardChange);
textField.addEventListener(SoftKeyboardEvent.SOFT_KEYBOARD_DEACTIVATE,

onKeyboardChange);
this.stage.addEventListener(Event.RESIZE, onDisplayAreaChange);

}

private function onDisplayAreaChange(event:Event):void
{

574ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Keyboard input

Last updated 10/9/2017

textField.y = this.stage.stageHeight - 201;
textField.width = this.stage.stageWidth;

}

private function onKeyboardChange(event:SoftKeyboardEvent):void
{

var field:InteractiveObject = textField;
var offset:int = 0;

//if the softkeyboard is open and the field is at least partially covered
if((this.stage.softKeyboardRect.y != 0) && (field.y + field.height >

this.stage.softKeyboardRect.y))
offset = field.y + field.height - this.stage.softKeyboardRect.y;

//but don't push the top of the field above the top of the screen
if(field.y - offset < 0) offset += field.y - offset;

this.y = -offset;

}
}

}

Note: On Android, there are circumstances, including fullscreen mode, in which the exact dimensions of the keyboard are

not available from the operating system. In these cases, the size is estimated. Also, in landscape orientations, the native

fullscreen IME keyboard is used for all text entry. This IME keyboard has a built-in text entry field and obscures the entire

stage. There is no way to display a landscape keyboard that does not fill the screen.

575

Last updated 10/9/2017

Chapter 31: Mouse input

Flash Player 9 and later, Adobe AIR 1.0 and later

Your application can create interactivity by capturing and responding to mouse input. Note that this section assumes

that you are already familiar with the ActionScript 3.0 event model. For more information, see “Handling events” on

page 125.

For information on discovering what kind of mouse support is available (such as persistent cursor, stylus or touch

input) during runtime, see “Discovering input types” on page 558.

More Help topics

flash.ui.Mouse

flash.events.MouseEvent

“Touch, multitouch and gesture input” on page 581

Capturing mouse input

Flash Player 9 and later, Adobe AIR 1.0 and later

Mouse clicks create mouse events that can be used to trigger interactive functionality. You can add an event listener to

the Stage to listen for mouse events that occur anywhere within the SWF file. You can also add event listeners to objects

on the Stage that inherit from InteractiveObject (for example, Sprite or MovieClip); these listeners are triggered when

the object is clicked.

As with keyboard events, mouse events bubble. In the following example, because square is a child of the Stage, the

event dispatches both from the sprite square as well as from the Stage object when the square is clicked:

 var square:Sprite = new Sprite();
 square.graphics.beginFill(0xFF0000);
 square.graphics.drawRect(0,0,100,100);
 square.graphics.endFill();
 square.addEventListener(MouseEvent.CLICK, reportClick);
 square.x =
 square.y = 50;
 addChild(square);

 stage.addEventListener(MouseEvent.CLICK, reportClick);

 function reportClick(event:MouseEvent):void
 {
 trace(event.currentTarget.toString() + " dispatches MouseEvent. Local coords [" +
event.localX + "," + event.localY + "] Stage coords [" + event.stageX + "," + event.stageY + "]");
 }

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/Mouse.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/MouseEvent.html

576ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Mouse input

Last updated 10/9/2017

In the previous example, notice that the mouse event contains positional information about the click. The localX and

localY properties contain the location of the click on the lowest child in the display chain. For example, clicking at

the top-left corner of square reports local coordinates of [0,0] because that is the registration point of square.

Alternatively, the stageX and stageY properties refer to the global coordinates of the click on the Stage. The same

click reports [50,50] for these coordinates, because square was moved to these coordinates. Both of these coordinate

pairs can be useful depending on how you want to respond to user interaction.

Note: In full-screen mode, you can configure the application to use mouse locking. Mouse locking disables the cursor and

enables unbounded mouse movement. For more information, see “Working with full-screen mode” on page 167.

The MouseEvent object also contains altKey, ctrlKey, and shiftKey Boolean properties. You can use these

properties to check if the Alt, Ctrl, or Shift key is also being pressed at the time of the mouse click.

Dragging Sprites around the stage

Flash Player 9 and later, Adobe AIR 1.0 and later

You can allow users to drag a Sprite object around the stage using the startDrag() method of the Sprite class. The

following code shows an example of this:

 import flash.display.Sprite;
 import flash.events.MouseEvent;

 var circle:Sprite = new Sprite();
 circle.graphics.beginFill(0xFFCC00);
 circle.graphics.drawCircle(0, 0, 40);

 var target1:Sprite = new Sprite();
 target1.graphics.beginFill(0xCCFF00);
 target1.graphics.drawRect(0, 0, 100, 100);
 target1.name = "target1";

 var target2:Sprite = new Sprite();
 target2.graphics.beginFill(0xCCFF00);
 target2.graphics.drawRect(0, 200, 100, 100);
 target2.name = "target2";

 addChild(target1);
 addChild(target2);
 addChild(circle);

 circle.addEventListener(MouseEvent.MOUSE_DOWN, mouseDown)

 function mouseDown(event:MouseEvent):void
 {
 circle.startDrag();
 }
 circle.addEventListener(MouseEvent.MOUSE_UP, mouseReleased);

 function mouseReleased(event:MouseEvent):void
 {
 circle.stopDrag();
 trace(circle.dropTarget.name);
 }

For more details, see the section on creating mouse drag interaction in “Changing position” on page 173.

577ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Mouse input

Last updated 10/9/2017

Drag-and-drop in AIR

In Adobe AIR, you can enable drag-and-drop support to allow users to drag data into and out of your application. For

more details, see “Drag and drop in AIR” on page 608.

Customizing the mouse cursor

Flash Player 9 and later, Adobe AIR 1.0 and later

The mouse cursor (mouse pointer) can be hidden or swapped for any display object on the Stage. To hide the mouse

cursor, call the Mouse.hide() method. Customize the cursor by calling Mouse.hide(), listening to the Stage for the

MouseEvent.MOUSE_MOVE event, and setting the coordinates of a display object (your custom cursor) to the stageX

and stageY properties of the event. The following example illustrates a basic execution of this task:

 var cursor:Sprite = new Sprite();
 cursor.graphics.beginFill(0x000000);
 cursor.graphics.drawCircle(0,0,20);
 cursor.graphics.endFill();
 addChild(cursor);

 stage.addEventListener(MouseEvent.MOUSE_MOVE,redrawCursor);
 Mouse.hide();

 function redrawCursor(event:MouseEvent):void
 {
 cursor.x = event.stageX;
 cursor.y = event.stageY;
 }

Mouse input example: WordSearch

Flash Player 9 and later, Adobe AIR 1.0 and later

This example demonstrates user interaction by handling mouse events. Users build as many words as possible from a

random grid of letters, spelling by moving horizontally or vertically in the grid, but never using the same letter

twice.This example demonstrates the following features of ActionScript 3.0:

• Building a grid of components dynamically

• Responding to mouse events

• Maintaining a score based on user interaction

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

WordSearch application files can be found in the folder Samples/WordSearch. The application consists of the

following files:

http://www.adobe.com/go/learn_programmingAS3samples_flash

578ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Mouse input

Last updated 10/9/2017

Loading a dictionary

Flash Player 9 and later, Adobe AIR 1.0 and later

To create a game that involves finding words, a dictionary is needed. The example includes a text file called

dictionary.txt that contains a list of words separated by carriage returns. After creating an array named words, the

loadDictionary() function requests this file, and when it loads successfully, the file becomes a long string. You can

parse this string into an array of words by using the split() method, breaking at each instance of a carriage return

(character code 10) or new line (character code 13). This parsing occurs in the dictionaryLoaded() function:

 words = dictionaryText.split(String.fromCharCode(13, 10));

Creating the user interface

Flash Player 9 and later, Adobe AIR 1.0 and later

After the words have been stored, you can set up the user interface. Create two Button instances: one for submitting a

word, and another for clearing a word that is currently being spelled. In each case, you must respond to user input by

listening to the MouseEvent.CLICK event that the button broadcasts and then calling a function. In the setupUI()

function, this code creates the listeners on the two buttons:

 submitWordButton.addEventListener(MouseEvent.CLICK,submitWord);
 clearWordButton.addEventListener(MouseEvent.CLICK,clearWord);

Generating a game board

Flash Player 9 and later, Adobe AIR 1.0 and later

The game board is a grid of random letters. In the generateBoard() function, a two-dimensional grid is created by

nesting one loop inside another. The first loop increments rows and the second increments the total number of

columns per row. Each of the cells created by these rows and columns contains a button that represents a letter on the

board.

File Description

WordSearch.as The class that provides the main functionality of the application.

WordSearch.fla

or

WordSearch.mxml

The main application file for Flex (MXML) or Flash (FLA).

dictionary.txt A file used to determine if spelled words are scorable and spelled correctly.

579ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Mouse input

Last updated 10/9/2017

 private function generateBoard(startX:Number, startY:Number, totalRows:Number,
totalCols:Number, buttonSize:Number):void
 {
 buttons = new Array();
 var colCounter:uint;
 var rowCounter:uint;
 for (rowCounter = 0; rowCounter < totalRows; rowCounter++)
 {
 for (colCounter = 0; colCounter < totalCols; colCounter++)
 {
 var b:Button = new Button();
 b.x = startX + (colCounter*buttonSize);
 b.y = startY + (rowCounter*buttonSize);
 b.addEventListener(MouseEvent.CLICK, letterClicked);
 b.label = getRandomLetter().toUpperCase();
 b.setSize(buttonSize,buttonSize);
 b.name = "buttonRow"+rowCounter+"Col"+colCounter;
 addChild(b);

 buttons.push(b);
 }
 }
 }

Although a listener is added for a MouseEvent.CLICK event on only one line, because it is in a for loop, it is assigned

to each Button instance. Also, each button is assigned a name derived from its row and column position, which

provides an easy way to reference the row and column of each button later in the code.

Building words from user input

Flash Player 9 and later, Adobe AIR 1.0 and later

Words can be spelled by selecting letters that are vertically or horizontally adjacent, but never using the same letter

twice. Each click generates a mouse event, at which point the word the user is spelling must be checked to ensure it

properly continues from letters that have previously been clicked. If it is not, the previous word is removed and a new

one is started. This check occurs in the isLegalContinuation() method.

 private function isLegalContinuation(prevButton:Button, currButton:Button):Boolean
 {
 var currButtonRow:Number = Number(currButton.name.charAt(currButton.name. indexOf("Row") +
3));
 var currButtonCol:Number = Number(currButton.name.charAt(currButton.name.indexOf("Col") +
3));
 var prevButtonRow:Number = Number(prevButton.name.charAt(prevButton.name.indexOf("Row") +
3));
 var prevButtonCol:Number = Number(prevButton.name.charAt(prevButton.name.indexOf("Col") +
3));

 return ((prevButtonCol == currButtonCol && Math.abs(prevButtonRow - currButtonRow) <= 1) ||
 (prevButtonRow == currButtonRow && Math.abs(prevButtonCol - currButtonCol) <= 1));
 }

580ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Mouse input

Last updated 10/9/2017

The charAt() and indexOf() methods of the String class retrieve the appropriate rows and columns from both the

currently clicked button and the previously clicked button. The isLegalContinuation() method returns true if the

row or column is unchanged and if the row or column that has been changed is within a single increment from the

previous one. If you want to change the rules of the game and allow diagonal spelling, you can remove the checks for

an unchanged row or column and the final line would look like this:

 return (Math.abs(prevButtonRow - currButtonRow) <= 1) && Math.abs(prevButtonCol -
currButtonCol) <= 1));

Checking word submissions

Flash Player 9 and later, Adobe AIR 1.0 and later

To complete the code for the game, mechanisms for checking word submissions and tallying the score are needed. The

searchForWord() method contains both:

 private function searchForWord(str:String):Number
 {
 if (words && str)
 {
 var i:uint = 0
 for (i = 0; i < words.length; i++)
 {
 var thisWord:String = words[i];
 if (str == words[i])
 {
 return i;
 }
 }
 return -1;
 }
 else
 {
 trace("WARNING: cannot find words, or string supplied is null");
 }
 return -1;
 }

This function loops through all of the words in the dictionary. If the user’s word matches a word in the dictionary, its

position in the dictionary is returned. The submitWord() method then checks the response and updates the score if

the position is valid.

Customization

Flash Player 9 and later, Adobe AIR 1.0 and later

At the beginning of the class are several constants. You can modify this game by modifying these variables. For

example, you can change the amount of time available to play by increasing the TOTAL_TIME variable. You can also

increase the PERCENT_VOWELS variable slightly to increase the likelihood of finding words.

581

Last updated 10/9/2017

Chapter 32: Touch, multitouch and gesture
input

Flash Player 10.1 and later, Adobe AIR 2 and later

The touch event handling features of the Flash Platform include input from a single point of contact or multiple points

of contact on touch-enabled devices. And, the Flash runtimes handle events that combine multiple touch points with

movement to create a gesture. In other words, Flash runtimes interpret two types of input:

Touch input with a single point device such as a finger, stylus, or other tool on a touch-enabled device. Some devices

support multiple simultaneous points of contact with a finger or stylus.

Multitouch input with more than one simultaneous point of contact.

Gesture Input interpreted by a device or operating system in response to one or more touch events. For example, a

user rotates two fingers simultaneously, and the device or operating system interprets that touch input as a rotation

gesture. Some gestures are performed with one finger or touch point, and some gestures require multiple touch points.

The device or operating system establishes the type of gesture to assign to the input.

Both touch and gesture input can be multitouch input depending on the user’s device. ActionScript provides API for

handling touch events, gesture events, and individually tracked touch events for multitouch input.

Note: Listening for touch and gesture events can consume a significant amount of processing resources (equivalent to

rendering several frames per second), depending on the computing device and operating system. It is often better to use

mouse events when you do not actually need the extra functionality provided by touch or gestures. When you do use touch

or gesture events, consider reducing the amount of graphical changes that can occur, especially when such events can be

dispatched rapidly, as during a pan, rotate, or zoom operation. For example, you could stop animation within a

component while the user resizes it using a zoom gesture.

More Help topics

flash.ui.Multitouch

flash.events.TouchEvent

flash.events.GestureEvent

flash.events.TransformGestureEvent

flash.events.GesturePhase

flash.events.PressAndTapGestureEvent

Paul Trani: Touch Events and Gestures on Mobile

Mike Jones: Virtual Game Controllers

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/Multitouch.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/TouchEvent.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/GestureEvent.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/TransformGestureEvent.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/GesturePhase.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/PressAndTapGestureEvent.html
http://www.paultrani.com/blog/index.php/2011/02/touch-events-and-gestures-on-mobile/
http://blog.flashgen.com/2011/03/21/virtual-game-controllers/

582ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

Basics of touch input

Flash Player 10.1 and later, Adobe AIR 2 and later

When the Flash Platform is running in an environment that supports touch input, InteractiveObject instances can

listen for touch events and call handlers. Generally, you handle touch, multitouch, and gesture events as you would

other events in ActionScript (see “Handling events” on page 125 for basic information about event handling with

ActionScript).

However, for the Flash runtime to interpret a touch or gesture, the runtime must be running in a hardware and

software environment that supports touch or multitouch input. See “Discovering input types” on page 558 for a chart

comparing different touch screen types. Additionally, if the runtime is running within a container application (such

as a browser), then that container passes the input to the runtime. In some cases, the current hardware and operating

system environment support multitouch, but the browser containing the Flash runtime interprets the input and does

not pass it on to the runtime. Or, it can simply ignore the input altogether.

The following diagram shows the flow of input from user to runtime:

Flow of input from user to the Flash Platform runtime

Fortunately, the ActionScript API for developing touch applications includes classes, methods, and properties to

determine the support for touch or multitouch input in the runtime environment. The API you use to determine

support for touch input are the “discovery API” for touch event handling.

Important concepts and terms

The following reference list contains important terms for writing touch event-handling applications:

Discovery API The methods and properties used to test the runtime environment for support of touch events and

different modes of input.

Touch event An input action performed on a touch-enabled device using a single point of contact.

Touch point The point of contact for a single touch event. Even if a device does not support gesture input, it might

support multiple simultaneous touch points.

Touch sequence The series of events representing the lifespan of a single touch. These events include one beginning,

zero or more moves, and one end.

Multitouch event An input action performed on a touch-enabled device using several points of contact (such as more

than one finger).

Gesture event An input action performed on a touch-enabled device tracing some complex movement. For example,

one gesture is touching a screen with two fingers and moving them simultaneously around the perimeter of an abstract

circle to indicate rotation.

Phases Distinct points of time in the event flow (such as begin and end).

Stylus An instrument for interacting with a touch-enabled screen. A stylus can provide more precision than the

human finger. Some devices recognize only input from a specific type of stylus. Devices that do recognize stylus input

might not recognize multiple, simultaneous points of contact or finger contact.

User Device
Operating

system

Application

container

(i.e. browser)

Flash

runtime

583ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

Press-and-tap A specific type of multitouch input gesture where the user pushes a finger against a touch-enabled

device and then taps with another finger or pointing device. This gesture is often used to simulate a mouse right-click

in multitouch applications.

The touch input API structure

The ActionScript touch input API is designed to address the fact that touch input handling depends on the hardware

and software environment of the Flash runtime. The touch input API primarily addresses three needs of touch

application development: discovery, events, and phases. Coordinate these API to produce a predictable and responsive

experience for the user; even if the target device is unknown as you develop an application.

Discovery

The discovery API provides the ability to test the hardware and software environment at runtime. The values

populated by the runtime determine the touch input available to the Flash runtime in its current context. Also, use the

collection of discovery properties and methods to set your application to react to mouse events (instead of touch events

in case some touch input is not supported by the environment). For more information, see “Touch support discovery”

on page 584.

Events

ActionScript manages touch input events with event listeners and event handlers as it does other events. However,

touch input event handling also must take into account:

• A touch can be interpreted in several ways by the device or operating system, either as a sequence of touches or,

collectively, as a gesture.

• A single touch to a touch-enabled device (by a finger, stylus or pointing device) always dispatches a mouse event,

too. You can handle the mouse event with the event types in the MouseEvent class. Or, you can design your

application only to respond to touch events. Or, you can design an application that responds to both.

• An application can respond to multiple, simultaneous touch events, and handle each one separately.

Typically, use the discovery API to conditionally handle the events your application handles, and how they are

handled. Once the application knows the runtime environment, it can call the appropriate handler or establish the

correct event object when the user interacts with the application. Or, the application can indicate that specific input

cannot be handled in the current environment and provide the user with an alternative or information. For more

information, see “Touch event handling” on page 585 and “Gesture event handling” on page 589.

Phases

For touch and multitouch applications, touch event objects contain properties to track the phases of user interaction.

Write ActionScript to handle phases like the begin, update, or end phase of user input to provide the user with

feedback. Respond to event phases so visual objects change as the user touch and moves the point of touch on a screen.

Or, use the phases to track specific properties of a gesture, as the gesture evolves.

For touch point events, track how long the user rests on a specific interactive object. An application can track multiple,

simultaneous touch points’ phases individually, and handle each accordingly.

For a gesture, interpret specific information about the transformation of the gesture as it occurs. Track the coordinates

of the point of contact (or several) as they move across the screen.

584ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

Touch support discovery

Flash Player 10.1 and later, Adobe AIR 2 and later

Use the Multitouch class properties to set the scope of touch input your application handles. Then, test the

environment to ensure that support exists for the events your ActionScript handles. Specifically, first establish the type

of touch input for your application. The options are: touch point, gesture, or none (interpret all touch input as mouse

clicks and use mouse event handlers, only). Then, use the properties and methods of the Multitouch class to make sure

that the runtime is in an environment that supports the touch input your application requires. Test the runtime

environment for support of the types of touch input (such as whether it can interpret gestures), and respond

accordingly.

Note: The Multitouch class properties are static properties, and do not belong to instances of any class. Use them with the

syntax Multitouch.property, for example:

var touchSupport:Boolean = Multitouch.supportsTouchEvents;

Set the input type

The Flash runtime must know the type of touch input to interpret, because a touch event can have many elements or

phases. If a finger simply touches a touch-enabled screen, does the runtime dispatch a touch event? Or does it wait for

a gesture? Or does the runtime track the touch as a mouse-down event? An application that supports touch input must

establish the type of touch events it handles for the Flash runtime. Use the Multitouch.inputMode property to

establish the type of touch input for the runtime. The input mode can be one of three options:

None No special handling is provided for touch events. Set: Multitouch.inputMode=MultitouchInputMode.NONE

and use the MouseEvent class to handle input.

Single touch points All touch input is interpreted, individually, and all touch points can be tracked and handled. Set:

Multitouch.inputMode=MultitouchInputMode.TOUCH_POINT and use the TouchEvent class to handle input.

Gesture input The device or operating system interprets input as a complex form of finger movement across the

screen. The device or operating system collectively assigns the movement to a single gesture input event. Set:

Multitouch.inputMode=MultitouchInputMode.GESTURE and use the TransformGestureEvent,

PressAndTapGestureEvent, or GestureEvent classes to handle input.

See “Touch event handling” on page 585 for an example that uses the Multitouch.inputMode property to set the

input type before handling a touch event.

Test for touch input support

Other properties of the Multitouch class provide values for fine-tuning your application to the current environment’s

touch support. The Flash runtime populates values for the number of simultaneous touch points allowed or gestures

available. If the runtime is in an environment that does not support the touch event handling your application needs,

provide the user with an alternative. For example, provide mouse event handling or information about what features

are available, or not, in the current environment.

You can also use the API for keyboard, touch, and mouse support, see “Discovering input types” on page 558.

For more information about compatibility testing, see “Troubleshooting” on page 593.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/Multitouch.html

585ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

Touch event handling

Flash Player 10.1 and later, Adobe AIR 2 and later

Basic touch events are handled the same way you handle other events, like mouse events, in ActionScript. You can

listen for a series of touch events defined by the event type constants in the TouchEvent class.

Note: For multiple touch point input (such as touching a device with more than one finger), the first point of contact

dispatches a mouse event and a touch event.

To handle a basic touch event:

1 Set your application to handle touch events by setting the flash.ui.Multitouch.inputMode property to

MultitouchInputMode.TOUCH_POINT.

2 Attach an event listener to an instance of a class that inherits properties from the InteractiveObject class, such as

Sprite or TextField.

3 Specify the type of touch event to handle.

4 Call an event handler function to do something in response to the event.

For example, the following code displays a message when the square drawn on mySprite is tapped on a touch-enabled

screen:

Multitouch.inputMode=MultitouchInputMode.TOUCH_POINT;

var mySprite:Sprite = new Sprite();
var myTextField:TextField = new TextField();

mySprite.graphics.beginFill(0x336699);
mySprite.graphics.drawRect(0,0,40,40);
addChild(mySprite);

mySprite.addEventListener(TouchEvent.TOUCH_TAP, taphandler);

function taphandler(evt:TouchEvent): void {

myTextField.text = "I've been tapped";
myTextField.y = 50;
addChild(myTextField);

}

Touch Event properties

When an event occurs, an event object is created. The TouchEvent object contains information about the location and

conditions of the touch event. You can use the properties of the event object to retrieve that information.

For example, the following code creates a TouchEvent object evt, and then displays the stageX property of the event

object (the x-coordinate of the point in the Stage space that the touch occurred) in the text field:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/Multitouch.html

586ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

Multitouch.inputMode=MultitouchInputMode.TOUCH_POINT;

var mySprite:Sprite = new Sprite();
var myTextField:TextField = new TextField();

mySprite.graphics.beginFill(0x336699);
mySprite.graphics.drawRect(0,0,40,40);
addChild(mySprite);

mySprite.addEventListener(TouchEvent.TOUCH_TAP, taphandler);

function taphandler(evt:TouchEvent): void {
myTextField.text = evt.stageX.toString;
myTextField.y = 50;
addChild(myTextField);
}

See the TouchEvent class for the properties available through the event object.

Note: Not all TouchEvent properties are supported in all runtime environments. For example, not all touch-enabled

devices are capable or detecting the amount of pressure the user is applying to the touch screen. So, the

TouchEvent.pressure property is not supported on those devices. Try testing for specific property support to ensure

your application works, and see “Troubleshooting” on page 593 for more information.

Touch event phases

Track touch events through various stages over and outside an InteractiveObject just as you do for mouse events. And,

track touch events through the beginning, middle, and end of a touch interaction. The TouchEvent class provides

values for handling touchBegin, touchMove, and touchEnd events.

For example, you could use touchBegin, touchMove, and touchEnd events to give the user visual feedback as they

touch and move a display object:

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
var mySprite:Sprite = new Sprite();
mySprite.graphics.beginFill(0x336699);
mySprite.graphics.drawRect(0,0,40,40);
addChild(mySprite);
var myTextField:TextField = new TextField();
myTextField.width = 200;
myTextField.height = 20;
addChild(myTextField);

mySprite.addEventListener(TouchEvent.TOUCH_BEGIN, onTouchBegin);
stage.addEventListener(TouchEvent.TOUCH_MOVE, onTouchMove);
stage.addEventListener(TouchEvent.TOUCH_END, onTouchEnd);
function onTouchBegin(event:TouchEvent) {

myTextField.text = "touch begin" + event.touchPointID;
}
function onTouchMove(event:TouchEvent) {

myTextField.text = "touch move" + event.touchPointID;
}
function onTouchEnd(event:TouchEvent) {

myTextField.text = "touch end" + event.touchPointID;
}

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/TouchEvent.html

587ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

Note: The initial touch listener is attached to mySprite, but the listeners for moving and ending the touch event are not.

If the users’s finger or pointing devices moves ahead of the display object, the Stage continues to listen for the touch event.

Touch Point ID

The TouchEvent.touchPointID property is an essential part of writing applications that respond to touch input. The

Flash runtime assigns each point of touch a unique touchPointID value. Whenever an application responds to the

phases or movement of touch input, check the touchPointID before handling the event. The touch input dragging

methods of the Sprite class use the touchPointID property as a parameter so the correct input instance is handled.

The touchPointID property ensures that an event handler is responding to the correct touch point. Otherwise, the

event handler responds to any instances of the touch event type (such as all touchMove events) on the device,

producing unpredictable behavior. The property is especially important when the user is dragging objects.

Use the touchPointID property to manage an entire touch sequence. A touch sequence has one touchBegin event,

zero or more touchMove events, and one touchEnd event that all have the same touchPointID value.

The following example establishes a variable touchMoveID to test for the correct touchPointID value before

responding to a touch move event. Otherwise, other touch input triggers the event handler, too. Notice the listeners

for the move and end phases are on the stage, not the display object. The stage listens for the move or end phases in

case the user’s touch moves beyond the display object boundaries.

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
var mySprite:Sprite = new Sprite();
mySprite.graphics.beginFill(0x336699);
mySprite.graphics.drawRect(0,0,40,40);
addChild(mySprite);
var myTextField:TextField = new TextField();
addChild(myTextField);
myTextField.width = 200;
myTextField.height = 20;
var touchMoveID:int = 0;

mySprite.addEventListener(TouchEvent.TOUCH_BEGIN, onTouchBegin);
function onTouchBegin(event:TouchEvent) {

if(touchMoveID != 0) {
myTextField.text = "already moving. ignoring new touch";
return;

}
touchMoveID = event.touchPointID;

myTextField.text = "touch begin" + event.touchPointID;
stage.addEventListener(TouchEvent.TOUCH_MOVE, onTouchMove);
stage.addEventListener(TouchEvent.TOUCH_END, onTouchEnd);

588ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

}
function onTouchMove(event:TouchEvent) {

if(event.touchPointID != touchMoveID) {
myTextField.text = "ignoring unrelated touch";
return;

}
mySprite.x = event.stageX;
mySprite.y = event.stageY;
myTextField.text = "touch move" + event.touchPointID;

}
function onTouchEnd(event:TouchEvent) {

if(event.touchPointID != touchMoveID) {
myTextField.text = "ignoring unrelated touch end";
return;

}
touchMoveID = 0;
stage.removeEventListener(TouchEvent.TOUCH_MOVE, onTouchMove);
stage.removeEventListener(TouchEvent.TOUCH_END, onTouchEnd);
myTextField.text = "touch end" + event.touchPointID;

}

Touch and drag

Flash Player 10.1 and later, Adobe AIR 2 and later

Two methods were added to the Sprite class to provide additional support for touch-enabled applications supporting

touch-point input: Sprite.startTouchDrag() and Sprite.stopTouchDrag(). These methods behave the same as

Sprite.startDrag() and Sprite.stopDrag() do for mouse events. However, notice the

Sprite.startTouchDrag() and Sprite.stopTouchDrag() methods both take touchPointID values as

parameters.

The runtime assigns the touchPointID value to the event object for a touch event. Use this value to respond to a

specific touch point in the case the environment supports multiple, simultaneous, touch points (even if it does not

handle gestures). For more information about the touchPointID property, see “Touch Point ID” on page 587.

The following code shows a simple start drag event handler and a stop drag event handler for a touch event. The

variable bg is a display object that contains mySprite:

mySprite.addEventListener(TouchEvent.TOUCH_BEGIN, onTouchBegin);
mySprite.addEventListener(TouchEvent.TOUCH_END, onTouchEnd);

function onTouchBegin(e:TouchEvent) {

e.target.startTouchDrag(e.touchPointID, false, bg.getRect(this));
trace("touch begin");

}

function onTouchEnd(e:TouchEvent) {

e.target.stopTouchDrag(e.touchPointID);
trace("touch end");

}

And the following shows a more advanced example combining dragging with touch event phases:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Sprite.html

589ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

Multitouch.inputMode = MultitouchInputMode.TOUCH_POINT;
var mySprite:Sprite = new Sprite();

mySprite.graphics.beginFill(0x336699);
mySprite.graphics.drawRect(0,0,40,40);
addChild(mySprite);

mySprite.addEventListener(TouchEvent.TOUCH_BEGIN, onTouchBegin);
mySprite.addEventListener(TouchEvent.TOUCH_MOVE, onTouchMove);
mySprite.addEventListener(TouchEvent.TOUCH_END, onTouchEnd);

function onTouchBegin(evt:TouchEvent) {

evt.target.startTouchDrag(evt.touchPointID);
evt.target.scaleX *= 1.5;
evt.target.scaleY *= 1.5;

}

function onTouchMove(evt:TouchEvent) {

evt.target.alpha = 0.5;
}

function onTouchEnd(evt:TouchEvent) {

evt.target.stopTouchDrag(evt.touchPointID);
evt.target.width = 40;
evt.target.height = 40;
evt.target.alpha = 1;

}

Gesture event handling

Flash Player 10.1 and later, Adobe AIR 2 and later

Handle gesture events in the same way as basic touch events. You can listen for a series of gesture events defined by

the event type constants in the TransformGestureEvent class, the GestureEvent class and the

PressAndTapGestureEvent class.

To handle a gesture touch event:

1 Set your application to handle gesture input by setting the flash.ui.Multitouch.inputMode property to

MultitouchInputMode.GESTURE.

2 Attach an event listener to an instance of a class that inherits properties from the InteractiveObject class, such as

Sprite or TextField.

3 Specify the type of gesture event to handle.

4 Call an event handler function to do something in response to the event.

For example, the following code displays a message when the square drawn on mySprite is swiped on a touch-enabled

screen:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/TransformGestureEvent.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/GestureEvent.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/PressAndTapGestureEvent.html

590ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

Multitouch.inputMode=MultitouchInputMode.GESTURE;

var mySprite:Sprite = new Sprite();
var myTextField:TextField = new TextField();

mySprite.graphics.beginFill(0x336699);
mySprite.graphics.drawRect(0,0,40,40);
addChild(mySprite);

mySprite.addEventListener(TransformGestureEvent.GESTURE_SWIPE, swipehandler);

function swipehandler(evt:TransformGestureEvent): void {
myTextField.text = "I've been swiped";
myTextField.y = 50;
addChild(myTextField);
}

Two-finger tap events are handled the same way, but use the GestureEvent class:

Multitouch.inputMode=MultitouchInputMode.GESTURE;

var mySprite:Sprite = new Sprite();
var myTextField:TextField = new TextField();

mySprite.graphics.beginFill(0x336699);
mySprite.graphics.drawRect(0,0,40,40);
addChild(mySprite);

mySprite.addEventListener(GestureEvent.GESTURE_TWO_FINGER_TAP, taphandler);

function taphandler(evt:GestureEvent): void {
myTextField.text = "I've been two-finger tapped";
myTextField.y = 50;
addChild(myTextField);
}

Press-and-tap events are also handled the same way, but use the PressAndTapGestureEvent class:

Multitouch.inputMode=MultitouchInputMode.GESTURE;

var mySprite:Sprite = new Sprite();
var myTextField:TextField = new TextField();

mySprite.graphics.beginFill(0x336699);
mySprite.graphics.drawRect(0,0,40,40);
addChild(mySprite);

mySprite.addEventListener(PressAndTapGestureEvent.GESTURE_PRESS_AND_TAP, taphandler);

function taphandler(evt:PressAndTapGestureEvent): void {
myTextField.text = "I've been press-and-tapped";
myTextField.y = 50;
addChild(myTextField);
}

591ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

Note: Not all GestureEvent, TransformGestureEvent, and PressAndTapGestureEvent event types are supported in all

runtime environments. For example, not all touch-enabled devices are capable or detecting a multi-finger swipe. So, the

InteractiveObject gestureSwipe events are not supported on those devices. Try testing for specific event support to

ensure your application works, and see “Troubleshooting” on page 593 for more information.

Gesture Event properties

Gesture events have a smaller scope of event properties than basic touch events. You access them the same way,

through the event object in the event handler function.

For example, the following code rotates mySprite as the user performs a rotation gesture on it. The text field shows the

amount of rotation since the last gesture (when testing this code, rotate it several times to see the values change):

Multitouch.inputMode=MultitouchInputMode.GESTURE;

var mySprite:Sprite = new Sprite();
var mySpriteCon:Sprite = new Sprite();
var myTextField:TextField = new TextField();
myTextField.y = 50;
addChild(myTextField);

mySprite.graphics.beginFill(0x336699);
mySprite.graphics.drawRect(-20,-20,40,40);
mySpriteCon.addChild(mySprite);
mySprite.x = 20;
mySprite.y = 20;
addChild(mySpriteCon);

mySprite.addEventListener(TransformGestureEvent.GESTURE_ROTATE, rothandler);

function rothandler(evt:TransformGestureEvent): void {
evt.target.parent.rotationZ += evt.target.rotation;
myTextField.text = evt.target.parent.rotation.toString();
}

Note: Not all TransformGestureEvent properties are supported in all runtime environments. For example, not all touch-

enabled devices are capable or detecting the rotation of a gesture on the screen. So, the

TransformGestureEvent.rotation property is not supported on those devices. Try testing for specific property support

to ensure your application works, and see “Troubleshooting” on page 593 for more information.

Gesture phases

Additionally, the gesture events can be tracked through phases, so you can track properties as the gesture is taking

place. For example, you can track x-coordinates as an object is moved with a swipe gesture. Use those values to draw

a line through all the points in its path after the swipe is complete. Or, visually change a display object as it is dragged

across a screen using a pan gesture. Change the object again once the pan gesture is complete.

592ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

Multitouch.inputMode = MultitouchInputMode.GESTURE;
var mySprite = new Sprite();
mySprite.addEventListener(TransformGestureEvent.GESTURE_PAN , onPan);
mySprite.graphics.beginFill(0x336699);
mySprite.graphics.drawRect(0, 0, 40, 40);
var myTextField = new TextField();
myTextField.y = 200;
addChild(mySprite);
addChild(myTextField);

function onPan(evt:TransformGestureEvent):void {

evt.target.localX++;

if (evt.phase==GesturePhase.BEGIN) {

myTextField.text = "Begin";
evt.target.scaleX *= 1.5;
evt.target.scaleY *= 1.5;

}
if (evt.phase==GesturePhase.UPDATE) {

myTextField.text = "Update";
evt.target.alpha = 0.5;

}
if (evt.phase==GesturePhase.END) {

myTextField.text = "End";
evt.target.width = 40;
evt.target.height = 40;
evt.target.alpha = 1;

}
}

Note: The frequency of the update phase depends on the runtime’s environment. Some operating system and hardware

combinations do not relay updates at all.

Gesture phase is “all” for simple gesture events

Some gesture event objects do not track individual phases of the gesture event, and instead populate the event object’s

phase property with the value all. The simple gestures swipe and two-finger tap do not track the event by multiple

phases. The phase property of the event object for an InteractiveObject listening for the gestureSwipe or

gestureTwoFingerTap events is always all once the event is dispatched:

593ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

Multitouch.inputMode = MultitouchInputMode.GESTURE;
var mySprite = new Sprite();
mySprite.addEventListener(TransformGestureEvent.GESTURE_SWIPE, onSwipe);
mySprite.addEventListener(GestureEvent.GESTURE_TWO_FINGER_TAP, onTwoTap);
mySprite.graphics.beginFill(0x336699);
mySprite.graphics.drawRect(0, 0, 40, 40);
var myTextField = new TextField();
myTextField.y = 200;
addChild(mySprite);
addChild(myTextField);

function onSwipe(swipeEvt:TransformGestureEvent):void {

myTextField.text = swipeEvt.phase // Output is "all"
}
function onTwoTap(tapEvt:GestureEvent):void {

myTextField.text = tapEvt.phase // Output is "all"
}

Troubleshooting

Flash Player 10.1 and later, Adobe AIR 2 and later

Hardware and software support for touch input is changing, rapidly. This reference does not maintain a list of every

device an operating system and software combination that supports multitouch. However, it provides guidance on

using the discovery API to determine if your application is deployed on a device that supports multitouch, and

provides tips for troubleshooting your ActionScript code.

Flash runtimes respond to touch events based on information the device, operating system, or containing software

(such as a browser) passes to the runtime. This dependency on the software environment complicates documenting

multitouch compatibility. Some devices interpret a gesture or touch motion differently than another device. Is rotation

defined by two fingers rotating at the same time? Is rotation one finger drawing a circle on a screen? Depending on the

hardware and software environment, the rotation gesture could be either, or something entirely different. So, the

device tells the operating system the user input, then the operating system passes that information to the runtime. If

the runtime is inside a browser, the browser software sometimes interprets the gesture or touch event and does not

pass the input to the runtime. This behavior is similar to the behavior of “hotkeys”: you try to use a specific key

combination to get Flash Player to do something inside the browser and the browser keeps opening a menu instead.

Individual API and classes mention if they’re not compatible with specific operating systems. You can explore

individual API entries here, starting with the Multitouch class:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/Multitouch.html.

Here are some common gesture and touch descriptions:

Pan Move a finger left-to-right or right-to-left. Some devices require two fingers to pan.

Rotate Touch two fingers down, then move them around in a circle (as if they’re both simultaneously tracing an

imaginary circle on a surface). The pivot point is set at the midpoint between the two finger touch points.

Swipe Move three fingers left-to-right or right-to-left, top-to-bottom, or bottom-to-top, quickly.

Zoom Touch two fingers down, then move them away from each other to zoom in and toward each other to zoom out.

Press-and-tap Move or press one finger, then tap the surface with another.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/Multitouch.html

594ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

Each device has its own documentation about the gestures the device supports and how to perform each gesture on

that device. In general, the user must remove all fingers from contact with the device between gestures, depending

upon the operating system.

If you find your application is not responding to touch events or gestures, test the following:

1 Do you have event listeners for touch or gesture events attached to an object class that inherits from the

InteractiveObject class? Only InteractiveObject instances can listen for touch and gesture events

2 Are you testing your application within Flash Professional CS5? If so, try publishing and testing the application,

because Flash Professional can intercept the interaction.

3 Start simple and see what does work, first (the following code example is from the API entry for

Multitouch.inputMode:

Multitouch.inputMode=MultitouchInputMode.TOUCH_POINT;
var mySprite:Sprite = new Sprite();
var myTextField:TextField = new TextField()

mySprite.graphics.beginFill(0x336699);
mySprite.graphics.drawRect(0,0,40,40);
addChild(mySprite);

mySprite.addEventListener(TouchEvent.TOUCH_TAP, taplistener);

function taplistener(e:TouchEvent): void {

myTextField.text = "I've been tapped";
myTextField.y = 50;
addChild(myTextField);

}

Tap the rectangle. If this example works, then you know your environment supports a simple tap. Then you can try

more complicated handling.

Testing for gesture support is more complicated. An individual device or operating system supports any

combination of gesture input, or none.

Here is a simple test for the zoom gesture:

Multitouch.inputMode = MultitouchInputMode.GESTURE;

stage.addEventListener(TransformGestureEvent.GESTURE_ZOOM , onZoom);
var myTextField = new TextField();
myTextField.y = 200;
myTextField.text = "Perform a zoom gesture";
addChild(myTextField);

function onZoom(evt:TransformGestureEvent):void {

myTextField.text = "Zoom is supported";
}

Perform a zoom gesture on the device and see if the text field populates with the message Zoom is supported. The

event listener is added to the stage so you can perform the gesture on any part of the test application.

Here is a simple test for the pan gesture:

595ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Touch, multitouch and gesture input

Last updated 10/9/2017

Multitouch.inputMode = MultitouchInputMode.GESTURE;

stage.addEventListener(TransformGestureEvent.GESTURE_PAN , onPan);
var myTextField = new TextField();
myTextField.y = 200;
myTextField.text = "Perform a pan gesture";
addChild(myTextField);

function onPan(evt:TransformGestureEvent):void {

myTextField.text = "Pan is supported";
}

Perform a pan gesture on the device and see if the text field populates with the message Pan is supported. The

event listener is added to the stage so you can perform the gesture on any part of the test application.

Some operating system and device combinations support both gestures, some support only one, some none. Test

your application’s deployment environment to be sure.

Known Issues

The following are known issues related to touch input:

1 Mobile Internet Explorer on Windows Mobile operating system automatically zooms SWF file content:

This Internet Explorer zoom behavior is overridden by adding the following to the HTML page hosting the SWF file:

<head>
<meta name="viewport" content="width=device-width, height=device-height, initial-
scale=1.0">
</head>

2 Windows 7 (and possibly other operating systems), the user must lift the pointing device (or fingers) off the screen

between gestures. For example:, to rotate and zoom an image:

• Perform the rotate gesture.

• Lift your fingers off the screen.

• Put your fingers back onto the screen and perform the zoom gesture.

3 Windows 7 (and possibly other operating systems), the rotate and zoom gestures don’t always generate an “update”

phase if the user performs the gesture very quickly.

4 Windows 7 Starter Edition does not support multitouch. See the AIR Labs Forum for details:

http://forums.adobe.com/thread/579180?tstart=0

5 For Mac OS 10.5.3 and later, the Multitouch.supportsGestureEvents value is always true, even if the hardware

does not support gesture events.

http://forums.adobe.com/thread/579180?tstart=0

596

Last updated 10/9/2017

Chapter 33: Copy and paste

Flash Player 10 and later, Adobe AIR 1.0 and later

Use the classes in the clipboard API to copy information to and from the system clipboard. The data formats that can

be transferred into or out of an application running in Adobe® Flash® Player or Adobe® AIR® include:

• Text

• HTML-formatted text

• Rich Text Format data

• Serialized objects

• Object references (valid only within the originating application)

• Bitmaps (AIR only)

• Files (AIR only)

• URL strings (AIR only)

Basics of copy-and-paste

Flash Player 10 and later, Adobe AIR 1.0 and later

The copy-and-paste API contains the following classes.

The static Clipboard.generalClipboard property represents the operating system clipboard. The Clipboard class

provides methods for reading and writing data to clipboard objects.

The HTMLLoader class (in AIR) and the TextField class implement default behavior for the normal copy and paste

keyboard shortcuts. To implement copy and paste shortcut behavior for custom components, you can listen for these

keystrokes directly. You can also use native menu commands along with key equivalents to respond to the keystrokes

indirectly.

Different representations of the same information can be made available in a single Clipboard object to increase the

ability of other applications to understand and use the data. For example, an image might be included as image data,

a serialized Bitmap object, and as a file. Rendering of the data in a format can be deferred so that the format is not

actually created until the data in that format is read.

Package Classes

flash.desktop • Clipboard

• ClipboardFormats

• ClipboardTransferMode

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/Clipboard.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/ClipboardFormats.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/ClipboardTransferMode.html

597ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Copy and paste

Last updated 10/9/2017

Reading from and writing to the system clipboard

Flash Player 10 and later, Adobe AIR 1.0 and later

To read the operating system clipboard, call the getData() method of the Clipboard.generalClipboard object,

passing in the name of the format to read:

import flash.desktop.Clipboard;
import flash.desktop.ClipboardFormats;

if(Clipboard.generalClipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)){
 var text:String = Clipboard.generalClipboard.getData(ClipboardFormats.TEXT_FORMAT);
 }

Note: Content running in Flash Player or in a non-application sandbox in AIR can call the getData() method only in

an event handler for a paste event. In other words, only code running in the AIR application sandbox can call the

getData() method outside of a paste event handler.

To write to the clipboard, add the data to the Clipboard.generalClipboard object in one or more formats. Any

existing data in the same format is overwritten automatically. Nevertheless, it is a good practice to also clear the system

clipboard before writing new data to it to make sure that unrelated data in any other formats is also deleted.

import flash.desktop.Clipboard;
import flash.desktop.ClipboardFormats;

 var textToCopy:String = "Copy to clipboard.";
 Clipboard.generalClipboard.clear();
 Clipboard.generalClipboard.setData(ClipboardFormats.TEXT_FORMAT, textToCopy, false);

Note: Content running in Flash Player or in a non-application sandbox in AIR can call the setData() method only in

an event handler for a user event, such as a keyboard or mouse event, or a copy or cut event. In other words, only code

running in the AIR application sandbox can call the setData() method outside of a user event handler.

HTML copy and paste in AIR

Adobe AIR 1.0 and later

The HTML environment in Adobe AIR provides its own set of events and default behavior for copy and paste. Only

code running in the application sandbox can access the system clipboard directly through the AIR

Clipboard.generalClipboard object. JavaScript code in a non-application sandbox can access the clipboard

through the event object dispatched in response to one of the copy or paste events dispatched by an element in an

HTML document.

Copy and paste events include: copy, cut, and paste. The object dispatched for these events provides access to the

clipboard through the clipboardData property.

598ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Copy and paste

Last updated 10/9/2017

Default behavior

Adobe AIR 1.0 and later

By default, AIR copies selected items in response to the copy command, which can be generated either by a keyboard

shortcut or a context menu. Within editable regions, AIR cuts text in response to the cut command or pastes text to

the cursor or selection in response to the paste command.

To prevent the default behavior, your event handler can call the preventDefault() method of the dispatched event

object.

Using the clipboardData property of the event object

Adobe AIR 1.0 and later

The clipboardData property of the event object dispatched as a result of one of the copy or paste events allows you

to read and write clipboard data.

To write to the clipboard when handling a copy or cut event, use the setData() method of the clipboardData object,

passing in the data to copy and the MIME type:

 function customCopy(event){
 event.clipboardData.setData("text/plain", "A copied string.");
 }

To access the data that is being pasted, you can use the getData() method of the clipboardData object, passing in

the MIME type of the data format. The available formats are reported by the types property.

 function customPaste(event){
 var pastedData = event.clipboardData("text/plain");
 }

The getData() method and the types property can only be accessed in the event object dispatched by the paste

event.

The following example illustrates how to override the default copy and paste behavior in an HTML page. The copy

event handler italicizes the copied text and copies it to the clipboard as HTML text. The cut event handler copies the

selected data to the clipboard and removes it from the document. The paste handler inserts the clipboard contents as

HTML and styles the insertion as bold text.

599ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Copy and paste

Last updated 10/9/2017

 <html>
 <head>
 <title>Copy and Paste</title>
 <script language="javascript" type="text/javascript">
 function onCopy(event){
 var selection = window.getSelection();
 event.clipboardData.setData("text/html","<i>" + selection + "</i>");
 event.preventDefault();
 }

 function onCut(event){
 var selection = window.getSelection();
 event.clipboardData.setData("text/html","<i>" + selection + "</i>");
 var range = selection.getRangeAt(0);
 range.extractContents();

 event.preventDefault();
 }

 function onPaste(event){
 var insertion = document.createElement("b");
 insertion.innerHTML = event.clipboardData.getData("text/html");
 var selection = window.getSelection();
 var range = selection.getRangeAt(0);
 range.insertNode(insertion);
 event.preventDefault();
 }
 </script>
 </head>
 <body onCopy="onCopy(event)"
 onPaste="onPaste(event)"
 onCut="onCut(event)">
 <p>Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium
 doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore
 veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam
 voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur
 magni dolores eos qui ratione voluptatem sequi nesciunt.</p>
 </body>
 </html>

Clipboard data formats

Flash Player 10 and later, Adobe AIR 1.0 and later

Clipboard formats describe the data placed in a Clipboard object. Flash Player or AIR automatically translates the

standard data formats between ActionScript data types and system clipboard formats. In addition, application objects

can be transferred within and between ActionScript-based applications using application-defined formats.

A Clipboard object can contain representations of the same information in different formats. For example, a Clipboard

object representing a Sprite could include a reference format for use within the same application, a serialized format

for use by another application running in Flash Player or AIR, a bitmap format for use by an image editor, and a file

list format, perhaps with deferred rendering to encode a PNG file, for copying or dragging a representation of the

Sprite to the file system.

600ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Copy and paste

Last updated 10/9/2017

Standard data formats

Flash Player 10 and later, Adobe AIR 1.0 and later

The constants defining the standard format names are provided in the ClipboardFormats class:

When copying and pasting data in response to a copy, cut, or paste event in HTML content hosted in an AIR

application, MIME types must be used instead of the ClipboardFormat strings. The valid data MIME types are:

Note: Rich text format data is not available from the clipboardData property of the event object dispatched as a result

of a paste event within HTML content.

Custom data formats

Flash Player 10 and later, Adobe AIR 1.0 and later

You can use application-defined custom formats to transfer objects as references or as serialized copies. References are

valid only within the same application. Serialized objects can be transferred between applications, but can be used only

with objects that remain valid when serialized and deserialized. Objects can usually be serialized if their properties are

either simple types or serializable objects.

To add a serialized object to a Clipboard object, set the serializable parameter to true when calling the

Clipboard.setData() method. The format name can be one of the standard formats or an arbitrary string defined

by your application.

Transfer modes

Flash Player 10 and later, Adobe AIR 1.0 and later

When an object is written to the clipboard using a custom data format, the object data can be read from the clipboard

either as a reference or as a serialized copy of the original object. There are four transfer modes that determine whether

objects are transferred as references or as serialized copies:

Constant Description

TEXT_FORMAT Text-format data is translated to and from the ActionScript String class.

HTML_FORMAT Text with HTML markup.

RICH_TEXT_FORMAT Rich-text-format data is translated to and from the ActionScript ByteArray class. The RTF markup is not

interpreted or translated in any way.

BITMAP_FORMAT (AIR only) Bitmap-format data is translated to and from the ActionScript BitmapData class.

FILE_LIST_FORMAT (AIR only) File-list-format data is translated to and from an array of ActionScript File objects.

URL_FORMAT (AIR only) URL-format data is translated to and from the ActionScript String class.

MIME type Description

Text "text/plain"

URL "text/uri-list"

Bitmap "image/x-vnd.adobe.air.bitmap"

File list "application/x-vnd.adobe.air.file-list"

601ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Copy and paste

Last updated 10/9/2017

Reading and writing custom data formats

Flash Player 10 and later, Adobe AIR 1.0 and later

When writing an object to the clipboard, you can use any string that does not begin with the reserved prefixes air: or

flash: for the format parameter. Use the same string as the format to read the object. The following examples

illustrate how to read and write objects to the clipboard:

 public function createClipboardObject(object:Object):Clipboard{
 var transfer:Clipboard = Clipboard.generalClipboard;
 transfer.setData("object", object, true);
 }

To extract a serialized object from the clipboard object (after a drop or paste operation), use the same format name

and the CLONE_ONLY or CLONE_PREFFERED transfer modes.

 var transfer:Object = clipboard.getData("object", ClipboardTransferMode.CLONE_ONLY);

A reference is always added to the Clipboard object. To extract the reference from the clipboard object (after a drop or

paste operation), instead of the serialized copy, use the ORIGINAL_ONLY or ORIGINAL_PREFFERED transfer modes:

 var transferredObject:Object =
 clipboard.getData("object", ClipboardTransferMode.ORIGINAL_ONLY);

References are valid only if the Clipboard object originates from the current application. Use the

ORIGINAL_PREFFERED transfer mode to access the reference when it is available, and the serialized clone when the

reference is not available.

Deferred rendering

Flash Player 10 and later, Adobe AIR 1.0 and later

If creating a data format is computationally expensive, you can use deferred rendering by supplying a function that

supplies the data on demand. The function is called only if a receiver of the drop or paste operation requests data in

the deferred format.

The rendering function is added to a Clipboard object using the setDataHandler() method. The function must

return the data in the appropriate format. For example, if you called

setDataHandler(ClipboardFormat.TEXT_FORMAT, writeText), then the writeText() function must return a

string.

If a data format of the same type is added to a Clipboard object with the setData() method, that data takes precedence

over the deferred version (the rendering function is never called). The rendering function may or may not be called

again if the same clipboard data is accessed a second time.

Note: On Mac OS X, deferred rendering works only with custom data formats. With standard data formats, the rendering

function is called immediately.

Transfer mode Description

ClipboardTransferModes.ORIGINAL_ONLY Only a reference is returned. If no reference is available, a null value is returned.

ClipboardTransferModes.ORIGINAL_PREFFERED A reference is returned, if available. Otherwise a serialized copy is returned.

ClipboardTransferModes.CLONE_ONLY Only a serialized copy is returned. If no serialized copy is available, a null value is

returned.

ClipboardTransferModes.CLONE_PREFFERED A serialized copy is returned, if available. Otherwise a reference is returned.

602ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Copy and paste

Last updated 10/9/2017

Pasting text using a deferred rendering function

Flash Player 10 and later, Adobe AIR 1.0 and later

The following example illustrates how to implement a deferred rendering function.

When the user presses the Copy button, the application clears the system clipboard to ensure that no data is left over

from previous clipboard operations. The setDataHandler() method then sets the renderData() function as the

clipboard renderer.

When the user selects the Paste command from the context menu of the destination text field, the application accesses

the clipboard and sets the destination text. Since the text data format on the clipboard has been set with a function

rather than a string, the clipboard calls the renderData() function. The renderData() function returns the text in

the source text, which is then assigned to the destination text.

Notice that if you edit the source text before pressing the Paste button, the edit will be reflected in the pasted text, even

when the edit occurs after the copy button was pressed. This is because the rendering function doesn’t copy the source

text until the paste button is pressed. (When using deferred rendering in a real application, you might want to store or

protect the source data in some way to prevent this problem.)

Flash example

 package {
import flash.desktop.Clipboard;
import flash.desktop.ClipboardFormats;
import flash.desktop.ClipboardTransferMode;
import flash.display.Sprite;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.text.TextFieldType;
import flash.events.MouseEvent;
import flash.events.Event;
public class DeferredRenderingExample extends Sprite
{
 private var sourceTextField:TextField;

private var destination:TextField;
private var copyText:TextField;
public function DeferredRenderingExample():void
{

sourceTextField = createTextField(10, 10, 380, 90);
sourceTextField.text = "Neque porro quisquam est qui dolorem "

+ "ipsum quia dolor sit amet, consectetur, adipisci velit.";

copyText = createTextField(10, 110, 35, 20);
copyText.htmlText = "Copy";
copyText.addEventListener(MouseEvent.CLICK, onCopy);

destination = createTextField(10, 145, 380, 90);
destination.addEventListener(Event.PASTE, onPaste);

}
private function createTextField(x:Number, y:Number, width:Number,

height:Number):TextField
{

var newTxt:TextField = new TextField();
newTxt.x = x;
newTxt.y = y;
newTxt.height = height;

603ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Copy and paste

Last updated 10/9/2017

newTxt.width = width;
newTxt.border = true;
newTxt.multiline = true;
newTxt.wordWrap = true;
newTxt.type = TextFieldType.INPUT;
addChild(newTxt);
return newTxt;

}
public function onCopy(event:MouseEvent):void
{

Clipboard.generalClipboard.clear();
Clipboard.generalClipboard.setDataHandler(ClipboardFormats.TEXT_FORMAT,

renderData);
}
public function onPaste(event:Event):void
{

sourceTextField.text =
Clipboard.generalClipboard.getData(ClipboardFormats.TEXT_FORMAT).toString;

}
public function renderData():String
{

trace("Rendering data");
var sourceStr:String = sourceTextField.text;
if (sourceTextField.selectionEndIndex >

 sourceTextField.selectionBeginIndex)
{

return sourceStr.substring(sourceTextField.selectionBeginIndex,
sourceTextField.selectionEndIndex);

}
else
{

return sourceStr;
}

}
}

}

604ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Copy and paste

Last updated 10/9/2017

Flex example

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute" width="326"
height="330" applicationComplete="init()">

<mx:Script>
<![CDATA[
import flash.desktop.Clipboard;
import flash.desktop.ClipboardFormats;

public function init():void
{

destination.addEventListener("paste", doPaste);
}

public function doCopy():void
{

Clipboard.generalClipboard.clear();
Clipboard.generalClipboard.setDataHandler(ClipboardFormats.TEXT_FORMAT, renderData);

}
public function doPaste(event:Event):void
{

destination.text =
Clipboard.generalClipboard.getData(ClipboardFormats.TEXT_FORMAT).toString;

}

public function renderData():String{

trace("Rendering data");
return source.text;

}
]]>
</mx:Script>
<mx:Label x="10" y="10" text="Source"/>
<mx:TextArea id="source" x="10" y="36" width="300" height="100">

<mx:text>Neque porro quisquam est qui dolorem ipsum quia dolor sit amet, consectetur,
adipisci velit.</mx:text>

</mx:TextArea>
<mx:Label x="10" y="181" text="Destination"/>
<mx:TextArea id="destination" x="12" y="207" width="300" height="100"/>
<mx:Button click="doCopy();" x="91" y="156" label="Copy"/>

 </mx:Application>

605

Last updated 10/9/2017

Chapter 34: Accelerometer input

Flash Player 10.1 and later, Adobe AIR 2 and later

The Accelerometer class dispatches events based on activity detected by the device's motion sensor. This data

represents the device's location or movement along a three-dimensional axis. When the device moves, the sensor

detects this movement and returns the acceleration coordinates of the device. The Accelerometer class provides

methods to query whether accelerometer is supported, and also to set the rate at which acceleration events are

dispatched.

The accelerometer axes are normalized to the display orientation, not the physical orientation of the device. When the

device re-orients the display, the accelerometer axes are re-oriented as well. Thus the y-axis is always roughly vertical

when the user is holding the phone in a normal, upright viewing position — no matter which way the phone is rotated.

If auto-orientation is off, for example, when SWF content in a browser is in full-screen mode, then the accelerometer

axes are not re-oriented as the device is rotated.

More Help topics

flash.sensors.Accelerometer

flash.events.AccelerometerEvent

Checking accelerometer support

Use the Accelerometer.isSupported property to test the runtime environment for the ability to use this feature:

if (Accelerometer.isSupported)
{

// Set up Accelerometer event listeners and code.
}

The Accelerometer class and its members are accessible to the runtime versions listed for each API entry. However the

current environment at run time determines the availability of this feature. For example, you can compile code using

the Accelerometer class properties for Flash Player 10.1, but you need to use the Accelerometer.isSupported

property to test for the availability of the Accelerometer feature on the user’s device. If Accelerometer.isSupported

is true at runtime, then Accelerometer support currently exists.

Detecting accelerometer changes

To use the accelerometer sensor, instantiate an Accelerometer object and register for update events it dispatches. The

update event is an Accelerometer event object. The event has four properties, and each are numbers:

• accelerationX—Acceleration along the x-axis, measured in g’s. The x-axis runs from the left to the right of the

device when it is in the upright position. (The device is upright when the top of the device is facing up.) The

acceleration is positive if the device moves toward the right.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/sensors/Accelerometer.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/AccelerometerEvent.html

606ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Accelerometer input

Last updated 10/9/2017

• accelerationY—Acceleration along the y-axis, measured in g’s. The y-axis runs from the bottom to the top of the

device when it is in the upright position. (The device is upright when the top of the device is facing up.) The

acceleration is positive if the device moves up relative to this axis.

• accelerationZ—Acceleration along the z-axis, measured in g’s. The Z axis runs perpendicular to the face of the

device. The acceleration is positive if you move the device so that the face of the device points up. The acceleration

is negative if the face of the device points towards the ground.

• timestamp—The number of milliseconds at the time of the event since the runtime was initialized.

1 g is the standard acceleration due to gravity, roughly 9.8 m/sec2..

Here is a basic example that displays accelerometer data in a text field:

var accl:Accelerometer;
if (Accelerometer.isSupported)
{

accl = new Accelerometer();
accl.addEventListener(AccelerometerEvent.UPDATE, updateHandler);

}
else
{

accTextField.text = "Accelerometer feature not supported";
}
function updateHandler(evt:AccelerometerEvent):void
{

accTextField.text = "acceleration X: " + evt.accelerationX.toString() + "\n"
+ "acceleration Y: " + evt.accelerationY.toString() + "\n"
+ "acceleration Z: " + evt.accelerationZ.toString()

}

To use this example, be sure to create the accTextField text field and add it to the display list before using this code.

You can adjust the desired time interval for accelerometer events by calling the setRequestedUpdateInterval()

method of the Accelerometer object. This method takes one parameter, interval, which is the requested update

interval in milliseconds:

var accl:Accelerometer;
accl = new Accelerometer();
accl.setRequestedUpdateInterval(1000);

The actual time between accelerometer updates may be greater or lesser than this value. Any change in the update

interval affects all registered listeners. If you don’t call the setRequestedUpdateInterval() method, the application

receives updates based on the device's default interval.

Accelerometer data has some degree of inaccuracy. You can use a moving average of recent data to smooth out the

data. For example, the following example factors recent accelerometer readings with the current reading to get a

rounded result:

607ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Accelerometer input

Last updated 10/9/2017

var accl:Accelerometer;
var rollingX:Number = 0;
var rollingY:Number = 0;
var rollingZ:Number = 0;
const FACTOR:Number = 0.25;

if (Accelerometer.isSupported)
{

accl = new Accelerometer();
accl.setRequestedUpdateInterval(200);
accl.addEventListener(AccelerometerEvent.UPDATE, updateHandler);

}
else
{

accTextField.text = "Accelerometer feature not supported";
}
function updateHandler(event:AccelerometerEvent):void
{

accelRollingAvg(event);
accTextField.text = rollingX + "\n" + rollingY + "\n" + rollingZ + "\n";

}

function accelRollingAvg(event:AccelerometerEvent):void
{

rollingX = (event.accelerationX * FACTOR) + (rollingX * (1 - FACTOR));
rollingY = (event.accelerationY * FACTOR) + (rollingY * (1 - FACTOR));
rollingZ = (event.accelerationZ * FACTOR) + (rollingZ * (1 - FACTOR));

}

However, this moving average is only desirable if the accelerometer update interval is small.

608

Last updated 10/9/2017

Chapter 35: Drag and drop in AIR

Adobe AIR 1.0 and later

Use the classes in the Adobe® AIR™ drag-and-drop API to support user-interface drag-and-drop gestures. A gesture in

this sense is an action by the user, mediated by both the operating system and your application, expressing an intent

to copy, move, or link information. A drag-out gesture occurs when the user drags an object out of a component or

application. A drag-in gesture occurs when the user drags in an object from outside a component or application.

With the drag-and-drop API, you can allow a user to drag data between applications and between components within

an application. Supported transfer formats include:

• Bitmaps

• Files

• HTML-formatted text

• Text

• Rich Text Format data

• URLs

• File promises

• Serialized objects

• Object references (only valid within the originating application)

Basics of drag and drop in AIR

Adobe AIR 1.0 and later

For a quick explanation and code examples of using drag and drop in an AIR application, see the following quick start

articles on the Adobe Developer Connection:

• Supporting drag-and-drop and copy-and-paste (Flex)

• Supporting drag-and-drop and copy-and-paste (Flash)

The drag-and-drop API contains the following classes.

http://www.adobe.com/devnet/air/flex/quickstart/scrappy_copy_paste.html
http://www.adobe.com/devnet/air/flash/quickstart/scrappy_copy_paste.html

609ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

Drag-and-drop gesture stages

The drag-and-drop gesture has three stages:

Initiation A user initiates a drag-and-drop operation by dragging from a component, or an item in a component, while

holding down the mouse button. The component that is the source of the dragged item is typically designated as the

drag initiator and dispatches nativeDragStart and nativeDragComplete events. An Adobe AIR application starts

a drag operation by calling the NativeDragManager.doDrag() method in response to a mouseDown or mouseMove

event.

If the drag operation is initiated from outside an AIR application, there is no initiator object to dispatch

nativeDragStart or nativeDragComplete events.

Dragging While holding down the mouse button, the user moves the mouse cursor to another component, application,

or to the desktop. As long as the drag is underway, the initiator object dispatches nativeDragUpdate events. (However,

this event is not dispatched in AIR for Linux.) When the user moves the mouse over a possible drop target in an AIR

application, the drop target dispatches a nativeDragEnter event. The event handler can inspect the event object to

determine whether the dragged data is available in a format that the target accepts and, if so, let the user drop the data

onto it by calling the NativeDragManager.acceptDragDrop() method.

As long as the drag gesture remains over an interactive object, that object dispatches nativeDragOver events. When

the drag gesture leaves the interactive object, it dispatches a nativeDragExit event.

Drop The user releases the mouse over an eligible drop target. If the target is an AIR application or component, then the

target object dispatches a nativeDragDrop event. The event handler can access the transferred data from the event

object. If the target is outside AIR, the operating system or another application handles the drop. In both cases, the

initiating object dispatches a nativeDragComplete event (if the drag started from within AIR).

The NativeDragManager class controls both drag-in and drag-out gestures. All the members of the

NativeDragManager class are static, do not create an instance of this class.

The Clipboard object

Data that is dragged into or out of an application or component is contained in a Clipboard object. A single Clipboard

object can make available different representations of the same information to increase the likelihood that another

application can understand and use the data. For example, an image could be included as image data, a serialized

Bitmap object, and as a file. Rendering of the data in a format can be deferred to a rendering function that is not called

until the data is read.

Package Classes

flash.desktop • NativeDragManager

• NativeDragOptions

• Clipboard

• URLFilePromise

• IFilePromise

Constants used with the drag-and-drop API are defined in the following classes:

• NativeDragActions

• ClipboardFormat

• ClipboardTransferModes

flash.events NativeDragEvent

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/NativeDragManager.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/NativeDragOptions.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/Clipboard.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/air/desktop/URLFilePromise.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/IFilePromise.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/NativeDragActions.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/ClipboardFormats.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/ClipboardTransferMode.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/NativeDragEvent.html

610ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

Once a drag gesture has started, the Clipboard object can only be accessed from within an event handler for the

nativeDragEnter, nativeDragOver, and nativeDragDrop events. After the drag gesture has ended, the Clipboard

object cannot be read or reused.

An application object can be transferred as a reference and as a serialized object. References are only valid within the

originating application. Serialized object transfers are valid between AIR applications, but can only be used with

objects that remain valid when serialized and deserialized. Objects that are serialized are converted into the Action

Message Format for ActionScript 3 (AMF3), a string-based data-transfer format.

Working with the Flex framework

In most cases, it is better to use the Adobe® Flex™ drag-and-drop API when building Flex applications. The Flex

framework provides an equivalent feature set when a Flex application is run in AIR (it uses the AIR

NativeDragManager internally). Flex also maintains a more limited feature set when an application or component is

running within the more restrictive browser environment. AIR classes cannot be used in components or applications

that run outside the AIR run-time environment.

Supporting the drag-out gesture

Adobe AIR 1.0 and later

To support the drag-out gesture, you must create a Clipboard object in response to a mouseDown event and send it to

the NativeDragManager.doDrag() method. Your application can then listen for the nativeDragComplete event on

the initiating object to determine what action to take when the user completes or abandons the gesture.

Preparing data for transfer

Flash Player 9 and later, Adobe AIR 1.0 and later

To prepare data or an object for dragging, create a Clipboard object and add the information to be transferred in one

or more formats. You can use the standard data formats to pass data that can be translated automatically to native

clipboard formats, and application-defined formats to pass objects.

If it is computationally expensive to convert the information to be transferred into a particular format, you can supply

the name of a handler function to perform the conversion. The function is called if and only if the receiving component

or application reads the associated format.

For more information on clipboard formats, see “Clipboard data formats” on page 599.

The following example illustrates how to create a Clipboard object containing a bitmap in several formats: a Bitmap

object, a native bitmap format, and a file list format containing the file from which the bitmap was originally loaded:

 import flash.desktop.Clipboard;
 import flash.display.Bitmap;
 import flash.filesystem.File;
 public function createClipboard(image:Bitmap, sourceFile:File):Clipboard{
 var transfer:Clipboard = new Clipboard();
 transfer.setData("CUSTOM_BITMAP", image, true); //Flash object by value and by reference
 transfer.setData(ClipboardFormats.BITMAP_FORMAT, image.bitmapData, false);
 transfer.setData(ClipboardFormats.FILE_LIST_FORMAT, new Array(sourceFile), false);
 return transfer;
 }

611ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

Starting a drag-out operation

Adobe AIR 1.0 and later

To start a drag operation, call the NativeDragManager.doDrag() method in response to a mouse down event. The

doDrag() method is a static method that takes the following parameters:

The following example illustrates how to start a drag operation for a bitmap object loaded from a file. The example

loads an image and, on a mouseDown event, starts the drag operation.

 package
 {
 import flash.desktop.NativeDragManager;
 import mx.core.UIComponent;
 import flash.display.Sprite;
 import flash.display.Loader;
 import flash.system.LoaderContext;
 import flash.net.URLRequest;
 import flash.geom.Point;
 import flash.desktop.Clipboard;
 import flash.display.Bitmap;
 import flash.filesystem.File;
 import flash.events.Event;
 import flash.events.MouseEvent;

 public class DragOutExample extends UIComponent Sprite {
 protected var fileURL:String = "app:/image.jpg";
 protected var display:Bitmap;

 private function init():void {
 loadImage();
 }
 private function onMouseDown(event:MouseEvent):void {
 var bitmapFile:File = new File(fileURL);
 var transferObject:Clipboard = createClipboard(display, bitmapFile);
 NativeDragManager.doDrag(this,
 transferObject,
 display.bitmapData,

Parameter Description

initiator The object from which the drag originates, and which dispatches the dragStart and dragComplete

events. The initiator must be an interactive object.

clipboard The Clipboard object containing the data to be transferred. The Clipboard object is referenced in the

NativeDragEvent objects dispatched during the drag-and-drop sequence.

dragImage (Optional) A BitmapData object to display during the drag. The image can specify an alpha value. (Note:

Microsoft Windows always applies a fixed alpha fade to drag images).

offset (Optional) A Point object specifying the offset of the drag image from the mouse hotspot. Use negative

coordinates to move the drag image up and left relative to the mouse cursor. If no offset is provided, the top,

left corner of the drag image is positioned at the mouse hotspot.

actionsAllowed (Optional) A NativeDragOptions object specifying which actions (copy, move, or link) are valid for the drag

operation. If no argument is provided, all actions are permitted. The DragOptions object is referenced in

NativeDragEvent objects to enable a potential drag target to check that the allowed actions are compatible

with the purpose of the target component. For example, a “trash” component might only accept drag

gestures that allow the move action.

612ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

 new Point(-mouseX,-mouseY));
 }
 public function createClipboard(image:Bitmap, sourceFile:File):Clipboard {
 var transfer:Clipboard = new Clipboard();
 transfer.setData("bitmap",
 image,
 true);
 // ActionScript 3 Bitmap object by value and by reference
 transfer.setData(ClipboardFormats.BITMAP_FORMAT,
 image.bitmapData,
 false);
 // Standard BitmapData format
 transfer.setData(ClipboardFormats.FILE_LIST_FORMAT,
 new Array(sourceFile),
 false);
 // Standard file list format
 return transfer;
 }
 private function loadImage():void {
 var url:URLRequest = new URLRequest(fileURL);
 var loader:Loader = new Loader();
 loader.load(url,new LoaderContext());
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE, onLoadComplete);
 }
 private function onLoadComplete(event:Event):void {
 display = event.target.loader.content;
 var flexWrapper:UIComponent = new UIComponent();
 flexWrapper.addChild(event.target.loader.content);
 addChild(flexWrapper);
 flexWrapper.addEventListener(MouseEvent.MOUSE_DOWN, onMouseDown);
 }
 }
 }

Completing a drag-out transfer

Adobe AIR 1.0 and later

When a user drops the dragged item by releasing the mouse, the initiator object dispatches a nativeDragComplete

event. You can check the dropAction property of the event object and then take the appropriate action. For example,

if the action is NativeDragAction.MOVE, you could remove the source item from its original location. The user can

abandon a drag gesture by releasing the mouse button while the cursor is outside an eligible drop target. The drag

manager sets the dropAction property for an abandoned gesture to NativeDragAction.NONE.

Supporting the drag-in gesture

Adobe AIR 1.0 and later

To support the drag-in gesture, your application (or, more typically, a visual component of your application) must

respond to nativeDragEnter or nativeDragOver events.

613ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

Steps in a typical drop operation

Adobe AIR 1.0 and later

The following sequence of events is typical for a drop operation:

1 The user drags a clipboard object over a component.

2 The component dispatches a nativeDragEnter event.

3 The nativeDragEnter event handler examines the event object to check the available data formats and allowed

actions. If the component can handle the drop, it calls NativeDragManager.acceptDragDrop().

4 The NativeDragManager changes the mouse cursor to indicate that the object can be dropped.

5 The user drops the object over the component.

6 The receiving component dispatches a nativeDragDrop event.

7 The receiving component reads the data in the desired format from the Clipboard object within the event object.

8 If the drag gesture originated within an AIR application, then the initiating interactive object dispatches a

nativeDragComplete event. If the gesture originated outside AIR, no feedback is sent.

Acknowledging a drag-in gesture

Adobe AIR 1.0 and later

When a user drags a clipboard item into the bounds of a visual component, the component dispatches

nativeDragEnter and nativeDragOver events. To determine whether the component can accept the clipboard item,

the handlers for these events can check the clipboard and allowedActions properties of the event object. To signal

that the component can accept the drop, the event handler must call the NativeDragManager.acceptDragDrop()

method, passing a reference to the receiving component. If more than one registered event listener calls the

acceptDragDrop() method, the last handler in the list takes precedence. The acceptDragDrop() call remains valid

until the mouse leaves the bounds of the accepting object, triggering the nativeDragExit event.

If more than one action is permitted in the allowedActions parameter passed to doDrag(), the user can indicate

which of the allowed actions they intend to perform by holding down a modifier key. The drag manager changes the

cursor image to tell the user which action would occur if they completed the drop. The intended action is reported by

the dropAction property of the NativeDragEvent object. The action set for a drag gesture is advisory only. The

components involved in the transfer must implement the appropriate behavior. To complete a move action, for

example, the drag initiator might remove the dragged item and the drop target might add it.

Your drag target can limit the drop action to one of the three possible actions by setting the dropAction property of

NativeDragManager class. If a user tries to choose a different action using the keyboard, then the NativeDragManager

displays the unavailable cursor. Set the dropAction property in the handlers for both the nativeDragEnter and the

nativeDragOver events.

The following example illustrates an event handler for a nativeDragEnter or nativeDragOver event. This handler

only accepts a drag-in gesture if the clipboard being dragged contains text-format data.

614ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

import flash.desktop.NativeDragManager;
 import flash.events.NativeDragEvent;

 public function onDragIn(event:NativeDragEvent):void{
 NativeDragManager.dropAction = NativeDragActions.MOVE;
 if(event.clipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)){
 NativeDragManager.acceptDragDrop(this); //'this' is the receiving component
 }
 }

Completing the drop

Adobe AIR 1.0 and later

When the user drops a dragged item on an interactive object that has accepted the gesture, the interactive object

dispatches a nativeDragDrop event. The handler for this event can extract the data from the clipboard property of

the event object.

When the clipboard contains an application-defined format, the transferMode parameter passed to the getData()

method of the Clipboard object determines whether the drag manager returns a reference or a serialized version of the

object.

The following example illustrates an event handler for the nativeDragDrop event:

 import flash.desktop.Clipboard;
 import flash.events.NativeDragEvent;

 public function onDrop(event:NativeDragEvent):void {
 if (event.clipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)) {
 var text:String =
 String(event.clipboard.getData(ClipboardFormats.TEXT_FORMAT,
 ClipboardTransferMode.ORIGINAL_PREFERRED));
 }

Once the event handler exits, the Clipboard object is no longer valid. Any attempt to access the object or its data

generates an error.

Updating the visual appearance of a component

Adobe AIR 1.0 and later

A component can update its visual appearance based on the NativeDragEvent events. The following table describes the

types of changes that a typical component would make in response to the different events:

Event Description

nativeDragStart The initiating interactive object can use the nativeDragStart event to provide visual feedback that the

drag gesture originated from that interactive object.

nativeDragUpdate The initiating interactive object can use the nativeDragUpdate event to update its state during the gesture.

(This event does not exist in AIR for Linux.)

nativeDragEnter A potential receiving interactive object can use this event to take the focus, or indicate visually that it can or

cannot accept the drop.

615ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

Tracking mouse position during a drag-in gesture

Adobe AIR 1.0 and later

While a drag gesture remains over a component, that component dispatches nativeDragOver events. These events

are dispatched every few milliseconds and also whenever the mouse moves. The nativeDragOver event object can be

used to determine the position of the mouse over the component. Having access to the mouse position can be helpful

in situations where the receiving component is complex, but is not made up of sub-components. For example, if your

application displayed a bitmap containing a street map and you wanted to highlight zones on the map when the user

dragged information into them, you could use the mouse coordinates reported in the nativeDragOver event to track

the mouse position within the map.

Drag and drop in HTML

Adobe AIR 1.0 and later

To drag data into and out of an HTML-based application (or into and out of the HTML displayed in an HTMLLoader),

you can use HTML drag and drop events. The HTML drag-and-drop API allows you to drag to and from DOM

elements in the HTML content.

Note: You can also use the AIR NativeDragEvent and NativeDragManager APIs by listening for events on the

HTMLLoader object containing the HTML content. However, the HTML API is better integrated with the HTML DOM

and gives you control of the default behavior.

Default drag-and-drop behavior

Adobe AIR 1.0 and later

The HTML environment provides default behavior for drag-and-drop gestures involving text, images, and URLs.

Using the default behavior, you can always drag these types of data out of an element. However, you can only drag text

into an element and only to elements in an editable region of a page. When you drag text between or within editable

regions of a page, the default behavior performs a move action. When you drag text to an editable region from a non-

editable region or from outside the application, then the default behavior performs a copy action.

You can override the default behavior by handling the drag-and-drop events yourself. To cancel the default behavior,

you must call the preventDefault() methods of the objects dispatched for the drag-and-drop events. You can then

insert data into the drop target and remove data from the drag source as necessary to perform the chosen action.

nativeDragOver A potential receiving interactive object can use this event to respond to the movement of the mouse within

the interactive object, such as when the mouse enters a “hot” region of a complex component such as a street

map display.

nativeDragExit A potential receiving interactive object can use this event to restore its state when a drag gesture moves

outside its bounds.

nativeDragComplete The initiating interactive object can use this event to update its associated data model, such as by removing

an item from a list, and to restore its visual state.

Event Description

616ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

By default, the user can select and drag any text, and drag images and links. You can use the WebKit CSS property, -

webkit-user-select to control how any HTML element can be selected. For example, if you set -webkit-user-

select to none, then the element contents are not selectable and so cannot be dragged. You can also use the -webkit-

user-drag CSS property to control whether an element as a whole can be dragged. However, the contents of the

element are treated separately. The user could still drag a selected portion of the text. For more information, see “CSS

in AIR” on page 977.

Drag-and-drop events in HTML

Adobe AIR 1.0 and later

The events dispatched by the initiator element from which a drag originates, are:

The events dispatched by a drag target are:

The event object dispatched in response to these events is similar to a mouse event. You can use mouse event properties

such as (clientX, clientY) and (screenX, screenY), to determine the mouse position.

The most important property of a drag event object is dataTransfer, which contains the data being dragged. The

dataTransfer object itself has the following properties and methods:

Event Description

dragstart Dispatched when the user starts the drag gesture. The handler for this event can prevent the drag, if

necessary, by calling the preventDefault() method of the event object. To control whether the dragged data

can be copied, linked, or moved, set the effectAllowed property. Selected text, images, and links are put onto

the clipboard by the default behavior, but you can set different data for the drag gesture using the

dataTransfer property of the event object.

drag Dispatched continuously during the drag gesture.

dragend Dispatched when the user releases the mouse button to end the drag gesture.

Event Description

dragover Dispatched continuously while the drag gesture remains within the element boundaries. The handler for this

event should set the dataTransfer.dropEffect property to indicate whether the drop will result in a copy, move,

or link action if the user releases the mouse.

dragenter Dispatched when the drag gesture enters the boundaries of the element.

If you change any properties of a dataTransfer object in a dragenter event handler, those changes are quickly

overridden by the next dragover event. On the other hand, there is a short delay between a dragenter and the

first dragover event that can cause the cursor to flash if different properties are set. In many cases, you can use

the same event handler for both events.

dragleave Dispatched when the drag gesture leaves the element boundaries.

drop Dispatched when the user drops the data onto the element. The data being dragged can only be accessed

within the handler for this event.

617ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

MIME types for the HTML drag-and-drop

Adobe AIR 1.0 and later

The MIME types to use with the dataTransfer object of an HTML drag-and-drop event include:

You can also use other MIME strings, including application-defined strings. However, other applications may not be

able to recognize or use the transferred data. It is your responsibility to add data to the dataTransfer object in the

expected format.

Important: Only code running in the application sandbox can access dropped files. Attempting to read or set any property

of a File object within a non-application sandbox generates a security error. See “Handling file drops in non-application

HTML sandboxes” on page 622 for more information.

Property or Method Description

effectAllowed The effect allowed by the source of the drag. Typically, the handler for the dragstart event sets this value. See

“Drag effects in HTML” on page 618.

dropEffect The effect chosen by the target or the user. If you set the dropEffect in a dragover or dragenter event

handler, then AIR updates the mouse cursor to indicate the effect that occurs if the user releases the mouse. If

the dropEffect set does not match one of the allowed effects, no drop is allowed and the unavailable cursor

is displayed. If you have not set a dropEffect in response to the latest dragover or dragenter event, then

the user can choose from the allowed effects with the standard operating system modifier keys.

The final effect is reported by the dropEffect property of the object dispatched for dragend. If the user

abandons the drop by releasing the mouse outside an eligible target, then dropEffect is set to none.

types An array containing the MIME type strings for each data format present in the dataTransfer object.

getData(mimeType) Gets the data in the format specified by the mimeType parameter.

The getData() method can only be called in response to the drop event.

setData(mimeType) Adds data to the dataTransfer in the format specified by the mimeType parameter. You can add data in

multiple formats by calling setData() for each MIME type. Any data placed in the dataTransfer object by

the default drag behavior is cleared.

The setData() method can only be called in response to the dragstart event.

clearData(mimeType) Clears any data in the format specified by the mimeType parameter.

setDragImage(image,

offsetX, offsetY)

Sets a custom drag image. The setDragImage() method can only be called in response to the dragstart

event and only when an entire HTML element is dragged by setting its -webkit-user-drag CSS style to

element. The image parameter can be a JavaScript Element or Image object.

Data format MIME type

Text "text/plain"

HTML "text/html"

URL "text/uri-list"

Bitmap "image/x-vnd.adobe.air.bitmap"

File list "application/x-vnd.adobe.air.file-list"

618ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

Drag effects in HTML

Adobe AIR 1.0 and later

The initiator of the drag gesture can limit the allowed drag effects by setting the dataTransfer.effectAllowed

property in the handler for the dragstart event. The following string values can be used:

The target of the drag gesture can set the dataTransfer.dropEffect property to indicate the action that is taken if

the user completes the drop. If the drop effect is one of the allowed actions, then the system displays the appropriate

copy, move, or link cursor. If not, then the system displays the unavailable cursor. If no drop effect is set by the target,

the user can choose from the allowed actions with the modifier keys.

Set the dropEffect value in the handlers for both the dragover and dragenter events:

 function doDragStart(event) {
 event.dataTransfer.setData("text/plain","Text to drag");
 event.dataTransfer.effectAllowed = "copyMove";
 }

 function doDragOver(event) {
 event.dataTransfer.dropEffect = "copy";
 }

 function doDragEnter(event) {
 event.dataTransfer.dropEffect = "copy";
 }

Note: Although you should always set the dropEffect property in the handler for dragenter, be aware that the next

dragover event resets the property to its default value. Set dropEffect in response to both events.

Dragging data out of an HTML element

Adobe AIR 1.0 and later

The default behavior allows most content in an HTML page to be copied by dragging. You can control the content

allowed to be dragged using CSS properties -webkit-user-select and -webkit-user-drag.

Override the default drag-out behavior in the handler for the dragstart event. Call the setData() method of the

dataTransfer property of the event object to put your own data into the drag gesture.

String value Description

"none" No drag operations are allowed.

"copy" The data will be copied to the destination, leaving the original in place.

"link" The data will be shared with the drop destination using a link back to the original.

"move” The data will be copied to the destination and removed from the original location.

"copyLink" The data can be copied or linked.

"copyMove" The data can be copied or moved.

"linkMove" The data can be linked or moved.

"all" The data can be copied, moved, or linked. All is the default effect when you prevent the default behavior.

619ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

To indicate which drag effects a source object supports when you are not relying on the default behavior, set the

dataTransfer.effectAllowed property of the event object dispatched for the dragstart event. You can choose any

combination of effects. For example, if a source element supports both copy and link effects, set the property to

"copyLink".

Setting the dragged data

Flash Player 9 and later, Adobe AIR 1.0 and later

Add the data for the drag gesture in the handler for the dragstart event with the dataTransfer property. Use the

dataTransfer.setData() method to put data onto the clipboard, passing in the MIME type and the data to transfer.

For example, if you had an image element in your application, with the id imageOfGeorge, you could use the following

dragstart event handler. This example adds representations of a picture of George in several data formats, which

increases the likelihood that other applications can use the dragged data.

 function dragStartHandler(event){
 event.dataTransfer.effectAllowed = "copy";

 var dragImage = document.getElementById("imageOfGeorge");
 var dragFile = new air.File(dragImage.src);
 event.dataTransfer.setData("text/plain","A picture of George");
 event.dataTransfer.setData("image/x-vnd.adobe.air.bitmap", dragImage);
 event.dataTransfer.setData("application/x-vnd.adobe.air.file-list",
 new Array(dragFile));
 }

Note: When you call the setData() method of dataTransfer object, no data is added by the default drag-and-drop

behavior.

Dragging data into an HTML element

Adobe AIR 1.0 and later

The default behavior only allows text to be dragged into editable regions of the page. You can specify that an element

and its children can be made editable by including the contenteditable attribute in the opening tag of the element.

You can also make an entire document editable by setting the document object designMode property to "on".

You can support alternate drag-in behavior on a page by handling the dragenter, dragover, and drop events for any

elements that can accept dragged data.

Enabling drag-in

Adobe AIR 1.0 and later

To handle the drag-in gesture, you must first cancel the default behavior. Listen for the dragenter and dragover

events on any HTML elements you want to use as drop targets. In the handlers for these events, call the

preventDefault() method of the dispatched event object. Canceling the default behavior allows non-editable

regions to receive a drop.

620ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

Getting the dropped data

Adobe AIR 1.0 and later

You can access the dropped data in the handler for the ondrop event:

 function doDrop(event){
 droppedText = event.dataTransfer.getData("text/plain");
 }

Use the dataTransfer.getData() method to read the data onto the clipboard, passing in the MIME type of the data

format to read. You can find out which data formats are available using the types property of the dataTransfer

object. The types array contains the MIME type string of each available format.

When you cancel the default behavior in the dragenter or dragover events, you are responsible for inserting any

dropped data into its proper place in the document. No API exists to convert a mouse position into an insertion point

within an element. This limitation can make it difficult to implement insertion-type drag gestures.

Example: Overriding the default HTML drag-in behavior

Adobe AIR 1.0 and later

This example implements a drop target that displays a table showing each data format available in the dropped item.

The default behavior is used to allow text, links, and images to be dragged within the application. The example

overrides the default drag-in behavior for the div element that serves as the drop target. The key step to enabling non-

editable content to accept a drag-in gesture is to call the preventDefault() method of the event object dispatched for

both the dragenter and dragover events. In response to a drop event, the handler converts the transferred data into

an HTML row element and inserts the row into a table for display.

 <html>
 <head>
 <title>Drag-and-drop</title>
 <script language="javascript" type="text/javascript" src="AIRAliases.js"></script>
 <script language="javascript">
 function init(){
 var target = document.getElementById('target');
 target.addEventListener("dragenter", dragEnterOverHandler);
 target.addEventListener("dragover", dragEnterOverHandler);
 target.addEventListener("drop", dropHandler);

 var source = document.getElementById('source');
 source.addEventListener("dragstart", dragStartHandler);
 source.addEventListener("dragend", dragEndHandler);

 emptyRow = document.getElementById("emptyTargetRow");
 }

 function dragStartHandler(event){
 event.dataTransfer.effectAllowed = "copy";
 }

 function dragEndHandler(event){
 air.trace(event.type + ": " + event.dataTransfer.dropEffect);

621ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

 }

 function dragEnterOverHandler(event){
 event.preventDefault();
 }

 var emptyRow;
 function dropHandler(event){
 for(var prop in event){
 air.trace(prop + " = " + event[prop]);
 }
 var row = document.createElement('tr');
 row.innerHTML = "<td>" + event.dataTransfer.getData("text/plain") + "</td>" +
 "<td>" + event.dataTransfer.getData("text/html") + "</td>" +
 "<td>" + event.dataTransfer.getData("text/uri-list") + "</td>" +
 "<td>" + event.dataTransfer.getData("application/x-vnd.adobe.air.file-list") +
 "</td>";

 var imageCell = document.createElement('td');
 if((event.dataTransfer.types.toString()).search("image/x-vnd.adobe.air.bitmap") > -
1){
 imageCell.appendChild(event.dataTransfer.getData("image/x-
vnd.adobe.air.bitmap"));
 }
 row.appendChild(imageCell);
 var parent = emptyRow.parentNode;
 parent.insertBefore(row, emptyRow);
 }
 </script>
 </head>
 <body onLoad="init()" style="padding:5px">
 <div>
 <h1>Source</h1>
 <p>Items to drag:</p>
 <ul id="source">
 Plain text.
 HTML formatted text.
 A URL.

 <li style="-webkit-user-drag:none;">
 Uses "-webkit-user-drag:none" style.

622ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

 <li style="-webkit-user-select:none;">
 Uses "-webkit-user-select:none" style.

 </div>
 <div id="target" style="border-style:dashed;">
 <h1 >Target</h1>
 <p>Drag items from the source list (or elsewhere).</p>
 <table id="displayTable" border="1">
 <tr><th>Plain text</th><th>Html text</th><th>URL</th><th>File list</th><th>Bitmap
Data</th></tr>
 <tr
id="emptyTargetRow"><td> </td><td> </td><td> </td><td> </td><td> </
td></tr>
 </table>
 </div>
 </div>
 </body>
 </html>

Handling file drops in non-application HTML sandboxes

Adobe AIR 1.0 and later

Non-application content cannot access the File objects that result when files are dragged into an AIR application. Nor

is it possible to pass one of these File objects to application content through a sandbox bridge. (The object properties

must be accessed during serialization.) However, you can still drop files in your application by listening for the AIR

nativeDragDrop events on the HTMLLoader object.

Normally, if a user drops a file into a frame that hosts non-application content, the drop event does not propagate from

the child to the parent. However, since the events dispatched by the HTMLLoader (which is the container for all

HTML content in an AIR application) are not part of the HTML event flow, you can still receive the drop event in

application content.

To receive the event for a file drop, the parent document adds an event listener to the HTMLLoader object using the

reference provided by window.htmlLoader:

 window.htmlLoader.addEventListener("nativeDragDrop",function(event){
 var filelist = event.clipboard.getData(air.ClipboardFormats.FILE_LIST_FORMAT);
 air.trace(filelist[0].url);
 });

The following example uses a parent document that loads a child page into a remote sandbox (http://localhost/). The

parent listens for the nativeDragDrop event on the HTMLLoader object and traces out the file url.

623ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

 <html>
 <head>
 <title>Drag-and-drop in a remote sandbox</title>
 <script language="javascript" type="text/javascript" src="AIRAliases.js"></script>
 <script language="javascript">
 window.htmlLoader.addEventListener("nativeDragDrop",function(event){
 var filelist = event.clipboard.getData(air.ClipboardFormats.FILE_LIST_FORMAT);
 air.trace(filelist[0].url);
 });
 </script>
 </head>
 <body>
 <iframe src="child.html"
 sandboxRoot="http://localhost/"
 documentRoot="app:/"
 frameBorder="0" width="100%" height="100%">
 </iframe>
 </body>
 </html>

The child document must present a valid drop target by calling the Event object preventDefault() method in the

HTML dragenter and dragover event handlers. Otherwise, the drop event can never occur.

 <html>
 <head>
 <title>Drag and drop target</title>
 <script language="javascript" type="text/javascript">
 function preventDefault(event){
 event.preventDefault();
 }
 </script>
 </head>
 <body ondragenter="preventDefault(event)" ondragover="preventDefault(event)">
 <div>
 <h1>Drop Files Here</h1>
 </div>
 </body>
 </html>

Dropping file promises

Adobe AIR 2 and later

A file promise is a drag-and-drop clipboard format that allows a user to drag a file that does not yet exist out of an AIR

application. For example, using file promises, your application could allow a user to drag a proxy icon to a desktop

folder. The proxy icon represents a file or some data known to be available at a URL. After the user drops the icon, the

runtime downloads the data and writes the file to the drop location.

You can use the URLFilePromise class in an AIR application to drag-and-drop files accessible at a URL. The

URLFilePromise implementation is provided in the aircore library as part of the AIR 2 SDK. Use either the aircore.swc

or aircore.swf file found in the SDK frameworks/libs/air directory.

Alternately, you can implement your own file promise logic using the IFilePromise interface (which is defined in the

runtime flash.desktop package).

624ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

File promises are similar in concept to deferred rendering using a data handler function on the clipboard. Use file

promises instead of deferred rendering when dragging and dropping files. The deferred rendering technique can lead

to undesirable pauses in the drag gesture as the data is generated or downloaded. Use deferred rendering for copy and

paste operations (for which file promises are not supported).

Limitations when using file promises

File promises have the following limitations compared to other data formats that you can put in a drag-and-drop

clipboard:

• File promises can only be dragged out of an AIR application; they cannot be dropped into an AIR application.

• File promises are not supported on all operating systems. Use the Clipboard.supportsFilePromise property to

test whether file promises are supported on the host system. On systems that do not support file promises, you

should provide an alternative mechanism for downloading or generating the file data.

• File promises cannot be used with the copy-and-paste clipboard (Clipboard.generalClipboard).

More Help topics

flash.desktop.IFilePromise

air.desktop.URLFilePromise

Dropping remote files

Adobe AIR 2 and later

Use the URLFilePromise class to create file promise objects representing files or data available at a URL. Add one or

more file promise objects to the clipboard using the FILE_PROMISE_LIST clipboard format. In the following example,

a single file, available at http://www.example.com/foo.txt, is downloaded and saved to the drop location as bar.txt. (The

remote and the local file names do not have to match.)

if(Clipboard.supportsFilePromise)
{

var filePromise:URLFilePromise = new URLFilePromise();
filePromise.request = new URLRequest("http://example.com/foo.txt");
filePromise.relativePath = "bar.txt";

var fileList:Array = new Array(filePromise);
var clipboard:Clipboard = new Clipboard();
clipboard.setData(ClipboardFormats.FILE_PROMISE_LIST_FORMAT, fileList);
NativeDragManager.doDrag(dragSource, clipboard);

}

You can allow the user to drag more than one file at a time by adding more file promise objects to the array assigned

to the clipboard. You can also specify subdirectories in the relativePath property so that some or all of the files

included in the operation are placed in a subfolder relative to the drop location.

 The following example illustrates how to initiate a drag operation that includes multiple file promises. In this example,

an html page, article.html, is put on the clipboard as a file promise, along with its two linked image files. The images

are copied into an images subfolder so that the relative links are maintained.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/IFilePromise.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/air/desktop/URLFilePromise.html

625ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

if(Clipboard.supportsFilePromise)
{ //Create the promise objects

var filePromise:URLFilePromise = new URLFilePromise();
filePromise.request = new URLRequest("http://example.com/article.html");
filePromise.relativePath = "article.html";

var image1Promise:URLFilePromise = new URLFilePromise();
image1Promise.request = new URLRequest("http://example.com/images/img_1.jpg");
image1Promise.relativePath = "images/img_1.html";
var image2Promise:URLFilePromise = new URLFilePromise();
image2Promise.request = new URLRequest("http://example.com/images/img_2.jpg");
image2Promise.relativePath = "images/img_2.jpg";

//Put the promise objects onto the clipboard inside an array
var fileList:Array = new Array(filePromise, image1Promise, image2Promise);
var clipboard:Clipboard = new Clipboard();
clipboard.setData(ClipboardFormats.FILE_PROMISE_LIST_FORMAT, fileList);
//Start the drag operation
NativeDragManager.doDrag(dragSource, clipboard);

}

Implementing the IFilePromise interface

Adobe AIR 2 and later

To provide file promises for resources that cannot be accessed using a URLFilePromise object, you can implement the

IFilePromise interface in a custom class. The IFilePromise interface defines the methods and properties used by the

AIR runtime to access the data to be written to a file once the file promise is dropped.

An IFilePromise implementation passes another object to the AIR runtime that provides the data for the file promise.

This object must implement the IDataInput interface, which the AIR runtime uses to read the data. For example, the

URLFilePromise class, which implements IFilePromise, uses a URLStream object as the data provider.

AIR can read the data synchronously or asynchronously. The IFilePromise implementation reports which mode of

access is supported by returning the appropriate value in the isAsync property. If asynchronous data access is

provided, the data provider object must implement the IEventDispatcher interface and dispatch the necessary events,

such as open, progress and complete.

You can use a custom class, or one of the following built-in classes, as a data provider for a file promise:

• ByteArray (synchronous)

• FileStream (synchronous or asynchronous)

• Socket (asynchronous)

• URLStream (asynchronous)

To implement the IFilePromise interface, you must provide code for the following functions and properties:

• open():IDataInput — Returns the data provider object from which the data for the promised file is read. The

object must implement the IDataInput interface. If the data is provided asynchronously, the object must also

implement the IEventDispatcher interface and dispatch the necessary events (see “Using an asynchronous data

provider in a file promise” on page 627).

626ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

• get relativePath():String — Provides the path, including file name, for the created file. The path is resolved

relative to the drop location chosen by the user in the drag-and-drop operation. To make sure that the path uses

the proper separator character for the host operating system, use the File.separator constant when specifying

paths containing directories. You can add a setter function or use a constructor parameter to allow the path to be

set at runtime.

• get isAsync():Boolean — Informs the AIR runtime whether the data provider object provides it’s data

asynchronously or synchronously.

• close():void — Called by the runtime when the data is fully read (or an error prevents further reading). You can

use this function to cleanup resources.

• reportError(e:ErrorEvent):void — Called by the runtime when an error reading the data occurs.

All of the IFilePromise methods are called by the runtime during a drag-and-drop operation involving the file promise.

Typically, your application logic should not call any of these methods directly.

Using a synchronous data provider in a file promise

Adobe AIR 2 and later

The simplest way to implement the IFilePromise interface is to use a synchronous data provider object, such as a

ByteArray or a synchronous FileStream. In the following example, a ByteArray object is created, filled with data, and

returned when the open() method is called.

package
{

import flash.desktop.IFilePromise;
import flash.events.ErrorEvent;
import flash.utils.ByteArray;
import flash.utils.IDataInput;

public class SynchronousFilePromise implements IFilePromise
{

private const fileSize:int = 5000; //size of file data
private var filePath:String = "SynchronousFile.txt";

public function get relativePath():String
{

return filePath;
}

public function get isAsync():Boolean
{

return false;
}

public function open():IDataInput
{

var fileContents:ByteArray = new ByteArray();

//Create some arbitrary data for the file
for(var i:int = 0; i < fileSize; i++)

627ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

{
fileContents.writeUTFBytes('S');

}

//Important: the ByteArray is read from the current position
fileContents.position = 0;
return fileContents;

}

public function close():void
{

//Nothing needs to be closed in this case.
}

public function reportError(e:ErrorEvent):void
{

trace("Something went wrong: " + e.errorID + " - " + e.type + ", " + e.text);
}

}
}

In practice, synchronous file promises have limited utility. If the amount of data is small, you could just as easily create

a file in a temporary directory and add a normal file list array to the drag-and-drop clipboard. On the other hand, if

the amount of data is large or generating the data is computationally expensive, a long synchronous process is

necessary. Long synchronous processes can block UI updates for a noticeable amount of time and make your

application seem unresponsive. To avoid this problem, you can create an asynchronous data provider driven by a

timer.

Using an asynchronous data provider in a file promise

Adobe AIR 2 and later

When you use an asynchronous data provider object, the IFilePromise isAsync property must be true and the object

returned by the open() method must implement the IEventDispatcher interface. The runtime listens for several

alternative events so that different built-in objects can be used as a data provider. For example, progress events are

dispatched by FileStream and URLStream objects, whereas socketData events are dispatched by Socket objects. The

runtime listens for the appropriate events from all of these objects.

The following events drive the process of reading the data from the data provider object:

• Event.OPEN — Informs the runtime that the data source is ready.

• ProgressEvent.PROGRESS — Informs the runtime that data is available. The runtime will read the amount of

available data from the data provider object.

• ProgressEvent.SOCKET_DATA — Informs the runtime that data is available. The socketData event is dispatched

by socket-based objects. For other object types, you should dispatch a progress event. (The runtime listens for

both events to detect when data can be read.)

• Event.COMPLETE — Informs the runtime that the data has all been read.

• Event.CLOSE — Informs the runtime that the data has all been read. (The runtime listens for both close and

complete for this purpose.)

• IOErrorEvent.IOERROR — Informs the runtime that an error reading the data has occurred. The runtime aborts

file creation and calls the IFilePromise close() method.

628ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

• SecurityErrorEvent.SECURITY_ERROR — Informs the runtime that a security error has occurred. The runtime

aborts file creation and calls the IFilePromise close() method.

• HTTPStatusEvent.HTTP_STATUS — Used, along with httpResponseStatus, by the runtime to make sure that

the data available represents the desired content, rather than an error message (such as a 404 page). Objects based

on the HTTP protocol should dispatch this event.

• HTTPStatusEvent.HTTP_RESPONSE_STATUS — Used, along with httpStatus, by the runtime to make sure

that the data available represents the desired content. Objects based on the HTTP protocol should dispatch this

event.

 The data provider should dispatch these events in the following sequence:

1 open event

2 progress or socketData events

3 complete or close event

Note: The built-in objects, FileStream, Socket, and URLStream, dispatch the appropriate events automatically.

The following example creates a file promise using a custom, asynchronous data provider. The data provider class

extends ByteArray (for the IDataInput support) and implements the IEventDispatcher interface. At each timer event,

the object generates a chunk of data and dispatches a progress event to inform the runtime that the data is available.

When enough data has been produced, the object dispatches a complete event.

package
{
import flash.events.Event;
import flash.events.EventDispatcher;
import flash.events.IEventDispatcher;
import flash.events.ProgressEvent;
import flash.events.TimerEvent;
import flash.utils.ByteArray;
import flash.utils.Timer;

[Event(name="open", type="flash.events.Event.OPEN")]
[Event(name="complete", type="flash.events.Event.COMPLETE")]
[Event(name="progress", type="flash.events.ProgressEvent")]
[Event(name="ioError", type="flash.events.IOErrorEvent")]
[Event(name="securityError", type="flash.events.SecurityErrorEvent")]
public class AsyncDataProvider extends ByteArray implements IEventDispatcher
{

private var dispatcher:EventDispatcher = new EventDispatcher();
public var fileSize:int = 0; //The number of characters in the file
private const chunkSize:int = 1000; //Amount of data written per event
private var dispatchDataTimer:Timer = new Timer(100);
private var opened:Boolean = false;

public function AsyncDataProvider()
{

super();
dispatchDataTimer.addEventListener(TimerEvent.TIMER, generateData);

}

public function begin():void{
dispatchDataTimer.start();

}

629ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

public function end():void
{

dispatchDataTimer.stop();
}
private function generateData(event:Event):void
{

if(!opened)
{

var open:Event = new Event(Event.OPEN);
dispatchEvent(open);
opened = true;

}
else if(position + chunkSize < fileSize)
{

for(var i:int = 0; i <= chunkSize; i++)
{

writeUTFBytes('A');
}
//Set position back to the start of the new data
this.position -= chunkSize;
var progress:ProgressEvent =

new ProgressEvent(ProgressEvent.PROGRESS, false, false, bytesAvailable,
bytesAvailable + chunkSize);

dispatchEvent(progress)
}
else
{

var complete:Event = new Event(Event.COMPLETE);
dispatchEvent(complete);

}
}
 //IEventDispatcher implementation
public function addEventListener(type:String, listener:Function,

useCapture:Boolean=false, priority:int=0, useWeakReference:Boolean=false):void
{

dispatcher.addEventListener(type, listener, useCapture, priority, useWeakReference);
}

public function removeEventListener(type:String, listener:Function,

useCapture:Boolean=false):void

630ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

{
dispatcher.removeEventListener(type, listener, useCapture);

}

public function dispatchEvent(event:Event):Boolean
{

return dispatcher.dispatchEvent(event);
}

public function hasEventListener(type:String):Boolean
{

return dispatcher.hasEventListener(type);
}

public function willTrigger(type:String):Boolean
{

return dispatcher.willTrigger(type);
}

}
}

Note: Because the AsyncDataProvider class in the example extends ByteArray, it cannot also extend EventDispatcher. To

implement the IEventDispatcher interface, the class uses an internal EventDispatcher object and forwards the

IEventDispatcher method calls to that internal object. You could also extend EventDispatcher and implement IDataInput

(or implement both interfaces).

The asynchronous IFilePromise implementation is almost identical to the synchronous implementation. The main

differences are that isAsync returns true and that the open() method returns an asynchronous data object:

package
{

import flash.desktop.IFilePromise;
import flash.events.ErrorEvent;
import flash.events.EventDispatcher;
import flash.utils.IDataInput;

public class AsynchronousFilePromise extends EventDispatcher implements IFilePromise
{

private var fileGenerator:AsyncDataProvider;
private const fileSize:int = 5000; //size of file data
private var filePath:String = "AsynchronousFile.txt";

public function get relativePath():String
{

return filePath;
}

public function get isAsync():Boolean
{

return true;
}

631ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Drag and drop in AIR

Last updated 10/9/2017

public function open():IDataInput
{

fileGenerator = new AsyncDataProvider();
fileGenerator.fileSize = fileSize;
fileGenerator.begin();
return fileGenerator;

}

public function close():void
{

fileGenerator.end();
}

public function reportError(e:ErrorEvent):void
{

trace("Something went wrong: " + e.errorID + " - " + e.type + ", " + e.text);
}

}
}

632

Last updated 10/9/2017

Chapter 36: Working with menus

Flash Player 9 and later, Adobe AIR 1.0 and later

Use the classes in the context menu API to modify the context menu in web-based Flex and Flash Player applications.

Use the classes in the native menu API to define application, window, context, and pop-up menus in Adobe® AIR®.

Menu basics

Flash Player 9 and later, Adobe AIR 1.0 and later

For a quick explanation and code examples of creating native menus in AIR applications, see the following quick start

articles on the Adobe Developer Connection:

• Adding native menus to an AIR application (Flex)

• Adding native menus to an AIR application (Flash)

The native menu classes allow you to access the native menu features of the operating system on which your

application is running. NativeMenu objects can be used for application menus (available on Mac OS X), window

menus (available on Windows and Linux), context menus, and pop-up menus.

Outside of AIR, you can use the context menu classes to modify the context menu that Flash Player automatically

displays when a user right-clicks or cmd-clicks on an object in your application. (An automatic context menu is not

displayed for AIR applications.)

Menu classes

Flash Player 9 and later, Adobe AIR 1.0 and later

The menu classes include:

Package Classes

flash.display • NativeMenu

• NativeMenuItem

flash.ui • ContextMenu

• ContextMenuItem

flash.events • Event

• ContextMenuEvent

http://www.adobe.com/devnet/air/flex/quickstart/adding_menus.html
http://www.adobe.com/devnet/air/flash/quickstart/adding_menus.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/NativeMenu.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/NativeMenuItem.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/ContextMenu.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/ui/ContextMenuItem.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/Event.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/ContextMenuEvent.html

633ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

Menu varieties

Flash Player 9 and later, Adobe AIR 1.0 and later

AIR supports the following types of menus:

Context menus Context menus open in response to a right-click or command-click on an interactive object in SWF

content or a document element in HTML content.

In the Flash Player runtime, a context menu is automatically displayed. You can use the ContextMenu and

ContextMenuItem classes to add your own commands to the menu. You can also remove some, but not all, of the

built-in commands.

In the AIR runtime, you can create a context menu using either the NativeMenu or the ContextMenu class. In HTML

content in AIR, you can use the Webkit HTML and JavaScript APIs to add context menus to HTML elements.

Application menus (AIR only) An application menu is a global menu that applies to the entire application. Application

menus are supported on Mac OS X, but not on Windows or Linux. On Mac OS X, the operating system automatically

creates an application menu. You can use the AIR menu API to add items and submenus to the standard menus. You

can add listeners for handling the existing menu commands. Or you can remove existing items.

Window menus (AIR only) A window menu is associated with a single window and is displayed below the title bar.

Menus can be added to a window by creating a NativeMenu object and assigning it to the menu property of the

NativeWindow object. Window menus are supported on the Windows and Linux operating systems, but not on Mac

OS X. Native window menus can only be used with windows that have system chrome.

Dock and system tray icon menus (AIR only) These icon menus are similar to context menus and are assigned to an

application icon in the Mac OS X dock or the Windows and Linux notification areas on the taskbar. Dock and system

tray icon menus use the NativeMenu class. On Mac OS X, the items in the menu are added above the standard

operating system items. On Windows or Linux, there is no standard menu.

Pop-up menus (AIR only) An AIR pop-up menu is like a context menu, but is not necessarily associated with a

particular application object or component. Pop-up menus can be displayed anywhere in a window by calling the

display() method of any NativeMenu object.

Custom menus Native menus are drawn entirely by the operating system and, as such, exist outside the Flash and

HTML rendering models. Instead of using native menus, you can always create your own custom, non-native menus

using MXML, ActionScript, or JavaScript (in AIR). Such menus must be fully rendered inside application content.

Flex menus The Adobe® Flex™ framework provides a set of Flex menu components. The Flex menus are drawn by the

runtime rather than the operating system and are not native menus. A Flex menu component can be used for Flex

windows that do not have system chrome. Another benefit of using the Flex menu component is that you can specify

menus declaratively in MXML format. If you are using the Flex Framework, use the Flex menu classes for window

menus instead of the native classes.

Default menus (AIR only)

The following default menus are provided by the operating system or a built-in AIR class:

• Application menu on Mac OS X

• Dock icon menu on Mac OS X

• Context menu for selected text and images in HTML content

• Context menu for selected text in a TextField object (or an object that extends TextField)

634ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

About context menus

Flash Player 9 and later, Adobe AIR 1.0 and later

In SWF content, any object that inherits from InteractiveObject can be given a context menu by assigning a menu

object to its contextMenu property. Several commands are included by default, including Forward, Back, Print,

Quality, and Zoom. In the AIR runtime, the menu object assigned to contextMenu can either be of type NativeMenu

or of type ContextMenu. In the Flash Player runtime, only the ContextMenu class is available.

You can listen for either native menu events or context menus events when using the ContextMenu and

ContextMenuItem classes; both are dispatched. One benefit provided by the ContextMenuEvent object properties is

that contextMenuOwner identifies the object to which the menu is attached and mouseTarget identifies the object

that was clicked to open the menu. This information is not available from the NativeMenuEvent object.

The following example creates a Sprite and adds a simple edit context menu:

 var sprite:Sprite = new Sprite();
 sprite.contextMenu = createContextMenu()
 private function createContextMenu():ContextMenu{
 var editContextMenu:ContextMenu = new ContextMenu();
 var cutItem:ContextMenuItem = new ContextMenuItem("Cut")
 cutItem.addEventListener(ContextMenuEvent.MENU_ITEM_SELECT, doCutCommand);
 editContextMenu.customItems.push(cutItem);

 var copyItem:ContextMenuItem = new ContextMenuItem("Copy")
 copyItem.addEventListener(ContextMenuEvent.MENU_ITEM_SELECT, doCopyCommand);
 editContextMenu.customItems.push(copyItem);

 var pasteItem:ContextMenuItem = new ContextMenuItem("Paste")
 pasteItem.addEventListener(ContextMenuEvent.MENU_ITEM_SELECT, doPasteCommand);
 editContextMenu.customItems.push(pasteItem);

 return editContextMenu
 }
 private function doCutCommand(event:ContextMenuEvent):void{trace("cut");}
 private function doCopyCommand(event:ContextMenuEvent):void{trace("copy");}
 private function doPasteCommand(event:ContextMenuEvent):void{trace("paste");}

Note: In contrast to SWF content displayed in a browser environment, context menus in AIR do not have any built-in

commands.

Customizing a Flash Player context menu

In a browser or a projector, context menus in SWF content always have built-in items. You can remove all of these

default commands from the menu, except for the Settings and About commands. Setting the Stage property

showDefaultContextMenu to false removes these commands from the context menu.

To create a customized context menu for a specific display object, create a new instance of the ContextMenu class, call

the hideBuiltInItems() method, and assign that instance to the contextMenu property of that DisplayObject

instance. The following example provides a dynamically drawn square with a context menu command to change it to

a random color:

635ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

 var square:Sprite = new Sprite();
 square.graphics.beginFill(0x000000);
 square.graphics.drawRect(0,0,100,100);
 square.graphics.endFill();
 square.x =
 square.y = 10;
 addChild(square);

 var menuItem:ContextMenuItem = new ContextMenuItem("Change Color");
 menuItem.addEventListener(ContextMenuEvent.MENU_ITEM_SELECT,changeColor);
 var customContextMenu:ContextMenu = new ContextMenu();
 customContextMenu.hideBuiltInItems();
 customContextMenu.customItems.push(menuItem);
 square.contextMenu = customContextMenu;

 function changeColor(event:ContextMenuEvent):void
 {
 square.transform.colorTransform = getRandomColor();
 }
 function getRandomColor():ColorTransform
 {
 return new ColorTransform(Math.random(), Math.random(), Math.random(),1,(Math.random() *
512) - 255, (Math.random() * 512) -255, (Math.random() * 512) - 255, 0);
 }

Native menu structure (AIR)

Adobe AIR 1.0 and later

Native menus are hierarchical in nature. NativeMenu objects contain child NativeMenuItem objects.

NativeMenuItem objects that represent submenus, in turn, can contain NativeMenu objects. The top- or root-level

menu object in the structure represents the menu bar for application and window menus. (Context, icon, and pop-up

menus don’t have a menu bar).

636ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

The following diagram illustrates the structure of a typical menu. The root menu represents the menu bar and contains

two menu items referencing a File submenu and an Edit submenu. The File submenu in this structure contains two

command items and an item that references an Open Recent Menu submenu, which, itself, contains three items. The

Edit submenu contains three commands and a separator.

Defining a submenu requires both a NativeMenu and a NativeMenuItem object. The NativeMenuItem object defines

the label displayed in the parent menu and allows the user to open the submenu. The NativeMenu object serves as a

container for items in the submenu. The NativeMenuItem object references the NativeMenu object through the

NativeMenuItem submenu property.

To view a code example that creates this menu see “Native menu example: Window and application menu (AIR)” on

page 644.

Menu events

Adobe AIR 1.0 and later

NativeMenu and NativeMenuItem objects both dispatch preparing, displaying, and select events:

Preparing: Whenever the object is about to begin a user interaction, the menu and its menu items dispatch a

preparing event to any registered listeners. Interaction includes opening the menu or selecting an item with a

keyboard shortcut.

NativeMenu Root Menu

NativeMenuItem “File”

NativeMenu File Menu

NativeMenuItem “New”

NativeMenuItem “Save”

NativeMenuItem “Open Recent”

NativeMenu Open Recent Menu

NativeMenuItem “GreatGatsby.pdf”

NativeMenuItem “WarAndPeace.pdf”

NativeMenuItem “Iliad.pdf”

NativeMenuItem “Edit”

NativeMenu Edit Menu

NativeMenuItem “Copy”

NativeMenuItem “Paste”

NativeMenuItem Separator

NativeMenuItem “Preferences”

637ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

Note: The preparing event is available only for Adobe AIR 2.6 and later.

Displaying: Immediately before a menu is displayed, the menu and its menu items dispatch a displaying event to

any registered listeners.

The preparing and displaying events give you an opportunity to update the menu contents or item appearance

before it is shown to the user. For example, in the listener for the displaying event of an “Open Recent” menu, you

could change the menu items to reflect the current list of recently viewed documents.

If you remove the menu item whose keyboard shortcut triggered a preparing event, the menu interaction is effectively

canceled and a select event is not dispatched.

The target and currentTarget properties of the event are both the object on which the listener is registered: either

the menu itself, or one of its items.

The preparing event is dispatched before the displaying event. You typically listen for one event or the other, not both.

Select: When a command item is chosen by the user, the item dispatches a select event to any registered listeners.

Submenu and separator items cannot be selected and so never dispatch a select event.

A select event bubbles up from a menu item to its containing menu, on up to the root menu. You can listen for

select events directly on an item and you can listen higher up in the menu structure. When you listen for the select

event on a menu, you can identify the selected item using the event target property. As the event bubbles up through

the menu hierarchy, the currentTarget property of the event object identifies the current menu object.

Note: ContextMenu and ContextMenuItem objects dispatch menuItemSelect and menuSelect events as well as

select, preparing, and displaying events.

Key equivalents for native menu commands (AIR)

Adobe AIR 1.0 and later

You can assign a key equivalent (sometimes called an accelerator) to a menu command. The menu item dispatches a

select event to any registered listeners when the key, or key combination is pressed. The menu containing the item

must be part of the menu of the application or the active window for the command to be invoked.

Key equivalents have two parts, a string representing the primary key and an array of modifier keys that must also be

pressed. To assign the primary key, set the menu item keyEquivalent property to the single character string for that

key. If you use an uppercase letter, the shift key is added to the modifier array automatically.

On Mac OS X, the default modifier is the command key (Keyboard.COMMAND). On Windows and Linux, it is the

control key (Keyboard.CONTROL). These default keys are automatically added to the modifier array. To assign

different modifier keys, assign a new array containing the desired key codes to the keyEquivalentModifiers

property. The default array is overwritten. Whether you use the default modifiers or assign your own modifier array,

the shift key is added if the string you assign to the keyEquivalent property is an uppercase letter. Constants for the

key codes to use for the modifier keys are defined in the Keyboard class.

The assigned key equivalent string is automatically displayed beside the menu item name. The format depends on the

user’s operating system and system preferences.

Note: If you assign the Keyboard.COMMAND value to a key modifier array on the Windows operating system, no key

equivalent is displayed in the menu. However, the control key must be used to activate the menu command.

The following example assigns Ctrl+Shift+G as the key equivalent for a menu item:

 var item:NativeMenuItem = new NativeMenuItem("Ungroup");
 item.keyEquivalent = "G";

638ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

This example assigns Ctrl+Shift+G as the key equivalent by setting the modifier array directly:

 var item:NativeMenuItem = new NativeMenuItem("Ungroup");
 item.keyEquivalent = "G";
 item.keyEquivalentModifiers = [Keyboard.CONTROL];

Note: Key equivalents are only triggered for application and window menus. If you add a key equivalent to a context or

pop-up menu, the key equivalent is displayed in the menu label, but the associated menu command is never invoked.

Mnemonics (AIR)

Adobe AIR 1.0 and later

Mnemonics are part of the operating system keyboard interface to menus. Linux, Mac OS X, and Windows allow users

to open menus and select commands with the keyboard, but there are subtle differences.

On Mac OS X, the user types the first letter or two of the menu or command and then presses the return key. The

mnemonicIndex property is ignored.

On Windows, only a single letter is significant. By default, the significant letter is the first character in the label, but if

you assign a mnemonic to the menu item, then the significant character becomes the designated letter. If two items in

a menu have the same significant character (whether or not a mnemonic has been assigned), then the user’s keyboard

interaction with the menu changes slightly. Instead of pressing a single letter to select the menu or command, the user

must press the letter as many times as necessary to highlight the desired item and then press the enter key to complete

the selection. To maintain a consistent behavior, you should assign a unique mnemonic to each item in a menu for

window menus.

On Linux, no default mnemonic is provided. You must specify a value for the mnemonicIndex property of a menu item

to provide a mnemonic.

Specify the mnemonic character as an index into the label string. The index of the first character in a label is 0. Thus,

to use “r” as the mnemonic for a menu item labeled, “Format,” you would set the mnemonicIndex property equal to 2.

 var item:NativeMenuItem = new NativeMenuItem("Format");
 item.mnemonicIndex = 2;

Menu item state

Adobe AIR 1.0 and later

Menu items have the two state properties, checked and enabled:

checked Set to true to display a check mark next to the item label.

 var item:NativeMenuItem = new NativeMenuItem("Format");
 item.checked = true;

enabled Toggle the value between true and false to control whether the command is enabled. Disabled items are

visually “grayed-out” and do not dispatch select events.

 var item:NativeMenuItem = new NativeMenuItem("Format");
 item.enabled = false;

639ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

Attaching an object to a menu item

Adobe AIR 1.0 and later

The data property of the NativeMenuItem class allows you to reference an arbitrary object in each item. For example,

in an “Open Recent” menu, you could assign the File object for each document to each menu item.

 var file:File = File.applicationStorageDirectory.resolvePath("GreatGatsby.pdf")
 var menuItem:NativeMenuItem = docMenu.addItem(new NativeMenuItem(file.name));
 menuItem.data = file;

Creating native menus (AIR)

Adobe AIR 1.0 and later

This topic describes how to create the various types of native menu supported by AIR.

Creating a root menu object

Adobe AIR 1.0 and later

To create a NativeMenu object to serve as the root of the menu, use the NativeMenu constructor:

 var root:NativeMenu = new NativeMenu();

For application and window menus, the root menu represents the menu bar and should only contain items that open

submenus. Context menu and pop-up menus do not have a menu bar, so the root menu can contain commands and

separator lines as well as submenus.

After the menu is created, you can add menu items. Items appear in the menu in the order in which they are added,

unless you add the items at a specific index using the addItemAt() method of a menu object.

Assign the menu as an application, window, icon, or context menu, or display it as a pop-up menu as shown in the

following sections:

Setting the application menu or window menu

It’s important that your code accommodate both application menus (supported on Mac OS) and window menus

(supported on other operating systems)

var root:NativeMenu = new NativeMenu();
if (NativeApplication.supportsMenu)
{

NativeApplication.nativeApplication.menu = root;
}
else if (NativeWindow.supportsMenu)
{

nativeWindow.menu = root;
}

Note: Mac OS defines a menu containing standard items for every application. Assigning a new NativeMenu object to

the menu property of the NativeApplication object replaces the standard menu. You can also use the standard menu

instead of replacing it.

640ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

The Adobe Flex provides a FlexNativeMenu class for easily creating menus that work across platforms. If you are using

the Flex Framework, use the FlexNativeMenu classes instead of the NativeMenu class.

Setting a context menu on an interactive object

 interactiveObject.contextMenu = root;

Setting a dock icon menu or system tray icon menu

It’s important that your code accommodate both application menus (supported on Mac OS) and window menus

(supported on other operating systems)

if (NativeApplication.supportsSystemTrayIcon)
{

SystemTrayIcon(NativeApplication.nativeApplication.icon).menu = root;
}
else if (NativeApplication.supportsDockIcon)
{

DockIcon(NativeApplication.nativeApplication.icon).menu = root;
}

Note: Mac OS X defines a standard menu for the application dock icon. When you assign a new NativeMenu to the menu

property of the DockIcon object, the items in that menu are displayed above the standard items. You cannot remove,

access, or modify the standard menu items.

Displaying a menu as a pop-up

 root.display(stage, x, y);

More Help topics

Developing cross-platform AIR applications

Creating a submenu

Adobe AIR 1.0 and later

To create a submenu, you add a NativeMenuItem object to the parent menu and then assign the NativeMenu object

defining the submenu to the item’s submenu property. AIR provides two ways to create submenu items and their

associated menu object:

You can create a menu item and its related menu object in one step with the addSubmenu() method:

 var editMenuItem:NativeMenuItem = root.addSubmenu(new NativeMenu(), "Edit");

You can also create the menu item and assign the menu object to its submenu property separately:

 var editMenuItem:NativeMenuItem = root.addItem("Edit", false);
 editMenuItem.submenu = new NativeMenu();

Creating a menu command

Adobe AIR 1.0 and later

To create a menu command, add a NativeMenuItem object to a menu and add an event listener referencing the

function implementing the menu command:

http://www.adobe.com/devnet/air/articles/developing_crossplatform.html

641ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

 var copy:NativeMenuItem = new NativeMenuItem("Copy", false);
 copy.addEventListener(Event.SELECT, onCopyCommand);
 editMenu.addItem(copy);

You can listen for the select event on the command item itself (as shown in the example), or you can listen for the

select event on a parent menu object.

Note: Menu items that represent submenus and separator lines do not dispatch select events and so cannot be used as

commands.

Creating a menu separator line

Adobe AIR 1.0 and later

To create a separator line, create a NativeMenuItem, setting the isSeparator parameter to true in the constructor.

Then add the separator item to the menu in the correct location:

 var separatorA:NativeMenuItem = new NativeMenuItem("A", true);
 editMenu.addItem(separatorA);

The label specified for the separator, if any, is not displayed.

About context menus in HTML (AIR)

Adobe AIR 1.0 and later

In HTML content displayed using the HTMLLoader object, the contextmenu event can be used to display a context

menu. By default, a context menu is displayed automatically when the user invokes the context menu event on selected

text (by right-clicking or command-clicking the text). To prevent the default menu from opening, listen for the

contextmenu event and call the event object’s preventDefault() method:

 function showContextMenu(event){
 event.preventDefault();
 }

You can then display a custom context menu using DHTML techniques or by displaying an AIR native context menu.

The following example displays a native context menu by calling the menu display() method in response to the

HTML contextmenu event:

642ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

 <html>
 <head>
 <script src="AIRAliases.js" language="JavaScript" type="text/javascript"></script>
 <script language="javascript" type="text/javascript">

 function showContextMenu(event){
 event.preventDefault();
 contextMenu.display(window.nativeWindow.stage, event.clientX, event.clientY);
 }

 function createContextMenu(){
 var menu = new air.NativeMenu();
 var command = menu.addItem(new air.NativeMenuItem("Custom command"));
 command.addEventListener(air.Event.SELECT, onCommand);
 return menu;
 }

 function onCommand(){
 air.trace("Context command invoked.");
 }

 var contextMenu = createContextMenu();
 </script>
 </head>
 <body>
 <p oncontextmenu="showContextMenu(event)" style="-khtml-user-select:auto;">Custom context
menu.</p>
 </body>
 </html>

Displaying pop-up native menus (AIR)

Adobe AIR 1.0 and later

You can display any NativeMenu object at an arbitrary time and location above a window, by calling the menu

display() method. The method requires a reference to the stage; thus, only content in the application sandbox can

display a menu as a pop-up.

The following method displays the menu defined by a NativeMenu object named popupMenu in response to a mouse

click:

 private function onMouseClick(event:MouseEvent):void {
 popupMenu.display(event.target.stage, event.stageX, event.stageY);
 }

Note: The menu does not need to be displayed in direct response to an event. Any method can call the display()

function.

643ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

Handling menu events

Flash Player 9 and later, Adobe AIR 1.0 and later

A menu dispatches events when the user selects the menu or when the user selects a menu item.

Events summary for menu classes

Flash Player 9 and later, Adobe AIR 1.0 and later

Add event listeners to menus or individual items to handle menu events.

Select menu events

Adobe AIR 1.0 and later

To handle a click on a menu item, add an event listener for the select event to the NativeMenuItem object:

 var menuCommandX:NativeMenuItem = new NativeMenuItem("Command X");
 menuCommandX.addEventListener(Event.SELECT, doCommandX)

Because select events bubble up to the containing menus, you can also listen for select events on a parent menu.

When listening at the menu level, you can use the event object target property to determine which menu command

was selected. The following example traces the label of the selected command:

Object Events dispatched

NativeMenu (AIR) Event.PREPARING (Adobe AIR 2.6 and later)

Event.DISPLAYING

Event.SELECT (propagated from child items and submenus)

NativeMenuItem (AIR) Event.PREPARING (Adobe AIR 2.6 and later)

Event.SELECT

Event.DISPLAYING (propagated from parent menu)

ContextMenu ContextMenuEvent.MENU_SELECT

ContextMenuItem ContextMenuEvent.MENU_ITEM_SELECT

Event.SELECT (AIR)

644ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

 var colorMenuItem:NativeMenuItem = new NativeMenuItem("Choose a color");
 var colorMenu:NativeMenu = new NativeMenu();
 colorMenuItem.submenu = colorMenu;

 var red:NativeMenuItem = new NativeMenuItem("Red");
 var green:NativeMenuItem = new NativeMenuItem("Green");
 var blue:NativeMenuItem = new NativeMenuItem("Blue");
 colorMenu.addItem(red);
 colorMenu.addItem(green);
 colorMenu.addItem(blue);

 if(NativeApplication.supportsMenu){
 NativeApplication.nativeApplication.menu.addItem(colorMenuItem);
 NativeApplication.nativeApplication.menu.addEventListener(Event.SELECT, colorChoice);
 } else if (NativeWindow.supportsMenu){
 var windowMenu:NativeMenu = new NativeMenu();
 this.stage.nativeWindow.menu = windowMenu;
 windowMenu.addItem(colorMenuItem);
 windowMenu.addEventListener(Event.SELECT, colorChoice);
 }

 function colorChoice(event:Event):void {
 var menuItem:NativeMenuItem = event.target as NativeMenuItem;
 trace(menuItem.label + " has been selected");
 }

If you are using the ContextMenuItem class, you can listen for either the select event or the menuItemSelect event.

The menuItemSelect event gives you additional information about the object owning the context menu, but does not

bubble up to the containing menus.

Displaying menu events

Adobe AIR 1.0 and later

To handle the opening of a menu, you can add a listener for the displaying event, which is dispatched before a menu

is displayed. You can use the displaying event to update the menu, for example by adding or removing items, or by

updating the enabled or checked states of individual items. You can also listen for the menuSelect event from a

ContextMenu object.

In AIR 2.6 and later, you can use the preparing event to update a menu in response to either displaying a menu or

selecting an item with a keyboard shortcut.

Native menu example: Window and application menu
(AIR)

Adobe AIR 1.0 and later

The following example creates the menu shown in “Native menu structure (AIR)” on page 635.

645ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

The menu is designed to work both on Windows, for which only window menus are supported, and on Mac OS X, for

which only application menus are supported. To make the distinction, the MenuExample class constructor checks the

static supportsMenu properties of the NativeWindow and NativeApplication classes. If

NativeWindow.supportsMenu is true, then the constructor creates a NativeMenu object for the window and then

creates and adds the File and Edit submenus. If NativeApplication.supportsMenu is true, then the constructor

creates and adds the File and Edit menus to the existing menu provided by the Mac OS X operating system.

The example also illustrates menu event handling. The select event is handled at the item level and also at the menu

level. Each menu in the chain from the menu containing the selected item to the root menu responds to the select

event. The displaying event is used with the “Open Recent” menu. Just before the menu is opened, the items in the

menu are refreshed from the recent Documents array (which doesn’t actually change in this example). Although not

shown in this example, you can also listen for displaying events on individual items.

 package {
 import flash.display.NativeMenu;
 import flash.display.NativeMenuItem;
 import flash.display.NativeWindow;
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.filesystem.File;
 import flash.desktop.NativeApplication;

 public class MenuExample extends Sprite
 {
 private var recentDocuments:Array =
 new Array(new File("app-storage:/GreatGatsby.pdf"),
 new File("app-storage:/WarAndPeace.pdf"),
 new File("app-storage:/Iliad.pdf"));

 public function MenuExample()
 {
 var fileMenu:NativeMenuItem;
 var editMenu:NativeMenuItem;

 if (NativeWindow.supportsMenu){
 stage.nativeWindow.menu = new NativeMenu();
 stage.nativeWindow.menu.addEventListener(Event.SELECT, selectCommandMenu);
 fileMenu = stage.nativeWindow.menu.addItem(new NativeMenuItem("File"));
 fileMenu.submenu = createFileMenu();
 editMenu = stage.nativeWindow.menu.addItem(new NativeMenuItem("Edit"));
 editMenu.submenu = createEditMenu();
 }

 if (NativeApplication.supportsMenu){
 NativeApplication.nativeApplication.menu.addEventListener(Event.SELECT,
selectCommandMenu);
 fileMenu = NativeApplication.nativeApplication.menu.addItem(new
NativeMenuItem("File"));
 fileMenu.submenu = createFileMenu();
 editMenu = NativeApplication.nativeApplication.menu.addItem(new
NativeMenuItem("Edit"));
 editMenu.submenu = createEditMenu();
 }
 }

 public function createFileMenu():NativeMenu {

646ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

 var fileMenu:NativeMenu = new NativeMenu();
 fileMenu.addEventListener(Event.SELECT, selectCommandMenu);

 var newCommand:NativeMenuItem = fileMenu.addItem(new NativeMenuItem("New"));
 newCommand.addEventListener(Event.SELECT, selectCommand);
 var saveCommand:NativeMenuItem = fileMenu.addItem(new NativeMenuItem("Save"));
 saveCommand.addEventListener(Event.SELECT, selectCommand);
 var openRecentMenu:NativeMenuItem =
 fileMenu.addItem(new NativeMenuItem("Open Recent"));
 openRecentMenu.submenu = new NativeMenu();
 openRecentMenu.submenu.addEventListener(Event.DISPLAYING,
 updateRecentDocumentMenu);
 openRecentMenu.submenu.addEventListener(Event.SELECT, selectCommandMenu);

 return fileMenu;
 }

 public function createEditMenu():NativeMenu {
 var editMenu:NativeMenu = new NativeMenu();
 editMenu.addEventListener(Event.SELECT, selectCommandMenu);

 var copyCommand:NativeMenuItem = editMenu.addItem(new NativeMenuItem("Copy"));
 copyCommand.addEventListener(Event.SELECT, selectCommand);
 copyCommand.keyEquivalent = "c";
 var pasteCommand:NativeMenuItem =
 editMenu.addItem(new NativeMenuItem("Paste"));
 pasteCommand.addEventListener(Event.SELECT, selectCommand);
 pasteCommand.keyEquivalent = "v";
 editMenu.addItem(new NativeMenuItem("", true));
 var preferencesCommand:NativeMenuItem =
 editMenu.addItem(new NativeMenuItem("Preferences"));
 preferencesCommand.addEventListener(Event.SELECT, selectCommand);

 return editMenu;
 }

 private function updateRecentDocumentMenu(event:Event):void {
 trace("Updating recent document menu.");
 var docMenu:NativeMenu = NativeMenu(event.target);

 for each (var item:NativeMenuItem in docMenu.items) {
 docMenu.removeItem(item);
 }

 for each (var file:File in recentDocuments) {
 var menuItem:NativeMenuItem =
 docMenu.addItem(new NativeMenuItem(file.name));
 menuItem.data = file;
 menuItem.addEventListener(Event.SELECT, selectRecentDocument);
 }
 }

 private function selectRecentDocument(event:Event):void {
 trace("Selected recent document: " + event.target.data.name);
 }

 private function selectCommand(event:Event):void {

647ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with menus

Last updated 10/9/2017

 trace("Selected command: " + event.target.label);
 }

 private function selectCommandMenu(event:Event):void {
 if (event.currentTarget.parent != null) {
 var menuItem:NativeMenuItem =
 findItemForMenu(NativeMenu(event.currentTarget));
 if (menuItem != null) {
 trace("Select event for \"" +
 event.target.label +
 "\" command handled by menu: " +
 menuItem.label);
 }
 } else {
 trace("Select event for \"" +
 event.target.label +
 "\" command handled by root menu.");
 }
 }

 private function findItemForMenu(menu:NativeMenu):NativeMenuItem {
 for each (var item:NativeMenuItem in menu.parent.items) {
 if (item != null) {
 if (item.submenu == menu) {
 return item;
 }
 }
 }
 return null;
 }
 }
 }

648

Last updated 10/9/2017

Chapter 37: Taskbar icons in AIR

Adobe AIR 1.0 and later

Many operating systems provide a taskbar, such as the Mac OS X dock, that can contain an icon to represent an

application. Adobe® AIR® provides an interface for interacting with the application task bar icon through the

NativeApplication.nativeApplication.icon property.

• Using the system tray and dock icons (Flex)

• Using the system tray and dock icons (Flash)

More Help topics

flash.desktop.NativeApplication

flash.desktop.DockIcon

flash.desktop.SystemTrayIcon

About taskbar icons

Adobe AIR 1.0 and later

AIR creates the NativeApplication.nativeApplication.icon object automatically. The object type is either

DockIcon or SystemTrayIcon, depending on the operating system. You can determine which of these InteractiveIcon

subclasses that AIR supports on the current operating system using the NativeApplication.supportsDockIcon

and NativeApplication.supportsSystemTrayIcon properties. The InteractiveIcon base class provides the

properties width, height, and bitmaps, which you can use to change the image used for the icon. However, accessing

properties specific to DockIcon or SystemTrayIcon on the wrong operating system generates a runtime error.

To set or change the image used for an icon, create an array containing one or more images and assign it to the

NativeApplication.nativeApplication.icon.bitmaps property. The size of taskbar icons can be different on

different operating systems. To avoid image degradation due to scaling, you can add multiple sizes of images to the

bitmaps array. If you provide more than one image, AIR selects the size closest to the current display size of the taskbar

icon, scaling it only if necessary. The following example sets the image for a taskbar icon using two images:

 NativeApplication.nativeApplication.icon.bitmaps =
 [bmp16x16.bitmapData, bmp128x128.bitmapData];

To change the icon image, assign an array containing the new image or images to the bitmaps property. You can

animate the icon by changing the image in response to an enterFrame or timer event.

To remove the icon from the notification area on Windows and Linux, or to restore the default icon appearance on

Mac OS X, set bitmaps to an empty array:

 NativeApplication.nativeApplication.icon.bitmaps = [];

http://www.adobe.com/go/learn_air_qs_systray_en
http://www.adobe.com/go/learn_air_qs_systray_flash_en
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/NativeApplication.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/DockIcon.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/SystemTrayIcon.html

649ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Taskbar icons in AIR

Last updated 10/9/2017

Dock icons

Adobe AIR 1.0 and later

AIR supports dock icons when NativeApplication.supportsDockIcon is true. The

NativeApplication.nativeApplication.icon property represents the application icon on the dock (not a

window dock icon).

Note: AIR does not support changing window icons on the dock under Mac OS X. Also, changes to the application dock

icon only apply while an application is running — the icon reverts to its normal appearance when the application

terminates.

Dock icon menus

Adobe AIR 1.0 and later

You can add commands to the standard dock menu by creating a NativeMenu object containing the commands and

assigning it to the NativeApplication.nativeApplication.icon.menu property. The items in the menu are

displayed above the standard dock icon menu items.

Bouncing the dock

Adobe AIR 1.0 and later

You can bounce the dock icon by calling the NativeApplication.nativeApplication.icon.bounce() method. If

you set the bounce() priority parameter to informational, then the icon bounces once. If you set it to critical, then

the icon bounces until the user activates the application. Constants for the priority parameter are defined in the

NotificationType class.

Note: The icon does not bounce if the application is already active.

Dock icon events

Adobe AIR 1.0 and later

When the dock icon is clicked, the NativeApplication object dispatches an invoke event. If the application is not

running, the system launches it. Otherwise, the invoke event is delivered to the running application instance.

System Tray icons

Adobe AIR 1.0 and later

AIR supports system tray icons when NativeApplication.supportsSystemTrayIcon is true, which is currently

the case only on Windows and most Linux distributions. On Windows and Linux, system tray icons are displayed in

the notification area of the taskbar. No icon is displayed by default. To show an icon, assign an array containing

BitmapData objects to the icon bitmaps property. To change the icon image, assign an array containing the new

images to bitmaps. To remove the icon, set bitmaps to null.

650ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Taskbar icons in AIR

Last updated 10/9/2017

System tray icon menus

Adobe AIR 1.0 and later

You can add a menu to the system tray icon by creating a NativeMenu object and assigning it to the

NativeApplication.nativeApplication.icon.menu property (no default menu is provided by the operating

system). Access the system tray icon menu by right-clicking the icon.

System tray icon tooltips

Adobe AIR 1.0 and later

Add a tooltip to an icon by setting the tooltip property:

 NativeApplication.nativeApplication.icon.tooltip = "Application name";

System tray icon events

Adobe AIR 1.0 and later

The SystemTrayIcon object referenced by the NativeApplication.nativeApplication.icon property dispatches a

ScreenMouseEvent for click, mouseDown, mouseUp, rightClick, rightMouseDown, and rightMouseUp events. You

can use these events, along with an icon menu, to allow users to interact with your application when it has no visible

windows.

Example: Creating an application with no windows

Adobe AIR 1.0 and later

The following example creates an AIR application which has a system tray icon, but no visible windows. (The visible

property of the application must not be set to true in the application descriptor, or the window will be visible when

the application starts up.)

 package
 {
 import flash.display.Loader;
 import flash.display.NativeMenu;
 import flash.display.NativeMenuItem;
 import flash.display.NativeWindow;
 import flash.display.Sprite;

import flash.desktop.DockIcon;
 import flash.desktop.SystemTrayIcon;
 import flash.events.Event;
 import flash.net.URLRequest;
 import flash.desktop.NativeApplication;

 public class SysTrayApp extends Sprite
 {
 public function SysTrayApp():void{
 NativeApplication.nativeApplication.autoExit = false;
 var icon:Loader = new Loader();
 var iconMenu:NativeMenu = new NativeMenu();
 var exitCommand:NativeMenuItem = iconMenu.addItem(new NativeMenuItem("Exit"));
 exitCommand.addEventListener(Event.SELECT, function(event:Event):void {

651ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Taskbar icons in AIR

Last updated 10/9/2017

 NativeApplication.nativeApplication.icon.bitmaps = [];
 NativeApplication.nativeApplication.exit();
 });

 if (NativeApplication.supportsSystemTrayIcon) {
 NativeApplication.nativeApplication.autoExit = false;
 icon.contentLoaderInfo.addEventListener(Event.COMPLETE, iconLoadComplete);
 icon.load(new URLRequest("icons/AIRApp_16.png"));

 var systray:SystemTrayIcon =
 NativeApplication.nativeApplication.icon as SystemTrayIcon;
 systray.tooltip = "AIR application";
 systray.menu = iconMenu;
 }

 if (NativeApplication.supportsDockIcon){
 icon.contentLoaderInfo.addEventListener(Event.COMPLETE,iconLoadComplete);
 icon.load(new URLRequest("icons/AIRApp_128.png"));
 var dock:DockIcon = NativeApplication.nativeApplication.icon as DockIcon;
 dock.menu = iconMenu;
 }
 }

 private function iconLoadComplete(event:Event):void
 {
 NativeApplication.nativeApplication.icon.bitmaps =
 [event.target.content.bitmapData];
 }
 }
 }

Note: When using the Flex WindowedApplication component, you must set the visible attribute of the

WindowedApplication tag to false. This attribute supercedes the setting in the application descriptor.

Note: The example assumes that there are image files named AIRApp_16.png and AIRApp_128.png in an icons

subdirectory of the application. (Sample icon files, which you can copy to your project folder, are included in the AIR SDK.)

Window taskbar icons and buttons

Adobe AIR 1.0 and later

Iconified representations of windows are typically displayed in the window area of a taskbar or dock to allow users to

easily access background or minimized windows. The Mac OS X dock displays an icon for your application as well as

an icon for each minimized window. The Microsoft Windows and Linux taskbars display a button containing the

progam icon and title for each normal-type window in your application.

652ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Taskbar icons in AIR

Last updated 10/9/2017

Highlighting the taskbar window button

Adobe AIR 1.0 and later

When a window is in the background, you can notify the user that an event of interest related to the window has

occurred. On Mac OS X, you can notify the user by bouncing the application dock icon (as described in “Bouncing the

dock” on page 649). On Windows and Linux, you can highlight the window taskbar button by calling the

notifyUser() method of the NativeWindow instance. The type parameter passed to the method determines the

urgency of the notification:

• NotificationType.CRITICAL: the window icon flashes until the user brings the window to the foreground.

• NotificationType.INFORMATIONAL: the window icon highlights by changing color.

Note: On Linux, only the informational type of notification is supported. Passing either type value to the

notifyUser() function will create the same effect.

The following statement highlights the taskbar button of a window:

 stage.nativeWindow.notifyUser(NotificationType.CRITICAL);

Calling the NativeWindow.notifyUser() method on an operating system that does not support window-level

notification has no effect. Use the NativeWindow.supportsNotification property to determine if window

notification is supported.

Creating windows without taskbar buttons or icons

Adobe AIR 1.0 and later

On the Windows operating system, windows created with the types utility or lightweight do not appear on the taskbar.

Invisible windows do not appear on the taskbar, either.

Because the initial window is necessarily of type, normal, in order to create an application without any windows

appearing in the taskbar, you must either close the initial window or leave it invisible. To close all windows in your

application without terminating the application, set the autoExit property of the NativeApplication object to false

before closing the last window. To simply prevent the initial window from ever becoming visible, add

<visible>false</visible> to the <initalWindow> element of the application descriptor file (and do not set the

visible property to true or call the activate() method of the window).

In new windows opened by the application, set the type property of the NativeWindowInitOption object passed to

the window constructor to NativeWindowType.UTILITY or NativeWindowType.LIGHTWEIGHT.

On Mac OS X, windows that are minimized are displayed on the dock taskbar. You can prevent the minimized icon

from being displayed by hiding the window instead of minimizing it. The following example listens for a

nativeWindowDisplayState change event and cancels it if the window is being minimized. Instead the handler sets

the window visible property to false:

 private function preventMinimize(event:NativeWindowDisplayStateEvent):void{
 if(event.afterDisplayState == NativeWindowDisplayState.MINIMIZED){
 event.preventDefault();
 event.target.visible = false;
 }
 }

If a window is minimized on the Mac OS X dock when you set the visible property to false, the dock icon is not

removed. A user can still click the icon to make the window reappear.

653

Last updated 10/9/2017

Chapter 38: Working with the file system

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash® Player provides basic file reading and writing capabilities, via the FileReference class. For security reasons, when

running in Flash Player, the user must always grant permission before you can read or write a file.

Adobe® AIR® provides more complete access to the file system of the host computer than is available in Flash Player.

Using the AIR file system API, you can access and manage directories and files, create directories and files, write data

to files, and so on.

More Help topics

flash.net.FileReference

flash.net.FileReferenceList

flash.filesystem.File

flash.filesystem.FileStream

Using the FileReference class

Flash Player 9 and later, Adobe AIR 1.0 and later

A FileReference object represents a data file on a client or server machine. The methods of the FileReference class let

your application load and save data files locally, and transfer file data to and from remote servers.

The FileReference class offers two different approaches to loading, transferring, and saving data files. Since its

introduction, the FileReference class has includedthe browse() method, the upload() method, and the download()

method. Use the browse() method to let the user select a file. Use the upload() method to transfer the file data to a

remote server. Use the download() method to retrieve that data from the server and save it in a local file. Starting with

Flash Player 10 and Adobe AIR 1.5, the FileReference class includes the load() and save() methods. The load() and

save() methods allow you to access and save local files directly as well. The use of those methods is similar to the

equivalent-named methods in the URLLoader and Loader classes.

Note: The File class, which extends the FileReference class, and the FileStream class provide additional functions for

working with files and the local file system. The File and FileStream classes are only supported in AIR and not in the Flash

Player.

FileReference class

Flash Player 9 and later, Adobe AIR 1.0 and later

Each FileReference object represents a single data file on the local machine. The properties of the FileReference class

contain information about the file’s size, type, name, filename extension, creator, creation date, and modification date.

Note: The creator property is supported on Mac OS only. All other platforms return null.

Note: The extension property is only supported in Adobe AIR.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/FileReference.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/FileReferenceList.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filesystem/File.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filesystem/File.html

654ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

You can create an instance of the FileReference class one of two ways:

• Use the new operator, as shown in the following code:

 import flash.net.FileReference;
 var fileRef:FileReference = new FileReference();

• Call the FileReferenceList.browse() method, which opens a dialog box and prompts the user to select one or

more files to upload. It then creates an array of FileReference objects if the user successfully selects one or more files.

Once you have created a FileReference object, you can do the following:

• Call the FileReference.browse() method, which opens a dialog box and prompts the user to select a single file

from the local file system. This is usually done before a subsequent call to the FileReference.upload() method

or FileReference.load() method. Call the FileReference.upload() method to upload the file to a remote

server. Call to the FileReference.load() method to open a local file.

• Call the FileReference.download() method. The download() method opens a dialog box to let the user select

a location for saving a new file. Then it downloads data from the server and stores it in the new file.

• Call the FileReference.load() method. This method begins loading data from a file selected previously using

the browse() method. The load() method can’t be called until the browse() operation completes (the user selects

a file).

• Call the FileReference.save() method. This method opens a dialog box and prompts the user to choose a single

file location on the local file system. It then saves data to the specified location.

Note: You can only perform one browse(), download(), or save() action at a time, because only one dialog box can

be open at any point.

The FileReference object properties such as name, size, or modificationDate are not defined until one of the

following happens:

• The FileReference.browse() method or FileReferenceList.browse() method has been called, and the user

has selected a file using the dialog box.

• The FileReference.download() method has been called, and the user has specified a new file location using the

dialog box.

Note: When performing a download, only the FileReference.name property is populated before the download is

complete. After the file has been downloaded, all properties are available.

While calls to the FileReference.browse(), FileReferenceList.browse(), FileReference.download(),

FileReference.load(), or FileReference.save() methods are executing, most players continue SWF file

playback including dispatching events and executing code.

For uploading and downloading operations, a SWF file can access files only within its own domain, including any

domains specified by a policy file. You need to put a policy file on the server containing the file if that server is not in

the same domain as the SWF file initiating the upload or download.

See FileReference.

Loading data from files

Flash Player 9 and later, Adobe AIR 1.0 and later

The FileReference.load() method lets you load data from a local file into memory.

Note: Your code must first call the FileReference.browse() method to let the user select a file to load. This restriction

does not apply to content running in Adobe AIR in the application security sandbox

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/FileReference.html

655ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

The FileReference.load() method returns immediately after being called, but the data being loaded isn’t available

immediately. The FileReference object dispatches events to invoke listener methods at each step of the loading process.

The FileReference object dispatches the following events during the loading process.

• open event (Event.OPEN): Dispatched when the load operation starts.

• progress event (ProgressEvent.PROGRESS): Dispatched periodically as bytes of data are read from the file.

• complete event (Event.COMPLETE): Dispatched when the load operation completes successfully.

• ioError event (IOErrorEvent.IO_ERROR): Dispatched if the load process fails because an input/output error

occurs while opening or reading data from the file.

Once the FileReference object dispatches the complete event, the loaded data can be accessed as a ByteArray in the

FileReference object’s data property.

The following example shows how to prompt the user to select a file and then load the data from that file into memory:

package
{
 import flash.display.Sprite;

import flash.events.*;
import flash.net.FileFilter;
import flash.net.FileReference;
import flash.net.URLRequest;
import flash.utils.ByteArray;

public class FileReferenceExample1 extends Sprite
{

private var fileRef:FileReference;
public function FileReferenceExample1()
{

fileRef = new FileReference();
fileRef.addEventListener(Event.SELECT, onFileSelected);
fileRef.addEventListener(Event.CANCEL, onCancel);
fileRef.addEventListener(IOErrorEvent.IO_ERROR, onIOError);
fileRef.addEventListener(SecurityErrorEvent.SECURITY_ERROR,

onSecurityError);
var textTypeFilter:FileFilter = new FileFilter("Text Files (*.txt, *.rtf)",

"*.txt;*.rtf");
fileRef.browse([textTypeFilter]);

}
public function onFileSelected(evt:Event):void
{

fileRef.addEventListener(ProgressEvent.PROGRESS, onProgress);
fileRef.addEventListener(Event.COMPLETE, onComplete);
fileRef.load();

}

public function onProgress(evt:ProgressEvent):void
{

trace("Loaded " + evt.bytesLoaded + " of " + evt.bytesTotal + " bytes.");
}

public function onComplete(evt:Event):void

656ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

{
trace("File was successfully loaded.");
trace(fileRef.data);

}

public function onCancel(evt:Event):void
{

trace("The browse request was canceled by the user.");
}

public function onIOError(evt:IOErrorEvent):void
{

trace("There was an IO Error.");
}
public function onSecurityError(evt:Event):void
{

trace("There was a security error.");
}

}
}

The example code first creates the FileReference object named fileRef and then calls its browse() method. The

browse() method opens a dialog box that prompts the user to select a file. When a file is selected, the code invokes the

onFileSelected() method. This method adds listeners for the progress and complete events and then calls the

FileReference object’s load() method. The other handler methods in the example simply output messages to report

on the progress of the load operation. When the loading completes, the application displays the contents of the loaded

file using the trace() method.

In Adobe AIR, the FileStream class provides additional functionality for reading data from a local file. See “Reading

and writing files” on page 689.

Saving data to local files

Flash Player 9 and later, Adobe AIR 1.0 and later

The FileReference.save() method lets you save data to a local file. It starts by opening a dialog box to let the user

enter a new filename and location to which to save a file. After the user selects the filename and location, the data is

written to the new file. When the file is saved successfully, the properties of the FileReference object are populated with

the properties of the local file.

Note: Your code can only call the FileReference.save() method in response to a user-initiated event such as a mouse

click or a keypress event. Otherwise an error is thrown. This restriction does not apply to content running in Adobe AIR

in the application security sandbox.

The FileReference.save() method returns immediately after being called. The FileReference object then

dispatches events to call listener methods at each step of the file saving process.

The FileReference object dispatches the following events during the file saving process:

• select event (Event.SELECT): Dispatched when the user specifies the location and file name for the new file to be

saved.

• cancel event (Event.CANCEL): Dispatched when the user click the Cancel button in the dialog box.

• open event (Event.OPEN): Dispatched when the save operation starts.

• progress event (ProgressEvent.PROGRESS): Dispatched periodically as bytes of data are saved to the file.

657ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

• complete event (Event.COMPLETE): Dispatched when the save operation completes successfully.

• ioError event (IOErrorEvent.IO_ERROR): Dispatched if the saving process fails because an input/output error

occurs while attempting to save data to the file.

The type of object passed in the data parameter of the FileReference.save() method determines how the data is

written to the file:

• If it is a String value, then it is saved as a text file using UTF-8 encoding.

• If it is an XML object, then it is written to a file in XML format with all formatting preserved.

• If it is a ByteArray object, then its contents are written directly to the file with no conversion.

• If it is some other object, then the FileReference.save() method calls the object’s toString() method and then

saves the resulting String value to a UTF-8 text file. If the object’s toString() method can’t be called, then an error

is thrown.

If the value of the data parameter is null, then an error is thrown.

The following code extends the previous example for the FileReference.load() method. After reading the data

from the file, this example prompts the user for a filename and then saves the data in a new file:

package
{

import flash.display.Sprite;
import flash.events.*;
import flash.net.FileFilter;
import flash.net.FileReference;
import flash.net.URLRequest;
import flash.utils.ByteArray;

public class FileReferenceExample2 extends Sprite
{

private var fileRef:FileReference;
public function FileReferenceExample2()
{

fileRef = new FileReference();
fileRef.addEventListener(Event.SELECT, onFileSelected);
fileRef.addEventListener(Event.CANCEL, onCancel);
fileRef.addEventListener(IOErrorEvent.IO_ERROR, onIOError);
fileRef.addEventListener(SecurityErrorEvent.SECURITY_ERROR,

onSecurityError);
var textTypeFilter:FileFilter = new FileFilter("Text Files (*.txt, *.rtf)",

"*.txt;*.rtf");
fileRef.browse([textTypeFilter]);

}
public function onFileSelected(evt:Event):void
{

fileRef.addEventListener(ProgressEvent.PROGRESS, onProgress);
fileRef.addEventListener(Event.COMPLETE, onComplete);
fileRef.load();

}

public function onProgress(evt:ProgressEvent):void
{

trace("Loaded " + evt.bytesLoaded + " of " + evt.bytesTotal + " bytes.");
}
public function onCancel(evt:Event):void
{

658ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

trace("The browse request was canceled by the user.");
}
public function onComplete(evt:Event):void
{

trace("File was successfully loaded.");
fileRef.removeEventListener(Event.SELECT, onFileSelected);
fileRef.removeEventListener(ProgressEvent.PROGRESS, onProgress);
fileRef.removeEventListener(Event.COMPLETE, onComplete);
fileRef.removeEventListener(Event.CANCEL, onCancel);
saveFile();

}
public function saveFile():void
{

fileRef.addEventListener(Event.SELECT, onSaveFileSelected);
fileRef.save(fileRef.data,"NewFileName.txt");

}

public function onSaveFileSelected(evt:Event):void
{

fileRef.addEventListener(ProgressEvent.PROGRESS, onSaveProgress);
fileRef.addEventListener(Event.COMPLETE, onSaveComplete);
fileRef.addEventListener(Event.CANCEL, onSaveCancel);

}

public function onSaveProgress(evt:ProgressEvent):void
{
 trace("Saved " + evt.bytesLoaded + " of " + evt.bytesTotal + " bytes.");
}

public function onSaveComplete(evt:Event):void
{

trace("File saved.");
fileRef.removeEventListener(Event.SELECT, onSaveFileSelected);

 fileRef.removeEventListener(ProgressEvent.PROGRESS, onSaveProgress);
 fileRef.removeEventListener(Event.COMPLETE, onSaveComplete);
 fileRef.removeEventListener(Event.CANCEL, onSaveCancel);
}

public function onSaveCancel(evt:Event):void
{

trace("The save request was canceled by the user.");
}

public function onIOError(evt:IOErrorEvent):void
{

trace("There was an IO Error.");
}
public function onSecurityError(evt:Event):void
{

trace("There was a security error.");
}

}
}

659ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

When all of the data loads from the file, the code calls the onComplete() method. The onComplete() method

removes the listeners for the loading events and then calls the saveFile() method. The saveFile() method calls the

FileReference.save() method. The FileReference.save() method opens a new dialog box to let the user enter

a new filename and location to save the file. The remaining event listener methods trace the progress of the file saving

process until it is complete.

In Adobe AIR, the FileStream class provides additional functionality for writing data to a local file. See “Reading and

writing files” on page 689.

Uploading files to a server

Flash Player 9 and later, Adobe AIR 1.0 and later

To upload files to a server, first call the browse() method to allow a user to select one or more files. Next, when the

FileReference.upload() method is called, the selected file is transferred to the server. If the user selects multiple

files using the FileReferenceList.browse() method, Flash Player creates an array of selected files called

FileReferenceList.fileList. You can then use the FileReference.upload() method to upload each file

individually.

Note: Using the FileReference.browse() method allows you to upload single files only. To allow a user to upload

multiple files, use the FileReferenceList.browse() method.

By default, the system file picker dialog box allows users to pick any file type from the local computer. Developers can

specify one or more custom file type filters by using the FileFilter class and passing an array of file filter instances to

the browse() method:

 var imageTypes:FileFilter = new FileFilter("Images (*.jpg, *.jpeg, *.gif, *.png)", "*.jpg;
*.jpeg; *.gif; *.png");
 var textTypes:FileFilter = new FileFilter("Text Files (*.txt, *.rtf)", "*.txt; *.rtf");
 var allTypes:Array = new Array(imageTypes, textTypes);
 var fileRef:FileReference = new FileReference();
 fileRef.browse(allTypes);

When the user has selected the files and clicked the Open button in the system file picker, the Event.SELECT event is

dispatched. If the FileReference.browse() method is used to select a file to upload, the following code sends the

file to a web server:

660ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

 var fileRef:FileReference = new FileReference();
 fileRef.addEventListener(Event.SELECT, selectHandler);
 fileRef.addEventListener(Event.COMPLETE, completeHandler);
 try
 {
 var success:Boolean = fileRef.browse();
 }
 catch (error:Error)
 {
 trace("Unable to browse for files.");
 }
 function selectHandler(event:Event):void
 {
 var request:URLRequest = new URLRequest("http://www.[yourdomain].com/fileUploadScript.cfm")
 try
 {
 fileRef.upload(request);
 }
 catch (error:Error)
 {
 trace("Unable to upload file.");
 }
 }
 function completeHandler(event:Event):void
 {
 trace("uploaded");
 }

You can send data to the server with the FileReference.upload() method by using the URLRequest.method and

URLRequest.data properties to send variables using the POST or GET methods.

When you attempt to upload a file using the FileReference.upload() method, the following events are dispatched:

• open event (Event.OPEN): Dispatched when the upload operation starts.

• progress event (ProgressEvent.PROGRESS): Dispatched periodically as bytes of data from the file are uploaded.

• complete event (Event.COMPLETE): Dispatched when the upload operation completes successfully.

• httpStatus event (HTTPStatusEvent.HTTP_STATUS): Dispatched when the upload process fails because of an

HTTP error.

• httpResponseStatus event (HTTPStatusEvent.HTTP_RESPONSE_STATUS): Dispatched if a call to the upload()

or uploadUnencoded() method attempts to access data over HTTP and Adobe AIR is able to detect and return the

status code for the request.

• securityError event (SecurityErrorEvent.SECURITY_ERROR): Dispatched when an upload operation fails

because of a security violation.

• uploadCompleteData event (DataEvent.UPLOAD_COMPLETE_DATA): Dispatched after data is received from the

server after a successful upload.

• ioError event (IOErrorEvent.IO_ERROR): Dispatched if the upload process fails for any of the following reasons:

• An input/output error occurred while Flash Player is reading, writing, or transmitting the file.

• The SWF tried to upload a file to a server that requires authentication (such as a user name and password).

During upload, Flash Player does not provide a means for users to enter passwords.

• The url parameter contains an invalid protocol. The FileReference.upload() method must use either

HTTP or HTTPS.

661ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Flash Player does not offer complete support for servers that require authentication. Only SWF files that are running

in a browser using the browser plug-in or Microsoft ActiveX® control can provide a dialog box to prompt the user to

enter a user name and password for authentication, and then only for downloads. For uploads using the plug-in or

ActiveX control or upload/download using either the stand-alone or external player, the file transfer fails.

To create a server script in ColdFusion to accept a file upload from Flash Player, you can use code similar to the

following:

 <cffile action="upload" filefield="Filedata" destination="#ExpandPath('./')#"
nameconflict="OVERWRITE" />

This ColdFusion code uploads the file sent by Flash Player and saves it to the same directory as the ColdFusion

template, overwriting any file with the same name. The previous code shows the bare minimum amount of code

necessary to accept a file upload; this script should not be used in a production environment. Ideally, add data

validation to ensure that users upload only accepted file types, such as an image instead of a potentially dangerous

server-side script.

The following code demonstrates file uploads using PHP, and it includes data validation. The script limits the number

of uploaded files in the upload directory to 10, ensures that the file is less than 200 KB, and permits only JPEG, GIF, or

PNG files to be uploaded and saved to the file system.

 <?php
 $MAXIMUM_FILESIZE = 1024 * 200; // 200KB
 $MAXIMUM_FILE_COUNT = 10; // keep maximum 10 files on server
 echo exif_imagetype($_FILES['Filedata']);
 if ($_FILES['Filedata']['size'] <= $MAXIMUM_FILESIZE)
 {
 move_uploaded_file($_FILES['Filedata']['tmp_name'],
"./temporary/".$_FILES['Filedata']['name']);
 $type = exif_imagetype("./temporary/".$_FILES['Filedata']['name']);
 if ($type == 1 || $type == 2 || $type == 3)
 {
 rename("./temporary/".$_FILES['Filedata']['name'],
"./images/".$_FILES['Filedata']['name']);
 }
 else
 {
 unlink("./temporary/".$_FILES['Filedata']['name']);
 }
 }
 $directory = opendir('./images/');
 $files = array();
 while ($file = readdir($directory))
 {
 array_push($files, array('./images/'.$file, filectime('./images/'.$file)));
 }
 usort($files, sorter);
 if (count($files) > $MAXIMUM_FILE_COUNT)
 {
 $files_to_delete = array_splice($files, 0, count($files) - $MAXIMUM_FILE_COUNT);

662ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

 for ($i = 0; $i < count($files_to_delete); $i++)
 {
 unlink($files_to_delete[$i][0]);
 }
 }
 print_r($files);
 closedir($directory);

 function sorter($a, $b)
 {
 if ($a[1] == $b[1])
 {
 return 0;
 }
 else
 {
 return ($a[1] < $b[1]) ? -1 : 1;
 }
 }
 ?>

You can pass additional variables to the upload script using either the POST or GET request method. To send additional

POST variables to your upload script, you can use the following code:

 var fileRef:FileReference = new FileReference();
 fileRef.addEventListener(Event.SELECT, selectHandler);
 fileRef.addEventListener(Event.COMPLETE, completeHandler);
 fileRef.browse();
 function selectHandler(event:Event):void
 {
 var params:URLVariables = new URLVariables();
 params.date = new Date();
 params.ssid = "94103-1394-2345";
 var request:URLRequest = new
URLRequest("http://www.yourdomain.com/FileReferenceUpload/fileupload.cfm");
 request.method = URLRequestMethod.POST;
 request.data = params;
 fileRef.upload(request, "Custom1");
 }
 function completeHandler(event:Event):void
 {
 trace("uploaded");
 }

The previous example creates a URLVariables object that you pass to the remote server- side script. In previous

versions of ActionScript, you could pass variables to the server upload script by passing values in the query string.

ActionScript 3.0 allows you to pass variables to the remote script using a URLRequest object, which allows you to pass

data using either the POST or GET method; this, in turn, makes passing larger sets of data easier and cleaner. In order

to specify whether the variables are passed using the GET or POST request method, you can set the URLRequest.method

property to either URLRequestMethod.GET or URLRequestMethod.POST, respectively.

ActionScript 3.0 also lets you override the default Filedata upload file field name by providing a second parameter

to the upload() method, as demonstrated in the previous example (which replaced the default value Filedata with

Custom1).

663ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

By default, Flash Player does not attempt to send a test upload, although you can override this default by passing a value

of true as the third parameter to the upload() method. The purpose of the test upload is to check whether the actual

file upload will be successful and that server authentication, if required, will succeed.

Note: A test upload occurs only on Windows-based Flash Players at this time.

The server script that handles the file upload should expect an HTTP POST request with the following elements:

• Content-Type with a value of multipart/form-data.

• Content-Disposition with a name attribute set to “Filedata” and a filename attribute set to the name of the

original file. You can specify a custom name attribute by passing a value for the uploadDataFieldName parameter

in the FileReference.upload() method.

• The binary contents of the file.

Here is a sample HTTP POST request:

 POST /handler.asp HTTP/1.1
 Accept: text/*
 Content-Type: multipart/form-data;
 boundary=----------Ij5ae0ae0KM7GI3KM7ei4cH2ei4gL6
 User-Agent: Shockwave Flash
 Host: www.mydomain.com
 Content-Length: 421
 Connection: Keep-Alive
 Cache-Control: no-cache

 ------------Ij5ae0ae0KM7GI3KM7ei4cH2ei4gL6
 Content-Disposition: form-data; name="Filename"

 sushi.jpg
 ------------Ij5ae0ae0KM7GI3KM7ei4cH2ei4gL6
 Content-Disposition: form-data; name="Filedata"; filename="sushi.jpg"
 Content-Type: application/octet-stream

 Test File
 ------------Ij5ae0ae0KM7GI3KM7ei4cH2ei4gL6
 Content-Disposition: form-data; name="Upload"

 Submit Query
 ------------Ij5ae0ae0KM7GI3KM7ei4cH2ei4gL6
 (actual file data,,,)

The following sample HTTP POST request sends three POST variables: api_sig, api_key, and auth_token, and uses

a custom upload data field name value of "photo":

664ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

 POST /handler.asp HTTP/1.1
 Accept: text/*
 Content-Type: multipart/form-data;
 boundary=----------Ij5ae0ae0KM7GI3KM7ei4cH2ei4gL6
 User-Agent: Shockwave Flash
 Host: www.mydomain.com
 Content-Length: 421
 Connection: Keep-Alive
 Cache-Control: no-cache

 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7
 Content-Disposition: form-data; name="Filename"

 sushi.jpg
 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7
 Content-Disposition: form-data; name="api_sig"

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7
 Content-Disposition: form-data; name="api_key"

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7
 Content-Disposition: form-data; name="auth_token"

 XXXXXXXXXXXXXXXXXXXXXXX
 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7
 Content-Disposition: form-data; name="photo"; filename="sushi.jpg"
 Content-Type: application/octet-stream

 (actual file data,,,)
 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7
 Content-Disposition: form-data; name="Upload"

 Submit Query
 ------------Ij5GI3GI3ei4GI3ei4KM7GI3KM7KM7--

Downloading files from a server

Flash Player 9 and later, Adobe AIR 1.0 and later

You can let users download files from a server using the FileReference.download() method, which takes two

parameters: request and defaultFileName. The first parameter is the URLRequest object that contains the URL of

the file to download. The second parameter is optional—it lets you specify a default filename that appears in the

download file dialog box. If you omit the second parameter, defaultFileName, the filename from the specified URL

is used.

The following code downloads a file named index.xml from the same directory as the SWF file:

 var request:URLRequest = new URLRequest("index.xml");
 var fileRef:FileReference = new FileReference();
 fileRef.download(request);

To set the default name to currentnews.xml instead of index.xml, specify the defaultFileName parameter, as the

following snippet shows:

665ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

 var request:URLRequest = new URLRequest("index.xml");
 var fileToDownload:FileReference = new FileReference();
 fileToDownload.download(request, "currentnews.xml");

Renaming a file can be useful if the server filename was not intuitive or was server-generated. It’s also good to explicitly

specify the defaultFileName parameter when you download a file using a server-side script, instead of downloading

the file directly. For example, you need to specify the defaultFileName parameter if you have a server-side script that

downloads specific files based on URL variables passed to it. Otherwise, the default name of the downloaded file is the

name of your server-side script.

Data can be sent to the server using the download() method by appending parameters to the URL for the server script

to parse. The following ActionScript 3.0 snippet downloads a document based on which parameters are passed to a

ColdFusion script:

 package
 {
 import flash.display.Sprite;
 import flash.net.FileReference;
 import flash.net.URLRequest;
 import flash.net.URLRequestMethod;
 import flash.net.URLVariables;

 public class DownloadFileExample extends Sprite
 {
 private var fileToDownload:FileReference;
 public function DownloadFileExample()
 {
 var request:URLRequest = new URLRequest();
 request.url = "http://www.[yourdomain].com/downloadfile.cfm";
 request.method = URLRequestMethod.GET;
 request.data = new URLVariables("id=2");
 fileToDownload = new FileReference();
 try
 {
 fileToDownload.download(request, "file2.txt");
 }
 catch (error:Error)
 {
 trace("Unable to download file.");
 }
 }
 }
 }

The following code demonstrates the ColdFusion script, download.cfm, that downloads one of two files from the

server, depending on the value of a URL variable:

 <cfparam name="URL.id" default="1" />
 <cfswitch expression="#URL.id#">
 <cfcase value="2">
 <cfcontent type="text/plain" file="#ExpandPath('two.txt')#" deletefile="No" />
 </cfcase>
 <cfdefaultcase>
 <cfcontent type="text/plain" file="#ExpandPath('one.txt')#" deletefile="No" />
 </cfdefaultcase>
 </cfswitch>

666ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

FileReferenceList class

Flash Player 9 and later, Adobe AIR 1.0 and later

The FileReferenceList class lets the user select one or more files to upload to a server-side script. The file upload is

handled by the FileReference.upload() method, which must be called on each file that the user selects.

The following code creates two FileFilter objects (imageFilter and textFilter) and passes them in an array to the

FileReferenceList.browse() method. This causes the operating system file dialog box to display two possible

filters for file types.

 var imageFilter:FileFilter = new FileFilter("Image Files (*.jpg, *.jpeg, *.gif, *.png)",
"*.jpg; *.jpeg; *.gif; *.png");
 var textFilter:FileFilter = new FileFilter("Text Files (*.txt, *.rtf)", "*.txt; *.rtf");
 var fileRefList:FileReferenceList = new FileReferenceList();
 try
 {
 var success:Boolean = fileRefList.browse(new Array(imageFilter, textFilter));
 }
 catch (error:Error)
 {
 trace("Unable to browse for files.");
 }

Allowing the user to select and upload one or more files by using the FileReferenceList class is the same as using

FileReference.browse() to select files, although the FileReferenceList allows you to select more than one file.

Uploading multiple files requires you to upload each of the selected files by using FileReference.upload(), as the

following code shows:

 var fileRefList:FileReferenceList = new FileReferenceList();
 fileRefList.addEventListener(Event.SELECT, selectHandler);
 fileRefList.browse();

 function selectHandler(event:Event):void
 {
 var request:URLRequest = new URLRequest("http://www.[yourdomain].com/fileUploadScript.cfm");
 var file:FileReference;
 var files:FileReferenceList = FileReferenceList(event.target);
 var selectedFileArray:Array = files.fileList;
 for (var i:uint = 0; i < selectedFileArray.length; i++)
 {
 file = FileReference(selectedFileArray[i]);
 file.addEventListener(Event.COMPLETE, completeHandler);
 try
 {
 file.upload(request);
 }
 catch (error:Error)
 {
 trace("Unable to upload files.");
 }
 }
 }
 function completeHandler(event:Event):void
 {
 trace("uploaded");
 }

667ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Because the Event.COMPLETE event is added to each individual FileReference object in the array, Flash Player calls the

completeHandler() method when each individual file finishes uploading.

Using the AIR file system API

Adobe AIR 1.0 and later

The Adobe AIR file system API includes the following classes:

• File

• FileMode

• FileStream

The file system API lets you do the following (and more):

• Copy, create, delete, and move files and directories

• Get information about files and directories

• Read and write files

AIR file basics

Adobe AIR 1.0 and later

For a quick explanation and code examples of working with the file system in AIR, see the following quick start articles

on the Adobe Developer Connection:

• Building a text-file editor (Flash)

• Building a text-file editor (Flex)

• Building a directory search application (Flex)

• Reading and writing from an XML preferences file (Flex)

• Compressing files and data (Flex)

Adobe AIR provides classes that you can use to access, create, and manage both files and folders. These classes,

contained in the flash.filesystem package, are used as follows:

Some methods in the File class have both synchronous and asynchronous versions:

• File.copyTo() and File.copyToAsync()

File classes Description

File File object represents a path to a file or directory. You use a file object to create a pointer to a file or

folder, initiating interaction with the file or folder.

FileMode The FileMode class defines string constants used in the fileMode parameter of the open() and

openAsync() methods of the FileStream class. The fileMode parameter of these methods determines

the capabilities available to the FileStream object once the file is opened, which include writing, reading,

appending, and updating.

FileStream FileStream object is used to open files for reading and writing. Once you’ve created a File object that

points to a new or existing file, you pass that pointer to the FileStream object so that you can open it and

read or write data.

http://www.adobe.com/go/learn_air_qs_textedit_flash_en
http://www.adobe.com/go/learn_air_qs_textedit_flex_en
http://www.adobe.com/go/learn_air_qs_search_flex_en
http://www.adobe.com/go/learn_air_qs_xmlpref_flex_en
http://www.adobe.com/go/learn_air_qs_compress_en
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filesystem/File.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filesystem/FileMode.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filesystem/FileStream.html

668ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

• File.deleteDirectory() and File.deleteDirectoryAsync()

• File.deleteFile() and File.deleteFileAsync()

• File.getDirectoryListing() and File.getDirectoryListingAsync()

• File.moveTo() and File.moveToAsync()

• File.moveToTrash() and File.moveToTrashAsync()

Also, FileStream operations work synchronously or asynchronously depending on how the FileStream object opens

the file: by calling the open() method or by calling the openAsync() method.

The asynchronous versions let you initiate processes that run in the background and dispatch events when complete

(or when error events occur). Other code can execute while these asynchronous background processes are taking place.

With asynchronous versions of the operations, you must set up event listener functions, using the

addEventListener() method of the File or FileStream object that calls the function.

The synchronous versions let you write simpler code that does not rely on setting up event listeners. However, since

other code cannot execute while a synchronous method is executing, important processes such as display object

rendering and animation can be delayed.

Working with File objects in AIR

Adobe AIR 1.0 and later

A File object is a pointer to a file or directory in the file system.

The File class extends the FileReference class. The FileReference class, which is available in Adobe® Flash® Player as well

as AIR, represents a pointer to a file. The File class adds properties and methods that are not exposed in Flash Player

(in a SWF file running in a browser), due to security considerations.

About the File class

Adobe AIR 1.0 and later

You can use the File class for the following:

• Getting the path to special directories, including the user directory, the user's documents directory, the directory

from which the application was launched, and the application directory

• Coping files and directories

• Moving files and directories

• Deleting files and directories (or moving them to the trash)

• Listing files and directories contained in a directory

• Creating temporary files and folders

Once a File object points to a file path, you can use it to read and write file data, using the FileStream class.

A File object can point to the path of a file or directory that does not yet exist. You can use such a File object in creating

a file or directory.

Paths of File objects

Adobe AIR 1.0 and later

Each File object has two properties that each define its path:

669ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

The File class includes static properties for pointing to standard directories on Mac OS, Windows, and Linux. These

properties include:

• File.applicationStorageDirectory—a storage directory unique to each installed AIR application. This

directory is an appropriate place to store dynamic application assets and user preferences. Consider storing large

amounts of data elsewhere.

On Android and iOS, the application storage directory is removed when the application is uninstalled or the user

chooses to clear application data, but this is not the case on other platforms.

• File.applicationDirectory—the directory where the application is installed (along with any installed assets).

On some operating systems, the application is stored in a single package file rather than a physical directory. In this

case, the contents may not be accessible using the native path. The application directory is read-only.

• File.desktopDirectory—the user’s desktop directory. If a platform does not define a desktop directory, another

location on the file system is used.

• File.documentsDirectory—the user’s documents directory. If a platform does not define a documents

directory, another location on the file system is used.

• File.userDirectory—the user directory. If a platform does not define a user directory, another location on the

file system is used.

Note: When a platform does not define standard locations for desktop, documents, or user directories,

File.documentsDirectory, File.desktopDirectory, and File.userDirectory can reference the same directory.

These properties have different values on different operating systems. For example, Mac and Windows each have a

different native path to the user’s desktop directory. However, the File.desktopDirectory property points to an

appropriate directory path on every platform. To write applications that work well across platforms, use these

properties as the basis for referencing other directories and files used by the application. Then use the resolvePath()

method to refine the path. For example, this code points to the preferences.xml file in the application storage directory:

var prefsFile:File = File.applicationStorageDirectory;
prefsFile = prefsFile.resolvePath("preferences.xml");

Although the File class lets you point to a specific file path, doing so can lead to applications that do not work across

platforms. For example, the path C:\Documents and Settings\joe\ only works on Windows. For these reasons, it is best

to use the static properties of the File class, such as File.documentsDirectory.

Property Description

nativePath Specifies the platform-specific path to a file. For example, on Windows a path might be "c:\Sample

directory\test.txt" whereas on Mac OS it could be "/Sample directory/test.txt". A nativePath

property uses the backslash (\) character as the directory separator character on Windows, and it uses

the forward slash (/) character on Mac OS and Linux.

url This may use the file URL scheme to point to a file. For example, on Windows a path might be

"file:///c:/Sample%20directory/test.txt" whereas on Mac OS it could be

"file:///Sample%20directory/test.txt". The runtime includes other special URL schemes besides file

and are described in “Supported AIR URL schemes” on page 677

670ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Common directory locations

Platform Directory type Typical file system location

Android Application /data/data/

Application-storage /data/data/air.applicationID/filename/Local Store

Cache /data/data/applicationID/cache

Desktop /mnt/sdcard

Documents /mnt/sdcard

Temporary /data/data/applicationID/cache/FlashTmp.randomString

User /mnt/sdcard

iOS Application /var/mobile/Applications/uid/filename.app

Application-storage /var/mobile/Applications/uid/Library/Application
Support/applicationID/Local Store

Cache /var/mobile/Applications/uid/Library/Caches

Desktop not accessible

Documents /var/mobile/Applications/uid/Documents

Temporary /private/var/mobile/Applications/uid/tmp/FlashTmpNNN

User not accessible

Linux Application /opt/filename/share

Application-storage /home/userName/.appdata/applicationID/Local Store

Desktop /home/userName/Desktop

Documents /home/userName/Documents

Temporary /tmp/FlashTmp.randomString

User /home/userName

Mac Application /Applications/filename.app/Contents/Resources

Application-storage /Users/userName/Library/Preferences/applicationid/Local Store (AIR

3.2 and earlier)

path/Library/Application Support/applicationid/Local Store (AIR 3.3

and later), where path is is either

/Users/userName/Library/Containers/bundle-id/Data (sandboxed

environment) or /Users/userName (when running outside a sandboxed environment)

Cache /Users/userName/Library/Caches

Desktop /Users/userName/Desktop

Documents /Users/userName/Documents

Temporary /private/var/folders/JY/randomString/TemporaryItems/FlashTmp

User /Users/userName

671ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

The actual native paths for these directories vary based on the operating system and computer configuration. The

paths shown in this table are typical examples. You should always use the appropriate static File class properties to refer

to these directories so that your application works correctly on any platform. In an actual AIR application, the values

for applicationID and filename shown in the table are taken from the application descriptor. If you specify a

publisher ID in the application descriptor, then the publisher ID is appended to the application ID in these paths. The

value for userName is the account name of the installing user.

Pointing a File object to a directory

Adobe AIR 1.0 and later

There are different ways to set a File object to point to a directory.

Pointing to the user’s home directory

Adobe AIR 1.0 and later

You can point a File object to the user’s home directory. The following code sets a File object to point to an AIR Test

subdirectory of the home directory:

var file:File = File.userDirectory.resolvePath("AIR Test");

Pointing to the user’s documents directory

Adobe AIR 1.0 and later

You can point a File object to the user's documents directory. The following code sets a File object to point to an AIR

Test subdirectory of the documents directory:

var file:File = File.documentsDirectory.resolvePath("AIR Test");

Pointing to the desktop directory

Adobe AIR 1.0 and later

You can point a File object to the desktop. The following code sets a File object to point to an AIR Test subdirectory

of the desktop:

 var file:File = File.desktopDirectory.resolvePath("AIR Test");

Windows Application C:\Program Files\filename

Application-storage C:\Documents and
settings\userName\ApplicationData\applicationID\Local Store

Cache C:\Documents and settings\userName\Local Settings\Temp

Desktop C:\Documents and settings\userName\Desktop

Documents C:\Documents and settings\userName\My Documents

Temporary C:\Documents and settings\userName\Local
Settings\Temp\randomString.tmp

User C:\Documents and settings\userName

Platform Directory type Typical file system location

672ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Pointing to the application storage directory

Adobe AIR 1.0 and later

You can point a File object to the application storage directory. For every AIR application, there is a unique associated

path that defines the application storage directory. This directory is unique to each application and user. You can use

this directory to store user-specific, application-specific data (such as user data or preferences files). For example, the

following code points a File object to a preferences file, prefs.xml, contained in the application storage directory:

 var file:File = File.applicationStorageDirectory;
 file = file.resolvePath("prefs.xml");

The application storage directory location is typically based on the user name and the application ID. The following

file system locations are given here to help you debug your application. You should always use the

File.applicationStorage property or app-storage: URI scheme to resolve files in this directory:

• On Mac OS — varies by AIR version:

AIR 3.2 and earlier: /Users/user name/Library/Preferences/applicationID/Local Store/

AIR 3.3 and later: path/Library/Application Support/applicationID/Local Store, where path is either

/Users/username/Library/Containers/bundle-id/Data (sandboxed environment) or /Users/username (

when running outside a sandboxed environment)

For example (AIR 3.2):

 /Users/babbage/Library/Preferences/com.example.TestApp/Local Store

• On Windows—In the documents and Settings directory, in:

 C:\Documents and Settings\user name\Application Data\applicationID\Local Store\

For example:

 C:\Documents and Settings\babbage\Application Data\com.example.TestApp\Local Store

• On Linux—In:

/home/user name/.appdata/applicationID/Local Store/

For example:

 /home/babbage/.appdata/com.example.TestApp/Local Store

• On Android—In:

/data/data/androidPackageID/applicationID/Local Store

For example:

 /data/data/air.com.example.TestApp/com.example.TestApp/Local Store

Note: If an application has a publisher ID, then the publisher ID is also used as part of the path to the application storage

directory.

The URL (and url property) for a File object created with File.applicationStorageDirectory uses the app-

storage URL scheme (see “Supported AIR URL schemes” on page 677), as in the following:

 var dir:File = File.applicationStorageDirectory;
 dir = dir.resolvePath("preferences");
 trace(dir.url); // app-storage:/preferences

673ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Pointing to the application directory

Adobe AIR 1.0 and later

You can point a File object to the directory in which the application was installed, known as the application directory.

You can reference this directory using the File.applicationDirectory property. You can use this directory to

examine the application descriptor file or other resources installed with the application. For example, the following

code points a File object to a directory named images in the application directory:

 var dir:File = File.applicationDirectory;
 dir = dir.resolvePath("images");

The URL (and url property) for a File object created with File.applicationDirectory uses the app URL scheme

(see “Supported AIR URL schemes” on page 677), as in the following:

 var dir:File = File.applicationDirectory;
 dir = dir.resolvePath("images");
 trace(dir.url); // app:/images

Note: On Android, the files in the application package are not accessible via the nativePath. The nativePath property

is an empty string. Always use the URL to access files in the application directory rather than a native path.

Pointing to the cache directory

Adobe AIR 3.6 and later

You can point a File object to the operating system’s temporary or cache directory using the File.cacheDirectory

property. This directory contains temporary files that are not required for the application to run and will not cause

problems or data loss for the user if they are deleted.

In most operating systems the cache directory is a temporary directory. On iOS, the cache directory corresponds to

the application library’s Caches directory. Files in this directory are not backed up to online storage, and can

potentially be deleted by the operating system if the device’s available storage space is too low. For more information,

see “Controlling file backup and caching” on page 677.

Pointing to the file system root

Adobe AIR 1.0 and later

The File.getRootDirectories() method lists all root volumes, such as C: and mounted volumes, on a Windows

computer. On Mac OS and Linux, this method always returns the unique root directory for the machine (the "/"

directory). The StorageVolumeInfo.getStorageVolumes() method provides more detailed information on

mounted storage volumes (see “Working with storage volumes” on page 687).

Note: The root of the file system is not readable on Android. A File object referencing the directory with the native path,

“/”, is returned, but the properties of that object do not have accurate values. For example, spaceAvailable is always 0.

Pointing to an explicit directory

Adobe AIR 1.0 and later

You can point the File object to an explicit directory by setting the nativePath property of the File object, as in the

following example (on Windows):

 var file:File = new File();
 file.nativePath = "C:\\AIR Test";

674ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Important: Pointing to an explicit path this way can lead to code that does not work across platforms. For example,

the previous example only works on Windows. You can use the static properties of the File object, such as

File.applicationStorageDirectory, to locate a directory that works cross-platform. Then use the

resolvePath() method (see the next section) to navigate to a relative path.

Navigating to relative paths

Adobe AIR 1.0 and later

You can use the resolvePath() method to obtain a path relative to another given path. For example, the following

code sets a File object to point to an "AIR Test" subdirectory of the user's home directory:

 var file:File = File.userDirectory;
 file = file.resolvePath("AIR Test");

You can also use the url property of a File object to point it to a directory based on a URL string, as in the following:

 var urlStr:String = "file:///C:/AIR Test/";
 var file:File = new File()
 file.url = urlStr;

For more information, see “Modifying File paths” on page 676.

Letting the user browse to select a directory

Adobe AIR 1.0 and later

The File class includes the browseForDirectory() method, which presents a system dialog box in which the user can

select a directory to assign to the object. The browseForDirectory() method is asynchronous. The File object

dispatches a select event if the user selects a directory and clicks the Open button, or it dispatches a cancel event if

the user clicks the Cancel button.

For example, the following code lets the user select a directory and outputs the directory path upon selection:

 var file:File = new File();
 file.addEventListener(Event.SELECT, dirSelected);
 file.browseForDirectory("Select a directory");
 function dirSelected(e:Event):void {
 trace(file.nativePath);
 }

Note: On Android, the browseForDirectory() method is not supported. Calling this method has no effect; a cancel

event is dispatched immediately. To allow users to select a directory, use a custom, application-defined dialog, instead.

Pointing to the directory from which the application was invoked

Adobe AIR 1.0 and later

You can get the directory location from which an application is invoked, by checking the currentDirectory property

of the InvokeEvent object dispatched when the application is invoked. For details, see “Capturing command line

arguments” on page 879.

Pointing a File object to a file

Adobe AIR 1.0 and later

There are different ways to set the file to which a File object points.

675ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Pointing to an explicit file path

Adobe AIR 1.0 and later

Important: Pointing to an explicit path can lead to code that does not work across platforms. For example, the path

C:/foo.txt only works on Windows. You can use the static properties of the File object, such as

File.applicationStorageDirectory, to locate a directory that works cross-platform. Then use the

resolvePath() method (see “Modifying File paths” on page 676) to navigate to a relative path.

You can use the url property of a File object to point it to a file or directory based on a URL string, as in the following:

 var urlStr:String = "file:///C:/AIR Test/test.txt";
 var file:File = new File()
 file.url = urlStr;

You can also pass the URL to the File() constructor function, as in the following:

 var urlStr:String = "file:///C:/AIR Test/test.txt";
 var file:File = new File(urlStr);

The url property always returns the URI-encoded version of the URL (for example, blank spaces are replaced with

"%20):

 file.url = "file:///c:/AIR Test";
 trace(file.url); // file:///c:/AIR%20Test

You can also use the nativePath property of a File object to set an explicit path. For example, the following code, when

run on a Windows computer, sets a File object to the test.txt file in the AIR Test subdirectory of the C: drive:

 var file:File = new File();
 file.nativePath = "C:/AIR Test/test.txt";

You can also pass this path to the File() constructor function, as in the following:

 var file:File = new File("C:/AIR Test/test.txt");

Use the forward slash (/) character as the path delimiter for the nativePath property. On Windows, you can also use

the backslash (\) character, but doing so leads to applications that do not work across platforms.

For more information, see “Modifying File paths” on page 676.

Enumerating files in a directory

Adobe AIR 1.0 and later

You can use the getDirectoryListing() method of a File object to get an array of File objects pointing to files and

subdirectories at the root level of a directory. For more information, see “Enumerating directories” on page 683.

Letting the user browse to select a file

Adobe AIR 1.0 and later

The File class includes the following methods that present a system dialog box in which the user can select a file to

assign to the object:

• browseForOpen()

• browseForSave()

676ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

• browseForOpenMultiple()

These methods are each asynchronous. The browseForOpen() and browseForSave() methods dispatch the select

event when the user selects a file (or a target path, in the case of browseForSave()). With the browseForOpen() and

browseForSave() methods, upon selection the target File object points to the selected files. The

browseForOpenMultiple() method dispatches a selectMultiple event when the user selects files. The

selectMultiple event is of type FileListEvent, which has a files property that is an array of File objects (pointing

to the selected files).

For example, the following code presents the user with an “Open” dialog box in which the user can select a file:

 var fileToOpen:File = File.documentsDirectory;
 selectTextFile(fileToOpen);

 function selectTextFile(root:File):void
 {
 var txtFilter:FileFilter = new FileFilter("Text", "*.as;*.css;*.html;*.txt;*.xml");
 root.browseForOpen("Open", [txtFilter]);
 root.addEventListener(Event.SELECT, fileSelected);
 }

 function fileSelected(event:Event):void
 {
 trace(fileToOpen.nativePath);
 }

If the application has another browser dialog box open when you call a browse method, the runtime throws an Error

exception.

Note: On Android, only image, video, and audio files can be selected with the browseForOpen() and

browseForOpenMultiple() methods. The browseForSave() dialog also displays only media files even though the user

can enter an arbitrary filename. For opening and saving non-media files, you should consider using custom dialogs

instead of these methods.

Modifying File paths

Adobe AIR 1.0 and later

You can also modify the path of an existing File object by calling the resolvePath() method or by modifying the

nativePath or url property of the object, as in the following examples (on Windows):

 var file1:File = File.documentsDirectory;
 file1 = file1.resolvePath("AIR Test");
 trace(file1.nativePath); // C:\Documents and Settings\userName\My Documents\AIR Test
 var file2:File = File.documentsDirectory;
 file2 = file2.resolvePath("..");
 trace(file2.nativePath); // C:\Documents and Settings\userName
 var file3:File = File.documentsDirectory;
 file3.nativePath += "/subdirectory";
 trace(file3.nativePath); // C:\Documents and Settings\userName\My Documents\subdirectory
 var file4:File = new File();
 file4.url = "file:///c:/AIR Test/test.txt";
 trace(file4.nativePath); // C:\AIR Test\test.txt

When using the nativePath property, use the forward slash (/) character as the directory separator character. On

Windows, you can use the backslash (\) character as well, but you should not do so, as it leads to code that does not

work cross-platform.

677ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Supported AIR URL schemes

Adobe AIR 1.0 and later

In AIR, you can use any of the following URL schemes in defining the url property of a File object:

Controlling file backup and caching

Adobe AIR 3.6 and later, iOS and OS X only

Certain operating systems, most notably iOS and Mac OS X, provide users the ability to automatically back up

application files to a remote storage. In addition, on iOS there are restrictions on whether files can be backed up and

also where files of different purposes can be stored.

The following summarize how to comply with Apple’s guidelines for file backup and storage. For further information

see the next sections.

• To specify that a file does not need to be backed up and (iOS only) can be deleted by the operating system if device

storage space runs low, save the file in the cache directory (File.cacheDirectory). This is the preferred storage

location on iOS and should be used for most files that can be regenerated or re-downloaded.

• To specify that a file does not need to be backed up, but should not be deleted by the operating system, save the file

in one of the application library directories such as the application storage directory

(File.applicationStorageDirectory) or the documents directory (File.documentsDirectory). Set the File

object’s preventBackup property to true. This is required by Apple for content that can be regenerated or

downloaded again, but which is required for proper functioning of your application during offline use.

Specifying files for backup

In order to save backup space and reduce network bandwidth use, Apple’s guidelines for iOS and Mac applications

specify that only files that contain user-entered data or data that otherwise can’t be regenerated or re-downloaded

should be designated for backup.

By default all files in the application library folders are backed up. On Mac OS X this is the application storage

directory. On iOS, this includes the application storage directory, the application directory, the desktop directory,

documents directory, and user directory (because those directories are mapped to application library folders on iOS).

Consequently, any files in those directories are backed up to server storage by default.

URL scheme Description

file Use to specify a path relative to the root of the file system. For example:

file:///c:/AIR Test/test.txt

The URL standard specifies that a file URL takes the form file://<host>/<path>. As a special

case,<host> can be the empty string, which is interpreted as "the machine from which the URL is being

interpreted." For this reason, file URLs often have three slashes (///).

app Use to specify a path relative to the root directory of the installed application (the directory that contains

the application.xml file for the installed application). For example, the following path points to an images

subdirectory of the directory of the installed application:

app:/images

app-storage Use to specify a path relative to the application store directory. For each installed application, AIR defines

a unique application store directory, which is a useful place to store data specific to that application. For

example, the following path points to a prefs.xml file in a settings subdirectory of the application store

directory:

app-storage:/settings/prefs.xml

678ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

If you are saving a file in one of those locations that can be re-created by your application, you should flag the file so

the operating system knows not to back it up. To indicate that a file should not be backed up, set the File object’s

preventBackup property to true.

Note that on iOS, for a file in any of the application library folders, even if the file’s preventBackup property is set to

true the file is flagged as a persistent file that the operating system shouldn’t delete.

Controlling file caching and deletion

Apple’s guidelines for iOS applications specify that as much as possible, content that can be regenerated should be

made available to the operating system to delete in case the device runs low on storage space.

On iOS, files in the application library folders (such as the application storage directory or the documents directory)

are flagged as permanent and are not deleted by the operating system.

Save files that can be regenerated by the application and are safe to delete in case of low storage space in the application

cache directory. You access the cache directory using the File.cacheDirectory static property.

On iOS the cache directory corresponds to the application’s cache directory (<Application Home>/Library/Caches).

On other operating systems, this directory is mapped to a comparable directory. For example, on Mac OS X it also

maps to the Caches directory in the application library. On Android the cache directory maps to the application’s

cache directory. On Windows, the cache directory maps to the operating system temp directory. On both Android and

Windows, this is the same directory that is accessed by a call to the File class’s createTempDirectory() and

createTempFile() methods.

Finding the relative path between two files

Adobe AIR 1.0 and later

You can use the getRelativePath() method to find the relative path between two files:

 var file1:File = File.documentsDirectory.resolvePath("AIR Test");
 var file2:File = File.documentsDirectory
 file2 = file2.resolvePath("AIR Test/bob/test.txt");

 trace(file1.getRelativePath(file2)); // bob/test.txt

The second parameter of the getRelativePath() method, the useDotDot parameter, allows for .. syntax to be

returned in results, to indicate parent directories:

 var file1:File = File.documentsDirectory;
 file1 = file1.resolvePath("AIR Test");
 var file2:File = File.documentsDirectory;
 file2 = file2.resolvePath("AIR Test/bob/test.txt");
 var file3:File = File.documentsDirectory;
 file3 = file3.resolvePath("AIR Test/susan/test.txt");

 trace(file2.getRelativePath(file1, true)); // ../..
 trace(file3.getRelativePath(file2, true)); // ../../bob/test.txt

679ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Obtaining canonical versions of file names

Adobe AIR 1.0 and later

File and path names are not case sensitive on Windows and Mac OS. In the following, two File objects point to the

same file:

 File.documentsDirectory.resolvePath("test.txt");
 File.documentsDirectory.resolvePath("TeSt.TxT");

However, documents and directory names do include capitalization. For example, the following assumes that there is

a folder named AIR Test in the documents directory, as in the following examples:

 var file:File = File.documentsDirectory.resolvePath("AIR test");
 trace(file.nativePath); // ... AIR test
 file.canonicalize();
 trace(file.nativePath); // ... AIR Test

The canonicalize() method converts the nativePath object to use the correct capitalization for the file or directory

name. On case sensitive file systems (such as Linux), when multiple files exists with names differing only in case, the

canonicalize() method adjusts the path to match the first file found (in an order determined by the file system).

You can also use the canonicalize() method to convert short file names ("8.3" names) to long file names on

Windows, as in the following examples:

 var path:File = new File();
 path.nativePath = "C:\\AIR~1";
 path.canonicalize();
 trace(path.nativePath); // C:\AIR Test

Working with packages and symbolic links

Adobe AIR 1.0 and later

Various operating systems support package files and symbolic link files:

Packages—On Mac OS, directories can be designated as packages and show up in the Mac OS Finder as a single file

rather than as a directory.

Symbolic links—Mac OS, Linux, and Windows Vista support symbolic links. Symbolic links allow a file to point to

another file or directory on disk. Although similar, symbolic links are not the same as aliases. An alias is always

reported as a file (rather than a directory), and reading or writing to an alias or shortcut never affects the original file

or directory that it points to. On the other hand, a symbolic link behaves exactly like the file or directory it points to.

It can be reported as a file or a directory, and reading or writing to a symbolic link affects the file or directory that it

points to, not the symbolic link itself. Additionally, on Windows the isSymbolicLink property for a File object

referencing a junction point (used in the NTFS file system) is set to true.

The File class includes the isPackage and isSymbolicLink properties for checking if a File object references a

package or symbolic link.

The following code iterates through the user’s desktop directory, listing subdirectories that are not packages:

680ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

 var desktopNodes:Array = File.desktopDirectory.getDirectoryListing();
 for (var i:uint = 0; i < desktopNodes.length; i++)
 {
 if (desktopNodes[i].isDirectory && !desktopNodes[i].isPackage)
 {
 trace(desktopNodes[i].name);
 }
 }

The following code iterates through the user’s desktop directory, listing files and directories that are not symbolic links:

 var desktopNodes:Array = File.desktopDirectory.getDirectoryListing();
 for (var i:uint = 0; i < desktopNodes.length; i++)
 {
 if (!desktopNodes[i].isSymbolicLink)
 {
 trace(desktopNodes[i].name);
 }
 }

The canonicalize() method changes the path of a symbolic link to point to the file or directory to which the link

refers. The following code iterates through the user’s desktop directory, and reports the paths referenced by files that

are symbolic links:

 var desktopNodes:Array = File.desktopDirectory.getDirectoryListing();
 for (var i:uint = 0; i < desktopNodes.length; i++)
 {
 if (desktopNodes[i].isSymbolicLink)
 {
 var linkNode:File = desktopNodes[i] as File;
 linkNode.canonicalize();
 trace(linkNode.nativePath);
 }
 }

Determining space available on a volume

Adobe AIR 1.0 and later

The spaceAvailable property of a File object is the space available for use at the File location, in bytes. For example,

the following code checks the space available in the application storage directory:

trace(File.applicationStorageDirectory.spaceAvailable);

If the File object references a directory, the spaceAvailable property indicates the space in the directory that files can

use. If the File object references a file, the spaceAvailable property indicates the space into which the file could grow.

If the file location does not exist, the spaceAvailable property is set to 0. If the File object references a symbolic link,

the spaceAvailable property is set to space available at the location the symbolic link points to.

Typically the space available for a directory or file is the same as the space available on the volume containing the

directory or file. However, space available can take into account quotas and per-directory limits.

681ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Adding a file or directory to a volume generally requires more space than the actual size of the file or the size of the

contents of the directory. For example, the operating system may require more space to store index information. Or

the disk sectors required may use additional space. Also, available space changes dynamically. So, you cannot expect

to allocate all of the reported space for file storage. For information on writing to the file system, see “Reading and

writing files” on page 689.

The StorageVolumeInfo.getStorageVolumes() method provides more detailed information on mounted storage

volumes (see “Working with storage volumes” on page 687).

Opening files with the default system application

Adobe AIR 2 and later

In AIR 2, you can open a file using the application registered by the operating system to open it. For example, an AIR

application can open a DOC file with the application registered to open it. Use the openWithDefaultApplication()

method of a File object to open the file. For example, the following code opens a file named test.doc on the user’s

desktop and opens it with the default application for DOC files:

var file:File = File.deskopDirectory;
file = file.resolvePath("test.doc");
file.openWithDefaultApplication();

Note: On Linux, the file’s MIME type, not the filename extension, determines the default application for a file.

The following code lets the user navigate to an mp3 file and open it in the default application for playing mp3 files:

var file:File = File.documentsDirectory;
var mp3Filter:FileFilter = new FileFilter("MP3 Files", "*.mp3");
file.browseForOpen("Open", [mp3Filter]);
file.addEventListener(Event.SELECT, fileSelected);

function fileSelected(e:Event):void
{

file.openWithDefaultApplication();
}

You cannot use the openWithDefaultApplication() method with files located in the application directory.

AIR prevents you from using the openWithDefaultApplication() method to open certain files. On Windows, AIR

prevents you from opening files that have certain filetypes, such as EXE or BAT. On Mac OS and Linux, AIR prevents

you from opening files that will launch in certain application. (These include Terminal and AppletLauncher on Mac

OS; and csh, bash, or ruby on Linux.) Attempting to open one of these files using the

openWithDefaultApplication() method results in an exception. For a complete list of prevented filetypes, see the

language reference entry for the File.openWithDefaultApplication() method.

Note: This limitation does not exist for an AIR application installed using a native installer (an extended desktop

application).

Getting file system information

Adobe AIR 1.0 and later

The File class includes the following static properties that provide some useful information about the file system:

682ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

The Capabilities class also includes useful system information that can be useful when working with files:

Note: Be careful when using Capabilities.os to determine system characteristics. If a more specific property exists to

determine a system characteristic, use it. Otherwise, you run the risk of writing code that does not work correctly on all

platforms. For example, consider the following code:

var separator:String;
if (Capablities.os.indexOf("Mac") > -1)
{

separator = "/";
}
else
{

separator = "\\";
}

This code leads to problems on Linux. It is better to simply use the File.separator property.

Working with directories

Adobe AIR 1.0 and later

The runtime provides you with capabilities to work with directories on the local file system.

For details on creating File objects that point to directories, see “Pointing a File object to a directory” on page 671.

Creating directories

Adobe AIR 1.0 and later

The File.createDirectory() method lets you create a directory. For example, the following code creates a directory

named AIR Test as a subdirectory of the user's home directory:

 var dir:File = File.userDirectory.resolvePath("AIR Test");
 dir.createDirectory();

If the directory exists, the createDirectory() method does nothing.

Property Description

File.lineEnding The line-ending character sequence used by the host operating system. On Mac OS and Linux, this is

the line-feed character. On Windows, this is the carriage return character followed by the line-feed

character.

File.separator The host operating system's path component separator character. On Mac OS and Linux, this is the

forward slash (/) character. On Windows, it is the backslash (\) character.

File.systemCharset The default encoding used for files by the host operating system. This pertains to the character set

used by the operating system, corresponding to its language.

Property Description

Capabilities.hasIME Specifies whether the player is running on a system that does (true) or does not (false) have an

input method editor (IME) installed.

Capabilities.language Specifies the language code of the system on which the player is running.

Capabilities.os Specifies the current operating system.

683ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Also, in some modes, a FileStream object creates directories when opening files. Missing directories are created when

you instantiate a FileStream instance with the fileMode parameter of the FileStream() constructor set to

FileMode.APPEND or FileMode.WRITE. For more information, see “Workflow for reading and writing files” on

page 689.

Creating a temporary directory

Adobe AIR 1.0 and later

The File class includes a createTempDirectory() method, which creates a directory in the temporary directory

folder for the System, as in the following example:

 var temp:File = File.createTempDirectory();

The createTempDirectory() method automatically creates a unique temporary directory (saving you the work of

determining a new unique location).

You can use a temporary directory to temporarily store temporary files used for a session of the application. Note that

there is a createTempFile() method for creating new, unique temporary files in the System temporary directory.

You may want to delete the temporary directory before closing the application, as it is not automatically deleted on all

devices.

Enumerating directories

Adobe AIR 1.0 and later

You can use the getDirectoryListing() method or the getDirectoryListingAsync() method of a File object to

get an array of File objects pointing to files and subfolders in a directory.

For example, the following code lists the contents of the user's documents directory (without examining

subdirectories):

 var directory:File = File.documentsDirectory;
 var contents:Array = directory.getDirectoryListing();
 for (var i:uint = 0; i < contents.length; i++)
 {
 trace(contents[i].name, contents[i].size);
 }

When using the asynchronous version of the method, the directoryListing event object has a files property that

is the array of File objects pertaining to the directories:

 var directory:File = File.documentsDirectory;
 directory.getDirectoryListingAsync();
 directory.addEventListener(FileListEvent.DIRECTORY_LISTING, dirListHandler);

 function dirListHandler(event:FileListEvent):void
 {
 var contents:Array = event.files;
 for (var i:uint = 0; i < contents.length; i++)
 {
 trace(contents[i].name, contents[i].size);
 }
 }

684ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Copying and moving directories

Adobe AIR 1.0 and later

You can copy or move a directory, using the same methods as you would to copy or move a file. For example, the

following code copies a directory synchronously:

 var sourceDir:File = File.documentsDirectory.resolvePath("AIR Test");
 var resultDir:File = File.documentsDirectory.resolvePath("AIR Test Copy");
 sourceDir.copyTo(resultDir);

When you specify true for the overwrite parameter of the copyTo() method, all files and folders in an existing target

directory are deleted and replaced with the files and folders in the source directory (even if the target file does not exist

in the source directory).

The directory that you specify as the newLocation parameter of the copyTo() method specifies the path to the

resulting directory; it does not specify the parent directory that will contain the resulting directory.

For details, see “Copying and moving files” on page 685.

Deleting directory contents

Adobe AIR 1.0 and later

The File class includes a deleteDirectory() method and a deleteDirectoryAsync() method. These methods

delete directories, the first working synchronously, the second working asynchronously (see “AIR file basics” on

page 667). Both methods include a deleteDirectoryContents parameter (which takes a Boolean value); when this

parameter is set to true (the default value is false) the call to the method deletes non-empty directories; otherwise,

only empty directories are deleted.

For example, the following code synchronously deletes the AIR Test subdirectory of the user's documents directory:

 var directory:File = File.documentsDirectory.resolvePath("AIR Test");
 directory.deleteDirectory(true);

The following code asynchronously deletes the AIR Test subdirectory of the user's documents directory:

 var directory:File = File.documentsDirectory.resolvePath("AIR Test");
 directory.addEventListener(Event.COMPLETE, completeHandler)
 directory.deleteDirectoryAsync(true);

 function completeHandler(event:Event):void {
 trace("Deleted.")
 }

Also included are the moveToTrash() and moveToTrashAsync() methods, which you can use to move a directory to

the System trash. For details, see “Moving a file to the trash” on page 687.

Working with files

Adobe AIR 1.0 and later

Using the AIR file API, you can add basic file interaction capabilities to your applications. For example, you can read

and write files, copy and delete files, and so on. Since your applications can access the local file system, refer to “AIR

security” on page 1076, if you haven't already done so.

685ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Note: You can associate a file type with an AIR application (so that double-clicking it opens the application). For details,

see “Managing file associations” on page 888.

Getting file information

Adobe AIR 1.0 and later

The File class includes the following properties that provide information about a file or directory to which a File object

points:

For details on these properties, see the File class entry in the ActionScript 3.0 Reference for the Adobe Flash Platform.

Copying and moving files

Adobe AIR 1.0 and later

The File class includes two methods for copying files or directories: copyTo() and copyToAsync(). The File class

includes two methods for moving files or directories: moveTo() and moveToAsync(). The copyTo() and moveTo()

methods work synchronously, and the copyToAsync() and moveToAsync() methods work asynchronously (see “AIR

file basics” on page 667).

To copy or move a file, you set up two File objects. One points to the file to copy or move, and it is the object that calls

the copy or move method; the other points to the destination (result) path.

File property Description

creationDate The creation date of the file on the local disk.

creator Obsolete—use the extension property. (This property reports the Macintosh creator type of the file,

which is only used in Mac OS versions prior to Mac OS X.)

downloaded (AIR 2 and later) Indicates whether the referenced file or directory was downloaded (from the internet)

or not. property is only meaningful on operating systems in which files can be flagged as downloaded:

• Windows XP service pack 2 and later, and on Windows Vista

• Mac OS 10.5 and later

exists Whether the referenced file or directory exists.

extension The file extension, which is the part of the name following (and not including) the final dot ("."). If there

is no dot in the filename, the extension is null.

icon An Icon object containing the icons defined for the file.

isDirectory Whether the File object reference is to a directory.

modificationDate The date that the file or directory on the local disk was last modified.

name The name of the file or directory (including the file extension, if there is one) on the local disk.

nativePath The full path in the host operating system representation. See “Paths of File objects” on page 668.

parent The folder that contains the folder or file represented by the File object. This property is null if the File

object references a file or directory in the root of the file system.

size The size of the file on the local disk in bytes.

type Obsolete—use the extension property. (On the Macintosh, this property is the four-character file type,

which is only used in Mac OS versions prior to Mac OS X.)

url The URL for the file or directory. See “Paths of File objects” on page 668.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filesystem/File.html

686ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

The following copies a test.txt file from the AIR Test subdirectory of the user's documents directory to a file named

copy.txt in the same directory:

 var original:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var newFile:File = File.resolvePath("AIR Test/copy.txt");
 original.copyTo(newFile, true);

In this example, the value of overwrite parameter of the copyTo() method (the second parameter) is set to true. By

setting overwrite to true, an existing target file is overwritten. This parameter is optional. If you set it to false (the

default value), the operation dispatches an IOErrorEvent event if the target file exists (and the file is not copied).

The “Async” versions of the copy and move methods work asynchronously. Use the addEventListener() method to

monitor completion of the task or error conditions, as in the following code:

 var original = File.documentsDirectory;
 original = original.resolvePath("AIR Test/test.txt");

 var destination:File = File.documentsDirectory;
 destination = destination.resolvePath("AIR Test 2/copy.txt");

 original.addEventListener(Event.COMPLETE, fileMoveCompleteHandler);
 original.addEventListener(IOErrorEvent.IO_ERROR, fileMoveIOErrorEventHandler);
 original.moveToAsync(destination);

 function fileMoveCompleteHandler(event:Event):void {
 trace(event.target); // [object File]
 }
 function fileMoveIOErrorEventHandler(event:IOErrorEvent):void {
 trace("I/O Error.");
 }

The File class also includes the File.moveToTrash() and File.moveToTrashAsync() methods, which move a file

or directory to the system trash.

Deleting a file

Adobe AIR 1.0 and later

The File class includes a deleteFile() method and a deleteFileAsync() method. These methods delete files, the

first working synchronously, the second working asynchronously (see “AIR file basics” on page 667).

For example, the following code synchronously deletes the test.txt file in the user's documents directory:

 var file:File = File.documentsDirectory.resolvePath("test.txt");
 file.deleteFile();

The following code asynchronously deletes the test.txt file of the user's documents directory:

 var file:File = File.documentsDirectory.resolvePath("test.txt");
 file.addEventListener(Event.COMPLETE, completeHandler)
 file.deleteFileAsync();

 function completeHandler(event:Event):void {
 trace("Deleted.")
 }

687ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Also included are the moveToTrash() and moveToTrashAsync methods, which you can use to move a file or directory

to the System trash. For details, see “Moving a file to the trash” on page 687.

Moving a file to the trash

Adobe AIR 1.0 and later

The File class includes a moveToTrash() method and a moveToTrashAsync() method. These methods send a file or

directory to the System trash, the first working synchronously, the second working asynchronously (see “AIR file

basics” on page 667).

For example, the following code synchronously moves the test.txt file in the user's documents directory to the System

trash:

 var file:File = File.documentsDirectory.resolvePath("test.txt");
 file.moveToTrash();

Note: On operating systems that do not support the concept of a recoverable trash folder, the files are removed

immediately.

Creating a temporary file

Adobe AIR 1.0 and later

The File class includes a createTempFile() method, which creates a file in the temporary directory folder for the

System, as in the following example:

 var temp:File = File.createTempFile();

The createTempFile() method automatically creates a unique temporary file (saving you the work of determining a

new unique location).

You can use a temporary file to temporarily store information used in a session of the application. Note that there is

also a createTempDirectory() method, for creating a unique temporary directory in the System temporary

directory.

You may want to delete the temporary file before closing the application, as it is not automatically deleted on all

devices.

Working with storage volumes

Adobe AIR 2 and later

In AIR 2, you can detect when mass storage volumes are mounted or unmounted. The StorageVolumeInfo class

defines a singleton storageVolumeInfo object. The StorageVolumeInfo.storageVolumeInfo object dispatches a

storageVolumeMount event when a storage volume is mounted. And it dispatches a storageVolumeUnmount event

when a volume is unmounted. The StorageVolumeChangeEvent class defines these events.

Note: On modern Linux distributions, the StorageVolumeInfo object only dispatches storageVolumeMount and

storageVolumeUnmount events for physical devices and network drives mounted at particular locations.

The storageVolume property of the StorageVolumeChangeEvent class is a StorageVolume object. The

StorageVolume class defines basic properties of the storage volume:

• drive—The volume drive letter on Windows (null on other operating systems)

688ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

• fileSystemType—The type of file system on the storage volume (such as "FAT", "NTFS", "HFS", or "UFS")

• isRemoveable—Whether a volume is removable (true) or not (false)

• isWritable—Whether a volume is writable (true) or not (false)

• name—The name of the volume

• rootDirectory—A File object corresponding to the root directory of the volume

The StorageVolumeChangeEvent class also includes a rootDirectory property. The rootDirectory property is a

File object referencing the root directory of the storage volume that has been mounted or unmounted.

The storageVolume property of the StorageVolumeChangeEvent object is undefined (null) for an unmounted

volume. However you can access the rootDirectory property of the event.

The following code outputs the name and file path of a storage volume when it is mounted:

StorageVolumeInfo.storageVolumeInfo.addEventListener(StorageVolumeChangeEvent.STORAGE_VOLUME
_MOUNT, onVolumeMount);
function onVolumeMount(event:StorageVolumeChangeEvent):void
{

trace(event.storageVolume.name, event.rootDirectory.nativePath);
}

The following code outputs the file path of a storage volume when it is unmounted:

StorageVolumeInfo.storageVolumeInfo.addEventListener(StorageVolumeChangeEvent.STORAGE_VOLUME
_UNMOUNT, onVolumeUnmount);
function onVolumeUnmount(event:StorageVolumeChangeEvent):void
{

trace(event.rootDirectory.nativePath);
}

The StorageVolumeInfo.storageVolumeInfo object includes a getStorageVolumes() method. This method

returns a vector of StorageVolume objects corresponding to the currently mounted storage volumes. The following

code shows how to list the names and root directories of all mounted storage volumes:

var volumes:Vector.<StorageVolume> = new Vector.<StorageVolume>;
volumes = StorageVolumeInfo.storageVolumeInfo.getStorageVolumes();
for (var i:int = 0; i < volumes.length; i++)
{

trace(volumes[i].name, volumes[i].rootDirectory.nativePath);
}

Note: On modern Linux distributions, the getStorageVolumes() method returns objects corresponding to physical

devices and network drives mounted at particular locations.

The File.getRootDirectories() method lists the root directories (see “Pointing to the file system root” on

page 673. However, the StorageVolume objects (enumerated by the StorageVolumeInfo.getStorageVolumes()

method) provides more information about the storage volumes.

You can use the spaceAvailable property of the rootDirectory property of a StorageVolume object to get the space

available on a storage volume. (See “Determining space available on a volume” on page 680.)

More Help topics

StorageVolume

StorageVolumeInfo

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filesystem/StorageVolume.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filesystem/StorageVolumeInfo.html

689ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Reading and writing files

Adobe AIR 1.0 and later

The FileStream class lets AIR applications read and write to the file system.

Workflow for reading and writing files

Adobe AIR 1.0 and later

The workflow for reading and writing files is as follows.

Initialize a File object that points to the path.

The File object represents the path of the file that you want to work with (or a file that you will later create).

 var file:File = File.documentsDirectory;
 file = file.resolvePath("AIR Test/testFile.txt");

This example uses the File.documentsDirectory property and the resolvePath() method of a File object to

initialize the File object. However, there are many other ways to point a File object to a file. For more information, see

“Pointing a File object to a file” on page 674.

Initialize a FileStream object.

Call the open() method or the openAsync() method of the FileStream object.

The method you call depends on whether you want to open the file for synchronous or asynchronous operations. Use

the File object as the file parameter of the open method. For the fileMode parameter, specify a constant from the

FileMode class that specifies the way in which you will use the file.

For example, the following code initializes a FileStream object that is used to create a file and overwrite any existing data:

 var fileStream:FileStream = new FileStream();
 fileStream.open(file, FileMode.WRITE);

For more information, see “Initializing a FileStream object, and opening and closing files” on page 691 and

“FileStream open modes” on page 690.

If you opened the file asynchronously (using the openAsync() method), add and set up event listeners for the
FileStream object.

These event listener methods respond to events dispatched by the FileStream object in various situations. These

situations include when data is read in from the file, when I/O errors are encountered, or when the complete amount

of data to be written has been written.

For details, see “Asynchronous programming and the events generated by a FileStream object opened asynchronously”

on page 695.

Include code for reading and writing data, as needed.

There are many methods of the FileStream class related to reading and writing. (They each begin with "read" or

"write".) The method you choose to use to read or write data depends on the format of the data in the target file.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filesystem/FileStream.html

690ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

For example, if the data in the target file is UTF-encoded text, you may use the readUTFBytes() and

writeUTFBytes() methods. If you want to deal with the data as byte arrays, you may use the readByte(),

readBytes(), writeByte(), and writeBytes() methods. For details, see “Data formats, and choosing the read and

write methods to use” on page 695.

If you opened the file asynchronously, then be sure that enough data is available before calling a read method. For

details, see “The read buffer and the bytesAvailable property of a FileStream object” on page 693.

Before writing to a file, if you want to check the amount of disk space available, you can check the spaceAvailable

property of the File object. For more information, see “Determining space available on a volume” on page 680.

Call the close() method of the FileStream object when you are done working with the file.

Calling the close() method makes the file available to other applications.

For details, see “Initializing a FileStream object, and opening and closing files” on page 691.

To see a sample application that uses the FileStream class to read and write files, see the following articles at the Adobe

AIR Developer Center:

• Building a text-file editor

• Building a text-file editor

• Reading and writing from an XML preferences file

Working with FileStream objects

Adobe AIR 1.0 and later

The FileStream class defines methods for opening, reading, and writing files.

FileStream open modes

Adobe AIR 1.0 and later

The open() and openAsync() methods of a FileStream object each include a fileMode parameter, which defines

some properties for a file stream, including the following:

• The ability to read from the file

• The ability to write to the file

• Whether data will always be appended past the end of the file (when writing)

• What to do when the file does not exist (and when its parent directories do not exist)

The following are the various file modes (which you can specify as the fileMode parameter of the open() and

openAsync() methods):

File mode Description

FileMode.READ Specifies that the file is open for reading only.

http://www.adobe.com/go/learn_air_qs_textedit_flash_en
http://www.adobe.com/go/learn_air_qs_textedit_flex_en
http://www.adobe.com/go/learn_air_qs_xmlpref_flex_en

691ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Initializing a FileStream object, and opening and closing files

Adobe AIR 1.0 and later

When you open a FileStream object, you make it available to read and write data to a file. You open a FileStream object

by passing a File object to the open() or openAsync() method of the FileStream object:

 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.open(myFile, FileMode.READ);

The fileMode parameter (the second parameter of the open() and openAsync() methods), specifies the mode in

which to open the file: for read, write, append, or update. For details, see the previous section, “FileStream open

modes” on page 690.

If you use the openAsync() method to open the file for asynchronous file operations, set up event listeners to handle

the asynchronous events:

 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.addEventListener(Event.COMPLETE, completeHandler);
 myFileStream.addEventListener(ProgressEvent.PROGRESS, progressHandler);
 myFileStream.addEventListener(IOErrorEvent.IO_Error, errorHandler);
 myFileStream.openAsync(myFile, FileMode.READ);

 function completeHandler(event:Event):void {
 // ...
 }

 function progressHandler(event:ProgressEvent):void {
 // ...
 }

 function errorHandler(event:IOErrorEvent):void {
 // ...
 }

The file is opened for synchronous or asynchronous operations, depending upon whether you use the open() or

openAsync() method. For details, see “AIR file basics” on page 667.

If you set the fileMode parameter to FileMode.READ or FileMode.UPDATE in the open method of the FileStream

object, data is read into the read buffer as soon as you open the FileStream object. For details, see “The read buffer and

the bytesAvailable property of a FileStream object” on page 693.

FileMode.WRITE Specifies that the file is open for writing. If the file does not exist, it is created when the FileStream object

is opened. If the file does exist, any existing data is deleted.

FileMode.APPEND Specifies that the file is open for appending. The file is created if it does not exist. If the file exists, existing

data is not overwritten, and all writing begins at the end of the file.

FileMode.UPDATE Specifies that the file is open for reading and writing. If the file does not exist, it is created. Specify this

mode for random read/write access to the file. You can read from any position in the file. When writing

to the file, only the bytes written overwrite existing bytes (all other bytes remain unchanged).

File mode Description

692ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

You can call the close() method of a FileStream object to close the associated file, making it available for use by other

applications.

The position property of a FileStream object

Adobe AIR 1.0 and later

The position property of a FileStream object determines where data is read or written on the next read or write

method.

Before a read or write operation, set the position property to any valid position in the file.

For example, the following code writes the string "hello" (in UTF encoding) at position 8 in the file:

 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.open(myFile, FileMode.UPDATE);
 myFileStream.position = 8;
 myFileStream.writeUTFBytes("hello");

When you first open a FileStream object, the position property is set to 0.

Before a read operation, the value of position must be at least 0 and less than the number of bytes in the file (which

are existing positions in the file).

The value of the position property is modified only in the following conditions:

• When you explicitly set the position property.

• When you call a read method.

• When you call a write method.

When you call a read or write method of a FileStream object, the position property is immediately incremented by

the number of bytes that you read or write. Depending on the read method you use, the position property is either

incremented by the number of bytes you specify to read or by the number of bytes available. When you call a read or

write method subsequently, it reads or writes starting at the new position.

 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.open(myFile, FileMode.UPDATE);
 myFileStream.position = 4000;
 trace(myFileStream.position); // 4000
 myFileStream.writeBytes(myByteArray, 0, 200);
 trace(myFileStream.position); // 4200

There is, however, one exception: for a FileStream opened in append mode, the position property is not changed after

a call to a write method. (In append mode, data is always written to the end of the file, independent of the value of the

position property.)

For a file opened for asynchronous operations, the write operation does not complete before the next line of code is

executed. However, you can call multiple asynchronous methods sequentially, and the runtime executes them in order:

693ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.openAsync(myFile, FileMode.WRITE);
 myFileStream.writeUTFBytes("hello");
 myFileStream.writeUTFBytes("world");
 myFileStream.addEventListener(Event.CLOSE, closeHandler);
 myFileStream.close();
 trace("started.");

 closeHandler(event:Event):void
 {
 trace("finished.");
 }

The trace output for this code is the following:

 started.
finished.

You can specify the position value immediately after you call a read or write method (or at any time), and the next

read or write operation will take place starting at that position. For example, note that the following code sets the

position property right after a call to the writeBytes() operation, and the position is set to that value (300) even

after the write operation completes:

 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.openAsync(myFile, FileMode.UPDATE);
 myFileStream.position = 4000;
 trace(myFileStream.position); // 4000
 myFileStream.writeBytes(myByteArray, 0, 200);
 myFileStream.position = 300;
 trace(myFileStream.position); // 300

The read buffer and the bytesAvailable property of a FileStream object

Adobe AIR 1.0 and later

When a FileStream object with read capabilities (one in which the fileMode parameter of the open() or openAsync()

method was set to READ or UPDATE) is opened, the runtime stores the data in an internal buffer. The FileStream object

begins reading data into the buffer as soon as you open the file (by calling the open() or openAsync() method of the

FileStream object).

For a file opened for synchronous operations (using the open() method), you can always set the position pointer to

any valid position (within the bounds of the file) and begin reading any amount of data (within the bounds of the file),

as shown in the following code (which assumes that the file contains at least 100 bytes):

 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.open(myFile, FileMode.READ);
 myFileStream.position = 10;
 myFileStream.readBytes(myByteArray, 0, 20);
 myFileStream.position = 89;
 myFileStream.readBytes(myByteArray, 0, 10);

Whether a file is opened for synchronous or asynchronous operations, the read methods always read from the

"available" bytes, represented by the bytesAvalable property. When reading synchronously, all of the bytes of the file

are available all of the time. When reading asynchronously, the bytes become available starting at the position specified

by the position property, in a series of asynchronous buffer fills signaled by progress events.

694ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

For files opened for synchronous operations, the bytesAvailable property is always set to represent the number of

bytes from the position property to the end of the file (all bytes in the file are always available for reading).

For files opened for asynchronous operations, you need to ensure that the read buffer has consumed enough data

before calling a read method. For a file opened asynchronously, as the read operation progresses, the data from the file,

starting at the position specified when the read operation started, is added to the buffer, and the bytesAvailable

property increments with each byte read. The bytesAvailable property indicates the number of bytes available

starting with the byte at the position specified by the position property to the end of the buffer. Periodically, the

FileStream object sends a progress event.

For a file opened asynchronously, as data becomes available in the read buffer, the FileStream object periodically

dispatches the progress event. For example, the following code reads data into a ByteArray object, bytes, as it is read

into the buffer:

 var bytes:ByteArray = new ByteArray();
 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.addEventListener(ProgressEvent.PROGRESS, progressHandler);
 myFileStream.openAsync(myFile, FileMode.READ);

 function progressHandler(event:ProgressEvent):void
 {
 myFileStream.readBytes(bytes, myFileStream.position, myFileStream.bytesAvailable);
 }

For a file opened asynchronously, only the data in the read buffer can be read. Furthermore, as you read the data, it is

removed from the read buffer. For read operations, you need to ensure that the data exists in the read buffer before

calling the read operation. For example, the following code reads 8000 bytes of data starting from position 4000 in the

file:

 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.addEventListener(ProgressEvent.PROGRESS, progressHandler);
 myFileStream.addEventListener(Event.COMPLETE, completed);
 myFileStream.openAsync(myFile, FileMode.READ);
 myFileStream.position = 4000;

 var str:String = "";

 function progressHandler(event:Event):void
 {
 if (myFileStream.bytesAvailable > 8000)
 {
 str += myFileStream.readMultiByte(8000, "iso-8859-1");
 }
 }

During a write operation, the FileStream object does not read data into the read buffer. When a write operation

completes (all data in the write buffer is written to the file), the FileStream object starts a new read buffer (assuming

that the associated FileStream object was opened with read capabilities), and starts reading data into the read buffer,

starting from the position specified by the position property. The position property may be the position of the last

byte written, or it may be a different position, if the user specifies a different value for the position object after the

write operation.

695ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Asynchronous programming and the events generated by a FileStream object opened asynchronously

Adobe AIR 1.0 and later

When a file is opened asynchronously (using the openAsync() method), reading and writing files are done

asynchronously. As data is read into the read buffer and as output data is being written, other ActionScript code can

execute.

This means that you need to register for events generated by the FileStream object opened asynchronously.

By registering for the progress event, you can be notified as new data becomes available for reading, as in the

following code:

 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.addEventListener(ProgressEvent.PROGRESS, progressHandler);
 myFileStream.openAsync(myFile, FileMode.READ);
 var str:String = "";

 function progressHandler(event:ProgressEvent):void
 {
 str += myFileStream.readMultiByte(myFileStream.bytesAvailable, "iso-8859-1");
 }

You can read the entire data by registering for the complete event, as in the following code:

 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.addEventListener(Event.COMPLETE, completed);
 myFileStream.openAsync(myFile, FileMode.READ);
 var str:String = "";
 function completeHandler(event:Event):void
 {
 str = myFileStream.readMultiByte(myFileStream.bytesAvailable, "iso-8859-1");
 }

In much the same way that input data is buffered to enable asynchronous reading, data that you write on an

asynchronous stream is buffered and written to the file asynchronously. As data is written to a file, the FileStream

object periodically dispatches an OutputProgressEvent object. An OutputProgressEvent object includes a

bytesPending property that is set to the number of bytes remaining to be written. You can register for the

outputProgress event to be notified as this buffer is actually written to the file, perhaps in order to display a progress

dialog. However, in general, it is not necessary to do so. In particular, you may call the close() method without

concern for the unwritten bytes. The FileStream object will continue writing data and the close event will be delivered

after the final byte is written to the file and the underlying file is closed.

Data formats, and choosing the read and write methods to use

Adobe AIR 1.0 and later

Every file is a set of bytes on a disk. In ActionScript, the data from a file can always be represented as a ByteArray. For

example, the following code reads the data from a file into a ByteArray object named bytes:

696ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.addEventListener(Event.COMPLETE, completeHandler);
 myFileStream.openAsync(myFile, FileMode.READ);
 var bytes:ByteArray = new ByteArray();

 function completeHandler(event:Event):void
 {
 myFileStream.readBytes(bytes, 0, myFileStream.bytesAvailable);
 }

Similarly, the following code writes data from a ByteArray named bytes to a file:

 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.open(myFile, FileMode.WRITE);
 myFileStream.writeBytes(bytes, 0, bytes.length);

However, often you do not want to store the data in an ActionScript ByteArray object. And often the data file is in a

specified file format.

For example, the data in the file may be in a text file format, and you may want to represent such data in a String object.

For this reason, the FileStream class includes read and write methods for reading and writing data to and from types

other than ByteArray objects. For example, the readMultiByte() method lets you read data from a file and store it to

a string, as in the following code:

 var myFile:File = File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream:FileStream = new FileStream();
 myFileStream.addEventListener(Event.COMPLETE, completed);
 myFileStream.openAsync(myFile, FileMode.READ);
 var str:String = "";

 function completeHandler(event:Event):void
 {
 str = myFileStream.readMultiByte(myFileStream.bytesAvailable, "iso-8859-1");
 }

The second parameter of the readMultiByte() method specifies the text format that ActionScript uses to interpret

the data ("iso-8859-1" in the example). Adobe AIR supports common character set encodings (see Supported character

sets).

The FileStream class also includes the readUTFBytes() method, which reads data from the read buffer into a string

using the UTF-8 character set. Since characters in the UTF-8 character set are of variable length, do not use

readUTFBytes() in a method that responds to the progress event, since the data at the end of the read buffer may

represent an incomplete character. (This is also true when using the readMultiByte() method with a variable-length

character encoding.) For this reason, read the entire set of data when the FileStream object dispatches the complete

event.

There are also similar write methods, writeMultiByte() and writeUTFBytes(), for working with String objects and

text files.

The readUTF() and the writeUTF() methods (not to be confused with readUTFBytes() and writeUTFBytes())

also read and write the text data to a file, but they assume that the text data is preceded by data specifying the length of

the text data, which is not a common practice in standard text files.

697ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

Some UTF-encoded text files begin with a "UTF-BOM" (byte order mark) character that defines the endianness as well

as the encoding format (such as UTF-16 or UTF-32).

For an example of reading and writing to a text file, see “Example: Reading an XML file into an XML object” on

page 698.

The readObject() and writeObject() are convenient ways to store and retrieve data for complex ActionScript

objects. The data is encoded in AMF (ActionScript Message Format). Adobe AIR, Flash Player, Flash Media Server,

and Flex Data Services include APIs for working with data in this format.

There are some other read and write methods (such as readDouble() and writeDouble()). However, if you use

these, make sure that the file format matches the formats of the data defined by these methods.

File formats are often more complex than simple text formats. For example, an MP3 file includes compressed data that

can only be interpreted with the decompression and decoding algorithms specific to MP3 files. MP3 files also may

include ID3 tags that contain meta tag information about the file (such as the title and artist for a song). There are

multiple versions of the ID3 format, but the simplest (ID3 version 1) is discussed in the “Example: Reading and writing

data with random access” on page 699 section.

Other files formats (for images, databases, application documents, and so on) have different structures, and to work

with their data in ActionScript, you must understand how the data is structured.

Using the load() and save() methods

Flash Player 10 and later, Adobe AIR 1.5 and later

Flash Player 10 added the load() and save() methods to the FileReference class. These methods are also in AIR 1.5,

and the File class inherits the methods from the FileReference class. These methods were designed to provide a secure

means for users to load and save file data in Flash Player. However, AIR applications can also use these methods as an

easy way to load and save files asynchronously.

For example, the following code saves a string to a text file:

var file:File = File.applicationStorageDirectory.resolvePath("test.txt");
var str:String = "Hello.";
file.addEventListener(Event.COMPLETE, fileSaved);
file.save(str);
function fileSaved(event:Event):void
{

trace("Done.");
}

The data parameter of the save() method can take a String, XML, or ByteArray value. When the argument is a String

or XML value, the method saves the file as a UTF-8–encoded text file.

When this code sample executes, the application displays a dialog box in which the user selects the saved file

destination.

The following code loads a string from a UTF-8–encoded text file:

698ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

var file:File = File.applicationStorageDirectory.resolvePath("test.txt");
file.addEventListener(Event.COMPLETE, loaded);
file.load();
var str:String;
function loaded(event:Event):void
{

var bytes:ByteArray = file.data;
str = bytes.readUTFBytes(bytes.length);
trace(str);

}

The FileStream class provides more functionality than that provided by the load() and save() methods:

• Using the FileStream class, you can read and write data both synchronously and asynchronously.

• Using the FileStream class lets you write incrementally to a file.

• Using the FileStream class lets you open a file for random access (both reading from and writing to any section of

the file).

• The FileStream class lets you specify the type of file access you have to the file, by setting the fileMode parameter

of the open() or openAsync() method.

• The FileStream class lets you save data to files without presenting the user with an Open or Save dialog box.

• You can directly use types other than byte arrays when reading data with the FileStream class.

Example: Reading an XML file into an XML object

Adobe AIR 1.0 and later

The following examples demonstrate how to read and write to a text file that contains XML data.

To read from the file, initialize the File and FileStream objects, call the readUTFBytes() method of the FileStream and

convert the string to an XML object:

 var file:File = File.documentsDirectory.resolvePath("AIR Test/preferences.xml");
 var fileStream:FileStream = new FileStream();
 fileStream.open(file, FileMode.READ);
 var prefsXML:XML = XML(fileStream.readUTFBytes(fileStream.bytesAvailable));
 fileStream.close();

Similarly, writing the data to the file is as easy as setting up appropriate File and FileStream objects, and then calling a

write method of the FileStream object. Pass the string version of the XML data to the write method as in the following

code:

 var prefsXML:XML = <prefs><autoSave>true</autoSave></prefs>;
 var file:File = File.documentsDirectory.resolvePath("AIR Test/preferences.xml");
 fileStream = new FileStream();
 fileStream.open(file, FileMode.WRITE);

 var outputString:String = '<?xml version="1.0" encoding="utf-8"?>\n';
 outputString += prefsXML.toXMLString();

 fileStream.writeUTFBytes(outputString);
 fileStream.close();

699ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

These examples use the readUTFBytes() and writeUTFBytes() methods, because they assume that the files are in

UTF-8 format. If not, you may need to use a different method (see “Data formats, and choosing the read and write

methods to use” on page 695).

The previous examples use FileStream objects opened for synchronous operation. You can also open files for

asynchronous operations (which rely on event listener functions to respond to events). For example, the following

code shows how to read an XML file asynchronously:

 var file:File = File.documentsDirectory.resolvePath("AIR Test/preferences.xml");
 var fileStream:FileStream = new FileStream();
 fileStream.addEventListener(Event.COMPLETE, processXMLData);
 fileStream.openAsync(file, FileMode.READ);
 var prefsXML:XML;

 function processXMLData(event:Event):void
 {
 prefsXML = XML(fileStream.readUTFBytes(fileStream.bytesAvailable));
 fileStream.close();
 }

The processXMLData() method is invoked when the entire file is read into the read buffer (when the FileStream

object dispatches the complete event). It calls the readUTFBytes() method to get a string version of the read data,

and it creates an XML object, prefsXML, based on that string.

To see a sample application that shows these capabilities, see Reading and writing from an XML preferences file.

Example: Reading and writing data with random access

Adobe AIR 1.0 and later

MP3 files can include ID3 tags, which are sections at the beginning or end of the file that contain meta data identifying

the recording. The ID3 tag format itself has different revisions. This example describes how to read and write from an

MP3 file that contains the simplest ID3 format (ID3 version 1.0) using "random access to file data", which means that

it reads from and writes to arbitrary locations in the file.

An MP3 file that contains an ID3 version 1 tag includes the ID3 data at the end of the file, in the final 128 bytes.

When accessing a file for random read/write access, it is important to specify FileMode.UPDATE as the fileMode

parameter for the open() or openAsync() method:

 var file:File = File.documentsDirectory.resolvePath("My Music/Sample ID3 v1.mp3");
 var fileStr:FileStream = new FileStream();
 fileStr.open(file, FileMode.UPDATE);

This lets you both read and write to the file.

Upon opening the file, you can set the position pointer to the position 128 bytes before the end of the file:

 fileStr.position = file.size - 128;

This code sets the position property to this location in the file because the ID3 v1.0 format specifies that the ID3 tag

data is stored in the last 128 bytes of the file. The specification also says the following:

• The first 3 bytes of the tag contain the string "TAG".

• The next 30 characters contain the title for the MP3 track, as a string.

• The next 30 characters contain the name of the artist, as a string.

http://www.adobe.com/go/learn_air_qs_xmlpref_flex_en

700ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with the file system

Last updated 10/9/2017

• The next 30 characters contain the name of the album, as a string.

• The next 4 characters contain the year, as a string.

• The next 30 characters contain the comment, as a string.

• The next byte contains a code indicating the track's genre.

• All text data is in ISO 8859-1 format.

The id3TagRead() method checks the data after it is read in (upon the complete event):

 function id3TagRead():void
 {
 if (fileStr.readMultiByte(3, "iso-8859-1").match(/tag/i))
 {
 var id3Title:String = fileStr.readMultiByte(30, "iso-8859-1");
 var id3Artist:String = fileStr.readMultiByte(30, "iso-8859-1");
 var id3Album:String = fileStr.readMultiByte(30, "iso-8859-1");
 var id3Year:String = fileStr.readMultiByte(4, "iso-8859-1");
 var id3Comment:String = fileStr.readMultiByte(30, "iso-8859-1");
 var id3GenreCode:String = fileStr.readByte().toString(10);
 }
 }

You can also perform a random-access write to the file. For example, you could parse the id3Title variable to ensure

that it is correctly capitalized (using methods of the String class), and then write a modified string, called newTitle,

to the file, as in the following:

fileStr.position = file.length - 125; // 128 - 3
fileStr.writeMultiByte(newTitle, "iso-8859-1");

To conform with the ID3 version 1 standard, the length of the newTitle string should be 30 characters, padded at the

end with the character code 0 (String.fromCharCode(0)).

701

Last updated 10/9/2017

Chapter 39: Storing local data

Flash Player 9 and later, Adobe AIR 1.0 and later

You use the SharedObject class to store small amounts of data on the client computer. In Adobe AIR, you can also use

the EncryptedLocalStore class to store small amounts of privacy-sensitive user data on the local computer in an AIR

application.

You can also read and write files on the file system and (in Adobe AIR) access local database files. For more

information, see “Working with the file system” on page 653 and “Working with local SQL databases in AIR” on

page 714.

There are a number of security factors that relate to shared objects. For more information, see “Shared objects” on

page 1074 in “Security” on page 1042.

Shared objects

Flash Player 9 and later, Adobe AIR 1.0 and later

A shared object, sometimes referred to as a “Flash cookie,” is a data file that can be created on your computer by the

sites that you visit. Shared objects are most often used to enhance your web-browsing experience—for example, by

allowing you to personalize the look and feel of a website that you frequently visit.

About shared objects

Flash Player 9 and later, Adobe AIR 1.0 and later

Shared objects function like browser cookies. You use the SharedObject class to store data on the user’s local hard disk

and call that data during the same session or in a later session. Applications can access only their own SharedObject

data, and only if they are running on the same domain. The data is not sent to the server and is not accessible by other

applications running on other domains, but can be made accessible by applications from the same domain.

Shared objects compared with cookies

Flash Player 9 and later, Adobe AIR 1.0 and later

Cookies and shared objects are very similar. Because most web programmers are familiar with how cookies work, it

might be useful to compare cookies and local SharedObjects.

Cookies that adhere to the RFC 2109 standard generally have the following properties:

• They can expire, and often do at the end of a session by default.

• They can be disabled by the client on a site-specific basis.

• There is a limit of 300 cookies total, and 20 cookies maximum per site.

• They are usually limited to a size of 4 KB each.

• They are sometimes perceived to be a security threat, and as a result, they are sometimes disabled on the client.

• They are stored in a location specified by the client browser.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/SharedObject.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/data/EncryptedLocalStore.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/SharedObject.html

702ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Storing local data

Last updated 10/9/2017

• They are transmitted from client to server through HTTP.

In contrast, shared objects have the following properties:

• They do not expire by default.

• By default, they are limited to a size of 100 KB each.

• They can store simple data types (such as String, Array, and Date).

• They are stored in a location specified by the application (within the user’s home directory).

• They are never transmitted between the client and server.

About the SharedObject class

Flash Player 9 and later, Adobe AIR 1.0 and later

Using the SharedObject class, you can create and delete shared objects, as well as detect the current size of a

SharedObject object that you are using.

Creating a shared object

Flash Player 9 and later, Adobe AIR 1.0 and later

To create a SharedObject object, use the SharedObject.getLocal() method, which has the following syntax:

 SharedObject.getLocal("objectName" [, pathname]): SharedObject

The following example creates a shared object called mySO:

 public var mySO:SharedObject;
 mySO = SharedObject.getLocal("preferences");

This creates a file on the client’s machine called preferences.sol.

The term local refers to the location of the shared object. In this case, Adobe® Flash® Player stores the SharedObject file

locally in the client’s home directory.

When you create a shared object, Flash Player creates a new directory for the application and domain inside its

sandbox. It also creates a *.sol file that stores the SharedObject data. The default location of this file is a subdirectory

of the user’s home directory. The following table shows the default locations of this directory:

Below the #SharedObjects directory is a randomly-named directory. Below that is a directory that matches the

hostname, then the path to the application, and finally the *.sol file.

Operating System Location

Windows

95/98/ME/2000/XP

c:/Documents and Settings/username/Application
Data/Macromedia/Flash Player/#SharedObjects

Windows Vista/Windows 7 c:/Users/username/AppData/Roaming/Macromedia/Flash
Player/#SharedObjects

Macintosh OS X /Users/username/Library/Preferences/Macromedia/Flash
Player/#SharedObjects/web_domain/path_to_application/applicatio
n_name/object_name.sol

Linux/Unix /home/username/.macromedia/Flash_Player/#SharedObjects/web_doma
in/path_to_application/application_name/object_name.sol

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/SharedObject.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/SharedObject.html

703ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Storing local data

Last updated 10/9/2017

For example, if you request an application named MyApp.swf on the local host, and within a subdirectory named /sos,

Flash Player stores the *.sol file in the following location on Windows XP:

 c:/Documents and Settings/fred/Application Data/Macromedia/Flash
Player/#SharedObjects/KROKWXRK/#localhost/sos/MyApp.swf/data.sol

Note: If you do not provide a name in the SharedObject.getLocal() method, Flash Player names the file

undefined.sol.

By default, Flash can save locally persistent SharedObject objects of up to 100 KB per domain. This value is user-

configurable. When the application tries to save data to a shared object that would make it bigger than 100 KB, Flash

Player displays the Local Storage dialog box, which lets the user allow or deny more local storage for the domain that

is requesting access.

Specifying a path

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the optional pathname parameter to specify a location for the SharedObject file. This file must be a

subdirectory of that domain’s SharedObject directory. For example, if you request an application on the localhost and

specify the following:

 mySO = SharedObject.getLocal("myObjectFile","/");

Flash Player writes the SharedObject file in the /#localhost directory (or /localhost if the application is offline). This is

useful if you want more than one application on the client to be able to access the same shared object. In this case, the

client could run two Flex applications, both of which specify a path to the shared object that is the root of the domain;

the client could then access the same shared object from both applications. To share data between more than

application without persistence, you can use the LocalConnection object.

If you specify a directory that does not exist, Flash Player does not create a SharedObject file.

Adding data to a shared object

Flash Player 9 and later, Adobe AIR 1.0 and later

You add data to a SharedObject’s *.sol file using the data property of the SharedObject object. To add new data to the

shared object, use the following syntax:

 sharedObject_name.data.variable = value;

The following example adds the userName, itemNumbers, and adminPrivileges properties and their values to a

SharedObject:

 public var currentUserName:String = "Reiner";
 public var itemsArray:Array = new Array(101,346,483);
 public var currentUserIsAdmin:Boolean = true;
 mySO.data.userName = currentUserName;
 mySO.data.itemNumbers = itemsArray;
 mySO.data.adminPrivileges = currentUserIsAdmin;

After you assign values to the data property, you must instruct Flash Player to write those values to the SharedObject’s

file. To force Flash Player to write the values to the SharedObject’s file, use the SharedObject.flush() method, as

follows:

 mySO.flush();

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/SharedObject.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/SharedObject.html

704ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Storing local data

Last updated 10/9/2017

If you do not call the SharedObject.flush() method, Flash Player writes the values to the file when the application

quits. However, this does not provide the user with an opportunity to increase the available space that Flash Player has

to store the data if that data exceeds the default settings. Therefore, it is a good practice to call

SharedObject.flush().

When using the flush() method to write shared objects to a user’s hard drive, you should be careful to check whether

the user has explicitly disabled local storage using the Flash Player Settings Manager

(www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager07.html), as shown in the

following example:

 var so:SharedObject = SharedObject.getLocal("test");
 trace("Current SharedObject size is " + so.size + " bytes.");
 so.flush();

Storing objects in shared objects

You can store simple objects such as Arrays or Strings in a SharedObject’s data property.

The following example is an ActionScript class that defines methods that control the interaction with the shared object.

These methods let the user add and remove objects from the shared object. This class stores an ArrayCollection that

contains simple objects.

package {
 import mx.collections.ArrayCollection;
 import flash.net.SharedObject;

 public class LSOHandler {

 private var mySO:SharedObject;
 private var ac:ArrayCollection;
 private var lsoType:String;

 // The parameter is "feeds" or "sites".
 public function LSOHandler(s:String) {
 init(s);
 }

 private function init(s:String):void {
 ac = new ArrayCollection();
 lsoType = s;
 mySO = SharedObject.getLocal(lsoType);
 if (getObjects()) {

http://www.macromedia.com/support/documentation/en/flashplayer/help/settings_manager07.html

705ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Storing local data

Last updated 10/9/2017

 ac = getObjects();
 }
 }

 public function getObjects():ArrayCollection {
 return mySO.data[lsoType];
 }

 public function addObject(o:Object):void {
 ac.addItem(o);
 updateSharedObjects();
 }

 private function updateSharedObjects():void {
 mySO.data[lsoType] = ac;
 mySO.flush();
 }
 }

}

The following Flex application creates an instance of the ActionScript class for each of the types of shared objects it

needs. It then calls methods on that class when the user adds or removes blogs or site URLs.

<?xml version="1.0"?>
<!-- lsos/BlogAggregator.mxml -->
<mx:Application
 xmlns:local="*"
 xmlns:mx="http://www.adobe.com/2006/mxml"
 creationComplete="initApp()"
 backgroundColor="#ffffff"
>
 <mx:Script>
 <![CDATA[
 import mx.collections.ArrayCollection;
 import mx.utils.ObjectUtil;
 import flash.net.SharedObject;

 [Bindable]
 public var welcomeMessage:String;

 [Bindable]
 public var localFeeds:ArrayCollection = new ArrayCollection();

 [Bindable]
 public var localSites:ArrayCollection = new ArrayCollection();

 public var lsofeeds:LSOHandler;
 public var lsosites:LSOHandler;

 private function initApp():void {
 lsofeeds = new LSOHandler("feeds");
 lsosites = new LSOHandler("sites");

 if (lsofeeds.getObjects()) {
 localFeeds = lsofeeds.getObjects();
 }

706ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Storing local data

Last updated 10/9/2017

 if (lsosites.getObjects()) {
 localSites = lsosites.getObjects();
 }
 }

 // Adds a new feed to the feeds DataGrid.
 private function addFeed():void {
 // Construct an object you want to store in the
 // LSO. This object can contain any number of fields.
 var o:Object = {name:ti1.text, url:ti2.text, date:new Date()};
 lsofeeds.addObject(o);

 // Because the DataGrid's dataProvider property is
 // bound to the ArrayCollection, Flex updates the
 // DataGrid when you call this method.
 localFeeds = lsofeeds.getObjects();

 // Clear the text fields.
 ti1.text = '';
 ti2.text = '';
 }

 // Removes feeds from the feeds DataGrid.
 private function removeFeed():void {
 // Use a method of ArrayCollection to remove a feed.
 // Because the DataGrid's dataProvider property is
 // bound to the ArrayCollection, Flex updates the
 // DataGrid when you call this method. You do not need
 // to update it manually.
 if (myFeedsGrid.selectedIndex > -1) {

localFeeds.removeItemAt(myFeedsGrid.selectedIndex);
 }
 }

 private function addSite():void {
 var o:Object = {name:ti3.text, date:new Date()};
 lsosites.addObject(o);
 localSites = lsosites.getObjects();
 ti3.text = '';
 }

 private function removeSite():void {
 if (mySitesGrid.selectedIndex > -1) {

localSites.removeItemAt(mySitesGrid.selectedIndex);
 }
 }

]]>
 </mx:Script>

 <mx:Label text="Blog aggregator" fontSize="28"/>

 <mx:Panel title="Blogs">
 <mx:Form id="blogForm">
 <mx:HBox>

707ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Storing local data

Last updated 10/9/2017

 <mx:FormItem label="Name:">
 <mx:TextInput id="ti1" width="100"/>
 </mx:FormItem>
 <mx:FormItem label="Location:">
 <mx:TextInput id="ti2" width="300"/>
 </mx:FormItem>
 <mx:Button id="b1" label="Add Feed" click="addFeed()"/>
 </mx:HBox>

 <mx:FormItem label="Existing Feeds:">
 <mx:DataGrid
 id="myFeedsGrid"
 dataProvider="{localFeeds}"
 width="400"
 />
 </mx:FormItem>
 <mx:Button id="b2" label="Remove Feed" click="removeFeed()"/>
 </mx:Form>
 </mx:Panel>

 <mx:Panel title="Sites">
 <mx:Form id="siteForm">
 <mx:HBox>
 <mx:FormItem label="Site:">
 <mx:TextInput id="ti3" width="400"/>
 </mx:FormItem>
 <mx:Button id="b3" label="Add Site" click="addSite()"/>
 </mx:HBox>

 <mx:FormItem label="Existing Sites:">
 <mx:DataGrid
 id="mySitesGrid"
 dataProvider="{localSites}"
 width="400"
 />
 </mx:FormItem>
 <mx:Button id="b4" label="Remove Site" click="removeSite()"/>
 </mx:Form>
 </mx:Panel>

</mx:Application>

Storing typed objects in shared objects

You can store typed ActionScript instances in shared objects. You do this by calling the

flash.net.registerClassAlias() method to register the class. If you create an instance of your class and store it

in the data member of your shared object and later read the object out, you will get a typed instance. By default, the

SharedObject objectEncoding property supports AMF3 encoding, and unpacks your stored instance from the

SharedObject object; the stored instance retains the same type you specified when you called the

registerClassAlias() method.

708ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Storing local data

Last updated 10/9/2017

(iOS only) Prevent cloud backup of local shared objects

Adobe AIR 3.7 and later, iOS only

You can set the SharedObject.preventBackup property to control whether local shared objects will be backed up on

the iOS cloud backup service. This is required by Apple for content that can be regenerated or downloaded again, but

that is required for proper functioning of your application during offline use.

Creating multiple shared objects

You can create multiple shared objects for the same Flex application. To do this, you assign each of them a different

instance name, as the following example shows:

 public var mySO:SharedObject = SharedObject.getLocal("preferences");
 public var mySO2:SharedObject = SharedObject.getLocal("history");

This creates a preferences.sol file and a history.sol file in the Flex application’s local directory.

Creating a secure SharedObject

Flash Player 9 and later, Adobe AIR 1.0 and later

When you create either a local or remote SharedObject using getLocal() or getRemote(), there is an optional

parameter named secure that determines whether access to this shared object is restricted to SWF files that are

delivered over an HTTPS connection. If this parameter is set to true and your SWF file is delivered over HTTPS, Flash

Player creates a new secure shared object or gets a reference to an existing secure shared object. This secure shared

object can be read from or written to only by SWF files delivered over HTTPS that call SharedObject.getLocal()

with the secure parameter set to true. If this parameter is set to false and your SWF file is delivered over HTTPS,

Flash Player creates a new shared object or gets a reference to an existing shared object.

This shared object can be read from or written to by SWF files delivered over non-HTTPS connections. If your SWF

file is delivered over a non-HTTPS connection and you try to set this parameter to true, the creation of a new shared

object (or the access of a previously created secure shared object) fails, an error is thrown, and the shared object is set

to null. If you attempt to run the following snippet from a non-HTTPS connection, the SharedObject.getLocal()

method will throw an error:

 try
 {
 var so:SharedObject = SharedObject.getLocal("contactManager", null, true);
 }
 catch (error:Error)
 {
 trace("Unable to create SharedObject.");
 }

Regardless of the value of this parameter, the created shared objects count toward the total amount of disk space

allowed for a domain.

Displaying contents of a shared object

Flash Player 9 and later, Adobe AIR 1.0 and later

Values are stored in shared objects within the data property. You can loop over each value within a shared object

instance by using a for..in loop, as the following example shows:

709ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Storing local data

Last updated 10/9/2017

 var so:SharedObject = SharedObject.getLocal("test");
 so.data.hello = "world";
 so.data.foo = "bar";
 so.data.timezone = new Date().timezoneOffset;
 for (var i:String in so.data)
 {
 trace(i + ":\t" + so.data[i]);
 }

Destroying shared objects

Flash Player 9 and later, Adobe AIR 1.0 and later

To destroy a SharedObject on the client, use the SharedObject.clear() method. This does not destroy directories

in the default path for the application’s shared objects.

The following example deletes the SharedObject file from the client:

 public function destroySharedObject():void {
 mySO.clear();
 }

SharedObject example

Flash Player 9 and later, Adobe AIR 1.0 and later

The following example shows that you can store simple objects, such as a Date object, in a SharedObject object without

having to manually serialize and deserialize those objects.

The following example begins by welcoming you as a first-time visitor. When you click Log Out, the application stores

the current date in a shared object. The next time you launch this application or refresh the page, the application

welcomes you back with a reminder of the time you logged out.

To see the application in action, launch the application, click Log Out, and then refresh the page. The application

displays the date and time that you clicked the Log Out button on your previous visit. At any time, you can delete the

stored information by clicking the Delete LSO button.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/SharedObject.html

710ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Storing local data

Last updated 10/9/2017

<?xml version="1.0"?>
<!-- lsos/WelcomeMessage.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" initialize="initApp()">
 <mx:Script><![CDATA[
 public var mySO:SharedObject;
 [Bindable]
 public var welcomeMessage:String;

 public function initApp():void {
 mySO = SharedObject.getLocal("mydata");
 if (mySO.data.visitDate==null) {
 welcomeMessage = "Hello first-timer!"
 } else {
 welcomeMessage = "Welcome back. You last visited on " +
 getVisitDate();
 }
 }

 private function getVisitDate():Date {
 return mySO.data.visitDate;
 }

 private function storeDate():void {
 mySO.data.visitDate = new Date();
 mySO.flush();
 }

 private function deleteLSO():void {
 // Deletes the SharedObject from the client machine.
 // Next time they log in, they will be a 'first-timer'.
 mySO.clear();
 }

]]></mx:Script>
 <mx:Label id="label1" text="{welcomeMessage}"/>
 <mx:Button label="Log Out" click="storeDate()"/>
 <mx:Button label="Delete LSO" click="deleteLSO()"/>
</mx:Application>

Encrypted local storage

The EncryptedLocalStore class (ELS) provides an encrypted local storage mechanism that you can be use as a small

cache for an application's private data. ELS data cannot be shared between applications. The intent of ELS is to allow

an application to store easily recreated items such as login credentials and other private information. ELS data should

not be considered as permanent, as outlined in "Limitations of the encrypted local store" and "Best practices," below.

Note: In addition to the encrypted local store, AIR also provides encryption for content stored in SQL databases. For

details, see “Using encryption with SQL databases” on page 758.

You may want to use the encrypted local store to cache information that must be secured, such as login credentials for

web services. The ELS is appropriate for storing information that must be kept private from other users. It does not,

however, protect the data from other processes run under the same user account. It is thus not appropriate for

protecting secret application data, such as DRM or encryption keys.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/data/EncryptedLocalStore.html

711ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Storing local data

Last updated 10/9/2017

On desktop platforms, AIR uses DPAPI on Windows, KeyChain on Mac OS and iOS, and KeyRing or KWallet on

Linux to associate the encrypted local store to each application and user. The encrypted local store uses AES-CBC 128-

bit encryption.

On Android, the data stored by the EncryptedLocalStorage class are not encrypted. Instead the data is protected by the

user-level security provided by the operating system. The Android operating system assigns every application a

separate user ID. Applications can only access their own files and files created in public locations (such as the

removable storage card). Note that on “rooted” Android devices, applications running with root privileges CAN access

the files of other applications. Thus on a rooted device, the encrypted local store does not provide as high a level of data

protection as it does on on a non-rooted device.

Information in the encrypted local store is only available to AIR application content in the application security

sandbox.

If you update an AIR application, the updated version retains access to any existing data in the encrypted local store

unless:

• The items were added with the stronglyBound parameter set to true

• The existing and update versions are both published prior to AIR 1.5.3 and the update is signed with a migration

signature.

Limitations of the encrypted local store

The data in the encrypted local store is protected by the user’s operating system account credentials. Other entities

cannot access the data in the store unless they can login as that user. However, the data is not secure against access by

other applications run by an authenticated user.

Because the user must be authenticated for these attacks to work, the user’s private data is still protected (unless the

user account itself is compromised). However, data that your application may want to keep secret from users, such as

keys used for licensing or digital rights management, is not secure. Thus the ELS is not an appropriate location for

storing such information. It is only an appropriate place for storing a user’s private data, such as passwords.

Data in the ELS can be lost for a variety of reasons. For example, the user could uninstall the application and delete the

encrypted file. Or, the publisher ID could be changed as a result of an update. Thus the ELS should be treated as a

private cache, not a permanent data storage.

The stronglyBound parameter is deprecated and should not be set to true. Setting the parameter to true does not

provide any additional protection for data. At the same time, access to the data is lost whenever the application is

updated — even if the publisher ID stays the same.

The encrypted local store may perform more slowly if the stored data exceeds 10MB.

When you uninstall an AIR application, the uninstaller does not delete data stored in the encrypted local store.

Best practices

The best practices for using the ELS include:

• Use the ELS to store sensitive user data such as passwords (setting stronglyBound to false)

• Do not use the ELS to store applications secrets such as DRM keys or licensing tokens.

• Provide a way for your application to recreate the data stored in the ELS if the ELS data is lost. For example, by

prompting the user to re-enter their account credentials when necessary.

• Do not use the stronglyBound parameter.

• If you do set stronglyBound to true, do not migrate stored items during an update. Recreate the data after the

update instead.

712ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Storing local data

Last updated 10/9/2017

• Only store relatively small amounts of data. For larger amounts of data, use an AIR SQL database with encryption.

More Help topics

flash.data.EncryptedLocalStore

Adding data to the encrypted local store

Use the setItem() static method of the EncryptedLocalStore class to store data in the local store. The data is stored

in a hash table, using strings as keys, with the data stored as byte arrays.

For example, the following code stores a string in the encrypted local store:

 var str:String = "Bob";
 var bytes:ByteArray = new ByteArray();
 bytes.writeUTFBytes(str);
 EncryptedLocalStore.setItem("firstName", bytes);

The third parameter of the setItem() method, the stronglyBound parameter, is optional. When this parameter is

set to true, the encrypted local store binds the stored item to the storing AIR application’s digital signature and bits:

 var str:String = "Bob";
 var bytes:ByteArray = new ByteArray();
 bytes.writeUTFBytes(str);
 EncryptedLocalStore.setItem("firstName", bytes, false);

For an item that is stored with stronglyBound set to true, subsequent calls to getItem() only succeed if the calling

AIR application is identical to the storing application (if no data in files in the application directory have changed). If

the calling AIR application is different from the storing application, the application throws an Error exception when

you call getItem() for a strongly bound item. If you update your application, it will not be able to read strongly bound

data previously written to the encrypted local store. Setting stronglyBound to true on mobile devices is ignored; the

parameter is always treated as false.

If the stronglyBound parameter is set to false (the default), only the publisher ID needs to stay the same for the

application to read the data. The bits of the application may change (and they need to be signed by the same publisher),

but they do not need to be the exact same bits as were in application that stored the data. Updated applications with

the same publisher ID as the original can continue to access the data.

Note: In practice, setting stronglyBound to true does not add any additional data protection. A “malicious” user could

still alter an application to gain access to items stored in the ELS. Furthermore, data is protected from external, non-user

threats just as strongly whether stronglyBound is set to true or false. For these reasons, setting stronglyBound to

true is discouraged.

Accessing data in the encrypted local store

Adobe AIR 1.0 and later

You can retrieve a value from the encrypted local store by using the EncryptedLocalStore.getItem() method, as

in the following example:

 var storedValue:ByteArray = EncryptedLocalStore.getItem("firstName");
 trace(storedValue.readUTFBytes(storedValue.length)); // "Bob"

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/data/EncryptedLocalStore.html

713ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Storing local data

Last updated 10/9/2017

Removing data from the encrypted local store

Adobe AIR 1.0 and later

You can delete a value from the encrypted local store by using the EncryptedLocalStore.removeItem() method,

as in the following example:

 EncryptedLocalStore.removeItem("firstName");

You can clear all data from the encrypted local store by calling the EncryptedLocalStore.reset() method, as in the

following example:

 EncryptedLocalStore.reset();

714

Last updated 10/9/2017

Chapter 40: Working with local SQL
databases in AIR

Adobe AIR 1.0 and later

Adobe® AIR® includes the capability of creating and working with local SQL databases. The runtime includes a SQL

database engine with support for many standard SQL features, using the open source SQLite database system. A local

SQL database can be used for storing local, persistent data. For example, it can be used for application data, application

user settings, documents, or any other type of data that you want your application to save locally.

About local SQL databases

Adobe AIR 1.0 and later

For a quick explanation and code examples of using SQL databases, see the following quick start articles on the Adobe

Developer Connection:

• Working asynchronously with a local SQL database (Flex)

• Working synchronously with a local SQL database (Flex)

• Using an encrypted database (Flex)

• Working asynchronously with a local SQL database (Flash)

• Working synchronously with a local SQL database (Flash)

• Using an encrypted database (Flash)

Adobe AIR includes a SQL-based relational database engine that runs within the runtime, with data stored locally in

database files on the computer on which the AIR application runs (for example, on the computer’s hard drive). Because

the database runs and data files are stored locally, a database can be used by an AIR application regardless of whether

a network connection is available. Thus, the runtime’s local SQL database engine provides a convenient mechanism

for storing persistent, local application data, particularly if you have experience with SQL and relational databases.

Uses for local SQL databases

Adobe AIR 1.0 and later

The AIR local SQL database functionality can be used for any purpose for which you might want to store application

data on a user’s local computer. Adobe AIR includes several mechanisms for storing data locally, each of which has

different advantages. The following are some possible uses for a local SQL database in your AIR application:

• For a data-oriented application (for example an address book), a database can be used to store the main application data.

• For a document-oriented application, where users create documents to save and possibly share, each document

could be saved as a database file, in a user-designated location. (Note, however, that unless the database is encrypted

any AIR application would be able to open the database file. Encryption is recommended for potentially sensitive

documents.)

http://www.adobe.com/go/learn_air_qs_SQLasynch_en
http://www.adobe.com/go/learn_air_qs_SQLsynch_en
http://www.adobe.com/go/learn_air_qs_encrypteddb_flex_en
http://www.adobe.com/go/learn_air_qs_SQLasynch_flash_en
http://www.adobe.com/go/learn_air_qs_SQLsynch_flash_en
http://www.adobe.com/go/learn_air_qs_encrypteddb_flash_en

715ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

• For a network-aware application, a database can be used to store a local cache of application data, or to store data

temporarily when a network connection isn’t available. You could create a mechanism for synchronizing the local

database with the network data store.

• For any application, a database can be used to store individual users’ application settings, such as user options or

application information like window size and position.

More Help topics

Christophe Coenraets: Employee Directory on AIR for Android

Raymond Camden: jQuery and AIR - Moving from web page to application

About AIR databases and database files

Adobe AIR 1.0 and later

An individual Adobe AIR local SQL database is stored as a single file in the computer’s file system. The runtime

includes the SQL database engine that manages creation and structuring of database files and manipulation and

retrieval of data from a database file. The runtime does not specify how or where database data is stored on the file

system; rather, each database is stored completely within a single file. You specify the location in the file system where

the database file is stored. A single AIR application can access one or many separate databases (that is, separate

database files). Because the runtime stores each database as a single file on the file system, you can locate your database

as needed by the design of your application and file access constraints of the operating system. Each user can have a

separate database file for their specific data, or a database file can be accessed by all application users on a single

computer for shared data. Because the data is local to a single computer, data is not automatically shared among users

on different computers. The local SQL database engine doesn’t provide any capability to execute SQL statements

against a remote or server-based database.

About relational databases

Adobe AIR 1.0 and later

A relational database is a mechanism for storing (and retrieving) data on a computer. Data is organized into tables:

rows represent records or items, and columns (sometimes called “fields”) divide each record into individual values.

For example, an address book application could contain a “friends” table. Each row in the table would represent a

single friend stored in the database. The table’s columns would represent data such as first name, last name, birth date,

and so forth. For each friend row in the table, the database stores a separate value for each column.

Relational databases are designed to store complex data, where one item is associated with or related to items of

another type. In a relational database, any data that has a one-to-many relationship—where a single record can be

related to multiple records of a different type—should be divided among different tables. For example, suppose you

want your address book application to store multiple phone numbers for each friend; this is a one-to-many

relationship. The “friends” table would contain all the personal information for each friend. A separate “phone

numbers” table would contain all the phone numbers for all the friends.

In addition to storing the data about friends and phone numbers, each table would need a piece of data to keep track

of the relationship between the two tables—to match individual friend records with their phone numbers. This data is

known as a primary key—a unique identifier that distinguishes each row in a table from other rows in that table. The

primary key can be a “natural key,” meaning it’s one of the items of data that naturally distinguishes each record in a

table. In the “friends” table, if you knew that none of your friends share a birth date, you could use the birth date

column as the primary key (a natural key) of the “friends” table. If there isn’t a natural key, you would create a separate

primary key column such as a “friend id” —an artificial value that the application uses to distinguish between rows.

http://coenraets.org/blog/air-for-android-samples/employee-directory-for-android/
http://insideria.com/2009/09/jquery-and-air---moving-from-w-1.html

716ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Using a primary key, you can set up relationships between multiple tables. For example, suppose the “friends” table

has a column “friend id” that contains a unique number for each row (each friend). The related “phone numbers” table

can be structured with two columns: one with the “friend id” of the friend to whom the phone number belongs, and

one with the actual phone number. That way, no matter how many phone numbers a single friend has, they can all be

stored in the “phone numbers” table and can be linked to the related friend using the “friend id” primary key. When a

primary key from one table is used in a related table to specify the connection between the records, the value in the

related table is known as a foreign key. Unlike many databases, the AIR local database engine does not allow you to

create foreign key constraints, which are constraints that automatically check that an inserted or updated foreign key

value has a corresponding row in the primary key table. Nevertheless, foreign key relationships are an important part

of the structure of a relational database, and foreign keys should be used when creating relationships between tables in

your database.

About SQL

Adobe AIR 1.0 and later

Structured Query Language (SQL) is used with relational databases to manipulate and retrieve data. SQL is a descriptive

language rather than a procedural language. Instead of giving the computer instructions on how it should retrieve data,

a SQL statement describes the set of data you want. The database engine determines how to retrieve that data.

The SQL language has been standardized by the American National Standards Institute (ANSI). The Adobe AIR local

SQL database supports most of the SQL-92 standard.

For specific descriptions of the SQL language supported in Adobe AIR, see “SQL support in local databases” on

page 1104.

About SQL database classes

Adobe AIR 1.0 and later

To work with local SQL databases in ActionScript 3.0, you use instances of these classes in the flash.data package:

To obtain schema information describing the structure of a database, you use these classes in the flash.data package:

Class Description

flash.data.SQLConnection Provides the means to create and open databases (database files), as well as methods for performing

database-level operations and for controlling database transactions.

flash.data.SQLStatement Represents a single SQL statement (a single query or command) that is executed on a database, including

defining the statement text and setting parameter values.

flash.data.SQLResult Provides a way to get information about or results from executing a statement, such as the result rows from

a SELECT statement, the number of rows affected by an UPDATE or DELETE statement, and so forth.

Class Description

flash.data.SQLSchemaResult Serves as a container for database schema results generated by calling the

SQLConnection.loadSchema() method.

flash.data.SQLTableSchema Provides information describing a single table in a database.

717ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Other classes in the flash.data package provide constants that are used with the SQLConnection class and the

SQLColumnSchema class:

In addition, the following classes in the flash.events package represent the events (and supporting constants) that you use:

Finally, the following classes in the flash.errors package provide information about database operation errors:

About synchronous and asynchronous execution modes

Adobe AIR 1.0 and later

When you’re writing code to work with a local SQL database, you specify that database operations execution in one of

two execution modes: asynchronous or synchronous execution mode. In general, the code examples show how to

perform each operation in both ways, so that you can use the example that’s most appropriate for your needs.

flash.data.SQLViewSchema Provides information describing a single view in a database.

flash.data.SQLIndexSchema Provides information describing a single column of a table or view in a database.

flash.data.SQLTriggerSchem

a

Provides information describing a single trigger in a database.

Class Description

flash.data.SQLMode Defines a set of constants representing the possible values for the openMode parameter of the

SQLConnection.open() and SQLConnection.openAsync() methods.

flash.data.SQLColumnNameStyle Defines a set of constants representing the possible values for the SQLConnection.columnNameStyle

property.

flash.data.SQLTransactionLockType Defines a set of constants representing the possible values for the option parameter of the

SQLConnection.begin() method.

flash.data.SQLCollationType Defines a set of constants representing the possible values for the

SQLColumnSchema.defaultCollationType property and the defaultCollationType parameter

of the SQLColumnSchema() constructor.

Class Description

flash.events.SQLEvent Defines the events that a SQLConnection or SQLStatement instance dispatches when any of its operations

execute successfully. Each operation has an associated event type constant defined in the SQLEvent class.

flash.events.SQLErrorEvent Defines the event that a SQLConnection or SQLStatement instance dispatches when any of its operations

results in an error.

flash.events.SQLUpdateEven

t

Defines the event that a SQLConnection instances dispatches when table data in one of its connected

databases changes as a result of an INSERT, UPDATE, or DELETE SQL statement being executed.

Class Description

flash.errors.SQLError Provides information about a database operation error, including the operation that was being attempted

and the cause of the failure.

flash.errors.SQLErrorOperati

on

Defines a set of constants representing the possible values for the SQLError class’s operation property,

which indicates the database operation that resulted in an error.

Class Description

718ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

In asynchronous execution mode, you give the runtime an instruction and the runtime dispatches an event when your

requested operation completes or fails. First you tell the database engine to perform an operation. The database engine

does its work in the background while the application continues running. Finally, when the operation is completed (or

when it fails) the database engine dispatches an event. Your code, triggered by the event, carries out subsequent

operations. This approach has a significant benefit: the runtime performs the database operations in the background

while the main application code continues executing. If the database operation takes a notable amount of time, the

application continues to run. Most importantly, the user can continue to interact with it without the screen freezing.

Nevertheless, asynchronous operation code can be more complex to write than other code. This complexity is usually

in cases where multiple dependent operations must be divided up among various event listener methods.

Conceptually, it is simpler to code operations as a single sequence of steps—a set of synchronous operations—rather

than a set of operations split into several event listener methods. In addition to asynchronous database operations,

Adobe AIR also allows you to execute database operations synchronously. In synchronous execution mode, operations

don’t run in the background. Instead they run in the same execution sequence as all other application code. You tell

the database engine to perform an operation. The code then pauses at that point while the database engine does its

work. When the operation completes, execution continues with the next line of your code.

Whether operations execute asynchronously or synchronously is set at the SQLConnection level. Using a single

database connection, you can’t execute some operations or statements synchronously and others asynchronously. You

specify whether a SQLConnection operates in synchronous or asynchronous execution mode by calling a

SQLConnection method to open the database. If you call SQLConnection.open() the connection operates in

synchronous execution mode, and if you call SQLConnection.openAsync() the connection operates in

asynchronous execution mode. Once a SQLConnection instance is connected to a database using open() or

openAsync(), it is fixed to synchronous or asynchronous execution mode unless you close and reopen the connection

to the database.

Each execution mode has benefits. While most aspects of each mode are similar, there are some differences you’ll want

to keep in mind when working in each mode. For more information on these topics, and suggestions for working in

each mode, see “Using synchronous and asynchronous database operations” on page 753.

Creating and modifying a database

Adobe AIR 1.0 and later

Before your application can add or retrieve data, there must be a database with tables defined in it that your application

can access. Described here are the tasks of creating a database and creating the data structure within a database. While

these tasks are less frequently used than data insertion and retrieval, they are necessary for most applications.

More Help topics

Mind the Flex: Updating an existing AIR database

http://www.mindtheflex.com/?p=83

719ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Creating a database

Adobe AIR 1.0 and later

To create a database file, you first create a SQLConnection instance. You call its open() method to open it in

synchronous execution mode, or its openAsync() method to open it in asynchronous execution mode. The open()

and openAsync() methods are used to open a connection to a database. If you pass a File instance that refers to a non-

existent file location for the reference parameter (the first parameter), the open() or openAsync() method creates

a database file at that file location and open a connection to the newly created database.

Whether you call the open() method or the openAsync() method to create a database, the database file’s name can

be any valid filename, with any filename extension. If you call the open() or openAsync() method with null for the

reference parameter, a new in-memory database is created rather than a database file on disk.

The following code listing shows the process of creating a database file (a new database) using asynchronous execution

mode. In this case, the database file is saved in the “Pointing to the application storage directory” on page 672, with the

filename “DBSample.db”:

import flash.data.SQLConnection;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;
import flash.filesystem.File;

var conn:SQLConnection = new SQLConnection();

conn.addEventListener(SQLEvent.OPEN, openHandler);
conn.addEventListener(SQLErrorEvent.ERROR, errorHandler);

// The database file is in the application storage directory
var folder:File = File.applicationStorageDirectory;
var dbFile:File = folder.resolvePath("DBSample.db");

conn.openAsync(dbFile);

function openHandler(event:SQLEvent):void
{

trace("the database was created successfully");
}

function errorHandler(event:SQLErrorEvent):void
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}

720ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" creationComplete="init()">

<mx:Script>
<![CDATA[

import flash.data.SQLConnection;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;
import flash.filesystem.File;

private function init():void
{

var conn:SQLConnection = new SQLConnection();

conn.addEventListener(SQLEvent.OPEN, openHandler);
conn.addEventListener(SQLErrorEvent.ERROR, errorHandler);

// The database file is in the application storage directory
var folder:File = File.applicationStorageDirectory;
var dbFile:File = folder.resolvePath("DBSample.db");

conn.openAsync(dbFile);

}

private function openHandler(event:SQLEvent):void
{

trace("the database was created successfully");
}

private function errorHandler(event:SQLErrorEvent):void
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}
]]>

</mx:Script>
</mx:WindowedApplication>

Note: Although the File class lets you point to a specific native file path, doing so can lead to applications that will not

work across platforms. For example, the path C:\Documents and Settings\joe\test.db only works on Windows. For these

reasons, it is best to use the static properties of the File class such as File.applicationStorageDirectory, as well as

the resolvePath() method (as shown in the previous example). For more information, see “Paths of File objects” on

page 668.

To execute operations synchronously, when you open a database connection with the SQLConnection instance, call

the open() method. The following example shows how to create and open a SQLConnection instance that executes its

operations synchronously:

721ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

import flash.data.SQLConnection;
import flash.errors.SQLError;
import flash.filesystem.File;

var conn:SQLConnection = new SQLConnection();

// The database file is in the application storage directory
var folder:File = File.applicationStorageDirectory;
var dbFile:File = folder.resolvePath("DBSample.db");

try
{

conn.open(dbFile);
trace("the database was created successfully");

}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" creationComplete="init()">

<mx:Script>
<![CDATA[

import flash.data.SQLConnection;
import flash.errors.SQLError;
import flash.filesystem.File;

private function init():void
{

var conn:SQLConnection = new SQLConnection();

// The database file is in the application storage directory
var folder:File = File.applicationStorageDirectory;
var dbFile:File = folder.resolvePath("DBSample.db");

try
{

conn.open(dbFile);
trace("the database was created successfully");

}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}
}

]]>
</mx:Script>

</mx:WindowedApplication>

722ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Creating database tables

Adobe AIR 1.0 and later

Creating a table in a database involves executing a SQL statement on that database, using the same process that you

use to execute a SQL statement such as SELECT, INSERT, and so forth. To create a table, you use a CREATE TABLE

statement, which includes definitions of columns and constraints for the new table. For more information about

executing SQL statements, see “Working with SQL statements” on page 729.

The following example demonstrates creating a table named “employees” in an existing database file, using

asynchronous execution mode. Note that this code assumes there is a SQLConnection instance named conn that is

already instantiated and is already connected to a database.

import flash.data.SQLConnection;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

// ... create and open the SQLConnection instance named conn ...

var createStmt:SQLStatement = new SQLStatement();
createStmt.sqlConnection = conn;

var sql:String =

"CREATE TABLE IF NOT EXISTS employees (" +
" empId INTEGER PRIMARY KEY AUTOINCREMENT, " +
" firstName TEXT, " +
" lastName TEXT, " +
" salary NUMERIC CHECK (salary > 0)" +
")";

createStmt.text = sql;

createStmt.addEventListener(SQLEvent.RESULT, createResult);
createStmt.addEventListener(SQLErrorEvent.ERROR, createError);

createStmt.execute();

function createResult(event:SQLEvent):void
{

trace("Table created");
}

function createError(event:SQLErrorEvent):void
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}

723ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" creationComplete="init()">

<mx:Script>
<![CDATA[

import flash.data.SQLConnection;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

private function init():void
{

// ... create and open the SQLConnection instance named conn ...

var createStmt:SQLStatement = new SQLStatement();
createStmt.sqlConnection = conn;

var sql:String =

"CREATE TABLE IF NOT EXISTS employees (" +
" empId INTEGER PRIMARY KEY AUTOINCREMENT, " +
" firstName TEXT, " +
" lastName TEXT, " +
" salary NUMERIC CHECK (salary > 0)" +
")";

createStmt.text = sql;

createStmt.addEventListener(SQLEvent.RESULT, createResult);
createStmt.addEventListener(SQLErrorEvent.ERROR, createError);

createStmt.execute();

}

private function createResult(event:SQLEvent):void
{

trace("Table created");
}

private function createError(event:SQLErrorEvent):void
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}
]]>

</mx:Script>
</mx:WindowedApplication>

The following example demonstrates how to create a table named “employees” in an existing database file, using

synchronous execution mode. Note that this code assumes there is a SQLConnection instance named conn that is

already instantiated and is already connected to a database.

724ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

import flash.data.SQLConnection;
import flash.data.SQLStatement;
import flash.errors.SQLError;

// ... create and open the SQLConnection instance named conn ...

var createStmt:SQLStatement = new SQLStatement();
createStmt.sqlConnection = conn;

var sql:String =

"CREATE TABLE IF NOT EXISTS employees (" +
" empId INTEGER PRIMARY KEY AUTOINCREMENT, " +
" firstName TEXT, " +
" lastName TEXT, " +
" salary NUMERIC CHECK (salary > 0)" +
")";

createStmt.text = sql;

try
{

createStmt.execute();
trace("Table created");

}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}

725ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" creationComplete="init()">

<mx:Script>
<![CDATA[

import flash.data.SQLConnection;
import flash.data.SQLStatement;
import flash.errors.SQLError;

private function init():void
{

// ... create and open the SQLConnection instance named conn ...

var createStmt:SQLStatement = new SQLStatement();
createStmt.sqlConnection = conn;

var sql:String =

"CREATE TABLE IF NOT EXISTS employees (" +
" empId INTEGER PRIMARY KEY AUTOINCREMENT, " +
" firstName TEXT, " +
" lastName TEXT, " +
" salary NUMERIC CHECK (salary > 0)" +
")";

createStmt.text = sql;

try
{

createStmt.execute();
trace("Table created");

}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}
}

]]>
</mx:Script>

</mx:WindowedApplication>

Manipulating SQL database data

Adobe AIR 1.0 and later

There are some common tasks that you perform when you’re working with local SQL databases. These tasks include

connecting to a database, adding data to tables, and retrieving data from tables in a database. There are also several

issues you’ll want to keep in mind while performing these tasks, such as working with data types and handling errors.

Note that there are also several database tasks that are things you’ll deal with less frequently, but will often need to do

before you can perform these more common tasks. For example, before you can connect to a database and retrieve data

from a table, you’ll need to create the database and create the table structure in the database. Those less-frequent initial

setup tasks are discussed in “Creating and modifying a database” on page 718.

726ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

You can choose to perform database operations asynchronously, meaning the database engine runs in the background

and notifies you when the operation succeeds or fails by dispatching an event. You can also perform these operations

synchronously. In that case the database operations are performed one after another and the entire application

(including updates to the screen) waits for the operations to complete before executing other code. For more

information on working in asynchronous or synchronous execution mode, see “Using synchronous and asynchronous

database operations” on page 753.

Connecting to a database

Adobe AIR 1.0 and later

Before you can perform any database operations, first open a connection to the database file. A SQLConnection

instance is used to represent a connection to one or more databases. The first database that is connected using a

SQLConnection instance is known as the “main” database. This database is connected using the open() method (for

synchronous execution mode) or the openAsync() method (for asynchronous execution mode).

If you open a database using the asynchronous openAsync() operation, register for the SQLConnection instance’s

open event in order to know when the openAsync() operation completes. Register for the SQLConnection instance’s

error event to determine if the operation fails.

The following example shows how to open an existing database file for asynchronous execution. The database file is

named “DBSample.db” and is located in the user’s “Pointing to the application storage directory” on page 672.

import flash.data.SQLConnection;
import flash.data.SQLMode;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;
import flash.filesystem.File;

var conn:SQLConnection = new SQLConnection();

conn.addEventListener(SQLEvent.OPEN, openHandler);
conn.addEventListener(SQLErrorEvent.ERROR, errorHandler);

// The database file is in the application storage directory
var folder:File = File.applicationStorageDirectory;
var dbFile:File = folder.resolvePath("DBSample.db");

conn.openAsync(dbFile, SQLMode.UPDATE);

function openHandler(event:SQLEvent):void
{

trace("the database opened successfully");
}

function errorHandler(event:SQLErrorEvent):void
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}

727ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" creationComplete="init()">

<mx:Script>
<![CDATA[

import flash.data.SQLConnection;
import flash.data.SQLMode;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;
import flash.filesystem.File;

private function init():void
{

var conn:SQLConnection = new SQLConnection();

conn.addEventListener(SQLEvent.OPEN, openHandler);
conn.addEventListener(SQLErrorEvent.ERROR, errorHandler);

// The database file is in the application storage directory
var folder:File = File.applicationStorageDirectory;
var dbFile:File = folder.resolvePath("DBSample.db");

conn.openAsync(dbFile, SQLMode.UPDATE);

}

private function openHandler(event:SQLEvent):void
{

trace("the database opened successfully");
}

private function errorHandler(event:SQLErrorEvent):void
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}
]]>

</mx:Script>
</mx:WindowedApplication>

The following example shows how to open an existing database file for synchronous execution. The database file is

named “DBSample.db” and is located in the user’s “Pointing to the application storage directory” on page 672.

728ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

import flash.data.SQLConnection;
import flash.data.SQLMode;
import flash.errors.SQLError;
import flash.filesystem.File;

var conn:SQLConnection = new SQLConnection();

// The database file is in the application storage directory
var folder:File = File.applicationStorageDirectory;
var dbFile:File = folder.resolvePath("DBSample.db");

try
{

conn.open(dbFile, SQLMode.UPDATE);
trace("the database opened successfully");

}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" creationComplete="init()">

<mx:Script>
<![CDATA[

import flash.data.SQLConnection;
import flash.data.SQLMode;
import flash.errors.SQLError;
import flash.filesystem.File;

private function init():void
{

var conn:SQLConnection = new SQLConnection();

// The database file is in the application storage directory
var folder:File = File.applicationStorageDirectory;
var dbFile:File = folder.resolvePath("DBSample.db");

try
{

conn.open(dbFile, SQLMode.UPDATE);
trace("the database opened successfully");

}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}
}

]]>
</mx:Script>

</mx:WindowedApplication>

729ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Notice that in the openAsync() method call in the asynchronous example, and the open() method call in the

synchronous example, the second argument is the constant SQLMode.UPDATE. Specifying SQLMode.UPDATE for the

second parameter (openMode) causes the runtime to dispatch an error if the specified file doesn’t exist. If you pass

SQLMode.CREATE for the openMode parameter (or if you leave the openMode parameter off), the runtime attempts to

create a database file if the specified file doesn’t exist. However, if the file exists it is opened, which is the same as if you

use SQLMode.Update. You can also specify SQLMode.READ for the openMode parameter to open an existing database

in a read-only mode. In that case data can be retrieved from the database but no data can be added, deleted, or changed.

Working with SQL statements

Adobe AIR 1.0 and later

An individual SQL statement (a query or command) is represented in the runtime as a SQLStatement object. Follow

these steps to create and execute a SQL statement:

Create a SQLStatement instance.

The SQLStatement object represents the SQL statement in your application.

var selectData:SQLStatement = new SQLStatement();

Specify which database the query runs against.

To do this, set the SQLStatement object’s sqlConnection property to the SQLConnection instance that’s connected

with the desired database.

// A SQLConnection named "conn" has been created previously
selectData.sqlConnection = conn;

Specify the actual SQL statement.

Create the statement text as a String and assign it to the SQLStatement instance’s text property.

selectData.text = "SELECT col1, col2 FROM my_table WHERE col1 = :param1";

Define functions to handle the result of the execute operation (asynchronous execution mode only).

Use the addEventListener() method to register functions as listeners for the SQLStatement instance’s result and

error events.

// using listener methods and addEventListener()

selectData.addEventListener(SQLEvent.RESULT, resultHandler);
selectData.addEventListener(SQLErrorEvent.ERROR, errorHandler);

function resultHandler(event:SQLEvent):void
{

// do something after the statement execution succeeds
}

function errorHandler(event:SQLErrorEvent):void
{

// do something after the statement execution fails
}

Alternatively, you can specify listener methods using a Responder object. In that case you create the Responder

instance and link the listener methods to it.

730ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

// using a Responder (flash.net.Responder)

var selectResponder = new Responder(onResult, onError);

function onResult(result:SQLResult):void
{

// do something after the statement execution succeeds
}

function onError(error:SQLError):void
{

// do something after the statement execution fails
}

If the statement text includes parameter definitions, assign values for those parameters.

To assign parameter values, use the SQLStatement instance’s parameters associative array property.

selectData.parameters[":param1"] = 25;

Execute the SQL statement.

Call the SQLStatement instance’s execute() method.

// using synchronous execution mode
// or listener methods in asynchronous execution mode
selectData.execute();

Additionally, if you’re using a Responder instead of event listeners in asynchronous execution mode, pass the

Responder instance to the execute() method.

// using a Responder in asynchronous execution mode
selectData.execute(-1, selectResponder);

For specific examples that demonstrate these steps, see the following topics:

“Retrieving data from a database” on page 733

“Inserting data” on page 743

“Changing or deleting data” on page 749

Using parameters in statements

Adobe AIR 1.0 and later

Using SQL statement parameters allows you to create a reusable SQL statement. When you use statement parameters,

values within the statement can change (such as values being added in an INSERT statement) but the basic statement

text remains unchanged. Consequently, using parameters provides performance benefits and makes it easier to code

an application.

731ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Understanding statement parameters

Adobe AIR 1.0 and later

Frequently an application uses a single SQL statement multiple times in an application, with slight variation. For

example, consider an inventory-tracking application where a user can add new inventory items to the database. The

application code that adds an inventory item to the database executes a SQL INSERT statement that actually adds the

data to the database. However, each time the statement is executed there is a slight variation. Specifically, the actual

values that are inserted in the table are different because they are specific to the inventory item being added.

In cases where you have a SQL statement that’s used multiple times with different values in the statement, the best

approach is to use a SQL statement that includes parameters rather than literal values in the SQL text. A parameter is

a placeholder in the statement text that is replaced with an actual value each time the statement is executed. To use

parameters in a SQL statement, you create the SQLStatement instance as usual. For the actual SQL statement assigned

to the text property, use parameter placeholders rather than literal values. You then define the value for each

parameter by setting the value of an element in the SQLStatement instance’s parameters property. The parameters

property is an associative array, so you set a particular value using the following syntax:

statement.parameters[parameter_identifier] = value;

The parameter_identifier is a string if you’re using a named parameter, or an integer index if you’re using an unnamed

parameter.

Using named parameters

Adobe AIR 1.0 and later

A parameter can be a named parameter. A named parameter has a specific name that the database uses to match the

parameter value to its placeholder location in the statement text. A parameter name consists of the “:” or “@” character

followed by a name, as in the following examples:

:itemName
@firstName

The following code listing demonstrates the use of named parameters:

var sql:String =
"INSERT INTO inventoryItems (name, productCode)" +
"VALUES (:name, :productCode)";

var addItemStmt:SQLStatement = new SQLStatement();
addItemStmt.sqlConnection = conn;
addItemStmt.text = sql;

// set parameter values
addItemStmt.parameters[":name"] = "Item name";
addItemStmt.parameters[":productCode"] = "12345";

addItemStmt.execute();

732ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Using unnamed parameters

Adobe AIR 1.0 and later

As an alternative to using named parameters, you can also use unnamed parameters. To use an unnamed parameter

you denote a parameter in a SQL statement using a “?” character. Each parameter is assigned a numeric index,

according to the order of the parameters in the statement, starting with index 0 for the first parameter. The following

example demonstrates a version of the previous example, using unnamed parameters:

var sql:String =
"INSERT INTO inventoryItems (name, productCode)" +
"VALUES (?, ?)";

var addItemStmt:SQLStatement = new SQLStatement();
addItemStmt.sqlConnection = conn;
addItemStmt.text = sql;

// set parameter values
addItemStmt.parameters[0] = "Item name";
addItemStmt.parameters[1] = "12345";

addItemStmt.execute();

Benefits of using parameters

Adobe AIR 1.0 and later

Using parameters in a SQL statement provides several benefits:

Better performance A SQLStatement instance that uses parameters can execute more efficiently compared to one that

dynamically creates the SQL text each time it executes. The performance improvement is because the statement is

prepared a single time and can then be executed multiple times using different parameter values, without needing to

recompile the SQL statement.

Explicit data typing Parameters are used to allow for typed substitution of values that are unknown at the time the SQL

statement is constructed. The use of parameters is the only way to guarantee the storage class for a value passed in to

the database. When parameters are not used, the runtime attempts to convert all values from their text representation

to a storage class based on the associated column's type affinity.

For more information on storage classes and column affinity, see “Data type support” on page 1125.

Greater security The use of parameters helps prevent a malicious technique known as a SQL injection attack. In a SQL

injection attack, a user enters SQL code in a user-accessible location (for example, a data entry field). If application

code constructs a SQL statement by directly concatenating user input into the SQL text, the user-entered SQL code is

executed against the database. The following listing shows an example of concatenating user input into SQL text. Do

not use this technique:

733ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

// assume the variables "username" and "password"
// contain user-entered data

var sql:String =

"SELECT userId " +
"FROM users " +
"WHERE username = '" + username + "' " +
" AND password = '" + password + "'";

var statement:SQLStatement = new SQLStatement();
statement.text = sql;

Using statement parameters instead of concatenating user-entered values into a statement's text prevents a SQL

injection attack. SQL injection can’t happen because the parameter values are treated explicitly as substituted values,

rather than becoming part of the literal statement text. The following is the recommended alternative to the previous

listing:

// assume the variables "username" and "password"
// contain user-entered data

var sql:String =

"SELECT userId " +
"FROM users " +
"WHERE username = :username " +
" AND password = :password";

var statement:SQLStatement = new SQLStatement();
statement.text = sql;

// set parameter values
statement.parameters[":username"] = username;
statement.parameters[":password"] = password;

Retrieving data from a database

Adobe AIR 1.0 and later

Retrieving data from a database involves two steps. First, you execute a SQL SELECT statement, describing the set of

data you want from the database. Next, you access the retrieved data and display or manipulate it as needed by your

application.

Executing a SELECT statement

Adobe AIR 1.0 and later

To retrieve existing data from a database, you use a SQLStatement instance. Assign the appropriate SQL SELECT

statement to the instance’s text property, then call its execute() method.

For details on the syntax of the SELECT statement, see “SQL support in local databases” on page 1104.

The following example demonstrates executing a SELECT statement to retrieve data from a table named “products,”

using asynchronous execution mode:

734ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

var selectStmt:SQLStatement = new SQLStatement();

// A SQLConnection named "conn" has been created previously
selectStmt.sqlConnection = conn;

selectStmt.text = "SELECT itemId, itemName, price FROM products";

selectStmt.addEventListener(SQLEvent.RESULT, resultHandler);
selectStmt.addEventListener(SQLErrorEvent.ERROR, errorHandler);

selectStmt.execute();

function resultHandler(event:SQLEvent):void
{

var result:SQLResult = selectStmt.getResult();

var numResults:int = result.data.length;
for (var i:int = 0; i < numResults; i++)
{

var row:Object = result.data[i];
var output:String = "itemId: " + row.itemId;
output += "; itemName: " + row.itemName;
output += "; price: " + row.price;
trace(output);

}
}

function errorHandler(event:SQLErrorEvent):void
{

// Information about the error is available in the
// event.error property, which is an instance of
// the SQLError class.

}

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" creationComplete="init()">

<mx:Script>
<![CDATA[

import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.errors.SQLError;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

private function init():void
{

var selectStmt:SQLStatement = new SQLStatement();

// A SQLConnection named "conn" has been created previously
selectStmt.sqlConnection = conn;

selectStmt.text = "SELECT itemId, itemName, price FROM products";

selectStmt.addEventListener(SQLEvent.RESULT, resultHandler);
selectStmt.addEventListener(SQLErrorEvent.ERROR, errorHandler);

735ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

selectStmt.execute();
}

private function resultHandler(event:SQLEvent):void
{

var result:SQLResult = selectStmt.getResult();

var numResults:int = result.data.length;
for (var i:int = 0; i < numResults; i++)
{

var row:Object = result.data[i];
var output:String = "itemId: " + row.itemId;
output += "; itemName: " + row.itemName;
output += "; price: " + row.price;
trace(output);

}
}

private function errorHandler(event:SQLErrorEvent):void
{

// Information about the error is available in the
// event.error property, which is an instance of
// the SQLError class.

}
]]>

</mx:Script>
</mx:WindowedApplication>

The following example demonstrates executing a SELECT statement to retrieve data from a table named “products,”

using synchronous execution mode:

736ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

var selectStmt:SQLStatement = new SQLStatement();

// A SQLConnection named "conn" has been created previously
selectStmt.sqlConnection = conn;

selectStmt.text = "SELECT itemId, itemName, price FROM products";

try
{

selectStmt.execute();

var result:SQLResult = selectStmt.getResult();

var numResults:int = result.data.length;
for (var i:int = 0; i < numResults; i++)
{

var row:Object = result.data[i];
var output:String = "itemId: " + row.itemId;
output += "; itemName: " + row.itemName;
output += "; price: " + row.price;
trace(output);

}
}
catch (error:SQLError)
{

// Information about the error is available in the
// error variable, which is an instance of
// the SQLError class.

}

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" creationComplete="init()">

<mx:Script>
<![CDATA[

import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.errors.SQLError;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

private function init():void
{

var selectStmt:SQLStatement = new SQLStatement();

// A SQLConnection named "conn" has been created previously
selectStmt.sqlConnection = conn;

selectStmt.text = "SELECT itemId, itemName, price FROM products";

try
{

selectStmt.execute();

var result:SQLResult = selectStmt.getResult();

737ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

var numResults:int = result.data.length;
for (var i:int = 0; i < numResults; i++)
{

var row:Object = result.data[i];
var output:String = "itemId: " + row.itemId;
output += "; itemName: " + row.itemName;
output += "; price: " + row.price;
trace(output);

}
}
catch (error:SQLError)
{

// Information about the error is available in the
// error variable, which is an instance of
// the SQLError class.

}
}

]]>
</mx:Script>

</mx:WindowedApplication>

In asynchronous execution mode, when the statement finishes executing, the SQLStatement instance dispatches a

result event (SQLEvent.RESULT) indicating that the statement was run successfully. Alternatively, if a Responder

object is passed as an argument to the execute() method, the Responder object’s result handler function is called. In

synchronous execution mode, execution pauses until the execute() operation completes, then continues on the next

line of code.

Accessing SELECT statement result data

Adobe AIR 1.0 and later

Once the SELECT statement has finished executing, the next step is to access the data that was retrieved. You retrieve

the result data from executing a SELECT statement by calling the SQLStatement object’s getResult() method:

var result:SQLResult = selectStatement.getResult();

The getResult() method returns a SQLResult object. The SQLResult object’s data property is an Array containing

the results of the SELECT statement:

var numResults:int = result.data.length;
for (var i:int = 0; i < numResults; i++)
{

// row is an Object representing one row of result data
var row:Object = result.data[i];

}

Each row of data in the SELECT result set becomes an Object instance contained in the data Array. That object has

properties whose names match the result set’s column names. The properties contain the values from the result set’s

columns. For example, suppose a SELECT statement specifies a result set with three columns named “itemId,”

“itemName,” and “price.” For each row in the result set, an Object instance is created with properties named itemId,

itemName, and price. Those properties contain the values from their respective columns.

738ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

The following code listing defines a SQLStatement instance whose text is a SELECT statement. The statement retrieves

rows containing the firstName and lastName column values of all the rows of a table named employees. This

example uses asynchronous execution mode. When the execution completes, the selectResult() method is called,

and the resulting rows of data are accessed using SQLStatement.getResult() and displayed using the trace()

method. Note that this listing assumes there is a SQLConnection instance named conn that has already been

instantiated and is already connected to the database. It also assumes that the “employees” table has already been

created and populated with data.

import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var selectStmt:SQLStatement = new SQLStatement();
selectStmt.sqlConnection = conn;

// define the SQL text
var sql:String =

"SELECT firstName, lastName " +
"FROM employees";

selectStmt.text = sql;

// register listeners for the result and error events
selectStmt.addEventListener(SQLEvent.RESULT, selectResult);
selectStmt.addEventListener(SQLErrorEvent.ERROR, selectError);

// execute the statement
selectStmt.execute();

function selectResult(event:SQLEvent):void
{

// access the result data
var result:SQLResult = selectStmt.getResult();

var numRows:int = result.data.length;
for (var i:int = 0; i < numRows; i++)
{

var output:String = "";
for (var columnName:String in result.data[i])
{

output += columnName + ": " + result.data[i][columnName] + "; ";
}
trace("row[" + i.toString() + "]\t", output);

}
}

function selectError(event:SQLErrorEvent):void
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}

739ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" creationComplete="init()">

<mx:Script>
<![CDATA[

import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

private function init():void
{

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var selectStmt:SQLStatement = new SQLStatement();
selectStmt.sqlConnection = conn;

// define the SQL text
var sql:String =

"SELECT firstName, lastName " +
"FROM employees";

selectStmt.text = sql;

// register listeners for the result and error events
selectStmt.addEventListener(SQLEvent.RESULT, selectResult);
selectStmt.addEventListener(SQLErrorEvent.ERROR, selectError);

// execute the statement
selectStmt.execute();

}

private function selectResult(event:SQLEvent):void
{

// access the result data
var result:SQLResult = selectStmt.getResult();

var numRows:int = result.data.length;
for (var i:int = 0; i < numRows; i++)
{

var output:String = "";
for (var columnName:String in result.data[i])
{

output += columnName + ": " + result.data[i][columnName] + "; ";
}
trace("row[" + i.toString() + "]\t", output);

}
}

private function selectError(event:SQLErrorEvent):void
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}
]]>

</mx:Script>
</mx:WindowedApplication>

740ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

The following code listing demonstrates the same techniques as the preceding one, but uses synchronous execution

mode. The example defines a SQLStatement instance whose text is a SELECT statement. The statement retrieves rows

containing the firstName and lastName column values of all the rows of a table named employees. The resulting

rows of data are accessed using SQLStatement.getResult() and displayed using the trace() method. Note that this

listing assumes there is a SQLConnection instance named conn that has already been instantiated and is already

connected to the database. It also assumes that the “employees” table has already been created and populated with data.

import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.errors.SQLError;

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var selectStmt:SQLStatement = new SQLStatement();
selectStmt.sqlConnection = conn;

// define the SQL text
var sql:String =

"SELECT firstName, lastName " +
"FROM employees";

selectStmt.text = sql;

try
{

// execute the statement
selectStmt.execute();

// access the result data
var result:SQLResult = selectStmt.getResult();

var numRows:int = result.data.length;
for (var i:int = 0; i < numRows; i++)
{

var output:String = "";
for (var columnName:String in result.data[i])
{

output += columnName + ": " + result.data[i][columnName] + "; ";
}
trace("row[" + i.toString() + "]\t", output);

}
}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}

741ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" creationComplete="init()">

<mx:Script>
<![CDATA[

import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.errors.SQLError;

private function init():void
{

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var selectStmt:SQLStatement = new SQLStatement();
selectStmt.sqlConnection = conn;

// define the SQL text
var sql:String =

"SELECT firstName, lastName " +
"FROM employees";

selectStmt.text = sql;

try
{

// execute the statement
selectStmt.execute();

// access the result data
var result:SQLResult = selectStmt.getResult();

var numRows:int = result.data.length;
for (var i:int = 0; i < numRows; i++)
{

var output:String = "";
for (var columnName:String in result.data[i])
{

output += columnName + ": ";
output += result.data[i][columnName] + "; ";

}
trace("row[" + i.toString() + "]\t", output);

}
}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}
}

]]>
</mx:Script>

</mx:WindowedApplication>

742ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Defining the data type of SELECT result data

Adobe AIR 1.0 and later

By default, each row returned by a SELECT statement is created as an Object instance with properties named for the

result set's column names and with the value of each column as the value of its associated property. However, before

executing a SQL SELECT statement, you can set the itemClass property of the SQLStatement instance to a class. By

setting the itemClass property, each row returned by the SELECT statement is created as an instance of the designated

class. The runtime assigns result column values to property values by matching the column names in the SELECT result

set to the names of the properties in the itemClass class.

Any class assigned as an itemClass property value must have a constructor that does not require any parameters. In

addition, the class must have a single property for each column returned by the SELECT statement. It is considered an

error if a column in the SELECT list does not have a matching property name in the itemClass class.

Retrieving SELECT results in parts

Adobe AIR 1.0 and later

By default, a SELECT statement execution retrieves all the rows of the result set at one time. Once the statement

completes, you usually process the retrieved data in some way, such as creating objects or displaying the data on the

screen. If the statement returns a large number of rows, processing all the data at once can be demanding for the

computer, which in turn will cause the user interface to not redraw itself.

You can improve the perceived performance of your application by instructing the runtime to return a specific number

of result rows at a time. Doing so causes the initial result data to return more quickly. It also allows you to divide the

result rows into sets, so that the user interface is updated after each set of rows is processed. Note that it’s only practical

to use this technique in asynchronous execution mode.

To retrieve SELECT results in parts, specify a value for the SQLStatement.execute() method’s first parameter (the

prefetch parameter). The prefetch parameter indicates the number of rows to retrieve the first time the statement

executes. When you call a SQLStatement instance’s execute() method, specify a prefetch parameter value and only

that many rows are retrieved:

var stmt:SQLStatement = new SQLStatement();
stmt.sqlConnection = conn;

stmt.text = "SELECT ...";

stmt.addEventListener(SQLEvent.RESULT, selectResult);

stmt.execute(20); // only the first 20 rows (or fewer) are returned

The statement dispatches the result event, indicating that the first set of result rows is available. The resulting

SQLResult instance’s data property contains the rows of data, and its complete property indicates whether there are

additional result rows to retrieve. To retrieve additional result rows, call the SQLStatement instance’s next() method.

Like the execute() method, the next() method’s first parameter is used to indicate how many rows to retrieve the

next time the result event is dispatched.

743ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

function selectResult(event:SQLEvent):void
{

var result:SQLResult = stmt.getResult();
if (result.data != null)
{

// ... loop through the rows or perform other processing ...

if (!result.complete)
{

stmt.next(20); // retrieve the next 20 rows
}
else
{

stmt.removeEventListener(SQLEvent.RESULT, selectResult);
}

}
}

The SQLStatement dispatches a result event each time the next() method returns a subsequent set of result rows.

Consequently, the same listener function can be used to continue processing results (from next() calls) until all the

rows are retrieved.

For more information, see the descriptions for the SQLStatement.execute() method (the prefetch parameter

description) and the SQLStatement.next() method.

Inserting data

Adobe AIR 1.0 and later

Adding data to a database involves executing a SQL INSERT statement. Once the statement has finished executing, you

can access the primary key for the newly inserted row if the key was generated by the database.

Executing an INSERT statement

Adobe AIR 1.0 and later

To add data to a table in a database, you create and execute a SQLStatement instance whose text is a SQL INSERT

statement.

The following example uses a SQLStatement instance to add a row of data to the already-existing employees table. This

example demonstrates inserting data using asynchronous execution mode. Note that this listing assumes that there is

a SQLConnection instance named conn that has already been instantiated and is already connected to a database. It

also assumes that the “employees” table has already been created.

744ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var insertStmt:SQLStatement = new SQLStatement();
insertStmt.sqlConnection = conn;

// define the SQL text
var sql:String =

"INSERT INTO employees (firstName, lastName, salary) " +
"VALUES ('Bob', 'Smith', 8000)";

insertStmt.text = sql;

// register listeners for the result and failure (status) events
insertStmt.addEventListener(SQLEvent.RESULT, insertResult);
insertStmt.addEventListener(SQLErrorEvent.ERROR, insertError);

// execute the statement
insertStmt.execute();

function insertResult(event:SQLEvent):void
{

trace("INSERT statement succeeded");
}

function insertError(event:SQLErrorEvent):void
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" creationComplete="init()">

<mx:Script>
<![CDATA[

import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;

private function init():void
{

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var insertStmt:SQLStatement = new SQLStatement();
insertStmt.sqlConnection = conn;

// define the SQL text
var sql:String =

"INSERT INTO employees (firstName, lastName, salary) " +

745ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

"VALUES ('Bob', 'Smith', 8000)";
insertStmt.text = sql;

// register listeners for the result and failure (status) events
insertStmt.addEventListener(SQLEvent.RESULT, insertResult);
insertStmt.addEventListener(SQLErrorEvent.ERROR, insertError);

// execute the statement
insertStmt.execute();

}

private function insertResult(event:SQLEvent):void
{

trace("INSERT statement succeeded");
}

private function insertError(event:SQLErrorEvent):void
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}
]]>

</mx:Script>
</mx:WindowedApplication>

The following example adds a row of data to the already-existing employees table, using synchronous execution mode.

Note that this listing assumes that there is a SQLConnection instance named conn that has already been instantiated

and is already connected to a database. It also assumes that the “employees” table has already been created.

746ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.errors.SQLError;

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var insertStmt:SQLStatement = new SQLStatement();
insertStmt.sqlConnection = conn;

// define the SQL text
var sql:String =

"INSERT INTO employees (firstName, lastName, salary) " +
"VALUES ('Bob', 'Smith', 8000)";

insertStmt.text = sql;

try
{

// execute the statement
insertStmt.execute();

trace("INSERT statement succeeded");

}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}

747ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" creationComplete="init()">

<mx:Script>
<![CDATA[

import flash.data.SQLConnection;
import flash.data.SQLResult;
import flash.data.SQLStatement;
import flash.errors.SQLError;

private function init():void
{

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var insertStmt:SQLStatement = new SQLStatement();
insertStmt.sqlConnection = conn;

// define the SQL text
var sql:String =

"INSERT INTO employees (firstName, lastName, salary) " +
"VALUES ('Bob', 'Smith', 8000)";

insertStmt.text = sql;

try
{

// execute the statement
insertStmt.execute();
trace("INSERT statement succeeded");

}
catch (error:SQLError)
{

trace("Error message:", error.message);
trace("Details:", error.details);

}
}

]]>
</mx:Script>

</mx:WindowedApplication>

Retrieving a database-generated primary key of an inserted row

Adobe AIR 1.0 and later

Often after inserting a row of data into a table, your code needs to know a database-generated primary key or row

identifier value for the newly inserted row. For example, once you insert a row in one table, you might want to add

rows in a related table. In that case you would want to insert the primary key value as a foreign key in the related table.

The primary key of a newly inserted row can be retrieved using the SQLResult object associated with the statement

execution. This is the same object that’s used to access result data after a SELECT statement is executed. As with any

SQL statement, when the execution of an INSERT statement completes the runtime creates a SQLResult instance. You

access the SQLResult instance by calling the SQLStatement object’s getResult() method if you’re using an event

listener or if you’re using synchronous execution mode. Alternatively, if you’re using asynchronous execution mode

and you pass a Responder instance to the execute() call, the SQLResult instance is passed as an argument to the result

handler function. In any case, the SQLResult instance has a property, lastInsertRowID, that contains the row

identifier of the most-recently inserted row if the executed SQL statement is an INSERT statement.

748ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

The following example demonstrates accessing the primary key of an inserted row in asynchronous execution mode:

insertStmt.text = "INSERT INTO ...";

insertStmt.addEventListener(SQLEvent.RESULT, resultHandler);

insertStmt.execute();

function resultHandler(event:SQLEvent):void
{

// get the primary key
var result:SQLResult = insertStmt.getResult();

var primaryKey:Number = result.lastInsertRowID;
// do something with the primary key

}

The following example demonstrates accessing the primary key of an inserted row in synchronous execution mode:

insertStmt.text = "INSERT INTO ...";

try
{

insertStmt.execute();

// get the primary key
var result:SQLResult = insertStmt.getResult();

var primaryKey:Number = result.lastInsertRowID;
// do something with the primary key

}
catch (error:SQLError)
{

// respond to the error
}

Note that the row identifier may or may not be the value of the column that is designated as the primary key column

in the table definition, according to the following rules:

• If the table is defined with a primary key column whose affinity (column data type) is INTEGER, the

lastInsertRowID property contains the value that was inserted into that row (or the value generated by the

runtime if it’s an AUTOINCREMENT column).

• If the table is defined with multiple primary key columns (a composite key) or with a single primary key column

whose affinity is not INTEGER, behind the scenes the database generates an integer row identifier value for the row.

That generated value is the value of the lastInsertRowID property.

• The value is always the row identifier of the most-recently inserted row. If an INSERT statement causes a trigger to

fire which in turn inserts a row, the lastInsertRowID property contains the row identifier of the last row inserted

by the trigger rather than the row created by the INSERT statement.

As a consequence of these rules, if you want to have an explicitly defined primary key column whose value is available

after an INSERT command through the SQLResult.lastInsertRowID property, the column must be defined as an

INTEGER PRIMARY KEY column. Even if your table does not include an explicit INTEGER PRIMARY KEY column, it is

equally acceptable to use the database-generated row identifier as a primary key for your table in the sense of defining

relationships with related tables. The row identifier column value is available in any SQL statement by using one of the

special column names ROWID, _ROWID_, or OID. You can create a foreign key column in a related table and use the row

749ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

identifier value as the foreign key column value just as you would with an explicitly declared INTEGER PRIMARY KEY

column. In that sense, if you are using an arbitrary primary key rather than a natural key, and as long as you don’t mind

the runtime generating the primary key value for you, it makes little difference whether you use an INTEGER PRIMARY

KEY column or the system-generated row identifier as a table’s primary key for defining a foreign key relationship with

between two tables.

For more information about primary keys and generated row identifiers, see “SQL support in local databases” on

page 1104.

Changing or deleting data

Adobe AIR 1.0 and later

The process for executing other data manipulation operations is identical to the process used to execute a SQL SELECT

or INSERT statement, as described in “Working with SQL statements” on page 729. Simply substitute a different SQL

statement in the SQLStatement instance’s text property:

• To change existing data in a table, use an UPDATE statement.

• To delete one or more rows of data from a table, use a DELETE statement.

For descriptions of these statements, see “SQL support in local databases” on page 1104.

Working with multiple databases

Adobe AIR 1.0 and later

Use the SQLConnection.attach() method to open a connection to an additional database on a SQLConnection

instance that already has an open database. You give the attached database a name using the name parameter in the

attach() method call. When writing statements to manipulate that database, you can then use that name in a prefix

(using the form database-name.table-name) to qualify any table names in your SQL statements, indicating to the

runtime that the table can be found in the named database.

You can execute a single SQL statement that includes tables from multiple databases that are connected to the same

SQLConnection instance. If a transaction is created on the SQLConnection instance, that transaction applies to all SQL

statements that are executed using the SQLConnection instance. This is true regardless of which attached database the

statement runs on.

Alternatively, you can also create multiple SQLConnection instances in an application, each of which is connected to

one or multiple databases. However, if you do use multiple connections to the same database keep in mind that a

database transaction isn’t shared across SQLConnection instances. Consequently, if you connect to the same database

file using multiple SQLConnection instances, you can’t rely on both connections’ data changes being applied in the

expected manner. For example, if two UPDATE or DELETE statements are run against the same database through

different SQLConnection instances, and an application error occurs after one operation takes place, the database data

could be left in an intermediate state that would not be reversible and might affect the integrity of the database (and

consequently the application).

750ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Handling database errors

Adobe AIR 1.0 and later

In general, database error handling is like other runtime error handling. You should write code that is prepared for

errors that may occur, and respond to the errors rather than leave it up to the runtime to do so. In a general sense, the

possible database errors can be divided into three categories: connection errors, SQL syntax errors, and constraint

errors.

Connection errors

Adobe AIR 1.0 and later

Most database errors are connection errors, and they can occur during any operation. Although there are strategies for

preventing connection errors, there is rarely a simple way to gracefully recover from a connection error if the database

is a critical part of your application.

Most connection errors have to do with how the runtime interacts with the operating system, the file system, and the

database file. For example, a connection error occurs if the user doesn’t have permission to create a database file in a

particular location on the file system. The following strategies help to prevent connection errors:

Use user-specific database files Rather than using a single database file for all users who use the application on a single

computer, give each user their own database file. The file should be located in a directory that’s associated with the

user’s account. For example, it could be in the application’s storage directory, the user’s documents folder, the user’s

desktop, and so forth.

Consider different user types Test your application with different types of user accounts, on different operating

systems. Don’t assume that the user has administrator permission on the computer. Also, don’t assume that the

individual who installed the application is the user who’s running the application.

Consider various file locations If you allow a user to specify where to save a database file or select a file to open,

consider the possible file locations that the users might use. In addition, consider defining limits on where users can

store (or from where they can open) database files. For example, you might only allow users to open files that are within

their user account’s storage location.

If a connection error occurs, it most likely happens on the first attempt to create or open the database. This means that

the user is unable to do any database-related operations in the application. For certain types of errors, such as read-

only or permission errors, one possible recovery technique is to copy the database file to a different location. The

application can copy the database file to a different location where the user does have permission to create and write

to files, and use that location instead.

Syntax errors

Adobe AIR 1.0 and later

A syntax error occurs when a SQL statement is incorrectly formed, and the application attempts to execute the

statement. Because local database SQL statements are created as strings, compile-time SQL syntax checking is not

possible. All SQL statements must be executed to check their syntax. Use the following strategies to prevent SQL syntax

errors:

Test all SQL statements thoroughly If possible, while developing your application test your SQL statements separately

before encoding them as statement text in the application code. In addition, use a code-testing approach such as unit

testing to create a set of tests that exercise every possible option and variation in the code.

751ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Use statement parameters and avoid concatenating (dynamically generating) SQL Using parameters, and avoiding

dynamically built SQL statements, means that the same SQL statement text is used each time a statement is executed.

Consequently, it’s much easier to test your statements and limit the possible variation. If you must dynamically

generate a SQL statement, keep the dynamic parts of the statement to a minimum. Also, carefully validate any user

input to make sure it won’t cause syntax errors.

To recover from a syntax error, an application would need complex logic to be able to examine a SQL statement and

correct its syntax. By following the previous guidelines for preventing syntax errors, your code can identify any

potential run-time sources of SQL syntax errors (such as user input used in a statement). To recover from a syntax

error, provide guidance to the user. Indicate what to correct to make the statement execute properly.

Constraint errors

Adobe AIR 1.0 and later

Constraint errors occur when an INSERT or UPDATE statement attempts to add data to a column. The error happens if

the new data violates one of the defined constraints for the table or column. The set of possible constraints includes:

Unique constraint Indicates that across all the rows in a table, there cannot be duplicate values in one column.

Alternatively, when multiple columns are combined in a unique constraint, the combination of values in those

columns must not be duplicated. In other words, in terms of the specified unique column or columns, each row must

be distinct.

Primary key constraint In terms of the data that a constraint allows and doesn’t allow, a primary key constraint is

identical to a unique constraint.

Not null constraint Specifies that a single column cannot store a NULL value and consequently that in every row, that

column must have a value.

Check constraint Allows you to specify an arbitrary constraint on one or more tables. A common check constraint is

a rule that define that a column’s value must be within certain bounds (for example, that a numeric column’s value

must be larger than 0). Another common type of check constraint specifies relationships between column values (for

example, that a column’s value must be different from the value of another column in the same row).

Data type (column affinity) constraint The runtime enforces the data type of columns’ values, and an error occurs if

an attempt is made to store a value of the incorrect type in a column. However, in many conditions values are

converted to match the column’s declared data type. See “Working with database data types” on page 752 for more

information.

The runtime does not enforce constraints on foreign key values. In other words, foreign key values aren’t required to

match an existing primary key value.

In addition to the predefined constraint types, the runtime SQL engine supports the use of triggers. A trigger is like an

event handler. It is a predefined set of instructions that are carried out when a certain action happens. For example, a

trigger could be defined that runs when data is inserted into or deleted from a particular table. One possible use of a

trigger is to examine data changes and cause an error to occur if specified conditions aren’t met. Consequently, a

trigger can serve the same purpose as a constraint, and the strategies for preventing and recovering from constraint

errors also apply to trigger-generated errors. However, the error id for trigger-generated errors is different from the

error id for constraint errors.

The set of constraints that apply to a particular table is determined while you’re designing an application. Consciously

designing constraints makes it easier to design your application to prevent and recover from constraint errors.

However, constraint errors are difficult to systematically predict and prevent. Prediction is difficult because constraint

errors don’t appear until application data is added. Constraint errors occur with data that is added to a database after

752ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

it’s created. These errors are often a result of the relationship between new data and data that already exists in the

database. The following strategies can help you avoid many constraint errors:

Carefully plan database structure and constraints The purpose of constraints is to enforce application rules and help

protect the integrity of the database’s data. When you’re planning your application, consider how to structure your

database to support your application. As part of that process, identify rules for your data, such as whether certain

values are required, whether a value has a default, whether duplicate values are allowed, and so forth. Those rules guide

you in defining database constraints.

Explicitly specify column names An INSERT statement can be written without explicitly specifying the columns into

which values are to be inserted, but doing so is an unnecessary risk. By explicitly naming the columns into which values

are to be inserted, you can allow for automatically generated values, columns with default values, and columns that

allow NULL values. In addition, by doing so you can ensure that all NOT NULL columns have an explicit value inserted.

Use default values Whenever you specify a NOT NULL constraint for a column, if at all possible specify a default value

in the column definition. Application code can also provide default values. For example, your code can check if a String

variable is null and assign it a value before using it to set a statement parameter value.

Validate user-entered data Check user-entered data ahead of time to make sure that it obeys limits specified by

constraints, especially in the case of NOT NULL and CHECK constraints. Naturally, a UNIQUE constraint is more difficult

to check for because doing so would require executing a SELECT query to determine whether the data is unique.

Use triggers You can write a trigger that validates (and possibly replaces) inserted data or takes other actions to correct

invalid data. This validation and correction can prevent a constraint error from occurring.

In many ways constraint errors are more difficult to prevent than other types of errors. Fortunately, there are several

strategies to recover from constraint errors in ways that don’t make the application unstable or unusable:

Use conflict algorithms When you define a constraint on a column, and when you create an INSERT or UPDATE

statement, you have the option of specifying a conflict algorithm. A conflict algorithm defines the action the database

takes when a constraint violation occurs. There are several possible actions the database engine can take. The database

engine can end a single statement or a whole transaction. It can ignore the error. It can even remove old data and

replace it with the data that the code is attempting to store.

For more information see the section “ON CONFLICT (conflict algorithms)” in the “SQL support in local databases”

on page 1104.

Provide corrective feedback The set of constraints that can affect a particular SQL command can be identified ahead

of time. Consequently, you can anticipate constraint errors that a statement could cause. With that knowledge, you

can build application logic to respond to a constraint error. For example, suppose an application includes a data entry

form for entering new products. If the product name column in the database is defined with a UNIQUE constraint, the

action of inserting a new product row in the database could cause a constraint error. Consequently, the application is

designed to anticipate a constraint error. When the error happens, the application alerts the user, indicating that the

specified product name is already in use and asking the user to choose a different name. Another possible response is

to allow the user to view information about the other product with the same name.

Working with database data types

Adobe AIR 1.0 and later

When a table is created in a database, the SQL statement for creating the table defines the affinity, or data type, for each

column in the table. Although affinity declarations can be omitted, it’s a good idea to explicitly declare column affinity

in your CREATE TABLE SQL statements.

753ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

As a general rule, any object that you store in a database using an INSERT statement is returned as an instance of the

same data type when you execute a SELECT statement. However, the data type of the retrieved value can be different

depending on the affinity of the database column in which the value is stored. When a value is stored in a column, if

its data type doesn’t match the column’s affinity, the database attempts to convert the value to match the column’s

affinity. For example, if a database column is declared with NUMERIC affinity, the database attempts to convert inserted

data into a numeric storage class (INTEGER or REAL) before storing the data. The database throws an error if the data

can’t be converted. According to this rule, if the String “12345” is inserted into a NUMERIC column, the database

automatically converts it to the integer value 12345 before storing it in the database. When it’s retrieved with a SELECT

statement, the value is returned as an instance of a numeric data type (such as Number) rather than as a String instance.

The best way to avoid undesirable data type conversion is to follow two rules. First, define each column with the affinity

that matches the type of data that it is intended to store. Next, only insert values whose data type matches the defined

affinity. Following these rules provides two benefits. When you insert the data it isn’t converted unexpectedly (possibly

losing its intended meaning as a result). In addition, when you retrieve the data it is returned with its original data type.

For more information about the available column affinity types and using data types in SQL statements, see the “Data

type support” on page 1125.

Using synchronous and asynchronous database
operations

Adobe AIR 1.0 and later

Previous sections have described common database operations such as retrieving, inserting, updating, and deleting

data, as well as creating a database file and tables and other objects within a database. The examples have demonstrated

how to perform these operations both asynchronously and synchronously.

As a reminder, in asynchronous execution mode, you instruct the database engine to perform an operation. The

database engine then works in the background while the application keeps running. When the operation finishes the

database engine dispatches an event to alert you to that fact. The key benefit of asynchronous execution is that the

runtime performs the database operations in the background while the main application code continues executing.

This is especially valuable when the operation takes a notable amount of time to run.

On the other hand, in synchronous execution mode operations don’t run in the background. You tell the database

engine to perform an operation. The code pauses at that point while the database engine does its work. When the

operation completes, execution continues with the next line of your code.

A single database connection can’t execute some operations or statements synchronously and others asynchronously.

You specify whether a SQLConnection operates in synchronous or asynchronous when you open the connection to

the database. If you call SQLConnection.open() the connection operates in synchronous execution mode, and if you

call SQLConnection.openAsync() the connection operates in asynchronous execution mode. Once a

SQLConnection instance is connected to a database using open() or openAsync(), it is fixed to synchronous or

asynchronous execution.

754ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Using synchronous database operations

Adobe AIR 1.0 and later

There is little difference in the actual code that you use to execute and respond to operations when using synchronous

execution, compared to the code for asynchronous execution mode. The key differences between the two approaches

fall into two areas. The first is executing an operation that depends on another operation (such as SELECT result rows

or the primary key of the row added by an INSERT statement). The second area of difference is in handling errors.

Writing code for synchronous operations

Adobe AIR 1.0 and later

The key difference between synchronous and asynchronous execution is that in synchronous mode you write the code

as a single series of steps. In contrast, in asynchronous code you register event listeners and often divide operations

among listener methods. When a database is connected in synchronous execution mode, you can execute a series of

database operations in succession within a single code block. The following example demonstrates this technique:

var conn:SQLConnection = new SQLConnection();

// The database file is in the application storage directory
var folder:File = File.applicationStorageDirectory;
var dbFile:File = folder.resolvePath("DBSample.db");

// open the database
conn.open(dbFile, OpenMode.UPDATE);

// start a transaction
conn.begin();

// add the customer record to the database
var insertCustomer:SQLStatement = new SQLStatement();
insertCustomer.sqlConnection = conn;
insertCustomer.text =

"INSERT INTO customers (firstName, lastName) " +
"VALUES ('Bob', 'Jones')";

insertCustomer.execute();

var customerId:Number = insertCustomer.getResult().lastInsertRowID;

// add a related phone number record for the customer
var insertPhoneNumber:SQLStatement = new SQLStatement();
insertPhoneNumber.sqlConnection = conn;
insertPhoneNumber.text =

"INSERT INTO customerPhoneNumbers (customerId, number) " +
"VALUES (:customerId, '800-555-1234')";

insertPhoneNumber.parameters[":customerId"] = customerId;
insertPhoneNumber.execute();

// commit the transaction
conn.commit();

As you can see, you call the same methods to perform database operations whether you’re using synchronous or

asynchronous execution. The key differences between the two approaches are executing an operation that depends on

another operation and handling errors.

755ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Executing an operation that depends on another operation

Adobe AIR 1.0 and later

When you’re using synchronous execution mode, you don’t need to write code that listens for an event to determine

when an operation completes. Instead, you can assume that if an operation in one line of code completes successfully,

execution continues with the next line of code. Consequently, to perform an operation that depends on the success of

another operation, simply write the dependent code immediately following the operation on which it depends. For

instance, to code an application to begin a transaction, execute an INSERT statement, retrieve the primary key of the

inserted row, insert that primary key into another row of a different table, and finally commit the transaction, the code

can all be written as a series of statements. The following example demonstrates these operations:

var conn:SQLConnection = new SQLConnection();

// The database file is in the application storage directory
var folder:File = File.applicationStorageDirectory;
var dbFile:File = folder.resolvePath("DBSample.db");

// open the database
conn.open(dbFile, SQLMode.UPDATE);

// start a transaction
conn.begin();

// add the customer record to the database
var insertCustomer:SQLStatement = new SQLStatement();
insertCustomer.sqlConnection = conn;
insertCustomer.text =

"INSERT INTO customers (firstName, lastName) " +
"VALUES ('Bob', 'Jones')";

insertCustomer.execute();

var customerId:Number = insertCustomer.getResult().lastInsertRowID;

// add a related phone number record for the customer
var insertPhoneNumber:SQLStatement = new SQLStatement();
insertPhoneNumber.sqlConnection = conn;
insertPhoneNumber.text =

"INSERT INTO customerPhoneNumbers (customerId, number) " +
"VALUES (:customerId, '800-555-1234')";

insertPhoneNumber.parameters[":customerId"] = customerId;
insertPhoneNumber.execute();

// commit the transaction
conn.commit();

756ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Handling errors with synchronous execution

Adobe AIR 1.0 and later

In synchronous execution mode, you don’t listen for an error event to determine that an operation has failed. Instead,

you surround any code that could trigger errors in a set of try..catch..finally code blocks. You wrap the error-

throwing code in the try block. Write the actions to perform in response to each type of error in separate catch blocks.

Place any code that you want to always execute regardless of success or failure (for example, closing a database

connection that’s no longer needed) in a finally block. The following example demonstrates using

try..catch..finally blocks for error handling. It builds on the previous example by adding error handling code:

var conn:SQLConnection = new SQLConnection();

// The database file is in the application storage directory
var folder:File = File.applicationStorageDirectory;
var dbFile:File = folder.resolvePath("DBSample.db");

// open the database
conn.open(dbFile, SQLMode.UPDATE);

// start a transaction
conn.begin();

try
{

// add the customer record to the database
var insertCustomer:SQLStatement = new SQLStatement();
insertCustomer.sqlConnection = conn;
insertCustomer.text =

"INSERT INTO customers (firstName, lastName)" +
"VALUES ('Bob', 'Jones')";

insertCustomer.execute();

var customerId:Number = insertCustomer.getResult().lastInsertRowID;

// add a related phone number record for the customer
var insertPhoneNumber:SQLStatement = new SQLStatement();
insertPhoneNumber.sqlConnection = conn;
insertPhoneNumber.text =

"INSERT INTO customerPhoneNumbers (customerId, number)" +
"VALUES (:customerId, '800-555-1234')";

insertPhoneNumber.parameters[":customerId"] = customerId;

insertPhoneNumber.execute();

// if we've gotten to this point without errors, commit the transaction
conn.commit();

}
catch (error:SQLError)
{

// rollback the transaction
conn.rollback();

}

757ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Understanding the asynchronous execution model

Adobe AIR 1.0 and later

One common concern about using asynchronous execution mode is the assumption that you can’t start executing a

SQLStatement instance if another SQLStatement is currently executing against the same database connection. In fact,

this assumption isn’t correct. While a SQLStatement instance is executing you can’t change the text property of the

statement. However, if you use a separate SQLStatement instance for each different SQL statement that you want to

execute, you can call the execute() method of a SQLStatement while another SQLStatement instance is still

executing, without causing an error.

Internally, when you’re executing database operations using asynchronous execution mode, each database connection

(each SQLConnection instance) has its own queue or list of operations that it is instructed to perform. The runtime

executes each operation in sequence, in the order they are added to the queue. When you create a SQLStatement

instance and call its execute() method, that statement execution operation is added to the queue for the connection.

If no operation is currently executing on that SQLConnection instance, the statement begins executing in the

background. Suppose that within the same block of code you create another SQLStatement instance and also call that

method’s execute() method. That second statement execution operation is added to the queue behind the first

statement. As soon as the first statement finishes executing, the runtime moves to the next operation in the queue. The

processing of subsequent operations in the queue happens in the background, even while the result event for the first

operation is being dispatched in the main application code. The following code demonstrates this technique:

// Using asynchronous execution mode
var stmt1:SQLStatement = new SQLStatement();
stmt1.sqlConnection = conn;

// ... Set statement text and parameters, and register event listeners ...

stmt1.execute();

// At this point stmt1's execute() operation is added to conn's execution queue.

var stmt2:SQLStatement = new SQLStatement();
stmt2.sqlConnection = conn;

// ... Set statement text and parameters, and register event listeners ...

stmt2.execute();

// At this point stmt2's execute() operation is added to conn's execution queue.
// When stmt1 finishes executing, stmt2 will immediately begin executing
// in the background.

There is an important side effect of the database automatically executing subsequent queued statements. If a statement

depends on the outcome of another operation, you can’t add the statement to the queue (in other words, you can’t call

its execute() method) until the first operation completes. This is because once you’ve called the second statement’s

execute() method, you can’t change the statement’s text or parameters properties. In that case you must wait for

the event indicating that the first operation completes before starting the next operation. For example, if you want to

execute a statement in the context of a transaction, the statement execution depends on the operation of opening the

transaction. After calling the SQLConnection.begin() method to open the transaction, you need to wait for the

SQLConnection instance to dispatch its begin event. Only then can you call the SQLStatement instance’s execute()

method. In this example the simplest way to organize the application to ensure that the operations are executed

properly is to create a method that’s registered as a listener for the begin event. The code to call the

SQLStatement.execute() method is placed within that listener method.

758ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Using encryption with SQL databases

Adobe AIR 1.5 and later

All Adobe AIR applications share the same local database engine. Consequently, any AIR application can connect to,

read from, and write to an unencrypted database file. Starting with Adobe AIR 1.5, AIR includes the capability of

creating and connecting to encrypted database files. When you use an encrypted database, in order to connect to the

database an application must provide the correct encryption key. If the incorrect encryption key (or no key) is

provided, the application is not able to connect to the database. Consequently, the application can’t read data from the

database or write to or change data in the database.

To use an encrypted database, you must create the database as an encrypted database. With an existing encrypted

database, you can open a connection to the database. You can also change the encryption key of an encrypted database.

Other than creating and connecting to encrypted databases, the techniques for working with an encrypted database

are the same as for working with an unencrypted one. In particular, executing SQL statements is the same regardless

of whether a database is encrypted or not.

Uses for an encrypted database

Adobe AIR 1.5 and later

Encryption is useful any time you want to restrict access to the information stored in a database. The database

encryption functionality of Adobe AIR can be used for several purposes. The following are some examples of cases

where you would want to use an encrypted database:

• A read-only cache of private application data downloaded from a server

• A local application store for private data that is synchronized with a server (data is sent to and loaded from the

server)

• Encrypted files used as the file format for documents created and edited by the application. The files could be

private to one user, or could be designed to be shared among all users of the application.

• Any other use of a local data store, such as the ones described in “Uses for local SQL databases” on page 714, where

the data must be kept private from people who have access to the machine or the database files.

Understanding the reason why you want to use an encrypted database helps you decide how to architect your

application. In particular, it can affect how your application creates, obtains, and stores the encryption key for the

database. For more information about these considerations, see “Considerations for using encryption with a database”

on page 762.

Other than an encrypted database, an alternative mechanism for keeping sensitive data private is the encrypted local

store. With the encrypted local store, you store a single ByteArray value using a String key. Only the AIR application

that stores the value can access it, and only on the computer on which it is stored. With the encrypted local store, it

isn’t necessary to create your own encryption key. For these reasons, the encrypted local store is most suitable for easily

storing a single value or set of values that can easily be encoded in a ByteArray. An encrypted database is most suitable

for larger data sets where structured data storage and querying are desirable. For more information about using the

encrypted local store, see “Encrypted local storage” on page 710.

759ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Creating an encrypted database

Adobe AIR 1.5 and later

To use an encrypted database, the database file must be encrypted when it is created. Once a database is created as

unencrypted, it can’t be encrypted later. Likewise, an encrypted database can’t be unencrypted later. If needed you can

change the encryption key of an encrypted database. For details, see “Changing the encryption key of a database” on

page 761. If you have an existing database that’s not encrypted and you want to use database encryption, you can create

a new encrypted database and copy the existing table structure and data to the new database.

Creating an encrypted database is nearly identical to creating an unencrypted database, as described in “Creating a

database” on page 719. You first create a SQLConnection instance that represents the connection to the database. You

create the database by calling the SQLConnection object’s open() method or openAsync() method, specifying for the

database location a file that doesn’t exist yet. The only difference when creating an encrypted database is that you

provide a value for the encryptionKey parameter (the open() method’s fifth parameter and the openAsync()

method’s sixth parameter).

A valid encryptionKey parameter value is a ByteArray object containing exactly 16 bytes.

The following examples demonstrate creating an encrypted database. For simplicity, in these examples the encryption

key is hard-coded in the application code. However, this technique is strongly discouraged because it is not secure.

var conn:SQLConnection = new SQLConnection();

var encryptionKey:ByteArray = new ByteArray();
encryptionKey.writeUTFBytes("Some16ByteString"); // This technique is not secure!

// Create an encrypted database in asynchronous mode
conn.openAsync(dbFile, SQLMode.CREATE, null, false, 1024, encryptionKey);

// Create an encrypted database in synchronous mode
conn.open(dbFile, SQLMode.CREATE, false, 1024, encryptionKey);

For an example demonstrating a recommended way to generate an encryption key, see “Example: Generating and

using an encryption key” on page 763.

Connecting to an encrypted database

Adobe AIR 1.5 and later

Like creating an encrypted database, the procedure for opening a connection to an encrypted database is like

connecting to an unencrypted database. That procedure is described in greater detail in “Connecting to a database” on

page 726. You use the open() method to open a connection in synchronous execution mode, or the openAsync()

method to open a connection in asynchronous execution mode. The only difference is that to open an encrypted

database, you specify the correct value for the encryptionKey parameter (the open() method’s fifth parameter and

the openAsync() method’s sixth parameter).

If the encryption key that’s provided is not correct, an error occurs. For the open() method, a SQLError exception is

thrown. For the openAsync() method, the SQLConnection object dispatches a SQLErrorEvent, whose error

property contains a SQLError object. In either case, the SQLError object generated by the exception has the errorID

property value 3138. That error ID corresponds to the error message “File opened is not a database file.”

The following example demonstrates opening an encrypted database in asynchronous execution mode. For simplicity,

in this example the encryption key is hard-coded in the application code. However, this technique is strongly

discouraged because it is not secure.

760ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

import flash.data.SQLConnection;
import flash.data.SQLMode;
import flash.events.SQLErrorEvent;
import flash.events.SQLEvent;
import flash.filesystem.File;

var conn:SQLConnection = new SQLConnection();
conn.addEventListener(SQLEvent.OPEN, openHandler);
conn.addEventListener(SQLErrorEvent.ERROR, errorHandler);
var dbFile:File = File.applicationStorageDirectory.resolvePath("DBSample.db");

var encryptionKey:ByteArray = new ByteArray();
encryptionKey.writeUTFBytes("Some16ByteString"); // This technique is not secure!

conn.openAsync(dbFile, SQLMode.UPDATE, null, false, 1024, encryptionKey);

function openHandler(event:SQLEvent):void
{

trace("the database opened successfully");
}

function errorHandler(event:SQLErrorEvent):void
{

if (event.error.errorID == 3138)
{

trace("Incorrect encryption key");
}
else
{

trace("Error message:", event.error.message);
trace("Details:", event.error.details);

}
}

The following example demonstrates opening an encrypted database in synchronous execution mode. For simplicity,

in this example the encryption key is hard-coded in the application code. However, this technique is strongly

discouraged because it is not secure.

761ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

import flash.data.SQLConnection;
import flash.data.SQLMode;
import flash.filesystem.File;

var conn:SQLConnection = new SQLConnection();
var dbFile:File = File.applicationStorageDirectory.resolvePath("DBSample.db");

var encryptionKey:ByteArray = new ByteArray();
encryptionKey.writeUTFBytes("Some16ByteString"); // This technique is not secure!

try
{

conn.open(dbFile, SQLMode.UPDATE, false, 1024, encryptionKey);
trace("the database was created successfully");

}
catch (error:SQLError)
{

if (error.errorID == 3138)
{

trace("Incorrect encryption key");
}
else
{

trace("Error message:", error.message);
trace("Details:", error.details);

}
}

For an example demonstrating a recommended way to generate an encryption key, see “Example: Generating and

using an encryption key” on page 763.

Changing the encryption key of a database

Adobe AIR 1.5 and later

When a database is encrypted, you can change the encryption key for the database at a later time. To change a

database’s encryption key, first open a connection to the database by creating a SQLConnection instance and calling

its open() or openAsync() method. Once the database is connected, call the reencrypt() method, passing the new

encryption key as an argument.

Like most database operations, the reencrypt() method’s behavior varies depending on whether the database

connection uses synchronous or asynchronous execution mode. If you use the open() method to connect to the

database, the reencrypt() operation runs synchronously. When the operation finishes, execution continues with the

next line of code:

var newKey:ByteArray = new ByteArray();
// ... generate the new key and store it in newKey
conn.reencrypt(newKey);

On the other hand, if the database connection is opened using the openAsync() method, the reencrypt() operation

is asynchronous. Calling reencrypt() begins the reencryption process. When the operation completes, the

SQLConnection object dispatches a reencrypt event. You use an event listener to determine when the reencryption

finishes:

762ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

var newKey:ByteArray = new ByteArray();
// ... generate the new key and store it in newKey

conn.addEventListener(SQLEvent.REENCRYPT, reencryptHandler);

conn.reencrypt(newKey);

function reencryptHandler(event:SQLEvent):void
{

// save the fact that the key changed
}

The reencrypt() operation runs in its own transaction. If the operation is interrupted or fails (for example, if the

application is closed before the operation finishes) the transaction is rolled back. In that case, the original encryption

key is still the encryption key for the database.

The reencrypt() method can’t be used to remove encryption from a database. Passing a null value or encryption

key that’s not a 16-byte ByteArray to the reencrypt() method results in an error.

Considerations for using encryption with a database

Adobe AIR 1.5 and later

The section “Uses for an encrypted database” on page 758 presents several cases in which you would want to use an

encrypted database. It’s obvious that the usage scenarios of different applications (including these and other scenarios)

have different privacy requirements. The way you architect the use of encryption in your application plays an

important part in controlling how private a database’s data is. For example, if you are using an encrypted database to

keep personal data private, even from other users of the same machine, then each user’s database needs its own

encryption key. For the greatest security, your application can generate the key from a user-entered password. Basing

the encryption key on a password ensures that even if another person is able to impersonate the user’s account on the

machine, the data still can’t be accessed. On the other end of the privacy spectrum, suppose you want a database file to

be readable by any user of your application but not to other applications. In that case every installed copy of the

application needs access to a shared encryption key.

You can design your application, and in particular the technique used to generate the encryption key, according to the

level of privacy that you want for your application data. The following list provides design suggestions for various levels

of data privacy:

• To make a database accessible to any user who has access to the application on any machine, use a single key that’s

available to all instances of the application. For example, the first time an application runs it can download the

shared encryption key from a server using a secure protocol such as SSL. It can then save the key in the encrypted

local store for future use. As an alternative, encrypt the data per-user on the machine, and synchronize the data with

a remote data store such as a server to make the data portable.

• To make a database accessible to a single user on any machine, generate the encryption key from a user secret (such

as a password). In particular, do not use any value that’s tied to a particular computer (such as a value stored in the

encrypted local store) to generate the key. As an alternative, encrypt the data per-user on the machine, and

synchronize the data with a remote data store such as a server to make the data portable.

• To make a database accessible only to a single individual on a single machine, generate the key from a password

and a generated salt. For an example of this technique, see “Example: Generating and using an encryption key” on

page 763.

763ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

The following are additional security considerations that are important to keep in mind when designing an application

to use an encrypted database:

• A system is only as secure as its weakest link. If you are using a user-entered password to generate an encryption

key, consider imposing minimum length and complexity restrictions on passwords. A short password that uses

only basic characters can be guessed quickly.

• The source code of an AIR application is stored on a user’s machine in plain text (for HTML content) or an easily

decompilable binary format (for SWF content). Because the source code is accessible, two points to remember are:

• Never hard-code an encryption key in your source code

• Always assume that the technique used to generate an encryption key (such as random character generator or a

particular hashing algorithm) can be easily worked out by an attacker

• AIR database encryption uses the Advanced Encryption Standard (AES) with Counter with CBC-MAC (CCM)

mode. This encryption cipher requires a user-entered key to be combined with a salt value to be secure. For an

example of this, see “Example: Generating and using an encryption key” on page 763.

• When you elect to encrypt a database, all disk files used by the database engine in conjunction with that database

are encrypted. However, the database engine holds some data temporarily in an in-memory cache to improve read-

and write-time performance in transactions. Any memory-resident data is unencrypted. If an attacker is able to

access the memory used by an AIR application, for example by using a debugger, the data in a database that is

currently open and unencrypted would be available.

Example: Generating and using an encryption key

Adobe AIR 1.5 and later

This example application demonstrates one technique for generating an encryption key. This application is designed

to provide the highest level of privacy and security for users’ data. One important aspect of securing private data is to

require the user to enter a password each time the application connects to the database. Consequently, as shown in this

example, an application that requires this level of privacy should never directly store the database encryption key.

The application consists of two parts: an ActionScript class that generates an encryption key (the

EncryptionKeyGenerator class), and a basic user interface that demonstrates how to use that class. For the complete

source code, see “Complete example code for generating and using an encryption key” on page 765.

Using the EncryptionKeyGenerator class to obtain a secure encryption key

Adobe AIR 1.5 and later

It isn’t necessary to understand the details of how the EncryptionKeyGenerator class works to use it in your

application. If you are interested in the details of how the class generates an encryption key for a database, see

“Understanding the EncryptionKeyGenerator class” on page 770.

Follow these steps to use the EncryptionKeyGenerator class in your application:

1 Download the EncryptionKeyGenerator class as source code or a compiled SWC. The EncryptionKeyGenerator

class is included in the open-source ActionScript 3.0 core library (as3corelib) project. You can download the

as3corelib package including source code and documentation. You can also download the SWC or source code files

from the project page.

2 Place the source code for the EncryptionKeyGenerator class (or the as3corelib SWC) in a location where your

application source code can find it.

3 In your application source code, add an import statement for the EncryptionKeyGenerator class.

http://www.adobe.com/go/learn_air_opensource_encryptionkey
http://www.adobe.com/go/learn_air_opensource_encryptionkey

764ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

import com.adobe.air.crypto.EncryptionKeyGenerator;

4 Before the point where the code creates the database or opens a connection to it, add code to create an

EncryptionKeyGenerator instance by calling the EncryptionKeyGenerator() constructor.

var keyGenerator:EncryptionKeyGenerator = new EncryptionKeyGenerator();

5 Obtain a password from the user:

var password:String = passwordInput.text;

if (!keyGenerator.validateStrongPassword(password))
{

// display an error message
return;

}

The EncryptionKeyGenerator instance uses this password as the basis for the encryption key (shown in the next

step). The EncryptionKeyGenerator instance tests the password against certain strong password validation

requirements. If the validation fails, an error occurs. As the example code shows, you can check the password ahead

of time by calling the EncryptionKeyGenerator object’s validateStrongPassword() method. That way you can

determine whether the password meets the minimum requirements for a strong password and avoid an error.

6 Generate the encryption key from the password:

var encryptionKey:ByteArray = keyGenerator.getEncryptionKey(password);

The getEncryptionKey() method generates and returns the encryption key (a 16-byte ByteArray). You can then

use the encryption key to create your new encrypted database or open your existing one.

The getEncryptionKey() method has one required parameter, which is the password obtained in step 5.

Note: To maintain the highest level of security and privacy for data, an application must require the user to enter a

password each time the application connects to the database. Do not store the user’s password or the database

encryption key directly. Doing so exposes security risks. Instead, as demonstrated in this example, an application

should use the same technique to derive the encryption key from the password both when creating the encrypted

database and when connecting to it later.

The getEncryptionKey() method also accepts a second (optional) parameter, the overrideSaltELSKey

parameter. The EncryptionKeyGenerator creates a random value (known as a salt) that is used as part of the

encryption key. In order to be able to re-create the encryption key, the salt value is stored in the Encrypted Local

Store (ELS) of your AIR application. By default, the EncryptionKeyGenerator class uses a particular String as the

ELS key. Although unlikely, it’s possible that the key can conflict with another key your application uses. Instead of

using the default key, you might want to specify your own ELS key. In that case, specify a custom key by passing it

as the second getEncryptionKey() parameter, as shown here:

var customKey:String = "My custom ELS salt key";
var encryptionKey:ByteArray = keyGenerator.getEncryptionKey(password, customKey);

7 Create or open the database

With an encryption key returned by the getEncryptionKey() method, your code can create a new encrypted

database or attempt to open the existing encrypted database. In either case you use the SQLConnection class’s

open() or openAsync() method, as described in “Creating an encrypted database” on page 759 and “Connecting

to an encrypted database” on page 759.

In this example, the application is designed to open the database in asynchronous execution mode. The code sets

up the appropriate event listeners and calls the openAsync() method, passing the encryption key as the final

argument:

765ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

conn.addEventListener(SQLEvent.OPEN, openHandler);
conn.addEventListener(SQLErrorEvent.ERROR, openError);

conn.openAsync(dbFile, SQLMode.CREATE, null, false, 1024, encryptionKey);

In the listener methods, the code removes the event listener registrations. It then displays a status message

indicating whether the database was created, opened, or whether an error occurred. The most noteworthy part of

these event handlers is in the openError() method. In that method an if statement checks if the database exists

(meaning that the code is attempting to connect to an existing database) and if the error ID matches the constant

EncryptionKeyGenerator.ENCRYPTED_DB_PASSWORD_ERROR_ID. If both of these conditions are true, it probably

means that the password the user entered is incorrect. (It could also mean that the specified file isn’t a database file

at all.) The following is the code that checks the error ID:

if (!createNewDB && event.error.errorID ==
EncryptionKeyGenerator.ENCRYPTED_DB_PASSWORD_ERROR_ID)
{

statusMsg.text = "Incorrect password!";
}
else
{

statusMsg.text = "Error creating or opening database.";
}

For the complete code for the example event listeners, see “Complete example code for generating and using an

encryption key” on page 765.

Complete example code for generating and using an encryption key

Adobe AIR 1.5 and later

The following is the complete code for the example application “Generating and using an encryption key.” The code

consists of two parts.

The example uses the EncryptionKeyGenerator class to create an encryption key from a password. The

EncryptionKeyGenerator class is included in the open-source ActionScript 3.0 core library (as3corelib) project. You

can download the as3corelib package including source code and documentation. You can also download the SWC or

source code files from the project page.

Flex example

The application MXML file contains the source code for a simple application that creates or opens a connection to an

encrypted database:

http://www.adobe.com/go/learn_air_opensource_encryptionkey

766ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical"
creationComplete="init();">

<mx:Script>
<![CDATA[

import com.adobe.air.crypto.EncryptionKeyGenerator;

private const dbFileName:String = "encryptedDatabase.db";

private var dbFile:File;
private var createNewDB:Boolean = true;
private var conn:SQLConnection;

// ------- Event handling -------

private function init():void
{

conn = new SQLConnection();
dbFile = File.applicationStorageDirectory.resolvePath(dbFileName);
if (dbFile.exists)
{

createNewDB = false;
instructions.text = "Enter your database password to open the encrypted

database.";
openButton.label = "Open Database";

}
}

private function openConnection():void
{

var password:String = passwordInput.text;

var keyGenerator:EncryptionKeyGenerator = new EncryptionKeyGenerator();

if (password == null || password.length <= 0)
{

statusMsg.text = "Please specify a password.";
return;

}

if (!keyGenerator.validateStrongPassword(password))
{

statusMsg.text = "The password must be 8-32 characters long. It must
contain at least one lowercase letter, at least one uppercase letter, and at least one number
or symbol.";

return;
}

passwordInput.text = "";
passwordInput.enabled = false;
openButton.enabled = false;

var encryptionKey:ByteArray = keyGenerator.getEncryptionKey(password);

conn.addEventListener(SQLEvent.OPEN, openHandler);
conn.addEventListener(SQLErrorEvent.ERROR, openError);

767ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

conn.openAsync(dbFile, SQLMode.CREATE, null, false, 1024, encryptionKey);
}

private function openHandler(event:SQLEvent):void
{

conn.removeEventListener(SQLEvent.OPEN, openHandler);
conn.removeEventListener(SQLErrorEvent.ERROR, openError);

statusMsg.setStyle("color", 0x009900);
if (createNewDB)
{

statusMsg.text = "The encrypted database was created successfully.";
}
else
{

statusMsg.text = "The encrypted database was opened successfully.";
}

}

private function openError(event:SQLErrorEvent):void
{

conn.removeEventListener(SQLEvent.OPEN, openHandler);
conn.removeEventListener(SQLErrorEvent.ERROR, openError);

if (!createNewDB && event.error.errorID ==

EncryptionKeyGenerator.ENCRYPTED_DB_PASSWORD_ERROR_ID)
{

statusMsg.text = "Incorrect password!";
}
else
{

statusMsg.text = "Error creating or opening database.";
}

}
]]>

</mx:Script>
<mx:Text id="instructions" text="Enter a password to create an encrypted database. The next

time you open the application, you will need to re-enter the password to open the database
again." width="75%" height="65"/>

<mx:HBox>
<mx:TextInput id="passwordInput" displayAsPassword="true"/>
<mx:Button id="openButton" label="Create Database" click="openConnection();"/>

</mx:HBox>
<mx:Text id="statusMsg" color="#990000" width="75%"/>

</mx:WindowedApplication>

Flash Professional example

The application FLA file contains the source code for a simple application that creates or opens a connection to an

encrypted database. The FLA file has four components placed on the stage:

768ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

The code for the application is defined on a keyframe on frame 1 of the main timeline. The following is the code for

the application:

import com.adobe.air.crypto.EncryptionKeyGenerator;

const dbFileName:String = "encryptedDatabase.db";

var dbFile:File;
var createNewDB:Boolean = true;
var conn:SQLConnection;

init();

// ------- Event handling -------

function init():void
{

passwordInput.displayAsPassword = true;
openButton.addEventListener(MouseEvent.CLICK, openConnection);
statusMsg.setStyle("textFormat", new TextFormat(null, null, 0x990000));

conn = new SQLConnection();
dbFile = File.applicationStorageDirectory.resolvePath(dbFileName);

if (dbFile.exists)
{

createNewDB = false;
instructions.text = "Enter your database password to open the encrypted database.";
openButton.label = "Open Database";

}
else
{

instructions.text = "Enter a password to create an encrypted database. The next time
you open the application, you will need to re-enter the password to open the database again.";

openButton.label = "Create Database";
}

}

function openConnection(event:MouseEvent):void
{

var keyGenerator:EncryptionKeyGenerator = new EncryptionKeyGenerator();

var password:String = passwordInput.text;

if (password == null || password.length <= 0)
{

statusMsg.text = "Please specify a password.";
return;

Instance name Component type Description

instructions Label Contains the instructions given to the user

passwordInput TextInput Input field where the user enters the password

openButton Button Button the user clicks after entering the password

statusMsg Label Displays status (success or failure) messages

769ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

}

if (!keyGenerator.validateStrongPassword(password))
{

statusMsg.text = "The password must be 8-32 characters long. It must contain at least
one lowercase letter, at least one uppercase letter, and at least one number or symbol.";

return;
}

passwordInput.text = "";
passwordInput.enabled = false;
openButton.enabled = false;

var encryptionKey:ByteArray = keyGenerator.getEncryptionKey(password);

conn.addEventListener(SQLEvent.OPEN, openHandler);
conn.addEventListener(SQLErrorEvent.ERROR, openError);

conn.openAsync(dbFile, SQLMode.CREATE, null, false, 1024, encryptionKey);

}

function openHandler(event:SQLEvent):void
{

conn.removeEventListener(SQLEvent.OPEN, openHandler);
conn.removeEventListener(SQLErrorEvent.ERROR, openError);

statusMsg.setStyle("textFormat", new TextFormat(null, null, 0x009900));
if (createNewDB)
{

statusMsg.text = "The encrypted database was created successfully.";
}
else
{

statusMsg.text = "The encrypted database was opened successfully.";
}

}

function openError(event:SQLErrorEvent):void
{

conn.removeEventListener(SQLEvent.OPEN, openHandler);
conn.removeEventListener(SQLErrorEvent.ERROR, openError);

if (!createNewDB && event.error.errorID ==

EncryptionKeyGenerator.ENCRYPTED_DB_PASSWORD_ERROR_ID)
{

statusMsg.text = "Incorrect password!";
}
else
{

statusMsg.text = "Error creating or opening database.";
}

}

770ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Understanding the EncryptionKeyGenerator class

Adobe AIR 1.5 and later

It isn’t necessary to understand the inner workings of the EncryptionKeyGenerator class to use it to create a secure

encryption key for your application database. The process for using the class is explained in “Using the

EncryptionKeyGenerator class to obtain a secure encryption key” on page 763. However, you might find it valuable to

understand the techniques that the class uses. For example, you might want to adapt the class or incorporate some of

its techniques for situations where a different level of data privacy is desired.

The EncryptionKeyGenerator class is included in the open-source ActionScript 3.0 core library (as3corelib) project.

You can download the as3corelib package including source code and documentation.You can also view the source

code on the project site or download it to follow along with the explanations.

When code creates an EncryptionKeyGenerator instance and calls its getEncryptionKey() method, several steps are

taken to ensure that only the rightful user can access the data. The process is the same to generate an encryption key

from a user-entered password before the database is created as well as to re-create the encryption key to open the

database.

Obtain and validate a strong password

Adobe AIR 1.5 and later

When code calls the getEncryptionKey() method, it passes in a password as a parameter. The password is used as

the basis for the encryption key. By using a piece of information that only the user knows, this design ensures that only

the user who knows the password can access the data in the database. Even if an attacker accesses the user’s account

on the computer, the attacker can’t get into the database without knowing the password. For maximum security, the

application never stores the password.

An application’s code creates an EncryptionKeyGenerator instance and calls its getEncryptionKey() method,

passing a user-entered password as an argument (the variable password in this example):

var keyGenerator:EncryptionKeyGenerator = new EncryptionKeyGenerator();
var encryptionKey:ByteArray = keyGenerator.getEncryptionKey(password);

The first step the EncryptionKeyGenerator class takes when the getEncryptionKey() method is called is to check the

user-entered password to ensure that it meets the password strength requirements. The EncryptionKeyGenerator class

requires a password to be 8 - 32 characters long. The password must contain a mix of uppercase and lowercase letters

and at least one number or symbol character.

The regular expression that checks this pattern is defined as a constant named STRONG_PASSWORD_PATTERN:

private static const STRONG_PASSWORD_PATTERN:RegExp =
/(?=^.{8,32}$)((?=.*\d)|(?=.*\W+))(?![.\n])(?=.*[A-Z])(?=.*[a-z]).*$/;

The code that checks the password is in the EncryptionKeyGenerator class’s validateStrongPassword() method.

The code is as follows:

public function vaidateStrongPassword(password:String):Boolean
{

if (password == null || password.length <= 0)
{

return false;
}

return STRONG_PASSWORD_PATTERN.test(password))

}

http://www.adobe.com/go/learn_air_opensource_encryptionkey

771ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Internally the getEncryptionKey() method calls the EncryptionKeyGenerator class’s validateStrongPassword()

method and, if the password isn’t valid, throws an exception. The validateStrongPassword() method is a public

method so that application code can check a password without calling the getEncryptionKey() method to avoid

causing an error.

Expand the password to 256 bits

Adobe AIR 1.5 and later

Later in the process, the password is required to be 256 bits long. Rather than require each user to enter a password

that’s exactly 256 bits (32 characters) long, the code creates a longer password by repeating the password characters.

The getEncryptionKey() method calls the concatenatePassword() method to perform the task of creating the

long password.

var concatenatedPassword:String = concatenatePassword(password);

The following is the code for the concatenatePassword() method:

private function concatenatePassword(pwd:String):String
{

var len:int = pwd.length;
var targetLength:int = 32;

if (len == targetLength)
{

return pwd;
}

var repetitions:int = Math.floor(targetLength / len);
var excess:int = targetLength % len;

var result:String = "";

for (var i:uint = 0; i < repetitions; i++)
{

result += pwd;
}

result += pwd.substr(0, excess);

return result;

}

If the password is less than 256 bits, the code concatenates the password with itself to make it 256 bits. If the length

doesn’t work out exactly, the last repetition is shortened to get exactly 256 bits.

Generate or retrieve a 256-bit salt value

Adobe AIR 1.5 and later

The next step is to get a 256-bit salt value that in a later step is combined with the password. A salt is a random value

that is added to or combined with a user-entered value to form a password. Using a salt with a password ensures that

even if a user chooses a real word or common term as a password, the password-plus-salt combination that the system

uses is a random value. This randomness helps guard against a dictionary attack, where an attacker uses a list of words

to attempt to guess a password. In addition, by generating the salt value and storing it in the encrypted local store, it is

tied to the user’s account on the machine on which the database file is located.

772ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

If the application is calling the getEncryptionKey() method for the first time, the code creates a random 256-bit salt

value. Otherwise, the code loads the salt value from the encrypted local store.

The salt is stored in a variable named salt. The code determines if it has already created a salt by attempting to load

the salt from the encrypted local store:

var salt:ByteArray = EncryptedLocalStore.getItem(saltKey);
if (salt == null)
{

salt = makeSalt();
EncryptedLocalStore.setItem(saltKey, salt);

}

If the code is creating a new salt value, the makeSalt() method generates a 256-bit random value. Because the value

is eventually stored in the encrypted local store, it is generated as a ByteArray object. The makeSalt() method uses

the Math.random() method to randomly generate the value. The Math.random() method can’t generate 256 bits at

one time. Instead, the code uses a loop to call Math.random() eight times. Each time, a random uint value between 0

and 4294967295 (the maximum uint value) is generated. A uint value is used for convenience, because a uint uses

exactly 32 bits. By writing eight uint values into the ByteArray, a 256-bit value is generated. The following is the code

for the makeSalt() method:

private function makeSalt():ByteArray
{

var result:ByteArray = new ByteArray;

for (var i:uint = 0; i < 8; i++)
{

result.writeUnsignedInt(Math.round(Math.random() * uint.MAX_VALUE));
}

return result;

}

When the code is saving the salt to the Encrypted Local Store (ELS) or retrieving the salt from the ELS, it needs a String

key under which the salt is saved. Without knowing the key, the salt value can’t be retrieved. In that case, the

encryption key can’t be re-created each time to reopen the database. By default, the EncryptionKeyGenerator uses a

predefined ELS key that is defined in the constant SALT_ELS_KEY. Instead of using the default key, application code

can also specify an ELS key to use in the call to the getEncryptionKey() method. Either the default or the application-

specified salt ELS key is stored in a variable named saltKey. That variable is used in the calls to

EncryptedLocalStore.setItem() and EncryptedLocalStore.getItem(), as shown previously.

Combine the 256-bit password and salt using the XOR operator

Adobe AIR 1.5 and later

The code now has a 256-bit password and a 256-bit salt value. It next uses a bitwise XOR operation to combine the salt

and the concatenated password into a single value. In effect, this technique creates a 256-bit password consisting of

characters from the entire range of possible characters. This principle is true even though most likely the actual

password input consists of primarily alphanumeric characters. This increased randomness provides the benefit of

making the set of possible passwords large without requiring the user to enter a long complex password.

The result of the XOR operation is stored in the variable unhashedKey. The actual process of performing a bitwise

XOR on the two values happens in the xorBytes() method:

var unhashedKey:ByteArray = xorBytes(concatenatedPassword, salt);

773ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

The bitwise XOR operator (^) takes two uint values and returns a uint value. (A uint value contains 32 bits.) The input

values passed as arguments to the xorBytes() method are a String (the password) and a ByteArray (the salt).

Consequently, the code uses a loop to extract 32 bits at a time from each input to combine using the XOR operator.

private function xorBytes(passwordString:String, salt:ByteArray):ByteArray
{

var result:ByteArray = new ByteArray();

for (var i:uint = 0; i < 32; i += 4)
{

// ...
}

return result;

}

Within the loop, first 32 bits (4 bytes) are extracted from the passwordString parameter. Those bits are extracted and

converted into a uint (o1) in a two-part process. First, the charCodeAt() method gets each character’s numeric value.

Next, that value is shifted to the appropriate position in the uint using the bitwise left shift operator (<<) and the shifted

value is added to o1. For example, the first character (i) becomes the first 8 bits by using the bitwise left shift operator

(<<) to shift the bits left by 24 bits and assigning that value to o1. The second character (i + 1) becomes the second

8 bits by shifting its value left 16 bits and adding the result to o1. The third and fourth characters’ values are added the

same way.

// ...

// Extract 4 bytes from the password string and convert to a uint
var o1:uint = passwordString.charCodeAt(i) << 24;
o1 += passwordString.charCodeAt(i + 1) << 16;
o1 += passwordString.charCodeAt(i + 2) << 8;
o1 += passwordString.charCodeAt(i + 3);

// ...

The variable o1 now contains 32 bits from the passwordString parameter. Next, 32 bits are extracted from the salt

parameter by calling its readUnsignedInt() method. The 32 bits are stored in the uint variable o2.

// ...

salt.position = i;
var o2:uint = salt.readUnsignedInt();

// ...

Finally, the two 32-bit (uint) values are combined using the XOR operator and the result is written into a ByteArray

named result.

// ...

var xor:uint = o1 ^ o2;
result.writeUnsignedInt(xor);
// ...

Once the loop completes, the ByteArray containing the XOR result is returned.

774ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

// ...
}

return result;

}

Hash the key

Adobe AIR 1.5 and later

Once the concatenated password and the salt have been combined, the next step is to further secure this value by

hashing it using the SHA-256 hashing algorithm. Hashing the value makes it more difficult for an attacker to reverse-

engineer it.

At this point the code has a ByteArray named unhashedKey containing the concatenated password combined with the

salt. The ActionScript 3.0 core library (as3corelib) project includes a SHA256 class in the com.adobe.crypto package.

The SHA256.hashBytes() method that performs a SHA-256 hash on a ByteArray and returns a String containing the

256-bit hash result as a hexadecimal number. The EncryptionKeyGenerator class uses the SHA256 class to hash the key:

var hashedKey:String = SHA256.hashBytes(unhashedKey);

Extract the encryption key from the hash

Adobe AIR 1.5 and later

The encryption key must be a ByteArray that is exactly 16 bytes (128 bits) long. The result of the SHA-256 hashing

algorithm is always 256 bits long. Consequently, the final step is to select 128 bits from the hashed result to use as the

actual encryption key.

In the EncryptionKeyGenerator class, the code reduces the key to 128 bits by calling the generateEncryptionKey()

method. It then returns that method’s result as the result of the getEncryptionKey() method:

var encryptionKey:ByteArray = generateEncryptionKey(hashedKey);
return encryptionKey;

It isn’t necessary to use the first 128 bits as the encryption key. You could select a range of bits starting at some arbitrary

point, you could select every other bit, or use some other way of selecting bits. The important thing is that the code

selects 128 distinct bits, and that the same 128 bits are used each time.

In this case, the generateEncryptionKey() method uses the range of bits starting at the 18th byte as the encryption

key. As mentioned previously, the SHA256 class returns a String containing a 256-bit hash as a hexadecimal number.

A single block of 128 bits has too many bytes to add to a ByteArray at one time. Consequently, the code uses a for loop

to extract characters from the hexadecimal String, convert them to actual numeric values, and add them to the

ByteArray. The SHA-256 result String is 64 characters long. A range of 128 bits equals 32 characters in the String, and

each character represents 4 bits. The smallest increment of data you can add to a ByteArray is one byte (8 bits), which

is equivalent to two characters in the hash String. Consequently, the loop counts from 0 to 31 (32 characters) in

increments of 2 characters.

Within the loop, the code first determines the starting position for the current pair of characters. Since the desired

range starts at the character at index position 17 (the 18th byte), the position variable is assigned the current iterator

value (i) plus 17. The code uses the String object’s substr() method to extract the two characters at the current

position. Those characters are stored in the variable hex. Next, the code uses the parseInt() method to convert the

hex String to a decimal integer value. It stores that value in the int variable byte. Finally, the code adds the value in

byte to the result ByteArray using its writeByte() method. When the loop finishes, the result ByteArray contains

16 bytes and is ready to use as a database encryption key.

775ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

private function generateEncryptionKey(hash:String):ByteArray
{

var result:ByteArray = new ByteArray();

for (var i:uint = 0; i < 32; i += 2)
{

var position:uint = i + 17;
var hex:String = hash.substr(position, 2);
var byte:int = parseInt(hex, 16);
result.writeByte(byte);

}

return result;

}

Strategies for working with SQL databases

Adobe AIR 1.0 and later

There are various ways that an application can access and work with a local SQL database. The application design can

vary in terms of how the application code is organized, the sequence and timing of how operations are performed, and

so on. The techniques you choose can have an impact on how easy it is to develop your application. They can affect

how easy it is to modify the application in future updates. They can also affect how well the application performs from

the users’ perspective.

Distributing a pre-populated database

Adobe AIR 1.0 and later

When you use an AIR local SQL database in your application, the application expects a database with a certain

structure of tables, columns, and so forth. Some applications also expect certain data to be pre-populated in the

database file. One way to ensure that the database has the proper structure is to create the database within the

application code. When the application loads it checks for the existence of its database file in a particular location. If

the file doesn’t exist, the application executes a set of commands to create the database file, create the database

structure, and populate the tables with the initial data.

The code that creates the database and its tables is frequently complex. It is often only used once in the installed lifetime

of the application, but still adds to the size and complexity of the application. As an alternative to creating the database,

structure, and data programmatically, you can distribute a pre-populated database with your application. To distribute

a predefined database, include the database file in the application’s AIR package.

Like all files that are included in an AIR package, a bundled database file is installed in the application directory (the

directory represented by the File.applicationDirectory property). However, files in that directory are read only.

Use the file from the AIR package as a “template” database. The first time a user runs the application, copy the original

database file into the user’s “Pointing to the application storage directory” on page 672 (or another location), and use

that database within the application.

776ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Best practices for working with local SQL databases

Adobe AIR 1.0 and later

The following list is a set of suggested techniques you can use to improve the performance, security, and ease of

maintenance of your applications when working with local SQL databases.

Pre-create database connections

Adobe AIR 1.0 and later

Even if your application doesn’t execute any statements when it first loads, instantiate a SQLConnection object and

call its open() or openAsync() method ahead of time (such as after the initial application startup) to avoid delays

when running statements. See “Connecting to a database” on page 726.

Reuse database connections

Adobe AIR 1.0 and later

If you access a certain database throughout the execution time of your application, keep a reference to the

SQLConnection instance, and reuse it throughout the application, rather than closing and reopening the connection.

See “Connecting to a database” on page 726.

Favor asynchronous execution mode

Adobe AIR 1.0 and later

When writing data-access code, it can be tempting to execute operations synchronously rather than asynchronously,

because using synchronous operations frequently requires shorter and less complex code. However, as described in

“Using synchronous and asynchronous database operations” on page 753, synchronous operations can have a

performance impact that is obvious to users and detrimental to their experience with an application. The amount of

time a single operation takes varies according to the operation and particularly the amount of data it involves. For

instance, a SQL INSERT statement that only adds a single row to the database takes less time than a SELECT statement

that retrieves thousands of rows of data. However, when you’re using synchronous execution to perform multiple

operations, the operations are usually strung together. Even if the time each single operation takes is very short, the

application is frozen until all the synchronous operations finish. As a result, the cumulative time of multiple operations

strung together may be enough to stall your application.

Use asynchronous operations as a standard approach, especially with operations that involve large numbers of rows.

There is a technique for dividing up the processing of large sets of SELECT statement results, described in “Retrieving

SELECT results in parts” on page 742. However, this technique can only be used in asynchronous execution mode.

Only use synchronous operations when you can’t achieve certain functionality using asynchronous programming,

when you’ve considered the performance trade-off that your application’s users will face, and when you’ve tested your

application so that you know how your application’s performance is affected. Using asynchronous execution can

involve more complex coding. However, remember that you only have to write the code once, but the application’s

users have to use it repeatedly, fast or slow.

In many cases, by using a separate SQLStatement instance for each SQL statement to be executed, multiple SQL

operations can be queued up at one time, which makes asynchronous code like synchronous code in terms of how the

code is written. For more information, see “Understanding the asynchronous execution model” on page 757.

777ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with local SQL databases in AIR

Last updated 10/9/2017

Use separate SQL statements and don’t change the SQLStatement’s text property

Adobe AIR 1.0 and later

For any SQL statement that is executed more than once in an application, create a separate SQLStatement instance for

each SQL statement. Use that SQLStatement instance each time that SQL command executes. For example, suppose

you are building an application that includes four different SQL operations that are performed multiple times. In that

case, create four separate SQLStatement instances and call each statement’s execute() method to run it. Avoid the

alternative of using a single SQLStatement instance for all SQL statements, redefining its text property each time

before executing the statement.

Use statement parameters

Adobe AIR 1.0 and later

Use SQLStatement parameters—never concatenate user input into statement text. Using parameters makes your

application more secure because it prevents the possibility of SQL injection attacks. It makes it possible to use objects

in queries (rather than only SQL literal values). It also makes statements run more efficiently because they can be

reused without needing to be recompiled each time they’re executed. See “Using parameters in statements” on

page 730 for more information.

778

Last updated 10/9/2017

Chapter 41: Working with byte arrays

Flash Player 9 and later, Adobe AIR 1.0 and later

The ByteArray class allows you to read from and write to a binary stream of data, which is essentially an array of bytes.

This class provides a way to access data at the most elemental level. Because computer data consists of bytes, or groups

of 8 bits, the ability to read data in bytes means that you can access data for which classes and access methods do not

exist. The ByteArray class allows you to parse any stream of data, from a bitmap to a stream of data traveling over the

network, at the byte level.

The writeObject() method allows you to write an object in serialized Action Message Format (AMF) to a ByteArray,

while the readObject() method allows you to read a serialized object from a ByteArray to a variable of the original

data type. You can serialize any object except for display objects, which are those objects that can be placed on the

display list. You can also assign serialized objects back to custom class instances if the custom class is available to the

runtime. After converting an object to AMF, you can efficiently transfer it over a network connection or save it to a file.

The sample Adobe® AIR® application described here reads a .zip file as an example of processing a byte stream,

extracting a list of the files that the .zip file contains and writing them to the desktop.

More Help topics

flash.utils.ByteArray

flash.utils.IExternalizable

Action Message Format specification

Reading and writing a ByteArray

Flash Player 9 and later, Adobe AIR 1.0 and later

The ByteArray class is part of the flash.utils package. To create a ByteArray object in ActionScript 3.0, import the

ByteArray class and invoke the constructor, as shown in the following example:

 import flash.utils.ByteArray;
 var stream:ByteArray = new ByteArray();

ByteArray methods

Flash Player 9 and later, Adobe AIR 1.0 and later

Any meaningful data stream is organized into a format that you can analyze to find the information that you want. A

record in a simple employee file, for example, would probably include an ID number, a name, an address, a phone

number, and so on. An MP3 audio file contains an ID3 tag that identifies the title, author, album, publishing date, and

genre of the file that’s being downloaded. The format allows you to know the order in which to expect the data on the

data stream. It allows you to read the byte stream intelligently.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/utils/ByteArray.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/utils/IExternalizable.html
http://opensource.adobe.com/wiki/download/attachments/1114283/amf3_spec_05_05_08.pdf

779ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with byte arrays

Last updated 10/9/2017

The ByteArray class includes several methods that make it easier to read from and write to a data stream. Some of these

methods include readBytes() and writeBytes(), readInt() and writeInt(), readFloat() and writeFloat(),

readObject() and writeObject(), and readUTFBytes() and writeUTFBytes(). These methods enable you to

read data from the data stream into variables of specific data types and write from specific data types directly to the

binary data stream.

For example, the following code reads a simple array of strings and floating-point numbers and writes each element

to a ByteArray. The organization of the array allows the code to call the appropriate ByteArray methods

(writeUTFBytes() and writeFloat()) to write the data. The repeating data pattern makes it possible to read the

array with a loop.

 // The following example reads a simple Array (groceries), made up of strings
 // and floating-point numbers, and writes it to a ByteArray.

 import flash.utils.ByteArray;

 // define the grocery list Array
 var groceries:Array = ["milk", 4.50, "soup", 1.79, "eggs", 3.19, "bread" , 2.35]
 // define the ByteArray
 var bytes:ByteArray = new ByteArray();
 // for each item in the array
 for (var i:int = 0; i < groceries.length; i++) {
 bytes.writeUTFBytes(groceries[i++]); //write the string and position to the next item
 bytes.writeFloat(groceries[i]);// write the float
 trace("bytes.position is: " + bytes.position);//display the position in ByteArray
 }
 trace("bytes length is: " + bytes.length);// display the length

The position property

Flash Player 9 and later, Adobe AIR 1.0 and later

The position property stores the current position of the pointer that indexes the ByteArray during reading or writing.

The initial value of the position property is 0 (zero) as shown in the following code:

 var bytes:ByteArray = new ByteArray();
 trace("bytes.position is initially: " + bytes.position); // 0

When you read from or write to a ByteArray, the method that you use updates the position property to point to the

location immediately following the last byte that was read or written. For example, the following code writes a string

to a ByteArray and afterward the position property points to the byte immediately following the string in the

ByteArray:

 var bytes:ByteArray = new ByteArray();
 trace("bytes.position is initially: " + bytes.position); // 0
 bytes.writeUTFBytes("Hello World!");
 trace("bytes.position is now: " + bytes.position);// 12

Likewise, a read operation increments the position property by the number of bytes read.

780ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with byte arrays

Last updated 10/9/2017

 var bytes:ByteArray = new ByteArray();

 trace("bytes.position is initially: " + bytes.position); // 0
 bytes.writeUTFBytes("Hello World!");
 trace("bytes.position is now: " + bytes.position);// 12
 bytes.position = 0;
 trace("The first 6 bytes are: " + (bytes.readUTFBytes(6)));//Hello
 trace("And the next 6 bytes are: " + (bytes.readUTFBytes(6)));// World!

Notice that you can set the position property to a specific location in the ByteArray to read or write at that offset.

The bytesAvailable and length properties

Flash Player 9 and later, Adobe AIR 1.0 and later

The length and bytesAvailable properties tell you how long a ByteArray is and how many bytes remain in it from

the current position to the end. The following example illustrates how you can use these properties. The example writes

a String of text to the ByteArray and then reads the ByteArray one byte at a time until it encounters either the character

“a” or the end (bytesAvailable <= 0).

var bytes:ByteArray = new ByteArray();
 var text:String = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus etc.";

 bytes.writeUTFBytes(text); // write the text to the ByteArray
 trace("The length of the ByteArray is: " + bytes.length);// 70
 bytes.position = 0; // reset position
 while (bytes.bytesAvailable > 0 && (bytes.readUTFBytes(1) != 'a')) {
 //read to letter a or end of bytes
 }
 if (bytes.position < bytes.bytesAvailable) {
 trace("Found the letter a; position is: " + bytes.position); // 23
 trace("and the number of bytes available is: " + bytes.bytesAvailable);// 47
 }

The endian property

Flash Player 9 and later, Adobe AIR 1.0 and later

Computers can differ in how they store multibyte numbers, that is, numbers that require more than 1 byte of memory

to store them. An integer, for example, can take 4 bytes, or 32 bits, of memory. Some computers store the most

significant byte of the number first, in the lowest memory address, and others store the least significant byte first. This

attribute of a computer, or of byte ordering, is referred to as being either big endian (most significant byte first) or little

endian (least significant byte first). For example, the number 0x31323334 would be stored as follows for big endian and

little endian byte ordering, where a0 represents the lowest memory address of the 4 bytes and a3 represents the highest:

Big

Endian

Big

Endian

Big

Endian

Big

Endian

a0 a1 a2 a3

31 32 33 34

781ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with byte arrays

Last updated 10/9/2017

The endian property of the ByteArray class allows you to denote this byte order for multibyte numbers that you are

processing. The acceptable values for this property are either "bigEndian" or "littleEndian" and the Endian class

defines the constants BIG_ENDIAN and LITTLE_ENDIAN for setting the endian property with these strings.

The compress() and uncompress() methods

Flash Player 9 and later, Adobe AIR 1.0 and later

The compress() method allows you to compress a ByteArray in accordance with a compression algorithm that you

specify as a parameter. The uncompress() method allows you to uncompress a compressed ByteArray in accordance

with a compression algorithm. After calling compress() and uncompress(), the length of the byte array is set to the

new length and the position property is set to the end.

The CompressionAlgorithm class defines constants that you can use to specify the compression algorithm. The

ByteArray class supports the deflate (AIR-only), zlib, and lzma algorithms. The zlib compressed data format is

described at http://www.ietf.org/rfc/rfc1950.txt. The lzma algorithm was added for Flash Player 11.4 and AIR 3.4. It is

described at http://www.7-zip.org/7z.html.

The deflate compression algorithm is used in several compression formats, such as zlib, gzip, and some zip

implementations. The deflate compression algorithm is described at http://www.ietf.org/rfc/rfc1951.txt.

The following example compresses a ByteArray called bytes using the lzma algorithm:

 bytes.compress(CompressionAlgorithm.LZMA);

The following example uncompresses a compressed ByteArray using the deflate algorithm:

 bytes.uncompress(CompressionAlgorithm.LZMA);

Reading and writing objects

Flash Player 9 and later, Adobe AIR 1.0 and later

The readObject() and writeObject() methods read an object from and write an object to a ByteArray, encoded in

serialized Action Message Format (AMF). AMF is a proprietary message protocol created by Adobe and used by

various ActionScript 3.0 classes, including Netstream, NetConnection, NetStream, LocalConnection, and Shared

Objects.

A one-byte type marker describes the type of the encoded data that follows. AMF uses the following 13 data types:

 value-type = undefined-marker | null-marker | false-marker | true-marker | integer-type |
 double-type | string-type | xml-doc-type | date-type | array-type | object-type |
 xml-type | byte-array-type

The encoded data follows the type marker unless the marker represents a single possible value, such as null or true or

false, in which case nothing else is encoded.

Little

Endian

Little

Endian

Little

Endian

Little

Endian

a0 a1 a2 a3

34 33 32 31

http://www.ietf.org/rfc/rfc1950.txt
http://www.7-zip.org/7z.html
http://www.ietf.org/rfc/rfc1951.txt

782ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with byte arrays

Last updated 10/9/2017

There are two versions of AMF: AMF0 and AMF3. AMF 0 supports sending complex objects by reference and allows

endpoints to restore object relationships. AMF 3 improves AMF 0 by sending object traits and strings by reference, in

addition to object references, and by supporting new data types that were introduced in ActionScript 3.0. The

ByteArray.objectEcoding property specifies the version of AMF that is used to encode the object data. The

flash.net.ObjectEncoding class defines constants for specifying the AMF version: ObjectEncoding.AMF0 and

ObjectEncoding.AMF3.

The following example calls writeObject() to write an XML object to a ByteArray, which it then compresses using

the Deflate algorithm and writes to the order file on the desktop. The example uses a label to display the message

“Wrote order file to desktop!” in the AIR window when it is finished.

import flash.filesystem.*;
import flash.display.Sprite;
import flash.display.TextField;
 import flash.utils.ByteArray;
public class WriteObjectExample extends Sprite
{

public function WriteObjectExample()
{

 var bytes:ByteArray = new ByteArray();
 var myLabel:TextField = new TextField();
 myLabel.x = 150;

myLabel.y = 150;
 myLabel.width = 200;
 addChild(myLabel);

 var myXML:XML =
 <order>
 <item id='1'>
 <menuName>burger</menuName>
 <price>3.95</price>
 </item>
 <item id='2'>
 <menuName>fries</menuName>
 <price>1.45</price>
 </item>
 </order>;

 // Write XML object to ByteArray

783ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with byte arrays

Last updated 10/9/2017

 bytes.writeObject(myXML);
 bytes.position = 0;//reset position to beginning
 bytes.compress(CompressionAlgorithm.DEFLATE);// compress ByteArray
 writeBytesToFile("order.xml", bytes);
 myLabel.text = "Wrote order file to desktop!";

}

private function writeBytesToFile(fileName:String, data:ByteArray):void
{

 var outFile:File = File.desktopDirectory; // dest folder is desktop
 outFile = outFile.resolvePath(fileName); // name of file to write
 var outStream:FileStream = new FileStream();
 // open output file stream in WRITE mode
 outStream.open(outFile, FileMode.WRITE);
 // write out the file
 outStream.writeBytes(data, 0, data.length);
 // close it
 outStream.close();
 }
}

The readObject() method reads an object in serialized AMF from a ByteArray and stores it in an object of the

specified type. The following example reads the order file from the desktop into a ByteArray (inBytes),

uncompresses it, and calls readObject() to store it in the XML object orderXML. The example uses a for each()

loop construct to add each node to a text area for display. The example also displays the value of the objectEncoding

property along with a header for the contents of the order file.

import flash.filesystem.*;
import flash.display.Sprite;
import flash.display.TextField;
 import flash.utils.ByteArray;

public class ReadObjectExample extends Sprite
{

public function ReadObjectExample()
{

var inBytes:ByteArray = new ByteArray();
 // define text area for displaying XML content
 var myTxt:TextField = new TextField();
 myTxt.width = 550;
 myTxt.height = 400;
 addChild(myTxt);
 //display objectEncoding and file heading
 myTxt.text = "Object encoding is: " + inBytes.objectEncoding + "\n\n" + "order file: \n\n";
 readFileIntoByteArray("order", inBytes);

 inBytes.position = 0; // reset position to beginning
 inBytes.uncompress(CompressionAlgorithm.DEFLATE);
 inBytes.position = 0;//reset position to beginning
 // read XML Object
 var orderXML:XML = inBytes.readObject();

784ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with byte arrays

Last updated 10/9/2017

 // for each node in orderXML
 for each (var child:XML in orderXML)

{
 // append child node to text area
 myTxt.text += child + "\n";
 }

}

// read specified file into byte array
 private function readFileIntoByteArray(fileName:String, data:ByteArray):void
{

 var inFile:File = File.desktopDirectory; // source folder is desktop
 inFile = inFile.resolvePath(fileName); // name of file to read
 var inStream:FileStream = new FileStream();
 inStream.open(inFile, FileMode.READ);
 inStream.readBytes(data);
 inStream.close();
 }
}

ByteArray example: Reading a .zip file

Adobe AIR 1.0 and later

This example demonstrates how to read a simple .zip file containing several files of different types. It does so by

extracting relevant data from the metadata for each file, uncompressing each file into a ByteArray and writing the file

to the desktop.

The general structure of a .zip file is based on the specification by PKWARE Inc., which is maintained at

http://www.pkware.com/documents/casestudies/APPNOTE.TXT. First is a file header and file data for the first file in

the .zip archive, followed by a file header and file data pair for each additional file. (The structure of the file header is

described later.) Next, the .zip file optionally includes a data descriptor record (usually when the output zip file was

created in memory rather than saved to a disk). Next are several additional optional elements: archive decryption

header, archive extra data record, central directory structure, Zip64 end of central directory record, Zip64 end of

central directory locator, and end of central directory record.

The code in this example is written to only parse zip files that do not contain folders and it does not expect data

descriptor records. It ignores all information following the last file data.

The format of the file header for each file is as follows:

file header signature 4 bytes

required version 2 bytes

general-purpose bit flag 2 bytes

compression method 2 bytes (8=DEFLATE; 0=UNCOMPRESSED)

last modified file time 2 bytes

last modified file date 2 bytes

crc-32 4 bytes

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

785ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with byte arrays

Last updated 10/9/2017

Following the file header is the actual file data, which can be either compressed or uncompressed, depending on the

compression method flag. The flag is 0 (zero) if the file data is uncompressed, 8 if the data is compressed using the

DEFLATE algorithm, or another value for other compression algorithms.

The user interface for this example consists of a label and a text area (taFiles). The application writes the following

information to the text area for each file it encounters in the .zip file: the file name, the compressed size, and the

uncompressed size. The following MXML document defines the user interface for the Flex version of the application:

<?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical"
creationComplete="init();">
 <mx:Script>
 <![CDATA[
 // The application code goes here
]]>
 </mx:Script>
 <mx:Form>
 <mx:FormItem label="Output">
 <mx:TextArea id="taFiles" width="320" height="150"/>
 </mx:FormItem>
 </mx:Form>
 </mx:WindowedApplication>

The beginning of the program performs the following tasks:

• Imports the required classes

 import flash.filesystem.*;
 import flash.utils.ByteArray;
 import flash.events.Event;

• Defines the user interface for Flash

 import fl.controls.*;

 //requires TextArea and Label components in the Library
 var taFiles = new TextArea();
 var output = new Label();
 taFiles.setSize(320, 150);
 taFiles.move(10, 30);
 output.move(10, 10);
 output.width = 150;
 output.text = "Contents of HelloAir.zip";
 addChild(taFiles);
 addChild(output);

• Defines the bytes ByteArray

 var bytes:ByteArray = new ByteArray();

compressed size 4 bytes

uncompressed size 4 bytes

file name length 2 bytes

extra field length 2 bytes

file name variable

extra field variable

786ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with byte arrays

Last updated 10/9/2017

• Defines variables to store metadata from the file header

 // variables for reading fixed portion of file header
 var fileName:String = new String();
 var flNameLength:uint;
 var xfldLength:uint;
 var offset:uint;
 var compSize:uint;
 var uncompSize:uint;
 var compMethod:int;
 var signature:int;

• Defines File (zfile) and FileStream (zStream) objects to represent the .zip file, and specifies the location of the

.zip file from which the files are extracted—a file named “HelloAIR.zip” in the desktop directory.

 // File variables for accessing .zip file
 var zfile:File = File.desktopDirectory.resolvePath("HelloAIR.zip");
 var zStream:FileStream = new FileStream();

In Flex, the program code starts in the init() method, which is called as the creationComplete handler for the root

mx:WindowedApplication tag.

// for Flex
 private function init():void
 {

The program begins by opening the .zip file in READ mode.

 zStream.open(zfile, FileMode.READ);

It then sets the endian property of bytes to LITTLE_ENDIAN to indicate that the byte order of numeric fields has the

least significant byte first.

 bytes.endian = Endian.LITTLE_ENDIAN;

Next, a while() statement begins a loop that continues until the current position in the file stream is greater than or

equal to the size of the file.

 while (zStream.position < zfile.size)
 {

The first statement inside the loop reads the first 30 bytes of the file stream into the ByteArray bytes. The first 30 bytes

make up the fixed-size part of the first file header.

 // read fixed metadata portion of local file header
 zStream.readBytes(bytes, 0, 30);

Next, the code reads an integer (signature) from the first bytes of the 30-byte header. The ZIP format definition

specifies that the signature for every file header is the hexadecimal value 0x04034b50; if the signature is different it

means that the code has moved beyond the file portion of the .zip file and there are no more files to extract. In that case

the code exits the while loop immediately rather than waiting for the end of the byte array.

 bytes.position = 0;
 signature = bytes.readInt();
 // if no longer reading data files, quit
 if (signature != 0x04034b50)
 {
 break;
 }

787ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with byte arrays

Last updated 10/9/2017

The next part of the code reads the header byte at offset position 8 and stores the value in the variable compMethod.

This byte contains a value indicating the compression method that was used to compress this file. Several compression

methods are allowed, but in practice nearly all .zip files use the DEFLATE compression algorithm. If the current file is

compressed with DEFLATE compression, compMethod is 8; if the file is uncompressed, compMethod is 0.

 bytes.position = 8;
 compMethod = bytes.readByte(); // store compression method (8 == Deflate)

Following the first 30 bytes is a variable-length portion of the header that contains the file name and, possibly, an extra

field. The variable offset stores the size of this portion. The size is calculated by adding the file name length and extra

field length, read from the header at offsets 26 and 28.

 offset = 0;// stores length of variable portion of metadata
 bytes.position = 26; // offset to file name length
 flNameLength = bytes.readShort();// store file name
 offset += flNameLength; // add length of file name
 bytes.position = 28;// offset to extra field length
 xfldLength = bytes.readShort();
 offset += xfldLength;// add length of extra field

Next the program reads the variable-length portion of the file header for the number of bytes stored in the offset

variable.

 // read variable length bytes between fixed-length header and compressed file data
 zStream.readBytes(bytes, 30, offset);

The program reads the file name from the variable length portion of the header and displays it in the text area along

with the compressed (zipped) and uncompressed (original) sizes of the file.

// Flash version
 bytes.position = 30;
 fileName = bytes.readUTFBytes(flNameLength); // read file name
 taFiles.appendText(fileName + "\n"); // write file name to text area
 bytes.position = 18;
 compSize = bytes.readUnsignedInt(); // store size of compressed portion
 taFiles.appendText("\tCompressed size is: " + compSize + '\n');
 bytes.position = 22; // offset to uncompressed size
 uncompSize = bytes.readUnsignedInt(); // store uncompressed size
 taFiles.appendText("\tUncompressed size is: " + uncompSize + '\n');

// Flex version
bytes.position = 30;

 fileName = bytes.readUTFBytes(flNameLength); // read file name
 taFiles.text += fileName + "\n"; // write file name to text area
 bytes.position = 18;
 compSize = bytes.readUnsignedInt(); // store size of compressed portion
 taFiles.text += "\tCompressed size is: " + compSize + '\n';
 bytes.position = 22; // offset to uncompressed size
 uncompSize = bytes.readUnsignedInt(); // store uncompressed size
 taFiles.text += "\tUncompressed size is: " + uncompSize + '\n';

The example reads the rest of the file from the file stream into bytes for the length specified by the compressed size,

overwriting the file header in the first 30 bytes. The compressed size is accurate even if the file is not compressed

because in that case the compressed size is equal to the uncompressed size of the file.

788ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with byte arrays

Last updated 10/9/2017

 // read compressed file to offset 0 of bytes; for uncompressed files
 // the compressed and uncompressed size is the same

if (compSize == 0) continue;
 zStream.readBytes(bytes, 0, compSize);

Next, the example uncompresses the compressed file and calls the outfile() function to write it to the output file

stream. It passes outfile() the file name and the byte array containing the file data.

 if (compMethod == 8) // if file is compressed, uncompress
 {
 bytes.uncompress(CompressionAlgorithm.DEFLATE);
 }
 outFile(fileName, bytes); // call outFile() to write out the file

In the previously mentioned example, bytes.uncompress(CompressionAlgorithm.DEFLATE) will work only in

AIR applications. To get deflated data uncompressed for both AIR and Flash Player, invoke ByteArray’s inflate()

function.

The closing braces indicate the end of the while loop, and of the init() method and the Flex application code, except

for the outFile() method. Execution loops back to the beginning of the while loop and continues processing the next

bytes in the .zip file—either extracting another file or ending processing of the .zip file if the last file has been processed.

 } // end of while loop
 } // for Flex version, end of init() method and application

The outfile() function opens an output file in WRITE mode on the desktop, giving it the name supplied by the

filename parameter. It then writes the file data from the data parameter to the output file stream (outStream) and

closes the file.

// Flash version
 function outFile(fileName:String, data:ByteArray):void
 {
 var outFile:File = File.desktopDirectory; // destination folder is desktop
 outFile = outFile.resolvePath(fileName); // name of file to write
 var outStream:FileStream = new FileStream();
 // open output file stream in WRITE mode
 outStream.open(outFile, FileMode.WRITE);
 // write out the file
 outStream.writeBytes(data, 0, data.length);
 // close it
 outStream.close();
 }

 private function outFile(fileName:String, data:ByteArray):void
 {
 var outFile:File = File.desktopDirectory; // dest folder is desktop
 outFile = outFile.resolvePath(fileName); // name of file to write
 var outStream:FileStream = new FileStream();
 // open output file stream in WRITE mode
 outStream.open(outFile, FileMode.WRITE);
 // write out the file
 outStream.writeBytes(data, 0, data.length);
 // close it
 outStream.close();
 }

789

Last updated 10/9/2017

Chapter 42: Basics of networking and
communication

Flash Player 9 and later, Adobe AIR 1.0 and later

When you build applications in Flash Player or AIR, you often need to access resources outside your application. For

example, you might send a request for an image to an Internet web server and get the image data in return. Or, you

might send serialized objects back and forth over a socket connection with an application server. The Flash Player and

AIR APIs provide several classes that allow your applications to participate in this exchange. These APIs support IP-

based networking for protocols like UDP, TCP, HTTP, RTMP, and RTMFP.

The following classes can be used to send and receive data across a network:

Often, when creating a web application it is helpful to store persistent information about the user’s application state.

HTML pages and applications typically use cookies for this purpose. In Flash Player, you can use the SharedObject

class for the same purpose. See “Shared objects” on page 701. (The SharedObject class can be used in AIR applications,

but there are fewer restrictions when just saving the data to a regular file.)

Class Supported data formats Protocols Description

Loader SWF, PNG, JPEG, GIF HTTP, HTTPS Loads supported data types and converts the

data into a display object.

See “Loading display content dynamically” on

page 198.

URLLoader Any (text, XML, binary,

etc.)

HTTP, HTTPS Loads arbitrary formats of data. Your

application is responsible for interpreting the

data.

See “Using the URLLoader class” on page 815

FileReference Any HTTP Upload and download files.

See “Using the FileReference class” on

page 653

NetConnection Video, audio, ActionScript

Message Format (AMF)

HTTP, HTTPS,

RTMP, RTMFP

Connects to video, audio and remote object

streams.

See “Working with video” on page 474.

Sound Audio HTTP Loads and plays supported audio formats.

See “Loading external sound files” on

page 443.

XMLSocket XML TCP Exchanges XML messages with an XMLSocket

server.

See “XML sockets” on page 802.

Socket Any TCP Connects to a TCP socket server.

See “Binary client sockets” on page 798.

SecureSocket (AIR) Any TCP with SSLv3

or TLSv1

Connects to a TCP socket server that requires

SSL or TLS security.

See “Secure client sockets (AIR)” on page 798.

ServerSocket (AIR) Any TCP Acts as a server for incoming TCP socket

connections.

See “Server sockets” on page 806.

DatagramSocket (AIR) Any UDP Sends and receives UDP packets.

See “UDP sockets (AIR)” on page 808

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Loader.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/FileReference.html

790ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Basics of networking and communication

Last updated 10/9/2017

When your Flash Player or AIR application needs to communicate with another Flash Player or AIR application on

the same computer, you can use the LocalConnection class. For example, two (or more) SWFs on the same web page

can communicate with each other. Likewise, a SWF running on a web page can communicate with an AIR application.

See “Communicating with other Flash Player and AIR instances” on page 830.

When you need to communicate with other, non-SWF processes on the local computer, you can use the NativeProcess

class added in AIR 2. The NativeProcess class allows your AIR application to launch and communicate with other

applications. See “Communicating with native processes in AIR” on page 837.

When you need information about the network environment of the computer on which an AIR application is running,

you can use the following classes:

• NetworkInfo—Provides information about the available network interfaces, such as the computer’s IP address. See

“Network interfaces” on page 791.

• DNSResolver—Allows you to look up DNS records. See “Domain Name System (DNS) records” on page 794.

• ServiceMonitor—Allows you to monitor the availability of a server. See “Service monitoring” on page 792.

• URLMonitor—Allows you to monitor the availability of a resource at a particular URL. See “HTTP monitoring”

on page 793.

• SocketMonitor and SecureSocketMonitor—Allows you to monitor the availability of a resource at a socket. See

“Socket monitoring” on page 794.

Important concepts and terms

The following reference list contains important terms that you will encounter when programming networking and

communications code:

External data Data that is stored in some form outside of the application, and loaded into the application when

needed. This data could be stored in a file that’s loaded directly, or stored in a database or other form that is retrieved

by calling scripts or programs running on a server.

URL-encoded variables The URL-encoded format provides a way to represent several variables (pairs of variable

names and values) in a single string of text. Individual variables are written in the format name=value. Each variable

(that is, each name-value pair) is separated by ampersand characters, like this: variable1=value1&variable2=value2. In

this way, an indefinite number of variables can be sent as a single message.

MIME type A standard code used to identify the type of a given file in Internet communication. Any given file type has

a specific code that is used to identify it. When sending a file or message, a computer (such as a web server or a user’s

Flash Player or AIR instance) will specify the type of file being sent.

HTTP Hypertext Transfer Protocol—a standard format for delivering web pages and various other types of content

that are sent over the Internet.

Request method When an application (such as an AIR application or a web browser) sends a message (called an

HTTP request) to a web server, any data being sent can be embedded in the request in one of two ways; these are the

two request methods GET and POST. On the server end, the program receiving the request will need to look in the

appropriate portion of the request to find the data, so the request method used to send data from your application

should match the request method used to read that data on the server.

Socket connection A persistent connection for communication between two computers.

Upload To send a file to another computer.

Download To retrieve a file from another computer.

791ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Basics of networking and communication

Last updated 10/9/2017

Network interfaces

Adobe AIR 2 and later

You can use the NetworkInfo object to discover the hardware and software network interfaces available to your

application. The NetworkInfo object is a singleton object, you do not need to create one. Instead, use the static class

property, networkInfo, to access the single NetworkInfo object. The NetworkInfo object also dispatches a

networkChange event when one of the available interfaces change.

Call the findInterfaces() method to get a list of NetworkInterface objects. Each NetworkInterface object in the list

describes one of the available interfaces. The NetworkInterface object provides such information as the IP address,

hardware address, maximum transmission unit, and whether the interface is active.

The following code example traces the NetworkInterface properties of each interface on the client computer:

package {
import flash.display.Sprite;
import flash.net.InterfaceAddress;
import flash.net.NetworkInfo;
import flash.net.NetworkInterface;

public class NetworkInformationExample extends Sprite
{

public function NetworkInformationExample()
{

var networkInfo:NetworkInfo = NetworkInfo.networkInfo;
var interfaces:Vector.<NetworkInterface> = networkInfo.findInterfaces();

if(interfaces != null)
{

trace("Interface count: " + interfaces.length);
for each (var interfaceObj:NetworkInterface in interfaces)
{

trace("\nname: " + interfaceObj.name);
trace("display name: " + interfaceObj.displayName);
trace("mtu: " + interfaceObj.mtu);
trace("active?: " + interfaceObj.active);
trace("parent interface: " + interfaceObj.parent);
trace("hardware address: " + interfaceObj.hardwareAddress);
if(interfaceObj.subInterfaces != null)
{

trace("# subinterfaces: " + interfaceObj.subInterfaces.length);
}
trace("# addresses: " + interfaceObj.addresses.length);
for each (var address:InterfaceAddress in interfaceObj.addresses)
{

trace(" type: " + address.ipVersion);
trace(" address: " + address.address);
trace(" broadcast: " + address.broadcast);
trace(" prefix length: " + address.prefixLength);

}
}

}
}

}
}

792ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Basics of networking and communication

Last updated 10/9/2017

For more information, see:

• NetworkInfo

• NetworkInterface

• InterfaceAddress

• Flexpert: Detecting the network connection type with Flex 4.5

Network connectivity changes

Adobe AIR 1.0 and later

Your AIR application can run in environments with uncertain and changing network connectivity. To help an

application manage connections to online resources, Adobe AIR sends a network change event whenever a network

connection becomes available or unavailable. Both the NetworkInfo object and the application’s NativeApplication

object dispatch the networkChange event. To react to this event, add a listener:

 NetworkInfo.networkInfo.addEventListener(Event.NETWORK_CHANGE, onNetworkChange);

And define an event handler function:

function onNetworkChange(event:Event)
 {

//Check resource availability
 }

The networkChange event does not indicate a change in all network activity, only that an individual network

connection has changed. AIR does not attempt to interpret the meaning of the network change. A networked

computer can have many real and virtual connections, so losing a connection does not necessarily mean losing a

resource. On the other hand, new connections do not guarantee improved resource availability, either. Sometimes a

new connection can even block access to resources previously available (for example, when connecting to a VPN).

In general, the only way for an application to determine whether it can connect to a remote resource is to try it. The

service monitoring framework provides an event-based means of responding to changes in network connectivity to a

specified host.

Note: The service monitoring framework detects whether a server responds acceptably to a request. A successful check does

not guarantee full connectivity. Scalable web services often use caching and load-balancing appliances to redirect traffic

to a cluster of web servers. In this situation, service providers only provide a partial diagnosis of network connectivity.

Service monitoring

Adobe AIR 1.0 and later

The service monitor framework, separate from the AIR framework, resides in the file aircore.swc. To use the

framework, the aircore.swc file must be included in your build process.

Adobe® Flash® Builder includes this library automatically.

http://www.flexpert.be/2011/04/detecting-the-network-connection-type-with-flex-4-5/

793ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Basics of networking and communication

Last updated 10/9/2017

The ServiceMonitor class implements the framework for monitoring network services and provides a base

functionality for service monitors. By default, an instance of the ServiceMonitor class dispatches events regarding

network connectivity. The ServiceMonitor object dispatches these events when the instance is created and whenever

the runtime detects a network change. Additionally, you can set the pollInterval property of a ServiceMonitor

instance to check connectivity at a specified interval in milliseconds, regardless of general network connectivity events.

A ServiceMonitor object does not check network connectivity until the start() method is called.

The URLMonitor class, a subclass of the ServiceMonitor class, detects changes in HTTP connectivity for a specified

URLRequest.

The SocketMonitor class, also a subclass of the ServiceMonitor class, detects changes in connectivity to a specified host

at a specified port.

Note: Prior to AIR 2, the service monitor framework was published in the servicemonitor.swc library. This library is now

deprecated. Use the aircore.swc library instead.

Flash CS4 and CS5 Professional

To use these classes in Adobe® Flash® CS4 or CS5 Professional:

1 Select the File > Publish Settings command.

2 Click the Settings button for ActionScript 3.0. Select Library Path.

3 Click the Browse to SWC button and browse to the AIK folder in your Flash Professional installation folder.

4 Within this folder, find the /frameworks/libs/air/aircore.swc (for AIR 2) or

/frameworks/libs/air/servicemonitor.swc (for AIR 1.5).

5 Click the OK button.

6 Add the following import statement to your ActionScript 3.0 code:

import air.net.*;

Flash CS3 Professional

To use these classes in Adobe® Flash® CS3 Professional, drag the ServiceMonitorShim component from the

Components panel to the Library. Then, add the following importstatement to your ActionScript 3.0 code:

 import air.net.*;

HTTP monitoring

Adobe AIR 1.0 and later

The URLMonitor class determines if HTTP requests can be made to a specified address at port 80 (the typical port for

HTTP communication). The following code uses an instance of the URLMonitor class to detect connectivity changes

to the Adobe website:

794ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Basics of networking and communication

Last updated 10/9/2017

import air.net.URLMonitor;
import flash.net.URLRequest;
import flash.events.StatusEvent;
var monitor:URLMonitor;
monitor = new URLMonitor(new URLRequest('http://www.example.com'));
monitor.addEventListener(StatusEvent.STATUS, announceStatus);
monitor.start();
function announceStatus(e:StatusEvent):void {

trace("Status change. Current status: " + monitor.available);
}

Socket monitoring

Adobe AIR 1.0 and later

AIR applications can also use socket connections for push-model connectivity. Firewalls and network routers typically

restrict network communication on unauthorized ports for security reasons. For this reason, developers must consider

that users do not always have the capability to make socket connections.

The following code uses an instance of the SocketMonitor class to detect connectivity changes to a socket connection.

The port monitored is 6667, a common port for IRC:

import air.net.ServiceMonitor;
 import flash.events.StatusEvent;

 socketMonitor = new SocketMonitor('www.example.com',6667);
 socketMonitor.addEventListener(StatusEvent.STATUS, socketStatusChange);
 socketMonitor.start();

 function announceStatus(e:StatusEvent):void {
 trace("Status change. Current status: " + socketMonitor.available);
 }

If the socket server requires a secure connection, you can use the SecureSocketMonitor class instead of SocketMonitor.

Domain Name System (DNS) records

Adobe AIR 2.0 and later

You can look up DNS resource records using the DNSResolver class. DNS resource records provide information like

the IP address of a domain name and the domain name of an IP address. You can look up the following types of DNS

resource records:

• ARecord—IPv4 address for a host.

• AAAARecord—IPv6 address for a host.

• MXRecord—mail exchange record for a host.

• PTRRecord—host name for an IP address.

• SRVRecord—service record for a service.

To look up a record, you pass a query string and the class object representing the record type to the lookup() method

of the DNSResolver object. The query string to use depends on the record type:

795ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Basics of networking and communication

Last updated 10/9/2017

The following code example looks up the IP address of the host “example.com”.

package
{

import flash.display.Sprite;
import flash.events.DNSResolverEvent;
import flash.events.ErrorEvent;
import flash.net.dns.ARecord;
import flash.net.dns.DNSResolver;

public class DNSResolverExample extends Sprite
{

public function DNSResolverExample()
{

var resolver:DNSResolver = new DNSResolver();
resolver.addEventListener(DNSResolverEvent.LOOKUP, lookupComplete);
resolver.addEventListener(ErrorEvent.ERROR, lookupError);

resolver.lookup("example.com.", ARecord);

}

private function lookupComplete(event:DNSResolverEvent):void
{

trace("Query string: " + event.host);
trace("Record count: " + event.resourceRecords.length);
for each(var record:* in event.resourceRecords)
{

if(record is ARecord) trace(record.address);
}

}

private function lookupError(error:ErrorEvent):void
{

trace("Error: " + error.text);
}

}
}

For more information, see:

• DNSResolver

• DNSResolverEvent

• ARecord

Record class Query string Example query string

ARecord host name “example.com”

AAAARecord host name “example.com”

MXRecord host name “example.com”

PTRRecord IP address “208.77.188.166”

SRVRecord Service identifier: _service._protocol.host “_sip._tcp.example.com”

796ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Basics of networking and communication

Last updated 10/9/2017

• AAAARecord

• MXRecord

• PTRRecord

• SRVRecord

797

Last updated 10/9/2017

Chapter 43: Sockets

Flash Player 9 and later, Adobe AIR 1.0 and later

A socket is a type of network connection established between two computer processes. Typically, the processes are

running on two different computers attached to the same Internet Protocol (IP) network. However, the connected

processes can be running on the same computer using the special “local host” IP address.

Adobe Flash Player supports client-side Transport Control Protocol (TCP) sockets. A Flash Player application can

connect to another process acting as a socket server, but cannot accept incoming connection requests from other

processes. In other words, a Flash Player application can connect to a TCP server, but cannot serve as one.

The Flash Player API also includes the XMLSocket class. The XMLSocket class uses a Flash Player-specific protocol

that allows you to exchange XML messages with a server that understands that protocol. The XMLSocket class was

introduced in ActionScript 1 and is still supported to provide backward compatibility. In general, the Socket class

should be used for new applications unless you are connecting to a server specifically created to communicate with

Flash XMLSockets.

Adobe AIR adds several additional classes for socket-based network programming. AIR applications can act as TCP

socket servers with the ServerSocket class and can connect to socket servers requiring SSL or TLS security with the

SecureSocket class. AIR applications can also send and receive Universal Datagram Protocol (UDP) messages with the

DatagramSocket class.

More Help topics

flash.net package

“Connecting to sockets” on page 1068

TCP sockets

Flash Player 9 and later, Adobe AIR 1.0 and later

The Transmission Control Protocol (TCP) provides a way to exchange messages over a persistent network connection.

TCP guarantees that any messages sent arrive in the correct order (barring major network problems). TCP

connections require a “client” and a “server.” Flash Player can create client sockets. Adobe AIR can, additionally, create

server sockets.

The following ActionScript APIs provide TCP connections:

• Socket — allows a client application to connect to a server. The Socket class cannot listen for incoming connections.

• SecureSocket (AIR) — allows a client application to connect to a trusted server and engage in encrypted

communications.

• ServerSocket (AIR) — allows an application to listen for incoming connections and act as a server.

• XMLSocket — allows a client application to connect to an XMLSocket server.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/package-detail.html

798ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Sockets

Last updated 10/9/2017

Binary client sockets

Flash Player 9 and later, Adobe AIR 1.0 and later

A binary socket connection is similar to an XML socket except that the client and server are not limited to exchanging

XML messages. Instead, the connection can transfer data as binary information. Thus, you can connect to a wider

range of services, including mail servers (POP3, SMTP, and IMAP), and news servers (NNTP).

Socket class

Flash Player 9 and later, Adobe AIR 1.0 and later

The Socket class enables you to make socket connections and to read and write raw binary data. The Socket class is

useful for interoperating with servers that use binary protocols. By using binary socket connections, you can write code

that interacts with several different Internet protocols, such as POP3, SMTP, IMAP, and NNTP. This interaction, in

turn, enables your applications to connect to mail and news servers.

Flash Player can interface with a server by using the binary protocol of that server directly. Some servers use the big-

endian byte order, and some use the little-endian byte order. Most servers on the Internet use the big-endian byte order

because “network byte order” is big-endian. The little-endian byte order is popular because the Intel® x86 architecture

uses it. You should use the endian byte order that matches the byte order of the server that is sending or receiving data.

All operations that are performed by the IDataInput and IDataOutput interfaces, and the classes that implement those

interfaces (ByteArray, Socket, and URLStream), are encoded by default in big-endian format; that is, with the most

significant byte first. This default byte order was chosen to match Java and the official network byte order. To change

whether big-endian or little-endian byte order is used, you can set the endian property to Endian.BIG_ENDIAN or

Endian.LITTLE_ENDIAN.

The Socket class inherits all the methods defined by the IDataInput and IDataOutput interfaces (located in the

flash.utils package). Those methods must be used to write to and read from the Socket.

For more information, see:

• Socket

• IDataInput

• IDataOutput

• socketData event

Secure client sockets (AIR)

Adobe AIR 2 and later

You can use the SecureSocket class to connect to socket servers that use Secure Sockets Layer version 4 (SSLv4) or

Transport Layer Security version 1 (TLSv1). A secure socket provides three benefits: server authentication, data

integrity, and message confidentiality. The runtime authenticates a server using the server certificate and its

relationship to the root or intermediate certificate authority certificates in the user’s trust store. The runtime relies on

the cryptography algorithms used by the SSL and TLS protocol implementations to provide data integrity and message

confidentiality.

When you connect to a server using the SecureSocket object, the runtime validates the server certificate using the

certificate trust store. On Windows and Mac, the operating system provides the trust store. On Linux, the runtime

provides its own trust store.

799ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Sockets

Last updated 10/9/2017

If the server certificate is not valid or not trusted, the runtime dispatches an ioError event. You can check the

serverCertificateStatus property of the SecureSocket object to determine why validation failed. No provision is

provided for communicating with a server that does not have a valid and trusted certificate.

The CertificateStatus class defines string constants that represent the possible validation results:

• Expired—the certificate expiration date has passed.

• Invalid—there are a number of reasons that a certificate can be invalid. For example, the certificate could have been

altered, corrupted, or it could be the wrong type of certificate.

• Invalid chain—one or more of the certificates in the server’s chain of certificates are invalid.

• Principal mismatch—the host name of the server and the certificate common name do not match. In other words,

the server is using the wrong certificate.

• Revoked—the issuing certificate authority has revoked the certificate.

• Trusted—the certificate is valid and trusted. A SecureSocket object can only connect to a server that uses a valid,

trusted certificate.

• Unknown—the SecureSocket object has not validated the certificate yet. The serverCertificateStatus

property has this status value before you call connect() and before either a connect or an ioError event is

dispatched.

• Untrusted signers—the certificate does not “chain” to a trusted root certificate in the trust store of the client

computer.

Communicating with a SecureSocket object requires a server that uses a secure protocol and has a valid, trusted

certificate. In other respects, using a SecureSocket object is the same as using a Socket object.

The SecureSocket object is not supported on all platforms. Use the SecureSocket class isSupported property to test

whether the runtime supports use of the SecureSocket object on the current client computer.

For more information, see:

• SecureSocket

• CertificateStatus

• IDataInput

• IDataOutput

• socketData event

TCP socket example: Building a Telnet client

Flash Player 9 and later, Adobe AIR 1.0 and later

The Telnet example demonstrates techniques for connecting with a remote server and transmitting data using the

Socket class. The example demonstrates the following techniques:

• Creating a custom telnet client using the Socket class

• Sending text to the remote server using a ByteArray object

• Handling received data from a remote server

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The Telnet

application files can be found in the Samples/Telnet folder. The application consists of the following files:

http://www.adobe.com/go/learn_programmingAS3samples_flash

800ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Sockets

Last updated 10/9/2017

Telnet socket application overview

Flash Player 9 and later, Adobe AIR 1.0 and later

The main TelnetSocket.mxml file is responsible for creating the user interface (UI) for the entire application.

In addition to the UI, this file also defines two methods, login() and sendCommand(), to connect the user to the

specified server.

The following code lists the ActionScript in the main application file:

 import com.example.programmingas3.socket.Telnet;

 private var telnetClient:Telnet;
 private function connect():void
 {
 telnetClient = new Telnet(serverName.text, int(portNumber.text), output);
 console.title = "Connecting to " + serverName.text + ":" + portNumber.text;
 console.enabled = true;
 }
 private function sendCommand():void
 {
 var ba:ByteArray = new ByteArray();
 ba.writeMultiByte(command.text + "\n", "UTF-8");
 telnetClient.writeBytesToSocket(ba);
 command.text = "";
 }

The first line of code imports the Telnet class from the custom com.example.programmingas.socket package. The

second line of code declares an instance of the Telnet class, telnetClient, that is initialized later by the connect()

method. Next, the connect() method is declared and initializes the telnetClient variable declared earlier. This

method passes the user-specified telnet server name, telnet server port, and a reference to a TextArea component on

the display list, which is used to display the text responses from the socket server. The final two lines of the connect()

method set the title property for the Panel and enable the Panel component, which allows the user to send data to

the remote server. The final method in the main application file, sendCommand(), is used to send the user's commands

to the remote server as a ByteArray object.

Telnet class overview

Flash Player 9 and later, Adobe AIR 1.0 and later

The Telnet class is responsible for connecting to the remote Telnet server and sending/receiving data.

The Telnet class declares the following private variables:

File Description

TelnetSocket.fla

 or

TelnetSocket.mxml

The main application file consisting of the user interface for Flex (MXML) or Flash

(FLA).

TelnetSocket.as Document class providing the user interface logic (Flash only).

com/example/programmingas3/Telnet/Telnet.as Provides the Telnet client functionality for the application, such as connecting to a

remote server, and sending, receiving, and displaying data.

801ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Sockets

Last updated 10/9/2017

 private var serverURL:String;
 private var portNumber:int;
 private var socket:Socket;
 private var ta:TextArea;
 private var state:int = 0;

The first variable, serverURL, contains the user-specified server address to connect to.

The second variable, portNumber, is the port number that the Telnet server is currently running on. By default, the

Telnet service runs on port 23.

The third variable, socket, is a Socket instance that attempts to connect to the server defined by the serverURL and

portNumber variables.

The fourth variable, ta, is a reference to a TextArea component instance on the Stage. This component is used to

display responses from the remote Telnet server, or any possible error messages.

The final variable, state, is a numeric value that is used to determine which options your Telnet client supports.

As you saw before, the Telnet class's constructor function is called by the connect() method in the main application file.

The Telnet constructor takes three parameters: server, port, and output. The server and port parameters specify

the server name and port number where the Telnet server is running. The final parameter, output, is a reference to a

TextArea component instance on the Stage where server output is displayed to users.

 public function Telnet(server:String, port:int, output:TextArea)
 {
 serverURL = server;
 portNumber = port;
 ta = output;
 socket = new Socket();
 socket.addEventListener(Event.CONNECT, connectHandler);
 socket.addEventListener(Event.CLOSE, closeHandler);
 socket.addEventListener(ErrorEvent.ERROR, errorHandler);
 socket.addEventListener(IOErrorEvent.IO_ERROR, ioErrorHandler);
 socket.addEventListener(ProgressEvent.SOCKET_DATA, dataHandler);
 Security.loadPolicyFile("http://" + serverURL + "/crossdomain.xml");
 try
 {
 msg("Trying to connect to " + serverURL + ":" + portNumber + "\n");
 socket.connect(serverURL, portNumber);
 }
 catch (error:Error)
 {
 msg(error.message + "\n");
 socket.close();
 }
 }

Writing data to a socket

Flash Player 9 and later, Adobe AIR 1.0 and later

To write data to a socket connection, you call any of the write methods in the Socket class. These write methods include

writeBoolean(), writeByte(), writeBytes(), writeDouble(), and others. Then, flush the data in the output

buffer using the flush() method. In the Telnet server, data is written to the socket connection using the

writeBytes() method which takes the byte array as a parameter and sends it to the output buffer. The

writeBytesToSocket() method is as follows:

802ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Sockets

Last updated 10/9/2017

 public function writeBytesToSocket(ba:ByteArray):void
 {
 socket.writeBytes(ba);
 socket.flush();
 }

This method gets called by the sendCommand() method of the main application file.

Displaying messages from the socket server

Flash Player 9 and later, Adobe AIR 1.0 and later

Whenever a message is received from the socket server, or an event occurs, the custom msg() method is called. This

method appends a string to the TextArea on the Stage and calls a custom setScroll() method, which causes the

TextArea component to scroll to the bottom. The msg() method is as follows:

 private function msg(value:String):void
 {
 ta.text += value;
 setScroll();
 }

If you didn’t automatically scroll the contents of the TextArea component, users would need to manually drag the

scroll bars on the text area to see the latest response from the server.

Scrolling a TextArea component

Flash Player 9 and later, Adobe AIR 1.0 and later

The setScroll() method contains a single line of ActionScript that scrolls the TextArea component’s contents

vertically so the user can see the last line of the returned text. The following snippet shows the setScroll() method:

 public function setScroll():void
 {
 ta.verticalScrollPosition = ta.maxVerticalScrollPosition;
 }

This method sets the verticalScrollPosition property, which is the line number of the top row of characters that

is currently displayed, and sets it to the value of the maxVerticalScrollPosition property.

XML sockets

Flash Player 9 and later, Adobe AIR 1.0 and later

 An XML socket lets you create a connection to a remote server that remains open until explicitly closed. You can

exchange string data, such as XML, between the server and client. A benefit of using an XML socket server is that the

client does not need to explicitly request data. The server can send data without waiting for a request and can send data

to every connected client connected.

In Flash Player, and in Adobe AIR content outside the application sandbox, XML socket connections require the

presence of a socket policy file on the target server. For more information, see “Website controls (policy files)” on

page 1051 and “Connecting to sockets” on page 1068.

The XMLSocket class cannot tunnel through firewalls automatically because, unlike the Real-Time Messaging

Protocol (RTMP), XMLSocket has no HTTP tunneling capability. If you need to use HTTP tunneling, consider using

Flash Remoting or Flash Media Server (which supports RTMP) instead.

803ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Sockets

Last updated 10/9/2017

The following restrictions apply to how and where content in Flash Player or in an AIR application outside of the

application security sandbox can use an XMLSocket object to connect to the server:

• For content outside of the application security sandbox, the XMLSocket.connect() method can connect only to

TCP port numbers greater than or equal to 1024. One consequence of this restriction is that the server daemons

that communicate with the XMLSocket object must also be assigned to port numbers greater than or equal to 1024.

Port numbers below 1024 are often used by system services such as FTP (21), Telnet (23), SMTP (25), HTTP (80),

and POP3 (110), so XMLSocket objects are barred from these ports for security reasons. The port number

restriction limits the possibility that these resources will be inappropriately accessed and abused.

• For content outside of the application security sandbox, the XMLSocket.connect() method can connect only to

computers in the same domain where the content resides. (This restriction is identical to the security rules for

URLLoader.load().) To connect to a server daemon running in a domain other than the one where the content

resides, you can create a cross-domain policy file on the server that allows access from specific domains. For details

on cross-domain policy files, see “AIR security” on page 1076.

Note: Setting up a server to communicate with the XMLSocket object can be challenging. If your application does not

require real-time interactivity, use the URLLoader class instead of the XMLSocket class.

You can use the XMLSocket.connect() and XMLSocket.send() methods of the XMLSocket class to transfer XML to

and from a server over a socket connection. The XMLSocket.connect() method establishes a socket connection with

a web server port. The XMLSocket.send() method passes an XML object to the server specified in the socket

connection.

When you invoke the XMLSocket.connect() method, the application opens a TCP/IP connection to the server and

keeps that connection open until one of the following occurs:

• The XMLSocket.close() method of the XMLSocket class is called.

• No more references to the XMLSocket object exist.

• Flash Player exits.

• The connection is broken (for example, the modem disconnects).

Connecting to a server with the XMLSocket class

Flash Player 9 and later, Adobe AIR 1.0 and later

To create a socket connection, you must create a server-side application to wait for the socket connection request and

send a response to the Flash Player or AIR application. This type of server-side application can be written in AIR or in

another programming language such as Java, Python, or Perl. To use the XMLSocket class, the server computer must

run a daemon that understands the simple protocol used by the XMLSocket class:

• XML messages are sent over a full-duplex TCP/IP stream socket connection.

• Each XML message is a complete XML document, terminated by a zero (0) byte.

• An unlimited number of XML messages can be sent and received over a single XMLSocket connection.

Creating and connecting to a Java XML socket server

Flash Player 9 and later, Adobe AIR 1.0 and later

The following code demonstrates a simple XMLSocket server written in Java that accepts incoming connections and

displays the received messages in the command prompt window. By default, a new server is created on port 8080 of

your local machine, although you can specify a different port number when starting your server from the command

line.

804ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Sockets

Last updated 10/9/2017

Create a new text document and add the following code:

 import java.io.*;
 import java.net.*;

 class SimpleServer
 {
 private static SimpleServer server;
 ServerSocket socket;
 Socket incoming;
 BufferedReader readerIn;
 PrintStream printOut;

 public static void main(String[] args)
 {
 int port = 8080;

 try
 {
 port = Integer.parseInt(args[0]);
 }
 catch (ArrayIndexOutOfBoundsException e)
 {
 // Catch exception and keep going.
 }

 server = new SimpleServer(port);
 }

 private SimpleServer(int port)
 {
 System.out.println(">> Starting SimpleServer");
 try
 {
 socket = new ServerSocket(port);
 incoming = socket.accept();
 readerIn = new BufferedReader(new InputStreamReader(incoming.getInputStream()));
 printOut = new PrintStream(incoming.getOutputStream());
 printOut.println("Enter EXIT to exit.\r");
 out("Enter EXIT to exit.\r");
 boolean done = false;
 while (!done)
 {
 String str = readerIn.readLine();
 if (str == null)
 {
 done = true;
 }
 else
 {
 out("Echo: " + str + "\r");

805ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Sockets

Last updated 10/9/2017

 if(str.trim().equals("EXIT"))
 {
 done = true;
 }
 }
 incoming.close();
 }
 }
 catch (Exception e)
 {
 System.out.println(e);
 }
 }

 private void out(String str)
 {
 printOut.println(str);
 System.out.println(str);
 }
 }

Save the document to your hard disk as SimpleServer.java and compile it using a Java compiler, which creates a Java

class file named SimpleServer.class.

You can start the XMLSocket server by opening a command prompt and typing java SimpleServer. The

SimpleServer.class file can be located anywhere on your local computer or network; it doesn’t need to be placed in the

root directory of your web server.

If you’re unable to start the server because the files are not located within the Java classpath, try starting the server

with java -classpath . SimpleServer.

To connect to the XMLSocket from your application, you need to create a new instance of the XMLSocket class, and

call the XMLSocket.connect() method while passing a host name and port number, as follows:

 var xmlsock:XMLSocket = new XMLSocket();
 xmlsock.connect("127.0.0.1", 8080);

Whenever you receive data from the server, the data event (flash.events.DataEvent.DATA) is dispatched:

 xmlsock.addEventListener(DataEvent.DATA, onData);
 private function onData(event:DataEvent):void
 {
 trace("[" + event.type + "] " + event.data);
 }

To send data to the XMLSocket server, you use the XMLSocket.send() method and pass an XML object or string.

Flash Player converts the supplied parameter to a String object and sends the content to the XMLSocket server

followed by a zero (0) byte:

 xmlsock.send(xmlFormattedData);

The XMLSocket.send() method does not return a value that indicates whether the data was successfully transmitted.

If an error occurred while trying to send data, an IOError error is thrown.

Each message you send to the XML socket server must be terminated by a newline (\n) character.

For more information, see XMLSocket.

806ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Sockets

Last updated 10/9/2017

Server sockets

Adobe AIR 2 and later

Use the ServerSocket class to allow other processes to connect to your application using a Transport Control Protocol

(TCP) socket. The connecting process can be running on the local computer or on another network-connected

computer. When a ServerSocket object receives a connection request, it dispatches a connect event. The

ServerSocketConnectEvent object dispatched with the event contains a Socket object. You can use this Socket object

for subsequent communication with the other process.

To listen for incoming socket connections:

1 Create a ServerSocket object and bind it to a local port

2 Add event listeners for the connect event

3 Call the listen() method

4 Respond to the connect event, which provides a Socket object for each incoming connection

The ServerSocket object continues to listen for new connections until you call the close() method.

The following code example illustrates how to create a socket server application. The example listens for incoming

connections on port 8087. When a connection is received, the example sends a message (the string “Connected.”) to

the client socket. Thereafter, the server echoes any messages received back to the client.

package
{

import flash.display.Sprite;
import flash.events.Event;
import flash.events.IOErrorEvent;
import flash.events.ProgressEvent;
import flash.events.ServerSocketConnectEvent;
import flash.net.ServerSocket;
import flash.net.Socket;

public class ServerSocketExample extends Sprite
{

private var serverSocket:ServerSocket;
private var clientSockets:Array = new Array();

public function ServerSocketExample()
{

try
{

// Create the server socket
serverSocket = new ServerSocket();

// Add the event listener
serverSocket.addEventListener(Event.CONNECT, connectHandler);
serverSocket.addEventListener(Event.CLOSE, onClose);

// Bind to local port 8087
serverSocket.bind(8087, "127.0.0.1");

// Listen for connections
serverSocket.listen();
trace("Listening on " + serverSocket.localPort);

807ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Sockets

Last updated 10/9/2017

}
catch(e:SecurityError)
{

trace(e);
}

}

public function connectHandler(event:ServerSocketConnectEvent):void
{

//The socket is provided by the event object
var socket:Socket = event.socket as Socket;
clientSockets.push(socket);

socket.addEventListener(ProgressEvent.SOCKET_DATA, socketDataHandler);
socket.addEventListener(Event.CLOSE, onClientClose);
socket.addEventListener(IOErrorEvent.IO_ERROR, onIOError);

//Send a connect message
socket.writeUTFBytes("Connected.");
socket.flush();

trace("Sending connect message");

}

public function socketDataHandler(event:ProgressEvent):void
{

var socket:Socket = event.target as Socket

//Read the message from the socket
var message:String = socket.readUTFBytes(socket.bytesAvailable);
trace("Received: " + message);

// Echo the received message back to the sender
message = "Echo -- " + message;
socket.writeUTFBytes(message);
socket.flush();
trace("Sending: " + message);

}

private function onClientClose(event:Event):void
{

trace("Connection to client closed.");
//Should also remove from clientSockets array...

}

private function onIOError(errorEvent:IOErrorEvent):void
{

trace("IOError: " + errorEvent.text);
}

private function onClose(event:Event):void
{

trace("Server socket closed by OS.");
}

}}

808ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Sockets

Last updated 10/9/2017

For more information, see:

• ServerSocket

• ServerSocketConnectEvent

• Socket

UDP sockets (AIR)

Adobe AIR 2 and later

The Universal Datagram Protocol (UDP) provides a way to exchange messages over a stateless network connection.

UDP provides no guarantees that messages are delivered in order or even that messages are delivered at all. With UDP,

the operating system’s network code usually spends less time marshaling, tracking, and acknowledging messages.

Thus, UDP messages typically arrive at the destination application with a shorter delay than do TCP messages.

UDP socket communication is helpful when you must send real-time information such as position updates in a game,

or sound packets in an audio chat application. In such applications, some data loss is acceptable, and low transmission

latency is more important than guaranteed arrival. For almost all other purposes, TCP sockets are a better choice.

Your AIR application can send and receive UDP messages with the DatagramSocket and DatagramSocketDataEvent

classes. To send or receive a UDP message:

1 Create a DatagramSocket object

2 Add an event listener for the data event

3 Bind the socket to a local IP address and port using the bind() method

4 Send messages by calling the send() method, passing in the IP address and port of the target computer

5 Receive messages by responding to the data event. The DatagramSocketDataEvent object dispatched for this event

contains a ByteArray object containing the message data.

The following code example illustrates how an application can send and receive UDP messages. The example sends a

single message containing the string, “Hello.”, to the target computer. It also traces the contents of any messages

received.

809ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Sockets

Last updated 10/9/2017

package
{
import flash.display.Sprite;
import flash.events.DatagramSocketDataEvent;
import flash.events.Event;
import flash.net.DatagramSocket;
import flash.utils.ByteArray;

public class DatagramSocketExample extends Sprite
{

private var datagramSocket:DatagramSocket;

//The IP and port for this computer
private var localIP:String = "192.168.0.1";
private var localPort:int = 55555;

//The IP and port for the target computer
private var targetIP:String = "192.168.0.2";
private var targetPort:int = 55555;

public function DatagramSocketExample()
{

//Create the socket
datagramSocket = new DatagramSocket();
datagramSocket.addEventListener(DatagramSocketDataEvent.DATA, dataReceived);

//Bind the socket to the local network interface and port
datagramSocket.bind(localPort, localIP);

//Listen for incoming datagrams
datagramSocket.receive();

//Create a message in a ByteArray
var data:ByteArray = new ByteArray();
data.writeUTFBytes("Hello.");

//Send the datagram message
datagramSocket.send(data, 0, 0, targetIP, targetPort);

}

private function dataReceived(event:DatagramSocketDataEvent):void
{

//Read the data from the datagram
trace("Received from " + event.srcAddress + ":" + event.srcPort + "> " +

event.data.readUTFBytes(event.data.bytesAvailable));
}

}}

Keep in mind the following considerations when using UDP sockets:

• A single packet of data cannot be larger than the smallest maximum transmission unit (MTU) of the network

interface or any network nodes between the sender and the recipient. All of the data in the ByteArray object passed

to the send() method is sent as a single packet. (In TCP, large messages are broken up into separate packets.)

• There is no handshaking between the sender and the target. Messages are discarded without error if the target does

not exist or does not have an active listener at the specified port.

810ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Sockets

Last updated 10/9/2017

• When you use the connect() method, messages sent from other sources are ignored. A UDP connection provides

convenient packet filtering only. It does not mean that there is necessarily a valid, listening process at the target

address and port.

• UDP traffic can swamp a network. Network administrators might need to implement quality-of-service controls if

network congestion occurs. (TCP has built-in traffic control to reduce the impact of network congestion.)

For more information, see:

• DatagramSocket

• DatagramSocketDataEvent

• ByteArray

IPv6 addresses

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash Player 9.0.115.0 and later support IPv6 (Internet Protocol version 6). IPv6 is a version of Internet Protocol that

supports 128-bit addresses (an improvement on the earlier IPv4 protocol that supports 32-bit addresses). You might

need to activate IPv6 on your networking interfaces. For more information, see the Help for the operating system

hosting the data.

If IPv6 is supported on the hosting system, you can specify numeric IPv6 literal addresses in URLs enclosed in brackets

([]), as in the following:

[2001:db8:ccc3:ffff:0:444d:555e:666f]

Flash Player returns literal IPv6 values, according to the following rules:

• Flash Player returns the long form of the string for IPv6 addresses.

• The IP value has no double-colon abbreviations.

• Hexadecimal digits are lowercase only.

• IPv6 addresses are enclosed in square brackets ([]).

• Each address quartet is output as 0 to 4 hexadecimal digits, with the leading zeros omitted.

• An address quartet of all zeros is output as a single zero (not a double colon) except as noted in the following list of

exceptions.

The IPv6 values that Flash Player returns have the following exceptions:

• An unspecified IPv6 address (all zeros) is output as [::].

• The loopback or localhost IPv6 address is output as [::1].

• IPv4 mapped (converted to IPv6) addresses are output as [::ffff:a.b.c.d], where a.b.c.d is a typical IPv4 dotted-

decimal value.

• IPv4 compatible addresses are output as [::a.b.c.d], where a.b.c.d is a typical IPv4 dotted-decimal value.

811

Last updated 10/9/2017

Chapter 44: HTTP communications

Flash Player 9 and later, Adobe AIR 1.0 and later

Adobe® AIR® and Adobe® Flash® Player applications can communicate with HTTP-based servers to load data, images,

video and to exchange messages.

More Help topics

flash.net.URLLoader

flash.net.URLStream

flash.net.URLRequest

flash.net.URLRequestDefaults

flash.net.URLRequestHeader

flash.net.URLRequestMethod

flash.net.URLVariables

Loading external data

Flash Player 9 and later, Adobe AIR 1.0 and later

ActionScript 3.0 includes mechanisms for loading data from external sources. Those sources can provide static content

such as text files, or dynamic content generated by a web script. The data can be formatted in various ways, and

ActionScript provides functionality for decoding and accessing the data. You can also send data to the external server

as part of the process of retrieving data.

Using the URLRequest class

Flash Player 9 and later, Adobe AIR 1.0 and later

Many APIs that load external data use the URLRequest class to define the properties of necessary network request.

URLRequest properties

Flash Player 9 and later, Adobe AIR 1.0 and later

You can set the following properties of a URLRequest object in any security sandbox:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLLoader.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLStream.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLRequest.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLRequestDefaults.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLRequestHeader.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLRequestMethod.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLVariables.html

812ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

In AIR, you can set additional properties of the URLRequest class, which are only available to AIR content running in

the application security sandbox. Content in the application sandbox can also define URLs using new URL schemes

(in addition to standard schemes like file and http).

Note: The HTMLLoader class has related properties for settings pertaining to content loaded by an HTMLLoader object.

For details, see “About the HTMLLoader class” on page 981.

Setting URLRequest defaults (AIR only)

Adobe AIR 1.0 and later

The URLRequestDefaults class lets you define application-specific default settings for URLRequest objects. For

example, the following code sets the default values for the manageCookies and useCache properties. All new

URLRequest objects will use the specified values for these properties instead of the normal defaults:

 URLRequestDefaults.manageCookies = false;
 URLRequestDefaults.useCache = false;

Note: The URLRequestDefaults class is defined for content running in Adobe AIR only. It is not supported in Flash Player.

Property Description

contentType The MIME content type of any data sent with the URL request. If no contentType is set, values are sent as

application/x-www-form-urlencoded.

data An object containing data to be transmitted with the URL request.

digest A string that uniquely identifies the signed Adobe platform component to be stored to (or retrieved from) the

Adobe® Flash® Player cache.

method The HTTP request method, such as a GET or POST. (Content running in the AIR application security domain can

specify strings other than "GET" or "POST" as the method property. Any HTTP verb is allowed and "GET" is

the default method. See “AIR security” on page 1076.)

requestHeaders The array of HTTP request headers to be appended to the HTTP request. Note that permission to set some

headers is restricted in Flash Player as well as in AIR content running outside the application security sandbox.

url Specifies the URL to be requested.

Property Description

followRedirects Specifies whether redirects are to be followed (true, the default value) or not (false). This is only supported

in the AIR application sandbox.

manageCookies Specifies whether the HTTP protocol stack should manage cookies (true, the default value) or not (false) for

this request. Setting this property is only supported in the AIR application sandbox.

authenticate Specifies whether authentication requests should be handled (true) for this request. Setting this property is

only supported in the AIR application sandbox. The default is to authenticate requests—which may cause an

authentication dialog box to be displayed if the server requires credentials. You can also set the user name and

password using the URLRequestDefaults class—see “Setting URLRequest defaults (AIR only)” on page 812.

cacheResponse Specifies whether response data should be cached for this request. Setting this property is only supported in

the AIR application sandbox. The default is to cache the response (true).

useCache Specifies whether the local cache should be consulted before this URLRequest fetches data. Setting this

property is only supported in the AIR application sandbox. The default (true) is to use the local cached

version, if available.

userAgent Specifies the user-agent string to be used in the HTTP request.

813ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

The URLRequestDefaults class includes a setLoginCredentialsForHost() method that lets you specify a default

user name and password to use for a specific host. The host, which is defined in the hostname parameter of the method,

can be a domain, such as "www.example.com", or a domain and a port number, such as "www.example.com:80".

Note that "example.com", "www.example.com", and "sales.example.com" are each considered unique hosts.

These credentials are only used if the server requires them. If the user has already authenticated (for example, by using

the authentication dialog box), then calling the setLoginCredentialsForHost() method does not change the

authenticated user.

The following code sets the default user name and password to use for requests sent to www.example.com:

 URLRequestDefaults.setLoginCredentialsForHost("www.example.com", "Ada", "love1816$X");

The URLRequestDefaults settings only apply to the current application domain, with one exception. The credentials

passed to the setLoginCredentialsForHost() method are used for requests made in any application domain within

the AIR application.

For more information, see the URLRequestDefaults class in the ActionScript 3.0 Reference for the Adobe Flash

Platform.

URI schemes

Flash Player 9 and later, Adobe AIR 1.0 and later

The standard URI schemes, such as the following, can be used in requests made from any security sandbox:

http: and https:

Use these for standard Internet URLs (in the same way that they are used in a web browser).

file:

Use file: to specify the URL of a file located on the local file system. For example:

 file:///c:/AIR Test/test.txt

In AIR, you can also use the following schemes when defining a URL for content running in the application security

sandbox:

app:

Use app: to specify a path relative to the root directory of the installed application. For example, the following path

points to a resources subdirectory of the directory of the installed application:

 app:/resources

When an AIR application is launched using the AIR Debug Launcher (ADL), the application directory is the directory

that contains the application descriptor file.

The URL (and url property) for a File object created with File.applicationDirectory uses the app URI scheme,

as in the following:

var dir:File = File.applicationDirectory;
 dir = dir.resolvePath("assets");
 trace(dir.url); // app:/assets

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLRequestDefaults.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/URLRequestDefaults.html

814ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

app-storage:

Use app-storage: to specify a path relative to the data storage directory of the application. For each installed

application (and user), AIR creates a unique application storage directory, which is a useful place to store data specific

to that application. For example, the following path points to a prefs.xml file in a settings subdirectory of the

application store directory:

 app-storage:/settings/prefs.xml

The URL (and url property) for a File object created with File.applicationStorageDirectory uses the app-

storage URI scheme, as in the following:

var prefsFile:File = File.applicationStorageDirectory;
 prefsFile = prefsFile.resolvePath("prefs.xml");
 trace(dir.prefsFile); // app-storage:/prefs.xml

mailto:

You can use the mailto scheme in URLRequest objects passed to the navigateToURL() function. See “Opening a URL

in another application” on page 827.

You can use a URLRequest object that uses any of these URI schemes to define the URL request for a number of

different objects, such as a FileStream or a Sound object. You can also use these schemes in HTML content running in

AIR; for example, you can use them in the src attribute of an img tag.

However, you can only use these AIR-specific URI schemes (app: and app-storage:) in content in the application

security sandbox. For more information, see “AIR security” on page 1076.

Setting URL variables

While you can add variables to the URL string directly, it can be easier to use the URLVariables class to define any

variables needed for a request.

There are three ways in which you can add parameters to a URLVariables object:

• Within the URLVariables constructor

• With the URLVariables.decode() method

• As dynamic properties of the URLVariables object itself

The following example illustrates all three methods and also how to assign the variables to a URLRequest object:

var urlVar:URLVariables = new URLVariables("one=1&two=2");
urlVar.decode("amp=" + encodeURIComponent("&"));
urlVar.three = 3;
urlVar.amp2 = "&&";
trace(urlVar.toString()); //amp=%26&2=%26%26&one=1&two=2&three=3

var urlRequest:URLRequest = new URLRequest("http://www.example.com/test.cfm");
urlRequest.data = urlVar;

When you define variables within the URLVariables constructor or within the URLVariables.decode() method,

make sure that you URL-encode the characters that have a special meaning in a URI string. For example, when you

use an ampersand in a parameter name or value, you must encode the ampersand by changing it from & to %26 because

the ampersand acts as a delimiter for parameters. The top-level encodeURIComponent() function can be used for this

purpose.

815ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

Using the URLLoader class

Flash Player 9 and later, Adobe AIR 1.0 and later

The URLLoader class let you send a request to a server and access the information returned. You can also use the

URLLoader class to access files on the local file system in contexts where local file access is permitted (such as the Flash

Player local-with-filesystem sandbox and the AIR application sandbox). The URLLoader class downloads data from a

URL as text, binary data, or URL-encoded variables. The URLLoader class dispatches events such as complete,

httpStatus, ioError, open, progress, and securityError.

The ActionScript 3.0 event-handling model is significantly different than the ActionScript 2.0 model, which used the

LoadVars.onData, LoadVars.onHTTPStatus, and LoadVars.onLoad event handlers. For more information on

handling events in ActionScript 3.0, see “Handling events” on page 125

Downloaded data is not available until the download has completed. You can monitor the progress of the download

(bytes loaded and bytes total) by listening for the progress event to be dispatched. However, if a file loads quickly

enough a progress event might not be dispatched. When a file has successfully downloaded, the complete event is

dispatched. By setting the URLLoader dataFormat property, you can receive the data as text, raw binary data, or as a

URLVariables object.

The URLLoader.load() method (and optionally the URLLoader class’s constructor) takes a single parameter,

request, which is a URLRequest object. A URLRequest object contains all of the information for a single HTTP

request, such as the target URL, request method (GET or POST), additional header information, and the MIME type.

For example, to upload an XML packet to a server-side script, you could use the following code:

 var secondsUTC:Number = new Date().time;
 var dataXML:XML =
 <clock>
 <time>{secondsUTC}</time>

</clock>;
 var request:URLRequest = new URLRequest("http://www.yourdomain.com/time.cfm");
 request.contentType = "text/xml";
 request.data = dataXML.toXMLString();
 request.method = URLRequestMethod.POST;
 var loader:URLLoader = new URLLoader();
 loader.load(request);

The previous snippet creates an XML document named dataXML that contains the XML packet to be sent to the server.

The example sets the URLRequest contentType property to "text/xml" and assigns the XML document to the

URLRequest data property. Finally, the example creates a URLLoader object and sends the request to the remote

script by using the load() method.

Using the URLStream class

Flash Player 9 and later, Adobe AIR 1.0 and later

The URLStream class provides access to the downloading data as the data arrives. The URLStream class also lets you

close a stream before it finishes downloading. The downloaded data is available as raw binary data.

When reading data from a URLStream object, use the bytesAvailable property to determine whether sufficient data

is available before reading it. An EOFError exception is thrown if you attempt to read more data than is available.

816ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

The httpResponseStatus event (AIR)

In Adobe AIR, the URLStream class dispatches an httpResponseStatus event in addition to the httpStatus event.

The httpResponseStatus event is delivered before any response data. The httpResponseStatus event (represented

by the HTTPStatusEvent class) includes a responseURL property, which is the URL that the response was returned

from, and a responseHeaders property, which is an array of URLRequestHeader objects representing the response

headers that the response returned.

Loading data from external documents

Flash Player 9 and later, Adobe AIR 1.0 and later

When you build dynamic applications, it can be useful to load data from external files or from server-side scripts. This

lets you build dynamic applications without having to edit or recompile your application. For example, if you build a

“tip of the day” application, you can write a server-side script that retrieves a random tip from a database and saves it

to a text file once a day. Then your application can load the contents of a static text file instead of querying the database

each time.

The following snippet creates a URLRequest and URLLoader object, which loads the contents of an external text file,

params.txt:

 var request:URLRequest = new URLRequest("params.txt");
 var loader:URLLoader = new URLLoader();
 loader.load(request);

By default, if you do not define a request method, Flash Player and Adobe AIR load the content using the HTTP GET

method. To send the request using the POST method, set the request.method property to POST using the static

constant URLRequestMethod.POST, as the following code shows:

 var request:URLRequest = new URLRequest("sendfeedback.cfm");
 request.method = URLRequestMethod.POST;

The external document, params.txt, that is loaded at run time contains the following data:

 monthNames=January,February,March,April,May,June,July,August,September,October,November,Dece
mber&dayNames=Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,Saturday

The file contains two parameters, monthNames and dayNames. Each parameter contains a comma-separated list that

is parsed as strings. You can split this list into an array using the String.split() method.

Avoid using reserved words or language constructs as variable names in external data files, because doing so makes

reading and debugging your code more difficult.

Once the data has loaded, the complete event is dispatched, and the contents of the external document are available

to use in the URLLoader’s data property, as the following code shows:

function completeHandler(event)
 {
 var loader2 = event.target;
 air.trace(loader2.data);
 }

If the remote document contains name-value pairs, you can parse the data using the URLVariables class by passing in

the contents of the loaded file, as follows:

817ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

 private function completeHandler(event:Event):void
 {
 var loader2:URLLoader = URLLoader(event.target);
 var variables:URLVariables = new URLVariables(loader2.data);
 trace(variables.dayNames);
 }

Each name-value pair from the external file is created as a property in the URLVariables object. Each property within

the variables object in the previous code sample is treated as a string. If the value of the name-value pair is a list of items,

you can convert the string into an array by calling the String.split() method, as follows:

 var dayNameArray:Array = variables.dayNames.split(",");

If you are loading numeric data from external text files, convert the values into numeric values by using a top-level

function, such as int(), uint(), or Number().

Instead of loading the contents of the remote file as a string and creating a new URLVariables object, you could instead

set the URLLoader.dataFormat property to one of the static properties found in the URLLoaderDataFormat class.

The three possible values for the URLLoader.dataFormat property are as follows:

• URLLoaderDataFormat.BINARY—The URLLoader.data property will contain binary data stored in a ByteArray

object.

• URLLoaderDataFormat.TEXT—The URLLoader.data property will contain text in a String object.

• URLLoaderDataFormat.VARIABLES—The URLLoader.data property will contain URL-encoded variables stored

in a URLVariables object.

The following code demonstrates how setting the URLLoader.dataFormat property to

URLLoaderDataFormat.VARIABLES allows you to automatically parse loaded data into a URLVariables object:

818ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

 package
 {
 import flash.display.Sprite;
 import flash.events.*;
 import flash.net.URLLoader;
 import flash.net.URLLoaderDataFormat;
 import flash.net.URLRequest;

 public class URLLoaderDataFormatExample extends Sprite
 {
 public function URLLoaderDataFormatExample()
 {
 var request:URLRequest = new URLRequest("http://www.[yourdomain].com/params.txt");
 var variables:URLLoader = new URLLoader();
 variables.dataFormat = URLLoaderDataFormat.VARIABLES;
 variables.addEventListener(Event.COMPLETE, completeHandler);
 try
 {
 variables.load(request);
 }
 catch (error:Error)
 {
 trace("Unable to load URL: " + error);
 }
 }
 private function completeHandler(event:Event):void
 {
 var loader:URLLoader = URLLoader(event.target);
 trace(loader.data.dayNames);
 }
 }
 }

Note: The default value for URLLoader.dataFormat is URLLoaderDataFormat.TEXT.

As the following example shows, loading XML from an external file is the same as loading URLVariables. You can

create a URLRequest instance and a URLLoader instance and use them to download a remote XML document. When

the file has completely downloaded, the Event.COMPLETE event is dispatched and the contents of the external file are

converted to an XML instance, which you can parse using XML methods and properties.

819ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

 package
 {
 import flash.display.Sprite;
 import flash.errors.*;
 import flash.events.*;
 import flash.net.URLLoader;
 import flash.net.URLRequest;

 public class ExternalDocs extends Sprite
 {
 public function ExternalDocs()
 {
 var request:URLRequest = new URLRequest("http://www.[yourdomain].com/data.xml");
 var loader:URLLoader = new URLLoader();
 loader.addEventListener(Event.COMPLETE, completeHandler);
 try
 {
 loader.load(request);
 }
 catch (error:ArgumentError)
 {
 trace("An ArgumentError has occurred.");
 }
 catch (error:SecurityError)
 {
 trace("A SecurityError has occurred.");
 }
 }
 private function completeHandler(event:Event):void
 {
 var dataXML:XML = XML(event.target.data);
 trace(dataXML.toXMLString());
 }
 }
 }

Communicating with external scripts

Flash Player 9 and later, Adobe AIR 1.0 and later

In addition to loading external data files, you can also use the URLVariables class to send variables to a server-side

script and process the server’s response. This is useful, for example, if you are programming a game and want to send

the user’s score to a server to calculate whether it should be added to the high scores list, or even send a user’s login

information to a server for validation. A server-side script can process the user name and password, validate it against

a database, and return confirmation of whether the user-supplied credentials are valid.

The following snippet creates a URLVariables object named variables, which creates a new variable called name.

Next, a URLRequest object is created that specifies the URL of the server-side script to send the variables to. Then you

set the method property of the URLRequest object to send the variables as an HTTP POST request. To add the

URLVariables object to the URL request, you set the data property of the URLRequest object to the URLVariables

object created earlier. Finally, the URLLoader instance is created and the URLLoader.load() method is invoked,

which initiates the request.

820ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

 var variables:URLVariables = new URLVariables("name=Franklin");
 var request:URLRequest = new URLRequest();
 request.url = "http://www.[yourdomain].com/greeting.cfm";
 request.method = URLRequestMethod.POST;
 request.data = variables;
 var loader:URLLoader = new URLLoader();
 loader.dataFormat = URLLoaderDataFormat.VARIABLES;
 loader.addEventListener(Event.COMPLETE, completeHandler);
 try
 {
 loader.load(request);
 }
 catch (error:Error)
 {
 trace("Unable to load URL");
 }

 function completeHandler(event:Event):void
 {
 trace(event.target.data.welcomeMessage);
 }

The following code contains the contents of the Adobe ColdFusion® greeting.cfm document used in the previous

example:

 <cfif NOT IsDefined("Form.name") OR Len(Trim(Form.Name)) EQ 0>
 <cfset Form.Name = "Stranger" />
 </cfif>
 <cfoutput>welcomeMessage=#UrlEncodedFormat("Welcome, " & Form.name)#
 </cfoutput>

Web service requests

Flash Player 9 and later, Adobe AIR 1.0 and later

There are a variety of HTTP-based web services. The main types include:

• REST

• XML-RPC

• SOAP

To use a web service in ActionScript 3, you create a URLRequest object, construct the web service call using either URL

variables or an XML document, and send the call to the service using a URLLoader object. The Flex framework

contains several classes that make it easier to use web services—especially useful when accessing complex SOAP

services. Starting with Flash Professional CS3, you can use the Flex classes in applications developed with Flash

Professional as well as in applications developed in Flash Builder.

In HTML-based AIR applications, you can use either the URLRequest and URLLoader classes or the JavaScript

XMLHttpRequest class. If desired, you can also create a SWF library that exposes the web service components of the

Flex framework to your JavaScript code.

821ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

When your application runs in a browser, you can only use web services in the same Internet domain as the calling

SWF unless the server hosting the web service also hosts a cross-domain policy file that permits access from other

domains. A technique that is often used when a cross-domain policy file is not available is to proxy the requests

through your own server. Adobe Blaze DS and Adobe LiveCycle support web service proxying.

In AIR applications, a cross-domain policy file is not required when the web service call originates from the application

security sandbox. AIR application content is never served from a remote domain, so it cannot participate in the types

of attacks that cross-domain policies prevent. In HTML-based AIR applications, content in the application security

sandbox can make cross-domain XMLHttpRequests. You can allow content in other security sandboxes to make cross-

domain XMLHttpRequests as long as that content is loaded into an iframe.

More Help topics

“Website controls (policy files)” on page 1051

Adobe BlazeDS

Adobe LiveCycle ES2

REST architecture

XML-RPC

SOAP protocol

REST-style web service requests

Flash Player 9 and later, Adobe AIR 1.0 and later

REST-style web services use HTTP method verbs to designate the basic action and URL variables to specify the action

details. For example, a request to get data for an item could use the GET verb and URL variables to specify a method

name and item ID. The resulting URL string might look like:

http://service.example.com/?method=getItem&id=d3452

To access a REST-style web service with ActionScript, you can use the URLRequest, URLVariables, and URLLoader

classes. In JavaScript code within an AIR application, you can also use an XMLHttpRequest.

Programming a REST-style web service call in ActionScript, typically involves the following steps:

1 Create a URLRequest object.

2 Set the service URL and HTTP method verb on the request object.

3 Create a URLVariables object.

4 Set the service call parameters as dynamic properties of the variables object.

5 Assign the variables object to the data property of the request object.

6 Send the call to the service with a URLLoader object.

7 Handle the complete event dispatched by the URLLoader that indicates that the service call is complete. It is also

wise to listen for the various error events that can be dispatched by a URLLoader object.

For example, consider a web service that exposes a test method that echoes the call parameters back to the requestor.

The following ActionScript code could be used to call the service:

http://opensource.adobe.com/wiki/display/blazeds/BlazeDS
http://www.adobe.com/devnet/livecycle/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://en.wikipedia.org/wiki/XML-RPC
http://www.w3.org/TR/soap/

822ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

import flash.events.Event;
import flash.events.ErrorEvent;
import flash.events.IOErrorEvent;
import flash.events.SecurityErrorEvent;
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.net.URLRequestMethod;
import flash.net.URLVariables;

private var requestor:URLLoader = new URLLoader();
public function restServiceCall():void
{

//Create the HTTP request object
var request:URLRequest = new URLRequest("http://service.example.com/");
request.method = URLRequestMethod.GET;

//Add the URL variables
var variables:URLVariables = new URLVariables();
variables.method = "test.echo";
variables.api_key = "123456ABC";
variables.message = "Able was I, ere I saw Elba.";
request.data = variables;

//Initiate the transaction
requestor = new URLLoader();
requestor.addEventListener(Event.COMPLETE, httpRequestComplete);
requestor.addEventListener(IOErrorEvent.IOERROR, httpRequestError);
requestor.addEventListener(SecurityErrorEvent.SECURITY_ERROR, httpRequestError);
requestor.load(request);

}
private function httpRequestComplete(event:Event):void
{

trace(event.target.data);
}

private function httpRequestError(error:ErrorEvent):void{

trace("An error occured: " + error.message);
}

In JavaScript within an AIR application, you can make the same request using the XMLHttpRequest object:

823ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

<html>
<head><title>RESTful web service request</title>
<script type="text/javascript">

function makeRequest()
{

var requestDisplay = document.getElementById("request");
var resultDisplay = document.getElementById("result");

//Create a conveninece object to hold the call properties
var request = {};
request.URL = "http://service.example.com/";
request.method = "test.echo";
request.HTTPmethod = "GET";
request.parameters = {};
request.parameters.api_key = "ABCDEF123";
request.parameters.message = "Able was I ere I saw Elba.";
var requestURL = makeURL(request);
xmlhttp = new XMLHttpRequest();
xmlhttp.open(request.HTTPmethod, requestURL, true);
xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {
 resultDisplay.innerHTML = xmlhttp.responseText;
 }
}
xmlhttp.send(null);

requestDisplay.innerHTML = requestURL;

}
//Convert the request object into a properly formatted URL
function makeURL(request)
{

var url = request.URL + "?method=" + escape(request.method);
for(var property in request.parameters)
{

url += "&" + property + "=" + escape(request.parameters[property]);
}

return url;

}
</script>
</head>
<body onload="makeRequest()">
<h1>Request:</h1>
<div id="request"></div>
<h1>Result:</h1>
<div id="result"></div>
</body>
</html>

824ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

XML-RPC web service requests

Flash Player 9 and later, Adobe AIR 1.0 and later

An XML-RPC web service takes its call parameters as an XML document rather than as a set of URL variables. To

conduct a transaction with an XML-RPC web service, create a properly formatted XML message and send it to the web

service using the HTTP POST method. In addition, you should set the Content-Type header for the request so that the

server treats the request data as XML.

The following example illustrates how to use the same web service call shown in the REST example, but this time as an

XML-RPC service:

import flash.events.Event;
import flash.events.ErrorEvent;
import flash.events.IOErrorEvent;
import flash.events.SecurityErrorEvent;
import flash.net.URLLoader;
import flash.net.URLRequest;
import flash.net.URLRequestMethod;
import flash.net.URLVariables;
public function xmlRPCRequest():void
{

//Create the XML-RPC document
var xmlRPC:XML = <methodCall>

<methodName></methodName>
<params>

<param>
<value>

<struct/>
</value>

</param>
</params>

</methodCall>;

xmlRPC.methodName = "test.echo";

//Add the method parameters
var parameters:Object = new Object();
parameters.api_key = "123456ABC";
parameters.message = "Able was I, ere I saw Elba.";

for(var propertyName:String in parameters)
{

xmlRPC..struct.member[xmlRPC..struct.member.length + 1] =
<member>

<name>{propertyName}</name>
<value>

<string>{parameters[propertyName]}</string>
</value>

</member>;
}

//Create the HTTP request object
var request:URLRequest = new URLRequest("http://service.example.com/xml-rpc/");
request.method = URLRequestMethod.POST;
request.cacheResponse = false;
request.requestHeaders.push(new URLRequestHeader("Content-Type", "application/xml"));

825ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

request.data = xmlRPC;

//Initiate the request
requestor = new URLLoader();
requestor.dataFormat = URLLoaderDataFormat.TEXT;
requestor.addEventListener(Event.COMPLETE, xmlRPCRequestComplete);
requestor.addEventListener(IOErrorEvent.IO_ERROR, xmlRPCRequestError);
requestor.addEventListener(SecurityErrorEvent.SECURITY_ERROR, xmlRPCRequestError);
requestor.load(request);

}

private function xmlRPCRequestComplete(event:Event):void
{

trace(XML(event.target.data).toXMLString());
}

private function xmlRPCRequestError(error:ErrorEvent):void
{

trace("An error occurred: " + error);
}

WebKit in AIR doesn’t support E4X syntax, so the method used to create the XML document in the previous example

does not work in JavaScript code. Instead, you must use the DOM methods to create the XML document or create the

document as a string and use the JavaScript DOMParser class to convert the string to XML.

The following example uses DOM methods to create an XML-RPC message and an XMLHttpRequest to conduct the

web service transaction:

<html>
<head>
<title>XML-RPC web service request</title>
<script type="text/javascript">

function makeRequest()
{

var requestDisplay = document.getElementById("request");
var resultDisplay = document.getElementById("result");

var request = {};
request.URL = "http://services.example.com/xmlrpc/";
request.method = "test.echo";
request.HTTPmethod = "POST";
request.parameters = {};
request.parameters.api_key = "123456ABC";
request.parameters.message = "Able was I ere I saw Elba.";
var requestMessage = formatXMLRPC(request);

xmlhttp = new XMLHttpRequest();
xmlhttp.open(request.HTTPmethod, request.URL, true);
xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {

resultDisplay.innerText = xmlhttp.responseText;
 }
}
xmlhttp.send(requestMessage);

requestDisplay.innerText = xmlToString(requestMessage.documentElement);

826ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

}

//Formats a request as XML-RPC document
function formatXMLRPC(request)
{

var xmldoc = document.implementation.createDocument("", "", null);
var root = xmldoc.createElement("methodCall");
xmldoc.appendChild(root);
var methodName = xmldoc.createElement("methodName");
var methodString = xmldoc.createTextNode(request.method);
methodName.appendChild(methodString);

root.appendChild(methodName);

var params = xmldoc.createElement("params");
root.appendChild(params);

var param = xmldoc.createElement("param");
params.appendChild(param);
var value = xmldoc.createElement("value");
param.appendChild(value);
var struct = xmldoc.createElement("struct");
value.appendChild(struct);

for(var property in request.parameters)
{

var member = xmldoc.createElement("member");
struct.appendChild(member);

var name = xmldoc.createElement("name");
var paramName = xmldoc.createTextNode(property);
name.appendChild(paramName)
member.appendChild(name);

var value = xmldoc.createElement("value");
var type = xmldoc.createElement("string");
value.appendChild(type);
var paramValue = xmldoc.createTextNode(request.parameters[property]);
type.appendChild(paramValue)
member.appendChild(value);

}
return xmldoc;

}

//Returns a string representation of an XML node
function xmlToString(rootNode, indent)
{

if(indent == null) indent = "";
var result = indent + "<" + rootNode.tagName + ">\n";
for(var i = 0; i < rootNode.childNodes.length; i++)
{

if(rootNode.childNodes.item(i).nodeType == Node.TEXT_NODE)
{

result += indent + " " + rootNode.childNodes.item(i).textContent + "\n";
}

}
if(rootNode.childElementCount > 0)

827ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

{
result += xmlToString(rootNode.firstElementChild, indent + " ");

}
if(rootNode.nextElementSibling)
{

result += indent + "</" + rootNode.tagName + ">\n";
result += xmlToString(rootNode.nextElementSibling, indent);

}
else
{

result += indent +"</" + rootNode.tagName + ">\n";
}
return result;

}

</script>
</head>
<body onload="makeRequest()">
<h1>Request:</h1>
<pre id="request"></pre>
<h1>Result:</h1>
<pre id="result"></pre>
</body>
</html>

SOAP web service requests

Flash Player 9 and later, Adobe AIR 1.0 and later

SOAP builds on the general XML-RPC web service concept and provides a richer, albeit more complex, means for

transferring typed data. SOAP web services typically provide a Web Service Description Language file (WSDL) that

specifies the web service calls, data types, and service URL. While ActionScript 3 does not provide direct support for

SOAP, you can construct a SOAP XML message “by hand,” post it to the server, and then parse the results. However,

for anything except the simplest SOAP web service, you can probably save a significant amount of development time

using an existing SOAP library.

The Flex framework includes libraries for accessing SOAP web services. In Flash Builder the library, rpc.swc, is

automatically included in Flex projects, since it is part of the Flex framework. In Flash Professional, you can add the

Flex framework.swc and rpc.swc to the library path of a project and then access the Flex classes with ActionScript.

More Help topics

Using the Flex web service component in Flash Professional

Cristophe Coenraets: Real-time Trader Desktop for Android

Opening a URL in another application

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the navigateToURL() function to open a URL in a web browser or other application. For content running

in AIR, the navigateToURL() function opens the page in the default system web browser.

http://tv.adobe.com/watch/adc-presents/use-the-flex-webservice-component-in-flash/
http://coenraets.org/blog/air-for-android-samples/real-time-trader-desktop-for-android/

828ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

For the URLRequest object you pass as the request parameter of this function, only the url property is used.

The first parameter of the navigateToURL() function, the navigate parameter, is a URLRequest object (see “Using

the URLRequest class” on page 811). The second is an optional window parameter, in which you can specify the

window name. For example, the following code opens the www.adobe.com web page:

 var url:String = "http://www.adobe.com";
 var urlReq:URLRequest = new URLRequest(url);
navigateToURL(urlReq);

Note: When using the navigateToURL() function, the runtime treats a URLRequest object that uses the POST method

(one that has its method property set to URLRequestMethod.POST) as using the GET method.

When using the navigateToURL() function, URI schemes are permitted based on the security sandbox of the code

calling the navigateToURL() function.

Some APIs allow you to launch content in a web browser. For security reasons, some URI schemes are prohibited when

using these APIs in AIR. The list of prohibited schemes depends on the security sandbox of the code using the API.

(For details on security sandboxes, see “AIR security” on page 1076.)

Application sandbox (AIR only)

Any URI scheme can be used in URL launched by content running in the AIR application sandbox. An application

must be registered to handle the URI scheme or the request does nothing. The following schemes are supported on

many computers and devices:

• http:

• https:

• file:

• mailto: — AIR directs these requests to the registered system mail application

• sms: — AIR directs sms: requests to the default text message app. The URL format must conform to the system

conventions under which the app is running. For example, on Android, the URI scheme must be lowercase.

navigateToURL(new URLRequest("sms:+15555550101"));

• tel: — AIR directs tel: requests to the default telephone dialing app. The URL format must conform to the

system conventions under which the app is running. For example, on Android, the URI scheme must be lowercase.

navigateToURL(new URLRequest("tel:5555555555"));

• market: — AIR directs market: requests to the Market app typically supported on Android devices.

navigateToURL(new URLRequest("market://search?q=Adobe Flash"));
navigateToURL(new URLRequest("market://search?q=pname:com.adobe.flashplayer"));

Where allowed by the operating system, applications can define and register custom URI schemes. You can create a

URL using the scheme to launch the application from AIR.

Remote sandboxes

The following schemes are allowed. Use these schemes as you would use them in a web browser.

• http:

• https:

• mailto: — AIR directs these requests to the registered system mail application

All other URI schemes are prohibited.

829ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

HTTP communications

Last updated 10/9/2017

Local-with-file sandbox

The following schemes are allowed. Use these schemes as you would use them in a web browser.

• file:

• mailto: — AIR directs these requests to the registered system mail application

All other URI schemes are prohibited.

Local-with-networking sandbox

The following schemes are allowed. Use these schemes as you would use them in a web browser.

• http:

• https:

• mailto: — AIR directs these requests to the registered system mail application

All other URI schemes are prohibited.

Local-trusted sandbox

The following schemes are allowed. Use these schemes as you would use them in a web browser.

• file:

• http:

• https:

• mailto: — AIR directs these requests to the registered system mail application

All other URI schemes are prohibited.

830

Last updated 10/9/2017

Chapter 45: Communicating with other
Flash Player and AIR instances

Flash Player 9 and later, Adobe AIR 1.0 and later

The LocalConnection class enables communications between Adobe® AIR® applications, as well as between SWF

content running in the browser. You can also use the LocalConnection class to communicate between an AIR

application and SWF content running in the browser. The LocalConnection class allows you to build versatile

applications that can share data between Flash Player and AIR instances.

About the LocalConnection class

Flash Player 9 and later, Adobe AIR 1.0 and later

The LocalConnection class lets you develop SWF files that can send instructions to other SWF files without the use of

the fscommand() method or JavaScript. LocalConnection objects can communicate only among SWF files that are

running on the same client computer, but they can run in different applications. For example, a SWF file running in a

browser and a SWF file running in a projector can share information, with the projector maintaining local information

and the browser-based SWF file connecting remotely. (A projector is a SWF file saved in a format that can run as a

stand-alone application—that is, the projector doesn’t require Flash Player to be installed because it is embedded

inside the executable.)

LocalConnection objects can be used to communicate between SWFs using different ActionScript versions:

• ActionScript 3.0 LocalConnection objects can communicate with LocalConnection objects created in ActionScript

1.0 or 2.0.

• ActionScript 1.0 or 2.0 LocalConnection objects can communicate with LocalConnection objects created in

ActionScript 3.0.

Flash Player handles this communication between LocalConnection objects of different versions automatically.

The simplest way to use a LocalConnection object is to allow communication only between LocalConnection objects

located in the same domain or the same AIR application. That way, you do not have to worry about security issues.

However, if you need to allow communication between domains, you have several ways to implement security

measures. For more information, see the discussion of the connectionName parameter of the send() method and the

allowDomain() and domain entries in the LocalConnection class listing in the ActionScript 3.0 Reference for the

Adobe Flash Platform.

It is possible to use LocalConnection objects to send and receive data within a single SWF file, but Adobe does not

recommended doing so. Instead, use shared objects.

There are three ways to add callback methods to your LocalConnection objects:

• Subclass the LocalConnection class and add methods.

• Set the LocalConnection.client property to an object that implements the methods.

• Create a dynamic class that extends LocalConnection and dynamically attach methods.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/LocalConnection.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/LocalConnection.html

831ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Communicating with other Flash Player and AIR instances

Last updated 10/9/2017

The first way to add callback methods is to extend the LocalConnection class. You define the methods within the

custom class instead of dynamically adding them to the LocalConnection instance. This approach is demonstrated in

the following code:

 package
 {
 import flash.net.LocalConnection;
 public class CustomLocalConnection extends LocalConnection
 {
 public function CustomLocalConnection(connectionName:String)
 {
 try
 {
 connect(connectionName);
 }
 catch (error:ArgumentError)
 {
 // server already created/connected
 }
 }
 public function onMethod(timeString:String):void
 {
 trace("onMethod called at: " + timeString);
 }
 }
 }

In order to create a new instance of the CustomLocalConnection class, you can use the following code:

 var serverLC:CustomLocalConnection;
 serverLC = new CustomLocalConnection("serverName");

The second way to add callback methods is to use the LocalConnection.client property. This involves creating a

custom class and assigning a new instance to the client property, as the following code shows:

 var lc:LocalConnection = new LocalConnection();
 lc.client = new CustomClient();

The LocalConnection.client property indicates the object callback methods that should be invoked. In the

previous code, the client property was set to a new instance of a custom class, CustomClient. The default value for

the client property is the current LocalConnection instance. You can use the client property if you have two data

handlers that have the same set of methods but act differently—for example, in an application where a button in one

window toggles the view in a second window.

To create the CustomClient class, you could use the following code:

 package
 {
 public class CustomClient extends Object
 {
 public function onMethod(timeString:String):void
 {
 trace("onMethod called at: " + timeString);
 }
 }
 }

The third way to add callback methods, creating a dynamic class and dynamically attaching the methods, is very

similar to using the LocalConnection class in earlier versions of ActionScript, as the following code shows:

832ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Communicating with other Flash Player and AIR instances

Last updated 10/9/2017

 import flash.net.LocalConnection;
 dynamic class DynamicLocalConnection extends LocalConnection {}

Callback methods can be dynamically added to this class by using the following code:

 var connection:DynamicLocalConnection = new DynamicLocalConnection();
 connection.onMethod = this.onMethod;
 // Add your code here.
 public function onMethod(timeString:String):void
 {
 trace("onMethod called at: " + timeString);
 }

The previous way of adding callback methods is not recommended because the code is not very portable. In addition,

using this method of creating local connections could create performance issues, because accessing dynamic properties

is dramatically slower than accessing sealed properties.

isPerUser property

The isPerUser property was added to Flash Player (10.0.32) and AIR (1.5.2) to resolve a conflict that occurs when

more than one user is logged into a Mac computer. On other operating systems, the property is ignored since the local

connection has always been scoped to individual users. The isPerUser property should be set to true in new code.

However, the default value is currently false for backward compatibility. The default may be changed in future

versions of the runtimes.

Sending messages between two applications

Flash Player 9 and later, Adobe AIR 1.0 and later

You use the LocalConnection class to communicate between different AIR applications and between different Adobe®

Flash® Player (SWF) applications running in a browser. You can also use the LocalConnection class to communicate

between an AIR application and a SWF application running in a browser.

For example, you could have multiple Flash Player instances on a web page, or have a Flash Player instance retrieve

data from a Flash Player instance in a pop-up window.

The following code defines a LocalConnection object that acts as a server and accepts incoming LocalConnection calls

from other applications:

833ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Communicating with other Flash Player and AIR instances

Last updated 10/9/2017

 package
 {
 import flash.net.LocalConnection;
 import flash.display.Sprite;
 public class ServerLC extends Sprite
 {
 public function ServerLC()
 {
 var lc:LocalConnection = new LocalConnection();
 lc.client = new CustomClient1();
 try
 {
 lc.connect("conn1");
 }
 catch (error:Error)
 {
 trace("error:: already connected");
 }
 }
 }
 }

This code first creates a LocalConnection object named lc and sets the client property to an object, clientObject.

When another application calls a method in this LocalConnection instance, the runtime looks for that method in the

clientObject object.

If you already have a connection with the specified name, an Argument Error exception is thrown, indicating that the

connection attempt failed because the object is already connected.

Whenever a Flash Player instance connects to this SWF file and tries to invoke any method for the specified local

connection, the request is sent to the class specified by the client property, which is set to the CustomClient1 class:

 package
 {
 import flash.events.*;
 import flash.system.fscommand;
 import flash.utils.Timer;
 public class CustomClient1 extends Object
 {
 public function doMessage(value:String = ""):void
 {
 trace(value);
 }
 public function doQuit():void
 {
 trace("quitting in 5 seconds");
 this.close();
 var quitTimer:Timer = new Timer(5000, 1);
 quitTimer.addEventListener(TimerEvent.TIMER, closeHandler);
 }
 public function closeHandler(event:TimerEvent):void
 {
 fscommand("quit");
 }
 }
 }

834ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Communicating with other Flash Player and AIR instances

Last updated 10/9/2017

To create a LocalConnection server, call the LocalConnection.connect() method and provide a unique connection

name. If you already have a connection with the specified name, an ArgumentError error is generated, indicating that

the connection attempt failed because the object is already connected.

The following snippet demonstrates how to create a LocalConnection with the name conn1:

 try
 {
 connection.connect("conn1");
 }
 catch (error:ArgumentError)
 {
 trace("Error! Server already exists\n");
 }

Connecting to the primary application from a secondary application requires that you first create a LocalConnection

object in the sending LocalConnection object; then call the LocalConnection.send() method with the name of the

connection and the name of the method to execute. For example, to send the doQuit method to the LocalConnection

object that you created earlier, use the following code:

 sendingConnection.send("conn1", "doQuit");

This code connects to an existing LocalConnection object with the connection name conn1 and invokes the

doMessage() method in the remote application. If you want to send parameters to the remote application, you specify

additional arguments after the method name in the send() method, as the following snippet shows:

sendingConnection.send("conn1", "doMessage", "Hello world");

Connecting to content in different domains and to AIR
applications

Flash Player 9 and later, Adobe AIR 1.0 and later

To allow communications only from specific domains, you call the allowDomain() or allowInsecureDomain()

method of the LocalConnection class and pass a list of one or more domains that are allowed to access this

LocalConnection object, passing one or more names of domains to be allowed.

In earlier versions of ActionScript, LocalConnection.allowDomain() and

LocalConnection.allowInsecureDomain() were callback methods that had to be implemented by developers and

that had to return a Boolean value. In ActionScript 3.0, LocalConnection.allowDomain() and

LocalConnection.allowInsecureDomain() are both built-in methods, which developers can call just like

Security.allowDomain() and Security.allowInsecureDomain(), passing one or more names of domains to be

allowed.

Flash Player 8 introduced security restrictions on local SWF files. A SWF file that is allowed to access the Internet

cannot also have access to the local file system. If you specify localhost, any local SWF file can access the SWF file.

If the LocalConnection.send() method attempts to communicate with a SWF file from a security sandbox to which

the calling code does not have access, a securityError event(SecurityErrorEvent.SECURITY_ERROR) is

dispatched. To work around this error, you can specify the caller's domain in the receiver's

LocalConnection.allowDomain() method.

835ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Communicating with other Flash Player and AIR instances

Last updated 10/9/2017

There are two special values that you can pass to the LocalConnection.allowDomain() and

LocalConnection.allowInsecureDomain() methods: * and localhost. The asterisk value (*) allows access from

all domains. The string localhost allows calls to the application from content locally installed, but outside of the

application resource directory.

If the LocalConnection.send() method attempts to communicate with an application from a security sandbox to

which the calling code does not have access, a securityError event(SecurityErrorEvent.SECURITY_ERROR) is

dispatched. To work around this error, you can specify the caller's domain in the receiver's

LocalConnection.allowDomain() method.

If you implement communication only between content in the same domain, you can specify a connectionName

parameter that does not begin with an underscore (_) and does not specify a domain name (for example,

myDomain:connectionName). Use the same string in the LocalConnection.connect(connectionName)

command.

If you implement communication between content in different domains, you specify a connectionName parameter

that begins with an underscore. Specifying the underscore makes the content with the receiving LocalConnection

object more portable between domains. Here are the two possible cases:

• If the string for connectionName does not begin with an underscore, the runtime adds a prefix with the

superdomain name and a colon (for example, myDomain:connectionName). Although this ensures that your

connection does not conflict with connections of the same name from other domains, any sending

LocalConnection objects must specify this superdomain (for example, myDomain:connectionName). If you move

the HTML or SWF file with the receiving LocalConnection object to another domain, the runtime changes the

prefix to reflect the new superdomain (for example, anotherDomain:connectionName). All sending

LocalConnection objects have to be manually edited to point to the new superdomain.

• If the string for connectionName begins with an underscore (for example, _connectionName), the runtime does

not add a prefix to the string. This means the receiving and sending LocalConnection objects use identical strings

for connectionName. If the receiving object uses LocalConnection.allowDomain() to specify that connections

from any domain will be accepted, you can move the HTML or SWF file with the receiving LocalConnection object

to another domain without altering any sending LocalConnection objects.

A downside to using underscore names in connectionName is the potential for collisions, such as when two

applications both try to connect using the same connectionName. A second, related downside is security-related.

Connection names that use underscore syntax do not identify the domain of the listening application. For these

reasons, domain-qualified names are preferred.

Adobe AIR

To communicate with content running in the AIR application security sandbox (content installed with the AIR

application), you must prefix the connection name with a superdomain identifying the AIR application. The

superdomain string starts with app# followed by the application ID followed by a dot (.) character, followed by the

publisher ID (if defined). For example, the proper superdomain to use in the connectionName parameter for an

application with the application ID, com.example.air.MyApp, and no publisher ID is:

"app#com.example.air.MyApp". Thus, if the base connection name is “appConnection,” then the entire string to use

in the connectionName parameter is: "app#com.example.air.MyApp:appConnection". If the application has the

publisher ID, then the that ID must also be included in the superdomain string:

"app#com.example.air.MyApp.B146A943FBD637B68C334022D304CEA226D129B4.1".

836ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Communicating with other Flash Player and AIR instances

Last updated 10/9/2017

When you allow another AIR application to communicate with your application through the local connection, you

must call the allowDomain() of the LocalConnection object, passing in the local connection domain name. For an

AIR application, this domain name is formed from the application and publisher IDs in the same fashion as the

connection string. For example, if the sending AIR application has an application ID of

com.example.air.FriendlyApp and a publisher ID of 214649436BD677B62C33D02233043EA236D13934.1, then

the domain string that you would use to allow this application to connect is:

app#com.example.air.FriendlyApp.214649436BD677B62C33D02233043EA236D13934.1. (As of AIR 1.5.3, not

all AIR applications have publisher IDs.)

837

Last updated 10/9/2017

Chapter 46: Communicating with native
processes in AIR

Adobe AIR 2 and later

As of Adobe AIR 2, AIR applications can run and communicate with other native processes via the command line. For

example, an AIR application can run a process and communicate with it via the standard input and output streams.

To communicate with native processes, package an AIR application to be installed via a native installer. The file type

of native installer is specific to the operating system for which it is created:

• It is a DMG file on Mac OS.

• It is an EXE file on Windows.

• It is an RPM or DEB package on Linux.

These applications are known as extended desktop profile applications. You can create a native installer file by

specifying the -target native option when calling the -package command using ADT.

More Help topics

flash.filesystem.File.openWithDefaultApplication()

flash.desktop.NativeProcess

Overview of native process communications

Adobe AIR 2 and later

An AIR application in the extended desktop profile can execute a file, as if it were invoked by the command line. It can

communicate with the standard streams of the native process. Standard streams include the standard input stream

(stdin), the output stream (stdout), the standard error stream (stderr).

Note: Applications in the extended desktop profile can also launch files and applications using the

File.openWithDefaultApplication() method. However, using this method does not provide the AIR application

with access to the standard streams. For more information, see “Opening files with the default system application” on

page 681

The following code sample shows how to launch a test.exe application in the application directory. The application

passes the argument "hello" as a command-line argument, and it adds an event listener to the process’s standard

output stream:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/filesystem/File.html#openWithDefaultApplication()
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/NativeProcess.html

838ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Communicating with native processes in AIR

Last updated 10/9/2017

var nativeProcessStartupInfo:NativeProcessStartupInfo = new NativeProcessStartupInfo();
var file:File = File.applicationDirectory.resolvePath("test.exe");
nativeProcessStartupInfo.executable = file;
var processArgs:Vector.<String> = new Vector.<String>();
processArgs.push("hello");
nativeProcessStartupInfo.arguments = processArgs;
process = new NativeProcess();
process.addEventListener(ProgressEvent.STANDARD_OUTPUT_DATA, onOutputData);
process.start(nativeProcessStartupInfo);
public function onOutputData(event:ProgressEvent):void
{
 var stdOut:ByteArray = process.standardOutput;
 var data:String = stdOut.readUTFBytes(process.standardOutput.bytesAvailable);
 trace("Got: ", data);
}

Launching and closing a native process

Adobe AIR 2 and later

To launch a native process, set up a NativeProcessInfo object to do the following:

• Point to the file you want to launch

• Store command-line arguments to pass to the process when launched (optional)

• Set the working directory of the process (optional)

To start the native process, pass the NativeProcessInfo object as the parameter of the start() method of a

NativeProcess object.

For example, the following code shows how to launch a test.exe application in the application directory. The

application passes the argument "hello" and sets the user’s documents directory as the working directory:

var nativeProcessStartupInfo:NativeProcessStartupInfo = new NativeProcessStartupInfo();
var file:File = File.applicationDirectory.resolvePath("test.exe");
nativeProcessStartupInfo.executable = file;
var processArgs:Vector.<String> = new Vector.<String>();
processArgs[0] = "hello";
nativeProcessStartupInfo.arguments = processArgs;
nativeProcessStartupInfo.workingDirectory = File.documentsDirectory;
process = new NativeProcess();
process.start(nativeProcessStartupInfo);

To terminate the process, call the exit() method of the NativeProcess object.

If you want a file to be executable in your installed application, make sure that it's executable on the file system when

you package your application. (On Mac and Linux, you can use chmod to set the executable flag, if needed.)

839ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Communicating with native processes in AIR

Last updated 10/9/2017

Communicating with a native process

Adobe AIR 2 and later

Once an AIR application has started a native process, it can communicate with the standard input, standard output,

and standard error streams of the process.

You read and write data to the streams using the following properties of the NativeProcess object:

• standardInput—Contains access to the standard input stream data.

• standardOutput—Contains access to the standard output stream data.

• standardError—Contains access to the standard error stream data.

Writing to the standard input stream

You can write data to the standard input stream using the write methods of the standardInput property of the

NativeProcess object. As the AIR application writes data to the process, the NativeProcess object dispatches

standardInputProgress events.

If an error occurs in writing to the standard input stream, the NativeProcess object dispatches an

ioErrorStandardInput event.

You can close the input stream by calling the closeInput() method of the NativeProcess object. When the input

stream closes, the NativeProcess object dispatches a standardInputClose event.

var nativeProcessStartupInfo:NativeProcessStartupInfo = new NativeProcessStartupInfo();
var file:File = File.applicationDirectory.resolvePath("test.exe");
nativeProcessStartupInfo.executable = file;
process = new NativeProcess();
process.start(nativeProcessStartupInfo);
process.standardInput.writeUTF("foo");
if(process.running)
{

process.closeInput();
}

Reading from the standard output stream

You can read data from the standard output stream using the read methods of this property. As the AIR application

gets output stream data from the process, the NativeProcess object dispatches standardOutputData events.

If an error occurs in writing to the standard output stream, the NativeProcess object dispatches a

standardOutputError event.

When process closes the output stream, the NativeProcess object dispatches a standardOutputClose event.

When reading data from the standard input stream, be sure to read data as it is generated. In other words, add an event

listener for the standardOutputData event. In the standardOutputData event listener, read the data from the

standardOutput property of the NativeProcess object. Do not simply wait for the standardOutputClose event or

the exit event to read all data. If you do not read data as the native process generates the data, the buffer can fill up,

or data can be lost. A full buffer can cause the native process to stall when trying to write more data. However, if you

do not register an event listener for the standardOutputData event, then the buffer will not fill and the process will

not stall. In this case, you will not have access to the data.

840ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Communicating with native processes in AIR

Last updated 10/9/2017

var nativeProcessStartupInfo:NativeProcessStartupInfo = new NativeProcessStartupInfo();
var file:File = File.applicationDirectory.resolvePath("test.exe");
nativeProcessStartupInfo.executable = file;
process = new NativeProcess();
process.addEventListener(ProgressEvent.STANDARD_OUTPUT_DATA, dataHandler);
process.start(nativeProcessStartupInfo);
var bytes:ByteArray = new ByteArray();
function dataHandler(event:ProgressEvent):void
{

bytes.writeBytes(process.standardOutput.readBytes(process.standardOutput.bytesAvailable);
}

Reading from the standard error stream

You can read data from the standard error stream using the read methods of this property. As the AIR application

reads error stream data from the process, the NativeProcess object dispatches standardErrorData events.

If an error occurs in writing to the standard error stream, the NativeProcess object dispatches an

standardErrorIoError event.

When process closes the error stream, the NativeProcess object dispatches a standardErrorClose event.

When reading data from the standard error stream, be sure to read data as it is generated. In other words, add an event

listener for the standardErrorData event. In the standardErrorData event listener, read the data from the

standardError property of the NativeProcess object. Do not simply wait for the standardErrorClose event or the

exit event to read all data. If you do not read data as the native process generates the data, the buffer can fill up, or

data can be lost. A full buffer can cause the native process to stall when trying to write more data. However, if you do

not register an event listener for the standardErrorData event, then the buffer will not fill and the process will not

stall. In this case, you will not have access to the data.

var nativeProcessStartupInfo:NativeProcessStartupInfo = new NativeProcessStartupInfo();
var file:File = File.applicationDirectory.resolvePath("test.exe");
nativeProcessStartupInfo.executable = file;
process = new NativeProcess();
process.addEventListener(ProgressEvent.STANDARD_ERROR_DATA, errorDataHandler);
process.start(nativeProcessStartupInfo);
var errorBytes:ByteArray = new ByteArray();
function errorDataHandler(event:ProgressEvent):void
{

bytes.writeBytes(process.standardError.readBytes(process.standardError.bytesAvailable);
}

Security considerations for native process
communication

Adobe AIR 2 and later

The native process API can run any executable on the user’s system. Take extreme care when constructing and

executing commands. If any part of a command to be executed originates from an external source, carefully validate

that the command is safe to execute. Likewise, your AIR application should validate any data passed to a running

process.

841ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Communicating with native processes in AIR

Last updated 10/9/2017

However, validating input can be difficult. To avoid such difficulties, it is best to write a native application (such as an

EXE file on Windows) that has specific APIs. These APIs should process only those commands defined by the

application. For example, the application may accept only a limited set of instructions via the standard input stream.

AIR on Windows does not allow you to run .bat files directly. The command interpreter application (cmd.exe)

executes Windows .bat files. When you invoke a .bat file, this command application can interpret arguments passed to

the command as additional applications to launch. A malicious injection of extra characters in the argument string

could cause cmd.exe to execute a harmful or insecure application. For example, without proper data validation, your

AIR application may call myBat.bat myArguments c:/evil.exe. The command application would launch the

evil.exe application in addition to running your batch file.

842

Last updated 10/9/2017

Chapter 47: Using the external API

Flash Player 9 and later, Adobe AIR 1.0 and later

The ActionScript 3.0 external API (flash.external.ExternalInterface) enables straightforward communication between

ActionScript and the container application within which Adobe Flash Player is running. Use the ExternalInterface API

to create interaction between a SWF document and JavaScript in an HTML page.

You can use the external API to interact with a container application, pass data between ActionScript and JavaScript

in an HTML page.

Some common external API tasks are:

• Getting information about the container application

• Using ActionScript to call code in a web page displayed in a browser or an AIR desktop application

• Calling ActionScript code from a web page

• Creating a proxy to simplify calling ActionScript code from a web page

Note: This discussion of the external interface only covers communication between ActionScript in a SWF file and the

container application that includes a reference to the Flash Player or instance in which the SWF file is loaded. Any other

use of Flash Player within an application is outside the scope of this documentation. Flash Player is designed to be used

as a browser plug-in or as a projector (standalone application). Other usage scenarios may have limited support.

Using the external API in AIR

Since an AIR application does not have an external container, this external interface does not generally apply—nor is

it generally needed. When your AIR application loads a SWF file directly, the application code can communicate

directly with the ActionScript code in the SWF (subject to security sandbox restrictions).

However, when your AIR application loads a SWF file using an HTML page in an HTMLLoader object (or an HTML

component in Flex), the HTMLLoader object serves as the external container. Thus, you can use the external interface

to communicate between the ActionScript code in the loaded SWF and the JavaScript code in the HTML page loaded

in the HTMLLoader.

Basics of using the external API

Flash Player 9 and later, Adobe AIR 1.0 and later

Although in some cases a SWF file can run on its own (for example, if you use Adobe® Flash® Professional to create a

SWF projector), in the majority of cases a SWF application runs as an element inside of another application.

Commonly, the container that includes the SWF is an HTML file; somewhat less frequently, a SWF file is used for all

or part of the user interface of a desktop application.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html

843ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the external API

Last updated 10/9/2017

As you work on more advanced applications, you may find a need to set up communication between the SWF file and

the container application. For instance, it’s common for a web page to display text or other information in HTML, and

include a SWF file to display dynamic visual content such as a chart or video. In such a case, you might want to make

it so that when users click a button on the web page, it changes something in the SWF file. ActionScript contains a

mechanism, known as the external API, that facilitates this type of communication between ActionScript in a SWF file

and other code in the container application.

Important concepts and terms

The following reference list contains important terms relevant to this feature:

Container application The application within which Flash Player is running a SWF file, such as a web browser and

HTML page that includes Flash Player content or an AIR application that loads the SWF in a web page..

Projector An executable file that includes SWF content and an embedded version of Flash Player. You can create a

projector file using Flash Professional or the standalone Flash Player. Projectors are commonly used to distribute SWF

files by CD-ROM or in similar situations where download size is not an issue and the SWF author wants to be certain

the user will be able to run the SWF file, regardless of whether Flash Player is installed on the user’s computer.

Proxy A go-between application or code that calls code in one application (the “external application”) on behalf of

another application (the “calling application”), and returns values to the calling application. A proxy can be used for

various reasons, including:

• To simplify the process of making external function calls by converting native function calls in the calling

application into the format understood by the external application.

• To work around security or other restrictions that prevent the caller from communicating directly with the external

application.

Serialize To convert objects or data values into a format that can be used to pass the values in messages between two

programming systems, such as over the Internet or between two different applications running on a single computer.

Working through the examples

Many of the code examples provided are small listings of code for demonstration purposes rather than full working

examples or code that checks values. Because using the external API requires (by definition) writing ActionScript code

as well as code in a container application, testing the examples involves creating a container (for example, a web page

containing the SWF file) and using the code listings to interact with the container.

To test an example of ActionScript-to-JavaScript communication:

1 Create a new document using Flash Professional and save it to your computer.

2 From the main menu, choose File > Publish Settings.

3 In the Publish Settings dialog box, on the Formats tab, confirm that the Flash and HTML check boxes are selected.

4 Click the Publish button. This generates a SWF file and HTML file in the same folder and with the same name that

you used to save the document. Click OK to close the Publish Settings dialog box.

5 Deselect the HTML check box. Now that the HTML page is generated, you are going to modify it to add the

appropriate JavaScript code. Deselecting the HTML check box ensures that after you modify the HTML page, Flash

will not overwrite your changes with a new HTML page when it’s publishing the SWF file.

6 Click OK to close the Publish Settings dialog box.

7 With an HTML or text editor application, open the HTML file that was created by Flash when you published the

SWF file. In the HTML source code, add opening and closing script tags, and copy into them the JavaScript code

from the example code listing:

844ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the external API

Last updated 10/9/2017

 <script>
 // add the sample JavaScript code here
 </script>

8 Save the HTML file and return to Flash.

9 Select the keyframe on Frame 1 of the Timeline, and open the Actions panel.

10 Copy the ActionScript code listing into the Script pane.

11 From the main menu, choose File > Publish to update the SWF file with the changes that you’ve made.

12 Using a web browser, open the HTML page you edited to view the page and test communication between

ActionScript and the HTML page.

To test an example of ActionScript-to-ActiveX container communication:

1 Create a new document using Flash Professional and save it to your computer. You may want to save it in the folder

where your container application will expect to find the SWF file.

2 From the main menu, choose File > Publish Settings.

3 In the Publish Settings dialog box, on the Formats tab, confirm that only the Flash check box is selected.

4 In the File field next to the Flash check box, click the folder icon to select the folder into which your SWF file will

be published. By setting the location for your SWF file, you can (for example) keep the document in one folder, but

put the published SWF file in another folder such as the folder containing the source code for the container

application.

5 Select the keyframe on Frame 1 of the Timeline, and open the Actions panel.

6 Copy the ActionScript code for the example into the Script pane.

7 From the main menu, choose File > Publish to re-publish the SWF file.

8 Create and run your container application to test communication between ActionScript and the container

application.

For full examples of using the external API to communicate with an HTML page, see the following topic:

• “External API example: Communicating between ActionScript and JavaScript in a web browser” on page 849

Those examples include the full code, including ActionScript and container error-checking code, which you should

use when writing code using the external API. For another full example using the external API, see the class example

for the ExternalInterface class in the ActionScript 3.0 Reference.

External API requirements and advantages

Flash Player 9 and later, Adobe AIR 1.0 and later

The external API is the portion of ActionScript that provides a mechanism for communication between ActionScript

and code running in an “external application” that is acting as a container for Flash Player (commonly a web browser

or stand-alone projector application). In ActionScript 3.0, the functionality of the external API is provided by the

ExternalInterface class. In Flash Player versions prior to Flash Player 8, the fscommand() action was used to carry out

communication with the container application. The ExternalInterface class is a replacement for fscommand().

Note: If you need to use the old fscommand() function—for example, to maintain compatibility with older applications

or to interact with a third-party SWF container application or the stand-alone Flash Player—it is still available as a

package-level function in the flash.system package.

845ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the external API

Last updated 10/9/2017

The ExternalInterface class is a subsystem that lets you easily communicate from ActionScript and Flash Player to

JavaScript in an HTML page.

The ExternalInterface class is available only under the following conditions:

• In all supported versions of Internet Explorer for Windows (5.0 and later)

• In any browser that supports the NPRuntime interface, which currently includes Firefox 1.0 and later, Mozilla 1.7.5

and later, Netscape 8.0 and later, and Safari 1.3 and later.

• In an AIR application when the SWF is embedded in an HTML page displayed by the HTMLLoader control.

In all other situations (such as running in a stand-alone player), the ExternalInterface.available property

returns false.

From ActionScript, you can call a JavaScript function on the HTML page. The external API offers the following

improved functionality compared with fscommand():

• You can use any JavaScript function, not only the functions that you can use with the fscommand() function.

• You can pass any number of arguments, with any names; you aren't limited to passing a command and a single

string argument. This gives the external API much more flexibility than fscommand().

• You can pass various data types (such as Boolean, Number, and String); you aren’t limited to String parameters.

• You can receive the value of a call, and that value returns immediately to ActionScript (as the return value of the

call you make).

Important: If the name given to the Flash Player instance in an HTML page (the object tag’s id attribute) includes a

hyphen (-) or other characters that are defined as operators in JavaScript (such as +, *, /, \, ., and so on),

ExternalInterface calls from ActionScript will not work when the container web page is viewed in Internet Explorer.In

addition, if the HTML tags that define the Flash Player instance (the object and embed tags) are nested in an HTML

form tag, ExternalInterface calls from ActionScript will not work.

Using the ExternalInterface class

Flash Player 9 and later, Adobe AIR 1.0 and later

Communication between ActionScript and the container application can take one of two forms: either ActionScript

can call code (such as a JavaScript function) defined in the container, or code in the container can call an ActionScript

function that has been designated as being callable. In either case, information can be sent to the code being called, and

results can be returned to the code making the call.

To facilitate this communication, the ExternalInterface class includes two static properties and two static methods.

These properties and methods are used to obtain information about the external interface connection, to execute code

in the container from ActionScript, and to make ActionScript functions available to be called by the container.

Getting information about the external container

Flash Player 9 and later, Adobe AIR 1.0 and later

The ExternalInterface.available property indicates whether the current Flash Player is in a container that offers

an external interface. If the external interface is available, this property is true; otherwise, it is false. Before using any

of the other functionality in the ExternalInterface class, you should always check to make sure that the current

container supports external interface communication, as follows:

846ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the external API

Last updated 10/9/2017

 if (ExternalInterface.available)
 {
 // Perform ExternalInterface method calls here.
 }

Note: The ExternalInterface.available property reports whether the current container is a type that supports

ExternalInterface connectivity. It doesn’t tell you if JavaScript is enabled in the current browser.

The ExternalInterface.objectID property allows you to determine the unique identifier of the Flash Player

instance (specifically, the id attribute of the object tag in Internet Explorer or the name attribute of the embed tag in

browsers using the NPRuntime interface). This unique ID represents the current SWF document in the browser, and

can be used to make reference to the SWF document—for example, when calling a JavaScript function in a container

HTML page. When the Flash Player container is not a web browser, this property is null.

Calling external code from ActionScript

Flash Player 9 and later, Adobe AIR 1.0 and later

The ExternalInterface.call() method executes code in the container application. It requires at least one

parameter, a string containing the name of the function to be called in the container application. Any additional

parameters passed to the ExternalInterface.call() method are passed along to the container as parameters of the

function call.

 // calls the external function "addNumbers"
 // passing two parameters, and assigning that function's result
 // to the variable "result"
 var param1:uint = 3;
 var param2:uint = 7;
 var result:uint = ExternalInterface.call("addNumbers", param1, param2);

If the container is an HTML page, this method invokes the JavaScript function with the specified name, which must

be defined in a script element in the containing HTML page. The return value of the JavaScript function is passed

back to ActionScript.

 <script language="JavaScript">
 // adds two numbers, and sends the result back to ActionScript
 function addNumbers(num1, num2)
 {
 return (num1 + num2);
 }
 </script>

If the container is some other ActiveX container, this method causes the Flash Player ActiveX control to dispatch its

FlashCall event. The specified function name and any parameters are serialized into an XML string by Flash Player.

The container can access that information in the request property of the event object and use it to determine how to

execute its own code. To return a value to ActionScript, the container code calls the ActiveX object’s

SetReturnValue() method, passing the result (serialized into an XML string) as a parameter of that method. For

more information about the XML format used for this communication, see “The external API’s XML format” on

page 848.

847ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the external API

Last updated 10/9/2017

Whether the container is a web browser or another ActiveX container, if the call fails or the container method does

not specify a return value, null is returned. The ExternalInterface.call() method throws a SecurityError

exception if the containing environment belongs to a security sandbox to which the calling code does not have access.

You can work around this by setting an appropriate value for allowScriptAccess in the containing environment.

For example, to change the value of allowScriptAccess in an HTML page, you would edit the appropriate attribute

in the object and embed tags.

Calling ActionScript code from the container

Flash Player 9 and later, Adobe AIR 1.0 and later

A container can only call ActionScript code that’s in a function—no other ActionScript code can be called by a

container. To call an ActionScript function from the container application, you must do two things: register the

function with the ExternalInterface class, and then call it from the container’s code.

First, you must register your ActionScript function to indicate that it should be made available to the container. Use

the ExternalInterface.addCallback() method, as follows:

 function callMe(name:String):String
 {
 return "busy signal";
 }
 ExternalInterface.addCallback("myFunction", callMe);

The addCallback() method takes two parameters. The first, a function name as a String, is the name by which the

function will be known to the container. The second parameter is the actual ActionScript function that will be executed

when the container calls the defined function name. Because these names are distinct, you can specify a function name

that will be used by the container, even if the actual ActionScript function has a different name. This is especially useful

if the function name is not known—for example, if an anonymous function is specified, or if the function to be called

is determined at run time.

Once an ActionScript function has been registered with the ExternalInterface class, the container can actually call the

function. How this is done varies according to the type of container. For example, in JavaScript code in a web browser,

the ActionScript function is called using the registered function name as though it’s a method of the Flash Player

browser object (that is, a method of the JavaScript object representing the object or embed tag). In other words,

parameters are passed and a result is returned as though a local function is being called.

 <script language="JavaScript">
 // callResult gets the value "busy signal"
 var callResult = flashObject.myFunction("my name");
 </script>
 ...
 <object id="flashObject"...>
 ...
 <embed name="flashObject".../>
 </object>

Alternatively, when calling an ActionScript function in a SWF file running in a desktop application, the registered

function name and any parameters must be serialized into an XML-formatted string. Then the call is actually

performed by calling the CallFunction() method of the ActiveX control with the XML string as a parameter. For

more information about the XML format used for this communication, see “The external API’s XML format” on

page 848.

848ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the external API

Last updated 10/9/2017

In either case, the return value of the ActionScript function is passed back to the container code, either directly as a

value when the caller is JavaScript code in a browser, or serialized as an XML-formatted string when the caller is an

ActiveX container.

The external API’s XML format

Flash Player 9 and later, Adobe AIR 1.0 and later

Communication between ActionScript and an application hosting the Shockwave Flash ActiveX control uses a specific

XML format to encode function calls and values. There are two parts to the XML format used by the external API. One

format is used to represent function calls. Another format is used to represent individual values; this format is used for

parameters in functions as well as function return values. The XML format for function calls is used for calls to and

from ActionScript. For a function call from ActionScript, Flash Player passes the XML to the container; for a call from

the container, Flash Player expects the container application to pass it an XML string in this format. The following

XML fragment shows an example XML-formatted function call:

 <invoke name="functionName" returntype="xml">
 <arguments>
 ... (individual argument values)
 </arguments>
 </invoke>

The root node is the invoke node. It has two attributes: name indicates the name of the function to call, and

returntype is always xml. If the function call includes parameters, the invoke node has a child arguments node,

whose child nodes will be the parameter values formatted using the individual value format explained next.

Individual values, including function parameters and function return values, use a formatting scheme that includes

data type information in addition to the actual values. The following table lists ActionScript classes and the XML

format used to encode values of that data type:

ActionScript

class/value

C# class/value Format Comments

null null <null/>

Boolean true bool true <true/>

Boolean false bool false <false/>

String string <string>string value</string>

Number, int, uint single, double, int, uint <number>27.5</number>
<number>-12</number>

849ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the external API

Last updated 10/9/2017

Note: By way of example, this table shows equivalent C# classes in addition to ActionScript classes; however, the external

API can be used to communicate with any programming language or run time that supports ActiveX controls, and is not

limited to C# applications.

When you are building your own applications using the external API with an ActiveX container application, you’ll

probably find it convenient to write a proxy that will perform the task of converting native function calls to the

serialized XML format. For an example of a proxy class written in C#, see Inside the ExternalInterfaceProxy class.

External API example: Communicating between
ActionScript and JavaScript in a web browser

Flash Player 9 and later, Adobe AIR 1.0 and later

This sample application demonstrates appropriate techniques for communicating between ActionScript and

JavaScript in a web browser, in the context of an Instant Messaging application that allows a person to chat with him

or herself (hence the name of the application: Introvert IM). Messages are sent between an HTML form in the web

page and a SWF interface using the external API. The techniques demonstrated by this example include the following:

• Properly initiating communication by verifying that the browser is ready to communicate before setting up

communication

• Checking whether the container supports the external API

• Calling JavaScript functions from ActionScript, passing parameters, and receiving values in response

• Making ActionScript methods available to be called by JavaScript, and performing those calls

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

Introvert IM application files can be found in the Samples/IntrovertIM_HTML folder. The application consists of the

following files:

Array (elements can be

mixed types)

A collection that allows

mixed-type elements,

such as ArrayList or

object[]

<array>
<property id="0">
<number>27.5</number>
</property>
<property id="1">
<string>Hello there!</string>
</property>
...
</array>

The property node

defines individual

elements, and the id

attribute is the

numeric, zero-based

index.

Object A dictionary with string

keys and object values,

such as a HashTable with

string keys

<object>
<property id="name">
<string>John Doe</string>
</property>
<property id="age">
<string>33</string>
</property>
...
</object>

The property node

defines individual

properties, and the

id attribute is the

property name (a

string).

Other built-in or custom

classes

<null/> or
<object></object>

ActionScript encodes

other objects as null

or as an empty object.

In either case any

property values are

lost.

ActionScript

class/value

C# class/value Format Comments

http://www.adobe.com/go/learn_programmingAS3samples_flash

850ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the external API

Last updated 10/9/2017

Preparing for ActionScript-browser communication

Flash Player 9 and later, Adobe AIR 1.0 and later

One of the most common uses for the external API is to allow ActionScript applications to communicate with a web

browser. Using the external API, ActionScript methods can call code written in JavaScript and vice versa. Because of

the complexity of browsers and how they render pages internally, there is no way to guarantee that a SWF document

will register its callbacks before the first JavaScript on the HTML page runs. For that reason, before calling functions

in the SWF document from JavaScript, your SWF document should always call the HTML page to notify it that the

SWF document is ready to accept connections.

For example, through a series of steps performed by the IMManager class, the Introvert IM determines whether the

browser is ready for communication and prepares the SWF file for communication. The first step, determining when

the browser is ready for communication, happens in the IMManager constructor, as follows:

File Description

IntrovertIMApp.fla

or

IntrovertIMApp.mxml

The main application file for Flash (FLA) or Flex (MXML).

com/example/programmingas3/introvertIM/IMManager.as The class that establishes and manages communication between

ActionScript and the container.

com/example/programmingas3/introvertIM/IMMessageEvent.as Custom event type, dispatched by the IMManager class when a message

is received from the container.

com/example/programmingas3/introvertIM/IMStatus.as Enumeration whose values represent the different “availability” status

values that can be selected in the application.

html-flash/IntrovertIMApp.html

or

html-template/index.template.html

The HTML page for the application for Flash (html-

flash/IntrovertIMApp.html) or the template that is used to create the

container HTML page for the application for Adobe Flex (html-

template/index.template.html). This file contains all the JavaScript

functions that make up the container part of the application.

851ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the external API

Last updated 10/9/2017

 public function IMManager(initialStatus:IMStatus)
 {
 _status = initialStatus;

 // Check if the container is able to use the external API.
 if (ExternalInterface.available)
 {
 try
 {
 // This calls the isContainerReady() method, which in turn calls
 // the container to see if Flash Player has loaded and the container
 // is ready to receive calls from the SWF.
 var containerReady:Boolean = isContainerReady();
 if (containerReady)
 {
 // If the container is ready, register the SWF's functions.
 setupCallbacks();
 }
 else
 {
 // If the container is not ready, set up a Timer to call the
 // container at 100ms intervals. Once the container responds that
 // it's ready, the timer will be stopped.
 var readyTimer:Timer = new Timer(100);
 readyTimer.addEventListener(TimerEvent.TIMER, timerHandler);
 readyTimer.start();
 }
 }
 ...
 }
 else
 {
 trace("External interface is not available for this container.");
 }
 }

First of all, the code checks whether the external API is even available in the current container using the

ExternalInterface.available property. If so, it begins the process of setting up communication. Because security

exceptions and other errors can occur when you attempt communication with an external application, the code is

wrapped in a try block (the corresponding catch blocks were omitted from the listing for brevity).

The code next calls the isContainerReady() method, listed here:

 private function isContainerReady():Boolean
 {
 var result:Boolean = ExternalInterface.call("isReady");
 return result;
 }

The isContainerReady() method in turn uses ExternalInterface.call() method to call the JavaScript function

isReady(), as follows:

852ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the external API

Last updated 10/9/2017

 <script language="JavaScript">
 <!--
 // ------- Private vars -------
 var jsReady = false;
 ...
 // ------- functions called by ActionScript -------
 // called to check if the page has initialized and JavaScript is available
 function isReady()
 {
 return jsReady;
 }
 ...
 // called by the onload event of the <body> tag
 function pageInit()
 {
 // Record that JavaScript is ready to go.
 jsReady = true;
 }
 ...
 //-->
 </script>

The isReady() function simply returns the value of the jsReady variable. That variable is initially false; once the

onload event of the web page has been triggered, the variable’s value is changed to true. In other words, if

ActionScript calls the isReady() function before the page is loaded, JavaScript returns false to

ExternalInterface.call("isReady"), and consequently the ActionScript isContainerReady() method returns

false. Once the page has loaded, the JavaScript isReady() function returns true, so the ActionScript

isContainerReady() method also returns true.

Back in the IMManager constructor, one of two things happens depending on the readiness of the container. If

isContainerReady() returns true, the code simply calls the setupCallbacks() method, which completes the

process of setting up communication with JavaScript. On the other hand, if isContainerReady() returns false, the

process is essentially put on hold. A Timer object is created and is told to call the timerHandler() method every 100

milliseconds, as follows:

 private function timerHandler(event:TimerEvent):void
 {
 // Check if the container is now ready.
 var isReady:Boolean = isContainerReady();
 if (isReady)
 {
 // If the container has become ready, we don't need to check anymore,
 // so stop the timer.
 Timer(event.target).stop();
 // Set up the ActionScript methods that will be available to be
 // called by the container.
 setupCallbacks();
 }
 }

Each time the timerHandler() method gets called, it once again checks the result of the isContainerReady()

method. Once the container is initialized, that method returns true. The code then stops the Timer and calls the

setupCallbacks() method to finish the process of setting up communication with the browser.

853ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the external API

Last updated 10/9/2017

Exposing ActionScript methods to JavaScript

Flash Player 9 and later, Adobe AIR 1.0 and later

As the previous example showed, once the code determines that the browser is ready, the setupCallbacks() method

is called. This method prepares ActionScript to receive calls from JavaScript, as shown here:

 private function setupCallbacks():void
 {
 // Register the SWF client functions with the container
 ExternalInterface.addCallback("newMessage", newMessage);
 ExternalInterface.addCallback("getStatus", getStatus);
 // Notify the container that the SWF is ready to be called.
 ExternalInterface.call("setSWFIsReady");
 }

The setCallBacks() method finishes the task of preparing for communication with the container by calling

ExternalInterface.addCallback() to register the two methods that will be available to be called from JavaScript.

In this code, the first parameter—the name by which the method is known to JavaScript ("newMessage" and

"getStatus")—is the same as the method’s name in ActionScript. (In this case, there was no benefit to using different

names, so the same name was reused for simplicity.) Finally, the ExternalInterface.call() method is used to call

the JavaScript function setSWFIsReady(), which notifies the container that the ActionScript functions have been

registered.

Communication from ActionScript to the browser

Flash Player 9 and later, Adobe AIR 1.0 and later

The Introvert IM application demonstrates a range of examples of calling JavaScript functions in the container page.

In the simplest case (an example from the setupCallbacks() method), the JavaScript function setSWFIsReady() is

called without passing any parameters or receiving a value in return:

 ExternalInterface.call("setSWFIsReady");

In another example from the isContainerReady() method, ActionScript calls the isReady() function and receives

a Boolean value in response:

 var result:Boolean = ExternalInterface.call("isReady");

You can also pass parameters to JavaScript functions using the external API. For instance, consider the IMManager

class’s sendMessage() method, which is called when the user is sending a new message to his or her “conversation

partner”:

 public function sendMessage(message:String):void
 {
 ExternalInterface.call("newMessage", message);
 }

Once again, ExternalInterface.call() is used to call the designated JavaScript function, notifying the browser of

the new message. In addition, the message itself is passed as an additional parameter to ExternalInterface.call(),

and consequently it is passed as a parameter to the JavaScript function newMessage().

854ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the external API

Last updated 10/9/2017

Calling ActionScript code from JavaScript

Flash Player 9 and later, Adobe AIR 1.0 and later

Communication is supposed to be a two-way street, and the Introvert IM application is no exception. Not only does

the Flash Player IM client call JavaScript to send messages, but the HTML form calls JavaScript code to send messages

to and ask for information from the SWF file as well. For example, when the SWF file notifies the container that it has

finished establishing contact and it’s ready to communicate, the first thing the browser does is call the IMManager

class’s getStatus() method to retrieve the initial user availability status from the SWF IM client. This is done in the

web page, in the updateStatus() function, as follows:

 <script language="JavaScript">
 ...
 function updateStatus()
 {
 if (swfReady)
 {
 var currentStatus = getSWF("IntrovertIMApp").getStatus();
 document.forms["imForm"].status.value = currentStatus;
 }
 }
 ...
 </script>

The code checks the value of the swfReady variable, which tracks whether the SWF file has notified the browser that

it has registered its methods with the ExternalInterface class. If the SWF file is ready to receive communication, the

next line (var currentStatus = ...) actually calls the getStatus() method in the IMManager class. Three things

happen in this line of code:

• The getSWF() JavaScript function is called, returning a reference to the JavaScript object representing the SWF file.

The parameter passed to getSWF() determines which browser object is returned in case there is more than one

SWF file in an HTML page. The value passed to that parameter must match the id attribute of the object tag and

name attribute of the embed tag used to include the SWF file.

• Using the reference to the SWF file, the getStatus() method is called as though it’s a method of the SWF object.

In this case the function name “ getStatus” is used because that’s the name under which the ActionScript function

is registered using ExternalInterface.addCallback().

• The getStatus() ActionScript method returns a value, and that value is assigned to the currentStatus variable,

which is then assigned as the content (the value property) of the status text field.

Note: If you’re following along in the code, you’ve probably noticed that in the source code for the updateStatus()

function, the line of code that calls the getSWF() function, is actually written as follows: var currentStatus =

getSWF("${application}").getStatus(); The ${application} text is a placeholder in the HTML page template; when

Adobe Flash Builder generates the actual HTML page for the application, this placeholder text is replaced by the same

text that is used as the object tag’s id attribute and the embed tag’s name attribute (IntrovertIMApp in the example).

That is the value that is expected by the getSWF() function.

The sendMessage() JavaScript function demonstrates passing a parameter to an ActionScript function.

(sendMessage() is thefunction that is called when the user presses the Send button on the HTML page.)

855ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using the external API

Last updated 10/9/2017

 <script language="JavaScript">
 ...
 function sendMessage(message)
 {
 if (swfReady)
 {
 ...
 getSWF("IntrovertIMApp").newMessage(message);
 }
 }
 ...
 </script>

The newMessage() ActionScript method expects one parameter, so the JavaScript message variable gets passed to

ActionScript by using it as a parameter in the newMessage() method call in the JavaScript code.

Detecting the browser type

Flash Player 9 and later, Adobe AIR 1.0 and later

Because of differences in how browsers access content, it’s important to always use JavaScript to detect which browser

the user is running and to access the movie according to the browser-specific syntax, using the window or document

object, as shown in the getSWF() JavaScript function in this example:

 <script language="JavaScript">
 ...
 function getSWF(movieName)
 {
 if (navigator.appName.indexOf("Microsoft") != -1)
 {
 return window[movieName];
 }
 else
 {
 return document[movieName];
 }
 }
 ...
 </script>

If your script does not detect the user’s browser type, the user might see unexpected behavior when playing SWF files

in an HTML container.

856

Last updated 10/9/2017

Chapter 48: XML signature validation in
AIR

Adobe AIR 1.5 and later

Use the classes in the Adobe® AIR® XMLSignatureValidator API to validate digital signatures conforming to a subset

of the W3C recommendation for XML-Signature Syntax and Processing (http://http://www.w3.org/TR/xmldsig-

core/). XML signatures can be used to help verify the integrity and signer identity of data or information.

XML signatures can be used to validate messages or resources downloaded by your application. For example, if your

application provides services on a subscription basis, you could encapsulate the subscription terms in a signed XML

document. If someone attempted to alter the subscription document, validation would fail.

You could also use an XML signature to help validate downloaded resources used by your application by including a

signed manifest containing digests of those resources. Your application could verify that the resources have not been

altered by comparing the digest in the signed file with a digest computed from the loaded bytes. This is particularly

valuable when the downloaded resource is a SWF file or other active content that you want to run in the application

security sandbox.

Basics of XML signature validation

Adobe AIR 1.5 and later

For a quick explanation and code examples of validating XML signatures, see the following quick start articles on the

Adobe Developer Connection:

• Creating and validating XML signatures (Flex)

• Creating and validating XML signatures (Flash)

Adobe® AIR® provides the XMLSignatureValidator class and IURIDereferencer interface for validating XML

signatures. The XML syntax accepted by the XMLSignatureValidator class is a subset of the W3C recommendation for

XML Signature Syntax and Processing. (Because only a subset of the recommendation is supported, not all legal

signatures can be validated.) AIR does not provide an API for creating XML signatures.

XML signature validation classes

Adobe AIR 1.5 and later

The XML signature validation API includes the following classes:

http://www.w3.org/TR/xmldsig-core/
http://www.w3.org/TR/xmldsig-core/
http://www.adobe.com/go/learn_air_qs_xmlsig_flex_en
http://www.adobe.com/go/learn_air_qs_window_flex_en
http://www.adobe.com/go/learn_air_qs_window_flash_en
http://www.adobe.com/go/learn_air_qs_xmlsig_flash_en

857ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

Using the XML signature validation classes

Adobe AIR 1.5 and later

To use the XMLSignatureValidator class to validate an XML signature, you must:

• Create an XMLSignatureValidator object

• Provide an implementation of the IURIDereferencer interface. The XMLSignatureValidator object calls the

IURIDereferencer dereference() method, passing in the URI for each reference in a signature. The

dereference() method must resolve the URI and return the referenced data (which could be in the same

document as the signature, or could be in an external resource).

• Set the certificate trust, revocation checking, and reference validation settings of the XMLSignatureValidator object

as appropriate for your application.

• Add event listeners for the complete and error events.

• Call the verify() method, passing in the signature to validate.

• Handle the complete and error events and interpret the results.

The following example implements a validate() function that verifies the validity of an XML signature. The

XMLSignatureValidator properties are set such that the signing certificate must be in the system trust store, or chain

to a certificate in the trust store. The example also assumes that a suitable IURIDereferencer class named

XMLDereferencer exists.

Package Classes

flash.security • XMLSignatureValidator

• IURIDereferencer (interface)

XMLSignatureValidator string constants are defined in the following classes:

• ReferencesValidationSetting

• RevocationCheckSettings

• SignatureStatus

• SignerTrustSettings

flash.events • Event

• ErrorEvent

858ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

private function validate(xmlSignature:XML):void
{

var verifier:XMLSignatureValidator = new XMLSignatureValidator();
verifier.addEventListener(Event.COMPLETE, verificationComplete);
verifier.addEventListener(ErrorEvent.ERROR, verificationError);
try
{

verifier.uriDereferencer = new XMLDereferencer();

verifier.referencesValidationSetting =
ReferencesValidationSetting.VALID_IDENTITY;

verifier.revocationCheckSetting = RevocationCheckSettings.BEST_EFFORT;
verifier.useSystemTrustStore = true;

//Verify the signature
verifier.verify(xmlSignature);

}
catch (e:Error)

{
trace("Verification error.\n" + e);

}
}

//Trace verification results
private function verificationComplete(event:Event):void

var signature:XMLSignatureValidator = event.target as XMLSignatureValidator;
trace("Signature status: " + signature.validityStatus + "\n");
trace(" Digest status: " + signature.digestStatus + "\n");
trace(" Identity status: " + signature.identityStatus + "\n");
trace(" Reference status: " + signature.referencesStatus + "\n");

}

private function verificationError(event:ErrorEvent):void
{

trace("Verification error.\n" + event.text);
}

The XML signature validation process

Adobe AIR 1.5 and later

When you call the XMLSignatureValidator verify() method, AIR performs the following steps:

• The runtime verifies the cryptographic integrity of the signature using the public key of the signing certificate.

• The runtime establishes the cryptographic integrity, identity, and trustworthiness of the certificate based on the

current settings of the XMLSignatureValidator object.

The trust placed in the signing certificate is key to the integrity of the validation process. Signature validation is

conducted using a well-defined cryptographic process, but the trustworthiness of the signing certificate is a

judgment that cannot be made algorithmically.

In general, you have three ways to decide whether a certificate is trustworthy:

• By relying on certification authorities and the operating system trust store.

859ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

• By obtaining, directly from the signer, a copy of the certificate, another certificate that serves as a trust anchor

for the certificate, or sufficient information to reliably identify the certificate, such as the public key.

• Asking the end user of your application if they trust the certificate. Such a query is invalid with self-signed

certificates since the identifying information in the certificate is inherently unreliable.

• The runtime verifies the cryptographic integrity of the signed data.

The signed data is verified with the help of your IURIDereferencer implementation. For each reference in the

signature document, the IURIDereferencer implementation dereference() method is called. The data returned

by the dereference() method is used to compute the reference digest. This digest value is compared to the digest

recorded in the signature document. If the digests match, then the data has not been altered since it was signed.

One important consideration when relying on the results of validating an XML signature is that only what is signed

is secure. For example, consider a signed manifest listing the files in a package. When the XMLSignatureValidator

verifies the signature, it only checks whether the manifest itself is unaltered. The data in the files is not signed, so

the signature will still validate when files referenced in the manifest are changed or deleted.

Note: To verify files in such a manifest, you can compute the digest of the file data (using the same hashing algorithm

used in the manifest) and compare the result to the digest stored in the signed manifest. In some cases, you should also

check for the presence of additional files.

Interpreting validation results

Adobe AIR 1.5 and later

The validation results are reported by the status properties of the XMLSignatureValidator object. These properties can

be read after the validator object dispatches the complete event. The four status properties include: validityStatus,

digestStatus, identityStatus, and referencesStatus.

The validityStatus property

Adobe AIR 1.5 and later

The validityStatus property reports the overall validity of the signature. The validityStatus depends on the state

of the other three status properties and can have one of the following values:

• valid — If digestStatus, identityStatus, and referencesStatus are all valid.

• invalid — If one or more of the individual status properties is invalid.

• unknown — If one or more of the individual status properties is unknown and no individual status is invalid.

The digestStatus property

Adobe AIR 1.5 and later

The digestStatus property reports the results of the cryptographic verification of the message digest. The

digestStatus property can have one of the following values:

• valid — If the signature document itself is unaltered since signing.

• invalid — If the signature document has been altered or is malformed.

• unknown — If the verify() method has not completed without error.

860ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

The identityStatus property

Adobe AIR 1.5 and later

The identityStatus property reports the status of the signing certificate. The value of this property depends on

several factors including:

• the cryptographic integrity of the certificate

• whether the certificate is expired or revoked

• whether the certificate is trusted on the current machine

• the state of the XMLSignatureValidator object (such as whether additional certificates have been added for building

the trust chain, whether those certificates are trusted, and the values of the useSystemTrustStore and

revocationCheckSettings properties)

The identityStatus property can have the following values:

• valid — To be considered valid, the signing certificate must meet the following conditions:

• The signing certificate must be unaltered.

• The signing certificate must not be expired or revoked—except when a valid timestamp is present in the

signature. If the signature is timestamped, the certificate will be considered valid as long as it was valid at the

time the document was signed. (The certificate used by the timestamp service to sign the timestamp must chain

to a trusted root certificate on the user’s computer.)

• The signing certificate is trusted. A certificate is trusted if the certificate is in the system trust store or chains to

another certificate in the system trust store and you set the useSystemTrustStore property to true. You can

also designate a certificate as trusted using the addCertificate() method of the XMLSignatureValidator

object.

• The certificate is, in fact, the signing certificate.

• invalid — The certificate is expired or revoked—and no timestamp proving validity at the time of signing is

present—or the certificate has been altered.

• unknown — If the certificate is not invalid, but is not trusted either. Self-signed certificates, for example, will be

reported as unknown (unless explicitly trusted). The identityStatus is also reported as unknown if the verify()

method has not completed without error or if the identity has not been checked because the signature digest is

invalid.

The referencesStatus property

Adobe AIR 1.5 and later

The referencesStatus property reports the cryptographic integrity of the references in the SignedData element of

the signature.

• valid — If the computed digest of every reference in the signature matches the corresponding digest recorded in

the XML signature. A valid status indicates that the signed data has not been altered.

• invalid — If any computed digest does not match the corresponding digest in the signature.

• unknown — If the reference digests have not been checked. The references are not checked if the overall signature

digest is invalid or the signing certificate is invalid. If the identityStatus is unknown, then the references are

only checked when the referencesValidationSetting is validOrUnknown.

861ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

About XML signatures

Adobe AIR 1.5 and later

An XML signature is a digital signature represented in XML syntax. The data in an XML signature can be used to

validate that the signed information has not been altered since signing. In addition, when a signing certificate has been

issued by a trusted certification authority, the identity of the signer can be verified through the public key

infrastructure.

An XML signature can be applied to any type of digital data (in binary or XML format). XML signatures are typically

used for such purposes as:

• checking whether external or downloaded resources have been modified

• verifying that messages come from a known source

• validating application license or subscription privileges

Supported XML signature syntax

Adobe AIR 1.5 and later

AIR supports the following elements from the W3C recommendation for XML Signature Syntax and Processing:

• All core signature syntax elements (section 4 of the W3C recommendation document)—except the KeyInfo

element is not fully supported

• The KeyInfo element must only contain an X509Data element

• An X509Data element must only contain an X509Certificate element

• The SHA256 digest method

• The RSA-SHA1 (PKCS1) signing algorithm

• The "Canonical XML without comments" canonicalization method and transform

• The enveloped signature transform

• timestamps

The following document illustrates a typical XML signature (most of the cryptographic data has been removed to

simplify the example):

862ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/>

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="URI_to_signed_data">

<Transforms>
<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-

signature"/></Transforms>
<DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
<DigestValue>uoo...vY=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>Ked...w==</SignatureValue>
<KeyInfo>

<X509Data>
<X509Certificate>i7d...w==</X509Certificate>

</X509Data>
</KeyInfo>

</Signature>

The key elements of a signature are:

• SignedInfo — Contains references to the signed data and the computed digest values at the time of signing. The

signed data itself may be included in the same document as the XML signature or may be external.

• SignatureValue — Contains a digest of the SignedInfo element encrypted with the signer’s private key.

• KeyInfo — Contains the signing certificate, as well as any additional certificates needed to establish the chain of

trust. Note that although the KeyInfo element is technically optional, AIR cannot validate the signature if it is not

included.

There are three general types of XML signatures:

• Enveloped — the signature is inserted inside the XML data that it is signing.

• Enveloping — the signed XML data is contained within an Object element within the Signature element.

• Detached — the signed data is external to the XML signature. The signed data might be in an external file.

Alternately, it might be in the same XML document as the signature, just not a parent or child element of the

Signature element.

XML signatures use URIs to reference the signed data. The signing and the validating applications must use the same

conventions for resolving these URIs. When using the XMLSignatureValidator class, you must provide an

implementation of the IURIDereferencer interface. This implementation is responsible for resolving the URI and

returning the signed data as a ByteArray object. The returned ByteArray object is digested using the same algorithm

that produced the digest in the signature.

Certificates and trust

Adobe AIR 1.5 and later

A certificate consists of a public key, identifying information, and possibly one or more certificates belonging to the

issuing certification authority.

There are two ways to establish trust in a certificate. You can establish trust by obtaining a copy of the certificate

directly from the signer, for example on physical media, or through a secure digital transmission such as an SSL

transaction. You can also rely on a certification authority to determine whether the signing certificate is trustworthy.

863ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

To rely on a certification authority, the signing certificate must be issued by an authority that is trusted on the

computer upon which the signature is validated. Most operating system manufacturers place the root certificates of a

number of certification authorities into the operating system trust store. Users can also add and remove certificates

from the store.

Even if a certificate is issued by a trusted certification authority, you must still decide whether the certificate belongs

to someone you trust. In many use cases, this decision is passed along to the end-user. For example, when an AIR

application is installed, the AIR installer displays the identifying information from the publisher’s certificate when

asking the user to verify whether they want to install the application. In other cases, you might have to compare the

public key or other certificate information to a list of acceptable keys. (This list must be secured, perhaps by its own

signature, or by storing in the AIR encrypted local store, so that the list itself cannot be tampered with.)

Note: While you can elect to trust the signing certificate without independent verification—such as when a signature is

“self-signed”—you do not thereby gain much assurance of anything by verifying the signature. Without knowing who

created a signature, the assurance that the signature has not been tampered with, is of little, if any, value. The signature

could be a validly signed forgery.

Certificate expiration and revocation

Adobe AIR 1.5 and later

All certificates expire. Certificates can also be revoked by the issuing certification authority if, for example, the private

key related to the certificate is compromised or stolen. If a signature is signed with an expired or revoked certificate,

then the signature will be reported as invalid unless a timestamp has been included as part of the signature. If a

timestamp is present, then the XMLSignatureValidator class will validate the signature as long as the certificate was

valid at the time of signing.

A timestamp is a signed digital message from a timestamp service that certifies that the data was signed at a particular

time and date. Timestamps are issued by timestamp authorities and signed by the timestamp authority’s own

certificate. The timestamp authority certificate embedded in the timestamp must be trusted on the current machine

for the timestamp to be considered valid. The XMLSignatureValidator does not provide an API for designating a

different certificate to use in validating the timestamp.

Implementing the IURIDereferencer interface

Adobe AIR 1.5 and later

To validate an XML signature, you must provide an implementation of the IURIDereferencer interface. The

implementation is responsible for resolving the URIs within the Reference elements of an XML signature document

and returning the data so that the digest can be computed. The computed digest is compared with the digest in the

signature to determine if the referenced data has been altered since the signature was created.

Note: HTML-based AIR applications must import a SWF library containing an ActionScript implementation in order to

validate XML signatures. The IURIDereferencer interface cannot be implemented in JavaScript.

The IURIDerefencer interface has a single method, dereference(uri:String), that must be implemented. The

XMLSignatureValidator object calls this method for each reference in the signature. The method must return the data

in a ByteArray object.

864ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

In most cases, you will also need to add properties or methods that allow your dereferencer object to locate the

referenced data. For example, if the signed data is located in the same document as the signature, you could add a

member variable that provides a reference to the XML document. The dereference() method can then use this

variable, along with the URI, to locate the referenced data. Likewise, if the signed data is located in a directory of the

local file system, the dereference() method might need a property providing the path to that directory in order to

resolve the referenced files.

The XMLSignatureValidator relies entirely on the dereferencer for interpreting URI strings. The standard rules for

dereferencing URIs are given in the section 4.3.3 of the W3C Recommendation for XML Signature Syntax and

Processing.

Dereferencing URIs in enveloped signatures

Adobe AIR 1.5 and later

When an enveloped XML signature is generated, the signature elements are inserted into the signed data. For example,

if you signed the following message using an enveloped signature structure:

<message>
<data>...</data>

</message>

The resulting signed document will look like this:

<message>
<data>...</data>
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"/>
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="">

<Transforms>
<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-

signature"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
<DigestValue>yv6...Z0Y=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>cCY...LQ==</SignatureValue>
<KeyInfo>

<X509Data>
<X509Certificate>MII...4e</X509Certificate>

</X509Data>
</KeyInfo>

</Signature>
</message>

Notice that the signature contains a single Reference element with an empty string as its URI. An empty string in this

context refers to the root of the document.

Also notice that the transform algorithm specifies that an enveloped signature transform has been applied. When an

enveloped signature transform has been applied, the XMLSignatureValidator automatically removes the signature

from the document before computing the digest. This means that the dereferencer does not need to remove the

Signature element when returning the data.

865ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

The following example illustrates a dereferencer for enveloped signatures:

package
{

import flash.events.ErrorEvent;
 import flash.events.EventDispatcher;

import flash.security.IURIDereferencer;
import flash.utils.ByteArray;
import flash.utils.IDataInput;

public class EnvelopedDereferencer

extends EventDispatcher implements IURIDereferencer
{

private var signedMessage:XML;

public function EnvelopedDereferencer(signedMessage:XML)
{

this.signedMessage = signedMessage;
}

public function dereference(uri:String):IDataInput
{

try
{

if(uri.length != 0)
{

throw(new Error("Unsupported signature type."));
}
var data:ByteArray = new ByteArray();
data.writeUTFBytes(signedMessage.toXMLString());
data.position = 0;

}
catch (e:Error)

{
var error:ErrorEvent =

new ErrorEvent("Ref error " + uri + " ", false, false, e.message);
this.dispatchEvent(error);
data = null;
throw new Error("Reference not resolvable: " + uri + ", " + e.message);

}
finally
{

return data;
}

}
}

}

This dereferencer class uses a constructor function with a parameter, signedMessage, to make the enveloped

signature document available to the dereference() method. Since the reference in an enveloped signature always

refers to the root of the signed data, the dereferencer() method writes the document into a byte array and returns it.

866ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

Dereferencing URIs in enveloping and detached signatures

Adobe AIR 1.5 and later

When the signed data is located in the same document as the signature itself, the URIs in the references typically use

XPath or XPointer syntax to address the elements that are signed. The W3C Recommendation for XML Signature

Syntax and Processing only recommends this syntax, so you should base your implementation on the signatures you

expect to encounter (and add sufficient error checking to gracefully handle unsupported syntax).

The signature of an AIR application is an example of an enveloping signature. The files in the application are listed in

a Manifest element. The Manifest element is addressed in the Reference URI attribute using the string,

“#PackageContents”, which refers to the Id of the Manifest element:

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#" Id="PackageSignature">
<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/>

<SignatureMethod Algorithm="http://www.w3.org/TR/xmldsig-core#rsa-sha1"/>
<Reference URI="#PackageContents">

<Transforms>
<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
<DigestValue>ZMGqQdaRKQc1HirIRsDpeBDlaElS+pPotdziIAyAYDk=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue Id="PackageSignatureValue">cQK...7Zg==</SignatureValue>
<KeyInfo>

<X509Data>
<X509Certificate>MII...T4e</X509Certificate>

</X509Data>
</KeyInfo>
<Object>
<Manifest Id="PackageContents">

<Reference URI="mimetype">
<DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">
</DigestMethod>
<DigestValue>0/oCb84THKMagtI0Dy0KogEu92TegdesqRr/clXct1c=</DigestValue>

</Reference>
<Reference URI="META-INF/AIR/application.xml">

<DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">
</DigestMethod>
<DigestValue>P9MqtqSdqcqnFgeoHCJysLQu4PmbUW2JdAnc1WLq8h4=</DigestValue>

</Reference>
<Reference URI="XMLSignatureValidation.swf">

<DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256">
</DigestMethod>
<DigestValue>OliRHRAgc9qt3Dk0m0Bi53Ur5ur3fAweIFwju74rFgE=</DigestValue>

</Reference>
</Manifest>

</Object>
</Signature>

A dereferencer for validating this signature must take the URI string containing, "#PackageContents" from the

Reference element, and return the Manifest element in a ByteArray object. The “#” symbol refers to the value of an

element Id attribute.

867ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

The following example implements a dereferencer for validating AIR application signatures. The implementation is

kept simple by relying on the known structure of an AIR signature. A general-purpose dereferencer could be

significantly more complex.

package
{

import flash.events.ErrorEvent;
import flash.security.IURIDereferencer;
import flash.utils.ByteArray;
import flash.utils.IDataInput;

public class AIRSignatureDereferencer implements IURIDereferencer {

private const XML_SIG_NS:Namespace =
new Namespace("http://www.w3.org/2000/09/xmldsig#");

private var airSignature:XML;

public function AIRSignatureDereferencer(airSignature:XML) {
this.airSignature = airSignature;

}

public function dereference(uri:String):IDataInput {

var data:ByteArray = null;
try
{

if(uri != "#PackageContents")
{

throw(new Error("Unsupported signature type."));
}
var manifest:XMLList =

airSignature.XML_SIG_NS::Object.XML_SIG_NS::Manifest;
data = new ByteArray();
data.writeUTFBytes(manifest.toXMLString());
data.position = 0;

}
catch (e:Error)
{

data = null;
throw new Error("Reference not resolvable: " + uri + ", " + e.message);

}
finally
{

return data;
}

}
}

}

When you verify this type of signature, only the data in the Manifest element is validated. The actual files in the package

are not checked at all. To check the package files for tampering, you must read the files, compute the SHA256 digest

and compare the result to digest recorded in the manifest. The XMLSignatureValidator does not automatically check

such secondary references.

Note: This example is provided only to illustrate the signature validation process. There is little use in an AIR application

validating its own signature. If the application has already been tampered with, the tampering agent could simply remove

the validation check.

868ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

Computing digest values for external resources

Adobe AIR 1.5 and later

AIR does not include built-in functions for computing SHA256 digests, but the Flex SDK does include a SHA256

utility class. The SDK also includes the Base64 encoder utility class that is helpful for comparing the computed digest

to the digest stored in a signature.

The following example function reads and validates the files in an AIR package manifest:

import mx.utils.Base64Encoder;
import mx.utils.SHA256;

private function verifyManifest(sigFile:File, manifest:XML):Boolean
{

var result:Boolean = true;
var message:String = '';
var nameSpace:Namespace = manifest.namespace();

if(manifest.nameSpace::Reference.length() <= 0)
{

result = false;
message = "Nothing to validate.";

}
for each (var reference:XML in manifest.nameSpace::Reference)
{

var file:File = sigFile.parent.parent.resolvePath(reference.@URI);
var stream:FileStream = new FileStream();
stream.open(file, FileMode.READ);
var fileData:ByteArray = new ByteArray();
stream.readBytes(fileData, 0, stream.bytesAvailable);

var digestHex:String = SHA256.computeDigest(fileData);
//Convert hexidecimal string to byte array
var digest:ByteArray = new ByteArray();
for(var c:int = 0; c < digestHex.length; c += 2){

var byteChar:String = digestHex.charAt(c) + digestHex.charAt(c+1);
digest.writeByte(parseInt(byteChar, 16));

}
digest.position = 0;

869ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

var base64Encoder:Base64Encoder = new Base64Encoder();
base64Encoder.insertNewLines = false;
base64Encoder.encodeBytes(digest, 0, digest.bytesAvailable);
var digestBase64:String = base64Encoder.toString();
if(digestBase64 == reference.nameSpace::DigestValue)
{

result = result && true;
message += " " + reference.@URI + " verified.\n";

}
else
{

result = false;
message += " ---- " + reference.@URI + " has been modified!\n";

}
base64Encoder.reset();

}
trace(message);
return result;

}

The function loops through all the references in the Manifest element. For each reference, the SHA256 digest is

computed, encoded in base64 format, and compared to the digest in the manifest. The URIs in an AIR package refer

to paths relative to the application directory. The paths are resolved based on the location of the signature file, which

is always in the META-INF subdirectory within the application directory. Note that the Flex SHA256 class returns the

digest as a string of hexadecimal characters. This string must be converted into a ByteArray containing the bytes

represented by the hexadecimal string.

To use the mx.utils.SHA256 and Base64Encoder classes in Flash CS4, you can either locate and copy these classes into

your application development directory or compile a library SWF containing the classes using the Flex SDK.

Dereferencing URIs in detached signatures referencing external data

Adobe AIR 1.5 and later

When a URI refers to an external resource, the data must be accessed and loaded into a ByteArray object. If the URI

contains an absolute URL, then it is simply a matter of reading a file or requesting a URL. If, as is probably the more

common case, the URI contains to a relative path, then your IURIDereferencer implementation must include a way to

resolve the paths to the signed files.

The following example uses a File object initialized when the dereferencer instance is constructed as the base for

resolving signed files.

870ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

XML signature validation in AIR

Last updated 10/9/2017

package
{

import flash.events.ErrorEvent;
import flash.events.EventDispatcher;
import flash.filesystem.File;
import flash.filesystem.FileMode;
import flash.filesystem.FileStream;
import flash.security.IURIDereferencer;
import flash.utils.ByteArray;
import flash.utils.IDataInput;
public class RelativeFileDereferencer

extends EventDispatcher implements IURIDereferencer
{

private var base:File;

public function RelativeFileDereferencer(base:File)
{

this.base = base;
}

public function dereference(uri:String):IDataInput
{

var data:ByteArray = null;
try{

var referent:File = this.base.resolvePath(uri);
var refStream:FileStream = new FileStream();
data = new ByteArray();
refStream.open(referent, FileMode.READ);

refStream.readBytes(data, 0, data.bytesAvailable);

} catch (e:Error) {
data = null;
throw new Error("Reference not resolvable: " + referent.nativePath + ", " +

e.message);
} finally {

return data;
}

}
}

}

The dereference() function simply locates the file addressed by the reference URI, loads the file contents into a byte

array, and returns the ByteArray object.

Note: Before validating remote external references, consider whether your application could be vulnerable to a “phone

home” or similar type of attack by a maliciously constructed signature document.

871

Last updated 10/9/2017

Chapter 49: Client system environment

Flash Player 9 and later, Adobe AIR 1.0 and later

This discussion explains how to interact with the user’s system. It shows you how to determine what features are

supported and how to build multilingual applications using the user’s installed input method editor (IME) if available.

It also shows typical uses for application domains.

More Help topics

flash.system.System

flash.system.Capabilities

Basics of the client system environment

Flash Player 9 and later, Adobe AIR 1.0 and later

As you build more advanced applications, you may find a need to know details about—and access functions of—your

users’ operating systems. The flash.system package contains a collection of classes that allow you to access system-level

functionality such as the following:

• Determining which application and security domain code is executing in

• Determining the capabilities of the user’s Flash runtime (such as Flash® Player or Adobe® AIR™) instance, such as

the screen size (resolution) and whether certain functionality is available, such as mp3 audio

• Building multilingual sites using the IME

• Interacting with the Flash runtime’s container (which could be an HTML page or a container application).

• Saving information to the user’s clipboard

The flash.system package also includes the IMEConversionMode and SecurityPanel classes. These classes contain

static constants that you use with the IME and Security classes, respectively.

Important concepts and terms

The following reference list contains important terms:

Operating system The main program that runs on a computer, within which all other applications run—such as

Microsoft Windows, Mac OS X, or Linux®.

Clipboard The operating system’s container for holding text or items that are copied or cut, and from which items are

pasted into applications.

Application domain A mechanism for separating classes used in different SWF files, so that if the SWF files include

different classes with the same name, the classes don’t overwrite each other.

IME (input method editor) A program (or operating system tool) that is used to enter complex characters or symbols

using a standard keyboard.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/System.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/Capabilities.html

872ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Client system environment

Last updated 10/9/2017

Client system In programming terms, a client is the part of an application (or whole application) that runs on an

individual’s computer and is used by a single user. The client system is the underlying operating system on the user’s

computer.

Using the System class

Flash Player 9 and later, Adobe AIR 1.0 and later

The System class contains methods and properties that allow you to interact with the user’s operating system and

retrieve the current memory usage of the runtime. The methods and properties of the System class also allow you to

listen for imeComposition events, instruct the runtime to load external text files using the user’s current code page or

to load them as Unicode, or set the contents of the user’s clipboard.

Getting data about the user’s system at run time

Flash Player 9 and later, Adobe AIR 1.0 and later

By checking the System.totalMemory property, you can determine the amount of memory (in bytes) that the

runtime is currently using. This property allows you to monitor memory usage and optimize your applications based

on how the memory level changes. For example, if a particular visual effect causes a large increase in memory usage,

you may want to consider modifying the effect or eliminating it altogether.

The System.ime property is a reference to the currently installed Input Method Editor (IME). This property allows

you to listen for imeComposition events (flash.events.IMEEvent.IME_COMPOSITION) by using the

addEventListener() method.

The third property in the System class is useCodePage. When useCodePage is set to true, the runtime uses the

traditional code page of the operating system to load external text files. If you set this property to false, you tell the

runtime to interpret the external file as Unicode.

If you set System.useCodePage to true, remember that the traditional code page of the operating system must

include the characters used in your external text file in order for the text to display. For example, if you load an external

text file that contains Chinese characters, those characters cannot display on a system that uses the English Windows

code page because that code page does not include Chinese characters.

To ensure that users on all platforms can view the external text files that are used in your application, you should

encode all external text files as Unicode and leave System.useCodePage set to false by default. This way, the runtime

interprets the text as Unicode.

Saving text to the clipboard

Flash Player 9 and later, Adobe AIR 1.0 and later

The System class includes a method called setClipboard() that allows the Flash runtime to set the contents of the

user’s clipboard with a specified string. For security reasons, there is no Security.getClipboard() method, since

such a method could potentially allow malicious sites to access the data last copied to the user’s clipboard.

The following code illustrates how an error message can be copied to the user’s clipboard when a security error occurs.

The error message can be useful if the user wants to report a potential bug with an application.

873ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Client system environment

Last updated 10/9/2017

 private function securityErrorHandler(event:SecurityErrorEvent):void
 {
 var errorString:String = "[" + event.type + "] " + event.text;
 trace(errorString);
 System.setClipboard(errorString);
 }

Flash Player 10 and AIR 1.0

You can use the Clipboard class to read and write clipboard data in response to a user event. In AIR, a user event is not

required for code running in the application sandbox to access the clipboard.

Using the Capabilities class

Flash Player 9 and later, Adobe AIR 1.0 and later

The Capabilities class allows developers to determine the environment in which an application is being run. Using

various properties of the Capabilities class, you can find out the resolution of the user’s system, whether the user’s

system supports accessibility software, and the language of the user’s operating system, as well as the currently installed

version of the Flash runtime.

By checking the properties in the Capabilities class, you can customize your application to work best with the specific

user’s environment. For example, by checking the Capabilities.screenResolutionX and

Capabilities.screenResolutionY properties, you can determine the display resolution the user’s system is using

and decide which video size may be most appropriate. Or you can check the Capabilities.hasMP3 property to see

if the user’s system supports mp3 playback before attempting to load an external mp3 file.

The following code uses a regular expression to parse the Flash runtime version that the client is using:

 var versionString:String = Capabilities.version;
 var pattern:RegExp = /^(\w*) (\d*),(\d*),(\d*),(\d*)$/;
 var result:Object = pattern.exec(versionString);
 if (result != null)
 {
 trace("input: " + result.input);
 trace("platform: " + result[1]);
 trace("majorVersion: " + result[2]);
 trace("minorVersion: " + result[3]);
 trace("buildNumber: " + result[4]);
 trace("internalBuildNumber: " + result[5]);
 }
 else
 {
 trace("Unable to match RegExp.");
 }

If you want to send the user’s system capabilities to a server-side script so that the information can be stored in a

database, you can use the following ActionScript code:

874ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Client system environment

Last updated 10/9/2017

 var url:String = "log_visitor.cfm";
 var request:URLRequest = new URLRequest(url);
 request.method = URLRequestMethod.POST;
 request.data = new URLVariables(Capabilities.serverString);
 var loader:URLLoader = new URLLoader(request);

Capabilities example: Detecting system capabilities

Flash Player 9 and later

The CapabilitiesExplorer example demonstrates how you can use the flash.system.Capabilities class to determine

which features the user’s version of the Flash runtime supports. This example teaches the following techniques:

• Detecting which capabilities the user’s version of the Flash runtime supports using the Capabilities class

• Using the ExternalInterface class to detect which browser settings the user’s browser supports

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The

CapabilitiesExplorer application files can be found in the folder Samples/CapabilitiesExplorer. This application

consists of the following files:

CapabilitiesExplorer overview

Flash Player 9 and later

The CapabilitiesExplorer.mxml file is responsible for setting up the user interface for the CapabilitiesExplorer

application. The capabilities of the user’s version of the Flash runtime will be displayed within a DataGrid component

instance on the Stage. Their browser capabilities will also be displayed if they are running the application from an

HTML container and if the external API is available.

When the main application file’s creationComplete event is dispatched, the initApp() method is invoked. The

initApp() method calls the getCapabilities() method from within the

com.example.programmingas3.capabilities.CapabilitiesGrabber class. The code for the initApp() method is as

follows:

 private function initApp():void
 {
 var dp:Array = CapabilitiesGrabber.getCapabilities();
 capabilitiesGrid.dataProvider = dp;
 }

File Description

CapabilitiesExplorer.fla

or

CapabilitiesExplorer.mxml

The main application file in Flash (FLA) or Flex (MXML).

com/example/programmingas3/capabilities/CapabilitiesGrabber.as The class that provides the main functionality of the application,

including adding the system Capabilities to an array, sorting the

items, and using the ExternalInterface class to retrieve browser

capabilities.

capabilities.html An HTML container that contains the necessary JavaScript to

communicate with the external API.

http://www.adobe.com/go/learn_programmingAS3samples_flash

875ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Client system environment

Last updated 10/9/2017

The CapabilitiesGrabber.getCapabilities() method returns a sorted array of the Flash runtime and browser

capabilities, which then gets set to the dataProvider property of the capabilitiesGrid DataGrid component

instance on the Stage.

CapabilitiesGrabber class overview

Flash Player 9 and later

The static getCapabilities() method of the CapabilitiesGrabber class adds each property from the

flash.system.Capabilities class to an array (capDP). It then calls the static getBrowserObjects() method in the

CapabilitiesGrabber class. The getBrowserObjects() method uses the external API to loop over the browser’s

navigator object, which contains the browser’s capabilities. The getCapabilities() method is as follows:

 public static function getCapabilities():Array
 {
 var capDP:Array = new Array();
 capDP.push({name:"Capabilities.avHardwareDisable", value:Capabilities.avHardwareDisable});
 capDP.push({name:"Capabilities.hasAccessibility", value:Capabilities.hasAccessibility});
 capDP.push({name:"Capabilities.hasAudio", value:Capabilities.hasAudio});
 ...
 capDP.push({name:"Capabilities.version", value:Capabilities.version});
 var navArr:Array = CapabilitiesGrabber.getBrowserObjects();
 if (navArr.length > 0)
 {
 capDP = capDP.concat(navArr);
 }
 capDP.sortOn("name", Array.CASEINSENSITIVE);
 return capDP;
 }

The getBrowserObjects() method returns an array of each of the properties in the browser’s navigator object. If this

array has a length of one or more items, the array of browser capabilities (navArr) is appended to the array of Flash

Player capabilities (capDP), and the entire array is sorted alphabetically. Finally, the sorted array is returned to the main

application file, which then populates the data grid. The code for the getBrowserObjects() method is as follows:

876ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Client system environment

Last updated 10/9/2017

 private static function getBrowserObjects():Array
 {
 var itemArr:Array = new Array();
 var itemVars:URLVariables;
 if (ExternalInterface.available)
 {
 try
 {
 var tempStr:String = ExternalInterface.call("JS_getBrowserObjects");
 itemVars = new URLVariables(tempStr);
 for (var i:String in itemVars)
 {
 itemArr.push({name:i, value:itemVars[i]});
 }
 }
 catch (error:SecurityError)
 {
 // ignore
 }
 }
 return itemArr;
 }

If the external API is available in the current user environment, the Flash runtime calls the JavaScript

JS_getBrowserObjects() method, which loops over the browser’s navigator object and returns a string of URL-

encoded values to ActionScript. This string is then converted into a URLVariables object (itemVars) and added to the

itemArr array, which is returned to the calling script.

Communicating with JavaScript

Flash Player 9 and later

The final piece in building the CapabilitiesExplorer application is writing the necessary JavaScript to loop over each of

the items in the browser’s navigator object and append a name-value pair to a temporary array. The code for the

JavaScript JS_getBrowserObjects() method in the container.html file is as follows:

 <script language="JavaScript">
 function JS_getBrowserObjects()
 {
 // Create an array to hold each of the browser's items.
 var tempArr = new Array();

 // Loop over each item in the browser's navigator object.
 for (var name in navigator)
 {
 var value = navigator[name];

 // If the current value is a string or Boolean object, add it to the
 // array, otherwise ignore the item.
 switch (typeof(value))
 {
 case "string":
 case "boolean":

 // Create a temporary string which will be added to the array.
 // Make sure that we URL-encode the values using JavaScript's

877ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Client system environment

Last updated 10/9/2017

 // escape() function.
 var tempStr = "navigator." + name + "=" + escape(value);
 // Push the URL-encoded name/value pair onto the array.
 tempArr.push(tempStr);
 break;
 }
 }
 // Loop over each item in the browser's screen object.
 for (var name in screen)
 {
 var value = screen[name];

 // If the current value is a number, add it to the array, otherwise
 // ignore the item.
 switch (typeof(value))
 {
 case "number":
 var tempStr = "screen." + name + "=" + escape(value);
 tempArr.push(tempStr);
 break;
 }
 }
 // Return the array as a URL-encoded string of name-value pairs.
 return tempArr.join("&");
 }
 </script>

The code begins by creating a temporary array that will hold all the name-value pairs in the navigator object. Next, the

navigator object is looped over using a for..in loop, and the data type of the current value is evaluated to filter out

unwanted values. In this application, we are interested only in String or Boolean values, and other data types (such as

functions or arrays) are ignored. Each String or Boolean value in the navigator object is appended to the tempArr

array. Next, the browser’s screen object is looped over using a for..in loop, and each numeric value is added to the

tempArr array. Finally, the temporary array is converted into a string using the Array.join() method. The array uses

an ampersand (&) as a delimiter, which allows ActionScript to easily parse the data using the URLVariables class.

878

Last updated 10/9/2017

Chapter 50: AIR application invocation
and termination

Adobe AIR 1.0 and later

This section discusses the ways in which an installed Adobe® AIR® application can be invoked, as well as options and

considerations for closing a running application.

Note: The NativeApplication, InvokeEvent, and BrowserInvokeEvent objects are only available to SWF content running

in the AIR application sandbox. SWF content running in the Flash Player runtime, within the browser or the standalone

player (projector), or in an AIR application outside the application sandbox, cannot access these classes.

For a quick explanation and code examples of invoking and terminating AIR applications, see the following quick start

articles on the Adobe Developer Connection:

• Startup Options

More Help topics

flash.desktop.NativeApplication

flash.events.InvokeEvent

flash.events.BrowserInvokeEvent

Application invocation

Adobe AIR 1.0 and later

An AIR application is invoked when the user (or the operating system):

• Launches the application from the desktop shell.

• Uses the application as a command on a command line shell.

• Opens a type of file for which the application is the default opening application.

• (Mac OS X) clicks the application icon in the dock taskbar (whether or not the application is currently running).

• Chooses to launch the application from the installer (either at the end of a new installation process, or after double-

clicking the AIR file for an already installed application).

• Begins an update of an AIR application when the installed version has signaled that it is handling application

updates itself (by including a <customUpdateUI>true</customUpdateUI> declaration in the application

descriptor file).

• (iOS) Receives a notification from the Apple Push Notification service (APNs).

• Invokes the application via a URL.

http://www.adobe.com/go/learn_air_qs_startup_options_flex_en
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/NativeApplication.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/InvokeEvent.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/BrowserInvokeEvent.html

879ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

AIR application invocation and termination

Last updated 10/9/2017

• Visits a web page hosting a Flash badge or application that calls com.adobe.air.AIR launchApplication()

method specifying the identifying information for the AIR application. (The application descriptor must also

include a <allowBrowserInvocation>true</allowBrowserInvocation> declaration for browser invocation to

succeed.)

Whenever an AIR application is invoked, AIR dispatches an InvokeEvent object of type invoke through the singleton

NativeApplication object. To allow an application time to initialize itself and register an event listener, invoke events

are queued instead of discarded. As soon as a listener is registered, all the queued events are delivered.

Note: When an application is invoked using the browser invocation feature, the NativeApplication object only dispatches

an invoke event if the application is not already running.

To receive invoke events, call the addEventListener() method of the NativeApplication object

(NativeApplication.nativeApplication). When an event listener registers for an invoke event, it also receives

all invoke events that occurred before the registration. Queued invoke events are dispatched one at a time on a short

interval after the call to addEventListener() returns. If a new invoke event occurs during this process, it may be

dispatched before one or more of the queued events. This event queuing allows you to handle any invoke events that

have occurred before your initialization code executes. Keep in mind that if you add an event listener later in execution

(after application initialization), it will still receive all invoke events that have occurred since the application started.

Only one instance of an AIR application is started. When an already running application is invoked again, AIR

dispatches a new invoke event to the running instance. It is the responsibility of an AIR application to respond to an

invoke event and take the appropriate action (such as opening a new document window).

An InvokeEvent object contains any arguments passed to the application, as well as the directory from which the

application has been invoked. If the application was invoked because of a file-type association, then the full path to the

file is included in the command line arguments. Likewise, if the application was invoked because of an application

update, the full path to the update AIR file is provided.

When multiple files are opened in one operation a single InvokeEvent object is dispatched on Mac OS X. Each file is

included in the arguments array. On Windows and Linux, a separate InvokeEvent object is dispatched for each file.

Your application can handle invoke events by registering a listener with its NativeApplication object:

NativeApplication.nativeApplication.addEventListener(InvokeEvent.INVOKE, onInvokeEvent);

And defining an event listener:

 var arguments:Array;
 var currentDir:File;
 public function onInvokeEvent(invocation:InvokeEvent):void {
 arguments = invocation.arguments;
 currentDir = invocation.currentDirectory;
 }

Capturing command line arguments

Adobe AIR 1.0 and later

The command line arguments associated with the invocation of an AIR application are delivered in the InvokeEvent

object dispatched by the NativeApplication object. The InvokeEvent arguments property contains an array of the

arguments passed by the operating system when an AIR application is invoked. If the arguments contain relative file

paths, you can typically resolve the paths using the currentDirectory property.

880ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

AIR application invocation and termination

Last updated 10/9/2017

The arguments passed to an AIR program are treated as white-space delimited strings, unless enclosed in double

quotes:

The currentDirectory property of an InvokeEvent object contains a File object representing the directory from

which the application was launched.

When an application is invoked because a file of a type registered by the application is opened, the native path to the

file is included in the command line arguments as a string. (Your application is responsible for opening or performing

the intended operation on the file.) Likewise, when an application is programmed to update itself (rather than relying

on the standard AIR update user interface), the native path to the AIR file is included when a user double-clicks an

AIR file containing an application with a matching application ID.

You can access the file using the resolve() method of the currentDirectory File object:

 if((invokeEvent.currentDirectory != null)&&(invokeEvent.arguments.length > 0)){
 dir = invokeEvent.currentDirectory;
 fileToOpen = dir.resolvePath(invokeEvent.arguments[0]);
 }

You should also validate that an argument is indeed a path to a file.

Example: Invocation event log

Adobe AIR 1.0 and later

The following example demonstrates how to register listeners for and handle the invoke event. The example logs all

the invocation events received and displays the current directory and command line arguments.

Arguments Array

tick tock {tick,tock}

tick "tick tock" {tick,tick tock}

"tick" “tock” {tick,tock}

\"tick\" \"tock\" {"tick","tock"}

881ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

AIR application invocation and termination

Last updated 10/9/2017

ActionScript example

package
 {
 import flash.display.Sprite;
 import flash.events.InvokeEvent;
 import flash.desktop.NativeApplication;
 import flash.text.TextField;

 public class InvokeEventLogExample extends Sprite
 {
 public var log:TextField;

 public function InvokeEventLogExample()
 {
 log = new TextField();
 log.x = 15;
 log.y = 15;
 log.width = 520;
 log.height = 370;
 log.background = true;

 addChild(log);

 NativeApplication.nativeApplication.addEventListener(InvokeEvent.INVOKE, onInvoke);
 }

 public function onInvoke(invokeEvent:InvokeEvent):void
 {
 var now:String = new Date().toTimeString();
 logEvent("Invoke event received: " + now);

 if (invokeEvent.currentDirectory != null)
 {
 logEvent("Current directory=" + invokeEvent.currentDirectory.nativePath);
 }
 else
 {

882ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

AIR application invocation and termination

Last updated 10/9/2017

 logEvent("--no directory information available--");
 }

 if (invokeEvent.arguments.length > 0)
 {
 logEvent("Arguments: " + invokeEvent.arguments.toString());
 }
 else
 {
 logEvent("--no arguments--");
 }
 }

 public function logEvent(entry:String):void
 {
 log.appendText(entry + "\n");
 trace(entry);
 }
 }
 }

Flex example

 <?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical"
 invoke="onInvoke(event)" title="Invocation Event Log">
 <mx:Script>
 <![CDATA[
 import flash.events.InvokeEvent;
 import flash.desktop.NativeApplication;

 public function onInvoke(invokeEvent:InvokeEvent):void {
 var now:String = new Date().toTimeString();
 logEvent("Invoke event received: " + now);

 if (invokeEvent.currentDirectory != null){
 logEvent("Current directory=" + invokeEvent.currentDirectory.nativePath);
 } else {
 logEvent("--no directory information available--");
 }

 if (invokeEvent.arguments.length > 0){
 logEvent("Arguments: " + invokeEvent.arguments.toString());
 } else {
 logEvent("--no arguments--");
 }
 }

 public function logEvent(entry:String):void {
 log.text += entry + "\n";
 trace(entry);
 }
]]>
 </mx:Script>
 <mx:TextArea id="log" width="100%" height="100%" editable="false"
 valueCommit="log.verticalScrollPosition=log.textHeight;"/>
 </mx:WindowedApplication>

883ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

AIR application invocation and termination

Last updated 10/9/2017

Invoking an AIR application on user login

Adobe AIR 1.0 and later

An AIR application can be set to launch automatically when the current user logs in by setting the NativeApplication

startAtLogin property to true. Once set, the application automatically starts whenever the user logs in. It continues

to launch at login until the setting is changed to false, the user manually changes the setting through the operating

system, or the application is uninstalled. Launching at login is a run-time setting. The setting only applies to the

current user. The application must be installed to successfully set the startAtLogin property to true. An error is

thrown if the property is set when an application is not installed (such as when it is launched with ADL).

Note: The application does not launch when the computer system starts. It launches when the user logs in.

To determine whether an application has launched automatically or as a result of a user action, you can examine the

reason property of the InvokeEvent object. If the property is equal to InvokeEventReason.LOGIN, then the

application started automatically. For other invocation paths, the reason property is set as follows:

• InvokeEventReason.NOTIFICATION (iOS only) - The application was invoked through APNs. For more

information on APNs, see Use push notifications.

• InvokeEventReason.OPEN_URL - The application was invoked by another application or by the system.

• InvokeEventReason.Standard - All other cases.

To access the reason property, your application must target AIR 1.5.1 or higher (by setting the correct namespace

value in the application descriptor file).

The following, simplified application uses the InvokeEvent reason property to decide how to behave when an invoke

event occurs. If the reason property is "login", then the application remains in the background. Otherwise, it makes the

main application visible. An application using this pattern typically starts at login so that it can carry out background

processing or event monitoring and opens a window in response to a user-triggered invoke event.

884ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

AIR application invocation and termination

Last updated 10/9/2017

package {
import flash.desktop.InvokeEventReason;
import flash.desktop.NativeApplication;
import flash.display.Sprite;
import flash.events.InvokeEvent;

public class StartAtLogin extends Sprite
{

public function StartAtLogin()
{

try
{

NativeApplication.nativeApplication.startAtLogin = true;
}
catch (e:Error)
{

trace("Cannot set startAtLogin:" + e.message);
}

NativeApplication.nativeApplication.addEventListener(InvokeEvent.INVOKE, onInvoke);

}

private function onInvoke(event:InvokeEvent):void
{

if(event.reason == InvokeEventReason.LOGIN)
{

//do background processing...
trace("Running in background...");

}
else
{

this.stage.nativeWindow.activate();
}

}
}

}

Note: To see the difference in behavior, package and install the application. The startAtLogin property can only be set

for installed applications.

Invoking an AIR application from the browser

Adobe AIR 1.0 and later

Using the browser invocation feature, a web site can launch an installed AIR application to be launched from the

browser. Browser invocation is only permitted if the application descriptor file sets allowBrowserInvocation to true:

 <allowBrowserInvocation>true</allowBrowserInvocation>

When the application is invoked via the browser, the application’s NativeApplication object dispatches a

BrowserInvokeEvent object.

885ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

AIR application invocation and termination

Last updated 10/9/2017

To receive BrowserInvokeEvent events, call the addEventListener() method of the NativeApplication object

(NativeApplication.nativeApplication) in the AIR application. When an event listener registers for a

BrowserInvokeEvent event, it also receives all BrowserInvokeEvent events that occurred before the registration. These

events are dispatched after the call to addEventListener() returns, but not necessarily before other

BrowserInvokeEvent events that might be received after registration. This allows you to handle BrowserInvokeEvent

events that have occurred before your initialization code executes (such as when the application was initially invoked

from the browser). Keep in mind that if you add an event listener later in execution (after application initialization) it

still receives all BrowserInvokeEvent events that have occurred since the application started.

The BrowserInvokeEvent object includes the following properties:

If you use the browser invocation feature, be sure to consider security implications. When a web site launches an AIR

application, it can send data via the arguments property of the BrowserInvokeEvent object. Be careful using this data

in any sensitive operations, such as file or code loading APIs. The level of risk depends on what the application is doing

with the data. If you expect only a specific web site to invoke the application, the application should check the

securityDomain property of the BrowserInvokeEvent object. You can also require the web site invoking the

application to use HTTPs, which you can verify by checking the isHTTPS property of the BrowserInvokeEvent object.

The application should validate the data passed in. For example, if an application expects to be passed URLs to a

specific domain, it should validate that the URLs really do point to that domain. This can prevent an attacker from

tricking the application into sending it sensitive data.

No application should use BrowserInvokeEvent arguments that might point to local resources. For example, an

application should not create File objects based on a path passed from the browser. If remote paths are expected to be

passed from the browser, the application should ensure that the paths do not use the file:// protocol instead of a

remote protocol.

Property Description

arguments An array of arguments (strings) to pass to the application.

isHTTPS Whether the content in the browser uses the https URL scheme (true) or not (false).

isUserEvent Whether the browser invocation resulted in a user event (such as a mouse click). In AIR 1.0, this is always set to

true; AIR requires a user event to the browser invocation feature.

sandboxType The sandbox type for the content in the browser. Valid values are defined the same as those that can be used

in the Security.sandboxType property, and can be one of the following:

• Security.APPLICATION — The content is in the application security sandbox.

• Security.LOCAL_TRUSTED — The content is in the local-with-filesystem security sandbox.

• Security.LOCAL_WITH_FILE — The content is in the local-with-filesystem security sandbox.

• Security.LOCAL_WITH_NETWORK — The content is in the local-with-networking security sandbox.

• Security.REMOTE — The content is in a remote (network) domain.

securityDomain The security domain for the content in the browser, such as "www.adobe.com" or "www.example.org".

This property is only set for content in the remote security sandbox (for content from a network domain). It is

not set for content in a local or application security sandbox.

886ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

AIR application invocation and termination

Last updated 10/9/2017

Application termination

Adobe AIR 1.0 and later

The quickest way to terminate an application is to call the NativeApplication exit() method. This works fine when your

application has no data to save or external resources to clean up. Calling exit() closes all windows and then

terminates the application. However, to allow windows or other components of your application to interrupt the

termination process, perhaps to save vital data, dispatch the proper warning events before calling exit().

Another consideration in gracefully shutting down an application is providing a single execution path, no matter how

the shut-down process starts. The user (or operating system) can trigger application termination in the following ways:

• By closing the last application window when NativeApplication.nativeApplication.autoExit is true.

• By selecting the application exit command from the operating system; for example, when the user chooses the exit

application command from the default menu. (This only happens on Mac OS; Windows and Linux do not provide

an application exit command through system chrome.)

• By shutting down the computer.

When an exit command is mediated through the operating system by one of these routes, the NativeApplication

dispatches an exiting event. If no listeners cancel the exiting event, any open windows are closed. Each window

dispatches a closing and then a close event. If any of the windows cancel the closing event, the shut-down process

stops.

If the order of window closure is an issue for your application, listen for the exiting event from the NativeApplication

and close the windows in the proper order yourself. You might need to do this, for example, if you have a document

window with tool palettes. It could be inconvenient, or worse, if the system closed the palettes, but the user decided to

cancel the exit command to save some data. On Windows, the only time you will get the exiting event is after closing

the last window (when the autoExit property of the NativeApplication object is set to true).

To provide consistent behavior on all platforms, whether the exit sequence is initiated via operating system chrome,

menu commands, or application logic, observe the following good practices for exiting the application:

1 Always dispatch an exiting event through the NativeApplication object before calling exit() in application code

and check that another component of your application doesn’t cancel the event.

 public function applicationExit():void {
 var exitingEvent:Event = new Event(Event.EXITING, false, true);
 NativeApplication.nativeApplication.dispatchEvent(exitingEvent);
 if (!exitingEvent.isDefaultPrevented()) {
 NativeApplication.nativeApplication.exit();
 }
 }

2 Listen for the application exiting event from the NativeApplication.nativeApplication object and, in the

handler, close any windows (dispatching a closing event first). Perform any needed clean-up tasks, such as saving

application data or deleting temporary files, after all windows have been closed. Only use synchronous methods

during cleanup to ensure that they finish before the application quits.

If the order in which your windows are closed doesn’t matter, then you can loop through the

NativeApplication.nativeApplication.openedWindows array and close each window in turn. If order does

matter, provide a means of closing the windows in the correct sequence.

887ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

AIR application invocation and termination

Last updated 10/9/2017

 private function onExiting(exitingEvent:Event):void {
 var winClosingEvent:Event;
 for each (var win:NativeWindow in NativeApplication.nativeApplication.openedWindows) {
 winClosingEvent = new Event(Event.CLOSING,false,true);
 win.dispatchEvent(winClosingEvent);
 if (!winClosingEvent.isDefaultPrevented()) {
 win.close();
 } else {
 exitingEvent.preventDefault();
 }
 }

 if (!exitingEvent.isDefaultPrevented()) {
 //perform cleanup
 }
 }

3 Windows should always handle their own clean up by listening for their own closing events.

4 Only use one exiting listener in your application since handlers called earlier cannot know whether subsequent

handlers will cancel the exiting event (and it would be unwise to rely on the order of execution).

888

Last updated 10/9/2017

Chapter 51: Working with AIR runtime
and operating system information

Adobe AIR 1.0 and later

This section discusses ways that an AIR application can manage operating system file associations, detect user activity,

and get information about the Adobe® AIR® runtime.

More Help topics

flash.desktop.NativeApplication

Managing file associations

Adobe AIR 1.0 and later

Associations between your application and a file type must be declared in the application descriptor. During the

installation process, the AIR application installer associates the AIR application as the default opening application for

each of the declared file types, unless another application is already the default. The AIR application install process

does not override an existing file type association. To take over the association from another application, call the

NativeApplication.setAsDefaultApplication() method at run time.

It is a good practice to verify that the expected file associations are in place when your application starts up. This is

because the AIR application installer does not override existing file associations, and because file associations on a

user’s system can change at any time. When another application has the current file association, it is also a polite

practice to ask the user before taking over an existing association.

The following methods of the NativeApplication class let an application manage file associations. Each of the methods

takes the file type extension as a parameter:

AIR can only manage associations for the file types originally declared in the application descriptor. You cannot get

information about the associations of a non-declared file type, even if a user has manually created the association

between that file type and your application. Calling any of the file association management methods with the extension

for a file type not declared in the application descriptor causes the application to throw a runtime exception.

Method Description

isSetAsDefaultApplication() Returns true if the AIR application is currently associated with the specified file type.

setAsDefaultApplication() Creates the association between the AIR application and the open action of the file type.

removeAsDefaultApplication() Removes the association between the AIR application and the file type.

getDefaultApplication() Reports the path of the application that is currently associated with the file type.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/NativeApplication.html

889ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR runtime and operating system information

Last updated 10/9/2017

Getting the runtime version and patch level

Adobe AIR 1.0 and later

The NativeApplication object has a runtimeVersion property, which is the version of the runtime in which the

application is running (a string, such as "1.0.5"). The NativeApplication object also has a runtimePatchLevel

property, which is the patch level of the runtime (a number, such as 2960). The following code uses these properties:

 trace(NativeApplication.nativeApplication.runtimeVersion);
 trace(NativeApplication.nativeApplication.runtimePatchLevel);

Detecting AIR capabilities

Adobe AIR 1.0 and later

For a file that is bundled with the Adobe AIR application, the Security.sandboxType property is set to the value

defined by the Security.APPLICATION constant. You can load content (which may or may not contain APIs specific

to AIR) based on whether a file is in the Adobe AIR security sandbox, as illustrated in the following code:

 if (Security.sandboxType == Security.APPLICATION)
 {
 // Load SWF that contains AIR APIs
 }
 else
 {
 // Load SWF that does not contain AIR APIs
 }

All resources that are not installed with the AIR application are assigned to the same security sandboxes as would be

assigned by Adobe® Flash® Player in a web browser. Remote resources are put in sandboxes according to their source

domains, and local resources are put in the local-with-networking, local-with-filesystem, or local-trusted sandbox.

You can check if the Capabilities.playerType static property is set to "Desktop" to see if content is executing in

the runtime (and not running in Flash Player running in a browser).

For more information, see “AIR security” on page 1076.

Tracking user presence

Adobe AIR 1.0 and later

The NativeApplication object dispatches two events that help you detect when a user is actively using a computer. If

no mouse or keyboard activity is detected in the interval determined by the NativeApplication.idleThreshold

property, the NativeApplication dispatches a userIdle event. When the next keyboard or mouse input occurs, the

NativeApplication object dispatches a userPresent event. The idleThreshold interval is measured in seconds and

has a default value of 300 (5 minutes). You can also get the number of seconds since the last user input from the

NativeApplication.nativeApplication.lastUserInput property.

890ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR runtime and operating system information

Last updated 10/9/2017

The following lines of code set the idle threshold to 2 minutes and listen for both the userIdle and userPresent

events:

 NativeApplication.nativeApplication.idleThreshold = 120;
 NativeApplication.nativeApplication.addEventListener(Event.USER_IDLE, function(event:Event) {
 trace("Idle");
 });
 NativeApplication.nativeApplication.addEventListener(Event.USER_PRESENT,
function(event:Event) {
 trace("Present");
 });

Note: Only a single userIdle event is dispatched between any two userPresent events.

891

Last updated 10/9/2017

Chapter 52: Working with AIR native
windows

Adobe AIR 1.0 and later

You use the classes provided by the Adobe® AIR® native window API to create and manage desktop windows.

Basics of native windows in AIR

Adobe AIR 1.0 and later

For quick explanations and code examples of working with native windows in AIR, see the following quick start articles

on the Adobe Developer Connection:

• Creating a transparent window application (Flex)

• Interacting with a window (Flex)

• Customizing the look and feel of a native window (Flex)

• Launching windows (Flex)

• Creating toast-style windows (Flex)

• Controlling the display order of windows (Flex)

• Creating resizable, non-rectangular windows (Flex)

• Interacting with a window (Flash)

• Customizing the look and feel of a native window (Flash)

• Creating toast-style windows (Flash)

• Controlling the display order of windows (Flash)

• Creating resizable, non-rectangular windows (Flash)

AIR provides an easy-to-use, cross-platform window API for creating native operating system windows using Flash®,

Flex™, and HTML programming techniques.

With AIR, you have a wide latitude in developing the appearance of your application. The windows you create can look

like a standard desktop application, matching Apple style when run on the Mac, conforming to Microsoft conventions

when run on Windows, and harmonizing with the window manager on Linux—all without including a line of

platform-specific code. Or you can use the skinnable, extensible chrome provided by the Flex framework to establish

your own style no matter where your application is run. You can even draw your own window chrome with vector and

bitmap artwork with full support for transparency and alpha blending against the desktop. Tired of rectangular

windows? Draw a round one.

http://www.adobe.com/go/learn_air_qs_transparent_flex_en
http://www.adobe.com/go/learn_air_qs_window_flex_en
http://www.adobe.com/go/learn_air_qs_customwindow_flex_en
http://www.adobe.com/go/learn_air_qs_launchwindow_flex_en
http://www.adobe.com/go/learn_air_qs_toastwindow_flex_en
http://www.adobe.com/go/learn_air_qs_zorder_flex_en
http://www.adobe.com/go/learn_air_qs_nonrectwindow_flex_en
http://www.adobe.com/go/learn_air_qs_window_flash_en
http://www.adobe.com/go/learn_air_qs_customwindow_flash_en
http://www.adobe.com/go/learn_air_qs_toastwindow_flash_en
http://www.adobe.com/go/learn_air_qs_zorder_flash_en
http://www.adobe.com/go/learn_air_qs_nonrectwindow_flash_en

892ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

Windows in AIR

Adobe AIR 1.0 and later

AIR supports three distinct APIs for working with windows:

• The ActionScript-oriented NativeWindow class provides the lowest level window API. Use NativeWindows in

ActionScript and Flash Professional-authored applications. Consider extending the NativeWindow class to

specialize the windows used in your application.

• In the HTML environment, you can use the JavaScript Window class, just as you would in a browser-based web

application. Calls to JavaScript Window methods are forwarded to the underlying native window object.

• The Flex framework mx:WindowedApplication and mx:Window classes provide a Flex “wrapper” for the

NativeWindow class. The WindowedApplication component replaces the Application component when you create

an AIR application with Flex and must always be used as the initial window in your Flex application.

ActionScript windows

When you create windows with the NativeWindow class, use the Flash Player stage and display list directly. To add a

visual object to a NativeWindow, add the object to the display list of the window stage or to another display object

container on the stage.

HTML windows

When you create HTML windows, you use HTML, CSS, and JavaScript to display content. To add a visual object to an

HTML window, you add that content to the HTML DOM. HTML windows are a special category of NativeWindow.

The AIR host defines a nativeWindow property in HTML windows that provides access to the underlying

NativeWindow instance. You can use this property to access the NativeWindow properties, methods, and events

described here.

Note: The JavaScript Window object also has methods for scripting the containing window, such as moveTo() and

close(). Where overlapping methods are available, you can use whichever method that is convenient.

Flex Framework windows

When you create windows with the Flex framework, you typically use MXML components to populate the window.

To add a Flex component to a window, you add the component element to the window MXML definition. You can

also use ActionScript to add content dynamically. The mx:WindowedApplication and mx:Window components are

designed as Flex containers and so can accept Flex components directly, whereas NativeWindow objects cannot. When

necessary, the NativeWindow properties and methods can be accessed through the WindowedApplication and

Window objects using the nativeWindow property.

The initial application window

The first window of your application is automatically created for you by AIR. AIR sets the properties and content of

the window using the parameters specified in the initialWindow element of the application descriptor file.

If the root content is a SWF file, AIR creates a NativeWindow instance, loads the SWF file, and adds it to the window

stage. If the root content is an HTML file, AIR creates an HTML window and loads the HTML.

Native window classes

Adobe AIR 1.0 and later

The native window API contains the following classes:

893ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

Native window event flow

Adobe AIR 1.0 and later

Native windows dispatch events to notify interested components that an important change is about to occur or has

already occurred. Many window-related events are dispatched in pairs. The first event warns that a change is about to

happen. The second event announces that the change has been made. You can cancel a warning event, but not a

notification event. The following sequence illustrates the flow of events that occurs when a user clicks the maximize

button of a window:

1 The NativeWindow object dispatches a displayStateChanging event.

2 If no registered listeners cancel the event, the window maximizes.

3 The NativeWindow object dispatches a displayStateChange event.

In addition, the NativeWindow object also dispatches events for related changes to the window size and position.

The window does not dispatch warning events for these related changes. The related events are:

a A move event is dispatched if the top, left corner of the window moved because of the maximize operation.

b A resize event is dispatched if the window size changed because of the maximize operation.

A NativeWindow object dispatches a similar sequence of events when minimizing, restoring, closing, moving, and

resizing a window.

The warning events are only dispatched when a change is initiated through window chrome or other operating-

system controlled mechanism. When you call a window method to change the window size, position, or display

state, the window only dispatches an event to announce the change. You can dispatch a warning event, if desired,

using the window dispatchEvent() method, then check to see if your warning event has been canceled before

proceeding with the change.

For detailed information about the window API classes, methods, properties, and events, see the ActionScript 3.0

Reference for the Adobe Flash Platform.

Package Classes

flash.display • NativeWindow

• NativeWindowInitOptions

• NativeWindowDisplayState

• NativeWindowResize

• NativeWindowSystemChrome

• NativeWindowType

flash.events • NativeWindowBoundsEvent

• NativeWindowDisplayStateEvent

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

894ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

Properties controlling native window style and behavior

Flash Player 9 and later, Adobe AIR 1.0 and later

The following properties control the basic appearance and behavior of a window:

• type

• systemChrome

• transparent

• owner

When you create a window, you set these properties on the NativeWindowInitOptions object passed to the window

constructor. AIR reads the properties for the initial application window from the application descriptor. (Except the

type property, which cannot be set in the application descriptor and is always set to normal.) The properties cannot

be changed after window creation.

Some settings of these properties are mutually incompatible: systemChrome cannot be set to standard when either

transparent is true or type is lightweight.

Window types

Adobe AIR 1.0 and later

The AIR window types combine chrome and visibility attributes of the native operating system to create three

functional types of window. Use the constants defined in the NativeWindowType class to reference the type names in

code. AIR provides the following window types:

Window chrome

Adobe AIR 1.0 and later

Window chrome is the set of controls that allow users to manipulate a window in the desktop environment. Chrome

elements include the title bar, title bar buttons, border, and resize grippers.

System chrome

You can set the systemChrome property to standard or none. Choose standard system chrome to give your window

the set of standard controls created and styled by the user’s operating system. Choose none to provide your own

chrome for the window. Use the constants defined in the NativeWindowSystemChrome class to reference the system

chrome settings in code.

Type Description

Normal A typical window. Normal windows use the full-size style of chrome and appear on the Windows taskbar and

the Mac OS X window menu.

Utility A tool palette. Utility windows use a slimmer version of the system chrome and do not appear on the Windows

taskbar and the Mac OS X window menu.

Lightweight Lightweight windows have no chrome and do not appear on the Windows taskbar or the Mac OS X window

menu. In addition, lightweight windows do not have the System (Alt+Space) menu on Windows. Lightweight

windows are suitable for notification bubbles and controls such as combo-boxes that open a short-lived display

area. When the lightweight type is used, systemChrome must be set to none.

895ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

System chrome is managed by the system. Your application has no direct access to the controls themselves, but can

react to the events dispatched when the controls are used. When you use standard chrome for a window, the

transparent property must be set to false and the type property must be normal or utility.

Flex chrome

When you use the Flex WindowedApplication or Window components, the window can be use either system chrome

or chrome provided by the Flex framework. To use the Flex chrome, set the systemChrome property used to create the

window to none. When using the Flex 4 spark components rather than the mx components, you must specify the skin

class in order to use Flex chrome. You can use the built-in skins or provide your own. The following example

demonstrates how to use the built-in spark WindowedApplication skin class to provide the window chrome:

<?xml version="1.0" encoding="utf-8"?>
<s:WindowedApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
xmlns:mx="library://ns.adobe.com/flex/mx">
<fx:Style>
@namespace "library://ns.adobe.com/flex/spark";
WindowedApplication
{

skinClass:ClassReference("spark.skins.spark.SparkChromeWindowedApplicationSkin");
}
</fx:Style>
</s:WindowedApplication>

For more information, see Using Flex 4: About the AIR window containers: Controlling window chrome

Custom chrome

When you create a window with no system chrome, then you must add your own chrome controls to handle the

interactions between a user and the window. You are also free to make transparent, non-rectangular windows.

To use custom chrome with the mx:WindowedApplication or mx:Window components, you must set the

showFlexChrome style to false. Otherwise, Flex will add its own chrome to your windows.

Window transparency

Adobe AIR 1.0 and later

To allow alpha blending of a window with the desktop or other windows, set the window transparent property to

true. The transparent property must be set before the window is created and cannot be changed.

A transparent window has no default background. Any window area not containing an object drawn by the application

is invisible. If a displayed object has an alpha setting of less than one, then anything below the object shows through,

including other display objects in the same window, other windows, and the desktop.

Transparent windows are useful when you want to create applications with borders that are irregular in shape or that

“fade out” or appear to be invisible. However, rendering large alpha-blended areas can be slow, so the effect should be

used conservatively.

Important: On Linux, mouse events do not pass through fully transparent pixels. You should avoid creating windows

with large, fully transparent areas since you may invisibly block the user’s access to other windows or items on their

desktop. On Mac OS X and Windows, mouse events do pass through fully transparent pixels.

Transparency cannot be used with windows that have system chrome. In addition, SWF and PDF content in HTML

may not display in transparent windows. For more information, see “Considerations when loading SWF or PDF

content in an HTML page” on page 1004.

http://help.adobe.com/en_US/Flex/4.0/UsingSDK/WSacd9bdd0c5c09f4a-690d4877120e8b878b0-7fd8.html#WSacd9bdd0c5c09f4a-690d4877120e8b878b0-7fd7

896ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

The static NativeWindow.supportsTransparency property reports whether window transparency is available.

When transparency is not supported, the application is composited against a black background. In these cases, any

transparent areas of the application display as an opaque black. It is a good practice to provide a fallback in case this

property tests false. For example, you could display a warning dialog to the user, or display a rectangular, non-

transparent user interface.

Note that transparency is always supported by the Mac and Windows operating systems. Support on Linux operating

systems requires a compositing window manager, but even when a compositing window manager is active,

transparency can be unavailable because of user display options or hardware configuration.

Transparency in an MXML application window

Adobe AIR 1.0 and later

By default, the background of an MXML window is opaque, even if you create the window as transparent. (Notice the

transparency effect at the corners of the window.) To present a transparent background for the window, set a

background color and alpha value in the style sheet or <mx:Style> element contained in your application MXML file.

For example, the following style declaration gives the background a slightly transparent green shade:

 WindowedApplication
 {
 background-alpha:".8";
 background-color:"0x448234";
 }

Transparency in an HTML application window

Adobe AIR 1.0 and later

By default the background of HTML content displayed in HTML windows and HTMLLoader objects is opaque, event

if the containing window is transparent. To turn off the default background displayed for HTML content, set the

paintsDefaultBackground property to false. The following example creates an HTMLLoader and turns off the

default background:

 var htmlView:HTMLLoader = new HTMLLoader();
 htmlView.paintsDefaultBackground = false;

This example uses JavaScript to turn off the default background of an HTML window:

 window.htmlLoader.paintsDefaultBackground = false;

If an element in the HTML document sets a background color, the background of that element is not transparent.

Setting a partial transparency (or opacity) value is not supported. However, you can use a transparent PNG-format

graphic as the background for a page or a page element to achieve a similar visual effect.

Window ownership

One window can own one or more other windows. These owned windows always appear in front of the master

window, are minimized and restored along with the master window, and are closed when the master window is closed.

Window ownership cannot be transfered to another window or removed. A window can only be owned by one master

window, but can own any number of other windows.

You can use window ownership to make it easier to manage windows used for tool palettes and dialogs. For example,

if you displayed a Save dialog in association with a document window, making the document window own the dialog

will keep the dialog in front of the document window automatically.

• NativeWindow.owner

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/NativeWindow.html#owner

897ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

• Christian Cantrell: Owned windows in AIR 2.6

A visual window catalog

Adobe AIR 1.0 and later

The following table illustrates the visual effects of different combinations of window property settings on the Mac OS

X, Windows, and Linux operating systems:

Window settings Mac OS X Microsoft Windows Linux*

Type: normal

SystemChrome: standard

Transparent: false

Type: utility

SystemChrome: standard

Transparent: false

http://blogs.adobe.com/cantrell/archives/2011/03/owned-windows-in-air-2-6.html

898ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

*Ubuntu with Compiz window manager

Note: The following system chrome elements are not supported by AIR: the Mac OS X Toolbar, the Mac OS X Proxy Icon,

Windows title bar icons, and alternate system chrome.

Creating windows

Adobe AIR 1.0 and later

AIR automatically creates the first window for an application, but you can create any additional windows you need.

To create a native window, use the NativeWindow constructor method.

To create an HTML window, either use the HTMLLoader createRootWindow() method or, from an HTML

document, call the JavaScript window.open() method. The window created is a NativeWindow object whose display

list contains an HTMLLoader object. The HTMLLoader object interprets and displays the HTML and JavaScript

content for the window. You can access the properties of the underlying NativeWindow object from JavaScript using

the window.nativeWindow property. (This property is only accessible to code running in the AIR application

sandbox.)

Type: Any

SystemChrome: none

Transparent: false

Type: Any

SystemChrome: none

Transparent: true

mxWindowedApplication or

mx:Window

Type: Any

SystemChrome: none

Transparent: true

Window settings Mac OS X Microsoft Windows Linux*

899ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

When you initialize a window—including the initial application window—you should consider creating the window

in the invisible state, loading content or executing any graphical updates, and then making the window visible. This

sequence prevents any jarring visual changes from being visible to your users. You can specify that the initial window

of your application should be created in the invisible state by specifying the <visible>false</visible> tag in the

application descriptor (or by leaving the tag out altogether since false is the default value). New NativeWindows are

invisible by default. When you create an HTML window with the HTMLLoader createRootWindow() method, you

can set the visible argument to false. Call the NativeWindow activate() method or set the visible property to

true to make a window visible.

Specifying window initialization properties

Adobe AIR 1.0 and later

The initialization properties of a native window cannot be changed after the desktop window is created. These

immutable properties and their default values include:

Set the properties for the initial window created by AIR in the application descriptor file. The main window of an AIR

application is always type, normal. (Additional window properties can be specified in the descriptor file, such as

visible, width, and height, but these properties can be changed at any time.)

Set the properties for other native and HTML windows created by your application using the

NativeWindowInitOptions class. When you create a window, you must pass a NativeWindowInitOptions object

specifying the window properties to either the NativeWindow constructor function or the HTMLLoader

createRootWindow() method.

The following code creates a NativeWindowInitOptions object for a utility window:

var options:NativeWindowInitOptions = new NativeWindowInitOptions();
 options.systemChrome = NativeWindowSystemChrome.STANDARD;
 options.type = NativeWindowType.UTILITY
 options.transparent = false;
 options.resizable = false;
 options.maximizable = false;

Setting systemChrome to standard when transparent is true or type is lightweight is not supported.

Note: You cannot set the initialization properties for a window created with the JavaScript window.open() function.

You can, however, override how these windows are created by implementing your own HTMLHost class. See “Handling

JavaScript calls to window.open()” on page 1016 for more information.

Property Default value

systemChrome standard

type normal

transparent false

owner null

maximizable true

minimizable true

resizable true

900ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

When you create a window with the Flex mx:Window class, specify the initialization properties on the window object

itself, either in the MXML declaration for the window, or in the code that creates the window. The underlying

NativeWindow object is not created until you call the open() method. Once a window is opened, these initialization

properties cannot be changed.

Creating the initial application window

Adobe AIR 1.0 and later

AIR creates the initial application window based on the properties specified in the application descriptor and loads the

file referenced in the content element. The content element must reference a SWF file or an HTML file.

The initial window can be the main window of your application or it can merely serve to launch one or more other

windows. You do not have to make it visible at all.

Creating the initial window with ActionScript

Adobe AIR 1.0 and later

When you create an AIR application using ActionScript, the main class of your application must extend the Sprite class

(or a subclass of Sprite). This class serves as the main entry point for the application.

When your application launches, AIR creates a window, creates an instance of the main class, and adds the instance to

the window stage. To access the window, you can listen for the addedToStage event and then use the nativeWindow

property of the Stage object to get a reference to the NativeWindow object.

The following example illustrates the basic skeleton for the main class of an AIR application built with ActionScript:

 package {
 import flash.display.NativeWindow;
 import flash.display.Sprite;
 import flash.events.Event;

 public class MainClass extends Sprite
 {
 private var mainWindow:NativeWindow;
 public function MainClass(){
 this.addEventListener(Event.ADDED_TO_STAGE, initialize);
 }

 private function initialize(event:Event):void{
 mainWindow = this.stage.nativeWindow;
 //perform initialization...
 mainWindow.activate(); //show the window
 }
 }
 }

Note: Technically, you CAN access the nativeWindow property in the constructor function of the main class. However,

this is a special case applying only to the initial application window.

When creating an application in Flash Professional, the main document class is created automatically if you do not

create your own in a separate ActionScript file. You can access the NativeWindow object for the initial window using

the stage nativeWindow property. For example, the following code activates the main window in the maximized state

(from the timeline):

901ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

import flash.display.NativeWindow;

 var mainWindow:NativeWindow = this.stage.nativeWindow;
 mainWindow.maximize();
 mainWindow.activate();

Creating the initial window with Flex

Adobe AIR 1.0 and later

When creating an AIR application with the Flex framework, use the mx:WindowedApplication as the root element of

your main MXML file. (You can use the mx:Application component, but it does not support all the features available

in AIR.) The WindowedApplication component serves as the initial entry point for the application.

When you launch the application, AIR creates a native window, initializes the Flex framework, and adds the

WindowedApplication object to the window stage. When the launch sequence finishes, the WindowedApplication

dispatches an applicationComplete event. Access the desktop window object with the nativeWindow property of

the WindowedApplication instance.

The following example creates a simple WindowedApplication component that sets its x and y coordinates:

 <?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 applicationComplete="placeWindow()">
 <mx:Script>
 <![CDATA[
 private function placeWindow():void{
 this.nativeWindow.x = 300;
 this.nativeWindow.y = 300;
 }
]]>
 </mx:Script>
 <mx:Label text="Hello World" horizontalCenter="0" verticalCenter="0"/>
 </mx:WindowedApplication>

Creating a NativeWindow

Adobe AIR 1.0 and later

To create a NativeWindow, pass a NativeWindowInitOptions object to the NativeWindow constructor:

 var options:NativeWindowInitOptions = new NativeWindowInitOptions();
 options.systemChrome = NativeWindowSystemChrome.STANDARD;
 options.transparent = false;
 var newWindow:NativeWindow = new NativeWindow(options);

The window is not shown until you set the visible property to true or call the activate() method.

Once the window is created, you can initialize its properties and load content into the window using the stage property

and Flash display list techniques.

In almost all cases, you should set the stage scaleMode property of a new native window to noScale (use the

StageScaleMode.NO_SCALE constant). The Flash scale modes are designed for situations in which the application

author does not know the aspect ratio of the application display space in advance. The scale modes let the author

choose the least-bad compromise: clip the content, stretch or squash it, or pad it with empty space. Since you control

the display space in AIR (the window frame), you can size the window to the content or the content to the window

without compromise.

902ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

The scale mode for Flex and HTML windows is set to noScale automatically.

Note: To determine the maximum and minimum window sizes allowed on the current operating system, use the following

static NativeWindow properties:

 var maxOSSize:Point = NativeWindow.systemMaxSize;
 var minOSSize:Point = NativeWindow.systemMinSize;

Creating an HTML window

Adobe AIR 1.0 and later

To create an HTML window, you can either call the JavaScript Window.open() method, or you can call the AIR

HTMLLoader class createRootWindow() method.

HTML content in any security sandbox can use the standard JavaScript Window.open() method. If the content is

running outside the application sandbox, the open() method can only be called in response to user interaction, such

as a mouse click or keypress. When open() is called, a window with system chrome is created to display the content

at the specified URL. For example:

 newWindow = window.open("xmpl.html", "logWindow", "height=600, width=400, top=10, left=10");

Note: You can extend the HTMLHost class in ActionScript to customize the window created with the JavaScript

window.open() function. See “About extending the HTMLHost class” on page 1009.

Content in the application security sandbox has access to the more powerful method of creating windows,

HTMLLoader.createRootWindow(). With this method, you can specify all the creation options for a new window. For

example, the following JavaScript code creates a lightweight type window without system chrome that is 300x400

pixels in size:

 var options = new air.NativeWindowInitOptions();
 options.systemChrome = "none";
 options.type = "lightweight";

 var windowBounds = new air.Rectangle(200,250,300,400);
 newHTMLLoader = air.HTMLLoader.createRootWindow(true, options, true, windowBounds);
 newHTMLLoader.load(new air.URLRequest("xmpl.html"));

Note: If the content loaded by a new window is outside the application security sandbox, the window object does not have

the AIR properties: runtime, nativeWindow, or htmlLoader.

If you create a transparent window, then SWF content embedded in the HTML loaded into that window is not always

displayed. You must set the wmode parameter of the object or embed tag used to reference the SWF file to either opaque

or transparent. The default value of wmode is window, so, by default, SWF content is not displayed in transparent

windows. PDF content cannot be displayed in transparent windows, no matter which wmode value is set. (Prior to AIR

1.5.2, SWF content could not be displayed in transparent windows, either.)

Windows created with the createRootWindow() method remain independent from the opening window. The

parent and opener properties of the JavaScript Window object are null. The opening window can access the

Window object of the new window using the HTMLLoader reference returned by the createRootWindow() function.

In the context of the previous example, the statement newHTMLLoader.window would reference the JavaScript

Window object of the created window.

Note: The createRootWindow() function can be called from both JavaScript and ActionScript.

903ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

Creating a mx:Window

Adobe AIR 1.0 and later

To create a mx:Window, you can create an MXML file using mx:Window as the root tag, or you can call the Window

class constructor directly.

The following example creates and shows a mx:Window by calling the Window constructor:

 var newWindow:Window = new Window();
 newWindow.systemChrome = NativeWindowSystemChrome.NONE;
 newWindow.transparent = true;
 newWindow.title = "New Window";
 newWindow.width = 200;
 newWindow.height = 200;
 newWindow.open(true);

Adding content to a window

Adobe AIR 1.0 and later

How you add content to an AIR window depends on the type of window. For example, MXML and HTML let you

declaratively define the basic content of the window. You can embed resources in the application SWF files or you can

load them from separate application files. Flex, Flash, and HTML content can all be created on the fly and added to a

window dynamically.

When you load SWF content, or HTML content containing JavaScript, you must take the AIR security model into

consideration. Any content in the application security sandbox, that is, content installed with your application and

loadable with the app: URL scheme, has full privileges to access all the AIR APIs. Any content loaded from outside this

sandbox cannot access the AIR APIs. JavaScript content outside the application sandbox is not able to use the runtime,

nativeWindow, or htmlLoader properties of the JavaScript Window object.

To allow safe cross-scripting, you can use a sandbox bridge to provide a limited interface between application content

and non-application content. In HTML content, you can also map pages of your application into a non-application

sandbox to allow the code on that page to cross-script external content. See “AIR security” on page 1076.

Loading a SWF file or image

You can load Flash SWF files or images into the display list of a native window using the flash.display.Loader

class:

904ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

 package {
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.net.URLRequest;
 import flash.display.Loader;

 public class LoadedSWF extends Sprite
 {
 public function LoadedSWF(){
 var loader:Loader = new Loader();
 loader.load(new URLRequest("visual.swf"));
 loader.contentLoaderInfo.addEventListener(Event.COMPLETE,loadFlash);
 }

 private function loadFlash(event:Event):void{
 addChild(event.target.loader);
 }
 }
 }

Note: Older SWF files created using ActionScript 1 or 2 share global states such as class definitions, singletons, and global

variables if they are loaded into the same window. If such a SWF file relies on untouched global states to work correctly,

it cannot be loaded more than once into the same window, or loaded into the same window as another SWF file using

overlapping class definitions and variables. This content can be loaded into separate windows.

Loading HTML content into a NativeWindow

To load HTML content into a NativeWindow, you can either add an HTMLLoader object to the window stage and

load the HTML content into the HTMLLoader, or create a window that already contains an HTMLLoader object by

using the HTMLLoader.createRootWindow()method. The following example displays HTML content within a 300

by 500 pixel display area on the stage of a native window:

 //newWindow is a NativeWindow instance
 var htmlView:HTMLLoader = new HTMLLoader();
 htmlView.width = 300;
 htmlView.height = 500;

 //set the stage so display objects are added to the top-left and not scaled
 newWindow.stage.align = "TL";
 newWindow.stage.scaleMode = "noScale";
 newWindow.stage.addChild(htmlView);

 //urlString is the URL of the HTML page to load
 htmlView.load(new URLRequest(urlString));

To load an HTML page into a Flex application, you can use the Flex HTML component.

SWF content in an HTML file is not displayed if the window uses transparency (that is the transparent property of

the window is true) unless the wmode parameter of the object or embed tag used to reference the SWF file is set to

either opaque or transparent. Since the default wmode value is window, by default, SWF content is not displayed in

a transparent window. PDF content is not displayed in a transparent window no matter what wmode value is used.

Also, neither SWF nor PDF content is displayed if the HTMLLoader control is scaled, rotated, or if the HTMLLoader

alpha property is set to a value other than 1.0.

905ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

Adding SWF content as an overlay on an HTML window

Because HTML windows are contained within a NativeWindow instance, you can add Flash display objects both above

and below the HTML layer in the display list.

To add a display object above the HTML layer, use the addChild() method of the window.nativeWindow.stage

property. The addChild() method adds content layered above any existing content in the window.

To add a display object below the HTML layer, use the addChildAt() method of the window.nativeWindow.stage

property, passing in a value of zero for the index parameter. Placing an object at the zero index moves existing content,

including the HTML display, up one layer and insert the new content at the bottom. For content layered underneath

the HTML page to be visible, you must set the paintsDefaultBackground property of the HTMLlLoader object to

false. In addition, any elements of the page that set a background color, will not be transparent. If, for example, you

set a background color for the body element of the page, none of the page will be transparent.

The following example illustrates how to add a Flash display objects as overlays and underlays to an HTML page. The

example creates two simple shape objects, adds one below the HTML content and one above. The example also updates

the shape position based on the enterFrame event.

 <html>
 <head>
 <title>Bouncers</title>
 <script src="AIRAliases.js" type="text/javascript"></script>
 <script language="JavaScript" type="text/javascript">
 air.Shape = window.runtime.flash.display.Shape;

 function Bouncer(radius, color){
 this.radius = radius;
 this.color = color;

 //velocity
 this.vX = -1.3;
 this.vY = -1;

 //Create a Shape object and draw a circle with its graphics property
 this.shape = new air.Shape();
 this.shape.graphics.lineStyle(1,0);
 this.shape.graphics.beginFill(this.color,.9);
 this.shape.graphics.drawCircle(0,0,this.radius);
 this.shape.graphics.endFill();

 //Set the starting position
 this.shape.x = 100;
 this.shape.y = 100;

 //Moves the sprite by adding (vX,vY) to the current position
 this.update = function(){
 this.shape.x += this.vX;
 this.shape.y += this.vY;

 //Keep the sprite within the window
 if(this.shape.x - this.radius < 0){
 this.vX = -this.vX;
 }
 if(this.shape.y - this.radius < 0){
 this.vY = -this.vY;

906ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

 }
 if(this.shape.x + this.radius > window.nativeWindow.stage.stageWidth){
 this.vX = -this.vX;
 }
 if(this.shape.y + this.radius > window.nativeWindow.stage.stageHeight){
 this.vY = -this.vY;
 }

 };
 }

 function init(){
 //turn off the default HTML background
 window.htmlLoader.paintsDefaultBackground = false;
 var bottom = new Bouncer(60,0xff2233);
 var top = new Bouncer(30,0x2441ff);

 //listen for the enterFrame event
 window.htmlLoader.addEventListener("enterFrame",function(evt){
 bottom.update();
 top.update();
 });

 //add the bouncing shapes to the window stage
 window.nativeWindow.stage.addChildAt(bottom.shape,0);
 window.nativeWindow.stage.addChild(top.shape);
 }
 </script>
 <body onload="init();">
 <h1>de Finibus Bonorum et Malorum</h1>
 <p>Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium
doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis
et quasi architecto beatae vitae dicta sunt explicabo.</p>
 <p style="background-color:#FFFF00; color:#660000;">This paragraph has a background color.</p>
 <p>At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis
praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias
excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui
officia deserunt mollitia animi, id est laborum et dolorum fuga.</p>
 </body>
 </html>

This example provides a rudimentary introduction to some advanced techniques that cross over the boundaries

between JavaScript and ActionScript in AIR. If your are unfamiliar with using ActionScript display objects, refer to

“Display programming” on page 151 in the ActionScript 3.0 Developer’s Guide.

Example: Creating a native window

Adobe AIR 1.0 and later

The following example illustrates how to create a native window:

907ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

 public function createNativeWindow():void {
 //create the init options
 var options:NativeWindowInitOptions = new NativeWindowInitOptions();
 options.transparent = false;
 options.systemChrome = NativeWindowSystemChrome.STANDARD;
 options.type = NativeWindowType.NORMAL;

 //create the window
 var newWindow:NativeWindow = new NativeWindow(options);
 newWindow.title = "A title";
 newWindow.width = 600;
 newWindow.height = 400;

 newWindow.stage.align = StageAlign.TOP_LEFT;
 newWindow.stage.scaleMode = StageScaleMode.NO_SCALE;

 //activate and show the new window
 newWindow.activate();
 }

Managing windows

Adobe AIR 1.0 and later

You use the properties and methods of the NativeWindow class to manage the appearance, behavior, and life cycle of

desktop windows.

Note: When using the Flex framework, it is generally better to manage window behavior using the framework classes.

Most of the NativeWindow properties and methods can be accessed through the mx:WindowedApplication and

mx:Window classes.

Getting a NativeWindow instance

Adobe AIR 1.0 and later

To manipulate a window, you must first get the window instance. You can get a window instance from one of the

following places:

• The native window constructor used to create the window:

var win:NativeWindow = new NativeWindow(initOptions);

• The nativeWindow property of the window stage:

var win:NativeWindow = stage.nativeWindow;

• The stage property of a display object in the window:

var win:NativeWindow = displayObject.stage.nativeWindow;

• The target property of a native window event dispatched by the window:

private function onNativeWindowEvent(event:NativeWindowBoundsEvent):void
{

var win:NativeWindow = event.target as NativeWindow;
}

908ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

• The nativeWindow property of an HTML page displayed in the window:

var win:NativeWindow = htmlLoader.window.nativeWindow;

• The activeWindow and openedWindows properties of the NativeApplication object:

var nativeWin:NativeWindow = NativeApplication.nativeApplication.activeWindow;
var firstWindow:NativeWindow = NativeApplication.nativeApplication.openedWindows[0];

NativeApplication.nativeApplication.activeWindow references the active window of an application (but

returns null if the active window is not a window of this AIR application). The

NativeApplication.nativeApplication.openedWindows array contains all of the windows in an AIR

application that have not been closed.

Because the Flex mx:WindowedApplication, and mx:Window objects are display objects, you can easily reference the

application window in an MXML file using the stage property, as follows:

 <?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
applicationComplete="init();">
 <mx:Script>
 <![CDATA[
 import flash.display.NativeWindow;

 public function init():void{
 var appWindow:NativeWindow = this.stage.nativeWindow;
 //set window properties
 appWindow.visible = true;
 }
]]>
 </mx:Script>
 </WindowedApplication

Note: Until the WindowedApplication or Window component is added to the window stage by the Flex framework, the

component's stage property is null. This behavior is consistent with that of the Flex Application component, but does

mean that it is not possible to access the stage or the NativeWindow instance in listeners for events that occur earlier in

the initialization cycle of the WindowedApplication and Window components, such as creationComplete. It is safe to

access the stage and NativeWindow instance when the applicationComplete event is dispatched.

Activating, showing, and hiding windows

Adobe AIR 1.0 and later

To activate a window, call the NativeWindow activate() method. Activating a window brings the window to the

front, gives it keyboard and mouse focus, and, if necessary, makes it visible by restoring the window or setting the

visible property to true. Activating a window does not change the ordering of other windows in the application.

Calling the activate() method causes the window to dispatch an activate event.

To show a hidden window without activating it, set the visible property to true. This brings the window to the front,

but will not assign the focus to the window.

To hide a window from view, set its visible property to false. Hiding a window suppresses the display of both the

window, any related taskbar icons, and, on Mac OS X, the entry in the Windows menu.

When you change the visibility of a window, the visibility of any windows that window owns is also changed. For

example, if you hide a window, all of its owned windows are also hidden.

909ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

Note: On Mac OS X, it is not possible to completely hide a minimized window that has an icon in the window portion of

the dock. If the visible property is set to false on a minimized window, the dock icon for the window is still displayed.

If the user clicks the icon, the window is restored to a visible state and displayed.

Changing the window display order

Adobe AIR 1.0 and later

AIR provides several methods for directly changing the display order of windows. You can move a window to the front

of the display order or to the back; you can move a window above another window or behind it. At the same time, the

user can reorder windows by activating them.

You can keep a window in front of other windows by setting its alwaysInFront property to true. If more than one

window has this setting, then the display order of these windows is sorted among each other, but they are always sorted

above windows which have alwaysInFront set to false.

Windows in the top-most group are also displayed above windows in other applications, even when the AIR

application is not active. Because this behavior can be disruptive to a user, setting alwaysInFront to true should only

be done when necessary and appropriate. Examples of justified uses include:

• Temporary pop-up windows for controls such as tool tips, pop-up lists, custom menus, or combo boxes. Because

these windows should close when they lose focus, the annoyance of blocking a user from viewing another window

can be avoided.

• Extremely urgent error messages and alerts. When an irrevocable change may occur if the user does not respond in

a timely manner, it may be justified to push an alert window to the forefront. However, most errors and alerts can

be handled in the normal window display order.

• Short-lived toast-style windows.

Note: AIR does not enforce proper use of the alwaysInFront property. However, if your application disrupts a user’s

workflow, it is likely to be consigned to that same user’s trash can.

If a window owns other windows, those windows are always ordered in front of it. If you call orderToFront() or set

alwaysInFront to true on a window that owns other windows, then the owned windows are re-ordered along with

the owner window in front of other windows, but the owned windows still display in front of the owner.

Calling the window ordering methods on owned windows works normally among windows owned by the same

window, but can also change the ordering of the entire group of owned windows compared to windows outside that

group. For example, if you call orderToFront() on an owned window, then both that window, its owner, and any

other windows owned by the same owner are moved to the front of the window display order.

The NativeWindow class provides the following properties and methods for setting the display order of a window

relative to other windows:

Member Description

alwaysInFront property Specifies whether the window is displayed in the top-most group of windows.

In almost all cases, false is the best setting. Changing the value from false to true brings the window

to the front of all windows (but does not activate it). Changing the value from true to false orders the

window behind windows remaining in the top-most group, but still in front of other windows. Setting the

property to its current value for a window does not change the window display order.

The alwaysInFront setting has no affect on windows owned by another window.

orderToFront() Brings the window to the front.

orderInFrontOf() Brings the window directly in front of a particular window.

910ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

Note: If a window is hidden (visible is false) or minimized, then calling the display order methods has no effect.

On the Linux operating system, different window managers enforce different rules regarding the window display

order:

• On some window managers, utility windows are always displayed in front of normal windows.

• On some window managers, a full screen window with alwaysInFront set to true is always displayed in front of

other windows that also have alwaysInFront set to true.

Closing a window

Adobe AIR 1.0 and later

To close a window, use the NativeWindow.close() method.

Closing a window unloads the contents of the window, but if other objects have references to this content, the content

objects will not be destroyed. The NativeWindow.close() method executes asynchronously, the application that is

contained in the window continues to run during the closing process. The close method dispatches a close event when

the close operation is complete. The NativeWindow object is still technically valid, but accessing most properties and

methods on a closed window generates an IllegalOperationError. You cannot reopen a closed window. Check the

closed property of a window to test whether a window has been closed. To simply hide a window from view, set the

NativeWindow.visible property to false.

If the Nativeapplication.autoExit property is true, which is the default, then the application exits when its last

window closes.

Any windows that have an owner are closed when the owner is closed. The owned windows do not dispatch a closing

event and hence cannot prevent closure. A close event is dispatched.

Allowing cancellation of window operations

Adobe AIR 1.0 and later

When a window uses system chrome, user interaction with the window can be canceled by listening for, and canceling

the default behavior of the appropriate events. For example, when a user clicks the system chrome close button, the

closing event is dispatched. If any registered listener calls the preventDefault() method of the event, then the

window does not close.

When a window does not use system chrome, notification events for intended changes are not automatically

dispatched before the change is made. Hence, if you call the methods for closing a window, changing the window state,

or set any of the window bounds properties, the change cannot be canceled. To notify components in your application

before a window change is made, your application logic can dispatch the relevant notification event using the

dispatchEvent() method of the window.

For example, the following logic implements a cancelable event handler for a window close button:

orderToBack() Sends the window behind other windows.

orderBehind() Sends the window directly behind a particular window.

activate() Brings the window to the front (along with making the window visible and assigning focus).

Member Description

911ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

 public function onCloseCommand(event:MouseEvent):void{
 var closingEvent:Event = new Event(Event.CLOSING,true,true);
 dispatchEvent(closing);
 if(!closingEvent.isDefaultPrevented()){
 win.close();
 }
 }

The dispatchEvent() method returns false if the event preventDefault() method is called by a listener.

However, it can also return false for other reasons, so it is better to explicitly use the isDefaultPrevented()

method to test whether the change should be canceled.

Maximizing, minimizing, and restoring a window

Adobe AIR 1.0 and later

To maximize the window, use the NativeWindow maximize() method.

 myWindow.maximize();

To minimize the window, use the NativeWindow minimize() method.

 myWindow.minimize();

To restore the window (that is, return it to the size that it was before it was either minimized or maximized), use the

NativeWindow restore() method.

 myWindow.restore();

A window that has an owner is minimized and restored when the owning window is minimized or restored. No events

are dispatched by the owned window when it is minimized because its owner is minimized.

Note: The behavior that results from maximizing an AIR window is different from the Mac OS X standard behavior.

Rather than toggling between an application-defined “standard” size and the last size set by the user, AIR windows toggle

between the size last set by the application or user and the full usable area of the screen.

On the Linux operating system, different window managers enforce different rules regarding setting the window

display state:

• On some window managers, utility windows cannot be maximized.

• If a maximum size is set for the window, then some windows do not allow a window to be maximized. Some other

window managers set the display state to maximized, but do not resize the window. In either of these cases, no

display state change event is dispatched.

• Some window managers do not honor the window maximizable or minimizable settings.

Note: On Linux, window properties are changed asynchronously. If you change the display state in one line of your

program, and read the value in the next, the value read will still reflect the old setting. On all platforms, the

NativeWindow object dispatches the displayStateChange event when the display state changes. If you need to take

some action based on the new state of the window, always do so in a displayStateChange event handler. See “Listening

for window events” on page 916.

912ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

Example: Minimizing, maximizing, restoring and closing a window

Adobe AIR 1.0 and later

The following short MXML application demonstrates the Window maximize(), minimize(), restore(), and

close() methods:

 <?xml version="1.0" encoding="utf-8"?>

 <mx:WindowedApplication
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical">

 <mx:Script>
 <![CDATA[
 public function minimizeWindow():void
 {
 this.stage.nativeWindow.minimize();
 }

 public function maximizeWindow():void
 {
 this.stage.nativeWindow.maximize();
 }

 public function restoreWindow():void
 {
 this.stage.nativeWindow.restore();
 }

 public function closeWindow():void
 {
 this.stage.nativeWindow.close();
 }
]]>
 </mx:Script>

 <mx:VBox>
 <mx:Button label="Minimize" click="minimizeWindow()"/>
 <mx:Button label="Restore" click="restoreWindow()"/>
 <mx:Button label="Maximize" click="maximizeWindow()"/>
 <mx:Button label="Close" click="closeWindow()"/>
 </mx:VBox>

 </mx:WindowedApplication>

The following ActionScript example for Flash creates four clickable text fields that trigger the NativeWindow

minimize(), maximize(), restore(), and close() methods:

913ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

 package
 {
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import flash.text.TextField;

 public class MinimizeExample extends Sprite
 {
 public function MinimizeExample():void
 {
 var minTextBtn:TextField = new TextField();
 minTextBtn.x = 10;
 minTextBtn.y = 10;
 minTextBtn.text = "Minimize";
 minTextBtn.background = true;
 minTextBtn.border = true;
 minTextBtn.selectable = false;
 addChild(minTextBtn);
 minTextBtn.addEventListener(MouseEvent.CLICK, onMinimize);

 var maxTextBtn:TextField = new TextField();
 maxTextBtn.x = 120;
 maxTextBtn.y = 10;
 maxTextBtn.text = "Maximize";
 maxTextBtn.background = true;
 maxTextBtn.border = true;
 maxTextBtn.selectable = false;
 addChild(maxTextBtn);
 maxTextBtn.addEventListener(MouseEvent.CLICK, onMaximize);

 var restoreTextBtn:TextField = new TextField();
 restoreTextBtn.x = 230;
 restoreTextBtn.y = 10;
 restoreTextBtn.text = "Restore";
 restoreTextBtn.background = true;
 restoreTextBtn.border = true;
 restoreTextBtn.selectable = false;
 addChild(restoreTextBtn);
 restoreTextBtn.addEventListener(MouseEvent.CLICK, onRestore);

 var closeTextBtn:TextField = new TextField();
 closeTextBtn.x = 340;
 closeTextBtn.y = 10;
 closeTextBtn.text = "Close Window";
 closeTextBtn.background = true;
 closeTextBtn.border = true;
 closeTextBtn.selectable = false;
 addChild(closeTextBtn);

914ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

 closeTextBtn.addEventListener(MouseEvent.CLICK, onCloseWindow);
 }
 function onMinimize(event:MouseEvent):void
 {
 this.stage.nativeWindow.minimize();
 }
 function onMaximize(event:MouseEvent):void
 {
 this.stage.nativeWindow.maximize();
 }
 function onRestore(event:MouseEvent):void
 {
 this.stage.nativeWindow.restore();
 }
 function onCloseWindow(event:MouseEvent):void
 {
 this.stage.nativeWindow.close();
 }
 }
 }

Resizing and moving a window

Adobe AIR 1.0 and later

When a window uses system chrome, the chrome provides drag controls for resizing the window and moving around

the desktop. If a window does not use system chrome you must add your own controls to allow the user to resize and

move the window.

Note: To resize or move a window, you must first obtain a reference to the NativeWindow instance. For information

about how to obtain a window reference, see “Getting a NativeWindow instance” on page 907.

Resizing a window

To allow a user to resize a window interactively, use the NativeWindow startResize() method. When this method

is called from a mouseDown event, the resizing operation is driven by the mouse and completes when the operating

system receives a mouseUp event. When calling startResize(), you pass in an argument that specifies the edge or

corner from which to resize the window.

To set the window size programmatically, set the width, height, or bounds properties of the window to the desired

dimensions. When you set the bounds, the window size and position can all be changed at the same time. However,

the order that the changes occur is not guaranteed. Some Linux window managers do not allow windows to extend

outside the bounds of the desktop screen. In these cases, the final window size may be limited because of the order in

which the properties are set, even though the net affect of the changes would otherwise have resulted in a legal window.

For example, if you change both the height and y position of a window near the bottom of the screen, then the full

height change might not occur when the height change is applied before the y position change.

Note: On Linux, window properties are changed asynchronously. If you resize a window in one line of your program, and

read the dimensions in the next, they will still reflect the old settings. On all platforms, the NativeWindow object

dispatches the resize event when the window resizes. If you need to take some action, such as laying out controls in the

window, based on the new size or state of the window, always do so in a resize event handler. See “Listening for window

events” on page 916.

915ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

The scale mode of the stage determines how the window stage and its contents behaves when a window is resized. Keep

in mind that the stage scale modes are designed for situations, such as a web browser, where the application is not in

control of the size or aspect ratio of its display space. In general, you get the best results by setting the stage scaleMode

property to StageScaleMode.NO_SCALE. If you want the contents of the window to scale, you can still set the scaleX

and scaleY parameters of the content in response to the window bounds changes.

Moving a window

To move a window without resizing it, use the NativeWindow startMove() method. Like the startResize()

method, when the startMove() method is called from a mouseDown event, the move process is mouse-driven and

completes when the operating system receives a mouseUp event.

For more information about the startResize() and startMove() methods, see the ActionScript 3.0 Reference for

the Adobe Flash Platform.

To move a window programmatically, set the x, y, or bounds properties of the window to the desired position. When

you set the bounds, the window size and position can both be changed at the same time.

Note: On Linux, window properties are changed asynchronously. If you move a window in one line of your program, and

read the position in the next, the value read will still reflect the old setting. On all platforms, the NativeWindow object

dispatches the move event when the position changes. If you need to take some action based on the new position of the

window, always do so in a move event handler. See “Listening for window events” on page 916.

Example: Resizing and moving windows

Adobe AIR 1.0 and later

The following example shows how to initiate resizing and moving operations on a window:

 package
 {
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import flash.display.NativeWindowResize;

 public class NativeWindowResizeExample extends Sprite
 {
 public function NativeWindowResizeExample():void
 {
 // Fills a background area.
 this.graphics.beginFill(0xFFFFFF);
 this.graphics.drawRect(0, 0, 400, 300);
 this.graphics.endFill();

 // Creates a square area where a mouse down will start the resize.
 var resizeHandle:Sprite =
 createSprite(0xCCCCCC, 20, this.width - 20, this.height - 20);
 resizeHandle.addEventListener(MouseEvent.MOUSE_DOWN, onStartResize);

 // Creates a square area where a mouse down will start the move.
 var moveHandle:Sprite = createSprite(0xCCCCCC, 20, this.width - 20, 0);
 moveHandle.addEventListener(MouseEvent.MOUSE_DOWN, onStartMove);
 }

 public function createSprite(color:int, size:int, x:int, y:int):Sprite
 {

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

916ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

 var s:Sprite = new Sprite();
 s.graphics.beginFill(color);
 s.graphics.drawRect(0, 0, size, size);
 s.graphics.endFill();
 s.x = x;
 s.y = y;
 this.addChild(s);
 return s;
 }

 public function onStartResize(event:MouseEvent):void
 {
 this.stage.nativeWindow.startResize(NativeWindowResize.BOTTOM_RIGHT);
 }

 public function onStartMove(event:MouseEvent):void
 {
 this.stage.nativeWindow.startMove();
 }
 }
 }

Listening for window events

Adobe AIR 1.0 and later

To listen for the events dispatched by a window, register a listener with the window instance. For example, to listen for

the closing event, register a listener with the window as follows:

 myWindow.addEventListener(Event.CLOSING, onClosingEvent);

When an event is dispatched, the target property references the window sending the event.

Most window events have two related messages. The first message signals that a window change is imminent (and can

be canceled), while the second message signals that the change has occurred. For example, when a user clicks the close

button of a window, the closing event message is dispatched. If no listeners cancel the event, the window closes and

the close event is dispatched to any listeners.

Typically, the warning events, such as closing, are only dispatched when system chrome has been used to trigger an

event. Calling the window close() method, for example, does not automatically dispatch the closing event—only

the close event is dispatched. You can, however, construct a closing event object and dispatch it using the window

dispatchEvent() method.

The window events that dispatch an Event object are:

Event Description

activate Dispatched when the window receives focus.

deactivate Dispatched when the window loses focus

closing Dispatched when the window is about to close. This only occurs automatically when the system chrome close

button is pressed or, on Mac OS X, when the Quit command is invoked.

close Dispatched when the window has closed.

917ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

The window events that dispatch an NativeWindowBoundsEvent object are:

For NativeWindowBoundsEvent events, you can use the beforeBounds and afterBounds properties to determine

the window bounds before and after the impending or completed change.

The window events that dispatch an NativeWindowDisplayStateEvent object are:

For NativeWindowDisplayStateEvent events, you can use the beforeDisplayState and afterDisplayState

properties to determine the window display state before and after the impending or completed change.

On some Linux window managers, a display state change event is not dispatched when a window with a maximum

size setting is maximized. (The window is set to the maximized display state, but is not resized.)

Displaying full-screen windows

Adobe AIR 1.0 and later

Setting the displayState property of the Stage to StageDisplayState.FULL_SCREEN_INTERACTIVE places the

window in full-screen mode, and keyboard input is permitted in this mode. (In SWF content running in a browser,

keyboard input is not permitted). To exit full-screen mode, the user presses the Escape key.

Note: Some Linux window managers will not change the window dimensions to fill the screen if a maximum size is set

for the window (but do remove the window system chrome).

For example, the following Flex code defines a simple AIR application that sets up a simple full-screen terminal:

Event Description

moving Dispatched immediately before the top-left corner of the window changes position, either as a result of moving,

resizing or changing the window display state.

move Dispatched after the top-left corner has changed position.

resizing Dispatched immediately before the window width or height changes either as a result of resizing or a display

state change.

resize Dispatched after the window has changed size.

Event Description

displayStateChanging Dispatched immediately before the window display state changes.

displayStateChange Dispatched after the window display state has changed.

918ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

 <?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical"
 applicationComplete="init()" backgroundColor="0x003030" focusRect="false">
 <mx:Script>
 <![CDATA[
 private function init():void
 {
 stage.displayState = StageDisplayState.FULL_SCREEN_INTERACTIVE;
 focusManager.setFocus(terminal);
 terminal.text = "Welcome to the dumb terminal app. Press the ESC key to
exit..\n";
 terminal.selectionBeginIndex = terminal.text.length;
 terminal.selectionEndIndex = terminal.text.length;
 }
]]>
 </mx:Script>
 <mx:TextArea
 id="terminal"
 height="100%" width="100%"
 scroll="false"
 backgroundColor="0x003030"
 color="0xCCFF00"
 fontFamily="Lucida Console"
 fontSize="44"/>
 </mx:WindowedApplication>

The following ActionScript example for Flash simulates a simple full-screen text terminal:

919ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Working with AIR native windows

Last updated 10/9/2017

 import flash.display.Sprite;
 import flash.display.StageDisplayState;
 import flash.text.TextField;
 import flash.text.TextFormat;

 public class FullScreenTerminalExample extends Sprite
 {
 public function FullScreenTerminalExample():void
 {
 var terminal:TextField = new TextField();
 terminal.multiline = true;
 terminal.wordWrap = true;
 terminal.selectable = true;
 terminal.background = true;
 terminal.backgroundColor = 0x00333333;

 this.stage.displayState = StageDisplayState.FULL_SCREEN_INTERACTIVE;

 addChild(terminal);
 terminal.width = 550;
 terminal.height = 400;

 terminal.text = "Welcome to the dumb terminal application. Press the ESC key to
exit.\n_";

 var tf:TextFormat = new TextFormat();
 tf.font = "Courier New";
 tf.color = 0x00CCFF00;
 tf.size = 12;
 terminal.setTextFormat(tf);

 terminal.setSelection(terminal.text.length - 1, terminal.text.length);
 }
 }

920

Last updated 10/9/2017

Chapter 53: Display screens in AIR

Adobe AIR 1.0 and later

Use the Adobe® AIR® Screen class to access information about the display screens attached to a computer or device.

More Help topics

flash.display.Screen

Basics of display screens in AIR

Adobe AIR 1.0 and later

• Measuring the virtual desktop (Flex)

• Measuring the virtual desktop (Flash)

The screen API contains a single class, Screen, which provides static members for getting system screen information,

and instance members for describing a particular screen.

A computer system can have several monitors or displays attached, which can correspond to several desktop screens

arranged in a virtual space. The AIR Screen class provides information about the screens, their relative arrangement,

and their usable space. If more than one monitor maps to the same screen, only one screen exists. If the size of a screen

is larger than the display area of the monitor, there is no way to determine which portion of the screen is currently

visible.

A screen represents an independent desktop display area. Screens are described as rectangles within the virtual

desktop. The upper-left corner of screen designated as the primary display is the origin of the virtual desktop

coordinate system. All values used to describe a screen are provided in pixels.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Screen.html
http://www.adobe.com/go/learn_air_qs_virtualdesktop_en
http://www.adobe.com/go/learn_air_qs_virtualdesktop_flash_en

921ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display screens in AIR

Last updated 10/9/2017

In this screen arrangement, two screens exist on the virtual desktop. The coordinates of the upper-left corner of the main screen (#1) are always
(0,0). If the screen arrangement is changed to designate screen #2 as the main screen, then the coordinates of screen #1 become negative.
Menubars, taskbars, and docks are excluded when reporting the usable bounds for a screen.

For detailed information about the screen API class, methods, properties, and events, see the ActionScript 3.0

Reference for the Adobe Flash Platform.

Enumerating the screens

Adobe AIR 1.0 and later

You can enumerate the screens of the virtual desktop with the following screen methods and properties:

Do not save the values returned by the Screen class methods and properties. The user or operating system can change

the available screens and their arrangement at any time.

The following example uses the screen API to move a window between multiple screens in response to pressing the

arrow keys. To move the window to the next screen, the example gets the screens array and sorts it either vertically

or horizontally (depending on the arrow key pressed). The code then walks through the sorted array, comparing each

screen to the coordinates of the current screen. To identify the current screen of the window, the example calls

Screen.getScreensForRectangle(), passing in the window bounds.

Method or Property Description

Screen.screens Provides an array of Screen objects describing the available screens. The order of the array is not

significant.

Screen.mainScreen Provides a Screen object for the main screen. On Mac OS X, the main screen is the screen displaying the

menu bar. On Windows, the main screen is the system-designated primary screen.

Screen.getScreensForRectangle() Provides an array of Screen objects describing the screens intersected by the given rectangle. The

rectangle passed to this method is in pixel coordinates on the virtual desktop. If no screens intersect the

rectangle, then the array is empty. You can use this method to find out on which screens a window is

displayed.

Screen bounds

Virtual screen

Usable bounds

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Screen.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Screen.html

922ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display screens in AIR

Last updated 10/9/2017

 package {
 import flash.display.Sprite;
 import flash.display.Screen;
 import flash.events.KeyboardEvent;
 import flash.ui.Keyboard;
 import flash.display.StageAlign;
 import flash.display.StageScaleMode;

 public class ScreenExample extends Sprite
 {
 public function ScreenExample()
 {
 stage.align = StageAlign.TOP_LEFT;
 stage.scaleMode = StageScaleMode.NO_SCALE;

 stage.addEventListener(KeyboardEvent.KEY_DOWN,onKey);
 }

 private function onKey(event:KeyboardEvent):void{
 if(Screen.screens.length > 1){
 switch(event.keyCode){
 case Keyboard.LEFT :
 moveLeft();
 break;
 case Keyboard.RIGHT :
 moveRight();
 break;
 case Keyboard.UP :
 moveUp();
 break;
 case Keyboard.DOWN :
 moveDown();
 break;
 }
 }
 }

 private function moveLeft():void{
 var currentScreen = getCurrentScreen();
 var left:Array = Screen.screens;
 left.sort(sortHorizontal);
 for(var i:int = 0; i < left.length - 1; i++){
 if(left[i].bounds.left < stage.nativeWindow.bounds.left){
 stage.nativeWindow.x +=
 left[i].bounds.left - currentScreen.bounds.left;
 stage.nativeWindow.y += left[i].bounds.top - currentScreen.bounds.top;
 }
 }
 }

 private function moveRight():void{
 var currentScreen:Screen = getCurrentScreen();
 var left:Array = Screen.screens;
 left.sort(sortHorizontal);
 for(var i:int = left.length - 1; i > 0; i--){
 if(left[i].bounds.left > stage.nativeWindow.bounds.left){
 stage.nativeWindow.x +=

923ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Display screens in AIR

Last updated 10/9/2017

 left[i].bounds.left - currentScreen.bounds.left;
 stage.nativeWindow.y += left[i].bounds.top - currentScreen.bounds.top;
 }
 }
 }

 private function moveUp():void{
 var currentScreen:Screen = getCurrentScreen();
 var top:Array = Screen.screens;
 top.sort(sortVertical);
 for(var i:int = 0; i < top.length - 1; i++){
 if(top[i].bounds.top < stage.nativeWindow.bounds.top){
 stage.nativeWindow.x += top[i].bounds.left - currentScreen.bounds.left;
 stage.nativeWindow.y += top[i].bounds.top - currentScreen.bounds.top;
 break;
 }
 }
 }

 private function moveDown():void{
 var currentScreen:Screen = getCurrentScreen();

 var top:Array = Screen.screens;
 top.sort(sortVertical);
 for(var i:int = top.length - 1; i > 0; i--){
 if(top[i].bounds.top > stage.nativeWindow.bounds.top){
 stage.nativeWindow.x += top[i].bounds.left - currentScreen.bounds.left;
 stage.nativeWindow.y += top[i].bounds.top - currentScreen.bounds.top;
 break;
 }
 }
 }

 private function sortHorizontal(a:Screen,b:Screen):int{
 if (a.bounds.left > b.bounds.left){
 return 1;
 } else if (a.bounds.left < b.bounds.left){
 return -1;
 } else {return 0;}
 }

 private function sortVertical(a:Screen,b:Screen):int{
 if (a.bounds.top > b.bounds.top){
 return 1;
 } else if (a.bounds.top < b.bounds.top){
 return -1;
 } else {return 0;}
 }

 private function getCurrentScreen():Screen{
 var current:Screen;
 var screens:Array = Screen.getScreensForRectangle(stage.nativeWindow.bounds);
 (screens.length > 0) ? current = screens[0] : current = Screen.mainScreen;
 return current;
 }
 }
 }

924

Last updated 10/9/2017

Chapter 54: Printing

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash runtimes (such as Adobe® Flash® Player and Adobe® AIR™) can communicate with an operating system’s printing

interface so that you can pass pages to the print spooler. Each page sent to the spooler can contain content that is

visible, dynamic, or off screen to the user, including database values and dynamic text. Additionally, the properties of

the flash.printing.PrintJob class contain values based on a user’s printer settings, so that you can format pages

appropriately.

The following content provides strategies for using the flash.printing.PrintJob class methods and properties to create

a print job, read a user’s print settings, and adjust a print job based on feedback from a Flash runtime and the user’s

operating system.

Basics of printing

Flash Player 9 and later, Adobe AIR 1.0 and later

In ActionScript 3.0, you use the PrintJob class to create snapshots of display content to convert to the ink-and-paper

representation in a printout. In some ways, setting up content for printing is the same as setting it up for on-screen

display—you position and size elements to create the desired layout. However printing has some idiosyncrasies that

make it different from screen layout. For example, printers use different resolution than computer monitors; the

contents of a computer screen are dynamic and can change, while printed content is inherently static; and in planning

printing, consider the constraints of fixed page size and the possibility of multipage printing.

Even though these differences seem obvious, it’s important to keep them in mind when setting up printing with

ActionScript. Accurate printing depends on a combination of the values specified by you and the characteristics of the

user’s printer. The PrintJob class includes properties that allow you to determine the important characteristics of the

user’s printer.

Important concepts and terms

The following reference list contains important terms related to printing:

Spooler A portion of the operating system or printer driver software that tracks the pages as they are waiting to be

printed and sends them to the printer when it is available.

Page orientation The rotation of the printed content in relation to the paper—either horizontal (landscape) or vertical

(portrait).

Print job The page or set of pages that make up a single printout.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/printing/PrintJob.html

925ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Printing

Last updated 10/9/2017

Printing a page

Flash Player 9 and later, Adobe AIR 1.0 and later

You use an instance of the PrintJob class to handle printing. To print a basic page through Flash Player or AIR, you

use these four statements in sequence:

• new PrintJob(): Creates a new print job instance of the name you specify.

• PrintJob.start(): Initiates the printing process for the operating system, calling the print dialog box for the user,

and populates the read-only properties of the print job.

• PrintJob.addPage(): Contains the details about the print job contents, including the Sprite object (and any

children it contains), the size of the print area, and whether the printer prints the image as a vector or bitmap. You

can use successive calls to addPage() to print multiple sprites over several pages.

• PrintJob.send(): Sends the pages to the operating system’s printer.

So, for example, a simple print job script is (including package, import and class statements for compiling):

 package
 {
 import flash.printing.PrintJob;
 import flash.display.Sprite;

 public class BasicPrintExample extends Sprite
 {
 var myPrintJob:PrintJob = new PrintJob();
 var mySprite:Sprite = new Sprite();

 public function BasicPrintExample()
 {
 myPrintJob.start();
 myPrintJob.addPage(mySprite);
 myPrintJob.send();
 }
 }
 }

Note: This example is intended to show the basic elements of a print job script, and does not contain any error handling.

To build a script that responds properly to a user canceling a print job, see “Working with exceptions and returns” on

page 926.

To clear a PrintJob object’s properties for any reason, set the PrintJob variable to null (as in myPrintJob = null).

926ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Printing

Last updated 10/9/2017

Flash runtime tasks and system printing

Flash Player 9 and later, Adobe AIR 1.0 and later

Because Flash runtimes dispatch pages to the operating system’s printing interface, be aware of the tasks managed by

Flash runtimes and the tasks managed by an operating system’s own printing interface. Flash runtimes can initiate a

print job, read some of a printer’s page settings, pass the content for a print job to the operating system, and verify if

the user or system has canceled a print job. Other processes, such as displaying printer specific dialog boxes, canceling

a spooled print job, or reporting on the printer’s status, are all handled by the operating system. Flash runtimes are able

to respond if there is a problem initiating or formatting a print job, but can report back only on certain properties or

conditions from the operating system’s printing interface. As a developer, your code needs to respond to these

properties or conditions.

Working with exceptions and returns

Flash Player 9 and later, Adobe AIR 1.0 and later

Check to see if the PrintJob.start() method returns true before executing addPage() and send() calls, in case

the user has canceled the print job. A simple way to check whether these methods have been canceled before

continuing is to wrap them in an if statement, as follows:

 if (myPrintJob.start())
 {
 // addPage() and send() statements here
 }

If PrintJob.start() is true, the user selected Print (or a Flash runtime, such as Flash Player or AIR, has initiated a

Print command). So, the addPage() and send() methods can be called.

Also, to help manage the printing process, Flash runtimes throw exceptions for the PrintJob.addPage() method, so

that you can catch errors and provide information and options to the user. If a PrintJob.addPage() method fails,

you can also call another function or stop the current print job. You catch these exceptions by embedding addPage()

calls within a try..catch statement, as in the following example. In the example, [params] is a placeholder for the

parameters specifying the actual content you want to print:

 if (myPrintJob.start())
 {
 try
 {
 myPrintJob.addPage([params]);
 }
 catch (error:Error)
 {
 // Handle error,
 }
 myPrintJob.send();
 }

After the print job starts, you can add the content using PrintJob.addPage() and see if that generates an exception

(for example, if the user has canceled the print job). If it does, you can add logic to the catch statement to provide the

user (or the Flash runtime) with information and options, or you can stop the current print job. If you add the page

successfully, you can proceed to send the pages to the printer using PrintJob.send().

927ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Printing

Last updated 10/9/2017

If the Flash runtime encounters a problem sending the print job to the printer (for example, if the printer is offline),

you can catch that exception, too, and provide more information or more options (such as displaying message text or

providing an alert within an animation). For example, you can assign new text to a text field in an if..else statement,

as the following code shows:

 if (myPrintJob.start())
 {
 try
 {
 myPrintJob.addPage([params]);
 }
 catch (error:Error)
 {
 // Handle error.
 }
 myPrintJob.send();
 }
 else
 {
 myAlert.text = "Print job canceled";
 }

For a working example, see “Printing example: Scaling, cropping, and responding” on page 934.

Working with page properties

Flash Player 9 and later, Adobe AIR 1.0 and later

Once the user clicks OK in the Print dialog box and PrintJob.start() returns true, you can access the properties

defined by the printer’s settings. These settings include the paper width, paper height (pageHeight and pageWidth),

and content orientation on the paper. Because these are printer settings, not controlled by the Flash runtime, you

cannot alter these settings; however, you can use them to align the content you send to the printer to match the current

settings. For more information, see “Setting size, scale, and orientation” on page 928.

Setting vector or bitmap rendering

Flash Player 9 and later, Adobe AIR 1.0 and later

You can manually set the print job to spool each page as vector graphics or a bitmap image. In some cases, vector

printing produces a smaller spool file, and a better image than bitmap printing. However, if your content includes a

bitmap image, and you want to preserve any alpha transparency or color effects, print the page as a bitmap image. Also,

a non-PostScript printer automatically converts any vector graphics to bitmap images.

You specify bitmap printing by passing a PrintJobOptions object as the third parameter of PrintJob.addPage().

For Flash Player and AIR prior to AIR 2, set the PrintJobOptions object’s printAsBitmap parameter set to true, as

follows:

 var options:PrintJobOptions = new PrintJobOptions();
 options.printAsBitmap = true;
 myPrintJob.addPage(mySprite, null, options);

If you don’t specify a value for the third parameter, the print job uses the default, which is vector printing.

928ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Printing

Last updated 10/9/2017

For AIR 2 and later, use the PrintJobOptions object’s printMethod property to specify the print method. This

property accepts three values, which are defined as constants in the PrintMethod class:

• PrintMethod.AUTO: Automatically chooses the best print method based on the content being printed. For

example, if a page consists of text, the vector print method is chosen. However, if a watermark image with alpha

transparency is overlaid on the text, bitmap printing is chosen to preserve the transparency.

• PrintMethod.BITMAP: Forces bitmap printing regardless of the content

• PrintMethod.VECTOR: Forces vector printing regardless of the content

Timing print job statements

Flash Player 9 and later, Adobe AIR 1.0 and later

ActionScript 3.0 does not restrict a PrintJob object to a single frame (as did previous versions of ActionScript).

However, because the operating system displays print status information to the user once the user has clicked the OK

button in the Print dialog box, call PrintJob.addPage() and PrintJob.send() as soon as possible to send pages to

the spooler. A delay reaching the frame containing the PrintJob.send() call delays the printing process.

In ActionScript 3.0, there is a script time-out limit of 15 seconds. Therefore, the time between each major statement

in a print job sequence cannot exceed 15 seconds. In other words, the 15-second script time-out limit applies to the

following intervals:

• Between PrintJob.start() and the first PrintJob.addPage()

• Between PrintJob.addPage() and the next PrintJob.addPage()

• Between the last PrintJob.addPage() and PrintJob.send()

If any of these intervals spans more than 15 seconds, the next call to PrintJob.start() on the PrintJob instance

returns false, and the next PrintJob.addPage() on the PrintJob instance causes Flash Player or AIR to throw a run-

time exception.

Setting size, scale, and orientation

Flash Player 9 and later, Adobe AIR 1.0 and later

The section “Printing a page” on page 925 details the steps for a basic print job, where the output directly reflects the

printed equivalent of the screen size and position of the specified sprite. However, printers use different resolutions

for printing, and can have settings that adversely affect the appearance of the printed sprite.

Flash runtimes can read an operating system’s printing settings, but note that these properties are read-only: although

you can respond to their values, you can’t set them. So, for example, you can find out the printer’s page size setting and

adjust your content to fit the size. You can also determine a printer’s margin settings and page orientation. To respond

to the printer settings, specify a print area, adjust for the difference between a screen’s resolution and a printer’s point

measurements, or transform your content to meet the size or orientation settings of the user’s printer.

929ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Printing

Last updated 10/9/2017

Using rectangles for the print area

Flash Player 9 and later, Adobe AIR 1.0 and later

The PrintJob.addPage() method allows you to specify the region of a sprite that you want printed. The second

parameter, printArea, is in the form of a Rectangle object. You have three options for providing a value for this

parameter:

• Create a Rectangle object with specific properties and then use that rectangle in the addPage() call, as in the

following example:

 private var rect1:Rectangle = new Rectangle(0, 0, 400, 200);
 myPrintJob.addPage(sheet, rect1);

• If you haven’t already specified a Rectangle object, you can do it within the call itself, as in the following example:

 myPrintJob.addPage(sheet, new Rectangle(0, 0, 100, 100));

• If you plan to provide values for the third parameter in the addPage() call, but don’t want to specify a rectangle,

you can use null for the second parameter, as in the following;

 myPrintJob.addPage(sheet, null, options);

Comparing points and pixels

Flash Player 9 and later, Adobe AIR 1.0 and later

A rectangle's width and height are pixel values. A printer uses points as print units of measurement. Points are a fixed

physical size (1/72 inch), but the size of a pixel on the screen depends on the resolution of the particular screen. The

conversion rate between pixels and points depends on the printer settings and whether the sprite is scaled. An unscaled

sprite that is 72 pixels wide prints out one inch wide, with one point equal to one pixel, independent of screen

resolution.

You can use the following equivalencies to convert inches or centimeters to twips or points (a twip is 1/20 of a point):

• 1 point = 1/72 inch = 20 twips

• 1 inch = 72 points = 1440 twips

• 1 centimeter = 567 twips

If you omit the printArea parameter, or if it is passed incorrectly, the full area of the sprite is printed.

Scaling

Flash Player 9 and later, Adobe AIR 1.0 and later

If you want to scale a Sprite object before you print it, set the scale properties (see “Manipulating size and scaling

objects” on page 179) before calling the PrintJob.addPage() method, and set them back to their original values after

printing. The scale of a Sprite object has no relation to the printArea property. In other words, if you specify a print

area that is 50 pixels by 50 pixels, 2500 pixels are printed. If you scale the Sprite object, the same 2500 pixels are printed,

but the Sprite object is printed at the scaled size.

For an example, see “Printing example: Scaling, cropping, and responding” on page 934.

930ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Printing

Last updated 10/9/2017

Printing for landscape or portrait orientation

Flash Player 9 and later, Adobe AIR 1.0 and later

Because Flash Player and AIR can detect the settings for orientation, you can build logic into your ActionScript to

adjust the content size or rotation in response to the printer settings, as the following example illustrates:

 if (myPrintJob.orientation == PrintJobOrientation.LANDSCAPE)
 {
 mySprite.rotation = 90;
 }

Note: If you plan to read the system setting for content orientation on the paper, remember to import the

PrintJobOrientation class. The PrintJobOrientation class provides constant values that define the content orientation on

the page. You import the class using the following statement:

import flash.printing.PrintJobOrientation;

Responding to page height and width

Flash Player 9 and later, Adobe AIR 1.0 and later

Using a strategy that is similar to handling printer orientation settings, you can read the page height and width settings

and respond to them by embedding some logic into an if statement. The following code shows an example:

 if (mySprite.height > myPrintJob.pageHeight)
 {
 mySprite.scaleY = .75;
 }

In addition, a page’s margin settings can be determined by comparing the page and paper dimensions, as the following

example illustrates:

 margin_height = (myPrintJob.paperHeight - myPrintJob.pageHeight) / 2;
 margin_width = (myPrintJob.paperWidth - myPrintJob.pageWidth) / 2;

Advanced printing techniques

Adobe AIR 2 and later

Starting with Adobe AIR 2, the PrintJob class has additional properties and methods, and three additional classes are

supported: PrintUIOptions, PaperSize, and PrintMethod. These changes allow additional printer workflows and give

authors greater control over the printing process. Changes include:

• Page setup dialogs: Both standard and custom page setup dialogs can be displayed. The user can set page ranges,

paper size, orientation, and scaling before printing.

• Print view: A viewing mode can be created which accurately shows paper size, margins, and the position of content

on the page.

• Restricted printing: Authors can restrict printing options, such as the range of printable pages.

• Quality options: Authors can adjust the print quality for a document and allow the user to select resolution and

color options.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/printing/PrintJobOrientation.html

931ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Printing

Last updated 10/9/2017

• Multiple print sessions: A single PrintJob instance can now be used for multiple printing sessions. Applications can

provide consistent settings each time the page setup and print dialogs are displayed.

Print workflow changes

The new print workflow consists of the following steps:

• new PrintJob(): Creates a PrintJob instance (or reuse an existing instance). Many new PrintJob properties and

methods, such as selectPaperSize(), are available before the print job starts or during printing.

• PrintJob.showPageSetupDialog(): (optional) Display the page setup dialog without starting a print job.

• PrintJob.start() or PrintJob.start2(): In addition to the start() method, the start2() method is used to

initiate the print spooling process. The start2() method allows you to choose whether to display the Print dialog

and customize the dialog if it is shown.

• PrintJob.addPage(): Add content to the print job. Unchanged from existing process.

• PrintJob.send() or PrintJob.terminate(): Send the pages to the selected printer or terminate the print job

without sending. Print jobs are terminated in response to an error. If a PrintJob instance is terminated, it can still

be reused. Regardless of whether the print job is sent to the printer or terminated, the current print settings are

retained when you reuse the PrintJob instance.

Page setup dialog

The showPageSetupDialog()method displays the operating system’s Page Setup dialog, if the current environment

supports it. Always check the supportsPageSetupDialog property before calling this method. Here is a simple

example:

import flash.printing.PrintJob;

var myPrintJob:PrintJob = new PrintJob();
//check for static property supportsPageSetupDialog of PrintJob class
if (PrintJob.supportsPageSetupDialog) {

myPrintJob.showPageSetupDialog();
}

The method can optionally be called with a PrintUIOptions class property to control which options are displayed in

the Page Setup dialog. The min and max page numbers can be set. The following example limits printing to the first

three pages:

import flash.printing.PrintJob;

var myPrintJob:PrintJob = new PrintJob();
if (PrintJob.supportsPageSetupDialog) {

var uiOpt:PrintUIOptions = new PrintUIOptions();
uiOpt.minPage = 1;
uiOpt.maxPage = 3;
myPrintJob.showPageSetupDialog(uiOpt);

}

Changing print settings

The settings for a PrintJob instance can be changed at any time after it is constructed. This includes changing settings

between addPage()calls and after a print job has been sent or terminated. Some settings, such as the printer

property, apply to the entire print job, not individual pages. Those settings must be set before a call to start() or

start2().

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/printing/PrintUIOptions.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/printing/PrintUIOptions.html

932ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Printing

Last updated 10/9/2017

The selectPaperSize() method can be called to set the default paper size in the Page Setup and Print dialogs. It can

also be called during a print job to set the paper size for a range of pages. It is called using constants defined in the

PaperSize class, as in this example, which selects a number 10 envelope size:

import flash.printing.PrintJob;
import flash.printing.PaperSize;

var myPrintJob:PrintJob = new PrintJob();
myPrintJob.selectPaperSize(PaperSize.ENV_10);

Use the printer property to get or set the name of the printer for the current print job. By default it is set to the name

of the default printer. The printer property is null if no printers are available or the system does not support

printing. To change the printer, first get the list of available printers using the printers property. That property is a

Vector whose String elements are available printer names. Set the printer property to one of those String values to

make that printer the active one. The printer property of an active print job cannot be changed. Attempts to change

it after a successful call to start() or start2() and before the job is sent or terminated fail. Here is an example of

setting this property:

import flash.printing.PrintJob;

var myPrintJob:PrintJob = new PrintJob();
myPrintJob.printer = "HP_LaserJet_1";
myPrintJob.start();

The copies property gets the value for the number of copies set in the operating system’s Print dialog. The firstPage

and lastPage properties get the page range. The orientation property gets the paper orientation setting. These

properties can be set to override the values from the Print dialog. The following example sets these properties:

import flash.printing.PrintJob;
import flash.printing.PrintJobOrientation;

var myPrintJob:PrintJob = new PrintJob();
myPrintJob.copies = 3;
myPrintJob.firstPage = 1;
myPrintJob.lastPage = 3;
myPrintJob.orientation = PrintJobOrientation.LANDSCAPE;

The following read-only settings associated with PrintJob provide helpful information on the current printer setup:

• paperArea: The rectangular bounds of the printer medium, in points.

• printableArea: The rectangular bounds of the printable area, in points.

• maxPixelsPerInch: The physical resolution of the current printer, in pixels per inch.

• isColor: The ability of the current printer to print color (returns true if the current printer can print color).

See “Printing example: Page setup and print options” on page 936.

Printing example: Multiple-page printing

Flash Player 9 and later, Adobe AIR 1.0 and later

When printing more than one page of content, you can associate each page of content with a different sprite (in this

case, sheet1 and sheet2), and then use PrintJob.addPage() for each sprite. The following code illustrates this

technique:

933ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Printing

Last updated 10/9/2017

 package
 {
 import flash.display.MovieClip;
 import flash.printing.PrintJob;
 import flash.printing.PrintJobOrientation;
 import flash.display.Stage;
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.geom.Rectangle;

 public class PrintMultiplePages extends MovieClip
 {
 private var sheet1:Sprite;
 private var sheet2:Sprite;

 public function PrintMultiplePages():void
 {
 init();
 printPages();
 }

 private function init():void
 {
 sheet1 = new Sprite();
 createSheet(sheet1, "Once upon a time...", {x:10, y:50, width:80, height:130});
 sheet2 = new Sprite();
 createSheet(sheet2, "There was a great story to tell, and it ended quickly.\n\nThe
end.", null);
 }

 private function createSheet(sheet:Sprite, str:String, imgValue:Object):void
 {
 sheet.graphics.beginFill(0xEEEEEE);
 sheet.graphics.lineStyle(1, 0x000000);
 sheet.graphics.drawRect(0, 0, 100, 200);
 sheet.graphics.endFill();

 var txt:TextField = new TextField();
 txt.height = 200;
 txt.width = 100;
 txt.wordWrap = true;
 txt.text = str;

 if (imgValue != null)
 {
 var img:Sprite = new Sprite();
 img.graphics.beginFill(0xFFFFFF);
 img.graphics.drawRect(imgValue.x, imgValue.y, imgValue.width, imgValue.height);
 img.graphics.endFill();
 sheet.addChild(img);
 }
 sheet.addChild(txt);
 }

 private function printPages():void
 {
 var pj:PrintJob = new PrintJob();

934ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Printing

Last updated 10/9/2017

 var pagesToPrint:uint = 0;
 if (pj.start())
 {
 if (pj.orientation == PrintJobOrientation.LANDSCAPE)
 {
 throw new Error("Page is not set to an orientation of portrait.");
 }

 sheet1.height = pj.pageHeight;
 sheet1.width = pj.pageWidth;
 sheet2.height = pj.pageHeight;
 sheet2.width = pj.pageWidth;

 try
 {
 pj.addPage(sheet1);
 pagesToPrint++;
 }
 catch (error:Error)
 {
 // Respond to error.
 }

 try
 {
 pj.addPage(sheet2);
 pagesToPrint++;
 }
 catch (error:Error)
 {
 // Respond to error.
 }

 if (pagesToPrint > 0)
 {
 pj.send();
 }
 }
 }
 }
 }

Printing example: Scaling, cropping, and responding

Flash Player 9 and later, Adobe AIR 1.0 and later

In some cases, you want to adjust the size (or other properties) of a display object when printing it to accommodate

differences between the way it appears on screen and the way it appears printed on paper. When you adjust the

properties of a display object before printing (for example, by using the scaleX and scaleY properties), be aware that

if the object scales larger than the defined rectangle for the print area, the object is cropped. You will also probably

want to reset the properties after the pages have been printed.

935ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Printing

Last updated 10/9/2017

The following code scales the dimensions of the txt display object (but not the green box background), and the text

field ends up cropped by the dimensions of the specified rectangle. After printing, the text field is returned to its

original size for display on screen. If the user cancels the print job from the operating system’s Print dialog box, the

content in the Flash runtime changes to alert the user that the job has been canceled.

 package
 {
 import flash.printing.PrintJob;
 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.display.Stage;
 import flash.geom.Rectangle;

 public class PrintScaleExample extends Sprite
 {
 private var bg:Sprite;
 private var txt:TextField;

 public function PrintScaleExample():void
 {
 init();
 draw();
 printPage();
 }

 private function printPage():void
 {
 var pj:PrintJob = new PrintJob();
 txt.scaleX = 3;
 txt.scaleY = 2;
 if (pj.start())
 {
 trace(">> pj.orientation: " + pj.orientation);
 trace(">> pj.pageWidth: " + pj.pageWidth);
 trace(">> pj.pageHeight: " + pj.pageHeight);
 trace(">> pj.paperWidth: " + pj.paperWidth);
 trace(">> pj.paperHeight: " + pj.paperHeight);

 try
 {
 pj.addPage(this, new Rectangle(0, 0, 100, 100));
 }
 catch (error:Error)
 {
 // Do nothing.
 }
 pj.send();
 }
 else
 {
 txt.text = "Print job canceled";
 }
 // Reset the txt scale properties.
 txt.scaleX = 1;
 txt.scaleY = 1;
 }

936ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Printing

Last updated 10/9/2017

 private function init():void
 {
 bg = new Sprite();
 bg.graphics.beginFill(0x00FF00);
 bg.graphics.drawRect(0, 0, 100, 200);
 bg.graphics.endFill();

 txt = new TextField();
 txt.border = true;
 txt.text = "Hello World";
 }

 private function draw():void
 {
 addChild(bg);
 addChild(txt);
 txt.x = 50;
 txt.y = 50;
 }
 }
 }

Printing example: Page setup and print options

Adobe AIR 2 and later

The following example initializes the PrintJob settings for number of copies, paper size (legal), and page orientation

(landscape). It forces the Page Setup dialog to be displayed first, then starts the print job by displaying the Print dialog.

 package
 {
 import flash.printing.PrintJob;

import flash.printing.PrintJobOrientation;
import flash.printing.PaperSize;
import flash.printing.PrintUIOptions;

 import flash.display.Sprite;
 import flash.text.TextField;
 import flash.display.Stage;
 import flash.geom.Rectangle;

 public class PrintAdvancedExample extends Sprite
 {
 private var bg:Sprite = new Sprite();
 private var txt:TextField = new TextField();

private var pj:PrintJob = new PrintJob();
private var uiOpt:PrintUIOptions = new PrintUIOptions();

 public function PrintAdvancedExample():void
 {

initPrintJob();
 initContent();
 draw();
 printPage();

937ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Printing

Last updated 10/9/2017

 }

 private function printPage():void
 {

//test for dialog support as a static property of PrintJob class
if (PrintJob.supportsPageSetupDialog)
{

pj.showPageSetupDialog();
}

 if (pj.start2(uiOpt, true))
 {
 try
 {
 pj.addPage(this, new Rectangle(0, 0, 100, 100));
 }
 catch (error:Error)
 {
 // Do nothing.
 }
 pj.send();
 }
 else
 {
 txt.text = "Print job terminated";

pj.terminate();
 }
 }

 private function initContent():void
 {
 bg.graphics.beginFill(0x00FF00);
 bg.graphics.drawRect(0, 0, 100, 200);
 bg.graphics.endFill();

 txt.border = true;
 txt.text = "Hello World";
 }

private function initPrintJob():void
{

pj.selectPaperSize(PaperSize.LEGAL);
pj.orientation = PrintJobOrientation.LANDSCAPE;
pj.copies = 2;
pj.jobName = "Flash test print";

}

 private function draw():void
 {
 addChild(bg);
 addChild(txt);
 txt.x = 50;
 txt.y = 50;
 }
 }
}

938

Last updated 10/9/2017

Chapter 55: Geolocation

If a device supports geolocation, you can use the geolocation API to obtain the current geographical location of the

device. If the device supports this feature, you can obtain geolocation information. This information includes the

altitude, accuracy, heading, speed, and timestamp of the latest change in the location.

The Geolocation class dispatches update events in response to the device’s location sensor. The update event is a

GeolocationEvent object.

More Help topics

flash.sensors.Geolocation

flash.events.GeolocationEvent

Detecting geolocation changes

To use the geolocation sensor, instantiate a Geolocation object and register for update events it dispatches. The

update event is a Geolocation event object. The event has eight properties:

• altitude—The altitude in meters.

• heading—The direction of movement (with respect to true north) in degrees.

• horizontalAccuracy—The horizontal accuracy in meters.

• latitude—The latitude in degrees.

• longitude—The longitude in degrees.

• speed—The speed in meters per second.

• timestamp—The number of milliseconds at the time of the event since the runtime was initialized.

• verticalAccuracy—The vertical accuracy in meters.

The timestamp property is an int object. The others are Number objects.

Here is a basic example that displays geolocation data in a text field:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/sensors/Geolocation.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/GeolocationEvent.html

939ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Geolocation

Last updated 10/9/2017

var geo:Geolocation;
if (Geolocation.isSupported)
{

geo = new Geolocation();
geo.addEventListener(GeolocationEvent.UPDATE, updateHandler);

}
else
{

geoTextField.text = "Geolocation feature not supported";
}
function updateHandler(event:GeolocationEvent):void
{

geoTextField.text = "latitude: " + event.latitude.toString() + "\n"
+ "longitude: " + event.longitude.toString() + "\n"
+ "altitude: " + event.altitude.toString()
+ "speed: " + event.speed.toString()
+ "heading: " + event.heading.toString()
+ "horizontal accuracy: " + event.horizontalAccuracy.toString()
+ "vertical accuracy: " + event.verticalAccuracy.toString()

}

To use this example, be sure to create the geoTextField text field and add it to the display list before using this code.

You can adjust the desired time interval for geolocation events by calling the setRequestedUpdateInterval()

method of the Geolocation object. This method takes one parameter, interval, which is the requested update interval

in milliseconds:

var geo:Geolocation = new Geolocation();
geo.setRequestedUpdateInterval(10000);

The actual time between geolocation updates may be greater or lesser than this value. Any change in the update interval

affects all registered listeners. If you don’t call the setRequestedUpdateInterval() method, the application receives

updates based on the device's default interval.

The user can prevent an application from accessing geolocation data. For example, the iPhone prompts the user when

an application attempts to obtain geolocation data. In response to the prompt, the user can deny the application access

to geolocation data. The Geolocation object dispatches a status event when the user makes access to geolocation data

unavailable. Also, the Geolocation object has a muted property, which is set to true when the geolocation sensor is

unavailable. The Geolocation object dispatches a status event when the muted property changes. The following code

shows how to detect when geolocation data is unavailable:

940ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Geolocation

Last updated 10/9/2017

package
{

import flash.display.Sprite;
import flash.display.StageAlign;
import flash.display.StageScaleMode;
import flash.events.GeolocationEvent;
import flash.events.MouseEvent;
import flash.events.StatusEvent;
import flash.sensors.Geolocation;
import flash.text.TextField;
import flash.text.TextFormat;

public class GeolocationTest extends Sprite
{

private var geo:Geolocation;
private var log:TextField;

public function GeolocationTest()
{

super();
stage.align = StageAlign.TOP_LEFT;
stage.scaleMode = StageScaleMode.NO_SCALE;
setUpTextField();

if (Geolocation.isSupported)
{

geo = new Geolocation();
if (!geo.muted)
{

geo.addEventListener(GeolocationEvent.UPDATE, geoUpdateHandler);
}
geo.addEventListener(StatusEvent.STATUS, geoStatusHandler);

}
else
{

log.text = "Geolocation not supported";
}

}

public function geoUpdateHandler(event:GeolocationEvent):void
{

log.text = "latitude : " + event.latitude.toString() + "\n";
log.appendText("longitude : " + event.longitude.toString() + "\n");

}

public function geoStatusHandler(event:StatusEvent):void
{

if (geo.muted)
geo.removeEventListener(GeolocationEvent.UPDATE, geoUpdateHandler);

else
geo.addEventListener(GeolocationEvent.UPDATE, geoStatusHandler);

}

private function setUpTextField():void

941ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Geolocation

Last updated 10/9/2017

{
log = new TextField();
var format:TextFormat = new TextFormat("_sans", 24);
log.defaultTextFormat = format;
log.border = true;
log.wordWrap = true;
log.multiline = true;
log.x = 10;
log.y = 10;
log.height = stage.stageHeight - 20;
log.width = stage.stageWidth - 20;
log.addEventListener(MouseEvent.CLICK, clearLog);
addChild(log);

}
private function clearLog(event:MouseEvent):void
{

log.text = "";
}

}
}

Note: First-generation iPhones, which do not include a GPS unit, dispatch update events only occasionally. On these

devices, a Geolocation object initially dispatches one or two update events. It then dispatches update events when

information changes noticeably.

Checking geolocation support

Use the Geolocation.isSupported property to test the runtime environment for the ability to use this feature:

if (Geolocation.isSupported)
{

// Set up geolocation event listeners and code.
}

Currently, geolocation is only supported on ActionScript-based applications for the iPhone and in Flash Lite 4. If

Geolocation.isSupported is true at run time, then geolocation support exists.

Some iPhone models do not have a GPS unit. These models use other means (such as mobile phone triangulation) to

obtain geolocation data. For these models, or on any iPhone that has the GPS disabled, a Geolocation object may only

dispatch one or two initial update events.

942

Last updated 10/9/2017

Chapter 56: Internationalizing
applications

Flash Player 10.1 and later, Adobe AIR 2.0 and later

The flash.globalization package makes it easier to create international software that adapts to the conventions of

different languages and regions.

More Help topics

flash.globalization package

“Localizing applications” on page 959

Charles Bihis: Want to Localize your Flex/AIR Apps?

Basics of internationalizing applications

The terms globalization and internationalization are sometimes used interchangeably. But most definitions of these

terms say that globalization refers to a combination of business and engineering processes while internationalization

refers to engineering alone.

Here are some definitions for important terms:

Globalization A broad range of engineering and business processes needed for preparing and launching products and

company activities globally. Globalization consists of engineering activities like internationalization, localization and

culturization and business activities like product management, financial planning, marketing, and legal work.

Globalization is sometimes abbreviated as G11n (which stands for the letter G, then 11 more letters, and then the letter

n). “Globalization is what businesses do.”

Internationalization An engineering process for generalizing a product so that it can handle multiple languages,

scripts and cultural conventions (including currencies, sorting rules, number and date formats, and more) without the

need for redesign or recompilation. This process can be divided into two sets of activities: enablement and localization.

Internationalization is sometimes known as world-readiness, and sometimes abbreviated as I18n. “Internationalization

is what engineers do.”

Localization A process of adapting a product or service to a particular language, culture, and desired local appearance.

Localization is sometimes abbreviated as L10n. “Localization is what translators do.”

Culturization An engineering process for developing or adapting specific features for the unique needs of a culture.

Examples include the Japanese publishing features available in Adobe InDesign, and the Hanko support feature in

Adobe Acrobat.

Some other important internationalization terms can be defined as follows:

Character Set The characters used by a language or by a group of languages. A character set includes national

characters, special characters (such as punctuation marks and mathematical symbols), numeric digits, and computer

control characters.

Collation The sorting of text into a proper order for a given locale.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/globalization/package-detail.html
http://blogs.adobe.com/charles/2011/02/want-to-localize-your-flexair-apps-its-easy-ill-show-you-how-again.html

943ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

Locale A value that represents the language and cultural conventions used in a geographical, political, or cultural

region (which in many cases indicates a single country). A unique locale identifier (locale ID) represents this value.

The locale ID is used to look up a set of locale data that provides locale-specific support. This support applies to

measurement units, the parsing and formatting of numbers and dates, and so on.

Resource Bundle A stored set of locale-specific elements that are created for a locale in which an application is used.

A resource bundle typically contains all text elements in the application’s user interface. Within the bundle, these

elements are translated into the appropriate language for the given locale. It can also contain other settings that alter

the layout or behavior of the user interface for a specific locale. A resource bundle can contain other media types, or

references to other media types, that are locale-specific.

Overview of the flash.globalization package

Flash Player 10.1 and later, Adobe AIR 2.0 and later

The flash.globalization package harnesses the cultural support capabilities of the underlying operating system. It

makes it easier to write applications that follow the cultural conventions of individual users.

The main classes in the package include:

• The Collator class which governs the sorting and matching of strings

• The CurrencyFormatter class which formats numbers into currency amount strings, and parses currency amounts

and symbols from input strings

• The DateTimeFormatter class which formats date values

• The LocaleID class for retrieving information about a specific locale

• The NumberFormatter class which formats and parses numeric values

• The StringTools class which handles locale-sensitive case conversion of strings

The flash.globalization package and resource localization

The flash.globalization package doesn’t handle resource localization. However you can use the flash.globalization

locale ID as the key value for retrieving localized resources using other techniques. For example, you can localize

application resources built with Flex using the ResourceManager and ResourceBundle classes. For more information,

see Localizing Flex Applications.

Adobe AIR 1.1 also contains some features to help localize AIR applications, as discussed in “Localizing AIR

applications” on page 960.

A general approach to internationalizing an application

The following steps describe a high-level common approach for internationalizing an application using the

flash.globalization package:

1 Determine or set the locale.

2 Create an instance of a service class (Collator, CurrencyFormatter, DateTimeFormatter, NumberFormatter, or

StringTools).

3 Check for errors and fallbacks using lastOperationStatus properties.

4 Format and display information using locale-specific settings.

http://livedocs.adobe.com/flex/3/html/help.html?content=l10n_1.html

944ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

The next step is to load and display strings and user interface resources that are specific to the locale. This step can

include tasks such as:

• Using the autolayout features to resize the UI to accommodate the string lengths

• Choosing the right fonts and supporting font fallbacks

• Using the FTE text engine to support other writing systems

• Ensuring that input method editors are correctly handled

Checking for errors and fallbacks

The flash.globalization service classes all follow a similar pattern for identifying errors. They also share a pattern for

falling back from an unavailable requested locale to one that the user’s operating system supports.

The following example shows how to check for errors and fallbacks when instantiating service classes. Each service

class has a lastOperationStatus property that indicates whether the most recent method call triggered their errors or

warnings.

var nf:NumberFormatter = new NumberFormatter("de-DE");
if(nf.lastOperationStatus != LastOperationStatus.NO_ERROR)
{

if(nf.lastOperationStatus == LastOperationStatus.USING_FALLBACK_WARNING)
{

// perform fallback logic here, if needed
trace("Warning - Fallback locale ID: " + nf.actualLocaleIDName);

}
else
{

// perform error handling logic here, if needed
trace("Error: " + nf.lastOperationStatus);

}
}

This example simply traces a message if a fallback locale ID is used, or if there is an error. Your application can perform

additional error handling logic, if needed. For example, you could display a message to the user or force the application

to use a specific, supported locale.

Determining the locale

Flash Player 10.1 and later, Adobe AIR 2.0 and later

A locale identifies a specific combination of language and cultural conventions for a country or region.

A locale identifier can be safely managed as a string. But you can use the LocaleID class to obtain additional

information related to a locale.

You create a LocaleID object as follows:

var locale:LocaleID = new LocaleID("es-MX");

After the LocaleID object is created, you can retrieve data about the locale ID. Use the getKeysAndValues(),

getLanguage(), getRegion(), getScript(), getVariant(), and isRightToLeft() methods, and the name

property.

945ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

The values retrieved from these methods and properties can reflect additional information that cannot be extracted

directly from the locale identifier about the locale.

When an application creates a locale-aware service, such as a date formatter, it must specify the intended locale. The

list of supported locales varies from one operating system to another; hence, the requested locale can be unavailable.

Flash Player first tries to match the language code of the locale that you requested. Then it tries to refine the locale by

finding a matching writing system (script) and region. For example:

var loc:LocaleID = new LocaleID("es");
trace(loc.getLanguage()); // es
trace(loc.getScript()); // Latn
trace(loc.getRegion()); // ES

In this example, the LocaleID() constructor retrieved data about the locale that best matches the language code “es”

for that user.

Setting the locale ID

There are a number of ways to set the current locale for an application, including:

• Hard-code a single locale ID into the application. This approach is common, but it does not support

internationalization of the application.

• Use the locale ID preferences from the user’s operating system, or browser, or other user preferences. This

technique usually results in the best locale settings for the user, but it is not always accurate. There is a risk that the

operating system settings do not reflect the user’s actual preferences. For example, the user could be using a shared

computer and be unable to change the operating system’s preferred locales.

• After setting the locale ID based on the user’s preferences, let the user select from a list of supported locales. This

strategy is normally the best option if your application can support more than one locale.

You can implement this third option as follows:

1 Retrieve a list of the user’s preferred locales or languages from a user profile, browser settings, operating system

settings, or a cookie. (Your application would need to implement this logic itself. The flash.globalization library

does not support reading such preferences directly.)

2 Determine which of those locales your application supports and select the best one by default. Use the method

LocaleID.determinePreferredLocales() to find the best locales for a user based on their preferred locales and the

locales supported by the operating system.

3 Give the user a way to change the default locale setting in case the default locale is not satisfactory.

Limitations of other locale and language classes

The fl.lang.Locale class lets you replace text strings based on a locale, using resource bundles containing string

values. However this class does not support other internationalization features such as number, currency, or date

formatting, sorting and matching, and so on. In addition, this class is only available with Flash Professional.

You can also retrieve the current language code setting for the operating system using the

flash.system.Capabilities.language property. However, this property retrieves only the two-character ISO

639-1 language code—not the full locale ID—and it only supports a specific set of locales.

With AIR 1.5, you can use the flash.system.Capabilities.languages property. This property provides an array

of the user’s preferred user interface languages. Thus, it does not have the limitations of Capabilities.language.

946ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

Formatting numbers

Flash Player 10.1 and later, Adobe AIR 2.0 and later

The display format of numeric values varies widely from region to region. For example, here is how the number

123456.78 is formatted for certain locales:

There are many factors that influence number formats, including:

• Separators. The decimal separator is placed between the integer and fractional portions of a number. It can be a

period, comma, or another character. The grouping separator or thousands separator can be a period, a comma, a

non-breaking space, or another character.

• Grouping patterns. The number of digits between each grouping separator to the left of the decimal point can be

two or three or another value.

• Negative number indicators. Negative numbers can be shown with a minus sign to the left or the right of the

number, or within parentheses for financial applications. For example, negative 19 can be shown as -19, 19-, or (19).

• Leading and trailing zeroes. Some cultural conventions add leading or trailing zeroes to displayed numbers. For

example the value 0.17 can be displayed as .17, 0.17, or 0.170, among other options.

• Sets of digit characters. Many languages, including Hindi, Arabic, and Japanese, use different sets of digit

characters. The flash.globalization package supports any digit character sets that map to the digits 0-9.

The NumberFormatter class considers all of these factors when formatting numeric values.

Using the NumberFormatter class

The NumberFormatter class formats numeric values (of type int, uint, or Number) according to the conventions of a

specific locale.

The following example shows the simplest way to format a number using the default formatting properties provided

by the user’s operating system:

var nf:NumberFormatter = new NumberFormatter(LocaleID.DEFAULT);
trace(nf.formatNumber(-123456.789))

The result vary based on the user’s locale settings and user preferences. For example, if the user’s locale is fr-FR then

the formatted value would be:

-123.456,789

If you only want to format a number for a specific locale, regardless of the user’s settings, set the locale name

specifically. For example:

Locale Number Format

en-US (English, USA) -123,456.78

de-DE (German, Germany) -123.456,78

fr-FR (France, French) -123 456,78

de-CH (German, Switzerland) -123'456.78

en-IN (English, India) -1,23,456.78

Many Arabic locales 123,456.78-

947ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

var nf:NumberFormatter = new NumberFormatter("de-CH");
trace(nf.formatNumber(-123456.789));

The result in this case are:

-123'456.789

The formatNumber() method takes a Number as a parameter. The NumberFormatter class also has a formatInt()

method that takes an int as input, and a formatUint() method that takes a uint.

You can explicitly control the formatting logic by setting properties of the NumberFormatter class, as shown in this

example:

var nf:NumberFormatter = new NumberFormatter("de-CH");
nf.negativeNumberFormat = 0;
nf.fractionalDigits = 5;
nf.trailingZeros = true;
nf.decimalSeparator = ",";
nf.useGrouping = false;
trace(nf.formatNumber(-123456.789)); //(123456.78900)

This example first creates a NumberFormatter object and then:

• sets the negative number format to use parentheses (as in financial applications);

• sets the number of digits after the decimal separator to 5;

• specifies that trailing zeroes be used to ensure five decimal places;

• sets the decimal separator to a comma;

• tells the formatter not to use any grouping separators.

Note: When some of these properties change, the resulting number format no longer corresponds to the preferred format

for the specified locale. Use some of these properties only when locale-awareness is not important; when you need detailed

control over a single aspect of the format, such as the number of trailing zeroes; or when the user requests the change

directly, for example, through the Windows Control Panel.

Parsing strings that contain numeric values

The NumberFormatter class can also extract numeric values from strings that conform to locale-specific formatting

requirements. The NumberFormatter.parseNumber() method extracts a single numeric value from a string. For

example:

var nf:NumberFormatter = new NumberFormatter("en-US");
var inputNumberString:String = "-1,234,567.890"
var parsedNumber:Number = nf.parseNumber(inputNumberString);
trace("Value:" + parsedNumber); // -1234567.89
trace("Status:" + nf.lastOperationStatus); // noError

The parseNumber() method handles strings that contain only digits and number formatting characters such as

negative signs and separators. If the string contains other characters, an error code is set:

var nf:NumberFormatter = new NumberFormatter("en-US");
var inputNumberString:String = "The value is 1,234,567.890"
var parsedNumber:Number = nf.parseNumber(inputNumberString);
trace("Value:" + parsedNumber); // NaN
trace("Status:" + nf.lastOperationStatus); // parseError

To extract numbers from strings that contain additional alphabetic characters, use the NumberFormatter.parse()

method:

948ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

var nf:NumberFormatter = new NumberFormatter("en-US");
var inputNumberString:String = "The value is 123,456,7.890";
var parseResult:NumberParseResult = nf.parse(inputNumberString);
trace("Value:" + parseResult.value); // 1234567.89
trace("startIndex: " + parseResult.startIndex); // 14
trace("Status:" + nf.lastOperationStatus); // noError

The parse() method returns a NumberParseResult object that contains the parsed numeric value in its value property.

The startIndex property indicates the index of the first numeric character that was found. You can use the startIndex

and endIndex properties to extract the portions of the string that come before and after the digits.

Formatting currency values

Flash Player 10.1 and later, Adobe AIR 2.0 and later

The display formats of currency values vary as much as number formats do. For example, here is how the US dollar

value $123456.78 is formatted for certain locales:

Currency formatting involves all the same factors as number formatting, plus these additional factors:

• Currency ISO code. The three letter ISO 4217 currency code for the actual locale being used, such as USD or EUR.

• Currency symbol. The currency symbol or string for the actual locale being used, such as $ or €.

• Negative currency format. Defines the location of the currency symbol and the negative symbol or parentheses in

relation to the numeric portion of the currency amount.

• Positive currency format. Defines the location of currency symbol relative to the numeric portion of the currency

amount.

Using the CurrencyFormatter class

The CurrencyFormatter class formats numeric values into strings that contain currency strings and formatted

numbers, according to the conventions of a specific locale.

When you instantiate a new CurrencyFormatter object, it sets its currency to the default currency for the given locale.

The following example shows that a CurrencyFormatter object created using a German locale assumes that currency

amounts are in Euros:

var cf:CurrencyFormatter = new CurrencyFormatter("de-DE");
trace(cf.format(1234567.89)); // 1.234.567,89 EUR

In most cases, do not rely on the default currency for a locale. If the user’s default locale is not supported, then the

CurrencyFormatter class assigns a fallback locale. The fallback locale can have a different default currency. In addition,

you normally want the currency formats to look correct to your user, even if the amounts are not in the user’s local

currency. For example, a Canadian user can want to see a German company’s prices in Euros, but formatted in the

Canadian style.

Locale Number Format

en-US (English, USA) $123,456.78

de-DE (German, Germany) 123.456,78 $

en-IN (English, India) $ 1,23,456.78

949ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

The CurrencyFormatter.setCurrency() method specifies the exact currency string and currency symbol to use.

The following example shows currency amounts in Euros to users in the French part of Canada:

var cf:CurrencyFormatter = new CurrencyFormatter("fr-CA");
cf.setCurrency("EUR", "€");
trace(cf.format(1234567.89)); // 1.234.567,89 EUR

The setCurrency() method can also be used to reduce confusion by setting unambiguous currency symbols. For

example:

cf.setCurrency("USD","US$");

By default the format() method displays a three character ISO 4217 currency code instead of the currency symbol. ISO

4217 codes are unambiguous and do not require localization. However many users prefer to see currency symbols

rather than ISO codes.

The CurrencyFormatter class can help you decide which symbol a formatted currency string uses: a currency symbol,

like a dollar sign or Euro sign, or a three character ISO currency string, such as USD or EUR. For example, an amount

in Canadian dollars could be displayed as $200 for a user in Canada. For a user in the United States, however, it could

be displayed as CAD 200. Use the method formattingWithCurrencySymbolIsSafe() to determine whether the

amount’s currency symbol would be ambiguous or incorrect given the user’s locale settings.

The following example formats a value in Euros into a format for the en-US locale. Depending on the user’s locale, the

output string uses either the ISO currency code or the currency symbol.

var cf:CurrencyFormatter = new CurrencyFormatter("en-CA");

if (cf.formattingWithCurrencySymbolIsSafe("USD"))
{

trace(cf.format(1234567.89, true)); // $1,234,567.89
}
else
{

cf.setCurrency("USD", "$");
trace(cf.format(1234567.89)); // USD1,234,567.89

}

Parsing strings that contain currency values

The CurrencyFormatter class can also extract a currency amount and a currency string from an input string that

conforms to locale-specific formatting requirements. The CurrencyFormatter.parse() method stores the parsed

amount and currency string in a CurrencyParseResult object, as shown here:

var cf:CurrencyFormatter = new CurrencyFormatter("en-US");
var inputCurrencyString:String = "(GBP 123,56,7.890)";
var parseResult:CurrencyParseResult = cf.parse(inputCurrencyString);
trace("parsed amount: " + parseResult.value); // -1234567.89
trace("currencyString: " + parseResult.currencyString); // GBP

The currency string portion of the input string can contain a currency symbol, a currency ISO code, and additional

text characters. The positions of the currency string, the negative number indicator, and the numeric value, match the

formats specified by the negativeCurrencyFormat and positiveCurrencyFormat properties. For example:

950ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

var cf:CurrencyFormatter = new CurrencyFormatter("en-US");
var inputCurrencyString:String = "Total $-123,56,7.890";
var parseResult:CurrencyParseResult = cf.parse(inputCurrencyString);
trace("status: " + cf.lastOperationStatus); // parseError
trace("parsed amount: " + parseResult.value); // NaN
trace("currencyString: " + parseResult.currencyString); //
cf.negativeCurrencyFormat = 2;
parseResult = cf.parse(inputCurrencyString);
trace("status: " + cf.lastOperationStatus); // noError
trace("parsed amount: " + parseResult.value); // -123567.89
trace("currencyString: " + parseResult.currencyString); // Total $

In this example, the input string has a currency string followed by a minus sign and a number. However the default

negativeCurrencyFormat value for the en-US locale specifies that the negative indicator comes first. As a result, the

parse() method generates an error and the parsed value is NaN.

After it sets the negativeCurrencyFormat to 2, which specifies that the currency string comes first, the parse() method

succeeds.

Formatting dates and times

Flash Player 10.1 and later, Adobe AIR 2.0 and later

The display format of date and time values also varies widely from region to region. For example, here is how the

second day of January, 1962 at 1:01 PM is displayed in a short format for certain locales:

Using the DateTimeFormatter class

The DateTimeFormatter class formats Date values into date and time strings according to the conventions of a specific

locale.

Formatting follows a pattern string which contains sequences of letters that are replaced with date or time values. For

example, in the pattern "yyyy/MM" the characters "yyyy" are replaced with a four-digit year, followed by a "/" character,

and a two-digit month.

The pattern string can be set explicitly using the setDateTimePattern() method. However it is best to let the pattern be

set automatically according to the user’s locale and operating system preferences. This practice helps assure that the

result is culturally appropriate.

The DateTimeFormatter can represent dates and times in three standard styles (LONG, MEDIUM, and SHORT) and

it can also use a CUSTOM pattern. One style can be used for the date, and a second style for the time. The actual

patterns used for each style vary somewhat by operating system.

You can specify the styles when you create a DateTimeFormatter object. If the style parameters are not specified, then

they are set to DateTimeStyle.LONG by default. You can change the styles later by using the setDateTimeStyles()

method, as shown in the following example:

Locale Date and Time Format

en-US (English, USA) 1/2/62 1:01pm

fr-FR (France, French) 2/1/62 13:01

ja-JP (Japan, Japanese) 1962/2/1 13:01

951ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

var date:Date = new Date(2009, 2, 27, 13, 1);
var dtf:DateTimeFormatter = new DateTimeFormatter("en-US",

DateTimeStyle.LONG, DateTimeStyle.LONG);

var longDate:String = dtf.format(date);
trace(longDate); // March 27, 2009 1:01:00 PM

dtf.setDateTimeStyles(DateTimeStyle.SHORT, DateTimeStyle.SHORT);
var shortDate:String = dtf.format(date);
trace(shortDate); // 3/27/09 1:01 PM

Localizing month names and day names

Many applications use lists of month names and the names of the days of the week in calendar displays or pull-down

lists.

You can retrieve a localized list of the month names using the method DateTimeFormatter.getMonthNames().

Depending on the operating system, full and abbreviated forms might be available. Pass the value

DateTimeNameStyle.FULL to get full length month names. Pass the values

DateTimeNameStyle.LONG_ABBREVIATION or DateTimeNameStyle.SHORT_ABBREVIATION to get shorter

versions.

In some languages, a month name changes (into its genitive form) when it is placed next to the day value in a date

format. If you plan to use the month names alone, pass the value DateTimeNameContext.STANDALONE to the

getMonthNames() method. To use the month names in formatted dates, however, pass the value

DateTimeNameContext.FORMAT.

var dtf:DateTimeFormatter = new DateTimeFormatter("fr-FR");
var months:Vector.<String> = dtf.getMonthNames(DateTimeNameStyle.FULL,

DateTimeNameContext.STANDALONE);
trace(months[0]); // janvier
months = dtf.getMonthNames(DateTimeNameStyle.SHORT_ABBREVIATION,

 DateTimeNameContext.STANDALONE);
trace(months[0]); // janv.

The DateTimeFormatter.getWeekdayNames() method provides a localized list of the names of the days of the week.

The getWeekdayNames() method accepts the same nameStyle and context parameters that the getMonthNames()

method does.

var dtf:DateTimeFormatter = new DateTimeFormatter("fr-FR");
var weekdays:Vector.<String> = dtf.getWeekdayNames(DateTimeNameStyle.FULL,

 DateTimeNameContext.STANDALONE);
trace(weekdays[0]); // dimanche
weekdays = dtf.getWeekdayNames(DateTimeNameStyle.LONG_ABBREVIATION,

 DateTimeNameContext.STANDALONE);
trace(weekdays[0]); // dim.

In addition, the getFirstWeekday() method returns the index value of the day that traditionally marks the beginning

of the week in the selected locale.

952ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

Sorting and comparing strings

Flash Player 10.1 and later, Adobe AIR 2.0 and later

Collation is the process of arranging things in their proper order. Collation rules vary significantly by locale. The rules

also differ if you are sorting a list or matching similar items, such as in a text search algorithm.

When sorting, small differences such as upper and lowercase letters or diacritic marks such as accents, are often

significant. For example, the letter ö (o with a diaeresis) is considered mostly equivalent to the plain letter o in French

or English. The same letter, however, follows the letter z in Swedish. Also, in French and some other languages, the last

accent difference in a word determines its order in a sorted list.

When searching, you often want to ignore differences in case or diacritics, to increase the chance of finding relevant

matches. For example, a search for the characters “cote” in a French document conceivably returns matches for “cote”,

“côte”, and “coté”.

Using the Collator class

The main methods of the Collator class are the compare() method, used primarily for sorting, and the equals() method,

used for matching values.

The following example shows the different behavior of the compare() and equals() methods.

var words:Array = new Array("coté", "côte");

var sorter:Collator = new Collator("fr-FR", CollatorMode.SORTING);
words.sort(sorter.compare);
trace(words); // côte,coté

var matcher:Collator = new Collator("fr-FR", CollatorMode.MATCHING);
if (matcher.equals(words[0], words[1]))
{

trace(words[0] + " = " + words[1]); // côte = coté
}

The example first creates a Collator object in SORTING mode for the French-France locale. Then it sorts two words

that differ only by diacritical marks. This shows that the SORTING comparison distinguishes between accented and

non-accented characters.

The sorting is performed by passing a reference to the Collator object’s sort() method as a parameter to the Array.sort()

method. This technique is one of the most efficient ways of using a Collator object to control sort order.

The example then creates a Collator object in MATCHING mode. When that Collator object compares the two words, it

treats them as equal. That shows that the MATCHING comparison values accented and non-accented characters the same.

Customizing the behavior of the Collator class

By default, the Collator class uses string comparison rules obtained from the operating system based on the locale and

the user’s system preferences. You can customize the behavior of the compare() and equals() methods by explicitly

setting various properties. The following table lists the properties and the effect they have upon comparisons:

953ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

The following code shows that setting the ignoreDiacritics property to true changes the sort order of a list of French

words:

var words:Array = new Array("COTE", "coté", "côte", "Coté","cote");
var sorter:Collator = new Collator("fr-CA", CollatorMode.SORTING);
words.sort(sorter.compare);
trace(words); // cote,COTE,côte,coté,Coté

sorter.ignoreDiacritics = true;
words.sort(sorter.compare);
trace(words); // côte,coté,cote,Coté,COTE

Case conversion

Flash Player 10.1 and later, Adobe AIR 2.0 and later

Languages also differ in their rules for converting letters between uppercase forms (majiscules) and lowercase forms

(miniscules).

For example, in most languages that use the Latin alphabet the lowercase form of the capital letter “I” is “i”. However

in some languages (such as Turkish and Azeri) there is an additional dotless letter “ı”. As a result in those languages a

lowercase dotless “ı” transforms into an uppercase ”I”. A lowercase “i” transforms into an uppercase “İ” with a dot.

The StringTools class provides methods that use language-specific rules to perform such transformations.

Using the StringTools class

The StringTools class provides two methods to perform case transformations: toLowerCase() and toUpperCase(). You

create a StringTools object by calling the constructor with a locale ID. The StringTools class retrieves the case

conversion rules for that locale (or a fallback locale) from the operating system. It is not possible to further customize

the case conversion algorithm.

The following example uses the toUpperCase() and toLowerCase() methods to transform a German phrase that

includes the letter “ß” (sharp S).

Collator Property Effect

numericComparison Controls whether digit characters are treated as numbers or as text.

ignoreCase Controls whether uppercase and lowercase differences are ignored.

ignoreCharacterWidth Controls whether full-width and half-width forms of some Chinese and Japanese characters are

evaluated as equal.

ignoreDiacritics Controls whether strings that use the same base characters but different accents or other diacritic

marks are evaluated as equal.

ignoreKanaType Controls whether strings that differ only by the type of kana character being used are treated as equal.

ignoreSymbols Controls whether symbol characters such as spaces, currency symbols, math symbols, and others are

ignored.

954ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

var phrase:String = "Schloß Neuschwanstein";
var converter:StringTools = new StringTools("de-DE");

var upperPhrase:String = converter.toUpperCase(phrase);
trace(upperPhrase); // SCHLOSS NEUSCHWANSTEIN

var lowerPhrase:String = converter.toLowerCase(upperPhrase);
trace(lowerPhrase);// schloss neuschwanstein

The toUpperCase() method transforms the lowercase letter “ß” into the uppercase letters “SS”. This transformation

works only in one direction. When the letters “SS” are transformed back to lowercase, the result is “ss” not “ß”.

Example: Internationalizing a stock ticker application

Flash Player 10.1 and later, Adobe AIR 2.0 and later

The Global Stock Ticker application retrieves and displays fictitious data about stocks in three different stock markets:

the United States, Japan, and Europe. It formats the data according to the conventions of various locales.

This example illustrates the following features of the flash.globalization package:

• Locale-aware number formatting

• Locale-aware currency formatting

• Setting currency ISO code and currency symbols

• Locale-aware date formatting

• Retrieving and displaying appropriate month name abbreviations

To get the application files for this sample, see www.adobe.com/go/learn_programmingAS3samples_flash. The Global

Stock Ticker application files can be found in the folder Samples/GlobalStockTicker. The application consists of the

following files:

File Description

GlobalStockTicker.mxm

l

or

GlobalStockTicker.fla

The user interface for the application for Flex (MXML) or Flash (FLA).

styles.css Styles for the application user interface (Flex only).

com/example/program

mingas3/stockticker/fle

x/FinGraph.mxml

An MXML component that displays a chart of simulated stock data, for Flex only.

com/example/program

mingas3/stockticker/fla

sh/GlobalStockTicker.as

Document class containing the user interface logic for the application (Flash only).

comp/example/progra

mmingas3/stockticker/f

lash/RightAlignedColu

mn.as

A custom cell renderer for the Flash DataGrid component (Flash only).

http://www.adobe.com/go/learn_programmingAS3samples_flash

955ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

Understanding the user interface and sample data

The application’s main user interface elements are:

• a combo box for selecting a Locale

• a combo box for selecting a Market

• a DataGrid that displays data for six companies in each market

• a chart that shows simulated historical data for the selected company’s stock

The application stores all of its sample data about locales, markets, and company stocks in the StockDataModel class.

A real application would retrieve data from a server and then store it in a class like StockDataModel. In this example,

all the data is hard coded in the StockDataModel class.

Note: The data displayed in the financial chart doesn’t necessarily match the data shown in the DataGrid control. The

chart is randomly redrawn each time a different company is selected. It is for illustration purposes only.

Setting the locale

After some initial setup work, the application calls the method Localizer.setLocale() to create formatter objects for the

default locale. The setLocale() method is also called each time the user selects a new value from the Locale combo box.

public function setLocale(newLocale:String):void
{

locale = new LocaleID(newLocale);

nf = new NumberFormatter(locale.name);
traceError(nf.lastOperationStatus, "NumberFormatter", nf.actualLocaleIDName);

cf = new CurrencyFormatter(locale.name);
traceError(cf.lastOperationStatus, "CurrencyFormatter", cf.actualLocaleIDName);
symbolIsSafe = cf.formattingWithCurrencySymbolIsSafe(currentCurrency);
cf.setCurrency(currentCurrency, currentSymbol);
cf.fractionalDigits = currentFraction;

df = new DateTimeFormatter(locale.name, DateTimeStyle.LONG, DateTimeStyle.SHORT);
traceError(df.lastOperationStatus, "DateTimeFormatter", df.actualLocaleIDName);
monthNames = df.getMonthNames(DateTimeNameStyle.LONG_ABBREVIATION);

}

public function traceError(status:String, serviceName:String, localeID:String) :void
{

if(status != LastOperationStatus.NO_ERROR)
{

com/example/program

mingas3/stockticker/Fi

nancialGraph.as

An ActionScript class that draws a chart of simulated stock data.

com/example/program

mingas3/stockticker/Lo

calizer.as

An ActionScript class that manages the locale and currency and handles the localized formatting of numbers,

currency amounts, and dates.

com/example/program

mingas3/stockticker/St

ockDataModel.as

An ActionScript class that holds all the sample data for the Global Stock Ticker example.

File Description

956ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

if(status == LastOperationStatus.USING_FALLBACK_WARNING)
{

trace("Warning - Fallback locale ID used by "
+ serviceName + ": " + localeID);

}
else if (status == LastOperationStatus.UNSUPPORTED_ERROR)
{

trace("Error in " + serviceName + ": " + status);
//abort application
throw(new Error("Fatal error", 0));

}
else
{

trace("Error in " + serviceName + ": " + status);
}

}
else
{

trace(serviceName + " created for locale ID: " + localeID);
}

}

First the setLocale() method creates a LocaleID object. This object makes it easier to get details about the actual locale

later, if needed.

Next it creates new NumberFormatter, CurrencyFormatter, and DateTimeFormatter objects for the locale. After

creating each formatter object it calls the traceError() method. This method displays error and warning messages in

the console if there is a problem with the requested locale. (A real application should react based on such errors rather

than just tracing them).

After creating the CurrencyFormatter object, the setLocale() method sets the formatter’s currency ISO code, currency

symbol, and fractionalDigits properties to previously determined values. (Those values are set each time the user

selects a new market from the Markets combo box).

After creating the DateTimeFormatter object, the setLocale() method also retrieves an array of localized month name

abbreviations.

Formatting the data

The formatted stock data is presented in a DataGrid control. The DataGrid columns each call a label function that

formats the column value using the appropriate formatter object.

In the Flash version, for example, the following code sets up the DataGrid columns:

957ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

var col1:DataGridColumn = new DataGridColumn("ticker");
col1.headerText = "Company";
col1.sortOptions = Array.NUMERIC;
col1.width = 200;

var col2:DataGridColumn = new DataGridColumn("volume");
col2.headerText = "Volume";
col2.width = 120;
col2.cellRenderer = RightAlignedCell;
col2.labelFunction = displayVolume;

var col3:DataGridColumn = new DataGridColumn("price");
col3.headerText = "Price";
col3.width = 70;
col3.cellRenderer = RightAlignedCell;
col3.labelFunction = displayPrice;

var col4:DataGridColumn = new DataGridColumn("change");
col4.headerText = "Change";
col4.width = 120;
col4.cellRenderer = RightAlignedCell;
col4.labelFunction = displayPercent;

The Flex version of the example declares its DataGrid in MXML. It also defines similar label functions for each column.

The labelFunction properties refer to the following functions, which call formatting methods of the Localizer class:

private function displayVolume(item:Object):String
{

return localizer.formatNumber(item.volume, 0);
}

private function displayPercent(item:Object):String
{
 return localizer.formatPercent(item.change) ;
}

 private function displayPrice(item:Object):String
{

return localizer.formatCurrency(item.price);
}

The Localizer methods then set up and call the appropriate formatters:

958ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Internationalizing applications

Last updated 10/9/2017

public function formatNumber(value:Number, fractionalDigits:int = 2):String
{

nf.fractionalDigits = fractionalDigits;
return nf.formatNumber(value);

}

public function formatPercent(value:Number, fractionalDigits:int = 2):String
{

// HACK WARNING: The position of the percent sign, and whether a space belongs
// between it and the number, are locale-sensitive decisions. For example,
// in Turkish the positive format is %12 and the negative format is -%12.
// Like most operating systems, flash.globalization classes do not currently
// provide an API for percentage formatting.
nf.fractionalDigits = fractionalDigits;
return nf.formatNumber(value) + "%";

}

public function formatCurrency(value:Number):String
{

return cf.format(value, symbolIsSafe);
}

public function formatDate(dateValue:Date):String
{

return df.format(dateValue);
}
|

959

Last updated 10/9/2017

Chapter 57: Localizing applications

Flash Player 9 and later, Adobe AIR 1.0 and later

Localization is the process of including assets to support multiple locales. A locale is the combination of a language

and a country code. For example, en_US refers to the English language as spoken in the United States, and fr_FR refers

to the French language as spoken in France. To localize an application for these locales, you would provide two sets of

assets: one for the en_US locale and one for the fr_FR locale.

Locales can share languages. For example, en_US and en_GB (Great Britain) are different locales. In this case, both

locales use the English language, but the country code indicates that they are different locales, and might therefore use

different assets. For example, an application in the en_US locale might spell the word "color", whereas the word would

be "colour" in the en_GB locale. Also, units of currency would be represented in dollars or pounds, depending on the

locale, and the format of dates and times might also be different.

You can also provide a set of assets for a language without specifying a country code. For example, you can provide en

assets for the English language and provide additional assets for the en_US locale, specific to U.S. English.

Localization goes beyond just translating strings used in your application. It can also include any type of asset such as

audio files, images, and videos.

Choosing a locale

Flash Player 9 and later, Adobe AIR 1.0 and later

To determine which locale your content or application uses, you can use one of the following methods:

• flash.globalization package — Use the locale-aware classes in the flash.globalization package to retrieve the default

locale for the user based on the operating system and user preferences. This is the preferred approach for

applications that will run on the Flash Player 10.1 or later or AIR 2.0 or later runtimes. See “Determining the locale”

on page 944 for more information.

• User prompt — You can start the application in some default locale, and then ask the user to choose their preferred

locale.

• (AIR only) Capabilities.languages — The Capabilities.languages property lists an array of languages

available on the user’s preferred languages, as set through the operating system. The strings contain language tags

(and script and region information, where applicable) defined by RFC4646 (http://www.ietf.org/rfc/rfc4646.txt).

The strings use hyphens as a delimiter (for example, "en-US" or "ja-JP"). The first entry in the returned array has

the same primary language ID as the language property. For example, if languages[0] is set to "en-US", then the

language property is set to "en". However, if the language property is set to "xu" (specifying an unknown

language), the first element in the languages array is different.

• Capabilities.language — The Capabilities.language property provides the user interface language code of

the operating system. However, this property is limited to 20 known languages. And on English systems, this

property returns only the language code, not the country code. For these reasons, it is better to use the first element

in the Capabilities.languages array.

http://www.ietf.org/rfc/rfc4646.txt

960ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Localizing applications

Last updated 10/9/2017

Localizing Flex content

Flash Player 9 and later, Adobe AIR 1.0 and later

Adobe Flex includes a framework for localizing Flex content. This framework includes the Locale, ResourceBundle,

and ResourceManagerImpl classes, as well as the IResourceBundle, IResourceManagerImpl interfaces.

A Flex localization library containing utility classes for sorting application locales is available on Google Code

(http://code.google.com/p/as3localelib/).

More Help topics

http://code.google.com/p/as3localelib/

Localizing Flash content

Flash Player 9 and later, Adobe AIR 1.0 and later

Adobe Flash Professional includes a Locale class in the ActionScript 3.0 components. The Locale class allows you to

control how a SWF file displays multilanguage text. The Flash Strings panel allows you to use string IDs instead of

string literals in dynamic text fields. This facility allows you to create a SWF file that displays text loaded from a

language-specific XML file. For information on using the Locale class, see the ActionScript 3.0 Reference for the Adobe

Flash Platform.

Localizing AIR applications

Adobe AIR 1.0 and later

The AIR SDK provides an HTML Localization Framework (contained in an AIRLocalizer.js file). This framework

includes APIs that assist in working with multiple locales in an HTML-based application. An ActionScript library for

sorting locales is provided at http://code.google.com/p/as3localelib/.

More Help topics

http://code.google.com/p/as3localelib/

Localizing dates, times, and currencies

Flash Player 9 and later, Adobe AIR 1.0 and later

The way applications present dates, times, and currencies varies greatly for each locale. For example, the U.S. standard

for representing dates is month/day/year, whereas the European standard for representing dates is day/month/year.

http://code.google.com/p/as3localelib/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/fl/lang/Locale.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/fl/lang/Locale.html
http://code.google.com/p/as3localelib/

961ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Localizing applications

Last updated 10/9/2017

You can write code to format dates, times, and currencies. For example, the following code converts a Date object into

month/day/year format or day/month/year format. if the locale variable (representing the locale) is set to "en_US",

the function returns month/day/year format. The example converts a Date object into day/month/year format for all

other locales:

function convertDate(date)
{

if (locale == "en_US")
{

return (date.getMonth() + 1) + "/" + date.getDate() + "/" + date.getFullYear();
}
else
{

return date.getDate() + "/" + (date.getMonth() + 1) + "/" + date.getFullYear();
}

}

ADOBE FLEX

The Flex framework includes controls for formatting dates, times, and currencies. These controls include the

DateFormatter and CurrencyFormatter controls.

• mx:DateFormatter

• mx:CurrencyFormatter

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/formatters/DateFormatter.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/mx/formatters/CurrencyFormatter.html

962

Last updated 10/9/2017

Chapter 58: About the HTML
environment

Adobe AIR 1.0 and later

Adobe® AIR® uses WebKit (www.webkit.org), also used by the Safari web browser, to parse, layout, and render HTML

and JavaScript content. Using the AIR APIs in HTML content is optional. You can program in the content of an

HTMLLoader object or HTML window entirely with HTML and JavaScript. Most existing HTML pages and

applications should run with few changes (assuming they use HTML, CSS, DOM, and JavaScript features compatible

with WebKit).

Important: New versions of the Adobe AIR runtime may include updated versions of WebKit. A WebKit update in a

new version of AIR may result in unexpected changes in a deployed AIR application. These changes may affect the

behavior or appearance of HTML content in an application. For example, improvements or corrections in WebKit

rendering may change the layout of elements in an application’s user interface. For this reason, it is highly

recommended that you provide an update mechanism in your application. Should you need to update your application

due to a change in the WebKit version included in AIR, the AIR update mechanism can prompt the user to install the

new version of your application.

The following table lists the version of the Safari web browser that uses the version of WebKit equivalent to that used

in AIR:

You can always determine the installed version of WebKit by examining the default user agent string returned by a

HTMLLoader object:

var htmlLoader:HTMLLoader = new HTMLLoader();
trace(htmlLoader.userAgent);

Keep in mind that the version of WebKit used in AIR is not identical to the open source version. Some features are not

supported in AIR and the AIR version can include security and bug fixes not yet available in the corresponding WebKit

version. See “WebKit features not supported in AIR” on page 977.

Because AIR applications run directly on the desktop, with full access to the file system, the security model for HTML

content is more stringent than the security model of a typical web browser. In AIR, only content loaded from the

application installation directory is placed in the application sandbox. The application sandbox has the highest level of

privilege and allows access to the AIR APIs. AIR places other content into isolated sandboxes based on where that

content came from. Files loaded from the file system go into a local sandbox. Files loaded from the network using the

http: or https: protocols go into a sandbox based on the domain of the remote server. Content in these non-application

sandboxes is prohibited from accessing any AIR API and runs much as it would in a typical web browser.

AIR version Safari version

1.0 2.04

1.1 3.04

1.5 4.0 Beta

2.0 4.03

2.5 4.03

2.6 4.03

2.7 4.03

3 5.0.3

http://www.webkit.org

963ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

HTML content in AIR does not display SWF or PDF content if alpha, scaling, or transparency settings are applied. For

more information, see “Considerations when loading SWF or PDF content in an HTML page” on page 1004 and

“Window transparency” on page 895.

More Help topics

Webkit DOM Reference

Safari HTML Reference

Safari CSS Reference

www.webkit.org

Overview of the HTML environment

Adobe AIR 1.0 and later

Adobe AIR provides a complete browser-like JavaScript environment with an HTML renderer, document object

model, and JavaScript interpreter. The JavaScript environment is represented by the AIR HTMLLoader class. In

HTML windows, an HTMLLoader object contains all HTML content, and is, in turn, contained within a

NativeWindow object. In SWF content, the HTMLLoader class, which extends the Sprite class, can be added to the

display list of a stage like any other display object. The Adobe® ActionScript® 3.0 properties of the class are described

in “Scripting the AIR HTML Container” on page 1003 and also in the ActionScript 3.0 Reference for the Adobe Flash

Platform. In the Flex framework, the AIR HTMLLoader class is wrapped in a mx:HTML component. The mx:HTML

component extends the UIComponent class, so it can be used directly with other Flex containers. The JavaScript

environment within the mx:HTML component is otherwise identical.

About the JavaScript environment and its relationship to the AIR host

Adobe AIR 1.0 and later

The following diagram illustrates the relationship between the JavaScript environment and the AIR run-time

environment. Although only a single native window is shown, an AIR application can contain multiple windows. (And

a single window can contain multiple HTMLLoader objects.)

http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/WebKitDOMRef/index.html#//apple_ref/doc/uid/TP40006089
http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/SafariHTMLRef/Introduction.html
http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/SafariCSSRef/Introduction.html
http://www.webkit.org
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

964ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

The JavaScript environment has its own Document and Window objects. JavaScript code can interact with the AIR run-time environment
through the runtime, nativeWindow, and htmlLoader properties. ActionScript code can interact with the JavaScript environment through the
window property of an HTMLLoader object, which is a reference to the JavaScript Window object. In addition, both ActionScript and JavaScript
objects can listen for events dispatched by both AIR and JavaScript objects.

The runtime property provides access to AIR API classes, allowing you to create new AIR objects as well as access class

(also called static) members. To access an AIR API, you add the name of the class, with package, to the runtime

property. For example, to create a File object, you would use the statement:

 var file = new window.runtime.filesystem.File();

Note: The AIR SDK provides a JavaScript file, AIRAliases.js, that defines more convenient aliases for the most

commonly used AIR classes. When you import this file, you can use the shorter form air.Class instead of

window.runtime.package.Class. For example, you could create the File object with new air.File().

The NativeWindow object provides properties for controlling the desktop window. From within an HTML page, you

can access the containing NativeWindow object with the window.nativeWindow property.

The HTMLLoader object provides properties, methods, and events for controlling how content is loaded and

rendered. From within an HTML page, you can access the parent HTMLLoader object with the window.htmlLoader

property.

AIR Run-time Environment

NativeWindow

HTMLLoader

JavaScript
Environment

window

window

document

body

h1 div

p

table

head

htmlLoader

nativeWindow

runtime

965ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

Important: Only pages installed as part of an application have the htmlLoader, nativeWindow, or runtime properties

and only when loaded as the top-level document. These properties are not added when a document is loaded into a frame

or iframe. (A child document can access these properties on the parent document as long as it is in the same security

sandbox. For example, a document loaded in a frame could access the runtime property of its parent with

parent.runtime.)

About security

Adobe AIR 1.0 and later

AIR executes all code within a security sandbox based on the domain of origin. Application content, which is limited

to content loaded from the application installation directory, is placed into the application sandbox. Access to the run-

time environment and the AIR APIs are only available to HTML and JavaScript running within this sandbox. At the

same time, most dynamic evaluation and execution of JavaScript is blocked in the application sandbox after all

handlers for the page load event have returned.

You can map an application page into a non-application sandbox by loading the page into a frame or iframe and setting

the AIR-specific sandboxRoot and documentRoot attributes of the frame. By setting the sandboxRoot value to an

actual remote domain, you can enable the sandboxed content to cross-script content in that domain. Mapping pages

in this way can be useful when loading and scripting remote content, such as in a mash-up application.

Another way to allow application and non-application content to cross-script each other, and the only way to give non-

application content access to AIR APIs, is to create a sandbox bridge. A parent-to-child bridge allows content in a child

frame, iframe, or window to access designated methods and properties defined in the application sandbox. Conversely,

a child-to-parent bridge allows application content to access designated methods and properties defined in the sandbox

of the child. Sandbox bridges are established by setting the parentSandboxBridge and childSandboxBridge

properties of the window object. For more information, see “HTML security in Adobe AIR” on page 1080 and “HTML

frame and iframe elements” on page 973.

About plug-ins and embedded objects

Adobe AIR 1.0 and later

AIR supports the Adobe® Acrobat® plug-in. Users must have Acrobat or Adobe® Reader® 8.1 (or better) to display PDF

content. The HTMLLoader object provides a property for checking whether a user’s system can display PDF. SWF file

content can also be displayed within the HTML environment, but this capability is built in to AIR and does not use an

external plug-in.

No other WebKit plug-ins are supported in AIR.

More Help topics

“HTML security in Adobe AIR” on page 1080

“HTML Sandboxes” on page 966

“HTML frame and iframe elements” on page 973

“JavaScript Window object” on page 971

“The XMLHttpRequest object” on page 967

“Adding PDF content in AIR” on page 551

966ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

AIR and WebKit

Adobe AIR 1.0 and later

Adobe AIR uses the open source WebKit engine, also used in the Safari web browser. AIR adds several extensions to

allow access to the runtime classes and objects as well as for security. In addition, WebKit itself adds features not

included in the W3C standards for HTML, CSS, and JavaScript.

Only the AIR additions and the most noteworthy WebKit extensions are covered here; for additional documentation

on non-standard HTML, CSS, and JavaScript, see www.webkit.org and developer.apple.com. For standards

information, see the W3C web site. Mozilla also provides a valuable general referenceon HTML, CSS, and DOM topics

(of course, the WebKit and Mozilla engines are not identical).

JavaScript in AIR

Flash Player 9 and later, Adobe AIR 1.0 and later

AIR makes several changes to the typical behavior of common JavaScript objects. Many of these changes are made to

make it easier to write secure applications in AIR. At the same time, these differences in behavior mean that some

common JavaScript coding patterns, and existing web applications using those patterns, might not always execute as

expected in AIR. For information on correcting these types of issues, see “Avoiding security-related JavaScript errors”

on page 983.

HTML Sandboxes

Adobe AIR 1.0 and later

AIR places content into isolated sandboxes according to the origin of the content. The sandbox rules are consistent

with the same-origin policy implemented by most web browsers, as well as the rules for sandboxes implemented by

the Adobe Flash Player. In addition, AIR provides a new application sandbox type to contain and protect application

content. See “Security sandboxes” on page 1044 for more information on the types of sandboxes you may encounter

when developing AIR applications.

Access to the run-time environment and AIR APIs are only available to HTML and JavaScript running within the

application sandbox. At the same time, however, dynamic evaluation and execution of JavaScript, in its various forms,

is largely restricted within the application sandbox for security reasons. These restrictions are in place whether or not

your application actually loads information directly from a server. (Even file content, pasted strings, and direct user

input may be untrustworthy.)

The origin of the content in a page determines the sandbox to which it is consigned. Only content loaded from the

application directory (the installation directory referenced by the app: URL scheme) is placed in the application

sandbox. Content loaded from the file system is placed in the local-with-file system or the local-trusted sandbox, which

allows access and interaction with content on the local file system, but not remote content. Content loaded from the

network is placed in a remote sandbox corresponding to its domain of origin.

To allow an application page to interact freely with content in a remote sandbox, the page can be mapped to the same

domain as the remote content. For example, if you write an application that displays map data from an Internet service,

the page of your application that loads and displays content from the service could be mapped to the service domain.

The attributes for mapping pages into a remote sandbox and domain are new attributes added to the frame and iframe

HTML elements.

http://www.webkit.org
http://developer.apple.com/internet/safari/
http://www.w3.org/
http://developer.mozilla.org/en/docs/Main_Page

967ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

To allow content in a non-application sandbox to safely use AIR features, you can set up a parent sandbox bridge. To

allow application content to safely call methods and access properties of content in other sandboxes, you can set up a

child sandbox bridge. Safety here means that remote content cannot accidentally get references to objects, properties,

or methods that are not explicitly exposed. Only simple data types, functions, and anonymous objects can be passed

across the bridge. However, you must still avoid explicitly exposing potentially dangerous functions. If, for example,

you exposed an interface that allowed remote content to read and write files anywhere on a user’s system, then you

might be giving remote content the means to do considerable harm to your users.

JavaScript eval() function

Adobe AIR 1.0 and later

Use of the eval() function is restricted within the application sandbox once a page has finished loading. Some uses

are permitted so that JSON-formatted data can be safely parsed, but any evaluation that results in executable

statements results in an error. “Code restrictions for content in different sandboxes” on page 1082 describes the

allowed uses of the eval() function.

Function constructors

Adobe AIR 1.0 and later

In the application sandbox, function constructors can be used before a page has finished loading. After all page load

event handlers have finished, new functions cannot be created.

Loading external scripts

Adobe AIR 1.0 and later

HTML pages in the application sandbox cannot use the script tag to load JavaScript files from outside of the

application directory. For a page in your application to load a script from outside the application directory, the page

must be mapped to a non-application sandbox.

The XMLHttpRequest object

Adobe AIR 1.0 and later

AIR provides an XMLHttpRequest (XHR) object that applications can use to make data requests. The following

example illustrates a simple data request:

 xmlhttp = new XMLHttpRequest();
 xmlhttp.open("GET", "http:/www.example.com/file.data", true);
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {
 //do something with data...
 }
 }
 xmlhttp.send(null);

In contrast to a browser, AIR allows content running in the application sandbox to request data from any domain. The

result of an XHR that contains a JSON string can be evaluated into data objects unless the result also contains

executable code. If executable statements are present in the XHR result, an error is thrown and the evaluation attempt

fails.

To prevent accidental injection of code from remote sources, synchronous XHRs return an empty result if made before

a page has finished loading. Asynchronous XHRs will always return after a page has loaded.

968ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

By default, AIR blocks cross-domain XMLHttpRequests in non-application sandboxes. A parent window in the

application sandbox can choose to allow cross-domain requests in a child frame containing content in a non-

application sandbox by setting allowCrossDomainXHR, an attribute added by AIR, to true in the containing frame or

iframe element:

 <iframe id="mashup"
 src="http://www.example.com/map.html"
 allowCrossDomainXHR="true"
 </iframe>

Note: When convenient, the AIR URLStream class can also be used to download data.

If you dispatch an XMLHttpRequest to a remote server from a frame or iframe containing application content that has

been mapped to a remote sandbox, make sure that the mapping URL does not mask the server address used in the

XHR. For example, consider the following iframe definition, which maps application content into a remote sandbox

for the example.com domain:

<iframe id="mashup"
 src="http://www.example.com/map.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="http://www.example.com/"
 allowCrossDomainXHR="true"
 </iframe>

Because the sandboxRoot attribute remaps the root URL of the www.example.com address, all requests are loaded

from the application directory and not the remote server. Requests are remapped whether they derive from page

navigation or from an XMLHttpRequest.

To avoid accidentally blocking data requests to your remote server, map the sandboxRoot to a subdirectory of the

remote URL rather than the root. The directory does not have to exist. For example, to allow requests to the

www.example.com to load from the remote server rather than the application directory, change the previous iframe to

the following:

<iframe id="mashup"
 src="http://www.example.com/map.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="http://www.example.com/air/"
 allowCrossDomainXHR="true"
 </iframe>

In this case, only content in the air subdirectory is loaded locally.

For more information on sandbox mapping see “HTML frame and iframe elements” on page 973 and “HTML security

in Adobe AIR” on page 1080.

Cookies

Adobe AIR 1.0 and later

In AIR applications, only content in remote sandboxes (content loaded from http: and https: sources) can use cookies

(the document.cookie property). In the application sandbox, other means for storing persistent data are available,

including the EncryptedLocalStore, SharedObject, and FileStream classes.

969ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

The Clipboard object

Adobe AIR 1.0 and later

The WebKit Clipboard API is driven with the following events: copy, cut, and paste. The event object passed in these

events provides access to the clipboard through the clipboardData property. Use the following methods of the

clipboardData object to read or write clipboard data:

JavaScript code outside the application sandbox can only access the clipboard through theses events. However, content

in the application sandbox can access the system clipboard directly using the AIR Clipboard class. For example, you

could use the following statement to get text format data on the clipboard:

var clipping = air.Clipboard.generalClipboard.getData("text/plain",
 air.ClipboardTransferMode.ORIGINAL_ONLY);

The valid data MIME types are:

Important: Only content in the application sandbox can access file data present on the clipboard. If non-application

content attempts to access a file object from the clipboard, a security error is thrown.

For more information on using the clipboard, see “Copy and paste” on page 596 and Using the Pasteboard from

JavaScript (Apple Developer Center).

Drag and Drop

Adobe AIR 1.0 and later

Drag-and-drop gestures into and out of HTML produce the following DOM events: dragstart, drag, dragend,

dragenter, dragover, dragleave, and drop. The event object passed in these events provides access to the dragged

data through the dataTransfer property. The dataTransfer property references an object that provides the same

methods as the clipboardData object associated with a clipboard event. For example, you could use the following

function to get text format data from a drop event:

function onDrop(dragEvent){
 return dragEvent.dataTransfer.getData("text/plain",
 air.ClipboardTransferMode.ORIGINAL_ONLY);
 }

The dataTransfer object has the following important members:

Method Description

clearData(mimeType) Clears the clipboard data. Set the mimeType parameter to the MIME type of the data to clear.

getData(mimeType) Get the clipboard data. This method can only be called in a handler for the paste event. Set the mimeType

parameter to the MIME type of the data to return.

setData(mimeType, data) Copy data to the clipboard. Set the mimeType parameter to the MIME type of the data.

MIME type Value

Text "text/plain"

HTML "text/html"

URL "text/uri-list"

Bitmap "image/x-vnd.adobe.air.bitmap"

File list "application/x-vnd.adobe.air.file-list"

http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/CopyAndPaste.html#//apple_ref/doc/uid/30001234
http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/CopyAndPaste.html#//apple_ref/doc/uid/30001234

970ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

For more information on adding support for drag-and-drop to an AIR application see “Drag and drop in AIR” on

page 608 and Using the Drag-and-Drop from JavaScript (Apple Developer Center).

innerHTML and outerHTML properties

Adobe AIR 1.0 and later

AIR places security restrictions on the use of the innerHTML and outerHTML properties for content running in the

application sandbox. Before the page load event, as well as during the execution of any load event handlers, use of the

innerHTML and outerHTML properties is unrestricted. However, once the page has loaded, you can only use

innerHTML or outerHTML properties to add static content to the document. Any statement in the string assigned to

innerHTML or outerHTML that evaluates to executable code is ignored. For example, if you include an event callback

attribute in an element definition, the event listener is not added. Likewise, embedded <script> tags are not

evaluated. For more information, see the “HTML security in Adobe AIR” on page 1080.

Document.write() and Document.writeln() methods

Adobe AIR 1.0 and later

Use of the write() and writeln() methods is not restricted in the application sandbox before the load event of the

page. However, once the page has loaded, calling either of these methods does not clear the page or create a new one.

In a non-application sandbox, as in most web browsers, calling document.write() or writeln() after a page has

finished loading clears the current page and opens a new, blank one.

Document.designMode property

Adobe AIR 1.0 and later

Set the document.designMode property to a value of on to make all elements in the document editable. Built-in editor

support includes text editing, copy, paste, and drag-and-drop. Setting designMode to on is equivalent to setting the

contentEditable property of the body element to true. You can use the contentEditable property on most

HTML elements to define which sections of a document are editable. See “HTML contentEditable attribute” on

page 975 for additional information.

Member Description

clearData(mimeType) Clears the data. Set the mimeType parameter to the MIME type of the data representation to clear.

getData(mimeType) Get the dragged data. This method can only be called in a handler for the drop event. Set the mimeType

parameter to the MIME type of the data to get.

setData(mimeType, data) Set the data to be dragged. Set the mimeType parameter to the MIME type of the data.

types An array of strings containing the MIME types of all data representations currently available in the

dataTransfer object.

effectsAllowed Specifies whether the data being dragged can be copied, moved, linked, or some combination thereof. Set the

effectsAllowed property in the handler for the dragstart event.

dropEffect Specifies which of the allowed drop effects are supported by a drag target. Set the dropEffect property in

the handler for the dragEnter event. During the drag, the cursor changes to indicate which effect would

occur if the user released the mouse. If no dropEffect is specified, an effectsAllowed property effect is

chosen. The copy effect has priority over the move effect, which itself has priority over the link effect. The user

can modify the default priority using the keyboard.

http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/DragAndDrop.html#//apple_ref/doc/uid/30001233

971ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

unload events (for body and frameset objects)

Adobe AIR 1.0 and later

In the top-level frameset or body tag of a window (including the main window of the application), do not use the

unload event to respond to the window (or application) being closed. Instead, use exiting event of the

NativeApplication object (to detect when an application is closing). Or use the closing event of the NativeWindow

object (to detect when a window is closing). For example, the following JavaScript code displays a message

("Goodbye.") when the user closes the application:

var app = air.NativeApplication.nativeApplication;
 app.addEventListener(air.Event.EXITING, closeHandler);
 function closeHandler(event)
 {
 alert("Goodbye.");
 }

However, scripts can successfully respond to the unload event caused by navigation of a frame, iframe, or top-level

window content.

Note: These limitations may be removed in a future version of Adobe AIR.

JavaScript Window object

Adobe AIR 1.0 and later

The Window object remains the global object in the JavaScript execution context. In the application sandbox, AIR

adds new properties to the JavaScript Window object to provide access to the built-in classes of AIR, as well as

important host objects. In addition, some methods and properties behave differently depending on whether they are

within the application sandbox or not.

Window.runtime property The runtime property allows you to instantiate and use the built-in runtime classes from

within the application sandbox. These classes include the AIR and Flash Player APIs (but not, for example, the Flex

framework). For example, the following statement creates an AIR file object:

 var preferencesFile = new window.runtime.flash.filesystem.File();

The AIRAliases.js file, provided in the AIR SDK, contains alias definitions that allow you to shorten such references.

For example, when AIRAliases.js is imported into a page, a File object can be created with the following statement:

var preferencesFile = new air.File();

The window.runtime property is only defined for content within the application sandbox and only for the parent

document of a page with frames or iframes.

See “Using the AIRAliases.js file” on page 988.

Window.nativeWindow property The nativeWindow property provides a reference to the underlying native window

object. With this property, you can script window functions and properties such as screen position, size, and visibility,

and handle window events such as closing, resizing, and moving. For example, the following statement closes the

window:

 window.nativeWindow.close();

Note: The window control features provided by the NativeWindow object overlap the features provided by the JavaScript

Window object. In such cases, you can use whichever method you find most convenient.

The window.nativeWindow property is only defined for content within the application sandbox and only for the

parent document of a page with frames or iframes.

972ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

Window.htmlLoader property The htmlLoader property provides a reference to the AIR HTMLLoader object that

contains the HTML content. With this property, you can script the appearance and behavior of the HTML

environment. For example, you can use the htmlLoader.paintsDefaultBackground property to determine whether

the control paints a default, white background:

 window.htmlLoader.paintsDefaultBackground = false;

Note: The HTMLLoader object itself has a window property, which references the JavaScript Window object of the HTML

content it contains. You can use this property to access the JavaScript environment through a reference to the containing

HTMLLoader.

The window.htmlLoader property is only defined for content within the application sandbox and only for the parent

document of a page with frames or iframes.

Window.parentSandboxBridge and Window.childSandboxBridge properties The parentSandboxBridge and

childSandboxBridge properties allow you to define an interface between a parent and a child frame. For more

information, see “Cross-scripting content in different security sandboxes” on page 999.

Window.setTimeout() and Window.setInterval() functions AIR places security restrictions on use of the

setTimeout() and setInterval() functions within the application sandbox. You cannot define the code to be

executed as a string when calling setTimeout() or setInterval(). You must use a function reference. For more

information, see “setTimeout() and setInterval()” on page 985.

Window.open() function When called by code running in a non-application sandbox, the open() method only opens

a window when called as a result of user interaction (such as a mouse click or keypress). In addition, the window title

is prefixed with the application title (to prevent windows opened by remote content from impersonating windows

opened by the application). For more information, see the “Restrictions on calling the JavaScript window.open()

method” on page 1085.

air.NativeApplication object

Adobe AIR 1.0 and later

The NativeApplication object provides information about the application state, dispatches several important

application-level events, and provides useful functions for controlling application behavior. A single instance of the

NativeApplication object is created automatically and can be accessed through the class-defined

NativeApplication.nativeApplication property.

To access the object from JavaScript code you could use:

var app = window.runtime.flash.desktop.NativeApplication.nativeApplication;

Or, if the AIRAliases.js script has been imported, you could use the shorter form:

var app = air.NativeApplication.nativeApplication;

The NativeApplication object can only be accessed from within the application sandbox. For more information about

the NativeApplication object, see “Working with AIR runtime and operating system information” on page 888.

The JavaScript URL scheme

Adobe AIR 1.0 and later

Execution of code defined in a JavaScript URL scheme (as in href="javascript:alert('Test')") is blocked within

the application sandbox. No error is thrown.

973ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

HTML in AIR

Adobe AIR 1.0 and later

AIR and WebKit define a couple of non-standard HTML elements and attributes, including:

“HTML frame and iframe elements” on page 973

“HTML element event handlers” on page 975

HTML frame and iframe elements

Adobe AIR 1.0 and later

AIR adds new attributes to the frame and iframe elements of content in the application sandbox:

sandboxRoot attribute The sandboxRoot attribute specifies an alternate, non-application domain of origin for the file

specified by the frame src attribute. The file is loaded into the non-application sandbox corresponding to the specified

domain. Content in the file and content loaded from the specified domain can cross-script each other.

Important: If you set the value of sandboxRoot to the base URL of the domain, all requests for content from that domain

are loaded from the application directory instead of the remote server (whether that request results from page navigation,

from an XMLHttpRequest, or from any other means of loading content).

documentRoot attribute The documentRoot attribute specifies the local directory from which to load URLs that

resolve to files within the location specified by sandboxRoot.

When resolving URLs, either in the frame src attribute, or in content loaded into the frame, the part of the URL

matching the value specified in sandboxRoot is replaced with the value specified in documentRoot. Thus, in the

following frame tag:

<iframe src="http://www.example.com/air/child.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="http://www.example.com/air/"/>

child.html is loaded from the sandbox subdirectory of the application installation folder. Relative URLs in

child.html are resolved based on sandbox directory. Note that any files on the remote server at

www.example.com/air are not accessible in the frame, since AIR would attempt to load them from the app:/sandbox/

directory.

allowCrossDomainXHR attribute Include allowCrossDomainXHR="allowCrossDomainXHR" in the opening frame

tag to allow content in the frame to make XMLHttpRequests to any remote domain. By default, non-application

content can only make such requests to its own domain of origin. There are serious security implications involved in

allowing cross-domain XHRs. Code in the page is able to exchange data with any domain. If malicious content is

somehow injected into the page, any data accessible to code in the current sandbox can be compromised. Only enable

cross-domain XHRs for pages that you create and control and only when cross-domain data loading is truly necessary.

Also, carefully validate all external data loaded by the page to prevent code injection or other forms of attack.

Important: If the allowCrossDomainXHR attribute is included in a frame or iframe element, cross-domain XHRs are

enabled (unless the value assigned is "0" or starts with the letters "f" or "n"). For example, setting allowCrossDomainXHR

to "deny" would still enable cross-domain XHRs. Leave the attribute out of the element declaration altogether if you do

not want to enable cross-domain requests.

ondominitialize attribute Specifies an event handler for the dominitialize event of a frame. This event is an AIR-

specific event that fires when the window and document objects of the frame have been created, but before any scripts

have been parsed or document elements created.

974ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

The frame dispatches the dominitialize event early enough in the loading sequence that any script in the child page

can reference objects, variables, and functions added to the child document by the dominitialize handler. The

parent page must be in the same sandbox as the child to directly add or access any objects in a child document.

However, a parent in the application sandbox can establish a sandbox bridge to communicate with content in a non-

application sandbox.

The following examples illustrate use of the iframe tag in AIR:

Place child.html in a remote sandbox, without mapping to an actual domain on a remote server:

<iframe src="http://localhost/air/child.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="http://localhost/air/"/>

Place child.html in a remote sandbox, allowing XMLHttpRequests only to www.example.com:

<iframe src="http://www.example.com/air/child.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="http://www.example.com/air/"/>

Place child.html in a remote sandbox, allowing XMLHttpRequests to any remote domain:

<iframe src="http://www.example.com/air/child.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="http://www.example.com/air/"
 allowCrossDomainXHR="allowCrossDomainXHR"/>

Place child.html in a local-with-file-system sandbox:

<iframe src="file:///templates/child.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="app-storage:/templates/"/>

Place child.html in a remote sandbox, using the dominitialize event to establish a sandbox bridge:

<html>
 <head>
 <script>
 var bridgeInterface = {};
 bridgeInterface.testProperty = "Bridge engaged";
 function engageBridge(){
 document.getElementById("sandbox").parentSandboxBridge = bridgeInterface;
 }
 </script>
 </head>
 <body>
 <iframe id="sandbox"
 src="http://www.example.com/air/child.html"
 documentRoot="app:/"
 sandboxRoot="http://www.example.com/air/"
 ondominitialize="engageBridge()"/>
 </body>
 </html>

The following child.html document illustrates how child content can access the parent sandbox bridge:

975ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

<html>
 <head>
 <script>
 document.write(window.parentSandboxBridge.testProperty);
 </script>
 </head>
 <body></body>
 </html>

For more information, see “Cross-scripting content in different security sandboxes” on page 999 and “HTML security

in Adobe AIR” on page 1080.

HTML element event handlers

Adobe AIR 1.0 and later

DOM objects in AIR and WebKit dispatch some events not found in the standard DOM event model. The following

table lists the related event attributes you can use to specify handlers for these events:

HTML contentEditable attribute

Adobe AIR 1.0 and later

You can add the contentEditable attribute to any HTML element to allow users to edit the content of the element.

For example, the following example HTML code sets the entire document as editable, except for first p element:

Callback attribute name Description

oncontextmenu Called when a context menu is invoked, such as through a right-click

or command-click on selected text.

oncopy Called when a selection in an element is copied.

oncut Called when a selection in an element is cut.

ondominitialize Called when the DOM of a document loaded in a frame or iframe is

created, but before any DOM elements are created or scripts parsed.

ondrag Called when an element is dragged.

ondragend Called when a drag is released.

ondragenter Called when a drag gesture enters the bounds of an element.

ondragleave Called when a drag gesture leaves the bounds of an element.

ondragover Called continuously while a drag gesture is within the bounds of an

element.

ondragstart Called when a drag gesture begins.

ondrop Called when a drag gesture is released while over an element.

onerror Called when an error occurs while loading an element.

oninput Called when text is entered into a form element.

onpaste Called when an item is pasted into an element.

onscroll Called when the content of a scrollable element is scrolled.

onselectstart Called when a selection begins.

976ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

<html>
 <head/>
 <body contentEditable="true">
 <h1>de Finibus Bonorum et Malorum</h1>
 <p contentEditable="false">Sed ut perspiciatis unde omnis iste natus error.</p>
 <p>At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis.</p>
 </body>
 </html>

Note: If you set the document.designMode property to on, then all elements in the document are editable, regardless of

the setting of contentEditable for an individual element. However, setting designMode to off, does not disable

editing of elements for which contentEditable is true. See “Document.designMode property” on page 970 for

additional information.

Data: URLs

Adobe AIR 2 and later

AIR supports data: URLs for the following elements:

• img

• input type=”image”

• CSS rules allowing images (such as background-image)

Data URLs allow you to insert binary image data directly into a CSS or HTML document as a base64-encoded string.

The following example uses a data: URL as a repeating background:

<html>
<head>
<style>
body {
background-
image:url('
0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAAZQTFRF%2F6cA%2F%2F%2F%2Fgxp3lwAAAAJ0Uk5T%2FwDltzBKAAA
BF0lEQVR42uzZQQ7CMAxE0e%2F7X5oNCyRocWzPiJbMBZ6qpIljE%2BnwklgKG7kwUjc2IkIaxkY0CPdEsCCasws6ShX
BgmBBmEagpXQQLAgWBAuSY2gaKaWPYEGwIEwg0FRmECwIFoQeQjJlhJWUEFazjFDJCkI5WYRWMgjtfEGYyQnCXD4jTCd
m1zmngFpBFznwVNi5RPSbwbWnpYr%2BBHi%2FtCTfgPLEPL7jBctAKBRptXJ8M%2BprIuZKu%2BUKcg4YK1PLz7kx4bS
qHyPaT4d%2B28OCJJiRBo4FCQsSA0bziT3XubMgYUG6fc5fatmGBQkL0hoJ1IaZMiQsSFiQ8vRscTjlQOI2iHZwtpHuf
%2BJAYiOiJSkj8Z%2FIQ4ABANvXGLd3%2BZMrAAAAAElFTkSuQmCC');
background-repeat:repeat;
}
</style>
</head>
<body>
</body>
</html>

When using data: URLS, be aware that extra whitespace is significant. For example, the data string must be entered as

a single, unbroken line. Otherwise, the line breaks are treated as part of the data and the image cannot be decoded.

977ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

CSS in AIR

Adobe AIR 1.0 and later

WebKit supports several extended CSS properties. Many of these extensions use the prefix: -webkit. Note that some

of these extensions are experimental in nature and may be removed from a future version of WebKit. For more

information about the Webkit support for CSS and its extensions to CSS, see Safari CSS Reference.

WebKit features not supported in AIR

Adobe AIR 1.0 and later

AIR does not support the following features available in WebKit or Safari 4:

• Cross-domain messaging via window.postMessage (AIR provides its own cross-domain communication APIs)

• CSS variables

• Web Open Font Format (WOFF) and SVG fonts.

• HTML video and audio tags

• Media device queries

• Offline application cache

• Printing (AIR provides its own PrintJob API)

• Spelling and grammar checkers

• SVG

• WAI-ARIA

• WebSockets (AIR provides its own socket APIs)

• Web workers

• WebKit SQL API (AIR provides its own API)

• WebKit geolocation API (AIR provides its own geolocation API on supported devices)

• WebKit multi-file upload API

• WebKit touch events (AIR provides its own touch events)

• Wireless Markup Language (WML)

The following lists contain specific JavaScript APIs, HTML elements, and CSS properties and values that AIR does not

support:

Unsupported JavaScript Window object members:

• applicationCache()

• console

• openDatabase()

• postMessage()

• document.print()

Unsupported HTML tags:

• audio

http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/SafariCSSRef/Introduction.html

978ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

• video

Unsupported HTML attributes:

• aria-*

• draggable

• formnovalidate

• list

• novalidate

• onbeforeload

• onhashchange

• onorientationchange

• onpagehide

• onpageshow

• onpopstate

• ontouchstart

• ontouchmove

• ontouchend

• ontouchcancel

• onwebkitbeginfullscreen

• onwebkitendfullscreen

• pattern

• required

• sandbox

Unsupported JavaScript events:

• beforeload

• hashchange

• orientationchange

• pagehide

• pageshow

• popstate

• touchstart

• touchmove

• touchend

• touchcancel

• webkitbeginfullscreen

• webkitendfullscreen

979ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

Unsupported CSS properties:

• background-clip

• background-origin (use -webkit-background-origin)

• background-repeat-x

• background-repeat-y

• background-size (use -webkit-background-size)

• border-bottom-left-radius

• border-bottom-right-radius

• border-radius

• border-top-left-radius

• border-top-right-radius

• text-rendering

• -webkit-animation-play-state

• -webkit-background-clip

• -webkit-color-correction

• -webkit-font-smoothing

Unsupported CSS values:

• appearance property values:

• media-volume-slider-container

• media-volume-slider

• media-volume-sliderthumb

• outer-spin-button

• border-box (background-clip and background-origin)

• contain (background-size)

• content-box (background-clip and background-origin)

• cover (background-size)

• list property values:

• afar

• amharic

• amharic-abegede

• cjk-earthly-branch

• cjk-heavenly-stem

• ethiopic

• ethiopic-abegede

• ethiopic-abegede-am-et

• ethiopic-abegede-gez

• ethiopic-abegede-ti-er

980ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

About the HTML environment

Last updated 10/9/2017

• ethiopic-abegede-ti-et

• ethiopic-halehame-aa-er

• ethiopic-halehame-aa-et

• ethiopic-halehame-am-et

• ethiopic-halehame-gez

• ethiopic-halehame-om-et

• ethiopic-halehame-sid-et

• ethiopic-halehame-so-et

• ethiopic-halehame-ti-er

• ethiopic-halehame-ti-et

• ethiopic-halehame-tig

• hangul

• hangul-consonant

• lower-norwegian

• oromo

• sidama

• somali

• tigre

• tigrinya-er

• tigrinya-er-abegede

• tigrinya-et

• tigrinya-et-abegede

• upper-greek

• upper-norwegian

• -wap-marquee (display property)

981

Last updated 10/9/2017

Chapter 59: Programming HTML and
JavaScript in AIR

Adobe AIR 1.0 and later

A number of programming topics are unique to developing Adobe® AIR® applications with HTML and JavaScript. The

following information is important whether you are programming an HTML-based AIR application or programming

a SWF-based AIR application that runs HTML and JavaScript using the HTMLLoader class (or mx:HTML Flex™

component).

About the HTMLLoader class

Adobe AIR 1.0 and later

The HTMLLoader class of Adobe AIR defines the display object that can display HTML content in an AIR application.

SWF-based applications can add an HTMLLoader control to an existing window or create an HTML window that

automatically contains a HTMLLoader object with HTMLLoader.createRootWindow(). The HTMLLoader object

can be accessed through the JavaScript window.htmlLoader property from within the loaded HTML page.

Loading HTML content from a URL

Adobe AIR 1.0 and later

The following code loads a URL into an HTMLLoader object (add the HTMLLoader as a child of the stage or other

display object container to display the HTML content in your application):

import flash.html.HTMLLoader;

 var html:HTMLLoader = new HTMLLoader;
 html.width = 400;
 html.height = 600;
 var urlReq:URLRequest = new URLRequest("http://www.adobe.com/");
 html.load(urlReq);

An HTMLLoader object's width and height properties are both set to 0 by default. You will want to set these

dimensions when adding an HTMLLoader object to the stage. The HTMLLoader dispatches several events as a page

loads. You can use these events to determine when it is safe to interact with the loaded page. These events are described

in “Handling HTML-related events in AIR” on page 1020.

Note: In the Flex framework, only classes that extend the UIComponent class can be added as children of a Flex Container

components. For this reason, you cannot directly add an HTMLLoader as a child of a Flex Container component;

however you can use the Flex mx:HTML control, you can build a custom class that extends UIComponent and contains

an HTMLLoader as a child of the UIComponent, or you can add the HTMLLoader as a child of a UIComponent and add

the UIComponent to the Flex container.

982ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

You can also render HTML text by using the TextField class, but its capabilities are limited. The Adobe® Flash® Player’s

TextField class supports a subset of HTML markup, but because of size limitations, its capabilities are limited. (The

HTMLLoader class included in Adobe AIR is not available in Flash Player.)

Loading HTML content from a string

Adobe AIR 1.0 and later

The loadString() method of an HTMLLoader object loads a string of HTML content into the HTMLLoader object:

var html:HTMLLoader = new HTMLLoader();
 var htmlStr:String = "<html><body>Hello world.</body></html>";
 html.loadString(htmlStr);

By default, content loaded via the loadString() method is placed in a non-application sandbox with the following

characteristics:

• It has access to load content from the network (but not from the file system).

• It cannot load data using XMLHttpRequest.

• The window.location property is set to "about:blank".

• The content cannot access the window.runtime property (like content in any non-application sandbox can).

In AIR 1.5, the HTMLLoader class includes a placeLoadStringContentInApplicationSandbox property. When

this property is set to true for an HTMLLoader object, content loaded via the loadString() method is placed in the

application sandbox. (The default value is false.) This gives content loaded via the loadString() method access to

the window.runtime property and to all AIR APIs. If you set this property to true, ensure that the data source for a

string used in a call to the loadString() method is trusted. Code statements in the HTML string are executed with

full application privileges when this property is set to true. Only set this property to true when you are certain that

the string cannot contain harmful code.

In applications compiled with the AIR 1.0 or AIR 1.1 SDKs, content loaded via the loadString() method is placed

in the application sandbox.

Important security rules when using HTML in AIR applications

Adobe AIR 1.0 and later

The files you install with the AIR application have access to the AIR APIs. For security reasons, content from other

sources do not. For example, this restriction prevents content from a remote domain (such as http://example.com)

from reading the contents the user’s desktop directory (or worse).

Because there are security loopholes that can be exploited through calling the eval() function (and related APIs),

content installed with the application, by default, is restricted from using these methods. However, some Ajax

frameworks use the calling the eval() function and related APIs.

To properly structure content to work in an AIR application, you must take into account the rules for the security

restrictions on content from different sources. Content from different sources is placed in separate security

classifications, called sandboxes (see “Security sandboxes” on page 1044). By default, content installed with the

application is installed in a sandbox known as the application sandbox, and this grants it access to the AIR APIs. The

application sandbox is generally the most secure sandbox, with restrictions designed to prevent the execution of

untrusted code.

983ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

The runtime allows you to load content installed with your application into a sandbox other than the application

sandbox. Content in non-application sandboxes operates in a security environment similar to that of a typical web

browser. For example, code in non-application sandboxes can use eval() and related methods (but at the same time

is not allowed to access the AIR APIs). The runtime includes ways to have content in different sandboxes communicate

securely (without exposing AIR APIs to non-application content, for example). For details, see “Cross-scripting

content in different security sandboxes” on page 999.

If you call code that is restricted from use in a sandbox for security reasons, the runtime dispatches a JavaScript error:

“Adobe AIR runtime security violation for JavaScript code in the application security sandbox.”

To avoid this error, follow the coding practices described in the next section, “Avoiding security-related JavaScript

errors” on page 983.

For more information, see “HTML security in Adobe AIR” on page 1080.

Avoiding security-related JavaScript errors

Adobe AIR 1.0 and later

If you call code that is restricted from use in a sandbox due to these security restrictions, the runtime dispatches a

JavaScript error: “Adobe AIR runtime security violation for JavaScript code in the application security sandbox.” To

avoid this error, follow these coding practices.

Causes of security-related JavaScript errors

Adobe AIR 1.0 and later

Code executing in the application sandbox is restricted from most operations that involve evaluating and executing

strings once the document load event has fired and any load event handlers have exited. Attempting to use the

following types of JavaScript statements that evaluate and execute potentially insecure strings generates JavaScript

errors:

• eval() function

• setTimeout() and setInterval()

• Function constructor

In addition, the following types of JavaScript statements fail without generating an unsafe JavaScript error:

• javascript: URLs

• Event callbacks assigned through onevent attributes in innerHTML and outerHTML statements

• Loading JavaScript files from outside the application installation directory

• document.write() and document.writeln()

• Synchronous XMLHttpRequests before the load event or during a load event handler

• Dynamically created script elements

Note: In some restricted cases, evaluation of strings is permitted. See “Code restrictions for content in different

sandboxes” on page 1082for more information.

Adobe maintains a list of Ajax frameworks known to support the application security sandbox, at

http://www.adobe.com/go/airappsandboxframeworks.

http://www.adobe.com/go/airappsandboxframeworks

984ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

The following sections describe how to rewrite scripts to avoid these unsafe JavaScript errors and silent failures for

code running in the application sandbox.

Mapping application content to a different sandbox

Adobe AIR 1.0 and later

In most cases, you can rewrite or restructure an application to avoid security-related JavaScript errors. However, when

rewriting or restructuring is not possible, you can load the application content into a different sandbox using the

technique described in “Loading application content into a non-application sandbox” on page 999. If that content also

must access AIR APIs, you can create a sandbox bridge, as described in “Setting up a sandbox bridge interface” on

page 1000.

eval() function

Flash Player 9 and later, Adobe AIR 1.0 and later

In the application sandbox, the eval() function can only be used before the page load event or during a load event

handler. After the page has loaded, calls to eval() will not execute code. However, in the following cases, you can

rewrite your code to avoid the use of eval().

Assigning properties to an object

Adobe AIR 1.0 and later

Instead of parsing a string to build the property accessor:

 eval("obj." + propName + " = " + val);

access properties with bracket notation:

 obj[propName] = val;

Creating a function with variables available in context

Adobe AIR 1.0 and later

Replace statements such as the following:

 function compile(var1, var2){
 eval("var fn = function(){ this."+var1+"(var2) }");
 return fn;
 }

with:

 function compile(var1, var2){
 var self = this;
 return function(){ self[var1](var2) };
 }

985ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

Creating an object using the name of the class as a string parameter

Adobe AIR 1.0 and later

Consider a hypothetical JavaScript class defined with the following code:

 var CustomClass =
 {
 Utils:
 {
 Parser: function(){ alert('constructor') }
 },
 Data:
 {

 }
 };
 var constructorClassName = "CustomClass.Utils.Parser";

The simplest way to create a instance would be to use eval():

 var myObj;
 eval('myObj=new ' + constructorClassName +'()')

However, you could avoid the call to eval() by parsing each component of the class name and building the new object

using bracket notation:

 function getter(str)
 {
 var obj = window;
 var names = str.split('.');
 for(var i=0;i<names.length;i++){
 if(typeof obj[names[i]]=='undefined'){
 var undefstring = names[0];
 for(var j=1;j<=i;j++)
 undefstring+="."+names[j];
 throw new Error(undefstring+" is undefined");
 }
 obj = obj[names[i]];
 }
 return obj;
 }

To create the instance, use:

 try{
 var Parser = getter(constructorClassName);
 var a = new Parser();
 }catch(e){
 alert(e);
 }

setTimeout() and setInterval()

Adobe AIR 1.0 and later

Replace the string passed as the handler function with a function reference or object. For example, replace a statement

such as:

986ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

 setTimeout("alert('Timeout')", 100);

with:

 setTimeout(function(){alert('Timeout')}, 100);

Or, when the function requires the this object to be set by the caller, replace a statement such as:

 this.appTimer = setInterval("obj.customFunction();", 100);

with the following:

 var _self = this;
 this.appTimer = setInterval(function(){obj.customFunction.apply(_self);}, 100);

Function constructor

Adobe AIR 1.0 and later

Calls to new Function(param, body) can be replaced with an inline function declaration or used only before the

page load event has been handled.

javascript: URLs

Adobe AIR 1.0 and later

The code defined in a link using the javascript: URL scheme is ignored in the application sandbox. No unsafe

JavaScript error is generated. You can replace links using javascript: URLs, such as:

 Click Me

with:

 Click Me

Event callbacks assigned through onevent attributes in innerHTML and

outerHTML statements

Adobe AIR 1.0 and later

When you use innerHTML or outerHTML to add elements to the DOM of a document, any event callbacks assigned

within the statement, such as onclick or onmouseover, are ignored. No security error is generated. Instead, you can

assign an id attribute to the new elements and set the event handler callback functions using the

addEventListener() method.

For example, given a target element in a document, such as:

 <div id="container"></div>

Replace statements such as:

 document.getElementById('container').innerHTML =
 'Click Me.';

with:

 document.getElementById('container').innerHTML = 'Click Me.';
 document.getElementById('smith').addEventListener("click", function() { code(); });

987ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

Loading JavaScript files from outside the application installation directory

Adobe AIR 1.0 and later

Loading script files from outside the application sandbox is not permitted. No security error is generated. All script

files that run in the application sandbox must be installed in the application directory. To use external scripts in a page,

you must map the page to a different sandbox. See “Loading application content into a non-application sandbox” on

page 999.

document.write() and document.writeln()

Adobe AIR 1.0 and later

Calls to document.write() or document.writeln() are ignored after the page load event has been handled. No

security error is generated. As an alternative, you can load a new file, or replace the body of the document using DOM

manipulation techniques.

Synchronous XMLHttpRequests before the load event or during a load event

handler

Adobe AIR 1.0 and later

Synchronous XMLHttpRequests initiated before the page load event or during a load event handler do not return any

content. Asynchronous XMLHttpRequests can be initiated, but do not return until after the load event. After the load

event has been handled, synchronous XMLHttpRequests behave normally.

Dynamically created script elements

Adobe AIR 1.0 and later

Dynamically created script elements, such as when created with innerHTML or document.createElement()

method are ignored.

Accessing AIR API classes from JavaScript

Adobe AIR 1.0 and later

In addition to the standard and extended elements of Webkit, HTML and JavaScript code can access the host classes

provided by the runtime. These classes let you access the advanced features that AIR provides, including:

• Access to the file system

• Use of local SQL databases

• Control of application and window menus

• Access to sockets for networking

• Use of user-defined classes and objects

• Sound capabilities

988ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

For example, the AIR file API includes a File class, contained in the flash.filesystem package. You can create a File

object in JavaScript as follows:

 var myFile = new window.runtime.flash.filesystem.File();

The runtime object is a special JavaScript object, available to HTML content running in AIR in the application

sandbox. It lets you access runtime classes from JavaScript. The flash property of the runtime object provides

access to the flash package. In turn, the flash.filesystem property of the runtime object provides access to the

flash.filesystem package (and this package includes the File class). Packages are a way of organizing classes used in

ActionScript.

Note: The runtime property is not automatically added to the window objects of pages loaded in a frame or iframe.

However, as long as the child document is in the application sandbox, the child can access the runtime property of the

parent.

Because the package structure of the runtime classes would require developers to type long strings of JavaScript

code strings to access each class (as in window.runtime.flash.desktop.NativeApplication), the AIR SDK

includes an AIRAliases.js file that lets you access runtime classes much more easily (for instance, by simply typing

air.NativeApplication).

The AIR API classes are discussed throughout this guide. Other classes from the Flash Player API, which may be of

interest to HTML developers, are described in the Adobe AIR API Reference for HTML Developers. ActionScript is

the language used in SWF (Flash Player) content. However, JavaScript and ActionScript syntax are similar. (They

are both based on versions of the ECMAScript language.) All built-in classes are available in both JavaScript (in

HTML content) and ActionScript (in SWF content).

Note: JavaScript code cannot use the Dictionary, XML, and XMLList classes, which are available in ActionScript.

Using the AIRAliases.js file

Adobe AIR 1.0 and later

The runtime classes are organized in a package structure, as in the following:

• window.runtime.flash.desktop.NativeApplication

• window.runtime.flash.desktop.ClipboardManager

• window.runtime.flash.filesystem.FileStream

• window.runtime.flash.data.SQLDatabase

Included in the AIR SDK is an AIRAliases.js file that provide “alias” definitions that let you access the runtime

classes with less typing. For example, you can access the classes listed above by simply typing the following:

• air.NativeApplication

• air.Clipboard

• air.FileStream

• air.SQLDatabase

This list is just a short subset of the classes in the AIRAliases.js file. The complete list of classes and package-level

functions is provided in the Adobe AIR API Reference for HTML Developers.

In addition to commonly used runtime classes, the AIRAliases.js file includes aliases for commonly used package-

level functions: window.runtime.trace(), window.runtime.flash.net.navigateToURL(), and

window.runtime.flash.net.sendToURL(), which are aliased as air.trace(), air.navigateToURL(), and

air.sendToURL().

989ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

To use the AIRAliases.js file, include the following script reference in your HTML page:

 <script src="AIRAliases.js"></script>

Adjust the path in the src reference, as needed.

Important: Except where noted, the JavaScript example code in this documentation assumes that you have included

the AIRAliases.js file in your HTML page.

About URLs in AIR

Adobe AIR 1.0 and later

In HTML content running in AIR, you can use any of the following URL schemes in defining src attributes for img,

frame, iframe, and script tags, in the href attribute of a link tag, or anywhere else you can provide a URL.

For more information about using URL schemes in AIR, see “URI schemes” on page 813.

Many of AIR APIs, including the File, Loader, URLStream, and Sound classes, use a URLRequest object rather than a

string containing the URL. The URLRequest object itself is initialized with a string, which can use any of the same url

schemes. For example, the following statement creates a URLRequest object that can be used to request the Adobe

home page:

 var urlReq = new air.URLRequest("http://www.adobe.com/");

For information about URLRequest objects see “HTTP communications” on page 811.

Making ActionScript objects available to JavaScript

Adobe AIR 1.0 and later

JavaScript in the HTML page loaded by an HTMLLoader object can call the classes, objects, and functions defined in

the ActionScript execution context using the window.runtime, window.htmlLoader, and window.nativeWindow

properties of the HTML page. You can also make ActionScript objects and functions available to JavaScript code by

creating references to them within the JavaScript execution context.

URL scheme Description Example

file A path relative to the root of the file system. file:///c:/AIR Test/test.txt

app A path relative to the root directory of the installed

application.

app:/images

app-storage A path relative to the application store directory. For each

installed application, AIR defines a unique application store

directory, which is a useful place to store data specific to that

application.

app-storage:/settings/prefs.xml

http A standard HTTP request. http://www.adobe.com

https A standard HTTPS request. https://secure.example.com

990ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

A basic example of accessing JavaScript objects from ActionScript

Adobe AIR 1.0 and later

The following example illustrates how to add properties referencing ActionScript objects to the global window object

of an HTML page:

 var html:HTMLLoader = new HTMLLoader();
 var foo:String = "Hello from container SWF."
 function helloFromJS(message:String):void {
 trace("JavaScript says:", message);
 }
 var urlReq:URLRequest = new URLRequest("test.html");
 html.addEventListener(Event.COMPLETE, loaded);
 html.load(urlReq);

 function loaded(e:Event):void{
 html.window.foo = foo;
 html.window.helloFromJS = helloFromJS;
 }

The HTML content (in a file named test.html) loaded into the HTMLLoader object in the previous example can access

the foo property and the helloFromJS() method defined in the parent SWF file:

 <html>
 <script>
 function alertFoo() {
 alert(foo);
 }
 </script>
 <body>
 <button onClick="alertFoo()">
 What is foo?
 </button>
 <p><button onClick="helloFromJS('Hi.')">
 Call helloFromJS() function.
 </button></p>
 </body>
 </html>

When accessing the JavaScript context of a loading document, you can use the htmlDOMInitialize event to create

objects early enough in the page construction sequence that any scripts defined in the page can access them. If you wait

for the complete event, only scripts in the page that run after the page load event can access the added objects.

Making class definitions available to JavaScript

Adobe AIR 1.0 and later

To make the ActionScript classes of your application available in JavaScript, you can assign the loaded HTML content

to the application domain containing the class definitions. The application domain of the JavaScript execution context

can be set with the runtimeApplicationDomain property of the HTMLLoader object. To set the application domain

to the primary application domain, for example, set runtimeApplicationDomain to

ApplicationDomain.currentDomain, as shown in the following code:

 html.runtimeApplicationDomain = ApplicationDomain.currentDomain;

991ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

Once the runtimeApplicationDomain property is set, the JavaScript context shares class definitions with the

assigned domain. To create an instance of a custom class in JavaScript, reference the class definition through the

window.runtime property and use the new operator:

 var customClassObject = new window.runtime.CustomClass();

The HTML content must be from a compatible security domain. If the HTML content is from a different security

domain than that of the application domain you assign, the page uses a default application domain instead. For

example, if you load a remote page from the Internet, you could not assign ApplicationDomain.currentDomain as the

application domain of the page.

Removing event listeners

Adobe AIR 1.0 and later

When you add JavaScript event listeners to objects outside the current page, including runtime objects, objects in

loaded SWF content, and even JavaScript objects running in other pages, you should always remove those event

listeners when the page unloads. Otherwise, the event listener dispatches the event to a handler function that no longer

exists. If this happens, you will see the following error message: “The application attempted to reference a JavaScript

object in an HTML page that is no longer loaded." Removing unneeded event listeners also lets AIR reclaim the

associated memory. For more information, see “Removing event listeners in HTML pages that navigate” on page 1025.

Accessing HTML DOM and JavaScript objects from
ActionScript

Adobe AIR 1.0 and later

Once the HTMLLoader object dispatches the complete event, you can access all the objects in the HTML DOM

(document object model) for the page. Accessible objects include display elements (such as div and p objects in the

page) as well as JavaScript variables and functions. The complete event corresponds to the JavaScript page load event.

Before complete is dispatched, DOM elements, variables, and functions may not have been parsed or created. If

possible, wait for the complete event before accessing the HTML DOM.

For example, consider the following HTML page:

 <html>
 <script>
 foo = 333;
 function test() {
 return "OK.";
 }
 </script>
 <body>
 <p id="p1">Hi.</p>
 </body>
 </html>

This simple HTML page defines a JavaScript variable named foo and a JavaScript function named test(). Both of these

are properties of the global window object of the page. Also, the window.document object includes a named P element

(with the ID p1), which you can access using the getElementById() method. Once the page is loaded (when the

HTMLLoader object dispatches the complete event), you can access each of these objects from ActionScript, as shown

in the following ActionScript code:

992ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

 var html:HTMLLoader = new HTMLLoader();
 html.width = 300;
 html.height = 300;
 html.addEventListener(Event.COMPLETE, completeHandler);
 var xhtml:XML =
 <html>
 <script>
 foo = 333;
 function test() {
 return "OK.";
 }
 </script>
 <body>
 <p id="p1">Hi.</p>
 </body>
 </html>;
 html.loadString(xhtml.toString());

 function completeHandler(e:Event):void {
 trace(html.window.foo); // 333
 trace(html.window.document.getElementById("p1").innerHTML); // Hi.
 trace(html.window.test()); // OK.
 }

To access the content of an HTML element, use the innerHTML property. For example, the previous code uses

html.window.document.getElementById("p1").innerHTML to get the contents of the HTML element named p1.

You can also set properties of the HTML page from ActionScript. For example, the following example sets the contents

of the p1 element and the value of the foo JavaScript variable on the page using a reference to the containing

HTMLLoader object:

 html.window.document.getElementById("p1").innerHTML = "Goodbye";
 html.window.foo = 66;

Embedding SWF content in HTML

Adobe AIR 1.0 and later

You can embed SWF content in HTML content within an AIR application just as you would in a browser. Embed the

SWF content using an object tag, an embed tag, or both.

Note: A common web development practice is to use both an object tag and an embed tag to display SWF content in an

HTML page. This practice has no benefit in AIR. You can use the W3C-standard object tag by itself in content to be

displayed in AIR. At the same time, you can continue to use the object and embed tags together, if necessary, for HTML

content that is also displayed in a browser.

If you have enabled transparency in the NativeWindow object displaying the HTML and SWF content, then AIR does

not display the SWF content when window mode (wmode) used to embed the content is set to the value: window. To

display SWF content in an HTML page of a transparent window, set the wmode parameter to opaque or transparent.

The window is the default value for wmode, so if you do not specify a value, your content may not be displayed.

993ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

The following example illustrates the use of the HTML object tag to display a SWF file within HTML content. The

wmode parameter is set to opaque so that the content is displayed, even if the underlying NativeWindow object is

transparent. The SWF file is loaded from the application directory, but you can use any of the URL schemes supported

by AIR. (The location from which the SWF file is loaded determines the security sandbox in which AIR places the

content.)

<object type="application/x-shockwave-flash" width="100%" height="100%">
<param name="movie" value="app:/SWFFile.swf"></param>
<param name="wmode" value="opaque"></param>

</object>

You can also use a script to load content dynamically. The following example creates an object node to display the

SWF file specified in the urlString parameter. The example adds the node as a child of the page element with the ID

specified by the elementID parameter:

<script>
function showSWF(urlString, elementID){

var displayContainer = document.getElementById(elementID);
var flash = createSWFObject(urlString, 'opaque', 650, 650);
displayContainer.appendChild(flash);

}
function createSWFObject(urlString, wmodeString, width, height){

var SWFObject = document.createElement("object");
SWFObject.setAttribute("type","application/x-shockwave-flash");
SWFObject.setAttribute("width","100%");
SWFObject.setAttribute("height","100%");
var movieParam = document.createElement("param");
movieParam.setAttribute("name","movie");
movieParam.setAttribute("value",urlString);
SWFObject.appendChild(movieParam);
var wmodeParam = document.createElement("param");
wmodeParam.setAttribute("name","wmode");
wmodeParam.setAttribute("value",wmodeString);
SWFObject.appendChild(wmodeParam);
return SWFObject;

}
</script>

SWF content is not displayed if the HTMLLoader object is scaled or rotated, or if the alpha property is set to a value

other than 1.0. Prior to AIR 1.5.2, SWF content was not displayed in a transparent window no matter which wmode

value was set.

Note: When an embedded SWF object attempts to load an external asset like a video file, the SWF content may not be

rendered properly if an absolute path to the video file is not provided in the HTML file. However, an embedded SWF

object can load an external image file using a relative path.

The following example depicts how external assets can be loaded through a SWF object embedded in an HTML

content:

994ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

var imageLoader;

function showSWF(urlString, elementID){

var displayContainer = document.getElementById(elementID);
imageLoader = createSWFObject(urlString,650,650);
displayContainer.appendChild(imageLoader);

}

function createSWFObject(urlString, width, height){

var SWFObject = document.createElement("object");
 SWFObject.setAttribute("type","application/x-shockwave-flash");
 SWFObject.setAttribute("width","100%");
 SWFObject.setAttribute("height","100%");

var movieParam = document.createElement("param");
 movieParam.setAttribute("name","movie");
 movieParam.setAttribute("value",urlString);
 SWFObject.appendChild(movieParam);

var flashVars = document.createElement("param");
 flashVars.setAttribute("name","FlashVars");

//Load the asset inside the SWF content.
 flashVars.setAttribute("value","imgPath=air.jpg");
 SWFObject.appendChild(flashVars);

return SWFObject;
}
function loadImage()
{

 showSWF("ImageLoader.swf", "imageSpot");

}

In the following ActionScript example, the image path passed by the HTML file is read and the image is loaded on

stage:

995ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

package
{
 import flash.display.Sprite;
 import flash.display.LoaderInfo;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;
 import flash.display.Loader;
 import flash.net.URLRequest;

 public class ImageLoader extends Sprite
 {
 public function ImageLoader()
 {

 var flashvars = LoaderInfo(this.loaderInfo).parameters;

 if(flashvars.imgPath){
 var imageLoader = new Loader();
 var image = new URLRequest(flashvars.imgPath);
 imageLoader.load(image);
 addChild(imageLoader);
 imageLoader.x = 0;
 imageLoader.y = 0;
 stage.scaleMode=StageScaleMode.NO_SCALE;
 stage.align=StageAlign.TOP_LEFT;
 }
 }
 }
}

Using ActionScript libraries within an HTML page

Adobe AIR 1.0 and later

AIR extends the HTML script element so that a page can import ActionScript classes in a compiled SWF file. For

example, to import a library named, myClasses.swf, located in the lib subdirectory of the root application folder,

include the following script tag within an HTML file:

 <script src="lib/myClasses.swf" type="application/x-shockwave-flash"></script>

Important: The type attribute must be type="application/x-shockwave-flash" for the library to be properly

loaded.

If the SWF content is compiled as a Flash Player 10 or AIR 1.5 SWF, you must set the XML namespace of the

application descriptor file to the AIR 1.5 namespace.

The lib directory and myClasses.swf file must also be included when the AIR file is packaged.

Access the imported classes through the runtime property of the JavaScript Window object:

 var libraryObject = new window.runtime.LibraryClass();

If the classes in the SWF file are organized in packages, you must include the package name as well. For example, if the

LibraryClass definition was in a package named utilities, you would create an instance of the class with the following

statement:

996ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

 var libraryObject = new window.runtime.utilities.LibraryClass();

Note: To compile an ActionScript SWF library for use as part of an HTML page in AIR, use the acompc compiler. The

acompc utility is part of the Flex SDK and is described in the Flex SDK documentation.

Accessing the HTML DOM and JavaScript objects from an imported

ActionScript file

Adobe AIR 1.0 and later

To access objects in an HTML page from ActionScript in a SWF file imported into the page using the <script> tag,

pass a reference to a JavaScript object, such as window or document, to a function defined in the ActionScript code.

Use the reference within the function to access the JavaScript object (or other objects accessible through the passed-in

reference).

For example, consider the following HTML page:

 <html>
 <script src="ASLibrary.swf" type="application/x-shockwave-flash"></script>
 <script>
 num = 254;
 function getStatus() {
 return "OK.";
 }
 function runASFunction(window){
 var obj = new runtime.ASClass();
 obj.accessDOM(window);
 }
 </script>
 <body onload="runASFunction">
 <p id="p1">Body text.</p>
 </body>
 </html>

This simple HTML page has a JavaScript variable named num and a JavaScript function named getStatus(). Both of

these are properties of the window object of the page. Also, the window.document object includes a named P element

(with the ID p1).

The page loads an ActionScript file, “ASLibrary.swf,” that contains a class, ASClass. ASClass defines a function named

accessDOM() that simply traces the values of these JavaScript objects. The accessDOM() method takes the JavaScript

Window object as an argument. Using this Window reference, it can access other objects in the page including

variables, functions, and DOM elements as illustrated in the following definition:

 public class ASClass{
 public function accessDOM(window:*):void {
 trace(window.num); // 254
 trace(window.document.getElementById("p1").innerHTML); // Body text..
 trace(window.getStatus()); // OK.
 }
 }

You can both get and set properties of the HTML page from an imported ActionScript class. For example, the

following function sets the contents of the p1 element on the page and it sets the value of the foo JavaScript variable

on the page:

997ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

 public function modifyDOM(window:*):void {
 window.document.getElementById("p1").innerHTML = "Bye";
 window.foo = 66;

Converting Date and RegExp objects

Adobe AIR 1.0 and later

The JavaScript and ActionScript languages both define Date and RegExp classes, but objects of these types are not

automatically converted between the two execution contexts. You must convert Date and RegExp objects to the

equivalent type before using them to set properties or function parameters in the alternate execution context.

For example, the following ActionScript code converts a JavaScript Date object named jsDate to an ActionScript

Date object:

 var asDate:Date = new Date(jsDate.getMilliseconds());

The following ActionScript code converts a JavaScript RegExp object named jsRegExp to an ActionScript RegExp

object:

 var flags:String = "";
 if (jsRegExp.dotAll) flags += "s";
 if (jsRegExp.extended) flags += "x";
 if (jsRegExp.global) flags += "g";
 if (jsRegExp.ignoreCase) flags += "i";
 if (jsRegExp.multiline) flags += "m";
 var asRegExp:RegExp = new RegExp(jsRegExp.source, flags);

Manipulating an HTML stylesheet from ActionScript

Adobe AIR 1.0 and later

Once the HTMLLoader object has dispatched the complete event, you can examine and manipulate CSS styles in a

page.

For example, consider the following simple HTML document:

998ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

 <html>
 <style>
 .style1A { font-family:Arial; font-size:12px }
 .style1B { font-family:Arial; font-size:24px }
 </style>
 <style>
 .style2 { font-family:Arial; font-size:12px }
 </style>
 <body>
 <p class="style1A">
 Style 1A
 </p>
 <p class="style1B">
 Style 1B
 </p>
 <p class="style2">
 Style 2
 </p>
 </body>
 </html>

After an HTMLLoader object loads this content, you can manipulate the CSS styles in the page via the cssRules array

of the window.document.styleSheets array, as shown here:

 var html:HTMLLoader = new HTMLLoader();
 var urlReq:URLRequest = new URLRequest("test.html");
 html.load(urlReq);
 html.addEventListener(Event.COMPLETE, completeHandler);
 function completeHandler(event:Event):void {
 var styleSheet0:Object = html.window.document.styleSheets[0];
 styleSheet0.cssRules[0].style.fontSize = "32px";
 styleSheet0.cssRules[1].style.color = "#FF0000";
 var styleSheet1:Object = html.window.document.styleSheets[1];
 styleSheet1.cssRules[0].style.color = "blue";
 styleSheet1.cssRules[0].style.font-family = "Monaco";
 }

This code adjusts the CSS styles so that the resulting HTML document appears like the following:

Keep in mind that code can add styles to the page after the HTMLLoader object dispatches the complete event.

999ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

Cross-scripting content in different security sandboxes

Adobe AIR 1.0 and later

The runtime security model isolates code from different origins. By cross-scripting content in different security

sandboxes, you can allow content in one security sandbox to access selected properties and methods in another

sandbox.

AIR security sandboxes and JavaScript code

Adobe AIR 1.0 and later

AIR enforces a same-origin policy that prevents code in one domain from interacting with content in another. All files

are placed in a sandbox based on their origin. Ordinarily, content in the application sandbox cannot violate the same-

origin principle and cross-script content loaded from outside the application install directory. However, AIR provides

a few techniques that let you cross-script non-application content.

One technique uses frames or iframes to map application content into a different security sandbox. Any pages loaded

from the sandboxed area of the application behave as if they were loaded from the remote domain. For example, by

mapping application content to the example.com domain, that content could cross-script pages loaded from

example.com.

Since this technique places the application content into a different sandbox, code within that content is also no longer

subject to the restrictions on the execution of code in evaluated strings. You can use this sandbox mapping technique

to ease these restrictions even when you don’t need to cross-script remote content. Mapping content in this way can

be especially useful when working with one of the many JavaScript frameworks or with existing code that relies on

evaluating strings. However, you should consider and guard against the additional risk that untrusted content could

be injected and executed when content is run outside the application sandbox.

At the same time, application content mapped to another sandbox loses its access to the AIR APIs, so the sandbox

mapping technique cannot be used to expose AIR functionality to code executed outside the application sandbox.

Another cross-scripting technique lets you create an interface called a sandbox bridge between content in a non-

application sandbox and its parent document in the application sandbox. The bridge allows the child content to access

properties and methods defined by the parent, the parent to access properties and methods defined by the child, or both.

Finally, you can also perform cross-domain XMLHttpRequests from the application sandbox and, optionally, from

other sandboxes.

For more information, see “HTML frame and iframe elements” on page 973, “HTML security in Adobe AIR” on

page 1080, and “The XMLHttpRequest object” on page 967.

Loading application content into a non-application sandbox

Adobe AIR 1.0 and later

To allow application content to safely cross-script content loaded from outside the application install directory, you

can use frame or iframe elements to load application content into the same security sandbox as the external content.

If you do not need to cross-script remote content, but still wish to load a page of your application outside the

application sandbox, you can use the same technique, specifying http://localhost/ or some other innocuous value,

as the domain of origin.

1000ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

AIR adds the new attributes, sandboxRoot and documentRoot, to the frame element that allow you to specify whether

an application file loaded into the frame should be mapped to a non-application sandbox. Files resolving to a path

underneath the sandboxRoot URL are loaded instead from the documentRoot directory. For security purposes, the

application content loaded in this way is treated as if it was actually loaded from the sandboxRoot URL.

The sandboxRoot property specifies the URL to use for determining the sandbox and domain in which to place the

frame content. The file:, http:, or https: URL schemes must be used. If you specify a relative URL, the content

remains in the application sandbox.

The documentRoot property specifies the directory from which to load the frame content. The file:, app:, or app-

storage: URL schemes must be used.

The following example maps content installed in the sandbox subdirectory of the application to run in the remote

sandbox and the www.example.com domain:

 <iframe
 src="http://www.example.com/local/ui.html"
 sandboxRoot="http://www.example.com/local/"
 documentRoot="app:/sandbox/">
 </iframe>

The ui.html page could load a javascript file from the local, sandbox folder using the following script tag:

<script src="http://www.example.com/local/ui.js"></script>

It could also load content from a directory on the remote server using a script tag such as the following:

<script src="http://www.example.com/remote/remote.js"></script>

The sandboxRoot URL will mask any content at the same URL on the remote server. In the above example, you would

not be able to access any remote content at www.example.com/local/ (or any of its subdirectories) because AIR

remaps the request to the local application directory. Requests are remapped whether they derive from page

navigation, from an XMLHttpRequest, or from any other means of loading content.

Setting up a sandbox bridge interface

Adobe AIR 1.0 and later

You can use a sandbox bridge when content in the application sandbox must access properties or methods defined by

content in a non-application sandbox, or when non-application content must access properties and methods defined

by content in the application sandbox. Create a bridge with the childSandboxBridge and parentSandboxBridge

properties of the window object of any child document.

Establishing a child sandbox bridge

Adobe AIR 1.0 and later

The childSandboxBridge property allows the child document to expose an interface to content in the parent

document. To expose an interface, you set the childSandbox property to a function or object in the child document.

You can then access the object or function from content in the parent document. The following example shows how a

script running in a child document can expose an object containing a function and a property to its parent:

1001ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

 var interface = {};
 interface.calculatePrice = function(){
 return ".45 cents";
 }
 interface.storeID = "abc"
 window.childSandboxBridge = interface;

If this child content was loaded into an iframe assigned an id of “child”, you could access the interface from parent

content by reading the childSandboxBridge property of the frame:

 var childInterface = document.getElementById("child").contentWindow.childSandboxBridge;
 air.trace(childInterface.calculatePrice()); //traces ".45 cents"
 air.trace(childInterface.storeID)); //traces "abc"

Establishing a parent sandbox bridge

Adobe AIR 1.0 and later

The parentSandboxBridge property allows the parent document to expose an interface to content in a child

document. To expose an interface, the parent document sets the parentSandbox property of the child document to a

function or object defined in the parent document. You can then access the object or function from content in the

child. The following example shows how a script running in a parent frame can expose an object containing a function

to a child document:

 var interface = {};
 interface.save = function(text){
 var saveFile = air.File("app-storage:/save.txt");
 //write text to file
 }
 document.getElementById("child").contentWindow.parentSandboxBridge = interface;

Using this interface, content in the child frame could save text to a file named save.txt, but would not have any other

access to the file system. The child content could call the save function as follows:

 var textToSave = "A string.";
 window.parentSandboxBridge.save(textToSave);

Application content should expose the narrowest interface possible to other sandboxes. Non-application content

should be considered inherently untrustworthy since it may be subject to accidental or malicious code injection. You

must put appropriate safeguards in place to prevent misuse of the interface you expose through the parent sandbox

bridge.

Accessing a parent sandbox bridge during page loading

Adobe AIR 1.0 and later

In order for a script in a child document to access a parent sandbox bridge, the bridge must be set up before the script

is run. Window, frame and iframe objects dispatch a dominitialize event when a new page DOM has been created,

but before any scripts have been parsed, or DOM elements added. You can use the dominitialize event to establish

the bridge early enough in the page construction sequence that all scripts in the child document can access it.

The following example illustrates how to create a parent sandbox bridge in response to the dominitialize event

dispatched from the child frame:

1002ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Programming HTML and JavaScript in AIR

Last updated 10/9/2017

 <html>
 <head>
 <script>
 var bridgeInterface = {};
 bridgeInterface.testProperty = "Bridge engaged";
 function engageBridge(){
 document.getElementById("sandbox").contentWindow.parentSandboxBridge = bridgeInterface;
 }
 </script>
 </head>
 <body>
 <iframe id="sandbox"
 src="http://www.example.com/air/child.html"
 documentRoot="app:/"
 sandboxRoot="http://www.example.com/air/"
 ondominitialize="engageBridge()"/>
 </body>
 </html>

The following child.html document illustrates how child content can access the parent sandbox bridge:

 <html>
 <head>
 <script>
 document.write(window.parentSandboxBridge.testProperty);
 </script>
 </head>
 <body></body>
 </html>

To listen for the dominitialize event on a child window, rather than a frame, you must add the listener to the new

child window object created by the window.open() function:

 var childWindow = window.open();
 childWindow.addEventListener("dominitialize", engageBridge());
 childWindow.document.location = "http://www.example.com/air/child.html";

In this case, there is no way to map application content into a non-application sandbox. This technique is only useful

when child.html is loaded from outside the application directory. You can still map application content in the

window to a non-application sandbox, but you must first load an intermediate page that itself uses frames to load the

child document and map it to the desired sandbox.

If you use the HTMLLoader class createRootWindow() function to create a window, the new window is not a child

of the document from which createRootWindow() is called. Thus, you cannot create a sandbox bridge from the

calling window to non-application content loaded into the new window. Instead, you must use load an intermediate

page in the new window that itself uses frames to load the child document. You can then establish the bridge from the

parent document of the new window to the child document loaded into the frame.

1003

Last updated 10/9/2017

Chapter 60: Scripting the AIR HTML
Container

Adobe AIR 1.0 and later

The HTMLLoader class serves as the container for HTML content in Adobe® AIR®. The class provides many properties

and methods, inherited from the Sprite class, for controlling the behavior and appearance of the object on the

ActionScript® 3.0 display list. In addition, the class defines properties and methods for such tasks as loading and

interacting with HTML content and managing history.

The HTMLHost class defines a set of default behaviors for an HTMLLoader. When you create an HTMLLoader object,

no HTMLHost implementation is provided. Thus when HTML content triggers one of the default behaviors, such as

changing the window location, or the window title, nothing happens. You can extend the HTMLHost class to define

the behaviors desired for your application.

A default implementation of the HTMLHost is provided for HTML windows created by AIR. You can assign the

default HTMLHost implementation to another HTMLLoader object by setting the htmlHost property of the object

using a new HTMLHost object created with the defaultBehavior parameter set to true.

Note: In the Adobe® Flex™ Framework, the HTMLLoader object is wrapped by the mx:HTML component. When using

Flex, use the HTML component.

Display properties of HTMLLoader objects

Adobe AIR 1.0 and later

An HTMLLoader object inherits the display properties of the Adobe® Flash® Player Sprite class. You can resize, move,

hide, and change the background color, for example. Or you can apply advanced effects like filters, masks, scaling, and

rotation. When applying effects, consider the impact on legibility. SWF and PDF content loaded into an HTML page

cannot be displayed when some effects are applied.

HTML windows contain an HTMLLoader object that renders the HTML content. This object is constrained within

the area of the window, so changing the dimensions, position, rotation, or scale factor does not always produce

desirable results.

Basic display properties

Adobe AIR 1.0 and later

The basic display properties of the HTMLLoader allow you to position the control within its parent display object, to

set the size, and to show or hide the control. You should not change these properties for the HTMLLoader object of an

HTML window.

The basic properties include:

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/html/HTMLHost.html

1004ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

Outside an HTML window, the width and height properties of an HTMLLoader object default to 0. You must set the

width and height before the loaded HTML content can be seen. HTML content is drawn to the HTMLLoader size, laid

out according to the HTML and CSS properties in the content. Changing the HTMLLoader size reflows the content.

When loading content into a new HTMLLoader object (with width still set to 0), it can be tempting to set the display

width and height of the HTMLLoader using the contentWidth and contentHeight properties. This technique

works for pages that have a reasonable minimum width when laid out according the HTML and CSS flow rules.

However, some pages flow into a long and narrow layout in the absence of a reasonable width provided by the

HTMLLoader.

Note: When you change the width and height of an HTMLLoader object, the scaleX and scaleY values do not change, as

would happen with most other types of display objects.

Transparency of HTMLLoader content

Adobe AIR 1.0 and later

The paintsDefaultBackground property of an HTMLLoader object, which is true by default, determines whether

the HTMLLoader object draws an opaque background. When paintsDefaultBackground is false, the background

is clear. The display object container or other display objects below the HTMLLoader object are visible behind the

foreground elements of the HTML content.

If the body element or any other element of the HTML document specifies a background color (using

style="background-color:gray", for example), then the background of that portion of the HTML is opaque and

rendered with the specified background color. If you set the opaqueBackground property of the HTMLLoader object,

and paintsDefaultBackground is false, then the color set for the opaqueBackground is visible.

Note: You can use a transparent, PNG-format graphic to provide an alpha-blended background for an element in an

HTML document. Setting the opacity style of an HTML element is not supported.

Scaling HTMLLoader content

Adobe AIR 1.0 and later

Avoid scaling an HTMLLoader object beyond a scale factor of 1.0. Text in HTMLLoader content is rendered at a

specific resolution and appears pixelated if the HTMLLoader object is scaled up. To prevent the HTMLLoader, as well

as its contents, from scaling when a window is resized, set the scaleMode property of the Stage to

StageScaleMode.NO_SCALE.

Considerations when loading SWF or PDF content in an HTML page

Adobe AIR 1.0 and later

SWF and PDF content loaded into in an HTMLLoader object disappears in the following conditions:

• If you scale the HTMLLoader object to a factor other that 1.0.

Property Notes

x, y Positions the object within its parent container.

width, height Changes the dimensions of the display area.

visible Controls the visibility of the object and any content it contains.

1005ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

• If you set the alpha property of the HTMLLoader object to a value other than 1.0.

• If you rotate the HTMLLoader content.

The content reappears if you remove the offending property setting and remove the active filters.

In addition, the runtime cannot display PDF content in transparent windows. The runtime only displays SWF content

embedded in an HTML page when the wmode parameter of the object or embed tag is set to opaque or transparent.

Since the default value of wmode is window, SWF content is not displayed in transparent windows unless you explicitly

set the wmode parameter.

Note: Prior to AIR 1.5.2, SWF embedded in HTML could not be displayed no matter which wmode value was used.

For more information on loading these types of media in an HTMLLoader, see “Embedding SWF content in HTML”

on page 992and “Adding PDF content in AIR” on page 551.

Advanced display properties

Adobe AIR 1.0 and later

The HTMLLoader class inherits several methods that can be used for special effects. In general, these effects have

limitations when used with the HTMLLoader display, but they can be useful for transitions or other temporary effects.

For example, if you display a dialog window to gather user input, you could blur the display of the main window until

the user closes the dialog. Likewise, you could fade the display out when closing a window.

The advanced display properties include:

The following example illustrates how to set the filters array to blur the entire HTML display:

Property Limitations

alpha Can reduce the legibility of HTML content

filters In an HTML Window, exterior effects are clipped by the window edge

graphics Shapes drawn with graphics commands appear below HTML content,

including the default background. The paintsDefaultBackground property

must be false for the drawn shapes to be visible.

opaqueBackground Does not change the color of the default background. The

paintsDefaultBackground property must be false for this color layer to be

visible.

rotation The corners of the rectangular HTMLLoader area can be clipped by the

window edge. SWF and PDF content loaded in the HTML content is not

displayed.

scaleX, scaleY The rendered display can appear pixelated at scale factors greater than 1. SWF

and PDF content loaded in the HTML content is not displayed.

transform Can reduce legibility of HTML content. The HTML display can be clipped by the

window edge. SWF and PDF content loaded in the HTML content is not

displayed if the transform involves rotation, scaling, or skewing.

1006ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

 var html:HTMLLoader = new HTMLLoader();
 var urlReq:URLRequest = new URLRequest("http://www.adobe.com/");
 html.load(urlReq);
 html.width = 800;
 html.height = 600;

 var blur:BlurFilter = new BlurFilter(8);
 var filters:Array = [blur];
 html.filters = filters;

Scrolling HTML content

Adobe AIR 1.0 and later

The HTMLLoader class includes the following properties that let you control the scrolling of HTML content:

The following code sets the scrollV property so that HTML content is scrolled to the bottom of the page:

 var html:HTMLLoader = new HTMLLoader();
 html.addEventListener(Event.HTML_BOUNDS_CHANGE, scrollHTML);

 const SIZE:Number = 600;
 html.width = SIZE;
 html.height = SIZE;

 var urlReq:URLRequest = new URLRequest("http://www.adobe.com");
 html.load(urlReq);
 this.addChild(html);

 function scrollHTML(event:Event):void
 {
 html.scrollV = html.contentHeight - SIZE;
 }

The HTMLLoader does not include horizontal and vertical scroll bars. You can implement scroll bars in ActionScript

or by using a Flex component. The Flex HTML component automatically includes scroll bars for HTML content. You

can also use the HTMLLoader.createRootWindow() method to create a window that contains an HTMLLoader object

with scroll bars (see “Creating windows with scrolling HTML content” on page 1018).

Property Description

contentHeight The height, in pixels, of the HTML content.

contentWidth The width, in pixels, of the HTML content.

scrollH The horizontal scroll position of the HTML content within the HTMLLoader object.

scrollV The vertical scroll position of the HTML content within the HTMLLoader object.

1007ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

Accessing the HTML history list

Adobe AIR 1.0 and later

As new pages are loaded in an HTMLLoader object, the runtime maintains a history list for the object. The history list

corresponds to the window.history object in the HTML page. The HTMLLoader class includes the following

properties and methods that let you work with the HTML history list:

Items in the history list are stored as objects of type HTMLHistoryItem. The HTMLHistoryItem class has the following

properties:

Setting the user agent used when loading HTML content

Adobe AIR 1.0 and later

The HTMLLoader class has a userAgent property, which lets you set the user agent string used by the HTMLLoader.

Set the userAgent property of the HTMLLoader object before calling the load() method. If you set this property on

the HTMLLoader instance, then the userAgent property of the URLRequest passed to the load() method is not used.

You can set the default user agent string used by all HTMLLoader objects in an application domain by setting the

URLRequestDefaults.userAgent property. The static URLRequestDefaults properties apply as defaults for all

URLRequest objects, not only URLRequests used with the load() method of HTMLLoader objects. Setting the

userAgent property of an HTMLLoader overrides the default URLRequestDefaults.userAgent setting.

Class member Description

historyLength The overall length of the history list, including back and forward entries.

historyPosition The current position in the history list. History items before this position represent “back” navigation, and

items after this position represent “forward” navigation.

getHistoryAt() Returns the URLRequest object corresponding to the history entry at the specified position in the history list.

historyBack() Navigates back in the history list, if possible.

historyForward() Navigates forward in the history list, if possible.

historyGo() Navigates the indicated number of steps in the browser history. Navigates forward if positive, backward if

negative. Navigating to zero reloads the page. Specifying a position beyond the end navigates to the end of

the list.

Property Description

isPost Set to true if the HTML page includes POST data.

originalUrl The original URL of the HTML page, before any redirects.

title The title of the HTML page.

url The URL of the HTML page.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/html/HTMLHistoryItem.html

1008ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

If you do not set a user agent value for either the userAgent property of the HTMLLoader object or for

URLRequestDefaults.userAgent, then the default AIR user agent value is used. This default value varies depending

on the runtime operating system (such as Mac OS or Windows), the runtime language, and the runtime version, as in

the following two examples:

• "Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/420+ (KHTML, like Gecko)

AdobeAIR/1.0"

• "Mozilla/5.0 (Windows; U; en) AppleWebKit/420+ (KHTML, like Gecko) AdobeAIR/1.0"

Setting the character encoding to use for HTML content

Adobe AIR 1.0 and later

An HTML page can specify the character encoding it uses by including meta tag, such as the following:

 meta http-equiv="content-type" content="text/html" charset="ISO-8859-1";

Override the page setting to ensure that a specific character encoding is used by setting the textEncodingOverride

property of the HTMLLoader object:

 var html:HTMLLoader = new HTMLLoader();
 html.textEncodingOverride = "ISO-8859-1";

Specify the character encoding for the HTMLLoader content to use when an HTML page does not specify a setting

with the textEncodingFallback property of the HTMLLoader object:

 var html:HTMLLoader = new HTMLLoader();
 html.textEncodingFallback = "ISO-8859-1";

The textEncodingOverride property overrides the setting in the HTML page. And the textEncodingOverride

property and the setting in the HTML page override the textEncodingFallback property.

Set the textEncodingOverride property or the textEncodingFallback property before loading the HTML

content.

Defining browser-like user interfaces for HTML content

Adobe AIR 1.0 and later

JavaScript provides several APIs for controlling the window displaying the HTML content. In AIR, these APIs can be

overridden by implementing a custom HTMLHost class.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/html/HTMLHost.html

1009ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

About extending the HTMLHost class

Adobe AIR 1.0 and later

If, for example, your application presents multiple HTMLLoader objects in a tabbed interface, you may want title

changes made by the loaded HTML pages to change the label of the tab, not the title of the main window. Similarly,

your code could respond to a window.moveTo() call by repositioning the HTMLLoader object in its parent display

object container, by moving the window that contains the HTMLLoader object, by doing nothing at all, or by doing

something else entirely.

The AIR HTMLHost class controls the following JavaScript properties and methods:

• window.status

• window.document.title

• window.location

• window.blur()

• window.close()

• window.focus()

• window.moveBy()

• window.moveTo()

• window.open()

• window.resizeBy()

• window.resizeTo()

When you create an HTMLLoader object using new HTMLLoader(), the listed JavaScript properties or methods are

not enabled. The HTMLHost class provides a default, browser-like implementation of these JavaScript APIs. You can

also extend the HTMLHost class to customize the behavior. To create an HTMLHost object supporting the default

behavior, set the defaultBehaviors parameter to true in the HTMLHost constructor:

var defaultHost:HTMLHost = new HTMLHost(true);

When you create an HTML window in AIR with the HTMLLoader class createRootWindow() method, an

HTMLHost instance supporting the default behaviors is assigned automatically. You can change the host object

behavior by assigning a different HTMLHost implementation to the htmlHost property of the HTMLLoader, or you

can assign null to disable the features entirely.

Note: AIR assigns a default HTMLHost object to the initial window created for an HTML-based AIR application and

any windows created by the default implementation of the JavaScript window.open() method.

Example: Extending the HTMLHost class

Adobe AIR 1.0 and later

The following example shows how to customize the way that an HTMLLoader object affects the user interface, by

extending the HTMLHost class:

Flex example:

1 Create a class that extends the HTMLHost class (a subclass).

1010ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

2 Override methods of the new class to handle changes in the user interface-related settings. For example, the

following class, CustomHost, defines behaviors for calls to window.open() and changes to

window.document.title. Calls to window.open() open the HTML page in a new window, and changes to

window.document.title (including the setting of the <title> element of an HTML page) set the title of that

window.

 package
 {
 import flash.html.*;
 import flash.display.StageScaleMode;
 import flash.display.NativeWindow;
 import flash.display.NativeWindowInitOptions;

 public class CustomHost extends HTMLHost
 {
 import flash.html.*;
 override public function
 createWindow(windowCreateOptions:HTMLWindowCreateOptions):HTMLLoader
 {
 var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
 var bounds:Rectangle = new Rectangle(windowCreateOptions.x,
 windowCreateOptions.y,
 windowCreateOptions.width,
 windowCreateOptions.height);
 var htmlControl:HTMLLoader = HTMLLoader.createRootWindow(true, initOptions,
 windowCreateOptions.scrollBarsVisible, bounds);
 htmlControl.htmlHost = new HTMLHostImplementation();
 if(windowCreateOptions.fullscreen){
 htmlControl.stage.displayState =
 StageDisplayState.FULL_SCREEN_INTERACTIVE;
 }
 return htmlControl;
 }
 override public function updateTitle(title:String):void
 {
 htmlLoader.stage.nativeWindow.title = title;
 }
 }
 }

3 In the code that contains the HTMLLoader (not the code of the new subclass of HTMLHost), create an object of

the new class. Assign the new object to the htmlHost property of the HTMLLoader. The following Flex code uses

the CustomHost class defined in the previous step:

1011ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

 <?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical"
 applicationComplete="init()">
 <mx:Script>
 <![CDATA[
 import flash.html.HTMLLoader;
 import CustomHost;
 private function init():void
 {
 var html:HTMLLoader = new HTMLLoader();
 html.width = container.width;
 html.height = container.height;
 var urlReq:URLRequest = new URLRequest("Test.html");
 html.htmlHost = new CustomHost();
 html.load(urlReq);
 container.addChild(html);
 }
]]>
 </mx:Script>
 <mx:UIComponent id="container" width="100%" height="100%"/>
 </mx:WindowedApplication>

To test the code described here, include an HTML file with the following content in the application directory:

 <html>
 <head>
 <title>Test</title>
 </head>
 <script>
 function openWindow()
 {
 window.runtime.trace("in");
 document.title = "foo"
 window.open('Test.html');
 window.runtime.trace("out");
 }
 </script>
 <body>
 window.open('Test.html')
 </body>
 </html>

Flash Professional example:

1 Create a Flash file for AIR. Set its document class to CustomHostExample and then save the file as

CustomHostExample.fla.

2 Create an ActionScript file called CustomHost.as containing a class that extends the HTMLHost class (a subclass).

This class overrides certain methods of the new class to handle changes in the user interface-related settings. For

example, the following class, CustomHost, defines behaviors for calls to window.open() and changes to

window.document.title. Calls to the window.open() method open the HTML page in a new window, and

changes to the window.document.title property (including the setting of the <title> element of an HTML

page) set the title of that window.

1012ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

 package
 {
 import flash.display.StageScaleMode;
 import flash.display.NativeWindow;
 import flash.display.NativeWindowInitOptions;
 import flash.events.Event;
 import flash.events.NativeWindowBoundsEvent;
 import flash.geom.Rectangle;
 import flash.html.HTMLLoader;
 import flash.html.HTMLHost;
 import flash.html.HTMLWindowCreateOptions;
 import flash.text.TextField;

 public class CustomHost extends HTMLHost
 {
 public var statusField:TextField;

 public function CustomHost(defaultBehaviors:Boolean=true)
 {
 super(defaultBehaviors);
 }
 override public function windowClose():void
 {
 htmlLoader.stage.nativeWindow.close();
 }
 override public function createWindow(
 windowCreateOptions:HTMLWindowCreateOptions):HTMLLoader
 {
 var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
 var bounds:Rectangle = new Rectangle(windowCreateOptions.x,
 windowCreateOptions.y,
 windowCreateOptions.width,
 windowCreateOptions.height);
 var htmlControl:HTMLLoader = HTMLLoader.createRootWindow(true, initOptions,
 windowCreateOptions.scrollBarsVisible, bounds);
 htmlControl.htmlHost = new HTMLHostImplementation();
 if(windowCreateOptions.fullscreen){
 htmlControl.stage.displayState =
 StageDisplayState.FULL_SCREEN_INTERACTIVE;
 }
 return htmlControl;
 }
 override public function updateLocation(locationURL:String):void
 {
 trace(locationURL);
 }
 override public function set windowRect(value:Rectangle):void
 {
 htmlLoader.stage.nativeWindow.bounds = value;

1013ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

 }
 override public function updateStatus(status:String):void
 {
 statusField.text = status;
 trace(status);
 }
 override public function updateTitle(title:String):void
 {
 htmlLoader.stage.nativeWindow.title = title + "- Example Application";
 }
 override public function windowBlur():void
 {
 htmlLoader.alpha = 0.5;
 }
 override public function windowFocus():void
 {
 htmlLoader.alpha = 1;
 }
 }
 }

3 Create another ActionScript file named CustomHostExample.as to contain the document class for the application.

This class creates an HTMLLoader object and sets its host property to an instance of the CustomHost class defined

in the previous step:

1014ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

 package
 {
 import flash.display.Sprite;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;
 import flash.text.TextField;

 public class CustomHostExample extends Sprite
 {
 function CustomHostExample():void
 {
 var html:HTMLLoader = new HTMLLoader();
 html.width = 550;
 html.height = 380;
 var host:CustomHost = new CustomHost();
 html.htmlHost = host;

 var urlReq:URLRequest = new URLRequest("Test.html");
 html.load(urlReq);

 addChild(html);

 var statusTxt:TextField = new TextField();
 statusTxt.y = 380;
 statusTxt.height = 20;
 statusTxt.width = 550;
 statusTxt.background = true;
 statusTxt.backgroundColor = 0xEEEEEEEE;
 addChild(statusTxt);

 host.statusField = statusTxt;
 }
 }
 }

To test the code described here, include an HTML file with the following content in the application directory:

1015ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

 <html>
 <head>
 <title>Test</title>
 <script>
 function openWindow()
 {
 document.title = "Test"
 window.open('Test.html');
 }
 </script>
 </head>
 <body bgColor="#EEEEEE">
 window.open('Test.html')

 window.document.location = 'http://www.adobe.com'

moveBy(6, 12)

window.close()

window.blur()

window.focus()

window.status=new
Date().toString()
 </body>
 </html>

Handling changes to the window.location property

Adobe AIR 1.0 and later

Override the locationChange() method to handle changes of the URL of the HTML page. The locationChange()

method is called when JavaScript in a page changes the value of window.location. The following example simply

loads the requested URL:

 override public function updateLocation(locationURL:String):void
 {
 htmlLoader.load(new URLRequest(locationURL));
 }

Note: You can use the htmlLoader property of the HTMLHost object to reference the current HTMLLoader object.

Handling JavaScript calls to window.moveBy(), window.moveTo(),

window.resizeTo(), window.resizeBy()

Adobe AIR 1.0 and later

Override the set windowRect() method to handle changes in the bounds of the HTML content. The set

windowRect() method is called when JavaScript in a page calls window.moveBy(), window.moveTo(),

window.resizeTo(), or window.resizeBy(). The following example simply updates the bounds of the desktop

window:

 override public function set windowRect(value:Rectangle):void
 {
 htmlLoader.stage.nativeWindow.bounds = value;
 }

1016ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

Handling JavaScript calls to window.open()

Adobe AIR 1.0 and later

Override the createWindow() method to handle JavaScript calls to window.open(). Implementations of the

createWindow() method are responsible for creating and returning a new HTMLLoader object. Typically, you would

display the HTMLLoader in a new window, but creating a window is not required.

The following example illustrates how to implement the createWindow() function using the

HTMLLoader.createRootWindow() to create both the window and the HTMLLoader object. You can also create a

NativeWindow object separately and add the HTMLLoader to the window stage.

 override public function createWindow(windowCreateOptions:HTMLWindowCreateOptions):HTMLLoader{
 var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
 var bounds:Rectangle = new Rectangle(windowCreateOptions.x, windowCreateOptions.y,
 windowCreateOptions.width, windowCreateOptions.height);
 var htmlControl:HTMLLoader = HTMLLoader.createRootWindow(true, initOptions,
 windowCreateOptions.scrollBarsVisible, bounds);
 htmlControl.htmlHost = new HTMLHostImplementation();
 if(windowCreateOptions.fullscreen){
 htmlControl.stage.displayState = StageDisplayState.FULL_SCREEN_INTERACTIVE;
 }
 return htmlControl;
 }

Note: This example assigns the custom HTMLHost implementation to any new windows created with window.open().

You can also use a different implementation or set the htmlHost property to null for new windows, if desired.

The object passed as a parameter to the createWindow() method is an HTMLWindowCreateOptions object. The

HTMLWindowCreateOptions class includes properties that report the values set in the features parameter string in

the call to window.open():

The HTMLLoader class does not implement all the features that can be specified in the feature string. Your application

must provide scroll bars, location bars, menu bars, status bars, and toolbars when appropriate.

HTMLWindowCreateOptions

property

Corresponding setting in the

features string in the JavaScript

call to window.open()

fullscreen fullscreen

height height

locationBarVisible location

menuBarVisible menubar

resizeable resizable

scrollBarsVisible scrollbars

statusBarVisible status

toolBarVisible toolbar

width width

x left or screenX

y top or screenY

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/html/HTMLWindowCreateOptions.html

1017ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

The other arguments to the JavaScript window.open() method are handled by the system. A createWindow()

implementation should not load content in the HTMLLoader object, or set the window title.

Handling JavaScript calls to window.close()

Adobe AIR 1.0 and later

Override the windowClose() to handle JavaScript calls to window.close() method. The following example closes the

desktop window when the window.close() method is called:

override public function windowClose():void
{

htmlLoader.stage.nativeWindow.close();
}

JavaScript calls to window.close() do not have to close the containing window. You could, for example, remove the

HTMLLoader from the display list, leaving the window (which may have other content) open, as in the following code:

override public function windowClose():void
{

htmlLoader.parent.removeChild(htmlLoader);
}

Handling changes of the window.status property

Adobe AIR 1.0 and later

Override the updateStatus() method to handle JavaScript changes to the value of window.status. The following

example traces the status value:

 override public function updateStatus(status:String):void
 {
 trace(status);
 }

The requested status is passed as a string to the updateStatus() method.

The HTMLLoader object does not provide a status bar.

Handling changes of the window.document.title property

Adobe AIR 1.0 and later

override the updateTitle() method to handle JavaScript changes to the value of window.document.title. The

following example changes the window title and appends the string, "Sample," to the title:

 override public function updateTitle(title:String):void
 {
 htmlLoader.stage.nativeWindow.title = title + " - Sample";
 }

When document.title is set on an HTML page, the requested title is passed as a string to the updateTitle()

method.

Changes to document.title do not have to change the title of the window containing the HTMLLoader object. You

could, for example, change another interface element, such as a text field.

1018ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

Handling JavaScript calls to window.blur() and window.focus()

Adobe AIR 1.0 and later

Override the windowBlur() and windowFocus() methods to handle JavaScript calls to window.blur() and

window.focus(), as shown in the following example:

 override public function windowBlur():void
 {
 htmlLoader.alpha = 0.5;
 }
 override public function windowFocus():void
 {
 htmlLoader.alpha = 1.0;
 NativeApplication.nativeApplication.activate(htmlLoader.stage.nativeWindow);
 }

Note: AIR does not provide an API for deactivating a window or application.

Creating windows with scrolling HTML content

Adobe AIR 1.0 and later

The HTMLLoader class includes a static method, HTMLLoader.createRootWindow(), which lets you open a new

window (represented by a NativeWindow object) that contains an HTMLLoader object and define some user interface

settings for that window. The method takes four parameters, which let you define the user interface:

For example, the following code uses the HTMLLoader.createRootWindow() method to create a window with

HTMLLoader content that uses scroll bars:

 var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
 var bounds:Rectangle = new Rectangle(10, 10, 600, 400);
 var html2:HTMLLoader = HTMLLoader.createRootWindow(true, initOptions, true, bounds);
 var urlReq2:URLRequest = new URLRequest("http://www.example.com");
 html2.load(urlReq2);
 html2.stage.nativeWindow.activate();

Note: Windows created by calling createRootWindow() directly in JavaScript remain independent from the opening

HTML window. The JavaScript Window opener and parent properties, for example, are null. However, if you call

createRootWindow() indirectly by overriding the HTMLHost createWindow() method to call

createRootWindow(), then opener and parent do reference the opening HTML window.

Parameter Description

visible A Boolean value that specifies whether the window is initially visible (true) or not (false).

windowInitOptions A NativeWindowInitOptions object. The NativeWindowInitOptions class defines initialization options for a

NativeWindow object, including the following: whether the window is minimizable, maximizable, or resizable,

whether the window has system chrome or custom chrome, whether the window is transparent or not (for

windows that do not use system chrome), and the type of window.

scrollBarsVisible Whether there are scroll bars (true) or not (false).

bounds A Rectangle object defining the position and size of the new window.

1019ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Scripting the AIR HTML Container

Last updated 10/9/2017

Creating subclasses of the HTMLLoader class

Adobe AIR 1.0 and later

You can create a subclass of the HTMLLoader class, to create new behaviors. For example, you can create a subclass

that defines default event listeners for HTMLLoader events (such as those events dispatched when HTML is rendered

or when the user clicks a link).

The following example extends the HTMLHost class to provide normal behavior when the JavaScript window.open()

method is called. The example then defines a subclass of HTMLLoader that uses the custom HTMLHost

implementation class:

 package
 {
 import flash.html.HTMLLoader;
 public class MyHTMLHost extends HTMLHost
 {
 public function MyHTMLHost()
 {
 super(false);
 }
 override public function createWindow(opts:HTMLWindowCreateOptions):void
 {
 var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
 var bounds:Rectangle = new Rectangle(opts.x, opts.y, opts.width, opts.height);
 var html:HTMLLoader = HTMLLoader.createRootWindow(true,
 initOptions,
 opts.scrollBarsVisible,
 bounds);
 html.stage.nativeWindow.orderToFront();
 return html
 }
 }

The following defines a subclass of the HTMLLoader class that assigns a MyHTMLHost object to its htmlHost

property:

 package
 {
 import flash.html.HTMLLoader;
 import MyHTMLHost;
 import HTMLLoader;
 public class MyHTML extends HTMLLoader
 {
 public function MyHTML()
 {
 super();
 htmlHost = new MyHTMLHost();
 }
 }
 }

For details on the HTMLHost class and the HTMLLoader.createRootWindow() method used in this example, see

“Defining browser-like user interfaces for HTML content” on page 1008.

1020

Last updated 10/9/2017

Chapter 61: Handling HTML-related
events in AIR

Adobe AIR 1.0 and later

An event-handling system allows programmers to respond to user input and system events in a convenient way. The

Adobe® AIR® event model is not only convenient, but also standards-compliant. Based on the Document Object Model

(DOM) Level 3 Events Specification, an industry-standard event-handling architecture, the event model provides a

powerful, yet intuitive, event-handling tool for programmers.

HTMLLoader events

Adobe AIR 1.0 and later

An HTMLLoader object dispatches the following Adobe® ActionScript® 3.0 events:

You can also register an ActionScript function for a JavaScript event (such as onClick). For details, see “Handling

DOM events with ActionScript” on page 1021.

Event Description

htmlDOMInitialize Dispatched when the HTML document is created, but before any scripts are parsed or

DOM nodes are added to the page.

complete Dispatched when the HTML DOM has been created in response to a load operation,

immediately after the onload event in the HTML page.

htmlBoundsChanged Dispatched when one or both of the contentWidth and contentHeight

properties have changed.

locationChange Dispatched when the location property of the HTMLLoader has changed.

locationChanging Dispatched before the location of the HTMLLoader changes because of user

navigation, a JavaScript call, or a redirect. The locationChanging event is not

dispatched when you call the load(), loadString(), reload(), historyGo(),

historyForward(), or historyBack() methods.

Calling the preventDefault() method of the dispatched event object cancels

navigation.

If a link is opened in the system browser, a locationChanging event is not dispatched

since the HTMLLoader does not change location.

scroll Dispatched anytime the HTML engine changes the scroll position. Scroll events can be

because of navigation to anchor links (# links) in the page or because of calls to the

window.scrollTo() method. Entering text in a text input or text area can also

cause a scroll event.

uncaughtScriptException Dispatched when a JavaScript exception occurs in the HTMLLoader and the exception

is not caught in JavaScript code.

1021ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling HTML-related events in AIR

Last updated 10/9/2017

Handling DOM events with ActionScript

Adobe AIR 1.0 and later

You can register ActionScript functions to respond to JavaScript events. For example, consider the following HTML

content:

 <html>
 <body>
 Click me.
 </html>

You can register an ActionScript function as a handler for any event in the page. For example, the following code adds

the clickHandler() function as the listener for the onclick event of the testLink element in the HTML page:

 var html:HTMLLoader = new HTMLLoader();
 var urlReq:URLRequest = new URLRequest("test.html");
 html.load(urlReq);
 html.addEventListener(Event.COMPLETE, completeHandler);

 function completeHandler(event:Event):void {
 html.window.document.getElementById("testLink").onclick = clickHandler;
 }

 function clickHandler(event:Object):void {
 trace("Event of type: " + event.type);
 }

The event object dispatched is not of type flash.events.Event or one of the Event subclasses. Use the Object class to

declare a type for the event handler function argument.

You can also use the addEventListener() method to register for these events. For example, you could replace the

completeHandler() method in the previous example with the following code:

 function completeHandler(event:Event):void {
 var testLink:Object = html.window.document.getElementById("testLink");
 testLink.addEventListener("click", clickHandler);
 }

When a listener refers to a specific DOM element, it is good practice to wait for the parent HTMLLoader to dispatch

the complete event before adding the event listeners. HTML pages often load multiple files and the HTML DOM is

not fully built until all the files are loaded and parsed. The HTMLLoader dispatches the complete event when all

elements have been created.

Responding to uncaught JavaScript exceptions

Adobe AIR 1.0 and later

Consider the following HTML:

1022ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling HTML-related events in AIR

Last updated 10/9/2017

 <html>
 <head>
 <script>
 function throwError() {
 var x = 400 * melbaToast;
 }
 </script>
 </head>
 <body>
 Click me.
 </html>

It contains a JavaScript function, throwError(), that references an unknown variable, melbaToast:

 var x = 400 * melbaToast;

When a JavaScript operation encounters an illegal operation that is not caught in the JavaScript code with a try/catch

structure, the HTMLLoader object containing the page dispatches an HTMLUncaughtScriptExceptionEvent event.

You can register a handler for this event, as in the following code:

 var html:HTMLLoader = new HTMLLoader();
 var urlReq:URLRequest = new URLRequest("test.html");
 html.load(urlReq);
 html.width = container.width;
 html.height = container.height;
 container.addChild(html);
 html.addEventListener(HTMLUncaughtScriptExceptionEvent.UNCAUGHT_SCRIPT_EXCEPTION,
 htmlErrorHandler);
 function htmlErrorHandler(event:HTMLUncaughtJavaScriptExceptionEvent):void
 {
 event.preventDefault();
 trace("exceptionValue:", event.exceptionValue)
 for (var i:int = 0; i < event.stackTrace.length; i++)
 {
 trace("sourceURL:", event.stackTrace[i].sourceURL);
 trace("line:", event.stackTrace[i].line);
 trace("function:", event.stackTrace[i].functionName);
 }
 }

Within JavaScript, you can handle the same event using the window.htmlLoader property:

1023ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling HTML-related events in AIR

Last updated 10/9/2017

 <html>
 <head>
 <script language="javascript" type="text/javascript" src="AIRAliases.js"></script>

 <script>
 function throwError() {
 var x = 400 * melbaToast;
 }

 function htmlErrorHandler(event) {
 event.preventDefault();
 var message = "exceptionValue:" + event.exceptionValue + "\n";
 for (var i = 0; i < event.stackTrace.length; i++){
 message += "sourceURL:" + event.stackTrace[i].sourceURL +"\n";
 message += "line:" + event.stackTrace[i].line +"\n";
 message += "function:" + event.stackTrace[i].functionName + "\n";
 }
 alert(message);
 }

 window.htmlLoader.addEventListener("uncaughtScriptException", htmlErrorHandler);
 </script>
 </head>
 <body>
 Click me.
 </html>

The htmlErrorHandler() event handler cancels the default behavior of the event (which is to send the JavaScript

error message to the AIR trace output), and generates its own output message. It outputs the value of the

exceptionValue of the HTMLUncaughtScriptExceptionEvent object. It outputs the properties of each object in the

stackTrace array:

 exceptionValue: ReferenceError: Can't find variable: melbaToast
 sourceURL: app:/test.html
 line: 5
 function: throwError
 sourceURL: app:/test.html
 line: 10
 function: onclick

Handling runtime events with JavaScript

Adobe AIR 1.0 and later

The runtime classes support adding event handlers with the addEventListener() method. To add a handler function

for an event, call the addEventListener() method of the object that dispatches the event, providing the event type

and the handling function. For example, to listen for the closing event dispatched when a user clicks the window close

button on the title bar, use the following statement:

 window.nativeWindow.addEventListener(air.NativeWindow.CLOSING, handleWindowClosing);

1024ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling HTML-related events in AIR

Last updated 10/9/2017

Creating an event handler function

Adobe AIR 1.0 and later

The following code creates a simple HTML file that displays information about the position of the main window. A

handler function named moveHandler(), listens for a move event (defined by the NativeWindowBoundsEvent class)

of the main window.

 <html>
 <script src="AIRAliases.js" />
 <script>
 function init() {
 writeValues();
 window.nativeWindow.addEventListener(air.NativeWindowBoundsEvent.MOVE,
 moveHandler);
 }
 function writeValues() {
 document.getElementById("xText").value = window.nativeWindow.x;
 document.getElementById("yText").value = window.nativeWindow.y;
 }
 function moveHandler(event) {
 air.trace(event.type); // move
 writeValues();
 }
 </script>
 <body onload="init()" />
 <table>
 <tr>
 <td>Window X:</td>
 <td><textarea id="xText"></textarea></td>
 </tr>
 <tr>
 <td>Window Y:</td>
 <td><textarea id="yText"></textarea></td>
 </tr>
 </table>
 </body>
 </html>

When a user moves the window, the textarea elements display the updated X and Y positions of the window:

Notice that the event object is passed as an argument to the moveHandler() method. The event parameter allows your

handler function to examine the event object. In this example, you use the event object's type property to report that

the event is a move event.

Removing event listeners

Adobe AIR 1.0 and later

You can use the removeEventListener() method to remove an event listener that you no longer need. It is a good

idea to remove any listeners that will no longer be used. Required parameters include the eventName and listener

parameters, which are the same as the required parameters for the addEventListener() method.

1025ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Handling HTML-related events in AIR

Last updated 10/9/2017

Removing event listeners in HTML pages that navigate

Adobe AIR 1.0 and later

When HTML content navigates, or when HTML content is discarded because a window that contains it is closed, the

event listeners that reference objects on the unloaded page are not automatically removed. When an object dispatches

an event to a handler that has already been unloaded, you see the following error message: “The application attempted

to reference a JavaScript object in an HTML page that is no longer loaded.”

To avoid this error, remove JavaScript event listeners in an HTML page before it goes away. In the case of page

navigation (within an HTMLLoader object), remove the event listener during the unload event of the window object.

For example, the following JavaScript code removes an event listener for an uncaughtScriptException event:

 window.onunload = cleanup;
 window.htmlLoader.addEventListener('uncaughtScriptException', uncaughtScriptException);
 function cleanup()
 {
 window.htmlLoader.removeEventListener('uncaughtScriptException',
 uncaughtScriptExceptionHandler);
 }

To prevent the error from occurring when closing windows that contain HTML content, call a cleanup function in

response to the closing event of the NativeWindow object (window.nativeWindow). For example, the following

JavaScript code removes an event listener for an uncaughtScriptException event:

 window.nativeWindow.addEventListener(air.Event.CLOSING, cleanup);
 function cleanup()
 {
 window.htmlLoader.removeEventListener('uncaughtScriptException',
 uncaughtScriptExceptionHandler);
 }

You can also prevent this error from occurring by removing an event listener as soon as it runs (if the event only needs

to be handled once). For example, the following JavaScript code creates an html window by calling the

createRootWindow() method of the HTMLLoader class and adds an event listener for the complete event. When

the complete event handler is called, it removes its own event listener using the removeEventListener() function:

 var html = runtime.flash.html.HTMLLoader.createRootWindow(true);
 html.addEventListener('complete', htmlCompleteListener);
 function htmlCompleteListener()
 {
 html.removeEventListener(complete, arguments.callee)
 // handler code..
 }
 html.load(new runtime.flash.net.URLRequest("second.html"));

Removing unneeded event listeners also allows the system garbage collector to reclaim any memory associated with

those listeners.

Checking for existing event listeners

Adobe AIR 1.0 and later

The hasEventListener() method lets you check for the existence of an event listener on an object.

1026

Last updated 10/9/2017

Chapter 62: Displaying HTML content in
mobile apps

Adobe AIR 2.5 and later

The StageWebView class displays HTML content using the system browser control on mobile devices and using the

standard Adobe® AIR® HTMLLoader control on desktop computers. Check the StageWebView.isSupported

property to determine whether the class is supported on the current device. Support is not guaranteed for all devices

in the mobile profile.

In all profiles, the StageWebView class supports only limited interaction between the HTML content and the rest of

the application. You can control navigation, but no cross-scripting or direct exchange of data is allowed. You can load

content from a local or remote URL or pass in a string of HTML.

StageWebView objects

A StageWebView object is not a display object and cannot be added to the display list. Instead, it operates as a viewport

attached directly to the stage. StageWebView content draws over the top of any display list content. There is no way to

control the drawing order of multiple StageWebView objects.

To display a StageWebView object, you assign the stage on which the object is to appear to the stage property of the

StageWebView. Set the size of the display using the viewPort property.

Set the x and y coordinates of the viewPort property between -8192 and 8191. The maximum value of stage width and

height is 8191. If the size exceeds the maximum values, an exception is thrown.

The following example creates a StageWebView object, sets the stage and viewPort properties, and displays a string

of HTML:

var webView:StageWebView = new StageWebView();
webView.viewPort = new Rectangle(0, 0, this.stage.stageWidth, this .stage.stageHeight);
webView.stage = this.stage;
var htmlString:String = "<!DOCTYPE HTML>" +

"<html><body>" +
"<p>King Philip could order five good steaks.</p>" +
"</body></html>";

webView.loadString(htmlString);

To hide a StageWebView object, set its stage property to null. To destroy the object entirely, call the dispose()

method. Calling dispose() is optional, but does help the garbage collector reclaim the memory used by the object

sooner.

Content

You can load content into a StageWebView object using two methods: loadURL() and loadString().

1027ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Displaying HTML content in mobile apps

Last updated 10/9/2017

The loadURL() method loads a resource at the specified URL. You can use any URI scheme supported by the system

web browser control, including: data:, file:, http:, https:, and javascript:. The app: and app-storage: schemes are not

supported. AIR does not validate the URL string.

The loadString() method loads a literal string containing HTML content. The location of a page loaded with this

method is expressed as:

• On Desktop: about:blank

• On iOS: htmlString

• On Android: the data URI format of the encoded htmlString

The URI scheme determines the rules for loading embedded content or data.

Note: If the stage’s displayState property is set to FULL_SCREEN, in Desktop, you cannot type in a text field displayed

in the StageWebView. However, in iOS and Android, you can type in a text field on StageWebView even if the stage’s

displayState is FULL_SCREEN.

The following example uses a StageWebView object to display Adobe’s website:

package {
import flash.display.MovieClip;
import flash.media.StageWebView;
import flash.geom.Rectangle;

public class StageWebViewExample extends MovieClip{

var webView:StageWebView = new StageWebView();

public function StageWebViewExample() {

webView.stage = this.stage;
webView.viewPort = new Rectangle(0, 0, stage.stageWidth, stage.stageHeight);
webView.loadURL("http://www.adobe.com");

}
}

}

On Android devices, you must specify the Android INTERNET permission in order for the app to successfully load

remote resources.

In Android 3.0+, an application must enable hardware acceleration in the Android manifestAdditions element of the

AIR application descriptor to display plug-in content in a StageWebView object. See Enabling Flash Player and other

plug-ins in a StageWebView object.

URI scheme Load local resource Load remote

resource

Local XMLHttpRequest Remote XMLHttpRequest

data: No Yes No No

file: Yes Yes Yes Yes

http:, https: No Yes No Same domain

about: (loadString()

method)

No Yes No No

1028ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Displaying HTML content in mobile apps

Last updated 10/9/2017

JavaScript URI

You can use a JavaScript URI to call a function defined in the HTML page that is loaded by a StageWebView object.

The function you call using the JavaScript URI runs in the context of the loaded web page. The following example uses

a StageWebView object to call a JavaScript function:

package {
import flash.display.*;
import flash.geom.Rectangle;
import flash.media.StageWebView;
public class WebView extends Sprite
{

public var webView:StageWebView = new StageWebView();
public function WebView()
{

var htmlString:String = "<!DOCTYPE HTML>" +
"<html><script type=text/javascript>" +
"function callURI(){" +
"alert(\"You clicked me!!\");"+
"}</script><body>" +
"<p>Click Me</p>" +
"</body></html>";
webView.stage = this.stage;
webView.viewPort = new Rectangle(0, 0, stage.stageWidth, stage.stageHeight);
webView.loadString(htmlString);

}
}

}

More Help topics

Sean Voisen: Making the Most of StageWebView

Navigation events

When a user clicks a link in the HTML, the StageWebView object dispatches a locationChanging event. You can call

the preventDefault() method of the event object to stop the navigation. Otherwise, the StageWebView object

navigates to the new page and dispatches a locationChange event. When the page load has finished, the

StageWebView dispatches a complete event.

A locationChanging event is dispatched on every HTML redirect. The locationChange and complete events are

dispatched at the appropriate time.

On iOS, a locationChanging event is dispatched before a locationChange event, except for the first loadURL() or

loadString() methods. A locationChange event is also dispatched for navigational changes through iFrames and

Frames.

The following example illustrates how you can prevent a location change and open the new page in the system browser

instead.

http://voisen.org/blog/2010/10/making-the-most-of-stagewebview/

1029ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Displaying HTML content in mobile apps

Last updated 10/9/2017

package {
import flash.display.MovieClip;
import flash.media.StageWebView;
import flash.events.LocationChangeEvent;
import flash.geom.Rectangle;
import flash.net.navigateToURL;
import flash.net.URLRequest;

public class StageWebViewNavEvents extends MovieClip{

var webView:StageWebView = new StageWebView();

public function StageWebViewNavEvents() {

webView.stage = this.stage;
webView.viewPort = new Rectangle(0, 0, stage.stageWidth, stage.stageHeight);

webView.addEventListener(LocationChangeEvent.LOCATION_CHANGING, onLocationChanging);
webView.loadURL("http://www.adobe.com");

}
private function onLocationChanging(event:LocationChangeEvent):void
{

event.preventDefault();
navigateToURL(new URLRequest(event.location));

}
}

}

History

As a user clicks links in the content displayed in a StageWebView object, the control saves the backwards and forwards

history stacks. The following example illustrates how to navigate through the two history stacks. The example uses the

Back and Search soft keys.

1030ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Displaying HTML content in mobile apps

Last updated 10/9/2017

package {
import flash.display.MovieClip;
import flash.media.StageWebView;
import flash.geom.Rectangle;
import flash.events.KeyboardEvent;
import flash.ui.Keyboard;

public class StageWebViewExample extends MovieClip{

var webView:StageWebView = new StageWebView();

public function StageWebViewExample()
{

webView.stage = this.stage;
webView.viewPort = new Rectangle(0, 0, stage.stageWidth, stage.stageHeight);
webView.loadURL("http://www.adobe.com");

stage.addEventListener(KeyboardEvent.KEY_DOWN, onKey);

}

private function onKey(event:KeyboardEvent):void
{

if(event.keyCode == Keyboard.BACK && webView.isHistoryBackEnabled)
{

trace("back");
webView.historyBack();
event.preventDefault();

}
if(event.keyCode == Keyboard.SEARCH && webView.isHistoryForwardEnabled)
{

trace("forward");
webView.historyForward();

}
}

}
}

Focus

Even though it is not a display object, the StageWebView class contains members that allow you to manage the focus

transitions into and out of the control.

When the StageWebView object gains focus, it dispatches a focusIn event. You use this event to manage the focus

elements in your application, if necessary.

When the StageWebView relinquishes the focus, it dispatches a focusOut event. A StageWebView instance can

relinquish focus when a user “tabs” past the first or last control on the web page using a device trackball or directional

arrows. The direction property of the event object lets you know whether the focus flow is rising up past the top of

the page or down through the bottom of the page. Use this information to assign focus to the appropriate display object

above or below the StageWebView.

On iOS, focus cannot be set programmatically. StageWebView dispatches focusIn and focusOut events with the

direction property of FocusEvent set to none. If the user touches inside the StageWebView, the focusIn event is

dispatched. If the user touches outside the StageWebView, the focusOut event is dispatched.

1031ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Displaying HTML content in mobile apps

Last updated 10/9/2017

The following example illustrates how focus passes from the StageWebView object to Flash display objects:

package {
import flash.display.MovieClip;
import flash.media.StageWebView;
import flash.geom.Rectangle;
import flash.events.KeyboardEvent;
import flash.ui.Keyboard;
import flash.text.TextField;
import flash.text.TextFieldType;
import flash.events.FocusEvent;
import flash.display.FocusDirection;
import flash.events.LocationChangeEvent;

public class StageWebViewFocusEvents extends MovieClip{

var webView:StageWebView = new StageWebView();
var topControl:TextField = new TextField();
var bottomControl:TextField = new TextField();

public function StageWebViewFocusEvents()
{

trace("Starting");
topControl.type = TextFieldType.INPUT;
addChild(topControl);
topControl.height = 60;
topControl.width = stage.stageWidth;
topControl.background = true;
topControl.text = "One control on top.";
topControl.addEventListener(FocusEvent.FOCUS_IN, flashFocusIn);
topControl.addEventListener(FocusEvent.FOCUS_OUT, flashFocusOut);

webView.stage = this.stage;
webView.viewPort = new Rectangle(0, 60, stage.stageWidth, stage.stageHeight

- 120);
webView.addEventListener(FocusEvent.FOCUS_IN, webFocusIn);
webView.addEventListener(FocusEvent.FOCUS_OUT, webFocusOut);
webView.addEventListener(LocationChangeEvent.LOCATION_CHANGING,

 function(event:LocationChangeEvent):void
 {
 event.preventDefault();
 });

webView.loadString("<form action='#'><input/><input/><input/></form>");
webView.assignFocus();

bottomControl.type = TextFieldType.INPUT;
addChild(bottomControl);
bottomControl.y = stage.stageHeight - 60;
bottomControl.height = 60;
bottomControl.width = stage.stageWidth;
bottomControl.background = true;
bottomControl.text = "One control on the bottom.";
bottomControl.addEventListener(FocusEvent.FOCUS_IN, flashFocusIn);
bottomControl.addEventListener(FocusEvent.FOCUS_OUT, flashFocusOut);}

private function webFocusIn(event:FocusEvent):void
{

trace("Web focus in");

1032ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Displaying HTML content in mobile apps

Last updated 10/9/2017

}

private function webFocusOut(event:FocusEvent):void
{

trace("Web focus out: " + event.direction);
if(event.direction == FocusDirection.TOP)
{

stage.focus = topControl;
}
else
{

stage.focus = bottomControl;
}

}

private function flashFocusIn(event:FocusEvent):void
{

trace("Flash focus in");
var textfield:TextField = event.target as TextField;
textfield.backgroundColor = 0xff5566;

}

private function flashFocusOut(event:FocusEvent):void
{

trace("Flash focus out");
var textfield:TextField = event.target as TextField;
textfield.backgroundColor = 0xffffff;

}

}
}

Bitmap capture

A StageWebView object is rendered above all display list content. You cannot add a content above a StageWebView

object. For example, you cannot expand a drop-down over the StageWebView content. To solve this issue, capture a

snapshot of the StageWebView. Then, hide the StageWebView and add the bitmap snapshot instead.

The following example illustrates how to capture the snapshot of a StageWebView object using the

drawViewPortToBitmapData method. It hides the StageWebView object by setting the stage to null. After the web

page is fully loaded, it calls a function that captures the bitmap and displays it. When you run, the code displays two

labels, Google and Facebook. Clicking the label captures the corresponding web page and displays it as a snapshot on

the stage.

1033ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Displaying HTML content in mobile apps

Last updated 10/9/2017

package
{

import flash.display.Bitmap;
import flash.display.BitmapData;
import flash.display.Sprite;
import flash.events.*;
import flash.geom.Rectangle;
import flash.media.StageWebView;
import flash.net.*;
import flash.text.TextField;
public class stagewebview extends Sprite
{

public var webView:StageWebView=new StageWebView();
public var textGoogle:TextField=new TextField();
public var textFacebook:TextField=new TextField();
public function stagewebview()
{

textGoogle.htmlText="Google";
textGoogle.x=300;
textGoogle.y=-80;
addChild(textGoogle);
textFacebook.htmlText="Facebook";
textFacebook.x=0;
textFacebook.y=-80;
addChild(textFacebook);
textGoogle.addEventListener(MouseEvent.CLICK,goGoogle);
textFacebook.addEventListener(MouseEvent.CLICK,goFaceBook);
webView.stage = this.stage;
webView.viewPort = new Rectangle(0, 0, stage.stageWidth, stage.stageHeight);

}
public function goGoogle(e:Event):void

{
webView.loadURL("http://www.google.com");
webView.stage = null;
webView.addEventListener(Event.COMPLETE,handleLoad);

}

public function goFaceBook(e:Event):void

{
webView.loadURL("http://www.facebook.com");
webView.stage = null;
webView.addEventListener(Event.COMPLETE,handleLoad);

}
public function handleLoad(e:Event):void

{
var bitmapData:BitmapData = new BitmapData(webView.viewPort.width,

webView.viewPort.height);
webView.drawViewPortToBitmapData(bitmapData);
var webViewBitmap:Bitmap=new Bitmap(bitmapData);
addChild(webViewBitmap);

}
}

}

1034

Last updated 10/9/2017

Chapter 63: Using workers for concurrency

Flash Player 11.4 and later, Adobe AIR 13.4 and later for desktop platforms

ActionScript workers make it possible to execute code concurrently, or in other words, to execute code in the

background without interrupting the main code’s execution.

The ActionScript concurrency apis are available on desktop platforms only in Flash Player 11.4 and later, and AIR 3.4

and later. Concurrency is not supported in AIR for mobile platforms.

Understanding workers and concurrency

Flash Player 11.4 and later, Adobe AIR 13.4 and later for desktop platforms

When an application doesn’t use workers, the application’s code executes in a single linear block of executing steps

known as an execution thread. The thread executes the code that a developer writes. It also executes much of the code

that’s part of the runtime, most notably the code that updates the screen when display objects’ properties change.

Although code is written in chunks as methods and classes, at run time the code executes one line at a time as though

it were written in a single long series of steps. Consider this hypothetical example of the steps that an application

executes:

1 Enter frame: The runtime calls any enterFrame event handlers and runs their code one at a time

2 Mouse event: The user moves the mouse, and the runtime calls any mouse event handlers as the various rollover

and rollout events happen

3 Load complete event: A request to load an xml file from a url returns with the loaded file data. The event handler

is called and runs its steps, reading the xml content and creating a set of objects from the xml data.

4 Mouse event: The mouse has moved again, so the runtime calls the relevant mouse event handlers

5 Rendering: No more events are waiting, so the runtime updates the screen based on any changes made to display

objects

6 Enter frame: The cycle begins again

As described in the example, the hypothetical steps 1-5 run in sequence within a single block of time called a frame.

Because they run in sequence in a single thread, the runtime can’t interrupt one step of the process to run another one.

At a frame rate of 30 frames-per-second, the runtime has less than one thirtieth of a second to execute all those

operations. In many cases that is enough time for the code to run, and the runtime simply waits during the remaining

time. However, suppose the xml data that loads in step 3 is a very large, deeply nested xml structure. As the code loops

over the xml and creates objects, it might conceivably take longer than one thirtieth of a second to do that work. In

that case, the later steps (responding to the mouse and redrawing the screen) do not happen as soon as they should.

This causes the screen to freeze and stutter as the screen isn’t redrawn fast enough in response to the user moving the

mouse.

If all the code executes in the same thread, there is only one way to avoid occasional stutters and freezes. This is to not

do long-running operations such as looping over a large set of data. ActionScript workers provide another solution.

Using a worker, you can execute long-running code in a separate worker. Each worker runs in a separate thread, so the

background worker performs the long-running operation in its own thread. That frees up the main worker’s execution

thread to redraw the screen each frame without being blocked by other work.

1035ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using workers for concurrency

Last updated 10/9/2017

The ability to run multiple code operations at the same time in this way is known as concurrency. When the

background worker finishes its work, or at “progress” points along the way, you can send the main worker notifications

and data. In this way, you can write code that performs complex or time consuming operations but avoid the bad user

experience of having the screen freeze.

Workers are useful because they decrease the chances of the frame rate dropping due to the main rendering thread

being blocked by other code. However, workers require additional system memory and CPU use, which can be costly

to overall application performance. Because each worker uses its own instance of the runtime virtual machine, even

the overhead of a trivial worker can be large. When using workers, test your code across all your target platforms to

ensure that the demands on the system are not too large. Adobe recommends that you do not use more than one or

two background workers in a typical scenario.

Creating and managing workers

Flash Player 11.4 and later, Adobe AIR 13.4 and later for desktop platforms

The first step in using a worker for concurrency is to create a background worker. You use two types of objects to create

a worker. First is a Worker instance, which is what you create. The other is a WorkerDomain object, which creates the

Worker and manages the running Worker objects in an application.

When the runtime loads, it automatically creates the WorkerDomain object. The runtime also automatically creates a

worker for the main swf of the application. This first worker is known as the primordial worker.

Because there is only one WorkerDomain object for an application, you access the WorkerDomain instance using the

static WorkerDomain.current property.

At any time, you can access the current Worker instance (the worker in which the current code is running) using the

static Worker.current property.

Creating a Worker object from a swf

Just as the main swf runs within the primordial worker, a background worker executes the code of a single swf file. To

use a background worker, you must author and compile the worker’s code as a swf file. To create the background

worker, the parent worker needs access to that swf file’s bytes as a ByteArray object. You pass that ByteArray to the

WorkerDomain object’s createWorker() method to actually create the worker.

There are three main ways to get the background worker swf as a ByteArray object:

Embedding the worker swf

Use the [Embed] metatag to embed the worker swf into the main swf as a ByteArray:

[Embed(source="../swfs/BgWorker.swf", mimeType="application/octet-stream")]
private static var BgWorker_ByteClass:Class;
private function createWorker():void
{

var workerBytes:ByteArray = new BgWorker_ByteClass();
var bgWorker:Worker = WorkerDomain.current.createWorker(workerBytes);

// ... set up worker communication and start the worker

}

1036ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using workers for concurrency

Last updated 10/9/2017

The worker swf is compiled into the main swf as a ByteArray subclass named BgWorker_ByteClass. Creating an

instance of that class gives you a ByteArray pre-populated with the worker swf’s bytes.

Loading an external worker swf

Use a URLLoader object to load an external swf file. The swf file must come from the same security domain, such as a

swf file loaded from the same internet domain as the main swf or included in an AIR application package.

var workerLoader:URLLoader = new URLLoader();
workerLoader.dataFormat = URLLoaderDataFormat.BINARY;
workerLoader.addEventListener(Event.COMPLETE, loadComplete);
workerLoader.load(new URLRequest("BgWorker.swf"));

private function loadComplete(event:Event):void
{

// create the background worker
var workerBytes:ByteArray = event.target.data as ByteArray;
var bgWorker:Worker = WorkerDomain.current.createWorker(workerBytes);

// ... set up worker communication and start the worker

}

When the URLLoader finishes loading the swf file, the swf’s bytes are available in the URLLoader object’s data

property (event.target.data in the example).

Using the main swf as the worker swf

You can use a single swf as both the main swf and the worker swf. Use the main display class’s loaderInfo.bytes

property to access the swf’s bytes.

// The primordial worker's main class constructor
public function PrimordialWorkerClass()
{

init();
}

private function init():void
{

var swfBytes:ByteArray = this.loaderInfo.bytes;

// Check to see if this is the primordial worker or the background worker
if (Worker.current.isPrimordial)
{

// create a background worker
var bgWorker:Worker = WorkerDomain.current.createWorker(swfBytes);

// ... set up worker communication and start the worker

}
else // entry point for the background worker
{

// set up communication between workers using getSharedProperty()
// ... (not shown)

// start the background work

}
}

1037ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using workers for concurrency

Last updated 10/9/2017

If you use this technique, use an if statement to branch the swf file code within the main class’s constructor or a

method it calls. To determine whether the code is running in the main worker or the background worker, check the

current Worker object’s isPrimordial property, as shown in the example.

Starting a worker’s execution

Once you have created a worker, you start its code executing by calling the Worker object’s start() method. The

start() operation doesn’t happen immediately. To know when the worker is running, register a listener for the

Worker object’s workerState event. That event is dispatched when the Worker object switches states in its lifecycle,

such as when it starts executing code. In your workerState event handler, check that the Worker object’s state

property is WorkerState.RUNNING. At that point the worker is running and its main class’s constructor has run. The

following code listing shows an example of registering for the workerState event and calling the start() method:

// listen for worker state changes to know when the worker is running
bgWorker.addEventListener(Event.WORKER_STATE, workerStateHandler);
// set up communication between workers using
// setSharedProperty(), createMessageChannel(), etc.
// ... (not shown)
bgWorker.start();
private function workerStateHandler(event:Event):void
{

if (bgWorker.state == WorkerState.RUNNING)
{

// The worker is running.
// Send it a message or wait for a response.

}
}

Managing worker execution

At any time you can access the set of running workers in your application using the WorkerDomain class’s

listWorkers() method. This method returns the set of workers whose state property is WorkerState.RUNNING,

including the primordial worker. If a worker hasn’t been started or if its execution has already been stopped, it is not

included.

If you no longer need a worker, you can call the Worker object’s terminate() method to shut down the worker and

release its memory and other system resources.

Communicating between workers

Flash Player 11.4 and later, Adobe AIR 13.4 and later for desktop platforms

Although workers run their code in separate execution threads, they wouldn’t offer any benefit if they were completely

isolated from each other. Communication between workers ultimately means passing data between workers. There are

three main mechanisms for getting data from one worker to another.

1038ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using workers for concurrency

Last updated 10/9/2017

When deciding which of these data-sharing techniques is appropriate for a particular data-passing need, consider the

two main ways they differ. One difference between them is with whether there is an event to notify the receiver that

new data is available or whether the receiving worker must check for updates. Another difference between these data-

sharing techniques has to do with how the data is actually passed. In some cases the receiving worker gets is a copy of

the shared data, which means that more objects are created taking more memory and cpu cycles. In other cases the

workers access objects that reference the same underlying system memory, which means fewer objects are created and

less memory is used overall. These differences are outlined here:

Passing data with a shared property

The most basic way to share data between workers is to use a shared property. Each worker maintains an internal

dictionary of shared property values. The properties are stored with String key names to distinguish between the

properties. To store an object on a worker as a shared property, call the Worker object’s setSharedProperty()

method with two arguments, the key name and the value to store:

// code running in the parent worker
bgWorker.setSharedProperty("sharedPropertyName", someObject);

Once the shared property has been set, the value can be read by calling the Worker object’s getSharedProperty()

method, passing in the key name:

// code running in the background worker
receivedProperty = Worker.current.getSharedProperty("sharedPropertyName");

There is no restriction on which worker reads or sets the property value. For example, code in a background worker

can call its setSharedProperty() method to store a value. Code running in the parent worker can then use

getSharedProperty() to receive the data.

The value that’s passed to the setSharedProperty() method can be almost any type of object. When you call the

getSharedProperty() method, the object that’s returned is a copy of the object passed in to setSharedProperty()

and not a reference to the same object, except in a few special cases. The specifics of how data is shared are explained

in “Shared references and copied values” on page 1040.

The biggest advantage of using a shared property to pass data between workers is that it’s available even before the

worker is running. You can call a background Worker object’s setSharedProperty() method to set a shared

property even before the worker is running. When the parent worker calls the Worker’s start() method, the runtime

calls the child worker’s main class’s constructor. Any shared properties that were set before start() was called are

available for code in the child worker to read.

Passing data with a MessageChannel

A message channel provides a one-way data-passing link between two workers. Using a MessageChannel object to pass

data between workers has one key advantage. When you send a message (an object) using a message channel, the

MessageChannel object dispatches a channelMessage event. Code in the receiving worker can listen for that event to

know when data is available. That way the receiving worker doesn’t need to continuously check for data updates.

Communication

technique

Dispatches event when receiving data Shares memory between workers

Worker shared

properties

No No, objects are copies not references

MessageChannel Yes No, objects are copies not references

Shareable

ByteArray

No Yes, memory is shared

1039ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using workers for concurrency

Last updated 10/9/2017

A message channel is associated with only two workers, a sender and a receiver. To create a MessageChannel object,

call the sending Worker object’s createMessageChannel() method, passing the receiving worker as an argument:

// In the sending worker swf
var sendChannel:MessageChannel;
sendChannel = Worker.current.createMessageChannel(receivingWorker);

Both workers need to have access to the MessageChannel object. The simplest way to do this is to pass the

MessageChannel object using the setSharedProperty() method:

receivingWorker.setSharedProperty("incomingChannel", sendChannel);

In the receiving worker, register a listener for the MessageChannel object’s channelMessage event. This event is

dispatched when the sending worker sends data through the message channel.

// In the receiving worker swf
var incomingChannel:MessageChannel;
incomingChannel = Worker.current.getSharedProperty("incomingChannel");
incomingChannel.addEventListener(Event.CHANNEL_MESSAGE, handleIncomingMessage);

To actually send data, in the sending worker call the MessageChannel object’s send() method:

// In the sending worker swf
sendChannel.send("This is a message");

In the receiving worker, the MessageChannel calls the channelMessage event handler. The receiving worker can then

get the data by calling the MessageChannel object’s receive() method.

private function handleIncomingMessage(event:Event):void
{

var message:String = incomingChannel.receive() as String;
}

The object returned by the receive method has the same data type as the object that was passed in to the send()

method. The received object is a copy of the object passed in by the sender and not a reference to the object in the

sending worker, unless it is one of a few data types, as described in “Shared references and copied values” on page 1040.

Sharing data using a shareable ByteArray

When an object is passed between two workers, the receiving worker gets a new object that’s a copy of the original one.

The two objects are stored in different locations in the system’s memory. Consequently, each copy of the object that’s

received increases the total memory used by the runtime. In addition, any changes that you make to an object in one

worker do not affect the copy in the other worker. For more details about how data is copied, see “Shared references

and copied values” on page 1040.

By default, a ByteArray object uses the same behavior. If you pass a ByteArray instance to a Worker object’s

setSharedProperty() method or a MessageChannel object’s send() method, the runtime creates a new ByteArray

in the computer’s memory and the receiving worker gets a ByteArray instance that’s a reference to that new ByteArray.

However, you can change this behavior for a ByteArray object by setting its shareable property to true.

When a shareable ByteArray object is passed from one worker to another, the ByteArray instance in the receiving

worker is a reference to the same underlying operating system memory that’s used by the ByteArray instance in the

sending worker. When code in one worker changes the contents of the byte array, those changes are immediately

available in other workers that have access to that shared byte array.

Because workers execute their code simultaneously, it’s possible for two workers to attempt to access the same bytes

in a byte array at the same time. This could lead to data loss or corruption. There are several apis that you can use to

manage access to shared resources and avoid those issues.

1040ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using workers for concurrency

Last updated 10/9/2017

The ByteArray class has methods that allow you to validate and change the byte array’s contents in a single operation:

• atomicCompareAndSwapIntAt() method

• atomicCompareAndSwapLength() method

In addition, the flash.concurrent package includes classes that provide access control for working with shared

resources:

• Mutex class

• Condition class

Shared references and copied values

In the normal case, when you call Worker.setSharedProperty() or MessageChannel.send(), the object that’s

passed to the receiving worker is passed by serializing it in AMF format. This has a few consequences:

• The object that’s created in the receiving worker when it’s getSharedProperty() method is called is deserialized

from the AMF bytes. It is a copy of the original object, not a reference to the object. Any changes that are made to

the object in either worker are not changed in the copy in the other worker.

• Objects that can’t be serialized in AMF format such as display objects can’t be passed to a worker using

Worker.setSharedProperty() or MessageChannel.send().

• In order for a custom class to be deserialized properly, the class definition must be registered using the

flash.net.registerClassAlias() function or [RemoteClass] metadata. The same alias must be used for both

worker's versions of the class.

There are five special cases of objects that are truly shared rather than copied between workers:

• Worker objects

• MessageChannel objects

• shareable byte array (a ByteArray object whose shareable property is true)

• Mutex objects

• Condition objects

When you pass an instance of one of these objects using the Worker.setSharedProperty() method or

MessageChannel.send() method, each worker has a reference to the same underlying object. Changes made to an

instance in one worker are immediately available in other workers. In addition, if you pass the same instance of one of

these objects to a worker more than once, the runtime doesn't create a new copy of the object in the receiving worker.

Instead, the same reference is re-used.

Additional data-sharing techniques

In addition to the worker-specific mechanisms for passing data, workers can also exchange data using any of the

existing apis that support sharing data between two swf applications, such as the following:

• local shared objects

• writing data to a file in one worker and reading from the file in another worker

• storing data to and reading data from a SQLite database

When you share a resource between two or more workers, you generally need to avoid having multiple workers

accessing the resource at the same time. For example, having multiple workers access a file on the local file system

could cause data loss or corruption and may not be supported by the operating system.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/utils/ByteArray.html#atomicCompareAndSwapIntAt()
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/utils/ByteArray.html#atomicCompareAndSwapLength()
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/concurrent/Mutex.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/concurrent/Condition.html

1041ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Using workers for concurrency

Last updated 10/9/2017

To guard against concurrent access problems, use the Mutex and Condition classes in the flash.concurrent package to

provide access control for working with shared resources.

Unlike other data-sharing mechanisms, the SQLite database engine is designed for concurrent access and has its own

transaction support built in. Multiple workers can access a SQLite database without risk of corrupting the data.

Because the workers use different SQLConnection instances, each worker accesses the database in a separate

transaction. Simultaneous data manipulation operations do not affect the integrity of the data.

See also

“Working with local SQL databases in AIR” on page 714

flash.concurrent package

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/concurrent/package-detail.html

1042

Last updated 10/9/2017

Chapter 64: Security

Flash Player 9 and later, Adobe AIR 1.0 and later

Security is a key concern of Adobe, users, website owners, and content developers. For this reason, Adobe® Flash®

Player and Adobe® AIR™ include a set of security rules and controls to safeguard the user, website owner, and content

developer. This discussion covers the security model for SWF files published with ActionScript 3.0 and running in

Flash Player 9.0.124.0 or later, and SWF, HTML, and JavaScript files running in AIR 1.0 or later, unless otherwise

noted.

This discussion provides an overview of security; it does not try to comprehensively explain all implementation details,

usage scenarios, or ramifications for using certain APIs. For a more detailed discussion of Flash Player security

concepts, see the Flash Player Developer Center topic “Security” at www.adobe.com/go/devnet_security_en.

Flash Platform security overview

Flash Player 9 and later, Adobe AIR 1.0 and later

Much of security model used by the Flash Player and AIR runtimes is based on the domain of origin for loaded SWF

files, HTML, media, and other assets. Executable code in a file from a specific Internet domain, such as

www.example.com, can always access all data from that domain. These assets are put in the same security grouping,

known as a security sandbox. (For more information, see “Security sandboxes” on page 1044.)

For example, ActionScript code in a SWF file can load SWF files, bitmaps, audio, text files, and any other asset from

its own domain. Also, cross-scripting between two SWF files from the same domain is always permitted, as long as

both files are written using ActionScript 3.0. Cross-scripting is the ability of code in one file to access the properties,

methods, and objects defined by the code in another file.

Cross-scripting is not supported between SWF files written using ActionScript 3.0 and those using previous versions

of ActionScript; however, these files can communicate by using the LocalConnection class. Also, the ability of a SWF

file to cross-script ActionScript 3.0 SWF files from other domains and to load data from other domains is prohibited

by default; however, such access can be granted with a call to the Security.allowDomain() method in the loaded

SWF file. For more information, see “Cross-scripting” on page 1063.

The following basic security rules always apply by default:

• Resources in the same security sandbox can always access each other.

• Executable code in files in a remote sandbox can never access local files and data.

The Flash Player and AIR runtimes consider the following to be individual domains, and set up individual security

sandboxes for each:

• http://example.com

• http://www.example.com

• http://store.example.com

• https://www.example.com

• http://192.0.34.166

http://www.adobe.com/go/devnet_security_en

1043ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Even if a named domain, such as http://example.com, maps to a specific IP address, such as http://192.0.34.166, the

runtimes set up separate security sandboxes for each.

There are two basic methods that a developer can use to grant a SWF file access to assets from sandboxes other than

that of the SWF file:

• The Security.allowDomain() method (see “Author (developer) controls” on page 1055)

• The URL policy file (see “Website controls (policy files)” on page 1051)

In the Flash Player and AIR runtime security models, there is a distinction between loading content and extracting or

accessing data. Content is defined as media, including visual media the runtimes can display, audio, video, or a SWF

file or HTML that includes displayed media. Data is defined as something that is accessible only to code. Content and

data are loaded in different ways.

• Loading content—You can load content using classes such as the Loader, Sound, and NetStream classes; through

MXML tags when using Flex; or through HTML tags in an AIR application.

• Extracting data—You can extract data from loaded media content by using Bitmap objects, the

BitmapData.draw() and BitmapData.drawWithQuality() methods, the Sound.id3 property, or the

SoundMixer.computeSpectrum() method. The drawWithQuality method is available in Flash Player 11.3 and

higher; AIR 3.3 and higher.

• Accessing data—You can access data directly by loading it from an external file (such as an XML file) using classes

such as the URLStream, URLLoader, FileReference, Socket, and XMLSocket classes. AIR provides additional

classes for loading data, such as FileStream, and XMLHttpRequest.

The Flash Player security model defines different rules for loading content and accessing data. In general, there are

fewer restrictions on loading content than on accessing data.

In general, content (SWF files, bitmaps, mp3 files, and videos) can be loaded from anywhere, but if the content is from

a domain other than that of the loading code or content, it will be partitioned in a separate security sandbox.

There are a few barriers to loading content:

• By default, local SWF files (those loaded from a non-network address, such as a user’s hard drive) are classified in

the local-with-filesystem sandbox. These files cannot load content from the network. For more information, see

“Local sandboxes” on page 1044.

• Real-Time Messaging Protocol (RTMP) servers can limit access to content. For more information, see “Content

delivered using RTMP servers” on page 1062.

If the loaded media is an image, audio, or video, its data, such as pixel data and sound data, can be accessed by a SWF

file outside its security sandbox only if the domain of that SWF file has been included in a URL policy file at the origin

domain of the media. For details, see “Accessing loaded media as data” on page 1066.

Other forms of loaded data include text or XML files, which are loaded with a URLLoader object. Again in this case,

to access any data from another security sandbox, permission must be granted by means of a URL policy file at the

origin domain. For details, see “Using URLLoader and URLStream” on page 1068.

Note: Policy files are never required in order for code executing in the AIR application sandbox to load remote content or

data.

1044ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Security sandboxes

Flash Player 9 and later, Adobe AIR 1.0 and later

Client computers can obtain individual files containing code, content, and data from a number of sources, such as

from external websites, from a local file system, or from an installed AIR application. The Flash Player and AIR

runtimes individually assign code files and other resources, such as shared objects, bitmaps, sounds, videos, and data

files, to security sandboxes based on their origin when they are loaded. The following sections describe the rules,

enforced by the runtimes, that govern what a code or content executing within a given sandbox can access.

For more information on Flash Player security, see the Flash Player Developer Center topic “Security” at

www.adobe.com/go/devnet_security_en.

Remote sandboxes

Flash Player 9 and later, Adobe AIR 1.0 and later

The Flash Player and AIR runtimes classify assets (including SWF files) from the Internet in separate sandboxes that

correspond to their domain of origin. For example, assets loaded from example.com will be placed into a different

security sandbox than assets loaded from foo.org. By default, these files are authorized to access any resources from

their own server. Remote SWF files can be allowed to access additional data from other domains by explicit website

and author permissions, such as URL policy files and the Security.allowDomain() method. For details, see

“Website controls (policy files)” on page 1051 and “Author (developer) controls” on page 1055.

Remote SWF files cannot load any local files or resources.

For more information on Flash Player security, see the Flash Player Developer Center topic “Security” at

www.adobe.com/go/devnet_security_en.

Local sandboxes

Flash Player 9 and later, Adobe AIR 1.0 and later

Local file describes any file that is referenced by using the file: protocol or a Universal Naming Convention (UNC)

path. Local SWF files are placed into one of four local sandboxes:

• The local-with-filesystem sandbox—For security purposes, the Flash Player and AIR runtimes place all local files

in the local-with-file-system sandbox, by default. From this sandbox, executable code can read local files (by using

the URLLoader class, for example), but cannot communicate with the network in any way. This assures the user

that local data cannot be leaked out to the network or otherwise inappropriately shared.

• The local-with-networking sandbox—When compiling a SWF file, you can specify that it has network access when

run as a local file (see “Setting the sandbox type of local SWF files” on page 1047).These files are placed in the local-

with-networking sandbox. SWF files that are assigned to the local-with-networking sandbox forfeit their local file

access. In return, the SWF files are allowed to access data from the network. However, a local-with-networking

SWF file is still not allowed to read any network-derived data unless permissions are present for that action,

through a URL policy file or a call to the Security.allowDomain() method. In order to grant such permission, a

URL policy file must grant permission to all domains by using <allow-access-from domain="*"/> or by using

Security.allowDomain("*"). For more information, see “Website controls (policy files)” on page 1051 and

“Author (developer) controls” on page 1055.

http://www.adobe.com/go/devnet_security_en
http://www.adobe.com/go/devnet_security_en

1045ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

• The local-trusted sandbox—Local SWF files that are registered as trusted (by users or by installer programs) are

placed in the local-trusted sandbox. System administrators and users also have the ability to reassign (move) a local

SWF file to or from the local-trusted sandbox based on security considerations (see “Administrator controls” on

page 1048 and “User controls” on page 1050). SWF files that are assigned to the local-trusted sandbox can interact

with any other SWF files and can load data from anywhere (remote or local).

• The AIR application sandbox—This sandbox contains content that was installed with the running AIR application.

By default, code executing in the AIR application sandbox can cross-script code from any domain. However, files

outside the AIR application sandbox are not permitted to cross-script code in the application sandbox. By default,

code and content in the AIR application sandbox can load content and data from any domain.

Communication between the local-with-networking and local-with-filesystem sandboxes, as well as communication

between the local-with-filesystem and remote sandboxes, is strictly forbidden. Permission to allow such

communication cannot be granted by an application running in Flash Player or by a user or administrator.

Scripting in either direction between local HTML files and local SWF files—for example, using the ExternalInterface

class—requires that both the HTML file and SWF file involved be in the local-trusted sandbox. This is because the local

security models for browsers differ from the Flash Player local security model.

SWF files in the local-with-networking sandbox cannot load SWF files in the local-with-filesystem sandbox. SWF files

in the local-with-filesystem sandbox cannot load SWF files in the local-with-networking sandbox.

The AIR application sandbox

Adobe AIR 1.0 and later

The Adobe AIR runtime adds an additional sandbox, called the application sandbox, to the Flash Player security

sandbox model. Files installed as part of an AIR application load into the application sandbox. Any other files loaded

by the application have security restrictions corresponding to those specified by the regular Flash Player security

model.

When an application is installed, all files included within an AIR package are installed onto the user's computer into

an application directory. Developers can reference this directory in code through the app:/ URL scheme (see “URI

schemes” on page 813). All files within the application directory tree are assigned to the application sandbox when the

application is run. Content in the application sandbox is blessed with the full privileges available to an AIR application,

including interaction with the local file system.

Many AIR applications use only these locally installed files to run the application. However, AIR applications are not

restricted to just the files within the application directory — they can load any type of file from any source. This

includes files local to the user's computer as well as files from available external sources, such as those on a local

network or on the Internet. File type has no impact on security restrictions; loaded HTML files have the same security

privileges as loaded SWF files from the same source.

Content in the application security sandbox has access to AIR APIs that content in other sandboxes are prevented from

using. For example, the air.NativeApplication.nativeApplication.applicationDescriptor property, which

returns the contents of the application descriptor file for the application, is restricted to content in the application

security sandbox. Another example of a restricted API is the FileStream class, which contains methods for reading and

writing to the local file system.

ActionScript APIs that are only available to content in the application security sandbox are indicated with the AIR logo

in the ActionScript 3.0 Reference for Adobe Flash Platform. Using these APIs in other sandboxes causes the runtime to

throw a SecurityError exception.

1046ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

For HTML content (in an HTMLLoader object), all AIR JavaScript APIs (those that are available via the

window.runtime property, or via the air object when using the AIRAliases.js file) are available to content in the

application security sandbox. HTML content in another sandbox does not have access to the window.runtime

property, so this content cannot access the AIR or Flash Player APIs.

Content executing within the AIR application sandbox has the following additional restrictions:

• For HTML content in the application security sandbox, there are limitations on using APIs that can dynamically

transform strings into executable code after the code is loaded. This is to prevent the application from inadvertently

injecting (and executing) code from non-application sources (such as potentially insecure network domains). An

example is the use of the eval() function. For details, see “Code restrictions for content in different sandboxes” on

page 1082.

• To prevent possible phishing attacks, img tags in HTML content in ActionScript TextField objects are ignored in

SWF content in the application security sandbox.

• Content in the application sandbox cannot use the asfunction protocol in HTML content in ActionScript 2.0 text

fields.

• SWF content in the application sandbox cannot use the cross-domain cache, a feature that was added to Flash

Player 9 Update 3. This feature lets Flash Player persistently cache Adobe platform component content and reuse

it in loaded SWF content on demand (eliminating the need to reload the content multiple times).

Restrictions for JavaScript inside AIR

Adobe AIR 1.0 and later

Unlike content in the application security sandbox, JavaScript content in a non-application security sandbox can call

the eval() function to execute dynamically generated code at any time. However, there are restrictions on JavaScript

running in a non-application security sandbox within AIR. These include:

• JavaScript code in a non-application sandbox does not have access to the window.runtime object, and as such this

code cannot execute AIR APIs.

• By default, content in a non-application security sandbox cannot use XMLHttpRequest calls to load data from other

domains other than the domain calling the request. However, application code can grant non-application content

permission to do so by setting an allowCrossdomainXHR attribute in the containing frame or iframe. For more

information, see “Code restrictions for content in different sandboxes” on page 1082.

• There are restrictions on calling the JavaScript window.open() method. For details, see “Restrictions on calling the

JavaScript window.open() method” on page 1085.

• HTML content in remote (network) security sandboxes can only load CSS, frame, iframe, and img content from

remote domains (from network URLs).

• HTML content in local-with-filesystem, local-with-networking, or local-trusted sandboxes can only load CSS,

frame, iframe, and img content from local sandboxes (not from application or network URLs).

For details, see “Code restrictions for content in different sandboxes” on page 1082.

1047ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Setting the sandbox type of local SWF files

Flash Player 9 and later, Adobe AIR 1.0 and later

An end user or the administrator of a computer can specify that a local SWF file is trusted, allowing it to load data from

all domains, both local and network. This is specified in the Global Flash Player Trust and User Flash Player Trust

directories. For more information, see “Administrator controls” on page 1048 and “User controls” on page 1050.

For more information on local sandboxes, see “Local sandboxes” on page 1044.

Adobe Flash Professional

You can configure a SWF file for the local-with-filesystem sandbox or the local-with-networking sandbox by setting

the document’s publish settings in the authoring tool.

Adobe Flex

You can configure a SWF file for the local-with-filesystem sandbox or the local-with-networking sandbox by setting

the use-network flag in the Adobe Flex compiler. For more information, see “About the application compiler

options” in Building and Deploying Adobe Flex 3 Applications.

The Security.sandboxType property

Flash Player 9 and later, Adobe AIR 1.0 and later

An author of a SWF file can use the read-only static Security.sandboxType property to determine the type of

sandbox to which the Flash Player or AIR runtime has assigned the SWF file. The Security class includes constants that

represent possible values of the Security.sandboxType property, as follows:

• Security.REMOTE—The SWF file is from an Internet URL, and operates under domain-based sandbox rules.

• Security.LOCAL_WITH_FILE—The SWF file is a local file, but it has not been trusted by the user and was not

published with a networking designation. The SWF file can read from local data sources but cannot communicate

with the Internet.

• Security.LOCAL_WITH_NETWORK—The SWF file is a local file and has not been trusted by the user, but it was

published with a networking designation. The SWF file can communicate with the Internet but cannot read from

local data sources.

• Security.LOCAL_TRUSTED—The SWF file is a local file and has been trusted by the user, using either the Settings

Manager or a Flash Player trust configuration file. The SWF file can both read from local data sources and

communicate with the Internet.

• Security.APPLICATION—The SWF file is running in an AIR application, and it was installed with the package

(AIR file) for that application. By default, files in the AIR application sandbox can cross-script any file from any

domain. However, files outside the AIR application sandbox are not permitted to cross-script the AIR file. By

default, files in the AIR application sandbox can load content and data from any domain.

1048ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Permission controls

Flash Player 9 and later, Adobe AIR 1.0 and later

The Flash Player client run-time security model has been designed around resources, which are objects such as SWF

files, local data, and Internet URLs. Stakeholders are the parties who own or use those resources. Stakeholders can

exercise controls (security settings) over their own resources, and each resource has four stakeholders. Flash Player

strictly enforces a hierarchy of authority for these controls, as the following illustration shows:

Hierarchy of security controls

This means, for instance, that if an administrator restricts access to a resource, no other stakeholders can override that

restriction.

For AIR applications, these permission controls only apply to content running outside the AIR application sandbox.

Administrator controls

Flash Player 9 and later, Adobe AIR 1.0 and later

An administrative user of a computer (a user who has logged in with administrative rights) can apply Flash Player

security settings that affect all users of the computer. In a non-enterprise environment, such as on a home computer,

there is usually one user who also has administrative access. Even in an enterprise environment, individual users may

have administrative rights to the computer.

There are two types of administrative user controls:

• The mms.cfg file

• The Global Flash Player Trust directory

The mms.cfg file

Flash Player 9 and later, Adobe AIR 1.0 and later

The mms.cfg file is a text file that lets administrators enable or restrict access to a variety of capabilities. When Flash

Player starts, it reads its security settings from this file, and uses them to limit functionality. The mms.cfg file includes

settings that the administrator uses to manage capabilities such as privacy controls, local file security, socket

connections, and so on.

Administrator
(User Institution)

settings

User settings

Website settings

Author settings

1049ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

A SWF file can access some information on capabilities that have been disabled by calling the

Capabilities.avHardwareDisable and Capabilities.localFileReadDisable properties. However, most of

the settings in the mms.cfg file cannot be queried from ActionScript.

To enforce application-independent security and privacy policies for a computer, the mms.cfg file should be modified

only by system administrators. The mms.cfg file is not for use by application installers. While an installer running with

administrative privileges could modify the contents of the mms.cfg file, Adobe considers such usage a violation of the

user’s trust and urges creators of installers never to modify the mms.cfg file.

The mms.cfg file is stored in the following location:

• Windows 32-bit: system%WINDIR%\System32\Macromed\Flash\mms.cfg

(for example, C:\WINDOWS\system32\Macromed\Flash\mms.cfg)

• Windows 64-bit: system%WINDIR%\SysWOW64\Macromed\Flash\mms.cfg

(for example, C:\WINDOWS\sysWOW64\Macromed\Flash\mms.cfg)

• Mac: app support/Macromedia/mms.cfg

(for example, /Library/Application Support/Macromedia/mms.cfg)

• Linux: /etc/adobe/mms.cfg

Google Chrome: Google Chrome uses its own version of the mms.cfg file, saved at:

• Mac: /Users/(username)/Library/Application Support/Google/Chrome/Default/Pepper Data/Shockwave

Flash/System

• Win: %USERNAME%/AppData/Local/Google/Chrome/User Data/Default/Pepper Data/Shockwave Flash/System

The System directory may not exist. If not, create it manually.

You might use third-party administration tools, such as Microsoft System Management Server, to replicate the

configuration file to the user's computer.

Use the standard techniques provided by your operating system to hide or otherwise prevent end users from seeing

or modifying the mms.cfg file on their systems.

For more information about the mms.cfg file, see the Flash Player Administration Guide at

www.adobe.com/go/flash_player_admin.

The Global Flash Player Trust directory

Flash Player 9 and later, Adobe AIR 1.0 and later

Administrative users and installer applications can register specified local SWF files as trusted for all users. These SWF

files are assigned to the local-trusted sandbox. They can interact with any other SWF files, and they can load data from

anywhere, remote or local. Files are designated as trusted in the Global Flash Player Trust directory, in the following

location:

• Windows: system\Macromed\Flash\FlashPlayerTrust

(for example, C:\WINDOWS\system32\Macromed\Flash\FlashPlayerTrust)

• Mac: app support/Macromedia/FlashPlayerTrust

(for example, /Library/Application Support/Macromedia/FlashPlayerTrust)

http://www.adobe.com/go/flash_player_admin

1050ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

The Flash Player Trust directory can contain any number of text files, each of which lists trusted paths, with one path

per line. Each path can be an individual SWF file, HTML file, or directory. Comment lines begin with the # symbol.

For example, a Flash Player trust configuration file containing the following text grants trusted status to all files in the

specified directory and all subdirectories:

 # Trust files in the following directories:
 C:\Documents and Settings\All Users\Documents\SampleApp

The paths listed in a trust configuration file should always be local paths or SMB network paths. Any HTTP path in a

trust configuration file is ignored; only local files can be trusted.

To avoid conflicts, give each trust configuration file a filename corresponding to the installing application, and use a

.cfg file extension.

As a developer distributing a locally run SWF file through an installer application, you can have the installer

application add a configuration file to the Global Flash Player Trust directory, granting full privileges to the file that

you are distributing. The installer application must be run by a user with administrative rights. Unlike the mms.cfg

file, the Global Flash Player Trust directory is included for the purpose of installer applications granting trust

permissions. Both administrative users and installer applications can designate trusted local applications using the

Global Flash Player Trust directory.

There are also Flash Player Trust directories for individual users (see “User controls” on page 1050).

User controls

Flash Player 9 and later

Flash Player provides three different user-level mechanisms for setting permissions: the Settings UI and Settings

Manager, and the User Flash Player Trust directory.

The Settings UI and Settings Manager

Flash Player 9 and later

The Settings UI is a quick, interactive mechanism for configuring the settings for a specific domain. The Settings

Manager presents a more detailed interface and provides the ability to make global changes that affect permissions for

many or all domains. Additionally, when a new permission is requested by a SWF file, requiring run-time decisions

concerning security or privacy, dialog boxes are displayed in which users can adjust some Flash Player settings.

The Settings Manager and Settings UI provide security-related options such as camera and microphone settings,

shared object storage settings, settings related to legacy content, and so on. Neither the Settings Manager nor the

Settings UI are available to AIR applications.

Note: Any settings made in the mms.cfg file (see “Administrator controls” on page 1048) are not reflected in the Settings

Manager.

For details on the Settings Manager, see www.adobe.com/go/settingsmanager.

http://www.adobe.com/go/settingsmanager

1051ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

The User Flash Player Trust directory

Flash Player 9 and later, Adobe AIR 1.0 and later

Users and installer applications can register specified local SWF files as trusted. These SWF files are assigned to the

local-trusted sandbox. They can interact with any other SWF files, and they can load data from anywhere, remote or

local. A user designates a file as trusted in the User Flash Player Trust directory, which is in same directory as the shared

object storage area, in the following locations (locations are specific to the current user):

• Windows: app data\Macromedia\Flash Player\#Security\FlashPlayerTrust

(for example, C:\Documents and Settings\JohnD\Application Data\Macromedia\Flash

Player\#Security\FlashPlayerTrust on Windows XP or C:\Users\JohnD\AppData\Roaming\Macromedia\Flash

Player\#Security\FlashPlayerTrust on Windows Vista)

In Windows, the Application Data folder is hidden by default. To show hidden folders and files, select My

Computer to open Windows Explorer, select Tools > Folder Options and then select the View tab. Under the View

tab, select the Show hidden files and folders radio button.

• Mac: app data/Macromedia/Flash Player/#Security/FlashPlayerTrust

(for example, /Users/JohnD/Library/Preferences/Macromedia/Flash Player/#Security/FlashPlayerTrust)

These settings affect only the current user, not other users who log in to the computer. If a user without

administrative rights installs an application in their own portion of the system, the User Flash Player Trust

directory lets the installer register the application as trusted for that user.

As a developer distributing a locally run SWF file by way of an installer application, you can have the installer

application add a configuration file to the User Flash Player Trust directory, granting full privileges to the file that

you are distributing. Even in this situation, the User Flash Player Trust directory file is considered a user control,

because a user action (installation) initiates it.

There is also a Global Flash Player Trust directory, used by the administrative user or installers to register an

application for all users of a computer (see “Administrator controls” on page 1048).

Website controls (policy files)

Flash Player 9 and later, Adobe AIR 1.0 and later

To make data from your web server available to SWF files from other domains, you can create a policy file on your

server. A policy file is an XML file placed in a specific location on your server.

Policy files affect access to a number of assets, including the following:

• Data in bitmaps, sounds, and videos

• Loading XML and text files

• Importing SWF files from other security domains into the security domain of the loading SWF file

• Access to socket and XML socket connections

ActionScript objects instantiate two different kinds of server connections: document-based server connections and

socket connections. ActionScript objects like Loader, Sound, URLLoader, and URLStream instantiate document-

based server connections, and these objects load a file from a URL. ActionScript Socket and XMLSocket objects make

socket connections, which operate with streaming data, not loaded documents.

1052ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Because Flash Player supports two kinds of server connections, there are two types of policy files—URL policy files and

socket policy files.

• Document-based connections require URL policy files. These files let the server indicate that its data and documents

are available to SWF files served from certain domains or from all domains.

• Socket connections require socket policy files, which enable networking directly at the lower TCP socket level, using

the Socket and XMLSocket classes.

Flash Player requires policy files to be transmitted using the same protocol that the attempted connection wants to use.

For example, when you place a policy file on your HTTP server, SWF files from other domains are allowed to load data

from it as an HTTP server. However, if you don’t provide a socket policy file at the same server, you are forbidding

SWF files from other domains to connect to the server at the socket level. In other words, the means by which a policy

file is retrieved must match the means of connecting.

Policy file usage and syntax are discussed briefly in the rest of this section, as they apply to SWF files published for

Flash Player 10. (Policy file implementation is slightly different in earlier versions of Flash Player, as successive releases

have strengthened Flash Player security.) For more detailed information on policy files, see the Flash Player Developer

Center topic “Policy File Changes in Flash Player 9” at www.adobe.com/go/devnet_security_en.

Code executing in the AIR application sandbox does not require a policy file to access data from a URL or socket. Code

in an AIR application executing in a non-application sandbox does require a policy file.

Master policy files

Flash Player 9 and later, Adobe AIR 1.0 and later

By default, Flash Player (and AIR content that is not in the AIR application sandbox) first looks for a URL policy file

named crossdomain.xml in the root directory of the server, and looks for a socket policy file on port 843. A file in

either of these locations is called the master policy file. (In the case of socket connections, Flash Player also looks for a

socket policy file on the same port as the main connection. However, a policy file found on that port is not considered

a master policy file.)

In addition to specifying access permissions, the master policy file can also contain a meta-policy statement. A meta-

policy specifies which locations can contain policy files. The default meta-policy for URL policy files is “master-only,”

which means that /crossdomain.xml is the only policy file allowed on the server. The default meta-policy for socket

policy files is “all,” which means that any socket on the host can serve a socket policy file.

Note: In Flash Player 9 and earlier, the default meta-policy for URL policy files was “all,” which means that any directory

can contain a policy file. If you have deployed applications that load policy files from locations other than the default

/crossdomain.xml file, and those applications might now be running in Flash Player 10, make sure you (or the server

administrator) modify the master policy file to allow additional policy files. For information on how to specify different

a different meta-policy, see the Flash Player Developer Center topic “Policy File Changes in Flash Player 9” at

www.adobe.com/go/devnet_security_en.

A SWF file can check for a different policy filename or a different directory location by calling the

Security.loadPolicyFile() method. However, if the master policy file doesn’t specify that the target location can

serve policy files, the call to loadPolicyFile() has no effect, even if there is a policy file at that location. Call

loadPolicyFile() before attempting any network operations that require the policy file. Flash Player automatically

queues networking requests behind their corresponding policy file attempts. So, for example, it is acceptable to call

Security.loadPolicyFile() immediately before initiating a networking operation.

http://www.adobe.com/go/devnet_security_en
http://www.adobe.com/go/devnet_security_en

1053ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

When checking for a master policy file, Flash Player waits three seconds for a server response. If a response isn’t

received, Flash Player assumes that no master policy file exists. However, there is no default timeout value for calls to

loadPolicyFile(); Flash Player assumes that the file being called exists, and waits as long as necessary to load it.

Therefore, if you want to make sure that a master policy file is loaded, use loadPolicyFile() to call it explicitly.

Even though the method is named Security.loadPolicyFile(), a policy file isn’t loaded until a network call that

requires a policy file is issued. Calls to loadPolicyFile() simply tell Flash Player where to look for policy files when

they are needed.

You can’t receive notification of when a policy file request is initiated or completed, and there is no reason to do so.

Flash Player performs policy checks asynchronously, and automatically waits to initiate connections until after the

policy file checks have succeeded.

The following sections contain information that applies only to URL policy files. For more information on socket

policy files, see “Connecting to sockets” on page 1068.

URL policy file scope

Flash Player 9 and later, Adobe AIR 1.0 and later

A URL policy file applies only to the directory from which it is loaded and to its child directories. A policy file in the

root directory applies to the whole server; a policy file loaded from an arbitrary subdirectory applies only to that

directory and its subdirectories.

A policy file affects access only to the particular server on which it resides. For example, a policy file located at

https://www.adobe.com:8080/crossdomain.xml applies only to data- loading calls made to www.adobe.com over

HTTPS at port 8080.

Specifying access permissions in a URL policy file

Flash Player 9 and later, Adobe AIR 1.0 and later

A policy file contains a single <cross-domain-policy> tag, which in turn contains zero or more <allow-access-

from> tags. Each <allow-access-from> tag contains an attribute, domain, which specifies either an exact IP address,

an exact domain, or a wildcard domain (any domain). Wildcard domains are indicated in one of two ways:

• By a single asterisk (*), which matches all domains and all IP addresses

• By an asterisk followed by a suffix, which matches only those domains that end with the specified suffix

Suffixes must begin with a dot. However, wildcard domains with suffixes can match domains that consist of only the

suffix without the leading dot. For example, xyz.com is considered to be part of *.xyz.com. Wildcards are not allowed

in IP domain specifications.

The following example shows a URL policy file that permits access to SWF files that originate from *.example.com,

www.friendOfExample.com and 192.0.34.166:

 <?xml version="1.0"?>
 <cross-domain-policy>
 <allow-access-from domain="*.example.com" />
 <allow-access-from domain="www.friendOfExample.com" />
 <allow-access-from domain="192.0.34.166" />
 </cross-domain-policy>

If you specify an IP address, access is granted only to SWF files loaded from that IP address using IP syntax (for

example, http://65.57.83.12/flashmovie.swf). Access isn’t granted to SWF files using domain-name syntax. Flash

Player does not perform DNS resolution.

1054ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

You can permit access to documents originating from any domain, as shown in the following example:

 <?xml version="1.0"?>
 <!-- http://www.foo.com/crossdomain.xml -->
 <cross-domain-policy>
 <allow-access-from domain="*" />
 </cross-domain-policy>

Each <allow-access-from> tag also has the optional secure attribute, which defaults to true. If your policy file is

on an HTTPS server and you want to allow SWF files on a non-HTTPS server to load data from the HTTPS server,

you can set the attribute to false.

Setting the secure attribute to false could compromise the security offered by HTTPS. In particular, setting this

attribute to false opens secure content to snooping and spoofing attacks. Adobe strongly recommends that you not

set the secure attribute to false.

If data to be loaded is on an HTTPS server, but the SWF file loading it is on an HTTP server, Adobe recommends that

you move the loading SWF file to an HTTPS server. Doing so lets you keep all copies of your secure data under the

protection of HTTPS. However, if you decide that you must keep the loading SWF file on an HTTP server, add the

secure="false" attribute to the <allow-access-from> tag, as shown in the following code:

 <allow-access-from domain="www.example.com" secure="false" />

Another element you can use to permit access is the allow-http-request-headers-from tag. This element grants

a client hosting content from another permission domain to send user-defined headers to your domain. While the

<allow-access-from> tag grants other domains permission to pull data from your domain, the allow-http-

request-headers-from tag grants other domains permission to push data to your domain, in the form of headers.

In the following example, any domain is permitted to send the SOAPAction header to the current domain:

<cross-domain-policy>
<allow-http-request-headers-from domain="*" headers="SOAPAction"/>

</cross-domain-policy>

If the allow-http-request-headers-from statement is in the master policy file, it applies to all directories on the

host. Otherwise, it applies only to the directory and subdirectories of the policy file that contains the statement.

Preloading policy files

Flash Player 9 and later, Adobe AIR 1.0 and later

Loading data from a server or connecting to a socket is an asynchronous operation. Flash Player simply waits for the

policy file to finish downloading before it begins the main operation. However, extracting pixel data from images or

extracting sample data from sounds is a synchronous operation. The policy file must load before you can extract data.

When you load the media, specify that it check for a policy file:

• When using the Loader.load() method, set the checkPolicyFile property of the context parameter, which is

a LoaderContext object.

• When embedding an image in a text field using the tag, set the checkPolicyFile attribute of the tag

to "true", as in the following:

• When using the Sound.load() method, set the checkPolicyFile property of the context parameter, which is a

SoundLoaderContext object.

• When using the NetStream class, set the checkPolicyFile property of the NetStream object.

1055ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

When you set one of these parameters, Flash Player first checks for any policy files that it already has downloaded for

that domain. Then it looks for the policy file in the default location on the server, checking both for <allow-access-

from> statements and for the presence of a meta-policy. Finally, it considers any pending calls to the

Security.loadPolicyFile() method to see if they are in scope.

Author (developer) controls

Flash Player 9 and later, Adobe AIR 1.0 and later

The main ActionScript API used to grant security privileges is the Security.allowDomain() method, which grant

privileges to SWF files in the domains that you specify. In the following example, a SWF file grants access to SWF files

served from the www.example.com domain:

 Security.allowDomain("www.example.com")

This method grants permissions for the following:

• Cross-scripting between SWF files (see “Cross-scripting” on page 1063)

• Display list access (see “Traversing the display list” on page 1065)

• Event detection (see “Event security” on page 1065)

• Full access to properties and methods of the Stage object (see “Stage security” on page 1064)

The primary purpose of calling the Security.allowDomain() method is to grant permission for SWF files in an

outside domain to script the SWF file calling the Security.allowDomain() method. For more information, see

“Cross-scripting” on page 1063.

Specifying an IP address as a parameter to the Security.allowDomain() method does not permit access by all parties

that originate at the specified IP address. Instead, it permits access only by a party that contains the specified IP address

as its URL, rather than a domain name that maps to that IP address. For example, if the domain name

www.example.com maps to the IP address 192.0.34.166, a call to Security.allowDomain("192.0.34.166") does

not grant access to www.example.com.

You can pass the "*" wildcard to the Security.allowDomain() method to allow access from all domains. Because it

grants permission for SWF files from all domains to script the calling SWF file, use the "*" wildcard with care.

ActionScript includes a second permission API, called Security.allowInsecureDomain(). This method does the

same thing as the Security.allowDomain() method, except that, when called from a SWF file served by a secure

HTTPS connection, it additionally permits access to the calling SWF file by other SWF files that are served from an

insecure protocol, such as HTTP. However, it is not a good security practice to allow scripting between files from a

secure protocol (HTTPS) and those from insecure protocols (such as HTTP); doing so can open secure content to

snooping and spoofing attacks. Here is how such attacks can work: since the Security.allowInsecureDomain()

method allows access to your secure HTTPS data by SWF files served over HTTP connections, an attacker interposed

between your HTTP server and your users could replace your HTTP SWF file with one of their own, which can then

access your HTTPS data.

Important: Code executing in the AIR application sandbox is not permitted to call either the allowDomain() or

allowInsecureDomain() methods of the Security class.

Another important security-related method is the Security.loadPolicyFile() method, which causes Flash Player

to check for a policy file at a nonstandard location. For more information, see “Website controls (policy files)” on

page 1051.

1056ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Restricting networking APIs

Flash Player 9 and later, Adobe AIR 1.0 and later

Networking APIs can be restricted in two ways. To prevent malicious activity, access to commonly reserved ports is

blocked; you can’t override these blocks in your code. To control a SWF file’s access to network functionality with

regard to other ports, you can use the allowNetworking setting.

Blocked ports

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash Player and Adobe AIR have restrictions on HTTP access to certain ports, as do browsers. HTTP requests are not

permitted to certain standard ports that are conventionally used for non-HTTP types of servers.

Any API that accesses a network URL is subject to these port blocking restrictions. The only exception is APIs that call

sockets directly, such as Socket.connect() and XMLSocket.connect(), or calls to Security.loadPolicyFile()

in which a socket policy file is being loaded. Socket connections are permitted or denied through the use of socket

policy files on the target server.

The following list shows the ActionScript 3.0 APIs to which port blocking applies:

FileReference.download(),FileReference.upload(), Loader.load(), Loader.loadBytes(),

navigateToURL(), NetConnection.call(), NetConnection.connect(), NetStream.play(),

Security.loadPolicyFile(), sendToURL(), Sound.load(), URLLoader.load(), URLStream.load()

Port blocking also applies to Shared Library importing, the use of the tag in text fields, and the loading of SWF

files in an HTML page using the <object> and <embed> tags.

Port blocking also applies to the use of the tag in text fields and the loading of SWF files in an HTML page using

the <object> and <embed> tags.

The following lists show which ports are blocked:

HTTP: 20 (ftp data), 21 (ftp control)

HTTP and FTP: 1 (tcpmux), 7 (echo), 9 (discard), 11 (systat), 13 (daytime), 15 (netstat), 17 (qotd), 19 (chargen),

22 (ssh), 23 (telnet), 25 (smtp), 37 (time), 42 (name), 43 (nicname), 53 (domain), 77 (priv-rjs), 79 (finger),

87 (ttylink), 95 (supdup), 101 (hostriame), 102 (iso-tsap), 103 (gppitnp), 104 (acr-nema), 109 (pop2), 110 (pop3),

111 (sunrpc), 113 (auth), 115 (sftp), 117 (uucp-path), 119 (nntp), 123 (ntp), 135 (loc-srv / epmap), 139 (netbios),

143 (imap2), 179 (bgp), 389 (ldap), 465 (smtp+ssl), 512 (print / exec), 513 (login), 514 (shell), 515 (printer),

526 (tempo), 530 (courier), 531 (chat), 532 (netnews), 540 (uucp), 556 (remotefs), 563 (nntp+ssl), 587 (smtp),

601 (syslog), 636 (ldap+ssl), 993 (ldap+ssl), 995 (pop3+ssl), 2049 (nfs), 4045 (lockd), 6000 (x11)

Using the allowNetworking parameter

Flash Player 9 and later, Adobe AIR 1.0 and later

You can control a SWF file’s access to network functionality by setting the allowNetworking parameter in the

<object> and <embed> tags in the HTML page that contains the SWF content.

Possible values of allowNetworking are:

• "all" (the default)—All networking APIs are permitted in the SWF file.

1057ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

• "internal"—The SWF file may not call browser navigation or browser interaction APIs, listed later in this section,

but it may call any other networking APIs.

• "none"—The SWF file may not call browser navigation or browser interaction APIs, listed later in this section, and

it cannot use any SWF-to-SWF communication APIs, also listed later.

The allowNetworking parameter is designed to be used primarily when the SWF file and the enclosing HTML page

are from different domains. Using the value of "internal" or "none" is not recommended when the SWF file being

loaded is from the same domain as its enclosing HTML pages, because you can’t ensure that a SWF file is always loaded

with the HTML page you intend. Untrusted parties could load a SWF file from your domain with no enclosing HTML,

in which case the allowNetworking restriction will not work as you intended.

Calling a prevented API throws a SecurityError exception.

Add the allowNetworking parameter and set its value in the <object> and <embed> tags in the HTML page that

contains a reference to the SWF file, as shown in the following example:

 <object classic="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"
 Code
base="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=9,0,124,
0"
 width="600" height="400" ID="test" align="middle">
 <param name="allowNetworking" value="none" />
 <param name="movie" value="test.swf" />
 <param name="bgcolor" value="#333333" />
 <embed src="test.swf" allowNetworking="none" bgcolor="#333333"
 width="600" height="400"
 name="test" align="middle" type="application/x-shockwave-flash"
 pluginspage="http://www.macromedia.com/go/getflashplayer" />
 </object>

An HTML page may also use a script to generate SWF-embedding tags. You need to alter the script so that it inserts

the proper allowNetworking settings. HTML pages generated by Adobe Flash Professional and Adobe Flash Builder

use the AC_FL_RunContent() function to embed references to SWF files. Add the allowNetworking parameter

settings to the script, as in the following:

 AC_FL_RunContent(... "allowNetworking", "none", ...)

The following APIs are prevented when allowNetworking is set to "internal":

navigateToURL(), fscommand(), ExternalInterface.call()

In addition to the APIs on the previous list, the following APIs are also prevented when allowNetworking is set to

"none":

sendToURL(), FileReference.download(), FileReference.upload(), Loader.load(),

LocalConnection.connect(), LocalConnection.send(), NetConnection.connect(), NetStream.play(),

Security.loadPolicyFile(), SharedObject.getLocal(), SharedObject.getRemote(), Socket.connect(),

Sound.load(), URLLoader.load(), URLStream.load(), XMLSocket.connect()

Even if the selected allowNetworking setting permits a SWF file to use a networking API, there may be other

restrictions based on security sandbox limitations (see “Security sandboxes” on page 1044).

When allowNetworking is set to "none", you cannot reference external media in an tag in the htmlText

property of a TextField object (a SecurityError exception is thrown).

When allowNetworking is set to "none", a symbol from an imported shared library added in the Flash Professional

(not ActionScript) is blocked at run time.

1058ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Full-screen mode security

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash Player 9.0.27.0 and later support full-screen mode, in which content running in Flash Player can fill the entire

screen. To enter full-screen mode, the displayState property of the Stage is set to the

StageDisplayState.FULL_SCREEN constant. For more information, see “Working with full-screen mode” on

page 167.

For SWF files running in a remote sandbox, there are some security considerations.

To enable full-screen mode, in the <object> and <embed> tags in the HTML page that contains a reference to the SWF

file, add the allowFullScreen parameter, with its value set to "true" (the default value is "false"), as shown in the

following example:

 <object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=9,0,
18,0"
 width="600" height="400" id="test" align="middle">
 <param name="allowFullScreen" value="true" />
 <param name="movie" value="test.swf" />
 <param name="bgcolor" value="#333333" />
 <embed src="test.swf" allowFullScreen="true" bgcolor="#333333"
 width="600" height="400"
 name="test" align="middle" type="application/x-shockwave-flash"
 pluginspage="http://www.macromedia.com/go/getflashplayer" />
 </object>

An HTML page may also use a script to generate SWF-embedding tags. You must alter the script so that it inserts the

proper allowFullScreen settings. HTML pages generated by Flash Professional and Flash Builder use the

AC_FL_RunContent() function to embed references to SWF files, and you need to add the allowFullScreen

parameter settings, as in the following:

 AC_FL_RunContent(... "allowFullScreen", "true", ...)

The ActionScript that initiates full-screen mode can be called only in response to a mouse event or keyboard event. If

it is called in other situations, Flash Player throws an exception.

A message appears when the content enters full-screen mode, instructing the user how to exit and return to normal

mode. The message appears for a few seconds and then fades out.

For content that is running in a browser, keyboard usage is restricted in full-screen mode. In Flash Player 9, only

keyboard shortcuts that return the application to normal mode, such as pressing the Escape key, are supported. Users

can’t enter text in text fields or navigate around the screen. In Flash Player 10 and later, certain non-printing keys

(specifically the arrow keys, space, and Tab key) are supported. However, text input is still prohibited.

Full-screen mode is always permitted in the stand-alone player or in a projector file. Also, keyboard usage (including

text input) is fully supported in those environments.

Calling the displayState property of a Stage object throws an exception for any caller that is not in the same security

sandbox as the Stage owner (the main SWF file). For more information, see “Stage security” on page 1064.

Administrators can disable full-screen mode for SWF files running in browsers by setting FullScreenDisable = 1

in the mms.cfg file. For details, see “Administrator controls” on page 1048.

In a browser, a SWF file must be contained in an HTML page to allow full-screen mode.

1059ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Full-screen interactive mode security

Flash Player 11.3 and later, Adobe AIR 1.0 and later

Flash Player 11.3 and later support full-screen interactive mode, in which content running in Flash Player can fill the

entire screen and accept text input. To enter full-screen interactive mode, the displayState property of the Stage is

set to the StageDisplayState.FULL_SCREEN_INTERACTIVE constant. For more information, see “Working with

full-screen mode” on page 167.

For SWF files running in a remote sandbox, there are some security considerations.

To enable full-screen mode, in the <object> and <embed> tags in the HTML page that contains a reference to the SWF

file, add the allowFullScreenInteractive parameter, with its value set to "true" (the default value is "false"), as

shown in the following example:

 <object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000"

codebase="http://fpdownload.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=9,0,
18,0"
 width="600" height="400" id="test" align="middle">
 <param name="allowFullScreenInteractive" value="true" />
 <param name="movie" value="test.swf" />
 <param name="bgcolor" value="#333333" />
 <embed src="test.swf" allowFullScreen="true" bgcolor="#333333"
 width="600" height="400"
 name="test" align="middle" type="application/x-shockwave-flash"
 pluginspage="http://www.macromedia.com/go/getflashplayer" />
 </object>

An HTML page may also use a script to generate SWF-embedding tags. You must alter the script so that it inserts the

proper allowFullScreenInteractive settings. HTML pages generated by Flash Professional and Flash Builder use

the AC_FL_RunContent() function to embed references to SWF files, and you need to add the

allowFullScreenInteractive parameter settings, as in the following:

 AC_FL_RunContent(... "allowFullScreenInteractive", "true", ...)

The ActionScript that initiates full-screen interactive mode can be called only in response to a mouse event or

keyboard event. If it is called in other situations, Flash Player throws an exception.

An overlay message appears when the content enters full-screen interactive mode. The message displays the domain

of the full-screen page, instructions on how to exit full-screen mode, and an Allow button. The overlay persists until

the user clicks Allow, acknowledging they are in full-screen interactive mode.

Administrators can disable full-screen interactive mode for SWF files running in browsers by setting

FullScreenInteractiveDisable = 1 in the mms.cfg file. For details, see “Administrator controls” on page 1048.

In a browser, a SWF file must be contained in an HTML page to allow full-screen interactive mode.

1060ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Loading content

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash Player and AIR content can load many types of other content, including the following:

• SWF files

• Images

• Sound

• Video

• HTML files (AIR only)

• JavaScript (AIR only)

Loading SWF files and images with the Loader class

Flash Player 9 and later, Adobe AIR 1.0 and later

You use the Loader class to load SWF files and images (JPG, GIF, or PNG files). Any SWF file, other than one in the

local-with-filesystem sandbox, can load SWF files and images from any network domain. Only SWF files in local

sandboxes can load SWF files and images from the local file system. However, files in the local-with-networking

sandbox can only load local SWF files that are in the local-trusted or local-with-networking sandbox. SWF files in the

local-with-networking sandbox load local content other than SWF files (such as images), however they cannot access

data in the loaded content.

When loading a SWF file from a non-trusted source (such as a domain other than that of the Loader object’s root SWF

file), you may want to define a mask for the Loader object, to prevent the loaded content (which is a child of the Loader

object) from drawing to portions of the Stage outside of that mask, as in the following code:

 import flash.display.*;
 import flash.net.URLRequest;
 var rect:Shape = new Shape();
 rect.graphics.beginFill(0xFFFFFF);
 rect.graphics.drawRect(0, 0, 100, 100);
 addChild(rect);
 var ldr:Loader = new Loader();
 ldr.mask = rect;
 var url:String = "http://www.unknown.example.com/content.swf";
 var urlReq:URLRequest = new URLRequest(url);
 ldr.load(urlReq);
 addChild(ldr);

1061ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

When you call the load() method of the Loader object, you can specify a context parameter, which is a

LoaderContext object. The LoaderContext class includes three properties that let you define the context of how the

loaded content can be used:

• checkPolicyFile: Use this property only when loading an image file (not a SWF file). Specify this for an image

file from a domain other than that of the file containing the Loader object. If you set this property to true, the

Loader checks the origin server for a URL policy file (see “Website controls (policy files)” on page 1051). If the

server grants permission to the Loader domain, ActionScript from SWF files in the Loader domain can access data

in the loaded image. In other words, you can use the Loader.content property to obtain a reference to the Bitmap

object that represents the loaded image, or the BitmapData.draw() or BitmapData.drawWithQuality()

methods to access pixels from the loaded image. The drawWithQuality method is available in Flash Player 11.3

and higher; AIR 3.3 and higher.

• securityDomain: Use this property only when loading a SWF file (not an image). Specify this for a SWF file from

a domain other than that of the file containing the Loader object. Only two values are currently supported for the

securityDomain property: null (the default) and SecurityDomain.currentDomain. If you specify

SecurityDomain.currentDomain, this requests that the loaded SWF file be imported to the sandbox of the

loading SWF file, meaning that it operates as though it had been loaded from the loading SWF file’s own server.

This is only permitted if a URL policy file is found on the loaded SWF file’s server, allowing access by the loading

SWF file’s domain. If the required policy file is found, the loader and loadee can freely script each other once the

load begins, since they are in the same sandbox. Note that sandbox importing can mostly be replaced by performing

an ordinary load and then having the loaded SWF file call the Security.allowDomain() method. This latter

method may be easier to use, since the loaded SWF file will then be in its own natural sandbox, and thus able to

access resources on its own actual server.

• applicationDomain: Use this property only when loading a SWF file written in ActionScript 3.0 (not an image or

a SWF file written in ActionScript 1.0 or 2.0). When loading the file, you can specify that the file be placed into a

particular application domain, rather than the default of being placed in a new application domain that is a child of

the loading SWF file’s application domain. Note that application domains are subunits of security domains, and

thus you can specify a target application domain only if the SWF file that you are loading is from your own security

domain, either because it is from your own server, or because you have successfully imported it into your security

domain using the securityDomain property. If you specify an application domain but the loaded SWF file is part

of a different security domain, the domain you specify in applicationDomain is ignored. For more information,

see “Working with application domains” on page 147.

For details, see “Specifying loading context” on page 200.

An important property of a Loader object is the contentLoaderInfo property, which is a LoaderInfo object. Unlike

most other objects, a LoaderInfo object is shared between the loading SWF file and the loaded content, and it is always

accessible to both parties. When the loaded content is a SWF file, it can access the LoaderInfo object through the

DisplayObject.loaderInfo property. LoaderInfo objects include information such as load progress, the URLs of

loader and loadee, the trust relationship between loader and loadee, and other information. For more information, see

“Monitoring loading progress” on page 199.

Loading sound and videos

Flash Player 9 and later, Adobe AIR 1.0 and later

Any content, except content in the local-with-filesystem sandbox, is allowed to load sound and video from network

origins, using the Sound.load(), NetConnection.connect(), and NetStream.play() methods.

1062ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Only content in the local-with-filesystem and AIR application sandboxes can load media from the local file system.

Only content in the local-with-filesystem sandbox, the AIR application sandbox, or the local-trusted sandbox can

access data in these loaded files.

There are other restrictions on accessing data from loaded media. For details, see “Accessing loaded media as data” on

page 1066.

Loading SWF files and images using the tag in a text field

Flash Player 9 and later, Adobe AIR 1.0 and later

You can load SWF files and bitmaps into a text field by using the tag, as in the following code:

You can access content loaded this way by using the getImageReference() method of the TextField instance, as in

the following code:

 var loadedObject:DisplayObject = myTextField.getImageReference('instanceName');

Note, however, that SWF files and images loaded in this way are put in the sandbox that corresponds to their origin.

When you load an image file using an tag in a text field, access to the data in the image may be permitted by a

URL policy file. You can check for a policy file by adding a checkPolicyFile attribute to the tag, as in the

following code:

When you load a SWF using an tag in a text field, you can permit access to that SWF file’s data through a call

to the Security.allowDomain() method.

When you use an tag in a text field to load an external file (as opposed to using a Bitmap class embedded within

your SWF), a Loader object is automatically created as a child of the TextField object, and the external file is loaded

into that Loader just as if you had used a Loader object in ActionScript to load the file. In this case, the

getImageReference() method returns the Loader that was automatically created. No security check is needed to

access this Loader object because it is in the same security sandbox as the calling code.

However, when you refer to the content property of the Loader object to access the loaded media, security rules apply.

If the content is an image, you need to implement a URL policy file, and if the content is a SWF file, you need to have

the code in the SWF file call the allowDomain() method.

Adobe AIR

In the application sandbox, tags in a text field are ignored to prevent phishing attacks. In addition, code running

in the application sandbox is not permitted to call the Security allowDomain() method.

Content delivered using RTMP servers

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash Media Server uses the Real-Time Media Protocol (RTMP) to serve data, audio, and video. You can load this

media by using the connect() method of the NetConnection class, passing an RTMP URL as the parameter. Flash

Media Server can restrict connections and prevent content from downloading, based on the domain of the requesting

file. For details, see the Flash Media Server documentation online at www.adobe.com/go/learn_fms_docs_en.

http://www.adobe.com/go/learn_fms_docs_en

1063ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

To use the BitmapData.draw(), BitmapData.drawWithQuality(), and SoundMixer.computeSpectrum()

methods to extract run-time graphics and sound data from RTMP streams, you must allow access on the server. Use

the Server-Side ActionScript Client.videoSampleAccess and Client.audioSampleAccess properties to allow

access to specific directories on Flash Media Server. For more information, see the Server-Side ActionScript Language

Reference. (The drawWithQuality method is available in Flash Player 11.3 and higher; AIR 3.3 and higher.)

Cross-scripting

Flash Player 9 and later, Adobe AIR 1.0 and later

If two SWF files written with ActionScript 3.0, or two HTML files running in AIR are served from the same domain—

for example, the URL for one SWF file is http://www.example.com/swfA.swf and the URL for the other is

http://www.example.com/swfB.swf—then code defined in one file can examine and modify variables, objects,

properties, methods, and so on in the other, and vice versa. This is called cross-scripting.

If the two files are served from different domains—for example, http://siteA.com/swfA.swf and

http://siteB.com/swfB.swf—then, by default, Flash Player and AIR do not allow swfA.swf to script swfB.swf, nor

swfB.swf to script swfA.swf. A SWF file gives permission to SWF files from other domains by calling

Security.allowDomain(). By calling Security.allowDomain("siteA.com"), swfB.swf gives SWF files from

siteA.com permission to script it.

Cross-scripting is not supported between AVM1 SWF files and AVM2 SWF files. An AVM1 SWF file is one created

by using ActionScript 1.0 or ActionScript 2.0. (AVM1 and AVM2 refer to the ActionScript Virtual Machine.) You can,

however, use the LocalConnection class to send data between AVM1 and AVM2.

In any cross-domain situation, it is important to be clear about the two parties involved. For the purposes of this

discussion, the side that is performing the cross-scripting is called the accessing party (usually the accessing SWF), and

the other side is called the party being accessed (usually the SWF being accessed). When siteA.swf scripts siteB.swf,

siteA.swf is the accessing party, and siteB.swf is the party being accessed, as the following illustration shows:

Security.allowDomain("siteA.com");

var eggCount:Number;
function DisplayEggs() { ... };

siteA.com / swfA.swf

siteB.com / swfB.swf

load1

SWF

SWF

cross-script
3 2 permission

var url:String = "http://siteB.com/swfB.swf";
var req:URLRequest = new URLRequest(url);
myLoader.load(req);

myLoader.content.eggCount = 3;
myLoader.content.DisplayEggs();

http://www.adobe.com/go/learn_fms_docs_en
http://www.adobe.com/go/learn_fms_docs_en

1064ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Cross-domain permissions that are established with the Security.allowDomain() method are asymmetrical. In the

previous example, siteA.swf can script siteB.swf, but siteB.swf cannot script siteA.swf, because siteA.swf has not called

the Security.allowDomain() method to give SWF files at siteB.com permission to script it. You can set up

symmetrical permissions by having both SWF files call the Security.allowDomain() method.

In addition to protecting SWF files from cross-domain scripting originated by other SWF files, Flash Player protects

SWF files from cross-domain scripting originated by HTML files. HTML-to-SWF scripting can occur with callbacks

established through the ExternalInterface.addCallback() method. When HTML-to-SWF scripting crosses

domains, the SWF file being accessed must call the Security.allowDomain() method, just as when the accessing

party is a SWF file, or the operation will fail. For more information, see “Author (developer) controls” on page 1055.

Also, Flash Player provides security controls for SWF-to-HTML scripting. For more information, see “Controlling

outbound URL access” on page 1072.

Stage security

Flash Player 9 and later, Adobe AIR 1.0 and later

Some properties and methods of the Stage object are available to any sprite or movie clip on the display list.

However, the Stage object is said to have an owner: the first SWF file loaded. By default, the following properties and

methods of the Stage object are available only to SWF files in the same security sandbox as the Stage owner:

In order for a SWF file in a sandbox other than that of the Stage owner to access these properties and methods, the

Stage owner SWF file must call the Security.allowDomain() method to permit the domain of the external sandbox.

For more information, see “Author (developer) controls” on page 1055.

Properties Methods

align addChild()

displayState addChildAt()

frameRate addEventListener()

height dispatchEvent()

mouseChildren hasEventListener()

numChildren setChildIndex()

quality willTrigger()

scaleMode

showDefaultContextMenu

stageFocusRect

stageHeight

stageWidth

tabChildren

textSnapshot

width

1065ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

The frameRate property is a special case—any SWF file can read the frameRate property. However, only those in the

Stage owner’s security sandbox (or those granted permission by a call to the Security.allowDomain() method) can

change the property.

There are also restrictions on the removeChildAt() and swapChildrenAt() methods of the Stage object, but these

are different from the other restrictions. Rather than needing to be in the same domain as the Stage owner, to call these

methods code must be in the same domain as the owner of the affected child object(s), or the child object(s) can call

the Security.allowDomain() method.

Traversing the display list

Flash Player 9 and later, Adobe AIR 1.0 and later

The ability of one SWF file to access display objects loaded from other sandboxes is restricted. In order for a SWF file

to access a display object created by another SWF file in a different sandbox, the SWF file being accessed must call the

Security.allowDomain() method to permit access by the domain of the accessing SWF file. For more information,

see “Author (developer) controls” on page 1055.

To access a Bitmap object that was loaded by a Loader object, a URL policy file must exist on the origin server of the

image file, and that policy file must grant permission to the domain of the SWF file trying to access the Bitmap object

(see “Website controls (policy files)” on page 1051).

The LoaderInfo object that corresponds to a loaded file (and to the Loader object) includes the following three

properties, which define the relationship between the loaded object and the Loader object: childAllowsParent,

parentAllowsChild, and sameDomain.

Event security

Flash Player 9 and later, Adobe AIR 1.0 and later

Events related to the display list have security access limitations, based on the sandbox of the display object that is

dispatching the event. An event in the display list has bubbling and capture phases (described in “Handling events” on

page 125). During the bubbling and capture phases, an event migrates from the source display object through parent

display objects in the display list. If a parent object is in a different security sandbox than the source display object, the

capture and bubble phase stops below that parent object, unless there is mutual trust between the owner of the parent

object and the owner of the source object. This mutual trust can be achieved by the following:

1 The SWF file that owns the parent object must call the Security.allowDomain() method to trust the domain of

the SWF file that owns the source object.

2 The SWF file that owns the source object must call the Security.allowDomain() method to trust the domain of

the SWF file that owns the parent object.

The LoaderInfo object that corresponds to a loaded file (and to the Loader object) includes the following two

properties, which define the relationship between the loaded object and the Loader object: childAllowsParent and

parentAllowsChild.

For events that are dispatched from objects other than display objects, there are no security checks or security-related

implications.

1066ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Accessing loaded media as data

Flash Player 9 and later, Adobe AIR 1.0 and later

To access load data use the BitmapData.draw(), BitmapData.drawWithQuality(), and

SoundMixer.computeSpectrum()methods. By default, you cannot obtain pixel data or audio data from graphic or

audio objects rendered or played by media loaded in a different sandbox. However, you can use the following methods

to grant permission to access such data across sandbox boundaries:

• In the content rendering or playing the data to be accessed, call the Security.allowDomain() method to grant

data access to content in other domains.

• For a loaded image, sound, or video, add a URL policy file on the server of the loaded file. This policy file must grant

access to the domain of the SWF file that is attempting to call the BitmapData.draw(),

BitmapData.drawWithQuality(), or SoundMixer.computeSpectrum() methods to extract data from the file.

The drawWithQuality method is available in Flash Player 11.3 and higher; AIR 3.3 and higher.

The following sections provide details on accessing bitmap, sound, and video data.

Accessing bitmap data

Flash Player 9 and later, Adobe AIR 1.0 and later

The draw() and drawWithQuality() (Flash Player 11.3; AIR 3.3) methods of a BitmapData object lets you draw the

currently displayed pixels of any display object to the BitmapData object. This could include the pixels of a MovieClip

object, a Bitmap object, or any display object. The following conditions must be met for these methods to draw pixels

to the BitmapData object:

• In the case of a source object other than a loaded bitmap, the source object and (in the case of a Sprite or MovieClip

object) all of its child objects must come from the same domain as the object calling the draw method, or they must

be in a SWF file that is accessible to the caller by having called the Security.allowDomain() method.

• In the case of a Loaded bitmap source object, the source object must come from the same domain as the object

calling the draw method, or its source server must include a URL policy file that grants permission to the calling

domain.

If these conditions are not met, a SecurityError exception is thrown.

When you load the image using the load() method of the Loader class, you can specify a context parameter, which

is a LoaderContext object. If you set the checkPolicyFile property of the LoaderContext object to true, Flash Player

checks for a URL policy file on the server from which the image is loaded. If there is a policy file, and the file permits

the domain of the loading SWF file, the file is allowed to access data in the Bitmap object; otherwise, access is denied.

You can also specify a checkPolicyFile property in an image loaded via an tag in a text field. For details, see

“Loading SWF files and images using the tag in a text field” on page 1062.

Accessing sound data

Flash Player 9 and later, Adobe AIR 1.0 and later

The following sound-related ActionScript 3.0 APIs have security restrictions:

• The SoundMixer.computeSpectrum() method—Always permitted for code running in the same security

sandbox as the sound file. For code running in other sandboxes, there are security checks.

1067ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

• The SoundMixer.stopAll() method—Always permitted for code running in the same security sandbox as the

sound file. For files in other sandboxes, there are security checks.

• The id3 property of the Sound class—Always permitted for SWF files that are in the same security sandbox as the

sound file. For code running in other sandboxes, there are security checks.

Every sound has two kinds of sandboxes associated with it—a content sandbox and an owner sandbox:

• The origin domain for the sound determines the content sandbox, and this determines whether data can be

extracted from the sound via the id3 property of the sound and the SoundMixer.computeSpectrum() method.

• The object that started the sound playing determines the owner sandbox, and this determines whether the sound

can be stopped using the SoundMixer.stopAll() method.

When you load the sound using the load() method of the Sound class, you can specify a context parameter, which

is a SoundLoaderContext object. If you set the checkPolicyFile property of the SoundLoaderContext object to true,

the runtime checks for a URL policy file on the server from which the sound is loaded. If there is a policy file, and the

file permits the domain of the loading code, the code is allowed to access the id property of the Sound object;

otherwise, it will not. Also, setting the checkPolicyFile property can enable the SoundMixer.computeSpectrum()

method for loaded sounds.

You can use the SoundMixer.areSoundsInaccessible() method to find out whether a call to the

SoundMixer.stopAll() method would not stop all sounds because the sandbox of one or more sound owners is

inaccessible to the caller.

Calling the SoundMixer.stopAll() method stops those sounds whose owner sandbox is the same as that of the caller

of stopAll(). It also stops those sounds whose playback was started by SWF files that have called the

Security.allowDomain() method to permit access by the domain of the SWF file calling the stopAll() method.

Any other sounds are not stopped, and the presence of such sounds can be revealed by calling the

SoundMixer.areSoundsInaccessible() method.

Calling the computeSpectrum() method requires that every sound that is playing be either from the same sandbox as

the object calling the method or from a source that has granted permission to the caller's sandbox; otherwise, a

SecurityError exception is thrown. For sounds that were loaded from embedded sounds in a library in a SWF file,

permission is granted with a call to the Security.allowDomain() method in the loaded SWF file. For sounds loaded

from sources other than SWF files (originating from loaded mp3 files or from video files), a URL policy file on the

source server grants access to data in loaded media.

For more information, see “Author (developer) controls” on page 1055 and “Website controls (policy files)” on

page 1051.

To access sound data from RTMP streams, you must allow access on the server. Use the Server-Side ActionScript

Client.audioSampleAccess property to allow access to specific directories on Flash Media Server. For more

information, see the Server-Side ActionScript Language Reference.

Accessing video data

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the BitmapData.draw() or BitmapData.drawWithQuality() method to capture the pixel data of the

current frame of a video. (The drawWithQuality method is available in Flash Player 11.3 and higher; AIR 3.3 and

higher.)

There are two different kinds of video:

• Video streamed over RTMP from Flash Media Server

http://www.adobe.com/go/learn_fms_docs_en

1068ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

• Progressive video, which is loaded from an FLV or F4V file

To use the draw methods to extract run-time graphics from RTMP streams, you must allow access on the server. Use

the Server-Side ActionScript Client.videoSampleAccess property to allow access to specific directories on Flash

Media Server. For more information, see the Server-Side ActionScript Language Reference.

When you call a draw method with progressive video as the source parameter, the caller of the method must either

be from the same sandbox as the FLV file, or the server of the FLV file must have a policy file that grants permission

to the domain of the calling SWF file. You can request that the policy file be downloaded by setting the

checkPolicyFile property of the NetStream object to true.

Loading data

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash Player and AIR content can exchange data with servers. Loading data is a different kind of operation from

loading media, because the loaded information appears as program objects, rather than being displayed as media.

Generally, content may load data from the same domain that the content originated from. However, content usually

requires policy files in order to load data from other domains (see “Website controls (policy files)” on page 1051).

Note: Content running in the AIR application sandbox is never served from a remote domain (unless the developer

intentionally imports remote content into the application sandbox), so it cannot participate in the types of attacks that

policy files protect against. AIR content in the application sandbox is not restricted from loading data by policy files.

However, AIR content in other sandboxes is subject to the restrictions described here.

Using URLLoader and URLStream

Flash Player 9 and later, Adobe AIR 1.0 and later

You can load data, such as an XML file or a text file. The load() methods of the URLLoader and URLStream classes

are governed by URL policy file permissions.

If you use the load() method to load content from a domain other than that of the code that is calling the method,

the runtime checks for a URL policy file on the server of the loaded assets. If there is a policy file, and it grants access

to the domain of the loading content, you can load the data.

Connecting to sockets

Flash Player 9 and later, Adobe AIR 1.0 and later

By default, the runtime looks for a socket policy file served from port 843. As with URL policy files, this file is called

the master policy file.

When policy files were first introduced in Flash Player 6, there was no support for socket policy files. Connections to

socket servers were authorized by a policy file in the default location on an HTTP server on port 80 of the same host

as the socket server. Flash Player 9 still supports this capability, but Flash Player 10 does not. In Flash Player 10, only

socket policy files can authorize socket connections.

http://www.adobe.com/go/learn_fms_docs_en

1069ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Like URL policy files, socket policy files support a meta-policy statement that specifies which ports can serve policy

files. However, instead of “master-only,” the default meta-policy for socket policy files is “all.” That is, unless the

master policy file specifies a more restrictive setting, Flash Player assumes that any socket on the host can serve a socket

policy file.

Access to socket and XML socket connections is disabled by default, even if the socket you are connecting to is in the

same domain as the SWF file. You can permit socket-level access by serving a socket policy file from any of the

following locations:

• Port 843 (the location of the master policy file)

• The same port as the main socket connection

• A different port than the main socket connection

By default, Flash Player looks for a socket policy file on port 843 and on the same port as the main socket connection.

If you want to serve a socket policy file from a different port, the SWF file must call Security.loadPolicyFile().

A socket policy file has the same syntax as a URL policy file, except that it must also specify the ports to which it grants

access. When a socket policy file is served from a port number below 1024, it may grant access to any ports; when a

policy file comes from port 1024 or higher, it may grant access only to ports 1024 and higher. The allowed ports are

specified in a to-ports attribute in the <allow-access-from> tag. Single port numbers, port ranges, and wildcards

are accepted values.

Here is an example socket policy file:

 <?xml version="1.0"?>
 <!DOCTYPE cross-domain-policy SYSTEM "http://www.adobe.com/xml/dtds/cross-domain-policy.dtd">
 <!-- Policy file for xmlsocket://socks.mysite.com -->
 <cross-domain-policy>
 <allow-access-from domain="*" to-ports="507" />
 <allow-access-from domain="*.example.com" to-ports="507,516" />
 <allow-access-from domain="*.example.org" to-ports="516-523" />
 <allow-access-from domain="adobe.com" to-ports="507,516-523" />
 <allow-access-from domain="192.0.34.166" to-ports="*" />
 </cross-domain-policy>

 To retrieve a socket policy file from port 843 or from the same port as a main socket connection, call the

Socket.connect() or XMLSocket.connect() method. Flash Player first checks for a master policy file on port 843.

If it finds one, it checks to see if the file contains a meta-policy statement that prohibits socket policy files on the target

port. If access isn’t prohibited, Flash Player first looks for the appropriate allow-access-from statement in the

master policy file. If it doesn’t find one, it then looks for a socket policy file on the same port as the main socket

connection.

To retrieve a socket policy file a different location, first call the Security.loadPolicyFile() method with the special

"xmlsocket" syntax, as in the following:

 Security.loadPolicyFile("xmlsocket://server.com:2525");

Call the Security.loadPolicyFile() method before calling the Socket.connect() or XMLSocket.connect()

method. Flash Player then waits until it has fulfilled your policy file request before deciding whether to allow your main

connection. However, if the master policy file specifies that the target location can’t serve policy files, the call to

loadPolicyFile() has no effect, even if there is a policy file at that location.

If you are implementing a socket server and you need to provide a socket policy file, decide whether to provide the

policy file using the same port that accepts main connections, or using a different port. In either case, your server must

wait for the first transmission from your client before sending a response.

When Flash Player requests a policy file, it always transmits the following string as soon as a connection is established:

1070ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

 <policy-file-request/>

Once the server receives this string, it can transmit the policy file. The request from Flash Player is always terminated

by a null byte, and the response from the server must also be terminated by a null byte.

Do not expect to reuse the same connection for both a policy file request and a main connection; close the connection

after transmitting the policy file. If you do not, Flash Player closes the policy file connection before reconnecting to set

up the main connection.

Protecting data

Flash Player 9 and later, Adobe AIR 1.0 and later

To protect data from eavesdropping and alteration as it travels over the Internet, you can use the Transport Layer

Security (TLS) or Socket Layer Security (SSL) on the server where the data originates. You can then connect to the

server using the HTTPS protocol.

In applications created for AIR 2 or above, you can also protect TCP socket communications. The SecureSocket class

allows you to initiate a socket connection to a socket server that uses TLS version 1or SSL version 4.

Sending data

Flash Player 9 and later, Adobe AIR 1.0 and later

Data sending occurs when code sends data to a server or resource. Sending data is always permitted for content from

a network domain. A local SWF file can send data to network addresses only if it is in the local-trusted, local-with-

networking, or AIR application sandbox. For more information, see “Local sandboxes” on page 1044.

You can use the flash.net.sendToURL() function to send data to a URL. Other methods also send requests to URLs.

These include loading methods, such as Loader.load() and Sound.load(), and data-loading methods, such as

URLLoader.load() and URLStream.load().

Uploading and downloading files

Flash Player 9 and later, Adobe AIR 1.0 and later

The FileReference.upload() method starts the upload of a file selected by a user to a remote server. You must call

the FileReference.browse() or FileReferenceList.browse() method before calling the

FileReference.upload() method.

The code that initiates the FileReference.browse() or FileReferenceList.browse() method can be called only

in response to a mouse event or keyboard event. If it is called in other situations, Flash Player 10 and later throws an

exception. However, a user-initiated event is not required to call these methods from the AIR application sandbox.

Calling the FileReference.download() method opens a dialog box in which the user can download a file from a

remote server.

Note: If your server requires user authentication, only SWF files running in a browser—that is, using the browser plug-

in or ActiveX control—can provide a dialog box to prompt the user for a user name and password for authentication, and

only for downloads. Flash Player does not allow uploads to a server that requires user authentication.

Uploads and downloads are not allowed if the calling SWF file is in the local-with-filesystem sandbox.

1071ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

By default, a SWF file may not initiate an upload to, or a download from, a server other than its own. A SWF file may

upload to, or download from, a different server if that server provides a policy file that grants permission to the domain

of the invoking SWF file.

Loading embedded content from SWF files imported
into a security domain

Flash Player 9 and later, Adobe AIR 1.0 and later

When you load a SWF file, you can set the context parameter of the load() method of the Loader object that is used

to load the file. This parameter takes a LoaderContext object. When you set the securityDomain property of this

LoaderContext object to Security.currentDomain, Flash Player checks for a URL policy file on the server of the

loaded SWF file. If there is a policy file, and it grants access to the domain of the loading SWF file, you can load the

SWF file as imported media. In this way, the loading file can get access to objects in the library of the SWF file.

An alternative way for a SWF file to access classes in loaded SWF files from a different security sandbox is to have the

loaded SWF file call the Security.allowDomain() method to grant access to the domain of the calling SWF file. You

can add the call to the Security.allowDomain() method to the constructor method of the main class of the loaded

SWF file, and then have the loading SWF file add an event listener to respond to the init event dispatched by the

contentLoaderInfo property of the Loader object. When this event is dispatched, the loaded SWF file has called the

Security.allowDomain() method in the constructor method, and classes in the loaded SWF file are available to the

loading SWF file. The loading SWF file can retrieve classes from the loaded SWF file by calling

Loader.contentLoaderInfo.applicationDomain.getDefinition() or

Loader.contentLoaderInfo.applicationDomain.getQualifiedDefinitionNames()(Flash Player 11.3 and higher; AIR 3.3

and higher).

Working with legacy content

Flash Player 9 and later, Adobe AIR 1.0 and later

In Flash Player 6, the domain that is used for certain Flash Player settings is based on the trailing portion of the domain

of the SWF file. These settings include settings for camera and microphone permissions, storage quotas, and storage

of persistent shared objects.

If the domain of a SWF file includes more than two segments, such as www.example.com, the first segment of the

domain (www) is removed, and the remaining portion of the domain is used. So, in Flash Player 6, www.example.com

and store.example.com both use example.com as the domain for these settings. Similarly, www.example.co.uk and

store.example.co.uk both use example.co.uk as the domain for these settings. This can lead to problems in which SWF

files from unrelated domains, such as example1.co.uk and example2.co.uk, have access to the same shared objects.

In Flash Player 7 and later, player settings are chosen by default according to a SWF file’s exact domain. For example,

a SWF file from www.example.com would use the player settings for www.example.com. A SWF file from

store.example.com would use the separate player settings for store.example.com.

1072ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

In a SWF file written using ActionScript 3.0, when Security.exactSettings is set to true (the default), Flash Player

uses exact domains for player settings. When it is set to false, Flash Player uses the domain settings used in Flash

Player 6. If you change exactSettings from its default value, you must do so before any events occur that require

Flash Player to choose player settings—for example, using a camera or microphone, or retrieving a persistent shared

object.

If you published a version 6 SWF file and created persistent shared objects from it, to retrieve those persistent shared

objects from a SWF that uses ActionScript 3.0, you must set Security.exactSettings to false before calling

SharedObject.getLocal().

Setting LocalConnection permissions

Flash Player 9 and later, Adobe AIR 1.0 and later

The LocalConnection class lets you send messages between one Flash Player or AIR application and another.

LocalConnection objects can communicate only among Flash Player or AIR content running on the same client

computer, but they can be running in different applications—for example, a SWF file running in a browser, a SWF file

running in a projector, and an AIR application can all communicate use the LocalConnection class.

For every LocalConnection communication, there is a sender and a listener. By default, Flash Player allows

LocalConnection communication between code running in the same domain. For code running in different

sandboxes, the listener must allow the sender permission by using the LocalConnection.allowDomain() method.

The string you pass as an argument to the LocalConnection.allowDomain() method can contain any of the

following: exact domain names, IP addresses, and the * wildcard.

The allowDomain() method has changed from the form it had in ActionScript 1.0 and 2.0. In those earlier versions,

allowDomain() was a callback method that you implemented. In ActionScript 3.0, allowDomain() is a built-in

method of the LocalConnection class that you call. With this change, allowDomain() works in much the same way as

Security.allowDomain().

A SWF file can use the domain property of the LocalConnection class to determine its domain.

Controlling outbound URL access

Flash Player 9 and later, Adobe AIR 1.0 and later

Outbound scripting and URL access (through the use of HTTP URLs, mailto: and so on) are achieved through use of

the following APIs:

• The flash.system.fscommand() function

• The ExternalInterface.call() method

• The flash.net.navigateToURL() function

For content loaded from the local file system, calls to these methods are successful only if the code and the containing

web page (if there is one) are in the local-trusted or AIR application security sandboxes. Calls to these methods fail if

the content is in the local-with-networking or local-with-filesystem sandbox.

1073ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

For content that is not loaded locally, all of these APIs can communicate with the web page in which they are

embedded, depending on the value of the AllowScriptAccess parameter described below. The

flash.net.navigateToURL() function has the additional ability to communicate with any open browser window or

frame, not just the page in which the SWF file is embedded. For more information on this functionality, see “Using the

navigateToURL() function” on page 1073.

The AllowScriptAccess parameter in the HTML code that loads a SWF file controls the ability to perform outbound

URL access from within the SWF file. Set this parameter inside the PARAM or EMBED tag. If no value is set for

AllowScriptAccess, the SWF file and the HTML page can communicate only if both are from the same domain.

The AllowScriptAccess parameter can have one of three possible values: "always", "sameDomain", or "never".

• When AllowScriptAccess is "always", the SWF file can communicate with the HTML page in which it is

embedded even when the SWF file is from a different domain than the HTML page.

• When AllowScriptAccess is "sameDomain", the SWF file can communicate with the HTML page in which it is

embedded only when the SWF file is from the same domain as the HTML page. This value is the default value for

AllowScriptAccess. Use this setting, or do not set a value for AllowScriptAccess, to prevent a SWF file hosted

from one domain from accessing a script in an HTML page that comes from another domain.

• When AllowScriptAccess is "never", the SWF file cannot communicate with any HTML page. Using this value

has been deprecated since the release of Adobe Flash CS4 Professional. It is not recommended and shouldn’t be

necessary if you don’t serve untrusted SWF files from your own domain. If you do need to serve untrusted SWF

files, Adobe recommends that you create a distinct subdomain and place all untrusted content there.

Here is an example of setting the AllowScriptAccess tag in an HTML page to allow outbound URL access to a

different domain:

 <object id='MyMovie.swf' classid='clsid:D27CDB6E-AE6D-11cf-96B8-444553540000'
codebase='http://download.adobe.com/pub/shockwave/cabs/flash/swflash.cab#version=9,0,0,0'
height='100%' width='100%'>
 <param name='AllowScriptAccess' value='always'/>
 <param name='src' value=''MyMovie.swf'/>
 <embed name='MyMovie.swf' pluginspage='http://www.adobe.com/go/getflashplayer'
src='MyMovie.swf' height='100%' width='100%' AllowScriptAccess='never'/>
 </object>

Using the navigateToURL() function

Flash Player 9 and later, Adobe AIR 1.0 and later

In addition to the security setting specified by the allowScriptAccess parameter discussed above, the

navigateToURL() function has an optional second parameter - target. The target parameter can be used to specify

the name of an HTML window or frame to send the URL request to. Additional security restrictions apply to such

requests, and the restrictions vary depending on whether navigateToURL() is being used as a scripting or non-

scripting statement.

For scripting statements, such as navigateToURL("javascript: alert('Hello from Flash Player.')"), the

following rules apply.

• If the SWF file is a locally trusted file, the request succeeds.

• If the target is the HTML page in which the SWF file is embedded, the allowScriptAccess rules described above

apply.

• If the target holds content loaded from the same domain as the SWF file, the request succeeds.

1074ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

• If the target holds content loaded from a different domain than the SWF file, and neither of the previous two

conditions is met, the request fails.

For non-scripting statements (such as HTTP, HTTPS, and mailto:, the request fails if all of the following conditions

apply:

• The target is one of the special keywords "_top" or "_parent", and

• the SWF file is in a web page hosted from a different domain, and

• the SWF file is embedded with a value for allowScriptAccess that is not "always".

For more information

Flash Player 9 and later, Adobe AIR 1.0 and later

For more information on outbound URL access, see the following entries in the ActionScript 3.0 Reference for the

Adobe Flash Platform:

• The flash.system.fscommand() function

• The call() method of the ExternalInterface class

• The flash.net.navigateToURL() function

Shared objects

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash Player provides the ability to use shared objects, which are ActionScript objects that persist outside of a SWF file,

either locally on a user’s file system or remotely on an RTMP server. Shared objects, like other media in Flash Player,

are partitioned into security sandboxes. However, the sandbox model for shared objects is somewhat different, because

shared objects are not resources that can ever be accessed across domain boundaries. Instead, shared objects are always

retrieved from a shared object store that is particular to the domain of each SWF file that calls methods of the

SharedObject class. Usually a shared object store is even more particular than a SWF file’s domain: by default, each

SWF file uses a shared object store particular to its entire origin URL. For more information on shared objects, see

“Shared objects” on page 701.

A SWF file can use the localPath parameter of the SharedObject.getLocal() and SharedObject.getRemote()

methods to use a shared object store associated with only a part of its URL. In this way, the SWF file can permit sharing

with other SWF files from other URLs. Even if you pass '/' as the localPath parameter, this still specifies a shared

object store particular to its own domain.

Users can restrict shared object access by using the Flash Player Settings dialog box or the Settings Manager. By default,

shared objects can be created up to a maximum of 100 KB of data per domain. Administrative users and users can also

place restrictions on the ability to write to the file system. For more information, see “Administrator controls” on

page 1048 and “User controls” on page 1050.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/system/package.html#fscommand%28%29
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html#call%28%29
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/package.html#navigateToURL%28%29

1075ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

You can specify that a shared object is secure, by specifying true for the secure parameter of the

SharedObject.getLocal() method or the SharedObject.getRemote() method. Note the following about the

secure parameter:

• If this parameter is set to true, Flash Player creates a new secure shared object or gets a reference to an existing

secure shared object. This secure shared object can be read from or written to only by SWF files delivered over

HTTPS that call SharedObject.getLocal() with the secure parameter set to true.

• If this parameter is set to false, Flash Player creates a new shared object or gets a reference to an existing shared

object that can be read from or written to by SWF files delivered over non-HTTPS connections.

If the calling SWF file is not from an HTTPS URL, specifying true for the secure parameter of the

SharedObject.getLocal() method or the SharedObject.getRemote() method results in a SecurityError

exception.

The choice of a shared object store is based on a SWF file’s origin URL. This is true even in the two situations where a

SWF file does not originate from a simple URL: import loading and dynamic loading. Import loading refers to the

situation where you load a SWF file with the LoaderContext.securityDomain property set to

SecurityDomain.currentDomain. In this situation, the loaded SWF file will have a pseudo-URL that begins with its

loading SWF file’s domain and then specifies its actual origin URL. Dynamic loading refers to the loading of a SWF

file using the Loader.loadBytes() method. In this situation, the loaded SWF file will have a pseudo-URL that begins

with its loading SWF file’s full URL followed by an integer ID. In both the import loading and dynamic loading cases,

a SWF file’s pseudo-URL can be examined using the LoaderInfo.url property. The pseudo-URL is treated exactly

like a real URL for the purposes of choosing a shared object store. You can specify a shared object localPath

parameter that uses part or all of the pseudo-URL.

Users and administrators can elect to disable the use of third-party shared objects. This is the usage of shared objects

by any SWF file that is executing in a web browser, when that SWF file’s origin URL is from a different domain than

the URL shown in the browser’s address bar. Users and administrators may choose to disable third-party shared object

usage for reasons of privacy, wishing to avoid cross-domain tracking. In order to avoid this restriction, you may wish

to ensure that any SWF file using shared objects is loaded only within HTML page structures that ensure that the SWF

file comes from the same domain as is shown in the browser's address bar. When you attempt to use shared objects

from a third-party SWF file, and third-party shared object use is disabled, theSharedObject.getLocal() and

SharedObject.getRemote() methods return null. For more information, see

www.adobe.com/products/flashplayer/articles/thirdpartylso.

Camera, microphone, clipboard, mouse, and keyboard
access

Flash Player 9 and later, Adobe AIR 1.0 and later

When a SWF file attempts to access a user's camera or microphone using the Camera.get() or Microphone.get()

methods, Flash Player displays a Privacy dialog box, in which the user can allow or deny access to their camera and

microphone. The user and the administrative user can also disable camera access on a per-site or global basis, through

controls in the mms.cfg file, the Settings UI, and the Settings Manager (see “Administrator controls” on page 1048 and

“User controls” on page 1050). With user restrictions, the Camera.get() and Microphone.get() methods each

return a null value. You can use the Capabilities.avHardwareDisable property to determine whether the camera

and microphone have been administratively prohibited (true) or allowed (false).

http://www.adobe.com/products/flashplayer/articles/thirdpartylso

1076ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

The System.setClipboard() method allows a SWF file to replace the contents of the clipboard with a plain-text

string of characters. This poses no security risk. To protect against the risk posed by passwords and other sensitive data

being cut or copied to clipboards, there is no corresponding getClipboard() method.

An application running in Flash Player can monitor only keyboard and mouse events that occur within its focus.

Content running in Flash Player cannot detect keyboard or mouse events in another application.

AIR security

Adobe AIR 1.0 and later

AIR security basics

Adobe AIR 1.0 and later

AIR applications run with the same security restrictions as native applications. In general, AIR applications, like native

applications, have broad access to operating system capabilities such as reading and writing files, starting applications,

drawing to the screen, and communicating with the network. Operating system restrictions that apply to native

applications, such as user-specific privileges, equally apply to AIR applications.

Although the Adobe® AIR® security model is an evolution of the Adobe® Flash® Player security model, the security

contract is different from the security contract applied to content in a browser. This contract offers developers a secure

means of broader functionality for rich experiences with freedoms that would be inappropriate for a browser-based

application.

AIR applications are written using either compiled bytecode (SWF content) or interpreted script (JavaScript, HTML)

so that the runtime provides memory management. This minimizes the chances of AIR applications being affected by

vulnerabilities related to memory management, such as buffer overflows and memory corruption. These are some of

the most common vulnerabilities affecting desktop applications written in native code.

Installation and updates

Adobe AIR 1.0 and later

AIR applications are distributed via AIR installer files which use the air extension or via native installers, which use

the file format and extension of the native platform. For example, the native installer format of Windows is an EXE

file, and for Android the native format is an APK file.

When Adobe AIR is installed and an AIR installer file is opened, the AIR runtime administers the installation process.

When a native installer is used, the operating system administers the installation process.

Note: Developers can specify a version, and application name, and a publisher source when using the AIR file format, but

the initial application installation workflow itself cannot be modified. This restriction is advantageous for users because

all AIR applications share a secure, streamlined, and consistent installation procedure administered by the runtime. If

application customization is necessary, it can be provided when the application is first executed.

1077ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Runtime installation location

Adobe AIR 1.0 and later

AIR applications using the AIR file format first require the runtime to be installed on a user's computer, just as SWF

files first require the Flash Player browser plug-in to be installed.

The runtime is installed to the following location on desktop computers:

• Mac OS: /Library/Frameworks/

• Windows: C:\Program Files\Common Files\Adobe AIR

• Linux: /opt/Adobe AIR/

On Mac OS, to install an updated version of an application, the user must have adequate system privileges to install to

the application directory. On Windows and Linux, a user must have administrative privileges.

Note: On iOS, the AIR runtime is not installed separately; every AIR app is a self-contained application.

The runtime can be installed in two ways: using the seamless install feature (installing directly from a web browser) or

via a manual install. AIR applications packaged as native installers can also install the AIR runtime as part of their

normal application install process. (Distributing the AIR runtime in this way requires a redistribution agreement with

Adobe.)

Seamless install (runtime and application)

Adobe AIR 1.0 and later

The seamless install feature provides developers with a streamlined installation experience for users who do not have

Adobe AIR installed yet. In the seamless install method, the developer creates a SWF file that presents the application

for installation. When a user clicks in the SWF file to install the application, the SWF file attempts to detect the

runtime. If the runtime cannot be detected it is installed, and the runtime is activated immediately with the installation

process for the developer's application.

Manual install

Adobe AIR 1.0 and later

Alternatively, the user can manually download and install the runtime before opening an AIR file. The developer can

then distribute an AIR file by different means (for instance, via e-mail or an HTML link on a website). When the AIR

file is opened, the runtime begins to process the application installation.

Application installation flow

Adobe AIR 1.0 and later

The AIR security model allows users to decide whether to install an AIR application. The AIR install experience

provides several improvements over native application install technologies that make this trust decision easier for

users:

• The runtime provides a consistent installation experience on all operating systems, even when an AIR application

is installed from a link in a web browser. Most native application install experiences depend upon the browser or

other application to provide security information, if it is provided at all.

• The AIR application install experience identifies the source of the application and information about what

privileges are available to the application (if the user allows the installation to proceed).

1078ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

• The runtime administers the installation process of an AIR application. An AIR application cannot manipulate the

installation process the runtime uses.

In general, users should not install any desktop application that comes from a source that they do not trust, or that

cannot be verified. The burden of proof on security for native applications is equally true for AIR applications as it is

for other installable applications.

Application destination

Adobe AIR 1.0 and later

The installation directory can be set using one of the following two options:

1 The user customizes the destination during installation. The application installs to wherever the user specifies.

2 If the user does not change the install destination, the application installs to the default path as determined by the

runtime:

• Mac OS: ~/Applications/

• Windows XP and earlier: C:\Program Files\

• Windows Vista: ~/Apps/

• Linux: /opt/

If the developer specifies an installFolder setting in the application descriptor file, the application is installed to

a subpath of this directory.

The AIR file system

Adobe AIR 1.0 and later

The install process for AIR applications copies all files that the developer has included within the AIR installer file onto

the user's local computer. The installed application is composed of:

• Windows: A directory containing all files included in the AIR installer file. The runtime also creates an exe file

during the installation of the AIR application.

• Linux: A directory containing all files included in the AIR installer file. The runtime also creates a bin file during

the installation of the AIR application.

• Mac OS: An app file that contains all of the contents of the AIR installer file. It can be inspected using the "Show

Package Contents" option in Finder. The runtime creates this app file as part of the installation of the AIR

application.

An AIR application is run by:

• Windows: Running the .exe file in the install folder, or a shortcut that corresponds to this file (such as a shortcut

on the Start Menu or desktop).

• Linux: Launching the .bin file in the install folder, choosing the application from the Applications menu, or running

from an alias or desktop shortcut.

• Mac OS: Running the .app file or an alias that points to it.

The application file system also includes subdirectories related to the function of the application. For example,

information written to encrypted local storage is saved to a subdirectory in a directory named after the application

identifier of the application.

1079ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

AIR application storage

Adobe AIR 1.0 and later

AIR applications have privileges to write to any location on the user's hard drive; however, developers are encouraged

to use the app-storage:/ path for local storage related to their application. Files written to app-storage:/ from an

application are located in a standard location depending on the user's operating system:

• On Mac OS: the storage directory of an application varies by AIR version:

• AIR 3.2 and earlier - <appData>/<appId>/Local Store/ where <appData> is the user's “preferences folder,”

typically: /Users/<user>/Library/Preferences

• AIR 3.3 and higher - <path>/Library/Application Support/<appID>/Local Store, where <path> is

either /Users/<user>/Library/Containers/<bundle-id>/Data (sandboxed environment) or

/Users/<user> (when running outside a sandboxed environment)

• On Windows: the storage directory of an application is <appData>\<appId>\Local Store\ where <appData> is the

user's CSIDL_APPDATA “Special Folder,” typically: C:\Documents and Settings\<user>\Application Data

• On Linux: <appData>/<appID>/Local Store/where <appData> is /home/<user>/.appdata

You can access the application storage directory via the air.File.applicationStorageDirectory property. You

can access its contents using the resolvePath() method of the File class. For details, see “Working with the file

system” on page 653.

Updating Adobe AIR

Adobe AIR 1.0 and later

When the user installs an AIR application that requires an updated version of the runtime, the runtime automatically

installs the required runtime update.

To update the runtime, a user must have administrative privileges for the computer.

Updating AIR applications

Adobe AIR 1.0 and later

Development and deployment of software updates are one of the biggest security challenges facing native code

applications. The AIR API provides a mechanism to improve this: the Updater.update() method can be invoked

upon launch to check a remote location for an AIR file. If an update is appropriate, the AIR file is downloaded,

installed, and the application restarts. Developers can use this class not only to provide new functionality but also

respond to potential security vulnerabilities.

The Updater class can only be used to update applications distributed as AIR files. Applications distributed as native

applications must use the update facilities, if any, of the native operating system.

Note: Developers can specify the version of an application by setting the versionNumber property of the application

descriptor file.

1080ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Uninstalling an AIR application

Adobe AIR 1.0 and later

Removing an AIR application removes all files in the application directory. However, it does not remove all files that

the application may have written to outside of the application directory. Removing AIR applications does not revert

changes the AIR application has made to files outside of the application directory.

Windows registry settings for administrators

Adobe AIR 1.0 and later

On Windows, administrators can configure a machine to prevent (or allow) AIR application installation and runtime

updates. These settings are contained in the Windows registry under the following key:

HKLM\Software\Policies\Adobe\AIR. They include the following:

HTML security in Adobe AIR

Adobe AIR 1.0 and later

This topic describes the AIR HTML security architecture and how to use iframes, frames, and the sandbox bridge to

set up HTML-based applications and safely integrate HTML content into SWF-based applications.

The runtime enforces rules and provides mechanisms for overcoming possible security vulnerabilities in HTML and

JavaScript. The same rules are enforced whether your application is primarily written in JavaScript or whether you load

the HTML and JavaScript content into a SWF-based application. Content in the application sandbox and the non-

application security sandbox have different privileges. When loading content into an iframe or frame, the runtime

provides a secure sandbox bridge mechanism that allows content in the frame or iframe to communicate securely with

content in the application security sandbox.

The AIR SDK provides three classes for rendering HTML content.

The HTMLLoader class provides close integration between JavaScript code and the AIR APIs.

The StageWebView class is an HTML rendering class and has very limited integration with the host AIR application.

Content loaded by the StageWebView class is never placed in the application security sandbox and cannot access data

or call functions in the host AIR application. On desktop platforms, the StageWebView class uses the built-in AIR

HTML engine, based on Webkit, which is also used by the HTMLLoader class. On mobile platforms, the

StageWebView class uses the HTML control provided by the operating system. Thus, on mobile platforms the

StageWebView class has the same security considerations and vulnerabilities as the system web browser.

The TextField class can display strings of HTML text. No JavaScript can be executed, but the text can include links and

externally loaded images.

For more information, see “Avoiding security-related JavaScript errors” on page 983.

Registry setting Description

AppInstallDisabled Specifies that AIR application installation and uninstallation are allowed. Set to 0 for “allowed,” set to 1

for “disallowed.”

UntrustedAppInstallDisabled Specifies that installation of untrusted AIR applications (applications that do not includes a trusted

certificate) is allowed. Set to 0 for “allowed,” set to 1 for “disallowed.”

UpdateDisabled Specifies that updating the runtime is allowed, either as a background task or as part of an explicit

installation. Set to 0 for “allowed,” set to 1 for “disallowed.”

1081ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Overview on configuring your HTML-based application

Adobe AIR 1.0 and later

Frames and iframes provide a convenient structure for organizing HTML content in AIR. Frames provide a means

both for maintaining data persistence and for working securely with remote content.

Because HTML in AIR retains its normal, page-based organization, the HTML environment completely refreshes if

the top frame of your HTML content “navigates” to a different page. You can use frames and iframes to maintain data

persistence in AIR, much the same as you would for a web application running in a browser. Define your main

application objects in the top frame and they persist as long as you don’t allow the frame to navigate to a new page. Use

child frames or iframes to load and display the transient parts of the application. (There are a variety of ways to

maintain data persistence that can be used in addition to, or instead of, frames. These include cookies, local shared

objects, local file storage, the encrypted file store, and local database storage.)

Because HTML in AIR retains its normal, blurred line between executable code and data, AIR puts content in the top

frame of the HTML environment into the application sandbox. After the page load event, AIR restricts any

operations, such as eval(), that can convert a string of text into an executable object. This restriction is enforced even

when an application does not load remote content. To allow HTML content to execute these restricted operations, you

must use frames or iframes to place the content into a non-application sandbox. (Running content in a sandboxed

child frame may be necessary when using some JavaScript application frameworks that rely on the eval() function.)

For a complete list of the restrictions on JavaScript in the application sandbox, see “Code restrictions for content in

different sandboxes” on page 1082.

Because HTML in AIR retains its ability to load remote, possibly insecure content, AIR enforces a same-origin policy

that prevents content in one domain from interacting with content in another. To allow interaction between

application content and content in another domain, you can set up a bridge to serve as the interface between a parent

and a child frame.

Setting up a parent-child sandbox relationship

Adobe AIR 1.0 and later

AIR adds the sandboxRoot and documentRoot attributes to the HTML frame and iframe elements. These attributes

let you treat application content as if it came from another domain:

The following example maps content installed in the sandbox subdirectory of the application to run in the remote

sandbox and the www.example.com domain:

<iframe
 src="ui.html"
 sandboxRoot="http://www.example.com/local/"
 documentRoot="app:/sandbox/">
 </iframe>

Attribute Description

sandboxRoot The URL to use for determining the sandbox and domain in which to place the

frame content. The file:, http:, or https: URL schemes must be used.

documentRoot The URL from which to load the frame content. The file:, app:, or app-
storage: URL schemes must be used.

1082ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Setting up a bridge between parent and child frames in different sandboxes or domains

Adobe AIR 1.0 and later

AIR adds the childSandboxBridge and parentSandboxBridge properties to the window object of any child frame.

These properties let you define bridges to serve as interfaces between a parent and a child frame. Each bridge goes in

one direction:

childSandboxBridge — The childSandboxBridge property allows the child frame to expose an interface to content

in the parent frame. To expose an interface, you set the childSandbox property to a function or object in the child

frame. You can then access the object or function from content in the parent frame. The following example shows how

a script running in a child frame can expose an object containing a function and a property to its parent:

var interface = {};
 interface.calculatePrice = function(){
 return .45 + 1.20;
 }
 interface.storeID = "abc"
 window.childSandboxBridge = interface;

If this child content is in an iframe assigned an id of "child", you can access the interface from parent content by

reading the childSandboxBridge property of the frame:

var childInterface = document.getElementById("child").childSandboxBridge;
 air.trace(childInterface.calculatePrice()); //traces "1.65"
 air.trace(childInterface.storeID)); //traces "abc"

parentSandboxBridge — The parentSandboxBridge property allows the parent frame to expose an interface to

content in the child frame. To expose an interface, you set the parentSandbox property of the child frame to a function

or object in the parent frame. You can then access the object or function from content in the child frame. The following

example shows how a script running in the parent frame can expose an object containing a save function to a child:

var interface = {};
 interface.save = function(text){
 var saveFile = air.File("app-storage:/save.txt");
 //write text to file
 }
 document.getElementById("child").parentSandboxBridge = interface;

Using this interface, content in the child frame could save text to a file named save.txt. However, it would not have any

other access to the file system. In general, application content should expose the narrowest possible interface to other

sandboxes. The child content could call the save function as follows:

var textToSave = "A string.";
 window.parentSandboxBridge.save(textToSave);

If child content attempts to set a property of the parentSandboxBridge object, the runtime throws a SecurityError

exception. If parent content attempts to set a property of the childSandboxBridge object, the runtime throws a

SecurityError exception.

Code restrictions for content in different sandboxes

Adobe AIR 1.0 and later

As discussed in the introduction to this topic, “HTML security in Adobe AIR” on page 1080, the runtime enforces rules

and provides mechanisms for overcoming possible security vulnerabilities in HTML and JavaScript. This topic lists

those restrictions. If code attempts to call these restricted APIs, the runtime throws an error with the message “Adobe

AIR runtime security violation for JavaScript code in the application security sandbox.”

1083ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

For more information, see “Avoiding security-related JavaScript errors” on page 983.

Restrictions on using the JavaScript eval() function and similar techniques

Adobe AIR 1.0 and later

For HTML content in the application security sandbox, there are limitations on using APIs that can dynamically

transform strings into executable code after the code is loaded (after the onload event of the body element has been

dispatched and the onload handler function has finished executing). This is to prevent the application from

inadvertently injecting (and executing) code from non-application sources (such as potentially insecure network

domains).

For example, if your application uses string data from a remote source to write to the innerHTML property of a DOM

element, the string could include executable (JavaScript) code that could perform insecure operations. However, while

the content is loading, there is no risk of inserting remote strings into the DOM.

One restriction is in the use of the JavaScript eval() function. Once code in the application sandbox is loaded and

after processing of the onload event handler, you can only use the eval() function in limited ways. The following rules

apply to the use of the eval() function after code is loaded from the application security sandbox:

• Expressions involving literals are allowed. For example:

eval("null");
 eval("3 + .14");
 eval("'foo'");

• Object literals are allowed, as in the following:

{ prop1: val1, prop2: val2 }

• Object literal setter/getters are prohibited, as in the following:

{ get prop1() { ... }, set prop1(v) { ... } }

• Array literals are allowed, as in the following:

[val1, val2, val3]

• Expressions involving property reads are prohibited, as in the following:

a.b.c

• Function invocation is prohibited.

• Function definitions are prohibited.

• Setting any property is prohibited.

• Function literals are prohibited.

However, while the code is loading, before the onload event, and during execution the onload event handler function,

these restrictions do not apply to content in the application security sandbox.

For example, after code is loaded, the following code results in the runtime throwing an exception:

eval("alert(44)");
 eval("myFunction(44)");
 eval("NativeApplication.applicationID");

1084ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Dynamically generated code, such as that which is made when calling the eval() function, would pose a security risk

if allowed within the application sandbox. For example, an application may inadvertently execute a string loaded from

a network domain, and that string may contain malicious code. For example, this could be code to delete or alter files

on the user’s computer. Or it could be code that reports back the contents of a local file to an untrusted network

domain.

Ways to generate dynamic code are the following:

• Calling the eval() function.

• Using innerHTML properties or DOM functions to insert script tags that load a script outside of the application

directory.

• Using innerHTML properties or DOM functions to insert script tags that have inline code (rather than loading a

script via the src attribute).

• Setting the src attribute for a script tags to load a JavaScript file that is outside of the application directory.

• Using the javascript URL scheme (as in href="javascript:alert('Test')").

• Using the setInterval() or setTimout()function where the first parameter (defining the function to run

asynchronously) is a string (to be evaluated) rather than a function name (as in setTimeout('x = 4', 1000)).

• Calling document.write() or document.writeln().

Code in the application security sandbox can only use these methods while content is loading.

These restrictions do not prevent using eval() with JSON object literals. This lets your application content work with

the JSON JavaScript library. However, you are restricted from using overloaded JSON code (with event handlers).

For other Ajax frameworks and JavaScript code libraries, check to see if the code in the framework or library works

within these restrictions on dynamically generated code. If they do not, include any content that uses the framework

or library in a non-application security sandbox. For details, see “Restrictions for JavaScript inside AIR” on page 1046

and “Scripting between application and non-application content” on page 1090. Adobe maintains a list of Ajax

frameworks known to support the application security sandbox, at

http://www.adobe.com/products/air/develop/ajax/features/.

Unlike content in the application security sandbox, JavaScript content in a non-application security sandbox can call

the eval() function to execute dynamically generated code at any time.

Restrictions on access to AIR APIs (for non-application sandboxes)

Adobe AIR 1.0 and later

JavaScript code in a non-application sandbox does not have access to the window.runtime object, and as such this

code cannot execute AIR APIs. If content in a non-application security sandbox calls the following code, the

application throws a TypeError exception:

try {
 window.runtime.flash.system.NativeApplication.nativeApplication.exit();
 }
 catch (e)
 {
 alert(e);
 }

The exception type is TypeError (undefined value), because content in the non-application sandbox does not

recognize the window.runtime object, so it is seen as an undefined value.

http://www.adobe.com/products/air/develop/ajax/features/

1085ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

You can expose runtime functionality to content in a non-application sandbox by using a script bridge. For details, see

and “Scripting between application and non-application content” on page 1090.

Restrictions on using XMLHttpRequest calls

Adobe AIR 1.0 and later

HTML content in the application security sandbox cannot use synchronous XMLHttpRequest methods to load data

from outside of the application sandbox while the HTML content is loading and during onLoad event.

By default, HTML content in non-application security sandboxes are not allowed to use the JavaScript

XMLHttpRequest object to load data from domains other than the domain calling the request. A frame or iframe tag

can include an allowcrosscomainxhr attribute. Setting this attribute to any non-null value allows the content in the

frame or iframe to use the JavaScript XMLHttpRequest object to load data from domains other than the domain of the

code calling the request:

<iframe id="UI"
 src="http://example.com/ui.html"
 sandboxRoot="http://example.com/"
 allowcrossDomainxhr="true"
 documentRoot="app:/">
 </iframe>

For more information, see “Scripting between content in different domains” on page 1086.

Restrictions on loading CSS, frame, iframe, and img elements (for content in non-application sandboxes)

Adobe AIR 1.0 and later

HTML content in remote (network) security sandboxes can only load CSS, frame, iframe, and img content from

remote sandboxes (from network URLs).

HTML content in local-with-filesystem, local-with-networking, or local-trusted sandboxes can only load CSS, frame,

iframe, and img content from local sandboxes (not from application or remote sandboxes).

Restrictions on calling the JavaScript window.open() method

Adobe AIR 1.0 and later

If a window that is created via a call to the JavaScript window.open() method displays content from a non-application

security sandbox, the window’s title begins with the title of the main (launching) window, followed by a colon

character. You cannot use code to move that portion of the title of the window off screen.

Content in non-application security sandboxes can only successfully call the JavaScript window.open() method in

response to an event triggered by a user mouse or keyboard interaction. This prevents non-application content from

creating windows that might be used deceptively (for example, for phishing attacks). Also, the event handler for the

mouse or keyboard event cannot set the window.open() method to execute after a delay (for example by calling the

setTimeout() function).

Content in remote (network) sandboxes can only use the window.open() method to open content in remote network

sandboxes. It cannot use the window.open() method to open content from the application or local sandboxes.

Content in the local-with-filesystem, local-with-networking, or local-trusted sandboxes (see “Security sandboxes” on

page 1044) can only use the window.open() method to open content in local sandboxes. It cannot use

window.open()to open content from the application or remote sandboxes.

1086ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Errors when calling restricted code

Adobe AIR 1.0 and later

If you call code that is restricted from use in a sandbox due to these security restrictions, the runtime dispatches a

JavaScript error: "Adobe AIR runtime security violation for JavaScript code in the application security sandbox."

For more information, see “Avoiding security-related JavaScript errors” on page 983.

Sandbox protection when loading HTML content from a string

Adobe AIR 1.0 and later

The loadString() method of the HTMLLoader class lets you create HTML content at run time. However, data that

you use as the HTML content can be corrupted if the data is loaded from an insecure Internet source. For this reason,

by default, HTML created using the loadString() method is not placed in the application sandbox and it has no

access to AIR APIs. However, you can set the placeLoadStringContentInApplicationSandbox property of an

HTMLLoader object to true to place HTML created using the loadString() method into the application sandbox.

For more information, see “Loading HTML content from a string” on page 982.

Scripting between content in different domains

Adobe AIR 1.0 and later

AIR applications are granted special privileges when they are installed. It is crucial that the same privileges not be

leaked to other content, including remote files and local files that are not part of the application.

About the AIR sandbox bridge

Adobe AIR 1.0 and later

Normally, content from other domains cannot call scripts in other domains. To protect AIR applications from

accidental leakage of privileged information or control, the following restrictions are placed on content in the

application security sandbox (content installed with the application):

• Code in the application security sandbox cannot allow to other sandboxes by calling the

Security.allowDomain() method. Calling this method from the application security sandbox will throw an

error.

• Importing non-application content into the application sandbox by setting the LoaderContext.securityDomain

or the LoaderContext.applicationDomain property is prevented.

There are still cases where the main AIR application requires content from a remote domain to have controlled access

to scripts in the main AIR application, or vice versa. To accomplish this, the runtime provides a sandbox bridge

mechanism, which serves as a gateway between the two sandboxes. A sandbox bridge can provide explicit interaction

between remote and application security sandboxes.

The sandbox bridge exposes two objects that both loaded and loading scripts can access:

• The parentSandboxBridge object lets loading content expose properties and functions to scripts in the loaded

content.

• The childSandboxBridge object lets loaded content expose properties and function to scripts in the loading

content.

1087ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Objects exposed via the sandbox bridge are passed by value, not by reference. All data is serialized. This means that the

objects exposed by one side of the bridge cannot be set by the other side, and that objects exposed are all untyped. Also,

you can only expose simple objects and functions; you cannot expose complex objects.

If child content attempts to set an object to the parentSandboxBridge object, the runtime throws a SecurityError

exception. Similarly, if parent content attempts to set an object to the childSandboxBridge object, the runtime throws

a SecurityError exception.

Sandbox bridge example (SWF)

Adobe AIR 1.0 and later

Suppose an AIR music store application wants to allow remote SWF files to broadcast the price of albums, but does

not want the remote SWF file to disclose whether the price is a sale price. To do this, a StoreAPI class provides a

method to acquire the price, but obscures the sale price. An instance of this StoreAPI class is then assigned to the

parentSandboxBridge property of the LoaderInfo object of the Loader object that loads the remote SWF.

The following is the code for the AIR music store:

<?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute"
title="Music Store" creationComplete="initApp()">
 <mx:Script>
 import flash.display.Loader;
 import flash.net.URLRequest;

 private var child:Loader;
 private var isSale:Boolean = false;

 private function initApp():void {
 var request:URLRequest =
 new URLRequest("http://[www.yourdomain.com]/PriceQuoter.swf")

 child = new Loader();
 child.contentLoaderInfo.parentSandboxBridge = new StoreAPI(this);
 child.load(request);
 container.addChild(child);
 }
 public function getRegularAlbumPrice():String {
 return "$11.99";
 }
 public function getSaleAlbumPrice():String {
 return "$9.99";
 }
 public function getAlbumPrice():String {
 if(isSale) {
 return getSaleAlbumPrice();
 }
 else {
 return getRegularAlbumPrice();
 }
 }
 </mx:Script>
 <mx:UIComponent id="container" />
 </mx:WindowedApplication>

1088ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

The StoreAPI object calls the main application to retrieve the regular album price, but returns “Not available” when

the getSaleAlbumPrice() method is called. The following code defines the StoreAPI class:

 public class StoreAPI
 {
 private static var musicStore:Object;

 public function StoreAPI(musicStore:Object)
 {
 this.musicStore = musicStore;
 }

 public function getRegularAlbumPrice():String {
 return musicStore.getRegularAlbumPrice();
 }

 public function getSaleAlbumPrice():String {
 return "Not available";
 }

 public function getAlbumPrice():String {
 return musicStore.getRegularAlbumPrice();
 }
 }

The following code represents an example of a PriceQuoter SWF file that reports the store’s price, but cannot report

the sale price:

 package
 {
 import flash.display.Sprite;
 import flash.system.Security;
 import flash.text.*;

 public class PriceQuoter extends Sprite
 {
 private var storeRequester:Object;

 public function PriceQuoter() {
 trace("Initializing child SWF");
 trace("Child sandbox: " + Security.sandboxType);
 storeRequester = loaderInfo.parentSandboxBridge;

 var tf:TextField = new TextField();
 tf.autoSize = TextFieldAutoSize.LEFT;
 addChild(tf);

 tf.appendText("Store price of album is: " + storeRequester.getAlbumPrice());
 tf.appendText("\n");
 tf.appendText("Sale price of album is: " + storeRequester.getSaleAlbumPrice());
 }
 }
 }

1089ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Sandbox bridge example (HTML)

Adobe AIR 1.0 and later

In HTML content, the parentSandboxBridge and childSandboxBridge properties are added to the JavaScript

window object of a child document. For an example of how to set up bridge functions in HTML content, see “Setting

up a sandbox bridge interface” on page 1000.

Limiting API exposure

Adobe AIR 1.0 and later

When exposing sandbox bridges, it's important to expose high-level APIs that limit the degree to which they can be

abused. Keep in mind that the content calling your bridge implementation may be compromised (for example, via a

code injection). So, for example, exposing a readFile(path:String) method (that reads the contents of an arbitrary

file) via a bridge is vulnerable to abuse. It would be better to expose a readApplicationSetting() API that doesn't

take a path and reads a specific file. The more semantic approach limits the damage that an application can do once

part of it is compromised.

More Help topics

“Cross-scripting content in different security sandboxes” on page 999

“The AIR application sandbox” on page 1045

Writing to disk

Adobe AIR 1.0 and later

Applications running in a web browser have only limited interaction with the user's local file system. Web browsers

implement security policies that ensure that a user's computer cannot be compromised as a result of loading web

content. For example, SWF files running through Flash Player in a browser cannot directly interact with files already

on a user's computer. Shared objects and cookies can be written to a user's computer for the purpose of maintaining

user preferences and other data, but this is the limit of file system interaction. Because AIR applications are natively

installed, they have a different security contract, one which includes the capability to read and write across the local

file system.

This freedom comes with high responsibility for developers. Accidental application insecurities jeopardize not only

the functionality of the application, but also the integrity of the user's computer. For this reason, developers should

read “Best security practices for developers” on page 1091.

AIR developers can access and write files to the local file system using several URL scheme conventions:

Note: AIR applications cannot modify content using the app: URL scheme. Also, the application directory may be read

only because of administrator settings.

URL scheme Description

app:/ An alias to the application directory. Files accessed from this path are assigned the application sandbox and have

the full privileges granted by the runtime.

app-storage:/ An alias to the local storage directory, standardized by the runtime. Files accessed from this path are assigned a

non-application sandbox.

file:/// An alias that represents the root of the user's hard disk. A file accessed from this path is assigned an application

sandbox if the file exists in the application directory, and a non-application sandbox otherwise.

1090ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Unless there are administrator restrictions to the user's computer, AIR applications are privileged to write to any

location on the user's hard drive. Developers are advised to use the app-storage:/ path for local storage related to

their application. Files written to app-storage:/ from an application are put in a standard location:

• On Mac OS: the storage directory of an application is <appData>/<appId>/Local Store/ where <appData> is

the user's preferences folder. This is typically /Users/<user>/Library/Preferences

• On Windows: the storage directory of an application is <appData>\<appId>\Local Store\ where <appData> is

the user's CSIDL_APPDATA Special Folder. This is typically C:\Documents and

Settings\<userName>\Application Data

• On Linux: <appData>/<appID>/Local Store/where <appData> is /home/<user>/.appdata

If an application is designed to interact with existing files in the user's file system, be sure to read “Best security

practices for developers” on page 1091.

Working securely with untrusted content

Adobe AIR 1.0 and later

Content not assigned to the application sandbox can provide additional scripting functionality to your application, but

only if it meets the security criteria of the runtime. This topic explains the AIR security contract with non-application

content.

Security.allowDomain()

Adobe AIR 1.0 and later

AIR applications restrict scripting access for non-application content more stringently than the Flash Player browser

plug-in restricts scripting access for untrusted content. For example, in Flash Player in the browser, when a SWF file

that is assigned to the local-trusted sandbox calls the System.allowDomain() method, scripting access is granted

to any SWF loaded from the specified domain. The analogous approach is not permitted from application content

in AIR applications, since it would grant unreasonable access unto the non-application file into the user's file system.

Remote files cannot directly access the application sandbox, regardless of calls to the Security.allowDomain()

method.

Scripting between application and non-application content

Adobe AIR 1.0 and later

AIR applications that script between application and non-application content have more complex security

arrangements. Files that are not in the application sandbox are only allowed to access the properties and methods of

files in the application sandbox through the use of a sandbox bridge. A sandbox bridge acts as a gateway between

application content and non-application content, providing explicit interaction between the two files. When used

correctly, sandbox bridges provide an extra layer of security, restricting non-application content from accessing object

references that are part of application content.

The benefit of sandbox bridges is best illustrated through example. Suppose an AIR music store application wants to

provide an API to advertisers who want to create their own SWF files, with which the store application can then

communicate. The store wants to provide advertisers with methods to look up artists and CDs from the store, but also

wants to isolate some methods and properties from the third-party SWF file for security reasons.

1091ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

A sandbox bridge can provide this functionality. By default, content loaded externally into an AIR application at

runtime does not have access to any methods or properties in the main application. With a custom sandbox bridge

implementation, a developer can provide services to the remote content without exposing these methods or properties.

Consider the sandbox bridge as a pathway between trusted and untrusted content, providing communication between

loader and loadee content without exposing object references.

For more information on how to securely use sandbox bridges, see “Scripting between content in different domains”

on page 1086.

Protection against dynamically generating unsafe SWF content

Adobe AIR 1.0 and later

The Loader.loadBytes() method provides a way for an application to generate SWF content from a byte array.

However, injection attacks on data loaded from remote sources could do severe damage when loading content. This is

especially true when loading data into the application sandbox, where the generated SWF content can access the full

set of AIR APIs.

There are legitimate uses for using the loadBytes() method without generating executable SWF code. You can use

the loadBytes() method to generate an image data to control the timing of image display, for example. There are also

legitimate uses that do rely on executing code, such as dynamic creation of SWF content for audio playback. In AIR,

by default the loadBytes() method does not let you load SWF content; it only allows you to load image content. In

AIR, the loaderContext property of the loadBytes() method has an allowLoadBytesCodeExecution property,

which you can set to true to explicitly allow the application to use loadBytes() to load executable SWF content. The

following code shows how to use this feature:

var loader:Loader = new Loader();
 var loaderContext:LoaderContext = new LoaderContext();
 loaderContext.allowLoadBytesCodeExecution = true;
 loader.loadBytes(bytes, loaderContext);

If you call loadBytes() to load SWF content and the allowLoadBytesCodeExecution property of the

LoaderContext object is set to false (the default), the Loader object throws a SecurityError exception.

Note: In a future release of Adobe AIR, this API may change. When that occurs, you may need to recompile content that

uses the allowLoadBytesCodeExecution property of the LoaderContext class.

Best security practices for developers

Adobe AIR 1.0 and later

Although AIR applications are built using web technologies, it is important for developers to note that they are not

working within the browser security sandbox. This means that it is possible to build AIR applications that can do harm

to the local system, either intentionally or unintentionally. AIR attempts to minimize this risk, but there are still ways

where vulnerabilities can be introduced. This topic covers important potential insecurities.

1092ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Risk from importing files into the application security sandbox

Adobe AIR 1.0 and later

Files that exist in the application directory are assigned to the application sandbox and have the full privileges of the

runtime. Applications that write to the local file system are advised to write to app-storage:/. This directory exists

separately from the application files on the user's computer, hence the files are not assigned to the application sandbox

and present a reduced security risk. Developers are advised to consider the following:

• Include a file in an AIR file (in the installed application) only if it is necessary.

• Include a scripting file in an AIR file (in the installed application) only if its behavior is fully understood and trusted.

• Do not write to or modify content in the application directory. The runtime prevents applications from writing or

modifying files and directories using the app:/ URL scheme by throwing a SecurityError exception.

• Do not use data from a network source as parameters to methods of the AIR API that may lead to code execution.

This includes use of the Loader.loadBytes() method and the JavaScript eval() function.

Risk from using an external source to determine paths

Adobe AIR 1.0 and later

An AIR application can be compromised when using external data or content. For this reason, take special care when

using data from the network or file system. The onus of trust is ultimately on the developer and the network

connections they make, but loading foreign data is inherently risky, and should not be used for input into sensitive

operations. Developers are advised against the following:

• Using data from a network source to determine a file name

• Using data from a network source to construct a URL that the application uses to send private information

Risk from using, storing, or transmitting insecure credentials

Adobe AIR 1.0 and later

Storing user credentials on the user's local file system inherently introduces the risk that these credentials may be

compromised. Developers are advised to consider the following:

• If credentials must be stored locally, encrypt the credentials when writing to the local file system. The runtime

provides an encrypted storage unique to each installed application, via the EncryptedLocalStore class. For details,

see “Encrypted local storage” on page 710.

• Do not transmit unencrypted user credentials to a network source unless that source is trusted and the transmission

uses the HTTPS: or Transport Layer Security (TLS) protocols.

• Never specify a default password in credential creation — let users create their own. Users who leave the default

unchanged expose their credentials to an attacker who already knows the default password.

1093ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Risk from a downgrade attack

Adobe AIR 1.0 and later

During application install, the runtime checks to ensure that a version of the application is not currently installed. If

an application is already installed, the runtime compares the version string against the version that is being installed.

If this string is different, the user can choose to upgrade their installation. The runtime does not guarantee that the

newly installed version is newer than the older version, only that it is different. An attacker can distribute an older

version to the user to circumvent a security weakness. For this reason, the developer is advised to make version checks

when the application is run. It is a good idea to have applications check the network for required updates. That way,

even if an attacker gets the user to run an old version, that old version will recognize that it needs to be updated. Also,

using a clear versioning scheme for your application makes it more difficult to trick users into installing a downgraded

version.

Code signing

Adobe AIR 1.0 and later

All AIR installer files are required to be code signed. Code signing is a cryptographic process of confirming that the

specified origin of software is accurate. AIR applications can be signed using either by a certificate issued by an external

certificate authority (CA) or by a self-signed certificate you create yourself. A commercial certificate from a well-

known CA is strongly recommended and provides assurance to your users that they are installing your application,

not a forgery. However, self-signed certificates can be created using adt from the SDK or using either Flash, Flash

Builder, or another application that uses adt for certificate generation. Self-signed certificates do not provide any

assurance that the application being installed is genuine and should only be used for testing an application prior to

public release.

Security on Android devices

Adobe AIR 2.5 and later

On Android, as on all computing devices, AIR conforms to the native security model. At the same time, AIR maintains

its own security rules, which are intended to make it easy for developers to write secure, Internet-connected

applications.

Since AIR applications on Android use the Android package format, installation falls under the Android security

model. The AIR application installer is not used.

The Android security model has three primary aspects:

• Permissions

• Application signatures

• Application user IDs

Android permissions

Many features of Android are protected by the operating system permission mechanism. In order to use a protected

feature, the AIR application descriptor must declare that the application requires the necessary permission. When a

user attempts to install the app, the Android operating system displays all requested permissions to the user before the

installation proceeds.

1094ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

Most AIR applications will need to specify Android permissions in the application descriptor. By default, no

permissions are included. The following permissions are required for protected Android features exposed through the

AIR runtime:

ACCESS_COARSE_LOCATION Allows the application to access WIFI and cellular network location data through the

Geolocation class.

ACCESS_FINE_LOCATION Allows the application to access GPS data through the Geolocation class.

ACCESS_NETWORK_STATE and ACCESS_WIFI_STATE Allows the application to access network information the

NetworkInfo class.

CAMERA Allows the application to access the camera.

INTERNET Allows the application to make network requests. Also allows remote debugging.

READ_PHONE_STATE Allows the AIR runtime to mute audio when an incoming call occurs.

RECORD_AUDIO Allows the application to access the microphone.

WAKE_LOCK and DISABLE_KEYGUARD Allows the application to prevent the device from going to sleep using the

SystemIdleMode class settings.

WRITE_EXTERNAL_STORAGE Allows the application to write to the external memory card on the device.

Application signatures

All application packages created for the Android platform must be signed. Since AIR applications on Android are

packaged in the native Android APK format, they are signed in accordance to Android conventions rather than AIR

conventions. While Android and AIR use code signing in a similar fashion, there are significant differences:

• On Android, the signature verifies that the private key is in possession of the developer, but is not used to verify the

identity of the developer.

• For apps submitted to the Android market, the certificate must be valid for at least 25 years.

• Android does not support migrating the package signature to another certificate. If an update is signed by a

different certificate, then users must uninstall the original app before they can install the updated app.

• Two apps signed with the same certificate can specify a shared ID that permits them to access each others cache and

data files. (Such sharing is not facilitated by AIR.)

Application user IDs

Android uses a Linux kernel. Every installed app is assigned a Linux-type user ID that determines its permissions for

such operations as file access. Files in the application, application storage, and temporary directories are protected

from access by file system permissions. Files written to external storage (in other words, the SD card) can be read,

modified, and deleted by other applications, or by the user, when the SD card is mounted as a mass storage device on

a computer.

Cookies received with internet requests are not shared between AIR applications.

Background image privacy

When a user switches an application to the background, some Android versions capture a screenshot that it uses a

thumbnail in the recent applications list. This screenshot is stored in device memory and can be accessed by an attacker

in physical control of the device.

If your application displays sensitive information, you should guard against such information being captured by the

background screenshot. The deactivate event dispatched by the NativeApplication object signals that an application

is about to switch to the background. Use this event to clear or hide any sensitive information.

1095ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Security

Last updated 10/9/2017

More Help topics

Android: Security and Permissions

Encrypted data on Android

AIR applications on Android can use the encryption options available in the built-in SQL database to save encrypted

data. For optimum security, base the encryption key on a user-entered password that is entered whenever the

application is run. A locally stored encryption key or password is difficult or impossible to “hide” from an attacker who

has access to the application files. If the attacker can retrieve the key, then encrypting the data does not afford any

additional protection beyond the user ID-based filesystem security provided by the Android system.

The EncryptedLocalStore class can be used to save data, but that data is not encrypted on Android devices. Instead,

the Android security model relies on the application user ID to protect the data from other applications. Applications

that use a shared user ID and which are signed with the same code signing certificate use the same encrypted local

store.

Important: On a rooted phone, any application running with root privileges can access the files of any other application.

Thus, data stored using the encrypted local store is not secure on a rooted device.

Security on iOS devices

On iOS AIR conforms to the native security model. At the same time, AIR maintains its own security rules, which are

intended to make it easy for developers to write secure, Internet-connected applications.

Since AIR applications on iOS use the iOS package format, installation falls under the iOS security model. The AIR

application installer is not used. Furthermore, a separate AIR runtime is not used on iOS devices. Every AIR

application contains all the code needed to function.

Application signatures

All application packages created for the iOS platform must be signed. Since AIR applications on iOS are packaged in

the native iOS IPA format, they are signed in accordance with iOS requirements rather than AIR requirements. While

iOS and AIR use code signing in a similar fashion, there are significant differences:

• On iOS, the certificate used to sign an application must be issued by Apple; Certificates from other certificate

authorities cannot be used.

• On iOS, Apple-issued distribution certificates are typically valid for one year.

Background image privacy

When a user switches an application to the background on iOS, the operating system captures a screenshot that it uses

to animate the transition. This screenshot is stored in device memory and can be accessed by an attacker in physical

control of the device.

If your application displays sensitive information, you should guard against such information being captured by the

background screenshot. The deactivate event dispatched by the NativeApplication object signals that an application

is about to switch to the background. Use this event to clear or hide any sensitive information.

http://developer.android.com/guide/topics/security/security.html

1096

Last updated 10/9/2017

Chapter 65: How to Use ActionScript
Examples

Running an ActionScript 3.0 code example is one of the best ways to learn how particular classes and methods work.

You can use examples in different ways, depending on the devices you are using or targeting.

Computers running Flash Professional or Flash Builder See “Running ActionScript 3.0 examples in Flash

Professional” on page 1098 or “Running ActionScript 3.0 examples in Flash Builder” on page 1099 for information

about how to use these development environments to run ActionScript 3.0 examples. Use trace statements and other

debugging tools to increase your understanding of how a code example works.

Mobile devices You can run the ActionScript 3.0 code examples on mobile devices that support Flash Player 10.1 and

later releases. See “Running ActionScript 3.0 examples on mobile devices” on page 1100. You can also run these

examples on your computer using Flash Professional or Flash Builder.

TV devices Though you cannot run these examples on TV devices, you can still learn from the examples by running

them on your computer. See Flash Platform for TV on the Adobe Developer Connection website for information about

developing applications for TV devices.

Types of examples

The types of ActionScript 3.0 code examples are:

• Code snippet examples (found throughout the ActionScript 3.0 documentation set)

• Class-based examples (found primarily in the ActionScript 3.0 Language Reference)

• Practical examples containing multiple source files (download source ZIP files from

www.adobe.com/go/learn_programmingAS3samples_flash)

Code snippet examples

A code snippet example looks like this:

var x:int = 5;
trace(x); // 5

Code snippets only contain enough code to demonstrate a single idea. They do not normally contain package or class

statements.

Class-based examples

Many examples show the source code for a complete ActionScript class. A class-based example looks like this:

package {
public class Example1 {

public function Example1():void {
var x:int = 5;
trace(x); //5

}
}

}

http://www.adobe.com/devnet/devices/flash_platform_tv.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html
http://www.adobe.com/go/learn_programmingAS3samples_flash

1097ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

How to Use ActionScript Examples

Last updated 10/9/2017

The code for a class-based example includes a package statement, a class declaration, and a constructor function.

Practical examples containing multiple source files

Many of the topics in the ActionScript 3.0 Developer’s Guide conclude with practical examples that show how to use

certain ActionScript features in a practical, real-world context. These examples usually contain multiple files

including:

• One or more ActionScript source files

• A .FLA file for use with Flash Professional

• One or more MXML files for use with Flash Builder

• Data files, image files, sound files, or other assets used by the example application (optional).

Practical examples are normally delivered as ZIP archive files.

List of Developer Guide examples in the ZIP file

The ZIP file for Flash Professional CS5 and Flex 4 (download from

www.adobe.com/go/learn_programmingAS3samples_flash) contains the following examples:

• AlarmClock (“Event handling example: Alarm Clock” on page 140)

• AlgorithmicVisualGenerator (“Drawing API example: Algorithmic Visual Generator” on page 233)

• ASCIIArt (“Strings example: ASCII art” on page 19)

• CapabilitiesExplorer (“Capabilities example: Detecting system capabilities” on page 874)

• CustomErrors (“Handling errors example: CustomErrors application” on page 70)

• DisplayObjectTransformer (“Geometry example: Applying a matrix transformation to a display object” on

page 217)

• FilterWorkbench (“Filtering display objects example: Filter Workbench” on page 292)

• GlobalStockTicker (“Example: Internationalizing a stock ticker application” on page 954)

• IntrovertIM_HTML (“External API example: Communicating between ActionScript and JavaScript in a web

browser” on page 849)

• NewsLayout (“TextField Example: Newspaper-style text formatting” on page 387)

• PlayList (“Arrays example: PlayList” on page 48)

• PodcastPlayer (“Sound example: Podcast Player” on page 467)

• ProjectionDragger (“Example: Perspective projection” on page 357)

• ReorderByZ (“Using Matrix3D objects for reordering display” on page 362)

• RSSViewer (“XML in ActionScript example: Loading RSS data from the Internet” on page 113)

• RuntimeAssetsExplorer (“Movie clip example: RuntimeAssetsExplorer” on page 331)

• SimpleClock (“Date and time example: Simple analog clock” on page 6)

• SpinningMoon (“Bitmap example: Animated spinning moon” on page 254)

• SpriteArranger (“Display object example: SpriteArranger” on page 203)

• TelnetSocket (“TCP socket example: Building a Telnet client” on page 799)

• VideoJukebox (“Video example: Video Jukebox” on page 507)

• WikiEditor (“Regular expressions example: A Wiki parser” on page 91)

http://www.adobe.com/go/learn_programmingAS3samples_flash

1098ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

How to Use ActionScript Examples

Last updated 10/9/2017

• WordSearch (“Mouse input example: WordSearch” on page 577)

Practical examples are also found with many of the Quick Start articles in the Flash Developer Center and Flex

Developer Center.

Running ActionScript 3.0 examples in Flash Professional

Use one of the following procedures (depending on example type) to run an example using Flash Professional.

Running a code snippet example in Flash Professional

To run a code snippet example in Flash Professional:

1 Select File > New.

2 In the New Document dialog box, select Flash Document, and click OK.

A new Flash window is displayed.

3 Click on the first frame of the first layer in the Timeline panel.

4 In the Actions panel, type or paste the code snippet example.

5 Select File > Save. Give the file a name and click OK.

6 To test the example, select Control > Test Movie.

Running a class-based example in Flash Professional

To run a class-based example in Flash Professional:

1 Select File > New.

2 In the New Document dialog box, select ActionScript File, and click OK. A new editor window is displayed.

3 Copy the class-based example code and paste it into the editor window.

If the class is the main document class for the program, it must extend the MovieClip class:

import flash.display.MovieClip;
public class Example1 extends MovieClip{
//...
}

Also make sure that all the classes referenced in the example are declared using import statements.

4 Select File > Save. Give the file the same name as the class in the example (e.g. ContextMenuExample.as).

Note: Some of the class-based examples, such as the flashx.textLayout.container.ContainerController class example,

include multiple levels in the package declaration (package flashx.textLayout.container.examples {). For

these examples, save the file in a sub folder that matches the package declaration

(flashx/textLayout/container/examples), or remove the package name (so the ActionScript starts with package {

only) and you can test the file from any location.

5 Select File > New.

6 In the New Document dialog box, select Flash Document (ActionScript 3.0), and click OK. A new Flash window is

displayed.

7 In the Properties panel, in the Document Class field, enter the name of the example class, which should match the

name of the ActionScript source file you just saved (e.g. ContextMenuExample).

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flashx/textLayout/container/ContainerController.html#includeExamplesSummary

1099ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

How to Use ActionScript Examples

Last updated 10/9/2017

8 Select File > Save. Give the FLA file the same name as the class in the example (e.g. ContextMenuExample.fla).

9 To test the example, select Control > Test Movie.

Running a practical example in Flash Professional

Practical examples are normally delivered as ZIP archive files. To run a practical example using Flash Professional:

1 Unzip the archive file into a folder of your choice.

2 In Flash Professional select File > Open.

3 Browse to the folder where you unzipped the archive file. Select the FLA file in that folder and click Open.

4 To test the example, select Control > Test Movie.

Running ActionScript 3.0 examples in Flash Builder

Use one of the following procedures (depending on example type) to run an example using Flash Builder.

Running a code snippet example in Flash Builder

To run a code snippet example in Flash Builder:

1 Either create a new Flex Project (select File > New > Flex Project), or within an existing Flex project create a new

MXML Application (select File > New > MXML Application). Give the project or application a descriptive name

(such as ContextMenuExample).

2 Inside the generated MXML file, add a <mx:Script> tag.

3 Paste the contents of the code snippet example between the <mx:Script> and </mx:Script> tags. Save the MXML file.

4 To run the example, select the Run > Run menu option for the main MXML file (such as Run > Run

ContextMenuExample).

Running a class-based example in Flash Builder

To run a class-based example in Flash Builder:

1 Select File > New > ActionScript Project.

2 Enter the name of the primary class (such as ContextMenuExample) into the Project Name field. Use the default

values for other fields (or change them according to your specific environment). Click Finish to create the project

and the main ActionScript file.

3 Erase any generated content from the ActionScript file. Paste the example code, including package and import

statements, into the ActionScript file and save the file.

Note: Some of the class-based examples, such as the flashx.textLayout.container.ContainerController class example,

include multiple levels in the package declaration (package flashx.textLayout.container.examples {). For

these examples, save the file in a sub folder that matches the package declaration

(flashx/textLayout/container/examples), or remove the package name (so the ActionScript starts with package {

only) and you can test the file from any location.

4 To run the example, select the Run > Run menu option for the main ActionScript class name (such as Run > Run

ContextMenuExample).

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flashx/textLayout/container/ContainerController.html#includeExamplesSummary

1100ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

How to Use ActionScript Examples

Last updated 10/9/2017

Running a practical example inFlash Builder

Practical examples are normally delivered as ZIP archive files. To run a practical example using Flash Builder:

1 Unzip the archive file into a folder of your choice. Give the folder a descriptive name (such as

ContextMenuExample).

2 In Flash Builder select File > New Flex Project. In the Project Location section, click Browse and select the folder

containing the example files. In the Project Name field enter the folder name (such as ContextMenuExample). Use

the default values for other fields (or change them according to your specific environment). Click Next to continue.

3 In the Output panel click Next to accept the default value.

4 In the Source Paths panel click the Browse button next to the Main Application File field. Select the main MXML

example file from the example folder. Click Finish to create the project files.

5 To run the example, select the Run > Run menu option for the main MXML file (such as Run > Run

ContextMenuExample).

Running ActionScript 3.0 examples on mobile devices

You can run the ActionScript 3.0 code examples on mobile devices that support Flash Player 10.1. However, typically

you run a code example to learn how particular classes and methods work. In that case, run the example on a non-

mobile device such as a desktop computer. On the desktop computer, you can use trace statements and other

debugging tools in Flash Professional or Flash Builder to increase your understanding of a code example.

If you want to run the example on a mobile device, you can either copy the files to the device or to a web server. To

copy files to the device and run the example in the browser, do the following:

1 Create the SWF file by following the instructions in “Running ActionScript 3.0 examples in Flash Professional” on

page 1098 or in “Running ActionScript 3.0 examples in Flash Builder” on page 1099. In Flash Professional, you

create the SWF file when you select Control > Test Movie. In Flash Builder, you create the SWF file when you run,

debug, or build your Flash Builder project.

2 Copy the SWF file to a directory on the mobile device. Use software provided with the device to copy the file.

3 In the address bar of browser on the mobile device, enter the file:// URL for the SWF file. For example, enter

file:://applications/myExample.swf.

To copy files to a web server and run the example in the device’s browser, do the following:

1 Create a SWF file and an HTML file. First, follow the instructions in “Running ActionScript 3.0 examples in Flash

Professional” on page 1098 or in “Running ActionScript 3.0 examples in Flash Builder” on page 1099. In Flash

Professional, selecting Control > Test Movie creates only the SWF file. To create both files, first select both Flash

and HTML on the Formats tab in the Publish Settings dialog. Then select File > Publish to create both the HTML

and SWF files. In Flash Builder, you create both the SWF file and HTML file when you run, debug, or build your

Flash Builder project.

2 Copy the SWF file and HTML file to a directory on the web server.

3 In the address bar of browser on the mobile device, enter the HTTP address for the HTML file. For example, enter

http://www.myWebServer/examples/myExample.html.

Before running an example on a mobile device, consider each of the following issues.

1101ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

How to Use ActionScript Examples

Last updated 10/9/2017

Stage size

The stage size you use when running an example on a mobile device is much smaller than when you use a non-mobile

device. Many examples do not require a particular Stage size. When creating the SWF file, specify a Stage size

appropriate to your device. For example, specify 176 x 208 pixels.

The purpose of the practical examples in the ActionScript 3.0 Development Guide is to illustrate different ActionScript

3.0 concepts and classes. Their user interfaces are designed to look good and work well on a desktop or laptop

computer. Although the examples work on mobile devices, the Stage size and user interface design is not suitable to

the small screen. Adobe recommends that you run the practical examples on a computer to learn the ActionScript, and

then use pertinent code snippets in your mobile applications.

Text fields instead of trace statements

When running an example on a mobile device, you cannot see the output from the example’s trace statements. To see

the output, create an instance of the TextField class. Then, append the text from the trace statements to the text

property of the text field.

You can use the following function to set up a text field to use for tracing:

function createTracingTextField(x:Number, y:Number,
width:Number, height:Number):TextField {

var tracingTF:TextField = new TextField();
tracingTF.x = x;
tracingTF.y = y;
tracingTF.width = width;
tracingTF.height = height;

// A border lets you more easily see the area the text field covers.
tracingTF.border = true;
// Left justifying means that the right side of the text field is automatically
// resized if a line of text is wider than the width of the text field.
// The bottom is also automatically resized if the number of lines of text
// exceed the length of the text field.
tracingTF.autoSize = TextFieldAutoSize.LEFT;

// Use a text size that works well on the device.
var myFormat:TextFormat = new TextFormat();
myFormat.size = 18;
tracingTF.defaultTextFormat = myFormat;

addChild(tracingTF);
return tracingTF;

}

For example, add this function to the document class as a private function. Then, in other methods of the document

class, trace data with code like the following:

var traceField:TextField = createTracingTextField(10, 10, 150, 150);
// Use the newline character "\n" to force the text to the next line.
traceField.appendText("data to trace\n");
traceField.appendText("more data to trace\n");
// Use the following line to clear the text field.
traceField.appendText("");

1102ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

How to Use ActionScript Examples

Last updated 10/9/2017

The appendText() method accepts only one value as a parameter. That value is a string (either a String instance or a

string literal). To print the value of a non-string variable, first convert the value to a String. The easiest way to do that

is to call the object’s toString() method:

var albumYear:int = 1999;
traceField.appendText("albumYear = ");
traceField.appendText(albumYear.toString());

Text size

Many examples use text fields to help illustrate a concept. Sometimes adjusting the size of the text in the text field

provides better readability on a mobile device. For example, if an example uses a text field instance named

myTextField, change the size of its text with the following code:

// Use a text size that works well on the device.
var myFormat:TextFormat = new TextFormat();
myFormat.size = 18;
myTextField.defaultTextFormat = myFormat

Capturing user input

The mobile operating system and browser capture some user input events that the SWF content does not receive.

Specific behavior depends on the operating system and browser, but could result in unexpected behavior when you

run the examples on a mobile device. For more information, see “KeyboardEvent precedence” on page 562.

Also, the user interfaces of many examples are designed for a desktop or laptop computer. For example, most of the

practical examples in the ActionScript 3.0 Developer’s Guide are well-suited for desktop viewing. Therefore, the entire

Stage is sometimes not visible on the mobile device’s screen. The ability to pan through the browser’s contents depends

on the browser. Furthermore, the examples are not designed to catch and handle scrolling or panning events.

Therefore, some examples’ user interfaces are not suitable for running on the small screen. Adobe recommends that

you run the examples on a computer to learn the ActionScript, and then use pertinent code snippets in your mobile

applications.

For more information, see “Panning and scrolling display objects” on page 178.

Handling focus

Some examples require you to give a field the focus. By giving a field the focus, you can, for example, enter text or select

a button. To give a field focus, use the mobile device’s pointer device, such as a stylus or your finger. Or, use the mobile

device’s navigation keys to give a field focus. To select a button that has the focus, use the mobile device’s Select key as

you would use Enter on a computer. On some devices, tapping twice on a button selects it.

For more information about focus, see “Managing focus” on page 557.

Handling mouse events

Many examples listen for mouse events. On a computer, these mouse events can occur, for example, when a user rolls

over a display object with the mouse, or clicks the mouse button on a display object. On mobile devices, events from

using pointer devices such as a stylus or finger, are called touch events. Flash Player 10.1 maps touch events to mouse

events. This mapping ensures that SWF content that was developed before Flash Player 10.1 continues to work.

Therefore, examples work when using a pointer device to select or drag a display object.

1103ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

How to Use ActionScript Examples

Last updated 10/9/2017

Performance

Mobile devices have less processing power than desktop devices. Some CPU-intensive examples possibly perform

slowly on mobile devices. For example, the example in “Drawing API example: Algorithmic Visual Generator” on

page 233 does extensive computations and drawing upon entering every frame. Running this example on a computer

illustrates various drawing APIs. However, the example is not suitable on some mobile devices due to their

performance limitations.

For more information about performance on mobile devices, see Optimizing Performance for the Flash Platform.

Best practices

The examples do not consider best practices in developing applications for mobile devices. Limitations in memory and

processing power in mobile devices require special consideration. Similarly, the user interface for the small screen has

different needs than a desktop display. For more information about developing applications for mobile devices, see

Optimizing Performance for the Flash Platform.

http://www.adobe.com/go/learn_optimizing_fp_en
http://www.adobe.com/go/learn_optimizing_fp_en

1104

Last updated 10/9/2017

Chapter 66: SQL support in local databases

Adobe AIR includes a SQL database engine with support for local SQL databases with many standard SQL features,

using the open source SQLite database system. The runtime does not specify how or where database data is stored on

the file system. Each database is stored completely within a single file. A developer can specify the location in the file

system where the database file is stored, and a single AIR application can access one or many separate databases (i.e.

separate database files).This document outlines the SQL syntax and data type support for Adobe AIR local SQL

databases. This document is not intended to serve as a comprehensive SQL reference. Rather, it describes specific

details of the SQL dialect that Adobe AIR supports. The runtime supports most of the SQL-92 standard SQL dialect.

Because there are numerous references, web sites, books, and training materials for learning SQL, this document is not

intended to be a comprehensive SQL reference or tutorial. Instead, this document particularly focuses on the AIR-

supported SQL syntax, and the differences between SQL-92 and the supported SQL dialect.

SQL statement definition conventions

Within statement definitions in this document, the following conventions are used:

• Text case

• UPPER CASE - literal SQL keywords are written in all upper case.

• lower case - placeholder terms or clause names are written in all lower case.

• Definition characters

• ::= Indicates a clause or statement definition.

• Grouping and alternating characters

• | The pipe character is used between alternative options, and can be read as "or".

• [] Items in square brackets are optional items; the brackets can contain a single item or a set of alternative items.

• () Parentheses surrounding a set of alternatives (a set of items separated by pipe characters), designates a

required group of items, that is, a set of items that are the possible values for a single required item.

• Quantifiers

• + A plus character following an item in parentheses indicates that the preceding item can occur 1 or more times.

• * An asterisk character following an item in square brackets indicates that the preceding (bracketed) item can

occur 0 or more times

• Literal characters

• * An asterisk character used in a column name or between the parentheses following a function name signifies

a literal asterisk character rather than the "0 or more" quantifier.

• . A period character represents a literal period.

• , A comma character represents a literal comma.

• () A pair of parentheses surrounding a single clause or item indicates that the parentheses are required, literal

parentheses characters.

• Other characters, unless otherwise indicated, represent those literal characters.

http://www.sqlite.org

1105ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

Supported SQL syntax

The following SQL syntax listings are supported by the Adobe AIR SQL database engine. The listings are divided into

explanations of different statement and clause types, expressions, built-in functions, and operators. The following

topics are covered:

• General SQL syntax

• Data manipulation statements (SELECT, INSERT, UPDATE, and DELETE)

• Data definition statements (CREATE, ALTER, and DROP statements for tables, indices, views, and triggers)

• Special statements and clauses

• Built-in functions (Aggregate, scalar, and date/time formatting functions)

• Operators

• Parameters

• Unsupported SQL features

• Additional SQL features

General SQL syntax

In addition to the specific syntax for various statements and expressions, the following are general rules of SQL syntax:

Case sensitivity SQL statements, including object names, are not case sensitive. Nevertheless, SQL statements are

frequently written with SQL keywords written in uppercase, and this document uses that convention. While SQL

syntax is not case sensitive, literal text values in SQL are case sensitive, and comparison and sorting operations can be

case sensitive, as specified by the collation sequence defined for a column or operation. For more information see

COLLATE.

White space A white-space character (such as space, tab, new line, and so forth) must be used to separate individual

words in an SQL statement. However, white space is optional between words and symbols. The type and quantity of

white-space characters in a SQL statement is not significant. You can use white space, such as indenting and line

breaks, to format your SQL statements for easy readability, without affecting the meaning of the statement.

Data manipulation statements

Data manipulation statements are the most commonly used SQL statements. These statements are used to retrieve,

add, modify, and remove data from database tables. The following data manipulation statements are supported:

SELECT, INSERT, UPDATE, and DELETE.

SELECT

The SELECT statement is used to query the database. The result of a SELECT is zero or more rows of data where each

row has a fixed number of columns. The number of columns in the result is specified by the result column name or

expression list between the SELECT and optional FROM keywords.

1106ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

sql-statement ::= SELECT [ALL | DISTINCT] result
 [FROM table-list]
 [WHERE expr]
 [GROUP BY expr-list]
 [HAVING expr]
 [compound-op select-statement]*
 [ORDER BY sort-expr-list]
 [LIMIT integer [(OFFSET | ,) integer]]
result ::= result-column [, result-column]*
result-column ::= * | table-name . * | expr [[AS] string]
table-list ::= table [join-op table join-args]*
table ::= table-name [AS alias] |
 (select) [AS alias]
join-op ::= , | [NATURAL] [LEFT | RIGHT | FULL] [OUTER | INNER | CROSS] JOIN
join-args ::= [ON expr] [USING (id-list)]
compound-op ::= UNION | UNION ALL | INTERSECT | EXCEPT
sort-expr-list ::= expr [sort-order] [, expr [sort-order]]*
sort-order ::= [COLLATE collation-name] [ASC | DESC]
collation-name ::= BINARY | NOCASE

Any arbitrary expression can be used as a result. If a result expression is * then all columns of all tables are substituted

for that one expression. If the expression is the name of a table followed by .* then the result is all columns in that one

table.

The DISTINCT keyword causes a subset of result rows to be returned, in which each result row is different. NULL

values are not treated as distinct from each other. The default behavior is that all result rows are returned, which can

be made explicit with the keyword ALL.

The query is executed against one or more tables specified after the FROM keyword. If multiple table names are

separated by commas, then the query uses the cross join of the various tables. The JOIN syntax can also be used to

specify how tables are joined. The only type of outer join that is supported is LEFT OUTER JOIN. The ON clause

expression in join-args must resolve to a boolean value. A subquery in parentheses may be used as a table in the FROM

clause. The entire FROM clause may be omitted, in which case the result is a single row consisting of the values of the

result expression list.

The WHERE clause is used to limit the number of rows the query retrieves. WHERE clause expressions must resolve

to a boolean value. WHERE clause filtering is performed before any grouping, so WHERE clause expressions may not

include aggregate functions.

The GROUP BY clause causes one or more rows of the result to be combined into a single row of output. A GROUP

BY clause is especially useful when the result contains aggregate functions. The expressions in the GROUP BY clause

do not have to be expressions that appear in the SELECT expression list.

The HAVING clause is like WHERE in that it limits the rows returned by the statement. However, the HAVING clause

applies after any grouping specified by a GROUP BY clause has occurred. Consequently, the HAVING expression may

refer to values that include aggregate functions. A HAVING clause expression is not required to appear in the SELECT

list. Like a WHERE expression, a HAVING expression must resolve to a boolean value.

The ORDER BY clause causes the output rows to be sorted. The sort-expr-list argument to the ORDER BY clause is a

list of expressions that are used as the key for the sort. The expressions do not have to be part of the result for a simple

SELECT, but in a compound SELECT (a SELECT using one of the compound-op operators) each sort expression must

exactly match one of the result columns. Each sort expression may be optionally followed by a sort-order clause

consisting of the COLLATE keyword and the name of a collation function used for ordering text and/or the keyword

ASC or DESC to specify the sort order (ascending or descending). The sort-order can be omitted and the default

(ascending order) is used. For a definition of the COLLATE clause and collation functions, see COLLATE.

1107ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

The LIMIT clause places an upper bound on the number of rows returned in the result. A negative LIMIT indicates

no upper bound. The optional OFFSET following LIMIT specifies how many rows to skip at the beginning of the result

set. In a compound SELECT query, the LIMIT clause may only appear after the final SELECT statement, and the limit

is applied to the entire query. Note that if the OFFSET keyword is used in the LIMIT clause, then the limit is the first

integer and the offset is the second integer. If a comma is used instead of the OFFSET keyword, then the offset is the

first number and the limit is the second number. This seeming contradiction is intentional — it maximizes

compatibility with legacy SQL database systems.

A compound SELECT is formed from two or more simple SELECT statements connected by one of the operators

UNION, UNION ALL, INTERSECT, or EXCEPT. In a compound SELECT, all the constituent SELECT statements

must specify the same number of result columns. There can only be a single ORDER BY clause after the final SELECT

statement (and before the single LIMIT clause, if one is specified). The UNION and UNION ALL operators combine

the results of the preceding and following SELECT statements into a single table. The difference is that in UNION, all

result rows are distinct, but in UNION ALL, there may be duplicates. The INTERSECT operator takes the intersection

of the results of the preceding and following SELECT statements. EXCEPT takes the result of preceding SELECT after

removing the results of the following SELECT. When three or more SELECT statements are connected into a

compound, they group from first to last.

For a definition of permitted expressions, see Expressions.

Starting with AIR 2.5, the SQL CAST operator is supported when reading to convert BLOB data to ActionScript

ByteArray objects. For example, the following code reads raw data that is not stored in the AMF format and stores it

in a ByteArray object:

stmt.text = "SELECT CAST(data AS ByteArray) AS data FROM pictures;";
stmt.execute();
var result:SQLResult = stmt.getResult();
var bytes:ByteArray = result.data[0].data;

INSERT

The INSERT statement comes in two basic forms and is used to populate tables with data.

sql-statement ::= INSERT [OR conflict-algorithm] INTO [database-name.] table-name [(column-
list)] VALUES (value-list) |
 INSERT [OR conflict-algorithm] INTO [database-name.] table-name [(column-
list)] select-statement
 REPLACE INTO [database-name.] table-name [(column-list)] VALUES (value-list) |
 REPLACE INTO [database-name.] table-name [(column-list)] select-statement

The first form (with the VALUES keyword) creates a single new row in an existing table. If no column-list is specified

then the number of values must be the same as the number of columns in the table. If a column-list is specified, then

the number of values must match the number of specified columns. Columns of the table that do not appear in the

column list are filled with the default value defined when the table is created, or with NULL if no default value is

defined.

The second form of the INSERT statement takes its data from a SELECT statement. The number of columns in the

result of the SELECT must exactly match the number of columns in the table if column-list is not specified, or it must

match the number of columns named in the column-list. A new entry is made in the table for every row of the SELECT

result. The SELECT may be simple or compound. For a definition of allowable SELECT statements, see SELECT.

The optional conflict-algorithm allows the specification of an alternative constraint conflict resolution algorithm to

use during this one command. For an explanation and definition of conflict algorithms, see “Special statements and

clauses” on page 1114.

1108ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

The two REPLACE INTO forms of the statement are equivalent to using the standard INSERT [OR conflict-

algorithm] form with the REPLACE conflict algorithm (i.e. the INSERT OR REPLACE... form).

The two REPLACE INTO forms of the statement are equivalent to using the standard INSERT [OR conflict-

algorithm] form with the REPLACE conflict algorithm (i.e. the INSERT OR REPLACE... form).

UPDATE

The update command changes the existing records in a table.

sql-statement ::= UPDATE [database-name.] table-name SET column1=value1, column2=value2,...
[WHERE expr]

The command consists of the UPDATE keyword followed by the name of the table in which you want to update the

records. After the SET keyword, provide the name of the column and the value to which the column to be changed as

a comma-separated list. The WHERE clause expression provides the row or rows in which the records are updated.

DELETE

The delete command is used to remove records from a table.

sql-statement ::= DELETE FROM [database-name.] table-name [WHERE expr]

The command consists of the DELETE FROM keywords followed by the name of the table from which records are to

be removed.

Without a WHERE clause, all rows of the table are removed. If a WHERE clause is supplied, then only those rows that

match the expression are removed. The WHERE clause expression must resolve to a boolean value. For a definition of

permitted expressions, see Expressions.

Data definition statements

Data definition statements are used to create, modify, and remove database objects such as tables, views, indices, and

triggers. The following data definition statements are supported:

• Tables:

• CREATE TABLE

• ALTER TABLE

• DROP TABLE

• Indices:

• CREATE INDEX

• DROP INDEX

• Views:

• CREATE VIEWS

• DROP VIEWS

• Triggers:

• CREATE TRIGGERS

• DROP TRIGGERS

1109ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

CREATE TABLE

A CREATE TABLE statement consists of the keywords CREATE TABLE followed by the name of the new table, then

(in parentheses) a list of column definitions and constraints. The table name can be either an identifier or a string.

sql-statement ::= CREATE [TEMP | TEMPORARY] TABLE [IF NOT EXISTS] [database-name.] table-
name
 (column-def [, column-def]* [, constraint]*)
sql-statement ::= CREATE [TEMP | TEMPORARY] TABLE [database-name.] table-name AS select-
statement
column-def ::= name [type] [[CONSTRAINT name] column-constraint]*
type ::= typename | typename (number) | typename (number , number)
column-constraint ::= NOT NULL [conflict-clause] |
 PRIMARY KEY [sort-order] [conflict-clause] [AUTOINCREMENT] |
 UNIQUE [conflict-clause] |
 CHECK (expr) |
 DEFAULT default-value |
 COLLATE collation-name
constraint ::= PRIMARY KEY (column-list) [conflict-clause] |
 UNIQUE (column-list) [conflict-clause] |
 CHECK (expr)
conflict-clause ::= ON CONFLICT conflict-algorithm
conflict-algorithm ::= ROLLBACK | ABORT | FAIL | IGNORE | REPLACE
default-value ::= NULL | string | number | CURRENT_TIME | CURRENT_DATE | CURRENT_TIMESTAMP
sort-order ::= ASC | DESC
collation-name ::= BINARY | NOCASE
column-list ::= column-name [, column-name]*

Each column definition is the name of the column followed by the data type for that column, then one or more optional

column constraints. The data type for the column restricts what data may be stored in that column. If an attempt is

made to store a value in a column with a different data type, the runtime converts the value to the appropriate type if

possible, or raises an error. See the Data type support section for additional information.

The NOT NULL column constraint indicates that the column cannot contain NULL values.

A UNIQUE constraint causes an index to be created on the specified column or columns. This index must contain

unique keys—no two rows may contain duplicate values or combinations of values for the specified column or

columns. A CREATE TABLE statement can have multiple UNIQUE constraints, including multiple columns with a

UNIQUE constraint in the column's definition and/or multiple table-level UNIQUE constraints.

A CHECK constraint defines an expression that is evaluated and must be true in order for a row's data to be inserted

or updated. The CHECK expression must resolve to a boolean value.

A COLLATE clause in a column definition specifies what text collation function to use when comparing text entries

for the column. The BINARY collating function is used by default. For details on the COLLATE clause and collation

functions, see COLLATE.

The DEFAULT constraint specifies a default value to use when doing an INSERT. The value may be NULL, a string

constant, or a number. The default value may also be one of the special case-independent keywords CURRENT_TIME,

CURRENT_DATE or CURRENT_TIMESTAMP. If the value is NULL, a string constant, or a number, it is literally

inserted into the column whenever an INSERT statement does not specify a value for the column. If the value is

CURRENT_TIME, CURRENT_DATE or CURRENT_TIMESTAMP, then the current UTC date and/or time is

inserted into the column. For CURRENT_TIME, the format is HH:MM:SS. For CURRENT_DATE, the format is

YYYY-MM-DD. The format for CURRENT_TIMESTAMP is YYYY-MM-DD HH:MM:SS.

1110ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

Specifying a PRIMARY KEY normally just creates a UNIQUE index on the corresponding column or columns.

However, if the PRIMARY KEY constraint is on a single column that has the data type INTEGER (or one of its

synonyms such as int) then that column is used by the database as the actual primary key for the table. This means that

the column may only hold unique integer values. (Note that in many SQLite implementations, only the column type

INTEGER causes the column to serve as the internal primary key, but in Adobe AIR synonyms for INTEGER such as

int also specify that behavior.)

If a table does not have an INTEGER PRIMARY KEY column, an integer key is automatically generated when a row

is inserted. The primary key for a row can always be accessed using one of the special names ROWID, OID, or

ROWID. These names can be used regardless of whether it is an explicitly declared INTEGER PRIMARY KEY or

an internal generated value. However, if the table has an explicit INTEGER PRIMARY KEY, the name of the column

in the result data is the actual column name rather than the special name.

An INTEGER PRIMARY KEY column can also include the keyword AUTOINCREMENT. When the

AUTOINCREMENT keyword is used, the database automatically generates and inserts a sequentially incremented

integer key in the INTEGER PRIMARY KEY column when it executes an INSERT statement that doesn't specify an

explicit value for the column.

There can only be one PRIMARY KEY constraint in a CREATE TABLE statement. It can either be part of one column's

definition or one single table-level PRIMARY KEY constraint. A primary key column is implicitly NOT NULL.

The optional conflict-clause following many constraints allows the specification of an alternative default constraint

conflict resolution algorithm for that constraint. The default is ABORT. Different constraints within the same table

may have different default conflict resolution algorithms. If an INSERT or UPDATE statement specifies a different

conflict resolution algorithm, that algorithm is used in place of the algorithm specified in the CREATE TABLE

statement. See the ON CONFLICT section of “Special statements and clauses” on page 1114 for additional

information.

Additional constraints, such as FOREIGN KEY constraints, do not result in an error but the runtime ignores them.

If the TEMP or TEMPORARY keyword occurs between CREATE and TABLE then the table that is created is only

visible within the same database connection (SQLConnection instance). It is automatically deleted when the database

connection is closed. Any indices created on a temporary table are also temporary. Temporary tables and indices are

stored in a separate file distinct from the main database file.

If the optional database-name prefix is specified, then the table is created in a named database (a database that was

connected to the SQLConnection instance by calling the attach() method with the specified database name). It is an

error to specify both a database-name prefix and the TEMP keyword, unless the database-name prefix is temp. If no

database name is specified, and the TEMP keyword is not present, the table is created in the main database (the

database that was connected to the SQLConnection instance using the open() or openAsync()method).

There are no arbitrary limits on the number of columns or on the number of constraints in a table. There is also no

arbitrary limit on the amount of data in a row.

The CREATE TABLE AS form defines the table as the result set of a query. The names of the table columns are the

names of the columns in the result.

If the optional IF NOT EXISTS clause is present and another table with the same name already exists, then the database

ignores the CREATE TABLE command.

A table can be removed using the DROP TABLE statement, and limited changes can be made using the ALTER TABLE

statement.

1111ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

 ALTER TABLE

The ALTER TABLE command allows the user to rename or add a new column to an existing table. It is not possible

to remove a column from a table.

sql-statement ::= ALTER TABLE [database-name.] table-name alteration
alteration ::= RENAME TO new-table-name
alteration ::= ADD [COLUMN] column-def

The RENAME TO syntax is used to rename the table identified by [database-name.] table-name to new-table-name.

This command cannot be used to move a table between attached databases, only to rename a table within the same

database.

If the table being renamed has triggers or indices, then they remain attached to the table after it has been renamed.

However, if there are any view definitions or statements executed by triggers that refer to the table being renamed, they

are not automatically modified to use the new table name. If a renamed table has associated views or triggers, you must

manually drop and recreate the triggers or view definitions using the new table name.

The ADD [COLUMN] syntax is used to add a new column to an existing table. The new column is always appended

to the end of the list of existing columns. The column-def clause may take any of the forms permissible in a CREATE

TABLE statement, with the following restrictions:

• The column may not have a PRIMARY KEY or UNIQUE constraint.

• The column may not have a default value of CURRENT_TIME, CURRENT_DATE or CURRENT_TIMESTAMP.

• If a NOT NULL constraint is specified, the column must have a default value other than NULL.

The execution time of the ALTER TABLE statement is not affected by the amount of data in the table.

DROP TABLE

The DROP TABLE statement removes a table added with a CREATE TABLE statement. The table with the specified

table-name is the table that's dropped. It is completely removed from the database and the disk file. The table cannot

be recovered. All indices associated with the table are also deleted.

sql-statement ::= DROP TABLE [IF EXISTS] [database-name.] table-name

By default the DROP TABLE statement does not reduce the size of the database file. Empty space in the database is

retained and used in subsequent INSERT operations. To remove free space in the database use the

SQLConnection.clean() method. If the autoClean parameter is set to true when the database is initially created, the

space is freed automatically.

The optional IF EXISTS clause suppresses the error that would normally result if the table does not exist.

CREATE INDEX

The CREATE INDEX command consists of the keywords CREATE INDEX followed by the name of the new index,

the keyword ON, the name of a previously created table that is to be indexed, and a parenthesized list of names of

columns in the table whose values are used for the index key.

sql-statement ::= CREATE [UNIQUE] INDEX [IF NOT EXISTS] [database-name.] index-name
 ON table-name (column-name [, column-name]*)
column-name ::= name [COLLATE collation-name] [ASC | DESC]

Each column name can be followed by ASC or DESC keywords to indicate sort order, but the sort order designation

is ignored by the runtime. Sorting is always done in ascending order.

1112ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

The COLLATE clause following each column name defines a collating sequence used for text values in that column.

The default collation sequence is the collation sequence defined for that column in the CREATE TABLE statement. If

no collation sequence is specified, the BINARY collation sequence is used. For a definition of the COLLATE clause

and collation functions see COLLATE.

There are no arbitrary limits on the number of indices that can be attached to a single table. There are also no limits

on the number of columns in an index.

DROP INDEX

The drop index statement removes an index added with the CREATE INDEX statement. The specified index is

completely removed from the database file. The only way to recover the index is to reenter the appropriate CREATE

INDEX command.

sql-statement ::= DROP INDEX [IF EXISTS] [database-name.] index-name

By default the DROP INDEX statement does not reduce the size of the database file. Empty space in the database is

retained and used in subsequent INSERT operations. To remove free space in the database use the

SQLConnection.clean() method. If the autoClean parameter is set to true when the database is initially created, the

space is freed automatically.

CREATE VIEW

The CREATE VIEW command assigns a name to a pre-defined SELECT statement. This new name can then be used

in a FROM clause of another SELECT statement in place of a table name. Views are commonly used to simplify queries

by combining a complex (and frequently used) set of data into a structure that can be used in other operations.

sql-statement ::= CREATE [TEMP | TEMPORARY] VIEW [IF NOT EXISTS] [database-name.] view-name AS
select-statement

If the TEMP or TEMPORARY keyword occurs in between CREATE and VIEW then the view that is created is only

visible to the SQLConnection instance that opened the database and is automatically deleted when the database is

closed.

If a [database-name] is specified the view is created in the named database (a database that was connected to the

SQLConnection instance using the attach() method, with the specified name argument. It is an error to specify both a

[database-name] and the TEMP keyword unless the [database-name] is temp. If no database name is specified, and the

TEMP keyword is not present, the view is created in the main database (the database that was connected to the

SQLConnection instance using the open() or openAsync() method).

Views are read only. A DELETE, INSERT, or UPDATE statement cannot be used on a view, unless at least one trigger

of the associated type (INSTEAD OF DELETE, INSTEAD OF INSERT, INSTEAD OF UPDATE) is defined. For

information on creating a trigger for a view, see CREATE TRIGGER.

A view is removed from a database using the DROP VIEW statement.

DROP VIEW

The DROP VIEW statement removes a view created by a CREATE VIEW statement.

sql-statement ::= DROP VIEW [IF EXISTS] view-name

The specified view-name is the name of the view to drop. It is removed from the database, but no data in the underlying

tables is modified.

CREATE TRIGGER

The create trigger statement is used to add triggers to the database schema. A trigger is a database operation (the

trigger-action) that is automatically performed when a specified database event (the database-event) occurs.

1113ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

sql-statement ::= CREATE [TEMP | TEMPORARY] TRIGGER [IF NOT EXISTS] [database-name.] trigger-
name
 [BEFORE | AFTER] database-event
 ON table-name
 trigger-action
sql-statement ::= CREATE [TEMP | TEMPORARY] TRIGGER [IF NOT EXISTS] [database-name.] trigger-
name
 INSTEAD OF database-event
 ON view-name
 trigger-action
database-event ::= DELETE |
 INSERT |
 UPDATE |
 UPDATE OF column-list
trigger-action ::= [FOR EACH ROW] [WHEN expr]
 BEGIN
 trigger-step ;
 [trigger-step ;]*
 END
trigger-step ::= update-statement |
 insert-statement |
 delete-statement |
 select-statement
column-list ::= column-name [, column-name]*

A trigger is specified to fire whenever a DELETE, INSERT, or UPDATE of a particular database table occurs, or

whenever an UPDATE of one or more specified columns of a table are updated. Triggers are permanent unless the

TEMP or TEMPORARY keyword is used. In that case the trigger is removed when the SQLConnection instance's main

database connection is closed. If no timing is specified (BEFORE or AFTER) the trigger defaults to BEFORE.

Only FOR EACH ROW triggers are supported, so the FOR EACH ROW text is optional. With a FOR EACH ROW

trigger, the trigger-step statements are executed for each database row being inserted, updated or deleted by the

statement causing the trigger to fire, if the WHEN clause expression evaluates to true.

If a WHEN clause is supplied, the SQL statements specified as trigger-steps are only executed for rows for which the

WHEN clause is true. If no WHEN clause is supplied, the SQL statements are executed for all rows.

Within the body of a trigger, (the trigger-action clause) the pre-change and post-change values of the affected table are

available using the special table names OLD and NEW. The structure of the OLD and NEW tables matches the

structure of the table on which the trigger is created. The OLD table contains any rows that are modified or deleted by

the triggering statement, in their state before the triggering statement's operations. The NEW table contains any rows

that are modified or created by the triggering statement, in their state after the triggering statement's operations. Both

the WHEN clause and the trigger-step statements can access values from the row being inserted, deleted or updated

using references of the form NEW.column-name and OLD.column-name, where column-name is the name of a

column from the table with which the trigger is associated. The availability of the OLD and NEW table references

depends on the type of database-event the trigger handles:

• INSERT – NEW references are valid

• UPDATE – NEW and OLD references are valid

• DELETE – OLD references are valid

The specified timing (BEFORE, AFTER, or INSTEAD OF) determines when the trigger-step statements are executed

relative to the insertion, modification or removal of the associated row. An ON CONFLICT clause may be specified as

part of an UPDATE or INSERT statement in a trigger-step. However, if an ON CONFLICT clause is specified as part

of the statement causing the trigger to fire, then that conflict handling policy is used instead.

1114ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

In addition to table triggers, an INSTEAD OF trigger can be created on a view. If one or more INSTEAD OF INSERT,

INSTEAD OF DELETE, or INSTEAD OF UPDATE triggers are defined on a view, it is not considered an error to

execute the associated type of statement (INSERT, DELETE, or UPDATE) on the view. In that case, executing an

INSERT, DELETE or UPDATE on the view causes the associated triggers to fire. Because the trigger is an INSTEAD

OF trigger, the tables underlying the view are not modified by the statement that causes the trigger to fire. However,

the triggers can be used to perform modifying operations on the underlying tables.

There is an important issue to keep in mind when creating a trigger on a table with an INTEGER PRIMARY KEY

column. If a BEFORE trigger modifies the INTEGER PRIMARY KEY column of a row that is to be updated by the

statement that causes the trigger to fire, the update doesn't occur. A workaround is to create the table with a PRIMARY

KEY column instead of an INTEGER PRIMARY KEY column.

A trigger can be removed using the DROP TRIGGER statement. When a table or view is dropped, all triggers

associated with that table or view are automatically dropped as well.

RAISE () function

A special SQL function RAISE() can be used in a trigger-step statement of a trigger. This function has the following

syntax:

raise-function ::= RAISE (ABORT, error-message) |
 RAISE (FAIL, error-message) |
 RAISE (ROLLBACK, error-message) |
 RAISE (IGNORE)

When one of the first three forms is called during trigger execution, the specified ON CONFLICT processing action

(ABORT, FAIL, or ROLLBACK) is performed and the current statement's execution ends. The ROLLBACK is

considered a statement execution failure, so the SQLStatement instance whose execute() method was being carried out

dispatches an error (SQLErrorEvent.ERROR) event. The SQLError object in the dispatched event object's error

property has its details property set to the error-message specified in the RAISE() function.

When RAISE(IGNORE) is called, the remainder of the current trigger, the statement that caused the trigger to execute,

and any subsequent triggers that would have been executed are abandoned. No database changes are rolled back. If the

statement that caused the trigger to execute is itself part of a trigger, that trigger program resumes execution at the

beginning of the next step. For more information about the conflict resolution algorithms, see the section ON

CONFLICT (conflict algorithms).

DROP TRIGGER

The DROP TRIGGER statement removes a trigger created by the CREATE TRIGGER statement.

sql-statement ::= DROP TRIGGER [IF EXISTS] [database-name.] trigger-name

The trigger is deleted from the database. Note that triggers are automatically dropped when their associated table is

dropped.

Special statements and clauses

This section describes several clauses that are extensions to SQL provided by the runtime, as well as two language

elements that can be used in many statements, comments and expressions.

COLLATE

The COLLATE clause is used in SELECT, CREATE TABLE, and CREATE INDEX statements to specify the

comparison algorithm that is used when comparing or sorting values.

1115ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

sql-statement ::= COLLATE collation-name
collation-name ::= BINARY | NOCASE

The default collation type for columns is BINARY. When BINARY collation is used with values of the TEXT storage

class, binary collation is performed by comparing the bytes in memory that represent the value regardless of the text

encoding.

The NOCASE collation sequence is only applied for values of the TEXT storage class. When used, the NOCASE

collation performs a case-insensitive comparison.

No collation sequence is used for storage classes of type NULL, BLOB, INTEGER, or REAL.

To use a collation type other than BINARY with a column, a COLLATE clause must be specified as part of the column

definition in the CREATE TABLE statement. Whenever two TEXT values are compared, a collation sequence is used

to determine the results of the comparison according to the following rules:

• For binary comparison operators, if either operand is a column, then the default collation type of the column

determines the collation sequence that is used for the comparison. If both operands are columns, then the collation

type for the left operand determines the collation sequence used. If neither operand is a column, then the BINARY

collation sequence is used.

• The BETWEEN...AND operator is equivalent to using two expressions with the >= and <= operators. For example,

the expression x BETWEEN y AND z is equivalent to x >= y AND x <= z. Consequently, the BETWEEN...AND

operator follows the preceding rule to determine the collation sequence.

• The IN operator behaves like the =operator for the purposes of determining the collation sequence to use. For

example, the collation sequence used for the expressionx IN (y, z) is the default collation type of x if x is a column.

Otherwise, BINARY collation is used.

• An ORDER BY clause that is part of a SELECT statement may be explicitly assigned a collation sequence to be used

for the sort operation. In that case the explicit collation sequence is always used. Otherwise, if the expression sorted

by an ORDER BYclause is a column, the default collation type of the column is used to determine sort order. If the

expression is not a column, the BINARY collation sequence is used.

EXPLAIN

The EXPLAIN command modifier is a non-standard extension to SQL.

sql-statement ::= EXPLAIN sql-statement

If the EXPLAIN keyword appears before any other SQL statement, then instead of actually executing the command,

the result reports the sequence of virtual machine instructions it would have used to execute the command, had the

EXPLAIN keyword not been present. The EXPLAIN feature is an advanced feature and allows developers to change

SQL statement text in an attempt to optimize performance or debug a statement that doesn't appear to be working

properly.

ON CONFLICT (conflict algorithms)

The ON CONFLICT clause is not a separate SQL command. It is a non-standard clause that can appear in many other

SQL commands.

conflict-clause ::= ON CONFLICT conflict-algorithm
conflict-clause ::= OR conflict-algorithm
conflict-algorithm ::= ROLLBACK |
 ABORT |
 FAIL |
 IGNORE |
 REPLACE

1116ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

The first form of the ON CONFLICT clause, using the keywords ON CONFLICT, is used in a CREATE TABLE

statement. For an INSERT or UPDATE statement, the second form is used, with ON CONFLICT replaced by OR to

make the syntax seem more natural. For example, instead of INSERT ON CONFLICT IGNORE, the statement becomes

INSERT OR IGNORE. Although the keywords are different, the meaning of the clause is the same in either form.

The ON CONFLICT clause specifies the algorithm that is used to resolve constraint conflicts. The five algorithms are

ROLLBACK, ABORT, FAIL, IGNORE, and REPLACE. The default algorithm is ABORT. The following is an

explanation of the five conflict algorithms:

ROLLBACK When a constraint violation occurs, an immediate ROLLBACK occurs, ending the current transaction.

The command aborts and the SQLStatement instance dispatches an error event. If no transaction is active (other than

the implied transaction that is created on every command) then this algorithm works the same as ABORT.

ABORT When a constraint violation occurs, the command backs out any prior changes it might have made and the

SQLStatement instance dispatches an error event. No ROLLBACK is executed, so changes from prior commands

within a transaction are preserved. ABORT is the default behavior.

FAIL When a constraint violation occurs, the command aborts and the SQLStatement dispatches an error event.

However, any changes to the database that the statement made before encountering the constraint violation are

preserved and are not backed out. For example, if an UPDATE statement encounters a constraint violation on the

100th row that it attempts to update, then the first 99 row changes are preserved but changes to rows 100 and beyond

don’t occur.

IGNORE When a constraint violation occurs, the one row that contains the constraint violation is not inserted or

changed. Aside from this row being ignored, the command continues executing normally. Other rows before and after

the row that contained the constraint violation continue to be inserted or updated normally. No error is returned.

REPLACE When a UNIQUE constraint violation occurs, the pre-existing rows that are causing the constraint violation

are removed before inserting or updating the current row. Consequently, the insert or update always occurs, and the

command continues executing normally. No error is returned. If a NOT NULL constraint violation occurs, the NULL

value is replaced by the default value for that column. If the column has no default value, then the ABORT algorithm

is used. If a CHECK constraint violation occurs then the IGNORE algorithm is used. When this conflict resolution

strategy deletes rows in order to satisfy a constraint, it does not invoke delete triggers on those rows.

The algorithm specified in the OR clause of an INSERT or UPDATE statement overrides any algorithm specified in a

CREATE TABLE statement. If no algorithm is specified in the CREATE TABLE statement or the executing INSERT

or UPDATE statement, the ABORT algorithm is used.

REINDEX

The REINDEX command is used to delete and re-create one or more indices. This command is useful when the

definition of a collation sequence has changed.

sql-statement ::= REINDEX collation-name
sql-statement ::= REINDEX [database-name .] (table-name | index-name)

In the first form, all indices in all attached databases that use the named collation sequence are recreated. In the second

form, when a table-name is specified, all indices associated with the table are rebuilt. If an index-name is given, only

the specified index is deleted and recreated.

COMMENTS

Comments aren't SQL commands, but they can occur in SQL queries. They are treated as white space by the runtime.

They can begin anywhere white space can be found, including inside expressions that span multiple lines.

1117ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

comment ::= single-line-comment |
 block-comment
single-line-comment ::= -- single-line
block-comment ::= /* multiple-lines or block [*/]

A single-line comment is indicated by two dashes. A single line comment only extends to the end of the current line.

Block comments can span any number of lines, or be embedded within a single line. If there is no terminating

delimiter, a block comment extends to the end of the input. This situation is not treated as an error. A new SQL

statement can begin on a line after a block comment ends. Block comments can be embedded anywhere white space

can occur, including inside expressions, and in the middle of other SQL statements. Block comments do not nest.

Single-line comments inside a block comment are ignored.

EXPRESSIONS

Expressions are subcommands within other SQL blocks. The following describes the valid syntax for an expression

within a SQL statement:

expr ::= expr binary-op expr |
 expr [NOT] like-op expr [ESCAPE expr] |
 unary-op expr |
 (expr) |
 column-name |
 table-name.column-name |
 database-name.table-name.column-name |
 literal-value |
 parameter |
 function-name(expr-list | *) |
 expr ISNULL |
 expr NOTNULL |
 expr [NOT] BETWEEN expr AND expr |
 expr [NOT] IN (value-list) |
 expr [NOT] IN (select-statement) |
 expr [NOT] IN [database-name.] table-name |
 [EXISTS] (select-statement) |
 CASE [expr] (WHEN expr THEN expr)+ [ELSE expr] END |
 CAST (expr AS type) |
 expr COLLATE collation-name
like-op ::= LIKE | GLOB
binary-op ::= see Operators
unary-op ::= see Operators
parameter ::= :param-name | @param-name | ?
value-list ::= literal-value [, literal-value]*
literal-value ::= literal-string | literal-number | literal-boolean | literal-blob |
literal-null
literal-string ::= 'string value'
literal-number ::= integer | number
literal-boolean ::= true | false
literal-blob ::= X'string of hexadecimal data'
literal-null ::= NULL

An expression is any combination of values and operators that can be resolved to a single value. Expressions can be

divided into two general types, according to whether they resolve to a boolean (true or false) value or whether they

resolve to a non-boolean value.

1118ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

In several common situations, including in a WHERE clause, a HAVING clause, the ON expression in a JOIN clause,

and a CHECK expression, the expression must resolve to a boolean value. The following types of expressions meet this

condition:

• ISNULL

• NOTNULL

• IN ()

• EXISTS ()

• LIKE

• GLOB

• Certain functions

• Certain operators (specifically comparison operators)

Literal values

A literal numeric value is written as an integer number or a floating point number. Scientific notation is supported.

The . (period) character is always used as the decimal point.

A string literal is indicated by enclosing the string in single quotes '. To include a single quote within a string, put two

single quotes in a row like this example: ''.

A boolean literal is indicated by the value true or false. Literal boolean values are used with the Boolean column data type.

A BLOB literal is a string literal containing hexadecimal data and proceeded by a single x or X character, such as

X'53514697465'.

A literal value can also be the token NULL.

Column name

A column name can be any of the names defined in the CREATE TABLE statement or one of the following special

identifiers: ROWID, OID, or _ROWID_. These special identifiers all describe the unique random integer key (the "row

key") associated with every row of every table. The special identifiers only refer to the row key if the CREATE TABLE

statement does not define a real column with the same name. Row keys behave as read-only columns. A row key can

be used anywhere a regular column can be used, except that you cannot change the value of a row key in an UPDATE

or INSERT statement. The SELECT * FROM table statement does not include the row key in its result set.

SELECT statement

A SELECT statement can appear in an expression as either the right-hand operand of the IN operator, as a scalar

quantity (a single result value), or as the operand of an EXISTS operator. When used as a scalar quantity or the operand

of an IN operator, the SELECT can only have a single column in its result. A compound SELECT statement (connected

with keywords like UNION or EXCEPT) is allowed. With the EXISTS operator, the columns in the result set of the

SELECT are ignored and the expression returns TRUE if one or more rows exist and FALSE if the result set is empty.

If no terms in the SELECT expression refer to the value in the containing query, then the expression is evaluated once

before any other processing and the result is reused as necessary. If the SELECT expression does contain variables from

the outer query, known as a correlated subquery, then the SELECT is re-evaluated every time it is needed.

When a SELECT is the right operand of the IN operator, the IN operator returns TRUE if the result of the left operand

is equal to any of the values in the SELECT statement's result set. The IN operator may be preceded by the NOT

keyword to invert the sense of the test.

1119ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

When a SELECT appears within an expression but is not the right operand of an IN operator, then the first row of the

result of the SELECT becomes the value used in the expression. If the SELECT yields more than one result row, all rows

after the first are ignored. If the SELECT yields no rows, then the value of the SELECT is NULL.

CAST expression

A CAST expression changes the data type of the value specified to the one given. The type specified can be any non-

empty type name that is valid for the type in a column definition of a CREATE TABLE statement. See Data type

support for details.

Additional expression elements

The following SQL elements can also be used in expressions:

• Built-in functions: Aggregate functions, Scalar functions, and Date and time formatting functions

• Operators

• Parameters

Built-in functions

The built-in functions fall into three main categories:

• Aggregate functions

• Scalar functions

• Date and time functions

In addition to these functions, there is a special function RAISE() that is used to provide notification of an error in the

execution of a trigger. This function can only be used within the body of a CREATE TRIGGER statement. For

information on the RAISE() function, see CREATE TRIGGER > RAISE().

Like all keywords in SQL, function names are not case sensitive.

Aggregate functions

Aggregate functions perform operations on values from multiple rows. These functions are primarily used in SELECT

statements in conjunction with the GROUP BY clause.

In any of the preceding aggregate functions that take a single argument, that argument can be preceded by the keyword

DISTINCT. In that case, duplicate elements are filtered before being passed into the aggregate function. For example,

the function call COUNT(DISTINCT x) returns the number of distinct values of column X instead of the total number

of non-NULL values in column x.

AVG(X) Returns the average value of all non-NULL X within a group. String and BLOB values that do not

look like numbers are interpreted as 0. The result of AVG() is always a floating point value even

if all inputs are integers.

COUNT(X)

COUNT(*)

The first form returns a count of the number of times that X is not NULL in a group. The second

form (with the * argument) returns the total number of rows in the group.

MAX(X) Returns the maximum value of all values in the group. The usual sort order is used to determine

the maximum.

MIN(X) Returns the minimum non-NULL value of all values in the group. The usual sort order is used

to determine the minimum. If all values in the group are NULL, NULL is returned.

SUM(X)

TOTAL(X)

Returns the numeric sum of all non-NULL values in the group. If all of the values are NULL then

SUM() returns NULL, and TOTAL() returns 0.0. The result of TOTAL() is always a floating point

value. The result of SUM() is an integer value if all non-NULL inputs are integers. If any input to

SUM() is not an integer and not NULL then SUM() returns a floating point value. This value

might be an approximation to the true sum.

1120ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

Scalar functions

Scalar functions operate on values one row at a time.

Date and time formatting functions

The date and time formatting functions are a group of scalar functions that are used to create formatted date and time

data. Note that these functions operate on and return string and number values. These functions are not intended to

be used with the DATE data type. If you use these functions on data in a column whose declared data type is DATE,

they do not behave as expected.

ABS(X) Returns the absolute value of argument X.

COALESCE(X, Y, ...) Returns a copy of the first non-NULL argument. If all arguments are NULL then NULL is

returned. There must be at least two arguments.

GLOB(X, Y) This function is used to implement the X GLOB Y syntax.

IFNULL(X, Y) Returns a copy of the first non-NULL argument. If both arguments are NULL then NULL is

returned. This function behaves the same as COALESCE().

HEX(X) The argument is interpreted as a value of the BLOB storage type. The result is a hexadecimal

rendering of the content of that value.

LAST_INSERT_ROWID(

)

Returns the row identifier (generated primary key) of the last row inserted to the database

through the current SQLConnection. This value is the same as the value returned by the

SQLConnection.lastInsertRowID property.

LENGTH(X) Returns the string length of X in characters.

LIKE(X, Y [, Z]) This function is used to implement the X LIKE Y [ESCAPE Z] syntax of SQL. If the optional

ESCAPE clause is present, then the function is invoked with three arguments. Otherwise, it is

invoked with two arguments only.

LOWER(X) Returns a copy of string X with all characters converted to lower case.

LTRIM(X) LTRIM(X, Y) Returns a string formed by removing spaces from the left side of X. If a Y argument is specified,

the function removes any of the characters in Y from the left side of X.

MAX(X, Y, ...) Returns the argument with the maximum value. Arguments may be strings in addition to

numbers. The maximum value is determined by the defined sort order. Note that MAX() is a

simple function when it has 2 or more arguments but is an aggregate function when it has a

single argument.

MIN(X, Y, ...) Returns the argument with the minimum value. Arguments may be strings in addition to

numbers. The minimum value is determined by the defined sort order. Note that MIN() is a

simple function when it has 2 or more arguments but is an aggregate function when it has a

single argument.

NULLIF(X, Y) Returns the first argument if the arguments are different, otherwise returns NULL.

QUOTE(X) This routine returns a string which is the value of its argument suitable for inclusion into

another SQL statement. Strings are surrounded by single-quotes with escapes on interior

quotes as needed. BLOB storage classes are encoded as hexadecimal literals. The function is

useful when writing triggers to implement undo/redo functionality.

RANDOM(*) Returns a pseudo-random integer between -9223372036854775808 and

9223372036854775807. This random value is not crypto-strong.

RANDOMBLOB(N) Returns an N-byte BLOB containing pseudo-random bytes. N should be a positive integer. This

random value is not crypto-strong. If the value of N is negative a single byte is returned.

ROUND(X) ROUND(X,

Y)

Rounds off the number X to Y digits to the right of the decimal point. If the Y argument is

omitted, 0 is used.

RTRIM(X) RTRIM(X, Y) Returns a string formed by removing spaces from the right side of X. If a Y argument is

specified, the function removes any of the characters in Y from the right side of X.

SUBSTR(X, Y, Z) Returns a substring of input string X that begins with the Y-th character and which is Z

characters long. The left-most character of X is index position 1. If Y is negative the first

character of the substring is found by counting from the right rather than the left.

TRIM(X) TRIM(X, Y) Returns a string formed by removing spaces from the right side of X. If a Y argument is

specified, the function removes any of the characters in Y from the right side of X.

TYPEOF(X) Returns the type of the expression X. The possible return values are 'null', 'integer', 'real', 'text',

and 'blob'. For more information on data types see Data type support.

UPPER(X) Returns a copy of input string X converted to all upper-case letters.

ZEROBLOB(N) Returns a BLOB containing N bytes of 0x00.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/data/SQLConnection.html#lastInsertRowID

1121ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

Time formats

A time string can be in any of the following formats:

The character T in these formats is a literal character "T" separating the date and the time. Formats that only include

a time assume the date 2001-01-01.

DATE(T, ...) The DATE() function returns a string containing the date in this format: YYYY-MM-DD. The first

parameter (T) specifies a time string of the format found under Time formats. Any number of

modifiers can be specified after the time string. The modifiers can be found under Modifiers.

TIME(T, ...) The TIME() function returns a string containing the time as HH:MM:SS. The first parameter (T)

specifies a time string of the format found under Time formats. Any number of modifiers can

be specified after the time string. The modifiers can be found under Modifiers.

DATETIME(T, ...) The DATETIME() function returns a string containing the date and time in YYYY-MM-DD

HH:MM:SS format. The first parameter (T) specifies a time string of the format found under

Time formats. Any number of modifiers can be specified after the time string. The modifiers

can be found under Modifiers.

JULIANDAY(T, ...) The JULIANDAY() function returns a number indicating the number of days since noon in

Greenwich on November 24, 4714 B.C. and the provided date. The first parameter (T) specifies

a time string of the format found under Time formats. Any number of modifiers can be

specified after the time string. The modifiers can be found under Modifiers.

STRFTIME(F, T, ...) The STRFTIME() routine returns the date formatted according to the format string specified as

the first argument F. The format string supports the following substitutions:

%d - day of month

%f - fractional seconds SS.SSS

%H - hour 00-24

%j - day of year 001-366

%J - Julian day number

%m -month 01-12

%M - minute 00-59

%s - seconds since 1970-01-01

%S - seconds 00-59

%w - day of week 0-6 (sunday = 0)

%W - week of year 00-53

%Y - year 0000-9999

%% - %

The second parameter (T) specifies a time string of the format found under Time formats. Any

number of modifiers can be specified after the time string. The modifiers can be found under

Modifiers.

YYYY-MM-DD 2007-06-15

YYYY-MM-DD HH:MM 2007-06-15 07:30

YYYY-MM-DD HH:MM:SS 2007-06-15 07:30:59

YYYY-MM-DD HH:MM:SS.SSS 2007-06-15 07:30:59.152

YYYY-MM-DDTHH:MM 2007-06-15T07:30

YYYY-MM-DDTHH:MM:SS 2007-06-15T07:30:59

YYYY-MM-DDTHH:MM:SS.SSS 2007-06-15T07:30:59.152

HH:MM 07:30 (date is 2000-01-01)

HH:MM:SS 07:30:59 (date is 2000-01-01)

HH:MM:SS.SSS 07:30:59:152 (date is 2000-01-01)

now Current date and time in Universal Coordinated Time.

DDDD.DDDD Julian day number as a floating-point number.

1122ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

Modifiers

The time string can be followed by zero or more modifiers that alter the date or alter the interpretation of the date. The

available modifiers are as follows:

Operators

SQL supports a large selection of operators, including common operators that exist in most programming languages,

as well as several operators that are unique to SQL.

Common operators

The following binary operators are allowed in a SQL block and are listed in order from highest to lowest precedence:

* / %
+ -
<< >> & |
< >= > >=
= == != <> IN
AND
OR

Supported unary prefix operators are:

 ! ~ NOT

The COLLATE operator can be thought of as a unary postfix operator. The COLLATE operator has the highest

precedence. It always binds more tightly than any prefix unary operator or any binary operator.

Note that there are two variations of the equals and not equals operators. Equals can be either = or ==. The not-equals

operator can be either != or <>.

The || operator is the string concatenation operator—it joins together the two strings of its operands.

The operator % outputs the remainder of its left operand modulo its right operand.

The result of any binary operator is a numeric value, except for the || concatenation operator which gives a string result.

SQL operators

LIKE

The LIKE operator does a pattern matching comparison.

expr ::= (column-name | expr) LIKE pattern
pattern ::= '[string | % | _]'

NNN days Number of days to add to the time.

NNN hours Number of hours to add to the time.

NNN minutes Number of minutes to add to the time.

NNN.NNNN seconds Number of seconds and milliseconds to add to the time.

NNN months Number of months to add to the time.

NNN years Number of years to add to the time.

start of month Shift time backwards to the start of the month.

start of year Shift time backwards to the start of the year.

start of day Shift time backwards to the start of the day.

weekday N Forwards the time to the specified weekday. (0 = Sunday, 1 =

Monday, and so forth).

localtime Converts the date to local time.

utc Converts the date to Universal Coordinated Time.

1123ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

The operand to the right of the LIKE operator contains the pattern, and the left-hand operand contains the string to

match against the pattern. A percent symbol (%) in the pattern is a wildcard character—it matches any sequence of

zero or more characters in the string. An underscore (_) in the pattern matches any single character in the string. Any

other character matches itself or its lower/upper case equivalent, that is, matches are performed in a case-insensitive

manner. (Note: the database engine only understands upper/lower case for 7-bit Latin characters. Consequently, the

LIKE operator is case sensitive for 8-bit iso8859 characters or UTF-8 characters. For example, the expression 'a' LIKE

'A' is TRUE but 'æ' LIKE 'Æ' is FALSE). Case sensitivity for Latin characters can be changed using the

SQLConnection.caseSensitiveLike property.

If the optional ESCAPE clause is present, then the expression following the ESCAPE keyword must evaluate to a string

consisting of a single character. This character may be used in the LIKE pattern to match literal percent or underscore

characters. The escape character followed by a percent symbol, underscore or itself matches a literal percent symbol,

underscore or escape character in the string, respectively.

GLOB

The GLOB operator is similar to LIKE but uses the Unix file globbing syntax for its wildcards. Unlike LIKE, GLOB is

case sensitive.

IN

The IN operator calculates whether its left operand is equal to one of the values in its right operand (a set of values in

parentheses).

in-expr ::= expr [NOT] IN (value-list) |
 expr [NOT] IN (select-statement) |
 expr [NOT] IN [database-name.] table-name
value-list ::= literal-value [, literal-value]*

The right operand can be a set of comma-separated literal values, or it can be the result of a SELECT statement. See

SELECT statements in expressions for an explanation and limitations on using a SELECT statement as the right-hand

operand of the IN operator.

BETWEEN...AND

The BETWEEN...AND operator is equivalent to using two expressions with the >= and <= operators. For example, the

expression x BETWEEN y AND z is equivalent to x >= y AND x <= z.

NOT

The NOT operator is a negation operator. The GLOB, LIKE, and IN operators may be preceded by the NOT keyword

to invert the sense of the test (in other words, to check that a value does not match the indicated pattern).

Parameters

A parameter specifies a placeholder in the expression for a literal value that is filled in at runtime by assigning a value

to the SQLStatement.parameters associative array. Parameters can take three forms:

? A question mark indicates an indexed parameter. Parameters are assigned numerical (zero-

based) index values according to their order in the statement.

:AAAA A colon followed by an identifier name holds a spot for a named parameter with the name

AAAA. Named parameters are also numbered according to their order in the SQL statement.

To avoid confusion, it is best to avoid mixing named and numbered parameters.

@AAAA An "at sign" is equivalent to a colon.

1124ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

Unsupported SQL features

The following is a list of the standard SQL elements that are not supported in Adobe AIR:

FOREIGN KEY constraints FOREIGN KEY constraints are parsed but are not enforced.

Triggers FOR EACH STATEMENT triggers are not supported (all triggers must be FOR EACH ROW). INSTEAD

OF triggers are not supported on tables (INSTEAD OF triggers are only allowed on views). Recursive triggers—

triggers that trigger themselves—are not supported.

ALTER TABLE Only the RENAME TABLE and ADD COLUMN variants of the ALTER TABLE command are

supported. Other kinds of ALTER TABLE operations such as DROP COLUMN, ALTER COLUMN, ADD

CONSTRAINT, and so forth are ignored.

Nested transactions Only a single active transaction is allowed.

RIGHT and FULL OUTER JOIN RIGHT OUTER JOIN or FULL OUTER JOIN are not supported.

Updateable VIEW A view is read only. You may not execute a DELETE, INSERT, or UPDATE statement on a view.

An INSTEAD OF trigger that fires on an attempt to DELETE, INSERT, or UPDATE a view is supported and can be

used to update supporting tables in the body of the trigger.

GRANT and REVOKE A database is an ordinary disk file; the only access permissions that can be applied are the normal

file access permissions of the underlying operating system. The GRANT and REVOKE commands commonly found

on client/server RDBMSes are not implemented.

The following SQL elements and SQLite features are supported in some SQLite implementations, but are not

supported in Adobe AIR. Most of this functionality is available through methods of the SQLConnection class:

Transaction-related SQL elements (BEGIN, END, COMMIT, ROLLBACK) This functionality is available through the

transaction-related methods of the SQLConnection class: SQLConnection.begin(), SQLConnection.commit(), and

SQLConnection.rollback().

ANALYZE This functionality is available through the SQLConnection.analyze() method.

ATTACH This functionality is available through the SQLConnection.attach() method.

COPY This statement is not supported.

CREATE VIRTUAL TABLE This statement is not supported.

DETACH This functionality is available through the SQLConnection.detach() method.

PRAGMA This statement is not supported.

VACUUM This functionality is available through the SQLConnection.compact() method.

System table access is not available The system tables including sqlite_master and other tables with the "sqlite_"

prefix are not available in SQL statements. The runtime includes a schema API that provides an object-oriented way

to access schema data. For more information see the SQLConnection.loadSchema() method.

Regular-expression functions (MATCH() and REGEX()) These functions are not available in SQL statements.

The following functionality differs between many SQLite implementations and Adobe AIR:

Indexed statement parameters In many implementations indexed statement parameters are one-based. However, in

Adobe AIR indexed statement parameters are zero-based (that is, the first parameter is given the index 0, the second

parameter is given the index 1, and so forth.

INTEGER PRIMARY KEY column definitions In many implementations, only columns that are defined exactly as

INTEGER PRIMARY KEY are used as the actual primary key column for a table. In those implementations, using

another data type that is usually a synonym for INTEGER (such as int) does not cause the column to be used as the

1125ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

internal primary key. However, in Adobe AIR, the int data type (and other INTEGER synonyms) are considered

exactly equivalent to INTEGER. Consequently, a column defined as int PRIMARY KEY is used as the internal primary

key for a table. For more information, see the sections CREATE TABLE and Column affinity.

Additional SQL features

The following column affinity types are not supported by default in SQLite, but are supported in Adobe AIR (Note

that, like all keywords in SQL, these data type names are not case-sensitive):

Boolean corresponding to the Boolean class.

Date corresponding to the Date class.

int corresponding to the int class (equivalent to the INTEGER column affinity).

Number corresponding to the Number class (equivalent to the REAL column affinity).

Object corresponding to the Object class or any subclass that can be serialized and deserialized using AMF3. (This

includes most classes including custom classes, but excludes some classes including display objects and objects that

include display objects as properties.)

String corresponding to the String class (equivalent to the TEXT column affinity).

XML corresponding to the ActionScript (E4X) XML class.

XMLList corresponding to the ActionScript (E4X) XMLList class.

The following literal values are not supported by default in SQLite, but are supported in Adobe AIR:

true used to represent the literal boolean value true, for working with BOOLEAN columns.

false used to represent the literal boolean value false, for working with BOOLEAN columns.

Data type support

Unlike most SQL databases, the Adobe AIR SQL database engine does not require or enforce that table columns

contain values of a certain type. Instead, the runtime uses two concepts, storage classes and column affinity, to control

data types. This section describes storage classes and column affinity, as well as how data type differences are resolved

under various conditions:

• “Storage classes” on page 1126

• “Column affinity” on page 1126

• “Data types and comparison operators” on page 1129

• “Data types and mathematical operators” on page 1129

• “Data types and sorting” on page 1129

• “Data types and grouping” on page 1129

• “Data types and compound SELECT statements” on page 1130

1126ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

Storage classes

Storage classes represent the actual data types that are used to store values in a database. The following storage classes

are used by the database:

NULL The value is a NULL value.

INTEGER The value is a signed integer.

REAL The value is a floating-point number value.

TEXT The value is a text string (limited to 256 MB).

BLOB The value is a Binary Large Object (BLOB); in other words, raw binary data (limited to 256 MB).

All values supplied to the database as literals embedded in a SQL statement or values bound using parameters to a

prepared SQL statement are assigned a storage class before the SQL statement is executed.

Literals that are part of a SQL statement are assigned storage class TEXT if they are enclosed by single or double quotes,

INTEGER if the literal is specified as an unquoted number with no decimal point or exponent, REAL if the literal is an

unquoted number with a decimal point or exponent and NULL if the value is a NULL. Literals with storage class BLOB

are specified using the X'ABCD' notation. For more information, see Literal values in expressions.

Values supplied as parameters using the SQLStatement.parameters associative array are assigned the storage class that

most closely matches the native data type bound. For example, int values are bound as INTEGER storage class,

Number values are given the REAL storage class, String values are given the TEXT storage class, and ByteArray objects

are given the BLOB storage class.

Column affinity

The affinity of a column is the recommended type for data stored in that column. When a value is stored in a column

(through an INSERT or UPDATE statement), the runtime attempts to convert that value from its data type to the

specified affinity. For example, if a Date value (an ActionScript or JavaScript Date instance) is inserted into a column

whose affinity is TEXT, the Date value is converted to the String representation (equivalent to calling the object's

toString() method) before being stored in the database. If the value cannot be converted to the specified affinity an

error occurs and the operation is not performed. When a value is retrieved from the database using a SELECT

statement, it is returned as an instance of the class corresponding to the affinity, regardless of whether it was converted

from a different data type when it was stored.

If a column accepts NULL values, the ActionScript or JavaScript value null can be used as a parameter value to store

NULL in the column. When a NULL storage class value is retrieved in a SELECT statement, it is always returned as

the ActionScript or JavaScript value null, regardless of the column's affinity. If a column accepts NULL values, always

check values retrieved from that column to determine if they're null before attempting to cast the values to a non-

nullable type (such as Number or Boolean).

Each column in the database is assigned one of the following type affinities:

• TEXT (or String)

• NUMERIC

• INTEGER (or int)

• REAL (or Number)

• Boolean

• Date

• XML

1127ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

• XMLLIST

• Object

• NONE

TEXT (or String)

A column with TEXT or String affinity stores all data using storage classes NULL, TEXT, or BLOB. If numerical data

is inserted into a column with TEXT affinity it is converted to text form before being stored.

NUMERIC

A column with NUMERIC affinity contains values using storage classes NULL, REAL, or INTEGER. When text data

is inserted into a NUMERIC column, an attempt is made to convert it to an integer or real number before it is stored.

If the conversion is successful, then the value is stored using the INTEGER or REAL storage class (for example, a value

of '10.05' is converted to REAL storage class before being stored). If the conversion cannot be performed an error

occurs. No attempt is made to convert a NULL value. A value that's retrieved from a NUMERIC column is returned

as an instance of the most specific numeric type into which the value fits. In other words, if the value is a positive

integer or 0, it's returned as a uint instance. If it’s a negative integer, it’s returned as an int instance. Finally, if it has a

floating-point component (it's not an integer) it's returned as a Number instance.

INTEGER (or int)

A column that uses INTEGER affinity behaves in the same way as a column with NUMERIC affinity, with one

exception. If the value to be stored is a real value (such as a Number instance) with no floating point component or if

the value is a text value that can be converted to a real value with no floating point component, it is converted to an

integer and stored using the INTEGER storage class. If an attempt is made to store a real value with a floating point

component an error occurs.

REAL (or Number)

A column with REAL or NUMBER affinity behaves like a column with NUMERIC affinity except that it forces integer

values into floating point representation. A value in a REAL column is always returned from the database as a Number

instance.

Boolean

A column with Boolean affinity stores true or false values. A Boolean column accepts a value that is an ActionScript

or JavaScript Boolean instance. If code attempts to store a String value, a String with a length greater than zero is

considered true, and an empty String is false. If code attempts to store numeric data, any non-zero value is stored as

true and 0 is stored as false. When a Boolean value is retrieved using a SELECT statement, it is returned as a Boolean

instance. Non-NULL values are stored using the INTEGER storage class (0 for false and 1 for true) and are converted

to Boolean objects when data is retrieved.

Date

A column with Date affinity stores date and time values. A Date column is designed to accept values that are

ActionScript or JavaScript Date instances. If an attempt is made to store a String value in a Date column, the runtime

attempts to convert it to a Julian date. If the conversion fails an error occurs. If code attempts to store a Number, int, or

uint value, no attempt is made to validate the data and it is assumed to be a valid Julian date value. A Date value that's

retrieved using a SELECT statement is automatically converted to a Date instance. Date values are stored as Julian date

values using the REAL storage class, so sorting and comparing operations work as you would expect them to.

XML or XMLList

1128ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

A column that uses XML or XMLList affinity stores XML structures. When code attempts to store data in an XML

column using a SQLStatement parameter the runtime attempts to convert and validate the value using the

ActionScript XML() or XMLList() function. If the value cannot be converted to valid XML an error occurs. If the

attempt to store the data uses a literal SQL text value (for example INSERT INTO (col1) VALUES ('Invalid XML (no

closing tag)'), the value is not parsed or validated — it is assumed to be well-formed. If an invalid value is stored, when

it is retrieved it is returned as an empty XML object. XML and XMLList Data is stored using the TEXT storage class or

the NULL storage class.

Object

A column with Object affinity stores ActionScript or JavaScript complex objects, including Object class instances as

well as instances of Object subclasses such as Array instances and even custom class instances. Object column data is

serialized in AMF3 format and stored using the BLOB storage class. When a value is retrieved, it is deserialized from

AMF3 and returned as an instance of the class as it was stored. Note that some ActionScript classes, notably display

objects, cannot be deserialized as instances of their original data type. Before storing a custom class instance, you must

register an alias for the class using the flash.net.registerClassAlias() method (or in Flex by adding [RemoteObject]

metadata to the class declaration). Also, before retrieving that data you must register the same alias for the class. Any

data that can't be deserialized properly, either because the class inherently can't be deserialized or because of a missing

or mismatched class alias, is returned as an anonymous object (an Object class instance) with properties and values

corresponding to the original instance as stored.

NONE

A column with affinity NONE does not prefer one storage class over another. It makes no attempt to convert data

before it is inserted.

Determining affinity

The type affinity of a column is determined by the declared type of the column in the CREATE TABLE statement.

When determining the type the following rules (not case-sensitive) are applied:

• If the data type of the column contains any of the strings "CHAR", "CLOB", "STRI", or "TEXT" then that column

has TEXT/String affinity. Notice that the type VARCHAR contains the string "CHAR" and is thus assigned TEXT

affinity.

• If the data type for the column contains the string "BLOB" or if no data type is specified then the column has affinity

NONE.

• If the data type for column contains the string "XMLL" then the column has XMLList affinity.

• If the data type is the string "XML" then the column has XML affinity.

• If the data type contains the string "OBJE" then the column has Object affinity.

• If the data type contains the string "BOOL" then the column has Boolean affinity.

• If the data type contains the string "DATE" then the column has Date affinity.

• If the data type contains the string "INT" (including "UINT") then it is assigned INTEGER/int affinity.

• If the data type for a column contains any of the strings "REAL", "NUMB", "FLOA", or "DOUB" then the column

has REAL/Number affinity.

• Otherwise, the affinity is NUMERIC.

• If a table is created using a CREATE TABLE t AS SELECT... statement then all columns have no data type specified

and they are given the affinity NONE.

1129ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

Data types and comparison operators

The following binary comparison operators =, <, <=, >= and != are supported, along with an operation to test for set

membership, IN, and the ternary comparison operator BETWEEN. For details about these operators see Operators.

The results of a comparison depend on the storage classes of the two values being compared. When comparing two

values the following rules are applied:

• A value with storage class NULL is considered less than any other value (including another value with storage class

NULL).

• An INTEGER or REAL value is less than any TEXT or BLOB value. When an INTEGER or REAL is compared to

another INTEGER or REAL, a numerical comparison is performed.

• A TEXT value is less than a BLOB value. When two TEXT values are compared, a binary comparison is performed.

• When two BLOB values are compared, the result is always determined using a binary comparison.

The ternary operator BETWEEN is always recast as the equivalent binary expression. For example, a BETWEEN b

AND c is recast to a >= b AND a <= c, even if this means that different affinities are applied to a in each of the

comparisons required to evaluate the expression.

Expressions of the type a IN (SELECT b) are handled by the three rules enumerated previously for binary

comparisons, that is, in a similar manner to a = b. For example, if b is a column value and a is an expression, then the

affinity of b is applied to a before any comparisons take place. The expression a IN (x, y, z) is recast as a = +x OR a =

+y OR a = +z. The values to the right of the IN operator (the x, y, and z values in this example) are considered to be

expressions, even if they happen to be column values. If the value of the left of the IN operator is a column, then the

affinity of that column is used. If the value is an expression then no conversions occur.

How comparisons are performed can also be affected by the use of a COLLATE clause. For more information, see

COLLATE.

Data types and mathematical operators

For each of the supported mathematical operators, *, /, %, +, and -, numeric affinity is applied to each operand before

evaluating the expression. If any operand cannot be converted to the NUMERIC storage class successfully the

expression evaluates to NULL.

When the concatenation operator || is used each operand is converted to the TEXT storage class before the expression

is evaluated. If any operand cannot be converted to the TEXT storage class then the result of the expression is NULL.

This inability to convert the value can happen in two situations, if the value of the operand is NULL, or if it's a BLOB

containing a non-TEXT storage class.

Data types and sorting

When values are sorted by an ORDER BY clause, values with storage class NULL come first. These are followed by

INTEGER and REAL values interspersed in numeric order, followed by TEXT values in binary order or based on the

specified collation (BINARY or NOCASE). Finally come BLOB values in binary order. No storage class conversions

occur before the sort.

Data types and grouping

When grouping values with the GROUP BY clause, values with different storage classes are considered distinct. An

exception is INTEGER and REAL values which are considered equal if they are numerically equivalent. No affinities

are applied to any values as the result of a GROUP BY clause.

1130ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL support in local databases

Last updated 10/9/2017

Data types and compound SELECT statements

The compound SELECT operators UNION, INTERSECT, and EXCEPT perform implicit comparisons between

values. Before these comparisons are performed an affinity may be applied to each value. The same affinity, if any, is

applied to all values that may be returned in a single column of the compound SELECT result set. The affinity that is

applied is the affinity of the column returned by the first component SELECT statement that has a column value (and

not some other kind of expression) in that position. If for a given compound SELECT column none of the component

SELECT statements return a column value, no affinity is applied to the values from that column before they are

compared.

1131

Last updated 10/9/2017

Chapter 67: SQL error detail messages, ids,
and arguments

The SQLError class represents various errors that can occur while working with an Adobe AIR local SQL database. For

any given exception, the SQLError instance has a details property containing an English error message. In addition,

each error message has an associated unique identifier that is available in the SQLError object’s detailID property.

Using the detailID property, an application can identify the specific details error message. The application can

provide alternate text for the end user in the language of his or her locale. The argument values in the

detailArguments array can be substituted in the appropriate position in the error message string. This is useful for

applications that display the details property error message for an error directly to end users in a specific locale.

The following table contains a list of the detailID values and the associated English error message text. Placeholder

text in the messages indicates where detailArguments values are substituted in by the runtime. This list can be used

as a source for localizing the error messages that can occur in SQL database operations.

SQLError detailID English error detail message and parameters

1001 Connection closed.

1102 Database must be open to perform this operation.

1003 %s [,|and %s] parameter name(s) found in parameters property but not in the SQL

specified.

1004 Mismatch in parameter count. Found %d in SQL specified and %d value(s) set in

parameters property. Expecting values for %s [,|and %s].

1005 Auto compact could not be turned on.

1006 The pageSize value could not be set.

1007 The schema object with name '%s' of type '%s' in database '%s' was not found.

1008 The schema object with name '%s' in database '%s' was not found.

1009 No schema objects with type '%s' in database '%s' were found.

1010 No schema objects in database '%s' were found.

2001 Parser stack overflow.

2002 Too many arguments on function '%s'

2003 near '%s': syntax error

2004 there is already another table or index with this name: '%s'

2005 PRAGMA is not allowed in SQL.

2006 Not a writable directory.

2007 Unknown or unsupported join type: '%s %s %s'

2008 RIGHT and FULL OUTER JOINs are not currently supported.

2009 A NATURAL join may not have an ON or USING clause.

2010 Cannot have both ON and USING clauses in the same join.

2011 Cannot join using column '%s' - column not present in both tables.

2012 Only a single result allowed for a SELECT that is part of an expression.

2013 No such table: '[%s.]%s'

2014 No tables specified.

2015 Too many columns in result set|too many columns on '%s'.

2016 %s ORDER|GROUP BY term out of range - should be between 1 and %d

2017 Too many terms in ORDER BY clause.

2018 %s ORDER BY term out of range - should be between 1 and %d.

2019 %r ORDER BY term does not match any column in the result set.

2020 ORDER BY clause should come after '%s' not before.

2021 LIMIT clause should come after '%s' not before.

2022 SELECTs to the left and right of '%s' do not have the same number of result columns.

2023 A GROUP BY clause is required before HAVING.

2024 Aggregate functions are not allowed in the GROUP BY clause.

2025 DISTINCT in aggregate must be followed by an expression.

1132ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL error detail messages, ids, and arguments

Last updated 10/9/2017

2026 Too many terms in compound SELECT.

2027 Too many terms in ORDER|GROUP BY clause

2028 Temporary trigger may not have qualified name

2030 Trigger '%s' already exists

2032 Cannot create BEFORE|AFTER trigger on view: '%s'.

2033 Cannot create INSTEAD OF trigger on table: '%s'.

2034 No such trigger: '%s'

2035 Recursive triggers not supported ('%s').

2036 No such column: %s[.%s[.%s]]

2037 VACUUM is not allowed from SQL.

2043 Table '%s': indexing function returned an invalid plan.

2044 At most %d tables in a join.

2046 Cannot add a PRIMARY KEY column.

2047 Cannot add a UNIQUE column.

2048 Cannot add a NOT NULL column with default value NULL.

2049 Cannot add a column with non-constant default.

2050 Cannot add a column to a view.

2051 ANALYZE is not allowed in SQL.

2052 Invalid name: '%s'

2053 ATTACH is not allowed from SQL.

2054 %s '%s' cannot reference objects in database '%s'

2055 Access to '[%s.]%s.%s' is prohibited.

2056 Not authorized.

2058 No such view: '[%s.]%s'

2060 Temporary table name must be unqualified.

2061 Table '%s' already exists.

2062 There is already an index named: '%s'

2064 Duplicate column name: '%s'

2065 Table '%s' has more than one primary key.

2066 AUTOINCREMENT is only allowed on an INTEGER PRIMARY KEY

2067 No such collation sequence: '%s'

2068 Parameters are not allowed in views.

2069 View '%s' is circularly defined.

2070 Table '%s' may not be dropped.

2071 Use DROP VIEW to delete view '%s'

2072 Use DROP TABLE to delete table '%s'

2073 Foreign key on '%s' should reference only one column of table '%s'

2074 Number of columns in foreign key does not match the number of columns in the

referenced table.

2075 Unknown column '%s' in foreign key definition.

2076 Table '%s' may not be indexed.

2077 Views may not be indexed.

2080 Conflicting ON CONFLICT clauses specified.

2081 No such index: '%s'

2082 Index associated with UNIQUE or PRIMARY KEY constraint cannot be dropped.

2083 BEGIN is not allowed in SQL.

2084 COMMIT is not allowed in SQL.

2085 ROLLBACK is not allowed in SQL.

2086 Unable to open a temporary database file for storing temporary tables.

2087 Unable to identify the object to be reindexed.

2088 Table '%s' may not be modified.

2089 Cannot modify '%s' because it is a view.

2090 Variable number must be between ?0 and ?%d<

2092 Misuse of aliased aggregate '%s'

2093 Ambiguous column name: '[%s.[%s.]]%s'

2094 No such function: '%s'

2095 Wrong number of arguments to function '%s'

2096 Subqueries prohibited in CHECK constraints.

2097 Parameters prohibited in CHECK constraints.

1133ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

SQL error detail messages, ids, and arguments

Last updated 10/9/2017

2098 Expression tree is too large (maximum depth %d)

2099 RAISE() may only be used within a trigger-program

2100 Table '%s' has %d columns but %d values were supplied

2101 Database schema is locked: '%s'

2102 Statement too long.

2103 Unable to delete/modify collation sequence due to active statements

2104 Too many attached databases - max %d

2105 Cannot ATTACH database within transaction.

2106 Database '%s' is already in use.

2108 Attached databases must use the same text encoding as main database.

2200 Out of memory.

2201 Unable to open database.

2202 Cannot DETACH database within transaction.

2203 Cannot detach database: '%s'

2204 Database '%s' is locked.

2205 Unable to acquire a read lock on the database.

2206 [column|columns] '%s'[,'%s'] are not [unique|is] not unique.

2207 Malformed database schema.

2208 Unsupported file format.

2209 Unrecognized token: '%s'

2300 Could not convert text value to numeric value.

2301 Could not convert string value to date.

2302 Could not convert floating point value to integer without loss of data.

2303 Cannot rollback transaction - SQL statements in progress.

2304 Cannot commit transaction - SQL statements in progress.

2305 Database table is locked: '%s'

2306 Read-only table.

2307 String or blob too big.

2309 Cannot open indexed column for writing.

2400 Cannot open value of type %s.

2401 No such rowid: %s<

2402 Object name reserved for internal use: '%s'

2403 View '%s' may not be altered.

2404 Default value of column '%s' is not constant.

2405 Not authorized to use function '%s'

2406 Misuse of aggregate function '%s'

2407 Misuse of aggregate: '%s'

2408 No such database: '%s'

2409 Table '%s' has no column named '%s'

2501 No such module: '%s'

2508 No such savepoint: '%s'

2510 Cannot rollback - no transaction is active.

2511 Cannot commit - no transaction is active.

1134

Last updated 10/9/2017

Chapter 68: Adobe Graphics Assembly
Language (AGAL)

The Adobe Graphics Assembly Language (AGAL) is a shader language for defining vertex and fragment rendering

programs. The AGAL programs must be uploaded to the rendering context in the binary bytecode format described

in this document.

AGAL bytecode format

AGAL bytecode must use Endian.LITTLE_ENDIAN format.

Bytecode Header

AGAL bytecode must begin with a 7-byte header:

A0 01000000 A1 00 -- for a vertex program
A0 01000000 A1 01 -- for a fragment program

Tokens

The header is immediately followed by any number of tokens. Every token is 192 bits (24 bytes) in size and always has

the format:

[opcode][destination][source1][source2 or sampler]

Not every opcode uses all of these fields. Unused fields must be set to 0.

Operation codes

The [opcode] field is 32 bits in size and can take one of these values:

Offset (bytes) Size (bytes) Name Description

0 1 magic must be 0xa0

1 4 version must be 1

5 1 shader type ID must be 0xa1

6 1 shader type 0 for a vertex program; 1 for a fragment program

Name Opcode Operation Description

mov 0x00 move move data from source1 to destination, component-wise

add 0x01 add destination = source1 + source2, component-wise

sub 0x02 subtract destination = source1 - source2, component-wise

mul 0x03 multiply destination = source1 * source2, component-wise

div 0x04 divide destination = source1 / source2, component-wise

rcp 0x05 reciprocal destination = 1/source1, component-wise

1135ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Adobe Graphics Assembly Language (AGAL)

Last updated 10/9/2017

min 0x06 minimum destination = minimum(source1,source2), component-wise

max 0x07 maximum destination = maximum(source1,source2), component-wise

frc 0x08 fractional destination = source1 - (float)floor(source1), component-wise

sqt 0x09 square root destination = sqrt(source1), component-wise

rsq 0x0a reciprocal root destination = 1/sqrt(source1), component-wise

pow 0x0b power destination = pow(source1,source2), component-wise

log 0x0c logarithm destination = log_2(source1), component-wise

exp 0x0d exponential destination = 2^source1, component-wise

nrm 0x0e normalize destination = normalize(source1), component-wise (produces only a

3 component result, destination must be masked to .xyz or less)

sin 0x0f sine destination = sin(source1), component-wise

cos 0x10 cosine destination = cos(source1), component-wise

crs 0x11 cross product destination.x = source1.y * source2.z - source1.z * source2.y

destination.y = source1.z * source2.x - source1.x * source2.z

destination.z = source1.x * source2.y - source1.y * source2.x

(produces only a 3 component result, destination must be masked to

.xyz or less)

dp3 0x12 dot product destination = source1.x*source2.x + source1.y*source2.y +

source1.z*source2.z

dp4 0x13 dot product destination = source1.x*source2.x + source1.y*source2.y +

source1.z*source2.z + source1.w*source2.w

abs 0x14 absolute destination = abs(source1), component-wise

neg 0x15 negate destination = -source1, component-wise

sat 0x16 saturate destination = maximum(minimum(source1,1),0), component-wise

m33 0x17 multiply matrix 3x3 destination.x = (source1.x * source2[0].x) + (source1.y * source2[0].y)

+ (source1.z * source2[0].z)

destination.y = (source1.x * source2[1].x) + (source1.y * source2[1].y)

+ (source1.z * source2[1].z)

destination.z = (source1.x * source2[2].x) + (source1.y * source2[2].y)

+ (source1.z * source2[2].z)

(produces only a 3 component result, destination must be masked to

.xyz or less)

m44 0x18 multiply matrix 4x4 destination.x = (source1.x * source2[0].x) + (source1.y * source2[0].y)

+ (source1.z * source2[0].z) + (source1.w * source2[0].w)

destination.y = (source1.x * source2[1].x) + (source1.y * source2[1].y)

+ (source1.z * source2[1].z) + (source1.w * source2[1].w)

destination.z = (source1.x * source2[2].x) + (source1.y * source2[2].y)

+ (source1.z * source2[2].z) + (source1.w * source2[2].w)

destination.w = (source1.x * source2[3].x) + (source1.y * source2[3].y)

+ (source1.z * source2[3].z) + (source1.w * source2[3].w)

Name Opcode Operation Description

1136ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Adobe Graphics Assembly Language (AGAL)

Last updated 10/9/2017

In AGAL2, the following opcodes have been introduced:

Destination field format

The [destination] field is 32 bits in size:

31.............................0
----TTTT----MMMMNNNNNNNNNNNNNNNN

T = Register type (4 bits)

M = Write mask (4 bits)

N = Register number (16 bits)

- = undefined, must be 0

m34 0x19 multiply matrix 3x4 destination.x = (source1.x * source2[0].x) + (source1.y * source2[0].y)

+ (source1.z * source2[0].z) + (source1.w * source2[0].w)

destination.y = (source1.x * source2[1].x) + (source1.y * source2[1].y)

+ (source1.z * source2[1].z) + (source1.w * source2[1].w)

destination.z = (source1.x * source2[2].x) + (source1.y * source2[2].y)

+ (source1.z * source2[2].z) + (source1.w * source2[2].w)

(produces only a 3 component result, destination must be masked to

.xyz or less)

kil 0x27 kill/discard

(fragment shader

only)

If single scalar source component is less than zero, fragment is

discarded and not drawn to the frame buffer. (Destination register

must be set to all 0)

tex 0x28 texture sample

(fragment shader

only)

destination equals load from texture source2 at coordinates source1.

In this case, source2 must be in sampler format.

sge 0x29 set-if-greater-equal destination = source1 >= source2 ? 1 : 0, component-wise

slt 0x2a set-if-less-than destination = source1 < source2 ? 1 : 0, component-wise

seq 0x2c set-if-equal destination = source1 == source2 ? 1 : 0, component-wise

sne 0x2d set-if-not-equal destination = source1 != source2 ? 1 : 0, component-wise

Name Opcode Operation Description

ddx 0x1a partial derivative in

X

Load partial derivative in X of source1 into destination.

ddy 0x1b partial derivative in

Y

Load partial derivative in Y of source1 into destination.

ife 0x1c if equal to Jump if source1 is equal to source2.

ine 0x1d if not equal to Jump if source1 is not equal to source2.

ifg 0x1e if greater than Jump if source1 is greater than or equal to source2.

ifl 0x1f if less than Jump if source1 is less than source2.

els 0x20 else Else block

eif 0x21 Endif Close if or else block.

Name Opcode Operation Description

1137ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Adobe Graphics Assembly Language (AGAL)

Last updated 10/9/2017

Source field format

The [source] field is 64 bits in size:

63...0
D-------------QQ----IIII----TTTTSSSSSSSSOOOOOOOONNNNNNNNNNNNNNNN

D = Direct=0/Indirect=1 for direct Q and I are ignored, 1bit

Q = Index register component select (2 bits)

I = Index register type (4 bits)

T = Register type (4 bits)

S = Swizzle (8 bits, 2 bits per component)

O = Indirect offset (8 bits)

N = Register number (16 bits)

- = undefined, must be 0

Sampler field format

The second source field for the tex opcode must be in [sampler] format, which is 64 bits in size:

63...0
FFFFMMMMWWWWSSSSDDDD--------TTTT--------BBBBBBBBNNNNNNNNNNNNNNNN

N = Sampler register number (16 bits)

B = Texture level-of-detail (LOD) bias, signed integer, scale by 8. The floating point value used is b/8.0 (8 bits)

T = Register type, must be 5, Sampler (4 bits)

F = Filter (0=nearest,1=linear) (4 bits)

M = Mipmap (0=disable,1=nearest, 2=linear)

W = Wrapping (0=clamp,1=repeat)

S = Special flag bits (must be 0)

D = Dimension (0=2D, 1=Cube)

Program Registers

The number of registers used depend upon the Context3D profile used. The number of registers along with their usage

are defined in the following table:

1138ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Adobe Graphics Assembly Language (AGAL)

Last updated 10/9/2017

Name

AGAL2

AGAL3

Usage

Value AGAL

Number

per

fragment

program

Number

per vertex

program

Number

per

fragment

program

Number

per vertex

program

Number

per

fragment

program

Number

per vertex

program

Context

3D Profiles

Support

Standard

Standard

Extended

Below Standard

SWF

version

25

28 and

above

Below 25

Attribute

NA

8

NA

16

Vertex

shader

input; read

from a

vertex

buffer

specified

using

Context3D

.setVertex

BufferAt().

0 NA 8

1139ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Adobe Graphics Assembly Language (AGAL)

Last updated 10/9/2017

Constant

64

250

200

250

Shader

input; set

using the

Context3D

.setProgra

mConstan

ts() family

of

functions.

1 28 128

Temporary

26

26

26

26

Temporary

register for

computati

on; not

accessible

outside

program.

2 8 8

Output

1

1

1

1

Shader

output: in

a vertex

program,

the output

is the clip

space

position; in

a fragment

program,

the output

is a color.

3 1 1

Name

AGAL2

AGAL3

Usage

Value AGAL

1140ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Adobe Graphics Assembly Language (AGAL)

Last updated 10/9/2017

Varying

10

10

10

10

Transfer

interpolat

ed data

between

vertex and

fragment

shaders.

The

varying

registers

from the

vertex

program

are

applied as

input to

the

fragment

program.

Values are

interpolat

ed

according

to the

distance

from the

triangle

vertices.

4 8 8

Name

AGAL2

AGAL3

Usage

Value AGAL

1141ACTIONSCRIPT 3.0 DEVELOPER’S GUIDE

Adobe Graphics Assembly Language (AGAL)

Last updated 10/9/2017

The latest AGAL Mini Assembler can be found here.

Sampler

16

NA

16

NA

Fragment

shader

input; read

from a

texture

specified

using

Context3D

.setTextur

eAt().

5 8 NA

Fragment

register

1

NA

1

NA

It is write-

only and

used to re-

write z-

value (or

depth

value)

written in

vertex

shader.

6 NA NA

Tokens

1024

2048

200

Name

AGAL2

AGAL3

Usage

Value AGAL

https://github.com/adobe-flash/graphicscorelib/tree/master/src/com/adobe/utils/v3

	Legal notices
	Contents
	Chapter 1: Working with dates and times
	Managing calendar dates and times
	Creating Date objects
	Getting time unit values
	Performing date and time arithmetic
	Converting between time zones

	Controlling time intervals
	Loops versus timers
	The Timer class
	Timing functions in the flash.utils package

	Date and time example: Simple analog clock
	Defining the SimpleClock class
	Creating the clock face
	Starting the timer
	Displaying the current time

	Chapter 2: Working with strings
	Basics of strings
	Creating strings
	The length property
	Working with characters in strings
	Comparing strings
	Obtaining string representations of other objects
	Concatenating strings
	Finding substrings and patterns in strings
	Finding a substring by character position
	Finding the character position of a matching substring
	Creating an array of substrings segmented by a delimiter
	Finding patterns in strings and replacing substrings

	Converting strings between uppercase and lowercase
	Strings example: ASCII art
	Extracting tab-delimited values
	Using String methods to normalize image titles
	Generating the ASCII art text

	Chapter 3: Working with arrays
	Basics of arrays
	Indexed arrays
	Creating arrays
	Creating an Array instance
	Creating a Vector instance

	Inserting array elements
	Retrieving values and removing array elements
	Sorting an array
	Querying an array

	Associative arrays
	Associative arrays with string keys
	Associative arrays with object keys (Dictionaries)

	Multidimensional arrays
	Two indexed arrays
	Associative array with an indexed array

	Cloning arrays
	Extending the Array class
	Arrays example: PlayList
	PlayList class overview
	Adding a song to the list
	Sorting the list of songs
	Combining array elements into a character-delimited string

	Chapter 4: Handling errors
	Basics of error handling
	Types of errors
	Error handling in ActionScript 3.0
	ActionScript 3.0 error-handling elements
	Error-handling strategies

	Working with the debugger versions of Flash runtimes
	Handling synchronous errors in an application
	Using try..catch..finally statements
	The throw statement
	Displaying a simple error message
	Rethrowing errors

	Creating custom error classes
	Responding to error events and status
	Working with error events
	Working with status change events

	Comparing the Error classes
	Core Error classes
	flash.error package Error classes

	Handling errors example: CustomErrors application
	CustomErrors application overview
	Building a custom validator
	Defining the ApplicationError class
	Defining the FatalError class
	Defining the WarningError class

	Chapter 5: Using regular expressions
	Basics of regular expressions
	Regular expression syntax
	Creating an instance of a regular expression
	Characters, metacharacters, and metasequences
	Character classes
	Quantifiers
	Alternation
	Groups
	Flags and properties

	Methods for using regular expressions with strings
	The test() method
	The exec() method
	String methods that use RegExp parameters

	Regular expressions example: A Wiki parser
	Defining the WikiParser class
	Converting URLs to HTML <a> tags
	Converting U.S. dollar strings to euro strings

	Chapter 6: Working with XML
	Basics of XML
	The E4X approach to XML processing
	XML objects
	XML properties
	XML methods

	XMLList objects
	Initializing XML variables
	Assembling and transforming XML objects
	Traversing XML structures
	Accessing parent and child nodes
	Accessing attributes
	Filtering by attribute or element value
	Using the for..in and the for each..in statements

	Using XML namespaces
	XML type conversion
	Converting XML and XMLList objects to strings
	Converting strings to XML objects
	Converting attribute values, names, and text values from strings

	Reading external XML documents
	XML in ActionScript example: Loading RSS data from the Internet
	Reading and parsing XML data
	Assembling XMLList data
	Extracting the title of the RSS feed and sending a custom event

	Chapter 7: Using native JSON functionality
	Overview of the JSON API
	toJSON() methods

	Defining custom JSON behavior
	Defining toJSON() on the prototype of a built-in class
	Defining or overriding toJSON() at the class level
	Using the JSON.stringify() replacer parameter
	Using the JSON.parse() reviver parameter
	Parsing example

	Chapter 8: Handling events
	Basics of handling events
	How ActionScript 3.0 event handling differs from earlier versions
	Event handling in previous versions of ActionScript
	Event handling in ActionScript 3.0

	The event flow
	Event objects
	Understanding Event class properties
	Understanding Event class methods
	Subclasses of the Event class

	Event listeners
	Creating a listener function
	Managing event listeners
	Error events without listeners

	Event handling example: Alarm Clock
	Alarm Clock overview
	Triggering the alarm
	Notifying others of the alarm
	Providing a custom alarm event

	Chapter 9: Working with application domains
	Chapter 10: Display programming
	Basics of display programming
	Core display classes
	Advantages of the display list approach
	More efficient rendering and smaller file sizes
	Improved depth management
	Full traversal of the display list
	Off-list display objects
	Easier subclassing of display objects

	Working with display objects
	Properties and methods of the DisplayObject class
	Adding display objects to the display list
	Working with display object containers
	Traversing the display list
	Setting Stage properties
	Controlling the playback frame rate
	Controlling Stage scaling
	Working with full-screen mode

	Handling events for display objects
	Choosing a DisplayObject subclass

	Manipulating display objects
	Changing position
	Changing position relative to the Stage
	Moving display objects with the mouse

	Panning and scrolling display objects
	Manipulating size and scaling objects
	Controlling distortion when scaling
	Caching display objects
	When to enable caching
	Enabling bitmap caching

	Setting an opaque background color
	Applying blending modes
	Adjusting DisplayObject colors
	Setting color values with code
	Altering color and brightness effects with code

	Rotating objects
	Fading objects
	Masking display objects
	Defining a mask
	About masking device fonts
	Alpha channel masking

	Animating objects
	Stage orientation
	Getting the current Stage orientation and aspect ratio
	Automatic orientation
	Manual orientation

	Loading display content dynamically
	Loading display objects
	Monitoring loading progress
	Specifying loading context
	Loading SWF files in AIR for iOS
	Using the ProLoader and ProLoaderInfo classes

	Display object example: SpriteArranger
	Defining the SpriteArranger classes
	Adding display objects to the canvas
	Clicking and dragging display objects
	Rearranging display object layering

	Chapter 11: Working with geometry
	Basics of geometry
	Using Point objects
	Finding the distance between two points
	Translating coordinate spaces
	Moving a display object by a specified angle and distance
	Other uses of the Point class

	Using Rectangle objects
	Resizing and repositioning Rectangle objects
	Finding unions and intersections of Rectangle objects
	Other uses of Rectangle objects

	Using Matrix objects
	Geometry example: Applying a matrix transformation to a display object
	Defining the MatrixTransformer class
	Calling the MatrixTransformer.transform() method from the application

	Chapter 12: Using the drawing API
	Basics of the drawing API
	The Graphics class
	Drawing lines and curves
	Defining line and fill styles
	Drawing straight lines
	Drawing curves

	Drawing shapes using built-in methods
	Creating gradient lines and fills
	Defining a Matrix object for use with a gradient

	Using the Math class with drawing methods
	Animating with the drawing API
	Drawing API example: Algorithmic Visual Generator
	Setting the listeners
	Creating the satellites
	Updating the satellite position
	Responding to user interaction
	Customizing further

	Advanced use of the drawing API
	Drawing Paths
	Defining winding rules
	Winding rule names
	Using winding rules

	Using graphics data classes
	Drawing with vector graphics data
	Reading vector graphics data

	About using drawTriangles()

	Chapter 13: Working with bitmaps
	Basics of working with bitmaps
	The Bitmap and BitmapData classes
	Understanding the Bitmap class
	Pixel snapping and smoothing
	Understanding the BitmapData class

	Manipulating pixels
	Manipulating individual pixels
	Pixel-level collision detection

	Copying bitmap data
	Compressing bitmap data
	Making textures with noise functions
	Scrolling bitmaps
	Taking advantage of mipmapping
	Bitmap example: Animated spinning moon
	Loading an external image as bitmap data
	Creating animation by copying pixels
	Creating the spherical appearance
	Creating a bitmap image by setting pixel values

	Asynchronous decoding of bitmap images

	Chapter 14: Filtering display objects
	Basics of filtering display objects
	Creating and applying filters
	Creating a filter
	Applying a filter
	How filters work
	Potential issues for working with filters

	Available display filters
	Bevel filter
	Blur filter
	Drop shadow filter
	Glow filter
	Gradient bevel filter
	Gradient glow filter
	Example: Combining basic filters
	Color matrix filter
	Convolution filter
	Displacement map filter
	Shader filter

	Filtering display objects example: Filter Workbench
	Experimenting with ActionScript filters
	Creating filter instances
	Applying filters to display objects

	Chapter 15: Working with Pixel Bender shaders
	Basics of Pixel Bender shaders
	Loading or embedding a shader
	Accessing shader metadata
	Specifying shader input and parameter values
	Identifying shader inputs and parameters
	Specifying shader input values
	Specifying shader parameter values

	Using a shader
	Using a shader as a drawing fill
	Using a shader as a blend mode
	Using a shader as a filter
	Using a shader in stand-alone mode

	Chapter 16: Working with movie clips
	Basics of movie clips
	Working with MovieClip objects
	Controlling movie clip playback
	Playing movie clips and stopping playback
	Fast-forwarding and rewinding
	Jumping to a different frame and using frame labels
	Working with scenes

	Creating MovieClip objects with ActionScript
	Exporting library symbols for ActionScript

	Loading an external SWF file
	Considerations for loading an older SWF file

	Movie clip example: RuntimeAssetsExplorer
	Establishing a run-time library interface
	Creating the asset library SWF file
	Loading the library into another SWF file

	Chapter 17: Working with motion tweens
	Basics of Motion Tweens
	Copying motion tween scripts in Flash
	Incorporating motion tween scripts
	Motion tween classes
	Motion object names

	Describing the animation
	Adding filters
	Initializing the filters array
	Adding filters
	Adjusting color with the ColorMatrixFilter

	Associating a motion tween with its display objects

	Chapter 18: Working with inverse kinematics
	Basics of Inverse Kinematics
	Animating IK Armatures Overview
	Getting information about an IK armature
	Instantiating an IK Mover and Limiting Its Movement
	Moving an IK Armature
	Using Springs
	Using IK Events

	Chapter 19: Working in three dimensions (3D)
	Basics of 3D display objects
	Understanding 3D display objects in Flash Player and the AIR runtime
	Creating and moving 3D display objects
	Moving an object in 3D space
	Rotating an object in 3D space

	Projecting 3D objects onto a 2D view
	Field of view
	Projection center
	Focal length
	Default perspective projection values

	Example: Perspective projection
	Performing complex 3D transformations
	Creating Matrix3D objects
	Applying multiple 3D transformations
	Using Matrix3D objects for reordering display

	Using triangles for 3D effects
	Transforming bitmaps
	UV mapping
	Culling

	Chapter 20: Basics of Working with text
	Chapter 21: Using the TextField class
	Displaying text
	Types of text
	Modifying the text field contents
	Displaying HTML text
	Using images in text fields
	Scrolling text in a text field

	Selecting and manipulating text
	Selecting text
	Capturing user-selected text

	Capturing text input
	Restricting text input
	Formatting text
	Assigning text formats
	Applying cascading style sheets
	Loading an external CSS file
	Formatting ranges of text within a text field

	Advanced text rendering
	Using embedded fonts
	Controlling sharpness, thickness, and anti-aliasing

	Working with static text
	Accessing static text fields with the StaticText class
	Using the TextSnapshot class

	TextField Example: Newspaper-style text formatting
	Reading the external CSS file
	Arranging story elements on the page
	Altering font size to fit the field size
	Splitting text across multiple columns

	Chapter 22: Using the Flash Text Engine
	Creating and displaying text
	Adding GraphicElement and GroupElement objects
	Replacing text

	Handling Events in FTE
	Mirroring events

	Formatting text
	Using the ElementFormat object
	Font color and transparency (alpha)
	Baseline alignment and shift
	Typographic Case
	Rotating text
	Locking and cloning ElementFormat

	Working with fonts
	Defining font characteristics (FontDescription object)
	Embedded versus device fonts
	Rendering mode and hinting
	Locking and cloning FontDescription

	Controlling text
	Justifying text
	Justifying East Asian text
	Kerning and tracking
	Line breaks for wrapped text
	Tab stops

	Flash Text Engine example: News layout

	Chapter 23: Using the Text Layout Framework
	Overview of the Text Layout Framework
	Complex script support
	Using the Text Layout Framework in Flash Professional and Flex

	Using the Text Layout Framework
	The Text Layout Framework classes
	Data structures and formatting classes
	Rendering classes
	User interaction classes

	General steps for creating text with the Text Layout Framework
	Text Layout Framework example: News layout

	Structuring text with TLF
	Text Layout Framework markup
	Using numbered and bulleted lists
	Using padding in TLF

	Formatting text with TLF
	Assigning formats to a FlowElement with properties
	Assigning formats to a FlowElement with the TextLayoutFormat class
	Format inheritance

	Importing and exporting text with TLF
	Managing text containers with TLF
	Creating static text
	Creating dynamic text and containers

	Enabling text selection, editing, and undo with TLF
	Event handling with TLF
	Positioning images within text

	Chapter 24: Working with sound
	Basics of working with sound
	Understanding the sound architecture
	Loading external sound files
	Monitoring the sound loading process

	Working with embedded sounds
	Using an embedded sound file in Flash
	Using an embedded sound file in Flex

	Working with streaming sound files
	Working with dynamically generated audio
	Modifying sound from mp3 data
	Limitations on generated sounds

	Playing sounds
	Pausing and resuming a sound
	Monitoring playback
	Stopping streaming sounds

	Security considerations when loading and playing sounds
	Controlling sound volume and panning
	Working with sound metadata
	Accessing raw sound data
	Building a simple sound visualizer

	Capturing sound input
	Accessing a microphone
	Routing microphone audio to local speakers
	Altering microphone audio
	Detecting microphone activity
	Sending audio to and from a media server
	Capturing microphone sound data

	Sound example: Podcast Player
	Reading RSS data for a podcast channel
	Simplifying sound loading and playback using the SoundFacade class
	Displaying playback progress
	Pausing and resuming playback
	Extending the Podcast Player example

	Chapter 25: Working with video
	Basics of video
	Understanding video formats
	Encoding video for mobile devices
	Flash Player and AIR compatibility with encoded video files
	Understanding the Adobe F4V and FLV video file formats
	The F4V video file format
	The FLV video file format
	External vs embedded video

	Understanding the Video class
	Loading video files
	Controlling video playback
	Detecting the end of a video stream

	Playing video in full-screen mode
	Streaming video files
	Sending video to a server

	Understanding cue points
	Writing callback methods for metadata and cue points
	Set the NetStream object’s client property to an Object
	Create a custom class and define methods to handle the callback methods
	Extend the NetStream class and add methods to handle the callback methods
	Extend the NetStream class and make it dynamic
	Set the NetStream object’s client property to this

	Using cue points and metadata
	Using cue points
	Using video metadata
	Using OnMetaData()
	Using onXMPData()

	Using image metadata
	Using text metadata

	Monitoring NetStream activity
	Monitoring NetStream events
	Detecting player domain

	Advanced topics for video files
	About configuring FLV files for hosting on a server
	About targeting local FLV files on the Macintosh

	Video example: Video Jukebox
	Loading an external video playlist file
	Creating the user interface
	Listening for a video object’s metadata
	Dynamically loading a video
	Controlling the volume of the video
	Controlling video playback

	Using the StageVideo class for hardware accelerated presentation
	About hardware acceleration using StageVideo
	Parallel planes: Stage video and the Flash display list
	Stage video and H.264 codec
	Guidelines and limitations

	Using the StageVideo APIs
	Stage.stageVideos property
	StageVideo events
	Workflow for implementing the StageVideo feature
	Initializing StageVideo event listeners
	Using the StageVideoAvailabilityEvent.STAGE_VIDEO_AVAILABILITY event
	Using the StageVideoEvent.RENDER_STATE and VideoEvent.RENDER_STATE events
	Color spaces

	Chapter 26: Working with cameras
	Understanding the Camera class
	Displaying camera content on screen
	Designing your camera application
	Connecting to a user’s camera
	Verifying that cameras are installed
	Detecting permissions for camera access
	Maximizing camera video quality
	Monitoring camera status

	Chapter 27: Using digital rights management
	Understanding the protected content workflow
	Detailed API workflow
	DRMContentData and session objects
	DRM-related events
	Pre-loading vouchers for offline playback
	Using DRMContentData
	Using preloadEmbeddedMetadata()

	DRM-related members and events of the NetStream class
	Using the DRMStatusEvent class
	DRMStatusEvent properties
	Creating a DRMStatusEvent handler

	Using the DRMAuthenticateEvent class
	DRMAuthenticateEvent properties
	Creating a DRMAuthenticateEvent handler
	Creating an interface for retrieving user credentials

	Using the DRMErrorEvent class
	DRMErrorEvent properties
	Creating a DRMErrorEvent handler

	Using the DRMManager class
	DRMStatus Events
	DRMAuthenticationComplete events
	DRMAuthenticationError events

	Using the DRMContentData class
	Updating Flash Player to support Adobe Access
	Listening for an update event

	Out-of-band Licenses
	Device registration
	Factory reset

	Domain support
	Playing encrypted content using domain support
	License preview
	Delivering content
	Open Source Media Framework
	Workflow for playing protected content

	Chapter 28: Adding PDF content in AIR
	Detecting PDF Capability
	Loading PDF content
	Scripting PDF content
	HTML-PDF communication basics
	Scripting PDF content from ActionScript

	Known limitations for PDF content in AIR

	Chapter 29: Basics of user interaction
	Capturing user input
	Managing focus
	Discovering input types

	Chapter 30: Keyboard input
	Capturing keyboard input
	Key codes and character codes
	KeyboardEvent precedence

	Using the IME class
	Checking if an IME is installed and enabled
	Determining which IME conversion mode is currently enabled
	Setting the IME conversion mode
	Disabling the IME for certain text fields
	Listening for IME composition events

	Virtual keyboards
	Controlling virtual keyboard behavior
	Adding virtual keyboard support for interactive objects
	Handling application display changes

	Chapter 31: Mouse input
	Capturing mouse input
	Dragging Sprites around the stage
	Customizing the mouse cursor

	Mouse input example: WordSearch
	Loading a dictionary
	Creating the user interface
	Generating a game board
	Building words from user input
	Checking word submissions
	Customization

	Chapter 32: Touch, multitouch and gesture input
	Basics of touch input
	The touch input API structure
	Discovery
	Events
	Phases

	Touch support discovery
	Set the input type
	Test for touch input support

	Touch event handling
	Touch Event properties
	Touch event phases
	Touch Point ID

	Touch and drag
	Gesture event handling
	Gesture Event properties
	Gesture phases
	Gesture phase is “all” for simple gesture events

	Troubleshooting
	Known Issues

	Chapter 33: Copy and paste
	Basics of copy-and-paste
	Reading from and writing to the system clipboard
	HTML copy and paste in AIR
	Default behavior
	Using the clipboardData property of the event object

	Clipboard data formats
	Standard data formats
	Custom data formats
	Transfer modes
	Reading and writing custom data formats

	Deferred rendering
	Pasting text using a deferred rendering function

	Chapter 34: Accelerometer input
	Checking accelerometer support
	Detecting accelerometer changes

	Chapter 35: Drag and drop in AIR
	Basics of drag and drop in AIR
	Supporting the drag-out gesture
	Preparing data for transfer
	Starting a drag-out operation
	Completing a drag-out transfer

	Supporting the drag-in gesture
	Steps in a typical drop operation
	Acknowledging a drag-in gesture
	Completing the drop
	Updating the visual appearance of a component
	Tracking mouse position during a drag-in gesture

	Drag and drop in HTML
	Default drag-and-drop behavior
	Drag-and-drop events in HTML
	MIME types for the HTML drag-and-drop
	Drag effects in HTML

	Dragging data out of an HTML element
	Setting the dragged data

	Dragging data into an HTML element
	Enabling drag-in
	Getting the dropped data

	Example: Overriding the default HTML drag-in behavior
	Handling file drops in non-application HTML sandboxes
	Dropping file promises
	Dropping remote files
	Implementing the IFilePromise interface
	Using a synchronous data provider in a file promise
	Using an asynchronous data provider in a file promise

	Chapter 36: Working with menus
	Menu basics
	Menu classes
	Menu varieties
	About context menus
	Native menu structure (AIR)
	Menu events
	Key equivalents for native menu commands (AIR)
	Mnemonics (AIR)
	Menu item state
	Attaching an object to a menu item

	Creating native menus (AIR)
	Creating a root menu object
	Creating a submenu
	Creating a menu command
	Creating a menu separator line

	About context menus in HTML (AIR)
	Displaying pop-up native menus (AIR)
	Handling menu events
	Events summary for menu classes
	Select menu events
	Displaying menu events

	Native menu example: Window and application menu (AIR)

	Chapter 37: Taskbar icons in AIR
	About taskbar icons
	Dock icons
	Dock icon menus
	Bouncing the dock
	Dock icon events

	System Tray icons
	System tray icon menus
	System tray icon tooltips
	System tray icon events
	Example: Creating an application with no windows

	Window taskbar icons and buttons
	Highlighting the taskbar window button
	Creating windows without taskbar buttons or icons

	Chapter 38: Working with the file system
	Using the FileReference class
	FileReference class
	Loading data from files
	Saving data to local files
	Uploading files to a server
	Downloading files from a server
	FileReferenceList class

	Using the AIR file system API
	AIR file basics
	Working with File objects in AIR
	About the File class
	Paths of File objects
	Common directory locations
	Pointing a File object to a directory
	Pointing a File object to a file
	Modifying File paths
	Supported AIR URL schemes
	Controlling file backup and caching
	Finding the relative path between two files
	Obtaining canonical versions of file names
	Working with packages and symbolic links
	Determining space available on a volume
	Opening files with the default system application

	Getting file system information
	Working with directories
	Creating directories
	Creating a temporary directory
	Enumerating directories
	Copying and moving directories
	Deleting directory contents

	Working with files
	Getting file information
	Copying and moving files
	Deleting a file
	Moving a file to the trash
	Creating a temporary file

	Working with storage volumes
	Reading and writing files
	Workflow for reading and writing files
	Working with FileStream objects
	Using the load() and save() methods
	Example: Reading an XML file into an XML object
	Example: Reading and writing data with random access

	Chapter 39: Storing local data
	Shared objects
	About shared objects
	Shared objects compared with cookies
	About the SharedObject class

	Creating a shared object
	Specifying a path
	Adding data to a shared object
	(iOS only) Prevent cloud backup of local shared objects
	Creating multiple shared objects

	Creating a secure SharedObject
	Displaying contents of a shared object
	Destroying shared objects
	SharedObject example

	Encrypted local storage
	Adding data to the encrypted local store
	Accessing data in the encrypted local store
	Removing data from the encrypted local store

	Chapter 40: Working with local SQL databases in AIR
	About local SQL databases
	Uses for local SQL databases
	About AIR databases and database files
	About relational databases
	About SQL
	About SQL database classes
	About synchronous and asynchronous execution modes

	Creating and modifying a database
	Creating a database
	Creating database tables

	Manipulating SQL database data
	Connecting to a database
	Working with SQL statements
	Using parameters in statements
	Understanding statement parameters
	Using named parameters
	Using unnamed parameters
	Benefits of using parameters

	Retrieving data from a database
	Executing a SELECT statement
	Accessing SELECT statement result data
	Defining the data type of SELECT result data
	Retrieving SELECT results in parts

	Inserting data
	Executing an INSERT statement
	Retrieving a database-generated primary key of an inserted row

	Changing or deleting data
	Working with multiple databases
	Handling database errors
	Connection errors
	Syntax errors
	Constraint errors

	Working with database data types

	Using synchronous and asynchronous database operations
	Using synchronous database operations
	Writing code for synchronous operations
	Executing an operation that depends on another operation
	Handling errors with synchronous execution

	Understanding the asynchronous execution model

	Using encryption with SQL databases
	Uses for an encrypted database
	Creating an encrypted database
	Connecting to an encrypted database
	Changing the encryption key of a database
	Considerations for using encryption with a database
	Example: Generating and using an encryption key
	Using the EncryptionKeyGenerator class to obtain a secure encryption key
	Complete example code for generating and using an encryption key
	Understanding the EncryptionKeyGenerator class

	Strategies for working with SQL databases
	Distributing a pre-populated database
	Best practices for working with local SQL databases
	Pre-create database connections
	Reuse database connections
	Favor asynchronous execution mode
	Use separate SQL statements and don’t change the SQLStatement’s text property
	Use statement parameters

	Chapter 41: Working with byte arrays
	Reading and writing a ByteArray
	ByteArray methods
	The position property
	The bytesAvailable and length properties
	The endian property
	The compress() and uncompress() methods
	Reading and writing objects

	ByteArray example: Reading a .zip file

	Chapter 42: Basics of networking and communication
	Network interfaces
	Network connectivity changes
	Service monitoring
	HTTP monitoring
	Socket monitoring

	Domain Name System (DNS) records

	Chapter 43: Sockets
	TCP sockets
	Binary client sockets
	Socket class
	Secure client sockets (AIR)
	TCP socket example: Building a Telnet client

	XML sockets
	Connecting to a server with the XMLSocket class

	Server sockets

	UDP sockets (AIR)
	IPv6 addresses

	Chapter 44: HTTP communications
	Loading external data
	Using the URLRequest class
	URLRequest properties
	Setting URLRequest defaults (AIR only)
	URI schemes
	Setting URL variables

	Using the URLLoader class
	Using the URLStream class
	Loading data from external documents
	Communicating with external scripts

	Web service requests
	REST-style web service requests
	XML-RPC web service requests
	SOAP web service requests

	Opening a URL in another application

	Chapter 45: Communicating with other Flash Player and AIR instances
	About the LocalConnection class
	Sending messages between two applications
	Connecting to content in different domains and to AIR applications

	Chapter 46: Communicating with native processes in AIR
	Overview of native process communications
	Launching and closing a native process
	Communicating with a native process
	Security considerations for native process communication

	Chapter 47: Using the external API
	Basics of using the external API
	External API requirements and advantages
	Using the ExternalInterface class
	Getting information about the external container
	Calling external code from ActionScript
	Calling ActionScript code from the container
	The external API’s XML format

	External API example: Communicating between ActionScript and JavaScript in a web browser
	Preparing for ActionScript-browser communication
	Exposing ActionScript methods to JavaScript
	Communication from ActionScript to the browser
	Calling ActionScript code from JavaScript
	Detecting the browser type

	Chapter 48: XML signature validation in AIR
	Basics of XML signature validation
	XML signature validation classes
	Using the XML signature validation classes
	The XML signature validation process
	Interpreting validation results

	About XML signatures
	Supported XML signature syntax
	Certificates and trust

	Implementing the IURIDereferencer interface
	Dereferencing URIs in enveloped signatures
	Dereferencing URIs in enveloping and detached signatures
	Computing digest values for external resources

	Dereferencing URIs in detached signatures referencing external data

	Chapter 49: Client system environment
	Basics of the client system environment
	Using the System class
	Getting data about the user’s system at run time
	Saving text to the clipboard

	Using the Capabilities class
	Capabilities example: Detecting system capabilities
	CapabilitiesExplorer overview
	CapabilitiesGrabber class overview
	Communicating with JavaScript

	Chapter 50: AIR application invocation and termination
	Application invocation
	Capturing command line arguments
	Example: Invocation event log

	Invoking an AIR application on user login
	Invoking an AIR application from the browser
	Application termination

	Chapter 51: Working with AIR runtime and operating system information
	Managing file associations
	Getting the runtime version and patch level
	Detecting AIR capabilities
	Tracking user presence

	Chapter 52: Working with AIR native windows
	Basics of native windows in AIR
	Windows in AIR
	Native window classes
	Native window event flow
	Properties controlling native window style and behavior
	Window types
	Window chrome
	Window transparency
	Transparency in an MXML application window
	Transparency in an HTML application window
	Window ownership

	A visual window catalog

	Creating windows
	Specifying window initialization properties
	Creating the initial application window
	Creating the initial window with ActionScript
	Creating the initial window with Flex

	Creating a NativeWindow
	Creating an HTML window
	Creating a mx:Window
	Adding content to a window
	Example: Creating a native window

	Managing windows
	Getting a NativeWindow instance
	Activating, showing, and hiding windows
	Changing the window display order
	Closing a window
	Allowing cancellation of window operations
	Maximizing, minimizing, and restoring a window
	Example: Minimizing, maximizing, restoring and closing a window
	Resizing and moving a window
	Example: Resizing and moving windows

	Listening for window events
	Displaying full-screen windows

	Chapter 53: Display screens in AIR
	Basics of display screens in AIR
	Enumerating the screens

	Chapter 54: Printing
	Basics of printing
	Printing a page
	Flash runtime tasks and system printing
	Working with exceptions and returns
	Working with page properties
	Setting vector or bitmap rendering
	Timing print job statements

	Setting size, scale, and orientation
	Using rectangles for the print area
	Comparing points and pixels
	Scaling
	Printing for landscape or portrait orientation
	Responding to page height and width

	Advanced printing techniques
	Print workflow changes
	Page setup dialog
	Changing print settings

	Printing example: Multiple-page printing
	Printing example: Scaling, cropping, and responding
	Printing example: Page setup and print options

	Chapter 55: Geolocation
	Detecting geolocation changes
	Checking geolocation support

	Chapter 56: Internationalizing applications
	Basics of internationalizing applications
	Overview of the flash.globalization package
	The flash.globalization package and resource localization
	A general approach to internationalizing an application
	Checking for errors and fallbacks

	Determining the locale
	Setting the locale ID
	Limitations of other locale and language classes

	Formatting numbers
	Using the NumberFormatter class
	Parsing strings that contain numeric values

	Formatting currency values
	Using the CurrencyFormatter class
	Parsing strings that contain currency values

	Formatting dates and times
	Using the DateTimeFormatter class
	Localizing month names and day names

	Sorting and comparing strings
	Using the Collator class
	Customizing the behavior of the Collator class

	Case conversion
	Using the StringTools class

	Example: Internationalizing a stock ticker application
	Understanding the user interface and sample data
	Setting the locale
	Formatting the data

	Chapter 57: Localizing applications
	Choosing a locale
	Localizing Flex content
	Localizing Flash content
	Localizing AIR applications
	Localizing dates, times, and currencies

	Chapter 58: About the HTML environment
	Overview of the HTML environment
	About the JavaScript environment and its relationship to the AIR host
	About security
	About plug-ins and embedded objects

	AIR and WebKit
	JavaScript in AIR
	HTML Sandboxes
	JavaScript eval() function
	Function constructors
	Loading external scripts
	The XMLHttpRequest object
	Cookies
	The Clipboard object
	Drag and Drop
	innerHTML and outerHTML properties
	Document.write() and Document.writeln() methods
	Document.designMode property
	unload events (for body and frameset objects)
	JavaScript Window object
	air.NativeApplication object
	The JavaScript URL scheme

	HTML in AIR
	HTML frame and iframe elements
	HTML element event handlers
	HTML contentEditable attribute
	Data: URLs

	CSS in AIR
	WebKit features not supported in AIR

	Chapter 59: Programming HTML and JavaScript in AIR
	About the HTMLLoader class
	Loading HTML content from a URL
	Loading HTML content from a string
	Important security rules when using HTML in AIR applications

	Avoiding security-related JavaScript errors
	Causes of security-related JavaScript errors
	Mapping application content to a different sandbox
	eval() function
	Assigning properties to an object
	Creating a function with variables available in context
	Creating an object using the name of the class as a string parameter
	setTimeout() and setInterval()
	Function constructor
	javascript: URLs
	Event callbacks assigned through onevent attributes in innerHTML and outerHTML statements
	Loading JavaScript files from outside the application installation directory
	document.write() and document.writeln()
	Synchronous XMLHttpRequests before the load event or during a load event handler
	Dynamically created script elements

	Accessing AIR API classes from JavaScript
	Using the AIRAliases.js file

	About URLs in AIR
	Making ActionScript objects available to JavaScript
	A basic example of accessing JavaScript objects from ActionScript
	Making class definitions available to JavaScript
	Removing event listeners

	Accessing HTML DOM and JavaScript objects from ActionScript
	Embedding SWF content in HTML
	Using ActionScript libraries within an HTML page
	Accessing the HTML DOM and JavaScript objects from an imported ActionScript file

	Converting Date and RegExp objects
	Manipulating an HTML stylesheet from ActionScript
	Cross-scripting content in different security sandboxes
	AIR security sandboxes and JavaScript code
	Loading application content into a non-application sandbox
	Setting up a sandbox bridge interface
	Establishing a child sandbox bridge
	Establishing a parent sandbox bridge
	Accessing a parent sandbox bridge during page loading

	Chapter 60: Scripting the AIR HTML Container
	Display properties of HTMLLoader objects
	Basic display properties
	Transparency of HTMLLoader content
	Scaling HTMLLoader content
	Considerations when loading SWF or PDF content in an HTML page
	Advanced display properties

	Scrolling HTML content
	Accessing the HTML history list
	Setting the user agent used when loading HTML content
	Setting the character encoding to use for HTML content
	Defining browser-like user interfaces for HTML content
	About extending the HTMLHost class
	Example: Extending the HTMLHost class
	Handling changes to the window.location property
	Handling JavaScript calls to window.moveBy(), window.moveTo(), window.resizeTo(), window.resizeBy()
	Handling JavaScript calls to window.open()
	Handling JavaScript calls to window.close()
	Handling changes of the window.status property
	Handling changes of the window.document.title property
	Handling JavaScript calls to window.blur() and window.focus()
	Creating windows with scrolling HTML content

	Creating subclasses of the HTMLLoader class

	Chapter 61: Handling HTML-related events in AIR
	HTMLLoader events
	Handling DOM events with ActionScript
	Responding to uncaught JavaScript exceptions
	Handling runtime events with JavaScript
	Creating an event handler function
	Removing event listeners
	Removing event listeners in HTML pages that navigate
	Checking for existing event listeners

	Chapter 62: Displaying HTML content in mobile apps
	StageWebView objects
	Content
	JavaScript URI

	Navigation events
	History
	Focus
	Bitmap capture

	Chapter 63: Using workers for concurrency
	Understanding workers and concurrency
	Creating and managing workers
	Creating a Worker object from a swf
	Embedding the worker swf
	Loading an external worker swf
	Using the main swf as the worker swf

	Starting a worker’s execution
	Managing worker execution

	Communicating between workers
	Passing data with a shared property
	Passing data with a MessageChannel
	Sharing data using a shareable ByteArray
	Shared references and copied values
	Additional data-sharing techniques

	Chapter 64: Security
	Flash Platform security overview
	Security sandboxes
	Remote sandboxes
	Local sandboxes
	The AIR application sandbox
	Restrictions for JavaScript inside AIR
	Setting the sandbox type of local SWF files
	The Security.sandboxType property

	Permission controls
	Administrator controls
	The mms.cfg file
	The Global Flash Player Trust directory

	User controls
	The Settings UI and Settings Manager
	The User Flash Player Trust directory

	Website controls (policy files)
	Master policy files
	URL policy file scope
	Specifying access permissions in a URL policy file
	Preloading policy files

	Author (developer) controls

	Restricting networking APIs
	Blocked ports
	Using the allowNetworking parameter

	Full-screen mode security
	Full-screen interactive mode security
	Loading content
	Loading SWF files and images with the Loader class
	Loading sound and videos
	Loading SWF files and images using the tag in a text field
	Content delivered using RTMP servers

	Cross-scripting
	Stage security
	Traversing the display list
	Event security

	Accessing loaded media as data
	Accessing bitmap data
	Accessing sound data
	Accessing video data

	Loading data
	Using URLLoader and URLStream
	Connecting to sockets
	Protecting data
	Sending data
	Uploading and downloading files

	Loading embedded content from SWF files imported into a security domain
	Working with legacy content
	Setting LocalConnection permissions
	Controlling outbound URL access
	Using the navigateToURL() function
	For more information

	Shared objects
	Camera, microphone, clipboard, mouse, and keyboard access
	AIR security
	AIR security basics
	Installation and updates
	Runtime installation location
	Seamless install (runtime and application)
	Manual install
	Application installation flow
	Application destination
	The AIR file system
	AIR application storage
	Updating Adobe AIR
	Updating AIR applications
	Uninstalling an AIR application
	Windows registry settings for administrators

	HTML security in Adobe AIR
	Overview on configuring your HTML-based application
	Code restrictions for content in different sandboxes
	Sandbox protection when loading HTML content from a string

	Scripting between content in different domains
	About the AIR sandbox bridge
	Sandbox bridge example (SWF)
	Sandbox bridge example (HTML)
	Limiting API exposure

	Writing to disk
	Working securely with untrusted content
	Security.allowDomain()
	Scripting between application and non-application content
	Protection against dynamically generating unsafe SWF content

	Best security practices for developers
	Risk from importing files into the application security sandbox
	Risk from using an external source to determine paths
	Risk from using, storing, or transmitting insecure credentials
	Risk from a downgrade attack

	Code signing
	Security on Android devices
	Encrypted data on Android

	Security on iOS devices

	Chapter 65: How to Use ActionScript Examples
	Types of examples
	Running ActionScript 3.0 examples in Flash Professional
	Running ActionScript 3.0 examples in Flash Builder
	Running ActionScript 3.0 examples on mobile devices

	Chapter 66: SQL support in local databases
	Supported SQL syntax
	General SQL syntax
	Data manipulation statements
	Data definition statements
	Special statements and clauses
	Built-in functions
	Operators
	Parameters
	Unsupported SQL features
	Additional SQL features

	Data type support
	Storage classes
	Column affinity
	Data types and comparison operators
	Data types and mathematical operators
	Data types and sorting
	Data types and grouping
	Data types and compound SELECT statements

	Chapter 67: SQL error detail messages, ids, and arguments
	Chapter 68: Adobe Graphics Assembly Language (AGAL)
	AGAL bytecode format

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000630072006500610074006500200049006e0073007400720075006300740069006f006e0061006c00200043006f006d006d0075006e00690063006100740069006f006e002700730020005000720069006e0074002d006f006e002d00440065006d0061006e0064002000500044004600200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e000d005b007500700064006100740065006400200033002d007300650070002d0032003000300034005d>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

