
ADOBE® FLASH® LITE™ 2.x and 3.x
Adobe® ActionScript® Language Reference

Last updated 3/22/2011

Copyright© 2010 Adobe Systems Incorporated. All rights reserved.

Adobe® Flash® Lite® 2.x and 3.x ActionScript® Language Reference

This Language Reference is licensed for use under the terms of the Creative Commons Attribution Non-Commercial 3.0 License. This License allows users to

copy, distribute, and transmit the user guide for noncommercial purposes only so long as (1) proper attribution to Adobe is given as the owner of the guide; and

(2) any reuse or distribution of the guide contains a notice that use of the user guide is governed by these terms. The best way to provide notice is to include the

following link. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Adobe, the Adobe logo, ActionScript, Flash, and Flash Lite are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States

and/or other countries. Windows, Windows NT, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United

States and/or other countries. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. All other trademarks are the property of their

respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/

iii

Last updated 3/22/2011

Contents

Chapter 1: ActionScript language elements

Compiler directives . 1

Constants . 4

Global functions . 8

Global properties . 55

Operators . 71

Statements . 122

fscommand2 commands . 160

Chapter 2: ActionScript classes

arguments . 178

Array . 179

BitmapData (flash.display.BitmapData) . 197

Boolean . 218

Button . 220

capabilities (System.capabilities) . 241

Color . 259

ColorTransform (flash.geom.ColorTransform) . 263

Date . 276

Error . 302

ExtendedKey . 306

Function . 310

Key . 313

LoadVars . 325

LocalConnection . 335

Math . 348

Matrix (flash.geom.Matrix) . 362

Mouse . 382

MovieClip . 388

MovieClipLoader . 459

NetConnection . 472

NetStream . 474

Number . 488

Object . 493

Point (flash.geom.Point) . 508

Rectangle (flash.geom.Rectangle) . 517

Security (System.security) . 538

Selection . 542

SharedObject . 549

Sound . 560

Stage . 579

String . 584

ivFLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

Contents

Last updated 3/22/2011

System . 597

TextField . 599

TextFormat . 639

Transform (flash.geom.Transform) . 652

Video . 659

XML . 665

XMLNode . 683

XMLSocket . 699

Chapter 3: Deprecated ActionScript

Deprecated Function summary . 707

Deprecated Property summary . 708

Deprecated Operator summary . 709

Chapter 4: Unsupported ActionScript

Unsupported Classes . 710

Unsupported Methods . 710

Unsupported Properties . 710

Unsupported Global Functions . 710

Unsupported Event Handlers . 711

Unsupported fscommands . 711

Index . 712

1

Last updated 3/22/2011

Chapter 1: ActionScript language elements

This section provides syntax, usage information, and code samples for global functions and properties (those elements

that do not belong to an ActionScript class); compiler directives; and for the constants, operators, statements, and

keywords used in ActionScript and defined in the ECMAScript (ECMA-262) edition 4 draft language specification.

Compiler directives

This section contains the directives to include in your ActionScript file to direct the compiler to preprocess certain

instructions.

Compiler directives summary

#endinitclip directive
#endinitclip

Compiler directive; indicates the end of a block of initialization actions.

Availability

Flash Lite™ 2.0

Example

 #initclip
 ...initialization actions go here...
 #endinitclip

#include directive
#include "[path]filename.as"

Note: Do not place a semicolon (;) at the end of the line that contains the #include statement.

Compiler directive; includes the contents of the specified file, as if the commands in the file are part of the calling script.

The #include directive is invoked at compile time. Therefore, if you make any changes to an external file, you must

save the file and recompile any FLA files that use it.

If you use the Check Syntax button for a script that contains #include statements, the syntax of the included files is

also checked.

You can use #include in FLA files and in external script files, but not in ActionScript 2.0 class files.

Directive Description

#endinitclip Compiler directive; indicates the end of a block of initialization actions.

#include Compiler directive; includes the contents of the specified file, as if the commands in

the file are part of the calling script.

#initclip Compiler directive; indicates the beginning of a block of initialization actions.

2FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

You can specify no path, a relative path, or an absolute path for the file to be included. If you don't specify a path, the

AS file must be in one of the following locations:

• The same directory as the FLA file. The same directory as the script containing the #include statement

• The global Include directory, which is one of the following:

Windows® 2000 or Windows XP: C:\Documents and Settings\user \Local

Settings\ Application Data\Adobe\Flash 10\language\Configuration\Include

Windows Vista®: C:\Users\user \Local Settings\ Application Data\Adobe\Flash 8\language\Configuration\Include

Macintosh® OS X: Hard Drive/Users/Library/Application Support/Adobe/Flash

10/language/Configuration/Include

• The Flash program\language\First Run\Include directory; if you save a file here, it is copied to the global Include

directory the next time you start Flash®.

To specify a relative path for the AS file, use a single dot (.) to indicate the current directory, two dots (..) to indicate

a parent directory, and forward slashes (/) to indicate subdirectories. See the following example section.

To specify an absolute path for the AS file, use the format supported by your platform (Macintosh or Windows). See

the following example section. (This usage is not recommended because it requires the directory structure to be the

same on any computer that you use to compile the script.)

Note: If you place files in the First Run/Include directory or in the global Include directory, back up these files. If you ever

need to uninstall and reinstall Flash, these directories might be deleted and overwritten.

Availability

Flash Lite 2.0

Parameters

[path]filename.as - filename.as The filename and optional path for the script to add to the Actions panel or to

the current script; .as is the recommended filename extension.

Example

The following examples show various ways of specifying a path for a file to be included in your script:

3FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 // Note that #include statements do not end with a semicolon (;)
 // AS file is in same directory as FLA file or script
 // or is in the global Include directory or the First Run/Include directory
 #include "init_script.as"

 // AS file is in a subdirectory of one of the above directories
 // The subdirectory is named "FLA_includes"
 #include "FLA_includes/init_script.as"
 // AS file is in a subdirectory of the script file directory
 // The subdirectory is named "SCRIPT_includes"
 #include "SCRIPT_includes/init_script.as"
 // AS file is in a directory at the same level as one of the above directories
 // AS file is in a directory at the same level as the directory
 // that contains the script file
 // The directory is named "ALL_includes"
 #include "../ALL_includes/init_script.as"

 // AS file is specified by an absolute path in Windows
 // Note use of forward slashes, not backslashes
 #include "C:/Flash_scripts/init_script.as"

 // AS file is specified by an absolute path on Macintosh
 #include "Mac HD:Flash_scripts:init_script.as"

#initclip directive
#initclip order

Note: Do not place a semicolon (;) at the end of the line that contains the #initclip statement.

Compiler directive; indicates the beginning of a block of initialization actions. When multiple clips are initialized at

the same time, you can use the order parameter to specify which initialization occurs first. Initialization actions

execute when a movie clip symbol is defined. If the movie clip is an exported symbol, the initialization actions execute

before the actions on Frame 1 of the SWF file. Otherwise, they execute immediately before the frame actions of the

frame that contains the first instance of the associated movie clip symbol.

Initialization actions execute only once when a SWF file plays; use them for one-time initializations, such as class

definition and registration.

Availability

Flash Lite 2.0

Parameters

order - A non-negative integer that specifies the execution order of blocks of #initclip code. This is an optional

parameter. You must specify the value by using an integer literal (only decimal—not hexadecimal—values are

allowed), and not by using a variable. If you include multiple #initclip blocks in a single movie clip symbol, then the

compiler uses the last order value specified in that movie clip symbol for all #initclip blocks in that symbol.

Example

In the following example, ActionScript is placed on Frame 1 inside a movie clip instance. A variables.txt text file is

placed in the same directory.

4FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 #initclip

 trace("initializing app");

 var variables:LoadVars = new LoadVars();

 variables.load("variables.txt");

 variables.onLoad = function(success:Boolean) {

 trace("variables loaded:"+success);

 if (success) {
 for (i in variables) {
 trace("variables."+i+" = "+variables[i]);
 }
 }
 };

 #endinitclip

Constants

A constant is a variable used to represent a property whose value never changes. This section describes global constants

that are available to every script.

Constants summary

false constant

A unique Boolean value that represents the opposite of true.

When automatic data typing converts false to a number, it becomes 0; when it converts false to a string, it becomes

"false".

Modifiers Constant Description

 false A unique Boolean value that represents the opposite of true.

 Infinity Specifies the IEEE-754 value representing positive infinity.

 -Infinity Specifies the IEEE-754 value representing negative infinity.

 NaN A predefined variable with the IEEE-754 value for NaN (not a

number).

 newline Inserts a carriage return character (\r) that generates a blank

line in text output generated by your code.

 null A special value that can be assigned to variables or returned by

a function if no data was provided.

 true A unique Boolean value that represents the opposite of

false.

 undefined A special value, usually used to indicate that a variable has not

yet been assigned a value.

5FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 1.1

Example

This example shows how automatic data typing converts false to a number and to a string:

 var bool1:Boolean = Boolean(false);

 // converts it to the number 0
 trace(1 + bool1); // outputs 1

 // converts it to a string
 trace("String: " + bool1); // outputs String: false

Infinity constant

Specifies the IEEE-754 value representing positive infinity. The value of this constant is the same as

Number.POSITIVE_INFINITY.

Availability

Flash Lite 2.0

See also

POSITIVE_INFINITY (Number.POSITIVE_INFINITY property)

-Infinity constant

Specifies the IEEE-754 value representing negative infinity. The value of this constant is the same as

Number.NEGATIVE_INFINITY.

Availability

Flash Lite 2.0

See also

NEGATIVE_INFINITY (Number.NEGATIVE_INFINITY property)

NaN constant

A predefined variable with the IEEE-754 value for NaN (not a number). To determine if a number is NaN, use

isNaN().

Availability

Flash Lite 1.1

See also

isNaN function, NaN (Number.NaN property)

6FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

newline constant

Inserts a carriage return character (\r) that generates a blank line in text output generated by your code. Use newline

to make space for information that is retrieved by a function or statement in your code.

Availability

Flash Lite 1.1

Example

The following example shows how newline displays output from the trace() statement on multiple lines.

 var myName:String = "Lisa", myAge:Number = 30;
 trace(myName+myAge);
 trace("-----");
 trace(myName+newline+myAge);
 // output:
 Lisa30

 Lisa
 30

See also

trace function

null constant

A special value that can be assigned to variables or returned by a function if no data was provided. You can use null

to represent values that are missing or that do not have a defined data type.

Availability

Flash Lite 1.1

Example

In a numeric context, null evaluates to 0. Equality tests can be performed with null. In this statement, a binary tree

node has no left child, so the field for its left child could be set to null.

 if (tree.left == null) {
 tree.left = new TreeNode();
 }

true constant

A unique Boolean value that represents the opposite of false. When automatic data typing converts true to a

number, it becomes 1; when it converts true to a string, it becomes "true".

Availability

Flash Lite 1.1

Example

The following example shows the use of true in an if statement:

7FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var shouldExecute:Boolean;
 // ...
 // code that sets shouldExecute to either true or false goes here
 // shouldExecute is set to true for this example:

 shouldExecute = true;

 if (shouldExecute == true) {
 trace("your statements here");
 }

 // true is also implied, so the if statement could also be written:
 // if (shouldExecute) {
 // trace("your statements here");
 // }

The following example shows how automatic data typing converts true to the number 1:

 var myNum:Number;
 myNum = 1 + true;
 trace(myNum); // output: 2

See also

false constant, Boolean

undefined constant

A special value, usually used to indicate that a variable has not yet been assigned a value. A reference to an undefined

value returns the special value undefined. The ActionScript code typeof(undefined) returns the string

"undefined". The only value of type undefined is undefined.

In files published for Flash Player 6 or earlier, the value of String(undefined) is "" (an empty string). In files

published for Flash Player 7 or later, the value of String(undefined) is "undefined" (undefined is converted to a

string).

In files published for Flash Player 6 or earlier, the value of Number(undefined) is 0. In files published for Flash Player

7 or later, the value of Number(undefined) is NaN.

The value undefined is similar to the special value null. When null and undefined are compared with the equality

(==) operator, they compare as equal. However, when null and undefined are compared with the strict equality (===)

operator, they compare as not equal.

Availability

Flash Lite 1.1

Example

In the following example, the variable x has not been declared and therefore has the value undefined.

In the first section of code, the equality operator (==) compares the value of x to the value undefined, and the

appropriate result is sent to the Output panel. In the first section of code, the equality operator (==) compares the value

of x to the value undefined, and the appropriate result is sent to the log file.

In the second section of code, the equality (==) operator compares the values null and undefined.

8FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 // x has not been declared
 trace("The value of x is "+x);

 if (x == undefined) {
 trace("x is undefined");
 } else {
 trace("x is not undefined");
 }

 trace("typeof (x) is "+typeof (x));

 if (null == undefined) {
 trace("null and undefined are equal");
 } else {
 trace("null and undefined are not equal");
 }

The following result is displayed in the Output panel.

 The value of x is undefined
 x is undefined
 typeof (x) is undefined
 null and undefined are equal

Global functions

This section contains a set of built-in functions that are available in any part of a SWF file where ActionScript is used.

These global functions cover a wide variety of common programming tasks such as working with data types

(Boolean(), int(), and so on), producing debugging information (trace()), and communicating with Flash Player

or the browser (fscommand()).

Global functions summary

Modifiers Signature Description

 Array([numElements],
[elementN]) : Array

Creates a new, empty array or converts specified elements to an

array.

 Boolean(expression:Obje
ct) : Boolean

Converts the parameter expression to a Boolean value and

returns true or false.

 call(frame:Object) Deprecated since Flash Player 5. This action was deprecated in

favor of the function statement.

Executes the script in the called frame without moving the

playhead to that frame.

 chr(number:Number) :
String

Deprecated since Flash Player 5. This function was deprecated in

favor of String.fromCharCode().

Converts ASCII code numbers to characters.

 clearInterval(intervalID:N
umber)

Cancels an interval created by a call to setInterval().

 duplicateMovieClip(target:
Object, newname:String,
depth:Number)

Creates an instance of a movie clip while the SWF file is playing.

9FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 escape(expression:Strin
g) : String

Converts the parameter to a string and encodes it in a URL-

encoded format, where all nonalphanumeric characters are

replaced with % hexadecimal sequences.

 eval(expression:Object)
: Object

Accesses variables, properties, objects, or movie clips by name.

 fscommand(command:Stri
ng, parameters:String)

Lets a SWF file communicate with the Flash Lite player or the

environment for a mobile device (such as an operating system).

 fscommand2(command:Stri
ng, parameters:String)

Lets the SWF file communicate with the Flash Lite player or a host

application on a mobile device.

 getProperty(my_mc:Object
, property:Object) :
Object

Deprecated since Flash Player 5. This function was deprecated in

favor of the dot syntax, which was introduced in Flash Player 5.

Returns the value of the specified property for the movie clip

my_mc.

 getTimer() : Number Returns the number of milliseconds that have elapsed since the

SWF file started playing.

 getURL(url:String,
[window:String],
[method:String])

Loads a document from a specific URL into a window or passes

variables to another application at a defined URL.

 getVersion() : String Returns a string containing Flash Player version and platform

information.

 gotoAndPlay([scene:Strin
g], frame:Object)

Sends the playhead to the specified frame in a scene and plays

from that frame.

 gotoAndStop([scene:Stri
ng], frame:Object)

Sends the playhead to the specified frame in a scene and stops it.

 ifFrameLoaded([scene:Str
ing], frame:Object,
statement(s):Object)

Deprecated since Flash Player 5. This function has been

deprecated. Adobe recommends that you use the

MovieClip._framesloaded property.

Checks whether the contents of a specific frame are available

locally.

 int(value:Number) :
Number

Deprecated since Flash Player 5. This function was deprecated in

favor of Math.round().

Converts a decimal number to an integer value by truncating the

decimal value.

 isFinite(expression:Objec
t) : Boolean

Evaluates expression and returns true if it is a finite number or

false if it is infinity or negative infinity.

 isNaN(expression:Object
) : Boolean

Evaluates the parameter and returns true if the value is NaN (not

a number).

 length(expression:Strin
g, variable:Object) :
Number

Deprecated since Flash Player 5. This function, along with all the

string functions, has been deprecated. Adobe recommends that

you use the methods of the String class and the String.length

property to perform the same operations.

Returns the length of the specified string or variable.

 loadMovie(url:String,
target:Object,
[method:String])

Loads a SWF or JPEG file into Flash Player while the original SWF

file plays.

Modifiers Signature Description

10FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 loadMovieNum(url:String
, level:Number,
[method:String])

Loads a SWF or JPEG file into a level in Flash Player while the

originally loaded SWF file plays.

 loadVariables(url:String,
target:Object,
[method:String])

Reads data from an external file, such as a text file or text

generated by ColdFusion, a CGI script, Active Server Pages (ASP),

PHP, or Perl script, and sets the values for variables in a target

movie clip.

 loadVariablesNum(url:Stri
ng, level:Number,
[method:String])

Reads data from an external file, such as a text file or text

generated by a ColdFusion, CGI script, ASP, PHP, or Perl script, and

sets the values for variables in a Flash Player level.

 mbchr(number:Number) Deprecated since Flash Player 5. This function was deprecated in

favor of the String.fromCharCode() method.

Converts an ASCII code number to a multibyte character.

 mblength(string:String)
: Number

Deprecated since Flash Player 5. This function was deprecated in

favor of the String.length property.

Returns the length of the multibyte character string.

 mbord(character:String
) : Number

Deprecated since Flash Player 5. This function was deprecated in

favor of String.charCodeAt() method.

Converts the specified character to a multibyte number.

 mbsubstring(value:String
, index:Number,
count:Number) : String

Deprecated since Flash Player 5. This function was deprecated in

favor of String.substr() method.

Extracts a new multibyte character string from a multibyte

character string.

 nextFrame() Sends the playhead to the next frame.

 nextScene() Sends the playhead to Frame 1 of the next scene.

 Number(expression:Obje
ct) : Number

Converts the parameter expression to a number.

 Object([value:Object]) :
Object

Creates a new empty object or converts the specified number,

string, or Boolean value to an object.

 on(mouseEvent:Object) Specifies the mouse event or keypress that triggers an action.

 onClipEvent(movieEvent:O
bject)

Triggers actions defined for a specific instance of a movie clip.

 ord(character:String) :
Number

Deprecated since Flash Player 5. This function was deprecated in

favor of the methods and properties of the String class.

Converts characters to ASCII code numbers.

 parseFloat(string:String)
: Number

Converts a string to a floating-point number.

 parseInt(expression:Stri
ng, [radix:Number]) :
Number

Converts a string to an integer.

 play() Moves the playhead forward in the Timeline.

 prevFrame() Sends the playhead to the previous frame.

 prevScene() Sends the playhead to Frame 1 of the previous scene.

Modifiers Signature Description

11FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 random(value:Number) :
Number

Deprecated since Flash Player 5. This function was deprecated in

favor of Math.random().

Returns a random integer between 0 and one less than the

integer specified in the value parameter.

 removeMovieClip(target:O
bject)

Deletes the specified movie clip.

 setInterval(functionName:O
bject, interval:Number,
[param:Object],
objectName:Object,
methodName:String) :
Number

Calls a function or a method or an object at periodic intervals

while a SWF file plays.

 setProperty(target:Object
, property:Object,
expression:Object)

Changes a property value of a movie clip as the movie clip plays.

 startDrag(target:Object,
[lock:Boolean],
[left,top,right,bottom
:Number])

Makes the target movie clip draggable while the movie plays.

 stop() Stops the SWF file that is currently playing.

 stopAllSounds() Stops all sounds currently playing in a SWF file without stopping

the playhead.

 stopDrag() Stops the current drag operation.

 String(expression:Object
) : String

Returns a string representation of the specified parameter.

 substring(string:String,
index:Number,
count:Number) : String

Deprecated since Flash Player 5. This function was deprecated in

favor of String.substr().

Extracts part of a string.

 targetPath(targetObject:
Object) : String

Returns a string containing the target path of

movieClipObject.

 tellTarget(target:String,
statement(s):Object)

Deprecated since Flash Player 5. Adobe recommends that you

use dot (.) notation and the with statement.

Applies the instructions specified in the statements parameter

to the Timeline specified in the target parameter.

 toggleHighQuality() Deprecated since Flash Player 5. This function was deprecated in

favor of _quality.

Turns anti-aliasing on and off in Flash Player.

 trace(expression:Object) Evaluates the expression and outputs the result.

 unescape(string:String)
: String

Evaluates the parameter x as a string, decodes the string from

URL-encoded format (converting all hexadecimal sequences to

ASCII characters), and returns the string.

 unloadMovie(target) Removes a movie clip that was loaded by means of

loadMovie() from Flash Player.

 unloadMovieNum(level:Nu
mber)

Removes a SWF or image that was loaded by means of

loadMovieNum() from Flash Player.

Modifiers Signature Description

12FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Array function
Array(): Array Array(numElements:Number): Array Array([element0:Object [, element1, element2,
...elementN]]) : Array

Creates a new array of length zero or more, or an array populated by a list of specified elements, possibly of different

data types.

Lets you create one of the following:

• an empty array

• an array with a specific length but whose elements have undefined values

• an array whose elements have specific values.

Using this function is similar to creating an array with the Array constructor (see "Constructor for the Array class").

You can pass a number (numElements) or a list of elements comprising one or more different types (element0,

element1, ..., elementN).

Parameters that can accept more than one data type are listed as in the signature as type Object.

Availability

Flash Lite 2.0

Parameters

numElements [optional] - A positive integer that specifies the number of elements in the array. You can specify either

numElements or the list of elements, not both.

elementN [optional] - one or more parameters, element0, element1, ... , elementN, the values of which can be of any

type. Parameters that can accept more than one data type are listed as type Object. You can specify either

numElements or the list of elements, not both.

Returns

Array - An array.

Example

 var myArray:Array = Array();
 myArray.push(12);
 trace(myArray); //traces 12
 myArray[4] = 7;
 trace(myArray); //traces 12,undefined,undefined,undefined,7

Usage 2: The following example creates an array of length 4 but with no elements defined:

 var myArray:Array = Array(4);
 trace(myArray.length); // traces 4
 trace(myArray); // traces undefined,undefined,undefined,undefined

Usage 3: The following example creates an array with three defined elements:

 var myArray:Array = Array("firstElement", "secondElement", "thirdElement");
 trace (myArray); // traces firstElement,secondElement,thirdElement

Note: Unlike the Array class constructor, the Array() function does not use the keyword new.

13FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

See also

Array

Boolean function
Boolean(expression:Object) : Boolean

Converts the parameter expression to a Boolean value and returns a value as described in the following list:

• If expression is a Boolean value, the return value is expression.

• If expression is a number, the return value is true if the number is not zero; otherwise the return value is false.

If expression is a string, the return value is as follows:

• In files published for Flash Player 6 or earlier, the string is first converted to a number; the value is true if the

number is not zero, false otherwise.

• In files published for Flash Player 7 or later, the result is true if the string has a length greater than zero; the value

is false for an empty string.

If expression is a string, the result is true if the string has a length greater than zero; the value is false for an empty

string.

• If expression is undefined or NaN (not a number), the return value is false.

• If expression is a movie clip or an object, the return value is true.

Note: Unlike the Boolean class constructor, the Boolean() function does not use the keyword new. Moreover, the Boolean

class constructor initializes a Boolean object to false if no parameter is specified, while the Boolean() function returns

undefined if no parameter is specified.

Availability

Flash Lite 2.0

Parameters

expression:Object - An expression to convert to a Boolean value.

Returns

Boolean - A Boolean value.

Example

 trace(Boolean(-1)); // output: true
 trace(Boolean(0)); // output: false
 trace(Boolean(1)); // output: true

 trace(Boolean(true)); // output: true
 trace(Boolean(false)); // output: false

 trace(Boolean("true")); // output: true
 trace(Boolean("false")); // output: true

 trace(Boolean("Craiggers")); // output: true
 trace(Boolean("")); // output: false

14FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

If files are published for Flash Player 6 and earlier, the results differ for three of the preceding examples:

 trace(Boolean("true")); // output: false
 trace(Boolean("false")); // output: false
 trace(Boolean("Craiggers")); // output: false

This example shows a significant difference between use of the Boolean() function and the Boolean class. The

Boolean() function creates a Boolean value, and the Boolean class creates a Boolean object. Boolean values are

compared by value, and Boolean objects are compared by reference.

 // Variables representing Boolean values are compared by value
 var a:Boolean = Boolean("a"); // a is true
 var b:Boolean = Boolean(1); // b is true
 trace(a==b); // true

 // Variables representing Boolean objects are compared by reference
 var a:Boolean = new Boolean("a"); // a is true
 var b:Boolean = new Boolean(1); // b is true
 trace(a == b); // false

See also

Boolean

call function
call(frame)

Deprecated since Flash Player 5. This action was deprecated in favor of the function statement.

Executes the script in the called frame without moving the playhead to that frame. Local variables do not exist after the

script executes.

• If variables are not declared inside a block ({}) but the action list was executed with a call() action, the variables are

local and expire at the end of the current list.

• If variables are not declared inside a block and the current action list was not executed with the call() action, the

variables are interpreted as Timeline variables.

Availability

Flash Lite 1.0

Parameters

frame:Object - The label or number of a frame in the Timeline.

See also

Array function, call (Function.call method)

chr function
chr(number) : String

Deprecated since Flash Player 5. This function was deprecated in favor of String.fromCharCode().

Converts ASCII code numbers to characters.

15FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 1.0

Parameters

number:Number - An ASCII code number.

Returns

String - The character value of the specified ASCII code.

Example

The following example converts the number 65 to the letter A and assigns it to the variable myVar: myVar = chr(65);

See also

fromCharCode (String.fromCharCode method)

clearInterval function
clearInterval(intervalID:Number) : Void

Cancels an interval created by a call to setInterval().

Availability

Flash Lite 2.0

Parameters

intervalID:Number - A numeric (integer) identifier returned from a call to setInterval().

Example

The following example first sets and then clears an interval call:

 function callback() {
 trace("interval called: "+getTimer()+" ms.");
 }

 var intervalID:Number = setInterval(callback, 1000);

You need to clear the interval when you have finished using the function. Create a button called clearInt_btn and

use the following ActionScript to clear setInterval():

 clearInt_btn.onRelease = function(){
 clearInterval(intervalID);
 trace("cleared interval");
 };

See also

setInterval function

duplicateMovieClip function
duplicateMovieClip(target:String, newname:String, depth:Number) : Void
duplicateMovieClip(target:MovieClip, newname:String, depth:Number) : Void

16FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Creates an instance of a movie clip while the SWF file is playing. The playhead in duplicate movie clips always starts

at Frame 1, regardless of where the playhead is in the original movie clip. Variables in the original movie clip are not

copied into the duplicate movie clip. Use the removeMovieClip() function or method to delete a movie clip instance

created with duplicateMovieClip().

Availability

Flash Lite 2.0

Parameters

target:Object - The target path of the movie clip to duplicate. This parameter can be either a string (e.g. "my_mc")

or a direct reference to the movie clip instance (e.g. my_mc). Parameters that can accept more than one data type are

listed as type Object.

newname:String - A unique identifier for the duplicated movie clip.

depth:Number - A unique depth level for the duplicated movie clip. The depth level is a stacking order for duplicated

movie clips. This stacking order is similar to the stacking order of layers in the Timeline; movie clips with a lower depth

level are hidden under clips with a higher stacking order. You must assign each duplicated movie clip a unique depth

level to prevent it from replacing SWF files on occupied depths.

Example

In the following example, a new movie clip instance is created called img_mc. An image is loaded into the movie clip,

and then the img_mc clip is duplicated. The duplicated clip is called newImg_mc, and this new clip is moved on the Stage

so it does not overlap the original clip, and the same image is loaded into the second clip.

 this.createEmptyMovieClip("img_mc", this.getNextHighestDepth());
 img_mc.loadMovie("http://www.helpexamples.com/flash/images/image1.jpg");
 duplicateMovieClip(img_mc, "newImg_mc", this.getNextHighestDepth());
 newImg_mc._x = 200;
 newImg_mc.loadMovie("http://www.helpexamples.com/flash/images/image1.jpg");

To remove the duplicate movie clip, you could add this code for a button called myButton_btn.

 this.myButton_btn.onRelease = function(){
 removeMovieClip(newImg_mc);
 };

See also

removeMovieClip function, duplicateMovieClip (MovieClip.duplicateMovieClip method),

removeMovieClip (MovieClip.removeMovieClip method)

escape function
escape(expression:String) : String

Converts the parameter to a string and encodes it in a URL-encoded format, where all nonalphanumeric characters

are replaced with % hexadecimal sequences. When used in a URL-encoded string, the percentage symbol (%) is used

to introduce escape characters, and is not equivalent to the modulo operator (%).

Availability

Flash Lite 2.0

17FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Parameters

expression:String - The expression to convert into a string and encode in a URL-encoded format.

Returns

String - URL-encoded string.

Example

The following code produces the result someuser%40somedomain%2Ecom:

 var email:String = "someuser@somedomain.com";
 trace(escape(email));

In this example, the at symbol (@) was replaced with %40 and the dot symbol (.) was replaced with %2E. This is useful

if you're trying to pass information to a remote server and the data has special characters in it (for example, & or ?), as

shown in the following code:

 var redirectUrl = "http://www.somedomain.com?loggedin=true&username=Gus";
 getURL("http://www.myothersite.com?returnurl="+ escape(redirectUrl));

See also

unescape function

eval function
eval(expression:Object) : Objecteval(expression:String) : Object

Accesses variables, properties, objects, or movie clips by name. If expression is a variable or a property, the value of the

variable or property is returned. If expression is an object or movie clip, a reference to the object or movie clip is

returned. If the element named in expression cannot be found, undefined is returned.

In Flash 4, eval() was used to simulate arrays; in Flash 5 or later, you should use the Array class to simulate arrays.

In Flash 4, you can also use eval() to dynamically set and retrieve the value of a variable or instance name. However,

you can also do this with the array access operator ([]).

In Flash 5 or later, you cannot use eval() to dynamically set and retrieve the value of a variable or instance name,

because you cannot useeval() on the left side of an equation. For example, replace the code

eval ("var" + i) = "first";

with this:

this["var"+i] = "first"

or this:

set ("var" + i, "first");

Availability

Flash Lite 1.0

Parameters

expression:Object - The name of a variable, property, object, or movie clip to retrieve. This parameter can be either

a string or a direct reference to the object instance (i.e., use of quotation marks (" ") is optional.)

18FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Returns

Object - A value, reference to an object or movie clip, or undefined.

Example

The following example uses eval() to set properties for dynamically named movie clips. This ActionScript sets the

_rotation property for three movie clips, called square1_mc, square2_mc, and square3_mc.

 for (var i = 1; i <= 3; i++) {
 setProperty(eval("square"+i+"_mc"), _rotation, 5);
 }

You can also use the following ActionScript:

 for (var i = 1; i <= 3; i++) {
 this["square"+i+"_mc"]._rotation = -5;
 }

See also

Array, set variable statement

fscommand function
fscommand(command:String, parameters:String) : Void

The fscommand() function lets a SWF file communicate with the Flash Lite player or the environment for a mobile

device (such as an operating system). The parameters define the name of the application being started and the

parameters to it, separated by commas.

19FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 1.1

Parameters

command:String - A string passed to the host application for any use, or a command passed to the Flash Lite player.

parameters:String - A string passed to the host application for any use, or a value passed to the Flash Lite player.

Example

In the following example, the fscommand() function opens wap.yahoo.com on the services/Web browser on Series 60

phones:

 on(keyPress "9") {
 status = fscommand("launch", "z:\\system\apps\browser\browser.app,http://wap.yahoo.com");
 }

fscommand2 function
fscommand2(command:String, parameter1:String,...parameterN:String) : Void

Lets the SWF file communicate with the Flash Lite player or a host application on a mobile device.

Command Parameters Purpose

launch application-path,
arg1, arg2,..., argn

This command launches another application on a mobile

device. The name of the application and its parameters are

passed in as a single argument.

Note: This feature is operating-system dependent. Please

use this command carefully as it can call on the host device

to perform an unsupported operation. Using it in this way

could cause the host device to crash.

This command is supported only when the Flash Lite

player is running in stand-alone mode. It is not supported

when the player is running in the context of another

application (for example, as a plug-in to a browser).

activateTextFiel
d

"" (ignored) This command asynchronously activates the currently

selected text field, making it active for user edits. Because

it behaves asynchronously, this command is processed at

the end of the frame. ActionScript that immediately

follows the call to fscommand() executes first. If no text

field is selected when the command is processed, nothing

happens. This command gives focus to a text field

previously passed to the Selection.setFocus()

method and activates the text field for editing. This

command has an effect only when the handset supports

inline text editing.

This command can be called as part of the

Selection.onSetFocus() event listener callback. This

causes text fields to become active for editing when they

are selected.

Note: Because the fscommand() function is executed

asynchronously, the text field does not immediately

become active; it becomes active at the end of the frame.

20FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

To use fscommand2() to send a message to the Flash Lite player, you must use predefined commands and parameters.

See the "fscommand2 Commands" section under "ActionScript language elements" for the values you can specify for

the fscommand() function's commands and parameters. These values control SWF files that are playing in the Flash

Lite player.

The fscommand2() function is similar to the fscommand() function, with the following differences:

• The fscommand2()function can take any number of arguments. By contrast, fscommand() can take only one

argument.

• Flash Lite executes fscommand2() immediately (in other words, within the frame), whereas fscommand() is

executed at the end of the frame being processed.

• The fscommand2() function returns a value that can be used to report success, failure, or the result of the

command.

Note: None of the fscommand2() commands are available in Web players.

Availability

Flash Lite 1.1

Deprecated fscommand2() commands

Some fscommand2() commands from Flash Lite 1.1 have been deprecated in Flash Lite 2.0. The following table shows

the deprecated fscommand2() commands:

Parameters

command:String - A string passed to the host application for any use, or a command passed to the Flash Lite player.

parameters:String - A string passed to the host application for any use, or a value passed to the Flash Lite player.

Command Deprecated By

Escape escape global function

GetDateDay getDate() method of Date object

GetDateMonth getMonth() method of Date object

GetDateWeekday getDay() method of Date object

GetDateYear getYear() method of Date object

GetLanguage System.capabilities.language property

GetLocaleLongDate getLocaleLongDate() method of Date object

GetLocaleShortDate getLocaleShortDate() method of Date object

GetLocaleTime getLocaleTime() method of Date object

GetTimeHours getHours() method of Date object

GetTimeMinutes getMinutes() method of Date object

GetTimeSeconds getSeconds() method of Date object

GetTimeZoneOffset getTimeZoneOffset() method of Date object

SetQuality MovieClip._quality

Unescape unescape() global function

21FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

getProperty function
getProperty(my_mc:Object, property:Object) : Object

Deprecated since Flash Player 5. This function was deprecated in favor of the dot syntax, which was introduced in

Flash Player 5.

Returns the value of the specified property for the movie clip my_mc.

Availability

Flash Lite 1.0

Parameters

my_mc:Object - The instance name of a movie clip for which the property is being retrieved.

property:Object - A property of a movie clip.

Returns

Object - The value of the specified property.

Example

The following example creates a new movie clip someClip_mc and shows the alpha value (_alpha) for the movie clip

someClip_mc in the Output panel:

 this.createEmptyMovieClip("someClip_mc", 999);
 trace("The alpha of "+getProperty(someClip_mc, _name)+" is: "+getProperty(someClip_mc,
_alpha));

getTimer function
getTimer() : Number

Returns the number of milliseconds that have elapsed since the SWF file started playing.

Availability

Flash Lite 1.0

Returns

Number - The number of milliseconds that have elapsed since the SWF file started playing.

Example

In the following example, the getTimer() and setInterval() functions are used to create a simple timer:

 this.createTextField("timer_txt", this.getNextHighestDepth(), 0, 0, 100, 22);
 function updateTimer():Void {
 timer_txt.text = getTimer();
 }

 var intervalID:Number = setInterval(updateTimer, 100);

getURL function
getURL(url:String [, window:String [, method:String]]) : Void

22FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Loads a document from a specific URL into a window or passes variables to another application at a defined URL. To

test this function, make sure the file to be loaded is at the specified location. To use an absolute URL (for example,

http://www.myserver.com), you need a network connection.

Note: This function is not supported for BREW devices.

Availability

Flash Lite 1.0

Parameters

url:String - The URL from which to obtain the document.

window:String [optional] - Specifies the window or HTML frame into which the document should load. You can

enter the name of a specific window or select from the following reserved target names:

• _self specifies the current frame in the current window.

• _blank specifies a new window.

• _parent specifies the parent of the current frame.

• _top specifies the top-level frame in the current window.

method:String [optional] - A GET or POST method for sending variables. If there are no variables, omit this

parameter. The GET method appends the variables to the end of the URL, and is used for small numbers of variables.

The POST method sends the variables in a separate HTTP header and is used for sending long strings of variables.

Example

This example loads an image into a movie clip. When the image is clicked, a new URL is loaded in a new browser

window.

 var listenerObject:Object = new Object();
 listenerObject.onLoadInit = function(target_mc:MovieClip) {
 target_mc.onRelease = function() {
 getURL("http://www.macromedia.com/software/flash/flashpro/", "_blank");
 };
 };
 var logo:MovieClipLoader = new MovieClipLoader();
 logo.addListener(listenerObject);
 logo.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",
 this.createEmptyMovieClip("macromedia_mc", this.getNextHighestDepth()));

In the following example, getURL() is used to send an e-mail message:

 myBtn_btn.onRelease = function(){
 getURL("mailto:you@somedomain.com");
 };

You can also use GET or POST for sending variables. The following example uses GET to append variables to a URL:

 var firstName:String = "Gus";
 var lastName:String = "Richardson";
 var age:Number = 92;
 myBtn_btn.onRelease = function() {
 getURL("http://www.macromedia.com", "_blank", "GET");
 };

The following ActionScript uses POST to send variables in the HTTP header. Make sure you test your documents in a

browser window, because otherwise your variables are sent using GET:

23FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var firstName:String = "Gus";
 var lastName:String = "Richardson";
 var age:Number = 92;
 getURL("http://www.macromedia.com", "_blank", "POST");

See also

loadVariables function, send (XML.send method), sendAndLoad (XML.sendAndLoad method)

getVersion function
getVersion() : String

Returns a string containing Flash Player version and platform information. The getVersion function returns

information only for Flash Player 5 or later versions of Flash Player.

Availability

Flash Lite 2.0

Returns

String - A string containing Flash Player version and platform information.

Example

The following examples trace the version number of the Flash Player playing the SWF file:

 var flashVersion:String = getVersion();
 trace(flashVersion); // output: WIN 8,0,1,0
 trace($version); // output: WIN 8,0,1,0
 trace(System.capabilities.version); // output: WIN 8,0,1,0

The following string is returned by the getVersion function:

 WIN 8,0,1,0

This returned string indicates that the platform is Microsoft Windows, and the version number of Flash Player is major

version 8, minor version 1 (8.1).

See also

os (capabilities.os property), version (capabilities.version property)

gotoAndPlay function
gotoAndPlay([scene:String,] frame:Object) : Void

Sends the playhead to the specified frame in a scene and plays from that frame. If no scene is specified, the playhead

goes to the specified frame in the current scene. You can use the scene parameter only on the root Timeline, not within

Timelines for movie clips or other objects in the document.

Availability

Flash Lite 1.0

Parameters

scene:String [optional] - A string specifying the name of the scene to which the playhead is sent.

24FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

frame:Object - A number representing the frame number, or a string representing the label of the frame, to which

the playhead is sent.

Example

In the following example, a document has two scenes: sceneOne and sceneTwo. Scene one contains a frame label on

Frame 10 called newFrame and two buttons, myBtn_btn and myOtherBtn_btn. This ActionScript is placed on Frame

1, Scene 1 of the main Timeline.

 stop();
 myBtn_btn.onRelease = function(){
 gotoAndPlay("newFrame");
 };

 myOtherBtn_btn.onRelease = function(){
 gotoAndPlay("sceneTwo", 1);
 };

When the user clicks the buttons, the playhead moves to the specified location and continues playing.

See also

gotoAndPlay (MovieClip.gotoAndPlay method), nextFrame function, play function, prevFrame function

gotoAndStop function
gotoAndStop([scene:String,] frame:Object) : Void

Sends the playhead to the specified frame in a scene and stops it. If no scene is specified, the playhead is sent to the

frame in the current scene.You can use the scene parameter only on the root Timeline, not within Timelines for movie

clips or other objects in the document.

Availability

Flash Lite 1.0

Parameters

scene:String [optional] - A string specifying the name of the scene to which the playhead is sent.

frame:Object - A number representing the frame number, or a string representing the label of the frame, to which

the playhead is sent.

Example

In the following example, a document has two scenes: sceneOne and sceneTwo. Scene one contains a frame label on

Frame 10 called newFrame, and two buttons, myBtn_btn and myOtherBtn_btn. This ActionScript is placed on Frame

1, Scene 1 of the main Timeline:

 stop();

 myBtn_btn.onRelease = function(){
 gotoAndStop("newFrame");
 };

 myOtherBtn_btn.onRelease = function(){
 gotoAndStop("sceneTwo", 1);
 };

25FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

When the user clicks the buttons, the playhead moves to the specified location and stops.

See also

gotoAndStop (MovieClip.gotoAndStop method), stop function, play function, gotoAndPlay function

ifFrameLoaded function
ifFrameLoaded([scene,] frame) { statement(s); }

Deprecated since Flash Player 5. This function has been deprecated. Adobe recommends that you use the

MovieClip._framesloaded property.

Checks whether the contents of a specific frame are available locally. Use ifFrameLoaded to start playing a simple

animation while the rest of the SWF file downloads to the local computer. The difference between using

_framesloaded and ifFrameLoaded is that _framesloaded lets you add custom if or else statements.

Availability

Flash Lite 1.0

Parameters

scene:String [optional] - A string that specifies the name of the scene that must be loaded.

frame:Object - The frame number or frame label that must be loaded before the next statement is executed.

statement(s):Object - The instructions to execute if the specified scene, or scene and frame, are loaded.

See also

addListener (MovieClipLoader.addListener method)

int function
int(value) : Number

Deprecated since Flash Player 5. This function was deprecated in favor of Math.round().

Converts a decimal number to an integer value by truncating the decimal value. This function is equivalent to

Math.floor() if the value parameter is positive and Math.ceil() if the value parameter is negative.

Availability

Flash Lite 1.0

Parameters

value:Number - A number to be rounded to an integer.

Returns

Number - The truncated integer value.

See also

round (Math.round method), floor (Math.floor method), ceil (Math.ceil method)

26FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

isFinite function
isFinite(expression:Object) : Boolean

Evaluates expression and returns true if it is a finite number or false if it is infinity or negative infinity. The presence

of infinity or negative infinity indicates a mathematical error condition such as division by 0.

Availability

Flash Lite 2.0

Parameters

expression:Object - A Boolean value, variable, or other expression to be evaluated.

Returns

Boolean - A Boolean value.

Example

The following example shows return values for isFinite:

 isFinite(56)
 // returns true

 isFinite(Number.POSITIVE_INFINITY)
 //returns false

isNaN function
isNaN(expression:Object) : Boolean

Evaluates the parameter and returns true if the value is NaN(not a number). This function is useful for checking

whether a mathematical expression evaluates successfully to a number.

Availability

Flash Lite 2.0

Parameters

expression:Object - A Boolean, variable, or other expression to be evaluated.

Returns

Boolean - A Boolean value.

Example

The following code illustrates return values for the isNaN() function:

 trace(isNaN("Tree"));
 // returns true

 trace(isNaN(56));
 // returns false

 trace(isNaN(Number.POSITIVE_INFINITY))
 // returns false

27FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

The following example shows how you can use isNAN() to check whether a mathematical expression contains an

error:

 var dividend:Number;
 var divisor:Number;
 divisor = 1;
 trace(isNaN(dividend/divisor));
 // output: true
 // The output is true because the variable dividend is undefined.
 // Do not use isNAN() to check for division by 0 because it will return false.
 // A positive number divided by 0 equals Infinity (Number.POSITIVE_INFINITY).
 // A negative number divided by 0 equals -Infinity (Number.NEGATIVE_INFINITY).

See also

NaN constant, NaN (Number.NaN property)

length function
length(expression)length(variable)

Deprecated since Flash Player 5. This function, along with all the string functions, has been deprecated. Adobe

recommends that you use the methods of the String class and the String.length property to perform the same

operations.

Returns the length of the specified string or variable.

Availability

Flash Lite 1.0

Parameters

expression:String - A string.

variable:Object - The name of a variable.

Returns

Number - The length of the specified string or variable.

Example

The following example returns the length of the string "Hello": length("Hello"); The result is 5.

See also

" string delimiter operator, String, length (String.length property)

loadMovie function
loadMovie(url:String, target:Object [, method:String]) : Void
loadMovie(url:String, target:String [, method:String]) : Void

Loads a SWF or JPEG file into Flash Player while the original SWF file plays. JPEG files saved in progressive format

are not supported.

If you want to monitor the progress of the download, use MovieClipLoader.loadClip() instead of this function.

28FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

The loadMovie() function lets you display several SWF files at once and switch among SWF files without loading

another HTML document. Without the loadMovie() function, Flash Player displays a single SWF file.

If you want to load a SWF or JPEG file into a specific level, use loadMovieNum() instead of loadMovie().

When a SWF file is loaded into a target movie clip, you can use the target path of that movie clip to target the loaded

SWF file. A SWF file or image loaded into a target inherits the position, rotation, and scale properties of the targeted

movie clip. The upper left corner of the loaded image or SWF file aligns with the registration point of the targeted

movie clip. Alternatively, if the target is the root Timeline, the upper left corner of the image or SWF file aligns with

the upper left corner of the Stage.

Use unloadMovie() to remove SWF files that were loaded with loadMovie().

Availability

Flash Lite 1.1

Parameters

url:String - The absolute or relative URL of the SWF or JPEG file to be loaded. A relative path must be relative to

the SWF file at level 0. Absolute URLs must include the protocol reference, such as http:// or file:///.

target:Object - A reference to a movie clip object or a string representing the path to a target movie clip. The target

movie clip is replaced by the loaded SWF file or image.

method:String [optional] - Specifies an HTTP method for sending variables. The parameter must be the string GET

or POST. If there are no variables to be sent, omit this parameter. The GET method appends the variables to the end of

the URL and is used for small numbers of variables. The POST method sends the variables in a separate HTTP header

and is used for long strings of variables.

Example

Usage 1: The following example loads the SWF file circle.swf from the same directory and replaces a movie clip called

mySquare that already exists on the Stage:

 loadMovie("circle.swf", mySquare);
 // equivalent statement (Usage 1): loadMovie("circle.swf", _level0.mySquare);
 // equivalent statement (Usage 2): loadMovie("circle.swf", "mySquare");

The following example loads the SWF file circle.swf from the same directory, but replaces the main movie clip instead

of the mySquare movie clip:

 loadMovie("circle.swf", this);
 // Note that using "this" as a string for the target parameter will not work
 // equivalent statement (Usage 2): loadMovie("circle.swf", "_level0");

The following loadMovie() statement loads the SWF file sub.swf from the same directory into a new movie clip called

logo_mc that's created using createEmptyMovieClip():

 this.createEmptyMovieClip("logo_mc", 999);
 loadMovie("sub.swf", logo_mc);

You could add the following code to load a JPEG image called image1.jpg from the same directory as the SWF file

loading sub.swf. The JPEG is loaded when you click a button called myBtn_btn. This code loads the JPEG into

logo_mc. Therefore, it will replace sub.swf with the JPEG image.

 myBtn_btn.onRelease = function(){
 loadMovie("image1.jpg", logo_mc);
 };

29FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Usage 2: The following example loads the SWF file circle.swf from the same directory and replaces a movie clip called

mySquare that already exists on the Stage:

 loadMovie("circle.swf", "mySquare");

See also

_level property, loadMovieNum function, loadMovie (MovieClip.loadMovie method), loadClip

(MovieClipLoader.loadClip method)unloadMovie function

loadMovieNum function
loadMovieNum(url:String, level:Number [, method:String]) : Void

Loads a SWF or JPEG file into a level in Flash Player while the originally loaded SWF file plays.

If you want to monitor the progress of the download, use MovieClipLoader.loadClip() instead of this function.

Normally, Flash Player displays a single SWF file and then closes. The loadMovieNum() action lets you display several

SWF files at once and switch among SWF files without loading another HTML document.

If you want to specify a target instead of a level, use loadMovie() instead of loadMovieNum().

Flash Player has a stacking order of levels starting with level 0. These levels are like layers of acetate; they are

transparent except for the objects on each level. When you use loadMovieNum(), you must specify a level in Flash

Player into which the SWF file will load. When a SWF file is loaded into a level, you can use the syntax, _levelN, where

N is the level number, to target the SWF file.

When you load a SWF file, you can specify any level number and you can load SWF files into a level that already has

a SWF file loaded into it. If you do, the new SWF file will replace the existing SWF file. If you load a SWF file into level

0, every level in Flash Player is unloaded, and level 0 is replaced with the new file. The SWF file in level 0 sets the frame

rate, background color, and frame size for all other loaded SWF files.

The loadMovieNum() action also lets you load JPEG files into a SWF file while it plays. For images and SWF files, the

upper left corner of the image aligns with the upper left corner of the Stage when the file loads. Also in both cases, the

loaded file inherits rotation and scaling, and the original content is overwritten in the specified level.

Note: JPEG files saved in progressive format are not supported.

Use unloadMovieNum() to remove SWF files or images that were loaded with loadMovieNum().

Availability

Flash Lite 1.1

Parameters

url:String - The absolute or relative URL of the SWF or JPEG file to be loaded. A relative path must be relative to

the SWF file at level 0. For use in the stand-alone Flash Player or for testing in test mode in the Flash authoring

application, all SWF files must be stored in the same folder and the filenames cannot include folder or disk drive

specifications.

level:Number - An integer specifying the level in Flash Player into which the SWF file will load.

method:String [optional] - Specifies an HTTP method for sending variables. The parameter must be the string GET

or POST. If there are no variables to be sent, omit this parameter. The GET method appends the variables to the end of

the URL and is used for small numbers of variables. The POST method sends the variables in a separate HTTP header

and is used for long strings of variables.

30FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

The following example loads the JPEG image tim.jpg into level 2 of Flash Player:

loadMovieNum("http://www.helpexamples.com/flash/images/image1.jpg", 2);

See also

unloadMovieNum function, loadMovie function, loadClip (MovieClipLoader.loadClip method), _level

property

loadVariables function
loadVariables(url:String, target:Object [, method:String]) : Void

Reads data from an external file, such as a text file or text generated by ColdFusion, a CGI script, Active Server Pages

(ASP), PHP, or Perl script, and sets the values for variables in a target movie clip. This action can also be used to update

variables in the active SWF file with new values.

The text at the specified URL must be in the standard MIME format application/x-www-form-urlencoded (a standard

format used by CGI scripts). Any number of variables can be specified. For example, the following phrase defines

several variables:

company=Macromedia&address=600+Townsend&city=San+Francisco&zip=94103

In SWF files running in a version earlier than Flash Player 7, url must be in the same superdomain as the SWF file that

is issuing this call. A superdomain is derived by removing the leftmost component of a file's URL. For example, a SWF

file at www.someDomain.com can load data from a source at store.someDomain.com because both files are in the

same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later, url must be in exactly the same domain as the SWF file

that is issuing this call (see "Flash Player security features" in Using ActionScript in Flash). For example, a SWF file at

www.someDomain.com can load data only from sources that are also at www.someDomain.com. If you want to load

data from a different domain, you can place a cross-domain policy file on the server hosting the SWF file that is being

accessed. For more information, see "About allowing cross-domain data loading" in Using ActionScript in Flash.

If you want to load variables into a specific level, use loadVariablesNum() instead of loadVariables().

Availability

Flash Lite 1.1

Parameters

url:String - An absolute or relative URL where the variables are located. If the SWF file issuing this call is running

in a web browser, url must be in the same domain as the SWF file; for details, see the Description section.

target:Object - The target path to a movie clip that receives the loaded variables.

method:String [optional] - Specifies an HTTP method for sending variables. The parameter must be the string GET

or POST. If there are no variables to be sent, omit this parameter. The GET method appends the variables to the end of

the URL and is used for small numbers of variables. The POST method sends the variables in a separate HTTP header

and is used for long strings of variables.

Example

The following example loads information from a text file called params.txt into the target_mc movie clip that is

created using createEmptyMovieClip(). The setInterval() function is used to check the loading progress. The

script checks for a variable in the params.txt file named done.

31FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 this.createEmptyMovieClip("target_mc", this.getNextHighestDepth());
 loadVariables("params.txt", target_mc);
 function checkParamsLoaded() {
 if (target_mc.done == undefined) {
 trace("not yet.");
 } else {
 trace("finished loading. killing interval.");
 trace("-------------");
 for (i in target_mc) {
 trace(i+": "+target_mc[i]);
 }
 trace("-------------");
 clearInterval(param_interval);
 }
 }
 var param_interval = setInterval(checkParamsLoaded, 100);

The external file, params.txt, includes the following text:

 var1="hello"&var2="goodbye"&done="done"

See also

loadVariablesNum function, loadMovie function, loadMovieNum function, getURL function, loadMovie

(MovieClip.loadMovie method)loadVariables (MovieClip.loadVariables method), load

(LoadVars.load method)

loadVariablesNum function
loadVariablesNum(url:String, level:Number [, method:String]) : Void

Reads data from an external file, such as a text file or text generated by ColdFusion, a CGI script, ASP, PHP, or a Perl

script, and sets the values for variables in a Flash Player level. You can also use this function to update variables in the

active SWF file with new values.

The text at the specified URL must be in the standard MIME format application/x-www-form-urlencoded (a standard

format used by CGI scripts). Any number of variables can be specified. For example, the following phrase defines

several variables:

company=Macromedia&address=601+Townsend&city=San+Francisco&zip=94103

In SWF files running in a version of the player earlier than Flash Player 7, url must be in the same superdomain as the

SWF file that is issuing this call. A superdomain is derived by removing the leftmost component of a file's URL. For

example, a SWF file at www.someDomain.com can load data from a source at store.someDomain.com, because both

files are in the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later, url must be in exactly the same domain as the SWF file

that is issuing this call (see "Flash Player security features" in Using ActionScript in Flash). For example, a SWF file at

www.someDomain.com can load data only from sources that are also at www.someDomain.com. If you want to load

data from a different domain, you can place a cross-domain policy file on the server hosting the SWF file. For more

information, see "About allowing cross-domain data loading" in Using ActionScript in Flash.

If you want to load variables into a target MovieClip, use loadVariables() instead of loadVariablesNum().

Availability

Flash Lite 1.1

32FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Parameters

url:String - An absolute or relative URL where the variables are located. If the SWF file issuing this call is running

in a web browser, url must be in the same domain as the SWF file; for details, see the Description section.

level:Number - An integer specifying the level in Flash Player to receive the variables.

method:String [optional] - Specifies an HTTP method for sending variables. The parameter must be the string GET

or POST. If there are no variables to be sent, omit this parameter. The GET method appends the variables to the end of

the URL and is used for small numbers of variables. The POST method sends the variables in a separate HTTP header

and is used for long strings of variables.

Example

The following example loads information from a text file called params.txt into the main Timeline of the SWF at level

2 in Flash Player. The variable names of the text fields must match the variable names in the params.txt file. The

setInterval() function is used to check the progress of the data being loaded into the SWF. The script checks for a

variable in the params.txt file named done.

 loadVariablesNum("params.txt", 2);
 function checkParamsLoaded() {
 if (_level2.done == undefined) {
 trace("not yet.");
 } else {
 trace("finished loading. killing interval.");
 trace("-------------");
 for (i in _level2) {
 trace(i+": "+_level2[i]);
 }
 trace("-------------");
 clearInterval(param_interval);
 }
 }
 var param_interval = setInterval(checkParamsLoaded, 100);

 // Params.txt includes the following text
 var1="hello"&var2="goodbye"&done="done"

See also

getURL function, loadMovie function, loadMovieNum function, loadVariables function, loadMovie

(MovieClip.loadMovie method)loadVariables (MovieClip.loadVariables method), load

(LoadVars.load method)

mbchr function
mbchr(number)

Deprecated since Flash Player 5. This function was deprecated in favor of the String.fromCharCode() method.

Converts an ASCII code number to a multibyte character.

Availability

Flash Lite 1.0

Parameters

number:Number - The number to convert to a multibyte character.

33FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

See also

fromCharCode (String.fromCharCode method)

mblength function
mblength(string) : Number

Deprecated since Flash Player 5. This function was deprecated in favor of the String.length property.

Returns the length of the multibyte character string.

Availability

Flash Lite 1.0

Parameters

string:String - The string to measure.

Returns

Number - The length of the multibyte character string.

See also

String, length (String.length property)

mbord function
mbord(character) : Number

Deprecated since Flash Player 5. This function was deprecated in favor of String.charCodeAt() method.

Converts the specified character to a multibyte number.

Availability

Flash Lite 1.0

Parameters

character:String - The character to convert to a multibyte number.

Returns

Number - The converted character.

See also

charCodeAt (String.charCodeAt method)

mbsubstring function
mbsubstring(value, index, count) : String

Deprecated since Flash Player 5. This function was deprecated in favor of String.substr() method.

Extracts a new multibyte character string from a multibyte character string.

34FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 1.0

Parameters

value:String - The multibyte string from which to extract a new multibyte string.

index:Number - The number of the first character to extract.

count:Number - The number of characters to include in the extracted string, not including the index character.

Returns

String - The string extracted from the multibyte character string.

See also

substr (String.substr method)

nextFrame function
nextFrame() : Void

Sends the playhead to the next frame.

Availability

Flash Lite 1.0

Example

In the following example, when the user presses the Right or Down Arrow key, the playhead goes to the next frame

and stops. If the user presses the Left or Up Arrow key, the playhead goes to the previous frame and stops. The listener

is initialized to wait for the arrow key to be pressed, and the init variable is used to prevent the listener from being

redefined if the playhead returns to Frame 1.

 stop();

 if (init == undefined) {
 someListener = new Object();
 someListener.onKeyDown = function() {
 if (Key.isDown(Key.LEFT) || Key.isDown(Key.UP)) {
 _level0.prevFrame();
 } else if (Key.isDown(Key.RIGHT) || Key.isDown(Key.DOWN)) {
 _level0.nextFrame();
 }
 };
 Key.addListener(someListener);
 init = 1;
 }

See also

prevFrame function

nextScene function
nextScene() : Void

35FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Sends the playhead to Frame 1 of the next scene.

Availability

Flash Lite 1.0

Example

In the following example, when a user clicks the button that is created at runtime, the playhead is sent to Frame 1 of

the next scene. Create two scenes, and enter the following ActionScript on Frame 1 of Scene 1.

 stop();

 if (init == undefined) {
 this.createEmptyMovieClip("nextscene_mc", this.getNextHighestDepth());
 nextscene_mc.createTextField("nextscene_txt", this.getNextHighestDepth(), 200, 0, 100,
22);
 nextscene_mc.nextscene_txt.autoSize = true;
 nextscene_mc.nextscene_txt.border = true;
 nextscene_mc.nextscene_txt.text = "Next Scene";
 this.createEmptyMovieClip("prevscene_mc", this.getNextHighestDepth());
 prevscene_mc.createTextField("prevscene_txt", this.getNextHighestDepth(), 00, 0, 100, 22);
 prevscene_mc.prevscene_txt.autoSize = true;
 prevscene_mc.prevscene_txt.border = true;
 prevscene_mc.prevscene_txt.text = "Prev Scene";
 nextscene_mc.onRelease = function() {
 nextScene();
 };

 prevscene_mc.onRelease = function() {
 prevScene();
 };

 init = true;
 }

Make sure you place a stop() action on Frame 1 of Scene 2.

See also

prevScene function

Number function
Number(expression) : Number

Converts the parameter expression to a number and returns a value as described in the following list:

• If expression is a number, the return value is expression.

• If expression is a Boolean value, the return value is 1 if expression is true, 0 if expression is false.

• If expression is a string, the function attempts to parse expression as a decimal number with an optional trailing

exponent (that is, 1.57505e-3).

• If expression is NaN, the return value is NaN.

• If expression is undefined, the return value is as follows:

• - In files published for Flash Player 6 or earlier, the result is 0.

36FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

• - In files published for Flash Player 7 or later, the result is NaN.

Availability

Flash Lite 2.0

Parameters

expression:Object - An expression to convert to a number. Numbers or strings that begin with 0x are interpreted

as hexadecimal values. Numbers or strings that begin with 0 are interpreted as octal values.

Returns

Number - A number or NaN (not a number).

Example

In the following example, a text field is created on the Stage at runtime:

 this.createTextField("counter_txt", this.getNextHighestDepth(), 0, 0, 100, 22);
 counter_txt.autoSize = true;
 counter_txt.text = 0;
 function incrementInterval():Void {
 var counter:Number = counter_txt.text;
 // Without the Number() function, Flash would concatenate the value instead
 // of adding values. You could also use "counter_txt.text++;"
 counter_txt.text = Number(counter) + 1;
 }
 var intervalID:Number = setInterval(incrementInterval, 1000);

See also

NaN constant, Number, parseInt function, parseFloat function

Object function
Object([value]) : Object

Creates a new empty object or converts the specified number, string, or Boolean value to an object. This command is

equivalent to creating an object using the Object constructor (see "Constructor for the Object class").

Availability

Flash Lite 2.0

Parameters

value:Object [optional] - A number, string, or Boolean value.

Returns

Object - An object.

Example

In the following example, a new empty object is created, and then the object is populated with values:

37FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var company:Object = new Object();
 company.name = "Macromedia, Inc.";
 company.address = "600 Townsend Street";
 company.city = "San Francisco";
 company.state = "CA";
 company.postal = "94103";
 for (var i in company) {
 trace("company."+i+" = "+company[i]);
 }

See also

Object

on handler
on(mouseEvent:Object) { // your statements here }

Specifies the mouse event or keypress that triggers an action.

Availability

Flash Lite 2.0

Parameters

mouseEvent:Object - A mouseEvent is a trigger called an event. When the event occurs, the statements following it

within curly braces ({ }) execute. Any of the following values can be specified for the mouseEvent parameter:

• press The mouse button is pressed while the pointer is over the button.

• release The mouse button is released while the pointer is over the button.

• releaseOutside While the pointer is over the button, the mouse button is pressed, rolled outside the button area,

and released. Both the press and the dragOut events always precede a releaseOutside event. (This event is

supported in Flash Lite only if System.capabilities.hasMouse is true or System.capabilities.hasStylus

is true.)

• rollOut The pointer rolls outside the button area. (This event is supported in Flash Lite only if

System.capabilities.hasMouse is true or System.capabilities.hasStylus is true.)

• rollOver The mouse pointer rolls over the button.

• dragOut While the pointer is over the button, the mouse button is pressed and then rolls outside the button area.

• dragOver While the pointer is over the button, the mouse button has been pressed, then rolled outside the button,

and then rolled back over the button.

• keyPress "<key> " The specified keyboard key is pressed. For the key portion of the parameter, specify a key

constant, as shown in the code hinting in the Actions panel. You can use this parameter to intercept a key press,

that is, to override any built-in behavior for the specified key. The button can be anywhere in your application, on

or off the Stage. One limitation of this technique is that you can't apply the on() handler at runtime; you must do

it at authoring time. Make sure that you select Control > Disable Keyboard Shortcuts, or certain keys with built-in

behavior won't be overridden when you test the application using Control > Test Movie.

For a list of key constants, see the Key class.

38FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

In the following script, the startDrag() function executes when the mouse is pressed, and the conditional script is

executed when the mouse is released and the object is dropped:

 on (press) {
 startDrag(this);
 }
 on (release) {
 trace("X:"+this._x);
 trace("Y:"+this._y);
 stopDrag();
 }

See also

onClipEvent handler, Key

onClipEvent handler
onClipEvent(movieEvent:Object) { // your statements here }

Triggers actions defined for a specific instance of a movie clip.

Availability

Flash Lite 2.0

Parameters

movieEvent:Object - The movieEvent is a trigger called an event. When the event occurs, the statements following it

within curly braces ({}) are executed. Any of the following values can be specified for the movieEvent parameter:

• load The action is initiated as soon as the movie clip is instantiated and appears in the Timeline.

• unload The action is initiated in the first frame after the movie clip is removed from the Timeline. The actions

associated with the Unload movie clip event are processed before any actions are attached to the affected frame.

• enterFrame The action is triggered continually at the frame rate of the movie clip. The actions associated with the

enterFrame clip event are processed before any frame actions that are attached to the affected frames.

• mouseMove The action is initiated every time the mouse is moved. Use the _xmouse and _ymouse properties to

determine the current mouse position. (This event is supported in Flash Lite only if

System.capabilities.hasMouse is true.)

• mouseDown The action is initiated when the left mouse button is pressed. (This event is supported in Flash Lite only

if System.capabilities.hasMouse is true or System.capabilities.hasStylus is true.)

• mouseUp The action is initiated when the left mouse button is released. (This event is supported in Flash Lite only

if System.capabilities.hasMouse is true or System.capabilities.hasStylus is true.)

• keyDown The action is initiated when a key is pressed. Use Key.getCode() to retrieve information about the last

key pressed.

• keyUp The action is initiated when a key is released. Use the Key.getCode() method to retrieve information about

the last key pressed.

• data The action is initiated when data is received in a loadVariables() or loadMovie() action. When specified

with a loadVariables() action, the data event occurs only once, when the last variable is loaded. When specified

with a loadMovie() action, the data event occurs repeatedly, as each section of data is retrieved.

39FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

The following example uses onClipEvent() with the keyDown movie event and is designed to be attached to a movie

clip or button. The keyDown movie event is usually used with one or more methods and properties of the Key object.

The following script uses Key.getCode() to find out which key the user has pressed; if the pressed key matches the

Key.RIGHT property, the playhead is sent to the next frame; if the pressed key matches the Key.LEFT property, the

playhead is sent to the previous frame.

 onClipEvent (keyDown) {
 if (Key.getCode() == Key.RIGHT) {
 this._parent.nextFrame();
 } else if (Key.getCode() == Key.LEFT) {
 this._parent.prevFrame();
 }
 }

The following example uses onClipEvent() with the load and mouseMove movie events. The _xmouse and _ymouse

properties track the position of the mouse each time the mouse moves, which appears in the text field that's created at

runtime.

 onClipEvent (load) {
 this.createTextField("coords_txt", this.getNextHighestDepth(), 0, 0, 100, 22);
 coords_txt.autoSize = true;
 coords_txt.selectable = false;
 }
 onClipEvent (mouseMove) {
 coords_txt.text = "X:"+_root._xmouse+",Y:"+_root._ymouse;
 }

See also

Key, _xmouse (MovieClip._xmouse property), _ymouse (MovieClip._ymouse property), Constants

ord function
ord(character) : Number

Deprecated since Flash Player 5. This function was deprecated in favor of the methods and properties of the String

class.

Converts characters to ASCII code numbers.

Availability

Flash Lite 1.0

Parameters

character:String - The character to convert to an ASCII code number.

Returns

Number - The ASCII code number of the specified character.

See also

String, charCodeAt (String.charCodeAt method)

40FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

parseFloat function
parseFloat(string:String) : Number

Converts a string to a floating-point number. The function reads, or parses, and returns the numbers in a string until

it reaches a character that is not a part of the initial number. If the string does not begin with a number that can be

parsed, parseFloat() returns NaN. White space preceding valid integers is ignored, as are trailing nonnumeric

characters.

Availability

Flash Lite 2.0

Parameters

string:String - The string to read and convert to a floating-point number.

Returns

Number - A number or NaN (not a number).

Example

The following examples use the parseFloat() function to evaluate various types of numbers:

 trace(parseFloat("-2")); // output: -2
 trace(parseFloat("2.5")); // output: 2.5
 trace(parseFloat(" 2.5")); // output: 2.5
 trace(parseFloat("3.5e6")); // output: 3500000
 trace(parseFloat("foobar")); // output: NaN
 trace(parseFloat("3.75math")); // output: 3.75
 trace(parseFloat("0garbage")); // output: 0

See also

NaN constant, parseInt function

parseInt function
parseInt(expression:String [, radix:Number]) : Number

Converts a string to an integer. If the specified string in the parameters cannot be converted to a number, the function

returns NaN. Strings beginning with 0x are interpreted as hexadecimal numbers. Integers beginning with 0 or

specifying a radix of 8 are interpreted as octal numbers. White space preceding valid integers is ignored, as are trailing

nonnumeric characters.

Availability

Flash Lite 2.0

Parameters

expression:String - A string to convert to an integer.

radix:Number [optional] - An integer representing the radix (base) of the number to parse. Legal values are from 2 to 36.

Returns

Number - A number or NaN (not a number).

41FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

The examples in this section use the parseInt() function to evaluate various types of numbers.

The following example returns 3:

 parseInt("3.5")

The following example returns NaN:

 parseInt("bar")

The following example returns 4:

 parseInt("4foo")

The following example shows a hexadecimal conversion that returns 1016:

 parseInt("0x3F8")

The following example shows a hexadecimal conversion using the optional radix parameter that returns 1000:

 parseInt("3E8", 16)

The following example shows a binary conversion and returns 10, which is the decimal representation of the binary 1010:

 parseInt("1010", 2)

The following examples show octal number parsing and return 511, which is the decimal representation of the octal 777:

 parseInt("0777")
 parseInt("777", 8)

See also

NaN constant, parseFloat function

play function
play() : Void

Moves the playhead forward in the Timeline.

Availability

Flash Lite 1.0

Example

In the following example, there are two movie clip instances on the Stage with the instance names stop_mc and

play_mc. The ActionScript stops the SWF file's playback when the stop_mc movie clip instance is clicked. Playback

resumes when the play_mc instance is clicked.

 this.stop_mc.onRelease = function() {
 stop();
 };
 this.play_mc.onRelease = function() {
 play();
 };
 trace("frame 1");

See also

gotoAndPlay function, gotoAndPlay (MovieClip.gotoAndPlay method)

42FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

prevFrame function
prevFrame() : Void

Sends the playhead to the previous frame. If the current frame is Frame 1, the playhead does not move.

Availability

Flash Lite 1.0

Example

When the user clicks a button called myBtn_btn and the following ActionScript is placed on a frame in the Timeline

for that button, the playhead is sent to the previous frame:

 stop();
 this.myBtn_btn.onRelease = function(){
 prevFrame();
 };

See also

nextFrame function, prevFrame (MovieClip.prevFrame method)

prevScene function
prevScene() : Void

Sends the playhead to Frame 1 of the previous scene.

Availability

Flash Lite 1.0

See also

nextScene function

random function
random(value) : Number

Deprecated since Flash Player 5. This function was deprecated in favor of Math.random().

Returns a random integer between 0 and one less than the integer specified in the value parameter.

Availability

Flash Lite 1.1

Parameters

value:Number - An integer.

Returns

Number - A random integer.

Example

The following use of random() returns a value of 0, 1, 2, 3, or 4: random(5);

43FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

See also

random (Math.random method)

removeMovieClip function
removeMovieClip(target:Object)

Deletes the specified movie clip.

Availability

Flash Lite 1.0

Parameters

target:Object - The target path of a movie clip instance created with duplicateMovieClip() or the instance name

of a movie clip created with MovieClip.attachMovie(), MovieClip.duplicateMovieClip(), or

MovieClip.createEmptyMovieClip().

Example

The following example creates a new movie clip called myClip_mc and duplicates the movie clip. The second movie

clip is called newClip_mc. Images are loaded into both movie clips. When a button, button_mc, is clicked, the

duplicated movie clip is removed from the Stage.

 this.createEmptyMovieClip("myClip_mc", this.getNextHighestDepth());
 myClip_mc.loadMovie("http://www.helpexamples.com/flash/images/image1.jpg");
 duplicateMovieClip(this.myClip_mc, "newClip_mc", this.getNextHighestDepth());
 newClip_mc.loadMovie("http://www.helpexamples.com/flash/images/image1.jpg");
 newClip_mc._x = 200;
 this.button_mc.onRelease = function() {
 removeMovieClip(this._parent.newClip_mc);
 };

See also

duplicateMovieClip function, duplicateMovieClip (MovieClip.duplicateMovieClip method),

attachMovie (MovieClip.attachMovie method), removeMovieClip (MovieClip.removeMovieClip

method)createEmptyMovieClip (MovieClip.createEmptyMovieClip method)

setInterval function
setInterval(functionName:Object, interval:Number [, param1:Object, param2, ..., paramN]) :
Number
setInterval(objectName:Object, methodName:String, interval:Number [, param1:Object, param2,
..., paramN]) : Number

Calls a function or a method or an object at periodic intervals while a SWF file plays. You can use an interval function

to update variables from a database or to update a time display.

If interval is greater than the SWF file's frame rate, the interval function is only called each time the playhead enters a

frame; this minimizes the impact each time the screen is refreshed.

Note: In Flash Lite 2.0, the interval passed into this method is ignored if it is less than the SWF file's frame rate and the

interval function is called on the SWF file's frame rate interval only. If the interval is greater than the SWF file's frame

rate, the event is called on the next frame after the interval has elapsed.

44FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 2.0

Parameters

functionName:Object - A function name or a reference to an anonymous function.

interval:Number - The time in milliseconds between calls to the functionName or methodName parameter.

param:Object [optional] - Parameters passed to the functionName or methodName parameter. Multiple parameters

should be separated by commas: param1,param2, ...,paramN.

objectName:Object - An object containing the method methodName.

methodName:String - A method of objectName.

Returns

Number - An identifying integer that you can pass to clearInterval() to cancel the interval.

Example

Usage 1: The following example calls an anonymous function every 1000 milliseconds (1 second).

setInterval(function(){ trace("interval called"); }, 1000);

Usage 2: The following example defines two event handlers and calls each of them. The first call to setInterval()

calls the callback1() function, which contains a trace() statement. The second call to setInterval() passes the

"interval called" string to the function callback2() as a parameter.

 function callback1() {
 trace("interval called");
 }

 function callback2(arg) {
 trace(arg);
 }

 setInterval(callback1, 1000);
 setInterval(callback2, 1000, "interval called");

Usage 3: This example uses a method of an object. You must use this syntax when you want to call a method that is

defined for an object.

 obj = new Object();
 obj.interval = function() {
 trace("interval function called");
 }

 setInterval(obj, "interval", 1000);

 obj2 = new Object();
 obj2.interval = function(s) {
 trace(s);
 }
 setInterval(obj2, "interval", 1000, "interval function called");

You must use the second form of the setInterval() syntax to call a method of an object, as shown in the following

example:

45FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 setInterval(obj2, "interval", 1000, "interval function called");

When working with this function, you need to be careful about the memory you use in a SWF file. For example, when

you remove a movie clip from the SWF file, it will not remove any setInterval() function running within it. Always

remove the setInterval() function by using clearInterval() when you have finished using it, as shown in the

following example:

 // create an event listener object for our MovieClipLoader instance
 var listenerObjectbject = new Object();
 listenerObject.onLoadInit = function(target_mc:MovieClip) {
 trace("start interval");
 /* after the target movie clip loaded, create a callback which executes
 about every 1000 ms (1 second) and calls the intervalFunc function. */
 target_mc.myInterval = setInterval(intervalFunc, 1000, target_mc);
 };
 function intervalFunc(target_mc) {
 // display a trivial message which displays the instance name and arbitrary text.
 trace(target_mc+" has been loaded for "+getTimer()/1000+" seconds.");
 /* when the target movie clip is clicked (and released) you clear the interval
 and remove the movie clip. If you don't clear the interval before deleting
 the movie clip, the function still calls itself every second even though the
 movie clip instance is no longer present. */
 target_mc.onRelease = function() {
 trace("clear interval");
 clearInterval(this.myInterval);
 // delete the target movie clip
 removeMovieClip(this);
 };
 }
 var jpeg_mcl:MovieClipLoader = new MovieClipLoader();
 jpeg_mcl.addListener(listenerObject);
 jpeg_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",
 this.createEmptyMovieClip("jpeg_mc", this.getNextHighestDepth()));

If you work with setInterval() within classes, you need to be sure to use the this keyword when you call the

function. The setInterval()function does not have access to class members if you do not use the keyword. This is

illustrated in the following example. For a FLA file with a button called deleteUser_btn, add the following

ActionScript to Frame 1:

 var me:User = new User("Gary");
 this.deleteUser_btn.onRelease = function() {
 trace("Goodbye, "+me.username);
 clearInterval(me.intervalID);
 delete me;
 };

Then create a file called User.as in the same directory as your FLA file. Enter the following ActionScript:

46FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 class User {
 var intervalID:Number;
 var username:String;
 function User(param_username:String) {
 trace("Welcome, "+param_username);
 this.username = param_username;
 this.intervalID = setInterval(this, "traceUsername", 1000, this.username);
 }
 function traceUsername(str:String) {
 trace(this.username+" is "+getTimer()/1000+" seconds old, happy birthday.");
 }
 }

See also

clearInterval function

setProperty function
setProperty(target:Object, property:Object, expression:Object) : Void

Changes a property value of a movie clip as the movie clip plays.

Availability

Flash Lite 1.0

Parameters

target:Object - The path to the instance name of the movie clip whose property is to be set.

property:Object - The property to be set.

expression:Object - Either the new literal value of the property, or an equation that evaluates to the new value of

the property.

Example

The following ActionScript creates a new movie clip and loads an image into it. The _xand _y coordinates are set for

the clip using setProperty(). When you click the button called right_btn, the _x coordinate of a movie clip named

params_mc is incremented by 20 pixels.

 this.createEmptyMovieClip("params_mc", 999);
 params_mc.loadMovie("http://www.helpexamples.com/flash/images/image1.jpg");
 setProperty(this.params_mc, _y, 20);
 setProperty(this.params_mc, _x, 20);
 this.right_btn.onRelease = function() {
 setProperty(params_mc, _x, getProperty(params_mc, _x)+20);
 };

See also

getProperty function

startDrag function
startDrag(target:Object [, lock:Boolean, left:Number, top:Number, right:Number,
bottom:Number]) : Void

47FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Makes the target movie clip draggable while the movie plays. Only one movie clip can be dragged at a time. After a

startDrag() operation is executed, the movie clip remains draggable until it is explicitly stopped by stopDrag() or

until a startDrag() action for another movie clip is called.

Note: This method is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Parameters

target:Object - The target path of the movie clip to drag.

lock:Boolean [optional] - A Boolean value specifying whether the draggable movie clip is locked to the center of the

mouse position (true) or locked to the point where the user first clicked the movie clip (false).

left,top,right,bottom:Number [optional] - Values relative to the coordinates of the movie clip's parent that

specify a constraint rectangle for the movie clip.

Example

The following example creates a movie clip, pic_mc, at runtime that users can drag to any location by attaching the

startDrag() and stopDrag() actions to the movie clip. An image is loaded into pic_mc using the MovieClipLoader

class.

 var pic_mcl:MovieClipLoader = new MovieClipLoader();
 pic_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",
 this.createEmptyMovieClip("pic_mc", this.getNextHighestDepth()));
 var listenerObject:Object = new Object();
 listenerObject.onLoadInit = function(target_mc) {
 target_mc.onPress = function() {
 startDrag(this);
 };
 target_mc.onRelease = function() {
 stopDrag();
 };
 };
 pic_mcl.addListener(listenerObject);

See also

stopDrag function, _droptarget (MovieClip._droptarget property), startDrag (MovieClip.startDrag

method)

stop function
stop() : Void

Stops the SWF file that is currently playing. The most common use of this action is to control movie clips with buttons.

Availability

Flash Lite 1.0

See also

gotoAndStop function, gotoAndStop (MovieClip.gotoAndStop method)

48FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

stopAllSounds function
stopAllSounds() : Void

Stops all sounds currently playing in a SWF file without stopping the playhead. Sounds set to stream will resume

playing as the playhead moves over the frames in which they are located.

Availability

Flash Lite 1.0

Example

The following code creates a text field, in which the song's ID3 information appears. A new Sound object instance is

created, and your MP3 is loaded into the SWF file. ID3 information is extracted from the sound file. When the user

clicks stop_mc, the sound is paused. When the user clicks play_mc, the song resumes from its paused position.

 this.createTextField("songinfo_txt", this.getNextHighestDepth, 0, 0, Stage.width, 22);
 var bg_sound:Sound = new Sound();
 bg_sound.loadSound("yourSong.mp3", true);
 bg_sound.onID3 = function() {
 songinfo_txt.text = "(" + this.id3.artist + ") " + this.id3.album + " - " + this.id3.track
+ " - "
 + this.id3.songname;
 for (prop in this.id3) {
 trace(prop+" = "+this.id3[prop]);
 }
 trace("ID3 loaded.");
 };
 this.play_mc.onRelease = function() {
 /* get the current offset. if you stop all sounds and click the play button, the MP3
continues from
 where it was stopped, instead of restarting from the beginning. */
 var numSecondsOffset:Number = (bg_sound.position/1000);
 bg_sound.start(numSecondsOffset);
 };
 this.stop_mc.onRelease = function() {
 stopAllSounds();
 };

See also

Sound

stopDrag function
stopDrag() : Void

Stops the current drag operation.

Note: This method is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

49FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

The following code, placed in the main Timeline, stops the drag action on the movie clip instance my_mc when the user

releases the mouse button:

 my_mc.onPress = function () {
 startDrag(this);
 }

 my_mc.onRelease = function() {
 stopDrag();
 }

See also

startDrag function, _droptarget (MovieClip._droptarget property), startDrag

(MovieClip.startDrag method)stopDrag (MovieClip.stopDrag method)

String function
String(expression:Object) : String

Returns a string representation of the specified parameter, as described in the following list:

• If expression is a number, the return string is a text representation of the number.

• If expression is a string, the return string is expression.

• If expression is an object, the return value is a string representation of the object generated by calling the string

property for the object or by calling Object.toString() if no such property exists.

• If expression is a Boolean value, the return string is "true" or "false".

• If expression is a movie clip, the return value is the target path of the movie clip in slash (/) notation.

If expression is undefined, the return values are as follows:

• In files published for Flash Player 6 or earlier, the result is an empty string ("").

• In files published for Flash Player 7 or later, the result is undefined.

Note: Slash notation is not supported by ActionScript 2.0.

Availability

Flash Lite 1.0

Parameters

expression:Object - An expression to convert to a string.

Returns

String - A string.

Example

In the following example, you use ActionScript to convert specified expressions to a string:

 var string1:String = String("3");
 var string2:String = String("9");
 trace(string1+string2); // output: 39

Because both parameters are strings, the values are concatenated rather than added.

50FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

See also

toString (Number.toString method), toString (Object.toString method), String, " string delimiter

operator

substring function
substring("string", index, count) : String

Deprecated since Flash Player 5. This function was deprecated in favor of String.substr().

Extracts part of a string. This function is one-based, whereas the String object methods are zero-based.

Availability

Flash Lite 1.0

Parameters

string:String - The string from which to extract the new string.

index:Number - The number of the first character to extract.

count:Number - The number of characters to include in the extracted string, not including the index character.

Returns

String - The extracted substring.

See also

substr (String.substr method)

targetPath function
targetpath(targetObject:Object) : String

Returns a string containing the target path of a MovieClip, Button, or TextField object. The target path is returned in

dot (.) notation. To retrieve the target path in slash (/) notation, use the _target property.

Availability

Flash Lite 2.0

Parameters

targetObject:Object - Reference (for example, _root or _parent) to the object for which the target path is being

retrieved. This can be a MovieClip, Button, or TextField object.

Returns

String - A string containing the target path of the specified object.

Example

The following example traces the target path of a movie clip as soon as it loads:

 this.createEmptyMovieClip("myClip_mc", this.getNextHighestDepth());
 trace(targetPath(myClip_mc)); // _level0.myClip_mc

51FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

See also

eval function

tellTarget function
tellTarget("target") { statement(s); }

Deprecated since Flash Player 5. Adobe recommends that you use dot (.) notation and the with statement.

Applies the instructions specified in the statements parameter to the Timeline specified in the target parameter. The

tellTarget action is useful for navigation controls. Assign tellTarget to buttons that stop or start movie clips

elsewhere on the Stage. You can also make movie clips go to a particular frame in that clip. For example, you might

assign tellTarget to buttons that stop or start movie clips on the Stage or prompt movie clips to jump to a particular

frame.

In Flash 5 or later, you can use dot (.) notation instead of the tellTarget action. You can use the with action to issue

multiple actions to the same Timeline. You can use the with action to target any object, whereas the tellTarget

action can target only movie clips.

Availability

Flash Lite 1.0

Parameters

target:String - A string that specifies the target path of the Timeline to be controlled.

statement(s):Object - The instructions to execute if the condition is true.

Example

This tellTarget statement controls the movie clip instance ball on the main Timeline. Frame 1 of the ball instance is

blank and has a stop() action so it isn't visible on the Stage. When you click the button with the following action,

tellTarget tells the playhead in ball to go to Frame 2, where the animation starts:

 on(release) {
 tellTarget("_parent.ball") {
 gotoAndPlay(2);
 }
 }

The following example uses dot (.) notation to achieve the same results:

 on(release) {
 _parent.ball.gotoAndPlay(2);
 }

If you need to issue multiple commands to the ball instance, you can use the with action, as shown in the following

statement:

52FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 on(release) {
 with(_parent.ball) {
 gotoAndPlay(2);
 _alpha = 15;
 _xscale = 50;
 _yscale = 50;
 }
 }

See also

with statement

toggleHighQuality function
toggleHighQuality()

Deprecated since Flash Player 5. This function was deprecated in favor of _quality.

Turns anti-aliasing on and off in Flash Player. Anti-aliasing smooths the edges of objects and slows down SWF

playback. This action affects all SWF files in Flash Player.

Availability

Flash Lite 1.0

Example

The following code could be applied to a button that, when clicked, would toggle anti-aliasing on and off:

 on(release) {
 toggleHighQuality();
 }

See also

_highquality property, _quality property

trace function
trace(expression:Object)

You can use Flash Debug Player to capture output from the trace() function and write that output to the log file.

Statement; evaluates the expression and displays the result in the Output panel in test mode.

Use this statement to record programming notes or to display messages in the Output panel while testing a SWF file.

Use the expression parameter to check whether a condition exists, or to display values in the Output panel. The

trace() statement is similar to the alert function in JavaScript.

You can use the Omit Trace Actions command in the Publish Settings dialog box to remove trace()actions from the

exported SWF file.

Availability

Flash Lite 1.0

53FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Parameters

expression:Object - An expression to evaluate. When a SWF file is opened in the Flash authoring tool (using the

Test Movie command), the value of the expression parameter is displayed in the Output panel.

Example

The following example uses a trace() statement to display in the Output panel the methods and properties of the

dynamically created text field called error_txt:

 this.createTextField("error_txt", this.getNextHighestDepth(), 0, 0, 100, 22);
 for (var i in error_txt) {
 trace("error_txt."+i+" = "+error_txt[i]);
 }
 /* output:
 error_txt.styleSheet = undefined
 error_txt.mouseWheelEnabled = true
 error_txt.condenseWhite = false
 ...
 error_txt.maxscroll = 1
 error_txt.scroll = 1
 */

unescape function
unescape(x:String) : String

Evaluates the parameter x as a string, decodes the string from URL-encoded format (converting all hexadecimal

sequences to ASCII characters), and returns the string.

Availability

Flash Lite 1.1

Parameters

string:String - A string with hexadecimal sequences to escape.

Returns

String - A string decoded from a URL-encoded parameter.

Example

The following example shows the escape-to-unescape conversion process:

 var email:String = "user@somedomain.com";
 trace(email);
 var escapedEmail:String = escape(email);
 trace(escapedEmail);
 var unescapedEmail:String = unescape(escapedEmail);
 trace(unescapedEmail);

The following result is displayed in the Output panel.

 user@somedomain.com
 user%40somedomain%2Ecom
 user@somedomain.com

54FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

unloadMovie function
unloadMovie(target:MovieClip) : Void
unloadMovie(target:String) : Void

Removes a movie clip that was loaded by means of loadMovie() from Flash Player. To unload a movie clip that was

loaded by means of loadMovieNum(), use unloadMovieNum() instead of unloadMovie().

Availability

Flash Lite 1.1

Parameters

target - The target path of a movie clip. This parameter can be either a string (e.g. "my_mc") or a direct reference to

the movie clip instance (e.g. my_mc). Parameters that can accept more than one data type are listed as type Object.

Example

The following example creates a new movie clip called pic_mc and loads an image into that clip. It is loaded using the

MovieClipLoader class. When you click the image, the movie clip unloads from the SWF file:

 var pic_mcl:MovieClipLoader = new MovieClipLoader();
 pic_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg",
 this.createEmptyMovieClip("pic_mc", this.getNextHighestDepth()));
 var listenerObject:Object = new Object();
 listenerObject.onLoadInit = function(target_mc) {
 target_mc.onRelease = function() {
 unloadMovie(pic_mc);
 /* or you could use the following, which refers to the movie clip referenced by 'target_mc'.
*/
 //unloadMovie(this);
 };
 };
 pic_mcl.addListener(listenerObject);

See also

loadMovie (MovieClip.loadMovie method), unloadClip (MovieClipLoader.unloadClip method)

unloadMovieNum function
unloadMovieNum(level:Number) : Void

Removes a SWF or image that was loaded by means of loadMovieNum() from Flash Player. To unload a SWF or image

that was loaded with MovieClip.loadMovie(), use unloadMovie() instead of unloadMovieNum().

Availability

Flash Lite 1.1

Parameters

level:Number - The level (_level N) of a loaded movie.

Example

The following example loads an image into a SWF file. When you click unload_btn, the loaded content is removed.

55FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 loadMovieNum("yourimage.jpg", 1);
 unload_btn.onRelease = function() {
 unloadMovieNum(1);
 }

See also

loadMovieNum function, unloadMovie function, loadMovie (MovieClip.loadMovie method)

Global properties

Global properties are available in every script, and are visible to every Timeline and scope in your document. For

example, global properties allow access to the timelines of other loaded movie clips, both relative (_parent) and

absolute (_root). They also let you restrict (this) or expand (super) scope. And, you can use global properties to

adjust runtime settings like screen reader accessibility, playback quality, and sound buffer size.

Global properties summary

Modifiers Property Description

 $version Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the System.capabilities.version

property.

Contains the version number of Flash Lite.

 _cap4WayKeyAS Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the

System.capabilities.has4WayKeyAS property.

Indicates whether Flash Lite executes ActionScript expressions

attached to key event handlers associated with the Right, Left,

Up, and Down Arrow keys.

 _capCompoundSound Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the

System.capabilities.hasCompoundSound property.

Indicates whether Flash Lite can process compound sound

data.

 _capEmail Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the

System.capabilities.hasEmail property.

Indicates whether the Flash Lite client can send e-mail

messages by using the GetURL() ActionScript command.

 _capLoadData Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the

System.capabilities.hasDataLoading property.

Indicates whether the host application can dynamically load

additional data through calls to the loadMovie(),
loadMovieNum(), loadVariables(), and

loadVariablesNum() functions.

56FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 _capMFi Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the System.capabilities.hasMFi

property.

Indicates whether the device can play sound data in the Melody

Format for i-mode (MFi) audio format.

 _capMIDI Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the System.capabilities.hasMIDI

property.

Indicates whether the device can play sound data in the Musical

Instrument Digital Interface (MIDI) audio format.

 _capMMS Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the System.capabilities.hasMMS

property.

Indicates whether Flash Lite can send Multimedia Messaging

Service (MMS) messages by using the GetURL() ActionScript

command. If so, this variable is defined and has a value of 1; if

not, this variable is undefined.

 _capSMAF Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the System.capabilities.hasSMAF

property.

Indicates whether the device can play multimedia files in the

Synthetic music Mobile Application Format (SMAF). If so, this

variable is defined and has a value of 1; if not, this variable is

undefined.

 _capSMS Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the System.capabilities.hasSMS

property.

Indicates whether Flash Lite can send Short Message Service

(SMS) messages by using the GetURL() ActionScript

command.

 _capStreamSound Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the

System.capabilities.hasStreamingAudio property.

Indicates whether the device can play streaming (synchronized)

sound.

 _focusrect Property (global); specifies whether a yellow rectangle appears

around the button or movie clip that has keyboard focus.

 _forceframerate Tells the Flash Lite player to render at the specified frame rate.

 _global A reference to the global object that holds the core ActionScript

classes, such as String, Object, Math, and Array.

 _highquality Deprecated since Flash Player 5. This property was deprecated

in favor of _quality.

Specifies the level of anti-aliasing applied to the current SWF

file.

 _level A reference to the root Timeline of _levelN.

Modifiers Property Description

57FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

$version property
$version

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.version

property.

String variable; contains the version number of Flash Lite. It contains a major number, minor number, build number,

and an internal build number, which is generally 0 in all released versions. The major number reported for all Flash

Lite 1.x products is 5. Flash Lite 1.0 has a minor number of 1; Flash Lite 1.1 has a minor number of 2.

Availability

Flash Lite 1.1

Example

In the Flash Lite 1.1 player, the following code sets the value of myVersion to "5, 2, 12, 0":

 myVersion = $version;

See also

version (capabilities.version property)

_cap4WayKeyAS property
_cap4WayKeyAS

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the

System.capabilities.has4WayKeyAS property.

Numeric variable; indicates whether Flash Lite executes ActionScript expressions attached to key event handlers

associated with the Right, Left, Up, and Down Arrow keys. This variable is defined and has a value of 1 only when the

host application uses four-way key navigation mode to move between Flash controls (buttons and input text fields).

Otherwise, this variable is undefined.

 maxscroll Deprecated since Flash Player 5. This property was deprecated

in favor of TextField.maxscroll.

Indicates the line number of the top line of visible text in a text

field when the bottom line in the field is also visible.

 _parent Specifies or returns a reference to the movie clip or object that

contains the current movie clip or object.

 _quality Sets or retrieves the rendering quality used for a movie clip.

 _root Specifies or returns a reference to the root movie clip Timeline.

 scroll Deprecated since Flash Player 5. This property was deprecated

in favor of TextField.scroll.

Controls the display of information in a text field associated

with a variable.

 _soundbuftime Establishes the number of seconds of streaming sound to

buffer.

 this References an object or movie clip instance.

Modifiers Property Description

58FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

When one of the four-way keys is pressed, if the value of the _cap4WayKeyAS variable is 1, Flash Lite first looks for a

handler for that key. If it finds none, Flash control navigation occurs. However, if an event handler is found, no

navigation action occurs for that key. For example, if a key press handler for the Down Arrow key is found, the user

cannot navigate.

Availability

Flash Lite 1.1

Example

The following example sets canUse4Way to 1 in Flash Lite 1.1, but leaves it undefined in Flash Lite 1.0 (however, not

all Flash Lite 1.1 phones support four-way keys, so this code is still dependent on the phone):

 canUse4Way = _cap4WayKeyAS;
 if (canUse4Way == 1) {
 msg = "Use your directional joypad to navigate this application";
 } else {
 msg = "Please use the 2 key to scroll up, the 6 key to scroll right,

 the 8 key to scroll down, and the 4 key to scroll left.";
 }

See also

capabilities (System.capabilities)

_capCompoundSound property
_capCompoundSound

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the

System.capabilities.hasCompoundSound property.

Numeric variable; indicates whether Flash Lite can process compound sound data. If so, this variable is defined and

has a value of 1; if not, this variable is undefined. For example, a single Flash file can contain the same sound

represented in both MIDI and MFi formats. The player will then play back data in the appropriate format based on the

format supported by the device. This variable defines whether the Flash Lite player supports this ability on the current

handset.

Availability

Flash Lite 1.1

Example

In the following example, useCompoundSound is set to 1 in Flash Lite 1.1, but is undefined in Flash Lite 1.0:

 useCompoundSound = _capCompoundSound;

 if (useCompoundSound == 1) {
 gotoAndPlay("withSound");
 } else {
 gotoAndPlay("withoutSound");

See also

capabilities (System.capabilities)

59FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

_capEmail property
_capEmail

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.hasEmail

property.

Numeric variable; indicates whether the Flash Lite client can send e-mail messages by using the GetURL()

ActionScript command. If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Availability

Flash Lite 1.1

Example

If the host application can send e-mail messages by using the GetURL() ActionScript command, the following example

sets canEmail() to 1:

 canEmail = _capEmail;

 if (canEmail == 1) {
 getURL("mailto:someone@somewhere.com?subject=foo&body=bar");
 }

See also

capabilities (System.capabilities)

_capLoadData property
_capLoadData

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the

System.capabilities.hasDataLoading property.

Numeric variable; indicates whether the host application can dynamically load additional data through calls to the

loadMovie(), loadMovieNum(), loadVariables(), and loadVariablesNum() functions. If so, this variable is

defined and has a value of 1; if not, this variable is undefined.

Availability

Flash Lite 1.1

Example

If the host application can perform dynamic loading of movies and variables, the following example sets CanLoad to 1:

 canLoad = _capLoadData;

 if (canLoad == 1) {
 loadVariables("http://www.somewhere.com/myVars.php", GET);
 } else {
 trace ("client does not support loading dynamic data");
 }

See also

capabilities (System.capabilities)

60FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

_capMFi property
_capMFi

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.hasMFi

property.

Numeric variable; indicates whether the device can play sound data in the Melody Format for i-mode (MFi) audio

format. If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Availability

Flash Lite 1.1

Example

If the device can play MFi sound data, the following example sets canMFi to 1:

 canMFi = _capMFi;

 if (canMFi == 1) {
 // send movieclip buttons to frame with buttons that trigger events

 sounds
 tellTarget("buttons") {
 gotoAndPlay(2);
 }
 }

See also

hasMFI (capabilities.hasMFI property)

_capMIDI property
_capMIDI

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.hasMIDI

property.

Numeric variable; indicates whether the device can play sound data in the Musical Instrument Digital Interface (MIDI)

audio format. If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Availability

Flash Lite 1.1

Example

If the device can play MIDI sound data, the following example sets _capMIDI to 1:

61FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 canMIDI = _capMIDI;

 if (canMIDI == 1) {
 // send movieclip buttons to frame with buttons that trigger events

 sounds
 tellTarget("buttons") {
 gotoAndPlay(2);
 }
 }

See also

capabilities (System.capabilities)

_capMMS property
_capMMS

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.hasMMS

property.

Numeric variable; indicates whether Flash Lite can send Multimedia Messaging Service (MMS) messages by using the

GetURL() ActionScript command. If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Availability

Flash Lite 1.1

Example

The following example sets canMMS to 1 in Flash Lite 1.1, but leaves it undefined in Flash Lite 1.0 (however, not all Flash

Lite 1.1 phones can send MMS messages, so this code is still dependent on the phone):

 on(release) {
 canMMS = _capMMS;
 if (canMMS == 1) {
 // send an MMS
 myMessage = "mms:4156095555?body=sample mms message";
 } else {
 // send an SMS
 myMessage = "sms:4156095555?body=sample sms message";
 }
 getURL(myMessage);
 }

See also

capabilities (System.capabilities)

_capSMAF property
_capSMAF

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.hasSMAF

property.

62FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Numeric variable; indicates whether the device can play multimedia files in the Synthetic music Mobile Application

Format (SMAF). If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Availability

Flash Lite 1.1

Example

The following example sets canSMAF to 1 in Flash Lite 1.1, but leaves it undefined in Flash Lite 1.0 (however, not all

Flash Lite 1.1 phones can send SMAF messages, so this code is still dependent on the phone):

 canSMAF = _capSMAF;

 if (canSMAF) {
 // send movieclip buttons to frame with buttons that trigger events

 sounds
 tellTarget("buttons") {
 gotoAndPlay(2);
 }
 }

See also

capabilities (System.capabilities)

_capSMS property
_capSMS

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.hasSMS

property.

Numeric variable; indicates whether Flash Lite can send Short Message Service (SMS) messages by using the GetURL()

ActionScript command. If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Availability

Flash Lite 1.1

Example

The following example sets canSMS to 1 in Flash Lite 1.1, but leaves it undefined in Flash Lite 1.0 (however, not all Flash

Lite 1.1 phones can send SMS messages, so this code is still dependent on the phone):

 on(release) {
 canSMS = _capSMS;
 if (canSMS) {
 // send an SMS
 myMessage = "sms:4156095555?body=sample sms message";
 getURL(myMessage);
 }
 }

See also

capabilities (System.capabilities)

63FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

_capStreamSound property
_capStreamSound

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the

System.capabilities.hasStreamingAudio property.

Numeric variable; indicates whether the device can play streaming (synchronized) sound. If so, this variable is defined

and has a value of 1; if not, this variable is undefined.

Availability

Flash Lite 1.1

Example

The following example plays streaming sound if canStreamSound is enabled:

 on(press) {
 canStreamSound = _capStreamSound;
 if (canStreamSound) {
 // play a streaming sound in a movieclip with this button
 tellTarget("music") {
 gotoAndPlay(2);
 }
 }

}

See also

capabilities (System.capabilities)

_focusrect property
 _focusrect = Boolean;

Specifies whether a yellow rectangle appears around the button or movie clip that has keyboard focus. If _focusrect

is set to its default value of true, a yellow rectangle appears around the currently focused button or movie clip as the

user presses the Tab key to navigate through objects in a SWF file. Specify false if you do not want to show the yellow

rectangle. This is a property that can be overridden for specific instances.

If the global _focusrect property is set to false, the default behavior for all buttons and movie clips is that keyboard

navigation is limited to the Tab key. All other keys, including the Enter and arrow keys, are ignored. To restore full

keyboard navigation, you must set _focusrect to true. To restore full keyboard functionality for a specific button or

movie clip, you can override this global property by using either Button._focusrect or MovieClip._focusrect.

Note: If you use a component, FocusManager overrides Flash Player's focus handling, including use of this global

property.

Note: For the Flash Lite 2.0 player, when the _focusrect property is disabled (such as Button.focusRect = false

or MovieClip.focusRect = false), the button or movie clip still receives all events. This behavior is different from

the Flash player, for when the _focusrect property is disabled, the button or movie clip will receive the rollOver

and rollOut events but will not receive the press and release events.

Also for Flash Lite 2.0, you can change the color of the focus rectangle by using the fscommand2 SetFocusRectColor

command. This behavior is different from Flash Player, where the color of the focus rectangle is restricted to yellow.

64FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 1.0

Example

The following example demonstrates how to hide the yellow rectangle around any instances in a SWF file when they

have focus in a browser window. Create some buttons or movie clips and add the following ActionScript in Frame 1

of the Timeline:

 _focusrect = false;

See also

_focusrect (Button._focusrect property), _focusrect (MovieClip._focusrect property)

_forceframerate property
_forceframerate

If set to true, this property tells the Flash Lite player to render at the specified frame rate. You can use this property

for pseudo-synchronized sound when the content contains device sound. It is set to false by default, which causes

Flash Lite to render normally. When set to true, the Flash Lite player might skip rendering certain frames to maintain

the frame rate.

Availability

Flash Lite 2.0

_global property
 _global.identifier

A reference to the global object that holds the core ActionScript classes, such as String, Object, Math, and Array. For

example, you could create a library that is exposed as a global ActionScript object, similar to the Math or Date object.

Unlike Timeline-declared or locally declared variables and functions, global variables and functions are visible to every

timeline and scope in the SWF file, provided they are not obscured by identifiers with the same names in inner scopes.

Note: When setting the value of a global variable, you must use the fully qualified name of the variable, for instance,

_global.variableName. Failure to do so creates a local variable of the same name that obscures the global variable you

are attempting to set.

Availability

Flash Lite 2.0

Returns

A reference to the global object that holds the core ActionScript classes, such as String, Object, Math, and Array.

Example

The following example creates a top-level function, factorial(), that is available to every timeline and scope in a

SWF file:

65FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 _global.factorial = function(n:Number) {
 if (n<=1) {
 return 1;
 } else {
 return n*factorial(n-1);
 }
 }
 // Note: factorial 4 == 4*3*2*1 == 24
 trace(factorial(4)); // output: 24

The following example shows how the failure to use the fully qualified variable name when setting the value of a global

variable leads to unexpected results:

 _global.myVar = "global";
 trace("_global.myVar: " + _global.myVar); // _global.myVar: global
 trace("myVar: " + myVar); // myVar: global

 myVar = "local";
 trace("_global.myVar: " + _global.myVar); // _global.myVar: global
 trace("myVar: " + myVar); // myVar: local

See also

set variable statement

_highquality property
_highquality

Deprecated since Flash Player 5. This property was deprecated in favor of _quality.

Specifies the level of anti-aliasing applied to the current SWF file. Specify 2 (best quality) to apply the best quality.

Specify 1 (high quality) to apply anti-aliasing. Specify 0 (low quality) to prevent anti-aliasing.

Availability

Flash Lite 1.0

Example

The following ActionScript is placed on the main timeline, and sets the global quality property to apply anti-aliasing.

_highquality = 1;

See also

_quality property

_level property
 _levelN

A reference to the root Timeline of _levelN. You must use loadMovieNum() to load SWF files into the Flash Player

before you use the _level property to target them. You can also use _levelN to target a loaded SWF file at the level

assigned by N.

The initial SWF file loaded into an instance of the Flash Player is automatically loaded into _level0. The SWF file in

_level0 sets the frame rate, background color, and frame size for all subsequently loaded SWF files. SWF files are then

stacked in higher-numbered levels above the SWF file in _level0.

66FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

You must assign a level to each SWF file that you load into the Flash Player using loadMovieNum(). You can assign

levels in any order. If you assign a level that already contains a SWF file (including _level0), the SWF file at that level

is unloaded and replaced by the new SWF file.

Availability

Flash Lite 1.0

Example

The following example stops the playhead in the main timeline of the SWF file sub.swf that is loaded into _level9.

The sub.swf file contains animation and is in the same directory as the document that contains the following

ActionScript:

 loadMovieNum("sub.swf", 9);
 myBtn_btn.onRelease = function() {
 _level9.stop();
 };

You could replace _level9.stop() in the previous example with the following code:

 _level9.gotoAndStop(5);

This action sends the playhead in the main Timeline of the SWF file in _level9 to Frame 5 instead of stopping the

playhead.

See also

loadMovie function, swapDepths (MovieClip.swapDepths method)

maxscroll property
variable_name.maxscroll

Deprecated since Flash Player 5. This property was deprecated in favor of TextField.maxscroll.

Indicates the line number of the top line of visible text in a text field when the bottom line in the field is also visible.

The maxscroll property works with the scroll property to control how information appears in a text field. This

property can be retrieved, but not modified.

Availability

Flash Lite 1.1

See also

maxscroll (TextField.maxscroll property), scroll (TextField.scroll property)

_parent property
 _parent.property
 _parent._parent.property

Specifies or returns a reference to the movie clip or object that contains the current movie clip or object. The current

object is the object containing the ActionScript code that references _parent. Use _parent to specify a relative path

to movie clips or objects that are above the current movie clip or object.

67FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

In the following example, there is a movie clip on the Stage with the instance name square_mc. Within that movie clip

is another movie clip with an instance name circle_mc. The following ActionScript lets you modify the circle_mc

parent instance (which is square_mc) when the circle is clicked. When you are working with relative addressing (using

_parent instead of _root), it might be easier to use the Insert Target Path button in the Actions panel at first.

 this.square_mc.circle_mc.onRelease = function() {
 this._parent._alpha -= 5;
 };

See also

_root property, targetPath function

_quality property
 _quality:String

Sets or retrieves the rendering quality used for a movie clip. Device fonts are always aliased and therefore are unaffected

by the _quality property.

The _quality property can be set to the following values:

Availability

Flash Lite 2.0

Example

The following example sets the rendering quality to LOW:

 _quality = "LOW";

_root property
 _root.movieClip
 _root.action
 _root.property

Specifies or returns a reference to the root movie clip Timeline. If a movie clip has multiple levels, the root movie clip

Timeline is on the level containing the currently executing script. For example, if a script in level 1 evaluates _root,

_level1 is returned.

Value Description Graphic Anti-Aliasing Bitmap Smoothing

"LOW" Low rendering quality. Graphics are not anti-aliased. Bitmaps are not smoothed.

"MEDIUM" Medium rendering quality. This

setting is suitable for movies that

do not contain text.

Graphics are anti-aliased using a 2

x 2 pixel grid.

Bitmaps are not smoothed.

"HIGH" High rendering quality. This

setting is the default rendering

quality setting that Flash uses.

Graphics are anti-aliased using a 4

x 4 pixel grid.

Bitmaps are not smoothed.

68FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Specifying _root is the same as using the deprecated slash notation (/) to specify an absolute path within the current

level.

Note: If a movie clip that contains _root is loaded into another movie clip, _root refers to the Timeline of the loading

movie clip, not the Timeline that contains _root. If you want to ensure that _root refers to the Timeline of the loaded

movie clip even if it is loaded into another movie clip, use MovieClip._lockroot.

Availability

Flash Lite 2.0

Parameters

movieClip:String - The instance name of a movie clip.

action:String - An action or field.

property:String - A property of the MovieClip object.

Example

The following example stops the Timeline of the level containing the currently executing script:

 _root.stop();

The following example traces variables and instances in the scope of _root:

 for (prop in _root) {
 trace("_root."+prop+" = "+_root[prop]);
 }

See also

_lockroot (MovieClip._lockroot property), _parent property, targetPath function

scroll property
textFieldVariableName.scroll = x

Deprecated since Flash Player 5. This property was deprecated in favor of TextField.scroll.

Controls the display of information in a text field associated with a variable. The scroll property defines where the

text field begins displaying content; after you set it, Flash Player updates it as the user scrolls through the text field. The

scroll property is useful for directing users to a specific paragraph in a long passage or creating scrolling text fields.

This property can be retrieved and modified.

Availability

Flash Lite 1.1

Example

The following code is attached to an Up button that scrolls the text field named myText:

 on (release) {
 myText.scroll = myText.scroll + 1;
 }

69FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

See also

maxscroll (TextField.maxscroll property), scroll (TextField.scroll property)

_soundbuftime property
 _soundbuftime:Number = integer

Establishes the number of seconds of streaming sound to buffer. The default value is 5 seconds.

Availability

Flash Lite 2.0

Parameters

integer:Number - The number of seconds before the SWF file starts to stream.

Example

The following example streams an MP3 file and buffers the sound before it plays for the user. Two text fields are created

at runtime to hold a timer and debugging information. The _soundbuftime property is set to buffer the MP3 for 10

seconds. A new Sound object instance is created for the MP3.

 // create text fields to hold debug information.
 this.createTextField("counter_txt", this.getNextHighestDepth(), 0, 0, 100, 22);
 this.createTextField("debug_txt", this.getNextHighestDepth(), 0, 20, 100, 22);
 // set the sound buffer to 10 seconds.
 _soundbuftime = 10;
 // create the new sound object instance.
 var bg_sound:Sound = new Sound();
 // load the MP3 sound file and set streaming to true.
 bg_sound.loadSound("yourSound.mp3", true);
 // function is triggered when the song finishes loading.
 bg_sound.onLoad = function() {
 debug_txt.text = "sound loaded";
 };
 debug_txt.text = "sound init";
 function updateCounter() {
 counter_txt.text++;
 }
 counter_txt.text = 0;
 setInterval(updateCounter, 1000);

this property
 this

References an object or movie clip instance. When a script executes, this references the movie clip instance that

contains the script. When a field is called, this contains a reference to the object that contains the called field.

Inside an on() event handler attached to a button, this refers to the Timeline that contains the button. Inside an

onClipEvent() event handler attached to a movie clip, this refers to the Timeline of the movie clip itself.

Because this is evaluated in the context of the script that contains it, you can't use this in a script to refer to a variable

defined in a class file. Create ApplyThis.as, and enter the following code:

70FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 class ApplyThis {
 var str:String = "Defined in ApplyThis.as";
 function conctStr(x:String):String {
 return x+x;
 }
 function addStr():String {
 return str;
 }
 }

Then, in a FLA or AS file, add the following ActionScript:

 var obj:ApplyThis = new ApplyThis();
 var abj:ApplyThis = new ApplyThis();
 abj.str = "defined in FLA or AS";
 trace(obj.addStr.call(abj, null)); //output: defined in FLA or AS
 trace(obj.addStr.call(this, null)); //output: undefined
 trace(obj.addStr.call(obj, null)); //output: Defined in applyThis.as

Similarly, to call a function defined in a dynamic class, you must use this to invoke the function in the proper scope:

 // incorrect version of Simple.as
 /*
 dynamic class Simple {
 function callfunc() {
 trace(func());
 }
 }
 */
 // correct version of Simple.as
 dynamic class simple {
 function callfunc() {
 trace(this.func());
 }
 }

Inside the FLA or AS file, add the following ActionScript:

 var obj:Simple = new Simple();
 obj.num = 0;
 obj.func = function() {
 return true;
 };
 obj.callfunc();
 // output: true

You get a syntax error when you use the incorrect version of Simple.as.

Availability

Flash Lite 2.0

Example

In the following example, the keyword this references the Circle object:

71FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 function Circle(radius:Number):Void {
 this.radius = radius;
 this.area = Math.PI*Math.pow(radius, 2);
 }
 var myCircle = new Circle(4);
 trace(myCircle.area);

In the following statement assigned to a frame inside a movie clip, the keyword this references the current movie clip.

 // sets the alpha property of the current movie clip to 20
 this._alpha = 20;

In the following statement inside a MovieClip.onPress handler, the keyword this references the current movie clip:

 this.square_mc.onPress = function() {
 startDrag(this);
 };
 this.square_mc.onRelease = function() {
 stopDrag();
 };

See also

Constants, onClipEvent handler

Operators

Symbolic operators are characters that specify how to combine, compare, or modify the values of an expression.

Operators summary

Operator Description

+ (addition) Adds numeric expressions or concatenates (combines) strings.

+= (addition

assignment)
Assigns expression1 the value of expression1 + expression2.

[] (array access) Initializes a new array or multidimensional array with the specified elements (a0, and

so on), or accesses elements in an array.

= (assignment) Assigns the value of expression2 (the parameter on the right) to the variable, array

element, or property in expression1.

& (bitwise AND) Converts expression1 and expression2 to 32-bit unsigned integers, and

performs a Boolean AND operation on each bit of the integer parameters.

&= (bitwise AND

assignment)
Assigns expression1 the value of expression1& expression2.

<< (bitwise left shift) Converts expression1 and expression2 to 32-bit integers, and shifts all the bits in

expression1 to the left by the number of places specified by the integer resulting

from the conversion of expression2.

<<= (bitwise left shift and

assignment)
This operator performs a bitwise left shift (<<) operation and stores the contents as a

result in expression1.

~ (bitwise NOT) Also known as the one's complement operator or the bitwise complement operator.

72FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

| (bitwise OR) Converts expression1 and expression2 to 32-bit unsigned integers, and returns

a 1 in each bit position where the corresponding bits of either expression1 or

expression2 are 1.

|= (bitwise OR

assignment)
Assigns expression1 the value of expression1 | expression2.

>> (bitwise right shift) Converts expression1 and expression2 to 32-bit integers, and shifts all the bits in

expression1 to the right by the number of places specified by the integer that results

from the conversion of expression2.

>>= (bitwise right shift

and assignment)
This operator performs a bitwise right-shift operation and stores the contents as a

result in expression1.

>>> (bitwise unsigned

right shift)
The same as the bitwise right shift (>>) operator except that it does not preserve the

sign of the original expression because the bits on the left are always filled with 0.

Floating-point numbers are converted to integers by discarding any digits after the

decimal point.

>>>= (bitwise unsigned

right shift and

assignment)

Performs an unsigned bitwise right-shift operation and stores the contents as a result

in expression1.

^ (bitwise XOR) Converts expression1 and expression2 to 32-bit unsigned integers, and returns a 1 in

each bit position where the corresponding bits in expression1 or expression2, but not

both, are 1.

^= (bitwise XOR

assignment)
Assigns expression1 the value of expression1 ^ expression2.

/* (block comment

delimiter)
Indicates one or more lines of script comments.

, (comma) Evaluates expression1, then expression2, and so on.

add (concatenation

(strings))
Deprecated since Flash Player 5. Adobe recommends you use the addition (+)

operator when creating content for Flash Player 5 or later.

Note: Flash Lite 2.0 also deprecates the add operator in favor of the addition (+)

operator.

Concatenates two or more strings.

?: (conditional) Instructs Flash to evaluate expression1, and if the value of expression1 is true, it returns

the value of expression2; otherwise it returns the value of expression3.

-- (decrement) A pre-decrement and post-decrement unary operator that subtracts 1 from the

expression.

/ (division) Divides expression1 by expression2.

/= (division assignment) Assigns expression1 the value of expression1 / expression2.

. (dot) Used to navigate movie clip hierarchies to access nested (child) movie clips, variables,

or properties.

== (equality) Tests two expressions for equality.

eq (equality (strings)) Deprecated since Flash Player 5. This operator was deprecated in favor of the ==
(equality) operator.

Returns true if the string representation of expression1 is equal to the string

representation of expression2, false otherwise.

> (greater than) Compares two expressions and determines whether expression1 is greater than

expression2; if it is, the operator returns true.

Operator Description

73FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

gt (greater than

(strings))
Deprecated since Flash Player 5. This operator was deprecated in favor of the >

(greater than) operator.

Compares the string representation of expression1 with the string representation of

expression2 and returns true if expression1 is greater than expression2, false

otherwise.

>= (greater than or equal

to)
Compares two expressions and determines whether expression1 is greater than or

equal to expression2 (true) or expression1 is less than expression2 (false).

ge (greater than or equal

to (strings))
Deprecated since Flash Player 5. This operator was deprecated in favor of the >=

(greater than or equal to) operator.

Returns true if expression1 is greater than or equal to expression2, false otherwise.

++ (increment) A pre-increment and post-increment unary operator that adds 1 to expression .

!= (inequality) Tests for the exact opposite of the equality (==) operator.

<> (inequality) Deprecated since Flash Player 5. This operator has been deprecated. Adobe

recommends that you use the != (inequality) operator.

Tests for the exact opposite of the equality (==) operator.

instanceof Tests whether object is an instance of classConstructor or a subclass of

classConstructor.

< (less than) Compares two expressions and determines whether expression1 is less than

expression2; if so, the operator returns true.

lt (less than (strings)) Deprecated since Flash Player 5. This operator was deprecated in favor of the < (less

than) operator.

Returns true if expression1 is less than expression2, false otherwise.

<= (less than or equal to) Compares two expressions and determines whether expression1 is less than or equal

to expression2; if it is, the operator returns true.

le (less than or equal to

(strings))
Deprecated since Flash Player 5. This operator was deprecated in Flash 5 in favor of

the <= (less than or equal to) operator.

Returns true if expression1 is less than or equal to expression2, false otherwise.

// (line comment

delimiter)
Indicates the beginning of a script comment.

&& (logical AND) Performs a Boolean operation on the values of one or both of the expressions.

and (logical AND) Deprecated since Flash Player 5. Adobe recommends that you use the logical AND

(&&) operator.

Performs a logical AND (&&) operation in Flash Player 4.

! (logical NOT) Inverts the Boolean value of a variable or expression.

not (logical NOT) Deprecated since Flash Player 5. This operator was deprecated in favor of the !
(logical NOT) operator.

Performs a logical NOT (!) operation in Flash Player 4.

|| (logical OR) Evaluates expression1 (the expression on the left side of the operator) and returns

true if the expression evaluates to true.

or (logical OR) Deprecated since Flash Player 5. This operator was deprecated in favor of the ||
(logical OR) operator.

Evaluates condition1 and condition2, and if either expression is true, the whole

expression is true.

Operator Description

74FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

+ addition operator
expression1 + expression2

Adds numeric expressions or concatenates (combines) strings. If one expression is a string, all other expressions are

converted to strings and concatenated. If both expressions are integers, the sum is an integer; if either or both

expressions are floating-point numbers, the sum is a floating-point number.

Note: Flash Lite 2.0 supports the addition (+) operator for adding numeric expressions and concatenating strings.

Flash Lite 1.x only supports the addition (+) operator for adding numeric expressions (such as var1 = 1 + 2 //

output: 3). For Flash Lite 1.x, you must use the add operator to concatenate strings.

Availability

Flash Lite 2.0

% (modulo) Calculates the remainder of expression1 divided by expression2.

%= (modulo assignment) Assigns expression1 the value of expression1 % expression2.

* (multiplication) Multiplies two numerical expressions.

*= (multiplication

assignment)
Assigns expression1 the value of expression1 * expression2.

new Creates a new, initially anonymous, object and calls the function identified by the

constructor parameter.

ne (not equal (strings)) Deprecated since Flash Player 5. This operator was deprecated in favor of the !=
(inequality) operator.

Returns true if expression1 is not equal to expression2; false otherwise.

{} (object initializer) Creates a new object and initializes it with the specified name and value property pairs.

() (parentheses) Performs a grouping operation on one or more parameters, performs sequential

evaluation of expressions, or surrounds one or more parameters and passes them as

parameters to a function outside the parentheses.

=== (strict equality) Tests two expressions for equality; the strict equality (===) operator performs in the

same way as the equality (==) operator, except that data types are not converted.

!== (strict inequality) Tests for the exact opposite of the strict equality (===) operator.

" (string delimiter) When used before and after characters, quotation marks (") indicate that the

characters have a literal value and are considered a string, not a variable, numerical

value, or other ActionScript element.

- (subtraction) Used for negating or subtracting.

-= (subtraction

assignment)
Assigns expression1 the value of expression1 - expression2.

: (type) Used for strict data typing; this operator specifies the variable type, function return

type, or function parameter type.

typeof The typeof operator evaluate the expression and returns a string specifying

whether the expression is a String, MovieClip, Object, Function,
Number, or Boolean value.

void The void operator evaluates an expression and then discards its value, returning

undefined.

Operator Description

75FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Operands

expression1 - A number or string.

expression2 - A number or string.

Returns

Object - A string, integer, or floating-point number.

Example

Usage 1: The following example concatenates two strings and displays the result in the Output panel.

 var name:String = "Cola";
 var instrument:String = "Drums";
 trace(name + " plays " + instrument); // output: Cola plays Drums

Note: Flash Lite 1.x does not support the addition (+) operator for concatenating strings. For Flash Lite 1.x, you must

use the add operator to concatenate strings.

Usage 2: This statement adds the integers 2 and 3 and displays the resulting integer, 5, in the Output panel:

 trace(2 + 3); // output: 5

This statement adds the floating-point numbers 2.5 and 3.25 and displays the resulting floating-point number, 5.75,

in the Output panel

 trace(2.5 + 3.25); // output: 5.75

Usage 3: Variables associated with dynamic and input text fields have the data type String. In the following example,

the variable deposit is an input text field on the Stage. After a user enters a deposit amount, the script attempts to add

deposit to oldBalance. However, because deposit is a String data type, the script concatenates (combines to form

one string) the variable values rather than summing them.

 var oldBalance:Number = 1345.23;
 var currentBalance = deposit_txt.text + oldBalance;
 trace(currentBalance);

For example, if a user enters 475 in the deposit text field, the trace() function sends the value 4751345.23 to the

Output panel. To correct this, use the Number() function to convert the string to a number, as in the following:

 var oldBalance:Number = 1345.23;
 var currentBalance:Number = Number(deposit_txt.text) + oldBalance;
 trace(currentBalance);

The following example shows how numeric sums to the right of a string expression are not calculated:

 var a:String = 3 + 10 + "asdf";
 trace(a); // 13asdf
 var b:String = "asdf" + 3 + 10;
 trace(b); // asdf310

+= addition assignment operator
expression1 += expression2

Assigns expression1 the value of expression1+ expression2. For example, the following two statements have the same

result:

 x += y;
 x = x + y;

76FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

This operator also performs string concatenation. All the rules of the addition (+) operator apply to the addition

assignment (+=) operator.

Availability

Flash Lite 1.0

Operands

expression1 : Number - A number or string.

expression2 : Number - A number or string.

Returns

Number - The result of the addition.

Example

Usage 1: This example uses the += operator with a string expression and sends "My name is Gilbert" to the Output

panel.

 var x1:String = "My name is ";
 x1 += "Gilbert";
 trace(x1); // output: My name is Gilbert

Usage 2: The following example shows a numeric use of the addition assignment (+=) operator:

 var x:Number = 5;
 var y:Number = 10;
 x += y;
 trace(x); // output: 15

See also

+ addition operator

[] array access operator
 myArray = [a0, a1,...aN]
 myArray[i] = value
 myObject [propertyName]

Initializes a new array or multidimensional array with the specified elements (a0, and so on), or accesses elements in

an array. The array access operator lets you dynamically set and retrieve instance, variable, and object names. It also

lets you access object properties.

Usage 1: An array is an object whose properties are called elements, which are each identified by a number called an

index. When you create an array, you surround the elements with the array access ([]) operator (or brackets). An array

can contain elements of various types. For example, the following array, called employee, has three elements; the first

is a number and the second two are strings (inside quotation marks):

 var employee:Array = [15, "Barbara", "Jay"];

You can nest brackets to simulate multidimensional arrays. You can nest arrays up to 256 levels deep. The following

code creates an array called ticTacToe with three elements; each element is also an array with three elements:

 var ticTacToe:Array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]; // Select Debug > List Variables in
test mode
 // to see a list of the array elements.

77FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Usage 2: Surround the index of each element with brackets ([]) to access it directly; you can add a new element to an

array, or you can change or retrieve the value of an existing element. The first index in an array is always 0, as shown

in the following example:

 var my_array:Array = new Array();
 my_array[0] = 15;
 my_array[1] = "Hello";
 my_array[2] = true;

You can use brackets ([]) to add a fourth element, as shown in the following example:

 my_array[3] = "George";

You can use brackets ([]) to access an element in a multidimensional array. The first set of brackets identifies the

element in the original array, and the second set identifies the element in the nested array. The following lines of code

send the number 6 to the Output panel.

 var ticTacToe:Array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
 trace(ticTacToe[1][2]);// output: 6

Usage 3: You can use the array access ([]) operator instead of the eval() function to dynamically set and retrieve

values for movie clip names or any property of an object. The following line of code sets the name of the movie clip

determined by concatenating the string “mc” with the value of the i variable to “left_corner”.

 name["mc" + i] = "left_corner";

Availability

Flash Lite 2.0

Operands

myArray : Object - The name of an array.

a0, a1,...aN : Object - Elements in an array; any native type or object instance, including nested arrays.

i : Number - An integer index greater than or equal to 0.

myObject : Object - The name of an object.

propertyName : String - A string that names a property of the object.

Returns

Object -

Usage 1: A reference to an array.

Usage 2: A value from the array; either a native type or an object instance (including an array instance).

Usage 3: A property from the object; either a native type or an object instance (including an array instance).

Example

The following example shows two ways to create a new empty Array object; the first line uses brackets ([]):

 var my_array:Array = [];
 var my_array:Array = new Array();

The following example creates an array called employee_array and uses the trace() statement to send the elements to

the Output panel. In the fourth line, an element in the array is changed, and the fifth line sends the newly modified

array to the Output panel:

78FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var employee_array = ["Barbara", "George", "Mary"];
 trace(employee_array); // output: Barbara,George,Mary
 employee_array[2] = "Sam";
 trace(employee_array); // output: Barbara,George,Sam

In the following example, the expression inside the brackets ("piece" + i) is evaluated and the result is used as the

name of the variable to be retrieved from the my_mc movie clip. In this example, the variable i must live on the same

Timeline as the button. If the variable i is equal to 5, for example, the value of the variable piece5 in the my_mc movie

clip is displayed in the Output panel:

 myBtn_btn.onRelease = function() {
 x = my_mc["piece"+i];
 trace(x);
 };

In the following example, the expression inside the brackets is evaluated, and the result is used as the name of the

variable to be retrieved from movie clip name_mc:

 name_mc["A" + i];

If you are familiar with the Flash 4 ActionScript slash syntax, you can use the eval() function to accomplish the same

result:

 eval("name_mc.A" & i);

You can use the following ActionScript to loop over all objects in the _root scope, which is useful for debugging:

 for (i in _root) {
 trace(i+": "+_root[i]);
 }

You can also use the array access ([]) operator on the left side of an assignment statement to dynamically set instance,

variable, and object names:

 employee_array[2] = "Sam";

See also

Array, Object, eval function

= assignment operator
expression1 = expression2

Assigns the value of expression2 (the parameter on the right) to the variable, array element, or property in expression1.

Assignment can be either by value or by reference. Assignment by value copies the actual value of expression2 and

stores it in expression1. Assignment by value is used when a variable is assigned a number or string literal. Assignment

by reference stores a reference to expression2 in expression1. Assignment by reference is commonly used with the new

operator. Use of the new operator creates an object in memory and a reference to that location in memory is assigned

to a variable.

Availability

Flash Lite 1.0

Operands

expression1 : Object - A variable, element of an array, or property of an object.

expression2 : Object - A value of any type.

79FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Returns

Object - The assigned value, expression2.

Example

The following example uses assignment by value to assign the value of 5 to the variable x.

var x:Number = 5;

The following example uses assignment by value to assign the value "hello" to the variable x:

var x:String;x = " hello ";

The following example uses assignment by reference to create the moonsOfJupiter variable, which contains a reference

to a newly created Array object. Assignment by value is then used to copy the value "Callisto" to the first element of the

array referenced by the variable moonsOfJupiter:

var moonsOfJupiter:Array = new Array();moonsOfJupiter[0] = "Callisto";

The following example uses assignment by reference to create a new object, and assign a reference to that object to the

variable mercury. Assignment by value is then used to assign the value of 3030 to the diameter property of the

mercury object:

var mercury:Object = new Object(); mercury.diameter = 3030; // in miles trace

(mercury.diameter); // output: 3030

The following example builds upon the previous example by creating a variable named merkur (the German word for

mercury) and assigning it the value of mercury. This creates two variables that reference the same object in memory,

which means you can use either variable to access the object's properties. We can then change the diameter property

to use kilometers instead of miles:

var merkur:Object = mercury; merkur.diameter = 4878; // in kilometers trace (mercury.diameter);

// output: 4878

See also

== equality operator

& bitwise AND operator
expression1 & expression2

Converts expression1 and expression2 to 32-bit unsigned integers, and performs a Boolean AND operation on each bit

of the integer parameters. Floating-point numbers are converted to integers by discarding any digits after the decimal

point. The result is a new 32-bit integer.

Positive integers are converted to an unsigned hex value with a maximum value of 4294967295 or 0xFFFFFFFF; values

larger than the maximum have their most significant digits discarded when they are converted so the value is still 32-

bit. Negative numbers are converted to an unsigned hex value using the two's complement notation, with the

minimum being -2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement

with greater precision and then have the most significant digits discarded as well.

The return value is interpreted as a signed two's complement number, so the return is an integer in the range -

2147483648 to 2147483647.

Availability

Flash Lite 2.0

80FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Operands

expression1 : Number - A number.

expression2 : Number - A number.

Returns

Number - The result of the bitwise operation.

Example

The following example compares the bit representation of the numbers and returns 1 only if both bits at the same

position are 1. In the following ActionScript code, you add 13 (binary 1101) and 11 (binary 1011) and return 1 only in

the position where both numbers have a 1.

 var insert:Number = 13;
 var update:Number = 11;
 trace(insert & update); // output : 9 (or 1001 binary)

In the numbers 13 and 11 the result is 9 because only the first and last positions in both numbers have the number 1.

The following example shows the behavior of the return value conversion:

 trace(0xFFFFFFFF); // 4294967295
 trace(0xFFFFFFFF & 0xFFFFFFFF); // -1
 trace(0xFFFFFFFF & -1); // -1
 trace(4294967295 & -1); // -1
 trace(4294967295 & 4294967295); // -1

See also

&= bitwise AND assignment operator, ^ bitwise XOR operator, ^= bitwise XOR assignment operator,

| bitwise OR operator, |= bitwise OR assignment operator, ~ bitwise NOT operator

&= bitwise AND assignment operator
expression1 &= expression2

Assigns expression1 the value of expression1 & expression2. For example, the following two expressions are equivalent:

 x &= y;
 x = x & y;

Availability

Flash Lite 2.0

Operands

expression1 : Number - A number.

expression2 : Number - A number.

Returns

Number - The value of expression1 & expression2.

Example

The following example assigns the value 9 to x:

81FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var x:Number = 15;
 var y:Number = 9;
 trace(x &= y); // output: 9

See also

& bitwise AND operator, ^ bitwise XOR operator, ^= bitwise XOR assignment operator, | bitwise OR

operator|= bitwise OR assignment operator, ~ bitwise NOT operator

<< bitwise left shift operator
expression1 << expression2

Converts expression1 and expression2 to 32-bit integers, and shifts all the bits in expression1 to the left by the number

of places specified by the integer resulting from the conversion of expression2. The bit positions that are emptied as a

result of this operation are filled in with 0 and bits shifted off the left end are discarded. Shifting a value left by one

position is the equivalent of multiplying it by 2.

Floating-point numbers are converted to integers by discarding any digits after the decimal point. Positive integers are

converted to an unsigned hex value with a maximum value of 4294967295 or 0xFFFFFFFF; values larger than the

maximum have their most significant digits discarded when they are converted so the value is still 32-bit. Negative

numbers are converted to an unsigned hex value via the two's complement notation, with the minimum being -

2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement with greater

precision and also have the most significant digits discarded.

The return value is interpreted as a two's complement number with sign, so the return value will be an integer in the

range -2147483648 to 2147483647.

Availability

Flash Lite 2.0

Operands

expression1 : Number - A number or expression to be shifted left.

expression2 : Number - A number or expression that converts to an integer from 0 to 31.

Returns

Number - The result of the bitwise operation.

Example

In the following example, the integer 1 is shifted 10 bits to the left: x = 1 << 10 The result of this operation is x =

1024. This is because 1 decimal equals 1 binary, 1 binary shifted left by 10 is 10000000000 binary, and 10000000000

binary is 1024 decimal. In the following example, the integer 7 is shifted 8 bits to the left: x = 7 << 8 The result of

this operation is x = 1792. This is because 7 decimal equals 111 binary, 111 binary shifted left by 8 bits is 11100000000

binary, and 11100000000 binary is 1792 decimal. If you trace the following example, you see that the bits have been

pushed two spaces to the left:

 // 2 binary == 0010
 // 8 binary == 1000
 trace(2 << 2); // output: 8

82FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

See also

>>= bitwise right shift and assignment operator, >> bitwise right shift operator, <<= bitwise

left shift and assignment operator>>> bitwise unsigned right shift operator, >>>= bitwise

unsigned right shift and assignment operator

<<= bitwise left shift and assignment operator
expression1 <<= expression2

This operator performs a bitwise left shift (<<) operation and stores the contents as a result in expression1. The

following two expressions are equivalent:

A <<= BA = (A << B)

Availability

Flash Lite 2.0

Operands

expression1 : Number - A number or expression to be shifted left.

expression2 : Number - A number or expression that converts to an integer from 0 to 31.

Returns

Number - The result of the bitwise operation.

Example

In the following example, you use the bitwise left shift and assignment (<<=) operator to shift all bits one space to the

left:

 var x:Number = 4;
 // shift all bits one slot to the left.
 x <<= 1;
 trace(x); // output: 8
 // 4 decimal = 0100 binary
 // 8 decimal = 1000 binary

See also

<< bitwise left shift operator, >>= bitwise right shift and assignment operator, >> bitwise right

shift operator

~ bitwise NOT operator
~expression

Also known as the one's complement operator or the bitwise complement operator. Converts the expression to a 32-

bit signed integer, and then applies a bitwise one's complement. That is, every bit that is a 0 is set to 1 in the result, and

every bit that is a 1 is set to 0 in the result. The result is a signed 32-bit integer.

For example, the hex value 0x7777 is represented as this binary number: 0111011101110111

The bitwise negation of that hex value, ~0x7777, is this binary number: 1000100010001000

In hexadecimal, this is 0x8888. Therefore, ~0x7777 is 0x8888.

83FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

The most common use of bitwise operators is for representing flag bits (Boolean values packed into 1 bit each).

Floating-point numbers are converted to integers by discarding any digits after the decimal point. Positive integers are

converted to an unsigned hex value with a maximum value of 4294967295 or 0xFFFFFFFF; values larger than the

maximum have their most significant digits discarded when they are converted so the value is still 32-bit. Negative

numbers are converted to an unsigned hex value via the two's complement notation, with the minimum being -

2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement with greater

precision and also have the most significant digits discarded.

The return value is interpreted as a two's complement number with sign, so the return value is an integer in the range

-2147483648 to 2147483647.

Availability

Flash Lite 2.0

Operands

expression : Number - A number.

Returns

Number - The result of the bitwise operation.

Example

The following example demonstrates a use of the bitwise NOT (~) operator with flag bits:

 var ReadOnlyFlag:Number = 0x0001; // defines bit 0 as the read-only flag
 var flags:Number = 0;
 trace(flags);
 /* To set the read-only flag in the flags variable,
 the following code uses the bitwise OR:
 */
 flags |= ReadOnlyFlag;
 trace(flags);
 /* To clear the read-only flag in the flags variable,
 first construct a mask by using bitwise NOT on ReadOnlyFlag.
 In the mask, every bit is a 1 except for the read-only flag.
 Then, use bitwise AND with the mask to clear the read-only flag.
 The following code constructs the mask and performs the bitwise AND:
 */
 flags &= ~ReadOnlyFlag;
 trace(flags);
 // output: 0 1 0

See also

& bitwise AND operator, &= bitwise AND assignment operator, ^ bitwise XOR operator, ^= bitwise

XOR assignment operator| bitwise OR operator, |= bitwise OR assignment operator

| bitwise OR operator
expression1 | expression2

Converts expression1 and expression2 to 32-bit unsigned integers, and returns a 1 in each bit position where the

corresponding bits of either expression1 or expression2 are 1. Floating-point numbers are converted to integers by

discarding any digits after the decimal point. The result is a new 32-bit integer.

84FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Positive integers are converted to an unsigned hex value with a maximum value of 4294967295 or 0xFFFFFFFF; values

larger than the maximum have their most significant digits discarded when they are converted so the value is still 32-

bit. Negative numbers are converted to an unsigned hex value via the two's complement notation, with the minimum

being -2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement with greater

precision and also have the most significant digits discarded.

The return value is interpreted as a two's complement number with sign, so the return value will be an integer in the

range -2147483648 to 2147483647.

Availability

Flash Lite 2.0

Operands

expression1 : Number - A number.

expression2 : Number - A number.

Returns

Number - The result of the bitwise operation.

Example

The following is an example of a bitwise OR (|) operation:

 // 15 decimal = 1111 binary
 var x:Number = 15;
 // 9 decimal = 1001 binary
 var y:Number = 9;
 // 1111 | 1001 = 1111
 trace(x | y); // returns 15 decimal (1111 binary)

Don't confuse the single | (bitwise OR) with || (logical OR).

See also

& bitwise AND operator, &= bitwise AND assignment operator, ^ bitwise XOR operator, ^= bitwise

XOR assignment operator|= bitwise OR assignment operator, ~ bitwise NOT operator

|= bitwise OR assignment operator
expression1 |= expression2

Assigns expression1 the value of expression1 | expression2. For example, the following two statements are equivalent:

 x |= y; and x = x | y;

Availability

Flash Lite 2.0

Operands

expression1 : Number - A number or variable.

expression2 : Number - A number or variable.

85FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Returns

Number - The result of the bitwise operation.

Example

The following example uses the bitwise OR assignment (|=) operator:

 // 15 decimal = 1111 binary
 var x:Number = 15;
 // 9 decimal = 1001 binary
 var y:Number = 9;
 // 1111 |= 1001 = 1111
 trace(x |= y); // returns 15 decimal (1111 binary)

See also

& bitwise AND operator, &= bitwise AND assignment operator, ^ bitwise XOR operator, ^= bitwise

XOR assignment operator| bitwise OR operator, ~ bitwise NOT operator

>> bitwise right shift operator
expression1 >> expression2

Converts expression1 and expression2 to 32-bit integers, and shifts all the bits in expression1 to the right by the number

of places specified by the integer that results from the conversion of expression2. Bits that are shifted off the right end

are discarded. To preserve the sign of the original expression, the bits on the left are filled in with 0 if the most

significant bit (the bit farthest to the left) of expression1 is 0, and filled in with 1 if the most significant bit is 1. Shifting

a value right by one position is the equivalent of dividing by 2 and discarding the remainder.

Floating-point numbers are converted to integers by discarding any digits after the decimal point. Positive integers are

converted to an unsigned hex value with a maximum value of 4294967295 or 0xFFFFFFFF; values larger than the

maximum have their most significant digits discarded when they are converted so the value is still 32-bit. Negative

numbers are converted to an unsigned hex value via the two's complement notation, with the minimum being -

2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement with greater

precision and also have the most significant digits discarded.

The return value is interpreted as a two's complement number with sign, so the return value will be an integer in the

range -2147483648 to 2147483647.

Availability

Flash Lite 2.0

Operands

expression1 : Number - A number or expression to be shifted right.

expression2 : Number - A number or expression that converts to an integer from 0 to 31.

Returns

Number - The result of the bitwise operation.

Example

The following example converts 65535 to a 32-bit integer and shifts it 8 bits to the right:

 var x:Number = 65535 >> 8;
 trace(x); // outputs 255

86FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

The following example shows the result of the previous example:

 var x:Number = 255;

This is because 65535 decimal equals 1111111111111111 binary (sixteen 1s), 1111111111111111 binary shifted right

by 8 bits is 11111111 binary, and 11111111 binary is 255 decimal. The most significant bit is 0 because the integers are

32-bit, so the fill bit is 0.

The following example converts -1 to a 32-bit integer and shifts it 1 bit to the right:

 var x:Number = -1 >> 1;
 trace(x); // outputs -1

The following example shows the result of the previous example:

 var x:Number = -1;

This is because -1 decimal equals 11111111111111111111111111111111 binary (thirty-two 1s), shifting right by one

bit causes the least significant (bit farthest to the right) to be discarded and the most significant bit to be filled in with

1. The result is 11111111111111111111111111111111 (thirty-two 1s) binary, which represents the 32-bit integer -1.

See also

>>= bitwise right shift and assignment operator

>>= bitwise right shift and assignment operator
expression1 >>= expression2

This operator performs a bitwise right shift operation and stores the contents as a result in expression1.

The following two statements are equivalent:

 A >>= B; and A = (A >> B);

Availability

Flash Lite 2.0

Operands

expression1 : Number - A number or expression to be shifted right.

expression2 : Number - A number or expression that converts to an integer from 0 to 31.

Returns

Number - The result of the bitwise operation.

Example

The following commented code uses the bitwise right shift and assignment (>>=) operator.

87FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 function convertToBinary(numberToConvert:Number):String {
 var result:String = "";
 for (var i = 0; i<32; i++) {
 // Extract least significant bit using bitwise AND
 var lsb:Number = numberToConvert & 1;
 // Add this bit to the result
 string result = (lsb ? "1" : "0")+result;
 // Shift numberToConvert right by one bit, to see next bit
 numberToConvert >>= 1;
 }
 return result;
 }
 trace(convertToBinary(479));
 // Returns the string 00000000000000000000000111011111
 // This string is the binary representation of the decimal
 // number 479

See also

>> bitwise right shift operator

>>> bitwise unsigned right shift operator
expression1 >>> expression2

The same as the bitwise right shift (>>) operator except that it does not preserve the sign of the original expression

because the bits on the left are always filled with 0.

Floating-point numbers are converted to integers by discarding any digits after the decimal point. Positive integers are

converted to an unsigned hex value with a maximum value of 4294967295 or 0xFFFFFFFF; values larger than the

maximum have their most significant digits discarded when they are converted so the value is still 32-bit. Negative

numbers are converted to an unsigned hex value via the two's complement notation, with the minimum being -

2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement with greater

precision and also have the most significant digits discarded.

Availability

Flash Lite 2.0

Operands

expression1 : Number - A number or expression to be shifted right.

expression2 : Number - A number or expression that converts to an integer between 0 and 31.

Returns

Number - The result of the bitwise operation.

Example

The following example converts -1 to a 32-bit integer and shifts it 1 bit to the right:

 var x:Number = -1 >>> 1;
 trace(x); // output: 2147483647

This is because -1 decimal is 11111111111111111111111111111111 binary (thirty-two 1s), and when you shift right

(unsigned) by 1 bit, the least significant (rightmost) bit is discarded, and the most significant (leftmost) bit is filled with

a 0. The result is 01111111111111111111111111111111 binary, which represents the 32-bit integer 2147483647.

88FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

See also

>>= bitwise right shift and assignment operator

>>>= bitwise unsigned right shift and assignment operator
expression1 >>>= expression2

Performs an unsigned bitwise right-shift operation and stores the contents as a result in expression1. The following two

statements are equivalent:

 A >>>= B; and A = (A >>> B);

Availability

Flash Lite 2.0

Operands

expression1 : Number - A number or expression to be shifted right.

expression2 : Number - A number or expression that converts to an integer from 0 to 31.

Returns

Number - The result of the bitwise operation.

See also

>>> bitwise unsigned right shift operator, >>= bitwise right shift and assignment operator

^ bitwise XOR operator
expression1 ^ expression2

Converts expression1 and expression2 to 32-bit unsigned integers, and returns a 1 in each bit position where the

corresponding bits in expression1 or expression2, but not both, are 1. Floating-point numbers are converted to integers

by discarding any digits after the decimal point. The result is a new 32-bit integer.

Positive integers are converted to an unsigned hex value with a maximum value of 4294967295 or 0xFFFFFFFF; values

larger than the maximum have their most significant digits discarded when they are converted so the value is still 32-

bit. Negative numbers are converted to an unsigned hex value via the two's complement notation, with the minimum

being -2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement with greater

precision and also have the most significant digits discarded.

The return value is interpreted as a two's complement number with sign, so the return value will be an integer in the

range -2147483648 to 2147483647.

Availability

Flash Lite 2.0

Operands

expression1 : Number - A number.

expression2 : Number - A number.

89FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Returns

Number - The result of the bitwise operation.

Example

The following example uses the bitwise XOR operator on the decimals 15 and 9, and assigns the result to the variable x:

 // 15 decimal = 1111 binary
 // 9 decimal = 1001 binary
 var x:Number = 15 ^ 9;
 trace(x);
 // 1111 ^ 1001 = 0110
 // returns 6 decimal (0110 binary)

See also

& bitwise AND operator, &= bitwise AND assignment operator, ^= bitwise XOR assignment operator,

| bitwise OR operator, |= bitwise OR assignment operator, ~ bitwise NOT operator

^= bitwise XOR assignment operator
expression1 ^= expression2

Assigns expression1 the value of expression1 ̂ expression2. For example, the following two statements are equivalent:

 x ^= y x = x ^ y

Availability

Flash Lite 2.0

Operands

expression1 : Number - Integers and variables.

expression2 : Number - Integers and variables.

Returns

Number - The result of the bitwise operation.

Example

The following example shows a bitwise XOR assignment (^=) operation:

 // 15 decimal = 1111 binary
 var x:Number = 15;
 // 9 decimal = 1001 binary
 var y:Number = 9;
 trace(x ^= y); // returns 6 decimal (0110 binary)

See also

& bitwise AND operator, &= bitwise AND assignment operator, ^ bitwise XOR operator, | bitwise OR

operator|= bitwise OR assignment operator, ~ bitwise NOT operator

90FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

/* block comment delimiter operator
 /* comment */
 /* comment
 comment */

Indicates one or more lines of script comments. Any characters that appear between the opening comment tag (/*)

and the closing comment tag (*/) are interpreted as a comment and ignored by the ActionScript interpreter. Use the

// (comment delimiter) to identify single-line comments. Use the /* comment delimiter to identify comments on

multiple successive lines. Leaving off the closing tag (*/) when using this form of comment delimiter returns an error

message. Attempting to nest comments also returns an error message. After an opening comment tag (/*) is used, the

first closing comment tag (*/) will end the comment, regardless of the number of opening comment tags (/*) placed

between them.

Availability

Flash Lite 1.0

Operands

comment - Any characters.

Example

The following script uses comment delimiters at the beginning of the script:

 /* records the X and Y positions of
 the ball and bat movie clips */
 var ballX:Number = ball_mc._x;
 var ballY:Number = ball_mc._y;
 var batX:Number = bat_mc._x;
 var batY:Number = bat_mc._y;

The following attempt to nest comments will result in an error message:

 /* this is an attempt to nest comments.
 /* But the first closing tag will be paired
 with the first opening tag */
 and this text will not be interpreted as a comment */

See also

// line comment delimiter operator

, comma operator
(expression1 , expression2 [, expressionN...])

Evaluates expression1, then expression2, and so on. This operator is primarily used with the for loop statement and is

often used with the parentheses () operator.

Availability

Flash Lite 1.0

Operands

expression1 : Number - An expression to be evaluated.

expression2 : Number - An expression to be evaluated.

91FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

expressionN : Number - Any number of additional expressions to be evaluated.

Returns

Object - The value of expression1, expression2, and so on.

Example

The following example uses the comma (,) operator in a for loop:

 for (i = 0, j = 0; i < 3 && j < 3; i++, j+=2) {
 trace("i = " + i + ", j = " + j);
 }
 // Output:
 // i = 0, j = 0
 // i = 1, j = 2

The following example uses the comma (,) operator without the parentheses () operator and illustrates that the comma

operator returns only the value of the first expression without the parentheses () operator:

 var v:Number = 0;
 v = 4, 5, 6;
 trace(v); // output: 4

The following example uses the comma (,) operator with the parentheses () operator and illustrates that the comma

operator returns the value of the last expression when used with the parentheses () operator:

 var v:Number = 0;
 v = (4, 5, 6);
 trace(v); // output: 6

The following example uses the comma (,) operator without the parentheses () operator and illustrates that the comma

operator sequentially evaluates all of the expressions but returns the value of the first expression. The second

expression, z++, is evaluated and z is incremented by one.

 var v:Number = 0;
 var z:Number = 0;
 v = v + 4 , z++, v + 6;
 trace(v); // output: 4
 trace(z); // output: 1

The following example is identical to the previous example except for the addition of the parentheses () operator and

illustrates once again that, when used with the parentheses () operator, the comma (,) operator returns the value of the

last expression in the series:

 var v:Number = 0;
 var z:Number = 0;
 v = (v + 4, z++, v + 6);
 trace(v); // output: 6
 trace(z); // output: 1

See also

() parentheses operator

add concatenation (strings) operator
string1 add string2

92FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Deprecated since Flash Player 5. Adobe recommends you use the addition (+) operator when creating content for

Flash Player 5 or later.

Note: Flash Lite 2.0 also deprecates the add operator in favor of the addition (+) operator.

Concatenates two or more strings. The add (+) operator replaces the Flash 4 & operator; Flash Player 4 files that use

the & operator are automatically converted to use the add (+) operator for string concatenation when brought into the

Flash 5 or later authoring environment. You must use the add (+) operator to concatenate strings if you are creating

content for Flash Player 4 or earlier versions of the Flash Player.

Availability

Flash Lite 1.0

Operands

string1 : String - A string.

string2 : String - A string.

Returns

String - The concatenated string.

See also

+ addition operator

?: conditional operator
expression1 ? expression2 : expression3

Instructs Flash to evaluate expression1, and if the value of expression1 is true, it returns the value of expression2;

otherwise it returns the value of expression3.

Availability

Flash Lite 1.0

Operands

expression1 : Object - An expression that evaluates to a Boolean value; usually a comparison expression, such as

x < 5.

expression2 : Object - Values of any type.

expression3 : Object - Values of any type.

Returns

Object - The value of expression2 or expression3.

Example

The following statement assigns the value of variable x to variable z because expression1 evaluates to true:

 var x:Number = 5;
 var y:Number = 10;
 var z = (x < 6) ? x: y;
 trace (z); // returns 5

93FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

The following example shows a conditional statement written in shorthand:

 var timecode:String = (new Date().getHours() < 11) ? "AM" : "PM";
 trace(timecode);

The same conditional statement could also be written in longhand, as shown in the following example:

 if (new Date().getHours() < 11) {
 var timecode:String = "AM";
 } else {
 var timecode:String = "PM";
 } trace(timecode);

-- decrement operator
 --expression
 expression--

A pre-decrement and post-decrement unary operator that subtracts 1 from the expression. The expression can be a

variable, element in an array, or property of an object. The pre-decrement form of the operator (--expression) subtracts

1 from expression and returns the result. The post-decrement form of the operator (expression--) subtracts 1 from the

expression and returns the initial value of expression (the value prior to the subtraction).

Availability

Flash Lite 1.0

Operands

expression : Number - A number or a variable that evaluates to a number.

Returns

Number - The result of the decremented value.

Example

The pre-decrement form of the operator decrements x to 2 (x - 1 = 2) and returns the result as y:

 var x:Number = 3;
 var y:Number = --x; //y is equal to 2

The post-decrement form of the operator decrements x to 2 (x - 1 = 2) and returns the original value of x as the result y:

 var x:Number = 3;
 var y:Number = x--; //y is equal to 3

The following example loops from 10 to 1, and each iteration of the loop decreases the counter variable i by 1.

 for (var i = 10; i>0; i--) {
 trace(i);
 }

/ division operator
expression1 / expression2

Divides expression1 by expression2. The result of the division operation is a double-precision floating-point number.

94FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 1.0

Operands

expression : Number - A number or a variable that evaluates to a number.

Returns

Number - The floating-point result of the operation.

Example

The following statement divides the current width and height of the Stage, and then displays the result in the Output

panel.

 trace(Stage.width/2);
 trace(Stage.height/2);

For a default Stage width and height of 550 x 400, the output is 275 and 150.

See also

% modulo operator

/= division assignment operator
expression1 /= expression2

Assigns expression1 the value of expression1 / expression2. For example, the following two statements are equivalent:

 x /= y; and x = x / y;

Availability

Flash Lite 1.0

Operands

expression1 : Number - A number or a variable that evaluates to a number.

expression2 : Number - A number or a variable that evaluates to a number.

Returns

Number - A number.

Example

The following code illustrates using the division assignment (/=) operator with variables and numbers:

 var x:Number = 10;
 var y:Number = 2;
 x /= y; trace(x); // output: 5

See also

/ division operator

95FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

. dot operator
 object.property_or_method
 instancename.variable
 instancename.childinstance
 instancename.childinstance.variable

Used to navigate movie clip hierarchies to access nested (child) movie clips, variables, or properties. The dot operator

is also used to test or set the properties of an object or top-level class, execute a method of an object or top-level class,

or create a data structure.

Availability

Flash Lite 1.0

Operands

object : Object - An instance of a class. The object can be an instance of any of the built-in ActionScript classes or

a custom class. This parameter is always to the left of the dot (.) operator.

property_or_method - The name of a property or method associated with an object. All the valid methods and

properties for the built-in classes are listed in the method and property summary tables for that class. This parameter

is always to the right of the dot (.) operator.

instancename : MovieClip - The instance name of a movie clip.

variable — The instance name to the left of the dot (.) operator can also represent a variable on the Timeline of the

movie clip.

childinstance : MovieClip - A movie clip instance that is a child of, or nested in, another movie clip.

Returns

Object - The method, property, or movie clip named on the right side of the dot.

Example

The following example identifies the current value of the variable hairColor in the movie clip person_mc:

 person_mc.hairColor

The Flash 4 authoring environment did not support dot syntax, but Flash MX 2004 files published for Flash Player 4

can use the dot operator. The preceding example is equivalent to the following (deprecated) Flash 4 syntax:

 /person_mc:hairColor

The following example creates a new movie clip within the _root scope. Then a text field is created inside the movie

clip called container_mc. The text field's autoSize property is set to true and then populated with the current date.

 this.createEmptyMovieClip("container_mc", this.getNextHighestDepth());
 this.container_mc.createTextField("date_txt", this.getNextHighestDepth(), 0, 0, 100, 22);
 this.container_mc.date_txt.autoSize = true;
 this.container_mc.date_txt.text = new Date();

The dot (.) operator is used when targeting instances within the SWF file and when you need to set properties and

values for those instances.

== equality operator
expression1 == expression2

96FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Tests two expressions for equality. The result is true if the expressions are equal.

The definition of equal depends on the data type of the parameter:

• Numbers and Boolean values are compared by value and are considered equal if they have the same value.

• String expressions are equal if they have the same number of characters and the characters are identical.

• Variables representing objects, arrays, and functions are compared by reference. Two such variables are equal if

they refer to the same object, array, or function. Two separate arrays are never considered equal, even if they have

the same number of elements.

When comparing by value, if expression1 and expression2 are different data types, ActionScript will attempt to convert

the data type of expression2 to match that of expression1.

Availability

Flash Lite 1.0

Operands

expression1 : Object - A number, string, Boolean value, variable, object, array, or function.

expression2 : Object - A number, string, Boolean value, variable, object, array, or function.

Returns

Boolean - The Boolean result of the comparison.

Example

The following example uses the equality (==) operator with an if statement:

 var a:String = "David", b:String = "David";
 if (a == b) {
 trace("David is David");
 }

The following examples show the results of operations that compare mixed types:

 var x:Number = 5;
 var y:String = "5";
 trace(x == y); // output: true
 var x:String = "5";
 var y:String = "66";
 trace(x == y); // output: false
 var x:String = "chris";
 var y:String = "steve";
 trace(x == y); // output: false

The following examples show comparison by reference. The first example compares two arrays with identical length

and elements. The equality operator will return false for these two arrays. Although the arrays appear equal,

comparison by reference requires that they both refer to the same array. The second example creates the thirdArray

variable, which points to the same array as the variable firstArray. The equality operator will return true for these two

arrays because the two variables refer to the same array.

97FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var firstArray:Array = new Array("one", "two", "three");
 var secondArray:Array = new Array("one", "two", "three");
 trace(firstArray == secondArray);
 // will output false
 // Arrays are only considered equal
 // if the variables refer to the same array.
 var thirdArray:Array = firstArray;
 trace(firstArray == thirdArray); // will output true

See also

! logical NOT operator, != inequality operator, !== strict inequality operator, && logical AND

operator|| logical OR operator, === strict equality operator

eq equality (strings) operator
expression1 eq expression2

Deprecated since Flash Player 5. This operator was deprecated in favor of the == (equality) operator.

Compares two expressions for equality and returns a value of true if the string representation of expression1 is equal

to the string representation of expression2, false otherwise.

Availability

Flash Lite 1.0

Operands

expression1 : Object - Numbers, strings, or variables.

expression2 : Object - Numbers, strings, or variables.

Returns

Boolean - The result of the comparison.

See also

== equality operator

> greater than operator
expression1 > expression2

Compares two expressions and determines whether expression1 is greater than expression2; if it is, the operator returns

true. If expression1 is less than or equal to expression2, the operator returns false. String expressions are evaluated

using alphabetical order; all capital letters come before lowercase letters.

Availability

Flash Lite 1.0

Operands

expression1 : Object - A number or string.

expression2 : Object - A number or string.

98FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Returns

Boolean - The Boolean result of the comparison.

Example

In the following example, the greater than (>) operator is used to determine whether the value of the text field

score_txt is greater than 90:

 if (score_txt.text>90) {
 trace("Congratulations, you win!");
 } else {
 trace("sorry, try again");
 }

gt greater than (strings) operator
expression1 gt expression2

Deprecated since Flash Player 5. This operator was deprecated in favor of the > (greater than) operator.

Compares the string representation of expression1 with the string representation of expression2 and returns true if

expression1 is greater than expression2, false otherwise.

Availability

Flash Lite 1.0

Operands

expression1 : Object - Numbers, strings, or variables.

expression2 : Object - Numbers, strings, or variables.

Returns

Boolean - The Boolean result of the comparison.

See also

> greater than operator

>= greater than or equal to operator
expression1 >= expression2

Compares two expressions and determines whether expression1 is greater than or equal to expression2 (true) or

expression1 is less than expression2 (false).

Availability

Flash Lite 1.0

Operands

expression1 : Object - A string, integer, or floating-point number.

expression2 : Object - A string, integer, or floating-point number.

99FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Returns

Boolean - The Boolean result of the comparison.

Example

In the following example, the greater than or equal to (>=) operator is used to determine whether the current hour is

greater than or equal to 12:

 if (new Date().getHours() >= 12) {
 trace("good afternoon");
 } else {
 trace("good morning");
 }

ge greater than or equal to (strings) operator
expression1 ge expression2

Deprecated since Flash Player 5. This operator was deprecated in favor of the >= (greater than or equal to) operator.

Compares the string representation of expression1 with the string representation of expression2 and returns true if

expression1 is greater than or equal to expression2, false otherwise.

Availability

Flash Lite 1.0

Operands

expression1 : Object - Numbers, strings, or variables.

expression2 : Object - Numbers, strings, or variables.

Returns

Boolean - The result of the comparison.

See also

>= greater than or equal to operator

++ increment operator
 ++expression
 expression++

A pre-increment and post-increment unary operator that adds 1 to expression. The expression can be a variable,

element in an array, or property of an object. The pre-increment form of the operator (++expression) adds 1 to

expression and returns the result. The post-increment form of the operator (expression++) adds 1 to expression and

returns the initial value of expression (the value prior to the addition).

The pre-increment form of the operator increments x to 2 (x + 1 = 2) and returns the result as y:

 var x:Number = 1;
 var y:Number = ++x;
 trace("x:"+x); //traces x:2
 trace("y:"+y); //traces y:2

The post-increment form of the operator increments x to 2 (x + 1 = 2) and returns the original value of x as the result y:

100FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var x:Number = 1;
 var y:Number = x++;
 trace("x:"+x); //traces x:2
 trace("y:"+y); //traces y:1

Availability

Flash Lite 1.0

Operands

expression : Number - A number or a variable that evaluates to a number.

Returns

Number - The result of the increment.

Example

The following example uses ++ as a post-increment operator to make a while loop run five times:

 var i:Number = 0;
 while (i++ < 5) {
 trace("this is execution " + i);
 }
 /* output:
 this is execution 1
 this is execution 2
 this is execution 3
 this is execution 4
 this is execution 5
 */

The following example uses ++ as a pre-increment operator:

 var a:Array = new Array();
 var i:Number = 0;
 while (i < 10) {
 a.push(++i);
 }
 trace(a.toString()); //traces: 1,2,3,4,5,6,7,8,9,10

This example also uses ++ as a pre-increment operator.

 var a:Array = [];
 for (var i = 1; i <= 10; ++i) {
 a.push(i);
 }
 trace(a.toString()); //traces: 1,2,3,4,5,6,7,8,9,10

This script shows the following result in the Output panel: 1,2,3,4,5,6,7,8,9,10

 The following example uses ++ as a post-increment operator in a while loop:

 // using a while loop
 var a:Array = new Array();
 var i:Number = 0;
 while (i < 10) {
 a.push(i++);
 }
 trace(a.toString()); //traces 0,1,2,3,4,5,6,7,8,9

101FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

The following example uses ++ as a post-increment operator in a for loop:

 // using a for loop
 var a:Array = new Array();
 for (var i = 0; i < 10; i++) {
 a.push(i);
 }
 trace(a.toString()); //traces 0,1,2,3,4,5,6,7,8,9

This script displays the following result in the Output panel:

 0,1,2,3,4,5,6,7,8,9

!= inequality operator
expression1 != expression2

Tests for the exact opposite of the equality (==) operator. If expression1 is equal to expression2 , the result is false. As

with the equality (==) operator, the definition of equal depends on the data types being compared, as illustrated in the

following list:

• Numbers, strings, and Boolean values are compared by value.

• Objects, arrays, and functions are compared by reference.

• A variable is compared by value or by reference, depending on its type.

Comparison by value means what most people would expect equals to mean –that two expressions have the same

value. For example, the expression (2 + 3) is equal to the expression (1 + 4) when compared by value.

Comparison by reference means that two expressions are equal only if they both refer to the same object, array, or

function. Values inside the object, array, or function are not compared.

When comparing by value, if expression1 and expression2 are different data types, ActionScript will attempt to convert

the data type of expression2 to match that of expression1.

Availability

Flash Lite 2.0

Operands

expression1 : Object - A number, string, Boolean value, variable, object, array, or function.

expression2 : Object - A number, string, Boolean value, variable, object, array, or function.

Returns

Boolean - The Boolean result of the comparison.

Example

The following example illustrates the result of the inequality (!=) operator:

 trace(5 != 8); // returns true
 trace(5 != 5); //returns false

The following example illustrates the use of the inequality (!=) operator in an if statement:

102FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var a:String = "David";
 var b:String = "Fool";
 if (a != b) {
 trace("David is not a fool");
 }

The following example illustrates comparison by reference with two functions:

 var a:Function = function() { trace("foo"); };
 var b:Function = function() { trace("foo"); };
 a(); // foo
 b(); // foo
 trace(a != b); // true
 a = b;
 a(); // foo
 b(); // foo
 trace(a != b); // false
 // trace statement output: foo foo true foo foo false

The following example illustrates comparison by reference with two arrays:

 var a:Array = [1, 2, 3];
 var b:Array = [1, 2, 3];
 trace(a); // 1, 2, 3
 trace(b); // 1, 2, 3
 trace(a!=b); // true
 a = b;
 trace(a); // 1, 2, 3
 trace(b); // 1, 2, 3
 trace(a != b); // false
 // trace statement output: 1,2,3 1,2,3 true 1,2,3 1,2,3 false

See also

! logical NOT operator, !== strict inequality operator, && logical AND operator, || logical OR

operator== equality operator, === strict equality operator

<> inequality operator
expression1 <> expression2

Deprecated since Flash Player 5. This operator has been deprecated. Adobe recommends that you use the !=

(inequality) operator.

Tests for the exact opposite of the equality (==) operator. If expression1 is equal to expression2, the result is false. As

with the equality (==) operator, the definition of equal depends on the data types being compared:

• Numbers, strings, and Boolean values are compared by value.

• Objects, arrays, and functions are compared by reference.

• Variables are compared by value or by reference depending on their type.

Availability

Flash Lite 1.0

Operands

expression1 : Object - A number, string, Boolean value, variable, object, array, or function.

103FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

expression2 : Object - A number, string, Boolean value, variable, object, array, or function.

Returns

Boolean - The Boolean result of the comparison.

See also

!= inequality operator

instanceof operator
object instanceof classConstructor

Tests whether object is an instance of classConstructor or a subclass of classConstructor. The instanceof

operator does not convert primitive types to wrapper objects. For example, the following code returns true:

 new String("Hello") instanceof String;

Whereas the following code returns false:

 "Hello" instanceof String;

Availability

Flash Lite 2.0

Operands

object : Object - An ActionScript object.

classConstructor : Function - A reference to an ActionScript constructor function, such as String or Date.

Returns

Boolean - If object is an instance of or a subclass of classConstructor, instanceof returns true, otherwise it

returns false. Also, _global instanceof Object returns false.

See also

typeof operator

< less than operator
expression1 < expression2

Compares two expressions and determines whether expression1 is less than expression2; if so, the operator returns

true. If expression1 is greater than or equal to expression2, the operator returns false. String expressions are evaluated

using alphabetical order; all capital letters come before lowercase letters.

Availability

Flash Lite 1.0

Operands

expression1 : Number - A number or string.

expression2 : Number - A number or string.

104FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Returns

Boolean - The Boolean result of the comparison.

Example

The following examples show true and false returns for both numeric and string comparisons:

 trace(3 < 10); // true
 trace(10 < 3); // false
 trace("Allen" < "Jack"); // true
 trace("Jack" < "Allen"); //false
 trace("11" < "3"); // true
 trace("11" < 3); // false (numeric comparison)
 trace("C" < "abc"); // true
 trace("A" < "a"); // true

lt less than (strings) operator
expression1 lt expression2

Deprecated since Flash Player 5. This operator was deprecated in favor of the < (less than) operator.

Compares expression1 to expression2 and returns true if expression1 is less than expression2, false otherwise.

Availability

Flash Lite 1.0

Operands

expression1 : Object - Numbers, strings, or variables.

expression2 : Object - Numbers, strings, or variables.

Returns

Boolean - The result of the comparison.

See also

< less than operator

<= less than or equal to operator
expression1 <= expression2

Compares two expressions and determines whether expression1 is less than or equal to expression2; if it is, the operator

returns true. If expression1 is greater than expression2, the operator returns false. String expressions are evaluated

using alphabetical order; all capital letters come before lowercase letters.

Availability

Flash Lite 1.0

Operands

expression1 : Object - A number or string.

expression2 : Object - A number or string.

105FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Returns

Boolean - The Boolean result of the comparison.

Example

The following examples show true and false results for both numeric and string comparisons:

 trace(5 <= 10); // true
 trace(2 <= 2); // true
 trace(10 <= 3); // false
 trace("Allen" <= "Jack"); // true
 trace("Jack" <= "Allen"); // false
 trace("11" <= "3"); // true
 trace("11" <= 3); // false (numeric comparison)
 trace("C" <= "abc"); // true
 trace("A" <= a); // true

le less than or equal to (strings) operator
expression1 le expression2

Deprecated since Flash Player 5. This operator was deprecated in Flash 5 in favor of the <= (less than or equal to)

operator.

Compares expression1 to expression2 and returns a value of true if expression1 is less than or equal to expression2,

false otherwise.

Availability

Flash Lite 1.0

Operands

expression1 : Object - Numbers, strings, or variables.

expression2 : Object - Numbers, strings, or variables.

Returns

Boolean - The result of the comparison.

See also

<= less than or equal to operator

// line comment delimiter operator
// comment

Indicates the beginning of a script comment. Any characters that appear between the comment delimiter (//) and the

end-of-line character are interpreted as a comment and ignored by the ActionScript interpreter.

Availability

Flash Lite 1.0

Operands

comment - Any characters.

106FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

The following script uses comment delimiters to identify the first, third, fifth, and seventh lines as comments:

 // record the X position of the ball movie clip
 var ballX:Number = ball_mc._x;
 // record the Y position of the ball movie clip
 var ballY:Number = ball_mc._y;
 // record the X position of the bat movie clip
 var batX:Number = bat_mc._x;
 // record the Y position of the ball movie clip
 var batY:Number = bat_mc._y;

See also

/* block comment delimiter operator

&& logical AND operator
expression1 && expression2

Performs a Boolean operation on the values of one or both of the expressions. Evaluates expression1 (the expression

on the left side of the operator) and returns false if the expression evaluates to false. If expression1 evaluates to true,

expression2 (the expression on the right side of the operator) is evaluated. If expression2 evaluates to true, the final

result is true; otherwise, it is false. The expression true&&true evaluates to true, true&&false evaluates to false,

false&&false evaluates to false, and false&&true evaluates to false

Availability

Flash Lite 1.0

Operands

expression1 : Number - A Boolean value or an expression that converts to a Boolean value.

expression2 : Number - A Boolean value or an expression that converts to a Boolean value.

Returns

Boolean - A Boolean result of the logical operation.

Example

The following example uses the logical AND (&&) operator to perform a test to determine if a player has won the game.

The turns variable and the score variable are updated when a player takes a turn or scores points during the game.

The script shows "You Win the Game!" in the Output panel when the player's score reaches 75 or higher in 3 turns or

less.

 var turns:Number = 2;
 var score:Number = 77;
 if ((turns <= 3) && (score >= 75)) {
 trace("You Win the Game!");
 } else {
 trace("Try Again!");
 }
 // output: You Win the Game!

107FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

See also

! logical NOT operator, != inequality operator, !== strict inequality operator, || logical OR

operator== equality operator, === strict equality operator

and logical AND operator
condition1 and condition2

Deprecated since Flash Player 5. Adobe recommends that you use the logical AND (&&) operator.

Performs a logical AND (&&)operation in Flash Player 4. If both expressions evaluate to true, the entire expression is

true.

Availability

Flash Lite 1.0

Operands

condition1 : Boolean - A condition or expression that evaluates to true or false.

condition2 : Boolean - A condition or expression that evaluates to true or false.

Returns

Boolean - A Boolean result of the logical operation.

See also

&& logical AND operator

! logical NOT operator
! expression

Inverts the Boolean value of a variable or expression. If expression is a variable with the absolute or converted value

true, the value of !expression is false. If the expression x && y evaluates to false, the expression !(x && y)

evaluates to true. Therefore, !true returns false, and !false returns true.

Availability

Flash Lite 1.0

Operands

expression : Boolean - An expression or a variable that evaluates to a Boolean value.

Returns

Boolean - The Boolean result of the logical operation.

Example

In the following example, the variable happy is set to false. The if condition evaluates the condition !happy, and if

the condition is true, the trace() statement sends a string to the Output panel.

 var happy:Boolean = false;
 if (!happy) {
 trace("don't worry, be happy"); //traces don't worry, be happy
 }

108FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

The statement traces because !false equals true.

See also

!= inequality operator, !== strict inequality operator, && logical AND operator, || logical OR

operator== equality operator, === strict equality operator

not logical NOT operator
not expression

Deprecated since Flash Player 5. This operator was deprecated in favor of the! (logical NOT) operator.

Performs a logical NOT (!) operation in Flash Player 4.

Availability

Flash Lite 1.0

Operands

expression : Object - A variable or other expression that converts to a Boolean value.

Returns

Boolean - The result of the logical operation.

See also

! logical NOT operator

|| logical OR operator
expression1 || expression2

Evaluates expression1 (the expression on the left side of the operator) and returns true if the expression evaluates to

true. If expression1 evaluates to false, expression2 (the expression on the right side of the operator) is evaluated. If

expression2 evaluates to false, the final result is false; otherwise, it is true.

If you use a function call as expression2, the function will not be executed by that call if expression1 evaluates to true.

The result is true if either or both expressions evaluate to true; the result is false only if both expressions evaluate

to false. You can use the logical OR operator with any number of operands; if any operand evaluates to true, the

result is true.

Availability

Flash Lite 1.0

Operands

expression1 : Number - A Boolean value or an expression that converts to a Boolean value.

expression2 : Number - A Boolean value or an expression that converts to a Boolean value.

Returns

Boolean - The result of the logical operation.

109FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

The following example uses the logical OR (||) operator in an if statement. The second expression evaluates to true,

so the final result is true:

 var x:Number = 10;
 var y:Number = 250;
 var start:Boolean = false;
 if ((x > 25) || (y > 200) || (start)) {
 trace("the logical OR test passed"); // output: the logical OR test passed
 }

The message the logical OR test passed appears because one of the conditions in the if statement is true (y>200).

Although the other two expressions evaluate to false, the if block is executed because one condition evaluates to

true.

The following example demonstrates how using a function call as expression2 can lead to unexpected results. If the

expression on the left of the operator evaluates to true, that result is returned without evaluating the expression on

the right (the function fx2() is not called).

 function fx1():Boolean {
 trace("fx1 called");
 return true;
 }
 function fx2():Boolean {
 trace("fx2 called");
 return true;
 }
 if (fx1() || fx2()) {
 trace("IF statement entered");
 }
 /* The following is sent to the Output panel: /* The following is sent to the log file: fx1
called IF statement entered */

See also

! logical NOT operator, != inequality operator, !== strict inequality operator, && logical AND

operator== equality operator, === strict equality operator

or logical OR operator
condition1 or condition2

Deprecated since Flash Player 5. This operator was deprecated in favor of the || (logical OR) operator.

Evaluates condition1 and condition2, and if either expression is true, the whole expression is true.

Availability

Flash Lite 1.0

Operands

condition1 : Boolean - An expression that evaluates to true or false.

condition2 : Boolean - An expression that evaluates to true or false.

Returns

Boolean - The result of the logical operation.

110FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

See also

|| logical OR operator, | bitwise OR operator

% modulo operator
expression1 % expression2

Calculates the remainder of expression1 divided by expression2. If either of the expression parameters are non-

numeric, the modulo (%) operator attempts to convert them to numbers. The expression can be a number or string that

converts to a numeric value.

The sign of the result of modulo operation matches the sign of the dividend (the first number). For example, -4 % 3

and -4 % -3 both evaluate to -1.

Availability

Flash Lite 1.0

Operands

expression1 : Number - A number or expression that evaluates to a number.

expression2 : Number - A number or expression that evaluates to a number.

Returns

Number - The result of the arithmetic operation.

Example

The following numeric example uses the modulo (%) operator:

 trace(12%5); // traces 2
 trace(4.3%2.1); // traces 0.0999999999999996
 trace(4%4); // traces 0

The first trace returns 2, rather than 12/5 or 2.4, because the modulo (%) operator returns only the remainder. The

second trace returns 0.0999999999999996 instead of the expected 0.1 because of the limitations of floating-point

accuracy in binary computing.

See also

/ division operator, round (Math.round method)

%= modulo assignment operator
expression1 %= expression2

Assigns expression1 the value of expression1 % expression2. The following two statements are equivalent:

 x %= y; and x = x % y;

Availability

Flash Lite 1.0

Operands

expression1 : Number - A number or expression that evaluates to a number.

111FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

expression2 : Number - A number or expression that evaluates to a number.

Returns

Number - The result of the arithmetic operation.

Example

The following example assigns the value 4 to the variable x:

 var x:Number = 14;
 var y:Number = 5;
 trace(x %= y); // output: 4

See also

% modulo operator

* multiplication operator
expression1 * expression2

Multiplies two numerical expressions. If both expressions are integers, the product is an integer. If either or both

expressions are floating-point numbers, the product is a floating-point number.

Availability

Flash Lite 1.0

Operands

expression1 : Number - A number or expression that evaluates to a number.

expression2 : Number - A number or expression that evaluates to a number.

Returns

Number - An integer or floating-point number.

Example

Usage 1: The following statement multiplies the integers 2 and 3:

 trace(2*3); // output: 6

The result, 6, is an integer. Usage 2: This statement multiplies the floating-point numbers 2.0 and 3.1416:

 trace(2.0 * 3.1416); // output: 6.2832

The result, 6.2832, is a floating-point number.

*= multiplication assignment operator
expression1 *= expression2

Assigns expression1 the value of expression1 * expression2. For example, the following two expressions are equivalent:

 x *= y x = x * y

Availability

Flash Lite 1.0

112FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Operands

expression1 : Number - A number or expression that evaluates to a number.

expression2 : Number - A number or expression that evaluates to a number.

Returns

Number - The value of expression1 * expression2. If an expression cannot be converted to a numeric value, it returns

NaN (not a number).

Example

Usage 1: The following example assigns the value 50 to the variable x:

 var x:Number = 5;
 var y:Number = 10;
 trace(x *= y); // output: 50

Usage 2: The second and third lines of the following example calculate the expressions on the right side of the equal

sign and assign the results to x and y:

 var i:Number = 5;
 var x:Number = 4 - 6;
 var y:Number = i + 2;
 trace(x *= y); // output: -14

See also

* multiplication operator

new operator
new constructor()

Creates a new, initially anonymous, object and calls the function identified by the constructor parameter. The new

operator passes to the function any optional parameters in parentheses, as well as the newly created object, which is

referenced using the keyword this. The constructor function can then use this to set the variables of the object.

Availability

Flash Lite 2.0

Operands

constructor : Object - A function followed by any optional parameters in parentheses. The function is usually the

name of the object type (for example, Array, Number, or Object) to be constructed.

Example

The following example creates the Book() function and then uses the new operator to create the objects book1 and

book2.

 function Book(name, price){
 this.name = name;
 this.price = price;
 }

 book1 = new Book("Confederacy of Dunces", 19.95);
 book2 = new Book("The Floating Opera", 10.95);

113FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

The following example uses the new operator to create an Array object with 18 elements:

 golfCourse_array = new Array(18);

See also

[] array access operator, {} object initializer operator

ne not equal (strings) operator
 expression1 ne expression2

Deprecated since Flash Player 5. This operator was deprecated in favor of the != (inequality) operator.

Compares expression1 to expression2 and returns true if expression1 is not equal to expression2; false otherwise.

Availability

Flash Lite 1.0

Operands

expression1 : Object - Numbers, strings, or variables.

expression2 : Object - Numbers, strings, or variables.

Returns

Boolean - Returns true if expression1 is not equal to expression2; false otherwise.

See also

!= inequality operator

{} object initializer operator
 object = { name1 : value1 , name2 : value2 ,... nameN : valueN }
 {expression1; [...expressionN]}

Creates a new object and initializes it with the specified name and value property pairs. Using this operator is the same

as using the new Object syntax and populating the property pairs using the assignment operator. The prototype of

the newly created object is generically named the Object object.

This operator is also used to mark blocks of contiguous code associated with flow control statements (for, while, if,

else, switch) and functions.

Availability

Flash Lite 2.0

Operands

object : Object - The object to create. name1,2,...N The names of the properties. value1,2,...N The corresponding

values for each name property.

Returns

Object -

Usage 1: An Object object.

114FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Usage 2: Nothing, except when a function has an explicit return statement, in which case the return type is specified

in the function implementation.

Example

The first line of the following code creates an empty object using the object initializer ({}) operator; the second line

creates a new object using a constructor function:

 var object:Object = {};
 var object:Object = new Object();

The following example creates an object account and initializes the properties name, address, city, state, zip, and

balance with accompanying values:

 var account:Object = {name:"Macromedia, Inc.", address:"600 Townsend Street", city:"San
Francisco", state:"California", zip:"94103", balance:"1000"};
 for (i in account) {
 trace("account." + i + " = " + account[i]);
 }

The following example shows how array and object initializers can be nested within each other:

 var person:Object = {name:"Gina Vechio", children:["Ruby", "Chickie", "Puppa"]};

The following example uses the information in the previous example and produces the same result using constructor

functions:

 var person:Object = new Object();
 person.name = "Gina Vechio";
 person.children = new Array();
 person.children[0] = "Ruby";
 person.children[1] = "Chickie";
 person.children[2] = "Puppa";

The previous ActionScript example can also be written in the following format:

 var person:Object = new Object();
 person.name = "Gina Vechio";
 person.children = new Array("Ruby", "Chickie", "Puppa");

See also

Object

() parentheses operator
 (expression1 [, expression2])
 (expression1, expression2)
 function (parameter1,..., parameterN)

Performs a grouping operation on one or more parameters, performs sequential evaluation of expressions, or

surrounds one or more parameters and passes them as parameters to a function outside the parentheses.

Usage 1: Controls the order in which the operators execute in the expression. Parentheses override the normal

precedence order and cause the expressions within the parentheses to be evaluated first. When parentheses are nested,

the contents of the innermost parentheses are evaluated before the contents of the outer ones.

Usage 2: Evaluates a series of expressions, separated by commas, in sequence, and returns the result of the final

expression.

Usage 3: Surrounds one or more parameters and passes them as parameters to the function outside the parentheses.

115FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 1.0

Operands

expression1 : Object - Numbers, strings, variables, or text.

expression2 : Object - Numbers, strings, variables, or text.

function : Function - The function to be performed on the contents of the parentheses.

parameter1...parameterN : Object - A series of parameters to execute before the results are passed as parameters

to the function outside the parentheses.

Example

Usage 1: The following statements show the use of parentheses to control the order in which expressions are executed

(the value of each expression appears in the Output panel):

 trace((2 + 3)*(4 + 5)); // displays 45
trace((2 + 3) * (4 + 5)); // writes 45
trace(2 + (3 * (4 + 5))); // displays 29
trace(2 + (3 * (4 + 5))); // writes 29
trace(2+(3*4)+5); // displays 19
trace(2 + (3 * 4) + 5); // writes19

Usage 2: The following example evaluates the function foo(), and then the function bar(), and returns the result of

the expression a + b:

 var a:Number = 1;
 var b:Number = 2;
 function foo() { a += b; }
 function bar() { b *= 10; }
 trace((foo(), bar(), a + b)); // outputs 23

Usage 3: The following example shows the use of parentheses with functions:

 var today:Date = new Date();
 trace(today.getFullYear()); // traces current year
 function traceParameter(param):Void { trace(param); }
 traceParameter(2 * 2); //traces 4

See also

with statement

=== strict equality operator
expression1 === expression2

Tests two expressions for equality; the strict equality (===) operator performs in the same way as the equality (==)

operator, except that data types are not converted. The result is true if both expressions, including their data types,

are equal.

The definition of equal depends on the data type of the parameter:

• Numbers and Boolean values are compared by value and are considered equal if they have the same value.

• String expressions are equal if they have the same number of characters and the characters are identical.

116FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

• Variables representing objects, arrays, and functions are compared by reference. Two such variables are equal if

they refer to the same object, array, or function. Two separate arrays are never considered equal, even if they have

the same number of elements.

Availability

Flash Lite 2.0

Operands

expression1 : Object - A number, string, Boolean value, variable, object, array, or function.

expression2 : Object - A number, string, Boolean value, variable, object, array, or function.

Returns

Boolean - The Boolean result of the comparison.

Example

The comments in the following code show the returned value of operations that use the equality and strict equality

operators:

 // Both return true because no conversion is done
 var string1:String = "5";
 var string2:String = "5";
 trace(string1 == string2); // true
 trace(string1 === string2); // true
 // Automatic data typing in this example converts 5 to "5"
 var string1:String = "5";
 var num:Number = 5;
 trace(string1 == num); // true
 trace(string1 === num); // false
 // Automatic data typing in this example converts true to "1"
 var string1:String = "1";
 var bool1:Boolean = true;
 trace(string1 == bool1); // true
 trace(string1 === bool1); // false
 // Automatic data typing in this example converts false to "0"
 var string1:String = "0";
 var bool2:Boolean = false;
 trace(string1 == bool2); // true
 trace(string1 === bool2); // false

The following examples show how strict equality treats variables that are references differently than it treats variables

that contain literal values. This is one reason to consistently use String literals and to avoid the use of the new operator

with the String class.

117FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 // Create a string variable using a literal value
 var str:String = "asdf";
 // Create a variable that is a reference
 var stringRef:String = new String("asdf");
 // The equality operator does not distinguish among literals, variables,
 // and references
 trace(stringRef == "asdf"); // true
 trace(stringRef == str); // true
 trace("asdf" == str); // true
 // The strict equality operator considers variables that are references
 // distinct from literals and variables
 trace(stringRef === "asdf"); // false
 trace(stringRef === str); // false

See also

! logical NOT operator, != inequality operator, !== strict inequality operator, && logical AND

operator|| logical OR operator, == equality operator

!== strict inequality operator
expression1 !== expression2

Tests for the exact opposite of the strict equality (===) operator. The strict inequality operator performs the same as

the inequality operator except that data types are not converted.

If expression1 is equal to expression2, and their data types are equal, the result is false. As with the strict equality (===)

operator, the definition of equal depends on the data types being compared, as illustrated in the following list:

• Numbers, strings, and Boolean values are compared by value.

• Objects, arrays, and functions are compared by reference.

• A variable is compared by value or by reference, depending on its type.

Availability

Flash Lite 2.0

Operands

expression1 : Object - A number, string, Boolean value, variable, object, array, or function.

expression2 : Object - A number, string, Boolean value, variable, object, array, or function.

Returns

Boolean - The Boolean result of the comparison.

Example

The comments in the following code show the returned value of operations that use the equality (==), strict equality

(===), and strict inequality (!==) operators:

118FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var s1:String = "5";
 var s2:String = "5";
 var s3:String = "Hello";
 var n:Number = 5;
 var b:Boolean = true;
 trace(s1 == s2); // true
 trace(s1 == s3); // false
 trace(s1 == n); // true
 trace(s1 == b); // false
 trace(s1 === s2); // true
 trace(s1 === s3); // false
 trace(s1 === n); // false
 trace(s1 === b); // false
 trace(s1 !== s2); // false
 trace(s1 !== s3); // true
 trace(s1 !== n); // true
 trace(s1 !== b); // true

See also

! logical NOT operator, != inequality operator, && logical AND operator, || logical OR operator,

== equality operator, === strict equality operator

" string delimiter operator
"text"

When used before and after characters, quotation marks (") indicate that the characters have a literal value and are

considered a string, not a variable, numerical value, or other ActionScript element.

Availability

Flash Lite 1.0

Operands

text : String - A sequence of zero or more characters.

Example

The following example uses quotation marks (") to indicate that the value of the variable yourGuess is the literal string

"Prince Edward Island" and not the name of a variable. The value of province is a variable, not a literal; to

determine the value of province, the value of yourGuess must be located.

 var yourGuess:String = "Prince Edward Island";
 submit_btn.onRelease = function() { trace(yourGuess); };
 // displays Prince Edward Island in the Output panel
 // writes Prince Edward Island to the log file

See also

String, String function

- subtraction operator
 (Negation) -expression
 (Subtraction) expression1 - expression2

119FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Used for negating or subtracting.

Usage 1: When used for negating, it reverses the sign of the numerical expression.

Usage 2: When used for subtracting, it performs an arithmetic subtraction on two numerical expressions, subtracting

expression2 from expression1. When both expressions are integers, the difference is an integer. When either or both

expressions are floating-point numbers, the difference is a floating-point number.

Availability

Flash Lite 1.0

Operands

expression1 : Number - A number or expression that evaluates to a number.

expression2 : Number - A number or expression that evaluates to a number.

Returns

Number - An integer or floating-point number.

Example

Usage 1: The following statement reverses the sign of the expression 2 + 3:

 trace(-(2+3)); // output: -5

Usage 2: The following statement subtracts the integer 2 from the integer 5:

 trace(5-2); // output: 3

The result, 3, is an integer.

The following statement subtracts the floating-point number 1.5 from the floating-point number 3.25:

 trace(3.25-1.5); // output: 1.75

The result, 1.75, is a floating-point number.

-= subtraction assignment operator
expression1 -= expression2

Assigns expression1 the value of expression1 - expression2. For example, the following two statements are equivalent:

x -= y ; x = x - y;

String expressions must be converted to numbers; otherwise, NaN (not a number) is returned.

Availability

Flash Lite 1.0

Operands

expression1 : Number - A number or expression that evaluates to a number.

expression2 : Number - A number or expression that evaluates to a number.

Returns

Number - The result of the arithmetic operation.

120FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

The following example uses the subtraction assignment (-=) operator to subtract 10 from 5 and assign the result to

the variable x:

 var x:Number = 5;
 var y:Number = 10;
 x -= y; trace(x); // output: -5

The following example shows how strings are converted to numbers:

 var x:String = "5";
 var y:String = "10";
 x -= y; trace(x); // output: -5

See also

- subtraction operator

: type operator
 [modifiers] var variableName : type
 function functionName () : type { ... }
 function functionName (parameter1:type , ... , parameterN:type) [:type]{ ... }

Used for strict data typing; this operator specifies the variable type, function return type, or function parameter type.

When used in a variable declaration or assignment, this operator specifies the variable's type; when used in a function

declaration or definition, this operator specifies the function's return type; when used with a function parameter in a

function definition, this operator specifies the variable type expected for that parameter.

Types are a compile-time-only feature. All types are checked at compile time, and errors are generated when there is

a mismatch. Mismatches can occur during assignment operations, function calls, and class member dereferencing

using the dot (.) operator. To avoid type mismatch errors, use strict data typing.

Types that you can use include all native object types, classes and interfaces that you define, and Function and Void.

The recognized native types are Boolean, Number, and String. All built-in classes are also supported as native types.

Availability

Flash Lite 2.0

Operands

variableName : Object - An identifier for a variable.

type : A native data type, class name that you have defined, or interface name.

functionName : An identifier for a function.

parameter : An identifier for a function parameter.

Example

Usage 1: The following example declares a public variable named userName whose type is String and assigns an empty

string to it:

 var userName:String = "";

Usage 2: The following example shows how to specify a function's parameter type by defining a function named

randomInt() that takes a parameter named integer of type Number:

121FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 function randomInt(integer:Number):Number {
 return Math.round(Math.random()*integer);
 }
 trace(randomInt(8));

Usage 3: The following example defines a function named squareRoot() that takes a parameter named val of the

Number type and returns the square root of val, also a Number type:

 function squareRoot(val:Number):Number {
 return Math.sqrt(val);
 }
 trace(squareRoot(121));

See also

set variable statement, Array function

typeof operator
typeof(expression)

The typeof operator evaluates the expression and returns a string specifying whether the expression is a String,

MovieClip, Object, Function, Number, or Boolean value.

Availability

Flash Lite 2.0

Operands

expression : Object - A string, movie clip, button, object, or function.

Returns

String - A String representation of the type of expression. The following table shows the results of the typeof

operator on each type of expression.

See also

instanceof operator

Expression Type Result

String string

Movie clip movieclip

Button object

Text field object

Number number

Boolean boolean

Object object

Function function

122FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

void operator
void expression

The void operator evaluates an expression and then discards its value, returning undefined. The void operator is

often used in comparisons using the == operator to test for undefined values.

Availability

Flash Lite 2.0

Operands

expression : Object - An expression to be evaluated.

Statements

Statements are language elements that perform or specify an action. For example, the return statement returns a

result as a value of the function in which it executes. The if statement evaluates a condition to determine the next

action that should be taken. The switch statement creates a branching structure for ActionScript statements.

Statements summary

Statement Description

break Appears within a loop (for, for..in, do..while, or while) or within a block of

statements associated with a particular case within a switch statement.

case Defines a condition for the switch statement.

class Defines a custom class, which lets you instantiate objects that share methods and

properties that you define.

continue Jumps past all remaining statements in the innermost loop and starts the next

iteration of the loop as if control had passed through to the end of the loop normally.

default Defines the default case for a switch statement.

delete Destroys the object reference specified by the reference parameter, and returns

true if the reference is successfully deleted; false otherwise.

do..while Similar to a while loop, except that the statements are executed once before the

initial evaluation of the condition.

dynamic Specifies that objects based on the specified class can add and access dynamic

properties at runtime.

else Specifies the statements to run if the condition in the if statement returns false.

else if Evaluates a condition and specifies the statements to run if the condition in the initial

if statement returns false.

extends Defines a class that is a subclass of another class; the latter is the superclass.

for Evaluates the init (initialize) expression once and then starts a looping sequence.

for..in Iterates over the properties of an object or elements in an array and executes the

statement for each property or element.

function Comprises a set of statements that you define to perform a certain task.

123FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

break statement
break

Appears within a loop (for, for..in, do..while, or while) or within a block of statements associated with a

particular case within a switch statement. When used in a loop, the break statement instructs Flash to skip the rest

of the loop body, stop the looping action, and execute the statement following the loop statement. When used in a

switch, the break statement instructs Flash to skip the rest of the statements in that case block and jump to the first

statement following the enclosing switch statement.

In nested loops, the break statement only skips the rest of the immediate loop and does not break out of the entire

series of nested loops. For breaking out of an entire series of nested loops, see try..catch..finally.

Availability

Flash Lite 1.0

get Permits implicit getting of properties associated with objects based on classes you

have defined in external class files.

if Evaluates a condition to determine the next action in a SWF file.

implements Specifies that a class must define all the methods declared in the interface (or

interfaces) being implemented.

import Lets you access classes without specifying their fully qualified names.

interface Defines an interface.

intrinsic Allows compile-time type checking of previously defined classes.

private Specifies that a variable or function is available only to the class that declares or

defines it or to subclasses of that class.

public Specifies that a variable or function is available to any caller.

return Specifies the value returned by a function.

set Permits implicit setting of properties associated with objects based on classes you

have defined in external class files.

set variable Assigns a value to a variable.

static Specifies that a variable or function is created only once per class rather than being

created in every object based on that class.

super Invokes the superclass version of a method or constructor.

switch Creates a branching structure for ActionScript statements.

throw Generates, or throws, an error that can be handled, or caught, by a catch{} code

block.

try..catch..finally Enclose a block of code in which an error can occur, and then respond to the error.

var Used to declare local or Timeline variables.

while Evaluates a condition and if the condition evaluates to true, runs a statement or

series of statements before looping back to evaluate the condition again.

with Lets you specify an object (such as a movie clip) with the object parameter and

evaluate expressions and actions inside that object with the statement(s)

parameter.

Statement Description

124FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

The following example uses the break statement to exit an otherwise infinite loop:

 var i:Number = 0;
 while (true) {
 trace(i);
 if (i >= 10) {
 break; // this will terminate/exit the loop
 }
 i++;
 }

which traces the following output:

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

See also

_forceframerate property

case statement
case expression : statement(s)

Defines a condition for the switch statement. If the expression parameter equals the expression parameter of the

switch statement using strict equality (===), then Flash Player will execute statements in the statement(s) parameter

until it encounters a break statement or the end of the switch statement.

If you use the case statement outside a switch statement, it produces an error and the script doesn't compile.

Note: You should always end the statement(s) parameter with a break statement. If you omit the break statement from

the statement(s) parameter, it continues executing with the next case statement instead of exiting the switch

statement.

Availability

Flash Lite 1.0

Parameters

expression:String - Any expression.

Example

The following example defines conditions for the switch statement thisMonth. If thisMonth equals the expression

in the case statement, the statement executes.

125FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var thisMonth:Number = new Date().getMonth();
 switch (thisMonth) {
 case 0 :
 trace("January");
 break;
 case 1 :
 trace("February");
 break;
 case 5 :
 case 6 :
 case 7 :
 trace("Some summer month");
 break;
 case 8 :
 trace("September");
 break;
 default :
 trace("some other month");
 }

See also

break statement

class statement
[dynamic] class className [extends superClass] [implements interfaceName[, interfaceName...
]] { // class definition here}

Defines a custom class, which lets you instantiate objects that share methods and properties that you define. For

example, if you are developing an invoice-tracking system, you could create an invoice class that defines all the

methods and properties that each invoice should have. You would then use the new invoice() command to create

invoice objects.

The name of the class must match the name of the external file that contains the class. The name of the external file

must be the name of the class with the file extension .as appended. For example, if you name a class Student, the file

that defines the class must be named Student.as.

If a class is within a package, the class declaration must use the fully qualified class name of the form

base.sub1.sub2.MyClass. Also, the class's AS file must be stored within the path in a directory structure that reflects the

package structure, such as base/sub1/sub2/MyClass.as. If a class definition is of the form "class MyClass," it is in the

default package and the MyClass.as file should be in the top level of some directory in the path.

For this reason, it's good practice to plan your directory structure before you begin creating classes. Otherwise, if you

decide to move class files after you create them, you have to modify the class declaration statements to reflect their new

location.

You cannot nest class definitions; that is, you cannot define additional classes within a class definition.

To indicate that objects can add and access dynamic properties at runtime, precede the class statement with the

dynamic keyword. To declare that a class implements an interface, use the implements keyword. To create subclasses

of a class, use the extends keyword. (A class can extend only one class, but can implement several interfaces.) You can

use implements and extends in a single statement. The following examples show typical uses of the implements and

extends keywords:

126FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 class C implements Interface_i, Interface_j // OK
 class C extends Class_d implements Interface_i, Interface_j // OK
 class C extends Class_d, Class_e // not OK

Availability

Flash Lite 2.0

Parameters

className:String - The fully qualified name of the class.

Example

The following example creates a class called Plant. The Plant constructor takes two parameters.

 // Filename Plant.as
 class Plant {
 // Define property names and types
 var leafType:String;
 var bloomSeason:String;
 // Following line is constructor
 // because it has the same name as the class
 function Plant(param_leafType:String, param_bloomSeason:String) {
 // Assign passed values to properties when new Plant object is created
 this.leafType = param_leafType;
 this.bloomSeason = param_bloomSeason;
 }
 // Create methods to return property values, because best practice
 // recommends against directly referencing a property of a class
 function getLeafType():String {
 return leafType;
 }
 function getBloomSeason():String {
 return bloomSeason;
 }
 }

In an external script file or in the Actions panel, use the new operator to create a Plant object.

 var pineTree:Plant = new Plant("Evergreen", "N/A");
 // Confirm parameters were passed correctly
 trace(pineTree.getLeafType());
 trace(pineTree.getBloomSeason());

The following example creates a class called ImageLoader. The ImageLoader constructor takes three parameters.

127FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 // Filename ImageLoader.as
 class ImageLoader extends MovieClip {
 function ImageLoader(image:String, target_mc:MovieClip, init:Object) {
 var listenerObject:Object = new Object();
 listenerObject.onLoadInit = function(target) {
 for (var i in init) {
 target[i] = init[i];
 }
 };
 var JPEG_mcl:MovieClipLoader = new MovieClipLoader();
 JPEG_mcl.addListener(listenerObject);
 JPEG_mcl.loadClip(image, target_mc);
 }
 }

In an external script file or in the Actions panel, use the new operator to create an ImageLoader object.

 var jakob_mc:MovieClip = this.createEmptyMovieClip("jakob_mc", this.getNextHighestDepth());
 var jakob:ImageLoader = new
ImageLoader("http://www.helpexamples.com/flash/images/image1.jpg", jakob_mc, {_x:10, _y:10,
_alpha:70, _rotation:-5});

See also

dynamic statement

continue statement
 continue

Jumps past all remaining statements in the innermost loop and starts the next iteration of the loop as if control had

passed through to the end of the loop normally. It has no effect outside a loop.

Availability

Flash Lite 1.0

Example

In the following while loop, continue causes the Flash interpreter to skip the rest of the loop body and jump to the

top of the loop, where the condition is tested:

 trace("example 1");
 var i:Number = 0;
 while (i < 10) {
 if (i % 3 == 0) {
 i++;
 continue;
 }
 trace(i);
 i++;
 }

In the following do..while loop, continue causes the Flash interpreter to skip the rest of the loop body and jump to

the bottom of the loop, where the condition is tested:

128FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 trace("example 2");
 var i:Number = 0;
 do {
 if (i % 3 == 0) {
 i++;
 continue;
 }
 trace(i);
 i++;
 }
 while (i < 10);

In a for loop, continue causes the Flash interpreter to skip the rest of the loop body. In the following example, if the

i modulo 3 equals 0, then the trace(i) statement is skipped:

 trace("example 3");
 for (var i = 0; i < 10; i++) {
 if (i % 3 == 0) {
 continue;
 }
 trace(i);
 }

In the following for..in loop, continue causes the Flash interpreter to skip the rest of the loop body and jump back

to the top of the loop, where the next value in the enumeration is processed:

 for (i in _root) {
 if (i == "$version") {
 continue;
 }
 trace(i);
 }

See also

do..while statement

default statement
 default: statements

Defines the default case for a switch statement. The statements execute if the expression parameter of the switch

statement doesn't equal (using the strict equality [===] operation) any of the expression parameters that follow the

case keywords for a given switch statement.

A switch is not required to have a default case statement. A default case statement does not have to be last in the

list. If you use a default statement outside a switch statement, it produces an error and the script doesn't compile.

Availability

Flash Lite 2.0

Parameters

statements:String - Any statements.

129FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

In the following example, the expression A does not equal the expressions B or D, so the statement following the

default keyword is run and the trace() statement is sent to the Output panel.

 var dayOfWeek:Number = new Date().getDay();
 switch (dayOfWeek) {
 case 1 :
 trace("Monday");
 break;
 case 2 :
 trace("Tuesday");
 break;
 case 3 :
 trace("Wednesday");
 break;
 case 4 :
 trace("Thursday");
 break;
 case 5 :
 trace("Friday");
 break;
 default :
 trace("Weekend");

 }

See also

switch statement

delete statement
 delete reference

Destroys the object reference specified by the reference parameter, and returns true if the reference is successfully

deleted; false otherwise. This operator is useful for freeing memory used by scripts. You can use the delete operator

to remove references to objects. After all references to an object are removed, Flash Player takes care of removing the

object and freeing the memory used by that object.

Although delete is an operator, it is typically used as a statement, as shown in the following example:

delete x;

The delete operator can fail and return false if the reference parameter does not exist or cannot be deleted. You

cannot delete predefined objects and properties, nor can you delete variables that are declared within a function with

the var statement. You cannot use the delete operator to remove movie clips.

Availability

Flash Lite 2.0

Returns

Boolean - A Boolean value.

Parameters

reference:Object - The name of the variable or object to eliminate.

130FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

Usage 1: The following example creates an object, uses it, and deletes it after it is no longer needed:

 var account:Object = new Object();
 account.name = "Jon";
 account.balance = 10000;
 trace(account.name); //output: Jon
 delete account;
 trace(account.name); //output: undefined

Usage 2: The following example deletes a property of an object:

 // create the new object "account"
 var account:Object = new Object();
 // assign property name to the account
 account.name = "Jon";
 // delete the property
 delete account.name;

Usage 3: The following example deletes an object property:

 var my_array:Array = new Array();
 my_array[0] = "abc"; // my_array.length == 1
 my_array[1] = "def"; // my_array.length == 2
 my_array[2] = "ghi"; // my_array.length == 3
 // my_array[2] is deleted, but Array.length is not changed
 delete my_array[2];
 trace(my_array.length); // output: 3
 trace(my_array); // output: abc,def,undefined

Usage 4: The following example shows the behavior of delete on object references:

 var ref1:Object = new Object();
 ref1.name = "Jody";
 // copy the reference variable into a new variable
 // and delete ref1
 ref2 = ref1;
 delete ref1;
 trace("ref1.name "+ref1.name); //output: ref1.name undefined
 trace("ref2.name "+ref2.name); //output: ref2.name Jody

If ref1 had not been copied into ref2, the object would have been deleted when ref1 was deleted because there would

be no references to it. If you delete ref2, there are no references to the object; it will be destroyed, and the memory it

used becomes available.

See also

set variable statement

do..while statement
 do { statement(s) } while (condition)

Similar to a while loop, except that the statements are executed once before the initial evaluation of the condition.

Subsequently, the statements are executed only if the condition evaluates to true.

A do..while loop ensures that the code inside the loop executes at least once. Although this can also be done with a

while loop by placing a copy of the statements to be executed before the while loop begins, many programmers

believe that do..while loops are easier to read.

131FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

If the condition always evaluates to true, the do..while loop is infinite. If you enter an infinite loop, you encounter

problems with Flash Player and eventually get a warning message or crash the player. Whenever possible, you should

use a for loop if you know the number of times you want to loop. Although for loops are easy to read and debug, they

cannot replace do..while loops in all circumstances.

Availability

Flash Lite 1.0

Parameters

condition:Boolean - The condition to evaluate. The statement(s) within the do block of code will execute as long as

the condition parameter evaluates to true.

Example

The following example uses a do..while loop to evaluate whether a condition is true, and traces myVar until myVar

is greater than 5. When myVar is greater than 5, the loop ends.

 var myVar:Number = 0;
 do {
 trace(myVar);
 myVar++;
 }
 while (myVar < 5);
 /* output:
 0
 1
 2
 3
 4
 */

See also

break statement

dynamic statement
dynamic class className [extends superClass] [implements interfaceName[, interfaceName...
]] { // class definition here }

Specifies that objects based on the specified class can add and access dynamic properties at runtime.

Type checking on dynamic classes is less strict than type checking on nondynamic classes, because members accessed

inside the class definition and on class instances are not compared with those defined in the class scope. Class member

functions, however, can still be type checked for return type and parameter types. This behavior is especially useful

when you work with MovieClip objects, because there are many different ways of adding properties and objects to a

movie clip dynamically, such as MovieClip.createEmptyMovieClip() and MovieClip.createTextField().

Subclasses of dynamic classes are also dynamic.

Availability

Flash Lite 2.0

132FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

In the following example, class Person2 has not yet been marked as dynamic, so calling an undeclared function on it

generates an error at compile time:

 class Person2 {
 var name:String;
 var age:Number;
 function Person2(param_name:String, param_age:Number) {
 trace ("anything");
 this.name = param_name;
 this.age = param_age;
 }
 }

In a FLA or AS file that's in the same directory, add the following ActionScript to Frame 1 on the Timeline:

 // Before dynamic is added
 var craig:Person2 = new Person2("Craiggers", 32);
 for (i in craig) {
 trace("craig." + i + " = " + craig[i]);
 }
 /* output:
 craig.age = 32
 craig.name = Craiggers */

If you add an undeclared function, dance, an error is generated, as shown in the following example:

 trace("");
 craig.dance = true;
 for (i in craig) {
 trace("craig." + i + " = " + craig[i]);
 }
 /* output: **Error** Scene=Scene 1, layer=Layer 1, frame=1:Line 14: There is no property with
the name 'dance'. craig.dance = true; Total ActionScript Errors: 1 Reported Errors: 1 */

Add the dynamic keyword to the Person2 class, so that the first line appears as follows:

 dynamic class Person2 {

Test the code again, and you see the following output:

 craig.dance = true craig.age = 32 craig.name = Craiggers

See also

class statement

else statement
 if (condition){ statement(s); } else { statement(s); }

Specifies the statements to run if the condition in the if statement returns false. The curly braces ({}) used to enclose

the block of statements to be executed by the else statement are not necessary if only one statement will execute.

Availability

Flash Lite 1.0

Parameters

condition:Boolean - An expression that evaluates to true or false.

133FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

In the following example, the else condition is used to check whether the age_txt variable is greater than or less than 18:

 if (age_txt.text>=18) { trace("welcome, user"); } else { trace("sorry, junior");
userObject.minor = true; userObject.accessAllowed = false; }

In the following example, curly braces ({}) are not necessary because only one statement follows the else statement:

 if (age_txt.text>18) { trace("welcome, user"); } else trace("sorry, junior");

See also

ifFrameLoaded function

else if statement
 if (condition){ statement(s); }
 else if (condition){ statement(s);}

Evaluates a condition and specifies the statements to run if the condition in the initial if statement returns false. If

the else if condition returns true, the Flash interpreter runs the statements that follow the condition inside curly

braces ({}). If the else if condition is false, Flash skips the statements inside the curly braces and runs the

statements following the curly braces.

Use the else if statement to create branching logic in your scripts. If there are multiple branches, you should

consider using a switch statement.

Availability

Flash Lite 1.0

Parameters

condition:Boolean - An expression that evaluates to true or false.

Example

The following example uses else if statements to compare score_txt to a specified value:

 if (score_txt.text>90) { trace("A"); } else if (score_txt.text>75) { trace("B"); } else if
(score_txt.text>60) { trace("C"); } else { trace("F"); }

See also

ifFrameLoaded function

extends statement

Usage 1:

 class className extends otherClassName {}

Usage 2:

 interface interfaceName extends otherInterfaceName {}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA

file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts

written in the Actions panel.

134FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Defines a class that is a subclass of another class; the latter is the superclass. The subclass inherits all the methods,

properties, functions, and so on that are defined in the superclass.

Interfaces can also be extended using the extends keyword. An interface that extends another interface includes all

the original interface's method declarations.

Availability

Flash Lite 2.0

Parameters

className:String - The name of the class you are defining.

Example

In the following example, the Car class extends the Vehicle class so that all its methods, properties, and functions are

inherited. If your script instantiates a Car object, methods from both the Car class and the Vehicle class can be used.

The following example shows the contents of a file called Vehicle.as, which defines the Vehicle class:

 class Vehicle {
 var numDoors:Number;
 var color:String;
 function Vehicle(param_numDoors:Number, param_color:String) {
 this.numDoors = param_numDoors;
 this.color = param_color;
 }
 function start():Void {
 trace("[Vehicle] start");
 }
 function stop():Void {
 trace("[Vehicle] stop");
 }
 function reverse():Void {
 trace("[Vehicle] reverse");
 }
 }

The following example shows a second AS file, called Car.as, in the same directory. This class extends the Vehicle class,

modifying it in three ways. First, the Car class adds a variable fullSizeSpare to track whether the car object has a

full-size spare tire. Second, it adds a new method specific to cars, activateCarAlarm(), that activates the car's anti-

theft alarm. Third, it overrides the stop() function to add the fact that the Car class uses an anti-lock braking system

to stop.

135FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 class Car extends Vehicle {
 var fullSizeSpare:Boolean;
 function Car(param_numDoors:Number, param_color:String, param_fullSizeSpare:Boolean) {
 this.numDoors = param_numDoors;
 this.color = param_color;
 this.fullSizeSpare = param_fullSizeSpare;
 }
 function activateCarAlarm():Void {
 trace("[Car] activateCarAlarm");
 }
 function stop():Void {
 trace("[Car] stop with anti-lock brakes");
 }
 }

The following example instantiates a Car object, calls a method defined in the Vehicle class (start()), then calls the

method overridden by the Car class (stop()), and finally calls a method from the Car class (activateCarAlarm()):

 var myNewCar:Car = new Car(2, "Red", true);
 myNewCar.start(); // output: [Vehicle] start
 myNewCar.stop(); // output: [Car] stop with anti-lock brakes
 myNewCar.activateCarAlarm(); // output: [Car] activateCarAlarm

A subclass of the Vehicle class can also be written using the keyword super, which the subclass can use to access

properties and methods of the superclass. The following example shows a third AS file, called Truck.as, again in the

same directory. The Truck class uses the super keyword in the constructor and again in the overridden reverse()

function.

 class Truck extends Vehicle {
 var numWheels:Number;
 function Truck(param_numDoors:Number, param_color:String, param_numWheels:Number) {
 super(param_numDoors, param_color);
 this.numWheels = param_numWheels;
 }
 function reverse():Void {
 beep();
 super.reverse();
 }
 function beep():Void {
 trace("[Truck] make beeping sound");
 }
 }

The following example instantiates a Truck object, calls a method overridden by the Truck class (reverse()), then

calls a method defined in the Vehicle class (stop()):

 var myTruck:Truck = new Truck(2, "White", 18);
 myTruck.reverse(); // output: [Truck] make beeping sound [Vehicle] reverse
 myTruck.stop(); // output: [Vehicle] stop

See also

class statement

136FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

for statement
 for(init; condition; next) {
 statement(s);
 }

Evaluates the init (initialize) expression once and then starts a looping sequence. The looping sequence begins by

evaluating the condition expression. If the condition expression evaluates to true, statement is executed and the

next expression is evaluated. The looping sequence then begins again with the evaluation of the condition

expression.

The curly braces ({}) used to enclose the block of statements to be executed by the for statement are not necessary if

only one statement will execute.

Availability

Flash Lite 1.0

Parameters

init - An expression to evaluate before beginning the looping sequence; usually an assignment expression. A var

statement is also permitted for this parameter.

Example

The following example uses for to add the elements in an array:

 var my_array:Array = new Array();
 for (var i:Number = 0; i < 10; i++) {
 my_array[i] = (i + 5) * 10;
 }
 trace(my_array); // output: 50,60,70,80,90,100,110,120,130,140

The following example uses for to perform the same action repeatedly. In the code, the for loop adds the numbers

from 1 to 100.

 var sum:Number = 0;
 for (var i:Number = 1; i <= 100; i++) {
 sum += i;
 }
 trace(sum); // output: 5050

The following example shows that curly braces ({}) are not necessary if only one statement will execute:

 var sum:Number = 0;
 for (var i:Number = 1; i <= 100; i++)
 sum += i;
 trace(sum); // output: 5050

See also

++ increment operator

for..in statement
 for (variableIterant in object) {]
 statement(s);
 }

137FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Iterates over the properties of an object or elements in an array and executes the statement for each property or

element. Methods of an object are not enumerated by the for..in action.

Some properties cannot be enumerated by the for..in action. For example, movie clip properties, such as _x and _y,

are not enumerated. In external class files, static members are not enumerable, unlike instance members.

The for..in statement iterates over properties of objects in the iterated object's prototype chain. Properties of the

object are enumerated first, then properties of its immediate prototype, then properties of the prototype's prototype,

and so on. The for..in statement does not enumerate the same property name twice. If the object child has

prototype parent and both contain the property prop, the for..in statement called on child enumerates prop from

child but ignores the one in parent.

The curly braces ({}) used to enclose the block of statements to be executed by the for..in statement are not

necessary if only one statement will execute.

If you write a for..in loop in a class file (an external AS file), then instance members are not available for the loop,

but static members are. However, if you write a for..in loop in a FLA file for an instance of the class, then instance

members are available but static ones are not.

Availability

Flash Lite 2.0

Parameters

variableIterant:String - The name of a variable to act as the iterant, referencing each property of an object or element

in an array.

Example

The following example shows using for..in to iterate over the properties of an object:

 var myObject:Object = {firstName:"Tara", age:27, city:"San Francisco"};
 for (var prop in myObject) {
 trace("myObject."+prop+" = "+myObject[prop]);
 }
 //output
 myObject.firstName = Tara
 myObject.age = 27
 myObject.city = San Francisco

The following example shows using for..in to iterate over the elements of an array:

 var myArray:Array = new Array("one", "two", "three");
 for (var index in myArray)
 trace("myArray["+index+"] = " + myArray[index]);
 // output:
 myArray[2] = three
 myArray[1] = two
 myArray[0] = one

The following example uses the typeof operator with for..in to iterate over a particular type of child:

 for (var name in this) {
 if (typeof (this[name]) == "movieclip") {
 trace("I have a movie clip child named "+name);
 }
 }

Note: If you have several movie clips, the output consists of the instance names of those clips.

138FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

The following example enumerates the children of a movie clip and sends each to Frame 2 in their respective

Timelines. The RadioButtonGroup movie clip is a parent with several children, _RedRadioButton_,

GreenRadioButton, and _BlueRadioButton_.

 for (var name in RadioButtonGroup) { RadioButtonGroup[name].gotoAndStop(2); }

function statement

Usage 1: (Declares a named function.)

function functionname([parameter0, parameter1,...parameterN]){statement(s)}

Usage 2: (Declares an anonymous function and returns a reference to it.)

function ([parameter0, parameter1,...parameterN]){ statement(s) }

Comprises a set of statements that you define to perform a certain task. You can define a function in one location and

invoke, or call, it from different scripts in a SWF file. When you define a function, you can also specify parameters for

the function. Parameters are placeholders for values on which the function operates. You can pass different parameters

to a function each time you call it so you can reuse a function in different situations.

Use the return statement in a function's statement(s) to cause a function to generate, or return, a value.

You can use this statement to define a function with the specified functionname, parameters, and statement(s). When

a script calls a function, the statements in the function's definition are executed. Forward referencing is permitted;

within the same script, a function may be declared after it is called. A function definition replaces any prior definition

of the same function. You can use this syntax wherever a statement is permitted.

You can also use this statement to create an anonymous function and return a reference to it. This syntax is used in

expressions and is particularly useful for installing methods in objects.

For additional functionality, you can use the arguments object in your function definition. Some common uses of the

arguments object are creating a function that accepts a variable number of parameters and creating a recursive

anonymous function.

Availability

Flash Lite 2.0

Returns

String - Usage 1: The declaration form does not return anything. Usage 2: A reference to the anonymous function.

Parameters

functionname:String - The name of the declared function.

Example

The following example defines the function sqr, which accepts one parameter and returns the Math.pow(x, 2) of the

parameter:

 function sqr(x:Number) {
 return Math.pow(x, 2);
 }
 var y:Number = sqr(3);
 trace(y); // output: 9

If the function is defined and used in the same script, the function definition may appear after using the function:

139FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var y:Number = sqr(3);
 trace(y); // output: 9
 function sqr(x:Number) {
 return Math.pow(x, 2);
 }

The following function creates a LoadVars object and loads params.txt into the SWF file. When the file successfully

loads, variables loaded traces:

 var myLV:LoadVars = new LoadVars();
 myLV.load("params.txt");
 myLV.onLoad = function(success:Boolean) {
 trace("variables loaded");
 }

get statement
 function get property () { // your statements here }

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA

file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts

written in the Actions panel.

Permits implicit getting of properties associated with objects based on classes you have defined in external class files.

Using implicit get methods lets you access properties of objects without accessing the property directly. Implicit get/set

methods are syntactic shorthand for the Object.addProperty() method in ActionScript 1.

Availability

Flash Lite 2.0

Parameters

property:String - The word you use to refer to the property that get accesses; this value must be the same as the

value used in the corresponding set command.

Example

In the following example, you define a Team class. The Team class includes get/set methods that let you retrieve and

set properties within the class:

 class Team {
 var teamName:String;
 var teamCode:String;
 var teamPlayers:Array = new Array();
 function Team(param_name:String, param_code:String) {
 this.teamName = param_name;
 this.teamCode = param_code;
 }
 function get name():String {
 return this.teamName;
 }
 function set name(param_name:String):Void {
 this.teamName = param_name;
 }
 }

Enter the following ActionScript in a frame on the Timeline:

140FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var giants:Team = new Team("San Fran", "SFO");
 trace(giants.name);
 giants.name = "San Francisco";
 trace(giants.name);
 /* output:
 San Fran San Francisco */

When you trace giants.name, you use the get method to return the value of the property.

See also

addProperty (Object.addProperty method)

if statement
 if(condition) { statement(s); }

Evaluates a condition to determine the next action in a SWF file. If the condition is true, Flash runs the statements

that follow the condition inside curly braces ({}). If the condition is false, Flash skips the statements inside the curly

braces and runs the statements following the curly braces. Use the if statement along with the else and else if

statements to create branching logic in your scripts.

The curly braces ({}) used to enclose the block of statements to be executed by the if statement are not necessary if

only one statement will execute.

Availability

Flash Lite 1.0

Parameters

condition:Boolean - An expression that evaluates to true or false.

Example

In the following example, the condition inside the parentheses evaluates the variable name to see if it has the literal

value "Erica". If it does, the play() function inside the curly braces runs.

 if(name == "Erica"){
 play();
 }

The following example uses an if statement to evaluate how long it takes a user to click the submit_btn instance in a

SWF file. If a user clicks the button more than 10 seconds after the SWF file plays, the condition evaluates to true and

the message inside the curly braces ({}) appears in a text field that's created at runtime (using createTextField()).

If the user clicks the button less than 10 seconds after the SWF file plays, the condition evaluates to false and a

different message appears.

141FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 this.createTextField("message_txt", this.getNextHighestDepth, 0, 0, 100, 22);
 message_txt.autoSize = true;
 var startTime:Number = getTimer();
 this.submit_btn.onRelease = function() {
 var difference:Number = (getTimer() - startTime) / 1000;
 if (difference > 10) {
 this._parent.message_txt.text = "Not very speedy, you took "+difference+" seconds.";
 }
 else {
 this._parent.message_txt.text = "Very good, you hit the button in "+difference+" seconds.";
 }
 };

See also

else statement

implements statement
 className implements interface01 [, interface02 , ...]

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA

file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts

written in the Actions panel.

Specifies that a class must define all the methods declared in the interface (or interfaces) being implemented.

Availability

Flash Lite 2.0

Example

See interface.

See also

class statement

import statement
 import className
import packageName.*

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA

file's Publish Settings dialog box. This statement is supported in the Actions panel as well as in external class files.

Lets you access classes without specifying their fully qualified names. For example, if you want to use a custom class

macr.util.users.UserClass in a script, you must refer to it by its fully qualified name or import it; if you import it, you

can refer to it by the class name:

 // before importing
 var myUser:macr.util.users.UserClass = new macr.util.users.UserClass();
 // after importing
 import macr.util.users.UserClass;
 var myUser:UserClass = new UserClass();

If there are several class files in the package (working_directory/macr/utils/users) that you want to access, you can

import them all in a single statement, as shown in the following example:

142FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 import macr.util.users.*;

You must issue the import statement before you try to access the imported class without fully specifying its name.

If you import a class but don't use it in your script, the class isn't exported as part of the SWF file. This means you can

import large packages without being concerned about the size of the SWF file; the bytecode associated with a class is

included in a SWF file only if that class is actually used.

The import statement applies only to the current script (frame or object) in which it's called. For example, suppose on

Frame 1 of a Flash document you import all the classes in the macr.util package. On that frame, you can reference

classes in that package by their simple names:

 // On Frame 1 of a FLA:
 import macr.util.*;
 var myFoo:foo = new foo();

On another frame script, however, you would need to reference classes in that package by their fully qualified names

(var myFoo:foo = new macr.util.foo();) or add an import statement to the other frame that imports the classes

in that package.

Availability

Flash Lite 2.0

Parameters

className:String - The fully qualified name of a class you have defined in an external class file.

interface statement
 interface InterfaceName [extends InterfaceName] {}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA

file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts

written in the Actions panel.

Defines an interface. An interface is similar to a class, with the following important differences:

• Interfaces contain only declarations of methods, not their implementation. That is, every class that implements an

interface must provide an implementation for each method declared in the interface.

• Only public members are allowed in an interface definition; instance and class members are not permitted.

• The get and set statements are not allowed in interface definitions.

Example

The following example shows several ways to define and implement interfaces:

143FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 (in top-level package .as files Ia, B, C, Ib, D, Ic, E)
 // filename Ia.as
 interface Ia {
 function k():Number; // method declaration only
 function n(x:Number):Number; // without implementation
 }
 // filename B.as
 class B implements Ia {
 function k():Number {
 return 25;
 }
 function n(x:Number):Number {
 return x + 5;
 }
 } // external script or Actions panel // script file
 var mvar:B = new B();
 trace(mvar.k()); // 25
 trace(mvar.n(7)); // 12
 // filename c.as
 class C implements Ia {
 function k():Number {
 return 25;
 }
 } // error: class must implement all interface methods
 // filename Ib.as
 interface Ib {
 function o():Void;
 }
 class D implements Ia, Ib {
 function k():Number {
 return 15;
 }
 function n(x:Number):Number {
 return x * x;
 }
 function o():Void {
 trace("o");
 }
 } // external script or Actions panel // script file
 mvar = new D();

144FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 trace(mvar.k()); // 15
 trace(mvar.n(7)); // 49
 trace(mvar.o()); // "o"
 interface Ic extends Ia {
 function p():Void;
 }
 class E implements Ib, Ic {
 function k():Number {
 return 25;
 }
 function n(x:Number):Number {
 return x + 5;
 }
 function o():Void {
 trace("o");
 }
 function p():Void {
 trace("p");
 }
 }

See also

class statement

intrinsic statement
 intrinsic class className [extends superClass] [implements interfaceName [, interfaceName...]] {
 //class definition here
 }

Allows compile-time type checking of previously defined classes. Flash uses intrinsic class declarations to enable

compile-time type checking of built-in classes such as Array, Object, and String. This keyword indicates to the

compiler that no function implementation is required, and that no bytecode should be generated for it.

The intrinsic keyword can also be used with variable and function declarations. Flash uses this keyword to enable

compile-time type checking for global functions and properties.

The intrinsic keyword was created specifically to enable compile-time type checking for built-in classes and objects,

and global variables and functions. This keyword was not meant for general purpose use, but may be of some value to

developers seeking to enable compile-time type checking with previously defined classes, especially if the classes are

defined using ActionScript 1.0.

This keyword is supported only when used in external script files, not in scripts written in the Actions panel.

Availability

Flash Lite 2.0

Example

The following example shows how to enable compile-time file checking for a previously defined ActionScript 1.0 class.

The code will generate a compile-time error because the call myCircle.setRadius() sends a String value as a

parameter instead of a Number value. You can avoid the error by changing the parameter to a Number value (for

example, by changing "10" to 10).

145FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 // The following code must be placed in a file named Circle.as
 // that resides within your classpath:
 intrinsic class Circle {
 var radius:Number;
 function Circle(radius:Number);
 function getArea():Number;
 function getDiameter():Number;
 function setRadius(param_radius:Number):Number;
 }

 // This ActionScript 1.0 class definition may be placed in your FLA file.
 // Circle class is defined using ActionScript 1.0
 function Circle(radius) {
 this.radius = radius;
 this.getArea = function(){
 return Math.PI*this.radius*this.radius;
 };
 this.getDiameter = function() {
 return 2*this.radius;
 };
 this.setRadius = function(param_radius) {
 this.radius = param_radius;
 }
 }

 // ActionScript 2.0 code that uses the Circle class
 var myCircle:Circle = new Circle(5);
 trace(myCircle.getArea());
 trace(myCircle.getDiameter());
 myCircle.setRadius("10");
 trace(myCircle.radius);
 trace(myCircle.getArea());
 trace(myCircle.getDiameter());

See also

class statement

private statement
 class className{
 private var name;
 private function name() {
 // your statements here
 }
 }

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA

file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts

written in the Actions panel.

Specifies that a variable or function is available only to the class that declares or defines it or to subclasses of that class.

By default, a variable or function is available to any caller. Use this keyword if you want to restrict access to a variable

or function.

You can use this keyword only in class definitions, not in interface definitions.

146FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 2.0

Parameters

name:String - The name of the variable or function that you want to specify as private.

Example

The following example demonstrates how you can hide certain properties within a class using the private keyword.

Create a new AS file called Login.as.

 class Login {
 private var loginUserName:String;
 private var loginPassword:String;
 public function Login(param_username:String, param_password:String) {
 this.loginUserName = param_username;
 this.loginPassword = param_password;
 }
 public function get username():String {
 return this.loginUserName;
 }
 public function set username(param_username:String):Void {
 this.loginUserName = param_username;
 }
 public function set password(param_password:String):Void {
 this.loginPassword = param_password;
 }
 }

In the same directory as Login.as, create a new FLA or AS document. Enter the following ActionScript in Frame 1 of

the Timeline.

 import Login;
 var gus:Login = new Login("Gus", "Smith");
 trace(gus.username); // output: Gus
 trace(gus.password); // output: undefined
 trace(gus.loginPassword); // error

Because loginPassword is a private variable, you cannot access it from outside the Login.as class file. Attempts to

access the private variable generate an error message.

See also

public statement

public statement
 class className{

public var name;
public function name() {
// your statements here } }

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA

file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts

written in the Actions panel.

147FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Specifies that a variable or function is available to any caller. Because variables and functions are public by default, this

keyword is used primarily for stylistic reasons. For example, you might want to use it for reasons of consistency in a

block of code that also contains private or static variables.

Availability

Flash Lite 2.0

Parameters

name:String - The name of the variable or function that you want to specify as public.

Example

The following example shows how you can use public variables in a class file. Create a new class file called User.as and

enter the following code:

 class User {
 public var age:Number;
 public var name:String;
 }

Then create a new FLA or AS file in the same directory, and enter the following ActionScript in Frame 1 of the

Timeline:

 import User;
 var jimmy:User = new User();
 jimmy.age = 27;
 jimmy.name = "jimmy";

If you change one of the public variables in the User class to a private variable, an error is generated when trying to

access the property.

See also

private statement

return statement
 return[expression]

Specifies the value returned by a function. The return statement evaluates expression and returns the result as a

value of the function in which it executes. The return statement causes execution to return immediately to the calling

function. If the return statement is used alone, it returns undefined.

You can't return multiple values. If you try to do so, only the last value is returned. In the following example, c is

returned:

 return a, b, c ;

If you need to return multiple values, you might want to use an array or object instead.

Availability

Flash Lite 2.0

Returns

String - The evaluated expression parameter, if provided.

148FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Parameters

expression - A string, number, Boolean, array, or object to evaluate and return as a value of the function. This

parameter is optional.

Example

The following example uses the return statement inside the body of the sum() function to return the added value of

the three parameters. The next line of code calls sum() and assigns the returned value to the variable newValue.

 function sum(a:Number, b:Number, c:Number):Number {
 return (a + b + c);
 }
 var newValue:Number = sum(4, 32, 78);
 trace(newValue); // output: 114

See also

Array function

set statement
 function set property(varName) {
 // your statements here
 }

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA

file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts

written in the Actions panel.

Permits implicit setting of properties associated with objects based on classes you have defined in external class files.

Using implicit set methods lets you modify the value of an object's property without accessing the property directly.

Implicit get/set methods are syntactic shorthand for the Object.addProperty() method in ActionScript 1.

Availability

Flash Lite 2.0

Parameters

property:String - Word that refers to the property that set will access; this value must be the same as the value used

in the corresponding get command.

Example

The following example creates a Login class that demonstrates how the set keyword can be used to set private

variables:

149FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 class Login {
 private var loginUserName:String;
 private var loginPassword:String;
 public function Login(param_username:String, param_password:String) {
 this.loginUserName = param_username;
 this.loginPassword = param_password;
 }
 public function get username():String {
 return this.loginUserName;
 }
 public function set username(param_username:String):Void {
 this.loginUserName = param_username;
 }
 public function set password(param_password:String):Void {
 this.loginPassword = param_password;
 }
 }

In a FLA or AS file that is in the same directory as Login.as, enter the following ActionScript in Frame 1 of the Timeline:

 var gus:Login = new Login("Gus", "Smith");
 trace(gus.username); // output: Gus
 gus.username = "Rupert";
 trace(gus.username); // output: Rupert

In this example, the get function executes when the value is traced. The set function triggers only when you pass it a

value, as shown in the line:

 gus.username = "Rupert";

See also

getProperty function

set variable statement
 set("variableString",expression)

Assigns a value to a variable. A variable is a container that holds data. The container is always the same, but the

contents can change. By changing the value of a variable as the SWF file plays, you can record and save information

about what the user has done, record values that change as the SWF file plays, or evaluate whether a condition is true

or false.

Variables can hold any data type (for example, String, Number, Boolean, Object, or MovieClip). The Timeline of each

SWF file and movie clip has its own set of variables, and each variable has its own value independent of variables on

other Timelines.

Strict data typing is not supported inside a set statement. If you use this statement to set a variable to a value whose

data type is different from the data type associated with the variable in a class file, no compiler error is generated.

A subtle but important distinction to bear in mind is that the parameter variableString is a string, not a variable

name. If you pass an existing variable name as the first parameter to set() without enclosing the name in quotation

marks (""), the variable is evaluated before the value of expression is assigned to it. For example, if you create a string

variable named myVariable and assign it the value "Tuesday", and then forget to use quotation marks, you will

inadvertently create a new variable named Tuesday that contains the value you intended to assign to myVariable:

150FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var myVariable:String = "Tuesday";
 set (myVariable, "Saturday");
 trace(myVariable); // outputs Tuesday
 trace(Tuesday); // outputs Saturday

You can avoid this situation by using quotation marks (""):

 set ("myVariable", "Saturday");
 trace(myVariable); //outputs Saturday

Availability

Flash Lite 2.0

Parameters

variableString:String - A string that names a variable to hold the value of the expression parameter.

Example

In the following example, you assign a value to a variable. You are assigning the value of "Jakob" to the name variable.

 set("name", "Jakob");
 trace(name);

The following code loops three times and creates three new variables, called caption0, caption1, and caption2:

 for (var i = 0; i < 3; i++) {
 set("caption" + i, "this is caption " + i);
 }
 trace(caption0);
 trace(caption1);
 trace(caption2);

static statement
 class className{

static var name;
static function name() {
// your statements here } }

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA

file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts

written in the Actions panel.

Specifies that a variable or function is created only once per class rather than being created in every object based on

that class.

You can access a static class member without creating an instance of the class by using the syntax

someClassName.name. If you do create an instance of the class, you can also access a static member using the instance,

but only through a non-static function that accesses the static member.

You can use this keyword in class definitions only, not in interface definitions.

Availability

Flash Lite 2.0

Parameters

name:String - The name of the variable or function that you want to specify as static.

151FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

The following example demonstrates how you can use the static keyword to create a counter that tracks how many

instances of the class have been created. Because the numInstances variable is static, it will be created only once for

the entire class, not for every single instance. Create a new AS file called Users.as and enter the following code:

 class Users {
 private static var numInstances:Number = 0;
 function Users() {
 numInstances++;
 }
 static function get instances():Number {
 return numInstances;
 }
 }

Create a FLA or AS document in the same directory, and enter the following ActionScript in Frame 1 of the Timeline:

 trace(Users.instances);
 var user1:Users = new Users();
 trace(Users.instances);
 var user2:Users = new Users();
 trace(Users.instances);

See also

private statement

super statement
 super.method([arg1, ..., argN])
 super([arg1, ..., argN])

The first syntax style may be used within the body of an object method to invoke the superclass version of a method,

and can optionally pass parameters (arg1 ... argN) to the superclass method. This is useful for creating subclass

methods that add additional behavior to superclass methods, but also invoke the superclass methods to perform their

original behavior.

The second syntax style may be used within the body of a constructor function to invoke the superclass version of the

constructor function and may optionally pass it parameters. This is useful for creating a subclass that performs

additional initialization, but also invokes the superclass constructor to perform superclass initialization.

Availability

Flash Lite 2.0

Returns

Both forms invoke a function. The function may return any value.

Parameters

method:Function - The method to invoke in the superclass.

argN - Optional parameters that are passed to the superclass version of the method (syntax 1) or to the constructor

function of the superclass (syntax 2).

152FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

switch statement
 switch (expression){caseClause: [defaultClause:] }

Creates a branching structure for ActionScript statements. As with the if statement, the switch statement tests a

condition and executes statements if the condition returns a value of true. All switch statements should include a

default case. The default case should include a break statement that prevents a fall-through error if another case is

added later. When a case falls through, it doesn't have a break statement.

Availability

Flash Lite 1.0

Parameters

expression - Any expression.

Example

In the following example, if the String.fromCharCode(Key.getAscii()) parameter evaluates to A, the trace()

statement that follows case "A" executes; if the parameter evaluates to a, the trace() statement that follows case

"a"executes; and so on. If no case expression matches the String.fromCharCode(Key.getAscii()) parameter, the

trace() statement that follows the default keyword executes.

 var listenerObj:Object = new Object();
 listenerObj.onKeyDown = function() {
 switch (String.fromCharCode(Key.getAscii())) {
 case "A" :
 trace("you pressed A");
 break;
 case "a" :
 trace("you pressed a");
 break;
 case "E" :
 case "e" :
 trace("you pressed E or e");
 break;
 case "I" :
 case "i" :
 trace("you pressed I or i");
 break;
 default :
 trace("you pressed some other key");
 break;
 }
 };
 Key.addListener(listenerObj);

See also

=== strict equality operator

throw statement
 throw expression

Generates, or throws, an error that can be handled, or caught, by a catch{} code block. If an exception is not caught

by a catch block, the string representation of the thrown value is sent to the Output panel.

153FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Typically, you throw instances of the Error class or its subclasses (see the Example section).

Availability

Flash Lite 2.0

Parameters

expression:Object - An ActionScript expression or object.

Example

In this example, a function named checkEmail() checks whether the string that is passed to it is a properly formatted

e-mail address. If the string does not contain an @ symbol, the function throws an error.

 function checkEmail(email:String) {
 if (email.indexOf("@") == -1) {
 throw new Error("Invalid email address");
 }
 }
 checkEmail("someuser_theirdomain.com");

The following code then calls the checkEmail() function within a try code block. If the email_txt string does not

contain a valid e-mail address, the error message appears in a text field (error_txt).

 try {
 checkEmail("Joe Smith");
 }
 catch (e) {
 error_txt.text = e.toString();
 }

In the following example, a subclass of the Error class is thrown. The checkEmail() function is modified to throw an

instance of that subclass.

 // Define Error subclass InvalidEmailError // In InvalidEmailError.as: class
InvalidEmailAddress extends Error { var message = "Invalid email address."; }

In a FLA or AS file, enter the following ActionScript in Frame 1 of the Timeline:

 import InvalidEmailAddress;
 function checkEmail(email:String) {
 if (email.indexOf("@") == -1) {
 throw new InvalidEmailAddress();
 }
 }
 try {
 checkEmail("Joe Smith");
 }
 catch (e) {
 this.createTextField("error_txt", this.getNextHighestDepth(), 0, 0, 100, 22);
 error_txt.autoSize = true;
 error_txt.text = e.toString();
 }

See also

Error

154FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

try..catch..finally statement
 try {// ... try block ... }

finally { // ... finally block ... }
 try { // ... try block ... }

 catch(error [:ErrorType1]) // ... catch block ... }
 [catch(error[:ErrorTypeN]) { // ... catch block ... }]
 [finally { // ... finally block ... }]

Enclose a block of code in which an error can occur, and then respond to the error. If any code within the try code

block throws an error (using the throw statement), control passes to the catch block, if one exists, and then to the

finally code block, if one exists. The finally block always executes, regardless of whether an error was thrown. If

code within the try block doesn't throw an error (that is, if the try block completes normally), then the code in the

finally block is still executed. The finally block executes even if the try block exits using a return statement.

A try block must be followed by a catch block, a finally block, or both. A single try block can have multiple catch

blocks but only one finally block. You can nest try blocks as many levels deep as desired.

The error parameter specified in a catch handler must be a simple identifier such as e or theException or x. The

variable in a catch handler can also be typed. When used with multiple catch blocks, typed errors let you catch

multiple types of errors thrown from a single try block.

If the exception thrown is an object, the type will match if the thrown object is a subclass of the specified type. If an

error of a specific type is thrown, the catch block that handles the corresponding error is executed. If an exception

that is not of the specified type is thrown, the catch block does not execute and the exception is automatically thrown

out of the try block to a catch handler that matches it.

If an error is thrown within a function, and the function does not include a catch handler, then the ActionScript

interpreter exits that function, as well as any caller functions, until a catch block is found. During this process,

finally handlers are called at all levels.

Availability

Flash Lite 2.0

Parameters

error:Object - The expression thrown from a throw statement, typically an instance of the Error class or one of its

subclasses.

Example

The following example shows how to create a try..finally statement. Because code in the finally block is

guaranteed to execute, it is typically used to perform any necessary clean-up after a try block executes. In the following

example, setInterval()calls a function every 1000 milliseconds (1 second). If an error occurs, an error is thrown and

is caught by the catch block. The finally block is always executed whether or not an error occurs. Because

setInterval() is used, clearInterval() must be placed in the finally block to ensure that the interval is cleared

from memory.

155FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 myFunction = function () {
 trace("this is myFunction");
 };
 try {
 myInterval = setInterval(this, "myFunction", 1000);
 throw new Error("my error");
 }
 catch (myError:Error) {
 trace("error caught: "+myError);
 }
 finally {
 clearInterval(myInterval);
 trace("error is cleared");
 }

In the following example, the finally block is used to delete an ActionScript object, regardless of whether an error

occurred. Create a new AS file called Account.as.

 class Account {
 var balance:Number = 1000;
 function getAccountInfo():Number {
 return (Math.round(Math.random() * 10) % 2);
 }
 }

In the same directory as Account.as, create a new AS or FLA document and enter the following ActionScript in Frame

1 of the Timeline:

 import Account;
 var account:Account = new Account();
 try {
 var returnVal = account.getAccountInfo();
 if (returnVal != 0) {
 throw new Error("Error getting account information.");
 }
 }
 finally {
 if (account != null) {
 delete account;
 }
 }

The following example demonstrates a try..catch statement. The code within the try block is executed. If an

exception is thrown by any code within the try block, control passes to the catch block, which shows the error

message in a text field using the Error.toString() method.

In the same directory as Account.as, create a new FLA document and enter the following ActionScript in Frame 1 of

the Timeline:

156FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 import Account;
 var account:Account = new Account();
 try {
 var returnVal = account.getAccountInfo();
 if (returnVal != 0) {
 throw new Error("Error getting account information.");
 }
 trace("success");
 }
 catch (e) {
 this.createTextField("status_txt", this.getNextHighestDepth(), 0, 0, 100, 22);
 status_txt.autoSize = true;
 status_txt.text = e.toString();
 }

The following example shows a try code block with multiple, typed catch code blocks. Depending on the type of error

that occurred, the try code block throws a different type of object. In this case, myRecordSet is an instance of a

(hypothetical) class named RecordSet whose sortRows() method can throw two types of errors, RecordSetException

and MalformedRecord.

In the following example, the RecordSetException and MalformedRecord objects are subclasses of the Error class.

Each is defined in its own AS class file.

 // In RecordSetException.as:
 class RecordSetException extends Error {
 var message = "Record set exception occurred.";
 }
 // In MalformedRecord.as:
 class MalformedRecord extends Error {
 var message = "Malformed record exception occurred.";
 }

Within the RecordSet class's sortRows() method, one of these previously defined error objects is thrown, depending

on the type of exception that occurred. The following example shows how this code might look:

 class RecordSet {
 function sortRows() {
 var returnVal:Number = randomNum();
 if (returnVal == 1) {
 throw new RecordSetException();
 }
 else if (returnVal == 2) {
 throw new MalformedRecord();
 }
 }
 function randomNum():Number {
 return Math.round(Math.random() * 10) % 3;
 }
 }

Finally, in another AS file or FLA script, the following code invokes the sortRows() method on an instance of the

RecordSet class. It defines catch blocks for each type of error that is thrown by sortRows()

157FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 import RecordSet;
 var myRecordSet:RecordSet = new RecordSet();
 try {
 myRecordSet.sortRows();
 trace("everything is fine");
 }
 catch (e:RecordSetException) {
 trace(e.toString());
 }
 catch (e:MalformedRecord) {
 trace(e.toString());
 }

See also

Error

var statement
 var variableName [= value1][...,variableNameN[=valueN]]

Used to declare local variables. If you declare variables inside a function, the variables are local. They are defined for

the function and expire at the end of the function call. More specifically, a variable defined using var is local to the

code block containing it. Code blocks are demarcated by curly braces ({}).

If you declare variables outside a function, the variables are available throughout the timeline containing the statement.

You cannot declare a variable scoped to another object as a local variable.

 my_array.length = 25; // ok
 var my_array.length = 25; // syntax error

When you use var, you can strictly type the variable.

You can declare multiple variables in one statement, separating the declarations with commas (although this syntax

may reduce clarity in your code):

 var first:String = "Bart", middle:String = "J.", last:String = "Bartleby";

Note: You must also use var when declaring properties inside class definitions in external scripts. Class files also

support public, private, and static variable scopes.

Availability

Flash Lite 2.0

Parameters

variableName:String - An identifier.

Example

The following ActionScript creates a new array of product names. Array.push adds an element onto the end of the

array. If you want to use strict typing, it is essential that you use the var keyword. Without var before product_array,

you get errors when you try to use strict typing.

158FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 var product_array:Array = new Array("MX 2004", "Studio", "Dreamweaver", "Flash", "ColdFusion",
"Contribute", "Breeze");
 product_array.push("Flex");
 trace(product_array);
 // output: MX 2004,Studio,Dreamweaver,Flash,ColdFusion,Contribute,Breeze,Flex

while statement
 while(condition) { statement(s); }

Evaluates a condition and if the condition evaluates to true, runs a statement or series of statements before looping

back to evaluate the condition again. After the condition evaluates to false, the statement or series of statements is

skipped and the loop ends.

The while statement performs the following series of steps. Each repetition of steps 1 through 4 is called an iteration

of the loop. The condition is retested at the beginning of each iteration, as shown in the following steps:

• The expression condition is evaluated.

• If condition evaluates to true or a value that converts to the Boolean value true, such as a nonzero number, go to step

3. Otherwise, the while statement is completed and execution resumes at the next statement after the while loop.

• Run the statement block statement(s).

• Go to step 1.

Looping is commonly used to perform an action while a counter variable is less than a specified value. At the end of

each loop, the counter is incremented until the specified value is reached. At that point, the condition is no longer true,

and the loop ends.

The curly braces ({}) used to enclose the block of statements to be executed by the while statement are not necessary

if only one statement will execute.

Availability

Flash Lite 1.0

Parameters

condition:Boolean - An expression that evaluates to true or false.

Example

In the following example, the while statement is used to test an expression. When the value of i is less than 20, the

value of i is traced. When the condition is no longer true, the loop exits.

 var i:Number = 0;
 while (i < 20) {
 trace(i);
 i += 3;
 }

The following result is displayed in the Output panel.

 0
 3
 6
 9
 12
 15
 18

159FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

See also

continue statement

with statement
 with (object:Object) { statement(s); }

Lets you specify an object (such as a movie clip) with the object parameter and evaluate expressions and actions inside

that object with the statement(s) parameter. This prevents you from having to repeatedly write the object's name or the

path to the object.

The object parameter becomes the context in which the properties, variables, and functions in the statement(s)

parameter are read. For example, if object is my_array, and two of the properties specified are length and concat,

those properties are automatically read as my_array.length and my_array.concat. In another example, if object is

state.california, any actions or statements inside the with statement are called from inside the california

instance.

To find the value of an identifier in the statement(s) parameter, ActionScript starts at the beginning of the scope chain

specified by the object and searches for the identifier at each level of the scope chain, in a specific order.

The scope chain used by the with statement to resolve identifiers starts with the first item in the following list and

continues to the last item:

• The object specified in the object parameter in the innermost with statement.

• The object specified in the object parameter in the outermost with statement.

• The Activation object. (A temporary object that is automatically created when a function is called that holds the

local variables called in the function.)

• The movie clip that contains the currently executing script.

• The Global object (built-in objects such as Math and String).

To set a variable inside a with statement, you must have declared the variable outside the with statement, or you must

enter the full path to the Timeline on which you want the variable to live. If you set a variable in a with statement

without declaring it, the with statement will look for the value according to the scope chain. If the variable doesn't

already exist, the new value will be set on the Timeline from which the with statement was called.

Instead of using with(), you can use direct paths. If you find that paths are long and cumbersome to type, you can

create a local variable and store the path in the variable, which you can then reuse in your code, as shown in the

following ActionScript:

 var shortcut = this._parent._parent.name_txt; shortcut.text = "Hank"; shortcut.autoSize = true;

Availability

Flash Lite 2.0

Parameters

object:Object - An instance of an ActionScript object or movie clip.

Example

The following example sets the _x and _y properties of the someOther_mc instance, and then instructs someOther_mc

to go to Frame 3 and stop.

160FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 with (someOther_mc) {
 _x = 50;
 _y = 100;
 gotoAndStop(3);
 }

The following code snippet shows how to write the preceding code without using a with statement.

 someOther_mc._x = 50;
 someOther_mc._y = 100;
 someOther_mc.gotoAndStop(3);

The with statement is useful for accessing multiple items in a scope chain list simultaneously. In the following

example, the built-in Math object is placed at the front of the scope chain. Setting Math as a default object resolves the

identifiers cos, sin, and PI to Math.cos, Math.sin, and Math.PI, respectively. The identifiers a, x, y, and r are not

methods or properties of the Math object, but because they exist in the object activation scope of the function polar(),

they resolve to the corresponding local variables.

 function polar(r:Number):Void {
 var a:Number, x:Number, y:Number;
 with (Math) {
 a = PI * pow(r, 2);
 x = r * cos(PI);
 y = r * sin(PI / 2);
 }
 trace("area = " + a);
 trace("x = " + x);
 trace("y = " + y);
 } polar(3);

The following result is displayed in the Output panel.

 area = 28.2743338823081
 x = -3
 y = 3

fscommand2 commands

The following commands are available for the fscommand2() function. For a description of the fscommand2()

function, see fscommand2 Function under "Global functions."

fscommand2 fommands

Command Description

ExtendBacklightDuration Extends the duration of a backlight for a specified period of time.

FullScreen Sets the size of the display area to be used for rendering.

GetBatteryLevel Returns the current battery level.

GetDevice Sets a parameter that identifies the device on which Flash Lite is running.

GetDeviceID Sets a parameter that represents the unique identifier of the device (for example, the

serial number).

GetFreePlayerMemory Returns the amount of heap memory, in kilobytes, currently available to Flash Lite.

161FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

ExtendBacklightDuration fscommand2 command
 ExtendBacklightDuration

Extends the duration of a backlight for a specified period of time.

If the duration is greater than zero, this command specifies the amount of time in seconds (maximum of 60 seconds)

that the backlight should be kept on. If the time elapses without an additional call to this command, the backlight

behavior reverts to the default duration. If duration is zero, the backlight behavior immediately reverts to the default

behavior.

Note: This feature is system dependent. For example, some systems limit the total duration that the backlight can be

extended.

GetMaxBatteryLevel Returns the maximum battery level of the device.

GetMaxSignalLevel Returns the maximum signal strength level as a numeric value.

GetMaxVolumeLevel Returns the maximum volume level of the device as a numeric value.

GetNetworkConnectionN

ame

Returns the name of the active or default network connection.

GetNetworkConnectStat

us

Returns a value that indicates the current network connection status.

GetNetworkGeneration Returns the generation of the current mobile wireless network (such as 2G or second

generation of mobile wireless).

GetNetworkName Sets a parameter to the name of the current network.

GetNetworkRequestStatu

s

Returns a value indicating the status of the most recent HTTP request.

GetNetworkStatus Returns a value indicating the network status of the phone (that is, whether there is a

network registered and whether the phone is currently roaming).

GetPlatform Sets a parameter that identifies the current platform, which broadly describes the class

of device.

GetPowerSource Returns a value that indicates whether the power source is currently supplied from a

battery or from an external power source.

GetSignalLevel Returns the current signal strength as a numeric value.

GetSoftKeyLocation Returns a value that indicates the location of soft keys on the device.

GetTotalPlayerMemory Returns the total amount of heap memory, in kilobytes, allocated to Flash Lite.

GetVolumeLevel Returns the current volume level of the device as a numeric value.

Quit Causes the Flash Lite Player to stop playback and exit.

ResetSoftKeys Resets the soft keys to their original settings.

SetFocusRectColor Sets the color of the focus rectangle to any color.

SetInputTextType Specifies the mode in which the input text field should be opened.

SetSoftKeys Remaps the softkeys of a mobile device.

StartVibrate Starts the phone's vibration feature.

StopVibrate Stops the current vibration, if any.

Command Description

162FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Note: This command is not supported for BREW devices.

Availability

Flash Lite 2.0

Example

The following example extends the duration of the backlight for 45 seconds:

 status = FSCommand2("ExtendBacklightDuration", 45)

FullScreen fscommand2 command
 FullScreen

Sets the size of the display area to be used for rendering.

The size can be a defined variable or a constant string value, with one of these values: true (full screen) or false (less

than full screen). Any other value is treated as the value false.

Note: This command is supported only when Flash Lite is running in stand-alone mode. It is not supported when the

player is running in the context of another application (for example, as a plug-in to a browser).

Availability

Flash Lite 1.1

Example

The following example sets the size of the display area to the full screen:

 status = fscommand2("FullScreen", true);

GetBatteryLevel fscommand2 command
 GetBatteryLevel

Returns the current battery level. It is a numeric value that ranges from 0 to the maximum value returned by the

GetMaxBatteryLevel variable.

Note: This command is not supported for BREW devices.

Command Parameters Value Returned

ExtendBacklightDuration duration The backlight

duration, in seconds.

Maximum value of 60 seconds.

-1: Not supported.

0: An error occurred, and the operation could

not be completed.

1: Success.

Command Parameters Value Returned

FullScreen size -1: Not supported.

0: Supported.

163FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 1.1

Example

The following example sets the battLevel variable to the current level of the battery:

 battLevel = fscommand2("GetBatteryLevel");

GetDevice fscommand2 command
 GetDevice

Sets a parameter that identifies the device on which Flash Lite is running. This identifier is typically the model name.

Availability

Flash Lite 1.1

Example

The following example assigns the device identifier to the device variable:

 status = fscommand2("GetDevice", "device");

Some sample results and the devices they signify follow:

D506i A Mitsubishi 506i phone. DFOMA1 A Mitsubishi FOMA1 phone. F506i A Fujitsu 506i phone. FFOMA1 A Fujitsu

FOMA1 phone. N506i An NEC 506i phone. NFOMA1 An NEC FOMA1 phone. Nokia3650 A Nokia 3650 phone. p506i

A Panasonic 506i phone. PFOMA1 A Panasonic FOMA1 phone. SH506i A Sharp 506i phone. SHFOMA1 A Sharp FOMA1

phone. SO506i A Sony 506iphone.

GetDeviceID fscommand2 command
 GetDeviceID

Sets a parameter that represents the unique identifier of the device (for example, the serial number).

Availability

Flash Lite 1.1

Command Parameters Value Returned

GetBatteryLevel None. -1: Not supported.

Other numeric values: The current battery level.

Command Parameters Value Returned

GetDevice device String to receive the identifier of the device. It can be

either the name of a variable or a string value that contains the

name of a variable.

-1: Not supported.

0: Supported..

Command Parameters Value Returned

GetDeviceID id A string to receive the unique identifier of the device. It can

be either the name of a variable or a string value that contains

the name of a variable.

-1: Not supported.

0: Supported.

164FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

The following example assigns the unique identifier to the deviceID variable:

 status = fscommand2("GetDeviceID", "deviceID");

GetFreePlayerMemory fscommand2 command
 GetFreePlayerMemory

Returns the amount of heap memory, in kilobytes, currently available to Flash Lite.

Availability

Flash Lite 1.1

Example

The following example sets status equal to the amount of free memory:

 status = fscommand2("GetFreePlayerMemory");

GetMaxBatteryLevel fscommand2 command
 GetMaxBatteryLevel

Returns the maximum battery level of the device. It is a numeric value greater than 0.

Note: This command is not supported for BREW devices.

Availability

Flash Lite 1.1

Example

The following example sets the maxBatt variable to the maximum battery level:

 maxBatt = fscommand2("GetMaxBatteryLevel");

GetMaxSignalLevel fscommand2 command
 GetMaxSignalLevel

Returns the maximum signal strength level as a numeric value.

Note: This command is not supported for BREW devices.

Command Parameters Value Returned

GetFreePlayerMemory None -1: Not supported.

0 or positive value: Available kilobytes of heap

memory.

Command Parameters Value Returned

GetMaxBatteryLevel None -1: Not supported.

Other values: The maximum battery level.

165FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 1.1

Example

The following example assigns the maximum signal strength to the sigStrengthMax variable:

 sigStrengthMax = fscommand2("GetMaxSignalLevel");

GetMaxVolumeLevel fscommand2 command
 GetMaxVolumeLevel

Returns the maximum volume level of the device as a numeric value.

Availability

Flash Lite 1.1

Example

The following example sets the maxvolume variable to the maximum volume level of the device:

 maxvolume = fscommand2("GetMaxVolumeLevel");
 trace (maxvolume); // output: 80

GetNetworkConnectionName fscommand2 command
 GetNetworkConnectionName

Returns the name of the active or default network connection. For mobile devices, this connection is also known as an

access point.

Note: This command is not supported for BREW devices.

Availability

Flash Lite 2.0

Command Parameters Value Returned

GetMaxSignalLevel None -1: Not supported.

Other numeric values: The maximum signal level.

Command Parameters Value Returned

GetMaxVolumeLevel None -1: Not supported.

Other values: The maximum volume level.

Command Parameters Value Returned

GetNetworkConnectionName None -1: Not supported.

0: Success: returns the active network connection

name.

1: Success: returns the default network connection

name.

2: Unable to retrieve the connection name.

166FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

The following example returns the name of the active or default network connection in the argument

myConnectionName:

 status = FSCommand2("GetNetworkConnectionName", "myConnectionName");

GetNetworkConnectStatus fscommand2 command
 GetNetworkConnectStatus

Returns a value that indicates the current network connection status.

Note: This command is not supported for BREW devices.

Availability

Flash Lite 1.1

Example

The following example assigns the network connection status to the connectstatus variable, and then uses a switch

statement to update a text field with the status of the connection:

 connectstatus = FSCommand2("GetNetworkConnectStatus");
 switch (connectstatus) {
 case -1 :
 _root.myText += "connectstatus not supported" + "\n";
 break;
 case 0 :
 _root.myText += "connectstatus shows active connection" + "\n";
 break;
 case 1 :
 _root.myText += "connectstatus shows attempting connection" + "\n";
 break;
 case 2 :
 _root.myText += "connectstatus shows no connection" + "\n";
 break;
 case 3 :
 _root.myText += "connectstatus shows suspended connection" + "\n";
 break;
 case 4 :
 _root.myText += "connectstatus shows indeterminable state" + "\n";
 break;
 }

Command Parameters Value Returned

GetNetworkConnectStatus None -1: Not supported.

0: There is currently an active network connection.

1: The device is attempting to connect to the

network.

2: There is currently no active network connection.

3: The network connection is suspended.

4: The network connection cannot be determined.

167FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

GetNetworkGeneration fscommand2 command
 GetNetworkGeneration

Returns the generation of the current mobile wireless network, such as 2G (second generation of mobile wireless).

Availability

Flash Lite 2.0

Example

The following example shows syntax for returning the generation of the network:

 status = fscommand2("GetNetworkGeneration");

GetNetworkName fscommand2 command
 GetNetworkName

Sets a parameter to the name of the current network.

Note: This command is not supported for BREW devices.

Availability

Flash Lite 1.1

Example

The following example assigns the name of the current network to the myNetName parameter and a status value to the

netNameStatus variable:

 netNameStatus = fscommand2("GetNetworkName", "myNetName");

GetNetworkRequestStatus fscommand2 command
 GetNetworkRequestStatus

Command Parameters Value Returned

GetNetworkGeneration None -1: Not supported

0: Unknown generation of mobile wireless

network

1: 2G

2: 2.5G

3: 3G

Command Parameters Value Returned

GetNetworkName networkName String representing the

network name. It can be either the name of a

variable or a string value that contains the

name of a variable.

If the network is registered and its name can

be determined, networkname is set to the

network name; otherwise, it is set to the

empty string.

-1: Not supported.

0: No network is registered.

1: Network is registered, but network

name is not known.

2: Network is registered, and network

name is known.

168FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Returns a value indicating the status of the most recent HTTP request.

Note: This command is not supported for BREW devices.

Availability

Flash Lite 1.1

Example

The following example assigns the status of the most recent HTTP request to the requeststatus variable, and then

uses a switch statement to update a text field with the status:

Command Parameters Value Returned

GetNetworkRequestStatus None -1: The command is not supported.

0: There is a pending request, a network connection has

been established, the server's host name has been

resolved, and a connection to the server has been

made.

1: There is a pending request, and a network

connection is being established.

2: There is a pending request, but a network connection

has not yet been established.

3: There is a pending request, a network connection has

been established, and the server's host name is being

resolved.

4: The request failed because of a network error.

5: The request failed because of a failure in connecting

to the server.

6: The server has returned an HTTP error (for example,

404).

7: The request failed because of a failure in accessing

the DNS server or in resolving the server name.

8: The request has been successfully fulfilled.

9: The request failed because of a timeout. 10: The

request has not yet been made.

169FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

 requeststatus = fscommand2("GetNetworkRequestStatus");
 switch (requeststatus) {
 case -1:
 _root.myText += "requeststatus not supported" + "\n";
 break;
 case 0:
 _root.myText += "connection to server has been made" + "\n";
 break;
 case 1:
 _root.myText += "connection is being established" + "\n";
 break;
 case 2:
 _root.myText += "pending request, contacting network" + "\n";
 break;
 case 3:
 _root.myText += "pending request, resolving domain" + "\n";
 break;
 case 4:
 _root.myText += "failed, network error" + "\n";
 break;
 case 5:
 _root.myText += "failed, couldn't reach server" + "\n";
 break;
 case 6:
 _root.myText += "HTTP error" + "\n";
 break;
 case 7:
 _root.myText += "DNS failure" + "\n";
 break;
 case 8:
 _root.myText += "request has been fulfilled" + "\n";
 break;
 case 9:
 _root.myText += "request timedout" + "\n";
 break;
 case 10:
 _root.myText += "no HTTP request has been made" + "\n";
 break;
 }

GetNetworkStatus fscommand2 command
 GetNetworkStatus

Returns a value indicating the network status of the phone (that is, whether there is a network registered and whether

the phone is currently roaming).

Command Parameters Value Returned

GetNetworkStatus None -1: The command is not supported.

0: No network registered.

1: On home network.

2: On extended home network.

3: Roaming (away from home network).

170FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 1.1

Example

The following example assigns the status of the network connection to the networkstatus variable, and then uses a

switch statement to update a text field with the status:

 networkstatus = fscommand2("GetNetworkStatus");
 switch(networkstatus) {
 case -1:
 _root.myText += "network status not supported" + "\n";
 break;
 case 0:
 _root.myText += "no network registered" + "\n";
 break;
 case 1:
 _root.myText += "on home network" + "\n";
 break;
 case 2:
 _root.myText += "on extended home network" + "\n";
 break;
 case 3:
 _root.myText += "roaming" + "\n";
 break;
 }

GetPlatform fscommand2 command
 GetPlatform

Sets a parameter that identifies the current platform, which broadly describes the class of device. For devices with open

operating systems, this identifier is typically the name and version of the operating system.

Availability

Flash Lite 1.1

Example

The following example sets the platform parameter to the identifier for the current platform:

 status = fscommand2("GetPlatform", "platform");

The following examples show some sample results for platform:

506i A 506i phone. FOMA1 A FOMA1 phone. Symbian6.1_s60.1 A Symbian 6.1, Series 60 version 1 phone.

Symbian7.0 A Symbian 7.0 phone

GetPowerSource fscommand2 command
 GetPowerSource

Command Parameters Value Returned

GetPlatform platform String to receive the identifier of the

platform.

-1: Not supported.

0: Supported.

171FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Returns a value that indicates whether the power source is currently supplied from a battery or from an external power

source.

Note: This command is not supported for BREW devices.

Availability

Flash Lite 1.1

Example

The following example sets the myPower variable to indicate the power source, or to -1 if it was unable to do so:

 myPower = fscommand2("GetPowerSource");

GetSignalLevel fscommand2 command
 GetSignalLevel

Returns the current signal strength as a numeric value.

Note: This command is not supported for BREW devices.

Availability

Flash Lite 1.1

Example

The following example assigns the signal level value to the sigLevel variable:

 sigLevel = fscommand2("GetSignalLevel");

GetSoftKeyLocation fscommand2 command
 GetSoftKeyLocation

Returns a value that indicates the location of soft keys on the device.

Command Parameters Value Returned

GetPowerSource None -1: Not supported.

0: Device is operating on battery power.

1: Device is operating on an external power

source.

Command Parameters Value Returned

GetSignalLevel None -1: Not supported.

Other numeric values: The current signal level, ranging

from 0 to the maximum value returned by

GetMaxSignalLevel.

172FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example sets the status variable to indicate the soft key location, or to -1 if soft keys are not supported

on the device:

 status = fscommand2("GetSoftKeyLocation");

GetTotalPlayerMemory fscommand2 command
 GetTotalPlayerMemory

Returns the total amount of heap memory, in kilobytes, allocated to Flash Lite.

Availability

Flash Lite 1.1

Example

The following example sets the status variable to the total amount of heap memory:

 status = fscommand2("GetTotalPlayerMemory");

GetVolumeLevel fscommand2 command
 GetVolumeLevel

Returns the current volume level of the device as a numeric value.

Availability

Flash Lite 1.1

Command Parameters Value Returned

GetSoftKeyLocation None -1: Not supported.

0: Soft keys on top.

1: Soft keys on left.

2: Soft keys on bottom.

3: Soft keys on right.

Command Parameters Value Returned

GetTotalPlayerMemory None -1: Not supported.

0 or positive value: Total kilobytes of heap

memory.

Command Parameters Value Returned

GetVolumeLevel None -1: Not supported.

Other numeric values: The current volume level, ranging

from 0 to the value returned by

fscommand2("GetMaxVolumeLevel").

173FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

The following example assigns the current volume level to the volume variable:

 volume = fscommand2("GetVolumeLevel");
 trace (volume); // output: 50

Quit fscommand2 command
 Quit

Causes the Flash Lite player to stop playback and exit.

This command is supported only when Flash Lite is running in stand-alone mode. It is not supported when the player

is running in the context of another application (for example, as a plug-in to a browser).

Availability

Flash Lite 1.1

Example

The following example causes Flash Lite to stop playback and quit when running in stand-alone mode:

 status = fscommand2("Quit");

ResetSoftKeys fscommand2 command
 ResetSoftKeys

Resets the soft keys to their original settings.

This command is supported only when Flash Lite is running in stand-alone mode. It is not supported when the player

is running in the context of another application (for example, as a plug-in to a browser).

Availability

Flash Lite 1.1

Example

The following statement resets the soft keys to their original settings:

 status = fscommand2("ResetSoftKeys");

SetFocusRectColor fscommand2 command
 SetFocusRectColor

Sets the color of the focus rectangle to any color.

The acceptable range of values for red, green, and blue is 0-255. For Flash, you cannot change the default color of the

focus rectangle, which is yellow.

Command Parameters Value Returned

Quit None -1: Not supported.

Command Parameters Value Returned

ResetSoftKeys None -1: Not supported.

174FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following statement resets the color of the focus rectangle:

 status = fscommand2("SetFocusRectColor, <red>, <green>, <blue>);

SetInputTextType fscommand2 command
 SetInputTextType

Specifies the mode in which the input text field should be opened.

Flash Lite supports input text functionality by asking the host application to start the generic device-specific text input

interface, often referred to as the front-end processor (FEP). When the SetInputTextType command is not used, the

FEP is opened in default mode.

The following table shows what effect each mode has, and what modes are substituted:

Command Parameters Value Returned

SetFocusRectColor None -1: Not supported.

0: Indeterminable.

1: Success.

Command Parameters Value Returned

SetInputTextType variableName Name of the input text field. It can be either

the name of a variable or a string value that contains the

name of a variable.

Note: A text field's variable name is not the same as its

instance name. You can specify a text field's variable name in

the Var text box in the Property inspector or by using

ActionScript. For example, the following code restricts input

to numeric characters for the text field instance (numTxt)

whose associated variable name is "numTxt_var".

var numTxt:TextField;numTxt.variable =
"numTxt_var";fscommand2("SetInputTextType",
"numTxt_var", "Numeric");

type One of the values Numeric, Alpha, Alphanumeric,

Latin, NonLatin, or NoRestriction.

0: Failure.

1: Success.

InputTextType Mode Sets the FEP to one of these

mutually exclusive modes

If not supported on current device,

opens the FEP in this mode

Numeric Numbers only (0 to 9) Alphanumeric

Alpha Alphabetic characters only (A to Z, a to

z)

Alphanumeric

Alphanumeric Alphanumeric characters only (0 to 9,

A to Z, a to z)

Latin

Latin Latin characters only (alphanumeric

and punctuation)

NoRestriction

175FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 1.1

Example

The following line of code sets the input text type of the field associated with the input1 variable to receive numeric data:

 status = fscommand2("SetInputTextType", "input1", "Numeric");

SetSoftKeys fscommand2 command
 SetSoftKeys

Remaps the soft keys of a mobile device.

When the user presses a soft key, any ActionScript associated with the soft key event is executed. The Flash Lite player

executes this function immediately upon invocation. This command is supported only when Flash Lite is running in

stand-alone mode. It is not supported when the player is running in the context of another application (for example,

as a plug-in to a browser).

For backward compatibility with Flash Lite 1.1, the SOFT1 soft key is always mapped to the left key on the handset, and

the SOFT2 soft key is always mapped to the right key on the handset. For the SOFT3 soft key and higher, the locations

are dependent on each handset.

The arguments for this command specify the text to be displayed for the corresponding soft keys. When the

SetSoftKeys command is executed, pressing the left key generates a SOFT1 keypress event, and pressing the right key

generates a SOFT2 keypress event. Pressing the SOFT3 through SOFT12 soft keys generates their respective events.

Note: The remapping of soft keys depends on the mobile device. Check with the device manufacturer to see if the

remapping of soft keys is supported.

Availability

Flash Lite 1.1

NonLatin Non-Latin characters only (for

example, Kanji and Kana)

NoRestriction

NoRestriction Default mode (sets no restriction on

the FEP)

N/A

NOTE: Not all mobile phones

support these input text field

types. For this reason, you

must validate the input text

data.

Command Parameters Value Returned

SetSoftKeys soft1 Text to be displayed for the SOFT1 soft key.

soft2 Text to be displayed for the SOFT2 soft key.

These parameters are either names of variables or

constant string values (for example, "Previous").

-1: Not supported.

0: Supported.

InputTextType Mode Sets the FEP to one of these

mutually exclusive modes

If not supported on current device,

opens the FEP in this mode

176FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Example

The following example labels the SOFT1 soft key "Previous" and the SOFT2 soft key "Next":

 status = fscommand2("SetSoftKeys", "Previous", "Next");

You can define variables or use constant string values for each soft key:

 status = fscommand2("SetSoftKeys", soft1, soft2, [soft3], [soft4], ..., [softn])

Note: You can set one soft key without setting the others. These examples show the syntax and behavior of setting a

specific soft key without affecting other keys:

• To set the left soft key label to "soft1" and the right soft key to empty:

 status = fscommand2("SetSoftKeys", "soft1", "")

• To leave the label for the left soft key as is and set right soft key to "soft2":

 status = fscommand2("SetSoftKeys", undefined, "soft2")

• To leave the label for the left soft key as is and set the right soft key to "soft2":

 status = fscommand2("SetSoftKeys", null, "soft2")

• To set the left soft key label to "soft1" and leave the right soft key as is:

 status = fscommand2("SetSoftKeys", "soft1")

StartVibrate fscommand2 command
 StartVibrate

Starts the phone's vibration feature.

If a vibration is already occurring, Flash Lite stops that vibration before starting the new one. Vibrations also stop when

playback of the Flash application is stopped or paused, and when the Flash Lite player quits.

Availability

Flash Lite 1.1

Example

The following example attempts to start a vibration sequence of 2.5 seconds on, 1 second off, repeated twice. It assigns

a value to the status variable that indicates success or failure:

 fscommand2("StartVibrate", 2500, 1000, 2);

StopVibrate fscommand2 command
 StopVibrate

Stops the current vibration, if any.

Command Parameters Value Returned

StartVibrate time_on Amount of time, in milliseconds (to a

maximum of 5 seconds), that the vibration is on.

time_off Amount of time, in milliseconds (to a

maximum of 5 seconds), that the vibration is off.

repeat Number of times (to a maximum of 3) to

repeat this vibration.

-1: Not supported.

0: Vibration was started.

1: An error occurred and vibration

could not be started.

177FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript language elements

Last updated 3/22/2011

Availability

Flash Lite 1.1

Example

The following example calls StopVibrate and saves the result (not supported or vibration stopped) in the status

variable:

 status = fscommand2("StopVibrate");

Command Parameters Value Returned

StopVibrate None -1: Not supported.

0: The vibration stopped.

178

Last updated 3/22/2011

Chapter 2: ActionScript classes

Documentation for ActionScript classes includes syntax, usage information, and code samples for methods,

properties, and events that belong to specific classes. The classes are listed alphabetically. If you are not sure to which

class a method, property, or event belongs, search the Index.

arguments

 Object
 |
 +-arguments

 public class arguments
 extends Object

An arguments object is used to store and access a function's arguments. While inside the function's body it can be

accessed with the local arguments variable.

The arguments are stored as array elements, the first is accessed as arguments[0], the second as arguments[1], etc.

The arguments.length property indicates the number of arguments passed to the function. Note that there may be

a different number of arguments passed in than the function declares.

Availability

Flash Lite 2.0

See also

Function

Property summary

Properties inherited from class Object

Method summary

Methods inherited from class Object

Modifiers Property Description

 callee:Object A reference to the currently executing function.

 caller:Object A reference to the function that called the currently executing

function, or null if it wasn't called from another function.

 length:Number The number of arguments passed to the function.

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

179FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

callee (arguments.callee property)
 public callee : Object

A reference to the currently executing function.

Availability

Flash Lite 2.0

See also

caller (arguments.caller property)

caller (arguments.caller property)
 public caller : Object

A reference to the function that called the currently executing function, or null if it wasn't called from another

function.

Availability

Flash Lite 2.0

See also

callee (arguments.callee property)

length (arguments.length property)
 public length : Number

The number of arguments passed to the function. This may be more or less than the function declares.

Availability

Flash Lite 2.0

Array

 Object
 |
 +-Array

 public dynamic class Array
 extends Object

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method)watch (Object.watch method)

180FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The Array class lets you access and manipulate indexed arrays. An indexed array is an object whose properties are

identified by a number representing their position in the array. This number is referred to as the index. All indexed

arrays are zero-based, which means that the first element in the array is [0], the second element is [1], and so on. To

create an Array object, you use the constructor newArray(). To access the elements of an array, you use the array

access ([]) operator.

You can store a wide variety of data types in an array element, including numbers, strings, objects, and even other

arrays. You can create a multidimensional array by creating an indexed array and assigning to each of its elements a

different indexed array. Such an array is considered multidimensional because it can be used to represent data in a

table.

Array assignment is by reference rather than by value: when you assign one array variable to another array variable,

both refer to the same array:

 var oneArray:Array = new Array("a", "b", "c");
 var twoArray:Array = oneArray; // Both array variables refer to the same array.
 twoArray[0] = "z";
 trace(oneArray); // Output: z,b,c.

The Array class should not be used to create associative arrays, which are different data structures that contain named

elements instead of numbered elements. You should use the Object class to create associative arrays (also called

hashes). Although ActionScript permits you to create associative arrays using the Array class, you cannot use any of

the Array class methods or properties. At its core, an associative array is an instance of the Object class, and each key-

value pair is represented by a property and its value. Another reason to declare an associative array as a type Object is

that you can then use an object literal to populate your associative array (but only at the time you declare it). The

following example creates an associative array using an object literal, accesses items using both the dot operator and

the array access operator, and then adds a new key-value pair by creating a new property:

 var myAssocArray:Object = {fname:"John", lname:"Public"};
 trace(myAssocArray.fname); // Output: John
 trace(myAssocArray["lname"]); // Output: Public
 myAssocArray.initial = "Q";
 trace(myAssocArray.initial); // Output: Q

Availability

Flash Lite 2.0

Example

In the following example, my_array contains four months of the year:

 var my_array:Array = new Array();
 my_array[0] = "January";
 my_array[1] = "February";
 my_array[2] = "March";
 my_array[3] = "April";

181FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Property summary

Properties inherited from class Object

Constructor summary

Method summary

Modifiers Property Description

static CASEINSENSITIVE:Numbe

r

Represents case-insensitive sorting.

static DESCENDING:Number Represents a descending sort order.

 length:Number A non-negative integer specifying the number of elements in

the array.

static NUMERIC:Number Represents numeric sorting instead of string-based sorting.

static RETURNINDEXEDARRAY:
Number

Represents the option to return an indexed array as a result of

calling the sort() or sortOn() method.

static UNIQUESORT:Number Represents the unique sorting requirement.

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

Signature Description

Array([value:Object]) Lets you create an array.

Modifiers Signature Description

 concat([value:Object]
) : Array

Concatenates the elements specified in the parameters with

the elements in an array and creates a new array.

 join([delimiter:String

]) : String

Converts the elements in an array to strings, inserts the

specified separator between the elements, concatenates

them, and returns the resulting string.

 pop() : Object Removes the last element from an array and returns the value

of that element.

 push(value:Object) :
Number

Adds one or more elements to the end of an array and returns

the new length of the array.

 reverse() : Void Reverses the array in place.

 shift() : Object Removes the first element from an array and returns that

element.

 slice([startIndex:Nu

mber],
[endIndex:Number])
: Array

Returns a new array that consists of a range of elements from

the original array, without modifying the original array.

 sort([compareFunctio
n:Object],
[options:Number]) :
Array

Sorts the elements in an array.

182FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Methods inherited from class Object

Array constructor
 public Array([value:Object])

Lets you create an array. You can use the constructor to create different types of arrays: an empty array, an array with

a specific length but whose elements have undefined values, or an array whose elements have specific values.

Usage 1: If you don't specify any parameters, an array with a length of 0 is created.

Usage 2: If you specify only a length, an array is created with length number of elements. The value of each element

is set to undefined.

Usage 3: If you use the element parameters to specify values, an array is created with specific values.

Availability

Flash Lite 2.0

Parameters

value:Object [optional] - Either:

• An integer that specifies the number of elements in the array.

• A list of two or more arbitrary values. The values can be of type Boolean, Number, String, Object, or Array. The

first element in an array always has an index or position of 0.

Note: If only a single numeric parameter is passed to the Array constructor, it is assumed to be length and it is

converted to an integer by using the Integer() function.

Example

Usage 1: The following example creates a new Array object with an initial length of 0:

 var my_array:Array = new Array();
 trace(my_array.length); // Traces 0.

 sortOn(fieldName:Obje

ct, [options:Object])
: Array

Sorts the elements in an array according to one or more fields

in the array.

 splice(startIndex:Nu

mber,
[deleteCount:Number

], [value:Object]) :
Array

Adds elements to and removes elements from an array.

 toString() : String Returns a string value representing the elements in the

specified Array object.

 unshift(value:Object)
: Number

Adds one or more elements to the beginning of an array and

returns the new length of the array.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method)watch (Object.watch method)

Modifiers Signature Description

183FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Usage 2: The following example creates a new Array object with an initial length of 4:

 var my_array:Array = new Array(4);
 trace(my_array.length); // Returns 4.
 trace(my_array[0]); // Returns undefined.
 if (my_array[0] == undefined) { // No quotation marks around undefined.
 trace("undefined is a special value, not a string");
 } // Traces: undefined is a special value, not a string.

Usage 3: The following example creates the new Array object go_gos_array with an initial length of 5:

 var go_gos_array:Array = new Array("Belinda", "Gina", "Kathy", "Charlotte", "Jane");
 trace(go_gos_array.length); // Returns 5.
 trace(go_gos_array.join(", ")); // Displays elements.

The initial elements of the go_gos_array array are identified, as shown in the following example:

 go_gos_array[0] = "Belinda";
 go_gos_array[1] = "Gina";
 go_gos_array[2] = "Kathy";
 go_gos_array[3] = "Charlotte";
 go_gos_array[4] = "Jane";

The following code adds a sixth element to the go_gos_array array and changes the second element:

 go_gos_array[5] = "Donna";
 go_gos_array[1] = "Nina"
 trace(go_gos_array.join(" + "));
 // Returns Belinda + Nina + Kathy + Charlotte + Jane + Donna.

See also

[] array access operator, length (Array.length property)

CASEINSENSITIVE (Array.CASEINSENSITIVE property)
 public static CASEINSENSITIVE : Number

Represents case-insensitive sorting. You can use this constant for the options parameter in the sort() or sortOn()

method. The value of this constant is 1.

Availability

Flash Lite 2.0

See also

sort (Array.sort method), sortOn (Array.sortOn method)

concat (Array.concat method)
 public concat([value:Object]) : Array

Concatenates the elements specified in the parameters with the elements in an array and creates a new array. If the

value parameters specify an array, the elements of that array are concatenated, rather than the array itself. The array

my_array is left unchanged.

Availability

Flash Lite 2.0

184FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

value:Object [optional] - Numbers, elements, or strings to be concatenated in a new array. If you don't pass any values,

a duplicate of my_array is created.

Returns

Array - An array that contains the elements from this array followed by elements from the parameters.

Example

The following code concatenates two arrays:

 var alpha_array:Array = new Array("a","b","c");
 var numeric_array:Array = new Array(1,2,3);
 var alphaNumeric_array:Array =alpha_array.concat(numeric_array);
 trace(alphaNumeric_array);
 // Creates array [a,b,c,1,2,3].

The following code concatenates three arrays:

 var num1_array:Array = [1,3,5];
 var num2_array:Array = [2,4,6];
 var num3_array:Array = [7,8,9];
 var nums_array:Array=num1_array.concat(num2_array,num3_array)
 trace(nums_array);
 // Creates array [1,3,5,2,4,6,7,8,9].

Nested arrays are not flattened in the same way as normal arrays. The elements in a nested array are not broken into

separate elements in array x_array, as shown in the following example:

 var a_array:Array = new Array ("a","b","c");

 // 2 and 3 are elements in a nested array.
 var n_array:Array = new Array(1, [2, 3], 4);

 var x_array:Array = a_array.concat(n_array);
 trace(x_array[0]); // a
 trace(x_array[1]); // b
 trace(x_array[2]); // c
 trace(x_array[3]); // 1
 trace(x_array[4]); // 2, 3
 trace(x_array[5]); // 4

DESCENDING (Array.DESCENDING property)
 public static DESCENDING : Number

Represents a descending sort order. You can use this constant for the options parameter in the sort() or sortOn()

method. The value of this constant is 2.

Availability

Flash Lite 2.0

See also

sort (Array.sort method), sortOn (Array.sortOn method)

185FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

join (Array.join method)
 public join([delimiter:String]) : String

Converts the elements in an array to strings, inserts the specified separator between the elements, concatenates them,

and returns the resulting string. A nested array is always separated by a comma (,), not by the separator passed to the

join() method.

Availability

Flash Lite 2.0

Parameters

delimiter:String [optional] - A character or string that separates array elements in the returned string. If you omit this

parameter, a comma (,) is used as the default separator.

Returns

String - A string.

Example

The following example creates an array with three elements: Earth, Moon, and Sun. It then joins the array three

times—first by using the default separator (a comma [,] and a space), then by using a dash (-), and then by using a plus

sign (+).

 var a_array:Array = new Array("Earth","Moon","Sun")
 trace(a_array.join());
 // Displays Earth,Moon,Sun.
 trace(a_array.join(" - "));
 // Displays Earth - Moon - Sun.
 trace(a_array.join(" + "));
 // Displays Earth + Moon + Sun.

The following example creates a nested array that contains two arrays. The first array has three elements: Europa, Io,

and Callisto. The second array has two elements: Titan and Rhea. It joins the array by using a plus sign (+), but the

elements within each nested array remain separated by commas (,).

 var a_nested_array:Array = new Array(["Europa", "Io", "Callisto"], ["Titan", "Rhea"]);
 trace(a_nested_array.join(" + "));
 // Returns Europa,Io,Callisto + Titan,Rhea.

See also

split (String.split method)

length (Array.length property)
 public length : Number

A non-negative integer specifying the number of elements in the array. This property is automatically updated when

new elements are added to the array. When you assign a value to an array element (for example, my_array[index] =

value), if index is a number, and index+1 is greater than the length property, the length property is updated to

index+1.

Note: If you assign a value to the length property that is shorter than the existing length, the array will be truncated.

186FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following code explains how the length property is updated. The initial length is 0, and then updated to 1, 2, and

10. If you assign a value to the length property that is shorter than the existing length, the array will be truncated:

 var my_array:Array = new Array();
 trace(my_array.length); // initial length is 0
 my_array[0] = "a";
 trace(my_array.length); // my_array.length is updated to 1
 my_array[1] = "b";
 trace(my_array.length); // my_array.length is updated to 2
 my_array[9] = "c";
 trace(my_array.length); // my_array.length is updated to 10
 trace(my_array);
 // displays:
 // a,b,undefined,undefined,undefined,undefined,undefined,undefined,undefined,c

 // if the length property is now set to 5, the array will be truncated
 my_array.length = 5;
 trace(my_array.length); // my_array.length is updated to 5
 trace(my_array); // outputs: a,b,undefined,undefined,undefined

NUMERIC (Array.NUMERIC property)
 public static NUMERIC : Number

Represents numeric sorting instead of string-based sorting. String-based sorting, which is the default setting, treats

numbers as strings when sorting them. For example, string-based sorting places 10 before 3. A numeric sort treats the

elements as numbers so that 3 will be placed before 10. You can use this constant for the options parameter in the

sort() or sortOn() method. The value of this constant is 16.

Availability

Flash Lite 2.0

See also

sort (Array.sort method), sortOn (Array.sortOn method)

pop (Array.pop method)
 public pop() : Object

Removes the last element from an array and returns the value of that element.

Availability

Flash Lite 2.0

Returns

Object - The value of the last element in the specified array.

187FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following code creates the array myPets_array containing four elements, and then removes its last element:

 var myPets_array:Array = new Array("cat", "dog", "bird", "fish");
 var popped:Object = myPets_array.pop();
 trace(popped); // Displays fish.
 trace(myPets_array); // Displays cat,dog,bird.

See also

push (Array.push method), shift (Array.shift method), unshift (Array.unshift method)

push (Array.push method)
 public push(value:Object) : Number

Adds one or more elements to the end of an array and returns the new length of the array.

Availability

Flash Lite 2.0

Parameters

value:Object - One or more values to append to the array.

Returns

Number - An integer representing the length of the new array.

Example

The following example creates the array myPets_array with two elements, cat and dog. The second line adds two

elements to the array.

Because the push() method returns the new length of the array, the trace() statement in the last line sends the new

length of myPets_array (4) to the Output panel.

 var myPets_array:Array = new Array("cat", "dog");
 var pushed:Number = myPets_array.push("bird", "fish");
 trace(pushed); // Displays 4.

See also

pop (Array.pop method), shift (Array.shift method), unshift (Array.unshift method)

RETURNINDEXEDARRAY (Array.RETURNINDEXEDARRAY property)
 public static RETURNINDEXEDARRAY : Number

Represents the option to return an indexed array as a result of calling the sort() or sortOn() method. You can use

this constant for the options parameter in the sort() or sortOn() method. This provides preview or copy

functionality by returning an array that represents the results of the sort and leaves the original array unmodified. The

value of this constant is 8.

Availability

Flash Lite 2.0

188FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

sort (Array.sort method), sortOn (Array.sortOn method)

reverse (Array.reverse method)
 public reverse() : Void

Reverses the array in place.

Availability

Flash Lite 2.0

Example

The following example uses this method to reverse the array numbers_array:

 var numbers_array:Array = new Array(1, 2, 3, 4, 5, 6);
 trace(numbers_array); // Displays 1,2,3,4,5,6.
 numbers_array.reverse();
 trace(numbers_array); // Displays 6,5,4,3,2,1.

shift (Array.shift method)
 public shift() : Object

Removes the first element from an array and returns that element.

Availability

Flash Lite 2.0

Returns

Object - The first element in an array.

Example

The following code creates the array myPets_array and then removes the first element from the array and assigns it

to the variable shifted:

 var myPets_array:Array = new Array("cat", "dog", "bird", "fish");
 var shifted:Object = myPets_array.shift();
 trace(shifted); // Displays "cat".
 trace(myPets_array); // Displays dog,bird,fish.

See also

pop (Array.pop method), push (Array.push method), unshift (Array.unshift method)

slice (Array.slice method)
 public slice([startIndex:Number], [endIndex:Number]) : Array

Returns a new array that consists of a range of elements from the original array, without modifying the original array.

The returned array includes the startIndex element and all elements up to, but not including, the endIndex element.

If you don't pass any parameters, a duplicate of the original array is created.

189FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Parameters

startIndex:Number [optional] - A number specifying the index of the starting point for the slice. If start is a negative

number, the starting point begins at the end of the array, where -1 is the last element.

endIndex:Number [optional] - A number specifying the index of the ending point for the slice. If you omit this

parameter, the slice includes all elements from the starting point to the end of the array. If end is a negative number,

the ending point is specified from the end of the array, where -1 is the last element.

Returns

Array - An array that consists of a range of elements from the original array.

Example

The following example creates an array of five pets and uses slice() to populate a new array that contains only four-

legged pets:

 var myPets_array:Array = new Array("cat", "dog", "fish", "canary", "parrot");
 var myFourLeggedPets_array:Array = new Array();
 var myFourLeggedPets_array = myPets_array.slice(0, 2);
 trace(myFourLeggedPets_array); // Returns cat,dog.
 trace(myPets_array); // Returns cat,dog,fish,canary,parrot.

The following example creates an array of five pets, and then uses slice() with a negative start parameter to copy

the last two elements from the array:

 var myPets_array:Array = new Array("cat", "dog", "fish", "canary", "parrot");
 var myFlyingPets_array:Array = myPets_array.slice(-2);
 trace(myFlyingPets_array); // Traces canary,parrot.

The following example creates an array of five pets and uses slice() with a negative end parameter to copy the middle

element from the array:

 var myPets_array:Array = new Array("cat", "dog", "fish", "canary", "parrot");
 var myAquaticPets_array:Array = myPets_array.slice(2,-2);
 trace(myAquaticPets_array); // Returns fish.

sort (Array.sort method)
 public sort([compareFunction:Object], [options:Number]) : Array

Sorts the elements in an array. Flash sorts according to Unicode values. (ASCII is a subset of Unicode.)

By default, Array.sort() works as described in the following list:

• Sorting is case-sensitive (Z precedes a).

• Sorting is ascending (a precedes b).

• The array is modified to reflect the sort order; multiple elements that have identical sort fields are placed

consecutively in the sorted array in no particular order.

• Numeric fields are sorted as if they were strings, so 100 precedes 99, because "1" is a lower string value than "9".

190FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

If you want to sort an array by using settings that deviate from the default settings, you can either use one of the sorting

options described in the entry for the options parameter or you can create your own custom function to do the

sorting. If you create a custom function, you can use it by calling the sort() method, using the name of your custom

function as the first parameter (compareFunction).

Availability

Flash Lite 2.0

Parameters

compareFunction:Object [optional] - A comparison function used to determine the sorting order of elements in an

array. Given the elements A and B, the result of compareFunction can have one of the following three values:

• -1, if A should appear before B in the sorted sequence

• 0, if A equals B

• 1, if A should appear after B in the sorted sequence

options:Number [optional] - One or more numbers or names of defined constants, separated by the | (bitwise OR)

operator, that change the behavior of the sort from the default. The following values are acceptable for the options

parameter:

• Array.CASEINSENSITIVE or 1

• Array.DESCENDING or 2

• Array.UNIQUESORT or 4

• Array.RETURNINDEXEDARRAY or 8

• Array.NUMERIC or 16

For more information about this parameter, see the Array.sortOn() method.

Note: Array.sort() is defined in ECMA-262, but the array sorting options introduced in Flash Player 7 are Flash-

specific extensions to the ECMA-262 specification.

Returns

Array - The return value depends on whether you pass any parameters, as described in the following list:

• If you specify a value of 4 or Array.UNIQUESORT for the options parameter and two or more elements being sorted

have identical sort fields, Flash returns a value of 0 and does not modify the array.

• If you specify a value of 8 or Array.RETURNINDEXEDARRAY for the options parameter, Flash returns an array that

reflects the results of the sort and does not modify the array.

• Otherwise, Flash returns nothing and modifies the array to reflect the sort order.

Example

Usage 1: The following example shows the use of Array.sort() with and without a value passed for options:

 var fruits_array:Array = new Array("oranges", "apples", "strawberries", "pineapples",
"cherries");
 trace(fruits_array); // Displays oranges,apples,strawberries,pineapples,cherries.
 fruits_array.sort();
 trace(fruits_array); // Displays apples,cherries,oranges,pineapples,strawberries.
 fruits_array.sort(Array.DESCENDING);
 trace(fruits_array); // Displays strawberries,pineapples,oranges,cherries,apples.

191FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Usage 2: The following example uses Array.sort() with a compare function. The entries are sorted in the form

name:password. Sort using only the name part of the entry as a key:

 var passwords_array:Array = new Array("mom:glam", "ana:ring", "jay:mag", "anne:home",
"regina:silly");
 function order(a, b):Number {
 var name1:String = a.split(":")[0];
 var name2:String = b.split(":")[0];
 if (name1<name2) {
 return -1;
 } else if (name1>name2) {
 return 1;
 } else {
 return 0;
 }
 }
 trace("Unsorted:");
 trace(passwords_array);
 //Displays mom:glam,ana:ring,jay:mag,anne:home,regina:silly.
 passwords_array.sort(order);
 trace("Sorted:");
 trace(passwords_array);
 //Displays ana:ring,anne:home,jay:mag,mom:glam,regina:silly.

See also

| bitwise OR operator, sortOn (Array.sortOn method)

sortOn (Array.sortOn method)
 public sortOn(fieldName:Object, [options:Object]) : Array

Sorts the elements in an array according to one or more fields in the array. The array should have the following

characteristics:

• The array is an indexed array, not an associative array.

• Each element of the array holds an object with one or more properties.

• All of the objects have at least one property in common, the values of which can be used to sort the array. Such a

property is called a field.

If you pass multiple fieldName parameters, the first field represents the primary sort field, the second represents the

next sort field, and so on. Flash sorts according to Unicode values. (ASCII is a subset of Unicode.) If either of the

elements being compared does not contain the field specified in the fieldName parameter, the field is assumed to be

undefined, and the elements are placed consecutively in the sorted array in no particular order.

By default, Array.sortOn() works as described in the following list:

• Sorting is case-sensitive (Z precedes a).

• Sorting is ascending (a precedes b).

• The array is modified to reflect the sort order; multiple elements that have identical sort fields are placed

consecutively in the sorted array in no particular order.

• Numeric fields are sorted as if they were strings, so 100 precedes 99, because "1" is a lower string value than "9".

192FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

You can use the options parameter to override the default sort behavior. If you want to sort a simple array (for

example, an array with only one field), or if you want to specify a sort order that the options parameter doesn't

support, use Array.sort().

To pass multiple flags, separate them with the bitwise OR (|) operator:

 my_array.sortOn(someFieldName, Array.DESCENDING | Array.NUMERIC);

Availability

Flash Lite 2.0

Parameters

fieldName:Object - A string that identifies a field to be used as the sort value, or an array in which the first element

represents the primary sort field, the second represents the secondary sort field, and so on.

options:Object [optional] - One or more numbers or names of defined constants, separated by the | (bitwise OR)

operator, that change the sorting behavior. The following values are acceptable for the options parameter:

• Array.CASEINSENSITIVE or 1

• Array.DESCENDING or 2

• Array.UNIQUESORT or 4

• Array.RETURNINDEXEDARRAY or 8

• Array.NUMERIC or 16

Code hinting is enabled if you use the string form of the flag (for example, DESCENDING) rather than the numeric form (2).

Returns

Array - The return value depends on whether you pass any parameters, as described in the following list:

• If you specify a value of 4 or Array.UNIQUESORT for the options parameter, and two or more elements being

sorted have identical sort fields, Flash returns a value of 0 and does not modify the array.

• If you specify a value of 8 or Array.RETURNINDEXEDARRAY for the options parameter, Flash returns an array that

reflects the results of the sort and does not modify the array.

• Otherwise, Flash returns nothing and modifies the array to reflect the sort order.

Example

The following example creates a new array and sorts it according to the name and city fields. The first sort uses name

as the first sort value and city as the second. The second sort uses city as the first sort value and name as the second.

193FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var rec_array:Array = new Array();
 rec_array.push({name: "john", city: "omaha", zip: 68144});
 rec_array.push({name: "john", city: "kansas city", zip: 72345});
 rec_array.push({name: "bob", city: "omaha", zip: 94010});
 for(i=0; i<rec_array.length; i++){
 trace(rec_array[i].name + ", " + rec_array[i].city);
 }
 // Results:
 // john, omaha
 // john, kansas city
 // bob, omaha

 rec_array.sortOn(["name", "city"]);
 for(i=0; i<rec_array.length; i++){
 trace(rec_array[i].name + ", " + rec_array[i].city);
 }
 // Results:
 // bob, omaha
 // john, kansas city
 // john, omaha

 rec_array.sortOn(["city", "name"]);
 for(i=0; i<rec_array.length; i++){
 trace(rec_array[i].name + ", " + rec_array[i].city);
 }
 // Results:
 // john, kansas city
 // bob, omaha
 // john, omaha

The following array of objects is used by subsequent examples that show how to use the options parameter:

 var my_array:Array = new Array();
 my_array.push({password: "Bob", age:29});
 my_array.push({password: "abcd", age:3});
 my_array.push({password: "barb", age:35});
 my_array.push({password: "catchy", age:4});

Performing a default sort on the password field produces the following results:

 my_array.sortOn("password");
 // Bob
 // abcd
 // barb
 // catchy

Performing a case-insensitive sort on the password field produces the following results:

 my_array.sortOn("password", Array.CASEINSENSITIVE);
 // abcd
 // barb
 // Bob
 // catchy

Performing a case-insensitive, descending sort on the password field produces the following results:

194FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 my_array.sortOn("password", Array.CASEINSENSITIVE | Array.DESCENDING);
 // catchy
 // Bob
 // barb
 // abcd

Performing a default sort on the age field produces the following results:

 my_array.sortOn("age");
 // 29
 // 3
 // 35
 // 4

Performing a numeric sort on the age field produces the following results:

 my_array.sortOn("age", Array.NUMERIC);
 // my_array[0].age = 3
 // my_array[1].age = 4
 // my_array[2].age = 29
 // my_array[3].age = 35

Performing a descending numeric sort on the age field produces the following results:

 my_array.sortOn("age", Array.DESCENDING | Array.NUMERIC);
 // my_array[0].age = 35
 // my_array[1].age = 29
 // my_array[2].age = 4
 // my_array[3].age = 3

When using the Array.RETURNINDEXARRAY sorting option, you must assign the return value to a different array. The

original array is not modified.

 var indexArray:Array = my_array.sortOn("age", Array.RETURNINDEXEDARRAY);

See also

| bitwise OR operator, sort (Array.sort method)

splice (Array.splice method)
 public splice(startIndex:Number, [deleteCount:Number], [value:Object]) : Array

Adds elements to and removes elements from an array. This method modifies the array without making a copy.

Availability

Flash Lite 2.0

Parameters

startIndex:Number - An integer that specifies the index of the element in the array where the insertion or deletion

begins. You can specify a negative integer to specify a position relative to the end of the array (for example, -1 is the

last element of the array).

deleteCount:Number [optional] - An integer that specifies the number of elements to be deleted. This number

includes the element specified in the startIndex parameter. If no value is specified for the deleteCount parameter,

the method deletes all of the values from the startIndex element to the last element in the array. If the value is 0, no

elements are deleted.

195FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

value:Object [optional] - Specifies the values to insert into the array at the insertion point specified in the startIndex

parameter.

Returns

Array - An array containing the elements that were removed from the original array.

Example

The following example creates an array and splices it by using element index 1 for the startIndex parameter. This

removes all elements from the array starting with the second element, leaving only the element at index 0 in the

original array:

 var myPets_array:Array = new Array("cat", "dog", "bird", "fish");
 trace(myPets_array.splice(1)); // Displays dog,bird,fish.
 trace(myPets_array); // cat

The following example creates an array and splices it by using element index 1 for the startIndex parameter and the

number 2 for the deleteCount parameter. This removes two elements from the array, starting with the second

element, leaving the first and last elements in the original array:

 var myFlowers_array:Array = new Array("roses", "tulips", "lilies", "orchids");
 trace(myFlowers_array.splice(1,2)); // Displays tulips,lilies.
 trace(myFlowers_array); // roses,orchids

The following example creates an array and splices it by using element index 1 for the startIndex parameter, the

number 0 for the deleteCount parameter, and the string chair for the value parameter. This does not remove

anything from the original array, and adds the string chair at index 1:

 var myFurniture_array:Array = new Array("couch", "bed", "desk", "lamp");
 trace(myFurniture_array.splice(1,0, "chair")); // Displays empty array.
 trace(myFurniture_array); // displays couch,chair,bed,desk,lamp

toString (Array.toString method)
 public toString() : String

Returns a string value representing the elements in the specified Array object. Every element in the array, starting with

index 0 and ending with the highest index, is converted to a concatenated string and separated by commas. To specify

a custom separator, use the Array.join() method.

Availability

Flash Lite 2.0

Returns

String - A string.

Example

The following example creates my_array and converts it to a string.

196FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_array:Array = new Array();
 my_array[0] = 1;
 my_array[1] = 2;
 my_array[2] = 3;
 my_array[3] = 4;
 my_array[4] = 5;
 trace(my_array.toString()); // Displays 1,2,3,4,5.

This example outputs 1,2,3,4,5 as a result of the trace statement.

See also

split (String.split method), join (Array.join method)

UNIQUESORT (Array.UNIQUESORT property)
 public static UNIQUESORT : Number

Represents the unique sorting requirement. You can use this constant for the options parameter in the sort() or

sortOn() method. The unique sorting option aborts the sort if any two elements or fields being sorted have identical

values. The value of this constant is 4.

Availability

Flash Lite 2.0

See also

sort (Array.sort method), sortOn (Array.sortOn method)

unshift (Array.unshift method)
 public unshift(value:Object) : Number

Adds one or more elements to the beginning of an array and returns the new length of the array.

Availability

Flash Lite 2.0

Parameters

value:Object - One or more numbers, elements, or variables to be inserted at the beginning of the array.

Returns

Number - An integer representing the new length of the array.

Example

The following example shows the use of the Array.unshift() method:

 var pets_array:Array = new Array("dog", "cat", "fish");
 trace(pets_array); // Displays dog,cat,fish.
 pets_array.unshift("ferrets", "gophers", "engineers");
 trace(pets_array); // Displays ferrets,gophers,engineers,dog,cat,fish.

See also

pop (Array.pop method), push (Array.push method), shift (Array.shift method)

197FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

BitmapData (flash.display.BitmapData)

 Object
 |
 +-flash.display.BitmapData

 public class BitmapData
 extends Object

The BitmapData class lets you create arbitrarily sized transparent or opaque bitmap images and manipulate them in

various ways at runtime.

This class lets you separate bitmap rendering operations from the Flash Lite player internal display updating routines.

By manipulating a BitmapData object directly, you can create very complex images without incurring the per-frame

overhead of constantly redrawing the content from vector data.

The methods of the BitmapData class support a variety of effects that are not available through the generic filter

interface.

A BitmapData object contains an array of pixel data. This data can represent either a fully opaque bitmap or a

transparent bitmap that contains alpha channel data. Either type of BitmapData object is stored as a buffer of 32-bit

integers. Each 32-bit integer determines the properties of a single pixel in the bitmap.

Each 32-bit integer is a combination of four 8-bit channel values (from 0 to 255) that describe the alpha transparency

and the red, green, and blue (ARGB) values of the pixel.

The four channels (red, green, blue, and alpha) are represented as numbers when you use them with the

BitmapData.copyChannel() method or the DisplacementMapFilter.componentX and

DisplacementMapFilter.componentY properties, as follows:

• 1 (red)

• 2 (green)

• 4 (blue)

• 8 (alpha)

You can attach BitmapData objects to a MovieClip object by using the MovieClip.attachBitmap() method.

You can use a BitmapData object to fill an area in a movie clip by using the MovieClip.beginBitmapFill() method.

The maximum width and maximum height of a BitmapData object is 2880 pixels.

Availability

Flash Lite 3.1

See also

attachBitmap (MovieClip.attachBitmap method), beginFill (MovieClip.beginFill method)

198FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Property summary

Constructor summary

Method summary

Modifiers Property Description

 height:Number [read-

only]

The height of the bitmap image in pixels.

 rectangle:Rectangle

[read-only]

The rectangle that defines the size and location of the bitmap

image.

 transparent:Boolean

[read-only]

Defines whether the bitmap image supports per-pixel

transparency.

 width:Boolean [read-

only]

The width of the bitmap image in pixels.

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Signature Description

BitmapData(width:Num

ber,
height:Number,[tran
sparent:Boolean],
[fillColor:Number])

Creates a BitmapData object with a specified width and height.

Modifiers Signature Description

 applyFilter Takes a source image and a filter object and generates the filtered

image.

Flash Lite 3.1 does not support filters, so this method is not

supported.

 clone(): BitmapData Returns a new BitmapData object that is a clone of the original

instance with an exact copy of the contained bitmap.

 colorTransform(rect:Re

ctangle,
colorTransform:Color

Transform) : Void

Adjusts the color values in a specified area of a bitmap image by

using a ColorTransform object.

 copyChannel(sourceBit
map:BitmapData,
sourceRect:
Rectangle,
destPoint:Point,
sourceChannel:Numbe

r, destChannel:
Number: Void

Transfers data from one channel of another BitmapData object or

the current BitmapData object into a channel of the current

BitmapData object.

199FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 copyPixels(sourceBitm
ap:BitmapData,
sourceRect
:Rectangle,
destPoint:Point,
[alphaBitmap:BitmapD

ata] ,
[alphaPoint:Point,
[mergeAlpha:Boolean]
) : Void

Provides a fast routine to perform pixel manipulation between

images with no stretching, rotation, or color effects.

 dispose() : Void Frees memory that is used to store the BitmapData object.

 draw(source:Object,
[matrix:Matrix],[colo
rTransform:ColorTransf

orm],[blendMode:Obje

ct],[cliprect:Rectang

le],[smooth:Boolean])
: Void

Draws a source image or movie clip onto a destination image,

using the Flash Lite player vector renderer.

 fillRect(rect:Rectangle,
color:Number) : Void

Fills a rectangular area of pixels with a specified ARGB color.

 floodFill(x:Number,
y:Number,
color:Number) : Void

Performs a flood fill operation on an image starting at an (x, y)

coordinate and filling with a certain color.

 generateFilterRect Determines the destination rectangle that the applyFilter()

method call affects, given a BitmapData object, a source rectangle,

and a filter object.

Flash Lite does not support this method.

 getColorBoundsRect(mas
k:Number,
color:Number,
[findColor:Boolean]
) :Rectangle

Determines a rectangular region that fully encloses all pixels of a

specified color within the bitmap image.

 getPixel(x:Number,
y:Number) : Number

Returns an integer that represents an RGB pixel value from a

BitmapData object at a specific point (x, y).

getPixel32(x:Number,
y:Number) : Number

Returns an ARGB color value that contains alpha channel data and

RGB data.

 hitTest(firstPoint:Poi

nt,
firstAlphaThreshold
:Number,
secondObject:Object,
[secondBitmapPoint:
Point]
,[secondAlphaThresh
old:Number])
:Boolean

Performs pixel-level hit detection between one bitmap image and

a point, rectangle or other bitmap image.

static loadBitmap(id:String):
BitmapData

Returns a new BitmapData object that contains a bitmap image

representation of the symbol that is identified by a specified

linkage ID in the library.

Modifiers Signature Description

200FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

BitmapData constructor
 public BitmapData(width:Number, height:Number, [transparent:Boolean], [fillColor:Number])

Creates a BitmapData object with a specified width and height. If you specify a value for the fillColor parameter,

every pixel in the bitmap is set to that color.

By default, the bitmap is created as opaque, unless you pass the value true for the transparent parameter. Once you

create an opaque bitmap, you cannot change it to a transparent bitmap. Every pixel in an opaque bitmap uses only 24

bits of color channel information. If you define the bitmap as transparent, every pixel uses 32 bits of color channel

information, including an alpha transparency channel.

 merge(sourceBitmap:B

itmapData,
sourceRect:Rectangle,
destPoint:Point,
redMult:Number,
greenMult:Number,
blueMult:Number,
alphaMult:Number) :
Void

Performs per-channel blending from a source image to a

destination image.

 noise Fills an image with pixels representing random noise.

Flash Lite does not support this method.

 paletteMap Remaps the color channel values in an image that has up to four

arrays of color palette data, one for each channel.

Flash Lite does not support this method.

 perlinNoise Generates a Perlin noise image.

Flash Lite does not support this method.

 pixelDissolve Performs a pixel dissolve either from a source image to a

destination image or by using the same image.

Flash Lite does not support this method.

 scroll Scrolls an image by a certain (x, y) pixel amount.

Flash Lite does not support this method.

 setPixel(x:Number,
y:Number,
color:Number) : Void

Sets the color of a single pixel of a BitmapData object.

 setPixel32(x:Number,
y:Number,
color:Number) : Void

Sets the color and alpha transparency values of a single pixel of a

BitmapData object.

 threshold Tests pixel values in an image against a specified threshold and

sets pixels that pass the test to new color values.

Flash Lite does not support this method.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method) ,registerClass (Object.registerClass method), toString
(Object.toString method) ,unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

Modifiers Signature Description

201FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The maximum width and maximum height of a BitmapData object is 2880 pixels. If you specify a width or height value

that is greater than 2880, a new instance is not created.

Availability

Flash Lite 3.1

Parameters

width:Number - The width of the bitmap image in pixels.

height:Number - The height of the bitmap image in pixels.

transparent:Boolean [optional] - Specifies whether the bitmap image supports per-pixel transparency. The default

value is true (transparent). To create a fully transparent bitmap, set the value of the transparent parameter to true

and the value of the fillColor parameter to 0x00000000 (or to 0).

fillColor:Number [optional] - A 32-bit ARGB color value that you use to fill the bitmap image area. The default value

is 0xFFFFFFFF (solid white).

Example

The following example creates a new BitmapData object. The values in this example are the default values for the

transparent and fillColor parameters; you could call the constructor without these parameters and get the same

result.

 import flash.display.BitmapData;

 var width:Number = 100;
 var height:Number = 80;
 var transparent:Boolean = true;
 var fillColor:Number = 0xFFFFFFFF;

 var bitmap_1:BitmapData = new BitmapData(width, height, transparent, fillColor);

 trace(bitmap_1.width); // 100
 trace(bitmap_1.height); // 80
 trace(bitmap_1.transparent); // true

 var bitmap_2:BitmapData = new BitmapData(width, height);

 trace(bitmap_2.width); // 100
 trace(bitmap_2.height); // 80
 trace(bitmap_2.transparent); // true

clone (BitmapData.clone method)
 public clone() : BitmapData

Returns a new BitmapData object that is a copy of the cloned bitmap. A clone and and the object cloned have identical

properties. However, a clone does not evaluate as equal to the BitmapData object that was cloned because the

properties of the original object are passed by value to the clone, they are not passed by reference. If you change the

values in the original object after the clone is created, the clone does not receive the new values.

Availability

Flash Lite 3.1

202FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns

BitmapData - A new BitmapData object that is identical to the original.

Example

The following example creates three BitmapData objects and compares them. The code uses the BitmapData

constructor to create the bitmap_1 instance. It creates the bitmap_2 instance by setting it equal to bitmap_1.

It creates the clonedBitmap instance by cloning bitmap_1. Notice that although bitmap_2 evaluates as being equal

to bitmap_1, clonedBitmap does not, even though it contains the same values as bitmap_1.

import flash.display.BitmapData;

var bitmap_1:BitmapData = new BitmapData(100, 80, false, 0x000000);
var bitmap_2:BitmapData = bitmap_1;
var clonedBitmap:BitmapData = bitmap_1.clone();

trace("bitmap_1 == bitmap_2 " + (bitmap_1 == bitmap_2)); // true
trace("bitmap_1 == clonedBitmap " + (bitmap_1 == clonedBitmap)); // false

trace("-------------bitmap_1 properties-------------")
for(var i in bitmap_1) {

trace(">> " + i + ": " + bitmap_1[i]);
}

trace("-------------bitmap_2 properties-------------")
for(var i in bitmap_2) {

trace(">> " + i + ": " + bitmap_1[i]);
}

trace("-------------clonedBitmap properties-------------")
for(var i in clonedBitmap) {

trace(">> " + i + ": " + clonedBitmap[i]);
}

To further demonstrate the relationships between bitmap_1, bitmap_2, and clonedBitmap, the following example

modifies the pixel value at (1, 1) of bitmap_1. Modifying pixel value at (1, 1) changes the pixel value for bitmap_2,

because bitmap_2 contains references to bitmap_1. Modifying bitmap_1 does not change clonedBitmap because

clonedBitmap does not reference the values in bitmap_1.

 import flash.display.BitmapData;

 var bitmap_1:BitmapData = new BitmapData(100, 80, false, 0x000000);
 var bitmap_2:BitmapData = bitmap_1;
 var clonedBitmap:BitmapData = bitmap_1.clone();

 trace(bitmap_1.getPixel32(1, 1)); // -16777216
 trace(bitmap_2.getPixel32(1, 1)); // -16777216
 trace(clonedBitmap.getPixel32(1, 1)); // -16777216

 bitmap_1.setPixel32(1, 1, 0xFFFFFF);

 trace(bitmap_1.getPixel32(1, 1)); // -1
 trace(bitmap_2.getPixel32(1, 1)); // -1
 trace(clonedBitmap.getPixel32(1, 1)); // -16777216

203FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

colorTransform (BitmapData.colorTransform method)
 public colorTransform(rect: Rectangle, colorTransform: ColorTransform) : Void

Adjusts the color values in a specified area of a bitmap image by using a ColorTransform object. If the rectangle

matches the boundaries of the bitmap image, this method transforms the color values of the entire image.

Availability

Flash Lite 3.1

Parameters

rect:Rectangle - A Rectangle object that defines the area of the image in which the ColorTransform object is applied.

colorTransform:ColorTransform - A ColorTransform object that describes the color transformation values to apply.

Example

The following example shows how to apply a color transform operation to a BitmapData instance.

 fscommand2("SetSoftKeys");
import flash.display.BitmapData;
 import flash.geom.ColorTransform;

 var myBitmapData:BitmapData = new BitmapData(100, 80, false, 0x00CCCCCC);

 var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
 mc.attachBitmap(myBitmapData, this.getNextHighestDepth());

 var myListener:Object = new Object ();
myListener.onKeyDown = function () {

var keyCode = Key.getCode ();
if (keyCode == ExtendedKey.SOFT1) {

// Handle left soft key event
myBitmapData.colorTransform(myBitmapData.rectangle, new ColorTransform(1, 0, 0, 1, 255, 0,

0, 0));
}

};

See also

ColorTransform (flash.geom.ColorTransform), Rectangle (flash.geom.Rectangle)

copyChannel (BitmapData.copyChannel method)
 public copyChannel(sourceBitmap:BitmapData, sourceRect:Rectangle, destPoint:Point,
sourceChannel:Number, destChannel:Number) : Void

Transfers data from one channel of another BitmapData object or the current BitmapData object into a channel of the

current BitmapData object. All of the data in the other channels in the destination BitmapData object are preserved.

The source channel value and destination channel value can be one of following values or a sum of any of the values:

• 1 (red)

• 2 (green)

• 4 (blue)

• 8 (alpha)

204FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 3.1

Parameters

sourceBitmap:BitmapData - The input bitmap image to use. The source image can be a different BitmapData object,

or it can refer to the current BitmapData object.

sourceRect:Rectangle - The source Rectangle object. If you only want to copy channel data from a smaller area within

the bitmap, specify a source rectangle that is smaller than the overall size of the BitmapData object.

destPoint:Point - The destination Point object that represents the upper-left corner of the rectangular area where the

new channel data is placed. If you want to copy channel data from one area to a different area in the destination image,

specify a point other than (0,0).

sourceChannel:Number - The source channel. Use a value from the set (1,2,4,8), which represent red, green, blue,

and alpha channels, respectively, or a sum of any of the values.

destChannel:Number - The destination channel. Use a value from the set (1,2,4,8), which represent red, green, blue,

and alpha channels, respectively, or a sum of any of the values.

Example

The following example shows how to copy a source ARGB channel from a BitmapData object back onto itself at a

different location:

 fscommand2("SetSoftKeys");
import flash.display.BitmapData;
 import flash.geom.Rectangle;
 import flash.geom.Point;

 var myBitmapData:BitmapData = new BitmapData(100, 80, false, 0x00CCCCCC);

 var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
 mc.attachBitmap(myBitmapData, this.getNextHighestDepth());

var myListener:Object = new Object ();
myListener.onKeyDown = function () {

var keyCode = Key.getCode ();
if (keyCode == ExtendedKey.SOFT1) {

// Handle left soft key event
myBitmapData.copyChannel(myBitmapData, new Rectangle(0, 0, 50, 80), new Point(51, 0),

3, 1);
}

};

See also

Rectangle (flash.geom.Rectangle)

copyPixels (BitmapData.copyPixels method)
 public copyPixels(sourceBitmap:BitmapData, sourceRect:Rectangle, destPoint:Point) : Void

Provides a fast routine to perform pixel manipulation between images with no stretching, rotation, or color effects.

This method copies a rectangular area of a source image to a rectangular area of the same size at the destination point

of the destination BitmapData object.

205FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 3.1

Parameters

sourceBitmap:BitmapData - The input bitmap image from which to copy pixels. The source image can be a different

BitmapData instance, or it can refer to the current BitmapData instance.

sourceRect:Rectangle - A rectangle that defines the area of the source image to use as input.

destPoint:Point - The destination point, that represents the upper-left corner of the rectangular area where the new

pixels are placed.

Example

The following example shows how to copy pixels from one BitmapData instance to another.

 fscommand2("SetSoftKeys");

import flash.display.BitmapData;
import flash.geom.Rectangle;
import flash.geom.Point;

var bitmapData_1:BitmapData = new BitmapData(100, 80, false, 0x00CCCCCC);
var bitmapData_2:BitmapData = new BitmapData(100, 80, false, 0x00FF0000);

var mc_1:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
mc_1.attachBitmap(bitmapData_1, this.getNextHighestDepth());

var mc_2:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
mc_2.attachBitmap(bitmapData_2, this.getNextHighestDepth());
mc_2._x = 101;

var myListener:Object = new Object ();
myListener.onKeyDown = function () {

var keyCode = Key.getCode ();
if (keyCode == ExtendedKey.SOFT1) {

// Handle left soft key event
bitmapData_2.copyPixels(bitmapData_1, new Rectangle(0, 0, 50, 80), new Point(51, 0));

}
else if (keyCode == ExtendedKey.SOFT2) {

// Handle right soft key event
bitmapData_1.copyPixels(bitmapData_2, new Rectangle(0, 0, 50, 80), new Point(51, 0));

}
};

dispose (BitmapData.dispose method)
 public dispose() : Void

Frees memory that is used to store the BitmapData object.

Call myBitmapData.dispose() to set the width and height of the image to 0. After a BitmapData object's memory has

been freed, method and property access calls on the instance fail, returning a value of -1.

Availability

Flash Lite 3.1

206FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example shows how to release the memory of a BitmapData instance, which results in a cleared instance.

 import flash.display.BitmapData;

 var myBitmapData:BitmapData = new BitmapData(100, 80, false, 0x00CCCCCC);

 var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
 mc.attachBitmap(myBitmapData, this.getNextHighestDepth());

var myListener:Object = new Object ();
myListener.onKeyDown = function () {

var keyCode = Key.getCode ();
if (keyCode == ExtendedKey.SOFT1) {

// Handle left soft key event
myBitmapData.dispose()
trace(myBitmapData.width); // -1
trace(myBitmapData.height); // -1
trace(myBitmapData.transparent); // 1

}
};

draw (BitmapData.draw method)
 public draw(source:Object, [matrix:Matrix], [colorTransform:ColorTransform],
[clipRect:Rectangle], [smooth:Boolean]) : Void

Draws a source image or movie clip onto a destination image, using the Flash Lite player vector renderer. You can use

Matrix, ColorTransform, BlendMode objects, and a destination Rectangle object to control how the rendering

performs. Optionally, you can specify whether the bitmap should be smoothed when scaled. This works only if the

source object is a BitmapData object.

This method directly corresponds to how objects are drawn using the standard vector renderer for objects in the

authoring tool interface.

A source MovieClip object does not use any of its on-stage transformations for this call. It is treated as it exists in the

library or file, with no matrix transform, no color transform, and no blend mode. If you want to draw the movie clip

by using its own transform properties, you can use its Transform object to pass the various transformation properties.

The blendMode parameter is not supported in Flash Lite.

Availability

Flash Lite 3.1

Parameters

source:Object - The BitmapData object to draw.

matrix:Matrix [optional] - A Matrix object used to scale, rotate, or translate the coordinates of the bitmap. If no object

is supplied, the bitmap image will not be transformed. Set this parameter to an identity matrix, created using the

default new Matrix() constructor, if you must pass this parameter but you do not want to transform the image.

colorTransform:ColorTransform [optional] - A ColorTransform object that you use to adjust the color values of the

bitmap. If no object is supplied, the bitmap image's colors will not be transformed. Set this parameter to a

ColorTransform object created using the default new ColorTransform() constructor, if you must pass this parameter

but you do not want to transform the image.

207FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

clipRect:Rectangle [optional] - A Rectangle object. If you do not supply this value, no clipping occurs.

smooth:Boolean [optional] - A Boolean value that determines whether a BitmapData object is smoothed when scaled.

The default value is false.

Example

The following example shows how to draw from a source MovieClip instance to a BitmapData object.

 fscommand2("SetSoftKeys");

import flash.display.BitmapData;
import flash.geom.Rectangle;
import flash.geom.Matrix;
import flash.geom.ColorTransform;
var myBitmapData:BitmapData = new BitmapData(100, 80, false, 0x00CCCCCC);
var mc_1: MovieClip = this.createEmptyMovieClip("mc",this.getNextHighestDepth());
mc_1.attachBitmap (my BitmapData,this.getNextHighestDepth());

var mc_2:MovieClip = createRectangle(50, 40, 0xFF0000);
mc_2._x = 101;

var myMatrix:Matrix = new Matrix();
myMatrix.rotate(Math.PI/2);
var translateMatrix:Matrix = new Matrix();
translateMatrix.translate(70, 15);
myMatrix.concat(translateMatrix);

var myColorTransform:ColorTransform = new ColorTransform (0, 0, 1 , 1, 0, 0 , 255, 0);
var blend Mode:String = "normal";
var myRectangle:Rectangle = new Rectangle(0, 0, 100, 80);
var smooth:Boolean = true;
mc_1.onPress = function() {

myBitmapData.draw(mc_2, myMatrix, myColorTransform, blendMode, myRectangle,
smooth);

}

function createRectangle(width:Number, height:Number, color:Number):MovieClip {

var depth:Number = this.getNextHighestDepth();
var mc:MovieClip = this.createEmptyMovieClip("mc_" + depth, depth);
mc.beginFill(color);
mc.lineTo(0, height);
mc.lineTo(width, height);
mc.lineTo(width, 0);
mc.lineTo(0, 0);
return mc;

}

fillRect (BitmapData.fillRect method)
 public fillRect(rect:Rectangle, color:Number) : Void

Fills a rectangular area of pixels with a specified ARGB color.

Availability

Flash Lite 3.1

208FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

rect:Rectangle - The rectangular area to fill.

color:Number - The ARGB color value that fills the area. ARGB colors are often specified in hexadecimal format; for

example, 0xFF336699.

Example

The following example shows how to fill an area that is defined by a Rectangle within a BitmapData with a color.

 fscommand2("SetSoftKeys");

import flash.display.BitmapData;
import flash.geom.Rectangle;
var myBitmapData:BitmapData = new BitmapData(100, 80, false, 0x00CCCCCC);
var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
mc.attachBitmap(myBitmapData, this.getNextHighestDepth());

var myListener:Object = new Object ();
myListener.onKeyDown = function () {

var keyCode = Key.getCode ();
if (keyCode == ExtendedKey.SOFT1) {

// Handle left soft key event
myBitmapData.fillRect(new Rectangle(0, 0, 50, 40), 0x00FF0000);

}
};

See also

Rectangle (flash.geom.Rectangle)

floodFill (BitmapData.floodFill method)
 public floodFill(x:Number, y:Number, color:Number) : Void

Performs a flood fill operation on an image starting at an (x, y) coordinate and filling with a certain color. The

floodFill() method is similar to the paint bucket tool in various painting programs. The color is an ARGB color that

contains alpha information and color information.

Availability

Flash Lite 3.1

Parameters

x:Number - The x coordinate of the image.

y:Number - The y coordinate of the image.

color:Number - The ARGB color to use as a fill. ARGB colors are often specified in hexadecimal format, like

0xFF336699.

Example

The following example shows how to apply a flood fill a color into to an image starting at the point where a user clicks

the mouse within a BitmapData object.

209FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 fscommand2("SetSoftKeys");

import flash.display.BitmapData;
import flash.geom.Rectangle;

var myBitmapData:BitmapData = new BitmapData(100, 80, false, 0x00CCCCCC);
var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
mc.attachBitmap(myBitmapData, this.getNextHighestDepth());

myBitmapData.fillRect(new Rectangle(0, 0, 50, 40), 0x00FF0000);

var myListener:Object = new Object ();
myListener.onKeyDown = function () {

var keyCode = Key.getCode ();
if (keyCode == ExtendedKey.SOFT1) {

// Handle left soft key event
myBitmapData.floodFill(_xmouse, _ymouse, 0x000000FF);}

};

getColorBoundsRect (BitmapData.getColorBoundsRect method)
 public getColorBoundsRect(mask:Number, color:Number, [findColor:Boolean]) : Rectangle

Determines a rectangular region that fully encloses all pixels of a specified color within the bitmap image.

For example, if you have a source image and you want to determine the rectangle of the image that contains a nonzero

alpha channel, you pass {mask: 0xFF000000, color: 0x00000000} as parameters. The entire image is searched for

the bounds of pixels whose (value & mask) != color. To determine white space around an image, you pass {mask:

0xFFFFFFFF, color: 0xFFFFFFFF} to find the bounds of nonwhite pixels.

Availability

Flash Lite 3.1

Parameters

mask:Number - A hexadecimal color value.

color:Number - A hexadecimal color value.

findColor:Boolean [optional] - If the value is set to true, returns the bounds of a color value in an image. If the value

is set to false, returns the bounds of where this color doesn't exist in an image. The default value is true.

Returns

Rectangle - The region of the image that is the specified color.

Example

The following example shows how to determine a rectangular region that fully encloses all pixels of a specified color

within the bitmap image:

210FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

fscommand2("SetSoftKeys");

import flash.display.BitmapData;
import flash.geom.Rectangle;
var myBitmapData:BitmapData = new BitmapData(100, 80, false, 0x00CCCCCC);
var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
mc.attachBitmap(myBitmapData, this.getNextHighestDepth());
myBitmapData.fillRect(new Rectangle(0, 0, 50, 40), 0x00FF0000);

var myListener:Object = new Object ();
myListener.onKeyDown = function () {

var keyCode = Key.getCode ();
if (keyCode == ExtendedKey.SOFT1) {

// Handle left soft key event
var colorBoundsRect:Rectangle = myBitmapData.getColorBoundsRect(0x00FFFFFF,

0x00FF0000, true);
trace(colorBoundsRect); // (x=0, y=0, w=50, h=40)

}
};
Key.addListener (myListener);

getPixel (BitmapData.getPixel method)
 public getPixel(x:Number, y:Number) : Number

Returns an integer that represents an RGB pixel value from a BitmapData object at a specific point (x, y). The

getPixel() method returns an unmultiplied pixel value. No alpha information is returned.

All pixels in a BitmapData object are stored as premultiplied color values. A premultiplied image pixel has the red,

green, and blue color channel values already multiplied by the alpha data. For example, if the alpha value is 0, the values

for the RGB channels are also 0, independent of their unmultiplied values.

This loss of data can cause some problems when you are performing operations. All Flash Lite player methods take

and return unmultiplied values. The internal pixel representation is unmultiplied before it is returned as a value.

During a set operation, the pixel value is premultiplied before setting the raw image pixel.

Availability

Flash Lite 3.1

Parameters

x:Number - The x position of the pixel.

y:Number - The y position of the pixel.

Returns

Number - A number that represents an RGB pixel value. If the (x, y) coordinates are outside the bounds of the image,

0 is returned.

Example

The following example uses the getPixel() method to retrieve the RGB value of a pixel at a specific x and y position.

211FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.display.BitmapData;

 var myBitmapData:BitmapData = new BitmapData(100, 80, false, 0x00CCCCCC);

 var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
 mc.attachBitmap(myBitmapData, this.getNextHighestDepth());
 trace("0x" + myBitmapData.getPixel(0, 0).toString(16)); // 0xcccccc

See also

getPixel32 (BitmapData.getPixel32 method)

getPixel32 (BitmapData.getPixel32 method)
 public getPixel32(x:Number, y:Number) : Number

Returns an ARGB color value that contains alpha channel data and RGB data. This method is similar to the

getPixel() method, which returns an RGB color without alpha channel data.

Availability

Flash Lite 3.1

Parameters

x:Number - The x position of the pixel.

y:Number - The y position of the pixel.

Returns

Number - A number that represent an ARGB pixel value. If the (x, y) coordinates are outside the bounds of the image,

0 is returned. If the bitmap was created as an opaque bitmap and not a transparent one, then this method will return

an error code of -1.

Example

The following example uses the getPixel32() method to retrieve the ARGB value of a pixel at a specific x and y

position:

212FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.display.BitmapData;

 var myBitmapData:BitmapData = new BitmapData(100, 80, true, 0xFFAACCEE);

 var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
 mc.attachBitmap(myBitmapData, this.getNextHighestDepth());

 var alpha:String = (myBitmapData.getPixel32(0, 0) >> 24 & 0xFF).toString(16);
 trace(">> alpha: " + alpha); // ff

 var red:String = (myBitmapData.getPixel32(0, 0) >> 16 & 0xFF).toString(16);
 trace(">> red: " + red); // aa

 var green:String = (myBitmapData.getPixel32(0, 0) >> 8 & 0xFF).toString(16);
 trace(">> green: " + green); // cc

 var blue:String = (myBitmapData.getPixel32(0, 0) & 0xFF).toString(16);
 trace(">> blue: " + blue); // ee

 trace("0x" + alpha + red + green + blue); // 0xffaaccee

See also

getPixel (BitmapData.getPixel method)

height (BitmapData.height property)
 public height : Number [read-only]

The height of the bitmap image in pixels.

Availability

Flash Lite 3.1

Example

The following example shows that the height property of the BitmapData instance is read-only by trying to set it and

failing:

 import flash.display.BitmapData;

 var myBitmapData:BitmapData = new BitmapData(100, 80, false, 0x00CCCCCC);

 var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
 mc.attachBitmap(myBitmapData, this.getNextHighestDepth());
 trace(myBitmapData.height); // 80

 myBitmapData.height = 999;
 trace(myBitmapData.height); // 80

hitTest (BitmapData.hitTest method)
 public hitTest(firstPoint:Point, firstAlphaThreshold:Number, secondObject:Object,
[secondBitmapPoint:Point], [secondAlphaThreshold:Number]) : Boolean

Performs pixel-level hit detection between one bitmap image and a point, rectangle, or other bitmap image. No

stretching, rotation, or other transformation of either object is considered when doing the hit test.

213FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

If an image is an opaque image, it is considered a fully opaque rectangle for this method. Both images must be

transparent images to perform pixel-level hit testing that considers transparency. When you are testing two

transparent images, the alpha threshold parameters control what alpha channel values, from 0 to 255, are considered

opaque.

Availability

Flash Lite 3.1

Parameters

firstPoint:Point - A point that defines a pixel location in the current BitmapData instance.

firstAlphaThreshold:Number - The highest alpha channel value that is considered opaque for this hit test.

secondObject:Object - A Rectangle, Point, or BitmapData object.

secondBitmapPoint:Point [optional] - A point that defines a pixel location in the second BitmapData object. Use this

parameter only when the value of secondObject is a BitmapData object.

secondAlphaThreshold:Number [optional] - The highest alpha channel value that is considered opaque in the

second BitmapData object. Use this parameter only when the value of secondObject is a BitmapData object and both

BitmapData objects are transparent.

Returns

Boolean - A Boolean value. If there is a hit, returns a value of true; otherwise, false.

Example

The following example shows how to determine if a BitmapData object is colliding with a MovieClip.

214FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.display.BitmapData;
 import flash.geom.Point;

 var myBitmapData:BitmapData = new BitmapData(100, 80, false, 0x00CCCCCC);

 var mc_1:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
 mc_1.attachBitmap(myBitmapData, this.getNextHighestDepth());

 var mc_2:MovieClip = createRectangle(20, 20, 0xFF0000);

 var destPoint:Point = new Point(myBitmapData.rectangle.x, myBitmapData.rectangle.y);
 var currPoint:Point = new Point();

 mc_1.onEnterFrame = function() {
 currPoint.x = mc_2._x;
 currPoint.y = mc_2._y;
 if(myBitmapData.hitTest(destPoint, 255, currPoint)) {
 trace(">> Collision at x:" + currPoint.x + " and y:" + currPoint.y);
 }
 }

 mc_2.startDrag(true);

 function createRectangle(width:Number, height:Number, color:Number):MovieClip {
 var depth:Number = this.getNextHighestDepth();
 var mc:MovieClip = this.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

loadBitmap (BitmapData.loadBitmap method)
 public static loadBitmap(id:String) : BitmapData

Returns a new BitmapData object that contains a bitmap image representation of the symbol that is identified by a

specified linkage ID in the library.

Availability

Flash Lite 3.1

Parameters

id:String - A linkage ID of a symbol in the library.

Returns

BitmapData - A bitmap image representation of the symbol.

Example

The following example loads a bitmap with the linkageId libraryBitmap from your library. You must attach it to a

MovieClip object to give it a visual representation.

215FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.display.BitmapData;

 var linkageId:String = "libraryBitmap";
 var myBitmapData:BitmapData = BitmapData.loadBitmap(linkageId);
 trace(myBitmapData instanceof BitmapData); // true

 var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
 mc.attachBitmap(myBitmapData, this.getNextHighestDepth());

merge (BitmapData.merge method)
 public merge(sourceBitmap:BitmapData, sourceRect:Rectangle, destPoint:Rectangle,
redMult:Number, greenMult:Number, blueMult:Number, alphaMult:Number) : Void

Performs per-channel blending from a source image to a destination image. The following formula is used for each

channel:

new red dest = (red source * redMult) + (red dest * (256 - redMult) / 256;

The redMult, greenMult, blueMult, and alphaMult values are the multipliers used for each color channel. Their

valid range is from 0 to 256.

Availability

Flash Lite 3.1

Parameters

sourceBitmap:BitmapData - The input bitmap image to use. The source image can be a different BitmapData object,

or it can refer to the current BitmapData object.

sourceRect:Rectangle - A rectangle that defines the area of the source image to use as input.

destPoint:Point - The point within the destination image (the current BitmapData instance) that corresponds to the

upper-left corner of the source rectangle.

redMult:Number - A number by which to multiply the red channel value.

greenMult:Number - A number by which to multiply the green channel value.

blueMult:Number - A number by which to multiply the blue channel value.

alphaMult:Number - A number by which to multiply the alpha transparency value.

Example

The following example shows how to merge part of one BitmapData with another.

216FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 fscommand2("SetSoftKeys");

import flash.display.BitmapData;
import flash.geom.Rectangle;
import flash.geom.Point;
var bitmapData_1:BitmapData = new BitmapData(100, 80, false, 0x00CCCCCC);
var bitmapData_2:BitmapData = new BitmapData(100, 80, false, 0x00FF0000);
var mc_1:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
mc_1.attachBitmap(bitmapData_1, this.getNextHighestDepth());
var mc_2:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
mc_2.attachBitmap(bitmapData_2, this.getNextHighestDepth());
mc_2._x = 101;

var myListener:Object = new Object ();
myListener.onKeyDown = function () {

var keyCode = Key.getCode ();
if (keyCode == ExtendedKey.SOFT1) {

// Handle left soft key event
bitmapData_1.merge(bitmapData_2, new Rectangle(0, 0, 50, 40), new Point(25, 20), 128,

0, 0, 0);
}

};
Key.addListener (myListener);

rectangle (BitmapData.rectangle property)
 public rectangle : Rectangle [read-only]

The rectangle that defines the size and location of the bitmap image. The top and left of the rectangle are 0; the width

and height are equal to the width and height in pixels of the BitmapData object.

Availability

Flash Lite 3.1

Example

The following example shows that the rectangle property of the Bitmap instance is read-only by trying to set it and

failing:

 import flash.display.BitmapData;
 import flash.geom.Rectangle;

 var myBitmapData:BitmapData = new BitmapData(100, 80, false, 0x00CCCCCC);

 var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
 mc.attachBitmap(myBitmapData, this.getNextHighestDepth());
 trace(myBitmapData.rectangle); // (x=0, y=0, w=100, h=80)

 myBitmapData.rectangle = new Rectangle(1, 2, 4, 8);
 trace(myBitmapData.rectangle); // (x=0, y=0, w=100, h=80)

setPixel (BitmapData.setPixel method)
 public setPixel(x:Number, y:Number, color:Number) : Void

217FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Sets the color of a single pixel of a BitmapData object. The current alpha channel value of the image pixel is preserved

during this operation. The value of the RGB color parameter is treated as an unmultiplied color value.

Availability

Flash Lite 3.1

Parameters

x:Number - The x position of the pixel whose value changes.

y:Number - The y position of the pixel whose value changes.

color:Number - The RGB color to which to set the pixel.

See also

getPixel (BitmapData.getPixel method), setPixel32 (BitmapData.setPixel32 method)

setPixel32 (BitmapData.setPixel32 method)
 public setPixel32(x:Number, y:Number, color:Number) : Void

Sets the color and alpha transparency values of a single pixel of a BitmapData object. This method is similar to the

setPixel() method; the main difference is that the setPixel32() method takes an ARGB color value that contains

alpha channel information.

Availability

Flash Lite 3.1

Parameters

x:Number - The x position of the pixel whose value changes.

y:Number - The y position of the pixel whose value changes.

color:Number - The ARGB color to which to set the pixel. If you created an opaque (not a transparent) bitmap, the

alpha transparency portion of this color value is ignored.

See also

getPixel32 (BitmapData.getPixel32 method), setPixel (BitmapData.setPixel method)

transparent (BitmapData.transparent property)
 public transparent : Boolean [read-only]

Defines whether the bitmap image supports per-pixel transparency. You can set this value only when you construct a

BitmapData object by passing in true for the transparent parameter. After you create a BitmapData object, you can

check whether it supports per-pixel transparency by seeing if the value of the transparent property is true.

Availability

Flash Lite 3.1

width (BitmapData.width property)
 public width : Number [read-only]

218FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The width of the bitmap image in pixels.

Availability

Flash Lite 3.1

Boolean

 Object
 |
 +-Boolean

 public class Boolean
 extends Object

The Boolean class is a wrapper object with the same functionality as the standard JavaScript Boolean object. Use the

Boolean class to retrieve the primitive data type or string representation of a Boolean object.

You must use the constructor new Boolean() to create a Boolean object before calling its methods.

Availability

Flash Lite 2.0

Property summary

 Properties inherited from class Object

Constructor summary

Method summary

Methods inherited from class Object

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

Signature Description

Boolean([value:Objec

t])
Creates a Boolean object.

Modifiers Signature Description

 toString() : String Returns the string representation ("true" or "false") of the

Boolean object.

 valueOf() : Boolean Returns true if the primitive value type of the specified

Boolean object is true; false otherwise.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method)watch (Object.watch method)

219FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Boolean constructor
 public Boolean([value:Object])

Creates a Boolean object. If you omit the value parameter, the Boolean object is initialized with a value of false. If

you specify a value for the value parameter, the method evaluates it and returns the result as a Boolean value according

to the rules in the global Boolean() function.

Availability

Flash Lite 2.0

Parameters

value:Object [optional] - Any expression. The default value is false.

Example

The following code creates a new empty Boolean object called myBoolean:

 var myBoolean:Boolean = new Boolean();

toString (Boolean.toString method)
 public toString() : String

Returns the string representation ("true" or "false") of the Boolean object.

Availability

Flash Lite 2.0

Returns

String - A string; "true" or "false".

Example

This example creates a variable of type Boolean and uses toString() to convert the value to a string for use in the

trace statement:

 var myBool:Boolean = true;
 trace("The value of the Boolean myBool is: " + myBool.toString());
 myBool = false;
 trace("The value of the Boolean myBool is: " + myBool.toString());

valueOf (Boolean.valueOf method)
 public valueOf() : Boolean

Returns true if the primitive value type of the specified Boolean object is true; false otherwise.

Availability

Flash Lite 2.0

Returns

Boolean - A Boolean value.

220FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example shows how this method works, and also shows that the primitive value type of a new Boolean

object is false:

 var x:Boolean = new Boolean();
 trace(x.valueOf()); // false
 x = (6==3+3);
 trace(x.valueOf()); // true

Button

 Object
 |
 +-Button

 public class Button
 extends Object

All button symbols are instances of the Button object. You can give a button an instance name in the Property

inspector, and use the methods and properties of the Button class to manipulate buttons with ActionScript. Button

instance names are displayed in the Movie Explorer and in the Insert Target Path dialog box in the Actions panel.

Availability

Flash Lite 2.0

See also

Object

Property summary

Modifiers Property Description

 _alpha:Number The alpha transparency value of the button.

 enabled:Boolean A Boolean value that specifies whether a button is enabled.

 _focusrect:Boolean A Boolean value that specifies whether a button has a yellow

rectangle around it when it has input focus.

 _height:Number The height of the button, in pixels.

 _highquality:Number Deprecated since Flash Player 7. This property was

deprecated in favor of Button._quality.

Specifies the level of anti-aliasing applied to the current SWF

file.

 _name:String Instance name of the button.

 _parent:MovieClip A reference to the movie clip or object that contains the

current movie clip or object.

 _quality:String Property (global); sets or retrieves the rendering quality used

for a SWF file.

 _rotation:Number The rotation of the button, in degrees, from its original

orientation.

221FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Properties inherited from class Object

Event summary

 _soundbuftime:Number Specifies the number of seconds a sound prebuffers before it

starts to stream.

 tabEnabled:Boolean Specifies whether a button is included in automatic tab

ordering.

 tabIndex:Number Lets you customize the tab ordering of objects in a SWF file.

 _target:String [read-only] Returns the target path of the button instance.

 trackAsMenu:Boolean A Boolean value that indicates whether other buttons or movie

clips can receive a release event from a mouse or stylus.

 _url:String [read-only] Retrieves the URL of the SWF file that created the button.

 _visible:Boolean A Boolean value that indicates whether the button is visible.

 _width:Number The width of the button, in pixels.

 _x:Number An integer that sets the x coordinate of a button relative to the

local coordinates of the parent movie clip.

 _xmouse:Number [read-

only]

Returns the x coordinate of the mouse position relative to the

button.

 _xscale:Number The horizontal scale of the button as applied from the

registration point of the button, expressed as a percentage.

 _y:Number The y coordinate of the button relative to the local coordinates

of the parent movie clip.

 _ymouse:Number [read-

only]

Returns the y coordinate of the mouse position relative to the

button.

 _yscale:Number The vertical scale of the button as applied from the registration

point of the button, expressed as a percentage.

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onDragOut =
function() {}

Invoked when the user clicks on the button and then drags the pointer outside of the

button.

onDragOver =
function() {}

Invoked when the user clicks outside of the button and then drags the pointer over the

button.

onKeyDown =
function() {}

Invoked when a button has keyboard focus and a key is pressed.

onKeyUp =
function() {}

Invoked when a button has input focus and a key is released.

onKillFocus =
function(newFocus:
Object) {}

Invoked when a button loses keyboard focus.

onPress = function()
{}

Invoked when a button is pressed.

Modifiers Property Description

222FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Method summary

Methods inherited from class Object

_alpha (Button._alpha property)
 public _alpha : Number

The alpha transparency value of the button specified by my_btn. Valid values are 0 (fully transparent) to 100 (fully

opaque). The default value is 100. Objects in a button with _alpha set to 0 are active, even though they are invisible.

Availability

Flash Lite 2.0

Example

The following code sets the _alpha property of a button named myBtn_btn to 50% when the user clicks the button.

First, add a Button instance on the Stage. Second, give it an instance name of myBtn_btn. Lastly, with frame 1 selected,

place the following code into the Actions panel:

 myBtn_btn.onRelease = function(){
 this._alpha = 50;
 };

See also

_alpha (MovieClip._alpha property), _alpha (TextField._alpha property)

enabled (Button.enabled property)
 public enabled : Boolean

onRelease =
function() {}

Invoked when a button is released.

onReleaseOutside =
function() {}

Invoked when the mouse is released with the pointer outside the button after the

mouse button is pressed with the pointer inside the button.

onRollOut =
function() {}

Invoked when the button loses focus.

onRollOver =
function() {}

Invoked when the button gains focus.

onSetFocus =
function(oldFocus:
Object) {}

Invoked when a button receives keyboard focus.

Modifiers Signature Description

 getDepth() : Number Returns the depth of the button instance.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method)watch (Object.watch method)

Event Description

223FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

A Boolean value that specifies whether a button is enabled. When a button is disabled (the enabled property is set to

false), the button is visible but cannot be clicked. The default value is true. This property is useful if you want to

disable part of your navigation; for example, you may want to disable a button in the currently displayed page so that

it can't be clicked and the page cannot be reloaded.

Availability

Flash Lite 2.0

Example

The following example demonstrates how you can disable and enable buttons from being clicked. Two buttons,

myBtn1_btn and myBtn2_btn, are on the Stage and the following ActionScript is added so that the myBtn2_btn

button cannot be clicked. First, add two button instances on the Stage. Second, give them instance names of

myBtn1_btn and myBtn2_btn. Lastly, place the following code on frame 1 to enable or disable buttons.

 myBtn1_btn.enabled = true;
 myBtn2_btn.enabled = false;

 //button code
 // the following function will not get called
 // because myBtn2_btn.enabled was set to false
 myBtn1_btn.onRelease = function() {
 trace("you clicked : " + this._name);
 };
 myBtn2_btn.onRelease = function() {
 trace("you clicked : " + this._name);
 };

_focusrect (Button._focusrect property)
 public _focusrect : Boolean

A Boolean value that specifies whether a button has a yellow rectangle around it when it has input focus. This property

can override the global _focusrect property. By default, the _focusrect property of a button instance is null; the

button instance does not override the global _focusrect property. If the _focusrect property of a button instance

is set to true or false, it overrides the setting of the global _focusrect property for the single button instance.

In Flash Player 4 and Flash Player 5 SWF files, the _focusrect property controls the global _focusrect property. It

is a Boolean value. This behavior was changed in Flash Player 6 and later to permit customizing the _focusrect

property on an individual movie clip.

If the _focusrect property is set to false, then keyboard navigation for that button is limited to the Tab key. All other

keys, including the Enter and arrow keys, are ignored. To restore full keyboard navigation, you must set _focusrect

to true.

Note: For the Flash Lite 2.0 player, when the _focusrect property is disabled (in other words, Button.focusRect is

false), the button receives all events. This behavior is different from Flash Lite player behavior because when the

_focusrect property is disabled, the button receives the rollOver and rollOut events but does not receive the

press and release events.

Also for Flash Lite 2.0, you can change the color of the focus rectangle using the fscommand2 SetFocusRectColor

command. This behavior is also different from Flash Lite player, for which the color of the focus rectangle is restricted

to yellow.

224FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

This example demonstrates how to hide the yellow rectangle around a specified button instance in a SWF file when it

has focus in a browser window. Create three buttons called myBtn1_btn, myBtn2_btn, and myBtn3_btn, and add the

following ActionScript to Frame 1 of the Timeline:

 myBtn2_btn._focusrect = false;

getDepth (Button.getDepth method)
 public getDepth() : Number

Returns the depth of the button instance.

Each movie clip, button, and text field has a unique depth associated with it that determines how the object appears in

front of or in back of other objects. Objects with higher depths appear in front.

Availability

Flash Lite 2.0

Returns

Number - The depth of the button instance.

Example

If you create myBtn1_btn and myBtn2_btn on the Stage, you can trace their depth using the following ActionScript:

 trace(myBtn1_btn.getDepth());
 trace(myBtn2_btn.getDepth());

If you load a SWF file called buttonMovie.swf into this document, you could trace the depth of a button, myBtn4_btn,

inside that SWF file using another button in the main SWF:

 this.createEmptyMovieClip("myClip_mc", 999);
 myClip_mc.loadMovie("buttonMovie.swf");
 myBtn3_btn.onRelease = function(){
 trace(myClip_mc.myBtn4_btn.getDepth());
 };

You might notice that two of these buttons have the same depth value, one in the main SWF file and one in the loaded

SWF file. This is misleading, because buttonMovie.swf was loaded at depth 999, which means that the button it

contains will also have a depth of 999 relative to the buttons in the main SWF file. Keep in mind that each movie clip

has its own internal z-order, which means that each movie clip has its own set of depth values. The two buttons may

have the same depth value, but the values only have meaning in relation to other objects in the same z-order. In this

case, the buttons have the same depth value, but the values relate to different movie clips: the depth value of the button

in the main SWF file relates to the z-order of the main Timeline, while the depth value of the button in the loaded SWF

file relates to the internal z-order of the myClip_mc movie clip.

See also

getDepth (MovieClip.getDepth method), getDepth (TextField.getDepth method), getInstanceAtDepth

(MovieClip.getInstanceAtDepth method)

225FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

_height (Button._height property)
 public _height : Number

The height of the button, in pixels.

Availability

Flash Lite 2.0

Example

The following example sets the height and width of a button called my_btn to a specified width and height.

 my_btn._width = 500;
 my_btn._height = 200;

_highquality (Button._highquality property)
 public _highquality : Number

Deprecated since Flash Player 7. This property was deprecated in favor of Button._quality.

Specifies the level of anti-aliasing applied to the current SWF file. Specify 2 (best quality) to apply high quality with

bitmap smoothing always on. Specify 1 (high quality) to apply anti-aliasing; this smooths bitmaps if the SWF file does

not contain animation and is the default value. Specify 0 (low quality) to prevent anti-aliasing.

Availability

Flash Lite 2.0

Example

Add a button instance on the Stage and name it myBtn_btn. Draw an oval on the Stage using the Oval tool that has a

stroke and fill color. Select Frame 1 and add the following ActionScript using the Actions panel:

 myBtn_btn.onRelease = function() {
 myBtn_btn._highquality = 0;
 };

When you click myBtn_btn, the circle's stroke will look jagged. You could add the following ActionScript instead to

affect the SWF globally:

 _quality = 0;

See also

_quality (Button._quality property), _quality property

_name (Button._name property)
 public _name : String

Instance name of the button specified by my_btn.

Availability

Flash Lite 2.0

226FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example traces all instance names of any Button instances within the current Timeline of a SWF file.

 for (i in this) {
 if (this[i] instanceof Button) {
 trace(this[i]._name);
 }
 }

onDragOut (Button.onDragOut handler)

onDragOut = function() {}

Invoked when the user presses the mouse button over the button and then drags the pointer outside of the button. You

must define a function that is executed when the event handler is invoked.

Note: The onDragOut Event Handler is supported for Flash Lite 2.0 only if System.capabilities.hasMouse is true

or System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example demonstrates how you can execute statements when the pointer is dragged off a button. Create

a button called my_btn on the Stage and enter the following ActionScript in a frame on the Timeline:

 my_btn.onDragOut = function() {
 trace("onDragOut: "+this._name);
 };
 my_btn.onDragOver = function() {
 trace("onDragOver: "+this._name);
 };

onDragOver (Button.onDragOver handler)
 onDragOver = function() {}

Invoked when the user presses the mouse button outside of the button and then drags the pointer over the button. You

must define a function that is executed when the event handler is invoked.

Note: The onDragOver Event Handler is supported for Flash Lite 2.0 only if System.capabilities.hasMouse is

true or System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example defines a function for the onDragOver handler that sends a trace() statement to the Output

panel. Create a button called my_btn on the Stage and enter the following ActionScript on the Timeline:

227FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 my_btn.onDragOut = function() {
 trace("onDragOut: "+this._name);
 };
 my_btn.onDragOver = function() {
 trace("onDragOver: "+this._name);
 };

When you test the SWF file, drag the pointer off the button instance. Then, while pressing the mouse button, drag onto

the button instance again. Notice that the Output panel tracks your movements.

See also

onDragOut (Button.onDragOut handler)

onKeyDown (Button.onKeyDown handler)
 onKeyDown = function() {}

Invoked when a button has keyboard focus and a key is pressed. The onKeyDown event handler is invoked with no

parameters. You can use the Key.getAscii() and Key.getCode() methods to determine which key was pressed. You

must define a function that is executed when the event handler is invoked.

Availability

Flash Lite 2.0

Example

In the following example, a function that sends text to the Output panel is defined for the onKeyDown handler. Create

a button called my_btn on the Stage, and enter the following ActionScript in a frame on the Timeline:

 my_btn.onKeyDown = function() {
 trace("onKeyDown: "+this._name+" (Key: "+getKeyPressed()+")");
 };
 function getKeyPressed():String {
 var theKey:String;
 switch (Key.getAscii()) {
 case Key.BACKSPACE :
 theKey = "BACKSPACE";
 break;
 case Key.SPACE :
 theKey = "SPACE";
 break;
 default :
 theKey = chr(Key.getAscii());
 }
 return theKey;
 }

Select Control > Test Movie to test the SWF file. Make sure you select Control > Disable Keyboard Shortcuts in the test

environment. Then press the Tab key until the button has focus (a yellow rectangle appears around the my_btn

instance) and start pressing keys on your keyboard. When you press keys, they are displayed in the Output panel.

See also

onKeyUp (Button.onKeyUp handler), getAscii (Key.getAscii method), getCode (Key.getCode method)

228FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

onKeyUp (Button.onKeyUp handler)
 onKeyUp = function() {}

Invoked when a button has input focus and a key is released. The onKeyUp event handler is invoked with no

parameters. You can use the Key.getAscii() and Key.getCode() methods to determine which key was pressed.

Availability

Flash Lite 2.0

Example

In the following example, a function that sends text to the Output panel is defined for the onKeyDown handler. Create

a button called my_btn on the Stage, and enter the following ActionScript in a frame on the Timeline:

 my_btn.onKeyDown = function() {
 trace("onKeyDown: "+this._name+" (Key: "+getKeyPressed()+")");
 };
 my_btn.onKeyUp = function() {
 trace("onKeyUp: "+this._name+" (Key: "+getKeyPressed()+")");
 };
 function getKeyPressed():String {
 var theKey:String;
 switch (Key.getAscii()) {
 case Key.BACKSPACE :
 theKey = "BACKSPACE";
 break;
 case Key.SPACE :
 theKey = "SPACE";
 break;
 default :
 theKey = chr(Key.getAscii());
 }
 return theKey;
 }

Press Control+Enter to test the SWF file. Make sure you select Control > Disable Keyboard Shortcuts in the test

environment. Then press the Tab key until the button has focus (a yellow rectangle appears around the my_btn

instance) and start pressing keys on your keyboard. When you press keys, they are displayed in the Output panel.

See also

onKeyDown (Button.onKeyDown handler), getAscii (Key.getAscii method), getCode (Key.getCode

method)

onKillFocus (Button.onKillFocus handler)
 onKillFocus = function(newFocus:Object) {}

Invoked when a button loses keyboard focus. The onKillFocus handler receives one parameter, newFocus, which is an

object representing the new object receiving the focus. If no object receives the focus, newFocus contains the value null.

Availability

Flash Lite 2.0

229FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

newFocus:Object - The object that is receiving the focus.

Example

The following example demonstrates how statements can be executed when a button loses focus. Create a button

instance on the Stage called my_btn and add the following ActionScript to Frame 1 of the Timeline:

 this.createTextField("output_txt", this.getNextHighestDepth(), 0, 0, 300, 200);
 output_txt.wordWrap = true;
 output_txt.multiline = true;
 output_txt.border = true;
 my_btn.onKillFocus = function() {
 output_txt.text = "onKillFocus: "+this._name+newline+output_txt.text;
 };

Test the SWF file in a browser window, and try using the Tab key to move through the elements in the window. When

the button instance loses focus, text is sent to the output_txt text field.

onPress (Button.onPress handler)
 onPress = function() {}

Invoked when a button is pressed. You must define a function that is executed when the event handler is invoked.

Availability

Flash Lite 2.0

Example

In the following example, a function that sends a trace() statement to the Output panel is defined for the onPress

handler:

 my_btn.onPress = function () {
 trace ("onPress called");
 };

onRelease (Button.onRelease handler)
 onRelease = function() {}

Invoked when a button is released. You must define a function that is executed when the event handler is invoked.

Availability

Flash Lite 2.0

Example

In the following example, a function that sends a trace() statement to the Output panel is defined for the onRelease

handler:

 my_btn.onRelease = function () {
 trace ("onRelease called");
 };

230FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

onReleaseOutside (Button.onReleaseOutside handler)
 onReleaseOutside = function() {}

Invoked when the mouse is released with the pointer outside the button after the mouse button is pressed with the

pointer inside the button. You must define a function that is executed when the event handler is invoked.

Note: The onReleaseOutside Event Handler is supported for Flash Lite 2.0 only if

System.capabilities.hasMouse is true or System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

In the following example, a function that sends a trace() statement to the Output panel is defined for the

onReleaseOutside handler:

 my_btn.onReleaseOutside = function () {
 trace ("onReleaseOutside called");
 };

onRollOut (Button.onRollOut handler)
 onRollOut = function() {}

Invoked when the button loses focus. This can happen when the user clicks another button or area outside of the

currently selected button. You must define a function that is executed when the event handler is invoked.

Availability

Flash Lite 2.0

Example

In the following example, a function that sends a trace() statement to the Output panel is defined for the onRollOut

handler:

 my_btn.onRollOut = function () {
 trace ("onRollOut called");
 };

onRollOver (Button.onRollOver handler)
 onRollOver = function() {}

Invoked when the button gains focus. This can happen when the user clicks another button outside of the currently

selected button. Invoked when the pointer moves over a button area. You must define a function that is executed when

the event handler is invoked.

Availability

Flash Lite 2.0

Example

In the following example, a function that sends a trace() statement to the Output panel is defined for the onRollOver

handler:

231FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 my_btn.onRollOver = function () {
 trace ("onRollOver called");
 };

onSetFocus (Button.onSetFocus handler)
 onSetFocus = function(oldFocus:Object) {}

Invoked when a button receives keyboard focus. The oldFocus parameter is the object that loses the focus. For

example, if the user presses the Tab key to move the input focus from a text field to a button, oldFocus contains the

text field instance.

If there is no previously focused object, oldFocus contains a null value.

Availability

Flash Lite 2.0

Parameters

oldFocus:Object - The object to lose keyboard focus.

Example

The following example demonstrates how you can execute statements when the user of a SWF file moves focus from

one button to another. Create two buttons, btn1_btn and btn2_btn, and enter the following ActionScript in Frame

1 of the Timeline:

 Selection.setFocus(btn1_btn);
 trace(Selection.getFocus());
 btn2_btn.onSetFocus = function(oldFocus) {
 trace(oldFocus._name + "lost focus");
 };

Test the SWF file by pressing Control+Enter. Make sure you select Control > Disable Keyboard Shortcuts if it is not

already selected. Focus is set on btn1_btn. When btn1_btn loses focus and btn2_btn gains focus, information is

displayed in the Output panel.

_parent (Button._parent property)
 public _parent : MovieClip

A reference to the movie clip or object that contains the current movie clip or object. The current object is the one

containing the ActionScript code that references _parent.

Use _parent to specify a relative path to movie clips or objects that are above the current movie clip or object. You

can use _parent to move up multiple levels in the display list as in the following:

 this._parent._parent._alpha = 20;

Availability

Flash Lite 2.0

Example

In the following example, a button named my_btn is placed inside a movie clip called my_mc. The following code shows

how to use the _parent property to get a reference to the movie clip my_mc:

 trace(my_mc.my_btn._parent);

232FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The Output panel displays the following:

 _level0.my_mc

See also

_parent (MovieClip._parent property), _target (MovieClip._target property), _root property

_quality (Button._quality property)
 public _quality : String

Property (global); sets or retrieves the rendering quality used for a SWF file. Device fonts are always aliased and

therefore are unaffected by the _quality property.

The _quality property can be set to the following values:

• "LOW" Low rendering quality. Graphics are not anti-aliased, and bitmaps are not smoothed.

• "MEDIUM" Medium rendering quality. Graphics are anti-aliased using a 2 x 2 pixel grid, but bitmaps are not

smoothed. This is suitable for movies that do not contain text.

• "HIGH" High rendering quality. Graphics are anti-aliased using a 4 x 4 pixel grid, and bitmaps are smoothed if the

movie is static. This is the default rendering quality setting used by Flash.

Note: Although you can specify this property for a Button object, it is actually a global property, and you can specify

its value simply as _quality.

Availability

Flash Lite 2.0

Example

This example sets the rendering quality of a button named my_btn to LOW:

 my_btn._quality = "LOW";

_rotation (Button._rotation property)
 public _rotation : Number

The rotation of the button, in degrees, from its original orientation. Values from 0 to 180 represent clockwise rotation;

values from 0 to -180 represent counterclockwise rotation. Values outside this range are added to or subtracted from

360 to obtain a value within the range. For example, the statement my_btn._rotation = 450 is the same as

my_btn._rotation = 90.

Availability

Flash Lite 2.0

Example

The following example rotates two buttons on the Stage. Create two buttons on the Stage called control_btn and

my_btn. Make sure that my_btn is not perfectly round, so you can see it rotating. Then enter the following ActionScript

in Frame 1 of the Timeline:

233FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var control_btn:Button;
 var my_btn:Button;
 control_btn.onRelease = function() {
 my_btn._rotation += 10;
 };

Now create another button on the Stage called myOther_btn, making sure it isn’t perfectly round (so you can see it

rotate). Enter the following ActionScript in Frame 1 of the Timeline.

 var myOther_btn:Button;
 this.createEmptyMovieClip("rotater_mc", this.getNextHighestDepth());
 rotater_mc.onEnterFrame = function() {
 myOther_btn._rotation += 2;
 };

See also

_rotation (MovieClip._rotation property), _rotation (TextField._rotation property)

_soundbuftime (Button._soundbuftime property)
 public _soundbuftime : Number

Specifies the number of seconds a sound prebuffers before it starts to stream.

Note: Although you can specify this property for a Button object, it is actually a global property that applies to all

sounds loaded, and you can specify its value simply as _soundbuftime. Setting this property for a Button object

actually sets the global property.

For more information and an example, see _soundbuftime.

Availability

Flash Lite 2.0

See also

_soundbuftime property

tabEnabled (Button.tabEnabled property)
 public tabEnabled : Boolean

Specifies whether my_btn is included in automatic tab ordering. It is undefined by default.

If the tabEnabled property is undefined or true, the object is included in automatic tab ordering. If the tabIndex

property is also set to a value, the object is included in custom tab ordering as well. If tabEnabled is false, the object

is not included in automatic or custom tab ordering, even if the tabIndex property is set.

Availability

Flash Lite 2.0

234FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following ActionScript is used to set the tabEnabled property for one of four buttons to false. However, all four

buttons (one_btn, two_btn, three_btn, and four_btn) are placed in a custom tab order using tabIndex. Although

tabIndex is set for three_btn, three_btn is not included in a custom or automatic tab order because tabEnabled

is set to false for that instance. To set the tab ordering for the four buttons, add the following ActionScript to Frame

1 of the Timeline:

 three_btn.tabEnabled = false;
 two_btn.tabIndex = 1;
 four_btn.tabIndex = 2;
 three_btn.tabIndex = 3;
 one_btn.tabIndex = 4;

See also

tabIndex (Button.tabIndex property), tabEnabled (MovieClip.tabEnabled property), tabEnabled

(TextField.tabEnabled property)

tabIndex (Button.tabIndex property)
 public tabIndex : Number

Lets you customize the tab ordering of objects in a SWF file. You can set the tabIndex property on a button, movie

clip, or text field instance; it is undefined by default.

If any currently displayed object in the SWF file contains a tabIndex property, automatic tab ordering is disabled, and

the tab ordering is calculated from the tabIndex properties of objects in the SWF file. The custom tab ordering only

includes objects that have tabIndex properties.

The tabIndex property may be a non-negative integer. The objects are ordered according to their tabIndex

properties, in ascending order. An object with a tabIndex value of 1 precedes an object with a tabIndex value of 2. If

two objects have the same tabIndex value, the one that precedes the other in the tab ordering is undefined.

The custom tab ordering defined by the tabIndex property is flat. This means that no attention is paid to the

hierarchical relationships of objects in the SWF file. All objects in the SWF file with tabIndex properties are placed in

the tab order, and the tab order is determined by the order of the tabIndex values. If two objects have the same

tabIndex value, the one that goes first is undefined. You shouldn’t use the same tabIndex value for multiple objects.

Availability

Flash Lite 2.0

Example

The following ActionScript is used to set the tabEnabled property for one of four buttons to false. However, all four

buttons (one_btn, two_btn, three_btn, and four_btn) are placed in a custom tab order using tabIndex. Although

tabIndex is set for three_btn, three_btn is not included in a custom or automatic tab order because tabEnabled

is set to false for that instance. To set the tab ordering for the four buttons, add the following ActionScript to Frame

1 of the Timeline:

 three_btn.tabEnabled = false;
 two_btn.tabIndex = 1;
 four_btn.tabIndex = 2;
 three_btn.tabIndex = 3;
 one_btn.tabIndex = 4;

235FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

tabEnabled (Button.tabEnabled property), tabChildren (MovieClip.tabChildren property),

tabEnabled (MovieClip.tabEnabled property), tabIndex (MovieClip.tabIndex property), tabIndex

(TextField.tabIndex property)

_target (Button._target property)
 public _target : String [read-only]

Returns the target path of the button instance specified by my_btn.

Availability

Flash Lite 2.0

Example

Add a button instance to the Stage with an instance name my_btn and add the following code to Frame 1 of the

Timeline:

 trace(my_btn._target); //displays /my_btn

Select my_btn and convert it to a movie clip. Give the new movie clip an instance name my_mc. Delete the existing

ActionScript in Frame 1 of the Timeline and replace it with:

 my_mc.my_btn.onRelease = function(){
 trace(this._target); //displays /my_mc/my_btn
 };

To convert the notation from slash notation to dot notation, modify the previous code example to the following:

 my_mc.my_btn.onRelease = function(){
 trace(eval(this._target)); //displays _level0.my_mc.my_btn
 };

This lets you access methods and parameters of the target object, such as:

 my_mc.my_btn.onRelease = function(){
 var target_btn:Button = eval(this._target);
 trace(target_btn._name); //displays my_btn
 };

See also

_target (MovieClip._target property)

trackAsMenu (Button.trackAsMenu property)
 public trackAsMenu : Boolean

A Boolean value that indicates whether other buttons or movie clips can receive a release event from a mouse or stylus.

If you drag a stylus or mouse pointer across a button and then release it on a second button, the onRelease event is

registered for the second button. This allows you to create menus for the second button. You can set the trackAsMenu

property on any button or movie clip object. If you have not defined the trackAsMenu property, the default behavior

is false.

You can change the trackAsMenu property at any time; the modified button immediately takes on the new behavior.

Note: The trackAsMenu property is supported for Flash Lite 2.0 only if System.capabilities.hasMouse is true

or System.capabilities.hasStylus is true..

236FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example demonstrates how to track two buttons as a menu. Place two button instances called one_btn

and two_btn on the Stage. Enter the following ActionScript in the Timeline:

 var one_btn:Button;
 var two_btn:Button;
 one_btn.trackAsMenu = true;
 two_btn.trackAsMenu = true;
 one_btn.onRelease = function() {
 trace("clicked one_btn");
 };
 two_btn.onRelease = function() {
 trace("clicked two_btn");
 };

To test the SWF file, click the Stage over one_btn, hold the mouse button down, and release it over two_btn. Then try

commenting out the two lines of ActionScript that contain trackAsMenu and test the SWF file again to see the

difference in button behavior.

See also

trackAsMenu (MovieClip.trackAsMenu property)

_url (Button._url property)
 public _url : String [read-only]

Retrieves the URL of the SWF file that created the button.

Availability

Flash Lite 2.0

Example

Create two button instances on the Stage called one_btn and two_btn. Enter the following ActionScript in Frame 1 of

the Timeline:

 var one_btn:Button;
 var two_btn:Button;
 this.createTextField("output_txt", 999, 0, 0, 100, 22);
 output_txt.autoSize = true;
 one_btn.onRelease = function() {
 trace("clicked one_btn");
 trace(this._url);
 };
 two_btn.onRelease = function() {
 trace("clicked "+this._name);
 var url_array:Array = this._url.split("/");
 var my_str:String = String(url_array.pop());
 output_txt.text = unescape(my_str);
 };

When you click each button, the file name of the SWF containing the buttons displays in the Output panel.

237FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

_visible (Button._visible property)
 public _visible : Boolean

A Boolean value that indicates whether the button specified by my_btn is visible. Buttons that are not visible

(_visible property set to false) are disabled.

Availability

Flash Lite 2.0

Example

Create two buttons on the Stage with the instance names myBtn1_btn and myBtn2_btn. Enter the following

ActionScript in Frame 1 of the Timeline:

 myBtn1_btn.onRelease = function() {
 this._visible = false;
 trace("clicked "+this._name);
 };
 myBtn2_btn.onRelease = function() {
 this._alpha = 0;
 trace("clicked "+this._name);
 };

Notice how you can still click myBtn2_btn after the alpha is set to 0.

See also

_visible (MovieClip._visible property), _visible (TextField._visible property)

_width (Button._width property)
 public _width : Number

The width of the button, in pixels.

Availability

Flash Lite 2.0

Example

The following example increases the width property of a button called my_btn, and displays the width in the Output

panel. Enter the following ActionScript in Frame 1 of the Timeline:

 my_btn.onRelease = function() {
 trace(this._width);
 this._width *= 1.1;
 };

See also

_width (MovieClip._width property)

_x (Button._x property)
 public _x : Number

238FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

An integer that sets the x coordinate of a button relative to the local coordinates of the parent movie clip. If a button

is on the main Timeline, then its coordinate system refers to the upper left corner of the Stage as (0, 0). If the button is

inside a movie clip that has transformations, the button is in the local coordinate system of the enclosing movie clip.

Thus, for a movie clip rotated 90 degrees counterclockwise, the enclosed button inherits a coordinate system that is

rotated 90 degrees counterclockwise. The button's coordinates refer to the registration point position.

Availability

Flash Lite 2.0

Example

The following example sets the coordinates of my_btn to 0 on the Stage. Create a button called my_btn and enter the

following ActionScript in Frame 1 of the Timeline:

 my_btn._x = 0;
 my_btn._y = 0;

See also

_xscale (Button._xscale property), _y (Button._y property), _yscale (Button._yscale property)

_xmouse (Button._xmouse property)
 public _xmouse : Number [read-only]

Returns the x coordinate of the mouse position relative to the button.

Note: The _xmouse property is supported for Flash Lite 2.0 only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true..

Availability

Flash Lite 2.0

Example

The following example displays the x coordinate of the mouse position for the Stage and a button called my_btn that

is placed on the Stage. Enter the following ActionScript in Frame 1 of the Timeline:

 this.createTextField("mouse_txt", 999, 5, 5, 150, 40);
 mouse_txt.html = true;
 mouse_txt.wordWrap = true;
 mouse_txt.border = true;
 mouse_txt.autoSize = true;
 mouse_txt.selectable = false;
 //
 var mouseListener:Object = new Object();
 mouseListener.onMouseMove = function() {
 var table_str:String = "<textformat tabstops='[50,100]'>";
 table_str += "Stage\t"+"x:"+_xmouse+"\t"+"y:"+_ymouse+newline;
 table_str += "Button\t"+"x:"+my_btn._xmouse+"\t"+"y:"+my_btn._ymouse+newline;
 table_str += "</textformat>";
 mouse_txt.htmlText = table_str;
 };
 Mouse.addListener(mouseListener);

239FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

_ymouse (Button._ymouse property)

_xscale (Button._xscale property)
 public _xscale : Number

The horizontal scale of the button as applied from the registration point of the button, expressed as a percentage. The

default registration point is (0,0).

Scaling the local coordinate system affects the _x and _y property settings, which are defined in pixels. For example, if

the parent movie clip is scaled to 50%, setting the _x property moves an object in the button by half the number of

pixels that it would if the SWF file were at 100%.

Availability

Flash Lite 2.0

Example

The following example scales a button called my_btn. When you click and release the button, it grows 10% on the x

and y axes. Enter the following ActionScript in Frame 1 of the Timeline:

 my_btn.onRelease = function(){
 this._xscale *= 1.1;
 this._yscale *= 1.1;
 };

See also

_x (Button._x property), _y (Button._y property), _yscale (Button._yscale property)

_y (Button._y property)
 public _y : Number

The y coordinate of the button relative to the local coordinates of the parent movie clip. If a button is in the main

Timeline, its coordinate system refers to the upper left corner of the Stage as (0, 0). If the button is inside another movie

clip that has transformations, the button is in the local coordinate system of the enclosing movie clip. Thus, for a movie

clip rotated 90 degrees counterclockwise, the enclosed button inherits a coordinate system that is rotated 90 degrees

counterclockwise. The button's coordinates refer to the registration point position.

Availability

Flash Lite 2.0

Example

The following example sets the coordinates of my_btn to 0 on the Stage. Create a button called my_btn and enter the

following ActionScript in Frame 1 of the Timeline:

 my_btn._x = 0;
 my_btn._y = 0;

See also

_x (Button._x property), _xscale (Button._xscale property), _yscale (Button._yscale property)

240FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

_ymouse (Button._ymouse property)
 public _ymouse : Number [read-only]

Returns the y coordinate of the mouse position relative to the button.

Note: The _ymouse property is supported for Flash Lite 2.0 only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true..

Availability

Flash Lite 2.0

Example

The following example displays the x coordinate of the mouse position for the Stage and a button called my_btn that

is placed on the Stage. Enter the following ActionScript in Frame 1 of the Timeline:

 this.createTextField("mouse_txt", 999, 5, 5, 150, 40);
 mouse_txt.html = true;
 mouse_txt.wordWrap = true;
 mouse_txt.border = true;
 mouse_txt.autoSize = true;
 mouse_txt.selectable = false;
 //
 var mouseListener:Object = new Object();
 mouseListener.onMouseMove = function() {
 var table_str:String = "<textformat tabstops='[50,100]'>";
 table_str += "Stage\t"+"x:"+_xmouse+"\t"+"y:"+_ymouse+newline;
 table_str += "Button\t"+"x:"+my_btn._xmouse+"\t"+"y:"+my_btn._ymouse+newline;
 table_str += "</textformat>";
 mouse_txt.htmlText = table_str;
 };
 Mouse.addListener(mouseListener);

See also

_xmouse (Button._xmouse property)

_yscale (Button._yscale property)
 public _yscale : Number

The vertical scale of the button as applied from the registration point of the button, expressed as a percentage. The

default registration point is (0,0).

Availability

Flash Lite 2.0

Example

The following example scales a button called my_btn. When you click and release the button, it grows 10% on the x

and y axes. Enter the following ActionScript in Frame 1 of the Timeline:

 my_btn.onRelease = function(){
 this._xscale *= 1.1;
 this._yscale *= 1.1;
 };

241FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

_y (Button._y property), _x (Button._x property), _xscale (Button._xscale property)

capabilities (System.capabilities)

 Object
 |
 +-System.capabilities

 public class capabilities
 extends Object

The Capabilities class determines the abilities of the system and player that host a SWF file, which lets you tailor

content for different formats. For example, the screen of a mobile device is different from a computer screen. To

provide appropriate content to as many users as possible, you can use the System.capabilities object to determine

the type of device a user has. You can then either specify to the server to send different SWF files based on the device

capabilities or tell the SWF file to alter its presentation based on the capabilities of the device.

You can send capabilities information using a GET or POST HTTP method.

The following example shows a string for a mobile device:

• that indicates a normal screen orientation

• that is running an undetermined language

• that is running the Symbian7.0sSeries60V2 operating system

• that is configured so the user can't access hard disk, camera, or microphone

• that has the Flash Lite player as the official release version

• for which the Flash Lite player does not support the development nor playback of screen broadcast applications to

be run through Flash Media Server

• that does not support printing on the device

• that the Flash Lite player is running on a mobile device that supports embedded video.

 undefinedScreenOrientation=normal
language=xu
OS=Symbian7.0sSeries60V2
 localFileReadDisable=true
avHardwareDisable=true
isDebugger=false
 hasScreenBroadcast=false
hasScreenPlayback=false
hasPrinting=false
 hasEmbeddedVideo=true

Most properties of the System.capabilities object are read-only.

Availability

Flash Lite 2.0

242FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Property summary

Modifiers Property Description

static audioMIMETypes:Array

[read-only]

Returns an array of MIME types for audio codecs supported by

a mobile device.

static avHardwareDisable:Boole

an [read-only]

A Boolean value that specifies whether access to the user's

camera and microphone has been administratively prohibited

(true) or allowed (false).

static has4WayKeyAS:Boolean

[read-only]

A Boolean value that is true if the Flash Lite player executes

the ActionScript code associated with key event handlers that

are associated with the Left, Right, Up, and Down keys.

static hasAccessibility:Boolean

[read-only]

A Boolean value that is true if the player is running in an

environment that supports communication between Flash

Lite player and accessibility aids; false otherwise.

static hasAudio:Boolean [read-

only]

Specifies if the system has audio capabilities.

static hasAudioEncoder:Boolea

n [read-only]

Specifies if the Flash Lite player can encode an audio stream.

static hasCMIDI:Boolean [read-

only]

Returns true if the mobile device can play sound data in the

CMIDI audio format.

static hasCompoundSound:Boo

lean [read-only]

Returns true if the Flash Lite player can process compound

sound data.

static hasDataLoading:Boolean

[read-only]

Returns true if the Flash Lite player can dynamically load

additional data through calls to specific functions.

static hasEmail:Boolean [read-

only]

Returns true if the Flash Lite player can send e-mail messages

with the GetURL ActionScript command.

static hasEmbeddedVideo:Bool

ean [read-only]

A Boolean value that indicates whether the mobile device

supports embedded video.

static hasMappableSoftKeys:Bo

olean

Returns true if the mobile device allows you to reset or

reassign softkey labels and handle events from those softkeys.

static hasMFI:Boolean [read-

only]

Returns true if the mobile device is capable of playing sound

data in the MFI audio format.

static hasMIDI:Boolean [read-

only]

Returns true if the mobile device is capable of playing sound

data in the MIDI audio format.

static hasMMS:Boolean [read-

only]

Returns true if the mobile device can send MMS messages

with the GetURL ActionScript command.

static hasMouse:Boolean [read-

only]

Indicates whether the mobile device sends mouse-related

events to a Flash Lite player.

static hasMP3:Boolean [read-

only]

Specifies if the mobile device has a MP3 decoder.

static hasPrinting:Boolean

[read-only]

A Boolean value that is true if the player is running on a

mobile device that supports printing; false otherwise.

static hasQWERTYKeyboard:Bo

olean [read-only]

Returns true if the Flash Lite player can process ActionScript

code associated with all keys found on a standard QWERTY

keyboard, including the BACKSPACE key.

static hasScreenBroadcast:Bool

ean [read-only]

A Boolean value that is true if the player supports the

development of screen broadcast applications to be run

through Flash Media Server; false otherwise.

243FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

static hasScreenPlayback:Boole

an [read-only]

A Boolean value that is true if the player supports the

playback of screen broadcast applications that are being run

through Flash Media Server; false otherwise.

static hasSharedObjects:Boolea

n [read-only]

Returns true if the Flash Lite content playing back in an

application can access the Flash Lite version of shared objects.

static hasSMAF:Boolean [read-

only]

Returns true if the mobile device is capable of playing sound

data in the SMAF audio format.

static hasSMS:Number [read-

only]

Indicates whether the mobile device can send SMS messages

with the GetURL ActionScript command.

static hasStreamingAudio:Bool

ean [read-only]

A Boolean value that is true if the player can play streaming

audio; false otherwise.

static hasStreamingVideo:Boole

an [read-only]

A Boolean value that indicates whether the player can play

streaming video.

static hasStylus:Boolean [read-

only]

Indicates if the mobile device supports stylus-related events.

static hasVideoEncoder:Boolea

n [read-only]

Specifies if the Flash Lite player can encode a video stream.

static hasXMLSocket:Number

[read-only]

Indicates whether the host application supports XML sockets.

static imageMIMETypes:Array

[read-only]

Returns an array that contains all MIME types that the

loadMovie function and the codecs for a mobile device

support for processing images.

static isDebugger:Boolean

[read-only]

A Boolean value that indicates whether the player is an

officially released version (false) or a special debugging

version (true).

static language:String [read-

only]

Indicates the language of the system on which the player is

running.

static localFileReadDisable:Bool

ean [read-only]

A Boolean value that indicates whether read access to the

user's hard disk has been administratively prohibited (true) or

allowed (false).

static MIMETypes:Array [read-

only]

Returns an array that contains all MIME types that the

loadMovie function, Sound and Video objects support.

static os:String [read-only] A string that indicates the current operating system.

static screenOrientation:String

[read-only]

This member variable of the System.capabilities object

that indicates the current screen orientation.

static screenResolutionX:Numb

er [read-only]

An integer that indicates the maximum horizontal resolution

of the screen.

static screenResolutionY:Numb

er [read-only]

An integer that indicates the maximum vertical resolution of

the screen.

static softKeyCount:Number

[read-only]

Indicates the number of remappable soft keys that the mobile

device supports.

static version:String [read-only] A string that contains the Flash Lite player platform and

version information (for example, "WIN 7,1,0,0").

static videoMIMETypes:Array

[read-only]

Indicates all the MIME types for video that the mobile device's

codecs support.

Modifiers Property Description

244FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Properties inherited from class Object

Method summary

Methods inherited from class Object

audioMIMETypes (capabilities.audioMIMETypes property)
 public static audioMIMETypes : Array [read-only]

Returns an array of MIME types for audio codecs supported by a mobile device.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.audioMIMETypes);

avHardwareDisable (capabilities.avHardwareDisable property)
 public static avHardwareDisable : Boolean [read-only]

A Boolean value that specifies whether access to the user's camera and microphone has been administratively

prohibited (true) or allowed (false). The server string is AVD.

Note: For Flash Lite 2.0, the value returned is always true.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.avHardwareDisable);

has4WayKeyAS (capabilities.has4WayKeyAS property)
 public static has4WayKeyAS : Boolean [read-only]

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method)watch (Object.watch method)

245FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

A Boolean value that is true if the Flash Lite player executes the ActionScript code associated with key event handlers

that are associated with the Left, Right, Up, and Down keys. Otherwise, this property returns false.

If the value of this variable is true, when one of the four-way keys is pressed, the player first looks for a handler for

that key. If none is found, Flash performs control navigation. However, if an event handler is found, no navigation

action occurs for that key. In other words, the presence of a keypress handler for a down key disables the ability to

navigate down.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.has4WayKeyAS);

hasAccessibility (capabilities.hasAccessibility property)
 public static hasAccessibility : Boolean [read-only]

A Boolean value that is true if the player is running in an environment that supports communication between Flash

Lite player and accessibility aids; false otherwise. The server string is ACC.

Note: For Flash Lite 2.0, the value returned is always false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasAccessibility);

hasAudio (capabilities.hasAudio property)
 public static hasAudio : Boolean [read-only]

Specifies if the system has audio capabilities. A Boolean value that is true if the player is running on a system that has

audio capabilities; false otherwise. The server string is A.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasAudio);

246FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

hasAudioEncoder (capabilities.hasAudioEncoder property)
 public static hasAudioEncoder : Boolean [read-only]

Specifies if the Flash Lite player can encode an audio stream. A Boolean value that is true if the player can encode an

audio stream, such as that coming from a microphone; false otherwise. The server string is AE.

Note: For Flash Lite 2.0, the value returned is always false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasAudioEncoder);

hasCMIDI (capabilities.hasCMIDI property)
 public static hasCMIDI : Boolean [read-only]

Returns true if the mobile device can play sound data in the CMIDI audio format. Otherwise, this property returns

false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasCMIDI);

hasCompoundSound (capabilities.hasCompoundSound property)
 public static hasCompoundSound : Boolean [read-only]

Returns true if the Flash Lite player can process compound sound data. Otherwise, it returns false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasCompoundSound);

hasDataLoading (capabilities.hasDataLoading property)
 public static hasDataLoading : Boolean [read-only]

247FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns true if the Flash Lite player can dynamically load additional data through calls to specific functions.

You can call the following specific functions:

• loadMovie()

• loadMovieNum()

• loadVariables()

• loadVariablesNum()

• XML.parseXML()

• Sound.loadSound()

• MovieClip.loadVariables()

• MovieClip.loadMovie()

• MovieClipLoader.loadClip()

• LoadVars.load()

• LoadVars.sendAndLoad()

Otherwise, this property returns false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasDataLoading);

hasEmail (capabilities.hasEmail property)
 public static hasEmail : Boolean [read-only]

Returns true if the Flash Lite player can send e-mail messages with the GetURL ActionScript command.

Otherwise, this property returns false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasEmail);

hasEmbeddedVideo (capabilities.hasEmbeddedVideo property)
 public static hasEmbeddedVideo : Boolean [read-only]

A Boolean value that indicates whether the mobile device supports embedded video.

248FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Note: The hasEmbeddedVideo property is always true in Flash Lite 2.0 and Flash Lite 2.1, indicating library support

for device video.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasEmbeddedVideo);

hasMappableSoftKeys (capabilities.hasMappableSoftKeys property)
 public static hasMappableSoftKeys : Boolean

Returns true if the mobile device allows you to reset or reassign softkey labels and handle events from those softkeys.

Otherwise, false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasMappableSoftKeys);

hasMFI (capabilities.hasMFI property)
 public static hasMFI : Boolean [read-only]

Returns true if the mobile device is capable of playing sound data in the MFI audio format.

Otherwise, this property returns false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasMFI);

hasMIDI (capabilities.hasMIDI property)
 public static hasMIDI : Boolean [read-only]

Returns true if the mobile device is capable of playing sound data in the MIDI audio format.

249FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Otherwise, this property returns false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasMIDI);

hasMMS (capabilities.hasMMS property)
 public static hasMMS : Boolean [read-only]

Returns true if the mobile device can send MMS messages with the GetURL ActionScript command.

Otherwise, this property returns false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasMMS);

hasMouse (capabilities.hasMouse property)
 public static hasMouse : Boolean [read-only]

Indicates whether the mobile device sends mouse-related events to a Flash Lite player.

This property returns true if the mobile device sends mouse-related events to a Flash Lite player. Otherwise, it returns

false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasMouse);

hasMP3 (capabilities.hasMP3 property)
 public static hasMP3 : Boolean [read-only]

250FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Specifies if the mobile device has an MP3 decoder. A Boolean value that is true if the player is running on a system

that has an MP3 decoder; false otherwise. The server string is MP3.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasMP3);

hasPrinting (capabilities.hasPrinting property)
 public static hasPrinting : Boolean [read-only]

A Boolean value that is true if the player is running on a mobile device that supports printing; false otherwise. The

server string is PR.

Note: For Flash Lite 2.0, the value returned is always false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasPrinting);

hasQWERTYKeyboard (capabilities.hasQWERTYKeyboard property)
 public static hasQWERTYKeyboard : Boolean [read-only]

Returns true if the Flash Lite player can process ActionScript code associated with all keys found on a standard

QWERTY keyboard, including the BACKSPACE key.

Otherwise, this property returns false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasQWERTYKeyboard);

hasScreenBroadcast (capabilities.hasScreenBroadcast property)
 public static hasScreenBroadcast : Boolean [read-only]

251FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

A Boolean value that is true if the player supports the development of screen broadcast applications to be run through

Flash Media Server; false otherwise. The server string is SB.

Note: For Flash Lite 2.0, the value returned is always false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasScreenBroadcast);

hasScreenPlayback (capabilities.hasScreenPlayback property)
 public static hasScreenPlayback : Boolean [read-only]

A Boolean value that is true if the player supports the playback of screen broadcast applications that are being run

through Flash Media Server; false otherwise. The server string is SP.

Note: For Flash Lite 2.0, the value returned is always false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasScreenPlayback);

hasSharedObjects (capabilities.hasSharedObjects property)
 public static hasSharedObjects : Boolean [read-only]

Returns true if the Flash Lite content playing back in an application can access the Flash Lite version of shared objects.

Otherwise, this property returns false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasSharedObjects);

252FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

hasSMAF (capabilities.hasSMAF property)
 public static hasSMAF : Boolean [read-only]

Returns true if the mobile device is capable of playing sound data in the SMAF audio format.

Otherwise, this property returns false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasSMAF);

hasSMS (capabilities.hasSMS property)
 public static hasSMS : Number [read-only]

Indicates whether the mobile device can send SMS messages with the GetURL ActionScript command.

If Flash Lite can send SMS messages, this variable is defined and has a value of 1. Otherwise, this variable is not defined.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasSMS);

hasStreamingAudio (capabilities.hasStreamingAudio property)
 public static hasStreamingAudio : Boolean [read-only]

A Boolean value that is true if the player can play streaming audio; false otherwise. The server string is SA.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasStreamingAudio);

hasStreamingVideo (capabilities.hasStreamingVideo property)
 public static hasStreamingVideo : Boolean [read-only]

253FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

A Boolean value that indicates whether the player can play streaming video.

Note: The hasStreamingVideo property is always false in Flash Lite 2.0 and Flash Lite 2.1, indicating that streaming

FLV is not supported.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasStreamingVideo);

hasStylus (capabilities.hasStylus property)
 public static hasStylus : Boolean [read-only]

Indicates if the mobile device supports stylus-related events.

This property returns true if the platform for the mobile device does not support stylus-related events. Otherwise, this

property returns false.

The stylus does not support the onMouseMove event. This capabilities flag allows the Flash content to check if the

platform for a mobile device supports this event.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasStylus);

hasVideoEncoder (capabilities.hasVideoEncoder property)
 public static hasVideoEncoder : Boolean [read-only]

Specifies if the Flash Lite player can encode a video stream. A Boolean value that is true if the player can encode a

video stream, such as that coming from a web camera; false otherwise. The server string is VE.

Note: For Flash Lite 2.0, the value returned is always false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.hasVideoEncoder);

254FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

hasXMLSocket (capabilities.hasXMLSocket property)
 public static hasXMLSocket : Number [read-only]

Indicates whether the host application supports XML sockets.

If the host application supports XML sockets, this variable is defined and has a value of 1. Otherwise, this variable is

not defined.

imageMIMETypes (capabilities.imageMIMETypes property)
 public static imageMIMETypes : Array [read-only]

Returns an array that contains all MIME types that the loadMovie function and the codecs for a mobile device support

for processing images.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.imageMIMETypes);

isDebugger (capabilities.isDebugger property)
 public static isDebugger : Boolean [read-only]

A Boolean value that indicates whether the player is an officially released version (false) or a special debugging

version (true). The server string is DEB.

Note: For Flash Lite 2.0, the value returned is always false.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.isDebugger);

 ***note about space instead of tab used for indents in code

language (capabilities.language property)
 public static language : String [read-only]

Indicates the language of the system on which the player is running. This property is specified as a lowercase two-letter

language code from ISO 639-1. For Chinese, an additional uppercase two-letter country code subtag from ISO 3166

distinguishes between Simplified and Traditional Chinese. The languages themselves are named with the English tags.

For example, fr specifies French.

255FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

This property changed in two ways for Flash Player 7. First, the language code for English systems no longer includes

the country code. In Flash Player 6, all English systems return the language code and the two-letter country code subtag

(en-US). In Flash Player 7, English systems return only the language code (en). Second, on Microsoft Windows

systems this property now returns the User Interface (UI) Language. In Flash Player 6 on the Microsoft Windows

platform, System.capabilities.language returns the User Locale, which controls settings for formatting dates, times,

currency, and large numbers. In Flash Player 7 on the Microsoft Windows platform, this property now returns the UI

Language, which refers to the language used for all menus, dialog boxes, error messages, and help files.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.language);

Language Tag

Czech cs

Danish da

Dutch nl

English en

Finnish fi

French fr

German de

Hungarian hu

Italian it

Japanese ja

Korean ko

Norwegian no

Other/unknown xu

Polish pl

Portuguese pt

Russian ru

Simplified Chinese zh-CN

Spanish es

Swedish sv

Traditional Chinese zh-TW

Turkish tr

256FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

localFileReadDisable (capabilities.localFileReadDisable property)
 public static localFileReadDisable : Boolean [read-only]

A Boolean value that indicates whether read access to the user's hard disk has been administratively prohibited (true)

or allowed (false). If set to true, Flash Lite player will be unable to read files (including the first SWF file that Flash

Lite player launches with) from the user's hard disk. For example, attempts to read a file on the user's hard disk using

XML.load(), LoadMovie(), or LoadVars.load() will fail if this property is set to true.

Reading runtime shared libraries will also be blocked if this property is set to true, but reading local shared objects is

allowed without regard to the value of this property. The server string is LFD.

Note: For Flash Lite 2.0, the value returned is always true.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.localFileReadDisable);

MIMETypes (capabilities.MIMETypes property)
 public static MIMETypes : Array [read-only]

Returns an array that contains all MIME types that the loadMovie function, Sound and Video objects support.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.MIMETypes);

os (capabilities.os property)
 public static os : String [read-only]

A string that indicates the current operating system. The os property can return the following strings: "Windows XP",

"Windows 2000", "Windows NT", "Windows 98/ME", "Windows 95", "Windows CE" (available only in Flash Player SDK,

not in the desktop version), "Linux", and "MacOS". The server string is OS.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

257FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 trace(System.capabilities.os);

screenOrientation (capabilities.screenOrientation property)
 public static screenOrientation : String [read-only]

A member variable of the System.capabilities object that indicates the current screen orientation.

Possible values for screenOrientation property:

• normal the screen is in its normal orientation

• rotated90 the screen is rotated by 90 degrees

• rotated180 the screen is rotated by 180 degrees

• rotated270 the screen is rotated by 270 degrees

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.screenOrientation);

screenResolutionX (capabilities.screenResolutionX property)
 public static screenResolutionX : Number [read-only]

An integer that indicates the maximum horizontal resolution of the screen. The server string is R (which returns both

the width and height of the screen).

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.screenResolutionX);

screenResolutionY (capabilities.screenResolutionY property)
 public static screenResolutionY : Number [read-only]

An integer that indicates the maximum vertical resolution of the screen. The server string is R (which returns both the

width and height of the screen).

Availability

Flash Lite 2.0

258FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.screenResolutionY);

softKeyCount (capabilities.softKeyCount property)
 public static softKeyCount : Number [read-only]

Indicates the number of remappable soft keys that the mobile device supports.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.softKeyCount);

version (capabilities.version property)
 public static version : String [read-only]

A string that contains the Flash Lite player platform and version information (for example, "WIN 7,1,0,0"). The

server string is V.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

 trace(System.capabilities.version);

videoMIMETypes (capabilities.videoMIMETypes property)
 public static videoMIMETypes : Array [read-only]

Indicates all the MIME types for video that the mobile device's codecs support.

This property returns an array of all the MIME types for video that the mobile device's codecs support.

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

259FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 trace(System.capabilities.videoMIMETypes);

Color

 Object
 |
 +-Color

 public class Color
 extends Object

The Color class lets you set the RGB color value and color transform of movie clips and retrieve those values once they

have been set.

You must use the constructor new Color() to create a Color object before calling its methods.

Availability

Flash Lite 2.0

Property summary

Properties inherited from class Object

Constructor summary

Method summary

Methods inherited from class Object

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

Signature Description

Color(target:Object) Creates a Color object for the movie clip specified by the target_mc parameter.

Modifiers Signature Description

 getRGB() : Number Returns the R+G+B combination currently in use by the color

object.

 getTransform() : Object Returns the transform value set by the last

Color.setTransform() call.

 setRGB(offset:Number

) : Void
Specifies an RGB color for a Color object.

 setTransform(transform
Object:Object) : Void

Sets color transform information for a Color object.

260FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Color constructor
 public Color(target:Object)

Creates a Color object for the movie clip specified by the target_mc parameter. You can then use the methods of that

Color object to change the color of the entire target movie clip.

Availability

Flash Lite 2.0

Parameters

target:Object - The instance name of a movie clip.

Example

The following example creates a Color object called my_color for the movie clip my_mc and sets its RGB value to

orange:

 var my_color:Color = new Color(my_mc);
 my_color.setRGB(0xff9933);

getRGB (Color.getRGB method)
 public getRGB() : Number

Returns the R+G+B combination currently in use by the color object.

Availability

Flash Lite 2.0

Returns

Number - A number that represents the RGB numeric value for the color specified.

Example

The following code retrieves the RGB value for the Color object my_color, converts the value to a hexadecimal string,

and assigns it to the myValue variable. To see this code work, add a movie clip instance to the Stage, and give it the

instance name my_mc:

 var my_color:Color = new Color(my_mc);
 // set the color
 my_color.setRGB(0xff9933);
 var myValue:String = my_color.getRGB().toString(16);
 // trace the color value
 trace(myValue); // traces ff9933

See also

setRGB (Color.setRGB method)

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method)watch (Object.watch method)

261FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

getTransform (Color.getTransform method)
 public getTransform() : Object

Returns the transform value set by the last Color.setTransform() call.

Availability

Flash Lite 2.0

Returns

Object - An object whose properties contain the current offset and percentage values for the specified color.

Example

The following example gets the transform object, and then sets new percentages for colors and alpha of my_mc relative

to their current values. To see this code work, place a multicolored movie clip on the Stage with the instance name

my_mc. Then place the following code on Frame 1 in the main Timeline and select Control > Test Movie:

 var my_color:Color = new Color(my_mc);
 var myTransform:Object = my_color.getTransform();
 myTransform = { ra: 50, ba: 50, aa: 30};
 my_color.setTransform(myTransform);

For descriptions of the parameters for a color transform object, see Color.setTransform().

See also

setTransform (Color.setTransform method)

setRGB (Color.setRGB method)
 public setRGB(offset:Number) : Void

Specifies an RGB color for a Color object. Calling this method overrides any previous Color.setTransform()

settings.

Availability

Flash Lite 2.0

Parameters

offset:Number - 0xRRGGBB The hexadecimal or RGB color to be set. RR, GG, and BB each consist of two hexadecimal

digits that specify the offset of each color component. The 0x tells the ActionScript compiler that the number is a

hexadecimal value.

Example

This example sets the RGB color value for the movie clip my_mc. To see this code work, place a movie clip on the Stage

with the instance name my_mc. Then place the following code on Frame 1 in the main Timeline and select Control >

Test Movie:

 var my_color:Color = new Color(my_mc);
 my_color.setRGB(0xFF0000); // my_mc turns red

See also

setTransform (Color.setTransform method)

262FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

setTransform (Color.setTransform method)
 public setTransform(transformObject:Object) : Void

Sets color transform information for a Color object. The colorTransformObject parameter is a generic object that you

create from the new Object constructor. It has parameters specifying the percentage and offset values for the red,

green, blue, and alpha (transparency) components of a color, entered in the format 0xRRGGBBAA.

The parameters for a color transform object correspond to the settings in the Advanced Effect dialog box and are

defined as follows:

• ra is the percentage for the red component (-100 to 100).

• rb is the offset for the red component (-255 to 255).

• ga is the percentage for the green component (-100 to 100).

• gb is the offset for the green component (-255 to 255).

• ba is the percentage for the blue component (-100 to 100).

• bb is the offset for the blue component (-255 to 255).

• aa is the percentage for alpha (-100 to 100).

• ab is the offset for alpha (-255 to 255).

You create a colorTransformObject parameter as follows:

 var myColorTransform:Object = new Object();
 myColorTransform.ra = 50;
 myColorTransform.rb = 244;
 myColorTransform.ga = 40;
 myColorTransform.gb = 112;
 myColorTransform.ba = 12;
 myColorTransform.bb = 90;
 myColorTransform.aa = 40;
 myColorTransform.ab = 70;

You can also use the following syntax to create a colorTransformObject parameter:

 var myColorTransform:Object = { ra: 50, rb: 244, ga: 40, gb: 112, ba: 12, bb: 90, aa: 40, ab: 70}

Availability

Flash Lite 2.0

Parameters

transformObject:Object - An object created with the new Object constructor. This instance of the Object class must

have the following properties that specify color transform values: ra, rb, ga, gb, ba, bb, aa, ab. These properties

are explained below.

Example

This example creates a new Color object for a target SWF file, creates a generic object called myColorTransform with

the properties defined above, and uses the setTransform() method to pass the colorTransformObject to a Color

object. To use this code in a Flash (FLA) document, place it on Frame 1 on the main Timeline and place a movie clip

on the Stage with the instance name my_mc, as in the following code:

263FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // Create a color object called my_color for the target my_mc
 var my_color:Color = new Color(my_mc);
 // Create a color transform object called myColorTransform using
 // Set the values for myColorTransform
 var myColorTransform:Object = { ra: 50, rb: 244, ga: 40, gb: 112, ba: 12, bb: 90, aa: 40, ab:
70};
 // Associate the color transform object with the Color object
 // created for my_mc
 my_color.setTransform(myColorTransform);

See also

Object

ColorTransform (flash.geom.ColorTransform)

 Object
 |
 +-flash.geom.ColorTransform

 public class ColorTransform
 extends Object

The ColorTransform class lets you mathematically adjust all of the color values in a movie clip. The color adjustment

function or color transformation can be applied to all four channels: red, green, blue, and alpha transparency.

When a ColorTransform object is applied to a movie clip, a new value for each color channel is calculated like this:

• New red value = (old red value * redMultiplier) + redOffset

• New green value = (old green value * greenMultiplier) + greenOffset

• New blue value = (old blue value * blueMultiplier) + blueOffset

• New alpha value = (old alpha value * alphaMultiplier) + alphaOffset

If any of the color channel values is greater than 255 after the calculation, it is set to 255. If it is less than 0, it is set to 0.

You must use the new ColorTransform() constructor to create a ColorTransform object before you can call the

methods of the ColorTransform object.

Color transformations do not apply to the background color of a movie clip (such as a loaded SWF object). They apply

only to graphics and symbols that are attached to the movie clip.

Availability

Flash Lite 3.1

See also

colorTransform (Transform.colorTransform property)

264FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Property summary

Constructor summary

Method summary

Modifiers Property Description

 alphaMultiplier:Number A decimal value that is multiplied by the alpha transparency

channel value.

 alphaOffset:Number A number from -255 to 255 that is added to the alpha transparency

channel value after it has been multiplied by the

alphaMultiplier value.

 blueMultiplier:Number A decimal value that is multiplied by the blue channel value.

 blueOffset:Number A number from -255 to 255 that is added to the blue channel value

after it has been multiplied by the blueMultiplier value.

 greenMultiplier:Number A decimal value that is multiplied by the green channel value.

 greenOffset:Number A number from -255 to 255 that is added to the green channel

value after it has been multiplied by the greenMultiplier value.

 redMultiplier:Number A decimal value that is multiplied by the red channel value.

 redOffset:Number A number from -255 to 255 that is added to the red channel value

after it has been multiplied by the redMultiplier value.

 rgb:Number The RGB color value for a ColorTransform object.

“constructor (Object.constructor property)” on page 496, __proto__ (Object.__proto__
property),prototype (Object.prototype property), “__resolve (Object.__resolve
property)” on page 501

Signature Description

ColorTransform([redMult

iplier:Number],
[greenMultiplier:Number

],
[blueMultiplier:Number]
,
[alphaMultiplier:Number

],
[redOffset:Number],
[greenOffset:Number],
[blueOffset:Number],
[alphaOffset:Number])

Creates a ColorTransform object for a display object with the specified color channel

values and alpha values.

Modifiers Signature Description

 concat(second:ColorT
ransform) : Void

Applies a second, additive color transformation to the movie clip.

 toString() : String Formats and returns a string that describes all of the properties of

the ColorTransform object.

265FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

alphaMultiplier (ColorTransform.alphaMultiplier property)
 public alphaMultiplier : Number

A decimal value that is multiplied by the alpha transparency channel value.

If you set the alpha transparency value of a movie clip directly by using the MovieClip._alpha property, it affects the

value of the alphaMultiplier property of that movie clip's ColorTransform object.

Availability

Flash Lite 3.1

Example

The following example creates the ColorTransform object colorTrans and adjusts its alphaMultiplier value from

1 to .5.

 import flash.geom.ColorTransform;
 import flash.geom.Transform;

 var colorTrans:ColorTransform = new ColorTransform();
 trace(colorTrans.alphaMultiplier); // 1

 colorTrans.alphaMultiplier = .5;
 trace(colorTrans.alphaMultiplier); // .5

 var rect:MovieClip = createRectangle(20, 80, 0x000000);
 var trans:Transform = new Transform(rect);
 trans.colorTransform = colorTrans;

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

See also

_alpha (MovieClip._alpha property)

alphaOffset (ColorTransform.alphaOffset property)
 public alphaOffset : Number

“addProperty (Object.addProperty method)” on page 494, “hasOwnProperty
(Object.hasOwnProperty method)” on page 497, “isPropertyEnumerable
(Object.isPropertyEnumerable method)” on page 497, “isPrototypeOf (Object.isPrototypeOf
method)” on page 498, “registerClass (Object.registerClass method)” on page 500, “toString
(Object.toString method)” on page 504, “unwatch (Object.unwatch method)” on page 505, valueOf
(Object.valueOf method),“watch (Object.watch method)” on page 507

266FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

A number from -255 to 255 that is added to the alpha transparency channel value after it has been multiplied by the

alphaMultiplier value.

Availability

Flash Lite 3.1

Example

The following example creates the ColorTransform object colorTrans and adjusts its alphaOffset value from 0 to

-128.

 import flash.geom.ColorTransform;
 import flash.geom.Transform;

 var colorTrans:ColorTransform = new ColorTransform();
 trace(colorTrans.alphaOffset); // 0

 colorTrans.alphaOffset = -128;
 trace(colorTrans.alphaOffset); // -128

 var rect:MovieClip = createRectangle(20, 80, 0x000000);
 var trans:Transform = new Transform(rect);
 trans.colorTransform = colorTrans;

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

blueMultiplier (ColorTransform.blueMultiplier property)
 public blueMultiplier : Number

A decimal value that is multiplied by the blue channel value.

Availability

Flash Lite 3.1

Example

The following example creates the ColorTransform object colorTrans and adjusts its blueMultiplier value from 1

to .5.

267FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.ColorTransform;
 import flash.geom.Transform;

 var colorTrans:ColorTransform = new ColorTransform();
 trace(colorTrans.blueMultiplier); // 1

 colorTrans.blueMultiplier = .5;
 trace(colorTrans.blueMultiplier); // .5

 var rect:MovieClip = createRectangle(20, 80, 0x0000FF);
 var trans:Transform = new Transform(rect);
 trans.colorTransform = colorTrans;

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

blueOffset (ColorTransform.blueOffset property)
 public blueOffset : Number

A number from -255 to 255 that is added to the blue channel value after it has been multiplied by the blueMultiplier

value.

Availability

Flash Lite 3.1

Example

The following example creates the ColorTransform object colorTrans and adjusts its blueOffset value from 0 to 255.

268FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.ColorTransform;
 import flash.geom.Transform;

 var colorTrans:ColorTransform = new ColorTransform();
 trace(colorTrans.blueOffset); // 0

 colorTrans.blueOffset = 255;
 trace(colorTrans.blueOffset); // 255

 var rect:MovieClip = createRectangle(20, 80, 0x000000);
 var trans:Transform = new Transform(rect);
 trans.colorTransform = colorTrans;

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

ColorTransform constructor
 public ColorTransform([redMultiplier:Number], [greenMultiplier:Number],
[blueMultiplier:Number], [alphaMultiplier:Number], [redOffset:Number], [greenOffset:Number],
[blueOffset:Number], [alphaOffset:Number])

Creates a ColorTransform object for a display object with the specified color channel values and alpha values.

Availability

Flash Lite 3.1

Parameters

redMultiplier:Number [optional] - The value for the red multiplier, in the range from 0 to 1. The default value is 1.

greenMultiplier:Number [optional] - The value for the green multiplier, in the range from 0 to 1. The default value is 1.

blueMultiplier:Number [optional] - The value for the blue multiplier, in the range from 0 to 1. The default value is 1.

alphaMultiplier:Number [optional] - The value for the alpha transparency multiplier, in the range from 0 to 1. The

default value is 1.

redOffset:Number [optional] - The offset for the red color channel value (-255 to 255). The default value is 0.

greenOffset:Number [optional] - The offset for the green color channel value (-255 to 255). The default value is 0.

blueOffset:Number [optional] - The offset for the blue color channel value (-255 to 255). The default value is 0.

alphaOffset:Number [optional] - The offset for alpha transparency channel value (-255 to 255). The default value is 0.

Example

The following example creates a ColorTransform object called greenTransform:

269FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var greenTransform:flash.geom.ColorTransform = new flash.geom.ColorTransform(0.5, 1.0, 0.5,
0.5, 10, 10, 10, 0);

The following example creates the ColorTransform object colorTrans_1 with the default constructor values. The fact

that colorTrans_1 and colorTrans_2 trace the same values is evidence that the default constructor values are used.

 import flash.geom.ColorTransform;

 var colorTrans_1:ColorTransform = new ColorTransform(1, 1, 1, 1, 0, 0, 0, 0);
 trace(colorTrans_1);
 //(redMultiplier=1, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=1, redOffset=0,
greenOffset=0, blueOffset=0, alphaOffset=0)

 var colorTrans_2:ColorTransform = new ColorTransform();
 trace(colorTrans_2);
 //(redMultiplier=1, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=1, redOffset=0,
greenOffset=0, blueOffset=0, alphaOffset=0)

concat (ColorTransform.concat method)
 public concat(second:ColorTransform) : Void

Applies a second, additive color transformation to the movie clip. The second set of transformation parameters is

applied to the colors of the movie clip after the first transformation has been completed.

Availability

Flash Lite 3.1

Parameters

second:ColorTransform - A second ColorTransform object to be combined with the current ColorTransform object.

Example

The following example concatenates the ColorTransform object colorTrans_2 to colorTrans_1 resulting in a full

red offset combined with a .5 alpha multiplier.

270FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.ColorTransform;
 import flash.geom.Transform;

 var colorTrans_1:ColorTransform = new ColorTransform(1, 1, 1, 1, 255, 0, 0, 0);
 trace(colorTrans_1);
 // (redMultiplier=1, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=1, redOffset=255,
greenOffset=0, blueOffset=0, alphaOffset=0)

 var colorTrans_2:ColorTransform = new ColorTransform(1, 1, 1, .5, 0, 0, 0, 0);
 trace(colorTrans_2);
 // (redMultiplier=1, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=0.5, redOffset=0,
greenOffset=0, blueOffset=0, alphaOffset=0)

 colorTrans_1.concat(colorTrans_2);
 trace(colorTrans_1);
 // (redMultiplier=1, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=0.5, redOffset=255,
greenOffset=0, blueOffset=0, alphaOffset=0)

 var rect:MovieClip = createRectangle(20, 80, 0x000000);
 var trans:Transform = new Transform(rect);
 trans.colorTransform = colorTrans_1;

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

greenMultiplier (ColorTransform.greenMultiplier property)
 public greenMultiplier : Number

A decimal value that is multiplied by the green channel value.

Availability

Flash Lite 3.1

Example

The following example creates the ColorTransform object colorTrans and adjusts its greenMultiplier from 1 to .5.

271FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.ColorTransform;
 import flash.geom.Transform;

 var colorTrans:ColorTransform = new ColorTransform();
 trace(colorTrans.greenMultiplier); // 1

 colorTrans.greenMultiplier = .5;
 trace(colorTrans.greenMultiplier); // .5

 var rect:MovieClip = createRectangle(20, 80, 0x00FF00), this;
 var trans:Transform = new Transform(rect);
 trans.colorTransform = colorTrans;

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

greenOffset (ColorTransform.greenOffset property)
 public greenOffset : Number

A number from -255 to 255 that is added to the green channel value after it has been multiplied by the

greenMultiplier value.

Availability

Flash Lite 2.0

Example

The following example creates the ColorTransform object colorTrans and adjusts its greenOffset value from 0 to 255.

272FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.ColorTransform;
 import flash.geom.Transform;

 var colorTrans:ColorTransform = new ColorTransform();
 trace(colorTrans.greenOffset); // 0

 colorTrans.greenOffset = 255;
 trace(colorTrans.greenOffset); // 255

 var rect:MovieClip = createRectangle(20, 80, 0x000000);
 var trans:Transform = new Transform(rect);
 trans.colorTransform = colorTrans;

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

redMultiplier (ColorTransform.redMultiplier property)
 public redMultiplier : Number

A decimal value that is multiplied by the red channel value.

Availability

Flash Lite 2.0

Example

The following example creates the ColorTransform object colorTrans and adjusts its redMultiplier value from 1

to .5.

273FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.ColorTransform;
 import flash.geom.Transform;

 var colorTrans:ColorTransform = new ColorTransform();
 trace(colorTrans.redMultiplier); // 1

 colorTrans.redMultiplier = .5;
 trace(colorTrans.redMultiplier); // .5

 var rect:MovieClip = createRectangle(20, 80, 0xFF0000);
 var trans:Transform = new Transform(rect);
 trans.colorTransform = colorTrans;

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

redOffset (ColorTransform.redOffset property)
 public redOffset : Number

A number from -255 to 255 that is added to the red channel value after it has been multiplied by the redMultiplier

value.

Availability

Flash Lite 2.0

Example

The following example creates the ColorTransform object colorTrans and adjusts its redOffset value from 0 to 255.

274FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.ColorTransform;
 import flash.geom.Transform;

 var colorTrans:ColorTransform = new ColorTransform();
 trace(colorTrans.redOffset); // 0

 colorTrans.redOffset = 255;
 trace(colorTrans.redOffset); // 255

 var rect:MovieClip = createRectangle(20, 80, 0x000000);
 var trans:Transform = new Transform(rect);
 trans.colorTransform = colorTrans;

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

rgb (ColorTransform.rgb property)
 public rgb : Number

The RGB color value for a ColorTransform object.

When you set this property, it changes the three color offset values (redOffset, greenOffset, and blueOffset), and

sets the three color multiplier values (redMultiplier, greenMultiplier, and blueMultiplier) to 0. The alpha

transparency multiplier and offset values do not change.

Pass a value for this property in the format: 0xRRGGBB. RR, GG, and BB each consist of two hexadecimal digits that

specify the offset of each color component. The 0x tells the ActionScript compiler that the number is a hexadecimal

value.

Availability

Flash Lite 2.0

Example

The following example creates the ColorTransform object colorTrans and adjusts its rgb value to 0xFF0000.

275FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.ColorTransform;
 import flash.geom.Transform;

 var colorTrans:ColorTransform = new ColorTransform();
 trace(colorTrans.rgb); // 0

 colorTrans.rgb = 0xFF0000;
 trace(colorTrans.rgb); // 16711680
 trace("0x" + colorTrans.rgb.toString(16)); // 0xff0000

 var rect:MovieClip = createRectangle(20, 80, 0x000000);
 var trans:Transform = new Transform(rect);
 trans.colorTransform = colorTrans;

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

toString (ColorTransform.toString method)
 public toString() : String

Formats and returns a string that describes all of the properties of the ColorTransform object.

Availability

Flash Lite 2.0

Returns

String A string that lists all of the properties of the ColorTransform object.

Example

The following example creates the ColorTransform object colorTrans and calls its toSting() method. This method

results in a string with the following format: (redMultiplier=RM, greenMultiplier=GM, blueMultiplier=BM,

alphaMultiplier=AM, redOffset=RO, greenOffset=GO, blueOffset=BO, alphaOffset=AO).

 import flash.geom.ColorTransform;

 var colorTrans:ColorTransform = new ColorTransform(1, 2, 3, 4, -255, -128, 128, 255);
 trace(colorTrans.toString());
 // (redMultiplier=1, greenMultiplier=2, blueMultiplier=3, alphaMultiplier=4, redOffset=-255,
greenOffset=-128, blueOffset=128, alphaOffset=255)

276FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Date

 Object
 |
 +-Date

 public class Date
 extends Object

The Date class lets you retrieve date and time values relative to Universal Time (Greenwich Mean Time, now called

universal time or UTC) or relative to the operating system on which Flash Lite player is running. The methods of the

Date class are not static but apply only to the individual Date object specified when the method is called. The

Date.UTC() method is an exception; it is a static method.

The Date class handles daylight saving time differently, depending on the operating system and Flash Player version.

Flash Player 6 and later versions handle daylight saving time on the following operating systems in these ways:

• Windows - the Date object automatically adjusts its output for daylight saving time. The Date object detects

whether daylight saving time is employed in the current locale, and if so, it detects the standard-to-daylight saving

time transition date and times. However, the transition dates currently in effect are applied to dates in the past and

the future, so the daylight saving time bias might calculate incorrectly for dates in the past when the locale had

different transition dates.

• Mac OS X - the Date object automatically adjusts its output for daylight saving time. The time zone information

database in Mac OS X is used to determine whether any date or time in the present or past should have a daylight

saving time bias applied.

• Mac OS 9 - the operating system provides only enough information to determine whether the current date and time

should have a daylight saving time bias applied. Accordingly, the date object assumes that the current daylight

saving time bias applies to all dates and times in the past or future.

Flash Player 5 handles daylight saving time on the following operating systems as follows:

• Windows - the U.S. rules for daylight saving time are always applied, which leads to incorrect transitions in Europe

and other areas that employ daylight saving time but have different transition times than the U.S. Flash correctly

detects whether daylight saving time is used in the current locale.

To call the methods of the Date class, you must first create a Date object using the constructor for the Date class,

described later in this section.

Availability

Flash Lite 2.0

Property summary

Properties inherited from class Object

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

277FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Constructor summary

Method summary

Signature Description

Date([yearOrTimevalue:Number],
[month:Number], [date:Number],
[hour:Number],
[minute:Number],
[second:Number],
[millisecond:Number])

Constructs a new Date object that holds the specified date and time.

Modifiers Signature Description

 getDate():Number Returns the day of the month (an integer from 1 to 31) of the

specified Date object according to local time.

 getDay():Number Returns the day of the week (0 for Sunday, 1 for Monday, and

so on) of the specified Date object according to local time.

 getFullYear() : Number Returns the full year (a four-digit number, such as 2000) of the

specified Date object, according to local time.

 getHours() : Number Returns the hour (an integer from 0 to 23) of the specified Date

object, according to local time.

 getLocaleLongDate() :
String

Returns a string representing the current date, in long form,

formatted according to the currently defined locale.

 getLocaleShortDate() :
String

Returns a string representing the current date, in short form,

formatted according to the currently defined locale.

 getLocaleTime() :
String

Returns a string representing the current time, formatted

according to the currently defined locale.

 getMilliseconds() :
Number

Returns the milliseconds (an integer from 0 to 999) of the

specified Date object, according to local time.

 getMinutes() : Number Returns the minutes (an integer from 0 to 59) of the specified

Date object, according to local time.

 getMonth() : Number Returns the month (0 for January, 1 for February, and so on) of

the specified Date object, according to local time.

 getSeconds() : Number Returns the seconds (an integer from 0 to 59) of the specified

Date object, according to local time.

 getTime() : Number Returns the number of milliseconds since midnight January 1,

1970, universal time, for the specified Date object.

 getTimezoneOffset() :
Number

Returns the difference, in minutes, between the computer's

local time and universal time.

 getUTCDate() : Number Returns the day of the month (an integer from 1 to 31) in the

specified Date object, according to universal time.

 getUTCDay() : Number Returns the day of the week (0 for Sunday, 1 for Monday, and

so on) of the specified Date object, according to universal time.

 getUTCFullYear() :
Number

Returns the four-digit year of the specified Date object,

according to universal time.

 getUTCHours() :
Number

Returns the hour (an integer from 0 to 23) of the specified Date

object, according to universal time.

278FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 getUTCMilliseconds() :
Number

Returns the milliseconds (an integer from 0 to 999) of the

specified Date object, according to universal time.

 getUTCMinutes() :
Number

Returns the minutes (an integer from 0 to 59) of the specified

Date object, according to universal time.

 getUTCMonth() :
Number

Returns the month (0 [January] to 11 [December]) of the

specified Date object, according to universal time.

 getUTCSeconds() :
Number

Returns the seconds (an integer from 0 to 59) of the specified

Date object, according to universal time.

 getUTCYear() : Number Returns the year of this Date according to universal time (UTC).

 getYear() : Number Returns the year of the specified Date object, according to local

time.

 setDate(date:Number)
: Number

Sets the day of the month for the specified Date object,

according to local time, and returns the new time in

milliseconds.

 setFullYear(year:Numbe

r, [month:Number],
[date:Number]) :
Number

Sets the year of the specified Date object, according to local

time and returns the new time in milliseconds.

 setHours(hour:Number)
: Number

Sets the hours for the specified Date object according to local

time and returns the new time in milliseconds.

 setMilliseconds(millise
cond:Number) :
Number

Sets the milliseconds for the specified Date object according to

local time and returns the new time in milliseconds.

 setMinutes(minute:Nu

mber) : Number

Sets the minutes for a specified Date object according to local

time and returns the new time in milliseconds.

 setMonth(month:Numbe

r, [date:Number]) :
Number

Sets the month for the specified Date object in local time and

returns the new time in milliseconds.

 setSeconds(second:Nu

mber) : Number

Sets the seconds for the specified Date object in local time and

returns the new time in milliseconds.

 setTime(millisecond:
Number) : Number

Sets the date for the specified Date object in milliseconds since

midnight on January 1, 1970, and returns the new time in

milliseconds.

 setUTCDate(date:Numb

er) : Number

Sets the date for the specified Date object in universal time and

returns the new time in milliseconds.

 setUTCFullYear(year:Nu

mber,
[month:Number],
[date:Number]) :
Number

Sets the year for the specified Date object (my_date) in

universal time and returns the new time in milliseconds.

 setUTCHours(hour:Num

ber,
[minute:Number],
[second:Number],
[millisecond:Number

]) : Number

Sets the hour for the specified Date object in universal time

and returns the new time in milliseconds.

Modifiers Signature Description

279FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Methods inherited from class Object

Date constructor
 public Date([yearOrTimevalue:Number], [month:Number], [date:Number], [hour:Number],
[minute:Number], [second:Number], [millisecond:Number])

Constructs a new Date object that holds the specified date and time.

The Date() constructor takes up to seven parameters to specify a date and time to the millisecond. Alternatively, you

can pass a single value to the Date() constructor that indicates a time value based on the number of milliseconds since

January 1, 1970 0:00:000 GMT. Or you can specify no parameters, and the Date() date object is assigned the current

date and time.

The following code shows several different ways to create a Date object:

 setUTCMilliseconds(mill
isecond:Number) :
Number

Sets the milliseconds for the specified Date object in universal

time and returns the new time in milliseconds.

 setUTCMinutes(minute:
Number,
[second:Number],
[millisecond:Number

]) : Number

Sets the minute for the specified Date object in universal time

and returns the new time in milliseconds.

 setUTCMonth(month:Nu

mber,
[date:Number]) :
Number

Sets the month, and optionally the day, for the specified Date

object in universal time and returns the new time in

milliseconds.

 setUTCSeconds(second:
Number,
[millisecond:Number

]) : Number

Sets the seconds for the specified Date object in universal time

and returns the new time in milliseconds.

 setYear(year:Number)
: Number

Sets the year for the specified Date object in local time and

returns the new time in milliseconds.

 toString() : String Returns a string value for the specified date object in a

readable format.

static UTC(year:Number,
month:Number,
[date:Number],
[hour:Number],
[minute:Number],
[second:Number],
[millisecond:Number

]) : Number

Returns the number of milliseconds between midnight on

January 1, 1970, universal time, and the time specified in the

parameters.

 valueOf() : Number Returns the number of milliseconds since midnight January 1,

1970, universal time, for this Date.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method)watch (Object.watch method)

Modifiers Signature Description

280FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var d1:Date = new Date();
 var d3:Date = new Date(2000, 0, 1);
 var d4:Date = new Date(65, 2, 6, 9, 30, 15, 0);
 var d5:Date = new Date(-14159025000);

In the first line of code, a Date object is set to the time when the assignment statement is run.

In the second line, a Date object is created with year, month, and date parameters passed to it, resulting in the time

0:00:00 GMT January 1, 2000.

In the third line, a Date object is created with year, month, and date parameters passed to it, resulting in the time

09:30:15 GMT (+ 0 milliseconds) March 6, 1965. Note that since the year parameter is specified as a two-digit integer,

it is interpreted as 1965.

In the fourth line, only one parameter is passed, which is a time value representing the number of milliseconds before

or after 0:00:00 GMT January 1, 1970; since the value is negative, it represents a time before 0:00:00 GMT January 1,

1970, and in this case the time is 02:56:15 GMT July, 21 1969.

Availability

Flash Lite 2.0

Parameters

yearOrTimevalue:Number [optional] - If other parameters are specified, this number represents a year (such as

1965); otherwise, it represents a time value. If the number represents a year, a value of 0 to 99 indicates 1900 through

1999; otherwise all four digits of the year must be specified. If the number represents a time value (no other parameters

are specified), it is the number of milliseconds before or after 0:00:00 GMT January 1, 1970; a negative value represents

a time before 0:00:00 GMT January 1, 1970, and a positive value represents a time after.

month:Number [optional] - An integer from 0 (January) to 11 (December).

date:Number [optional] - An integer from 1 to 31.

hour:Number [optional] - An integer from 0 (midnight) to 23 (11 p.m.).

minute:Number [optional] - An integer from 0 to 59.

second:Number [optional] - An integer from 0 to 59.

millisecond:Number [optional] - An integer from 0 to 999 of milliseconds.

Example

The following example retrieves the current date and time:

 var now_date:Date = new Date();

The following example creates a new Date object for Mary's birthday, August 12, 1974 (because the month parameter

is zero-based, the example uses 7 for the month, not 8):

 var maryBirthday:Date = new Date (74, 7, 12);

The following example creates a new Date object and concatenates the returned values of Date.getMonth(),

Date.getDate(), and Date.getFullYear():

 var today_date:Date = new Date();
 var date_str:String =
((today_date.getMonth()+1)+"/"+today_date.getDate()+"/"+today_date.getFullYear());
 trace(date_str); // displays current date in United States date format

281FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

getMonth (Date.getMonth method), getDate (Date.getDate method), getFullYear (Date.getFullYear

method)

getDate (Date.getDate method)
 public getDate() : Number

Returns the day of the month (an integer from 1 to 31) of the specified Date object according to local time. Local time

is determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example creates a new Date object and concatenates the returned values of Date.getMonth(),

Date.getDate(), and Date.getFullYear():

 var today_date:Date = new Date();
 var date_str:String =
(today_date.getDate()+"/"+(today_date.getMonth()+1)+"/"+today_date.getFullYear());
 trace(date_str); // displays current date in United States date format

See also

getMonth (Date.getMonth method), getFullYear (Date.getFullYear method)

getDay (Date.getDay method)
 public getDay() : Number

Returns the day of the week (0 for Sunday, 1 for Monday, and so on) of the specified Date object according to local

time. Local time is determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Returns

Number -- An integer representing the day of the week.

Example

The following example creates a new Date object and uses getDay() to determine the current day of the week:

 var dayOfWeek_array:Array = new Array("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday");
 var today_date:Date = new Date();
 var day_str:String = dayOfWeek_array[today_date.getDay()];
 trace("Today is "+day_str);

282FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

getFullYear (Date.getFullYear method)
 public getFullYear() : Number

Returns the full year (a four-digit number, such as 2000) of the specified Date object, according to local time. Local

time is determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Returns

Number - An integer representing the year.

Example

The following example uses the constructor to create a Date object. The trace statement shows the value returned by

the getFullYear() method.

 var my_date:Date = new Date();
 trace(my_date.getYear()); // displays 104
 trace(my_date.getFullYear()); // displays current year

getHours (Date.getHours method)
 public getHours() : Number

Returns the hour (an integer from 0 to 23) of the specified Date object, according to local time. Local time is

determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example uses the constructor to create a Date object based on the current time and uses the getHours()

method to display hour values from that object:

283FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_date:Date = new Date();
 trace(my_date.getHours());

 var my_date:Date = new Date();
 var hourObj:Object = getHoursAmPm(my_date.getHours());
 trace(hourObj.hours);
 trace(hourObj.ampm);

 function getHoursAmPm(hour24:Number):Object {
 var returnObj:Object = new Object();
 returnObj.ampm = (hour24<12) ? "AM" : "PM";
 var hour12:Number = hour24%12;
 if (hour12 == 0) {
 hour12 = 12;
 }
 returnObj.hours = hour12;
 return returnObj;
 }

getLocaleLongDate (Date.getLocaleLongDate method)
 public getLocaleLongDate() : String

Returns a string representing the current date, in long form, formatted according to the currently defined locale.

Note: The format of the date depends on the mobile device and the locale.

Availability

Flash Lite 2.0

Returns

String - A string representing the current date, in long form, formatted according to the currently defined locale.

Example

The following example uses the constructor to create a Date object based on the current time. It also uses the

getLocaleLongDate() method to return the current date, in long form, formatted according to the currently defined

locale, as follows:

 var my_date:Date = new Date();
 trace(my_date.getLocaleLongDate());

The following are sample return values that getLocaleLongDate() returns:

 October 16, 2005
 16 October 2005

getLocaleShortDate (Date.getLocaleShortDate method)
 public getLocaleShortDate() : String

Returns a string representing the current date, in short form, formatted according to the currently defined locale.

Note: The format of the date depends on the mobile device and the locale.

Availability

Flash Lite 2.0

284FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns

String - A string representing the current date, in short form, formatted according to the currently defined locale.

Example

The following example uses the constructor to create a Date object based on the current time. It also uses the

getLocaleShortDate() method to return the current date, in short form, formatted according to the currently

defined locale, as follows:

 var my_date:Date = new Date();
 trace(my_date.getLocaleShortDate());

The following are sample return values that getLocaleLongDate() returns:

 10/16/2005
 16-10-2005

getLocaleTime (Date.getLocaleTime method)
 public getLocaleTime() : String

Returns a string representing the current time, formatted according to the currently defined locale.

Note: The format of the date depends on the mobile device and the locale.

Availability

Flash Lite 2.0

Returns

String - A string representing the current time, formatted according to the currently defined locale.

Example

The following example uses the constructor to create a Date object based on the current time. It also uses the

getLocaleTime() method to return the time of the current locale, as follows:

 var my_date:Date = new Date();
 trace(my_date.getLocaleTime());

The following are sample return values that getLocaleTime() returns:

 6:10:44 PM
 18:10:44

getMilliseconds (Date.getMilliseconds method)
 public getMilliseconds() : Number

Returns the milliseconds (an integer from 0 to 999) of the specified Date object, according to local time. Local time is

determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Returns

Number An integer.

285FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example uses the constructor to create a Date object based on the current time and uses the

getMilliseconds() method to return the milliseconds value from that object:

 var my_date:Date = new Date();
 trace(my_date.getMilliseconds());

getMinutes (Date.getMinutes method)
 public getMinutes() : Number

Returns the minutes (an integer from 0 to 59) of the specified Date object, according to local time. Local time is

determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example uses the constructor to create a Date object based on the current time, and uses the

getMinutes() method to return the minutes value from that object:

 var my_date:Date = new Date();
 trace(my_date.getMinutes());

getMonth (Date.getMonth method)
 public getMonth() : Number

Returns the month (0 for January, 1 for February, and so on) of the specified Date object, according to local time. Local

time is determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example uses the constructor to create a Date object based on the current time and uses the getMonth()

method to return the month value from that object:

 var my_date:Date = new Date();
 trace(my_date.getMonth());

The following example uses the constructor to create a Date object based on the current time and uses the getMonth()

method to display the current month as a numeric value, and display the name of the month.

286FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_date:Date = new Date();
 trace(my_date.getMonth());
 trace(getMonthAsString(my_date.getMonth()));
 function getMonthAsString(month:Number):String {
 var monthNames_array:Array = new Array("January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November", "December");
 return monthNames_array[month];
 }

getSeconds (Date.getSeconds method)
 public getSeconds() : Number

Returns the seconds (an integer from 0 to 59) of the specified Date object, according to local time. Local time is

determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example uses the constructor to create a Date object based on the current time and uses the

getSeconds() method to return the seconds value from that object:

 var my_date:Date = new Date();
 trace(my_date.getSeconds());

getTime (Date.getTime method)
 public getTime() : Number

Returns the number of milliseconds since midnight January 1, 1970, universal time, for the specified Date object. Use

this method to represent a specific instant in time when comparing two or more Date objects.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example uses the constructor to create a Date object based on the current time, and uses the getTime()

method to return the number of milliseconds since midnight January 1, 1970:

 var my_date:Date = new Date();
 trace(my_date.getTime());

getTimezoneOffset (Date.getTimezoneOffset method)
 public getTimezoneOffset() : Number

287FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns the difference, in minutes, between the computer's local time and universal time.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example returns the difference between the local daylight saving time for San Francisco and universal

time. Daylight saving time is factored into the returned result only if the date defined in the Date object occurs during

daylight saving time. The output in this example is 420 minutes and displays in the Output panel (7 hours * 60

minutes/hour = 420 minutes). This example is Pacific Daylight Time (PDT, GMT-0700). The result varies depending

on location and time of year.

 var my_date:Date = new Date();
 trace(my_date.getTimezoneOffset());

getUTCDate (Date.getUTCDate method)
 public getUTCDate() : Number

Returns the day of the month (an integer from 1 to 31) in the specified Date object, according to universal time.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example creates a new Date object and uses Date.getUTCDate() and Date.getDate(). The value

returned by Date.getUTCDate() can differ from the value returned by Date.getDate(), depending on the

relationship between your local time zone and universal time.

 var my_date:Date = new Date(2004,8,25);
 trace(my_date.getUTCDate()); // output: 25

See also

getDate (Date.getDate method)

getUTCDay (Date.getUTCDay method)
 public getUTCDay() : Number

Returns the day of the week (0 for Sunday, 1 for Monday, and so on) of the specified Date object, according to universal time.

Availability

Flash Lite 2.0

288FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns

Number An integer.

Example

The following example creates a new Date object and uses Date.getUTCDay() and Date.getDay(). The value

returned by Date.getUTCDay() can differ from the value returned by Date.getDay(), depending on the

relationship between your local time zone and universal time.

 var today_date:Date = new Date();
 trace(today_date.getDay()); // output will be based on local timezone
 trace(today_date.getUTCDay()); // output will equal getDay() plus or minus one

See also

getDay (Date.getDay method)

getUTCFullYear (Date.getUTCFullYear method)
 public getUTCFullYear() : Number

Returns the four-digit year of the specified Date object, according to universal time.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example creates a new Date object and uses Date.getUTCFullYear() and Date.getFullYear(). The

value returned by Date.getUTCFullYear() may differ from the value returned by Date.getFullYear() if today's

date is December 31 or January 1, depending on the relationship between your local time zone and universal time.

 var today_date:Date = new Date();
 trace(today_date.getFullYear()); // display based on local timezone
 trace(today_date.getUTCFullYear()); // displays getYear() plus or minus 1

See also

getFullYear (Date.getFullYear method)

getUTCHours (Date.getUTCHours method)
 public getUTCHours() : Number

Returns the hour (an integer from 0 to 23) of the specified Date object, according to universal time.

Availability

Flash Lite 2.0

Returns

Number - An integer.

289FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a new Date object and uses Date.getUTCHours() and Date.getHours(). The value

returned by Date.getUTCHours() may differ from the value returned by Date.getHours(), depending on the

relationship between your local time zone and universal time.

 var today_date:Date = new Date();
 trace(today_date.getHours()); // display based on local timezone
 trace(today_date.getUTCHours()); // display equals getHours() plus or minus 12

See also

getHours (Date.getHours method)

getUTCMilliseconds (Date.getUTCMilliseconds method)
 public getUTCMilliseconds() : Number

Returns the milliseconds (an integer from 0 to 999) of the specified Date object, according to universal time.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example creates a new Date object and uses getUTCMilliseconds() to return the milliseconds value

from the Date object.

 var today_date:Date = new Date();
 trace(today_date.getUTCMilliseconds());

getUTCMinutes (Date.getUTCMinutes method)
 public getUTCMinutes() : Number

Returns the minutes (an integer from 0 to 59) of the specified Date object, according to universal time.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example creates a new Date object and uses getUTCMinutes() to return the minutes value from the

Date object:

 var today_date:Date = new Date();
 trace(today_date.getUTCMinutes());

290FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

getUTCMonth (Date.getUTCMonth method)
 public getUTCMonth() : Number

Returns the month (0 [January] to 11 [December]) of the specified Date object, according to universal time.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example creates a new Date object and uses Date.getUTCMonth() and Date.getMonth(). The value

returned by Date.getUTCMonth() can differ from the value returned by Date.getMonth() if today's date is the first

or last day of a month, depending on the relationship between your local time zone and universal time.

 var today_date:Date = new Date();
 trace(today_date.getMonth()); // output based on local timezone
 trace(today_date.getUTCMonth()); // output equals getMonth() plus or minus 1

See also

getMonth (Date.getMonth method)

getUTCSeconds (Date.getUTCSeconds method)
 public getUTCSeconds() : Number

Returns the seconds (an integer from 0 to 59) of the specified Date object, according to universal time.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example creates a new Date object and uses getUTCSeconds() to return the seconds value from the

Date object:

 var today_date:Date = new Date();
 trace(today_date.getUTCSeconds());

getUTCYear (Date.getUTCYear method)
 public getUTCYear() : Number

Returns the year of this Date according to universal time (UTC). The year is the full year minus 1900. For example,

the year 2000 is represented as 100.

Availability

Flash Lite 2.0

291FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns

Number -

Example

The following example creates a new Date object and uses Date.getUTCFullYear() and Date.getFullYear(). The

value returned by Date.getUTCFullYear() may differ from the value returned by Date.getFullYear() if today's

date is December 31 or January 1, depending on the relationship between your local time zone and universal time.

 var today_date:Date = new Date();

 trace(today_date.getFullYear()); // display based on local timezone

 trace(today_date.getUTCFullYear()); // displays getYear() plus or minus 1

getYear (Date.getYear method)
 public getYear() : Number

Returns the year of the specified Date object, according to local time. Local time is determined by the operating system

on which Flash Lite player is running. The year is the full year minus 1900. For example, the year 2000 is represented

as 100.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example creates a Date object with the month and year set to May 2004. The Date.getYear() method

returns 104, and Date.getFullYear() returns 2004:

 var today_date:Date = new Date(2004,4);
 trace(today_date.getYear()); // output: 104
 trace(today_date.getFullYear()); // output: 2004

See also

getFullYear (Date.getFullYear method)

setDate (Date.setDate method)
 public setDate(date:Number) : Number

Sets the day of the month for the specified Date object, according to local time, and returns the new time in

milliseconds. Local time is determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Parameters

date:Number - An integer from 1 to 31.

292FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the date to May 15, 2004, and uses Date.setDate()

to change the date to May 25, 2004:

 var today_date:Date = new Date(2004,4,15);
 trace(today_date.getDate()); //displays 15
 today_date.setDate(25);
 trace(today_date.getDate()); //displays 25

setFullYear (Date.setFullYear method)
 public setFullYear(year:Number, [month:Number], [date:Number]) : Number

Sets the year of the specified Date object, according to local time and returns the new time in milliseconds. If the month

and date parameters are specified, they are set to local time. Local time is determined by the operating system on

which Flash Lite player is running.

Calling this method does not modify the other fields of the specified Date object but Date.getUTCDay() and

Date.getDay() can report a new value if the day of the week changes as a result of calling this method.

Availability

Flash Lite 2.0

Parameters

year:Number - A four-digit number specifying a year. Two-digit numbers do not represent four-digit years; for

example, 99 is not the year 1999, but the year 99.

month:Number [optional] - An integer from 0 (January) to 11 (December). If you omit this parameter, the month

field of the specified Date object will not be modified.

date:Number [optional] - A number from 1 to 31. If you omit this parameter, the date field of the specified Date object

will not be modified.

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the date to May 15, 2004, and uses

Date.setFullYear() to change the date to May 15, 2002:

 var my_date:Date = new Date(2004,4,15);
 trace(my_date.getFullYear()); //output: 2004
 my_date.setFullYear(2002);
 trace(my_date.getFullYear()); //output: 2002

See also

getUTCDay (Date.getUTCDay method), getDay (Date.getDay method)

293FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

setHours (Date.setHours method)
 public setHours(hour:Number) : Number

Sets the hours for the specified Date object according to local time and returns the new time in milliseconds. Local time

is determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Parameters

hour:Number - An integer from 0 (midnight) to 23 (11 p.m.).

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the time and date to 8:00 a.m. on May 15, 2004, and

uses Date.setHours() to change the time to 4:00 p.m.:

 var my_date:Date = new Date(2004,4,15,8);
 trace(my_date.getHours()); // output: 8
 my_date.setHours(16);
 trace(my_date.getHours()); // output: 16

setMilliseconds (Date.setMilliseconds method)
 public setMilliseconds(millisecond:Number) : Number

Sets the milliseconds for the specified Date object according to local time and returns the new time in milliseconds.

Local time is determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Parameters

millisecond:Number - An integer from 0 to 999.

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the date to 8:30 a.m. on May 15, 2004 with the

milliseconds value set to 250, and then uses Date.setMilliseconds() to change the milliseconds value to 575:

 var my_date:Date = new Date(2004,4,15,8,30,0,250);
 trace(my_date.getMilliseconds()); // output: 250
 my_date.setMilliseconds(575);
 trace(my_date.getMilliseconds()); // output: 575

294FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

setMinutes (Date.setMinutes method)
 public setMinutes(minute:Number) : Number

Sets the minutes for a specified Date object according to local time and returns the new time in milliseconds. Local

time is determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Parameters

minute:Number - An integer from 0 to 59.

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the time and date to 8:00 a.m. on May 15, 2004, and

then uses Date.setMinutes() to change the time to 8:30 a.m.:

 var my_date:Date = new Date(2004,4,15,8,0);
 trace(my_date.getMinutes()); // output: 0
 my_date.setMinutes(30);
 trace(my_date.getMinutes()); // output: 30

setMonth (Date.setMonth method)
 public setMonth(month:Number, [date:Number]) : Number

Sets the month for the specified Date object in local time and returns the new time in milliseconds. Local time is

determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Parameters

month:Number - An integer from 0 (January) to 11 (December).

date:Number [optional] - An integer from 1 to 31. If you omit this parameter, the date field of the specified Date object

will not be modified.

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the date to May 15, 2004, and uses Date.setMonth()

to change the date to June 15, 2004:

 var my_date:Date = new Date(2004,4,15);
 trace(my_date.getMonth()); //output: 4
 my_date.setMonth(5);
 trace(my_date.getMonth()); //output: 5

295FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

setSeconds (Date.setSeconds method)
 public setSeconds(second:Number) : Number

Sets the seconds for the specified Date object in local time and returns the new time in milliseconds. Local time is

determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Parameters

second:Number - An integer from 0 to 59.

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the time and date to 8:00:00 a.m. on May 15, 2004,

and uses Date.setSeconds() to change the time to 8:00:45 a.m.:

 var my_date:Date = new Date(2004,4,15,8,0,0);
 trace(my_date.getSeconds()); // output: 0
 my_date.setSeconds(45);
 trace(my_date.getSeconds()); // output: 45

setTime (Date.setTime method)
 public setTime(millisecond:Number) : Number

Sets the date for the specified Date object in milliseconds since midnight on January 1, 1970, and returns the new time

in milliseconds.

Availability

Flash Lite 2.0

Parameters

millisecond:Number - A number; an integer value where 0 is midnight on January 1, universal time.

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the time and date to 8:00 a.m. on May 15, 2004, and

uses Date.setTime() to change the time to 8:30 a.m.:

296FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_date:Date = new Date(2004,4,15,8,0,0);
 var myDate_num:Number = my_date.getTime(); // convert my_date to milliseconds
 myDate_num += 30 * 60 * 1000; // add 30 minutes in milliseconds
 my_date.setTime(myDate_num); // set my_date Date object 30 minutes forward
 trace(my_date.getFullYear()); // output: 2004
 trace(my_date.getMonth()); // output: 4
 trace(my_date.getDate()); // output: 15
 trace(my_date.getHours()); // output: 8
 trace(my_date.getMinutes()); // output: 30

setUTCDate (Date.setUTCDate method)
 public setUTCDate(date:Number) : Number

Sets the date for the specified Date object in universal time and returns the new time in milliseconds. Calling this

method does not modify the other fields of the specified Date object, but Date.getUTCDay() and Date.getDay() can

report a new value if the day of the week changes as a result of calling this method.

Availability

Flash Lite 2.0

Parameters

date:Number - A number; an integer from 1 to 31.

Returns

Number - An integer.

Example

The following example initially creates a new Date object with today's date, uses Date.setUTCDate() to change the

date value to 10, and changes it again to 25:

 var my_date:Date = new Date();
 my_date.setUTCDate(10);
 trace(my_date.getUTCDate()); // output: 10
 my_date.setUTCDate(25);
 trace(my_date.getUTCDate()); // output: 25

See also

getUTCDay (Date.getUTCDay method), getDay (Date.getDay method)

setUTCFullYear (Date.setUTCFullYear method)
 public setUTCFullYear(year:Number, [month:Number], [date:Number]) : Number

Sets the year for the specified Date object (my_date) in universal time and returns the new time in milliseconds.

Optionally, this method can also set the month and date represented by the specified Date object. Calling this method

does not modify the other fields of the specified Date object, but Date.getUTCDay() and Date.getDay() can report

a new value if the day of the week changes as a result of calling this method.

Availability

Flash Lite 2.0

297FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

year:Number - An integer that represents the year specified as a full four-digit year, such as 2000.

month:Number [optional] - An integer from 0 (January) to 11 (December). If you omit this parameter, the month

field of the specified Date object will not be modified.

date:Number [optional] - An integer from 1 to 31. If you omit this parameter, the date field of the specified Date object

will not be modified.

Returns

Number - An integer.

Example

The following example initially creates a new Date object with today's date, uses Date.setUTCFullYear() to change

the year value to 2001, and changes the date to May 25, 1995:

 var my_date:Date = new Date();
 my_date.setUTCFullYear(2001);
 trace(my_date.getUTCFullYear()); // output: 2001
 my_date.setUTCFullYear(1995, 4, 25);
 trace(my_date.getUTCFullYear()); // output: 1995
 trace(my_date.getUTCMonth()); // output: 4
 trace(my_date.getUTCDate()); // output: 25

See also

getUTCDay (Date.getUTCDay method), getDay (Date.getDay method)

setUTCHours (Date.setUTCHours method)
 public setUTCHours(hour:Number, [minute:Number], [second:Number], [millisecond:Number]) :
Number

Sets the hour for the specified Date object in universal time and returns the new time in milliseconds.

Availability

Flash Lite 2.0

Parameters

hour:Number - A number; an integer from 0 (midnight) to 23 (11 p.m.).

minute:Number [optional] - A number; an integer from 0 to 59. If you omit this parameter, the minutes field of the

specified Date object will not be modified.

second:Number [optional] - A number; an integer from 0 to 59. If you omit this parameter, the seconds field of the

specified Date object will not be modified.

millisecond:Number [optional] - A number; an integer from 0 to 999. If you omit this parameter, the milliseconds

field of the specified Date object will not be modified.

Returns

Number - An integer.

298FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example initially creates a new Date object with today's date, uses Date.setUTCHours() to change the

time to 8:30 a.m., and changes the time again to 5:30:47 p.m.:

 var my_date:Date = new Date();
 my_date.setUTCHours(8,30);
 trace(my_date.getUTCHours()); // output: 8
 trace(my_date.getUTCMinutes()); // output: 30
 my_date.setUTCHours(17,30,47);
 trace(my_date.getUTCHours()); // output: 17
 trace(my_date.getUTCMinutes()); // output: 30
 trace(my_date.getUTCSeconds()); // output: 47

setUTCMilliseconds (Date.setUTCMilliseconds method)
 public setUTCMilliseconds(millisecond:Number) : Number

Sets the milliseconds for the specified Date object in universal time and returns the new time in milliseconds.

Availability

Flash Lite 2.0

Parameters

millisecond:Number - An integer from 0 to 999.

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the date to 8:30 a.m. on May 15, 2004 with the

milliseconds value set to 250, and uses Date.setUTCMilliseconds() to change the milliseconds value to 575:

 var my_date:Date = new Date(2004,4,15,8,30,0,250);
 trace(my_date.getUTCMilliseconds()); // output: 250
 my_date.setUTCMilliseconds(575);
 trace(my_date.getUTCMilliseconds()); // output: 575

setUTCMinutes (Date.setUTCMinutes method)
 public setUTCMinutes(minute:Number, [second:Number], [millisecond:Number]) : Number

Sets the minute for the specified Date object in universal time and returns the new time in milliseconds.

Availability

Flash Lite 2.0

Parameters

minute:Number - An integer from 0 to 59.

second:Number [optional] - An integer from 0 to 59. If you omit this parameter, the seconds field of the specified

Date object will not be modified.

299FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

millisecond:Number [optional] - An integer from 0 to 999. If you omit this parameter, the milliseconds field of the

specified Date object will not be modified.

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the time and date to 8:00 a.m. on May 15, 2004, and

uses Date.setUTCMinutes() to change the time to 8:30 a.m.:

 var my_date:Date = new Date(2004,4,15,8,0);
 trace(my_date.getUTCMinutes()); // output: 0
 my_date.setUTCMinutes(30);
 trace(my_date.getUTCMinutes()); // output: 30

setUTCMonth (Date.setUTCMonth method)
 public setUTCMonth(month:Number, [date:Number]) : Number

Sets the month, and optionally the day, for the specified Date object in universal time and returns the new time in

milliseconds. Calling this method does not modify the other fields of the specified Date object, but Date.getUTCDay()

and Date.getDay() might report a new value if the day of the week changes as a result of specifying a value for the

date parameter.

Availability

Flash Lite 2.0

Parameters

month:Number - An integer from 0 (January) to 11 (December).

date:Number [optional] - An integer from 1 to 31. If you omit this parameter, the date field of the specified Date object

will not be modified.

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the date to May 15, 2004, and uses Date.setMonth()

to change the date to June 15, 2004:

 var today_date:Date = new Date(2004,4,15);
 trace(today_date.getUTCMonth()); // output: 4
 today_date.setUTCMonth(5);
 trace(today_date.getUTCMonth()); // output: 5

See also

getUTCDay (Date.getUTCDay method), getDay (Date.getDay method)

setUTCSeconds (Date.setUTCSeconds method)
 public setUTCSeconds(second:Number, [millisecond:Number]) : Number

300FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Sets the seconds for the specified Date object in universal time and returns the new time in milliseconds.

Availability

Flash Lite 2.0

Parameters

second:Number - An integer from 0 to 59.

millisecond:Number [optional] - An integer from 0 to 999. If you omit this parameter, the milliseconds field of the

specified Date object will not be modified.

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the time and date to 8:00:00 a.m. on May 15, 2004,

and uses Date.setSeconds() to change the time to 8:30:45 a.m.:

 var my_date:Date = new Date(2004,4,15,8,0,0);
 trace(my_date.getUTCSeconds()); // output: 0
 my_date.setUTCSeconds(45);
 trace(my_date.getUTCSeconds()); // output: 45

setYear (Date.setYear method)
 public setYear(year:Number) : Number

Sets the year for the specified Date object in local time and returns the new time in milliseconds. Local time is

determined by the operating system on which Flash Lite player is running.

Availability

Flash Lite 2.0

Parameters

year:Number - A number that represents the year. If year is an integer between 0 and 99, setYear sets the year at

1900 + year; otherwise, the year is the value of the year parameter.

Returns

Number - An integer.

Example

The following example creates a new Date object with the date set to May 25, 2004, uses setYear() to change the year

to 1999, and changes the year to 2003:

301FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_date:Date = new Date(2004,4,25);
 trace(my_date.getYear()); // output: 104
 trace(my_date.getFullYear()); // output: 2004
 my_date.setYear(99);
 trace(my_date.getYear()); // output: 99
 trace(my_date.getFullYear()); // output: 1999
 my_date.setYear(2003);
 trace(my_date.getYear()); // output: 103
 trace(my_date.getFullYear()); // output: 2003

toString (Date.toString method)
 public toString() : String

Returns a string value for the specified date object in a readable format.

Availability

Flash Lite 2.0

Returns

String - A string.

Example

The following example returns the information in the dateOfBirth_date Date object as a string. The output from the

trace statements are in local time and vary accordingly. For Pacific Daylight Time the output is seven hours earlier than

universal time: Mon Aug 12 18:15:00 GMT-0700 1974.

 var dateOfBirth_date:Date = new Date(74, 7, 12, 18, 15);
 trace (dateOfBirth_date);
 trace (dateOfBirth_date.toString());

UTC (Date.UTC method)
 public static UTC(year:Number, month:Number, [date:Number], [hour:Number], [minute:Number],
[second:Number], [millisecond:Number]) : Number

Returns the number of milliseconds between midnight on January 1, 1970, universal time, and the time specified in

the parameters. This is a static method that is invoked through the Date object constructor, not through a specific Date

object. This method lets you create a Date object that assumes universal time, whereas the Date constructor assumes

local time.

Availability

Flash Lite 2.0

Parameters

year:Number - A four-digit integer that represents the year (for example, 2000).

month:Number - An integer from 0 (January) to 11 (December).

date:Number [optional] - An integer from 1 to 31.

hour:Number [optional] - An integer from 0 (midnight) to 23 (11 p.m.).

minute:Number [optional] - An integer from 0 to 59.

302FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

second:Number [optional] - An integer from 0 to 59.

millisecond:Number [optional] - An integer from 0 to 999.

Returns

Number - An integer.

Example

The following example creates a new maryBirthday_date Date object defined in universal time. This is the universal

time variation of the example used for the new Date constructor method. The output is in local time and varies

accordingly. For Pacific Daylight Time the output is seven hours earlier than UTC: Sun Aug 11 17:00:00 GMT-0700

1974.

 var maryBirthday_date:Date = new Date(Date.UTC(1974, 7, 12));
 trace(maryBirthday_date);

valueOf (Date.valueOf method)
 public valueOf() : Number

Returns the number of milliseconds since midnight January 1, 1970, universal time, for this Date.

Availability

Flash Lite 2.0

Returns

Number - The number of milliseconds.

Error

 Object
 |
 +-Error

 public class Error
 extends Object

Contains information about an error that occurred in a script. You create an Error object using the Error constructor

function. Typically, you throw a new Error object from within a try code block that is then caught by a catch or

finally code block.

You can also create a subclass of the Error class and throw instances of that subclass.

Availability

Flash Lite 2.0

303FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Property summary

Properties inherited from class Object

Constructor summary

Method summary

Methods inherited from class Object

Error constructor
 public Error([message:String])

Creates a new Error object. If you pass a message parameter, its value is assigned to the Error.message property.

Availability

Flash Lite 2.0

Parameters

message:String [optional] - A string associated with the Error object.

Example

In the following example, a function throws an error (with a specified message) if the two strings that are passed to it

are not identical:

Modifiers Property Description

 message:String Contains the message associated with the Error object.

 name:String Contains the name of the Error object.

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

Signature Description

Error([message:String

])
Creates a new Error object.

Modifiers Signature Description

 toString() : String Returns the string "Error" by default or the value contained in

Error.message, if defined.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method)watch (Object.watch method)

304FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 function compareStrings(str1_str:String, str2_str:String):Void {
 if (str1_str != str2_str) {
 throw new Error("Strings do not match.");
 }
 }
 try {
 compareStrings("Dog", "dog");
 // output: Strings do not match.
 } catch (e_err:Error) {
 trace(e_err.toString());
 }

See also

throw statement, try..catch..finally statement

message (Error.message property)
 public message : String

The message associated with the Error object. By default, the value of this property is "Error". You can specify a

message property when you create an Error object by passing the error string to the Error constructor function.

Availability

Flash Lite 2.0

Example

In the following example, a function throws a specified message depending on the parameters entered into theNum. If

two numbers can be divided, SUCCESS and the number are shown. Specific errors are shown if you try to divide by 0

or enter only 1 parameter:

 function divideNum(num1:Number, num2:Number):Number {
 if (isNaN(num1) || isNaN(num2)) {
 throw new Error("divideNum function requires two numeric parameters.");
 } else if (num2 == 0) {
 throw new Error("cannot divide by zero.");
 }
 return num1/num2;
 }
 try {
 var theNum:Number = divideNum(1, 0);
 trace("SUCCESS! "+theNum);
 } catch (e_err:Error) {
 trace("ERROR! "+e_err.message);
 trace("\t"+e_err.name);
 }

If you test this ActionScript without any modifications to the numbers you divide, you see an error displayed in the

Output panel because you are trying to divide by 0.

See also

throw statement, try..catch..finally statement

305FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

name (Error.name property)
 public name : String

Contains the name of the Error object. By default, the value of this property is "Error".

Availability

Flash Lite 2.0

Example

In the following example, a function throws a specified error depending on the two numbers that you try to divide.

Add the following ActionScript to Frame 1 of the Timeline:

 function divideNumber(numerator:Number, denominator:Number):Number {
 if (isNaN(numerator) || isNaN(denominator)) {
 throw new Error("divideNumber() function requires two numeric parameters.");
 } else if (denominator == 0) {
 throw new DivideByZeroError();
 }
 return numerator/denominator;
 }
 try {
 var theNum:Number = divideNumber(1, 0);
 trace("SUCCESS! "+theNum);
 // output: DivideByZeroError -> Unable to divide by zero.
 } catch (e_err:DivideByZeroError) {
 // divide by zero error occurred
 trace(e_err.name+" -> "+e_err.toString());
 } catch (e_err:Error) {
 // generic error occurred
 trace(e_err.name+" -> "+e_err.toString());
 }

Add the following code to an .as file called DivideByZeroError.as and save the class file in the same directory as your

.fla document.

 class DivideByZeroError extends Error {
 var name:String = "DivideByZeroError";
 var message:String = "Unable to divide by zero.";
 }

See also

throw statement, try..catch..finally statement

toString (Error.toString method)
 public toString() : String

Returns the string "Error" or the value contained in Error.message, if defined.

Availability

Flash Lite 2.0

Returns

String A String

306FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

In the following example, a function throws an error (with a specified message) if the two strings that are passed to it

are not identical:

 function compareStrings(str1_str:String, str2_str:String):Void {
 if (str1_str != str2_str) {
 throw new Error("Strings do not match.");
 }
 }
 try {
 compareStrings("Dog", "dog");
 // output: Strings do not match.
 } catch (e_err:Error) {
 trace(e_err.toString());
 }

See also

message (Error.message property), throw statement, try..catch..finally statement

ExtendedKey

 Object
 |
 +-ExtendedKey

 public class ExtendedKey
 extends Object

Provides extended key codes that can be returned from the Key.getCode() method.

Availability

Flash Lite 2.0

Example

The following example creates a listener that is called when a key is pressed. It uses the Key.getCode() method to get

the key code for the key that was pressed:

 var myListener = new Object();

 myListener.onKeyDown = function() {
 var code = Key.getCode();
 trace(code + " down");
 }

 myListener.onKeyUp = function() {
 trace("onKeyUp called");
 }

 Key.addListener(myListener);

See also

getCode (Key.getCode method)

307FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Property summary

Properties inherited from class Object

Method summary

Methods inherited from class Object

SOFT1 (ExtendedKey.SOFT1 property)
 public static SOFT1 : String

The key code value for the SOFT1 soft key. The SOFT1 key code always corresponds to the left soft key; the SOFT2

always corresponds to the right soft key.

Availability

Flash Lite 2.0

Example

The following example creates a listener that handles the left and right soft keys:

Modifiers Property Description

static SOFT1:String The key code value for the SOFT1 soft key.

static SOFT3:String The key code value for the SOFT3 soft key.

static SOFT4:String The key code value for the SOFT4 soft key.

static SOFT5:String The key code value for the SOFT5 soft key.

static SOFT6:String The key code value for the SOFT6 soft key.

static SOFT7:String The key code value for the SOFT7 soft key.

static SOFT8:String The key code value for the SOFT8 soft key.

static SOFT9:String The key code value for the SOFT9 soft key.

static SOFT10:String The key code value for the SOFT10 soft key.

static SOFT11:String The key code value for the SOFT11 soft key.

static SOFT12:String The key code value for the SOFT12 soft key.

static SOFT2:String The key code value for the SOFT2 soft key.

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method)watch (Object.watch method)

308FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var myListener:Object = new Object();
 myListener.onKeyDown = function () {
 var keyCode = Key.getCode();
 switch (keyCode) {
 case ExtendedKey.SOFT1:
 // Handle left soft key.
 break;
 case ExtendedKey.SOFT2:
 // Handle right soft key
 break;
 }
 }
 Key.addListener(myListener);

SOFT2 (ExtendedKey.SOFT2 property)
 public static SOFT2 : String

The key code value for the SOFT2 soft key. The SOFT2 key code always corresponds to the right soft key; the SOFT1

key code always corresponds to the left soft key.

Availability

Flash Lite 2.0

See also

SOFT1 (ExtendedKey.SOFT1 property)

SOFT3 (ExtendedKey.SOFT3 property)
 public static SOFT3 : String

The key code value for the SOFT3 soft key.

Availability

Flash Lite 2.0

SOFT4 (ExtendedKey.SOFT4 property)
 public static SOFT4 : String

The key code value for the SOFT4 soft key.

Availability

Flash Lite 2.0

SOFT5 (ExtendedKey.SOFT5 property)
 public static SOFT5 : String

The key code value for the SOFT5 soft key.

Availability

Flash Lite 2.0

309FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

SOFT6 (ExtendedKey.SOFT6 property)
 public static SOFT6 : String

The key code value for the SOFT6 soft key.

Availability

Flash Lite 2.0

SOFT7 (ExtendedKey.SOFT7 property)
 public static SOFT7 : String

The key code value for the SOFT7 soft key.

Availability

Flash Lite 2.0

SOFT8 (ExtendedKey.SOFT8 property)
 public static SOFT8 : String

The key code value for the SOFT8 soft key.

Availability

Flash Lite 2.0

SOFT9 (ExtendedKey.SOFT9 property)
 public static SOFT9 : String

The key code value for the SOFT9 soft key.

SOFT10 (ExtendedKey.SOFT10 property)
 public static SOFT10 : String

The key code value for the SOFT10 soft key.

Availability

Flash Lite 2.0

SOFT11 (ExtendedKey.SOFT11 property)
 public static SOFT11 : String

The key code value for the SOFT11 soft key.

Availability

Flash Lite 2.0

SOFT12 (ExtendedKey.SOFT12 property)
 public static SOFT12 : String

310FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The key code value for the SOFT12 soft key.

Availability

Flash Lite 2.0

Function

 Object
 |
 +-Function

 public dynamic class Function
 extends Object

Both user-defined and built-in functions in ActionScript are represented by Function objects, which are instances of

the Function class.

Availability

Flash Lite 2.0

Property summary

Properties inherited from class Object

Method summary

Methods inherited from class Object

apply (Function.apply method)
 public apply(thisObject:Object, [argArray:Array])

Specifies the value of thisObject to be used within any function that ActionScript calls. This method also specifies

the parameters to be passed to any called function. Because apply() is a method of the Function class, it is also a

method of every Function object in ActionScript.

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

Modifiers Signature Description

 apply(thisObject:Obje

ct, [argArray:Array])
Specifies the value of thisObject to be used within any

function that ActionScript calls.

 call(thisObject:Object

,
[parameter1:Object])

Invokes the function represented by a Function object.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method)watch (Object.watch method)

311FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The parameters are specified as an Array object, unlike Function.call(), which specifies parameters as a comma-

delimited list. This is often useful when the number of parameters to be passed is not known until the script actually

executes.

Returns the value that the called function specifies as the return value.

Availability

Flash Lite 2.0

Parameters

thisObject:Object - The object to which myFunction is applied.

argArray:Array [optional] - An array whose elements are passed to myFunction as parameters.

Returns

Any value that the called function specifies.

Example

The following function invocations are equivalent:

 Math.atan2(1, 0)
 Math.atan2.apply(null, [1, 0])

The following example shows how apply() passes an array of parameters:

 function theFunction() {
 trace(arguments);
 }

 // create a new array to pass as a parameter to apply()
 var firstArray:Array = new Array(1,2,3);
 theFunction.apply(null,firstArray);
 // outputs: 1,2,3

 // create a second array to pass as a parameter to apply()
 var secondArray:Array = new Array("a", "b", "c");
 theFunction.apply(null,secondArray);
 // outputs a,b,c

The following example shows how apply() passes an array of parameters and specifies the value of this:

312FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // define a function
 function theFunction() {
 trace("this == myObj? " + (this == myObj));
 trace("arguments: " + arguments);
 }

 // instantiate an object
 var myObj:Object = new Object();

 // create arrays to pass as a parameter to apply()
 var firstArray:Array = new Array(1,2,3);
 var secondArray:Array = new Array("a", "b", "c");

 // use apply() to set the value of this to be myObj and send firstArray
 theFunction.apply(myObj,firstArray);
 // output:
 // this == myObj? true
 // arguments: 1,2,3

 // use apply() to set the value of this to be myObj and send secondArray
 theFunction.apply(myObj,secondArray);
 // output:
 // this == myObj? true
 // arguments: a,b,c

See also

call (Function.call method)

call (Function.call method)
 public call(thisObject:Object, [parameter1:Object])

Invokes the function represented by a Function object. Every function in ActionScript is represented by a Function

object, so all functions support this method.

In almost all cases, the function call (()) operator can be used instead of this method. The function call operator

produces code that is concise and readable. This method is primarily useful when the thisObject parameter of the

function invocation needs to be explicitly controlled. Normally, if a function is invoked as a method of an object,

within the body of the function, thisObject is set to myObject, as shown in the following example:

 myObject.myMethod(1, 2, 3);

In some situations, you might want thisObject to point somewhere else; for example, if a function must be invoked

as a method of an object, but is not actually stored as a method of that object:

 myObject.myMethod.call(myOtherObject, 1, 2, 3);

You can pass the value null for the thisObject parameter to invoke a function as a regular function and not as a

method of an object. For example, the following function invocations are equivalent:

 Math.sin(Math.PI / 4)
 Math.sin.call(null, Math.PI / 4)

Returns the value that the called function specifies as the return value.

Availability

Flash Lite 2.0

313FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

thisObject:Object - An object that specifies the value of thisObject within the function body.

parameter1:Object [optional] - A parameter to be passed to the myFunction. You can specify zero or more

parameters.

Example

The following example uses Function.call() to make a function behave as a method of another object, without

storing the function in the object:

 function myObject() {
 }
 function myMethod(obj) {
 trace("this == obj? " + (this == obj));
 }
 var obj:Object = new myObject();
 myMethod.call(obj, obj);

The trace() statement displays:

 this == obj? true

See also

apply (Function.apply method)

Key

 Object
 |
 +-Key

 public class Key
 extends Object

The Key class is a top-level class whose methods and properties you can use without a constructor. Use the methods

of the Key class to build interfaces. The properties of the Key class are constants representing the keys most commonly

used to control applications, such as Arrow keys, Page Up, and Page Down. Use the System.capabilities properties to

determine which keys a device supports.

Not all devices and Flash Lite content types support all keys. For example, devices that support two-way navigation

don’t support the left and right navigation keys. Also, not all devices have access to a device’s soft keys. For

information, see Developing Flash Lite 2.x and 3.x Applications.

Availability

Flash Lite 2.0

See also

ExtendedKey

“has4WayKeyAS (capabilities.has4WayKeyAS property)” on page 244

“hasMappableSoftKeys (capabilities.hasMappableSoftKeys property)” on page 248

“hasQWERTYKeyboard (capabilities.hasQWERTYKeyboard property)” on page 250

314FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

“softKeyCount (capabilities.softKeyCount property)” on page 258

Property summary

Properties inherited from class Object

Event summary

Modifiers Property Description

static BACKSPACE:Number The key code value for the Backspace key (8).

static CAPSLOCK:Number The key code value for the Caps Lock key (20).

static CONTROL:Number The key code value for the Control key (17).

static DELETEKEY:Number The key code value for the Delete key (46).

static DOWN:Number The key code value for the Down Arrow key (40).

static END:Number The key code value for the End key (35).

static ENTER:Number The key code value for the Enter key (13).

static ESCAPE:Number The key code value for the Escape key (27).

static HOME:Number The key code value for the Home key (36).

static INSERT:Number The key code value for the Insert key (45).

static LEFT:Number The key code value for the Left Arrow key (37).

static _listeners:Array [read-

only]

A list of references to all listener objects registered with the

Key object.

static PGDN:Number The key code value for the Page Down key (34).

static PGUP:Number The key code value for the Page Up key (33).

static RIGHT:Number The key code value for the Right Arrow key (39).

static SHIFT:Number The key code value for the Shift key (16).

static SPACE:Number The key code value for the Spacebar (32).

static TAB:Number The key code value for the Tab key (9).

static UP:Number The key code value for the Up Arrow key (38).

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onKeyDown =
function() {}

Notified when a key is pressed.

onKeyUp =
function() {}

Notified when a key is released.

315FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Method summary

Methods inherited from class Object

addListener (Key.addListener method)
 public static addListener(listener:Object) : Void

Registers an object to receive onKeyDown and onKeyUp notifications. When a key is pressed or released, regardless of

the input focus, all listening objects registered with addListener() have either their onKeyDown method or their

onKeyUp method invoked. Multiple objects can listen for keyboard notifications.

Availability

Flash Lite 2.0

Parameters

listener:Object - An object with onKeyDown and onKeyUp methods.

Example

The following example creates a new listener object and defines functions for onKeyDown and onKeyUp. The last line

calls addListener() to register the listener with the Key object so that it can receive notification from the key down

and key up events.

 var myListener:Object = new Object();
 myListener.onKeyDown = function () {
 trace ("You pressed a key.");
 }
 myListener.onKeyUp = function () {
 trace ("You released a key.");
 }
 Key.addListener(myListener);

See also

getCode (Key.getCode method), isDown (Key.isDown method), onKeyDown (Key.onKeyDown event

listener), onKeyUp (Key.onKeyUp event listener), removeListener (Key.removeListener method)

Modifiers Signature Description

static addListener(listener:
Object) : Void

Registers an object to receive onKeyDown and onKeyUp

notification.

static getAscii() : Number Returns the ASCII code of the last key pressed or released.

static getCode() : Number Returns the key code value of the last key pressed.

static isDown(code:Number)
: Boolean

Returns true if the key specified in code is pressed; false

otherwise.

static removeListener(listene
r:Object) : Boolean

Removes an object previously registered with

Key.addListener().

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

316FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

BACKSPACE (Key.BACKSPACE property)
 public static BACKSPACE : Number

The key code value for the Backspace key (8).

Availability

Flash Lite 2.0

Example

The following example creates a new listener object and defines a function for onKeyDown. The last line uses

addListener() to register the listener with the Key object so that it can receive notification from the key down event.

 var keyListener:Object = new Object();
 keyListener.onKeyDown = function() {
 if (Key.isDown(Key.BACKSPACE)) {
 trace("you pressed the Backspace key.");
 } else {
 trace("you DIDN'T press the Backspace key.");
 }
 };
 Key.addListener(keyListener);

CAPSLOCK (Key.CAPSLOCK property)
 public static CAPSLOCK : Number

The key code value for the Caps Lock key (20).

Availability

Flash Lite 2.0

CONTROL (Key.CONTROL property)
 public static CONTROL : Number

The key code value for the Control key (17).

Availability

Flash Lite 2.0

DELETEKEY (Key.DELETEKEY property)
 public static DELETEKEY : Number

The key code value for the Delete key (46).

Availability

Flash Lite 2.0

DOWN (Key.DOWN property)
 public static DOWN : Number

The key code value for the Down Arrow key (40).

317FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example moves a movie clip called car_mc a constant distance (10) when you press the arrow keys. Place

any movie clip on the Stage and give it the instance name car_mc.

 var DISTANCE:Number = 10;
 var keyListener_obj:Object = new Object();
 keyListener_obj.onKeyDown = function() {
 switch (Key.getCode()) {
 case Key.LEFT :
 car_mc._x -= DISTANCE;
 break;
 case Key.UP :
 car_mc._y -= DISTANCE;
 break;
 case Key.RIGHT :
 car_mc._x += DISTANCE;
 break;
 case Key.DOWN :
 car_mc._y += DISTANCE;
 break;
 }
 };
 Key.addListener(keyListener_obj);

END (Key.END property)
 public static END : Number

The key code value for the End key (35).

Availability

Flash Lite 2.0

ENTER (Key.ENTER property)
 public static ENTER : Number

The key code value for the Enter key (13).

Availability

Flash Lite 2.0

Example

The following example moves a movie clip when you press the arrow keys. The movie clip stops when you press Select

and delete the onEnterFrame event. Place any movie clip on the Stage and give it the instance name car_mc.

318FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var DISTANCE:Number = 5;
 var keyListener:Object = new Object();
 keyListener.onKeyDown = function() {
 switch (Key.getCode()) {
 case Key.LEFT :
 car_mc.onEnterFrame = function() {
 this._x -= DISTANCE;
 };
 break;
 case Key.UP :
 car_mc.onEnterFrame = function() {
 this._y -= DISTANCE;
 };
 break;
 case Key.RIGHT :
 car_mc.onEnterFrame = function() {
 this._x += DISTANCE;
 };
 break;
 case Key.DOWN :
 car_mc.onEnterFrame = function() {
 this._y += DISTANCE;
 };
 break;
 case Key.ENTER :
 delete car_mc.onEnterFrame;
 break;
 }
 };
 Key.addListener(keyListener);

ESCAPE (Key.ESCAPE property)
 public static ESCAPE : Number

The key code value for the Escape key (27).

Availability

Flash Lite 2.0

Example

The following example sets a timer. When you press Select, the Output panel displays how long it took you to press

the key.

var keyListener:Object = new Object();
keyListener.onKeyDown = function() {

if (Key.isDown(Key.ENTER)) {
// get the current timer, convert the value
// to seconds and round it to two decimal places.

var timer:Number = Math.round(getTimer()/10)/100;
trace("You pressed the Select key after: "+getTimer()+"ms ("+timer+"s)");

}
};
Key.addListener(keyListener);

319FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

getAscii (Key.getAscii method)
 public static getAscii() : Number

Returns the ASCII code of the last key pressed or released. The ASCII values returned are English keyboard values. For

example, if you press Shift+2 on either a Japanese or English keyboard, Key.getAscii() returns @.

Availability

Flash Lite 2.0

Returns

Number - The ASCII value of the last key pressed. This method returns 0 if no key was pressed or released, or if the

ASCII value is not accessible for security reasons.

Example

The following example calls the getAscii() method any time a key is pressed. The example creates a listener object

named keyListener and defines a function that responds to the onKeyDown event by calling Key.getAscii(). The

keyListener object is then registered to the Key object, which broadcasts the onKeyDown message whenever a key is

pressed while the SWF file plays.

 var keyListener:Object = new Object();
 keyListener.onKeyDown = function() {
 trace("The ASCII code for the last key typed is: "+Key.getAscii());
 };
 Key.addListener(keyListener);

The following example adds a call to Key.getAscii() to show how getAscii() and getCode() differ. The main

difference is that Key.getAscii() differentiates between uppercase and lowercase letters, and Key.getCode() does not.

 var keyListener:Object = new Object();
 keyListener.onKeyDown = function() {
 trace("For the last key typed:");
 trace("\tThe Key code is: "+Key.getCode());
 trace("\tThe ASCII value is: "+Key.getAscii());
 trace("");
 };
 Key.addListener(keyListener);

getCode (Key.getCode method)
 public static getCode() : Number

Returns the key code value of the last key pressed.

The Flash Lite implementation of this method returns a string or a number, depending on the key code passed in by

the platform. The only valid key codes are the standard key codes accepted by this class and the special key codes listed

as properties of the ExtendedKey class.

Availability

Flash Lite 2.0

Returns

Number - The key code of the last key pressed. This method returns 0 if no key was pressed or released, or if the key

code is not accessible for security reasons.

320FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example calls the getCode() method any time a key is pressed. The example creates a listener object

named keyListener and defines a function that responds to the onKeyDown event by calling Key.getCode(). The

keyListener object is registered to the Key object, which broadcasts the onKeyDown message whenever a key is pressed

while the SWF file plays.

 var keyListener:Object = new Object();
 keyListener.onKeyDown = function() {
 // Compare return value of getCode() to constant
 if (Key.getCode() == Key.ENTER) {
 trace ("Virtual key code: "+Key.getCode()+" (ENTER key)");
 }
 else {
 trace("Virtual key code: "+Key.getCode());
 }
 };
 Key.addListener(keyListener);

The following example adds a call to Key.getAscii() to show how the two methods differ. The main difference is

that Key.getAscii() differentiates between uppercase and lowercase letters, and Key.getCode() does not.

 var keyListener:Object = new Object();
 keyListener.onKeyDown = function() {
 trace("For the last key typed:");
 trace("\tThe Key code is: "+Key.getCode());
 trace("\tThe ASCII value is: "+Key.getAscii());
 trace("");
 };
 Key.addListener(keyListener);

Availability

Flash Lite 2.0

See also

getAscii (Key.getAscii method)

HOME (Key.HOME property)
 public static HOME : Number

The key code value for the Home key (36).

Availability

Flash Lite 2.0

INSERT (Key.INSERT property)
 public static INSERT : Number

The key code value for the Insert key (45).

Availability

Flash Lite 2.0

321FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

isDown (Key.isDown method)
 public static isDown(code:Number) : Boolean

Returns true if the key specified in code is pressed; false otherwise.

Availability

Flash Lite 2.0

Parameters

code:Number - The key code value assigned to a specific key or a Key class property associated with a specific key.

Returns

Boolean - The value true if the key specified in code is pressed; false otherwise.

Example

The following script lets the user use the Left and Right keys to control the location of a movie clip on the Stage called

car_mc:

 car_mc.onEnterFrame = function() {
 if (Key.isDown(Key.RIGHT)) {
 this._x += 10;
 } else if (Key.isDown(Key.LEFT)) {
 this._x -= 10;
 }
 };

LEFT (Key.LEFT property)
 public static LEFT : Number

The key code value for the Left Arrow key (37).

Availability

Flash Lite 2.0

_listeners (Key._listeners property)
 public static _listeners : Array [read-only]

A list of references to all listener objects registered with the Key object. This property is intended for internal use, but

may be useful if you want to ascertain the number of listeners currently registered with the Key object. Objects are

added and removed from this array by calls to the addListener() and removeListener() methods.

Availability

Flash Lite 2.0

Example

The following example shows how to use the length property to ascertain the number of listener objects currently

registered to the Key object.

322FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var myListener:Object = new Object();
 myListener.onKeyDown = function () {
 trace ("You pressed a key.");
 }
 Key.addListener(myListener);

 trace(Key._listeners.length); // Output: 1

onKeyDown (Key.onKeyDown event listener)
 onKeyDown = function() {}

Notified when a key is pressed. To use onKeyDown, you must create a listener object. You can then define a function

for onKeyDown and use addListener() to register the listener with the Key object, as shown in the following example:

 var keyListener:Object = new Object();
 keyListener.onKeyDown = function() {
 trace("DOWN -> Code: "+Key.getCode()+"\tACSII: "+Key.getAscii()+"\tKey:
"+chr(Key.getAscii()));
 };
 keyListener.onKeyUp = function() {
 trace("UP -> Code: "+Key.getCode()+"\tACSII: "+Key.getAscii()+"\tKey:
"+chr(Key.getAscii()));
 };
 Key.addListener(keyListener);

Listeners enable different pieces of code to cooperate because multiple listeners can receive notification about a single

event.

Availability

Flash Lite 2.0

See also

addListener (Key.addListener method)

onKeyUp (Key.onKeyUp event listener)
 onKeyUp = function() {}

Notified when a key is released. To use onKeyUp, you must create a listener object. You can then define a function for

onKeyUp and use addListener() to register the listener with the Key object, as shown in the following example:

 var keyListener:Object = new Object();
 keyListener.onKeyDown = function() {
 trace("DOWN -> Code: "+Key.getCode()+"\tACSII: "+Key.getAscii()+"\tKey:
"+chr(Key.getAscii()));
 };
 keyListener.onKeyUp = function() {
 trace("UP -> Code: "+Key.getCode()+"\tACSII: "+Key.getAscii()+"\tKey:
"+chr(Key.getAscii()));
 };
 Key.addListener(keyListener);

Listeners enable different pieces of code to cooperate because multiple listeners can receive notification about a single

event.

323FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

See also

addListener (Key.addListener method)

PGDN (Key.PGDN property)
 public static PGDN : Number

The key code value for the Page Down key (34).

Availability

Flash Lite 2.0

PGUP (Key.PGUP property)
 public static PGUP : Number

The key code value for the Page Up key (33).

Availability

Flash Lite 2.0

removeListener (Key.removeListener method)
 public static removeListener(listener:Object) : Boolean

Removes an object previously registered with Key.addListener().

Availability

Flash Lite 2.0

Parameters

listener:Object - An object.

Returns

Boolean - If listener was successfully removed, the method returns true. If listener was not successfully removed (for

example, because listener was not on the Key objects listener list), the method returns false.

RIGHT (Key.RIGHT property)
 public static RIGHT : Number

The key code value for the Right Arrow key (39).

Availability

Flash Lite 2.0

Example

The following example moves a movie clip on the Stage called car_mc when you press the arrow keys.

324FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var DISTANCE:Number = 10;
 var keyListener_obj:Object = new Object();
 keyListener_obj.onKeyDown = function() {
 switch (Key.getCode()) {
 case Key.LEFT :
 car_mc._x -= DISTANCE;
 break;
 case Key.UP :
 car_mc._y -= DISTANCE;
 break;
 case Key.RIGHT :
 car_mc._x += DISTANCE;
 break;
 case Key.DOWN :
 car_mc._y += DISTANCE;
 break;
 }
 };
 Key.addListener(keyListener_obj);

SHIFT (Key.SHIFT property)
 public static SHIFT : Number

The key code value for the Shift key (16).

Availability

Flash Lite 2.0

SPACE (Key.SPACE property)
 public static SPACE : Number

The key code value for the Spacebar (32).

Availability

Flash Lite 2.0

TAB (Key.TAB property)
 public static TAB : Number

The key code value for the Tab key (9).

Availability

Flash Lite 2.0

UP (Key.UP property)
 public static UP : Number

The key code value for the Up Arrow key (38).

325FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example moves a movie clip on the Stage called car_mc a constant distance (10) when you press the

arrow keys.

 var DISTANCE:Number = 10;
 var keyListener_obj:Object = new Object();
 keyListener_obj.onKeyDown = function() {
 switch (Key.getCode()) {
 case Key.LEFT :
 car_mc._x -= DISTANCE;
 break;
 case Key.UP :
 car_mc._y -= DISTANCE;
 break;
 case Key.RIGHT :
 car_mc._x += DISTANCE;
 break;
 case Key.DOWN :
 car_mc._y += DISTANCE;
 break;
 }
 };
 Key.addListener(keyListener_obj);

LoadVars

 Object
 |
 +-LoadVars

 public dynamic class LoadVars
 extends Object

The LoadVars class is an alternative to the loadVariables() function for transferring variables between a Flash Lite and

a web server over HTTP. Use the LoadVars class to obtain verification of successful data loading and to monitor

download progress.

The LoadVars class lets you send all the variables in an object to a specified URL and load all the variables at a specified

URL into an object. It also lets you send specific variables, rather than all the variables, which can make your

application more efficient. Use the LoadVars.onLoad handler to ensure that your application runs when data is loaded,

and not before.

The LoadVars class works much like the XML class; it uses the methods load(), send(), and sendAndLoad() to

communicate with a server. The main difference between the LoadVars class and the XML class is that LoadVars

transfers ActionScript name and value pairs, rather than an XML DOM tree stored in the XML object. The LoadVars

class follows the same security restrictions as the XML class.

Availability

Flash Lite 2.0

326FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

loadVariables function, onLoad (LoadVars.onLoad handler), hasXMLSocket

(capabilities.hasXMLSocket property)

Property summary

Properties inherited from class Object

Event summary

Constructor summary

Method summary

Modifiers Property Description

 contentType:String The MIME type that is sent to the server when you call

LoadVars.send() or LoadVars.sendAndLoad().

 loaded:Boolean A Boolean value that indicates whether a load or

sendAndLoad operation has completed, undefined by

default.

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onData =
function(src:String)
{}

Invoked when data has completely downloaded from the server or when an error

occurs while data is downloading from a server.

onLoad =
function(success:Bo

olean) {}

Invoked when a LoadVars.load() or LoadVars.sendAndLoad() operation has

ended.

Signature Description

LoadVars() Creates a LoadVars object.

Modifiers Signature Description

 addRequestHeader(head
er:Object,
headerValue:String) :
Void

Adds or changes HTTP request headers (such as Content-
Type or SOAPAction) sent with POST actions.

 decode(queryString:S

tring) : Void
Converts the variable string to properties of the specified

LoadVars object.

 getBytesLoaded() :
Number

Returns the number of bytes downloaded by

LoadVars.load() or LoadVars.sendAndLoad().

 getBytesTotal() :
Number

Returns the total number of bytes downloaded by

LoadVars.load() or LoadVars.sendAndLoad().

 load(url:String) :
Boolean

Downloads variables from the specified URL, parses the

variable data, and places the resulting variables into the
LoadVars object.

327FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Methods inherited from class Object

addRequestHeader (LoadVars.addRequestHeader method)
 public addRequestHeader(header:Object, headerValue:String) : Void

Adds or changes HTTP request headers (such as Content-Type or SOAPAction) sent with POST actions. In the first

usage, you pass two strings to the method: header and headerValue. In the second usage, you pass an array of strings,

alternating header names and header values.

If multiple calls are made to set the same header name, each successive value will replace the value set in the previous call.

The following standard HTTP headers cannot be added or changed with this method: Accept-Ranges, Age, Allow,

Allowed, Connection, Content-Length, Content-Location, Content-Range, ETag, Host, Last-Modified,

Locations, Max-Forwards, Proxy-Authenticate, Proxy-Authorization, Public, Range, Retry-After, Server,

TE, Trailer, Transfer-Encoding, Upgrade, URI, Vary, Via, Warning, and WWW-Authenticate.

Availability

Flash Lite 2.0

Parameters

header:Object - A string or array of strings that represents an HTTP request header name.

headerValue:String - A string that represents the value associated with header.

Example

The following example adds a custom HTTP header named SOAPAction with a value of Foo to the my_lv object:

 my_lv.addRequestHeader("SOAPAction", "'Foo'");

The following example creates an array named headers that contains two alternating HTTP headers and their

associated values. The array is passed as an argument to addRequestHeader().

 var headers = ["Content-Type", "text/plain", "X-ClientAppVersion", "2.0"];
 my_lv.addRequestHeader(headers);

 send(url:String,
target:String,
[method:String]) :
Boolean

Sends the variables in the LoadVars object to the specified URL.

 sendAndLoad(url:Strin

g, target:Object,
[method:String]) :
Boolean

Posts variables in the LoadVars object to the specified URL.

 toString() : String Returns a string containing all enumerable variables in the
LoadVars object, in the MIME content encoding application/x-
www-form-urlencoded.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

Modifiers Signature Description

328FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The following example creates a new LoadVars object that adds a request header called FLASH-UUID. The header

contains a variable that can be checked by the server.

 var my_lv:LoadVars = new LoadVars();
 my_lv.addRequestHeader("FLASH-UUID", "41472");
 my_lv.name = "Mort";
 my_lv.age = 26;
 my_lv.send("http://flash-mx.com/mm/cgivars.cfm", "_blank", "POST");

See also

addRequestHeader (XML.addRequestHeader method)

contentType (LoadVars.contentType property)
 public contentType : String

The MIME type that is sent to the server when you call LoadVars.send() or LoadVars.sendAndLoad(). The default

is application/x-www-form-urlencoded.

Availability

Flash Lite 2.0

Example

The following example creates a LoadVars object and displays the default content type of the data that is sent to the

server.

 var my_lv:LoadVars = new LoadVars();
 trace(my_lv.contentType); // output: application/x-www-form-urlencoded

See also

send (LoadVars.send method), sendAndLoad (LoadVars.sendAndLoad method)

decode (LoadVars.decode method)
 public decode(queryString:String) : Void

Converts the variable string to properties of the specified LoadVars object.

This method is used internally by the LoadVars.onData event handler. Most users do not need to call this method

directly. If you override the LoadVars.onData event handler, you can explicitly call LoadVars.decode() to parse a

string of variables.

Availability

Flash Lite 2.0

Parameters

queryString:String - A URL-encoded query string containing name/value pairs.

Example

The following example traces the three variables:

329FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // Create a new LoadVars object
 var my_lv:LoadVars = new LoadVars();
 //Convert the variable string to properties
 my_lv.decode("name=Mort&score=250000");
 trace(my_lv.toString());
 // Iterate over properties in my_lv
 for (var prop in my_lv) {
 trace(prop+" -> "+my_lv[prop]);
 }

See also

onData (LoadVars.onData handler), parseXML (XML.parseXML method)

getBytesLoaded (LoadVars.getBytesLoaded method)
 public getBytesLoaded() : Number

Returns the number of bytes downloaded by a call to LoadVars.load() or LoadVars.sendAndLoad(). This method

returns undefined if no load operation is in progress or if a load operation has not yet begun.

Note: You cannot use this method to return information about a local file on your hard disk.

Availability

Flash Lite 2.0

Returns

Number - An integer.

See also

load (LoadVars.load method), sendAndLoad (LoadVars.sendAndLoad method)

getBytesTotal (LoadVars.getBytesTotal method)
 public getBytesTotal() : Number

Returns the total number of bytes downloaded by LoadVars.load() or LoadVars.sendAndLoad(). This method

returns undefined if no load operation is in progress or if a load operation has not started. This method also returns

undefined if the number of total bytes can't be determined (for example, if the download was initiated but the server

did not transmit an HTTP content-length).

Note: You cannot use this method to return information about a local file on your hard disk.

Availability

Flash Lite 2.0

Returns

Number - An integer.

See also

load (LoadVars.load method), sendAndLoad (LoadVars.sendAndLoad method)

330FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

load (LoadVars.load method)
 public load(url:String) : Boolean

Downloads variables from the specified URL, parses the variable data, and places the resulting variables into a

LoadVars object. Any properties in the LoadVars object with the same names as downloaded variables are overwritten.

Any properties in the LoadVars object with different names than downloaded variables are not deleted. This is an

asynchronous action.

The downloaded data must be in the MIME content type application/x-www-form-urlencoded.

This is the same format used by loadVariables().

In SWF files running in a version of the player earlier than Flash Player 7, url must be in the same superdomain as the

SWF file that is issuing this call. A superdomain is derived by removing the left-most component of a file's URL. For

example, a SWF file at www.someDomain.com can load data from sources at store.someDomain.com because both

files are in the same superdomain named someDomain.com.

In SWF files of any version running in Flash Player 7 or later, url must be in exactly the same domain. For example,

a SWF file at www.someDomain.com can load data only from sources that are also at www.someDomain.com. If you

want to load data from a different domain, you can place a cross-domain policy file on the server hosting the SWF file.

Also, in files published for Flash Player 7, case-sensitivity is supported for external variables loaded with

LoadVars.load().

This method is similar to XML.load().

Availability

Flash Lite 2.0

Parameters

url:String - The URL from which to download the variables. If the SWF file issuing this call is running in a web

browser, url must be in the same domain as the SWF file; for details, see the Description section.

Returns

Boolean - If no parameter (null) is passed, false ; otherwise, true . Use the onLoad() event handler to check the

success of loaded data.

Example

The following code defines an onLoad handler that signals when data is returned to the application from a text file,

then loads the data from the text file and sends it to the Output window.

 var my_lv:LoadVars = new LoadVars();
 my_lv.onLoad = function(success:Boolean) {
 if (success) {
 trace(this.toString());
 } else {
 trace("Error loading/parsing LoadVars.");
 }
 };
 my_lv.load("http://www.helpexamples.com/flash/params.txt");

See also

load (XML.load method), loaded (LoadVars.loaded property), onLoad (LoadVars.onLoad handler)

331FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

loaded (LoadVars.loaded property)
 public loaded : Boolean

A Boolean value that indicates whether a load or sendAndLoad operation has completed, undefined by default.

When a LoadVars.load() or LoadVars.sendAndLoad() operation is started, the loaded property is set to false;

when the operation completes, the loaded property is set to true. If the operation has not completed or has failed with

an error, the loaded property remains set to false.

This property is similar to the XML.loadedproperty.

Availability

Flash Lite 2.0

Example

The following example loads a text file and displays information in the Output panel when the operation completes.

 var my_lv:LoadVars = new LoadVars();
 my_lv.onLoad = function(success:Boolean) {
 trace("LoadVars loaded successfully: "+this.loaded);
 };
 my_lv.load("http://www.helpexamples.com/flash/params.txt");

See also

load (LoadVars.load method), sendAndLoad (LoadVars.sendAndLoad method), load (XML.load method)

LoadVars constructor
 public LoadVars()

Creates a LoadVars object. Call the methods of that LoadVars object to send and load data.

Availability

Flash Lite 2.0

Example

The following example creates a LoadVars object called my_lv:

 var my_lv:LoadVars = new LoadVars();

onData (LoadVars.onData handler)
 onData = function(src:String) {}

Invoked when data has completely downloaded from the server or when an error occurs while data is downloading

from a server. This handler is invoked before the data is parsed and can be used to call a custom parsing routine instead

of the one built in to Flash Lite. The value of the src parameter passed to the function assigned to LoadVars.onData

can be either undefined or a string that contains the URL-encoded name-value pairs downloaded from the server. If

the src parameter is undefined, an error occurred while downloading the data from the server.

The default implementation of LoadVars.onData invokes LoadVars.onLoad. You can override this default

implementation by assigning a custom function to LoadVars.onData, but LoadVars.onLoad is not called unless you

call it in your implementation of LoadVars.onData.

332FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Parameters

src:String - A string or undefined; the raw (unparsed) data from a LoadVars.load() or LoadVars.sendAndLoad()

method call.

Example

The following example loads a text file and displays content in a TextField instance called content_txt when the

operation completes. If an error occurs, information displays in the Output panel.

 var my_lv:LoadVars = new LoadVars();
 my_lv.onData = function(src:String) {
 if (src == undefined) {
 trace("Error loading content.");
 return;
 }
 content_txt.text = src;
 };
 my_lv.load("http://www.helpexamples.com/flash/params.txt", my_lv, "GET");

See also

onLoad (LoadVars.onLoad handler), load (LoadVars.load method), sendAndLoad (LoadVars.sendAndLoad

method)

onLoad (LoadVars.onLoad handler)
 onLoad = function(success:Boolean) {}

Invoked when a LoadVars.load() or LoadVars.sendAndLoad() operation has ended. If the operation was

successful, my_lv is populated with variables downloaded by the operation, and these variables are available when this

handler is invoked.

This handler is undefined by default.

This event handler is similar to XML.onLoad.

Availability

Flash Lite 2.0

Parameters

success:Boolean - Indicates whether the load operation ended in success (true) or failure (false).

Example

See the example for the LoadVars.sendAndLoad() method.

See also

onLoad (XML.onLoad handler), loaded (LoadVars.loaded property), load (LoadVars.load method),

sendAndLoad (LoadVars.sendAndLoad method)

333FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

send (LoadVars.send method)
 public send(url:String, target:String, [method:String]) : Boolean

Sends the variables in the LoadVars object to the specified URL. Variables are concatenated into a string in the

application/x-www-form-urlencoded format, or the value of LoadVars.contentType. The POST method is used unless

GET is specified.

You must specify the target parameter to execute that the script or application at the specified URL. If you omit the

target parameter, the function returns true, but the script or application is not executed.

The send() method is useful if you want the server response to:

• Replace the SWF content (use "_self" as the target parameter);

• Appear in a new window (use "_blank" as the target parameter);

• Appear in the parent or top-level frame (use "_parent" or "_top" as the target parameter);

• Appear in a named frame (use the frame's name as a string for the target parameter).

A successful send() method call always opens a new browser window or replaces content in an existing window or

frame. If you would rather send information to a server and continue playing your SWF file without opening a new

window or replacing content in a window or frame, use the LoadVars.sendAndLoad() method.

This method is similar to XML.send().

Availability

Flash Lite 2.0

Parameters

url:String - The URL to which to upload variables.

target:String - The browser window or frame in which a response appears. You can enter the name of a specific

window or select from the following reserved target names:

• "_self" specifies the current frame in the current window.

• "_blank" specifies a new window.

• "_parent" specifies the parent of the current frame.

• "_top" specifies the top-level frame in the current window.

method:String (optional) - The GET or POST method of the HTTP protocol. The default value is POST.

Returns

Boolean - If no parameters are specified, false, otherwise, true.

Example

The following example copies two values from text fields and sends the data to a CFM script, which is used to handle

the information. For example, the script might check if the user got a high score and then insert that data into a

database table.

 var my_lv:LoadVars = new LoadVars();
 my_lv.playerName = playerName_txt.text;
 my_lv.playerScore = playerScore_txt.text;
 my_lv.send("setscore.cfm", "_blank", "POST");

334FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

sendAndLoad (LoadVars.sendAndLoad method), send (XML.send method)

sendAndLoad (LoadVars.sendAndLoad method)
 public sendAndLoad(url:String, target:Object, [method:String]) : Boolean

Posts variables in the LoadVars object to the specified URL. The server response is downloaded, parsed, and the

resulting variables are placed in the target object.

Variables are posted in the same manner as LoadVars.send(). Variables are downloaded into target in the same

manner as LoadVars.load().

In SWF files running in a version of the player earlier than Flash Player 7 (i.e. Flash Lite 1.x), url must be in the same

superdomain as the SWF file that is issuing this call. A superdomain is derived by removing the left-most component

of a file's URL. For example, a SWF file at www.someDomain.com can load data from sources at

store.someDomain.com, because both files are in the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later (i.e. Flash Lite 2.x and 3.x), url must be in exactly the

same domain. For example, a SWF file at www.someDomain.com can load data only from sources that are also at

www.someDomain.com. If you want to load data from a different domain, you can place a cross-domain policy file on

the server hosting the SWF file.

This method is similar to XML.sendAndLoad().

Availability

Flash Lite 2.0

Parameters

url:String - The URL to which to upload variables. If the SWF file issuing this call is running in a web browser, url

must be in the same domain as the SWF file.

target:Object - The LoadVars or XML object that receives the downloaded variables.

method:String (optional) - The GET or POST method of the HTTP protocol. The default value is POST.

Returns

Boolean

Example

For the following example, add an Input text field called name_txt, a Dynamic text field called result_txt, and a

button called submit_btn to the Stage. When the user clicks the button, two LoadVars objects are created: send_lv

and result_lv. The send_lv object copies the name from the name_txt instance and sends the data to greeting.cfm.

The result from this script loads into the result_lv object, and the server response displays in the result_txt text field.

Add the following ActionScript to Frame 1 of the Timeline:

335FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

var send_lv:LoadVars = new LoadVars();
var result_lv:LoadVars = new LoadVars();
result_lv.onLoad = function(success:Boolean) {

if (success) {
result_txt.text = result_lv.welcomeMessage;

} else {
result_txt.text = "Error connecting to server.";

}
};

submit_btn.onRelease = function(){

send_lv.name = name_txt.text;
send_lv.sendAndLoad("http://www.flash-mx.com/mm/greeting.cfm", result_lv);

}

See also

send (LoadVars.send method), load (LoadVars.load method), sendAndLoad (XML.sendAndLoad method)

toString (LoadVars.toString method)
 public toString() : String

Returns a string containing all enumerable variables in the LoadVars object, in the MIME content encoding

application/x-www-form-urlencoded.

Availability

Flash Lite 2.0

Returns

String

Example

The following example instantiates a new LoadVars() object, creates two properties, and uses toString() to return

a string containing both properties in URL encoded format:

 var my_lv:LoadVars = new LoadVars();
 my_lv.name = "Gary";
 my_lv.age = 26;
 trace (my_lv.toString()); //output: age=26&name=Gary

LocalConnection

 Object
 |
 +-LocalConnection

 public dynamic class LocalConnection
 extends Object

336FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The LocalConnection class lets you develop SWF files that can send instructions to each other without the use of

fscommand() or JavaScript. LocalConnection objects can communicate only among SWF files that are running on the

same client device, but they can be running in different applications. You can use LocalConnection objects to send and

receive data within a single SWF file, but this is not a standard implementation; all the examples in this section

illustrate communication between different SWF files.

Use the LocalConnection.send() and LocalConnection.connect()methods to send and receive data. Notice that

both the LocalConnection.send() and LocalConnection.connect() commands specify the same connection

name, lc_name:

 // Code in the receiving SWF file
 this.createTextField("result_txt", 1, 10, 10, 100, 22);
 result_txt.border = true;
 var receiving_lc:LocalConnection = new LocalConnection();
 receiving_lc.methodToExecute = function(param1:Number, param2:Number) {
 result_txt.text = param1+param2;
 };
 receiving_lc.connect("lc_name");

 // Code in the sending SWF file
 var sending_lc:LocalConnection = new LocalConnection();
 sending_lc.send("lc_name", "methodToExecute", 5, 7);

The simplest way to use a LocalConnection object is to allow communication only between LocalConnection objects

located in the same domain because you won't have security issues. However, if you need to allow communication

between domains, you have several ways to implement security measures. For more information, see the discussion of

the connectionName parameter in LocalConnection.send() and the LocalConnection.allowDomain and

LocalConnection.domain() entries.

Availability

Flash Lite 3.1

Property summary

Event summary

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

allowDomain =
function([sendi
ngDomain:])
{}String

Invoked whenever a LocalConnection object receives a request to invoke a method from

another LocalConnection object.

allowInsecureDomai

n =
function([sendi
ngDomain:])
{}String

Invoked whenever a receiving LocalConnection object, which is in a SWF file hosted at a

domain using a secure protocol (HTTPS), receives a request to invoke a method from a

sending LocalConnection object that is in a SWF file hosted at a nonsecure protocol.

onStatus =
function(infoOb
ject:Object){}

Invoked after a sending LocalConnection object tries to send a command to a receiving

LocalConnection object.

337FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Constructor summary

Method summary

allowDomain (LocalConnection.allowDomain handler)
 allowDomain = function([sendingDomain:String]) {}

Invoked whenever receiving_lc receives a request to invoke a method from a sending LocalConnection object. Flash

expects the code you implement in this handler to return a Boolean value of true or false. If the handler doesn't return

true, the request from the sending object is ignored, and the method is not invoked.

When this event handler is absent, Flash Lite player applies a default security policy, which is equivalent to the

following code:

 my_lc.allowDomain = function (sendingDomain)
 {
 return (sendingDomain == this.domain());
 }

Use LocalConnection.allowDomain to explicitly permit LocalConnection objects from specified domains, or from

any domain, to execute methods of the receiving LocalConnection object. If you don't declare the sendingDomain

parameter, you probably want to accept commands from any domain, and the code in your handler would be simply

return true. If you do declare sendingDomain, you probably want to compare the value of sendingDomain with

domains from which you want to accept commands. The following examples show both implementations.

In files authored for Flash Player 6 or earlier (i.e. Flash Lite 1.x), the sendingDomain parameter contains the

superdomain of the caller. In files authored for Flash Player 7 or later (i.e. Flash Lite 2.x and 3.x), the sendingDomain

parameter contains the exact domain of the caller. In the latter case, to allow access by SWF files hosted at either

www.domain.com or store.domain.com, you must explicitly allow access from both domains.

Signature Description

LocalConnection() Creates a LocalConnection object.

Modifiers Signature Description

 close() : Void Closes (disconnects) a LocalConnection object.

 connect(connectionNa
me:String) :Boolean

Prepares a LocalConnection object to receive commands from a

LocalConnection.send() command (called the sending
LocalConnection object).

 domain() : String Returns a string representing the domain of the location of the

current SWF file.

 send(connectionName:
String,
methodName:String,
[args: Object])
:Boolean

Invokes the method named method on a connection opened with

the LocalConnection.connect(connectionName)

command (the receiving LocalConnection object).

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

338FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // For Flash Player 6
 receiving_lc.allowDomain = function(sendingDomain) {
 return(sendingDomain=="domain.com");
 }
 // For Flash Player 7 or later
 receiving_lc.allowDomain = function(sendingDomain) {
 return(sendingDomain=="www.domain.com" ||
 sendingDomain=="store.domain.com");
 }

Also, for files authored for Flash Player 7 or later (i.e. Flash Lite 2.x and 3.x), you can't use this method to let SWF files

hosted using a secure protocol (HTTPS) allow access from SWF files hosted in nonsecure protocols; you must use the

LocalConnection.allowInsecureDomain event handler instead.

Occasionally, you might encounter the following situation. Suppose you load a child SWF file from a different domain.

You want to implement this method so that the child SWF file can make LocalConnection calls to the parent SWF file,

but you don't know the final domain from which the child SWF file will come. This can happen, for example, when

you use load-balancing redirects or third-party servers.

In this situation, you can use the MovieClip._url property in your implementation of this method. For example, if

you load a SWF file into my_mc, you can then implement this method by checking whether the domain argument

matches the domain of my_mc._url. (You must parse the domain out of the full URL contained in my_mc._url.)

If you do this, make sure that you wait until the SWF file in my_mc is loaded, because the _url property will not have

its final, correct value until the file is completely loaded. The best way to determine when a child SWF file finishes

loading is to use MovieClipLoader.onLoadComplete.

The opposite situation can also occur: You might create a child SWF file that wants to accept LocalConnection calls

from its parent but doesn't know the domain of its parent. In this situation, implement this method by checking

whether the domain argument matches the domain of _parent._url. Again, you must parse the domain out of the full

URL from _parent._url. In this situation, you don't have to wait for the parent SWF file to load; the parent will already

be loaded by the time the child loads.

Availability

Flash Lite 3.1

Parameters

sendingDomain:String [optional] - A string that specifies the domain of the SWF file that contains the sending

LocalConnection object.

Example

The following example shows how a LocalConnection object in a receiving SWF file can permit SWF files from any

domain to invoke its methods. Compare this to the example in LocalConnection.connect(), in which only SWF

files from the same domain can invoke the trace() method in the receiving SWF file. For a discussion of the use of

the underscore (_) in the connection name, see LocalConnection.send().

339FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("welcome_txt", this.getNextHighestDepth(), 10, 10, 100, 20);
 var my_lc:LocalConnection = new LocalConnection();
 my_lc.allowDomain = function(sendingDomain:String) {
 domain_txt.text = sendingDomain;
 return true;
 };
 my_lc.allowInsecureDomain = function(sendingDomain:String) {
 return (sendingDomain == this.domain());
 }
 my_lc.sayHello = function(name:String) {
 welcome_txt.text = "Hello, "+name;
 };
 my_lc.connect("_mylc");

The following example sends a string to the previous SWF file and displays a status message about whether the local

connection was able to connect to the file. A TextInput component called name_ti, a TextArea instance called

status_ta and a Button instance called send_button are used to display content.

 var sending_lc:LocalConnection;
 var sendListener:Object = new Object();
 sendListener.click = function(evt:Object) {
 sending_lc = new LocalConnection();
 sending_lc.onStatus = function(infoObject:Object) {
 switch (infoObject.level) {
 case 'status' :
 status_ta.text = "LocalConnection connected successfully.";
 break;
 case 'error' :
 status_ta.text = "LocalConnection encountered an error.";
 break;
 }
 };
 sending_lc.send("_mylc", "sayHello", name_ti.text);
 };
 send_button.addEventListener("click", sendListener);

In the following example, the receiving SWF file, which resides in thisDomain.com, accepts commands only from

SWF files located in thisDomain.com or thatDomain.com:

 var aLocalConn:LocalConnection = new LocalConnection();
 aLocalConn.Trace = function(aString) {
 aTextField += aString+newline;
 };
 aLocalConn.allowDomain = function(sendingDomain) {
 return (sendingDomain == this.domain() || sendingDomain == "www.macromedia.com");
 };
 aLocalConn.connect("_mylc");

When published for Flash Player 7 or later (Flash Lite 2.x and 3.x), exact domain matching is used. This means that

the example will fail if the SWF files are located at www.thatDomain.com but will work if the files are located at

thatDomain.com.

See also

connect (LocalConnection.connect method), domain (LocalConnection.domain method), send

(LocalConnection.send method), _url (MovieClip._url property), onLoadComplete

(MovieClipLoader.onLoadComplete event listener), _parent property

340FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

allowInsecureDomain (LocalConnection.allowInsecureDomain handler)
 allowInsecureDomain = function([sendingDomain:String]) {}

Invoked whenever receiving_lc, which is in a SWF file hosted at a domain using a secure protocol (HTTPS), receives

a request to invoke a method from a sending LocalConnection object that is in a SWF file hosted at a nonsecure

protocol. Flash expects the code you implement in this handler to return a Boolean value of true or false. If the

handler doesn't return true, the request from the sending object is ignored, and the method is not invoked.

By default, SWF files hosted using the HTTPS protocol can be accessed only by other SWF files hosted using the

HTTPS protocol. This implementation maintains the integrity provided by the HTTPS protocol.

Using this method to override the default behavior is not recommended, as it compromises HTTPS security. However,

you might need to do so, for example, if you need to permit access to HTTPS files published for Flash Player 7 or later

(i.e. Flash Lite 2.x and 3.x) from HTTP files published for Flash Player 6.

A SWF file published for Flash Player 6 can use the LocalConnection.allowDomain event handler to permit HTTP

to HTTPS access. However, because security is implemented differently in Flash Player 7, you must use the

LocalConnection.allowInsecureDomain() method to permit such access in SWF files published for Flash Player

7 or later.

Availability

Flash Lite 3.1

Parameters

sendingDomain:String [optional] - A string that specifies the domain of the SWF file that contains the sending

LocalConnection object.

Example

The following example allows connections from the current domain or from www.macromedia.com, or allows

insecure connections only from the current domain.

 this.createTextField("welcome_txt", this.getNextHighestDepth(), 10, 10, 100, 20);
 var my_lc:LocalConnection = new LocalConnection();
 my_lc.allowDomain = function(sendingDomain:String) {
 domain_txt.text = sendingDomain;
 return (sendingDomain == this.domain() || sendingDomain == "www.macromedia.com");
 };
 my_lc.allowInsecureDomain = function(sendingDomain:String) {
 return (sendingDomain == this.domain());
 }
 my_lc.sayHello = function(name:String) {
 welcome_txt.text = "Hello, "+name;
 };
 my_lc.connect("lc_name");

See also

allowDomain (LocalConnection.allowDomain handler), connect (LocalConnection.connect method)

close (LocalConnection.close method)
 public close() : Void

341FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Closes (disconnects) a LocalConnection object. Issue this command when you no longer want the object to accept

commands—for example, when you want to issue a LocalConnection.connect() command using the same

connectionName parameter in another SWF file.

Availability

Flash Lite 3.1

See also

connect (LocalConnection.connect method)

connect (LocalConnection.connect method)
 public connect(connectionName:String) : Boolean

Prepares a LocalConnection object to receive commands from a LocalConnection.send() command (called the

sending LocalConnection object). The object that calls this command is called the receiving LocalConnection object. The

receiving and sending objects must be running on the same client computer.

Make sure you define the methods attached to receiving_lc before calling this method, as shown in all the examples in

this section.

By default, Flash Lite resolves connectionName into a value of "superdomain:connectionName", where superdomain

is the superdomain of the SWF file containing the LocalConnection.connect() command. For example, if the SWF

file containing the receiving LocalConnection object is located at www.someDomain.com, connectionName resolves

to "someDomain.com:connectionName". (If a SWF file is located on the client computer, the value assigned to

superdomain is "localhost".)

Also by default, Flash Lite lets the receiving LocalConnection object accept commands only from sending

LocalConnection objects whose connection name also resolves into a value of "superdomain:connectionName". In

this way, Flash Lite makes it simple for SWF files located in the same domain to communicate with each other.

If you are implementing communication only between SWF files in the same domain, specify a string for

connectionName that does not begin with an underscore (_) and that does not specify a domain name (for example,

"myDomain:connectionName"). Use the same string in the LocalConnection.connect(connectionName)

command.

If you are implementing communication between SWF files in different domains, specifying a string for

connectionName that begins with an underscore (_) will make the SWF with the receiving LocalConnection object

more portable between domains. Here are the two possible cases:

• If the string for connectionName does not begin with an underscore (_), Flash Lite adds a prefix with the

superdomain and a colon (for example, "myDomain:connectionName"). Although this ensures that your

connection does not conflict with connections of the same name from other domains, any sending

LocalConnection objects must specify this superdomain (for example, "myDomain:connectionName"). If the SWF

with the receiving LocalConnection object is moved to another domain, the player changes the prefix to reflect the

new superdomain (for example, "anotherDomain:connectionName"). All sending LocalConnection objects

would have to be manually edited to point to the new superdomain.

• If the string for connectionName begins with an underscore (for example, "_connectionName"), Flash Lite does

not add a prefix to the string. This means that the receiving and sending LocalConnection objects will use identical

strings for connectionName. If the receiving object uses LocalConnection.allowDomain to specify that

connections from any domain will be accepted, the SWF with the receiving LocalConnection object can be moved

to another domain without altering any sending LocalConnection objects.

342FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

For more information, see the discussion of connectionName in LocalConnection.send() and also the

LocalConnection.allowDomain and LocalConnection.domain() entries.

Note: Colons are used as special characters to separate the superdomain from the connectionName string. A string for

connectionName that contains a colon is not valid.

Availability

Flash Lite 3.1

Parameters

connectionName:String - A string that corresponds to the connection name specified in the

LocalConnection.send() command that wants to communicate with receiving_lc.

Returns

Boolean - A Boolean value: true if no other process running on the same client computer has already issued this

command using the same value for the connectionName parameter; false otherwise.

Example

The following example shows how a SWF file in a particular domain can invoke a method named printOut in a

receiving SWF file in the same domain.

First, create one SWF file with the following code:

 this.createTextField("tf", this.getNextHighestDepth(), 10, 10, 300, 100);
 var aLocalConnection:LocalConnection = new LocalConnection();
 aLocalConnection.connect("demoConnection");
 aLocalConnection.printOut = function(aString:String):Void{
 tf.text += aString;
 }

Then create a second with the following code:

 var sending_lc:LocalConnection = new LocalConnection();
 sending_lc.send("demoConnection", "printOut", "This is a message from file B. Hello.");

To test this example, run the first SWF file, and then run the second one.

See also

send (LocalConnection.send method), allowDomain (LocalConnection.allowDomain handler), domain

(LocalConnection.domain method)

domain (LocalConnection.domain method)
 public domain() : String

Returns a string representing the domain of the location of the current SWF file.

In SWF files published for Flash Player 6 or earlier (i.e. Flash Lite 1.x), the returned string is the superdomain of the

current SWF file. For example, if the SWF file is located at www.adobe.com, this command returns "adobe.com".

In SWF files published for Flash Player 7 or later (i.e. Flash Lite 2.x and 3.x), the returned string is the exact domain of

the current SWF file. For example, if the SWF file is located at www.adobe.com, this command returns

"www.adobe.com".

If the current SWF file is a local file residing on the client computer, this command returns "localhost".

343FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The most common way to use this command is to include the domain name of the sending LocalConnection object as

a parameter to the method you plan to invoke in the receiving LocalConnection object or with

LocalConnection.allowDomain to accept commands from a specified domain. If you are enabling communication

only between LocalConnection objects that are located in the same domain, you probably don't need to use this

command.

Availability

Flash Lite 3.1

Returns

String - A string representing the domain of the location of the current SWF file; for more information, see the

Description section.

Example

In the following example, a receiving SWF file accepts commands only from SWF files located in the same domain or

at example.com:

 // If both the sending and receiving SWF files are Flash Player 6,
 // then use the superdomain
 var my_lc:LocalConnection = new LocalConnection();
 my_lc.allowDomain = function(sendingDomain):String{
 return (sendingDomain==this.domain() || sendingDomain=="example.com");
 }

 // If either the sending or receiving SWF file is Flash Player 7 or later,
 // then use the exact domain. In this case, commands from a SWF file posted
 // at www.example.com will be accepted, but those from one posted at
 // a different subdomain, e.g. test.example.com, will not.
 var my_lc:LocalConnection = new LocalConnection();
 my_lc.allowDomain = function(sendingDomain):String{
 return (sendingDomain==this.domain() || sendingDomain=="www.example.com");
 }

In the following example, a sending SWF file located at www.yourdomain.com invokes a method in a receiving SWF

file located at www.mydomain.com. The sending SWF file includes its domain name as a parameter to the method it

invokes, so the receiving SWF file can return a reply value to a LocalConnection object in the correct domain. The

sending SWF file also specifies that it will accept commands only from SWF files at mydomain.com.

Line numbers are included for reference purposes. The sequence of events is described in the following list:

• The receiving SWF file prepares to receive commands on a connection named "sum" (line 11). The Flash Lite player

resolves the name of this connection to "mydomain.com:sum" (see LocalConnection.connect()).

• The sending SWF file prepares to receive a reply on the LocalConnection object named "result" (line 67). It also

specifies that it will accept commands only from SWF files at mydomain.com (lines 51 to 53).

• The sending SWF file invokes the aSum method of a connection named "mydomain.com:sum" (line 68) and passes

the following parameters: its superdomain, the name of the connection to receive the reply ("result"), and the

values to be used by aSum (123 and 456).

• The aSum method (line 6) is invoked with the following values: sender = "mydomain.com:result", replyMethod

= "aResult", n1 = 123, and n2 = 456. It then executes the following line of code:

 this.send("mydomain.com:result", "aResult", (123 + 456));

• The aResult method (line 54) shows the value returned by aSum (579).

344FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // The receiving SWF at http://www.mydomain.com/folder/movie.swf
 // contains the following code

 1 var aLocalConnection:LocalConnection = new LocalConnection();
 2 aLocalConnection.allowDomain = function()
 3 {
 // Allow connections from any domain
 4 return true;
 5 }
 6 aLocalConnection.aSum = function(sender, replyMethod, n1, n2)
 7 {
 8 this.send(sender, replyMethod, (n1 + n2));
 9 }
 10
 11 aLocalConnection.connect("sum");

 // The sending SWF at http://www.yourdomain.com/folder/movie.swf
 // contains the following code

 50 var lc:LocalConnection = new LocalConnection();
 51 lc.allowDomain = function(aDomain) {
 // Allow connections only from mydomain.com
 52 return (aDomain == "mydomain.com");
 53 }
 54 lc.aResult = function(aParam) {
 55 trace("The sum is " + aParam);
 56 }
 // determine our domain and see if we need to truncate it
 57 var channelDomain:String = lc.domain();
 58 if (getVersion() >= 7 && this.getSWFVersion() >= 7)
 59 {
 // split domain name into elements
 60 var domainArray:Array = channelDomain.split(".");

 // if more than two elements are found,
 // chop off first element to create superdomain
 61 if (domainArray.length > 2)
 62 {
 63 domainArray.shift();
 64 channelDomain = domainArray.join(".");
 65 }
 66 }

 67 lc.connect("result");
 68 lc.send("mydomain.com:sum", "aSum", channelDomain + ':' + "result",
 "aResult", 123, 456);

See also

allowDomain (LocalConnection.allowDomain handler), connect (LocalConnection.connect method)

LocalConnection constructor
 public LocalConnection()

Creates a LocalConnection object.

345FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 3.1

Example

The following example shows how receiving and sending SWF files create LocalConnnection objects. The two SWF

files can use the same name or different names for their respective LocalConnection objects. In this example they use

different names.

 // Code in the receiving SWF file
 this.createTextField("result_txt", 1, 10, 10, 100, 22);
 result_txt.border = true;
 var receiving_lc:LocalConnection = new LocalConnection();
 receiving_lc.methodToExecute = function(param1:Number, param2:Number) {
 result_txt.text = param1+param2;
 };
 receiving_lc.connect("lc_name");

The following SWF file sends the request to the first SWF file.

 // Code in the sending SWF file
 var sending_lc:LocalConnection = new LocalConnection();
 sending_lc.send("lc_name", "methodToExecute", 5, 7);

See also

connect (LocalConnection.connect method), send (LocalConnection.send method)

onStatus (LocalConnection.onStatus handler)
 onStatus = function(infoObject:Object) {}

Invoked after a sending LocalConnection object tries to send a command to a receiving LocalConnection object. If you

want to respond to this event handler, you must create a function to process the information object sent by the

LocalConnection object.

If the information object returned by this event handler contains a level value of status, Flash successfully sent the

command to a receiving LocalConnection object. This does not mean that Flash successfully invoked the specified

method of the receiving LocalConnection object; it means only that Flash could send the command. For example, the

method is not invoked if the receiving LocalConnection object doesn't allow connections from the sending domain or

if the method does not exist. The only way to know for sure if the method was invoked is to have the receiving object

send a reply to the sending object.

If the information object returned by this event handler contains a level value of error, Flash cannot send the command

to a receiving LocalConnection object, most likely because there is no receiving LocalConnection object connected

whose name corresponds to the name specified in the sending_lc.send() command that invoked this handler.

In addition to this onStatus handler, Flash also provides a "super" function called System.onStatus. If onStatus is

invoked for a particular object and there is no function assigned to respond to it, Flash processes a function assigned

to System.onStatus if it exists.

In most cases, you implement this handler only to respond to error conditions, as shown in the following example.

Availability

Flash Lite 3.1

346FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

infoObject:Object - A parameter defined according to the status message. For details about this parameter, see the

Description section.

Example

The following example displays a status message about whether the SWF file connects to another local connection

object called lc_name. A TextInput component called name_ti, a TextArea instance called status_ta and a Button

instance called send_button are used to display content.

 var sending_lc:LocalConnection;
 var sendListener:Object = new Object();
 sendListener.click = function(evt:Object) {
 sending_lc = new LocalConnection();
 sending_lc.onStatus = function(infoObject:Object) {
 switch (infoObject.level) {
 case 'status' :
 status_ta.text = "LocalConnection connected successfully.";
 break;
 case 'error' :
 status_ta.text = "LocalConnection encountered an error.";
 break;
 }
 };
 sending_lc.send("lc_name", "sayHello", name_ti.text);
 };
 send_button.addEventListener("click", sendListener);

See also

send (LocalConnection.send method), onStatus (System.onStatus handler)

send (LocalConnection.send method)
 public send(connectionName:String, methodName:String, [args:Object]) : Boolean

Invokes the method named method on a connection opened by a receiving LocalConnection object. The object that

calls this method is the sending LocalConnection object. The SWF files that contain the sending and receiving objects

must be running on the same client device.

There is a 40 kilobyte limit to the amount of data you can pass as parameters to this command. If the command returns

false but your syntax is correct, try dividing the LocalConnection.send() requests into multiple commands, each

with less than 40K of data.

As discussed in the entry LocalConnection.connect(), Flash Lite adds the current superdomain to

connectionName by default. If you are implementing communication between different domains, you need to define

connectionName in both the sending and receiving LocalConnection objects in such a way that Flash does not add the

current superdomain to connectionName. You can do this in one of the following two ways:

• Use an underscore (_) at the beginning of connectionName in both the sending and receiving LocalConnection

objects. In the SWF file containing the receiving object, use LocalConnection.allowDomain to specify that

connections from any domain will be accepted. This implementation lets you store your sending and receiving

SWF files in any domain.

347FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

• Include the superdomain in connectionName in the sending LocalConnection object—for example,

myDomain.com:myConnectionName. In the receiving object, use LocalConnection.allowDomain to specify that

connections from the specified superdomain will be accepted (in this case, myDomain.com) or that connections

from any domain will be accepted.

Note: You cannot specify a superdomain in connectionName in the receiving LocalConnection object—you can only do

this in the sending LocalConnection object.

When using this method, consider the Flash Lite security model. By default, a LocalConnection object is associated

with the sandbox of the SWF file that created it, and cross-domain calls to LocalConnection objects are not allowed

unless the LocalConnection.allowDomain() method has been invoked.

For more information, see the following:

• Chapter 17, "Understanding Security," in Learning ActionScript 2.0 in Flash

• The Flash Player 8 Security white paper at http://www.macromedia.com/go/fp8_security

• The Flash Player 8 Security-Related API white paper at http://www.macromedia.com/go/fp8_security_apis

Availability

Flash Lite 3.1

Parameters

connectionName:String - A string that corresponds to the connection name specified in the

LocalConnection.connect() command that wants to communicate with sending_lc.

methodName:String - A string specifying the name of the method to be invoked in the receiving LocalConnection

object. The following method names cause the command to fail: send, connect, close, domain, onStatus, and

allowDomain.

args:Object [optional] - Arguments to be passed to the specified method.

Returns

Boolean - A Boolean value: true if Flash can carry out the request; false otherwise.

Note: A return value of true does not necessarily mean that Flash Lite successfully connected to a receiving

LocalConnection object. It means only that the command is syntactically correct. To determine whether the connection

succeeded, see LocalConnection.onStatus.

Example

For an example of communicating between LocalConnection objects located in the same domain, see

LocalConnection.connect(). For an example of communicating between LocalConnection objects located in

specified domains, see LocalConnection.domain().

See also

allowDomain (LocalConnection.allowDomain handler), connect (LocalConnection.connect method),

domain (LocalConnection.domain method), onStatus (LocalConnection.onStatus handler)

348FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Math

 Object
 |
 +-Math

 public class Math
 extends Object

The Math class is a top-level class whose methods and properties you can use without using a constructor.

Use the methods and properties of this class to access and manipulate mathematical constants and functions. All the

properties and methods of the Math class are static and must be called using the syntax Math.method() or

Math.CONSTANT. In ActionScript, constants are defined with the maximum precision of double-precision IEEE-754

floating-point numbers.

Several Math class methods use the measure of an angle in radians as a parameter. You can use the following equation

to calculate radian values before calling the method and then provide the calculated value as the parameter, or you can

provide the entire right side of the equation (with the angle's measure in degrees in place of degrees) as the radian

parameter.

To calculate a radian value, use the following formula:

 radians = degrees * Math.PI/180

The following is an example of passing the equation as a parameter to calculate the sine of a 45° angle:

Math.sin(45 * Math.PI/180)is the same as Math.sin(.7854)

Availability

Flash Lite 2.0

Property summary

Modifiers Property Description

static E:Number A mathematical constant for the base of natural logarithms,

expressed as e.

static LN10:Number A mathematical constant for the natural logarithm of 10,

expressed as loge10, with an approximate value of

2.302585092994046.

static LN2:Number A mathematical constant for the natural logarithm of 2,

expressed as loge2, with an approximate value of

0.6931471805599453.

static LOG10E:Number A mathematical constant for the base-10 logarithm of the

constant e (Math.E), expressed as log10e, with an

approximate value of 0.4342944819032518.

static LOG2E:Number A mathematical constant for the base-2 logarithm of the

constant e (Math.E), expressed as log2e, with an approximate

value of 1.442695040888963387.

349FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Properties inherited from class Object

Method summary

static PI:Number A mathematical constant for the ratio of the circumference of

a circle to its diameter, expressed as pi, with a value of

3.141592653589793.

static SQRT1_2:Number A mathematical constant for the square root of one-half, with

an approximate value of 0.7071067811865476.

static SQRT2:Number A mathematical constant for the square root of 2, with an

approximate value of 1.4142135623730951.

constructor (Object.constructor property), __proto__ (Object.__proto__ property).

prototype (Object.prototype property), __resolve (Object.__resolve property)

Modifiers Signature Description

static abs(x:Number) :
Number

Computes and returns an absolute value for the number

specified by the parameter x.

static acos(x:Number) :
Number

Computes and returns the arc cosine of the number specified

in the parameter x, in radians.

static asin(x:Number) :
Number

Computes and returns the arc sine for the number specified in

the parameter x, in radians.

static atan(tangent:Number)
: Number

Computes and returns the value, in radians, of the angle whose

tangent is specified in the parameter tangent.

static atan2(y:Number,
x:Number) : Number

Computes and returns the angle of the point y/x in radians,

when measured counterclockwise from a circle's x axis (where

0,0 represents the center of the circle).

static ceil(x:Number) :
Number

Returns the ceiling of the specified number or expression.

static cos(x:Number) :
Number

Computes and returns the cosine of the specified angle in

radians.

static exp(x:Number) :
Number

Returns the value of the base of the natural logarithm (e), to the

power of the exponent specified in the parameter x.

static floor(x:Number) :
Number

Returns the floor of the number or expression specified in the

parameter x.

static log(x:Number) :
Number

Returns the natural logarithm of parameter x.

static max(x:Number,
y:Number) : Number

Evaluates x and y and returns the larger value.

static min(x:Number,
y:Number) : Number

Evaluates x and y and returns the smaller value.

static pow(x:Number,
y:Number) : Number

Computes and returns x to the power of y.

static random() : Number Returns a pseudo-random number n, where 0 <= n < 1.

static round(x:Number) :
Number

Rounds the value of the parameter x up or down to the nearest

integer and returns the value.

Modifiers Property Description

350FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Methods inherited from class Object

abs (Math.abs method)
 public static abs(x:Number) : Number

Computes and returns an absolute value for the number specified by the parameter x.

Availability

Flash Lite 2.0

Parameters

x:Number - A number.

Returns

Number - A number.

Example

The following example shows how Math.abs() returns the absolute value of a number and does not affect the value

of the x parameter (called num in this example):

 var num:Number = -12;
 var numAbsolute:Number = Math.abs(num);
 trace(num); // output: -12
 trace(numAbsolute); // output: 12

acos (Math.acos method)
 public static acos(x:Number) : Number

Computes and returns the arc cosine of the number specified in the parameter x, in radians.

Availability

Flash Lite 2.0

Parameters

x:Number - A number from -1.0 to 1.0.

static sin(x:Number) :
Number

Computes and returns the sine of the specified angle in

radians.

static sqrt(x:Number) :
Number

Computes and returns the square root of the specified

number.

static tan(x:Number) :
Number

Computes and returns the tangent of the specified angle.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

Modifiers Signature Description

351FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns

Number - A number; the arc cosine of the parameter x.

Example

The following example displays the arc cosine for several values.

 trace(Math.acos(-1)); // output: 3.14159265358979
 trace(Math.acos(0)); // output: 1.5707963267949
 trace(Math.acos(1)); // output: 0

See also

asin (Math.asin method), atan (Math.atan method), atan2 (Math.atan2 method), cos (Math.cos

method), sin (Math.sin method), tan (Math.tan method)

asin (Math.asin method)
 public static asin(x:Number) : Number

Computes and returns the arc sine for the number specified in the parameter x, in radians.

Availability

Flash Lite 2.0

Parameters

x:Number - A number from -1.0 to 1.0.

Returns

Number - A number between negative pi divided by 2 and positive pi divided by 2.

Example

The following example displays the arc sine for several values.

 trace(Math.asin(-1)); // output: -1.5707963267949
 trace(Math.asin(0)); // output: 0
 trace(Math.asin(1)); // output: 1.5707963267949

See also

acos (Math.acos method), atan (Math.atan method), atan2 (Math.atan2 method), cos (Math.cos

method), sin (Math.sin method), tan (Math.tan method)

atan (Math.atan method)
 public static atan(tangent:Number) : Number

Computes and returns the value, in radians, of the angle whose tangent is specified in the parameter tangent. The

return value is between negative pi divided by 2 and positive pi divided by 2.

Availability

Flash Lite 2.0

352FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

tangent:Number - A number that represents the tangent of an angle.

Returns

Number - A number between negative pi divided by 2 and positive pi divided by 2.

Example

The following example displays the angle value for several tangents.

 trace(Math.atan(-1)); // output: -0.785398163397448
 trace(Math.atan(0)); // output: 0
 trace(Math.atan(1)); // output: 0.785398163397448

See also

acos (Math.acos method), asin (Math.asin method), atan2 (Math.atan2 method), cos (Math.cos

method), sin (Math.sin method), tan (Math.tan method)

atan2 (Math.atan2 method)
 public static atan2(y:Number, x:Number) : Number

Computes and returns the angle of the point y/x in radians, when measured counterclockwise from a circle's x axis

(where 0,0 represents the center of the circle). The return value is between positive pi and negative pi.

Availability

Flash Lite 2.0

Parameters

y:Number - A number specifying the y coordinate of the point.

x:Number - A number specifying the x coordinate of the point.

Returns

Number - A number.

Example

The following example returns the angle, in radians, of the point specified by the coordinates (0, 10), such that x = 0

and y = 10. Note that the first parameter to atan2 is always the y coordinate.

 trace(Math.atan2(10, 0)); // output: 1.5707963267949

See also

acos (Math.acos method), asin (Math.asin method), atan (Math.atan method), cos (Math.cos method),

sin (Math.sin method), tan (Math.tan method)

ceil (Math.ceil method)
 public static ceil(x:Number) : Number

Returns the ceiling of the specified number or expression. The ceiling of a number is the closest integer that is greater

than or equal to the number.

353FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Parameters

x:Number - A number or expression.

Returns

Number - An integer that is both closest to, and greater than or equal to, parameter x.

Example

The following code returns a value of 13:

 Math.ceil(12.5);

See also

floor (Math.floor method), round (Math.round method)

cos (Math.cos method)
 public static cos(x:Number) : Number

Computes and returns the cosine of the specified angle in radians. To calculate a radian, see the description of the Math

class entry.

Availability

Flash Lite 2.0

Parameters

x:Number - A number that represents an angle measured in radians.

Returns

Number - A number from -1.0 to 1.0.

Example

The following example displays the cosine for several different angles.

 trace (Math.cos(0)); // 0 degree angle. Output: 1
 trace (Math.cos(Math.PI/2)); // 90 degree angle. Output: 6.12303176911189e-17
 trace (Math.cos(Math.PI)); // 180 degree angle. Output: -1
 trace (Math.cos(Math.PI*2)); // 360 degree angle. Output: 1

Note: The cosine of a 90 degree angle is zero, but because of the inherent inaccuracy of decimal calculations using

binary numbers, Flash Lite player will report a number extremely close to, but not exactly equal to, zero.

See also

acos (Math.acos method), asin (Math.asin method), atan (Math.atan method), atan2 (Math.atan2

method), sin (Math.sin method), tan (Math.tan method)

E (Math.E property)
 public static E : Number

354FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

A mathematical constant for the base of natural logarithms, expressed as e. The approximate value of e is

2.71828182845905.

Availability

Flash Lite 2.0

Example

This example shows how Math.E is used to compute continuously compounded interest for a simple case of 100

percent interest over a one-year period.

 var principal:Number = 100;
 var simpleInterest:Number = 100;
 var continuouslyCompoundedInterest:Number = (100 * Math.E) - principal;

 trace ("Beginning principal: $" + principal);
 trace ("Simple interest after one year: $" + simpleInterest);
 trace ("Continuously compounded interest after one year: $" + continuouslyCompoundedInterest);

 //
 Output:
 Beginning principal: $100
 Simple interest after one year: $100
 Continuously compounded interest after one year: $171.828182845905

exp (Math.exp method)
 public static exp(x:Number) : Number

Returns the value of the base of the natural logarithm (e), to the power of the exponent specified in the parameter x.

The constant Math.E can provide the value of e.

Availability

Flash Lite 2.0

Parameters

x:Number - The exponent; a number or expression.

Returns

Number - A number.

Example

The following example displays the logarithm for two number values.

 trace(Math.exp(1)); // output: 2.71828182845905
 trace(Math.exp(2)); // output: 7.38905609893065

See also

E (Math.E property)

355FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

floor (Math.floor method)
 public static floor(x:Number) : Number

Returns the floor of the number or expression specified in the parameter x. The floor is the closest integer that is less

than or equal to the specified number or expression.

Availability

Flash Lite 2.0

Parameters

x:Number - A number or expression.

Returns

Number - The integer that is both closest to, and less than or equal to, parameter x.

Example

The following code returns a value of 12:

 Math.floor(12.5);

The following code returns a value of -7:

 Math.floor(-6.5);

LN10 (Math.LN10 property)
 public static LN10 : Number

A mathematical constant for the natural logarithm of 10, expressed as loge10, with an approximate value of

2.302585092994046.

Availability

Flash Lite 2.0

Example

This example traces the value of Math.LN10.

 trace(Math.LN10);
 // output: 2.30258509299405

LN2 (Math.LN2 property)
 public static LN2 : Number

A mathematical constant for the natural logarithm of 2, expressed as loge2, with an approximate value of

0.6931471805599453.

Availability

Flash Lite 2.0

log (Math.log method)
 public static log(x:Number) : Number

356FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns the natural logarithm of parameter x.

Availability

Flash Lite 2.0

Parameters

x:Number - A number or expression with a value greater than 0.

Returns

Number - The natural logarithm of parameter x.

Example

The following example displays the logarithm for three numerical values.

 trace(Math.log(0)); // output: -Infinity
 trace(Math.log(1)); // output: 0
 trace(Math.log(2)); // output: 0.693147180559945
 trace(Math.log(Math.E)); // output: 1

LOG10E (Math.LOG10E property)
 public static LOG10E : Number

A mathematical constant for the base-10 logarithm of the constant e (Math.E), expressed as log10e, with an

approximate value of 0.4342944819032518.

The Math.log() method computes the natural logarithm of a number. Multiply the result of Math.log() by

Math.LOG10E obtain the base-10 logarithm.

Availability

Flash Lite 2.0

Example

This example shows how to obtain the base-10 logarithm of a number:

 trace(Math.log(1000) * Math.LOG10E);
 // Output: 3

LOG2E (Math.LOG2E property)
 public static LOG2E : Number

A mathematical constant for the base-2 logarithm of the constant e (Math.E), expressed as log2e, with an approximate

value of 1.442695040888963387.

The Math.log method computes the natural logarithm of a number. Multiply the result of Math.log() by

Math.LOG2E obtain the base-2 logarithm.

Availability

Flash Lite 2.0

357FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

This example shows how to obtain the base-2 logarithm of a number:

 trace(Math.log(16) * Math.LOG2E);
 // Output: 4

max (Math.max method)
 public static max(x:Number, y:Number) : Number

Evaluates x and y and returns the larger value.

Availability

Flash Lite 2.0

Parameters

x:Number - A number or expression.

y:Number - A number or expression.

Returns

Number - A number.

Example

The following example displays Thu Dec 30 00:00:00 GMT-0700 2004, which is the larger of the evaluated

expressions.

 var date1:Date = new Date(2004, 11, 25);
 var date2:Date = new Date(2004, 11, 30);
 var maxDate:Number = Math.max(date1.getTime(), date2.getTime());
 trace(new Date(maxDate).toString());

See also

min (Math.min method)

min (Math.min method)
 public static min(x:Number, y:Number) : Number

Evaluates x and y and returns the smaller value.

Availability

Flash Lite 2.0

Parameters

x:Number - A number or expression.

y:Number - A number or expression.

Returns

Number - A number.

358FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example displays Sat Dec 25 00:00:00 GMT-0700 2004, which is the smaller of the evaluated

expressions.

 var date1:Date = new Date(2004, 11, 25);
 var date2:Date = new Date(2004, 11, 30);
 var minDate:Number = Math.min(date1.getTime(), date2.getTime());
 trace(new Date(minDate).toString());

See also

max (Math.max method)

PI (Math.PI property)
 public static PI : Number

A mathematical constant for the ratio of the circumference of a circle to its diameter, expressed as pi, with a value of

3.141592653589793.

Availability

Flash Lite 2.0

Example

The following example draws a circle using the mathematical constant pi and the Drawing API.

 drawCircle(this, 100, 100, 50);
 //
 function drawCircle(mc:MovieClip, x:Number, y:Number, r:Number):Void {
 mc.lineStyle(2, 0xFF0000, 100);
 mc.moveTo(x+r, y);
 mc.curveTo(r+x, Math.tan(Math.PI/8)*r+y, Math.sin(Math.PI/4)*r+x, Math.sin(Math.PI/4)*r+y);
 mc.curveTo(Math.tan(Math.PI/8)*r+x, r+y, x, r+y);
 mc.curveTo(-Math.tan(Math.PI/8)*r+x, r+y, -Math.sin(Math.PI/4)*r+x,
Math.sin(Math.PI/4)*r+y);
 mc.curveTo(-r+x, Math.tan(Math.PI/8)*r+y, -r+x, y);
 mc.curveTo(-r+x, -Math.tan(Math.PI/8)*r+y, -Math.sin(Math.PI/4)*r+x, -
Math.sin(Math.PI/4)*r+y);
 mc.curveTo(-Math.tan(Math.PI/8)*r+x, -r+y, x, -r+y);
 mc.curveTo(Math.tan(Math.PI/8)*r+x, -r+y, Math.sin(Math.PI/4)*r+x, -
Math.sin(Math.PI/4)*r+y);
 mc.curveTo(r+x, -Math.tan(Math.PI/8)*r+y, r+x, y);
 }

pow (Math.pow method)
 public static pow(x:Number, y:Number) : Number

Computes and returns x to the power of y.

Availability

Flash Lite 2.0

Parameters

x:Number - A number to be raised to a power.

359FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

y:Number - A number specifying a power the parameter x is raised to.

Returns

Number - A number.

random (Math.random method)
 public static random() : Number

Returns a pseudo-random number n, where 0 <= n < 1. The number returned is a pseudo-random number because it

is not generated by a truly random natural phenomenon such as radioactive decay.

Availability

Flash Lite 2.0

Returns

Number - A number.

Example

The following example outputs 100 random integers between 4 and 11 (inclusively):

 function randRange(min:Number, max:Number):Number {
 var randomNum:Number = Math.floor(Math.random() * (max - min + 1)) + min;
 return randomNum;
 }
 for (var i = 0; i < 100; i++) {
 var n:Number = randRange(4, 11)
 trace(n);
 }

round (Math.round method)
 public static round(x:Number) : Number

Rounds the value of the parameter x up or down to the nearest integer and returns the value. If parameter x is

equidistant from its two nearest integers (that is, the number ends in .5), the value is rounded up to the next higher

integer.

Availability

Flash Lite 2.0

Parameters

x:Number - A number.

Returns

Number - A number; an integer.

Example

The following example returns a random number between two specified integers.

360FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 function randRange(min:Number, max:Number):Number {
 var randomNum:Number = Math.round(Math.random() * (max-min+1) + (min-.5));
 return randomNum;
 }
 for (var i = 0; i<25; i++) {
 trace(randRange(4, 11));
 }

See also

ceil (Math.ceil method), floor (Math.floor method)

sin (Math.sin method)
 public static sin(x:Number) : Number

Computes and returns the sine of the specified angle in radians. To calculate a radian, see the description of the Math

class entry.

Availability

Flash Lite 2.0

Parameters

x:Number - A number that represents an angle measured in radians.

Returns

Number - A number; the sine of the specified angle (between -1.0 and 1.0).

Example

The following example draws a circle using the mathematical constant pi, the sine of an angle, and the Drawing API.

 drawCircle(this, 100, 100, 50);
 //
 function drawCircle(mc:MovieClip, x:Number, y:Number, r:Number):Void {
 mc.lineStyle(2, 0xFF0000, 100);
 mc.moveTo(x+r, y);
 mc.curveTo(r+x, Math.tan(Math.PI/8)*r+y, Math.sin(Math.PI/4)*r+x, Math.sin(Math.PI/4)*r+y);
 mc.curveTo(Math.tan(Math.PI/8)*r+x, r+y, x, r+y);
 mc.curveTo(-Math.tan(Math.PI/8)*r+x, r+y, -Math.sin(Math.PI/4)*r+x,
Math.sin(Math.PI/4)*r+y);
 mc.curveTo(-r+x, Math.tan(Math.PI/8)*r+y, -r+x, y);
 mc.curveTo(-r+x, -Math.tan(Math.PI/8)*r+y, -Math.sin(Math.PI/4)*r+x, -
Math.sin(Math.PI/4)*r+y);
 mc.curveTo(-Math.tan(Math.PI/8)*r+x, -r+y, x, -r+y);
 mc.curveTo(Math.tan(Math.PI/8)*r+x, -r+y, Math.sin(Math.PI/4)*r+x, -
Math.sin(Math.PI/4)*r+y);
 mc.curveTo(r+x, -Math.tan(Math.PI/8)*r+y, r+x, y);
 }

See also

acos (Math.acos method), asin (Math.asin method), atan (Math.atan method), atan2 (Math.atan2

method), cos (Math.cos method), tan (Math.tan method)

361FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

sqrt (Math.sqrt method)
 public static sqrt(x:Number) : Number

Computes and returns the square root of the specified number.

Availability

Flash Lite 2.0

Parameters

x:Number - A number or expression greater than or equal to 0.

Returns

Number - A number if parameter x is greater than or equal to zero; NaN (not a number) otherwise.

SQRT1_2 (Math.SQRT1_2 property)
 public static SQRT1_2 : Number

A mathematical constant for the square root of one-half, with an approximate value of 0.7071067811865476.

Availability

Flash Lite 2.0

Example

This example traces the value of Math.SQRT1_2.

 trace(Math.SQRT1_2);
 // Output: 0.707106781186548

SQRT2 (Math.SQRT2 property)
 public static SQRT2 : Number

A mathematical constant for the square root of 2, with an approximate value of 1.4142135623730951.

Availability

Flash Lite 2.0

Example

This example traces the value of Math.SQRT2.

 trace(Math.SQRT2);
 // Output: 1.4142135623731

tan (Math.tan method)
 public static tan(x:Number) : Number

Computes and returns the tangent of the specified angle. To calculate a radian, use the information outlined in the

introduction to the Math class.

362FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Parameters

x:Number - A number that represents an angle measured in radians.

Returns

Number - A number; tangent of parameter x.

Example

The following example draws a circle using the mathematical constant pi, the tangent of an angle, and the Drawing API.

 drawCircle(this, 100, 100, 50);
 //
 function drawCircle(mc:MovieClip, x:Number, y:Number, r:Number):Void {
 mc.lineStyle(2, 0xFF0000, 100);
 mc.moveTo(x+r, y);
 mc.curveTo(r+x, Math.tan(Math.PI/8)*r+y, Math.sin(Math.PI/4)*r+x, Math.sin(Math.PI/4)*r+y);
 mc.curveTo(Math.tan(Math.PI/8)*r+x, r+y, x, r+y);
 mc.curveTo(-Math.tan(Math.PI/8)*r+x, r+y, -Math.sin(Math.PI/4)*r+x,
Math.sin(Math.PI/4)*r+y);
 mc.curveTo(-r+x, Math.tan(Math.PI/8)*r+y, -r+x, y);
 mc.curveTo(-r+x, -Math.tan(Math.PI/8)*r+y, -Math.sin(Math.PI/4)*r+x, -
Math.sin(Math.PI/4)*r+y);
 mc.curveTo(-Math.tan(Math.PI/8)*r+x, -r+y, x, -r+y);
 mc.curveTo(Math.tan(Math.PI/8)*r+x, -r+y, Math.sin(Math.PI/4)*r+x, -
Math.sin(Math.PI/4)*r+y);
 mc.curveTo(r+x, -Math.tan(Math.PI/8)*r+y, r+x, y);
 }

See also

acos (Math.acos method), asin (Math.asin method), atan (Math.atan method), atan2 (Math.atan2

method), cos (Math.cos method), sin (Math.sin method)

Matrix (flash.geom.Matrix)

 Object
 |
 +-flash.geom.Matrix

 public class Matrix
 extends Object

The flash.geom.Matrix class represents a transformation matrix that determines how to map points from one

coordinate space to another. By setting the properties of a Matrix object and applying it to a MovieClip or BitmapData

object, you can perform various graphical transformations on the object. These transformation functions include

translation (x and y repositioning), rotation, scaling, and skewing.

Together these types of transformations are known as affine transformations. Affine transformations preserve the

straightness of lines during transformations, and parallel lines stay parallel.

363FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

To apply a transformation matrix to a movie clip, create a flash.geom.Transform the object, and set its Matrix property

to the transformation matrix. Matrix objects are also used as parameters of some methods, such as the draw() method

of the flash.display.BitmapData class.

A transformation matrix object is considered a 3 x 3 matrix with the following contents:

In traditional transformation matrixes, the u, v, and w properties provide extra capabilities. The Matrix class can only

operate in two-dimensional space so it always assumes that the property values u and v are 0.0, and that the property

value w is 1.0. In other words the effective values of the matrix are as follows:

You can get and set the values of all six of the other properties in a Matrix object: a, b, c, d, tx, and ty.

The Matrix class supports the four major types of transformation functions: translation, scaling, rotation, and skewing.

There are specialized methods for three of these functions, as described in the following table.

Transformation Method Matrix values Display result Description

Translation

(displacement)

translate(tx, ty) Moves the image

tx pixels to the

right and ty pixels

down.

364FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Each transformation function alters the current matrix properties so that you can effectively combine multiple

transformations. To do this, you call more than one transformation function before applying the matrix to its movie

clip or bitmap target.

Availability

Flash Lite 3.1

See also

transform (MovieClip.transform property), Transform (flash.geom.Transform), draw

(BitmapData.draw method), a (Matrix.a property), b (Matrix.b property), c (Matrix.c property), d

(Matrix.d property), tx (Matrix.tx property), ty (Matrix.ty property), translate

(Matrix.translate method), scale (Matrix.scale method), rotate (Matrix.rotate method)

Property summary

Scaling scale(sx, sy) Resizes the image,

multiplying the

location of each

pixel by sx on the

x axis and sy on

the y axis.

Rotation rotate(q) Rotates the image

by an angle q,

which is measured

in radians

Skewing or

shearing

None; must set the

properties b and c.

Progressively

slides the image in

a direction parallel

to the x or y axis.

The value skx acts

as a multiplier

controlling the

sliding distance

along the x axis;

sky controls the

sliding distance

along the y axis.

Modifiers Property Description

 a:Number The value in the first row and first column of the Matrix object,

which affects the positioning of pixels along the x axis when

scaling or rotating an image.

 b:Number The value in the first row and second column of the Matrix object,

which affects the positioning of pixels along the y axis when

rotating or skewing an image.

 c :Number The value in the second row and first column of the Matrix object,

which affects the positioning of pixels along the x axis when

rotating or skewing an image.

Transformation Method Matrix values Display result Description

365FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Constructor summary

Method summary

 d:Number The value in the second row and second column of the Matrix

object, which affects the positioning of pixels along the y axis when

scaling or rotating an image.

 tx:Number The distance by which to translate each point along the x axis.

 ty:Number The distance by which to translate each point along the y axis.

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Signature Description

Matrix([a:Number,
[b:Number],
[c:Number],
[d:Number],
[tx:Number],
[ty:Number])

Creates a new Matrix object with the specified parameters.

Modifiers Signature Description

 clone(): Matrix Returns a new Matrix object that is a clone of this matrix, with an

exact copy of the contained object.

 concat(m:Matrix) :
Void

Concatenates a matrix with the current matrix, effectively

combining the geometric effects of the two.

 createBox(scaleX:Num

ber,
scaleY:Number,[rota
tion:Number],[tx:Nu

mber], [ty:Number])
: Void

Includes parameters for scaling, rotation, and translation.

 createGradientBox(widt
h:Number,
height:Number,[rota
tion:Number],[tx:Nu

mber],[ty:Number:])
: Void

Creates the specific style of matrix expected by the

MovieClip.beginGradientFill() method.

 deltaTransformPoint(pt:
Point) :Point

Given a point in the pretransform coordinate space, returns the

coordinates of that point after the transformation occurs.

 identity() : Void Sets each matrix property to a value that cause a transformed

movie clip or geometric construct to be identical to the original.

 invert() : Void Performs the opposite transformation of the original matrix.

 rotate(angle:Number)
: Void

Sets the values in the current matrix so that the matrix can be used

to apply a rotation transformation.

 scale(sx:Number,
sy:Number) : Void

Modifies a matrix so that its effect, when applied, is to resize an

image.

Modifiers Property Description

366FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

a (Matrix.a property)
 public a : Number

The value in the first row and first column of the Matrix object, which affects the positioning of pixels along the x axis

when scaling or rotating an image.

Availability

Flash Lite 3.1

Example

The following example creates the Matrix object myMatrix and sets its a value.

 import flash.geom.Matrix;

 var myMatrix:Matrix = new Matrix();
 trace(myMatrix.a); // 1

 myMatrix.a = 2;
 trace(myMatrix.a); // 2

b (Matrix.b property)
 public b : Number

The value in the first row and second column of the Matrix object, which affects the positioning of pixels along the y

axis when rotating or skewing an image.

Availability

Flash Lite 3.1

Example

The following example creates the Matrix object myMatrix and sets its b value.

 toString() : String Returns a text value listing the properties of the Matrix object.

 transformPoint(pt:Point

):Point

Applies the geometric transformation represented by the Matrix

object to the specified point.

 translate(tx:Number,
ty:Number) : Void

Modifies a Matrix object so that the effect of its transformation is to

move an object along the x and y axes.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

Modifiers Signature Description

367FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Matrix;

 var myMatrix:Matrix = new Matrix();
 trace(myMatrix.b); // 0

 var degrees:Number = 45;
 var radians:Number = (degrees/180) Math.PI;
 myMatrix.b = radians;
 trace(myMatrix.b); // 0.785398163397448

c (Matrix.c property)
 public c : Number

The value in the second row and first column of the Matrix object, which affects the positioning of pixels along the x

axis when rotating or skewing an image.

Availability

Flash Lite 3.1

Example

The following example creates the Matrix object myMatrix and sets its c value.

 import flash.geom.Matrix;

 var myMatrix:Matrix = new Matrix();
 trace(myMatrix.c); // 0

 var degrees:Number = 45;
 var radians:Number = (degrees/180) Math.PI;
 myMatrix.c = radians;
 trace(myMatrix.c); // 0.785398163397448

clone (Matrix.clone method)
 public clone() : Matrix

Returns a new Matrix object that is a clone of this matrix, with an exact copy of the contained object.

Availability

Flash Lite 3.1

Returns

Matrix - A Matrix object.

Example

The following example creates the clonedMatrix variable from the myMatrix variable. The Matrix class does not have

an equals method, so the following example uses a custom written function to test the equality of two matrixes.

368FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Matrix;

 var myMatrix:Matrix = new Matrix(2, 0, 0, 2, 0, 0);
 var clonedMatrix:Matrix = new Matrix();

 trace(myMatrix); // (a=2, b=0, c=0, d=2, tx=0, ty=0)
 trace(clonedMatrix); // (a=1, b=0, c=0, d=1, tx=0, ty=0)
 trace(equals(myMatrix, clonedMatrix)); // false

 clonedMatrix = myMatrix.clone();

 trace(myMatrix); // (a=2, b=0, c=0, d=2, tx=0, ty=0)
 trace(clonedMatrix); // (a=2, b=0, c=0, d=2, tx=0, ty=0)
 trace(equals(myMatrix, clonedMatrix)); // true

 function equals(m1:Matrix, m2:Matrix):Boolean {
 return m1.toString() == m2.toString();
 }

concat (Matrix.concat method)
 public concat(m:Matrix) : Void

Concatenates a matrix with the current matrix, effectively combining the geometric effects of the two. In mathematical

terms, concatenating two matrixes is the same as combining them using matrix multiplication.

For example, if matrix m1 scales an object by a factor of four, and matrix m2 rotates an object by 1.5707963267949

radians (Math.PI/2), m1.concat(m2) transforms m1 into a matrix that scales an object by a factor of four and rotates

the object by Math.PI/2 radians.

This method replaces the source matrix with the concatenated matrix. If you want to concatenate two matrixes without

altering either of the two source matrixes, you can first copy the source matrix the clone() method, as shown in the

Example section.

Availability

Flash Lite 3.1

Parameters

m:Matrix - The matrix to be concatenated to the source matrix.

Example

The following example creates three matrixes that define transformations for three rectangle movie clips. The first two

matrixes rotate45Matrix and doubleScaleMatrix are applied to the two rectangles rectangleMc_1 and

rectangleMc_2. Then the third matrix is created using the concat() method on rotate45Matrix and

doubleScaleMatrix to create scaleAndRotateMatrix. This matrix is then applied to rectangleMc_3 to scale and

rotate it.

369FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Matrix;
 import flash.geom.Transform;

 var rectangleMc_0:MovieClip = createRectangle(20, 80, 0x000000);
 var rectangleMc_1:MovieClip = createRectangle(20, 80, 0xFF0000);
 var rectangleMc_2:MovieClip = createRectangle(20, 80, 0x00FF00);
 var rectangleMc_3:MovieClip = createRectangle(20, 80, 0x0000FF);

 var rectangleTrans_1:Transform = new Transform(rectangleMc_1);
 var rectangleTrans_2:Transform = new Transform(rectangleMc_2);
 var rectangleTrans_3:Transform = new Transform(rectangleMc_3);

 var rotate45Matrix:Matrix = new Matrix();
 rotate45Matrix.rotate(Math.PI/4);
 rectangleTrans_1.matrix = rotate45Matrix;
 rectangleMc_1._x = 100;
 trace(rotate45Matrix.toString()); // (a=0.707106781186548, b=0.707106781186547, c=-
0.707106781186547, d=0.707106781186548, tx=0, ty=0)

 var doubleScaleMatrix:Matrix = new Matrix();
 doubleScaleMatrix.scale(2, 2);
 rectangleTrans_2.matrix = doubleScaleMatrix;
 rectangleMc_2._x = 200;
 trace(doubleScaleMatrix.toString()); // (a=2, b=0, c=0, d=2, tx=0, ty=0)

 var scaleAndRotateMatrix:Matrix = doubleScaleMatrix.clone();
 scaleAndRotateMatrix.concat(rotate45Matrix);
 rectangleTrans_3.matrix = scaleAndRotateMatrix;
 rectangleMc_3._x = 300;
 trace(scaleAndRotateMatrix.toString()); // (a=1.4142135623731, b=1.41421356237309, c=-
1.41421356237309, d=1.4142135623731, tx=0, ty=0)

 function createRectangle(width:Number, height:Number, color:Number):MovieClip {
 var depth:Number = this.getNextHighestDepth();
 var mc:MovieClip = this.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

createBox (Matrix.createBox method)
 public createBox(scaleX:Number, scaleY:Number, [rotation:Number], [tx:Number], [ty:Number]) : Void

Includes parameters for scaling, rotation, and translation. When applied to a matrix, it sets the matrix's values based

on those parameters.

Using the createBox() method lets you obtain the same matrix as you would if you were to apply the identity(),

rotate(), scale(), and translate() methods in succession. For example, mat1.createBox(2,2,Math.PI/5,

100, 100) has the same effect as the following:

370FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Matrix;

 var mat1:Matrix = new Matrix();
 mat1.identity();
 mat1.rotate(Math.PI/4);
 mat1.scale(2,2);
 mat1.translate(10,20);

Availability

Flash Lite 3.1

Parameters

scaleX:Number - The factor by which to scale horizontally.

scaleY:Number - The factor by which scale vertically.

rotation:Number [optional] - The amount to rotate, in radians. The default value is 0.

tx:Number [optional] - The number of pixels to translate (move) to the right along the x axis. The default value is 0.

ty:Number [optional] - The number of pixels to translate (move) down along the y axis. The default value is 0.

Example

The following example sets the scaleX, scaleY scale, rotation, x location, and y location of myMatrix by calling its

createBox() method.

 import flash.geom.Matrix;
 import flash.geom.Transform;

 var myMatrix:Matrix = new Matrix();
 trace(myMatrix.toString()); // (a=1, b=0, c=0, d=1, tx=0, ty=0)

 myMatrix.createBox(1, 2, Math.PI/4, 100, 200);
 trace(myMatrix.toString()); // (a=0.707106781186548, b=1.41421356237309, c=-
0.707106781186547, d=1.4142135623731, tx=100, ty=200)

 var rectangleMc:MovieClip = createRectangle(20, 80, 0xFF0000);
 var rectangleTrans:Transform = new Transform(rectangleMc);
 rectangleTrans.matrix = myMatrix;

createGradientBox (Matrix.createGradientBox method)
 public createGradientBox(width:Number, height:Number, [rotation:Number], [tx:Number],
[ty:Number]) : Void

Creates the specific style of matrix expected by the MovieClip.beginGradientFill() method. Width and height are

scaled to a scaleX/scaleY pair and the tx/ty values are offset by half the width and height.

Availability

Flash Lite 3.1

Parameters

width:Number - The width of the gradient box.

371FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

height:Number - The height of the gradient box.

rotation:Number [optional] - The amount to rotate, in radians. The default value is 0.

tx:Number [optional] - The distance in pixels to translate to the right along the x axis. This value will be offset by half

of the width parameter. The default value is 0.

ty:Number [optional] - The distance in pixels to translate down along the y axis. This value will be offset by half of the

height parameter. The default value is 0.

Example

The following example uses myMatrix as a parameter for the MovieClip object's beginGradientFill() method.

 import flash.geom.Matrix;

 var myMatrix:Matrix = new Matrix();
 trace(myMatrix.toString()); // (a=1, b=0, c=0, d=1, tx=0, ty=0)

 myMatrix.createGradientBox(200, 200, 0, 50, 50);
 trace(myMatrix.toString()); // (a=0.1220703125, b=0, c=0, d=0.1220703125, tx=150, ty=150)

 var depth:Number = this.getNextHighestDepth();
 var mc:MovieClip = this.createEmptyMovieClip("mc_" + depth, depth);
 var colors:Array = [0xFF0000, 0x0000FF];
 var alphas:Array = [100, 100];
 var ratios:Array = [0, 0xFF];
 mc.beginGradientFill("linear", colors, alphas, ratios, myMatrix);
 mc.lineTo(0, 300);
 mc.lineTo(300, 300);
 mc.lineTo(300, 0);
 mc.lineTo(0, 0);

See also

beginGradientFill (MovieClip.beginGradientFill method)

d (Matrix.d property)
 public d : Number

The value in the second row and second column of the Matrix object, which affects the positioning of pixels along the

y axis when scaling or rotating an image.

Availability

Flash Lite 3.1

Example

The following example creates the Matrix object myMatrix and sets its d value.

 import flash.geom.Matrix;

 var myMatrix:Matrix = new Matrix();
 trace(myMatrix.d); // 1

 myMatrix.d = 2;
 trace(myMatrix.d); // 2

372FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

deltaTransformPoint (Matrix.deltaTransformPoint method)
 public deltaTransformPoint(pt:Point) : Point

Given a point in the pretransform coordinate space, returns the coordinates of that point after the transformation

occurs. Unlike the standard transformation applied using the transformPoint() method, the deltaTransformPoint()

method's transformation does not consider the translation parameters tx and ty.

Availability

Flash Lite 3.1

Parameters

pt:Point - A Point object.

Returns

Point - The new Point object.

Example

The following example uses the deltaTransformPoint() method to create deltaTransformedPoint from

myPoint. In the example, the translate() method does not alter the position of the point named

deltaTransformedPoint. However, the scale() method does affect that point's position. It increases the point's x

value by a factor of three from 50 to 150.

373FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Matrix;
 import flash.geom.Point;

 var myMatrix:Matrix = new Matrix();
 trace(myMatrix); // (a=1, b=0, c=0, d=1, tx=0, ty=0)

 myMatrix.translate(100, 0);
 trace(myMatrix); // (a=1, b=0, c=0, d=1, tx=100, ty=0)

 myMatrix.scale(3, 3);
 trace(myMatrix); // (a=3, b=0, c=0, d=3, tx=300, ty=0)

 var myPoint:Point = new Point(50,0);
 trace(myPoint); // (50, 0)

 var deltaTransformedPoint:Point = myMatrix.deltaTransformPoint(myPoint);
 trace(deltaTransformedPoint); // (150, 0)

 var pointMc_0:MovieClip = createRectangle(10, 10, 0xFF0000);
 pointMc_0._x = myPoint.x;

 var pointMc_1:MovieClip = createRectangle(10, 10, 0x00FF00);
 pointMc_1._x = deltaTransformedPoint.x;

 function createRectangle(width:Number, height:Number, color:Number):MovieClip {
 var depth:Number = this.getNextHighestDepth();
 var mc:MovieClip = this.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

identity (Matrix.identity method)
 public identity() : Void

Sets each matrix property to a value that causes a transformed movie clip or geometric construct to be identical to the

original.

After calling the identity() method, the resulting matrix has the following properties: a=1, b=0, c=0, d=1,

tx=0, ty=0.

In matrix notation, the identity matrix looks like this:

Availability

Flash Lite 3.1

374FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example demonstrates that calling the identity() method converts the calling Matrix object to an

identity Matrix object. The number and types of transformations applied to the original Matrix object beforehand are

irrelevant. If identity() is called, the Matrix values are converted to (a=1, b=0, c=0, d=1, tx=0, ty=0).

 import flash.geom.Matrix;

 var myMatrix:Matrix = new Matrix(2, 0, 0, 2, 0 ,0);
 trace(myMatrix.toString()); // (a=2, b=0, c=0, d=2, tx=0, ty=0)

 myMatrix.rotate(Math.atan(3/4));
 trace(myMatrix.toString()); // (a=1.6, b=1.2, c=-1.2, d=1.6, tx=0, ty=0)

 myMatrix.translate(100,200);
 trace(myMatrix.toString()); // (a=1.6, b=1.2, c=-1.2, d=1.6, tx=100, ty=200)

 myMatrix.scale(2, 2);
 trace(myMatrix.toString()); // (a=3.2, b=2.4, c=-2.4, d=3.2, tx=200, ty=400)

 myMatrix.identity();
 trace(myMatrix.toString()); // (a=1, b=0, c=0, d=1, tx=0, ty=0)

invert (Matrix.invert method)
 public invert() : Void

Performs the opposite transformation of the original matrix. You can apply an inverted matrix to an object to undo

the transformation performed when applying the original matrix.

Availability

Flash Lite 3.1

Example

The following example creates halfScaleMatrix by calling the invert() method of doubleScaleMatrix, and then

demonstrates that the two are Matrix inverses of one another, that is, matrixes that undo any transformations

performed by the other. The example shows this inversion by creating originalAndInverseMatrix, which is equal

to noScaleMatrix.

375FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Matrix;
 import flash.geom.Transform;

 var rectangleMc_0:MovieClip = createRectangle(20, 80, 0xFF0000);
 var rectangleMc_1:MovieClip = createRectangle(20, 80, 0x00FF00);
 var rectangleMc_2:MovieClip = createRectangle(20, 80, 0x0000FF);
 var rectangleMc_3:MovieClip = createRectangle(20, 80, 0x000000);

 var rectangleTrans_0:Transform = new Transform(rectangleMc_0);
 var rectangleTrans_1:Transform = new Transform(rectangleMc_1);
 var rectangleTrans_2:Transform = new Transform(rectangleMc_2);
 var rectangleTrans_3:Transform = new Transform(rectangleMc_3);

 var doubleScaleMatrix:Matrix = new Matrix(2, 0, 0, 2, 0, 0);
 rectangleTrans_0.matrix = doubleScaleMatrix;
 trace(doubleScaleMatrix.toString()); // (a=2, b=0, c=0, d=2, tx=0, ty=0)

 var noScaleMatrix:Matrix = new Matrix(1, 0, 0, 1, 0, 0);
 rectangleTrans_1.matrix = noScaleMatrix;
 rectangleMc_1._x = 100;
 trace(noScaleMatrix.toString()); // (a=1, b=0, c=0, d=1, tx=0, ty=0)

 var halfScaleMatrix:Matrix = doubleScaleMatrix.clone();
 halfScaleMatrix.invert();
 rectangleTrans_2.matrix = halfScaleMatrix;
 rectangleMc_2._x = 200;
 trace(halfScaleMatrix.toString()); // (a=0.5, b=0, c=0, d=0.5, tx=0, ty=0)

 var originalAndInverseMatrix:Matrix = doubleScaleMatrix.clone();
 originalAndInverseMatrix.concat(halfScaleMatrix);
 rectangleTrans_3.matrix = originalAndInverseMatrix;
 rectangleMc_3._x = 300;
 trace(originalAndInverseMatrix.toString()); // (a=1, b=0, c=0, d=1, tx=0, ty=0)

 function createRectangle(width:Number, height:Number, color:Number):MovieClip {
 var depth:Number = this.getNextHighestDepth();
 var mc:MovieClip = this.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

Matrix constructor
 public Matrix([a:Number], [b:Number], [c:Number], [d:Number], [tx:Number], [ty:Number])

Creates a new Matrix object with the specified parameters. In matrix notation, the properties will be organized like this:

376FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

If you do not provide any parameters to the new Matrix() constructor, it creates an "identity matrix" with the

following values:

In matrix notation, the identity matrix looks like this:

Availability

Flash Lite 3.1

Parameters

a:Number [optional] - The value in the first row and first column of the new Matrix object.

b:Number [optional] - The value in the first row and second column of the new Matrix object.

c:Number [optional] - The value in the second row and first column of the new Matrix object.

d:Number [optional] - The value in the second row and second column of the new Matrix object.

tx:Number [optional] - The value in the third row and first column of the new Matrix object.

ty:Number [optional] - The value in the third row and second column of the new Matrix object.

Example

The following example creates matrix_1 by sending no parameters to the Matrix constructor and matrix_2 by

sending parameters to it. The Matrix object matrix_1, which is created with no parameters, is an identity Matrix with

the values (a=1, b=0, c=0, d=1, tx=0, ty=0).

 import flash.geom.Matrix;

 var matrix_1:Matrix = new Matrix();
 trace(matrix_1); // (a=1, b=0, c=0, d=1, tx=0, ty=0)

 var matrix_2:Matrix = new Matrix(1, 2, 3, 4, 5, 6);
 trace(matrix_2); // (a=1, b=2, c=3, d=4, tx=5, ty=6)

rotate (Matrix.rotate method)
 public rotate(angle:Number) : Void

Sets the values in the current matrix so that the matrix can be used to apply a rotation transformation.

a = 1 b = 0

c = 0 d = 1

tx = 0 ty = 0

377FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The rotate() method alters the a and d properties of the Matrix object. In matrix notation this is shown as follows:

Availability

Flash Lite 3.1

Parameters

angle:Number - The rotation angle in radians.

Example

The following example shows how the rotate() method rotates rectangleMc 30 degrees clockwise. Applying

myMatrix to rectangleMc resets its _x value, leaving you to reset it to 100 manually.

 import flash.geom.Matrix;
 import flash.geom.Transform;

 var myMatrix:Matrix = new Matrix();
 trace(myMatrix.toString()); // (a=1, b=0, c=0, d=1, tx=0, ty=0)

 var degrees:Number = 30;
 var radians:Number = (degrees/180) Math.PI;
 myMatrix.rotate(radians);
 trace(myMatrix.toString()); // (a=0.866025403784439, b=0.5, c=-0.5, d=0.866025403784439,
tx=0, ty=0)

 var rectangleMc:MovieClip = createRectangle(20, 80, 0xFF0000);
 trace(rectangleMc._x); // 0
 rectangleMc._x = 100;
 trace(rectangleMc._x); // 100

 var rectangleTrans:Transform = new Transform(rectangleMc);
 rectangleTrans.matrix = myMatrix;
 trace(rectangleMc._x); // 0
 rectangleMc._x = 100;
 trace(rectangleMc._x); // 100

 function createRectangle(width:Number, height:Number, color:Number):MovieClip {
 var depth:Number = this.getNextHighestDepth();
 var mc:MovieClip = this.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

378FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The previous example uses the _x property of the MovieClip object to position rectangleMc. Generally, when dealing

with Matrix object positioning, mixing positioning techniques is considered poor format. The previous example

written in correct syntax would concatenate a translation Matrix to myMatrix to change the horizontal location of

rectangleMc. The following example demonstrates this.

 import flash.geom.Matrix;
 import flash.geom.Transform;

 var myMatrix:Matrix = new Matrix();
 trace(myMatrix.toString()); // (a=1, b=0, c=0, d=1, tx=0, ty=0)

 var degrees:Number = 30;
 var radians:Number = (degrees/180) * Math.PI;
 myMatrix.rotate(radians);
 trace(myMatrix.toString()); // (a=0.866025403784439, b=0.5, c=-0.5, d=0.866025403784439,
tx=0, ty=0)

 var translateMatrix:Matrix = new Matrix();
 translateMatrix.translate(100, 0);
 myMatrix.concat(translateMatrix);
 trace(myMatrix.toString()); // (a=0.866025403784439, b=0.5, c=-0.5, d=0.866025403784439,
tx=100, ty=0)

 var rectangleMc:MovieClip = createRectangle(20, 80, 0xFF0000);
 trace(rectangleMc._x); // 0
 rectangleMc._x = 100;
 trace(rectangleMc._x); // 100

 var rectangleTrans:Transform = new Transform(rectangleMc);
 rectangleTrans.matrix = myMatrix;
 trace(rectangleMc._x); // 100

 function createRectangle(width:Number, height:Number, color:Number):MovieClip {
 var depth:Number = this.getNextHighestDepth();
 var mc:MovieClip = this.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

scale (Matrix.scale method)
 public scale(sx:Number, sy:Number) : Void

Modifies a matrix so that its effect, when applied, is to resize an image. In the resized image, the location of each pixel

on the x axis is multiplied by sx; and on the y axis, it is multiplied by sy.

The scale() method alters the a and d properties of the matrix object. In matrix notation, this is shown as follows:

379FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 3.1

Parameters

sx:Number - A multiplier used to scale the object along the x axis.

sy:Number - A multiplier used to scale the object along the y axis.

Example

The following example uses the scale() method to scale myMatrix by a factor of three horizontally and a factor of

four vertically.

 import flash.geom.Matrix;

 var myMatrix:Matrix = new Matrix(2, 0, 0, 2, 100, 100);
 trace(myMatrix.toString()); // (a=2, b=0, c=0, d=2, tx=100, ty=100)

 myMatrix.scale(3, 4);
 trace(myMatrix.toString()); // (a=6, b=0, c=0, d=8, tx=300, ty=400)

toString (Matrix.toString method)
 public toString() : String

Returns a text value listing the properties of the Matrix object.

Availability

Flash Lite 3.1

Returns

“String” on page 584 - A string containing the values of the properties of the Matrix object: a, b, c, d, tx, and ty.

Example

The following example creates myMatrix and converts its values to a string in the format of (a=A, b=B, c=C, d=D,

tx=TX, ty=TY).

 import flash.geom.Matrix;

 var myMatrix:Matrix = new Matrix();
 trace("myMatrix: " + myMatrix.toString()); // (a=1, b=0, c=0, d=1, tx=0, ty=0)

transformPoint (Matrix.transformPoint method)
 public transformPoint(pt:Point) : Point

Applies the geometric transformation represented by the Matrix object to the specified point.

Availability

Flash Lite 3.1

Parameters

pt:Point - The Point (x,y) to be transformed.

380FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns

Point (flash.geom.Point) - The new Point object.

Example

The following example uses the transformPoint() method to create transformedPoint from myPoint. The

translate() method does have an effect on the position of transformedPoint. In the example, scale() increases

the original x value by a factor of three, from 50 to 150, and the translate() method increases x by 300, for a total

value of 450.

 import flash.geom.Matrix;
 import flash.geom.Point;

 var myMatrix:Matrix = new Matrix();
 trace(myMatrix); // (a=1, b=0, c=0, d=1, tx=0, ty=0)

 myMatrix.translate(100, 0);
 trace(myMatrix); // (a=1, b=0, c=0, d=1, tx=100, ty=0)

 myMatrix.scale(3, 3);
 trace(myMatrix); // (a=3, b=0, c=0, d=3, tx=300, ty=0)

 var myPoint:Point = new Point(50,0);
 trace(myPoint); // (50, 0)

 var transformedPoint:Point = myMatrix.transformPoint(myPoint);
 trace(transformedPoint); // (450, 0)

 var pointMc_0:MovieClip = createRectangle(10, 10, 0xFF0000);
 pointMc_0._x = myPoint.x;

 var pointMc_1:MovieClip = createRectangle(10, 10, 0x00FF00);
 pointMc_1._x = transformedPoint.x;

 function createRectangle(width:Number, height:Number, color:Number):MovieClip {
 var depth:Number = this.getNextHighestDepth();
 var mc:MovieClip = this.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

translate (Matrix.translate method)
 public translate(tx:Number, ty:Number) : Void

Modifies a Matrix object so that the effect of its transformation is to move an object along the x and y axes.

381FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The translate() method alters the tx and ty properties of the matrix object. In matrix notation, this is shown as

follows:

Availability

Flash Lite 3.1

Parameters

tx:Number - The amount of movement along the x axis to the right, in pixels.

ty:Number - The amount of movement down along the y axis, in pixels.

Example

The following example uses the translate() method to position rectangleMc x:100 and y:50. The translate()

method affects the translation properties tx and ty, but it doesn't affect the a, b, c, or d properties.

 import flash.geom.Matrix;

 var myMatrix:Matrix = new Matrix(2, 0, 0, 2, 100, 100);
 trace(myMatrix.toString()); // (a=2, b=0, c=0, d=2, tx=100, ty=100)

 myMatrix.translate(100, 50);
 trace(myMatrix.toString()); // (a=2, b=0, c=0, d=2, tx=200, ty=150)

tx (Matrix.tx property)
 public tx : Number

The distance by which to translate each point along the x axis. This represents the value in the third row and first

column of the Matrix object.

Availability

Flash Lite 3.1

Example

The following example creates the Matrix object myMatrix and sets its tx value.

 import flash.geom.Matrix;

 var myMatrix:Matrix = new Matrix();
 trace(myMatrix.tx); // 0

 myMatrix.tx = 50; // 50
 trace(myMatrix.tx);

ty (Matrix.ty property)
 public ty : Number

382FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The distance by which to translate each point along the y axis. This represents the value in the third row and second

column of the Matrix object.

Availability

Flash Lite 3.1

Example

The following example creates the Matrix object myMatrix and sets its ty value.

 import flash.geom.Matrix;

 var myMatrix:Matrix = new Matrix();
 trace(myMatrix.ty); // 0

 myMatrix.ty = 50;
 trace(myMatrix.ty); // 50

Mouse

 Object
 |
 +-Mouse

 public class Mouse
 extends Object

The Mouse class is a top-level class whose properties and methods you can access without using a constructor. You

can use the methods of the Mouse class to add and remove listeners and to handle mouse events.

The members of this class are supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Property summary

Properties inherited from class Object

Event summary

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onMouseDown =
function() {}

Notified when the mouse button is pressed.

onMouseMove =
function() {}

Notified when the mouse moves.

onMouseUp =
function() {}

Notified when the mouse button is released.

383FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Method summary

Methods inherited from class Object

addListener (Mouse.addListener method)
 public static addListener(listener:Object) : Void

Registers an object to receive notifications of the onMouseDown, onMouseMove, and onMouseUp listeners.

The listener parameter should contain an object that has a defined method for at least one of the listeners.

When the mouse button is pressed, moved, released, or used to scroll, regardless of the input focus, all listening objects

that are registered with this method have their onMouseDown, onMouseMove, or onMouseUp method invoked. Multiple

objects can listen for mouse notifications. If the listener is already registered, no change occurs.

Note: This method is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Parameters

listener:Object

Example

This example sends the position of the cursor to the Output window.

 // Create a mouse listener object.
 var mouseListener:Object = new Object();

 mouseListener.onMouseMove = function() {
 trace(_xmouse);
 trace(_ymouse);
 };
 Mouse.addListener(mouseListener);

See also

onMouseDown (Mouse.onMouseDown event listener), onMouseMove (Mouse.onMouseMove event listener),

onMouseUp (Mouse.onMouseUp event listener)

Modifiers Signature Description

static addListener(listener:
Object) : Void

Registers an object to receive notifications of the

onMouseDown, onMouseMove, and onMouseUp listeners.

static removeListener(listene
r:Object) : Boolean

Removes an object that was previously registered with

addListener().

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

384FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

onMouseDown (Mouse.onMouseDown event listener)
 onMouseDown = function() {}

Notified when the mouse button is pressed. To use the onMouseDown listener, you must create a listener object. Define

a function for onMouseDown and call addListener() to register the listener with the Mouse object, as shown in the

following code:

 var someListener:Object = new Object();
 someListener.onMouseDown = function () { ... };
 Mouse.addListener(someListener);

Listeners enable different pieces of code to cooperate because multiple listeners can receive notification about a single

event.

This event listener is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example uses the Drawing API to draw a rectangle when the user presses the mouse button, moves the

mouse, and then releases the mouse button at runtime.

 this.createEmptyMovieClip("canvas_mc", this.getNextHighestDepth());
 var mouseListener:Object = new Object();
 mouseListener.onMouseDown = function() {
 this.isDrawing = true;
 this.orig_x = _xmouse;
 this.orig_y = _ymouse;
 this.target_mc = canvas_mc.createEmptyMovieClip("", canvas_mc.getNextHighestDepth());
 };
 mouseListener.onMouseMove = function() {
 if (this.isDrawing) {
 this.target_mc.clear();
 this.target_mc.lineStyle(1, 0xFF0000, 100);
 this.target_mc.moveTo(this.orig_x, this.orig_y);
 this.target_mc.lineTo(_xmouse, this.orig_y);
 this.target_mc.lineTo(_xmouse, _ymouse);
 this.target_mc.lineTo(this.orig_x, _ymouse);
 this.target_mc.lineTo(this.orig_x, this.orig_y);
 }
 updateAfterEvent();
 };
 mouseListener.onMouseUp = function() {
 this.isDrawing = false;
 };
 Mouse.addListener(mouseListener);

See also

addListener (Mouse.addListener method)

onMouseMove (Mouse.onMouseMove event listener)
 onMouseMove = function() {}

385FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Notified when the mouse moves. To use the onMouseMove listener, you must create a listener object. You can then

define a function for onMouseMove and use addListener() to register the listener with the Mouse object, as shown

in the following code:

 var someListener:Object = new Object();
 someListener.onMouseMove = function () { ... };
 Mouse.addListener(someListener);

Listeners enable different pieces of code to cooperate because multiple listeners can receive notification about a single

event.

This event listener is supported in Flash Lite only if System.capabilities.hasMouse is true.

Availability

Flash Lite 2.0

Example

The following example uses the mouse pointer as a tool to draw lines using onMouseMove and the Drawing API. The

user draws a line by moving the pointer.

 this.createEmptyMovieClip("canvas_mc", this.getNextHighestDepth());
 var mouseListener:Object = new Object();
 mouseListener.onMouseDown = function() {
 this.isDrawing = true;
 canvas_mc.lineStyle(2, 0xFF0000, 100);
 canvas_mc.moveTo(_xmouse, _ymouse);
 };
 mouseListener.onMouseMove = function() {
 if (this.isDrawing) {
 canvas_mc.lineTo(_xmouse, _ymouse);
 }
 updateAfterEvent();
 };
 mouseListener.onMouseUp = function() {
 this.isDrawing = false;
 };
 Mouse.addListener(mouseListener);

The following example sets the x and y positions of the pointer_mc movie clip instance to the x and y pointer

positions. The device must support a stylus or mouse for this example to work. To use the example, you create a movie

clip and set its Linkage identifier to pointer_id. Then add the following ActionScript code to Frame 1 of the Timeline:

 this.attachMovie("pointer_id", "pointer_mc", this.getNextHighestDepth());
 var mouseListener:Object = new Object();
 mouseListener.onMouseMove = function() {
 pointer_mc._x = _xmouse;
 pointer_mc._y = _ymouse;
 };
 Mouse.addListener(mouseListener);

See also

addListener (Mouse.addListener method)

onMouseUp (Mouse.onMouseUp event listener)
 onMouseUp = function() {}

386FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Notified when the mouse button is released. To use the onMouseUp listener, you must create a listener object. You can

then define a function for onMouseUp and use addListener() to register the listener with the Mouse object, as shown

in the following code:

 var someListener:Object = new Object();
 someListener.onMouseUp = function () { ... };
 Mouse.addListener(someListener);

Listeners enable different pieces of code to cooperate because multiple listeners can receive notification about a single

event.

This event listener is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example uses the mouse pointer as a tool to draw lines using onMouseMove and the Drawing API. The

user draws a line by moving the pointer and stops drawing the line by releasing the mouse button.

 this.createEmptyMovieClip("canvas_mc", this.getNextHighestDepth());
 var mouseListener:Object = new Object();
 mouseListener.onMouseDown = function() {
 this.isDrawing = true;
 canvas_mc.lineStyle(2, 0xFF0000, 100);
 canvas_mc.moveTo(_xmouse, _ymouse);
 };
 mouseListener.onMouseMove = function() {
 if (this.isDrawing) {
 canvas_mc.lineTo(_xmouse, _ymouse);
 }
 updateAfterEvent();
 };
 mouseListener.onMouseUp = function() {
 this.isDrawing = false;
 };
 Mouse.addListener(mouseListener);

See also

addListener (Mouse.addListener method)

removeListener (Mouse.removeListener method)
 public static removeListener(listener:Object) : Boolean

Removes an object that was previously registered with addListener().

Note: This method is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

387FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

listener:Object

Returns

Boolean - If the listener object is successfully removed, the method returns true; if the listener object is not successfully

removed (for example, if it was not on the Mouse object's listener list), the method returns false.

Example

The following example attaches three buttons to the Stage, and lets the user draw lines in the SWF file at runtime, using

the mouse pointer. One button clears all of the lines from the SWF file. The second button removes the mouse listener

so the user cannot draw lines. The third button adds the mouse listener after it is removed, so the user can draw lines

again. Add the following ActionScript to Frame 1 of the Timeline:

 this.createClassObject(mx.controls.Button, "clear_button", this.getNextHighestDepth(),
{_x:10, _y:10, label:'clear'});
 this.createClassObject(mx.controls.Button, "stopDrawing_button", this.getNextHighestDepth(),
{_x:120, _y:10, label:'stop drawing'});
 this.createClassObject(mx.controls.Button, "startDrawing_button",
this.getNextHighestDepth(), {_x:230, _y:10, label:'start drawing'});
 startDrawing_button.enabled = false;
 //
 this.createEmptyMovieClip("canvas_mc", this.getNextHighestDepth());
 var mouseListener:Object = new Object();
 mouseListener.onMouseDown = function() {
 this.isDrawing = true;
 canvas_mc.lineStyle(2, 0xFF0000, 100);
 canvas_mc.moveTo(_xmouse, _ymouse);
 };
 mouseListener.onMouseMove = function() {
 if (this.isDrawing) {
 canvas_mc.lineTo(_xmouse, _ymouse);
 }
 updateAfterEvent();
 };
 mouseListener.onMouseUp = function() {
 this.isDrawing = false;
 };
 Mouse.addListener(mouseListener);

388FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var clearListener:Object = new Object();
 clearListener.click = function() {
 canvas_mc.clear();
 };
 clear_button.addEventListener("click", clearListener);
 //
 var stopDrawingListener:Object = new Object();
 stopDrawingListener.click = function(evt:Object) {
 Mouse.removeListener(mouseListener);
 evt.target.enabled = false;
 startDrawing_button.enabled = true;
 };
 stopDrawing_button.addEventListener("click", stopDrawingListener);
 var startDrawingListener:Object = new Object();
 startDrawingListener.click = function(evt:Object) {
 Mouse.addListener(mouseListener);
 evt.target.enabled = false;
 stopDrawing_button.enabled = true;
 };
 startDrawing_button.addEventListener("click", startDrawingListener);

MovieClip

 Object
 |
 +-MovieClip

 public dynamic class MovieClip
 extends Object

Use the MovieClip class to manipulate movie clips with ActionScript. There is no constructor for the MovieClip class.

To create a new movie clip instance, do one of the following:

• Draw a movie clip on the Stage in the Flash authoring tool and give it an instance name in the Property inspector.

• Call attachMovie() method to create a new movie clip instance based on a movie clip symbol that exists in the

library.

• Call createEmptyMovieClip() to create a new, empty movie clip instance as a child based on another movie clip.

• Call duplicateMovieClip() method to create a movie clip instance based on another movie clip.

Availability

Flash Lite 2.0

Property summary

Modifiers Property Description

 _alpha:Number The alpha transparency value of the movie clip.

 _currentframe:Number

[read-only]

Returns the number of the frame in which the playhead is

located in the movie clip's Timeline.

 _droptarget:String [read-

only]

Returns the absolute path in slash-syntax notation of the

movie clip instance on which this movie clip was dropped.

389FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 enabled:Boolean A Boolean value that indicates whether a movie clip is enabled.

 focusEnabled:Boolean If the value is undefined or false, a movie clip cannot

receive input focus unless it is a button.

 _focusrect:Boolean A Boolean value that specifies whether a movie clip has a

yellow rectangle around it when it has input focus.

 _framesloaded:Number

[read-only]

The number of frames that are loaded from a streaming SWF

file.

 _height:Number The height of the movie clip, in pixels.

 _highquality:Number Deprecated since Flash Player 7. This property was

deprecated in favor of MovieClip._quality.

Specifies the level of anti-aliasing applied to the current SWF

file.

 hitArea:Object Designates another movie clip to serve as the hit area for a

movie clip.

 _lockroot:Boolean A Boolean value that specifies what _root refers to when a

SWF file is loaded into a movie clip.

 _name:String The instance name of the movie clip.

 _parent:MovieClip A reference to the movie clip or object that contains the

current movie clip or object.

 _quality:String Sets or retrieves the rendering quality used for a SWF file.

 _rotation:Number Specifies the rotation of the movie clip, in degrees, from its

original orientation.

 _soundbuftime:Number Specifies the number of seconds a sound prebuffers before it

starts to stream.

 tabChildren:Boolean Determines whether the children of a movie clip are included

in the automatic tab ordering.

 tabEnabled:Boolean Specifies whether the movie clip is included in automatic tab

ordering.

 tabIndex:Number Lets you customize the tab ordering of objects in a movie.

 _target:String [read-only] Returns the target path of the movie clip instance, in slash

notation.

 _totalframes:Number

[read-only]

Returns the total number of frames in the movie clip instance

specified in the MovieClip parameter.

 trackAsMenu:Boolean A Boolean value that indicates whether other buttons or movie

clips can receive a release event from a mouse or stylus.

 _url:String [read-only] Retrieves the URL of the SWF, JPEG, GIF, or PNG file from which

the movie clip was downloaded.

 _visible:Boolean A Boolean value that indicates whether the movie clip is

visible.

 _width:Number The width of the movie clip, in pixels.

 _x:Number An integer that sets the x coordinate of a movie clip relative to

the local coordinates of the parent movie clip.

Modifiers Property Description

390FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Properties inherited from class Object

Event summary

 _xmouse:Number [read-

only]

Returns the x coordinate of the mouse position.

 _xscale:Number Sets the horizontal scale (percentage) of the movie clip as

applied from the registration point of the movie clip.

 _y:Number Sets the y coordinate of a movie clip relative to the local

coordinates of the parent movie clip.

 _ymouse:Number [read-

only]

Indicates the y coordinate of the mouse position.

 _yscale:Number Sets the vertical scale (percentage) of the movie clip as

applied from the registration point of the movie clip.

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onData = function()
{}

Invoked when a movie clip receives data from a MovieClip.loadVariables() or

MovieClip.loadMovie() call.

onDragOut =
function() {}

Invoked when the mouse button is pressed and the pointer rolls outside the object.

onDragOver =
function() {}

Invoked when the pointer is dragged outside and then over the movie clip.

onEnterFrame =
function() {}

Invoked repeatedly at the frame rate of the SWF file.

onKeyDown =
function() {}

Invoked when a movie clip has input focus and a key is pressed.

onKeyUp =
function() {}

Invoked when a key is released.

onKillFocus =
function(newFocus:
Object) {}

Invoked when a movie clip loses input focus.

onLoad = function()
{}

Invoked when the movie clip is instantiated and appears in the Timeline.

onMouseDown =
function() {}

Invoked when the mouse button is pressed.

onMouseMove =
function() {}

Invoked when the mouse moves.

onMouseUp =
function() {}

Invoked when the mouse button is released.

onPress = function()
{}

Invoked when the user clicks the mouse while the pointer is over a movie clip.

onRelease =
function() {}

Invoked when the mouse button is released over a movie clip.

Modifiers Property Description

391FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Method summary

onReleaseOutside =
function() {}

Invoked when the mouse button is pressed inside the movie clip area and then released

outside the movie clip area.

onRollOut =
function() {}

Invoked when the pointer moves outside a movie clip area.

onRollOver =
function() {}

Invoked when the pointer moves over a movie clip area.

onSetFocus =
function(oldFocus:
Object) {}

Invoked when a movie clip receives input focus.

onUnload =
function() {}

Invoked in the first frame after the movie clip is removed from the Timeline.

Modifiers Signature Description

 attachMovie(id:String,
name:String,
depth:Number,
[initObject:Object])
: MovieClip

Takes a symbol from the library and attaches it to the movie

clip.

 beginFill(rgb:Number,
[alpha:Number]) :
Void

Indicates the beginning of a new drawing path.

 beginGradientFill(fillT
ype:String,
colors:Array,
alphas:Array,
ratios:Array,
matrix:Object) : Void

Indicates the beginning of a new drawing path.

 clear() : Void Removes all the graphics created during runtime by using the

movie clip draw methods, including line styles specified with

MovieClip.lineStyle().

 createEmptyMovieClip(n
ame:String,
depth:Number) :
MovieClip

Creates an empty movie clip as a child of an existing movie clip.

 createTextField(instanc
eName:String,
depth:Number,
x:Number, y:Number,
width:Number,
height:Number) :
TextField

Creates a new, empty text field as a child of the movie clip on

which you call this method.

 curveTo(controlX:Num

ber,
controlY:Number,
anchorX:Number,
anchorY:Number) :
Void

Draws a curve using the current line style from the current

drawing position to (anchorX, anchorY) using the control

point that (controlX, controlY) specifies.

Event Description

392FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 duplicateMovieClip(name
:String,
depth:Number,
[initObject:Object])
: MovieClip

Creates an instance of the specified movie clip while the SWF

file is playing.

 endFill() : Void Applies a fill to the lines and curves added since the last call to

beginFill() or beginGradientFill().

 getBounds(bounds:Obje

ct) : Object

Returns properties that are the minimum and maximum x and

y coordinate values of the movie clip, based on the bounds

parameter.

 getBytesLoaded() :
Number

Returns the number of bytes that have already loaded

(streamed) for the movie clip.

 getBytesTotal() :
Number

Returns the size, in bytes, of the movie clip.

 getDepth() : Number Returns the depth of the movie clip instance.

 getInstanceAtDepth(dep
th:Number) :
MovieClip

Determines if a particular depth is already occupied by a movie

clip.

 getNextHighestDepth()
: Number

Determines a depth value that you can pass to

MovieClip.attachMovie(),

MovieClip.duplicateMovieClip(), or

MovieClip.createEmptyMovieClip() to ensure that

Flash Lite renders the movie clip in front of all other objects on

the same level and layer in the current movie clip.

 getSWFVersion() :
Number

Returns an integer that indicates the Flash Lite publish version

for the movie clip.

 getURL(url:String,
[window:String],
[method:String]) :
Void

Loads a document from the specified URL into the specified

window.

 globalToLocal(pt:Object

) : Void
Converts the pt object from Stage (global) coordinates to the

movie clip's (local) coordinates.

 gotoAndPlay(frame:Obj

ect) : Void
Starts playing the SWF file at the specified frame.

 gotoAndStop(frame:Obj

ect) : Void
Brings the playhead to the specified frame of the movie clip

and stops it there.

 hitTest() : Boolean Evaluates the movie clip to see if it overlaps or intersects with

the hit area that the target or x and y coordinate parameters

identify.

 lineStyle(thickness:Nu

mber, rgb:Number,
alpha:Number,
pixelHinting:Boolean

, noScale:String,
capsStyle:String,
jointStyle:String,
miterLimit:Number)
: Void

Specifies a line style that for subsequent calls to lineTo() and

curveTo() until you call lineStyle() with different

parameters.

Modifiers Signature Description

393FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Methods inherited from class Object

_alpha (MovieClip._alpha property)
 public _alpha : Number

 lineTo(x:Number,
y:Number) : Void

Draws a line using the current line style from the current

drawing position to (x, y); the current drawing position is then

set to (x, y).

 loadMovie(url:String,
[method:String]) :
Void

Loads SWF or JPEG files into a movie clip in Flash Lite while the

original SWF file is playing.

 loadVariables(url:String

, [method:String]) :
Void

Reads data from an external file and sets the values for

variables in the movie clip.

 localToGlobal(pt:Object

) : Void
Converts the pt object from the movie clip's (local) coordinates

to the Stage (global) coordinates.

 moveTo(x:Number,
y:Number) : Void

Moves the current drawing position to (x, y).

 nextFrame() : Void Sends the playhead to the next frame and stops it.

 play() : Void Moves the playhead in the Timeline of the movie clip.

 prevFrame() : Void Sends the playhead to the previous frame and stops it.

 removeMovieClip() :
Void

Removes a movie clip instance created with

duplicateMovieClip(),

MovieClip.duplicateMovieClip(),

MovieClip.createEmptyMovieClip(), or

MovieClip.attachMovie().

 setMask(mc:Object) :
Void

Makes the movie clip in the parameter mc a mask that reveals

the calling movie clip.

 startDrag([lockCenter
:Boolean],
[left:Number],
[top:Number],
[right:Number],
[bottom:Number]) :
Void

Lets the user drag the specified movie clip.

 stop() : Void Stops the movie clip currently playing.

 stopDrag() : Void Ends a call to the MovieClip.startDrag() method.

 swapDepths(target:Ob

ject) : Void
Swaps the stacking, or depth level (z-order), of this movie clip

with the movie clip specified by the target parameter, or with

the movie clip that currently occupies the depth level specified

in the target parameter.

 unloadMovie() : Void Removes the contents of a movie clip instance.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

Modifiers Signature Description

394FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The alpha transparency value of a movie clip. Valid values are 0 (fully transparent) to 100 (fully opaque). The default

value is 100. Objects in a movie clip with _alpha set to 0 are active, even though they are invisible. For example, you

can still click a button in a movie clip whose _alpha property is set to 0. To disable the button completely, you can set

the movie clip's _visible property to false.

Availability

Flash Lite 2.0

Example

The following code sets the _alpha property of a movie clip named rect_mc to 50% when you press a button called

my_btn.

my_btn.onPress = function(){
 rect_mc._alpha = 50 ;

}
my_btn.onRelease = function(){

rect_mc._alpha = 100;
}

See also

_alpha (Button._alpha property), _alpha (TextField._alpha property), _visible

(MovieClip._visible property)

attachBitmap (MovieClip.attachBitmap method)
 public attachBitmap(bmp:BitmapData, depth:Number, [pixelSnapping:String],
[smoothing:Boolean]) : Void

Attaches a bitmap image to a movie clip.

After the bitmap is attached to the movie clip, a reference is made from the movie clip to the bitmap object. When

attaching a bitmap, you can specify pixelSnapping and smoothing parameters to affect the appearance of the

bitmap.

After a bitmap is added to the movie clip, it is not an accessible object. The depth, pixelSnapping, and smoothing

parameters can only be set during the attachBitmap() method call and cannot be changed later.

First use the createEmptyMovieClip() to create an empty movie clip, then call the attachBitmap() method. This

way, you can apply transformations to the movie clip to transform the bitmap; for example, you can call the matrix

property of the movie clip.

Pixel snapping forces the position of the bitmap to the nearest whole pixel value instead of positioning to be on a partial

pixel. There are three pixel snapping modes:

• Auto mode does pixel snapping as long as the bitmap is not stretched or rotated.

• Always mode always does pixel snapping, regardless of stretching and rotation.

• Never mode turns off pixel snapping for the movie clip.

Smoothing mode affects the appearance of the image when it is scaled.

Parameters

bmp:flash.display.BitmapData - A transparent or opaque bitmap image.

395FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

depth:Number - An integer that specifies the depth level within the movie clip where the bitmap image should be

placed.

pixelSnapping:String [optional] - The pixel snapping modes are auto, always, and never. The default mode is auto.

smoothing:Boolean [optional] - The smoothing mode is either true for enabled or false for disabled. The default

mode is disabled.

Availability

Flash Lite 3.1

Example

The following code creates a BitmapData object and attaches it to a movie clip:

 import flash.display.*;
 this.createEmptyMovieClip("bmp1", 99);
 var bmpData1:BitmapData = new BitmapData(200, 200, false, 0xaa3344);
 bmp1.attachBitmap(bmpData1, 2, "auto", true);

attachMovie (MovieClip.attachMovie method)
 public attachMovie(id:String, name:String, depth:Number, [initObject:Object]) : MovieClip

Takes a symbol from the library and attaches it to the movie clip. Use MovieClip.removeMovieClip() or

MovieClip.unloadMovie() to remove a symbol attached with attachMovie().

Availability

Flash Lite 2.0

Parameters

id:String - The linkage name of the movie clip symbol in the library to attach to a movie clip on the Stage. This is the

name entered in the Identifier field in the Linkage Properties dialog box.

name:String - A unique instance name for the movie clip being attached to the movie clip.

depth:Number - An integer specifying the depth level where the SWF file is placed.

initObject:Object [optional] - (Supported for Flash Player 6 and later) An object containing properties with which to

populate the newly attached movie clip. This parameter allows dynamically created movie clips to receive clip

parameters. If initObject is not an object, it is ignored. All properties of initObject are copied into the new

instance. The properties specified with initObject are available to the constructor function.

Returns

MovieClip - A reference to the newly created instance.

Example

The following example attaches two instances of a symbol with the linkage identifier "circle" to a movie clip instance

on the Stage:

 this.attachMovie("circle", "circle1_mc", this.getNextHighestDepth());
 this.attachMovie("circle", "circle2_mc", this.getNextHighestDepth(), {_x:50, _y:50});

396FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

removeMovieClip (MovieClip.removeMovieClip method), unloadMovie (MovieClip.unloadMovie method),

removeMovieClip function

beginFill (MovieClip.beginFill method)
 public beginFill(rgb:Number, [alpha:Number]) : Void

Indicates the beginning of a new drawing path. If an open path exists (that is, if the current drawing position does not

equal the previous position specified in a MovieClip.moveTo() method) and a fill is associated with it, that path is

closed with a line and then filled. This is similar to what happens when MovieClip.endFill() is called.

Availability

Flash Lite 2.0

Parameters

rgb:Number - A hex color value (for example, red is 0xFF0000, blue is 0x0000FF, and so on). If this value is not

provided or is undefined, a fill is not created.

alpha:Number [optional] - An integer from 0 to 100 that specifies the alpha value of the fill. If this value is not

provided, 100 (solid) is used. If the value is less than 0, Flash uses 0. If the value is greater than 100, Flash uses 100.

Example

The following example creates a square with red fill on the Stage:

 this.createEmptyMovieClip("square_mc", this.getNextHighestDepth());
 square_mc.beginFill(0xFF0000);
 square_mc.moveTo(10, 10);
 square_mc.lineTo(100, 10);
 square_mc.lineTo(100, 100);
 square_mc.lineTo(10, 100);
 square_mc.lineTo(10, 10);
 square_mc.endFill();

See also

moveTo (MovieClip.moveTo method), endFill (MovieClip.endFill method), beginGradientFill

(MovieClip.beginGradientFill method)

beginGradientFill (MovieClip.beginGradientFill method)
 public beginGradientFill(fillType:String, colors:Array, alphas:Array, ratios:Array,
matrix:Object) : Void

Indicates the beginning of a new drawing path. If the first parameter is undefined, or if no parameters are passed, the

path has no fill. If an open path exists (that is, if the current drawing position does not equal the previous position

specified in a MovieClip.moveTo() method), and it has a fill associated with it, that path is closed with a line and then

filled. This is similar to what happens when you call MovieClip.endFill().

This method fails if any of the following conditions exist:

• The number of items in the colors, alphas, and ratios parameters are not equal.

• The fillType parameter is not "linear" or "radial".

• Any of the fields in the object for the matrix parameter are missing or invalid.

397FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

fillType:String - Either the string "linear" or the string "radial".

colors:Array - An array of RGB hex color values to be used in the gradient (for example, red is 0xFF0000, blue is

0x0000FF, and so on).

alphas:Array - An array of alpha values for the corresponding colors in the colors array; valid values are 0-100. If the

value is less than 0, Flash uses 0. If the value is greater than 100, Flash uses 100.

ratios:Array - An array of color distribution ratios; valid values are 0-255. This value defines the percentage of the

width where the color is sampled at 100 percent.

matrix:Object - A transformation matrix that is an object with either of the following two sets of properties:

• a, b, c, d, e, f, g, h, i, which can be used to describe a 3 x 3 matrix of the following form:

 a b c
 d e f
 g h i

The following example uses the beginGradientFill() method with a matrix parameter of this type:

398FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

this.createEmptyMovieClip("gradient_mc", this.getNextHighestDepth());

 gradient_mc._x = -100;
 gradient_mc._y = -100;

 with (gradient_mc)
 {
 colors = [0xFF0000, 0x0000FF];
 fillType = "radial"
 alphas = [100, 100];
 ratios = [0, 0xFF];
 matrix = {a:200, b:0, c:0, d:0, e:200, f:0, g:200, h:200, i:1};
 beginGradientFill(fillType, colors, alphas, ratios, matrix);
 moveTo(100, 100);
 lineTo(100, 300);
 lineTo(300, 300);
 lineTo(300, 100);
 lineTo(100, 100);
 endFill();
 }

This code draws the following image on the screen:

• matrixType, x, y, w, h, r.

The properties indicate the following: matrixType is the string "box", x is the horizontal position relative to the

registration point of the parent clip for the upper-left corner of the gradient, y is the vertical position relative to the

registration point of the parent clip for the upper-left corner of the gradient, w is the width of the gradient, h is the

height of the gradient, and r is the rotation in radians of the gradient.

The following example uses the beginGradientFill() method with a matrix parameter of this type:

399FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createEmptyMovieClip("gradient_mc", this.getNextHighestDepth());

 gradient_mc._x = -100;
 gradient_mc._y = -100;

 with (gradient_mc)
 {
 colors = [0xFF0000, 0x0000FF];
 fillType = "radial"
 alphas = [100, 100];
 ratios = [0, 0xFF];
 matrix = {matrixType:"box", x:100, y:100, w:200, h:200,
 r:(45/180)*Math.PI};
 beginGradientFill(fillType, colors, alphas, ratios, matrix);
 moveTo(100, 100);
 lineTo(100, 300);
 lineTo(300, 300);
 lineTo(300, 100);
 lineTo(100, 100);
 endFill();
 }

This code draws the following image on the screen:

See also

beginFill (MovieClip.beginFill method), endFill (MovieClip.endFill method), lineStyle

(MovieClip.lineStyle method), lineTo (MovieClip.lineTo method), moveTo (MovieClip.moveTo method)

clear (MovieClip.clear method)
 public clear() : Void

Removes all the graphics created during runtime by using the movie clip draw methods, including line styles specified

with MovieClip.lineStyle(). Shapes and lines that are manually drawn during authoring time (with the Flash

drawing tools) are unaffected.

Availability

Flash Lite 2.0

Example

The following example draws a box on the Stage. When the user clicks a button called removeBox_btn, the graphic is

removed.

400FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

this.createEmptyMovieClip("box_mc", 1);
drawBox(box_mc, 10, 10, 100, 100);
function drawBox(mc:MovieClip, x:Number, y:Number, w:Number, h:Number):Void {

mc.lineStyle(5);
mc.beginFill(0x009999);
mc.moveTo(x, y);
mc.lineTo(x+w, y);
mc.lineTo(x+w, y+h);
mc.lineTo(x, y+h);
mc.lineTo(x, y);
mc.endFill();

}
removeBox_btn.onRelease = function(){

box_mc.clear();
}

See also

lineStyle (MovieClip.lineStyle method)

createEmptyMovieClip (MovieClip.createEmptyMovieClip method)
 public createEmptyMovieClip(name:String, depth:Number) : MovieClip

Creates an empty movie clip as a child of an existing movie clip. This method behaves similarly to the attachMovie()

method, but you don't need to provide an external linkage identifier for the new movie clip. The registration point for

a newly created empty movie clip is the upper-left corner. This method fails if any of the parameters are missing.

Availability

Flash Lite 2.0

Parameters

name:String - A string that identifies the instance name of the new movie clip.

depth:Number - An integer that specifies the depth of the new movie clip.

Returns

MovieClip - A reference to the newly created movie clip.

Example

The following example creates an empty MovieClip named container, creates a new TextField inside of it, and then

sets the new TextField.text property.

 var container:MovieClip = this.createEmptyMovieClip("container", this.getNextHighestDepth());
 var label:TextField = container.createTextField("label", 1, 0, 0, 150, 20);
 label.text = "Hello World";

See also

attachMovie (MovieClip.attachMovie method)

createTextField (MovieClip.createTextField method)
 public createTextField(instanceName:String, depth:Number, x:Number, y:Number, width:Number,
height:Number) : TextField

401FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Creates a new, empty text field as a child of the movie clip on which you call this method. You can use the

createTextField() method to create text fields while a SWF file plays. The depth parameter determines the new

text field's depth level (z-order position) in the movie clip. Each depth level can contain only one object. If you create

a new text field on a depth that already has a text field, the new text field replaces the existing text field. To avoid

overwriting existing text fields, use MovieClip.getInstanceAtDepth() to determine whether a specific depth is

already occupied, or MovieClip.getNextHighestDepth(), to determine the highest unoccupied depth. The text

field is positioned at (x, y) with dimensions width by height. The x and y parameters are relative to the container movie

clip; these parameters correspond to the _x and _y properties of the text field. The width and height parameters

correspond to the _width and _height properties of the text field.

The default properties of a text field are as follows:

 type = "dynamic"
 border = false
 background = false
 password = false
 multiline = false
 html = false
 embedFonts = false
 selectable = true
 wordWrap = false
 mouseWheelEnabled = true
 condenseWhite = false
 restrict = null
 variable = null
 maxChars = null
 styleSheet = undefined
 tabInded = undefined

A text field created with createTextField() receives the following default TextFormat object settings:

 font = "Times New Roman" // "Times" on Mac OS
 size = 12
 color = 0x000000
 bold = false
 italic = false
 underline = false
 url = ""
 target = ""
 align = "left"
 leftMargin = 0
 rightMargin = 0
 indent = 0
 leading = 0
 blockIndent = 0
 bullet = false
 display = block
 tabStops = [] // (empty array)

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

instanceName:String - A string that identifies the instance name of the new text field.

402FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

depth:Number - A positive integer that specifies the depth of the new text field.

x:Number - An integer that specifies the x coordinate of the new text field.

y:Number - An integer that specifies the ycoordinate of the new text field.

width:Number - A positive integer that specifies the width of the new text field.

height:Number - A positive integer that specifies the height of the new text field.

Returns

TextField

Example

The following example creates a text field with a width of 300, a height of 100, an x coordinate of 100, a y coordinate

of 100, no border, red, and underlined text:

 this.createTextField("my_txt", 1, 100, 100, 300, 100);
 my_txt.multiline = true;
 my_txt.wordWrap = true;
 var my_fmt:TextFormat = new TextFormat();
 my_fmt.color = 0xFF0000;
 my_fmt.underline = true;
 my_txt.text = "This is my first test field object text.";
 my_txt.setTextFormat(my_fmt);

An example is also in the animations.fla file in the ActionScript samples folder at

www.adobe.com/go/learn_fl_samples. Download and decompress the .zip file and navigate to the folder for your

version of ActionScript to access the sample.

See also

getInstanceAtDepth (MovieClip.getInstanceAtDepth method), getNextHighestDepth

(MovieClip.getNextHighestDepth method), getNewTextFormat (TextField.getNewTextFormat method)

_currentframe (MovieClip._currentframe property)
 public _currentframe : Number [read-only]

Returns the number of the frame in which the playhead is located in the movie clip's Timeline.

Availability

Flash Lite 2.0

Example

The following example uses the _currentframe property to direct the playhead of the actionClip_mc movie clip to

advance five frames ahead of its current location:

 actionClip_mc.gotoAndStop(actionClip_mc._currentframe + 5);

curveTo (MovieClip.curveTo method)
 public curveTo(controlX:Number, controlY:Number, anchorX:Number, anchorY:Number) : Void

403FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Draws a curve using the current line style from the current drawing position to (anchorX, anchorY) using the control

point that ((controlX, controlY) specifies. The current drawing position is then set to (anchorX, anchorY). If the

movie clip you are drawing in contains content created with the Flash drawing tools, calls to curveTo() are drawn

underneath this content. If you call the curveTo() method before any calls to the moveTo() method, the current

drawing position defaults to (0,0). If any of the parameters are missing, this method fails and the current drawing

position is not changed.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

controlX:Number - An integer that specifies the horizontal position of the control point relative to the registration

point of the parent movie clip.

controlY:Number - An integer that specifies the vertical position of the control point relative to the registration point

of the parent movie clip.

anchorX:Number - An integer that specifies the horizontal position of the next anchor point relative to the

registration point of the parent movie clip.

anchorY:Number - An integer that specifies the vertical position of the next anchor point relative to the registration

point of the parent movie clip.

Example

The following example draws a nearly circular curve with a solid blue hairline stroke and a solid red fill:

 this.createEmptyMovieClip("circle_mc", 1);
 with (circle_mc) {
 lineStyle(0, 0x0000FF, 100);
 beginFill(0xFF0000);
 moveTo(0, 100);
 curveTo(0,200,100,200);
 curveTo(200,200,200,100);
 curveTo(200,0,100,0);
 curveTo(0,0,0,100);
 endFill();
 }

The curve drawn in this example is a quadratic Bezier curve. Quadratic Bezier curves consist of two anchor points and

a control point. The curve interpolates the two anchor points, and curves toward the control point.

The following script uses the curveTo() method and the Math class to create a circle:

404FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createEmptyMovieClip("circle2_mc", 2);
 circle2_mc.lineStyle(0, 0x000000);
 drawCircle(circle2_mc, 100, 100, 100);
 function drawCircle(mc:MovieClip, x:Number, y:Number, r:Number):Void {
 mc.moveTo(x+r, y);
 mc.curveTo(r+x, Math.tan(Math.PI/8)*r+y, Math.sin(Math.PI/4)*r+x,
 Math.sin(Math.PI/4)*r+y);
 mc.curveTo(Math.tan(Math.PI/8)*r+x, r+y, x, '+y);
 mc.curveTo(-Math.tan(Math.PI/8)*r+x, r+y, -Math.sin(Math.PI/4)*r+x,
 Math.sin(Math.PI/4)*r+y);
 mc.curveTo(-r+x, Math.tan(Math.PI/8)*r+y, -r+x, y);
 mc.curveTo(-r+x, -Math.tan(Math.PI/8)*r+y, -Math.sin(Math.PI/4)*r+x,
 -Math.sin(Math.PI/4)*r+y);
 mc.curveTo(-Math.tan(Math.PI/8)*r+x, -r+y, x, -r+y);
 mc.curveTo(Math.tan(Math.PI/8)*r+x, -r+y, Math.sin(Math.PI/4)*r+x,
 -Math.sin(Math.PI/4)*r+y);
 mc.curveTo(r+x, -Math.tan(Math.PI/8)*r+y, r+x, y);
 }

An example is also in the drawingapi.fla file in the ActionScript samples folder at

www.adobe.com/go/learn_fl_samples. Download and decompress the .zip file and navigate to the folder for your

version of ActionScript to access the sample.

See also

beginFill (MovieClip.beginFill method), createEmptyMovieClip (MovieClip.createEmptyMovieClip

method), endFill (MovieClip.endFill method), lineStyle (MovieClip.lineStyle method), lineTo

(MovieClip.lineTo method), moveTo (MovieClip.moveTo method), Math

_droptarget (MovieClip._droptarget property)
 public _droptarget : String [read-only]

Returns the absolute path in slash-syntax notation of the movie clip instance on which this movie clip was dropped.

The _droptarget property always returns a path that starts with a slash (/). To compare the _droptarget property

of an instance to a reference, use the eval() function to convert the returned value from slash syntax to a dot-syntax

reference (ActionScript 2.0 does not support slash syntax.)

Note: This property is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example evaluates the _droptarget property of the garbage_mc movie clip instance and uses eval()

to convert it from slash syntax to a dot syntax reference. The garbage_mc reference is then compared to the reference

to the trashcan_mc movie clip instance. If the two references are equivalent, the visibility of garbage_mc is set to

false. If they are not equivalent, the garbage instance resets to its original position.

405FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 origX = garbage_mc._x;
 origY = garbage_mc._y;
 garbage_mc.onPress = function() {
 this.startDrag();
 };
 garbage_mc.onRelease = function() {
 this.stopDrag();
 if (eval(this._droptarget) == trashcan_mc) {
 this._visible = false;
 } else {
 this._x = origX;
 this._y = origY;
 }
 };

See also

startDrag (MovieClip.startDrag method), stopDrag (MovieClip.stopDrag method), eval function

duplicateMovieClip (MovieClip.duplicateMovieClip method)
 public duplicateMovieClip(name:String, depth:Number, [initObject:Object]) : MovieClip

Creates an instance of the specified movie clip while the SWF file is playing. Duplicated movie clips always start playing

at Frame 1, no matter what frame the original movie clip is on when the duplicateMovieClip() method is called.

Variables in the parent movie clip are not copied into the duplicate movie clip. Movie clips that are created with the

duplicateMovieClip() method are not duplicated if you call the duplicateMovieClip() method on their parent.

If the parent movie clip is deleted, the duplicate movie clip is also deleted. If you used MovieClip.loadMovie() or

the MovieClipLoader class to load a movie clip, the contents of the SWF file are not duplicated. This means that you

cannot save bandwidth by loading a JPEG, GIF, PNG, or SWF file and then duplicating the movie clip.

Contrast this method with the global function version of duplicateMovieClip(). The global version of this method

requires a parameter that specifies the target movie clip to duplicate. Such a parameter is unnecessary for the

MovieClip class version, because the target of the method is the movie clip instance on which the method is invoked.

Moreover, the global version of duplicateMovieClip() supports neither the initobject parameter nor the return

value of a reference to the newly created MovieClip instance.

Availability

Flash Lite 2.0

Parameters

name:String - A unique identifier for the duplicate movie clip.

depth:Number - A unique integer specifying the depth at which the new movie clip is placed. Use depth -16384 to

place the new movie clip instance beneath all content created in the authoring environment. Values between -16383

and -1, inclusive, are reserved for use by the authoring environment and should not be used with this method. The

remaining valid depth values range from 0 to 1048575, inclusive.

initObject:Object [optional] - (Supported for Flash Player 6 and later.) An object containing properties with which

to populate the duplicated movie clip. This parameter allows dynamically created movie clips to receive clip

parameters. If initObject is not an object, it is ignored. All properties of initObject are copied into the new

instance. The properties specified with initObject are available to the constructor function.

406FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns

MovieClip - A reference to the duplicated movie clip (supported for Flash Player 6 and later).

Example

The following example duplicates a newly created MovieClip a number of times and traces the target for each

duplicate.

 var container:MovieClip = setUpContainer();
 var ln:Number = 10;
 var spacer:Number = 1;
 var duplicate:MovieClip;
 for(var i:Number = 1; i < ln; i++) {
 var newY:Number = i * (container._height + spacer);
 duplicate = container.duplicateMovieClip("clip-" + i, i, {_y:newY});
 trace(duplicate); // _level0.clip-[number]
 }

 function setUpContainer():MovieClip {
 var mc:MovieClip = this.createEmptyMovieClip("container", this.getNextHighestDepth());
 var w:Number = 100;
 var h:Number = 20;
 mc.beginFill(0x333333);
 mc.lineTo(w, 0);
 mc.lineTo(w, h);
 mc.lineTo(0, h);
 mc.lineTo(0, 0);
 mc.endFill();
 return mc;
 }

See also

loadMovie (MovieClip.loadMovie method), removeMovieClip (MovieClip.removeMovieClip method),

duplicateMovieClip function

enabled (MovieClip.enabled property)
 public enabled : Boolean

A Boolean value that indicates whether a movie clip is enabled. The default value of enabled is true. If enabled is set

to false, the movie clip's callback methods and onaction event handlers are no longer invoked, and the Over, Down,

and Up frames are disabled. The enabled property does not affect the Timeline of the movie clip; if a movie clip is

playing, it continues to play. The movie clip continues to receive movie clip events (for example, mouseDown, mouseUp,

keyDown, and keyUp).

The enabled property only governs the button-like properties of a movie clip. You can change the enabled property

at any time; the modified movie clip is immediately enabled or disabled. The enabled property can be read out of a

prototype object. If enabled is set to false, the object is not included in automatic tab ordering.

Availability

Flash Lite 2.0

407FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example disables the circle_mc movie clip when the user clicks it:

 circle_mc.onRelease = function() {
 trace("disabling the "+this._name+" movie clip.");
 this.enabled = false;
 };

endFill (MovieClip.endFill method)
 public endFill() : Void

Applies a fill to the lines and curves added since the last call to beginFill() or beginGradientFill(). Flash uses

the fill that was specified in the previous call to beginFill() or beginGradientFill(). If the current drawing

position does not equal the previous position specified in a moveTo() method and a fill is defined, the path is closed

with a line and then filled.

Availability

Flash Lite 2.0

Example

The following example creates a square with red fill on the Stage:

 this.createEmptyMovieClip("square_mc", this.getNextHighestDepth());
 square_mc.beginFill(0xFF0000);
 square_mc.moveTo(10, 10);
 square_mc.lineTo(100, 10);
 square_mc.lineTo(100, 100);
 square_mc.lineTo(10, 100);
 square_mc.lineTo(10, 10);
 square_mc.endFill();

An example is also in the drawingapi.fla file in the ActionScript samples folder at

www.adobe.com/go/learn_fl_samples. Download and decompress the .zip file and navigate to the folder for your

version of ActionScript to access the sample.

See also

beginFill (MovieClip.beginFill method), beginGradientFill (MovieClip.beginGradientFill method),

moveTo (MovieClip.moveTo method)

focusEnabled (MovieClip.focusEnabled property)
 public focusEnabled : Boolean

If the value is undefined or false, a movie clip cannot receive input focus unless it is a button. If the focusEnabled

property value is true, a movie clip can receive input focus even if it is not a button.

Availability

Flash Lite 2.0

Example

The following example sets the focusEnabled property for the movie clip my_mc to false:

 my_mc.focusEnabled = false;

408FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

_focusrect (MovieClip._focusrect property)
 public _focusrect : Boolean

A Boolean value that specifies whether a movie clip has a yellow rectangle around it when it has input focus. This

property can override the global _focusrect property. The default value of the _focusrect property of a movie clip

instance is null; the movie clip instance does not override the global _focusrect property. If the _focusrect

property of a movie clip instance is set to true or false, it overrides the setting of the global _focusrect property

for the single movie clip instance.

Note: For Flash Lite 2.0, when the _focusrect property is disabled (in other words, MovieClip._focusrect is set to

false), the movie clip still receives all key press and mouse events.

Also for Flash Lite 2.0, you can change the color of the focus rectangle using the fscommand2 SetFocusRectColor

command. This behavior is different from Flash Lite player, for which the color of the focus rectangle is restricted to

yellow.

Availability

Flash Lite 2.0

Example

This example demonstrates how to hide the yellow rectangle around a specified movie clip instance in a SWF file when

the instance has focus in a browser window. Create three movie clips called mc1_mc, mc2_mc, and mc3_mc, and add the

following ActionScript to Frame 1 of the Timeline:

 mc1_mc._focusrect = true;
 mc2_mc._focusrect = false;
 mc3_mc._focusrect = true;

 mc1_mc.onRelease = traceOnRelease;
 mc3_mc.onRelease = traceOnRelease;

 function traceOnRelease() {
 trace(this._name);
 }

To test the SWF file in a browser window, select File > Publish Preview > HTML. To give the SWF focus, click it in the

browser window and press Tab to focus each instance. You cannot execute code for this movie clip in the browser by

pressing Enter or the Spacebar when _focusrect is disabled.

You can also test your SWF file in the test environment. Select Control > Disable Keyboard Shortcuts in the test

environment. This allows you to view the focus rectangle around the instances in the SWF file.

See also

_focusrect property, _focusrect (Button._focusrect property)

_framesloaded (MovieClip._framesloaded property)
 public _framesloaded : Number [read-only]

The number of frames that are loaded from a streaming SWF file. This property is useful for determining whether the

contents of a specific frame, and all the frames before it, are loaded and are available locally in the browser. It is also

useful for monitoring the downloading of large SWF files. For example, you might want to display a message to users

indicating that the SWF file is loading until a specified frame in the SWF file has finished loading.

409FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example uses the _framesloaded property to start a SWF file when all the frames are loaded. If all the

frames aren't loaded, the _xscale property of the bar_mc movie clip instance is increased proportionally to create a

progress bar.

Enter the following ActionScript in Frame 1 of the Timeline:

 var pctLoaded:Number = Math.round(this.getBytesLoaded()/this.getBytesTotal()*100);
 bar_mc._xscale = pctLoaded;

Add the following code to Frame 2:

 if (this._framesloaded < this._totalframes) {
 this.gotoAndPlay(1);
 } else {
 this.gotoAndStop(3);
 }

Place your content on or after Frame 3. Then add the following code to Frame 3:

 stop();

See also

MovieClipLoader

getBounds (MovieClip.getBounds method)
 public getBounds(bounds:Object) : Object

Returns properties that are the minimum and maximum x and y coordinate values of the movie clip, based on the

bounds parameter.

Note: Use MovieClip.lcalToGlobal() and MovieClip.globalToLocal() to convert the movie clip's local

coordinates to Stage coordinates, or Stage coordinates to local coordinates, respectively.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

bounds:Object - The target path of the Timeline whose coordinate system you want to use as a reference point.

Returns

Object - An object with the properties xMin, xMax, yMin, and yMax.

Example

The following example creates a movie clip called square_mc. The code draws a square for that movie clip and uses

MovieClip.getBounds() to display the coordinate values of the instance in the Output panel.

410FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createEmptyMovieClip("square_mc", 1);
 square_mc._x = 10;
 square_mc._y = 10;
 square_mc.beginFill(0xFF0000);
 square_mc.moveTo(0, 0);
 square_mc.lineTo(100, 0);
 square_mc.lineTo(100, 100);
 square_mc.lineTo(0, 100);
 square_mc.lineTo(0, 0);
 square_mc.endFill();

 var bounds_obj:Object = square_mc.getBounds(this);
 for (var i in bounds_obj) {
 trace(i+" --> "+bounds_obj[i]);
 }

The following information appears in the Output panel:

 yMax --> 110
 yMin --> 10
 xMax --> 110
 xMin --> 10

See also

globalToLocal (MovieClip.globalToLocal method), localToGlobal (MovieClip.localToGlobal method)

getBytesLoaded (MovieClip.getBytesLoaded method)
 public getBytesLoaded() : Number

Returns the number of bytes that have already loaded (streamed) for the movie clip. You can compare this value with

the value returned by MovieClip.getBytesTotal() to determine what percentage of a movie clip has loaded.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Returns

Number - An integer indicating the number of bytes loaded.

Example

The following example uses the _framesloaded property to start a SWF file when all the frames are loaded. If all the

frames aren't loaded, the _xscale property of the loader movie clip instance is increased proportionally to create a

progress bar.

Enter the following ActionScript in Frame 1 of the Timeline:

 var pctLoaded:Number = Math.round(this.getBytesLoaded()/this.getBytesTotal() * 100);
 bar_mc._xscale = pctLoaded;

Add the following code to Frame 2:

411FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 if (this._framesloaded<this._totalframes) {
 this.gotoAndPlay(1);
 } else {
 this.gotoAndStop(3);
 }

Place your content on or after Frame 3, and then add the following code to Frame 3:

 stop();

See also

getBytesTotal (MovieClip.getBytesTotal method)

getBytesTotal (MovieClip.getBytesTotal method)
 public getBytesTotal() : Number

Returns the size, in bytes, of the movie clip. For movie clips that are external (the root SWF file or a movie clip that is

being loaded into a target or a level), the return value is the uncompressed size of the SWF file.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Returns

Number - An integer indicating the total size, in bytes, of the movie clip.

Example

The following example uses the _framesloaded property to start a SWF file when all the frames are loaded. If all the

frames aren't loaded, the _xscale property of the movie clip instance loader is increased proportionally to create a

progress bar.

Enter the following ActionScript in Frame 1 of the Timeline:

 var pctLoaded:Number = Math.round(this.getBytesLoaded()/this.getBytesTotal()*100);
 bar_mc._xscale = pctLoaded;

Add the following code to Frame 2:

 if (this._framesloaded<this._totalframes) {
 this.gotoAndPlay(1);
 } else {
 this.gotoAndStop(3);
 }

Place your content on or after Frame 3. Then add the following code to Frame 3:

 stop();

See also

getBytesLoaded (MovieClip.getBytesLoaded method)

getDepth (MovieClip.getDepth method)
 public getDepth() : Number

412FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns the depth of the movie clip instance.

Each movie clip, button, and text field has a unique depth associated with it that determines how the object appears in

front of or in back of other objects. Objects with higher depths appear in front.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Returns

Number - The depth of the movie clip.

Example

The following code traces the depth of all movie clip instances on the Stage:

 for (var i in this) {
 if (typeof (this[i]) == "movieclip") {
 trace("movie clip '"+this[i]._name+"' is at depth "+this[i].getDepth());
 }
 }

See also

getInstanceAtDepth (MovieClip.getInstanceAtDepth method), getNextHighestDepth

(MovieClip.getNextHighestDepth method), swapDepths (MovieClip.swapDepths method), getDepth

(TextField.getDepth method), getDepth (Button.getDepth method)

getInstanceAtDepth (MovieClip.getInstanceAtDepth method)
 public getInstanceAtDepth(depth:Number) : MovieClip

Determines if a particular depth is already occupied by a movie clip. You can use this method before using

MovieClip.attachMovie(), MovieClip.duplicateMovieClip(), or MovieClip.createEmptyMovieClip() to

determine if the depth parameter you want to pass to any of these methods already contains a movie clip.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

depth:Number - An integer that specifies the depth level to query.

Returns

MovieClip - A reference to the MovieClip instance located at the specified depth, or undefined if there is no movie

clip at that depth.

Example

The following example displays the depth occupied by the triangle movie clip instance in the Output panel:

413FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createEmptyMovieClip("triangle", 1);

 triangle.beginFill(0x0000FF, 100);
 triangle.moveTo(100, 100);
 triangle.lineTo(100, 150);
 triangle.lineTo(150, 100);
 triangle.lineTo(100, 100);

 trace(this.getInstanceAtDepth(1)); // output: _level0.triangle

See also

attachMovie (MovieClip.attachMovie method), duplicateMovieClip (MovieClip.duplicateMovieClip

method), createEmptyMovieClip (MovieClip.createEmptyMovieClip method), getDepth

(MovieClip.getDepth method), getNextHighestDepth (MovieClip.getNextHighestDepth method),

swapDepths (MovieClip.swapDepths method)

getNextHighestDepth (MovieClip.getNextHighestDepth method)
 public getNextHighestDepth() : Number

Determines a depth value that you can pass to MovieClip.attachMovie(), MovieClip.duplicateMovieClip(), or

MovieClip.createEmptyMovieClip() to ensure that Flash renders the movie clip in front of all other objects on the

same level and layer in the current movie clip. The value returned is 0 or higher (that is, negative numbers are not

returned).

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Returns

Number - An integer that reflects the next available depth index that would render above all other objects on the same

level and layer within the movie clip.

Example

The following example draws three movie clip instances, using the getNextHighestDepth() method as the depth

parameter of the createEmptyMovieClip() method, and labels each movie clip them with its depth:

414FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 for (i = 0; i < 3; i++) {
 drawClip(i);
 }

 function drawClip(n:Number):Void {
 this.createEmptyMovieClip("triangle" + n, this.getNextHighestDepth());
 var mc:MovieClip = eval("triangle" + n);
 mc.beginFill(0x00aaFF, 100);
 mc.lineStyle(4, 0xFF0000, 100);
 mc.moveTo(0, 0);
 mc.lineTo(100, 100);
 mc.lineTo(0, 100);
 mc.lineTo(0, 0);
 mc._x = n * 30;
 mc._y = n * 50
 mc.createTextField("label", this.getNextHighestDepth(), 20, 50, 200, 200)
 mc.label.text = mc.getDepth();
 }

See also

getDepth (MovieClip.getDepth method), getInstanceAtDepth (MovieClip.getInstanceAtDepth method),

swapDepths (MovieClip.swapDepths method), attachMovie (MovieClip.attachMovie method),

duplicateMovieClip (MovieClip.duplicateMovieClip method), createEmptyMovieClip

(MovieClip.createEmptyMovieClip method)

getSWFVersion (MovieClip.getSWFVersion method)
 public getSWFVersion() : Number

Returns an integer that indicates the Flash Lite player version for the movie clip was published. If the movie clip is a

JPEG, GIF, or PNG file, or if an error occurs and Flash can't determine the SWF version of the movie clip, -1 is

returned.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Returns

Number - An integer that specifies the Flash Lite player version that was targeted when the SWF file loaded into the

movie clip was published.

Example

The following example creates a new container and outputs the value of getSWFVersion(). It then uses

MovieClipLoader to load an external SWF file that was published to Flash Player 7 and outputs the value of

getSWFVersion() after the onLoadInit handler is triggered.

415FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var container:MovieClip = this.createEmptyMovieClip("container", this.getUpperEmptyDepth());
 var listener:Object = new Object();
 listener.onLoadInit = function(target:MovieClip):Void {
 trace("target: " + target.getSWFVersion()); // target: 7
 }
 var mcLoader:MovieClipLoader = new MovieClipLoader();
 mcLoader.addListener(listener);
 trace("container: " + container.getSWFVersion()); // container: 8
 mcLoader.loadClip("FlashPlayer7.swf", container);

getURL (MovieClip.getURL method)
 public getURL(url:String, [window:String], [method:String]) : Void

Loads a document from the specified URL into the specified window. The getURL() method can also be used to pass

variables to another application defined at the URL by using a GET or POST method.

Web pages that host Flash movies must explicitly set the allowScriptAccess attribute to allow or deny scripting for

the Flash Lite player from the HTML code (in the PARAM tag for Internet Explorer or the EMBED tag for Netscape

Navigator):

• When allowScriptAccess is "never", outbound scripting always fails.

• When allowScriptAccess is "always", outbound scripting always succeeds.

• When allowScriptAccess is "sameDomain" (supported by SWF files starting with version 8), outbound

scripting is allowed if the SWF file is from the same domain as the hosting web page.

• If allowScriptAccess is not specified by an HTML page, it defaults to "sameDomain" for version 8 SWF files, and

it defaults to "always" for earlier version SWF files.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

url:String - The URL from which to obtain the document.

window:String [optional] - A parameter specifying the name, frame, or expression that specifies the window or

HTML frame that the document is loaded into. You can also use one of the following reserved target names: _self

specifies the current frame in the current window, _blank specifies a new window, _parent specifies the parent of the

current frame, and _top specifies the top-level frame in the current window.

method:String [optional] - A string (either "GET" or "POST") that specifies a method for sending variables associated

with the SWF file to load. If no variables are present, omit this parameter; otherwise, specify whether to load variables

using a GET or POST method. GET appends the variables to the end of the URL and is used for a small number of

variables. POST sends the variables in a separate HTTP header and is used for long strings of variables.

Example

The following ActionScript creates a new movie clip instance and opens the Adobe website in a new browser window:

 this.createEmptyMovieClip("loader_mc", this.getNextHighestDepth());
 loader_mc.getURL("http://www.adobe.com", "_blank");

The getURL() method also allows you to send variables to a remove server-side script, as seen in the following code:

416FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createEmptyMovieClip("loader_mc", this.getNextHighestDepth());
 loader_mc.username = "some user input";
 loader_mc.password = "random string";
 loader_mc.getURL("http://www.flash-mx.com/mm/viewscope.cfm", "_blank", "GET");

See also

getURL function, sendAndLoad (LoadVars.sendAndLoad method), send (LoadVars.send method)

globalToLocal (MovieClip.globalToLocal method)
 public globalToLocal(pt:Object) : Void

Converts the pt object from Stage (global) coordinates to the movie clip's (local) coordinates.

The MovieClip.globalToLocal() method allows you to convert any given x and y coordinates from values that are

relative to the top-left corner of the Stage to values that are relative to the top-left corner of a specific movie clip.

You must first create a generic object that has two properties, x and y. These x and y values (and they must be called x

and y) are called the global coordinates because they relate to the top-left corner of the Stage. The x property represents

the horizontal offset from the top-left corner. In other words, it represents how far to the right the point lies. For

example, if x = 50, the point lies 50 pixels to the right of the top-left corner. The y property represents the vertical offset

from the top-left corner. In other words, it represents how far down the point lies. For example, if y = 20, the point lies

20 pixels below the top-left corner. The following code creates a generic object with these coordinates:

 var myPoint:Object = new Object();
 myPoint.x = 50;
 myPoint.y = 20;

Alternatively, you can create the object and assign the values at the same time with a literal Object value:

 var myPoint:Object = {x:50, y:20};

After you create a point object with global coordinates, you can convert the coordinates to local coordinates. The

globalToLocal() method doesn't return a value because it changes the values of x and y in the generic object that you

send as the parameter. It changes them from values relative to the Stage (global coordinates) to values relative to a

specific movie clip (local coordinates).

For example, if you create a movie clip that is positioned at the point (_x:100, _y:100), and you pass the global point

representing the top-left corner of the Stage (x:0, y:0) to the globalToLocal() method, the method should

convert the x and y values to the local coordinates, which in this case is (x:-100, y:-100). This is because the x and

y coordinates are now expressed relative to the top-left corner of your movie clip rather than the top-left corner of the

stage. The values are negative because to get from the top-left corner of your movie clip to the top-left corner of the

Stage you have to move 100 pixels to the left (negative x) and 100 pixels up (negative y).

The movie clip coordinates were expressed using _x and _y, because those are the MovieClip properties that you use

to set the x and y values for MovieClips. However, your generic object uses x and y without the underscore. The

following code converts the x and y values to the local coordinates:

 var myPoint:Object = {x:0, y:0}; // Create your generic point object.
 this.createEmptyMovieClip("myMovieClip", this.getNextHighestDepth());
 myMovieClip._x = 100; // _x for movieclip x position
 myMovieClip._y = 100; // _y for movieclip y position

 myMovieClip.globalToLocal(myPoint);
 trace ("x: " + myPoint.x); // output: -100
 trace ("y: " + myPoint.y); // output: -100

417FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

pt:Object - The name or identifier of an object created with the generic Object class. The object specifies the x and y

coordinates as properties.

Example

Add the following ActionScript to a FLA or AS file in the same directory as an image called photo1.jpg:

 this.createTextField("coords_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 coords_txt.html = true;
 coords_txt.multiline = true;
 coords_txt.autoSize = true;
 this.createEmptyMovieClip("target_mc", this.getNextHighestDepth());
 target_mc._x = 100;
 target_mc._y = 100;
 target_mc.loadMovie("photo1.jpg");

 var mouseListener:Object = new Object();
 mouseListener.onMouseMove = function() {
 var point:Object = {x:_xmouse, y:_ymouse};
 target_mc.globalToLocal(point);
 var rowHeaders = " \t_x\t_y";
 var row_1 = "_root\t"+_xmouse+"\t"+_ymouse;
 var row_2 = "target_mc\t"+point.x+"\t"+point.y;
 coords_txt.htmlText = "<textformat tabstops='[100, 150]'>";
 coords_txt.htmlText += rowHeaders;
 coords_txt.htmlText += row_1;
 coords_txt.htmlText += row_2;
 coords_txt.htmlText += "</textformat>";
 };
 Mouse.addListener(mouseListener);

See also

getBounds (MovieClip.getBounds method), localToGlobal (MovieClip.localToGlobal method), Object

gotoAndPlay (MovieClip.gotoAndPlay method)
 public gotoAndPlay(frame:Object) : Void

Starts playing the SWF file at the specified frame. To specify a scene as well as a frame, use gotoAndPlay().

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

frame:Object - A number representing the frame number, or a string representing the label of the frame, to which the

playhead is sent.

418FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example uses the _framesloaded property to start a SWF file when all of the frames are loaded. If all of

the frames aren't loaded, the _xscale property of the loader movie clip instance is increased proportionally to create

a progress bar.

Enter the following ActionScript in Frame 1 of the Timeline:

 var pctLoaded:Number = Math.round(this.getBytesLoaded()/this.getBytesTotal()*100);
 bar_mc._xscale = pctLoaded;

Add the following code to Frame 2:

 if (this._framesloaded<this._totalframes) {
 this.gotoAndPlay(1);
 } else {
 this.gotoAndStop(3);
 }

Place your content on or after Frame 3. Then add the following code to Frame 3:

 stop();

See also

gotoAndPlay function, play function

gotoAndStop (MovieClip.gotoAndStop method)
 public gotoAndStop(frame:Object) : Void

Brings the playhead to the specified frame of the movie clip and stops it there. To specify a scene in addition to a frame,

use gotoAndStop().

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

frame:Object - The frame number to which the playhead is sent.

Example

The following example uses the _framesloaded property to start a SWF file when all the frames are loaded. If all the

frames aren't loaded, the _xscale property of the loader movie clip instance is increased proportionally to create a

progress bar.

Enter the following ActionScript in Frame 1 of the Timeline:

 var pctLoaded:Number = Math.round(this.getBytesLoaded()/this.getBytesTotal()*100);
 bar_mc._xscale = pctLoaded;

Add the following code to Frame 2:

 if (this._framesloaded<this._totalframes) {
 this.gotoAndPlay(1);
 } else {
 this.gotoAndStop(3);
 }

419FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Place your content on or after Frame 3. Then add the following code to Frame 3:

 stop();

See also

gotoAndStop function, stop function

_height (MovieClip._height property)
 public _height : Number

The height of the movie clip, in pixels.

Availability

Flash Lite 2.0

Example

The following code example displays the height and width of a movie clip in the Output panel:

 this.createEmptyMovieClip("image_mc", this.getNextHighestDepth());
 var image_mcl:MovieClipLoader = new MovieClipLoader();
 var mclListener:Object = new Object();
 mclListener.onLoadInit = function(target_mc:MovieClip) {
 trace(target_mc._name+" = "+target_mc._width+" X "+target_mc._height+" pixels");
 };
 image_mcl.addListener(mclListener);

 image_mcl.loadClip("example.jpg", image_mc);

See also

_width (MovieClip._width property)

_highquality (MovieClip._highquality property)
 public _highquality : Number

Deprecated since Flash Player 7. This property was deprecated in favor of MovieClip._quality.

Specifies the level of anti-aliasing applied to the current SWF file. Specify 2 (best quality) to apply high quality with

bitmap smoothing always on. Specify 1 (high quality) to apply anti-aliasing; this will smooth bitmaps if the SWF file

does not contain animation. Specify 0 (low quality) to prevent anti-aliasing. This property can overwrite the global

_highquality property.

Availability

Flash Lite 2.0

Example

The following ActionScript specifies that best quality anti-aliasing should be applied to the SWF file.

 my_mc._highquality = 2;

420FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

_quality (MovieClip._quality property), _quality property

hitArea (MovieClip.hitArea property)
 public hitArea : Object

Designates another movie clip to serve as the hit area for a movie clip. If the hitArea property does not exist or is null

or undefined, the movie clip itself is used as the hit area. The value of the hitArea property may be a reference to a

movie clip object.

You can change the hitArea property at any time; the modified movie clip immediately takes on the new hit area

behavior. The movie clip designated as the hit area does not need to be visible; its graphical shape, although not visible,

is hit-tested. The hitArea property can be read out of a prototype object.

Availability

Flash Lite 2.0

Example

The following example sets the circle_mc movie clip as the hit area for the square_mc movie clip. Place these two

movie clips on the Stage and test the document. When you click circle_mc, the square_mc movie clip traces that it

was clicked.

 square_mc.hitArea = circle_mc;
 square_mc.onRelease = function() {
 trace("hit! "+this._name);
 };

You can also set the circle_mc movie clip visible property to false to hide the hit area for square_mc.

 circle_mc._visible = false;

See also

hitTest (MovieClip.hitTest method)

hitTest (MovieClip.hitTest method)
 public hitTest() : Boolean

Evaluates the movie clip to see if it overlaps or intersects with the hit area that the target or x and y coordinate

parameters identify.

Usage 1: Compares the x and y coordinates to the shape or bounding box of the specified instance, according to the

shapeFlag setting. If shapeFlag is set to true, only the area actually occupied by the instance on the Stage is

evaluated, and if x and y overlap at any point, a value of true is returned. This evaluation is useful for determining if

the movie clip is within a specified hit or hotspot area.

Usage 2: Evaluates the bounding boxes of the target and specified instance, and returns true if they overlap or

intersect at any point.

Parameters

x: Number The x coordinate of the hit area on the Stage.

y: Number The y coordinate of the hit area on the Stage.

421FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 The x and y coordinates are defined in the global coordinate space.

shapeFlag: Boolean A Boolean value specifying whether to evaluate the entire shape of the specified instance

(true), or just the bounding box (false). This parameter can be specified only if the hit area is identified by using x

and y coordinate parameters.

target: Object The target path of the hit area that may intersect or overlap with the movie clip. The target

parameter usually represents a button or text-entry field.

Availability

Flash Lite 2.0

Returns

Boolean - A Boolean value of true if the movie clip overlaps with the specified hit area, false otherwise.

Example

The following example uses hitTest() to determine if the circle_mc movie clip overlaps or intersects the

square_mc movie clip when the user releases the mouse button:

 square_mc.onPress = function() {
 this.startDrag();
 };
 square_mc.onRelease = function() {
 this.stopDrag();
 if (this.hitTest(circle_mc)) {
 trace("you hit the circle");
 }
 };

See also

getBounds (MovieClip.getBounds method), globalToLocal (MovieClip.globalToLocal method),

localToGlobal (MovieClip.localToGlobal method)

lineStyle (MovieClip.lineStyle method)
 public lineStyle(thickness:Number, rgb:Number, alpha:Number, pixelHinting:Boolean,
noScale:String, capsStyle:String, jointStyle:String, miterLimit:Number) : Void

Specifies a line style that Flash uses for subsequent calls to lineTo() and curveTo() until you call lineStyle() with

different parameters. You can call lineStyle() in the middle of drawing a path to specify different styles for different

line segments within a path.

Note: Calls to clear() set the line style back to undefined.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

422FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

thickness:Number - An integer that indicates the thickness of the line in points; valid values are 0 to 255. If a number

is not specified, or if the parameter is undefined, a line is not drawn. If a value of less than 0 is passed, Flash uses 0.

The value 0 indicates hairline thickness; the maximum thickness is 255. If a value greater than 255 is passed, the Flash

interpreter uses 255.

rgb:Number - A hex color value (for example, red is 0xFF0000, blue is 0x0000FF, and so on) of the line. If a value isn't

indicated, Flash uses 0x000000 (black).

alpha:Number - An integer that indicates the alpha value of the line's color; valid values are 0 to 100. If a value isn't

indicated, Flash uses 100 (solid). If the value is less than 0, Flash uses 0; if the value is greater than 100, Flash uses 100.

pixelHinting:Boolean - A Boolean value that specifies whether to hint strokes to full pixels. This affects both the

position of anchors of a curve and the line stroke size itself. With pixelHinting set to true, Flash Lite player hints line

widths to full pixel widths. With pixelHinting set to false, disjoints can appear for curves and straight lines.

noScale:String - A string that specifies how to scale a stroke. Valid values are as follows:

"normal"- Always scale the thickness (the default)."none"- Never scale the thickness."vertical"- Do not scale thickness

if object is scaled vertically only."horizontal"- Do not scale thickness if object is scaled horizontally only

capsStyle:String - A string that specifies the type of caps at the end of lines. Valid values are: "round", "square", and

"none". If a value is not indicated, Flash uses round caps.

jointStyle:String - A string that specifies the type of joint appearance used at angles. Valid values are: "round", "miter",

and "bevel". If a value is not indicated, Flash uses round joints.

miterLimit:Number - A number that indicates the limit at which a miter is cut off. Valid values range from 1 to 255

(and values outside of that range are rounded to 1 or 255). This value is only used if the jointStyle is set to "miter". If a

value is not indicated, Flash uses 3. The miterLimit value represents the length that a miter can extend beyond the point

at which the lines meet to form a joint. The value expresses a factor of the line thickness. For example, with a

miterLimit factor of 2.5 and a thickness of 10 pixels, the miter is cut off at 25 pixels.

Example

The following code draws a triangle with a 5-pixel, solid magenta line with no fill.

 this.createEmptyMovieClip("triangle_mc", 1);
 triangle_mc.lineStyle(5, 0xff00ff, 100);
 triangle_mc.moveTo(200, 200);
 triangle_mc.lineTo(300, 300);
 triangle_mc.lineTo(100, 300);
 triangle_mc.lineTo(200, 200);

See also

beginFill (MovieClip.beginFill method), beginGradientFill (MovieClip.beginGradientFill method),

clear (MovieClip.clear method), curveTo (MovieClip.curveTo method), lineTo (MovieClip.lineTo

method), moveTo (MovieClip.moveTo method)

lineTo (MovieClip.lineTo method)
 public lineTo(x:Number, y:Number) : Void

423FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Draws a line using the current line style from the current drawing position to (x, y); the current drawing position is

then set to (x, y). If the movie clip that you are drawing in contains content that was created with the Flash drawing

tools, calls to lineTo() are drawn underneath the content. If you call lineTo() before any calls to the moveTo()

method, the current drawing position defaults to (0,0). If any of the parameters are missing, this method fails and the

current drawing position is not changed.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

x:Number - An integer indicating the horizontal position relative to the registration point of the parent movie clip.

y:Number - An integer indicating the vertical position relative to the registration point of the parent movie clip.

Example

The following example draws a triangle with a 5-pixel, solid magenta line and a partially transparent blue fill:

 this.createEmptyMovieClip("triangle_mc", 1);
 triangle_mc.beginFill(0x0000FF, 30);
 triangle_mc.lineStyle(5, 0xFF00FF, 100);
 triangle_mc.moveTo(200, 200);
 triangle_mc.lineTo(300, 300);
 triangle_mc.lineTo(100, 300);
 triangle_mc.lineTo(200, 200);
 triangle_mc.endFill();

See also

beginFill (MovieClip.beginFill method), createEmptyMovieClip (MovieClip.createEmptyMovieClip

method), endFill (MovieClip.endFill method), lineStyle (MovieClip.lineStyle method), moveTo

(MovieClip.moveTo method)

loadMovie (MovieClip.loadMovie method)
 public loadMovie(url:String, [method:String]) : Void

Loads SWF or JPEG files into a movie clip in a SWF file playing in Flash Lite.

Tip: To monitor the progress of the download, use the MovieClipLoader.loadClip() method instead of the

loadMovie() method.

The loadMovie() method lets you display several SWF files at once and switch between SWF files without loading

another HTML document.

A SWF file or image loaded into a movie clip inherits the position, rotation, and scale properties of the movie clip. You

can use the target path of the movie clip to target the loaded SWF file.

Call loadMovie() to load any image format that the device supports. For example, if the target device supports PNG

files, the following code loads and displays a PNG file that resides on a web server:

loadMovie("http://www.adobe.com/image.png", "image_target");

424FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

To determine what image formats the target device supports, use the System.capabilities.imageMIMETypes

property, which contains an array of supported image MIME types. The index of each element in the array is equal to

each supported MIME type. For example, the following code determines whether a device supports PNG images

before the device attempts to load an external PNG file:

if (System.capabilities.imageMIMETypes["image/png"]) {
loadMovie("images/image.png", "mc_myPngImage");

}

Flash Lite limits to five the number of loadMovie() operations that an application can perform in a given frame. Flash

Lite limits to ten the total loadMovie() operations at any one time. For example, suppose your application contains

code on Frame 1 that loads six external JPEG images:

image1.loadMovie("image1.jpg");
image2.loadMovie("image2.jpg");
image3.loadMovie("image3.jpg");
image4.loadMovie("image4.jpg");
image5.loadMovie("image5.jpg");
image6.loadMovie("image6.jpg"); // Won't load

In this case, only the first five images (image1.jpg through image5.jpg) load. The last image (image6.jpg) does not load

because the five connection limit is reached. One solution is to split the loadMovie() calls over multiple frames so that

each frame contains a maximum of five loadMovie() calls.

When you call the loadMovie() method, set the MovieClip._lockroot property to true in the loader movie, as

shown in the following code example. If you don't set _lockroot to true in the loader movie, any references to _root

in the loaded movie point to the _root of the loader instead of the _root of the loaded movie.

 myMovieClip._lockroot = true;

Use the MovieClip.unloadMovie() method to remove SWF files or images loaded with the loadMovie() method.

Use the MovieClip.loadVariables() method, the XML object, Flash Remoting, or shared object to keep the active

SWF file and load new data into it.

Using event handlers with MovieClip.loadMovie() can be unpredictable. If you attach an event handler to a button

by using on(), or if you create a dynamic handler by using an event handler method such as MovieClip.onPress, and

then you call loadMovie(), the event handler does not remain after the new content is loaded. However, if you attach

an event handler to a movie clip by using onClipEvent() or on(), and then call loadMovie() on that movie clip, the

event handler remains after the new content is loaded.

Availability

Flash Lite 2.0

Parameters

url:String - The absolute or relative URL of the SWF or JPEG file to be loaded. A relative path must be relative to the

SWF file at level 0. Absolute URLs must include the protocol reference, such as http:// or file:///.

method:String [optional] - Specifies an HTTP method for sending or loading variables. The parameter must be the

string GET or POST. If no variables are to be sent, omit this parameter. The GET method appends the variables to the

end of the URL and is used for small numbers of variables. The POST method sends the variables in a separate HTTP

header and is used for long strings of variables.

425FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a new movie clip, then creates child inside of it and loads a PNG image into the child.

This allows the parent to retain any instance values that were assigned prior to the call to loadMovie.

 var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth());
 mc.onRelease = function():Void {
 trace(this.image._url); // http://www.w3.org/Icons/w3c_main.png
 }
 var image:MovieClip = mc.createEmptyMovieClip("image", mc.getNextHighestDepth());
 image.loadMovie("http://www.w3.org/Icons/w3c_main.png");

See also

_lockroot (MovieClip._lockroot property), unloadMovie (MovieClip.unloadMovie method),

loadVariables (MovieClip.loadVariables method), loadMovie (MovieClip.loadMovie method), onPress

(MovieClip.onPress handler), MovieClipLoader, onClipEvent handler, Constants, loadMovieNum

function, unloadMovie function, unloadMovieNum function

loadVariables (MovieClip.loadVariables method)
 public loadVariables(url:String, [method:String]) : Void

Reads data from an external file and sets the values for variables in the movie clip. The external file can be a text file

that ColdFusion generates, a CGI script, an Active Server Page (ASP), a PHP script, or any other properly formatted

text file. The file can contain any number of variables.

The loadVariables method can also be used to update variables in the active movie clip with new values.

The loadVariables method requires that the text of the URL be in the standard MIME format: application/x-www-

form-urlencoded (CGI script format).

In SWF files running in a version earlier than Flash Player 7, url must be in the same superdomain as the SWF file

that is issuing this call. A superdomain is derived by removing the left-most component of a file's URL. For example,

a SWF file at www.someDomain.com can load data from a source at store.someDomain.com because both files are in

the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later, url must be in exactly the same domain as the SWF file

that is issuing this call. For example, a SWF file at www.someDomain.com can load data only from sources that are

also at www.someDomain.com. To load data from a different domain, you can place a cross-domain policy file on the

server hosting the data source that is being accessed.

To load variables into a specific level, use loadVariablesNum() instead of loadVariables().

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

url:String - The absolute or relative URL for the external file that contains the variables to be loaded. If the SWF file

issuing this call is running in a web browser, url must be in the same domain as the SWF file; for details, see

"Description," below.

426FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

method:String [optional] - Specifies an HTTP method for sending variables. The parameter must be the string GET

or POST. If no variables are sent, omit this parameter. The GET method appends the variables to the end of the URL and

is used for small numbers of variables. The POST method sends the variables in a separate HTTP header and is used

for long strings of variables.

Example

The following example loads information from a text file called params.txtinto the target_mc movie clip that is

created by using createEmptyMovieClip(). The setInterval() function is used to check the loading progress. The

script checks for a variable in the params.txt file named done.

 this.createEmptyMovieClip("target_mc", this.getNextHighestDepth());
 target_mc.loadVariables("params.txt");
 function checkParamsLoaded() {
 if (target_mc.done == undefined) {
 trace("not yet.");
 } else {
 trace("finished loading. killing interval.");
 trace("-------------");
 for (i in target_mc) {
 trace(i+": "+target_mc[i]);
 }
 trace("-------------");
 clearInterval(param_interval);
 }
 }
 var param_interval = setInterval(checkParamsLoaded, 100);

The params.txt file includes the following text:

 var1="hello"&var2="goodbye"&done="done"

See also

loadMovie (MovieClip.loadMovie method), loadVariablesNum function, unloadMovie

(MovieClip.unloadMovie method)

localToGlobal (MovieClip.localToGlobal method)
 public localToGlobal(pt:Object) : Void

Converts the pt object from the movie clip's (local) coordinates to the Stage (global) coordinates.

The MovieClip.localToGlobal() method allows you to convert any given x and y coordinates from values that are

relative to the top-left corner of a specific movie clip to values that are relative to the top-left corner of the Stage.

You must first create a generic object that has two properties, x and y. These x and y values (and they must be called

x and y) are called the local coordinates because they relate to the top-left corner of the movie clip. The x property

represents the horizontal offset from the top-left corner of the movie clip. In other words, it represents how far to the

right the point lies. For example, if x = 50, the point lies 50 pixels to the right of the top-left corner. The y property

represents the vertical offset from the top-left corner of the movie clip. In other words, it represents how far down the

point lies. For example, if y = 20, the point lies 20 pixels below the top-left corner. The following code creates a generic

object with these coordinates.

 var myPoint:Object = new Object();
 myPoint.x = 50;
 myPoint.y = 20;

427FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Alternatively, you can create the object and assign the values at the same time with a literal Object value.

 var myPoint:Object = {x:50, y:20};

After you create a point object with local coordinates, you can convert the coordinates to global coordinates. The

localToGlobal() method doesn't return a value because it changes the values of x and y in the generic object that

you send as the parameter. It changes them from values relative to a specific movie clip (local coordinates) to values

relative to the Stage (global coordinates).

For example, if you create a movie clip that is positioned at the point (_x:100, _y:100), and you pass a local point

representing a point near the top-left corner of the movie clip (x:10, y:10) to the localToGlobal() method, the

method should convert the x and y values to global coordinates, which in this case is (x:110, y:110). This conversion

occurs because the x and y coordinates are now expressed relative to the top-left corner of the Stage rather than the

top-left corner of your movie clip.

The movie clip coordinates were expressed using _x and _y, because those are the MovieClip properties that you use

to set the x and y values for MovieClips. However, your generic object uses x and y without the underscore. The

following code converts the x and y coordinates to global coordinates:

 var myPoint:Object = {x:10, y:10}; // create your generic point object
 this.createEmptyMovieClip("myMovieClip", this.getNextHighestDepth());
 myMovieClip._x = 100; // _x for movieclip x position
 myMovieClip._y = 100; // _y for movieclip y position

 myMovieClip.localToGlobal(myPoint);
 trace ("x: " + myPoint.x); // output: 110
 trace ("y: " + myPoint.y); // output: 110

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

pt:Object - The name or identifier of an object created with the Object class, specifying the x and y coordinates as

properties.

Example

The following example converts x and y coordinates of the my_mc object, from the movie clip's (local) coordinates to

the Stage (global) coordinates. The center point of the movie clip is reflected after you click and drag the instance.

 this.createTextField("point_txt", this.getNextHighestDepth(), 0, 0, 100, 22);
 var mouseListener:Object = new Object();
 mouseListener.onMouseMove = function() {
 var point:Object = {x:my_mc._width/2, y:my_mc._height/2};
 my_mc.localToGlobal(point);
 point_txt.text = "x:"+point.x+", y:"+point.y;
 };
 Mouse.addListener(mouseListener);
 my_mc.onPress = function() {
 this.startDrag();
 };
 my_mc.onRelease = function() {
 this.stopDrag();
 };

428FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

globalToLocal (MovieClip.globalToLocal method)

_lockroot (MovieClip._lockroot property)
 public _lockroot : Boolean

A Boolean value that specifies what _root refers to when a SWF file is loaded into a movie clip. The _lockroot

property is undefined by default. You can set this property within the SWF file that is being loaded or in the handler

that is loading the movie clip.

For example, suppose you have a document called Games.fla that lets a user choose a game to play, and loads the game

(for example, Chess.swf) into the game_mc movie clip. Make sure that, after being loaded into Games.swf, any use of

_root in Chess.swf will refer to _root in Chess.swf (not _root in Games.swf). If you have access to Chess.fla and

publish it to Flash Player 7 or later, you can add this statement to Chess.fla on the main Timeline:

 this._lockroot = true;

If you don't have access to Chess.fla (for example, if you are loading Chess.swf from someone else's site into chess_mc),

you can set the Chess.swf _lockroot property when you load it. Place the following ActionScript on the main

Timeline of Games.fla:

 chess_mc._lockroot = true;

In this case, Chess.swf can be published for any version of Flash Player, as long as Games.swf is published for Flash

Player 7 or later.

When calling loadMovie(), set the MovieClip._lockroot property to true in the loader movie, as shown in the

following code. If you don't set _lockroot to true in the loader movie, any references to _root in the loaded movie

point to the _root of the loader instead of the _root of the loaded movie:

 myMovieClip._lockroot = true;

Availability

Flash Lite 2.0

Example

In the following example, lockroot.fla has _lockroot applied to the main SWF file. If the SWF file is loaded into

another FLA document, _root always refers to the scope of lockroot.swf, which helps prevent conflicts. Place the

following ActionScript on the main Timeline of lockroot.fla:

 this._lockroot = true;
 _root.myVar = 1;
 _root.myOtherVar = 2;
 trace("from lockroot.swf");
 for (i in _root) {
 trace(" "+i+" -> "+_root[i]);
 }
 trace("");

which traces the following information:

 from lockroot.swf
 myOtherVar -> 2
 myVar -> 1
 _lockroot -> true
 $version -> WIN 7,0,19,0

429FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The following example loads two SWF files, lockroot.swf and nolockroot.swf. The lockroot.fla document contains the

ActionScript from the preceding example. The nolockroot FLA file has the following code placed on Frame 1 of the

Timeline:

 _root.myVar = 1;
 _root.myOtherVar = 2;
 trace("from nolockroot.swf");
 for (i in _root) {
 trace(" "+i+" -> "+_root[i]);
 }
 trace("");

The lockroot.swf file has _lockroot applied to it, and nolockroot.swf does not. After the files are loaded, each file

dumps variables from their _root scopes. Place the following ActionScript on the main Timeline of a FLA document:

 this.createEmptyMovieClip("lockroot_mc", this.getNextHighestDepth());
 lockroot_mc.loadMovie("lockroot.swf");
 this.createEmptyMovieClip("nolockroot_mc", this.getNextHighestDepth());
 nolockroot_mc.loadMovie("nolockroot.swf");
 function dumpRoot() {
 trace("from current SWF file");
 for (i in _root) {
 trace(" "+i+" -> "+_root[i]);
 }
 trace("");
 }
 dumpRoot();

which traces the following information:

 from current SWF file
 dumpRoot -> [type Function]
 $version -> WIN 7,0,19,0
 nolockroot_mc -> _level0.nolockroot_mc
 lockroot_mc -> _level0.lockroot_mc

 from nolockroot.swf
 myVar -> 1
 i -> lockroot_mc
 dumpRoot -> [type Function]
 $version -> WIN 7,0,19,0
 nolockroot_mc -> _level0.nolockroot_mc
 lockroot_mc -> _level0.lockroot_mc

 from lockroot.swf
 myOtherVar -> 2
 myVar -> 1

The file with no _lockroot applied also contains all of the other variables that the root SWF file contains. If you don't

have access to the nolockroot.fla, you can use the following ActionScript added to the main Timeline to change the

_lockroot in the preceding main FLA document:

 this.createEmptyMovieClip("nolockroot_mc", this.getNextHighestDepth());
 nolockroot_mc._lockroot = true;
 nolockroot_mc.loadMovie("nolockroot.swf");

which then traces the following:

430FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 from current SWF file
 dumpRoot -> [type Function]
 $version -> WIN 7,0,19,0
 nolockroot_mc -> _level0.nolockroot_mc
 lockroot_mc -> _level0.lockroot_mc

 from nolockroot.swf
 myOtherVar -> 2
 myVar -> 1

 from lockroot.swf
 myOtherVar -> 2
 myVar -> 1

See also

_root property, _lockroot (MovieClip._lockroot property), attachMovie (MovieClip.attachMovie

method), loadMovie (MovieClip.loadMovie method), onLoadInit (MovieClipLoader.onLoadInit event

listener)

moveTo (MovieClip.moveTo method)
 public moveTo(x:Number, y:Number) : Void

Moves the current drawing position to (x, y). If any of the parameters are missing, this method fails and the current

drawing position is not changed.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

x:Number - An integer indicating the horizontal position relative to the registration point of the parent movie clip.

y:Number - An integer indicating the vertical position relative to the registration point of the parent movie clip.

Example

The following example draws a triangle with a 5-pixel, solid magenta line and a partially transparent blue fill:

 this.createEmptyMovieClip("triangle_mc", 1);
 triangle_mc.beginFill(0x0000FF, 30);
 triangle_mc.lineStyle(5, 0xFF00FF, 100);
 triangle_mc.moveTo(200, 200);
 triangle_mc.lineTo(300, 300);
 triangle_mc.lineTo(100, 300);
 triangle_mc.lineTo(200, 200);
 triangle_mc.endFill();

See also

createEmptyMovieClip (MovieClip.createEmptyMovieClip method), lineStyle (MovieClip.lineStyle

method), lineTo (MovieClip.lineTo method)

431FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

_name (MovieClip._name property)
 public _name : String

The instance name of the movie clip.

Availability

Flash Lite 2.0

See also

_name (Button._name property)

nextFrame (MovieClip.nextFrame method)
 public nextFrame() : Void

Sends the playhead to the next frame and stops it.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Example

The following example uses _framesloaded and nextFrame()to load content into a SWF file. Do not add any code

to Frame 1, but add the following ActionScript to Frame 2 of the Timeline:

 if (this._framesloaded >= 3) {
 this.nextFrame();
 } else {
 this.gotoAndPlay(1);
 }

Then, add the following code (and the content you want to load) on Frame 3:

 stop();

See also

nextFrame function, prevFrame function, prevFrame (MovieClip.prevFrame method)

onData (MovieClip.onData handler)
 onData = function() {}

Invoked when a movie clip receives data from a MovieClip.loadVariables() or MovieClip.loadMovie() call. You must

define a function that executes when the event handler is invoked. You can define the function on the Timeline or in

a class file that extends the MovieClip class or is linked to a symbol in the library.

This handler can be used only with movie clips for which you have a symbol in the library that is associated with a class.

If you want an event handler to be invoked when a specific movie clip receives data, you must use onClipEvent()

instead of this handler. The latter handler is invoked when any movie clip receives data.

Availability

Flash Lite 2.0

432FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example illustrates the correct use of MovieClip.onData() and onClipEvent(data).

The symbol_mc is a movie clip symbol in the library. It is linked to the MovieClip class. The first function below is

triggered for each instance of symbol_mc when it receives data.

The dynamic_mc is a movie clip that is being loaded with MovieClip.loadMovie(). The code using dynamic_mc below

attempts to call a function when the movie clip is loaded, but it doesn't work. The loaded SWF file must be a symbol

in the library associated with the MovieClip class.

The last function uses onClipEvent(data). The onClipEvent() event handler is invoked for any movie clip that receives

data, whether the movie clip is in the library or not. Therefore, the last function in this example is invoked when

symbol_mc is instantiated and also when replacement.swf is loaded.

 // The following function is triggered for each instance of symbol_mc
 // when it receives data.
 symbol_mc.onData = function() {
 trace("The movie clip has received data");
 }

 // This code attempts to call a function when the clip is loaded,
 // but it will not work, because the loaded SWF is not a symbol
 // in the library associated with the MovieClip class.
 function output()
 {
 trace("Will never be called.");
 }
 dynamic_mc.onData = output;
 dynamic_mc.loadMovie("replacement.swf");
 // The following function is invoked for any movie clip that
 // receives data, whether it is in the library or not.
 onClipEvent(data) {
 trace("The movie clip has received data");
 }

See also

onClipEvent handler

onDragOut (MovieClip.onDragOut handler)
 onDragOut = function() {}

Invoked when the mouse button is pressed and the pointer rolls outside the object. You must define a function that

executes when the event handler is invoked. You can define the function on the Timeline or in a class file that extends

the MovieClip class or is linked to a symbol in the library.

Note: This event handler is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example defines a function for the onDragOut method that sends a trace() action to the Output panel:

433FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 my_mc.onDragOut = function () {
 trace ("onDragOut called");
 }

See also

onDragOver (MovieClip.onDragOver handler)

onDragOver (MovieClip.onDragOver handler)
 onDragOver = function() {}

Invoked when the pointer is dragged outside and then over the movie clip. You must define a function that executes

when the event handler is invoked. You can define the function on the Timeline or in a class file that extends the

MovieClip class or is linked to a symbol in the library.

Note: This event handler is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example defines a function for the onDragOver method that sends a trace() action to the Output

panel:

 my_mc.onDragOver = function () {
 trace ("onDragOver called");
 }

See also

onDragOut (MovieClip.onDragOut handler)

onEnterFrame (MovieClip.onEnterFrame handler)
 onEnterFrame = function() {}

Invoked repeatedly at the frame rate of the SWF file. The function that you assign to the onEnterFrame event handler

is processed before any other ActionScript code that is attached to the affected frames.

You must define a function that executes when the event handler is invoked. You can define the function on the

Timeline or in a class file that extends the MovieClip class or that is linked to a symbol in the library.

Availability

Flash Lite 2.0

Example

The following example defines a function for the onEnterFrame event handler that sends a trace() action to the

Output panel:

 my_mc.onEnterFrame = function () {
 trace ("onEnterFrame called");
 }

434FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

onKeyDown (MovieClip.onKeyDown handler)
 onKeyDown = function() {}

Invoked when a movie clip has input focus and a key is pressed. The onKeyDown event handler is invoked with no

parameters. You can use the Key.getAscii() and Key.getCode() methods to determine which key was pressed. You

must define a function that executes when the event handler is invoked. You can define the function on the Timeline

or in a class file that extends the MovieClip class or is linked to a symbol in the library.

The onKeyDown event handler works only if the movie clip has input focus enabled and set. First, the

MovieClip.focusEnabled property must be set to true for the movie clip. Then, the clip must be given focus. This

can be done either by using Selection.setFocus() or by setting the Tab key to navigate to the clip.

If Selection.setFocus() is used, the path for the movie clip must be passed to Selection.setFocus(). It is very

easy for other elements to take the focus back after the mouse is moved.

Availability

Flash Lite 2.0

Example

The following example defines a function for the onKeyDown() method that sends a trace() action to the Output

panel. Create a movie clip called my_mc and add the following ActionScript to your FLA or AS file:

 my_mc.onKeyDown = function () {
 trace ("key was pressed");
 }

The movie clip must have focus for the onKeyDown event handler to work. Add the following ActionScript to set input

focus:

 my_mc.tabEnabled = true;
 my_mc.focusEnabled = true;
 Selection.setFocus(my_mc);

When you tab to the movie clip and press a key, key was pressed is displayed in the Output panel. However, this

does not occur after you move the mouse, because the movie clip loses focus. Therefore, you should use

Key.onKeyDown in most cases.

See also

getAscii (Key.getAscii method), getCode (Key.getCode method), focusEnabled

(MovieClip.focusEnabled property), setFocus (Selection.setFocus method), onKeyDown

(Key.onKeyDown event listener), onKeyUp (MovieClip.onKeyUp handler)

onKeyUp (MovieClip.onKeyUp handler)
 onKeyUp = function() {}

Invoked when a key is released. The onKeyUp event handler is invoked with no parameters. You can use the

Key.getAscii() and Key.getCode() methods to determine which key was pressed. You must define a function that

executes when the event handler is invoked. You can define the function on the Timeline or in a class file that extends

the MovieClip class or is linked to a symbol in the library.

The onKeyUp event handler works only if the movie clip has input focus enabled and set. First, the

MovieClip.focusEnabled property must be set to true for the movie clip. Then, the clip must be given focus. This

can be done either by using Selection.setFocus() or by setting the Tab key to navigate to the clip.

435FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

If Selection.setFocus() is used, the path for the movie clip must be passed to Selection.setFocus(). It is very

easy for other elements to take the focus back after the mouse is moved.

Availability

Flash Lite 2.0

Example

The following example defines a function for the onKeyUp method that sends a trace() action to the Output panel:

 my_mc.onKeyUp = function () {
 trace ("onKey called");
 }

The following example sets input focus:

 my_mc.focusEnabled = true;
 Selection.setFocus(my_mc);

See also

getAscii (Key.getAscii method), getCode (Key.getCode method), focusEnabled

(MovieClip.focusEnabled property), setFocus (Selection.setFocus method), onKeyDown

(Key.onKeyDown event listener), onKeyDown (MovieClip.onKeyDown handler)

onKillFocus (MovieClip.onKillFocus handler)
 onKillFocus = function(newFocus:Object) {}

Invoked when a movie clip loses input focus. The onKillFocus method receives one parameter, newFocus, which is

an object that represents the new object receiving the focus. If no object receives the focus, newFocus contains the value

null.

You must define a function that executes when the event handler is invoked. You can define the function on the

Timeline or in a class file that extends the MovieClip class or is linked to a symbol in the library.

Availability

Flash Lite 2.0

Parameters

newFocus:Object - The object that is receiving the input focus.

Example

The following example displays information about the movie clip that loses focus, and the instance that currently has

focus. Two movie clips, called my_mc and other_mc, are on the Stage. You can add the following ActionScript to your

AS or FLA document:

 my_mc.onRelease = Void;
 other_mc.onRelease = Void;
 my_mc.onKillFocus = function(newFocus) {
 trace("onKillFocus called, new focus is: "+newFocus);
 };

When you press the Tab key to move between the two instances, information is displayed in the Output panel.

436FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

onSetFocus (MovieClip.onSetFocus handler)

onLoad (MovieClip.onLoad handler)
 onLoad = function() {}

Invoked when the movie clip is instantiated and appears in the Timeline. You must define a function that executes

when the event handler is invoked. You can define the function on the Timeline or in a class file that extends the

MovieClip class or is linked to a symbol in the library.

This handler can be used only with movie clips for which you have a symbol in the library that is associated with a class.

If you want an event handler to be invoked when a specific movie clip loads, for example when you use

MovieClip.loadMovie() to load a SWF file dynamically, you must use onClipEvent(load) or the MovieClipLoader

class instead of this handler. Unlike MovieClip.onLoad, the other handlers are invoked when any movie clip loads.

Availability

Flash Lite 2.0

Example

This example shows you how to use the onLoad event handler in an ActionScript 2.0 class definition that extends the

MovieClip class. First, create a class file named Oval.as and define a class method named onLoad() and make sure that

the class file is placed in the proper class path:

 // contents of Oval.as
 class Oval extends MovieClip{
 public function onLoad () {
 trace ("onLoad called");
 }
 }

Second, create a movie clip symbol in your library and name it Oval. Context-click (usually right-click) on the symbol

in the Library panel and select Linkage... from the pop-up menu. Click on "Export for ActionScript" and fill in the

"Identifier" and "ActionScript 2.0 Class" fields with the word "Oval" (no quotes). Leave "Export in First Frame" checked

and click OK.

Third, go to the first frame of your file and enter the following code in the Actions Panel:

 var myOval:Oval = Oval(attachMovie("Oval","Oval_1",1));

Finally, do a test movie, and you should see the output text "onLoad called".

See also

loadMovie (MovieClip.loadMovie method), onClipEvent handler, MovieClipLoader

onMouseDown (MovieClip.onMouseDown handler)
 onMouseDown = function() {}

Invoked when the mouse button is pressed. You must define a function that executes when the event handler is

invoked. You can define the function on the Timeline or in a class file that extends the MovieClip class or is linked to

a symbol in the library.

Note: This event handler is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

437FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example defines a function for the onMouseDown method that sends a trace() action to the Output

panel:

 my_mc.onMouseDown = function () {
 trace ("onMouseDown called");
 }

onMouseMove (MovieClip.onMouseMove handler)
 onMouseMove = function() {}

Invoked when the mouse moves. You must define a function that executes when the event handler is invoked. You can

define the function on the Timeline or in a class file that extends the MovieClip class or is linked to a symbol in the

library.

Note: This event handler is supported in Flash Lite only if System.capabilities.hasMouse is true.

Availability

Flash Lite 2.0

Example

The following example defines a function for the onMouseMove method that sends a trace() action to the Output

panel:

 my_mc.onMouseMove = function () {
 trace ("onMouseMove called");
 }

onMouseUp (MovieClip.onMouseUp handler)
 onMouseUp = function() {}

Invoked when the mouse button is released. You must define a function that executes when the event handler is

invoked. You can define the function on the Timeline or in a class file that extends the MovieClip class or is linked to

a symbol in the library.

Note: This event handler is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example defines a function for the onMouseUp method that sends a trace() action to the Output panel:

 my_mc.onMouseUp = function () {
 trace ("onMouseUp called");
 }

438FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

onPress (MovieClip.onPress handler)
 onPress = function() {}

Invoked when the user clicks the mouse while the pointer is over a movie clip. You must define a function that executes

when the event handler is invoked. You can define the in the library.

Availability

Flash Lite 2.0

Example

The following example defines a function for the onPress method that sends a trace() action to the Output panel:

 my_mc.onPress = function () {
 trace ("onPress called");
 }

onRelease (MovieClip.onRelease handler)
 onRelease = function() {}

Invoked when the mouse button is released over a movie clip. You must define a function that executes when the event

handler is invoked. You can define the function on the Timeline or in a class file that extends the MovieClip class or is

linked to a symbol in the library.

Availability

Flash Lite 2.0

Example

The following example defines a function for the onRelease method that sends a trace() action to the Output panel:

 my_mc.onRelease = function () {
 trace ("onRelease called");
 }

onReleaseOutside (MovieClip.onReleaseOutside handler)
 onReleaseOutside = function() {}

Invoked when the mouse button is pressed inside the movie clip area and then released outside the movie clip area.

You must define a function that executes when the event handler is invoked. You can define the function on the

Timeline or in a class file that extends the MovieClip class or is linked to a symbol in the library.

Note: This event handler is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example defines a function for the onReleaseOutside method that sends a trace() action to the

Output panel:

439FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 my_mc.onReleaseOutside = function () {
 trace ("onReleaseOutside called");
 }

onRollOut (MovieClip.onRollOut handler)
 onRollOut = function() {}

Invoked when the pointer moves outside a movie clip area.

You must define a function that executes when the event handler is invoked. You can define the function on the

Timeline or in a class file that extends the MovieClip class or is linked to a symbol in the library.

Availability

Flash Lite 2.0

Example

The following example defines a function for the onRollOut method that sends a trace() action to the Output panel:

 my_mc.onRollOut = function () {
 trace ("onRollOut called");
 }

onRollOver (MovieClip.onRollOver handler)
 onRollOver = function() {}

Invoked when the pointer moves over a movie clip area.

You must define a function that executes when the event handler is invoked. You can define the function on the

Timeline or in a class file that extends the MovieClip class or is linked to a symbol in the library.

Availability

Flash Lite 2.0

Example

The following example defines a function for the onRollOver method that sends a trace() action to the Output

panel:

 my_mc.onRollOver = function () {
 trace ("onRollOver called");
 }

onSetFocus (MovieClip.onSetFocus handler)
 onSetFocus = function(oldFocus:Object) {}

Invoked when a movie clip receives input focus. The oldFocus parameter is the object that loses the focus. For

example, if the user presses the Tab key to move the input focus from a movie clip to a text field, oldFocus contains

the movie clip instance.

If there is no previously focused object, oldFocus contains a null value.

You must define a function that executes when the event handler in invoked. You can define the function on the

Timeline or in a class file that extends the MovieClip class or is linked to a symbol in the library.

440FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Parameters

oldFocus:Object - The object to lose focus.

Example

The following example displays information about the movie clip that receives input focus, and the instance that

previously had focus. Two movie clips, called my_mc and other_mc are on the Stage. Add the following ActionScript

to your AS or FLA document:

 my_mc.onRelease = Void;
 other_mc.onRelease = Void;
 my_mc.onSetFocus = function(oldFocus) {
 trace("onSetFocus called, previous focus was: "+oldFocus);
 }

When you press the Tab key between the two instances, information is displayed in the Output panel.

See also

onKillFocus (MovieClip.onKillFocus handler)

onUnload (MovieClip.onUnload handler)
 onUnload = function() {}

Invoked in the first frame after the movie clip is removed from the Timeline. Flash processes the actions associated

with the onUnload event handler before attaching any actions to the affected frame. You must define a function that

executes when the event handler is invoked. You can define the function on the Timeline or in a class file that extends

the MovieClip class or is linked to a symbol in the library.

Availability

Flash Lite 2.0

Example

The following example defines a function for the MovieClip.onUnload method that sends a trace() action to the

Output panel:

 my_mc.onUnload = function () {
 trace ("onUnload called");
 }

_parent (MovieClip._parent property)
 public _parent : MovieClip

A reference to the movie clip or object that contains the current movie clip or object. The current object is the object

that references the _parent property. Use the _parent property to specify a relative path to movie clips or objects that

are above the current movie clip or object.

You can use _parent to move up multiple levels in the display list as in the following:

 this._parent._parent._alpha = 20;

441FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example traces the reference to a movie clip and its relationship to the main Timeline. Create a movie

clip with the instance name my_mc, and add it to the main Timeline. Add the following ActionScript to your FLA or

AS file:

 my_mc.onRelease = function() {
 trace("You clicked the movie clip: "+this);
 trace("The parent of "+this._name+" is: "+this._parent);
 }

When you click the movie clip, the following information appears in the Output panel:

 You clicked the movie clip: _level0.my_mc
 The parent of my_mc is: _level0

See also

_parent (Button._parent property), _root property, targetPath function, _parent

(TextField._parent property)

play (MovieClip.play method)
 public play() : Void

Moves the playhead in the Timeline of the movie clip.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Example

Use the following ActionScript to play the main Timeline of a SWF file. This ActionScript is for a movie clip button

called my_mc on the main Timeline:

 stop();
 my_mc.onRelease = function() {
 this._parent.play();
 };

Use the following ActionScript to play the Timeline of a movie clip in a SWF file. This ActionScript is for a button

called my_btn on the main Timeline that plays a movie clip called animation_mc:

 animation_mc.stop();
 my_btn.onRelease = function(){
 animation_mc.play();
 };

See also

play function, gotoAndPlay (MovieClip.gotoAndPlay method), gotoAndPlay function

442FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

prevFrame (MovieClip.prevFrame method)
 public prevFrame() : Void

Sends the playhead to the previous frame and stops it.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Example

In the following example, two movie clip buttons control the Timeline. The prev_mc button moves the playhead to

the previous frame, and the next_mc button moves the playhead to the next frame. Add content to a series of frames

on the Timeline, and add the following ActionScript to Frame 1 of the Timeline:

 stop();
 prev_mc.onRelease = function() {
 var parent_mc:MovieClip = this._parent;
 if (parent_mc._currentframe>1) {
 parent_mc.prevFrame();
 } else {
 parent_mc.gotoAndStop(parent_mc._totalframes);
 }
 };
 next_mc.onRelease = function() {
 var parent_mc:MovieClip = this._parent;
 if (parent_mc._currentframe<parent_mc._totalframes) {
 parent_mc.nextFrame();
 } else {
 parent_mc.gotoAndStop(1);
 }
 };

See also

prevFrame function

_quality (MovieClip._quality property)
 public _quality : String

Sets or retrieves the rendering quality used for a SWF file. Device fonts are always aliased and therefore are unaffected

by the _quality property.

The _quality property can be set to the following values:

Value Description Graphic Anti-Aliasing

"LOW" Low rendering quality. Graphics are not anti-aliased.

443FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Note: Although you can specify this property for a MovieClip object, it is also a global property, and you can specify

its value simply as _quality.

Availability

Flash Lite 2.0

Example

This example sets the rendering quality of a movie clip named my_mc to LOW:

 my_mc._quality = "LOW";

See also

_quality property

removeMovieClip (MovieClip.removeMovieClip method)
 public removeMovieClip() : Void

Removes a movie clip instance created with duplicateMovieClip(), MovieClip.duplicateMovieClip(),

MovieClip.createEmptyMovieClip(), or MovieClip.attachMovie().

This method does not remove a movie clip assigned to a negative depth value. Movie clips created in the authoring tool

are assigned negative depth values by default. To remove a movie clip that is assigned to a negative depth value, first

use MovieClip.swapDepths() to move the movie clip to a positive depth value.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Example

Each time you click a button in the following example, you attach a movie clip instance to the Stage in a random

position. When you click a movie clip instance, you remove that instance from the SWF file.

"MEDIUM" Medium rendering quality. This

setting is suitable for movies that

do not contain text.

Graphics are anti-aliased using a 2 x 2 pixel grid.

"HIGH" High rendering quality. This

setting is the default rendering

quality setting that Flash uses.

Graphics are anti-aliased using a 4 x 4 pixel grid.

"BEST" Very high rendering quality. Graphics are anti-aliased using a 4 x 4 pixel grid.

Value Description Graphic Anti-Aliasing

444FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 function randRange(min:Number, max:Number):Number {
 var randNum:Number = Math.round(Math.random()*(max-min))+min;
 return randNum;
 }
 var bugNum:Number = 0;
 addBug_btn.onRelease = addBug;
 function addBug() {
 var thisBug:MovieClip = this._parent.attachMovie("bug_id", "bug"+bugNum+"_mc", bugNum,
 {_x:randRange(50, 500), _y:randRange(50, 350)});
 thisBug.onRelease = function() {
 this.removeMovieClip();
 };
 bugNum++;
 }

See also

duplicateMovieClip function, createEmptyMovieClip (MovieClip.createEmptyMovieClip method),

duplicateMovieClip (MovieClip.duplicateMovieClip method), attachMovie (MovieClip.attachMovie

method)swapDepths (MovieClip.swapDepths method)

_rotation (MovieClip._rotation property)
 public _rotation : Number

Specifies the rotation of the movie clip, in degrees, from its original orientation. Values from 0 to 180 represent

clockwise rotation; values from 0 to -180 represent counterclockwise rotation. Values outside this range are added to

or subtracted from 360 to obtain a value within the range. For example, the statement my_mc._rotation = 450 is the

same as my_mc._rotation = 90.

Availability

Flash Lite 2.0

Example

The following example creates a triangle movie clip instance dynamically. When you run the SWF file, click the

movie clip to rotate it:

 this.createEmptyMovieClip("triangle", this.getNextHighestDepth());

 triangle.beginFill(0x0000FF, 100);
 triangle.moveTo(100, 100);
 triangle.lineTo(100, 150);
 triangle.lineTo(150, 100);
 triangle.lineTo(100, 100);

 triangle.onMouseUp= function() {
 this._rotation += 15;
 };

See also

_rotation (Button._rotation property), _rotation (TextField._rotation property)

445FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

setMask (MovieClip.setMask method)
 public setMask(mc:Object) : Void

Makes the movie clip in the parameter mc a mask that reveals the calling movie clip.

The setMask() method allows multiple-frame movie clips with complex, multilayered content to act as masks (which

is possible by using mask layers). If you have device fonts in a masked movie clip, they are drawn but not masked. You

can't set a movie clip to be its own maskfor example, my_mc.setMask(my_mc).

If you create a mask layer that contains a movie clip, and then apply the setMask() method to it, the setMask() call

takes priority and this is not reversible. For example, you could have a movie clip in a mask layer called UIMask that

masks another layer that contains another movie clip called UIMaskee. If, as the SWF file plays, you call

UIMask.setMask(UIMaskee), from that point on, UIMask is masked by UIMaskee.

To cancel a mask created with ActionScript, pass the value null to the setMask() method. The following code cancels

the mask without affecting the mask layer in the Timeline.

 UIMask.setMask(null);

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

mc:Object - The instance name of a movie clip to be a mask. This can be a String or a MovieClip.

Example

The following code uses the circleMask_mc movie clip to mask the theMaskee_mc movie clip:

 theMaskee_mc.setMask(circleMask_mc);

_soundbuftime (MovieClip._soundbuftime property)
 public _soundbuftime : Number

Specifies the number of seconds a sound prebuffers before it starts to stream.

Note: Although you can specify this property for a MovieClip object, it is actually a global property that applies to all

sounds loaded, and you can specify its value simply as _soundbuftime. Setting this property for a MovieClip object

actually sets the global property.

Availability

Flash Lite 2.0

See also

_soundbuftime property

startDrag (MovieClip.startDrag method)
 public startDrag([lockCenter:Boolean], [left:Number], [top:Number], [right:Number],
[bottom:Number]) : Void

446FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Lets the user drag the specified movie clip. The movie clip remains draggable until explicitly stopped through a call to

MovieClip.stopDrag(), or until another movie clip is made draggable. Only one movie clip at a time is draggable.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Note: This method is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Parameters

lockCenter:Boolean [optional] - A Boolean value specifying whether the draggable movie clip is locked to the center

of the mouse position (true), or locked to the point where the user first clicked on the movie clip (false).

left:Number [optional] - Value relative to the coordinates of the movie clip's parent that specify a constraint rectangle

for the movie clip.

top:Number [optional] - Value relative to the coordinates of the movie clip's parent that specify a constraint rectangle

for the movie clip.

right:Number [optional] - Value relative to the coordinates of the movie clip's parent that specify a constraint

rectangle for the movie clip.

bottom:Number [optional] - Value relative to the coordinates of the movie clip's parent that specify a constraint

rectangle for the movie clip.

Example

The following example creates a draggable movie clip instance called mc_1:

 this.createEmptyMovieClip("mc_1", 1);

 with (mc_1) {
 lineStyle(1, 0xCCCCCC);
 beginFill(0x4827CF);
 moveTo(0, 0);
 lineTo(80, 0);
 lineTo(80, 60);
 lineTo(0, 60);
 lineTo(0, 0);
 endFill();
 }

 mc_1.onPress = function() {
 this.startDrag();
 };
 mc_1.onRelease = function() {
 this.stopDrag();
 };

See also

_droptarget (MovieClip._droptarget property), startDrag function, stopDrag (MovieClip.stopDrag

method)

447FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

stop (MovieClip.stop method)
 public stop() : Void

Stops the movie clip currently playing.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Example

The following example shows how to stop a movie clip named aMovieClip:

 aMovieClip.stop();

See also

stop function

stopDrag (MovieClip.stopDrag method)
 public stopDrag() : Void

Ends a MovieClip.startDrag() method. A movie clip that was made draggable with that method remains draggable

until a stopDrag() method is added, or until another movie clip becomes draggable. Only one movie clip is draggable

at a time.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Note: This method is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example creates a draggable movie clip instance called mc_1:

448FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createEmptyMovieClip("mc_1", 1);

 with (mc_1) {
 lineStyle(1, 0xCCCCCC);
 beginFill(0x4827CF);
 moveTo(0, 0);
 lineTo(80, 0);
 lineTo(80, 60);
 lineTo(0, 60);
 lineTo(0, 0);
 endFill();
 }

 mc_1.onPress = function() {
 this.startDrag();
 };
 mc_1.onRelease = function() {
 this.stopDrag();
 };

See also

_droptarget (MovieClip._droptarget property), startDrag (MovieClip.startDrag method), stopDrag

function

swapDepths (MovieClip.swapDepths method)
 public swapDepths(target:Object) : Void

Swaps the stacking, or depth level (z-order), of this movie clip with the movie clip specified by the target parameter,

or with the movie clip that currently occupies the depth level specified in the target parameter. Both movie clips must

have the same parent movie clip. Swapping the depth level of movie clips has the effect of moving one movie clip in

front of or behind the other. If a movie clip is tweening when this method is called, the tweening is stopped.

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

Parameters

target:Object - This parameter can take one of two forms:

• A number that specifies the depth level where the movie clip is to be placed.

• A string that specifies the movie clip instance whose depth is swapped with the movie clip for which the method is

being applied. Both movie clips must have the same parent movie clip.

Example

The following example swaps the stacking order of two movie clip instances. Overlap two movie clip instances, called

myMC1_mc and myMC2_mc, on the Stage and then add the following script to the parent Timeline:

449FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 myMC1_mc.onRelease = function() {
 this.swapDepths(myMC2_mc);
 };
 myMC2_mc.onRelease = function() {
 this.swapDepths(myMC1_mc);
 };

See also

_level property, getDepth (MovieClip.getDepth method), getInstanceAtDepth

(MovieClip.getInstanceAtDepth method), getNextHighestDepth (MovieClip.getNextHighestDepth

method)

tabChildren (MovieClip.tabChildren property)
 public tabChildren : Boolean

Determines whether the children of a movie clip are included in the automatic tab ordering. If the tabChildren

property is undefined or true, the children of a movie clip are included in automatic tab ordering. If the value of

tabChildren is false, the children of a movie clip are not included in automatic tab ordering. The default value is

undefined.

Availability

Flash Lite 2.0

Example

A list box UI widget built as a movie clip contains several items. The user can click each item to select it, so each item

is a button. However, only the list box itself should be a tab stop. The items inside the list box should be excluded from

tab ordering. To do this, the tabChildren property of the list box should be set to false.

The tabChildren property has no effect if the tabIndex property is used; the tabChildren property affects only

automatic tab ordering.

The following example disables tabbing for all children movie clips inside a parent movie clip called menu_mc:

 menu_mc.onRelease = function(){};
 menu_mc.menu1_mc.onRelease = function(){};
 menu_mc.menu2_mc.onRelease = function(){};
 menu_mc.menu3_mc.onRelease = function(){};
 menu_mc.menu4_mc.onRelease = function(){};

 menu_mc.tabChildren = false;

Change the last line of code to the following to include the children movie clip instances of menu_mc in the automatic

tab ordering:

 menu_mc.tabChildren = true;

See also

tabIndex (Button.tabIndex property), tabEnabled (MovieClip.tabEnabled property), tabIndex

(MovieClip.tabIndex property), tabIndex (TextField.tabIndex property)

tabEnabled (MovieClip.tabEnabled property)
 public tabEnabled : Boolean

450FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Specifies whether the movie clip is included in automatic tab ordering. It is undefined by default.

If the tabEnabled property is undefined, the object is included in automatic tab ordering only if it defines at least one

movie clip handler, such as MovieClip.onRelease. If tabEnabled is true, the object is included in automatic tab

ordering. If the tabIndex property is also set to a value, the object is included in custom tab ordering as well.

If tabEnabled is false, the object is not included in automatic or custom tab ordering, even if the tabIndex property

is set. However, if MovieClip.tabChildren is true, the movie clip's children can still be included in automatic tab

ordering, even if tabEnabled is false.

Availability

Flash Lite 2.0

Example

The following example does not include myMC2_mc in the automatic tab ordering:

 myMC1_mc.onRelease = function() {};
 myMC2_mc.onRelease = function() {};
 myMC3_mc.onRelease = function() {};
 myMC2_mc.tabEnabled = false;

See also

onRelease (MovieClip.onRelease handler), tabEnabled (Button.tabEnabled property), tabChildren

(MovieClip.tabChildren property), tabIndex (MovieClip.tabIndex property), tabEnabled

(TextField.tabEnabled property)

tabIndex (MovieClip.tabIndex property)
 public tabIndex : Number

Lets you customize the tab ordering of objects in a movie. The tabIndex property is undefined by default. You can

set the tabIndex property on a button, movie clip, or text field instance.

If an object in a SWF file contains a tabIndex property, automatic tab ordering is disabled, and the tab ordering is

calculated from the tabIndex properties of objects in the SWF file. The custom tab ordering includes only objects that

have tabIndex properties.

The tabIndex property must be a positive integer. The objects are ordered according to their tabIndex properties, in

ascending order. An object with a tabIndex value of 1 precedes an object with a tabIndex value of 2. The custom tab

ordering disregards the hierarchical relationships of objects in a SWF file. All objects in the SWF file with tabIndex

properties are placed in the tab order. Do not use the same tabIndex value for multiple objects.

Availability

Flash Lite 2.0

Example

The following ActionScript sets a custom tab order for three movie clip instances.

 myMC1_mc.onRelease = function() {};
 myMC2_mc.onRelease = function() {};
 myMC3_mc.onRelease = function() {};
 myMC1_mc.tabIndex = 2;
 myMC2_mc.tabIndex = 1;
 myMC3_mc.tabIndex = 3;

451FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

tabIndex (Button.tabIndex property), tabIndex (TextField.tabIndex property)

_target (MovieClip._target property)
 public _target : String [read-only]

Returns the target path of the movie clip instance, in slash notation. Use the eval() function to convert the target path

to dot notation.

Availability

Flash Lite 2.0

Example

The following example displays the target paths of movie clip instances in a SWF file, in both slash and dot notation.

 for (var i in this) {
 if (typeof (this[i]) == "movieclip") {
 trace("name: " + this[i]._name + ",\t target: " + this[i]._target + ",\t target(2):"
 + eval(this[i]._target));
 }
 }

_totalframes (MovieClip._totalframes property)
 public _totalframes : Number [read-only]

Returns the total number of frames in the movie clip instance specified in the MovieClip parameter.

Example

In the following example, two movie clip buttons control the Timeline. The prev_mc button moves the playhead to

the previous frame, and the next_mc button moves the playhead to the next frame. Add content to a series of frames

on the Timeline, and add the following ActionScript to Frame 1 of the Timeline:

 stop();
 prev_mc.onRelease = function() {
 var parent_mc:MovieClip = this._parent;
 if (parent_mc._currentframe>1) {
 parent_mc.prevFrame();
 } else {
 parent_mc.gotoAndStop(parent_mc._totalframes);
 }
 };
 next_mc.onRelease = function() {
 var parent_mc:MovieClip = this._parent;
 if (parent_mc._currentframe<parent_mc._totalframes) {
 parent_mc.nextFrame();
 } else {
 parent_mc.gotoAndStop(1);
 }
 };

trackAsMenu (MovieClip.trackAsMenu property)
 public trackAsMenu : Boolean

452FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

A Boolean value that indicates whether other buttons or movie clips can receive a release event from a mouse or stylus.

If you drag a stylus or mouse across a movie clip and then release it on a second movie clip, the onRelease event is

registered for the second movie clip. This allows you to create menus for the second movie clip. You can set the

trackAsMenu property on any button or movie clip object. If you have not defined the trackAsMenu property, the

default behavior is false.

You can change the trackAsMenu property at any time; the modified movie clip immediately takes on the new

behavior.

Note: This property is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example sets the trackAsMenu property for three movie clips on the Stage. Click a movie clip and release

the mouse button on a second movie clip to see which instance receives the event.

 myMC1_mc.trackAsMenu = true;
 myMC2_mc.trackAsMenu = true;
 myMC3_mc.trackAsMenu = false;

 myMC1_mc.onRelease = clickMC;
 myMC2_mc.onRelease = clickMC;
 myMC3_mc.onRelease = clickMC;

 function clickMC() {
 trace("you clicked the "+this._name+" movie clip.");
 };

See also

trackAsMenu (Button.trackAsMenu property)

transform (MovieClip.transform property)
 public transform : Transform

An object with properties pertaining to a movie clip's matrix, color transform, and pixel bounds. The specific

properties matrix, colorTransform, and three read-only properties (concatenatedMatrix,

concatenatedColorTransform, and pixelBounds) are described in the entry for the Transform class.

Each of the transform object's properties is itself an object. This is important because the only way to set new values

for the matrix or colorTransform objects is to create an object and copy that object into the transform.matrix or

transform.colorTransform property.

For example, to increase the tx value of a movie clip's matrix, you must make a copy of the entire matrix object, modify

the tx property of the new object, and then copy the new object into the matrix property of the transform object:

 var myMatrix:Object = myDisplayObject.transform.matrix;
 myMatrix.tx += 10;
 myDisplayObject.transform.matrix = myMatrix;

You cannot directly set the tx property. The following code has no effect on myDisplayObject:

myDisplayObject.transform.matrix.tx += 10;

453FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

You can also copy an entire transform object and assign it to another movie clip's transform property. For example,

the following code copies the entire transform object from myOldDisplayObj to myNewDisplayObj:

myNewDisplayObj.transform = myOldDisplayObj.transform;

The new movie clip, myNewDisplayObj, now has the same values for its matrix, color transform, and pixel bounds as

the old movie clip, myOldDisplayObj.

Availability

Flash Lite 3.1

Example

The following example shows how to use a movie clip's transform property to access and modify a movie clip's

location by using Matrix positioning.

 import flash.geom.Matrix;

 var rect:MovieClip = createRectangle(20, 80, 0xFF0000);

 var translateMatrix:Matrix = new Matrix();
 translateMatrix.translate(10, 0);

 rect.onPress = function() {
 var tmpMatrix:Matrix = this.transform.matrix;
 tmpMatrix.concat(translateMatrix);
 this.transform.matrix = tmpMatrix;
 }

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

See also

“Transform (flash.geom.Transform)” on page 652

unloadMovie (MovieClip.unloadMovie method)
 public unloadMovie() : Void

Removes the contents of a movie clip instance. The instance properties and clip handlers remain.

To remove the instance, including its properties and clip handlers, use MovieClip.removeMovieClip().

You can extend the methods and event handlers of the MovieClip class by creating a subclass.

Availability

Flash Lite 2.0

454FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example unloads a movie clip instance called box when a user clicks the box movie clip:

 this.createEmptyMovieClip("box", 1);

 with (box) {
 lineStyle(1, 0xCCCCCC);
 beginFill(0x4827CF);
 moveTo(0, 0);
 lineTo(80, 0);
 lineTo(80, 60);
 lineTo(0, 60);
 lineTo(0, 0);
 endFill();
 }

 box.onRelease = function() {
 box.unloadMovie();
 };

See also

removeMovieClip (MovieClip.removeMovieClip method), attachMovie (MovieClip.attachMovie method),

loadMovie (MovieClip.loadMovie method), unloadMovie function, unloadMovieNum function

_url (MovieClip._url property)
 public _url : String [read-only]

Retrieves the URL of the SWF, JPEG, GIF, or PNG file from which the movie clip was downloaded.

Availability

Flash Lite 2.0

Example

The following example displays the URL of the image that is loaded into the image_mc instance in the Output panel.

 this.createEmptyMovieClip("image_mc", 1);
 var mclListener:Object = new Object();
 mclListener.onLoadInit = function(target_mc:MovieClip) {
 trace("_url: "+target_mc._url);
 };
 var image_mcl:MovieClipLoader = new MovieClipLoader();
 image_mcl.addListener(mclListener);
 image_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg", image_mc);

_visible (MovieClip._visible property)
 public _visible : Boolean

A Boolean value that indicates whether the movie clip is visible. Movie clips that are not visible (_visible property

set to false) are disabled. For example, a button in a movie clip with _visible set to false cannot be clicked.

Availability

Flash Lite 2.0

455FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example sets the _visible property for two movie clips called myMC1_mc and myMC2_mc. The property

is set to true for one instance, and false for the other. Notice that myMC1_mc instance cannot be clicked after the

_visible property is set to false.

 myMC1_mc.onRelease = function() {
 trace(this._name+"._visible = false");
 this._visible = false;
 };
 myMC2_mc.onRelease = function() {
 trace(this._name+"._alpha = 0");
 this._alpha = 0;
 };

See also

_visible (Button._visible property), _visible (TextField._visible property)

_width (MovieClip._width property)
 public _width : Number

The width of the movie clip, in pixels.

Availability

Flash Lite 2.0

Example

The following code example displays the height and width of a movie clip in the Output panel:

 this.createEmptyMovieClip("triangle", this.getNextHighestDepth());

 triangle.beginFill(0x0000FF, 100);
 triangle.moveTo(100, 100);
 triangle.lineTo(100, 150);
 triangle.lineTo(150, 100);
 triangle.lineTo(100, 100);

 trace(triangle._name + " = " + triangle._width + " X " + triangle._height + " pixels");

See also

_height (MovieClip._height property)

_x (MovieClip._x property)
 public _x : Number

An integer that sets the x coordinate of a movie clip relative to the local coordinates of the parent movie clip. If a movie

clip is in the main Timeline, its coordinate system refers to the upper-left corner of the Stage as (0, 0). If the move clip

is inside another movie clip that has transformations, the movie clip is in the local coordinate system of the enclosing

movie clip. Thus, for a movie clip rotated 90° counterclockwise, the movie clip's children inherit a coordinate system

that is rotated 90° counterclockwise. The movie clip's coordinates refer to the registration point position.

456FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

See also

_xscale (MovieClip._xscale property), _y (MovieClip._y property), _yscale (MovieClip._yscale

property)

_xmouse (MovieClip._xmouse property)
 public _xmouse : Number [read-only]

Returns the x coordinate of the mouse position.

Note: This property is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example returns the current x and y coordinates of the mouse on the Stage (_level0) and in relation to

a movie clip on the Stage called my_mc:

 this.createTextField("mouse_txt", this.getNextHighestDepth(), 0, 0, 150, 66);
 mouse_txt.html = true;
 mouse_txt.multiline = true;
 var row1_str:String = " \t_xmouse\t_ymouse";
 my_mc.onMouseMove = function() {
 mouse_txt.htmlText = "<textformat tabStops='[50,100]'>";
 mouse_txt.htmlText += row1_str;
 mouse_txt.htmlText += "_level0\t"+_xmouse+"\t"+_ymouse;
 mouse_txt.htmlText += "my_mc\t"+this._xmouse+"\t"+this._ymouse;
 mouse_txt.htmlText += "</textformat>";
 };

See also

hasMouse (capabilities.hasMouse property), _ymouse (MovieClip._ymouse property)

_xscale (MovieClip._xscale property)
 public _xscale : Number

Sets the horizontal scale (percentage) of the movie clip as applied from the registration point of the movie clip. The

default registration point is (0,0).

Scaling the local coordinate system affects the _x and _y property settings, which are defined in whole pixels. For

example, if the parent movie clip is scaled to 50%, setting the _y property moves an object in the movie clip by half the

number of pixels that it would if the movie were set at 100%.

Availability

Flash Lite 2.0

457FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a movie clip called box_mc at runtime. The Drawing API is used to draw a box in this

instance, and when the mouse rolls over the box, horizontal and vertical scaling is applied to the movie clip. When the

mouse rolls off the instance, it returns to the previous scaling.

 this.createEmptyMovieClip("box_mc", 1);
 box_mc._x = 100;
 box_mc._y = 100;
 with (box_mc) {
 lineStyle(1, 0xCCCCCC);
 beginFill(0xEEEEEE);
 moveTo(0, 0);
 lineTo(80, 0);
 lineTo(80, 60);
 lineTo(0, 60);
 lineTo(0, 0);
 endFill();
 };
 box_mc.onRollOver = function() {
 this._x -= this._width/2;
 this._y -= this._height/2;
 this._xscale = 200;
 this._yscale = 200;
 };
 box_mc.onRollOut = function() {
 this._xscale = 100;
 this._yscale = 100;
 this._x += this._width/2;
 this._y += this._height/2;
 };

See also

_x (MovieClip._x property), _y (MovieClip._y property), _yscale (MovieClip._yscale property),

_width (MovieClip._width property)

_y (MovieClip._y property)
 public _y : Number

Sets the y coordinate of a movie clip relative to the local coordinates of the parent movie clip. If a movie clip is in the

main Timeline, its coordinate system refers to the upper-left corner of the Stage.as (0,0). If the movie clip is inside

another movie clip that has transformations, the movie clip is in the local coordinate system of the enclosing movie

clip. Thus, for a movie clip rotated 90° counterclockwise, the movie clip's children inherit a coordinate system that is

rotated 90° counterclockwise. The movie clip's coordinates refer to the registration point position.

Availability

Flash Lite 2.0

See also

_x (MovieClip._x property), _xscale (MovieClip._xscale property), _yscale (MovieClip._yscale

property)

458FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

_ymouse (MovieClip._ymouse property)
 public _ymouse : Number [read-only]

Indicates the y coordinate of the mouse position.

Note: This property is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example returns the current x and y coordinates of the mouse on the Stage (_level0) and in relation to

a movie clip on the Stage called my_mc.

 this.createTextField("mouse_txt", this.getNextHighestDepth(), 0, 0, 150, 66);
 mouse_txt.html = true;
 mouse_txt.multiline = true;
 var row1_str:String = " \t_xmouse\t_ymouse";
 my_mc.onMouseMove = function() {
 mouse_txt.htmlText = "<textformat tabStops='[50,100]'>";
 mouse_txt.htmlText += row1_str;
 mouse_txt.htmlText += "_level0\t"+_xmouse+"\t"+_ymouse;
 mouse_txt.htmlText += "my_mc\t"+this._xmouse+"\t"+this._ymouse;
 mouse_txt.htmlText += "</textformat>";
 };

See also

hasMouse (capabilities.hasMouse property), _xmouse (MovieClip._xmouse property)

_yscale (MovieClip._yscale property)
 public _yscale : Number

Sets the vertical scale (percentage) of the movie clip as applied from the registration point of the movie clip. The

default registration point is (0,0).

Scaling the local coordinate system affects the _x and _y property settings, which are defined in whole pixels. For

example, if the parent movie clip is scaled to 50%, you set the _x property to move an object in the movie clip by half

the number of pixels that it would if the movie were at 100%.

Availability

Flash Lite 2.0

Example

The following example creates a movie clip at runtime called box_mc. The Drawing API is used to draw a box in this

instance, and when the mouse rolls over the box, horizontal and vertical scaling is applied to the movie clip. When the

mouse rolls off the instance, it returns to the previous scaling.

459FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createEmptyMovieClip("box_mc", 1);
 box_mc._x = 100;
 box_mc._y = 100;
 with (box_mc) {
 lineStyle(1, 0xCCCCCC);
 beginFill(0xEEEEEE);
 moveTo(0, 0);
 lineTo(80, 0);
 lineTo(80, 60);
 lineTo(0, 60);
 lineTo(0, 0);
 endFill();
 };
 box_mc.onRollOver = function() {
 this._x -= this._width/2;
 this._y -= this._height/2;
 this._xscale = 200;
 this._yscale = 200;
 };
 box_mc.onRollOut = function() {
 this._xscale = 100;
 this._yscale = 100;
 this._x += this._width/2;
 this._y += this._height/2;
 };

See also

_x (MovieClip._x property), _xscale (MovieClip._xscale property), _y (MovieClip._y property),

_height (MovieClip._height property)

MovieClipLoader

 Object
 |
 +-MovieClipLoader

 public class MovieClipLoader
 extends Object

The MovieClipLoader class lets you implement listener callbacks that provide status information while SWF, JPEG,

GIF, and PNG files are being loaded (downloaded) into movie clips. To use MovieClipLoader features, use

MovieClipLoader.loadClip() instead of loadMovie() or MovieClip.loadMovie() to load SWF files.

After you issue the MovieClipLoader.loadClip() method, the following events take place in the order listed:

• When the first bytes of the downloaded file are written to disk, the MovieClipLoader.onLoadStart listener is

invoked.

• If you implemented the MovieClipLoader.onLoadProgress listener, it is invoked during the loading process.

• Note: You can call MovieClipLoader.getProgress() at any time during the load process.

• When the entire downloaded file is written to disk, the MovieClipLoader.onLoadComplete listener is invoked.

• After the downloaded file's first frame actions are executed, the MovieClipLoader.onLoadInit listener is

invoked.

460FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

After MovieClipLoader.onLoadInit is invoked, you can set properties, use methods, and otherwise interact with the

loaded movie.

If the file fails to load completely, the MovieClipLoader.onLoadError listener is invoked.

Availability

Flash Lite 2.0

Property summary

Properties inherited from class Object

Event summary

Constructor summary

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onLoadComplete =
function(listenerOb
ject, [target_mc])
{}

Invoked when a file loaded with MovieClipLoader.loadClip() is completely

downloaded.

onLoadError =
function(target_mc,
errorCode) {}

Invoked when a file loaded with MovieClipLoader.loadClip() has failed to load.

onLoadInit =
function([target_mc
]) {}

Invoked when the actions on the first frame of the loaded clip are executed.

onLoadProgress =
function([target_mc
], loadedBytes,
totalBytes) {}

Invoked every time the loading content is written to disk during the loading process

(that is, between MovieClipLoader.onLoadStart and

MovieClipLoader.onLoadComplete).

onLoadStart =
function([target_mc
]) {}

Invoked when a call to MovieClipLoader.loadClip() has successfully begun to

download a file.

Signature Description

MovieClipLoader() Creates a MovieClipLoader object that you can use to implement a number of listeners

to respond to events while a SWF, JPEG, GIF, or PNG file is downloading.

461FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Method summary

Methods inherited from class Object

addListener (MovieClipLoader.addListener method)
 public addListener(listener:Object) : Boolean

Registers an object to receive notification when a MovieClipLoader event handler is invoked.

Availability

Flash Lite 2.0

Parameters

listener:Object - An object that listens for a callback notification from the MovieClipLoader event handlers.

Returns

Boolean - A Boolean value. The return value is true if the listener was established successfully; otherwise the return

value is false.

Example

The following example loads an image into a movie clip called image_mc. The movie clip instance is rotated and

centered on the Stage, and both the Stage and movie clip have a stroke drawn around their perimeters.

Modifiers Signature Description

 addListener(listener:
Object) : Boolean

Registers an object to receive notification when a

MovieClipLoader event handler is invoked.

 getProgress(target:Obj

ect) : Object

Returns the number of bytes loaded and total number of bytes

for a file that is being loaded by using

MovieClipLoader.loadClip(); for compressed movies,

the getProgress method reflects the number of compressed

bytes.

 loadClip(url:String,
target:Object) :
Boolean

Loads a SWF or JPEG file into a movie clip in Flash Lite player

while the original movie is playing.

 removeListener(listene
r:Object) : Boolean

Removes the listener that was used to receive notification

when a MovieClipLoader event handler was invoked.

 unloadClip(target:Obje

ct) : Boolean

Removes a movie clip that was loaded by means of

MovieClipLoader.loadClip().

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

462FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createEmptyMovieClip("image_mc", this.getNextHighestDepth());
 var mclListener:Object = new Object();
 mclListener.onLoadInit = function(target_mc:MovieClip) {
 target_mc._x = Stage.width/2-target_mc._width/2;
 target_mc._y = Stage.height/2-target_mc._width/2;
 var w:Number = target_mc._width;
 var h:Number = target_mc._height;
 target_mc.lineStyle(4, 0x000000);
 target_mc.moveTo(0, 0);
 target_mc.lineTo(w, 0);
 target_mc.lineTo(w, h);
 target_mc.lineTo(0, h);
 target_mc.lineTo(0, 0);
 target_mc._rotation = 3;
 };
 var image_mcl:MovieClipLoader = new MovieClipLoader();
 image_mcl.addListener(mclListener);
 image_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg", image_mc);

See also

onLoadComplete (MovieClipLoader.onLoadComplete event listener), onLoadError

(MovieClipLoader.onLoadError event listener), onLoadInit (MovieClipLoader.onLoadInit event

listener), onLoadProgress (MovieClipLoader.onLoadProgress event listener), onLoadStart

(MovieClipLoader.onLoadStart event listener), removeListener (MovieClipLoader.removeListener

method)

getProgress (MovieClipLoader.getProgress method)
 public getProgress(target:Object) : Object

Returns the number of bytes loaded and total number of bytes for a file that is being loaded by using

MovieClipLoader.loadClip(); for compressed movies, the getProgress method reflects the number of

compressed bytes. The getProgress method lets you explicitly request this information, instead of (or in addition to)

writing a MovieClipLoader.onLoadProgress listener function.

Availability

Flash Lite 2.0

Parameters

target:Object - A SWF, JPEG, GIF, or PNG file that is loaded using MovieClipLoader.loadClip().

Returns

Object - An object that has two integer properties: bytesLoaded and bytesTotal.

Example

The following example demonstrates usage of the getProgress method. Rather than using this method, one will

usually create a listener object and listen for the onLoadProgress event. Another important note about this method,

is that the first, synchronous call to getProgress can return the bytesLoaded and bytesTotal of the container and not

the values for the externally requested object.

463FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var container:MovieClip = this.createEmptyMovieClip("container", this.getNextHighestDepth());
 var image:MovieClip = container.createEmptyMovieClip("image", container.getNextHighestDepth());

 var mcLoader:MovieClipLoader = new MovieClipLoader();
 var listener:Object = new Object();
 listener.onLoadProgress = function(target:MovieClip, bytesLoaded:Number,
bytesTotal:Number):Void {
 trace(target + ".onLoadProgress with " + bytesLoaded + " bytes of " + bytesTotal);
 }
 mcLoader.addListener(listener);
 mcLoader.loadClip("http://www.w3.org/Icons/w3c_main.png", image);

 var interval:Object = new Object();
 interval.id = setInterval(checkProgress, 100, mcLoader, image, interval);

 function checkProgress(mcLoader:MovieClipLoader, image:MovieClip, interval:Object):Void {
 trace(">> checking progress now with : " + interval.id);
 var progress:Object = mcLoader.getProgress(image);
 trace("bytesLoaded: " + progress.bytesLoaded + " bytesTotal: " + progress.bytesTotal);
 if(progress.bytesLoaded == progress.bytesTotal) {
 clearInterval(interval.id);
 }
 }

See also

loadClip (MovieClipLoader.loadClip method), onLoadProgress (MovieClipLoader.onLoadProgress

event listener)

loadClip (MovieClipLoader.loadClip method)
 public loadClip(url:String, target:Object) : Boolean

Loads a SWF or JPEG file into a movie clip in Flash Lite player while the original movie is playing. Using this method

lets you display several SWF files at once and switch between SWF files without loading another HTML document.

Using the loadClip() method instead of loadMovie() or MovieClip.loadMovie() has a number of advantages.

The following handlers are implemented by the use of a listener object. You activate the listener by using

MovieClipLoader.addListener(listenerObject) to register it with the MovieClipLoader class.

• The MovieClipLoader.onLoadStart handler is invoked when loading begins.

• The MovieClipLoader.onLoadError handler is invoked if the clip cannot be loaded.

• The MovieClipLoader.onLoadProgress handler is invoked as the loading process progresses.

• The MovieClipLoader.onLoadComplete handler is invoked when a file completes downloading, but before the

loaded movie clip's methods and properties are available. This handler is called before the onLoadInit handler.

• The MovieClipLoader.onLoadInit handler is invoked after the actions in the first frame of the clip are executed,

so you can begin manipulating the loaded clip. This handler is called after the onLoadComplete handler. For most

purposes, use the onLoadInit handler.

A SWF file or image loaded into a movie clip inherits the position, rotation, and scale properties of the movie clip. You

can use the target path of the movie clip to target the loaded movie.

You can use the loadClip() method to load one or more files into a single movie clip or level; MovieClipLoader

listener objects are passed to the loading target movie clip instance as a parameter. Alternatively, you can create a

different MovieClipLoader object for each file that you load.

464FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Use MovieClipLoader.unloadClip() to remove movies or images loaded with this method or to cancel a load

operation that is in progress.

MovieClipLoader.getProgress() and MovieClipLoaderListener.onLoadProgress do not report the actual

bytesLoaded and bytesTotal values in the Authoring player when the files are local. When you use the Bandwidth

Profiler feature in the authoring environment, MovieClipLoader.getProgress() and

MovieClipLoaderListener.onLoadProgress report the download at the actual download rate, not at the reduced

bandwidth rate that the Bandwidth Profiler provides.

Availability

Flash Lite 2.0

Parameters

url:String - The absolute or relative URL of the SWF or JPEG file to be loaded. A relative path must be relative to the

SWF file at level 0. Absolute URLs must include the protocol reference, such as http:// or file:///. Filenames cannot

include disk drive specifications.

target:Object - The target path of a movie clip, or an integer specifying the level in Flash Lite player into which the

movie will be loaded. The target movie clip is replaced by the loaded SWF file or image.

Returns

Boolean - A Boolean value. The return value is true if the URL request was sent successfully; otherwise the return

value is false.

Example

The following example shows you how to use the MovieClipLoader.loadClip method by creating handler for the

onLoadInit event and then making the request.

The following code should either be placed directly into a frame action on a timeline, or pasted into a class that extends

MovieClip.

Create a handler method for the onLoadInit event.

 public function onLoadInit(mc:MovieClip):Void {
 trace("onLoadInit: " + mc);
 }

Create an empty MovieClip and use the MovieClipLoader to load an image into it.

 var container:MovieClip = createEmptyMovieClip("container", getNextHighestDepth());
 var mcLoader:MovieClipLoader = new MovieClipLoader();
 mcLoader.addListener(this);
 mcLoader.loadClip("YourImage.jpg", container);

 function onLoadInit(mc:MovieClip) {
 trace("onLoadInit: " + mc);
 }

See also

onLoadInit (MovieClipLoader.onLoadInit event listener)

MovieClipLoader constructor
 public MovieClipLoader()

465FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Creates a MovieClipLoader object that you can use to implement a number of listeners to respond to events while a

SWF, JPEG, GIF, or PNG file is downloading.

Availability

Flash Lite 2.0

Example

See MovieClipLoader.loadClip().

See also

addListener (MovieClipLoader.addListener method), loadClip (MovieClipLoader.loadClip method)

onLoadComplete (MovieClipLoader.onLoadComplete event listener)
 onLoadComplete = function(listenerObject, [target_mc]) {}

Invoked when a file loaded with MovieClipLoader.loadClip() is completely downloaded. The value for target_mc

identifies the movie clip for which this call is being made. This is useful if multiple files are being loaded with the same

set of listeners.

This parameter is passed by Flash to your code, but you do not have to implement all of the parameters in the listener

function.

When you use the onLoadComplete and onLoadInit events with the MovieClipLoader class, it's important to

understand how this differs from the way they work with your SWF file. The onLoadComplete event is called after the

SWF or JPEG file is loaded, but before the application is initialized. At this point you cannot access the loaded movie

clip's methods and properties, and because of this you cannot call a function, move to a specific frame, and so on. In

most situations, it's better to use the onLoadInit event instead, which is called after the content is loaded and is fully

initialized.

Availability

Flash Lite 2.0

Parameters

listenerObject: - A listener object that was added using MovieClipLoader.addListener().

target_mc: [optional] - A movie clip loaded by a MovieClipLoader.loadClip() method. This parameter is

optional.

Example

The following example loads an image into a movie clip instance called image_mc. The onLoadInit and

onLoadComplete events are used to determine how long it takes to load the image. The information appears in a

dynamically created text field called timer_txt.

466FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createEmptyMovieClip("image_mc", this.getNextHighestDepth());
 var mclListener:Object = new Object();
 mclListener.onLoadStart = function(target_mc:MovieClip) {
 target_mc.startTimer = getTimer();
 };
 mclListener.onLoadComplete = function(target_mc:MovieClip) {
 target_mc.completeTimer = getTimer();
 };
 mclListener.onLoadInit = function(target_mc:MovieClip) {
 var timerMS:Number = target_mc.completeTimer-target_mc.startTimer;
 target_mc.createTextField("timer_txt", target_mc.getNextHighestDepth(), 0,
target_mc._height, target_mc._width, 22);
 target_mc.timer_txt.text = "loaded in "+timerMS+" ms.";
 };
 var image_mcl:MovieClipLoader = new MovieClipLoader();
 image_mcl.addListener(mclListener);
 image_mcl.loadClip("http://www.macromedia.com/images/shared/product_boxes/112x112/box_studio
_112x112.jpg", image_mc);

See also

addListener (MovieClipLoader.addListener method), loadClip (MovieClipLoader.loadClip method),

onLoadStart (MovieClipLoader.onLoadStart event listener), onLoadError

(MovieClipLoader.onLoadError event listener), onLoadInit (MovieClipLoader.onLoadInit event

listener)

onLoadError (MovieClipLoader.onLoadError event listener)
 onLoadError = function(target_mc, errorCode) {}

Invoked when a file loaded with MovieClipLoader.loadClip() has failed to load. This listener can be invoked for

various reasons, including if the server is down, if the file is not found, or if a security violation occurs.

Call this listener on a listener object that you add using MovieClipLoader.addListener().

The value for target_mc identifies the movie clip this call is being made for. This parameter is useful if you are loading

multiple files with the same set of listeners.

For the errorCode parameter, the string "URLNotFound" is returned if neither the MovieClipLoader.onLoadStart

or MovieClipLoader.onLoadComplete listener is called, for example, if a server is down or the file is not found. The

string "LoadNeverCompleted" is returned if MovieClipLoader.onLoadStart was called but

MovieClipLoader.onLoadComplete was not called, for example, if the download was interrupted because of server

overload, server crash, and so on.

Availability

Flash Lite 2.0

Parameters

target_mc: - A movie clip loaded by a MovieClipLoader.loadClip() method.

errorCode: - A string that explains the reason for the failure.

Example

The following example displays information in the Output panel when an image fails to load.

467FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createEmptyMovieClip("image_mc", this.getNextHighestDepth());
 var mclListener:Object = new Object();
 mclListener.onLoadError = function(target_mc:MovieClip, errorCode:String) {
 trace("ERROR!");
 switch (errorCode) {
 case 'URLNotFound' :
 trace("\t Unable to connect to URL: "+target_mc._url);
 break;
 case 'LoadNeverCompleted' :
 trace("\t Unable to complete download: "+target_mc);
 break;
 }
 };
 mclListener.onLoadInit = function(target_mc:MovieClip) {
 trace("success");
 trace(image_mcl.getProgress(target_mc).bytesTotal+" bytes loaded");
 };
 var image_mcl:MovieClipLoader = new MovieClipLoader();
 image_mcl.addListener(mclListener);
 image_mcl.loadClip("http://www.fakedomain.com/images/bad_hair_day.jpg", image_mc);

See also

addListener (MovieClipLoader.addListener method), loadClip (MovieClipLoader.loadClip method),

onLoadStart (MovieClipLoader.onLoadStart event listener), onLoadComplete

(MovieClipLoader.onLoadComplete event listener)

onLoadInit (MovieClipLoader.onLoadInit event listener)
 onLoadInit = function([target_mc]) {}

Invoked when the actions on the first frame of the loaded clip are executed. After this listener is invoked, you can set

properties, use methods, and otherwise interact with the loaded movie. Call this listener on a listener object that you

add using MovieClipLoader.addListener().

The value for target_mc identifies the movie clip this call is being made for. This parameter is useful if you are loading

multiple files with the same set of listeners.

Availability

Flash Lite 2.0

Parameters

target_mc: [optional] - A movie clip loaded by a MovieClipLoader.loadClip() method.

Example

The following example loads an image into a movie clip instance called image_mc. The onLoadInit and

onLoadComplete events are used to determine how long it takes to load the image. This information appears in a text

field called timer_txt.

468FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createEmptyMovieClip("image_mc", this.getNextHighestDepth());
 var mclListener:Object = new Object();
 mclListener.onLoadStart = function(target_mc:MovieClip) {
 target_mc.startTimer = getTimer();
 };
 mclListener.onLoadComplete = function(target_mc:MovieClip) {
 target_mc.completeTimer = getTimer();
 };
 mclListener.onLoadInit = function(target_mc:MovieClip) {
 var timerMS:Number = target_mc.completeTimer-target_mc.startTimer;
 target_mc.createTextField("timer_txt", target_mc.getNextHighestDepth(), 0,
target_mc._height,
 target_mc._width, 22);
 target_mc.timer_txt.text = "loaded in "+timerMS+" ms.";
 };
 var image_mcl:MovieClipLoader = new MovieClipLoader();
 image_mcl.addListener(mclListener);
 image_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg", image_mc);

The following example checks whether a movie is loaded into a movie clip created at runtime:

 this.createEmptyMovieClip("tester_mc", 1);
 var mclListener:Object = new Object();
 mclListener.onLoadInit = function(target_mc:MovieClip) {
 trace("movie loaded");
 }
 var image_mcl:MovieClipLoader = new MovieClipLoader();
 image_mcl.addListener(mclListener);
 image_mcl.loadClip("http://www.yourserver.com/your_movie.swf", tester_mc);

See also

addListener (MovieClipLoader.addListener method), loadClip (MovieClipLoader.loadClip method),

onLoadStart (MovieClipLoader.onLoadStart event listener)

onLoadProgress (MovieClipLoader.onLoadProgress event listener)
 onLoadProgress = function([target_mc], loadedBytes, totalBytes) {}

Invoked every time the loading content is written to disk during the loading process (that is, between

MovieClipLoader.onLoadStart and MovieClipLoader.onLoadComplete). Call this listener on a listener object

that you add using MovieClipLoader.addListener(). You can use this method to display information about the

progress of the download, using the loadedBytes and totalBytes parameters.

The value for target_mc identifies the movie clip this call is being made for. This is useful if you are loading multiple

files with the same set of listeners.

Note: If you attempt to use onLoadProgress in test movie mode with a local file that resides on your hard disk, it will

not work properly because, in test movie mode, Flash Lite player loads local files in their entirety.

Parameters

target_mc: MovieClip [optional] A movie clip loaded by a MovieClipLoader.loadClip() method.

loadedBytes: Number The number of bytes that had been loaded when the listener was invoked.

totalBytes: Number The total number of bytes in the file being loaded.

469FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Parameters

target_mc: [optional] - A movie clip loaded by a MovieClipLoader.loadClip() method.

loadedBytes: - The number of bytes that had been loaded when the listener was invoked.

totalBytes: - The total number of bytes in the file being loaded.

Example

The following example creates a new movie clip, a new MovieClipLoader and an anonymous event listener. It should

periodically output the progress of a load and finally provide notification when the load is complete and the asset is

available to ActionScript.

 var container:MovieClip = this.createEmptyMovieClip("container", this.getNextHighestDepth());
 var mcLoader:MovieClipLoader = new MovieClipLoader();
 var listener:Object = new Object();
 listener.onLoadProgress = function(target:MovieClip, bytesLoaded:Number,
bytesTotal:Number):Void {
 trace(target + ".onLoadProgress with " + bytesLoaded + " bytes of " + bytesTotal);
 }
 listener.onLoadInit = function(target:MovieClip):Void {
 trace(target + ".onLoadInit");
 }
 mcLoader.addListener(listener);
 mcLoader.loadClip("http://www.w3.org/Icons/w3c_main.png", container);

See also

addListener (MovieClipLoader.addListener method), loadClip (MovieClipLoader.loadClip method),

getProgress (MovieClipLoader.getProgress method)

onLoadStart (MovieClipLoader.onLoadStart event listener)
 onLoadStart = function([target_mc]) {}

Invoked when a call to MovieClipLoader.loadClip() has successfully begun to download a file. Call this listener on

a listener object that you add using MovieClipLoader.addListener().

The value for target_mc identifies the movie clip this call is being made for. This parameter is useful if you are loading

multiple files with the same set of listeners.

Availability

Flash Lite 2.0

Parameters

target_mc: [optional] - A movie clip loaded by a MovieClipLoader.loadClip() method.

Example

The following example loads an image into a movie clip instance called image_mc. The onLoadInit and

onLoadComplete events are used to determine how long it takes to load the image. This information appears in a text

field called timer_txt.

470FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createEmptyMovieClip("image_mc", this.getNextHighestDepth());
 var mclListener:Object = new Object();
 mclListener.onLoadStart = function(target_mc:MovieClip) {
 target_mc.startTimer = getTimer();
 };
 mclListener.onLoadComplete = function(target_mc:MovieClip) {
 target_mc.completeTimer = getTimer();
 };
 mclListener.onLoadInit = function(target_mc:MovieClip) {
 var timerMS:Number = target_mc.completeTimer-target_mc.startTimer;
 target_mc.createTextField("timer_txt", target_mc.getNextHighestDepth(), 0,
target_mc._height,
 target_mc._width, 22);
 target_mc.timer_txt.text = "loaded in "+timerMS+" ms.";
 };
 var image_mcl:MovieClipLoader = new MovieClipLoader();
 image_mcl.addListener(mclListener);
 image_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg", image_mc);

See also

addListener (MovieClipLoader.addListener method), loadClip (MovieClipLoader.loadClip method),

onLoadError (MovieClipLoader.onLoadError event listener), onLoadInit

(MovieClipLoader.onLoadInit event listener)onLoadComplete (MovieClipLoader.onLoadComplete

event listener)

removeListener (MovieClipLoader.removeListener method)
 public removeListener(listener:Object) : Boolean

Removes the listener that was used to receive notification when a MovieClipLoader event handler was invoked. No

further loading messages will be received.

Availability

Flash Lite 2.0

Parameters

listener:Object - A listener object that was added using MovieClipLoader.addListener().

Returns

Boolean -

Example

The following example loads an image into a movie clip, and enables the user to start and stop the loading process

using two buttons called start_button and stop_button. When the user starts or stops the progress, information is

displayed in the Output panel.

471FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createEmptyMovieClip("image_mc", this.getNextHighestDepth());
 var mclListener:Object = new Object();
 mclListener.onLoadStart = function(target_mc:MovieClip) {
 trace("\t onLoadStart");
 };
 mclListener.onLoadComplete = function(target_mc:MovieClip) {
 trace("\t onLoadComplete");
 };
 mclListener.onLoadError = function(target_mc:MovieClip, errorCode:String) {
 trace("\t onLoadError: "+errorCode);
 };
 mclListener.onLoadInit = function(target_mc:MovieClip) {
 trace("\t onLoadInit");
 start_button.enabled = true;
 stop_button.enabled = false;
 };
 var image_mcl:MovieClipLoader = new MovieClipLoader();
 //
 start_button.clickHandler = function() {
 trace("Starting...");
 start_button.enabled = false;
 stop_button.enabled = true;
 //
 image_mcl.addListener(mclListener);
 image_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg", image_mc);
 };
 stop_button.clickHandler = function() {
 trace("Stopping...");
 start_button.enabled = true;
 stop_button.enabled = false;
 //
 image_mcl.removeListener(mclListener);
 };
 stop_button.enabled = false;

See also

addListener (MovieClipLoader.addListener method)

unloadClip (MovieClipLoader.unloadClip method)
 public unloadClip(target:Object) : Boolean

Removes a movie clip that was loaded by means of MovieClipLoader.loadClip(). If you call this method while a

movie is loading, MovieClipLoader.onLoadError is invoked.

Availability

Flash Lite 2.0

Parameters

target:Object - The string or integer passed to the corresponding call to my_mcl.loadClip().

Returns

Boolean -

472FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example loads an image into a movie clip called image_mc. If you click the movie clip, the movie clip is

removed and information is displayed in the Output panel.

 this.createEmptyMovieClip("image_mc", this.getNextHighestDepth());
 var mclListener:Object = new Object();
 mclListener.onLoadInit = function(target_mc:MovieClip) {
 target_mc._x = 100;
 target_mc._y = 100;
 target_mc.onRelease = function() {
 trace("Unloading clip...");
 trace("\t name: "+target_mc._name);
 trace("\t url: "+target_mc._url);
 image_mcl.unloadClip(target_mc);
 };
 };
 var image_mcl:MovieClipLoader = new MovieClipLoader();
 image_mcl.addListener(mclListener);
 image_mcl.loadClip("http://www.helpexamples.com/flash/images/image1.jpg", image_mc);

See also

loadClip (MovieClipLoader.loadClip method), onLoadError (MovieClipLoader.onLoadError event

listener)

NetConnection

Creates a NetConnection object that you can use with a NetStream object to invoke commands on a remote

application server or to play back streaming video (FLV) files either locally or from a server.

Availability

Flash Lite 3.0

connect (NetConnection.connect) method

Opens a connection to a server. Through this connection, you can play back audio or video (FLV) files from the local

file system, or you can invoke commands on a remote server.

When using this method, consider the Flash Lite player security model and the following security considerations:

• By default, the website denies access between sandboxes. The website can enable access to a resource by using a

cross-domain policy file.

• A website can deny access to a resource by adding server-side ActionScript application logic in Flash Media Server.

Method Description

connect(); connect(command:String, ... arguments):void

Opens a connection to a server.

close(); close():void

Closes the connection that was opened locally or with the server and dispatches the

netStatus event with a code property of NetConnection.Connect.Closed.

473FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

• You cannot use the NetConnection.connect() method if the calling SWF file is in the local-with-file-system

sandbox.

• You can prevent a SWF file from using this method by setting the allowNetworking parameter of the object and

embed tags in the HTML page that contains the SWF content.

Availability

Flash Lite 3.0

close (NetConnection.close method)
 public function close():void

Closes the connection that was opened locally or with the server and dispatches the netStatus event with a code

property of NetConnection.Connect.Closed.

This method disconnects all NetStream objects running over this connection; any queued data that has not been sent

is discarded. (To terminate streams without closing the connection, use NetStream.close().) If you call this method

and then want to reconnect, you must recreate the NetStream object.

Availability

Flash Lite 3.0

See also

NetStream

NetConnection constructor
 public “NetConnection” on page 472()

Creates a NetConnection object that you can use in conjunction with a NetStream object to play back local streaming

video (FLV) files. After creating the NetConnection object, use the Connect(NetConnection.connect) method to

make the actual connection.

Playing external FLV files provides several advantages over embedding video in a Flash document, such as better

performance and memory management, and independent video and Flash frame rates. The NetConnection class

provides the means to play back streaming FLV files from a local drive or HTTP address.

Availability

Flash Lite 3.0

Example

See the example for connect (NetConnection.connect) method.

See also

“connect (NetConnection.connect) method” on page 472, “attachVideo (Video.attachVideo method)” on page 661,

“NetStream” on page 474

474FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

NetStream

Creates a stream that can be used for playing FLV files through the specified NetConnection object.

Local file URLs are also supported by simply replacing “http:” with “file:” For example:

 NetStream.play("http://somefile.flv");
 NetStream.play("file://somefile.flv");

Note: Standard security restrictions apply. For example a remote SWF file cannot access absolute file:// URLs in the form

of "file://C:/somefile.flv".

Availability

Flash Lite 3.0

NetStream Class methods

NetStream Class properties

NetStream Class events

Method Description

close() close():void

Stops playing all data on the stream, sets the time property to 0, and makes the stream

available for another use.

pause() pause():void

Pauses playback of a video stream.

play() play(... arguments):void

Begins playback of external audio or a video (FLV) file.

seek() Seeks the keyframe closest to the specified number of seconds from the beginning of

the stream.

setBufferTime() Specifies how long to buffer messages before starting to display.

Properties Description

bufferLength The number of seconds of data currently in the buffer.

bufferTime The number of seconds assigned to the buffer by setBufferTime().

bytesLoaded The number of bytes of data that have been loaded into the player.

bytesTotal The total size in bytes of the file being loaded into the player.

currentFPS The number of frames per second being displayed.

time The position of the playhead, in seconds.

Event Description

onStatus Invoked when a status change or error is posted for the NetStream object.

onCuePoint Invoked when an embedded cue point is reached during the playing of an FLV.

OnMetaData Invoked when Flash Lite player receives descriptive information embedded in the FLV.

475FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

bufferLength (NetStream.bufferLength property)
 public bufferLength : Number [read-only]

The number of seconds of data currently in the buffer. You can use this property in conjunction with

NetStream.bufferTime to estimate how close the buffer is to being full—for example, to display feedback to a user

who is waiting for data to be loaded into the buffer.

Availability

Flash Lite 3.0

Note: This property is also supported in Flash Player 6 when used with Flash Media Server. For more information, see

the Flash Media Server documentation.

Example

The following example dynamically creates a text field that displays information about the number of seconds that are

currently in the buffer. The text field also displays the buffer length that the video is set to, and percentage of buffer

that is filled.

 this.createTextField("buffer_txt", this.getNextHighestDepth(), 10, 10, 300, 22);
 buffer_txt.html = true;

 var connection_nc:NetConnection = new NetConnection();
 connection_nc.connect(null);
 var stream_ns:NetStream = new NetStream(connection_nc);
 stream_ns.setBufferTime(3);
 my_video.attachVideo(stream_ns);
 stream_ns.play("video1.flv");

 var buffer_interval:Number = setInterval(checkBufferTime, 100, stream_ns);
 function checkBufferTime(my_ns:NetStream):Void {
 var bufferPct:Number = Math.min(Math.round(my_ns.bufferLength/my_ns.bufferTime*100), 100);
 var output_str:String = "<textformat tabStops='[100,200]'>";
 output_str += "Length: "+my_ns.bufferLength+"\t"+"Time:
"+my_ns.bufferTime+"\t"+"Buffer:"+bufferPct+"%";
 output_str += "</textformat>";
 buffer_txt.htmlText = output_str;
 }

bufferTime (NetStream.bufferTime property)
 public bufferTime : Number [read-only]

The number of seconds assigned to the buffer by NetStream.setBufferTime(). The default value is .1 (one-tenth of

a second). To determine the number of seconds currently in the buffer, use NetStream.bufferLength.

Availability

Flash Lite 3.0

Note: This property is also supported in Flash Player 6 when used with Flash Media Server. For more information, see

the Flash Media Server documentation.

476FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example dynamically creates a text field that displays information about the number of seconds that are

currently in the buffer. The text field also displays the buffer length that the video is set to, and percentage of buffer

that is filled.

 this.createTextField("buffer_txt", this.getNextHighestDepth(), 10, 10, 300, 22);
 buffer_txt.html = true;

 var connection_nc:NetConnection = new NetConnection();
 connection_nc.connect(null);
 var stream_ns:NetStream = new NetStream(connection_nc);
 stream_ns.setBufferTime(3);
 my_video.attachVideo(stream_ns);
 stream_ns.play("video1.flv");

 var buffer_interval:Number = setInterval(checkBufferTime, 100, stream_ns);
 function checkBufferTime(my_ns:NetStream):Void {
 var bufferPct:Number = Math.min(Math.round(my_ns.bufferLength
 my_ns.bufferTime*100), 100);
 var output_str:String = "<textformat tabStops='[100,200]'>";
 output_str += "Length: "+my_ns.bufferLength+"\t"+"Time:
 "+my_ns.bufferTime+"\t"+"Buffer:"+bufferPct+"%";
 output_str += "</textformat>";
 buffer_txt.htmlText = output_str;
 }

bytesLoaded (NetStream.bytesLoaded property)
 public bytesLoaded : Number [read-only]

The number of bytes of data that have been loaded into the player. You can use this method in conjunction with

NetStream.bytesTotal to estimate how close the buffer is to being full--for example, to display feedback to a user

who is waiting for data to be loaded into the buffer.

Availability

Flash Lite 3.0

Example

The following example creates a progress bar using the Drawing API and the bytesLoaded and bytesTotal

properties. The bar displays the progress of the operation as video1.flv is loaded into the video object instance called

my_video. A text field called loaded_txt is dynamically created to display information about the loading progress as

well.

477FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var connection_nc:NetConnection = new NetConnection();
 connection_nc.connect(null);
 var stream_ns:NetStream = new NetStream(connection_nc);
 my_video.attachVideo(stream_ns);
 stream_ns.play("video1.flv");

 this.createTextField("loaded_txt", this.getNextHighestDepth(), 10, 10, 160, 22);
 this.createEmptyMovieClip("progressBar_mc", this.getNextHighestDepth());
 progressBar_mc.createEmptyMovieClip("bar_mc", progressBar_mc.getNextHighestDepth());
 with (progressBar_mc.bar_mc) {
 beginFill(0xFF0000);
 moveTo(0, 0);
 lineTo(100, 0);
 lineTo(100, 10);
 lineTo(0, 10);
 lineTo(0, 0);
 endFill();
 _xscale = 0;
 }
 progressBar_mc.createEmptyMovieClip("stroke_mc", progressBar_mc.getNextHighestDepth());
 with (progressBar_mc.stroke_mc) {
 lineStyle(0, 0x000000);
 moveTo(0, 0);
 lineTo(100, 0);
 lineTo(100, 10);
 lineTo(0, 10);
 lineTo(0, 0);
 }

 var loaded_interval:Number = setInterval(checkBytesLoaded, 500, stream_ns);
 function checkBytesLoaded(my_ns:NetStream) {
 var pctLoaded:Number = Math.round(my_ns.bytesLoaded/my_ns.bytesTotal*100);
 loaded_txt.text = Math.round(my_ns.bytesLoaded/1000)+" of
"+Math.round(my_ns.bytesTotal/1000)+" KB loaded ("+pctLoaded+"%)";
 progressBar_mc.bar_mc._xscale = pctLoaded;
 if (pctLoaded>=100) {
 clearInterval(loaded_interval);
 }
 }

bytesTotal (NetStream.bytesTotal property)
 public bytesTotal : Number [read-only]

The total size in bytes of the file being loaded into the player.

Availability

Flash Lite 3.0

Example

The following example creates a progress bar using the Drawing API and the bytesLoaded and bytesTotal

properties. The bar displays the progress of the operation as video1.flv is loaded into the video object instance called

my_video. A text field called loaded_txt is dynamically created to display information about the loading progress as

well.

478FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var connection_nc:NetConnection = new NetConnection();
 connection_nc.connect(null);
 var stream_ns:NetStream = new NetStream(connection_nc);
 my_video.attachVideo(stream_ns);
 stream_ns.play("video1.flv");

 this.createTextField("loaded_txt", this.getNextHighestDepth(), 10, 10, 160, 22);
 this.createEmptyMovieClip("progressBar_mc", this.getNextHighestDepth());
 progressBar_mc.createEmptyMovieClip("bar_mc", progressBar_mc.getNextHighestDepth());
 with (progressBar_mc.bar_mc) {
 beginFill(0xFF0000);
 moveTo(0, 0);
 lineTo(100, 0);
 lineTo(100, 10);
 lineTo(0, 10);
 lineTo(0, 0);
 endFill();
 _xscale = 0;
 }
 progressBar_mc.createEmptyMovieClip("stroke_mc", progressBar_mc.getNextHighestDepth());
 with (progressBar_mc.stroke_mc) {
 lineStyle(0, 0x000000);
 moveTo(0, 0);
 lineTo(100, 0);
 lineTo(100, 10);
 lineTo(0, 10);
 lineTo(0, 0);
 }

 var loaded_interval:Number = setInterval(checkBytesLoaded, 500, stream_ns);
 function checkBytesLoaded(my_ns:NetStream) {
 var pctLoaded:Number = Math.round(my_ns.bytesLoaded/my_ns.bytesTotal*100);
 loaded_txt.text = Math.round(my_ns.bytesLoaded/1000)+" of
"+Math.round(my_ns.bytesTotal/1000)+" KB loaded ("+pctLoaded+"%)";
 progressBar_mc.bar_mc._xscale = pctLoaded;
 if (pctLoaded>=100) {
 clearInterval(loaded_interval);
 }
 }

currentFps (NetStream.currentFps property)
 public currentFps : Number [read-only]

The number of frames per second being displayed. If you are exporting FLV files to be played back on a number of

systems, you can check this value during testing to determine how much compression to apply when exporting the file.

Availability

Flash Lite 3.0

Note: This property is also supported in Flash Player 6 when used with Flash Media Server. For more information, see

the Flash Media Server documentation.

479FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a text field that displays the current number of frames per second that video1.flv

displays.

 var connection_nc:NetConnection = new NetConnection();
 connection_nc.connect(null);
 var stream_ns:NetStream = new NetStream(connection_nc);
 my_video.attachVideo(stream_ns);
 stream_ns.play("video1.flv");

 this.createTextField("fps_txt", this.getNextHighestDepth(), 10, 10, 50, 22);
 fps_txt.autoSize = true;
 var fps_interval:Number = setInterval(displayFPS, 500, stream_ns);
 function displayFPS(my_ns:NetStream) {
 fps_txt.text = "currentFps (frames per second): "+Math.floor(my_ns.currentFps);
 }
 time (NetStream.time property)

NetStream constructor
 public NetStream(connection:“NetConnection” on page 472)

Creates a stream that can be used for playing FLV files through the specified NetConnection object.

Note: This class is also supported in Flash Player 6 when used with Flash Communication Server. For more information,

see the Flash Communication Server documentation.

Parameters

connection:NetConnection - A NetConnection object.

Example

The following code first constructs a new NetConnection object, connection_nc, and uses it to construct a new

NetStream object called stream_ns. Select New Video from the Library options menu to create a video object instance,

and give it an instance name my_video.

 var connection_nc:NetConnection = new NetConnection();
 connection_nc.connect(null);
 var stream_ns:NetStream = new NetStream(connection_nc);
 my_video.attachVideo(stream_ns);
 stream_ns.play("video1.flv");

See also

“NetConnection” on page 472, “attachVideo (Video.attachVideo method)” on page 661

time (NetStream.time property)
 public time : Number [read-only]

The position of the playhead, in seconds.

Availability

Flash Lite 3.0

Note: This property is also supported in Flash Player 6 when used with Flash Media Server. For more information, see

the Flash Media Server documentation.

480FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example displays the current position of the playhead in a dynamically created text field called

time_txt. Select New Video from the Library options menu to create a video object instance, and give it an instance

name my_video. Create a new video object called my_video. Add the following ActionScript to your FLA or AS file:

 var connection_nc:NetConnection = new NetConnection();
 connection_nc.connect(null);
 var stream_ns:NetStream = new NetStream(connection_nc);
 my_video.attachVideo(stream_ns);
 stream_ns.play("video1.flv");
 //
 stream_ns.onStatus = function(infoObject:Object) {
 statusCode_txt.text = infoObject.code;
 };

 this.createTextField("time_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 time_txt.text = "LOADING";

 var time_interval:Number = setInterval(checkTime, 500, stream_ns);
 function checkTime(my_ns:NetStream) {
 var ns_seconds:Number = my_ns.time;
 var minutes:Number = Math.floor(ns_seconds/60);
 var seconds = Math.floor(ns_seconds%60);
 if (seconds<10) {
 seconds = "0"+seconds;
 }
 time_txt.text = minutes+":"+seconds;
 }

onStatus (NetStream.onStatus handler)
 onStatus = function(infoObject:Object) {}

Invoked every time a status change or error is posted for the NetStream object. If you want to respond to this event

handler, you must create a function to process the information object.

The information object has a code property containing a string that describes the result of the onStatus handler, and

a level property containing a string that is either status or error.

The following events notify you when certain NetStream activities occur.

Code property Level property Meaning

NetStream.Buffer.Empty status Data is not being received quickly enough to fill

the buffer. Data flow will be interrupted until

the buffer refills, at which time a

NetStream.Buffer.Full message will be

sent and the stream will begin playing again.

NetStream.Buffer.Full status The buffer is full and the stream will begin

playing.

NetStream.Buffer.Flush status Data has finished streaming, and the remaining

buffer will be emptied.

NetStream.Play.Start status Playback has started.

NetStream.Play.Stop status Playback has stopped.

481FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

If you consistently see errors regarding the buffer, you should try changing the buffer using the

NetStream.setBufferTime() method.

Availability

Flash Lite 3.0

Parameters

infoObject: Object - A parameter defined according to the status message or error message.

Example

The following example displays data about the stream in the Output panel:

 var connection_nc:NetConnection = new NetConnection();
 connection_nc.connect(null);
 var stream_ns:NetStream = new NetStream(connection_nc);
 my_video.attachVideo(stream_ns);
 stream_ns.play("video1.flv");
 stream_ns.onStatus = function(infoObject:Object) {
 trace("NetStream.onStatus called: ("+getTimer()+" ms)");
 for (var prop in infoObject) {
 trace("\t"+prop+":\t"+infoObject[prop]);
 }
 trace("");
 };

onCuePoint (NetStream.onCuePoint handler)
 onCuePoint = function(infoObject:Object) {}

Invoked when an embedded cue point is reached while playing an FLV file. You can use this handler to trigger actions

in your code when the video reaches a specific cue point. This lets you synchronize other actions in your application

with video playback events.

Two types of cue points can be embedded in an FLV file.

A “navigation” cue point specifies a keyframe within the FLV file and the cue point's time property corresponds to

that exact keyframe. Navigation cue points are often used as bookmarks or entry points to let users navigate through

the video file.

NetStream.Play.StreamNotFound status The FLV file passed to the play() method

can't be found.

NetStream.Seek.InvalidTime error For video downloaded with progressive

download, the user has tried to seek or play

past the end of the video data that has

downloaded thus far, or past the end of the

video once the entire file has downloaded. The

Error.message.details property

contains a time code that indicates the last

valid position to which the user can seek. See

Error.message property.

NetStream.Seek.Notify status The seek operation is complete.

Code property Level property Meaning

482FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

An “event” cue point is specified by time, whether or not that time corresponds to a specific keyframe. An event cue

point usually represents a time in the video when something happens that could be used to trigger other application

events.

The onCuePoint event handler receives an object with these properties:

You can define cue points in an FLV file when you first encode the file, or when you import a video clip in the Flash

Authoring tool by using the Video Import wizard.

The onMetaData event handler also retrieves information about the cue points in a video file. However the

onMetaData event handler gets information about all of the cue points before the video begins playing. The

onCuePoint event handler receives information about a single cue point at the time specified for that cue point during

playback.

Generally if you want your code to respond to a specific cue point at the time it occurs you should use the onCuePoint

event handler to trigger some action in your code.

You can use the list of cue points provided to the onMetaData() event handler to let your user start playing the video

at predefined points along the video stream. Pass the value of the cue point's time property to the NetStream.seek()

method to play the video from that cue point.

Availability

Flash Lite 3.0

Parameters

infoObject:Object - An object containing the name, time, type, and parameters for the cue point.

Example

The code in this example starts by creating new NetConnection and NetStream objects. Then it defines the

onCuePoint() handler for the NetStream object. The handler cycles through each named property in the infoObject

object and prints the property's name and value. When it finds the property named parameters it cycles through each

parameter name in the list and prints the parameter name and value.

Property Description

name The name given to the cue point when it was embedded in the FLV file.

time The time in seconds at which the cue point occurred in the video file during playback.

type The type of cue point that was reached, either "navigation" or "event".

parameters A associative array of name/value pair strings specified for this cue point. Any valid

string can be used for the parameter name or value.

483FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var nc:NetConnection = new NetConnection();
 nc.connect(null);
 var ns:NetStream = new NetStream(nc);

 ns.onCuePoint = function(infoObject:Object)
 {
 trace("onCuePoint:");
 for (var propName:String in infoObject) {
 if (propName != "parameters")
 {
 trace(propName + " = " + infoObject[propName]);
 }
 else
 {
 trace("parameters =");
 if (infoObject.parameters != undefined) {
 for (var paramName:String in infoObject.parameters)
 {
 trace(" " + paramName + ": " + infoObject.parameters[paramName]);
 }
 }
 else
 {
 trace("undefined");
 }
 }
 }
 trace("---------");
 }

 ns.play("http://www.helpexamples.com/flash/video/cuepoints.flv");

This causes the following information to be displayed:

 onCuePoint:
 parameters =
 lights: beginning
 type = navigation
 time = 0.418
 name = point1

 onCuePoint:
 parameters =
 lights: middle
 type = navigation
 time = 7.748
 name = point2

 onCuePoint:
 parameters =
 lights: end
 type = navigation
 time = 16.02
 name = point3

484FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The parameter name “lights” is an arbitrary name used by the author of the example video. You can give cue point

parameters any name you want.

onMetaData (NetStream.onMetaData handler)
 onMetaData = function(infoObject:Object) {}

Invoked when the Flash Lite player receives descriptive information embedded in the FLV file being played.

The Flash Video Exporter utility (version 1.1 or greater) embeds a video's duration, creation date, data rates, and other

information into the video file itself. Different video encoders embed different sets of metadata.

This handler is triggered after a call to the NetStream.play() method, but before the video playhead has advanced.

In many cases the duration value embedded in FLV metadata approximates the actual duration but is not exact. In

other words it will not always match the value of the NetStream.time property when the playhead is at the end of the

video stream.

Availability

Flash Lite 3.0

Parameters

infoObject: Object - An object containing one property for each metadata item.

Example

The code in this example starts by creating new NetConnection and NetStream objects. Then it defines the

onMetaData() handler for the NetStream object. The handler cycles through each named property in the infoObject

object and prints the property's name and value.

 var nc:NetConnection = new NetConnection();
 nc.connect(null);
 var ns:NetStream = new NetStream(nc);

 ns.onMetaData = function(infoObject:Object) {
 for (var propName:String in infoObject) {
 trace(propName + " = " + infoObject[propName]);
 }
 };

 ns.play("http://www.helpexamples.com/flash/video/water.flv");

This causes the following information to be displayed:

 canSeekToEnd = true
 videocodecid = 4
 framerate = 15
 videodatarate = 400
 height = 215
 width = 320
 duration = 7.347

The list of properties will vary depending on the software that was used to encode the FLV file.

485FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

close (NetStream.close) method
 public close() : Void

Stops playing all data on the stream, sets the NetStream.time property to 0, and makes the stream available for

another use. This command also deletes the local copy of an FLV file that was downloaded using HTTP. Although

Flash Lite player deletes the local copy of the FLV file that it creates, a copy of the video may persist in the browser's

cache directory. If complete prevention of caching or local storage of the FLV file is required, use Flash Media Server.

Availability

Flash Lite 3.0

Note: This method is also supported in Flash Player 6 when used with Flash Media Server. For more information, see the

Flash Media Server documentation.

Example

The following close() function closes a connection and deletes the temporary copy of video1.flv that was stored on

the local disk when you click the button called close_btn:

 var connection_nc:NetConnection = new NetConnection();
 connection_nc.connect(null);
 var stream_ns:NetStream = new NetStream(connection_nc);
 my_video.attachVideo(stream_ns);
 stream_ns.play("video1.flv");

 close_btn.onRelease = function(){
 stream_ns.close();
 };

pause (NetStream.pause) method
 public pause([flag:Boolean]) : Void

Pauses or resumes playback of a stream.

The first time you call this method (without sending a parameter), it pauses play; the next time, it resumes play. You

might want to attach this method to a button that the user presses to pause or resume playback.

Availability

Flash Lite 3.0

Note: This method is also supported in Flash Player 6 when used with Flash Media Server. For more information, see the

Flash Media Server documentation.

Parameters

flag : Boolean [optional] - A Boolean value specifying whether to pause play (true) or resume play (false). If

you omit this parameter, NetStream.pause() acts as a toggle: the first time it is called on a specified stream, it pauses

play, and the next time it is called, it resumes play.

Example

The following examples illustrate some uses of this method:

486FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 my_ns.pause(); // pauses play first time issued
 my_ns.pause(); // resumes play
 my_ns.pause(false); // no effect, play continues
 my_ns.pause(); // pauses play

play (NetStream.play method)
 public play(name:Object, start:Number, len:Number, reset:Object) : Void

Begins playback of an external video (FLV) file. To view video data, you must call a Video.attachVideo() method;

audio being streamed with the video, or an FLV file that contains only audio, is played automatically.

If you want to control the audio associated with an FLV file, you can use MovieClip.attachAudio() to route the

audio to a movie clip; you can then create a Sound object to control some aspects of the audio. For more information,

see MovieClip.attachAudio().

If the FLV file can't be found, the NetStream.onStatus event handler is invoked. If you want to stop a stream that is

currently playing, use NetStream.close().

You can play local FLV files that are stored in the same directory as the SWF file or in a subdirectory; you can't navigate

to a higher-level directory. For example, if the SWF file is located in a directory named /training, and you want to play

a video stored in the /training/videos directory, you would use the following syntax:

 my_ns.play("videos/videoName.flv");

To play a video stored in the /training directory, you would use the following syntax:

 my_ns.play("videoName.flv");

When using this method, consider the Flash Player security model.

For Flash Player 8:

NetStream.play() is not allowed if the calling SWF file is in the local-with-file-system sandbox and the resource is

in a non-local sandbox.

Network sandbox access from the local-trusted or local-with-networking sandbox requires permission from the

website via a cross-domain policy file.

For more information, see the following:

The Flash Player 9 Security white paper at http://www.adobe.com/go/fp9_0_security

The Flash Player 8 Security-Related API white paper at http://www.adobe.com/go/fp8_security_apis

Availability

Flash Lite 3.0

Note: This method is also supported in Flash Player 6 when used with Flash Media Server. For more information, see the

Flash Media Server documentation.

Parameters

name : Object - The name of an FLV file to play, in quotation marks. Both http:// and file:// formats are supported;

the file:// location is always relative to the location of the SWF file.

start : Number - Use with Flash Media Server; see: the Flash Media Server documentation.

len : Number - Use with Flash Media Server; see: the Flash Media Server documentation.

reset : Object - Use with Flash Media Server; see: the Flash Media Server documentation.

http://livedocs.adobe.com/fms/2/docs/00000588.html
http://livedocs.adobe.com/fms/2/docs/00000588.html
http://livedocs.adobe.com/fms/2/docs/00000588.html

487FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example illustrates some ways to use the NetStream.play() method. You can play a file that is on a

user's computer. The joe_user directory is a subdirectory of the directory where the SWF is stored. And, you can play

a file on a server:

 // Play a file that is on the user's computer.
 my_ns.play("file://joe_user/flash/videos/lectureJune26.flv");

 // Play a file on a server.
 my_ns.play("http://someServer.someDomain.com/flash/video/orientation.flv");

seek (NetStream.seek method)
 public seek(offset:Number) : Void

Seeks the keyframe closest to the specified number of seconds from the beginning of the stream. Playback resumes

when this location is reached.

Availability

Flash Lite 3.0

Note: This method is also supported in Flash Player 6 when used with Flash Media Server. For more information, see the

Flash Media Server documentation.

Parameters

offset : Number - The approximate time value, in seconds, by which to move the playhead in an FLV file. The

playhead moves to the keyframe of the video that's closest to the value specified by offset.

• To return to the beginning of the stream, pass 0 to offset.

• To seek forward from the beginning of the stream, pass the number of seconds you want to advance. For example,

to position the playhead 15 seconds from the beginning, use my_ns.seek(15).

• To seek relative to the current position, pass my_ns.time + n or my_ns.time - n to seek n seconds forward or

backward, respectively, from the current position. For example, to rewind 20 seconds from the current position,

use my_ns.seek(my_ns.time - 20).

The precise location to which the playhead moves differs according to the frames-per-second (fps) setting at which the

video was exported. For example, suppose you have two video objects that represent the same video, one exported at

6 fps and the other at 30 fps. If you then use my_ns.seek(15) for both objects, the playhead moves to two different

locations.

Example

The following example illustrates some ways to use the NetStream.seek() command. You can return to the

beginning of the stream, move to a location 30 seconds from the beginning of the stream, and move backward three

minutes from the current location:

 // Return to the beginning of the stream
 my_ns.seek(0);

 // Move to a location 30 seconds from the beginning of the stream
 my_ns.seek(30);

 // Move backwards three minutes from current location
 my_ns.seek(my_ns.time - 180);

488FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

setBufferTime (NetStream.setBufferTime) method
 public setBufferTime(bufferTime:Number) : Void

Specifies how long to buffer messages before starting to display the stream. For example, if you want to make sure that

the first 15 seconds of the stream play without interruption, set bufferTime to 15; Flash begins playing the stream only

after 15 seconds of data are buffered.

Availability

Flash Lite 3.0

Note: This method is also supported in Flash Player 6 when used with Flash Media Server. For more information, see the

Flash Media Server documentation.

Parameters

bufferTime : Number - The time, in seconds, during which data is buffered before Flash begins displaying data. The

default value is 0.1 (one-tenth of a second).

Example

See the example for NetStream.bufferLength.

Number

 Object
 |
 +-Number

 public class Number
 extends Object

The Number class is a simple wrapper object for the Number data type. You can manipulate primitive numeric values

by using the methods and properties associated with the Number class. This class is identical to the JavaScript Number

class.

The properties of the Number class are static, which means you do not need an object to use them, so you do not need

to use the constructor.

The following example calls the toString() method of the Number class, which returns the string 1234:

 var myNumber:Number = new Number(1234);
 myNumber.toString();

The following example assigns the value of the MIN_VALUE property to a variable declared without the use of the

constructor:

 var smallest:Number = Number.MIN_VALUE;

Availability

Flash Lite 2.0

489FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Property summary

Properties inherited from class Object

Constructor summary

Method summary

Methods inherited from class Object

MAX_VALUE (Number.MAX_VALUE property)
 public static MAX_VALUE : Number

The largest representable number (double-precision IEEE-754). This number is approximately 1.79e+308.

Availability

Flash Lite 2.0

Example

The following ActionScript displays the largest and smallest representable numbers to the Output panel.

Modifiers Property Description

static MAX_VALUE:Number The largest representable number (double-precision IEEE-

754).

static MIN_VALUE:Number The smallest representable number (double-precision IEEE-

754).

static NaN:Number The IEEE-754 value representing Not A Number (NaN).

static NEGATIVE_INFINITY:Num

ber

Specifies the IEEE-754 value representing negative infinity.

static POSITIVE_INFINITY:Numb

er

Specifies the IEEE-754 value representing positive infinity.

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Signature Description

Number(num:Object) Creates a new Number object.

Modifiers Signature Description

 toString(radix:Number

) : String

Returns the string representation of the specified Number

object (myNumber).

 valueOf() : Number Returns the primitive value type of the specified Number

object.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

490FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 trace("Number.MIN_VALUE = "+Number.MIN_VALUE);
 trace("Number.MAX_VALUE = "+Number.MAX_VALUE);

This code displays the following values:

 Number.MIN_VALUE = 4.94065645841247e-324
 Number.MAX_VALUE = 1.79769313486232e+308

MIN_VALUE (Number.MIN_VALUE property)
 public static MIN_VALUE : Number

The smallest representable number (double-precision IEEE-754). This number is approximately 5e-324.

Availability

Flash Lite 2.0

Example

The following ActionScript displays the largest and smallest representable numbers to the Output panel to the log file.

 trace("Number.MIN_VALUE = "+Number.MIN_VALUE);
 trace("Number.MAX_VALUE = "+Number.MAX_VALUE);

This code displays the following values:

 Number.MIN_VALUE = 4.94065645841247e-324
 Number.MAX_VALUE = 1.79769313486232e+308

NaN (Number.NaN property)
 public static NaN : Number

The IEEE-754 value representing Not A Number (NaN).

Availability

Flash Lite 2.0

See also

isNaN function

NEGATIVE_INFINITY (Number.NEGATIVE_INFINITY property)
 public static NEGATIVE_INFINITY : Number

Specifies the IEEE-754 value representing negative infinity. The value of this property is the same as that of the

constant -Infinity.

Negative infinity is a special numeric value that is returned when a mathematical operation or function returns a

negative value larger than can be represented.

Availability

Flash Lite 2.0

Example

This example compares the result of dividing the following values.

491FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var posResult:Number = 1/0;
 if (posResult == Number.POSITIVE_INFINITY) {
 trace("posResult = "+posResult); // output: posResult = Infinity
 }
 var negResult:Number = -1/0;
 if (negResult == Number.NEGATIVE_INFINITY) {
 trace("negResult = "+negResult); // output: negResult = -Infinity

Number constructor
 public Number(num:Object)

Creates a new Number object. The new Number constructor is primarily used as a placeholder. A Number object is not

the same as the Number() function that converts a parameter to a primitive value.

Availability

Flash Lite 2.0

Parameters

num : Object - The numeric value of the Number object being created or a value to be converted to a number. The

default value is 0 if value is not provided.

Example

The following code constructs new Number objects:

 var n1:Number = new Number(3.4);
 var n2:Number = new Number(-10);

See also

toString (Number.toString method), valueOf (Number.valueOf method)

POSITIVE_INFINITY (Number.POSITIVE_INFINITY property)
 public static POSITIVE_INFINITY : Number

Specifies the IEEE-754 value representing positive infinity. The value of this property is the same as that of the constant

Infinity.

Positive infinity is a special numeric value that is returned when a mathematical operation or function returns a value

larger than can be represented.

Availability

Flash Lite 2.0

Example

This example compares the result of dividing the following values.

492FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var posResult:Number = 1/0;
 if (posResult == Number.POSITIVE_INFINITY) {
 trace("posResult = "+posResult); // output: posResult = Infinity
 }
 var negResult:Number = -1/0;
 if (negResult == Number.NEGATIVE_INFINITY) {
 trace("negResult = "+negResult); // output: negResult = -Infinity

toString (Number.toString method)
 public toString(radix:Number) : String

Returns the string representation of the specified Number object (myNumber).

Availability

Flash Lite 2.0

Parameters

radix : Number - Specifies the numeric base (from 2 to 36) to use for the number-to-string conversion. If you do

not specify the radix parameter, the default value is 10.

Returns

String - A string.

Example

The following example uses 2 and 8 for the radix parameter and returns a string that contains the corresponding

representation of the number 9:

 var myNumber:Number = new Number(9);
 trace(myNumber.toString(2)); // output: 1001
 trace(myNumber.toString(8)); // output: 11

The following example results in a hexadecimal value.

 var r:Number = new Number(250);
 var g:Number = new Number(128);
 var b:Number = new Number(114);
 var rgb:String = "0x"+ r.toString(16)+g.toString(16)+b.toString(16);
 trace(rgb);
 // output: rgb:0xFA8072 (Hexadecimal equivalent of the color 'salmon')

valueOf (Number.valueOf method)
 public valueOf() : Number

Returns the primitive value type of the specified Number object.

Availability

Flash Lite 2.0

Returns

Number - A string.

493FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example results in the primitive value of the numSocks object.

 var numSocks = new Number(2);
 trace(numSocks.valueOf()); // output: 2

Object

 Object

 public class Object

The Object class is at the root of the ActionScript class hierarchy. This class contains a small subset of the features

provided by the JavaScript Object class.

Availability

Flash Lite 2.0

Property summary

Constructor summary

Method summary

Modifiers Property Description

 constructor:Object Reference to the constructor function for a given object

instance.

 __proto__:Object Refers to the prototype property of the class (ActionScript

2.0) or constructor function (ActionScript 1.0) used to create

the object.

static prototype:Object A reference to the superclass of a class or function object.

 __resolve:Object A reference to a user-defined function that is invoked if

ActionScript code refers to an undefined property or method.

Signature Description

Object() Creates an Object object and stores a reference to the object's constructor method in

the object's constructor property.

Modifiers Signature Description

 addProperty(name:String

, getter:Function,
setter:Function) :
Boolean

Creates a getter/setter property.

 hasOwnProperty(name:S

tring) : Boolean

Indicates whether an object has a specified property defined.

 isPropertyEnumerable(na
me:String) : Boolean

Indicates whether the specified property exists and is

enumerable.

 isPrototypeOf(theClass
:Object) : Boolean

Indicates whether an instance of the Object class is in the

prototype chain of the object specified as an argument.

494FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

addProperty (Object.addProperty method)
 public addProperty(name:String, getter:Function, setter:Function) : Boolean

Creates a getter/setter property. When Flash reads a getter/setter property, it invokes the get function, and the

function's return value becomes the value of name. When Flash writes a getter/setter property, it invokes the set

function and passes it the new value as a parameter. If a property with the given name already exists, the new property

overwrites it.

A "get" function is a function with no parameters. Its return value can be of any type. Its type can change between

invocations. The return value is treated as the current value of the property.

A "set" function is a function that takes one parameter, which is the new value of the property. For example, if property

x is assigned by the statement x = 1, the set function is passed the parameter 1 of type number. The return value of

the set function is ignored.

You can add getter/setter properties to prototype objects. If you add a getter/setter property to a prototype object, all

object instances that inherit the prototype object inherit the getter/setter property. This makes it possible to add a

getter/setter property in one location, the prototype object, and have it propagate to all instances of a class (similar to

adding methods to prototype objects). If a get/set function is invoked for a getter/setter property in an inherited

prototype object, the reference passed to the get/set function is the originally referenced object--not the prototype

object.

If invoked incorrectly, Object.addProperty() can fail with an error. The following table describes errors that can

occur:

Availability

Flash Lite 2.0

Parameters

name:String - A string; the name of the object property to create.

static registerClass(name:Strin

g, theClass:Function)
: Boolean

Associates a movie clip symbol with an ActionScript object

class.

 toString() : String Converts the specified object to a string and returns it.

 unwatch(name:String) :
Boolean

Removes a watchpoint that Object.watch() created.

 valueOf() : Object Returns the primitive value of the specified object.

 watch(name:String,
callback:Function,
[userData:Object]) :
Boolean

Registers an event handler to be invoked when a specified

property of an ActionScript object changes.

Error condition What happens

name is not a valid property name; for example, an

empty string.

Returns false and the property is not added.

getter is not a valid function object. Returns false and the property is not added.

setter is not a valid function object. Returns false and the property is not added.

Modifiers Signature Description

495FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

getter:Function - The function that is invoked to retrieve the value of the property; this parameter is a Function object.

setter:Function - The function that is invoked to set the value of the property; this parameter is a Function object. If

you pass the value null for this parameter, the property is read-only.

Returns

Boolean - A Boolean value: true if the property is successfully created; false otherwise.

Example

In the following example, an object has two internal methods, setQuantity() and getQuantity(). A property,

bookcount, can be used to invoke these methods when it is either set or retrieved. A third internal method,

getTitle(), returns a read-only value that is associated with the property bookname. When a script retrieves the value

of myBook.bookcount, the ActionScript interpreter automatically invokes myBook.getQuantity(). When a script

modifies the value of myBook.bookcount, the interpreter invokes myObject.setQuantity(). The bookname

property does not specify a set function, so attempts to modify bookname are ignored.

 function Book() {
 this.setQuantity = function(numBooks:Number):Void {
 this.books = numBooks;
 };
 this.getQuantity = function():Number {
 return this.books;
 };
 this.getTitle = function():String {
 return "Catcher in the Rye";
 };
 this.addProperty("bookcount", this.getQuantity, this.setQuantity);
 this.addProperty("bookname", this.getTitle, null);
 }
 var myBook = new Book();
 myBook.bookcount = 5;
 trace("You ordered "+myBook.bookcount+" copies of "+myBook.bookname);
 // output: You ordered 5 copies of Catcher in the Rye

The previous example works, but the properties bookcount and bookname are added to every instance of the Book

object, which requires having two properties for every instance of the object. If there are many properties, such as

bookcount and bookname, in a class, they could consume a great deal of memory. Instead, you can add the properties

to Book.prototype so that the bookcount and bookname properties exist only in one place. The effect, however, is

the same as that of the code in the example that added bookcount and bookname directly to every instance. If an

attempt is made to access either property in a Book instance, the property's absence will cause the prototype chain to

be ascended until the versions defined in Book.prototype are encountered. The following example shows how to add

the properties to Book.prototype:

496FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 function Book() {}
 Book.prototype.setQuantity = function(numBooks:Number):Void {
 this.books = numBooks;
 };
 Book.prototype.getQuantity = function():Number {
 return this.books;
 };
 Book.prototype.getTitle = function():String {
 return "Catcher in the Rye";
 };
 Book.prototype.addProperty("bookcount", Book.prototype.getQuantity,
Book.prototype.setQuantity);
 Book.prototype.addProperty("bookname", Book.prototype.getTitle, null);
 var myBook = new Book();
 myBook.bookcount = 5;
 trace("You ordered "+myBook.bookcount+" copies of "+myBook.bookname);

The following example shows how to use the implicit getter and setter functions available in ActionScript 2.0. Rather

than defining the Book function and editing Book.prototype, you define the Book class in an external file named

Book.as. The following code must be in a separate external file named Book.as that contains only this class definition

and resides within the Flash application's classpath:

 class Book {
 var books:Number;
 function set bookcount(numBooks:Number):Void {
 this.books = numBooks;
 }
 function get bookcount():Number {
 return this.books;
 }
 function get bookname():String {
 return "Catcher in the Rye";
 }
 }

The following code can then be placed in a FLA file and will function the same way as it does in the previous examples:

 var myBook:Book = new Book();
 myBook.bookcount = 5;
 trace("You ordered "+myBook.bookcount+" copies of "+myBook.bookname);

See also

getProperty function, setInterval function

constructor (Object.constructor property)
 public constructor : Object

Reference to the constructor function for a given object instance. The constructor property is automatically assigned

to all objects when they are created using the constructor for the Object class.

Availability

Flash Lite 2.0

Example

The following example is a reference to the constructor function for the myObject object.

497FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_str:String = new String("sven");
 trace(my_str.constructor == String); //output: true

If you use the instanceof operator, you can also determine if an object belongs to a specified class:

 var my_str:String = new String("sven");
 trace(my_str instanceof String); //output: true

However, in the following example the Object.constructor property converts primitive data types (such as the

string literal seen here) into wrapper objects. The instanceof operator does not perform any conversion, as seen in

the following example:

 var my_str:String = "sven";
 trace(my_str.constructor == String); //output: true
 trace(my_str instanceof String); //output: false

See also

instanceof operator

hasOwnProperty (Object.hasOwnProperty method)
 public hasOwnProperty(name:String) : Boolean

Indicates whether an object has a specified property defined. This method returns true if the target object has a

property that matches the string specified by the name parameter, and false otherwise. This method does not check

the object's prototype chain and returns true only if the property exists on the object itself.

Availability

Flash Lite 2.0

Parameters

name:String - A string; the name of the property.

Returns

Boolean - A Boolean value: true if the target object has the property specified by the name parameter, false otherwise.

isPropertyEnumerable (Object.isPropertyEnumerable method)
 public isPropertyEnumerable(name:String) : Boolean

Indicates whether the specified property exists and is enumerable. If true, then the property exists and can be

enumerated in a for..in loop. The property must exist on the target object because this method does not check the

target object's prototype chain.

Properties that you create are enumerable, but built-in properties are generally not enumerable.

Availability

Flash Lite 2.0

Parameters

name : String - The name of the property to check for.

498FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns

Boolean - A Boolean value: true if the property specified by the name parameter is enumerable.

Example

The following example creates a generic object, adds a property to the object, then checks whether the object is

enumerable. By way of contrast, the example also shows that a built-in property, the Array.length property, is not

enumerable.

 var myObj:Object = new Object();
 myObj.prop1 = "hello";
 trace(myObj.isPropertyEnumerable("prop1")); // Output: true

 var myArray = new Array();
 trace(myArray.isPropertyEnumerable("length")); // Output: false

See also

for..in statement

isPrototypeOf (Object.isPrototypeOf method)
 public isPrototypeOf(theClass:Object) : Boolean

Indicates whether an instance of the Object class is in the prototype chain of the object specified as an argument. This

method returns true if the object is in the prototype chain of the object specified by the theClass parameter. The

method returns false not only if the target object is absent from the prototype chain of the theClass object, but also

if the theClass argument is not an object.

Availability

Flash Lite 2.0

Parameters

theClass:Object - The class in whose prototype chain to check for the object.

Returns

Boolean - A Boolean value: true if the object is in the prototype chain of the object specified by the theClass

parameter; false otherwise.

Object constructor
 public Object()

Creates an Object object and stores a reference to the object's constructor method in the object's constructor

property.

Availability

Flash Lite 2.0

Example

The following example creates a generic object named myObject:

 var myObject:Object = new Object();

499FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

__proto__ (Object.__proto__ property)
 public __proto__ : Object

Refers to the prototype property of the class (ActionScript 2.0) or constructor function (ActionScript 1.0) used to

create the object. The __proto__ property is automatically assigned to all objects when they are created. The

ActionScript interpreter uses the __proto__ property to access the prototype property of the object's class or

constructor function to find out what properties and methods the object inherits from its superclass.

Availability

Flash Lite 2.0

Example

The following example creates a class named Shape and a subclass of Shape named Circle.

 // Shape class defined in external file named Shape.as
 class Shape {
 function Shape() {}
 }

 // Circle class defined in external file named Circle.as
 class Circle extends Shape{
 function Circle() {}
 }

The Circle class can be used to create two instances of Circle:

 var oneCircle:Circle = new Circle();
 var twoCircle:Circle = new Circle();

The following trace statements show that the __proto_ property of both instances refers to the prototype property

of the Circle class.

 trace(Circle.prototype == oneCircle.__proto__); // Output: true
 trace(Circle.prototype == twoCircle.__proto__); // Output: true

See also

prototype (Object.prototype property)

prototype (Object.prototype property)
 public static prototype : Object

A reference to the superclass of a class or function object. The prototype property is automatically created and

attached to any class or function object you create. This property is static in that it is specific to the class or function

you create. For example, if you create a custom class, the value of the prototype property is shared by all instances of

the class, and is accessible only as a class property. Instances of your custom class cannot directly access the prototype

property, but can access it through the __proto__ property.

Availability

Flash Lite 2.0

Example

The following example creates a class named Shape and a subclass of Shape named Circle.

500FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // Shape class defined in external file named Shape.as
 class Shape {
 function Shape() {}
 }

 // Circle class defined in external file named Circle.as
 class Circle extends Shape{
 function Circle() {}
 }

The Circle class can be used to create two instances of Circle:

 var oneCircle:Circle = new Circle();
 var twoCircle:Circle = new Circle();

The following trace statement shows that the prototype property of the Circle class points to its superclass Shape. The

identifier Shape refers to the constructor function of the Shape class.

 trace(Circle.prototype.constructor == Shape); // Output: true

The following trace statement shows how you can use the prototype property and the __proto__ property together

to move two levels up the inheritance hierarchy (or prototype chain). The Circle.prototype.__proto__ property

contains a reference to the superclass of the Shape class.

 trace(Circle.prototype.__proto__ == Shape.prototype); // Output: true

See also

__proto__ (Object.__proto__ property)

registerClass (Object.registerClass method)
 public static registerClass(name:String, theClass:Function) : Boolean

Associates a movie clip symbol with an ActionScript object class. If a symbol doesn't exist, Flash creates an association

between a string identifier and an object class.

When an instance of the specified movie clip symbol is placed on the Timeline, it is registered to the class specified by

the theClass parameter rather than to the class MovieClip.

When an instance of the specified movie clip symbol is created by using MovieClip.attachMovie() or

MovieClip.duplicateMovieClip(), it is registered to the class specified by theClass rather than to the MovieClip

class. If theClass is null, this method removes any ActionScript class definition associated with the specified movie

clip symbol or class identifier. For movie clip symbols, any existing instances of the movie clip remain unchanged, but

new instances of the symbol are associated with the default class MovieClip.

If a symbol is already registered to a class, this method replaces it with the new registration.

When a movie clip instance is placed by the Timeline or created using attachMovie() or duplicateMovieClip(),

ActionScript invokes the constructor for the appropriate class with the keyword this pointing to the object. The

constructor function is invoked with no parameters.

If you use this method to register a movie clip with an ActionScript class other than MovieClip, the movie clip symbol

doesn't inherit the methods, properties, and events of the built-in MovieClip class unless you include the MovieClip

class in the prototype chain of the new class. The following code creates a new ActionScript class called theClass that

inherits the properties of the MovieClip class:

 theClass.prototype = new MovieClip();

501FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Parameters

name : String - String; the linkage identifier of the movie clip symbol or the string identifier for the ActionScript class.

theClass : Function - A reference to the constructor function of the ActionScript class or null to unregister the

symbol.

Returns

Boolean - A Boolean value: if the class registration succeeds, a value of true is returned; false otherwise.

See also

attachMovie (MovieClip.attachMovie method), duplicateMovieClip (MovieClip.duplicateMovieClip

method)

__resolve (Object.__resolve property)
 public __resolve : Object

A reference to a user-defined function that is invoked if ActionScript code refers to an undefined property or method.

If ActionScript code refers to an undefined property or method of an object, Flash Lite player determines whether the

object's __resolve property is defined. If __resolve is defined, the function to which it refers is executed and passed

the name of the undefined property or method. This lets you programmatically supply values for undefined properties

and statements for undefined methods and make it seem as if the properties or methods are actually defined. This

property is useful for enabling highly transparent client/server communication, and is the recommended way of

invoking server-side methods.

Availability

Flash Lite 2.0

Example

The following examples progressively build upon the first example and illustrate five different usages of the __resolve

property. To aid understanding, key statements that differ from the previous usage are in bold typeface.

Usage 1: the following example uses __resolve to build an object where every undefined property returns the value

"Hello, world!".

 // instantiate a new object
 var myObject:Object = new Object();

 // define the __resolve function
 myObject.__resolve = function (name) {
 return "Hello, world!";
 };
 trace (myObject.property1); // output: Hello, world!
 trace (myObject.property2); // output: Hello, world!

Usage 2: the following example uses __resolve as a functor, which is a function that generates functions. Using

__resolve redirects undefined method calls to a generic function named myFunction.

502FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // instantiate a new object
 var myObject:Object = new Object();

 // define a function for __resolve to call
 myObject.myFunction = function (name) {
 trace("Method " + name + " was called");
 };

 // define the __resolve function
 myObject.__resolve = function (name) {
 return function () { this.myFunction(name); };
 };

 // test __resolve using undefined method names
 myObject.someMethod(); // output: Method someMethod was called
 myObject.someOtherMethod(); //output: Method someOtherMethod was called

Usage 3: The following example builds on the previous example by adding the ability to cache resolved methods. By

caching methods, __resolve is called only once for each method of interest. This allows lazy construction of object

methods. Lazy construction is an optimization technique that defers the creation, or construction, of methods until the

time at which a method is first used.

 // instantiate a new object
 var myObject:Object = new Object();
 // define a function for __resolve to call
 myObject.myFunction = function(name) {
 trace("Method "+name+" was called");
 };
 // define the __resolve function
 myObject.__resolve = function(name) {
 trace("Resolve called for "+name); // to check when __resolve is called
 // Not only call the function, but also save a reference to it
 var f:Function = function () {
 this.myFunction(name);
 };
 // create a new object method and assign it the reference
 this[name] = f;
 // return the reference
 return f;
 };
 // test __resolve using undefined method names
 // __resolve will only be called once for each method name
 myObject.someMethod(); // calls __resolve
 myObject.someMethod(); // does not call __resolve because it is now defined
 myObject.someOtherMethod(); // calls __resolve
 myObject.someOtherMethod(); // does not call __resolve, no longer undefined

Usage 4: The following example builds on the previous example by reserving a method name, onStatus(), for local

use so that it is not resolved in the same way as other undefined properties. Added code is in bold typeface.

503FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // instantiate a new object
 var myObject:Object = new Object();
 // define a function for __resolve to call
 myObject.myFunction = function(name) {
 trace("Method "+name+" was called");
 };
 // define the __resolve function
 myObject.__resolve = function(name) {
 // reserve the name "onStatus" for local use
 if (name == "onStatus") {
 return undefined;
 }
 trace("Resolve called for "+name); // to check when __resolve is called
 // Not only call the function, but also save a reference to it
 var f:Function = function () {
 this.myFunction(name);
 };
 // create a new object method and assign it the reference
 this[name] = f;
 // return the reference
 return f;
 };
 // test __resolve using the method name "onStatus"
 trace(myObject.onStatus("hello"));
 // output: undefined

Usage 5: The following example builds on the previous example by creating a functor that accepts parameters. This

example makes extensive use of the arguments object, and uses several methods of the Array class.

504FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // instantiate a new object
 var myObject:Object = new Object();

 // define a generic function for __resolve to call
 myObject.myFunction = function (name) {
 arguments.shift();
 trace("Method " + name + " was called with arguments: " + arguments.join(','));
 };

 // define the __resolve function
 myObject.__resolve = function (name) {
 // reserve the name "onStatus" for local use
 if (name == "onStatus") {
 return undefined;
 }
 var f:Function = function () {
 arguments.unshift(name);
 this.myFunction.apply(this, arguments);
 };
 // create a new object method and assign it the reference
 this[name] = f;
 // return the reference to the function
 return f;
 };

 // test __resolve using undefined method names with parameters
 myObject.someMethod("hello");
 // output: Method someMethod was called with arguments: hello

 myObject.someOtherMethod("hello","world");
 // output: Method someOtherMethod was called with arguments: hello,world

See also

arguments, Array

toString (Object.toString method)
 public toString() : String

Converts the specified object to a string and returns it.

Availability

Flash Lite 2.0

Returns

String - A string.

Example

This example shows the return value for toString() on a generic object:

 var myObject:Object = new Object();
 trace(myObject.toString()); // output: [object Object]

This method can be overridden to return a more meaningful value. The following examples show that this method has

been overridden for the built-in classes Date, Array, and Number:

505FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // Date.toString() returns the current date and time
 var myDate:Date = new Date();
 trace(myDate.toString()); // output: [current date and time]

 // Array.toString() returns the array contents as a comma-delimited string
 var myArray:Array = new Array("one", "two");
 trace(myArray.toString()); // output: one,two

 // Number.toString() returns the number value as a string
 // Because trace() won't tell us whether the value is a string or number
 // we will also use typeof() to test whether toString() works.
 var myNumber:Number = 5;
 trace(typeof (myNumber)); // output: number
 trace(myNumber.toString()); // output: 5
 trace(typeof (myNumber.toString())); // output: string

The following example shows how to override toString() in a custom class. First create a text file named Vehicle.as

that contains only the Vehicle class definition and place it into your Classes folder inside your Configuration folder.

 // contents of Vehicle.as
 class Vehicle {
 var numDoors:Number;
 var color:String;
 function Vehicle(param_numDoors:Number, param_color:String) {
 this.numDoors = param_numDoors;
 this.color = param_color;
 }
 function toString():String {
 var doors:String = "door";
 if (this.numDoors > 1) {
 doors += "s";
 }
 return ("A vehicle that is " + this.color + " and has " + this.numDoors + " " + doors);
 }
 }

 // code to place into a FLA file
 var myVehicle:Vehicle = new Vehicle(2, "red");
 trace(myVehicle.toString());
 // output: A vehicle that is red and has 2 doors

 // for comparison purposes, this is a call to valueOf()
 // there is no primitive value of myVehicle, so the object is returned
 // giving the same output as toString().
 trace(myVehicle.valueOf());
 // output: A vehicle that is red and has 2 doors

unwatch (Object.unwatch method)
 public unwatch(name:String) : Boolean

Removes a watchpoint that Object.watch() created. This method returns a value of true if the watchpoint is

successfully removed, false otherwise.

Availability

Flash Lite 2.0

506FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

name : String - A string; the name of the object property that should no longer be watched.

Returns

Boolean - A Boolean value: true if the watchpoint is successfully removed, false otherwise.

Example

See the example for Object.watch().

See also

watch (Object.watch method), addProperty (Object.addProperty method)

valueOf (Object.valueOf method)
 public valueOf() : Object

Returns the primitive value of the specified object. If the object does not have a primitive value, the object is returned.

Availability

Flash Lite 2.0

Returns

Object - The primitive value of the specified object or the object itself.

Example

The following example shows the return value of valueOf() for a generic object (which does not have a primitive

value) and compares it to the return value of toString(). First, create a generic object. Second, create a new Date

object set to February 1, 2004, 8:15 AM. The toString() method returns the current time in human-readable form.

The valueOf() method returns the primitive value in milliseconds. Third, create a new Array object containing two

simple elements. Both toString() and valueOf() return the same value: one,two:

 // Create a generic object
 var myObject:Object = new Object();
 trace(myObject.valueOf()); // output: [object Object]
 trace(myObject.toString()); // output: [object Object]

The following examples show the return values for the built-in classes Date and Array, and compares them to the

return values of Object.toString():

 // Create a new Date object set to February 1, 2004, 8:15 AM
 // The toString() method returns the current time in human-readable form
 // The valueOf() method returns the primitive value in milliseconds
 var myDate:Date = new Date(2004,01,01,8,15);
 trace(myDate.toString()); // output: Sun Feb 1 08:15:00 GMT-0800 2004
 trace(myDate.valueOf()); // output: 1075652100000

 // Create a new Array object containing two simple elements
 // In this case both toString() and valueOf() return the same value: one,two
 var myArray:Array = new Array("one", "two");
 trace(myArray.toString()); // output: one,two
 trace(myArray.valueOf()); // output: one,two

507FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See the example for Object.toString() for an example of the return value of Object.valueOf() for a custom class

that overrides toString().

See also

toString (Object.toString method)

watch (Object.watch method)
 public watch(name:String, callback:Function, [userData:Object]) : Boolean

Registers an event handler to be invoked when a specified property of an ActionScript object changes. When the

property changes, the event handler is invoked with myObject as the containing object.

You can use the return statement in your callback method definition to affect the value of the property you are

watching. The value returned by your callback method is assigned to the watched object property. The value you

choose to return depends on whether you wish to monitor, modify or prevent changes to the property:

• If you are merely monitoring the property, return the newVal parameter.

• If you are modifying the value of the property, return your own value.

• If you want to prevent changes to the property, return the oldVal parameter.

If the callback method you define does not have a return statement, then the watched object property is assigned a

value of undefined.

A watchpoint can filter (or nullify) the value assignment, by returning a modified newval (or oldval). If you delete a

property for which a watchpoint has been set, that watchpoint does not disappear. If you later recreate the property,

the watchpoint is still in effect. To remove a watchpoint, use the Object.unwatch method.

Only a single watchpoint can be registered on a property. Subsequent calls to Object.watch() on the same property

replace the original watchpoint.

The Object.watch() method behaves similarly to the Object.watch() function in JavaScript 1.2 and later. The

primary difference is the userData parameter, which is a Flash addition to Object.watch() that Netscape Navigator

does not support. You can pass the userData parameter to the event handler and use it in the event handler.

The Object.watch() method cannot watch getter/setter properties. Getter/setter properties operate through lazy

evaluation – the value of the property is not determined until the property is actually queried. Lazy evaluation is often

efficient because the property is not constantly updated; it is, rather, evaluated when needed. However,

Object.watch() needs to evaluate a property to determine whether to invoke the callback function. To work with

a getter/setter property, Object.watch() needs to evaluate the property constantly, which is inefficient.

Generally, predefined ActionScript properties, such as _x, _y, _width, and _height, are getter/setter properties and

cannot be watched with Object.watch().

Availability

Flash Lite 2.0

Parameters

name:String - A string; the name of the object property to watch.

callback:Function - The function to invoke when the watched property changes. This parameter is a function object,

not a function name as a string. The form of callback is callback(prop, oldVal, newVal, userData).

508FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

userData:Object [optional] - An arbitrary piece of ActionScript data that is passed to the callback method. If the

userData parameter is omitted, undefined is passed to the callback method.

Returns

Boolean - A Boolean value: true if the watchpoint is created successfully, false otherwise.

Example

The following example uses watch() to check whether the speed property exceeds the speed limit:

 // Create a new object
 var myObject:Object = new Object();

 // Add a property that tracks speed
 myObject.speed = 0;

 // Write the callback function to be executed if the speed property changes
 var speedWatcher:Function = function(prop, oldVal, newVal, speedLimit) {
 // Check whether speed is above the limit
 if (newVal > speedLimit) {
 trace ("You are speeding.");
 }
 else {
 trace ("You are not speeding.");
 }

 // Return the value of newVal.
 return newVal;
 }
 // Use watch() to register the event handler, passing as parameters:
 // - the name of the property to watch: "speed"
 // - a reference to the callback function speedWatcher
 // - the speedLimit of 55 as the userData parameter
 myObject.watch("speed", speedWatcher, 55);

 // set the speed property to 54, then to 57
 myObject.speed = 54; // output: You are not speeding
 myObject.speed = 57; // output: You are speeding

 // unwatch the object
 myObject.unwatch("speed");
 myObject.speed = 54; // there should be no output

See also

addProperty (Object.addProperty method), unwatch (Object.unwatch method)

Point (flash.geom.Point)

 Object
 |
 +-flash.geom.Point

 public class Point
 extends Object

509FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The Point class represents a location in a two-dimensional coordinate system, where x represents the horizontal axis

and y represents the vertical axis.

The following code creates a point at (0,0):

 var myPoint:Point = new Point();

Availability

Flash Lite 3.1

Property summary

Constructor summary

Method summary

Modifiers Property Description

 length:Number The length of the line segment from (0,0) to this point.

 x:Number The horizontal coordinate of the point.

 y:Number The vertical coordinate of the point.

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Signature Description

Point(x:Number,
y:Number)

Creates a new point.

Modifiers Signature Description

 add(v:Point): Point Adds the coordinates of another point to the coordinates of this

point to create a new point.

 clone() : Point Creates a copy of this Point object.

static distance(pt1:Point,
pt2:Point) : Number

Returns the distance between pt1 and pt2.

 equals(toCompare:Obje

ct) : Boolean

Determines whether two points are equal.

static interpolate(pt1:Point,
pt2:Point , f:Number)
: Point

Determines a point between two specified points.

 normalize(length:Num

ber) : Void
Scales the line segment between (0,0) and the current point to a

set length.

 offset(dx:Number,
dy:Number) : Void

Offsets the Point object by the specified amount.

510FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

add (Point.add method)
 public add(v:Point) : Point

Adds the coordinates of another point to the coordinates of this point to create a new point.

Availability

Flash Lite 3.1

Parameters

v:Point - The point to be added.

Returns

Point - The new point.

Example

The following example creates a Point object resultPoint by adding point_2 to point_1.

 import flash.geom.Point;
 var point_1:Point = new Point(4, 8);
 var point_2:Point = new Point(1, 2);
 var resultPoint:Point = point_1.add(point_2);
 trace(resultPoint.toString()); // (x=5, y=10)

clone (Point.clone method)
 public clone() : Point

Creates a copy of this Point object.

Availability

Flash Lite 3.1

Returns

Point - The new Point object.

static polar(len:Number,
angle:Number) : Point

Converts a pair of polar coordinates to a Cartesian point

coordinate.

 subtract(v:Point : Point Subtracts the coordinates of another point from the coordinates of

this point to create a new point.

 toString (Point.toString

method)() : String

Returns a string that contains the values of the x and y coordinates.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

Modifiers Signature Description

511FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a copy of the Point object called clonedPoint from the values found in the myPoint

object. The clonedPoint object contains all of the values from myPoint, but it is not the same object.

 import flash.geom.Point;
 var myPoint:Point = new Point(1, 2);
 var clonedPoint:Point = myPoint.clone();
 trace(clonedPoint.x); // 1
 trace(clonedPoint.y); // 2
 trace(myPoint.equals(clonedPoint)); // true
 trace(myPoint === clonedPoint); // false

distance (Point.distance method)
 public static distance(pt1:Point, pt2:Point)) : Number

Returns the distance between pt1 and pt2.

Availability

Flash Lite 3.1

Parameters

pt1:Point - The first point.

pt2:Point - The second point.

Returns

Number - The distance between the first and second points.

Example

The following example creates point_1 and point_2, then determines the distance between them

(distanceBetween).

 import flash.geom.Point;
 var point_1:Point = new Point(-5, 0);
 var point_2:Point = new Point(5, 0);
 var distanceBetween:Number = Point.distance(point_1, point_2);
 trace(distanceBetween); // 10

equals (Point.equals method)
 public equals(toCompare:Object) : Boolean

Determines whether two points are equal. Two points are equal if they have the same x and y values.

Availability

Flash Lite 3.1

Parameters

toCompare:Object - The point to be compared.

Returns

Boolean - If the object is equal to this Point object, true; if it is not equal, false.

512FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example determines whether the values of one point are equal to the values of another point. If the

objects are the same, equals() does not return the same result that the strict equality operator (===) does.

 import flash.geom.Point;
 var point_1:Point = new Point(1, 2);
 var point_2:Point = new Point(1, 2);
 var point_3:Point = new Point(4, 8);
 trace(point_1.equals(point_2)); // true
 trace(point_1.equals(point_3)); // false
 trace(point_1 === point_2); // false
 trace(point_1 === point_3); // false

interpolate (Point.interpolate method)
 public static interpolate(pt1:Point, pt2:Point, f:Number) : Point

Determines a point between two specified points.

Availability

Flash Lite 3.1

Parameters

pt1:Point - The first point.

pt2:Point - The second point.

f:Number - The level of interpolation between the two points. Indicates where the new point will be, along the line

between pt1 and pt2. If f=0, pt1 is returned; if f=1, pt2 is returned.

Returns

Point - The new, interpolated point.

Example

The following example locates the interpolated point (interpolatedPoint) half way (50%) between point_1 and

point_2.

 import flash.geom.Point;
 var point_1:Point = new Point(-100, -100);
 var point_2:Point = new Point(50, 50);
 var interpolatedPoint:Point = Point.interpolate(point_1, point_2, .5);
 trace(interpolatedPoint.toString()); // (x=-25, y=-25)

length (Point.length property)
 public length : Number

The length of the line segment from (0,0) to this point.

Availability

Flash Lite 3.1

Example

The following example creates a Point object, myPoint, and determines the length of a line from (0, 0) to that Point.

513FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Point;
 var myPoint:Point = new Point(3,4);
 trace(myPoint.length); // 5

See also

polar (Point.polar method)

normalize (Point.normalize method)
 public normalize(length:Number) : Void

Scales the line segment between (0,0) and the current point to a set length.

Availability

Flash Lite 3.1

Parameters

length:Number - The scaling value. For example, if the current point is (0,5), and you normalize it to 1, the point

returned is at (0,1).

Example

The following example extends the length of the normalizedPoint object from 5 to 10.

 import flash.geom.Point;
 var normalizedPoint:Point = new Point(3, 4);
 trace(normalizedPoint.length); // 5
 trace(normalizedPoint.toString()); // (x=3, y=4)
 normalizedPoint.normalize(10);
 trace(normalizedPoint.length); // 10
 trace(normalizedPoint.toString()); // (x=6, y=8)

See also

length (Point.length property)

offset (Point.offset method)
 public offset(dx:Number, dy:Number) : Void

Offsets the Point object by the specified amount. The value of dx is added to the original value of x to create the new x

value. The value of dy is added to the original value of y to create the new y value.

Availability

Flash Lite 3.1

Parameters

dx:Number - The amount by which to offset the horizontal coordinate, x.

dy:Number - The amount by which to offset the vertical coordinate, y.

Example

The following example offsets a point's position by specified x and y amounts.

514FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Point;
 var myPoint:Point = new Point(1, 2);
 trace(myPoint.toString()); // (x=1, y=2)
 myPoint.offset(4, 8);
 trace(myPoint.toString()); // (x=5, y=10)

See also

add (Point.add method)

Point constructor
 public Point(x:Number, y:Number)

Creates a new point. If you pass no parameters to this method, a point is created at (0,0).

Availability

Flash Lite 3.1

Parameters

x:Number - The horizontal coordinate. The default value is 0.

y:Number - The vertical coordinate. The default value is 0.

Example

The first example creates a Point object point_1 with the default constructor.

 import flash.geom.Point;
 var point_1:Point = new Point();
 trace(point_1.x); // 0
 trace(point_1.y); // 0

The second example creates a Point object point_2 with the coordinates x = 1 and y = 2.

 import flash.geom.Point;
 var point_2:Point = new Point(1, 2);
 trace(point_2.x); // 1
 trace(point_2.y); // 2

polar (Point.polar method)
 public static polar(len:Number, angle:Number) : Point

Converts a pair of polar coordinates to a Cartesian point coordinate.

Availability

Flash Lite 3.1

Parameters

len:Number - The length coordinate of the polar pair.

angle:Number - The angle, in radians, of the polar pair.

Returns

Point - The Cartesian point.

515FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a Point object cartesianPoint from the value of angleInRadians and a line length

of 5. The angleInRadians value equal to Math.atan(3/4) is used because of the characteristics of right triangles with

sides that have ratios of 3:4:5.

 import flash.geom.Point;
 var len:Number = 5;
 var angleInRadians:Number = Math.atan(3/4);
 var cartesianPoint:Point = Point.polar(len, angleInRadians);
 trace(cartesianPoint.toString()); // (x=4, y=3)

When computers work with transcendental numbers, such as pi, some round-off error occurs because floating-point

arithmetic has only finite precision. When you use Math.PI, consider using the Math.round() function, as shown in

the following example.

 import flash.geom.Point;
 var len:Number = 10;
 var angleInRadians:Number = Math.PI;
 var cartesianPoint:Point = Point.polar(len, angleInRadians);
 trace(cartesianPoint.toString()); // should be (x=-10, y=0), but is (x=-10,
y=1.22460635382238e-15)
 trace(Math.round(cartesianPoint.y)); // 0

See also

length (Point.length property), round (Math.round method)

subtract (Point.subtract method)
 public subtract(v:Point) : Point

Subtracts the coordinates of another point from the coordinates of this point to create a new point.

Availability

Flash Lite 3.1

Parameters

v:Point - The point to be subtracted.

Returns

Point - The new point.

Example

The following example creates point_3 by subtracting point_2 from point_1.

 import flash.geom.Point;
 var point_1:Point = new Point(4, 8);
 var point_2:Point = new Point(1, 2);
 var resultPoint:Point = point_1.subtract(point_2);
 trace(resultPoint.toString()); // (x=3, y=6)

toString (Point.toString method)
 public toString() : String

516FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns a string that contains the values of the x and y coordinates. It has the form (x, y), so a point at 23,17 would

report "(x=23, y=17)".

Availability

Flash Lite 3.1

Returns

String - A string.

Example

The following example creates a point and converts its values to a string in the format (x=x, y=y).

 import flash.geom.Point;
 var myPoint:Point = new Point(1, 2);
 trace("myPoint: " + myPoint.toString()); // (x=1, y=2)

x (Point.x. property)
 public x : Number

The horizontal coordinate of the point. The default value is 0.

Availability

Flash Lite 3.1

Example

The following example creates a Point object myPoint and sets the x coordinate value.

 import flash.geom.Point;
 var myPoint:Point = new Point();
 trace(myPoint.x); // 0
 myPoint.x = 5;
 trace(myPoint.x); // 5

y (Point.y property)
 public y : Number

The vertical coordinate of the point. The default value is 0.

Availability

Flash Lite 3.1

Example

The following example creates a Point object myPoint and sets the y coordinate value.

 import flash.geom.Point;
 var myPoint:Point = new Point();
 trace(myPoint.y); // 0
 myPoint.y = 5;
 trace(myPoint.y); // 5

517FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Rectangle (flash.geom.Rectangle)

 Object
 |
 +-flash.geom.Rectangle

 public class Rectangle
 extends Object

The Rectangle class is used to create and modify Rectangle objects. A Rectangle object is an area defined by its position,

as indicated by its top-left corner point (x, y), and by its width and its height. Be careful when you design these areas—

if a rectangle is described as having its upper-left corner at 0,0 and has a height of 10 and a width of 20, the lower-right

corner is at 9,19, because the count of width and height began at 0,0.

The x, y, width, and height properties of the Rectangle class are independent of each other; changing the value of one

property has no effect on the others. However, the right and bottom properties are integrally related to those four—

if you change right, you are changing width; if you change bottom, you are changing height, and so on. And you

must have the left or x property established before you set width or right property.

Availability

Flash Lite 3.1

Property summary

Modifiers Property Description

 bottom:Number The sum of the y and height properties.

 bottomright:Point The location of the Rectangle object's bottom-right corner,

determined by the values of the x and y properties.

 height:Number The height of the rectangle in pixels.

 left:Number The x coordinate of the top-left corner of the rectangle.

 right:Number The sum of the x and width properties.

 size:Point The size of the Rectangle object, expressed as a Point object with

the values of the width and height properties.

 top:Number The y coordinate of the top-left corner of the rectangle.

 topLeft:Point The location of the Rectangle object's top-left corner determined

by the x and y values of the point.

 width:Number The width of the rectangle in pixels.

 x:Number The x coordinate of the top-left corner of the rectangle.

 y:Number The y coordinate of the top-left corner of the rectangle.

Object constructor, __proto__ (Object.__proto__ property), prototype (Object.prototype
property), __resolve (Object.__resolve property)

518FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Constructor summary

Method summary

Signature Description

Rectangle(x:Number,
y:Number,
width:Number,
height:Number)

Creates a new Rectangle object whose top-left corner is specified by the x and y

parameters.

Modifiers Signature Description

 clone() : Rectangle Returns a new Rectangle object with the same values for the x, y,

width, and height properties as the original Rectangle object.

 contains(x:Number,
y:Number) : Boolean

Determines whether the specified point is contained within the

rectangular region defined by this Rectangle object.

 containsPoint(pt:Point

(flash.geom.Point)) :
Boolean

Determines whether the specified point is contained within the

rectangular region defined by this Rectangle object.

 containsRectangle(rect:
Rectangle) : Boolean

Determines whether the Rectangle object specified by the rect

parameter is contained within this Rectangle object.

 equals(toCompare:Obje

ct) : Boolean

Determines whether the object specified in the toCompare

parameter is equal to this Rectangle object.

 inflate(dx:Number,
dy:Number) : Void

Increases the size of the Rectangle object by the specified

amounts.

 inflatePoint(pt:Point) :
Void

Increases the size of the Rectangle object.

 intersection(toInterse
ct:Rectangle) :
Rectangle

If the Rectangle object specified in the toIntersect parameter

intersects with this Rectangle object, the intersection()

method returns the area of intersection as a Rectangle object.

 intersects(toIntersect
:Rectangle) : Boolean

Determines whether the object specified in the toIntersect

parameter intersects with this Rectangle object.

 isEmpty() : Boolean Determines whether or not this Rectangle object is empty.

 offset(dx:Number,
dy:Number) : Void

Adjusts the location of the Rectangle object, as determined by its

top-left corner, by the specified amounts.

 offsetPoint(pt:Point) :
Void

Adjusts the location of the Rectangle object using a Point object as

a parameter.

 setEmpty() : Void Sets all of the Rectangle object's properties to 0.

 toString() : String Builds and returns a string that lists the horizontal and vertical

positions and the width and height of the Rectangle object.

 union(toUnion:Rectang

le) : Rectangle

Adds two rectangles together to create a new Rectangle object, by

filling in the horizontal and vertical space between the two

rectangles.

“addProperty (Object.addProperty method)” on page 494, “hasOwnProperty (Object.hasOwnProperty method)”

on page 497, isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

519FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

bottom (Rectangle.bottom property)
 public bottom : Number

The sum of the y and height properties.

Availability

Flash Lite 3.1

Example

The following example creates a Rectangle object and changes the value of its bottom property from 15 to 30. Notice

that the value of rect.height is also changed, from 10 to 25.

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle(5, 5, 10, 10);
 trace(rect.height); // 10
 trace(rect.bottom); // 15

 rect.bottom = 30;
 trace(rect.height); // 25
 trace(rect.bottom); // 30

See also

y (Rectangle.y property), height (Rectangle.height property)

bottomright (Rectangle.bottomright property)
 public bottomRight : Point

The location of the Rectangle object's bottom-right corner, determined by the values of the x and y properties.

Availability

Flash Lite 3.1

Example

The following example sets the Rectangle object's bottomRight property using the values of the Point object. Notice

that rect.width and rect.height are changed.

520FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Rectangle;
 import flash.geom.Point;

 var rect:Rectangle = new Rectangle(1, 2, 4, 8);
 trace(rect.bottom); // 10
 trace(rect.right); // 5
 trace(rect.height); // 8
 trace(rect.width); // 4

 var myBottomRight:Point = new Point(16, 32);
 rect.bottomRight = myBottomRight;
 trace(rect.bottom); // 32
 trace(rect.right); // 16
 trace(rect.height); // 30
 trace(rect.width); // 15

See also

Point (flash.geom.Point)

clone (Rectangle.clone method)
 public clone() : Rectangle

Returns a new Rectangle object with the same values for the x, y, width, and height properties as the original

Rectangle object.

Availability

Flash Lite 3.1

Returns

Rectangle - A new Rectangle object with the same values for the x, y, width, and height properties as the original

Rectangle object.

Example

The following example creates three Rectangle objects and compares them. rect_1 is created using the Rectangle

constructor. rect_2 is created by setting it equal to rect_1. And, clonedRect is created by cloning rect_1. Notice

that while rect_2 evaluates as being equal to rect_1, clonedRect, even though it contains the same values as rect_1,

does not.

521FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Rectangle;

 var rect_1:Rectangle = new Rectangle(1, 2, 4, 8);
 var rect_2:Rectangle = rect_1;
 var clonedRect:Rectangle = rect_1.clone();

 trace(rect_1 == rect_2); // true
 trace(rect_1 == clonedFilter); // false

 for(var i in rect_1) {
 trace(">> " + i + ": " + rect_1[i]);
 >> toString: [type Function]
 >> equals: [type Function]
 >> union: [type Function]
 >> intersects: [type Function]
 >> intersection: [type Function]
 >> containsRectangle: [type Function]
 >> containsPoint: [type Function]
 >> contains: [type Function]
 >> offsetPoint: [type Function]
 >> offset: [type Function]
 >> inflatePoint: [type Function]
 >> inflate: [type Function]
 >> size: (x=4, y=8)
 >> bottomRight: (x=5, y=10)
 >> topLeft: (x=1, y=2)
 >> bottom: 10
 >> top: 2
 >> right: 5
 >> left: 1
 >> isEmpty: [type Function]
 >> setEmpty: [type Function]
 >> clone: [type Function]
 >> height: 8
 >> width: 4
 >> y: 2
 >> x: 1
 }

 for(var i in clonedRect) {
 trace(">> " + i + ": " + clonedRect[i]);
 >> toString: [type Function]
 >> equals: [type Function]
 >> union: [type Function]
 >> intersects: [type Function]
 >> intersection: [type Function]
 >> containsRectangle: [type Function]
 >> containsPoint: [type Function]

522FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 >> contains: [type Function]
 >> offsetPoint: [type Function]
 >> offset: [type Function]
 >> inflatePoint: [type Function]
 >> inflate: [type Function]
 >> size: (x=4, y=8)
 >> bottomRight: (x=5, y=10)
 >> topLeft: (x=1, y=2)
 >> bottom: 10
 >> top: 2
 >> right: 5
 >> left: 1
 >> isEmpty: [type Function]
 >> setEmpty: [type Function]
 >> clone: [type Function]
 >> height: 8
 >> width: 4
 >> y: 2
 >> x: 1
 }

To further demonstrate the relationships between rect_1, rect_2, and clonedRect, the example below modifies the

x property of rect_1. Modifying x demonstrates that the clone() method creates a new instance based on values of

the rect_1 instead of pointing to them in reference.

 import flash.geom.Rectangle;

 var rect_1:Rectangle = new Rectangle(1, 2, 4, 8);
 var rect_2:Rectangle = rect_1;
 var clonedRect:Rectangle = rect_1.clone();

 trace(rect_1.x); // 1
 trace(rect_2.x); // 1
 trace(clonedRect.x); // 1

 rect_1.x = 10;

 trace(rect_1.x); // 10
 trace(rect_2.x); // 10
 trace(clonedRect.x); // 1

See also

x (Rectangle.x property), y (Rectangle.y property), width (Rectangle.width property), height

(Rectangle.height property)

contains (Rectangle.contains method)
 public contains(x:Number, y:Number) : Boolean

Determines whether the specified point is contained within the rectangular region defined by this Rectangle object.

Availability

Flash Lite 3.1

523FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

x:Number - The x-value (horizontal position) of the point.

y:Number - The y-value (vertical position) of the point.

Returns

Boolean - If the specified point is contained in the Rectangle object, returns true; otherwise false.

Example

The following example creates a Rectangle object and tests whether each of three coordinate pairs falls within its

boundaries.

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle(10, 10, 50, 50);
 trace(rect.contains(59, 59)); // true
 trace(rect.contains(10, 10)); // true
 trace(rect.contains(60, 60)); // false

See also

Point (flash.geom.Point)

containsPoint (Rectangle.containsPoint method)
 public containsPoint(pt:Point (flash.geom.Point)) : Boolean

Determines whether the specified point is contained within the rectangular region defined by this Rectangle object.

This method is similar to the Rectangle.contains() method, except that it takes a Point object as a parameter.

Availability

Flash Lite 3.1

Parameters

pt:Point - The point, as represented by its x,y values.

Returns

Boolean - If the specified point is contained within this Rectangle object, returns true; otherwise false.

Example

The following example creates a Rectangle object and three Point objects, and tests whether each of the points falls

within the boundaries of the rectangle.

 import flash.geom.Rectangle;
 import flash.geom.Point;

 var rect:Rectangle = new Rectangle(10, 10, 50, 50);
 trace(rect.containsPoint(new Point(10, 10))); // true
 trace(rect.containsPoint(new Point(59, 59))); // true
 trace(rect.containsPoint(new Point(60, 60))); // false

See also

contains (Rectangle.contains method), Point (flash.geom.Point)

524FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

containsRectangle (Rectangle.containsRectangle method)
 public containsRectangle(rect:Rectangle) : Boolean

Determines whether the Rectangle object specified by the rect parameter is contained within this Rectangle object. A

Rectangle object is said to contain another if the second Rectangle object falls entirely within the boundaries of the first.

Availability

Flash Lite 3.1

Parameters

rect:Rectangle - The Rectangle object being checked.

Returns

Boolean - If the Rectangle object that you specify is contained by this Rectangle object, returns true; otherwise false.

Example

The following example creates four new Rectangle objects and determines whether rectangle A contains rectangle B,

C, or D.

 import flash.geom.Rectangle;

 var rectA:Rectangle = new Rectangle(10, 10, 50, 50);
 var rectB:Rectangle = new Rectangle(10, 10, 50, 50);
 var rectC:Rectangle = new Rectangle(10, 10, 51, 51);
 var rectD:Rectangle = new Rectangle(15, 15, 45, 45);

 trace(rectA.containsRectangle(rectB)); // true
 trace(rectA.containsRectangle(rectC)); // false
 trace(rectA.containsRectangle(rectD)); // true

equals (Rectangle.equals method)
 public equals(toCompare:Object) : Boolean

Determines whether the object specified in the toCompare parameter is equal to this Rectangle object. This method

compares the x, y, width, and height properties of an object against the same properties of this Rectangle object.

Availability

Flash Lite 3.1

Parameters

toCompare:Object - The rectangle to compare to this Rectangle object.

Returns

Boolean - If the object has exactly the same values for the x, y, width, and height properties as this Rectangle object,

returns true; otherwise false.

Example

In the following example, rect_1 and rect_2 are equal, but rect_3 is not equal to the other two objects because its

x, y, width, and height properties are not equal to those of rect_1 and rect_2.

525FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Rectangle;

 var rect_1:Rectangle = new Rectangle(0, 0, 50, 100);
 var rect_2:Rectangle = new Rectangle(0, 0, 50, 100);
 var rect_3:Rectangle = new Rectangle(10, 10, 60, 110);

 trace(rect_1.equals(rect_2)); // true;
 trace(rect_1.equals(rect_3)); // false;

Even though the method signature expects only an abstract object, only other Rectangle instances are treated as equal.

 import flash.geom.Rectangle;

 var rect_1:Rectangle = new Rectangle(0, 0, 50, 100);
 var nonRect:Object = new Object();
 nonRect.x = 0;
 nonRect.y = 0;
 nonRect.width = 50;
 nonRect.height = 100;
 trace(rect_1.equals(nonRect));

See also

x (Rectangle.x property), y (Rectangle.y property), width (Rectangle.width property), height

(Rectangle.height property)

height (Rectangle.height property)
 public height : Number

The height of the rectangle in pixels. Changing the height value of a Rectangle object has no effect on the x, y, and

width properties.

Availability

Flash Lite 3.1

Example

The following example creates a Rectangle object and changes its height property from 10 to 20. Notice that

rect.bottom is also changed.

526FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle(5, 5, 10, 10);
 trace(rect.height); // 10
 trace(rect.bottom); // 15

 rect.height = 20;
 trace(rect.height); // 20
 trace(rect.bottom); // 25

See also

x (Rectangle.x property), y (Rectangle.y property), width (Rectangle.width property)

inflate (Rectangle.inflate method)
 public inflate(dx:Number, dy:Number) : Void

Increases the size of the Rectangle object by the specified amounts. The center point of the Rectangle object stays the

same, and its size increases to the left and right by the dx value, and to the top and the bottom by the dy value.

Availability

Flash Lite 3.1

Parameters

dx:Number - The value to be added to the left and the right of the Rectangle object. The following equation is used to

calculate the new width and position of the rectangle:

 x -= dx;
 width += 2 * dx;

dy:Number - The value to be added to the top and the bottom of the Rectangle object. The following equation is used

to calculate the new height and position of the rectangle.

 y -= dy;
 height += 2 * dy;

Example

The following example creates a Rectangle object and increases the value of its width property by 16 * 2 (32) and of its

height property by 32 * 2 (64)

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle(1, 2, 4, 8);
 trace(rect.toString()); // (x=1, y=2, w=4, h=8)

 rect.inflate(16, 32);
 trace(rect.toString()); // (x=-15, y=-30, w=36, h=72)

See also

x (Rectangle.x property), y (Rectangle.y property)

inflatePoint (Rectangle.inflatePoint method)
 public inflatePoint(pt:Point) : Void

527FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Increases the size of the Rectangle object. This method is similar to the Rectangle.inflate() method, except that it

takes a Point object as a parameter.

The following two code examples give the same result:

 rect1 = new flash.geom.Rectangle(0,0,2,5);
 rect1.inflate(2,2)
 rect1 = new flash.geom.Rectangle(0,0,2,5);
 pt1 = new flash.geom.Point(2,2);
 rect1.inflatePoint(pt1)

Availability

Flash Lite 3.1

Parameters

pt:Point - Increases the rectangle by the x and y coordinate values of the point.

Example

The following example creates a Rectangle object and inflates it by the x (horizontal) and y (vertical) amounts found

in a point.

 import flash.geom.Rectangle;
 import flash.geom.Point;

 var rect:Rectangle = new Rectangle(0, 0, 2, 5);
 trace(rect.toString()); // (x=0, y=0, w=2, h=5

 var myPoint:Point = new Point(2, 2);
 rect.inflatePoint(myPoint);
 trace(rect.toString()); // (x=-2, y=-2, w=6, h=9)

See also

Point (flash.geom.Point)

intersection (Rectangle.intersection method)
 public intersection(toIntersect:Rectangle) : Rectangle

If the Rectangle object specified in the toIntersect parameter intersects with this Rectangle object, the

intersection() method returns the area of intersection as a Rectangle object. If the rectangles do not intersect, this

method returns an empty Rectangle object with its properties set to 0.

Availability

Flash Lite 3.1

528FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

toIntersect:Rectangle - The Rectangle object to compare against to see if it intersects with this Rectangle object.

Returns

Rectangle - A Rectangle object that equals the area of intersection. If the rectangles do not intersect, this method

returns an empty Rectangle object; that is, a rectangle with its x, y, width, and height properties set to 0.

Example

The following example determines the area where rect_1 intersects rect_2.

 import flash.geom.Rectangle;

 var rect_1:Rectangle = new Rectangle(0, 0, 50, 50);
 var rect_2:Rectangle = new Rectangle(25, 25, 100, 100);
 var intersectingArea:Rectangle = rect_1.intersection(rect_2);
 trace(intersectingArea.toString()); // (x=25, y=25, w=25, h=25)

intersects (Rectangle.intersects method)
 public intersects(toIntersect:Rectangle) : Boolean

Determines whether the object specified in the toIntersect parameter intersects with this Rectangle object. This

method checks the x, y, width, and height properties of the specified Rectangle object to see if it intersects with this

Rectangle object.

Availability

Flash Lite 3.1

Parameters

toIntersect:Rectangle - The Rectangle object to compare against this Rectangle object.

Returns

Boolean - If the specified object intersects with this Rectangle object, returns true; otherwise false.

Example

The following example determines whether rectA intersects with rectB or rectC.

 import flash.geom.Rectangle;
 var rectA:Rectangle = new Rectangle(10, 10, 50, 50);
 var rectB:Rectangle = new Rectangle(59, 59, 50, 50);
 var rectC:Rectangle = new Rectangle(60, 60, 50, 50);
 var rectAIntersectsB:Boolean = rectA.intersects(rectB);
 var rectAIntersectsC:Boolean = rectA.intersects(rectC);
 trace(rectAIntersectsB); // true
 trace(rectAIntersectsC); // false

 var firstPixel:Rectangle = new Rectangle(0, 0, 1, 1);
 var adjacentPixel:Rectangle = new Rectangle(1, 1, 1, 1);
 var pixelsIntersect:Boolean = firstPixel.intersects(adjacentPixel);
 trace(pixelsIntersect); // false

529FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

x (Rectangle.x property), y (Rectangle.y property), width (Rectangle.width property), height

(Rectangle.height property)

isEmpty (Rectangle.isEmpty method)
 public isEmpty() : Boolean

Determines whether or not this Rectangle object is empty.

Availability

Flash Lite 3.1

Returns

“Boolean” on page 218 - If the Rectangle object's width or height is less than or equal to 0, returns true; otherwise

false.

Example

The following example creates an empty Rectangle object and verifies that it is empty.

 import flash.geom.*;
 var rect:Rectangle = new Rectangle(1, 2, 0, 0);
 trace(rect.toString()); // (x=1, y=2, w=0, h=0)
 trace(rect.isEmpty()); // true

The following example creates a non-empty Rectangle and makes it become empty.

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle(1, 2, 4, 8);
 trace(rect.isEmpty()); // false
 rect.width = 0;
 trace(rect.isEmpty()); // true
 rect.width = 4;
 trace(rect.isEmpty()); // false
 rect.height = 0;
 trace(rect.isEmpty()); // true

left (Rectangle.left property)
 public left : Number

The x coordinate of the top-left corner of the rectangle. Changing the x value of a Rectangle object has no effect on the

y, width, and height properties.

The left property is equal to the x property.

530FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 3.1

Example

The following example changes the left property from 0 to 10. Notice that rect.x also changes.

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle();
 trace(rect.left); // 0
 trace(rect.x); // 0

 rect.left = 10;
 trace(rect.left); // 10
 trace(rect.x); // 10

See also

x (Rectangle.x property), y (Rectangle.y property), “width (Rectangle.width property)” on page 536,

height (Rectangle.height property)

offset (Rectangle.offset method)
 public offset(dx:Number, dy:Number) : Void

Adjusts the location of the Rectangle object, as determined by its top-left corner, by the specified amounts.

Availability

Flash Lite 3.1

Parameters

dx:Number - Moves the x value of the Rectangle object by this amount.

dy:Number - Moves the y value of the Rectangle object by this amount.

Example

The following example creates a Rectangle object and offsets its x and y values by 5 and 10, respectively.

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle(1, 2, 4, 8);
 trace(rect.toString()); // (x=1, y=2, w=4, h=8)

 rect.offset(16, 32);
 trace(rect.toString()); // (x=17, y=34, w=4, h=8)

offsetPoint (Rectangle.offsetPoint method)
 public offsetPoint(pt:Point) : Void

Adjusts the location of the Rectangle object using a Point object as a parameter. This method is similar to the

Rectangle.offset() method, except that it takes a Point object as a parameter.

531FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 3.1

Parameters

pt:Point - A Point object to use to offset this Rectangle object.

Example

The following example offsets a Rectangle by using the values found in a point.

 import flash.geom.Rectangle;
 import flash.geom.Point;

 var rect:Rectangle = new Rectangle(1, 2, 4, 8);
 trace(rect.toString()); // (x=1, y=2, w=4, h=8)

 var myPoint:Point = new Point(16, 32);
 rect.offsetPoint(myPoint);
 trace(rect.toString()); // (x=17, y=34, w=4, h=8)

See also

Point (flash.geom.Point)

Rectangle constructor
 public Rectangle(x:Number, y:Number, width:Number, height:Number)

Creates a new Rectangle object whose top-left corner is specified by the x and y parameters. If you call this constructor

function without parameters, a rectangle with x, y, width, and height properties set to 0 is created.

Availability

Flash Lite 3.1

Parameters

x:Number - The x coordinate of the top-left corner of the rectangle.

y:Number - The y coordinate of the top-left corner of the rectangle.

width:Number - The width of the rectangle in pixels.

height:Number - The height of the rectangle in pixels.

Example

The following example creates a Rectangle object with the specified parameters.

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle(5, 10, 50, 100);
 trace(rect.toString()); // (x=5, y=10, w=50, h=100)

See also

x (Rectangle.x property), y (Rectangle.y property), “width (Rectangle.width property)” on page 536,

height (Rectangle.height property)

532FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

right (Rectangle.right property)
 public right : Number

The sum of the x and width properties.

Availability

Flash Lite 3.1

Example

The following example creates a Rectangle object and changes its right property from 15 to 30. Notice that

rect.width also changes.

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle(5, 5, 10, 10);
 trace(rect.width); // 10
 trace(rect.right); // 15

 rect.right = 30;
 trace(rect.width); // 25
 trace(rect.right); // 30

See also

x (Rectangle.x property), width (Rectangle.width property)

setEmpty (Rectangle.setEmpty method)
 public setEmpty() : Void

Sets all of the Rectangle object's properties to 0. A Rectangle object is empty if its width or height is less than or equal

to 0.

This method sets the values of the x, y, width, and height properties to 0.

Availability

Flash Lite 3.1

Example

The following example creates a non-empty Rectangle object and makes it empty.

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle(5, 10, 50, 100);
 trace(rect.isEmpty()); // false
 rect.setEmpty();
 trace(rect.isEmpty()); // true

533FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

x (Rectangle.x property), y (Rectangle.y property), width (Rectangle.width property), height

(Rectangle.height property)

size (Rectangle.size property)
 public size : Point

The size of the Rectangle object, expressed as a Point object with the values of the width and height properties.

Availability

Flash Lite 3.1

Example

The following example creates a Rectangle object, retrieves its size (size), changes its size (size), and sets the new

values on the Rectangle object. It is important to remember that the Point object used by the size property uses x and

y values to represent the width and height properties of the Rectangle object.

 import flash.geom.Rectangle;
 import flash.geom.Point;

 var rect:Rectangle = new Rectangle(1, 2, 4, 8);
 var size:Point = rect.size;
 trace(size.x); // 4;
 trace(size.y); // 8;

 size.x = 16;
 size.y = 32;
 rect.size = size;
 trace(rect.x); // 1
 trace(rect.y); // 2
 trace(rect.width); // 16
 trace(rect.height); // 32

See also

Point (flash.geom.Point)

top (Rectangle.top property)
 public top : Number

The y coordinate of the top-left corner of the rectangle. Changing the value of the top property of a Rectangle object

has no effect on the x, width, and height properties.

The value of the top property is equal to the value of the y property.

534FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 3.1

Example

This example changes the value of the top property from 0 to 10. Notice that rect.y also changes.

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle();
 trace(rect.top); // 0
 trace(rect.y); // 0

 rect.top = 10;
 trace(rect.top); // 10
 trace(rect.y); // 10

See also

x (Rectangle.x property), y (Rectangle.y property), width (Rectangle.width property), height

(Rectangle.height property)

topLeft (Rectangle.topLeft property)
 public topLeft : Point

The location of the Rectangle object's top-left corner determined by the x and y values of the point.

Availability

Flash Lite 3.1

Example

The following example sets the Rectangle object's topLeft property using the values in a Point object. Notice that

rect.x and rect.y are changed.

535FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Rectangle;
 import flash.geom.Point;

 var rect:Rectangle = new Rectangle();
 trace(rect.left); // 0
 trace(rect.top); // 0
 trace(rect.x); // 0
 trace(rect.y); // 0

 var myTopLeft:Point = new Point(5, 15);
 rect.topLeft = myTopLeft;
 trace(rect.left); // 5
 trace(rect.top); // 15
 trace(rect.x); // 5
 trace(rect.y); // 15

See also

Point (flash.geom.Point), x (Rectangle.x property), y (Rectangle.y property)

toString (Rectangle.toString method)
 public toString() : String

Builds and returns a string that lists the horizontal and vertical positions and the width and height of the Rectangle

object.

Availability

Flash Lite 3.1

Returns

String - A string that lists the value of each of the following properties of the Rectangle object: x, y, width, and height.

Example

The following example concatenates a string representation of rect_1 with some helpful debugging text.

 import flash.geom.Rectangle;

 var rect_1:Rectangle = new Rectangle(0, 0, 50, 100);
 trace("Rectangle 1 : " + rect_1.toString()); // Rectangle 1 : (x=0, y=0, w=50, h=100)

See also

x (Rectangle.x property), y (Rectangle.y property), width (Rectangle.width property), height

(Rectangle.height property)

union (Rectangle.union method)
 public union(toUnion:Rectangle) : Rectangle

536FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Adds two rectangles together to create a new Rectangle object, by filling in the horizontal and vertical space between

the two rectangles.

Availability

Flash Lite 3.1

Parameters

toUnion:Rectangle - A Rectangle object to add to this Rectangle object.

Returns

Rectangle - A new Rectangle object that is the union of the two rectangles.

Example

The following example creates a Rectangle object out of the union of two others.

For example, consider a rectangle with properties x=20, y=50, width=60, and height=30 (20, 50, 60, 30), and a second

rectangle with properties (150, 130, 50, 30). The union of these two rectangles is a larger rectangle that encompasses

the two rectangles with the properties (20, 50, 180, 110).

 import flash.geom.Rectangle;

 var rect_1:Rectangle = new Rectangle(20, 50, 60, 30);
 var rect_2:Rectangle = new Rectangle(150, 130, 50, 30);
 var combined:Rectangle = rect_1.union(rect_2);
 trace(combined.toString()); // (x=20, y=50, w=180, h=110)

width (Rectangle.width property)
 public width : Number

The width of the rectangle in pixels. Changing the value of the width property of a Rectangle object has no effect on

the x, y, and height properties.

Availability

Flash Lite 3.1

537FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a Rectangle object and changes its width property from 10 to 20. Notice that

rect.right also changes.

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle(5, 5, 10, 10);
 trace(rect.width); // 10
 trace(rect.right); // 15

 rect.width = 20;
 trace(rect.width); // 20
 trace(rect.right); // 25

See also

x (Rectangle.x property), y (Rectangle.y property), height (Rectangle.height property)

x (Rectangle.x property)
 public x : Number

The x coordinate of the top-left corner of the rectangle. Changing the value of the x property of a Rectangle object has

no effect on the y, width, and height properties.

The x property is equal to the left property.

Availability

Flash Lite 3.1

Example

The following example creates an empty Rectangle and sets its x property to 10. Notice that rect.left is also changed.

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle();
 trace(rect.x); // 0
 trace(rect.left); // 0

 rect.x = 10;
 trace(rect.x); // 10
 trace(rect.left); // 10

See also

left (Rectangle.left property)

y (Rectangle.y property)
 public y : Number

The y coordinate of the top-left corner of the rectangle. Changing the value of the y property of a Rectangle object has

no effect on the x, width, and height properties.

The y property is equal to the top property.

538FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 3.1

Example

The following example creates an empty Rectangle and sets its y property to 10. Notice that rect.top is also changed.

 import flash.geom.Rectangle;

 var rect:Rectangle = new Rectangle();
 trace(rect.y); // 0
 trace(rect.top); // 0

 rect.y = 10;
 trace(rect.y); // 10
 trace(rect.top); // 10

See also

x (Rectangle.x property), width (Rectangle.width property), height (Rectangle.height

property)top (Rectangle.top property)

Security (System.security)

 Object
 |
 +-System.security

 public class security
 extends Object

The System.security class contains methods that specify how SWF files in different domains can communicate with

each other.

Availability

Flash Lite 2.0

Property summary

Properties inherited from class Object

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

539FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Method summary

Methods inherited from class Object

allowDomain (security.allowDomain method)
 public static allowDomain(domain1:String) : Void

Lets SWF files and HTML files in the identified domains access objects and variables in the calling SWF file or in any

other SWF file from the same domain as the calling SWF file.

In files playing in Flash Player 7 or later, the parameters passed must follow exact-domain naming rules. For example,

to allow access by SWF files hosted at either www.domain.com or store.domain.com, both domain names must be

passed:

 // For Flash Player 6
 System.security.allowDomain("domain.com");
 // Corresponding commands to allow access by SWF files
 // that are running in Flash Player 7 or later
 System.security.allowDomain("www.domain.com", "store.domain.com");

Also, for files running in Flash Player 7 or later, you can't use this method to let SWF files hosted using a secure

protocol (HTTPS) allow access from SWF files hosted in nonsecure protocols; you must use

System.security.allowInsecureDomain() instead.

Occasionally, you might encounter the following situation: You load a child SWF file from a different domain and

want to allow the child SWF file to script the parent SWF file, but you don't know the final domain from which the

child SWF file will originate. This can happen, for example, when you use load-balancing redirects or third-party

servers.

In this situation, you can use the MovieClip._url property as an argument to this method. For example, if you load

a SWF file into my_mc, you can call System.security.allowDomain(my_mc._url).

If you do this, be sure to wait until the SWF file in my_mc is loaded, because the _url property does not have its final,

correct value until the file is completely loaded. The best way to determine when a child SWF finishes loading is to use

MovieClipLoader.onLoadComplete.

Modifiers Signature Description

static allowDomain(domain1:S

tring) : Void
Lets SWF files and HTML files in the identified domains access

objects and variables in the calling SWF file or in any other SWF

file from the same domain as the calling SWF file.

static allowInsecureDomain(do
main:String) : Void

Lets SWF files and HTML files in the identified domains access

objects and variables in the calling SWF file, which is hosted

using the HTTPS protocol.

static loadPolicyFile(url:String

) : Void
Loads a cross-domain policy file from a location specified by

the url parameter.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

540FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The opposite situation can also occur; that is, you might create a child SWF file that wants to allow its parent to script

it, but doesn't know what the domain of its parent will be. In this situation, call

System.security.allowDomain(_parent._url) from the child SWF. In this situation, you don't have to wait for

the parent SWF file to load; the parent is already loaded by the time the child loads.

Availability

Flash Lite 2.0

Parameters

domain1:String - One or more strings that specify domains that can access objects and variables in the SWF file that

contains the System.Security.allowDomain() call. The domains can be formatted in the following ways:

• "domain.com"

• "http://domain.com"

• "http://IPaddress"

Example

The SWF file located at www.macromedia.com/MovieA.swf contains the following lines:

 System.security.allowDomain("www.shockwave.com");
 loadMovie("http://www.shockwave.com/MovieB.swf", my_mc);

Because MovieA contains the allowDomain() call, MovieB can access the objects and variables in MovieA. If MovieA

didn't contain this call, the Flash security implementation would prevent MovieB from accessing MovieA's objects and

variables.

See also

onLoadComplete (MovieClipLoader.onLoadComplete event listener), _parent (MovieClip._parent

property), _url (MovieClip._url property), allowInsecureDomain (security.allowInsecureDomain

method)

allowInsecureDomain (security.allowInsecureDomain method)
 public static allowInsecureDomain(domain:String) : Void

Lets SWF files and HTML files in the identified domains access objects and variables in the calling SWF file, which is

hosted using the HTTPS protocol. It also lets the SWF files in the identified domains access any other SWF files in the

same domain as the calling SWF file.

By default, SWF files hosted using the HTTPS protocol can be accessed only by other SWF files hosted using the

HTTPS protocol. This implementation maintains the integrity provided by the HTTPS protocol.

Adobe does not recommend using this method to override the default behavior because it compromises HTTPS

security. However, you might need to do so, for example, if you must permit access to HTTPS files published for Flash

Player 7 or later from HTTP files published for Flash Player 6.

A SWF file published for Flash Player 6 can use System.security.allowDomain() to permit HTTP to HTTPS

access. However, because security is implemented differently in Flash Player 7, you must use

System.Security.allowInsecureDomain() to permit such access in SWF files published for Flash Player 7 or later.

541FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Note: It is sometimes necessary to call System.security.allowInsecureDomain() with an argument that exactly

matches the domain of the SWF file in which this call appears. This is different from

System.security.allowDomain(), which is never necessary to call with a SWF file's own domain as an argument.

The reason this is sometimes necessary with System.security.allowInsecureDomain() is that, by default, a SWF

file at http://foo.com is not allowed to script a SWF file at https://foo.com, even though the domains are identical.

Availability

Flash Lite 2.0

Parameters

domain:String - An exact domain name, such as www.myDomainName.com or store.myDomainName.com.

Example

In the following example, you host a math test on a secure domain so that only registered students can access it. You

have also developed a number of SWF files that illustrate certain concepts, which you host on an insecure domain. You

want students to access the test from the SWF file that contains information about a concept.

 // This SWF file is at https://myEducationSite.somewhere.com/mathTest.swf
 // Concept files are at http://myEducationSite.somewhere.com
 System.security.allowInsecureDomain("myEducationSite.somewhere.com");

See also

allowDomain (security.allowDomain method)

loadPolicyFile (security.loadPolicyFile method)
 public static loadPolicyFile(url:String) : Void

Loads a cross-domain policy file from a location specified by the url parameter. Flash Lite player uses policy files as a

permission mechanism to permit Flash movies to load data from servers other than their own.

Flash Player 7.0.14.0 looked for policy files in only one location: /crossdomain.xml on the server to which a data-

loading request was being made. For an XMLSocket connection attempt, Flash Player 7.0.14.0 looked for

/crossdomain.xml on an HTTP server on port 80 in the subdomain to which the XMLSocket connection attempt was

being made. Flash Player 7.0.14.0 (and all earlier players) also restricted XMLSocket connections to ports 1024 and

later.

With the addition of System.security.loadPolicyFile(), Flash Player 7.0.19.0 can load policy files from arbitrary

locations, as shown in the following example:

 System.security.loadPolicyFile("http://foo.com/sub/dir/pf.xml");

This causes Flash player to retrieve a policy file from the specified URL. Any permissions granted by the policy file at

that location will apply to all content at the same level or lower in the virtual directory hierarchy of the server. The

following code continues the previous example:

 loadVariables("http://foo.com/sub/dir/vars.txt") // allowed
 loadVariables("http://foo.com/sub/dir/deep/vars2.txt") // allowed
 loadVariables("http://foo.com/elsewhere/vars3.txt") // not allowed

You can use loadPolicyFile() to load any number of policy files. When considering a request that requires a policy

file, Flash player always waits for the completion of any policy file downloads before denying a request. As a final

fallback, if no policy file specified with loadPolicyFile() authorizes a request, Flash player consults the original

default location, /crossdomain.xml.

542FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Using the xmlsocket protocol along with a specific port number, lets you retrieve policy files directly from an

XMLSocket server, as shown in the following example:

 System.security.loadPolicyFile("xmlsocket://foo.com:414");

This causes Flash player to attempt to retrieve a policy file from the specified host and port. Any port can be used, not

only ports 1024 and higher. Upon establishing a connection with the specified port, Flash player transmits <policy-

file-request />, terminated by a null byte. An XMLSocket server can be configured to serve both policy files and

normal XMLSocket connections over the same port, in which case the server should wait for <policy-file-request

/> before transmitting a policy file. A server can also be set up to serve policy files over a separate port from standard

connections, in which case it can send a policy file as soon as a connection is established on the dedicated policy file

port. The server must send a null byte to terminate a policy file, and may thereafter close the connection; if the server

does not close the connection, Flash player does so upon receiving the terminating null byte.

A policy file served by an XMLSocket server has the same syntax as any other policy file, except that it must also specify

the ports to which access is granted. When a policy file comes from a port lower than 1024, it can grant access to any

ports; when a policy file comes from port 1024 or higher, it can grant access only to other ports 1024 and higher. The

allowed ports are specified in a "to-ports" attribute in the <allow-access-from> tag. Single port numbers, port

ranges, and wildcards are all allowed. The following example shows an XMLSocket policy file:

 <cross-domain-policy>
 <allow-access-from domain="*" to-ports="507" />
 <allow-access-from domain="*.foo.com" to-ports="507,516" />
 <allow-access-from domain="*.bar.com" to-ports="516-523" />
 <allow-access-from domain="www.foo.com" to-ports="507,516-523" />
 <allow-access-from domain="www.bar.com" to-ports="*" />
 </cross-domain-policy>

A policy file obtained from the old default location—/crossdomain.xml on an HTTP server on port 80—implicitly

authorizes access to all ports 1024 and above. There is no way to retrieve a policy file to authorize XMLSocket

operations from any other location on an HTTP server; any custom locations for XMLSocket policy files must be on

an XMLSocket server.

Because the ability to connect to ports lower than 1024 is new, a policy file loaded with loadPolicyFile() must

always authorize this connection, even when a movie clip is connecting to its own subdomain.

Availability

Flash Lite 2.0

Parameters

url:String - A string; the URL where the cross-domain policy file to be loaded is located.

Selection

 Object
 |
 +-Selection

 public class Selection
 extends Object

The Selection class lets you set and control the text field in which the insertion point is located (that is, the field that has

focus). Selection-span indexes are zero-based (for example, the first position is 0, the second position is 1, and so on).

543FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

There is no constructor function for the Selection class, because there can be only one currently focused field at a time.

The Selection object is valid only when a device supports inline text entry. If a device does not support inline text entry,

and instead relies on an FEP (front-end processor) to enter text, all calls to the Selection object are ignored.

Availability

Flash Lite 2.0

Property summary

Properties inherited from class Object

Event summary

Method summary

Methods inherited from class Object

addListener (Selection.addListener method)
 public static addListener(listener:Object) : Void

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onSetFocus =
function([oldfocus]
, [newfocus]) {}

Notified when the input focus changes.

Modifiers Signature Description

static addListener(listener:
Object) : Void

Registers an object to receive keyboard focus change

notifications.

static getFocus() : String Returns a string specifying the target path of the object that

has focus.

static removeListener(listene
r:Object) : Boolean

Removes an object previously registered with the

Selection.addListener() method.

static setFocus(newFocus:Obj

ect) : Boolean

Gives focus to the selectable (editable) text field, button, or

movie clip, that the newFocus parameter specifies.

static setSelection(beginInde
x:Number,
endIndex:Number) :
Void

Sets the selection span of the currently focused text field.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

544FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Registers an object to receive keyboard focus change notifications. When the focus changes (for example, whenever

the Selection.setFocus() method is invoked), all listening objects registered with addListener() have their

onSetFocus() method invoked. Multiple objects can listen for focus change notifications. If the specified listener is

already registered, no change occurs.

Availability

Flash Lite 2.0

Parameters

listener:Object - A new object with an onSetFocus method.

Example

In the following example, you create two input text fields at runtime, setting the borders for each text field to true.

This code creates a new (generic) ActionScript object named focusListener. This object defines for itself an

onSetFocus property, to which it assigns a function. The function takes two parameters: a reference to the text field

that lost focus, and one to the text field that gained focus. The function sets the border property of the text field that

lost focus to false, and sets the border property of the text field that gained focus to true:

 this.createTextField("one_txt", 99, 10, 10, 200, 20);
 this.createTextField("two_txt", 100, 10, 50, 200, 20);
 one_txt.border = true;
 one_txt.type = "input";
 two_txt.border = true;
 two_txt.type = "input";

 var focusListener:Object = new Object();
 focusListener.onSetFocus = function(oldFocus_txt, newFocus_txt) {
 oldFocus_txt.border = false;
 newFocus_txt.border = true;
 };
 Selection.addListener(focusListener);

See also

setFocus (Selection.setFocus method)

getFocus (Selection.getFocus method)
 public static getFocus() : String

Returns a string specifying the target path of the object that has focus.

• If a TextField object has focus, and the object has an instance name, the getFocus() method returns the target path

of the TextField object. Otherwise, it returns the TextField variable name.

• If a Button object or button movie clip has focus, the getFocus() method returns the target path of the Button

object or button movie clip.

• If neither a TextField object, Button object, Component instance, nor button movie clip has focus, the getFocus()

method returns null.

Availability

Flash Lite 2.0

545FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns

String - A string or null.

Example

The following example creates a text field to output the path of the currently focused object. It then uses an interval

function to periodically update the field. To test this, add several button instances to the stage with different instance

names, and then add the following ActionScript to your AS or FLA file.

 this.createTextField("status_txt", this.getNextHighestDepth(), 0, 0, 150, 25);

 function FocusUpdate()
 {
 s = Selection.getFocus();
 if (s)
 {
 status_txt.text = s;
 }
 }

 setInterval(FocusUpdate, 100);

See also

onSetFocus (Selection.onSetFocus event listener), setFocus (Selection.setFocus method)

onSetFocus (Selection.onSetFocus event listener)
 onSetFocus = function([oldfocus], [newfocus]) {}

Notified when the input focus changes. To use this listener, you must create a listener object. You can then define a

function for this listener and use the Selection.addListener() method to register the listener with the Selection

object, as in the following code:

 var someListener:Object = new Object();
 someListener.onSetFocus = function () {
 // statements
 }
 Selection.addListener(someListener);

Listeners enable different pieces of code to cooperate because multiple listeners can receive notification about a single

event.

Availability

Flash Lite 2.0

Parameters

oldfocus: [optional] - The object losing focus.

newfocus: [optional] - The object receiving focus.

Example

The following example demonstrates how to determine when input focus changes in a SWF file between several

dynamically created text fields. Enter the following ActionScript into a FLA or AS file and then test the document:

546FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("one_txt", 1, 0, 0, 100, 22);
 this.createTextField("two_txt", 2, 0, 25, 100, 22);
 this.createTextField("three_txt", 3, 0, 50, 100, 22);
 this.createTextField("four_txt", 4, 0, 75, 100, 22);

 for (var i in this) {
 if (this[i] instanceof TextField) {
 this[i].border = true;
 this[i].type = "input";
 }
 }

 this.createTextField("status_txt", this.getNextHighestDepth(), 200, 10, 300, 100);
 status_txt.html = true;
 status_txt.multiline = true;

 var someListener:Object = new Object();
 someListener.onSetFocus = function(oldFocus, newFocus) {
 status_txt.htmlText = "setFocus triggered";
 status_txt.htmlText += "<textformat tabStops='[20,80]'>";
 status_txt.htmlText += " \toldFocus:\t"+oldFocus;
 status_txt.htmlText += " \tnewFocus:\t"+newFocus;
 status_txt.htmlText += " \tgetFocus:\t"+Selection.getFocus();
 status_txt.htmlText += "</textformat>";
 };
 Selection.addListener(someListener);

See also

addListener (Selection.addListener method), setFocus (Selection.setFocus method)

removeListener (Selection.removeListener method)
 public static removeListener(listener:Object) : Boolean

Removes an object previously registered with the Selection.addListener() method.

Availability

Flash Lite 2.0

Parameters

listener:Object - The object that no longer receives focus notifications.

Returns

Boolean - If the listener object was successfully removed, the method returns a true value. If the listener object was

not successfully removed—for example, if listener was not on the Selection object's listener list—the method returns

a value of false.

Example

The following ActionScript dynamically creates several text field instances. When you select a text field, information

appears in the Output panel. When you click the remove_btn instance, the listener is removed and information no

longer appears in the Output panel.

547FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("one_txt", 1, 0, 0, 100, 22);
 this.createTextField("two_txt", 2, 0, 25, 100, 22);
 this.createTextField("three_txt", 3, 0, 50, 100, 22);
 this.createTextField("four_txt", 4, 0, 75, 100, 22);

 for (var i in this) {
 if (this[i] instanceof TextField) {
 this[i].border = true;
 this[i].type = "input";
 }
 }

 var selectionListener:Object = new Object();
 selectionListener.onSetFocus = function(oldFocus, newFocus) {
 trace("Focus shifted from "+oldFocus+" to "+newFocus);
 };
 Selection.addListener(selectionListener);

 remove_btn.onRelease = function() {
 trace("removeListener invoked");
 Selection.removeListener(selectionListener);
 };

See also

addListener (Selection.addListener method)

setFocus (Selection.setFocus method)
 public static setFocus(newFocus:Object) : Boolean

Gives focus to the selectable (editable) text field, button, or movie clip, that the newFocus parameter specifies. You can

use dot or slash notation to specify the path. You can also use a relative or absolute path. If you are using ActionScript

2.0, you must use dot notation.

If null is passed, the current focus is removed.

Availability

Flash Lite 2.0

Parameters

newFocus:Object - An object such as a button, movie clip, or text field instance, or a string specifying the path to a

button, movie clip, or text field instance.

Returns

Boolean - A Boolean value; true if the focus attempt is successful, false if it fails.

Example

In the following example, the text field focuses on the username_txt text field when it is running in a browser window.

If the user does not fill in one of the required text fields (username_txt and password_txt), the cursor automatically

focuses in the text field that is missing data. For example, if the user does not type anything into the username_txt

text field and clicks the submit button, an error message appears and the cursor focuses in the username_txt text field.

548FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("status_txt", this.getNextHighestDepth(), 100, 70, 100, 22);
 this.createTextField("username_txt", this.getNextHighestDepth(), 100, 100, 100, 22);
 this.createTextField("password_txt", this.getNextHighestDepth(), 100, 130, 100, 22);
 this.createEmptyMovieClip("submit_mc", this.getNextHighestDepth());
 submit_mc.createTextField("submit_txt", this.getNextHighestDepth(), 100, 160, 100, 22);
 submit_mc.submit_txt.autoSize = "center";
 submit_mc.submit_txt.text = "Submit";
 submit_mc.submit_txt.border = true;
 submit_mc.onRelease = checkForm;
 username_txt.border = true;
 password_txt.border = true;
 username_txt.type = "input";
 password_txt.type = "input";
 password_txt.password = true;
 Selection.setFocus("username_txt");
 fscommand("activateTextField");
 //
 function checkForm():Boolean {
 if (username_txt.text.length == 0) {
 status_txt.text = "fill in username";
 Selection.setFocus("username_txt");
 fscommand("activateTextField");
 return false;
 }
 if (password_txt.text.length == 0) {
 status_txt.text = "fill in password";
 Selection.setFocus("password_txt");
 fscommand("activateTextField");
 return false;
 }
 status_txt.text = "success!";
 Selection.setFocus(null);
 return true;
 }

See also

getFocus (Selection.getFocus method)

setSelection (Selection.setSelection method)
 public static setSelection(beginIndex:Number, endIndex:Number) : Void

Sets the selection span of the currently focused text field. The new selection span begins at the index specified in the

beginIndex parameter, and ends at the index specified in the endIndex parameter. Selection span indexes are zero-

based (for example, the first position is 0, the second position is 1, and so on). This method has no effect if no text field

currently has focus. When you call the setSelection() method and a text control has focus, the selection highlight

is drawn only when the text field is being actively edited. The setSelection() method can be invoked after

Selection.setFocus() or from within an onSetFocus() event handler, but any selection is visible only following a

call to the fscommand activateTextField command.

Availability

Flash Lite 2.0

549FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

beginIndex:Number - The beginning index of the selection span.

endIndex:Number - The ending index of the selection span.

Example

The following ActionScript code creates a text field at runtime and adds a string to it. Then it assigns an event handler

for the onSetFocus event that selects all the text in the text field and activates the editing session.

Note: If the Selection.setSelection() method is called, the text is not drawn on screen until the text field is

activated (following a call to the fscommand activateTextField command).

 this.createTextField("myText_txt", 99, 10, 10, 200, 30);
 myText_txt.type = "input";
 myText_txt.text = "this is my text";
 myText_txt.onSetFocus = function(){
 Selection.setSelection(0,myText_txt.text.length);
 fscommand("activateTextField");
 }

The following example illustrates how the endIndex parameter is not inclusive. In order to select the first character,

you must use an endIndex of 1, not 0. If you change the endIndex parameter to 0, nothing will be selected.

 this.createTextField("myText_txt", 99, 10, 10, 200, 30);
 myText_txt.text = "this is my text";
 this.onEnterFrame = function () {
 Selection.setFocus("myText_txt");
 Selection.setSelection(0, 1);
 delete this.onEnterFrame;
 }

SharedObject

 Object
 |
 +-SharedObject

 public dynamic class SharedObject
 extends Object

The Flash Lite version of the SharedObject class allows Flash SWF files to save data to the device when it is closed and

load that data from the device when it is played again. Flash Lite shared objects store a set of name-value pairs to the

device.

Note: The name "SharedObject" is derived from the Flash SharedObject class. The Flash version of this class allows

multiple Flash SWF files to share their saved data. However, versions of Flash Lite earlier than Flash Lite 3.1.5 do not

support sharing data between different SWF files. Flash Lite 3.1.5 does allow multiple SWF files to share their saved data.

In Flash Lite, a SWF file is considered to be a different version if it was modified from the original version, even if it

has the same name. This is different than in Flash player, where a SWF file is considered to be the same if its URL and

name are the same, even if the SWF file was modified.

To maintain consistency with the Flash platform, the same ActionScript construct and calling conventions are used

for the Flash Lite player.

550FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The following examples describe the potential of using shared objects:

• A Flash application can be used as a user interface for a service that enables the user to search used car listings. The

application connects to a server that provides listings of cars based on the search terms and preferences that the user

enters. The Flash application can save the last search the user made and prefill the forms the next time the SWF file

is played. To do this, you create a SharedObject instance that stores search parameters each time the user makes a

new search. When the SWF file closes, the player saves the data in the shared object to the device. The next time the

SWF file plays, the Flash Lite player loads the shared object and prefills the search form with the same search data

the user entered the previous time.

• A Flash application can be used as a user interface for a service that allows users to search for music reviews. The

application lets users store information about their favorite albums. The information can be stored on the remote

server, but this causes problems if the application cannot connect to the service. Also, retrieving the data from a

remote service can be slow and detract from the user experience. Shared objects enable the application to store

information about the albums to the device and load it quickly when needed.

Note: Because space is limited on mobile devices, the data is not completely persistent; in some situations, the platform

could delete the oldest data from the device.

To create a local shared object, use the following syntax:

 var so:shared object = shared object.getLocal("mySharedObject");

Reading and writing data on a handset can be slow. To ensure that data is immediately available when the application

requests it from the device, Flash Lite 2.0 requires you to set up a listener. The player invokes the listener when the

device has loaded the shared object's data. Methods that access the SharedObject instance returned by the call to

getLocal() should wait until the listener is invoked before attempting any operations.

Availability

Flash Lite 2.0

Example

In the following example, a SWF file creates a listener function named Prefs and then creates a shared object. The

player calls the loadCompletePrefs function when the data is available.

 function loadCompletePrefs (mySO:SharedObject) {
 if (0 == mySO.getSize())
 {
 // If the size is 0, we need to initialize the data:
 mySO.data.name = "Sigismund";
 mySO.data.email = "siggy@macromedia.com";
 }
 else
 {
 // Trace all the data in mySO:
 trace("Prefs:");
 for (var idx in mySO.data) {
 trace(" " + idx +": " + mySO.data[idx]);
 }
 }
 }

 SharedObject.addListener("Prefs", loadCompletePrefs);

 // We can now create the shared object:
 var Prefs:SharedObject = SharedObject.getLocal("Prefs");

551FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

When the player has notified the listener that the data is available, the application can use the shared object returned

from the call to the getLocal() method in the same way a shared object is used in Flash. The application can add,

modify, or remove properties while the content is playing. When the content is unloaded, the shared object might be

written to the device; however, to guarantee that the shared object will be written to the device, the application must

force a write operation by calling the flush() method.

Flash Lite shared objects are available only to locally stored SWF files. SWF files playing back in a network-enabled

browser cannot use Flash Lite shared objects.

The total amount of storage for Flash Lite shared objects per SWF file is limited by the device to a predetermined size.

You can determine this size by using the SharedObject.getMaxSize() method.

Note: Remote shared objects are not supported in Flash Lite 2.0.

See also

flush (SharedObject.flush method), onStatus (SharedObject.onStatus handler)

Property summary

Properties inherited from class Object

Event summary

Method summary

Modifiers Property Description

 data:Object The collection of attributes assigned to the data property of

the object.

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onStatus =
function(infoObject
:Object) {}

Invoked every time an error, warning, or informational note is posted for a shared

object.

Modifiers Signature Description

static addListener(objectName
:String,
notifyFunction:Functi

on) : Void

Creates an event listener that the Flash Lite player invokes

when the player has loaded the shared object data from the

device.

 clear() : Void Purges all the data from the shared object and deletes the

shared object from the disk.

 flush(minDiskSpace:Nu

mber) : Object

Writes shared object to a local, persistent file.

static getLocal(name:String) :
SharedObject

Returns a reference to a locally persistent shared object that is

available only to the current client.

552FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Methods inherited from class Object

addListener (SharedObject.addListener method)
 public static addListener(objectName:String, notifyFunction:Function) : Void

Creates an event listener that the Flash Lite player invokes when the player has loaded the shared object data from the

device. Methods that access the SharedObject instance that the call returns to the getLocal() method should wait

until this function is invoked before attempting any operations.

Availability

Flash Lite 2.0

Parameters

objectName:String - A string that represents the name of the shared object.

notifyFunction:Function - The name of a function the player calls to notify the application that the getLocal()

method has executed and the data is finished loading.

clear (SharedObject.clear method)
 public clear() : Void

Purges all the data from the shared object and deletes the shared object from the disk. The reference to my_so is still

active, and my_so is now empty.

Availability

Flash Lite 2.0

Example

The following example sets data in the shared object, and then empties all of the data from the shared object:

static getMaxSize() : Number Returns the total number of bytes the SWF file can use to store

mobile shared objects on the device.

 getSize() : Number Gets the current size of the shared object, in bytes.

static removeListener(objectN
ame:String)

Removes any listeners that were added using the

addListener() method.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

Modifiers Signature Description

553FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_so:SharedObject = SharedObject.getLocal("superfoo");
 my_so.data.name = "Hector";
 trace("before my_so.clear():");
 for (var prop in my_so.data) {
 trace("\t"+prop);
 }
 trace("");
 my_so.clear();
 trace("after my_so.clear():");
 for (var prop in my_so.data) {
 trace("\t"+prop);
 }

This ActionScript displays the following message in the Output panel:

 before my_so.clear():
 name

 after my_so.clear():

data (SharedObject.data property)
 public data : Object

The collection of attributes assigned to the data property of the object. Each attribute can be an object of any basic

ActionScript or JavaScript type—Array, Number, Boolean, and so on. For example, the following lines assign values

to various aspects of a shared object.

Note: For Flash Lite, if the shared object listener has not been invoked, the data property could contain undefined

values. For details, see the description of the addListener() method.

 var items_array:Array = new Array(101, 346, 483);
 var currentUserIsAdmin:Boolean = true;
 var currentUserName:String = "Ramona";

 var my_so:SharedObject = SharedObject.getLocal("superfoo");
 my_so.data.itemNumbers = items_array;
 my_so.data.adminPrivileges = currentUserIsAdmin;
 my_so.data.userName = currentUserName;

 for (var prop in my_so.data) {
 trace(prop+": "+my_so.data[prop]);
 }

 soResult = "";
 for (var prop in my_so.data) {
 soResult += prop+": "+my_so.data[prop] +"\n";
 }
 result.text = soResult;

All attributes of a shared object's data property are saved if the object is persistent and the shared object contains the

following information:

 userName: Ramona
 adminPrivileges: true
 itemNumbers: 101,346,483

Note: Do not assign values directly to the data property of a shared object (for example, so.data = someValue).

Flash ignores these assignments.

554FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

To delete attributes for local shared objects, use code such as delete so.data.attributeName; setting an attribute

to null or undefined for a local shared object does not delete the attribute.

To create private values for a shared object—values that are available only to the client instance while the object is in

use and are not stored with the object when it is closed—create properties that are not named data to store them, as

shown in the following example:

 var my_so:SharedObject = SharedObject.getLocal("superfoo");
 my_so.favoriteColor = "blue";
 my_so.favoriteNightClub = "The Bluenote Tavern";
 my_so.favoriteSong = "My World is Blue";

 for (var prop in my_so) {
 trace(prop+": "+my_so[prop]);
 }

The shared object contains the following data:

 favoriteSong: My World is Blue
 favoriteNightClub: The Bluenote Tavern
 favoriteColor: blue
 data: [object Object]

Availability

Flash Lite 2.0

Example

The following example saves text to a shared object named my_so (for the complete example, see

SharedObject.getLocal()):

 var my_so:SharedObject = SharedObject.getLocal("savedText");

 // myText is an input text field and inputText is a dynamic text field.
 myText.text = my_so.data.myTextSaved;
 // Assign an empty string to myText_ti if the shared object is undefined
 // to prevent the text input box from displaying "undefined" when
 // this script is first run.
 if (myText.text == "undefined") {
 myText.text = "";
 }

 changedListener = new Object();
 changedListener.onChanged = function (changedField) {
 my_so.data.myTextSaved = changedField.text;
 inputText.text = "";
 inputText.text = my_so.data.myTextSaved;
 }
 myText.addListener(changedListener);

flush (SharedObject.flush method)
 public flush(minDiskSpace:Number) : Object

Writes shared object to a local, persistent file. To guarantee that the shared object will be written to the device, the

application must force a write operation by calling the flush() method.

Unlike in Flash Player, the write operation is asynchronous and the result is not immediately available.

555FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Parameters

minDiskSpace:Number - An integer specifying the number of bytes that must be allotted for this object. The default

value is 0.

Returns

Object - A Boolean value, true or false; or a string value of "pending". The flush() method returns pending for

most requests, with the following exceptions:

• If there is no need to write data (that is, the data has already been written), flush() returns true.

• If the minimumDiskSpace parameter exceeds the maximum space available for a SWF file, or the remaining space

available for a SWF file, or if there was an error processing the request, flush() returns false.

If the flush() method returns pending, the Flash Lite player can show a dialog box asking the user to free up space

to increase the amount of disk space available to shared objects. To allow space for the shared object to expand when

it is saved in the future, which avoids return values of pending , you can pass a value for minimumDiskSpace. When

the Flash Lite player tries to write the file, it searches for the number of bytes passed to minimumDiskSpace, instead of

searching for enough space to save the shared object at its current size.

Example

The following example handles the possible return values for the flush() method:

 so_big = SharedObject.getLocal("large");

 so_big.data.name = "This is a long string of text.";
 so_big.flush();
 var flushResult = so_big.flush();

 switch (flushResult) {
 case 'pending' :
 result.text += "pending";
 break;
 case true :
 result.text += "Data was flushed.";
 break;
 case false :
 result.text += "Test failed. Data was not flushed.";
 break;
 }

See also

clear (SharedObject.clear method), onStatus (SharedObject.onStatus handler)

getLocal (SharedObject.getLocal method)
 public static getLocal(name:String) : SharedObject

Returns a reference to a locally persistent shared object that is available only to the current client. If the shared object

does not already exist, getLocal() creates one. This method is a static method of the SharedObject class.

Note: In Flash Lite versions earlier than 3.1.5, a shared object cannot be shared between two SWF files.

556FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

To assign the object to a variable, use syntax like the following

var so:SharedObject = SharedObject.getLocal("savedData")

Because the data may not be immediately available for reading on the device, the application must create and register

a listener for the shared object identified by name. For details, see the description of the addListener() method.

Availability

Flash Lite 2.0

Parameters

name:String - A string that represents the name of the object. The name can include forward slashes (/); for example,

work/addresses is a valid name. Spaces are not allowed in a shared object name, nor are the following characters:

 ~ % & \ ; : " ' , < > ? #

Returns

SharedObject - A reference to a shared object that is persistent locally and is available only to the current client. If Flash

can't create or find the shared object, getLocal() returns null.

This method fails and returns null if persistent shared object creation and storage by third-party Flash content is

prohibited by the device.

Example

The following example saves the last frame that a user entered to a local shared object named kookie:

 // Get the kookie
 var my_so:SharedObject = SharedObject.getLocal("kookie");

 // Get the user of the kookie and go to the frame number saved for this user.
 if (my_so.data.user != undefined) {
 this.user = my_so.data.user;
 this.gotoAndStop(my_so.data.frame);
 }

The following code block is placed on each SWF file frame:

 // On each frame, call the rememberme function to save the frame number.
 function rememberme() {
 my_so.data.frame=this._currentframe;
 my_so.data.user="John";
 }

getMaxSize (SharedObject.getMaxSize method)
 public static getMaxSize() : Number

Returns the total number of bytes the SWF file can use to store mobile shared objects on the device.

For example, if this method returns 1K, the movie can save one shared object of 1K, or multiple smaller shared objects,

as long as their combined size does not exceed 1K. This method is a static method of the SharedObject class.

Availability

Flash Lite 2.0

557FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns

Number - A numeric value that specifies the total number of bytes the movie is allowed to store on the device. This is

also the size available to all content that is loaded dynamically through loadMovie().

Example

The following example checks whether more than 1KB of storage is reserved before creating a Flash Lite shared object.

 if (SharedObject.getMaxSize() > 1024) {
 var my_so:SharedObject = SharedObject.getLocal("sharedObject1");
 } else {
 trace("SharedObject's maximum size is less than 1 KB.");
 }

getSize (SharedObject.getSize method)
 public getSize() : Number

Gets the current size of the shared object, in bytes.

Flash calculates the size of a shared object by stepping through all of its data properties; the more data properties the

object has, the longer it takes to estimate its size. Estimating object size can take significant processing time, so you

may want to avoid using this method unless you have a specific need for it.

If the shared object listener has not yet been called, getSize() returns 0. For details about using the listener, see the

addListener() method.

Availability

Flash Lite 2.0

Returns

Number - A numeric value specifying the size of the shared object, in bytes.

Example

The following example gets the size of the shared object my_so:

 var items_array:Array = new Array(101, 346, 483);
 var currentUserIsAdmin:Boolean = true;
 var currentUserName:String = "Ramona";

 var my_so:SharedObject = SharedObject.getLocal("superfoo");
 my_so.data.itemNumbers = items_array;
 my_so.data.adminPrivileges = currentUserIsAdmin;
 my_so.data.userName = currentUserName;

 var soSize:Number = my_so.getSize();
 trace(soSize);

onStatus (SharedObject.onStatus handler)
 onStatus = function(infoObject:Object) {}

Invoked every time an error, warning, or informational note is posted for a shared object. To respond to this event

handler, you must create a function to process the information object that is generated by the shared object.

558FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The information object has a code property that contains a string that describes the result of the onStatus handler,

and a level property that contains a string that is either "Status" or "Error".

In addition to this handler, Flash Lite also provides a super function called System.onStatus. If onStatus is invoked

for a particular object and no function is assigned to respond to it, Flash Lite processes a function assigned to

System.onStatus, if it exists.

The following events notify you when certain SharedObject activities occur:

Availability

Flash Lite 2.0

Parameters

infoObject:Object - A parameter defined according to the status message.

Example

The following example displays different messages based on whether the user chooses to allow or deny the

SharedObject instance to write to the disk.

Code property Level property Meaning

SharedObject.Flush.Fai
led

Error SharedObject.flush() method that

returned "pending" has failed (the user did

not allot additional disk space for the shared

object when Flash Lite player showed the Local

Storage Settings dialog box).

SharedObject.Flush.Suc
cess

Status SharedObject.flush() method that

returned "pending" was successfully

completed (the user allotted additional disk

space for the shared object).

559FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("message_txt", this.getNextHighestDepth(), 0, 30, 120, 50);
 this.message_txt.wordWrap = true;

 this.createTextField("status_txt", this.getNextHighestDepth(), 0, 90, 120, 100);
 this.status_txt.wordWrap = true;

 var items_array:Array = new Array(101, 346, 483);
 var currentUserIsAdmin:Boolean = true;
 var currentUserName:String = "Ramona";
 var my_so:SharedObject = SharedObject.getLocal("superfoo");
 my_so.data.itemNumbers = items_array;
 my_so.data.adminPrivileges = currentUserIsAdmin;
 my_so.data.userName = currentUserName;

 my_so.onStatus = function(infoObject:Object) {
 for (var i in infoObject) {
 status_txt.text += i+"-"+infoObject[i] +"\n";
 }
 };

 var flushResult = my_so.flush(1000001);
 switch (flushResult) {
 case 'pending' :
 message_txt.text = "flush is pending, waiting on user interaction.";
 break;
 case true :
 message_txt.text = "flush was successful. Requested storage space approved.";
 break;
 case false :
 message_txt.text = "flush failed. User denied request for additional storage.";
 break;
 }

See also

onStatus (System.onStatus handler)

removeListener (SharedObject.removeListener method)
 public static removeListener(objectName:String)

Removes any listeners that were added using the addListener() method.

Availability

Flash Lite 2.0

Parameters

objectName:String - A string that represents the name of the shared object.

560FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Sound

 Object
 |
 +-Sound

 public class Sound
 extends Object

The Sound class lets you control sound in a movie. You can add sounds to a movie clip from the library while the movie

is playing and control those sounds. If you do not specify a target when you create a new Sound object, you can use the

methods to control sound for the whole movie.

You must use the constructor new Sound to create a Sound object before calling the methods of the Sound class.

Availability

Flash Lite 2.0

Property summary

Properties inherited from class Object

Event summary

Constructor summary

Modifiers Property Description

 duration:Number [read-

only]

The duration of a sound, in milliseconds.

 id3:Object [read-only] Provides access to the metadata that is part of an MP3 file.

 position:Number [read-

only]

The number of milliseconds a sound has been playing.

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onID3 = function()
{}

Invoked each time new ID3 data is available for an MP3 file that you load using

Sound.attachSound() or Sound.loadSound().

onLoad =
function(success:Bo

olean) {}

Invoked automatically when a sound loads.

onSoundComplete =
function() {}

Invoked automatically when a sound finishes playing.

Signature Description

Sound([target:Object

])
Creates a new Sound object for a specified movie clip.

561FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Method summary

Methods inherited from class Object

attachSound (Sound.attachSound method)
 public attachSound(id:String) : Void

Attaches the sound specified in the id parameter to the specified Sound object. The sound must be in the library of the

current SWF file and specified for export in the Linkage Properties dialog box. You must call Sound.start() to start

playing the sound.

To make sure that the sound can be controlled from any scene in the SWF file, place the sound on the main Timeline

of the SWF file.

Modifiers Signature Description

 attachSound(id:String)
: Void

Attaches the sound specified in the id parameter to the

specified Sound object.

 getBytesLoaded() :
Number

Returns the number of bytes loaded (streamed) for the

specified Sound object.

 getBytesTotal() :
Number

Returns the size, in bytes, of the specified Sound object.

 getPan() : Number Returns the pan level set in the last setPan() call as an integer

from -100 (left) to +100 (right).

 getTransform() : Object Returns the sound transform information for the specified

Sound object set with the last Sound.setTransform() call.

 getVolume() : Number Returns the sound volume level as an integer from 0 to 100,

where 0 is off and 100 is full volume.

 loadSound(url:String,
isStreaming:Boolean)
: Void

Loads an MP3 file into a Sound object.

 setPan(value:Number)
: Void

Determines how the sound is played in the left and right

channels (speakers).

 setTransform(transform
Object:Object) : Void

Sets the sound transform (or balance) information, for a Sound

object.

 setVolume(value:Numb

er) : Void
Sets the volume for the Sound object.

 start([secondOffset:N

umber],
[loops:Number]) :
Void

Starts playing the last attached sound from the beginning if no

parameter is specified, or starting at the point in the sound

specified by the secondOffset parameter.

 stop([linkageID:String

]) : Void
Stops all sounds currently playing if no parameter is specified,

or just the sound specified in the idName parameter.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

562FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Parameters

id:String - The identifier of an exported sound in the library. The identifier is located in the Linkage Properties dialog box.

Example

The following example attaches the sound logoff_id to my_sound. A sound in the library has the linkage identifier

logoff_id.

 var my_sound:Sound = new Sound();
 my_sound.attachSound("logoff_id");
 my_sound.start();

duration (Sound.duration property)
 public duration : Number [read-only]

The duration of a sound, in milliseconds.

Note: Flash Lite 2.0 supports this property for native Flash sound only. The sound formats that are specific to a host

device are not supported.

Availability

Flash Lite 2.0

Example

The following example loads a sound and displays the duration of the sound file in the Output panel. Add the following

ActionScript to your FLA or AS file:

 var my_sound:Sound = new Sound();
 my_sound.onLoad = function(success:Boolean) {
 var totalSeconds:Number = this.duration/1000;
 trace(this.duration+" ms ("+Math.round(totalSeconds)+" seconds)");
 var minutes:Number = Math.floor(totalSeconds/60);
 var seconds = Math.floor(totalSeconds)%60;
 if (seconds<10) {
 seconds = "0"+seconds;
 }
 trace(minutes+":"+seconds);
 };
 my_sound.loadSound("song1.mp3", true);

The following example loads several songs into a SWF file. A progress bar, created using the Drawing API, displays the

loading progress. When the music starts and completes loading, information displays in the Output panel. When the

music starts and completes loading, information writes to the log file. Add the following ActionScript to your FLA or

AS file:

563FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var pb_height:Number = 10;
 var pb_width:Number = 100;
 var pb:MovieClip = this.createEmptyMovieClip("progressBar_mc", this.getNextHighestDepth());
 pb.createEmptyMovieClip("bar_mc", pb.getNextHighestDepth());
 pb.createEmptyMovieClip("vBar_mc", pb.getNextHighestDepth());
 pb.createEmptyMovieClip("stroke_mc", pb.getNextHighestDepth());
 pb.createTextField("pos_txt", pb.getNextHighestDepth(), 0, pb_height, pb_width, 22);

 pb._x = 100;
 pb._y = 100;

 with (pb.bar_mc) {
 beginFill(0x00FF00);
 moveTo(0, 0);
 lineTo(pb_width, 0);
 lineTo(pb_width, pb_height);
 lineTo(0, pb_height);
 lineTo(0, 0);
 endFill();
 _xscale = 0;
 }
 with (pb.vBar_mc) {
 lineStyle(1, 0x000000);
 moveTo(0, 0);
 lineTo(0, pb_height);
 }
 with (pb.stroke_mc) {
 lineStyle(3, 0x000000);
 moveTo(0, 0);
 lineTo(pb_width, 0);
 lineTo(pb_width, pb_height);
 lineTo(0, pb_height);
 lineTo(0, 0);
 }

 var my_interval:Number;
 var my_sound:Sound = new Sound();
 my_sound.onLoad = function(success:Boolean) {
 if (success) {
 trace("sound loaded");
 }
 };
 my_sound.onSoundComplete = function() {
 clearInterval(my_interval);
 trace("Cleared interval");
 }
 my_sound.loadSound("song3.mp3", true);
 my_interval = setInterval(updateProgressBar, 100, my_sound);

 function updateProgressBar(the_sound:Sound):Void {
 var pos:Number = Math.round(the_sound.position/the_sound.duration 100);
 pb.bar_mc._xscale = pos;
 pb.vBar_mc._x = pb.bar_mc._width;
 pb.pos_txt.text = pos+"%";
 }

564FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

position (Sound.position property)

getBytesLoaded (Sound.getBytesLoaded method)
 public getBytesLoaded() : Number

Returns the number of bytes loaded (streamed) for the specified Sound object. You can compare the value of

getBytesLoaded() with the value of getBytesTotal() to determine what percentage of a sound has loaded.

Availability

Flash Lite 2.0

Returns

Number - An integer indicating the number of bytes loaded.

Example

The following example dynamically creates two text fields that display the bytes that are loaded and the total number

of bytes for a sound file that loads into the SWF file. A text field also displays a message when the file finishes loading.

Add the following ActionScript to your FLA or AS file:

 this.createTextField("message_txt", this.getNextHighestDepth(), 10,10,300,22)
 this.createTextField("status_txt", this.getNextHighestDepth(), 10, 50, 300, 40);
 status_txt.autoSize = true;
 status_txt.multiline = true;
 status_txt.border = false;

 var my_sound:Sound = new Sound();
 my_sound.onLoad = function(success:Boolean) {
 if (success) {
 this.start();
 message_txt.text = "Finished loading";
 }
 };
 my_sound.onSoundComplete = function() {
 message_txt.text = "Clearing interval";
 clearInterval(my_interval);
 };
 my_sound.loadSound("song2.mp3", true);
 var my_interval:Number;
 my_interval = setInterval(checkProgress, 100, my_sound);
 function checkProgress(the_sound:Sound):Void {
 var pct:Number = Math.round(the_sound.getBytesLoaded()/the_sound.getBytesTotal() 100);
 var pos:Number = Math.round(the_sound.position/the_sound.duration 100);
 status_txt.text = the_sound.getBytesLoaded()+" of "+the_sound.getBytesTotal()+" bytes
("+pct+"%)"+newline;
 status_txt.text += the_sound.position+" of "+the_sound.duration+" milliseconds
("+pos+"%)"+newline;
 }

See also

getBytesTotal (Sound.getBytesTotal method)

565FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

getBytesTotal (Sound.getBytesTotal method)
 public getBytesTotal() : Number

Returns the size, in bytes, of the specified Sound object.

Availability

Flash Lite 2.0

Returns

Number - An integer indicating the total size, in bytes, of the specified Sound object.

Example

For a sample usage of this method, see Sound.getBytesLoaded().

See also

getBytesLoaded (Sound.getBytesLoaded method)

getPan (Sound.getPan method)
 public getPan() : Number

Returns the pan level set in the last setPan() call as an integer from -100 (left) to +100 (right). (0 sets the left and right

channels equally.) The pan setting controls the left-right balance of the current and future sounds in a SWF file.

This method is cumulative with setVolume() or setTransform().

Note: Flash Lite 2.0 supports this method for native Flash sound only. The sound formats that are specific to a host

device are not supported.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example creates a text field to display the value of the pan level for native Flash sound. The linkage

identifier for the sound is "combo". Add the following ActionScript to your FLA or AS file:

 this.createTextField("pan_txt", 1, 0, 100, 100, 100);
 mix=new Sound();
 mix.attachSound("combo");
 mix.start();
 mix.setPan(-100);
 pan_txt.text = mix.getPan(this);

You can use the following example to start the device sound. Because Flash Lite does not support streaming sound, it

is a good practice to load the sound before playing it.

566FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_sound:Sound = new Sound();
 my_sound.onLoad = function(success) {
 if (success) {
 my_sound.start();
 } else {
 output.text = "loading failure";
 }
 };
 my_sound.loadSound("song1.mp3",false);

See also

setPan (Sound.setPan method)

getTransform (Sound.getTransform method)
 public getTransform() : Object

Returns the sound transform information for the specified Sound object set with the last Sound.setTransform() call.

Note: Flash Lite 2.0 supports this method for native Flash sound only. The sound formats that are specific to a host

device are not supported.

Availability

Flash Lite 2.0

Returns

Object - An object with properties that contain the channel percentage values for the specified Sound object.

Example

The following example attaches four movie clips from a symbol in the library (linkage identifier: knob_id) that are

used as sliders (or knobs) to control the sound file that loads into the SWF file. These sliders control the transform

object, or balance, of the sound file. For more information, see the entry for Sound.setTransform(). Add the

following ActionScript to your FLA or AS file:

 var my_sound:Sound = new Sound();
 my_sound.loadSound("song1.mp3", true);
 var transform_obj:Object = my_sound.getTransform();

 this.createEmptyMovieClip("transform_mc", this.getNextHighestDepth());
 transform_mc.createTextField("transform_txt", transform_mc.getNextHighestDepth, 0, 8, 120, 22);
 transform_mc.transform_txt.html = true;

 var knob_ll:MovieClip = transform_mc.attachMovie("knob_id", "ll_mc",
transform_mc.getNextHighestDepth(), {_x:0, _y:30});
 var knob_lr:MovieClip = transform_mc.attachMovie("knob_id", "lr_mc",
transform_mc.getNextHighestDepth(), {_x:30, _y:30});
 var knob_rl:MovieClip = transform_mc.attachMovie("knob_id", "rl_mc",
transform_mc.getNextHighestDepth(), {_x:60, _y:30});
 var knob_rr:MovieClip = transform_mc.attachMovie("knob_id", "rr_mc",
transform_mc.getNextHighestDepth(), {_x:90, _y:30});

 knob_ll.top = knob_ll._y;
 knob_ll.bottom = knob_ll._y+100;
 knob_ll.left = knob_ll._x;

567FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 knob_ll.right = knob_ll._x;
 knob_ll._y = knob_ll._y+(100-transform_obj['ll']);
 knob_ll.onPress = pressKnob;
 knob_ll.onRelease = releaseKnob;
 knob_ll.onReleaseOutside = releaseKnob;

 knob_lr.top = knob_lr._y;
 knob_lr.bottom = knob_lr._y+100;
 knob_lr.left = knob_lr._x;
 knob_lr.right = knob_lr._x;
 knob_lr._y = knob_lr._y+(100-transform_obj['lr']);
 knob_lr.onPress = pressKnob;
 knob_lr.onRelease = releaseKnob;
 knob_lr.onReleaseOutside = releaseKnob;

 knob_rl.top = knob_rl._y;
 knob_rl.bottom = knob_rl._y+100;
 knob_rl.left = knob_rl._x;
 knob_rl.right = knob_rl._x;
 knob_rl._y = knob_rl._y+(100-transform_obj['rl']);
 knob_rl.onPress = pressKnob;
 knob_rl.onRelease = releaseKnob;
 knob_rl.onReleaseOutside = releaseKnob;

 knob_rr.top = knob_rr._y;
 knob_rr.bottom = knob_rr._y+100;
 knob_rr.left = knob_rr._x;
 knob_rr.right = knob_rr._x;
 knob_rr._y = knob_rr._y+(100-transform_obj['rr']);
 knob_rr.onPress = pressKnob;
 knob_rr.onRelease = releaseKnob;

 knob_rr.onReleaseOutside = releaseKnob;

 updateTransformTxt();

 function pressKnob() {
 this.startDrag(false, this.left, this.top, this.right, this.bottom);
 }
 function releaseKnob() {
 this.stopDrag();
 updateTransformTxt();
 }
 function updateTransformTxt() {
 var ll_num:Number = 30+100-knob_ll._y;
 var lr_num:Number = 30+100-knob_lr._y;
 var rl_num:Number = 30+100-knob_rl._y;
 var rr_num:Number = 30+100-knob_rr._y;
 my_sound.setTransform({ll:ll_num, lr:lr_num, rl:rl_num, rr:rr_num});
 transform_mc.transform_txt.htmlText = "<textformat tabStops='[0,30,60,90]'>";
 transform_mc.transform_txt.htmlText += ll_num+"\t"+lr_num+"\t"+rl_num+"\t"+rr_num;
 transform_mc.transform_txt.htmlText += "</textformat>";
 }

See also

setTransform (Sound.setTransform method)

568FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

getVolume (Sound.getVolume method)
 public getVolume() : Number

Returns the sound volume level as an integer from 0 to 100, where 0 is off and 100 is full volume. The default setting

is 100.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example creates a slider using the Drawing API and a movie clip that is created at runtime. A

dynamically created text field displays the current volume level of the sound playing in the SWF file. Add the following

ActionScript to your ActionScript or FLA file:

 var my_sound:Sound = new Sound();
 my_sound.loadSound("song3.mp3", true);

 this.createEmptyMovieClip("knob_mc", this.getNextHighestDepth());

 knob_mc.left = knob_mc._x;
 knob_mc.right = knob_mc.left+100;
 knob_mc.top = knob_mc._y;
 knob_mc.bottom = knob_mc._y;

 knob_mc._x = my_sound.getVolume();

 with (knob_mc) {
 lineStyle(0, 0x000000);
 beginFill(0xCCCCCC);
 moveTo(0, 0);
 lineTo(4, 0);
 lineTo(4, 18);
 lineTo(0, 18);
 lineTo(0, 0);
 endFill();

569FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 }

 knob_mc.createTextField("volume_txt", knob_mc.getNextHighestDepth(), knob_mc._width+4, 0, 30, 22);
 knob_mc.volume_txt.text = my_sound.getVolume();

 knob_mc.onPress = function() {
 this.startDrag(false, this.left, this.top, this.right, this.bottom);
 this.isDragging = true;
 };
 knob_mc.onMouseMove = function() {
 if (this.isDragging) {
 this.volume_txt.text = this._x;
 }
 }
 knob_mc.onRelease = function() {
 this.stopDrag();
 this.isDragging = false;
 my_sound.setVolume(this._x);

 };

See also

setVolume (Sound.setVolume method)

id3 (Sound.id3 property)
 public id3 : Object [read-only]

Provides access to the metadata that is part of an MP3 file.

MP3 sound files can contain ID3 tags, which provide metadata about the file. If an MP3 sound that you load using

Sound.attachSound() or Sound.loadSound() contains ID3 tags, you can query these properties. Only ID3 tags that

use the UTF-8 character set are supported.

Flash Player 6 (6.0.40.0) and later use the Sound.id3 property to support ID3 1.0 and ID3 1.1 tags. Flash Player 7 adds

support for ID3 2.0 tags, specifically 2.3 and 2.4. The following table lists the standard ID3 2.0 tags and the type of

content the tags represent; you query them in the format my_sound.id3.COMM, my_sound.id3.TIME, and so on. MP3

files can contain tags other than those in this table; Sound.id3 provides access to those tags as well.

Property Description

TFLT File type

TIME Time

TIT1 Content group description

TIT2 Title/song name/content description

TIT3 Subtitle/description refinement

TKEY Initial key

TLAN Languages

TLEN Length

TMED Media type

570FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Flash Player 6 supported several ID31.0 tags. If these tags are in not in the MP3 file, but corresponding ID3 2.0 tags

are, the ID3 2.0 tags are copied into the ID3 1.0 properties, as shown in the following table. This process provides

backward compatibility with scripts that you may have written already that read ID3 1.0 properties.

Availability

Flash Lite 2.0

TOAL Original album/movie/show title

TOFN Original filename

TOLY Original lyricists/text writers

TOPE Original artists/performers

TORY Original release year

TOWN File owner/licensee

TPE1 Lead performers/soloists

TPE2 Band/orchestra/accompaniment

TPE3 Conductor/performer refinement

TPE4 Interpreted, remixed, or otherwise modified by

TPOS Part of a set

TPUB Publisher

TRCK Track number/position in set

TRDA Recording dates

TRSN Internet radio station name

TRSO Internet radio station owner

TSIZ Size

TSRC ISRC (international standard recording code)

TSSE Software/hardware and settings used for encoding

TYER Year

WXXX URL link frame

ID3 2.0 tag Corresponding ID3 1.0 property

COMM Sound.id3.comment

TALB Sound.id3.album

TCON Sound.id3.genre

TIT2 Sound.id3.songname

TPE1 Sound.id3.artist

TRCK Sound.id3.track

TYER Sound.id3.year

Property Description

571FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example traces the ID3 properties of song.mp3 to the Output panel:

 var my_sound:Sound = new Sound();
 my_sound.onID3 = function(){
 for(var prop in my_sound.id3){
 trace(prop + " : "+ my_sound.id3[prop]);
 }
 }
 my_sound.loadSound("song.mp3", false);

See also

attachSound (Sound.attachSound method), loadSound (Sound.loadSound method)

loadSound (Sound.loadSound method)
 public loadSound(url:String, isStreaming:Boolean) : Void

Loads an MP3 file into a Sound object. You can use the isStreaming parameter to indicate whether the sound is an

event or a streaming sound.

Event sounds are completely loaded before they play. They are managed by the ActionScript Sound class and respond

to all methods and properties of this class.

Streaming sounds play while they are downloading. Playback begins when sufficient data is received to start the

decompressor.

All MP3s (event or streaming) loaded with this method are saved in the browser's file cache on the user's system.

Note: For Flash Lite 2.0, you can ignore the isStreaming parameter because Flash Lite 2.0 treats every sound as an

event sound.

Availability

Flash Lite 2.0

Parameters

url:String - The location on a server of an MP3 sound file.

isStreaming:Boolean - A Boolean value that indicates whether the sound is a streaming sound (true) or an event

sound (false).

Example

The following example loads an event sound, which cannot play until it is fully loaded:

 var my_sound:Sound = new Sound();
 my_sound.loadSound("song1.mp3", false);

The following example loads a streaming sound:

 var my_sound:Sound = new Sound();
 my_sound.loadSound("song1.mp3", true);

See also

onLoad (Sound.onLoad handler)

572FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

onID3 (Sound.onID3 handler)
 onID3 = function() {}

Invoked each time new ID3 data is available for an MP3 file that you load using Sound.attachSound() or

Sound.loadSound(). This handler provides access to ID3 data without polling. If both ID3 1.0 and ID3 2.0 tags are

present in a file, this handler is called twice.

Availability

Flash Lite 2.0

Example

The following example displays the ID3 properties of song1.mp3 to an instance of the DataGrid component. Add a

DataGrid with the instance name id3_dg to your document, and add the following ActionScript to your FLA or AS

file:

 import mx.controls.gridclasses.DataGridColumn;
 var id3_dg:mx.controls.DataGrid;
 id3_dg.move(0, 0);
 id3_dg.setSize(Stage.width, Stage.height);
 var property_dgc:DataGridColumn = id3_dg.addColumn(new DataGridColumn("property"));
 property_dgc.width = 100;
 property_dgc.headerText = "ID3 Property";
 var value_dgc:DataGridColumn = id3_dg.addColumn(new DataGridColumn("value"));
 value_dgc.width = id3_dg._width-property_dgc.width;
 value_dgc.headerText = "ID3 Value";

 var my_sound:Sound = new Sound();
 my_sound.onID3 = function() {
 trace("onID3 called at "+getTimer()+" ms.");
 for (var prop in this.id3) {
 id3_dg.addItem({property:prop, value:this.id3[prop]});
 }
 };
 my_sound.loadSound("song1.mp3", true);

See also

attachSound (Sound.attachSound method), id3 (Sound.id3 property), loadSound (Sound.loadSound

method)

onLoad (Sound.onLoad handler)
 onLoad = function(success:Boolean) {}

Invoked automatically when a sound loads. You must create a function that executes when the this handler is invoked.

You can use either an anonymous function or a named function (for an example of each, see

Sound.onSoundComplete). You should define this handler before you call mySound.loadSound().

Availability

Flash Lite 2.0

Parameters

success:Boolean - A Boolean value of true if my_sound is loaded successfully, false otherwise.

573FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a new Sound object, and loads a sound. Loading the sound is handled by the onLoad

handler, which allows you to start the song after it is successfully loaded. Create a new FLA file, and add the following

ActionScript to your FLA or AS file. For this example to work, you must have an MP3 called song1.mp3 in the same

directory as your FLA or AS file.

 this.createTextField("status_txt", this.getNextHighestDepth(), 0,0,100,22);

 // create a new Sound object
 var my_sound:Sound = new Sound();
 // If the sound loads, play it; if not, trace failure loading.
 my_sound.onLoad = function(success:Boolean) {
 if (success) {
 my_sound.start();
 status_txt.text = "Sound loaded";
 } else {
 status_txt.text = "Sound failed";
 }
 };
 // Load the sound.
 my_sound.loadSound("song1.mp3", true);

See also

loadSound (Sound.loadSound method)

onSoundComplete (Sound.onSoundComplete handler)
 onSoundComplete = function() {}

Invoked automatically when a sound finishes playing. You can use this handler to trigger events in a SWF file when a

sound finishes playing.

You must create a function that executes when this handler is invoked. You can use either an anonymous function or

a named function.

Availability

Flash Lite 2.0

Example

Usage 1: The following example uses an anonymous function:

 var my_sound:Sound = new Sound();
 my_sound.attachSound("mySoundID");
 my_sound.onSoundComplete = function() {
 trace("mySoundID completed");
 };
 my_sound.start();

Usage 2: The following example uses a named function:

574FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 function callback1() {
 trace("mySoundID completed");
 }
 var my_sound:Sound = new Sound();
 my_sound.attachSound("mySoundID");
 my_sound.onSoundComplete = callback1;
 my_sound.start();

See also

onLoad (Sound.onLoad handler)

position (Sound.position property)
 public position : Number [read-only]

The number of milliseconds a sound has been playing. If the sound is looped, the position is reset to 0 at the beginning

of each loop.

Note: Flash Lite 2.0 supports this property for native Flash sound only. The sound formats that are specific to a host

device are not supported.

Availability

Flash Lite 2.0

Example

For a sample usage of this property, see Sound.duration.

See also

duration (Sound.duration property)

setPan (Sound.setPan method)
 public setPan(value:Number) : Void

Determines how the sound is played in the left and right channels (speakers). For mono sounds, pan determines which

speaker (left or right) the sound plays through.

Note: Flash Lite 2.0 supports this method for native Flash sound only. The sound formats that are specific to a host

device are not supported.

Availability

Flash Lite 2.0

Parameters

value:Number - An integer specifying the left-right balance for a sound. The range of valid values is -100 to 100, where

-100 uses only the left channel, 100 uses only the right channel, and 0 balances the sound evenly between the two

channels.

Example

For a sample usage of this method, see Sound.getPan().

575FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

attachSound (Sound.attachSound method), getPan (Sound.getPan method), setTransform

(Sound.setTransform method)setVolume (Sound.setVolume method), start (Sound.start method)

setTransform (Sound.setTransform method)
 public setTransform(transformObject:Object) : Void

Sets the sound transform (or balance) information, for a Sound object.

The soundTransformObject parameter is an object that you create using the constructor method of the generic

Object class with parameters specifying how the sound is distributed to the left and right channels (speakers).

Sounds use a considerable amount of disk space and memory. Because stereo sounds use twice as much data as mono

sounds, it is generally best to use 22-KHz 6-bit mono sounds. You can use setTransform() to play mono sounds as

stereo, play stereo sounds as mono, and to add interesting effects to sounds.

Note: Flash Lite 2.0 supports this method for native Flash sound only. The sound formats that are specific to a host

device are not supported.

The properties for the soundTransformObject are as follows:

11 - A percentage value that specifies how much of the left input to play in the left speaker (0-100).

1r - A percentage value that specifies how much of the right input to play in the left speaker (0-100).

rr - A percentage value that specifies how much of the right input to play in the right speaker (0-100).

rl - A percentage value that specifies how much of the left input to play in the right speaker (0-100).

The net result of the parameters is represented by the following formula:

 leftOutput = left_input ~ ll + right_input ~ lr
 rightOutput = right_input ~ rr + left_input ~ rl

The values for left_input or right_input are determined by the type (stereo or mono) of sound in your SWF file.

Stereo sounds divide the sound input evenly between the left and right speakers and have the following transform

settings by default:

 ll = 100
 lr = 0
 rr = 100
 rl = 0

Mono sounds play all sound input in the left speaker and have the following transform settings by default:

 ll = 100
 lr = 100
 rr = 0
 rl = 0

Availability

Flash Lite 2.0

Parameters

transformObject:Object - An object created with the constructor for the generic Object class.

576FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example illustrates a setting that can be achieved by using setTransform(), but cannot be achieved by

using setVolume() or setPan(), even if they are combined.

The following code creates a new soundTransformObject object and sets its properties so that sound from both

channels plays in the left channel only .

 var mySoundTransformObject:Object = new Object();
 mySoundTransformObject.ll = 100;
 mySoundTransformObject.lr = 100;
 mySoundTransformObject.rr = 0;
 mySoundTransformObject.rl = 0;

To apply the soundTransformObject object to a Sound object, you then need to pass the object to the Sound object

using setTransform() as follows:

 my_sound.setTransform(mySoundTransformObject);

The following example plays a stereo sound as mono; the soundTransformObjectMono object has the following

parameters:

 var mySoundTransformObjectMono:Object = new Object();
 mySoundTransformObjectMono.ll = 50;
 mySoundTransformObjectMono.lr = 50;
 mySoundTransformObjectMono.rr = 50;
 mySoundTransformObjectMono.rl = 50;
 my_sound.setTransform(mySoundTransformObjectMono);

This example plays the left channel at half capacity and adds the rest of the left channel to the right channel; the

soundTransformObjectHalf object has the following parameters:

 var mySoundTransformObjectHalf:Object = new Object();
 mySoundTransformObjectHalf.ll = 50;
 mySoundTransformObjectHalf.lr = 0;
 mySoundTransformObjectHalf.rr = 100;
 mySoundTransformObjectHalf.rl = 50;
 my_sound.setTransform(mySoundTransformObjectHalf);

 var mySoundTransformObjectHalf:Object = {ll:50, lr:0, rr:100, rl:50};

See also

Object, getTransform (Sound.getTransform method)

setVolume (Sound.setVolume method)
 public setVolume(value:Number) : Void

Sets the volume for the Sound object.

Availability

Flash Lite 2.0

Parameters

value:Number - A number from 0 to 100 representing a volume level. 100 is full volume and 0 is no volume. The

default setting is 100.

577FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

For a sample usage of this method, see Sound.getVolume().

See also

setPan (Sound.setPan method), setTransform (Sound.setTransform method)

Sound constructor
 public Sound([target:Object])

Creates a new Sound object for a specified movie clip. If you do not specify a target instance, the Sound object controls

all of the sounds in the movie.

Availability

Flash Lite 2.0

Parameters

target:Object [optional] - The movie clip instance on which the Sound object operates.

Example

The following example creates a new Sound object called global_sound. The second line calls setVolume() and

adjusts the volume on all sounds in the movie to 50%.

 var global_sound:Sound = new Sound();
 global_sound.setVolume(50);

The following example creates a new Sound object, passes it the target movie clip my_mc, and calls the start method,

which starts any sound in my_mc.

 var movie_sound:Sound = new Sound(my_mc);
 movie_sound.start();

start (Sound.start method)
 public start([secondOffset:Number], [loops:Number]) : Void

Starts playing the last attached sound from the beginning if no parameter is specified, or starting at the point in the

sound specified by the secondOffset parameter.

Availability

Flash Lite 2.0

Parameters

secondOffset:Number [optional] - A parameter that lets you start playing the sound at a specific point. For example,

if you have a 30-second sound and want the sound to start playing in the middle, specify 15 for the secondOffset

parameter. The sound is not delayed 15 seconds, but rather starts playing at the 15-second mark.

loops:Number [optional] - A parameter that lets you specify the number of times the sound should play consecutively.

This parameter is not available if the sound is a streaming sound.

578FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a new Sound object, and loads a sound. The onLoad handler loads the sound, which

allows you to start the song after it is successfully loaded. Then the sound uses the start() method to start playing.

Create a new FLA file, and add the following ActionScript to your FLA or ActionScript file. For this example to work,

you must have an MP3 called song1.mp3 in the same directory as your FLA or AS file.

 this.createTextField("status_txt", this.getNextHighestDepth(), 0,0,100,22);

 // create a new Sound object
 var my_sound:Sound = new Sound();
 // If the sound loads, play it; if not, trace failure loading.
 my_sound.onLoad = function(success:Boolean) {
 if (success) {
 my_sound.start();
 status_txt.text = "Sound loaded";
 } else {
 status_txt.text = "Sound failed";
 }
 };
 // Load the sound.
 my_sound.loadSound("song1.mp3", true);

See also

stop (Sound.stop method)

stop (Sound.stop method)
 public stop([linkageID:String]) : Void

Stops all sounds currently playing if no parameter is specified, or just the sound specified in the idName parameter.

Availability

Flash Lite 2.0

Parameters

linkageID:String [optional] - A parameter specifying a specific sound to stop playing. The idName parameter must be

enclosed in quotation marks (" ").

Example

The following example uses two buttons, stop_btn and play_btn, to control the playback of a sound that loads into

a SWF file. Add two buttons to your document and add the following ActionScript to your FLA or AS file:

 var my_sound:Sound = new Sound();
 my_sound.loadSound("song1.mp3", true);

 stop_btn.onRelease = function() {
 trace("sound stopped");
 my_sound.stop();
 };
 play_btn.onRelease = function() {
 trace("sound started");
 my_sound.start();
 };

579FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

start (Sound.start method)

Stage

 Object
 |
 +-Stage

 public class Stage
 extends Object

The Stage class is a top-level class whose methods, properties, and handlers you can access without using a constructor.

Use the methods and properties of this class to access and manipulate information about the boundaries of a SWF file.

Availability

Flash Lite 2.0

Property summary

Properties inherited from class Object

Event summary

Method summary

Modifiers Property Description

static align:String Indicates the current alignment of the SWF file in the player or

browser.

static height:Number Property (read-only); indicates the current height, in pixels, of

the Stage.

static scaleMode:String Indicates the current scaling of the SWF file within Flash Lite

player.

static width:Number Property (read-only); indicates the current width, in pixels, of

the Stage.

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onResize =
function() {}

Invoked when Stage.scaleMode is set to noScale and the SWF file is resized.

Modifiers Signature Description

static addListener(listener:
Object) : Void

Detects when a SWF file is resized (but only if

Stage.scaleMode = "noScale").

static removeListener(listene
r:Object) : Boolean

Removes a listener object created with addListener().

580FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Methods inherited from class Object

addListener (Stage.addListener method)
 public static addListener(listener:Object) : Void

Detects when a SWF file is resized (but only if Stage.scaleMode = "noScale"). The addListener() method

doesn't work with the default movie clip scaling setting (showAll) or other scaling settings (exactFit and noBorder).

To use addListener(), you must first create a listener object. Stage listener objects receive notification from

Stage.onResize.

Availability

Flash Lite 2.0

Parameters

listener:Object - An object that listens for a callback notification from the Stage.onResize event.

Example

This example creates a new listener object called stageListener. It then uses stageListener to call onResize and

define a function that will be called when onResize is triggered. Finally, the code adds the stageListener object to the

callback list of the Stage object. Listener objects allow multiple objects to listen for resize notifications.

 this.createTextField("stageSize_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 var stageListener:Object = new Object();
 stageListener.onResize = function() {
 stageSize_txt.text = "w:"+Stage.width+", h:"+Stage.height;
 };
 Stage.scaleMode = "noScale";
 Stage.addListener(stageListener);

See also

onResize (Stage.onResize event listener), removeListener (Stage.removeListener method)

align (Stage.align property)
 public static align : String

Indicates the current alignment of the SWF file in the player or browser.

The following table lists the values for the align property. Any value not listed here centers the SWF file in Flash player

or browser area, which is the default setting.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

581FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example demonstrates different alignments of the SWF file. Add a ComboBox instance to your

document with the instance name stageAlign_cb. Add the following ActionScript to your FLA or AS file:

 var stageAlign_cb:mx.controls.ComboBox;
 stageAlign_cb.dataProvider = ['T', 'B', 'L', 'R', 'TL', 'TR', 'BL', 'BR'];
 var cbListener:Object = new Object();
 cbListener.change = function(evt:Object) {
 var align:String = evt.target.selectedItem;
 Stage.align = align;
 };
 stageAlign_cb.addEventListener("change", cbListener);
 Stage.scaleMode = "noScale";

Select different alignment settings from the ComboBox.

height (Stage.height property)
 public static height : Number

Property (read-only); indicates the current height, in pixels, of the Stage. When the value of Stage.scaleMode is

noScale, the height property represents the height of Flash Lite player. When the value of Stage.scaleMode is not

noScale, height represents the height of the SWF file.

Availability

Flash Lite 2.0

Example

This example creates a new listener object called stageListener. It then uses myListener to call onResize and

define a function that will be called when onResize is triggered. Finally, the code adds the myListener object to the

callback list of the Stage object. Listener objects allow multiple objects to listen for resize notifications.

Value Vertical Horizontal

"T" top center

"B" bottom center

"L" center left

"R" center right

"TL" top left

"TR" top right

"BL" bottom left

"BR" bottom right

582FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("stageSize_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 var stageListener:Object = new Object();
 stageListener.onResize = function() {
 stageSize_txt.text = "w:"+Stage.width+", h:"+Stage.height;
 };
 Stage.scaleMode = "noScale";
 Stage.addListener(stageListener);

See also

align (Stage.align property), scaleMode (Stage.scaleMode property), width (Stage.width property)

onResize (Stage.onResize event listener)
 onResize = function() {}

Invoked when Stage.scaleMode is set to noScale and the SWF file is resized. You can use this event handler to write

a function that lays out the objects on the Stage when a SWF file is resized.

Availability

Flash Lite 2.0

Example

The following example displays a message in the Output panel when the Stage is resized:

 Stage.scaleMode = "noScale"
 var myListener:Object = new Object();
 myListener.onResize = function () {
 trace("Stage size is now " + Stage.width + " by " + Stage.height);
 }
 Stage.addListener(myListener);
 // later, call Stage.removeListener(myListener)

See also

scaleMode (Stage.scaleMode property), addListener (Stage.addListener method), removeListener

(Stage.removeListener method)

removeListener (Stage.removeListener method)
 public static removeListener(listener:Object) : Boolean

Removes a listener object created with addListener().

Availability

Flash Lite 2.0

Parameters

listener:Object - An object added to an object's callback list with addListener().

Returns

Boolean - A Boolean value.

583FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example displays the Stage dimensions in a dynamically created text field. When you resize the Stage,

the values in the text field update. Create a button with an instance name remove_btn. Add the following ActionScript

to Frame 1 of the Timeline.

 this.createTextField("stageSize_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 stageSize_txt.autoSize = true;
 stageSize_txt.border = true;
 var stageListener:Object = new Object();
 stageListener.onResize = function() {
 stageSize_txt.text = "w:"+Stage.width+", h:"+Stage.height;
 };
 Stage.addListener(stageListener);

 remove_btn.onRelease = function() {
 stageSize_txt.text = "Removing Stage listener...";
 Stage.removeListener(stageListener);
 }

Select Control > Test Movie to test this example. The values you see in the text field are updated when you resize the

testing environment. When you click remove_btn, the listener is removed and the values are no longer updated in the

text field.

See also

addListener (Stage.addListener method)

scaleMode (Stage.scaleMode property)
 public static scaleMode : String

Indicates the current scaling of the SWF file within Flash Lite player. The scaleMode property forces the SWF file into

a specific scaling mode. By default, the SWF file uses the HTML parameters set in the Publish Settings dialog box.

The scaleMode property can use the values "exactFit", "showAll", "noBorder", and "noScale". Any other value

sets the scaleMode property to the default "showAll".

• showAll (Default) makes the entire Flash content visible in the specified area without distortion while maintaining

the original aspect ratio. Borders can appear on two sides of the application.

• noBorder scales the Flash content to fill the specified area, without distortion but possibly with some cropping,

while maintaining the original aspect ratio of the application.

• exactFit makes the entire Flash content visible in the specified area without trying to preserve the original aspect

ratio. Distortion can occur.

• noScale makes the size of the Flash content fixed, so that it remains unchanged even as the size of the player

window changes. Cropping may occur if the player window is smaller than the Flash content.

Note: the default setting is showAll, except when in test movie mode, where the default setting is noScale

Availability

Flash Lite 2.0

Example

The following example demonstrates various scale settings for the SWF file. Add a ComboBox instance to your

document with the instance name scaleMode_cb. Add the following ActionScript to your FLA or AS file:

584FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var scaleMode_cb:mx.controls.ComboBox;
 scaleMode_cb.dataProvider = ["showAll", "exactFit", "noBorder", "noScale"];
 var cbListener:Object = new Object();
 cbListener.change = function(evt:Object) {
 var scaleMode_str:String = evt.target.selectedItem;
 Stage.scaleMode = scaleMode_str;
 };
 scaleMode_cb.addEventListener("change", cbListener);

To view another example, see the stagesize.fla file in the ActionScript samples folder at

www.adobe.com/go/learn_fl_samples_and_tutorials. Download and decompress the Samples_and_Tutorials .zip file

for your Flash Lite version and navigate to the ActionScript folder to access the sample file.

width (Stage.width property)
 public static width : Number

Property (read-only); indicates the current width, in pixels, of the Stage. When the value of Stage.scaleMode is

"noScale", the width property represents the width of Flash Lite player. This means that Stage.width will vary as

you resize the player window. When the value of Stage.scaleMode is not "noScale", width represents the width of

the SWF file as set at author-time in the Document Properties dialog box. This means that the value of width will stay

constant as you resize the player window.

Availability

Flash Lite 2.0

Example

This example creates a new listener object called stageListener. It then uses stageListener to call onResize and

define a function that will be called when onResize is triggered. Finally, the code adds the stageListener object to the

callback list of the Stage object. Listener objects allow multiple objects to listen for resize notifications.

 this.createTextField("stageSize_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 var stageListener:Object = new Object();
 stageListener.onResize = function() {
 stageSize_txt.text = "w:"+Stage.width+", h:"+Stage.height;
 };
 Stage.scaleMode = "noScale";
 Stage.addListener(stageListener);

See also

align (Stage.align property), height (Stage.height property), scaleMode (Stage.scaleMode

property)

String

 Object
 |
 +-String

 public class String
 extends Object

585FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The String class is a wrapper for the string primitive data type, and provides methods and properties that let you

manipulate primitive string value types. You can convert the value of any object into a string using the String()

function.

All the methods of the String class, except for concat(), fromCharCode(), slice(), and substr(), are generic,

which means the methods call toString() before performing their operations, and you can use these methods with

other non-String objects.

Because all string indexes are zero-based, the index of the last character for any string x is x.length - 1.

You can call any of the methods of the String class using the constructor method new String or using a string literal

value. If you specify a string literal, the ActionScript interpreter automatically converts it to a temporary String object,

calls the method, and then discards the temporary String object. You can also use the String.length property with

a string literal.

Do not confuse a string literal with a String object. In the following example, the first line of code creates the string

literal first_string, and the second line of code creates the String object second_string:

 var first_string:String = "foo"
 var second_string:String = new String("foo")

Use string literals unless you specifically need to use a String object.

Availability

Flash Lite 2.0

Property summary

Properties inherited from class Object

Constructor summary

Method summary

Modifiers Property Description

 length:Number An integer specifying the number of characters in the specified

String object.

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Signature Description

String(value:String) Creates a new String object.

Modifiers Signature Description

 charAt(index:Number)
: String

Returns the character in the position specified by the

parameter index.

 charCodeAt(index:Num

ber) : Number

Returns a 16-bit integer from 0 to 65535 that represents the

character specified by index.

 concat(value:Object) :
String

Combines the value of the String object with the parameters

and returns the newly formed string; the original value,

my_str, is unchanged.

586FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Methods inherited from class Object

charAt (String.charAt method)
 public charAt(index:Number) : String

Returns the character in the position specified by the parameter index. If index is not a number from 0 to

string.length - 1, an empty string is returned.

This method is similar to String.charCodeAt() except that the returned value is a character, not a 16-bit integer

character code.

Availability

Flash Lite 2.0

static fromCharCode() :
String

Returns a string comprising the characters represented by the

Unicode values in the parameters.

 indexOf(value:String,
[startIndex:Number]
) : Number

Searches the string and returns the position of the first

occurrence of value found at or after startIndex within the

calling string.

 lastIndexOf(value:Strin

g,
[startIndex:Number]
) : Number

Searches the string from right to left and returns the index of

the last occurrence of value found before startIndex

within the calling string.

 slice(start:Number,
end:Number) : String

Returns a string that includes the start character and all

characters up to, but not including, the end character.

 split(delimiter:String,
[limit:Number]) :
Array

Splits a String object into substrings by breaking it wherever

the specified delimiter parameter occurs and returns the

substrings in an array.

 substr(start:Number,
length:Number) :
String

Returns the characters in a string from the index specified in

the start parameter through the number of characters

specified in the length parameter.

 substring(start:Numbe

r, end:Number) :
String

Returns a string comprising the characters between the points

specified by the start and end parameters.

 toLowerCase() : String Returns a copy of the String object, with all uppercase

characters converted to lowercase.

 toString() : String Returns an object's properties as strings regardless of whether

the properties are strings.

 toUpperCase() : String Returns a copy of the String object, with all lowercase

characters converted to uppercase.

 valueOf() : String Returns the string.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

Modifiers Signature Description

587FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Parameters

index:Number - An integer specifying the position of a character in the string. The first character is indicated by 0,

and the last character is indicated by my_str.length-1.

Returns

String - The character at the specified index. Or an empty String if the specified index is outside the range of this

String's indices.

Example

In the following example, this method is called on the first letter of the string "Chris":

 var my_str:String = "Chris";
 var firstChar_str:String = my_str.charAt(0);
 trace(firstChar_str); // output: C

See also

charCodeAt (String.charCodeAt method)

charCodeAt (String.charCodeAt method)
 public charCodeAt(index:Number) : Number

Returns a 16-bit integer from 0 to 65535 that represents the character specified by index. If index is not a number

from 0 to string.length - 1, NaN is returned.

This method is similar to String.charAt() except that the returned value is a 16-bit integer character code, not a

character.

Availability

Flash Lite 2.0

Parameters

index:Number - An integer that specifies the position of a character in the string. The first character is indicated by

0, and the last character is indicated by my_str.length - 1.

Returns

Number - An integer that represents the character specified by index.

Example

In the following example, this method is called on the first letter of the string "Chris":

 var my_str:String = "Chris";
 var firstChar_num:Number = my_str.charCodeAt(0);
 trace(firstChar_num); // output: 67

See also

charAt (String.charAt method)

concat (String.concat method)
 public concat(value:Object) : String

588FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Combines the value of the String object with the parameters and returns the newly formed string; the original value,

my_str, is unchanged.

Availability

Flash Lite 2.0

Parameters

value:Object - value1[,...valueN]—Zero or more values to be concatenated.

Returns

String - A string.

Example

The following example creates two strings and combines them using String.concat():

 var stringA:String = "Hello";
 var stringB:String = "World";
 var combinedAB:String = stringA.concat(" ", stringB);
 trace(combinedAB); // output: Hello World

fromCharCode (String.fromCharCode method)
 public static fromCharCode() : String

Returns a string comprising the characters represented by the Unicode values in the parameters.

Availability

Flash Lite 2.0

Returns

String - A string value of the specified Unicode character codes.

Example

The following example uses fromCharCode() to insert an @ character in the e-mail address:

 var address_str:String = "dog"+String.fromCharCode(64)+"house.net";
 trace(address_str); // output: dog@house.net

indexOf (String.indexOf method)
 public indexOf(value:String, [startIndex:Number]) : Number

Searches the string and returns the position of the first occurrence of value found at or after startIndex within the

calling string. This index is zero-based, meaning that the first character in a string is considered to be at index 0—not

index 1. If value is not found, the method returns -1.

Availability

Flash Lite 2.0

Parameters

value:String - A string; the substring to search for.

589FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

startIndex:Number [optional] - An integer specifying the starting index of the search.

Returns

Number - The position of the first occurrence of the specified substring or -1.

Example

The following examples use indexOf() to return the index of characters and substrings:

 var searchString:String = "Lorem ipsum dolor sit amet.";
 var index:Number;

 index = searchString.indexOf("L");
 trace(index); // output: 0

 index = searchString.indexOf("l");
 trace(index); // output: 14

 index = searchString.indexOf("i");
 trace(index); // output: 6

 index = searchString.indexOf("ipsum");
 trace(index); // output: 6

 index = searchString.indexOf("i", 7);
 trace(index); // output: 19

 index = searchString.indexOf("z");
 trace(index); // output: -1

See also

lastIndexOf (String.lastIndexOf method)

lastIndexOf (String.lastIndexOf method)
 public lastIndexOf(value:String, [startIndex:Number]) : Number

Searches the string from right to left and returns the index of the last occurrence of value found before startIndex

within the calling string. This index is zero-based, meaning that the first character in a string is considered to be at

index 0—not index 1. If value is not found, the method returns -1.

Availability

Flash Lite 2.0

Parameters

value:String - The string for which to search.

startIndex:Number [optional] - An integer specifying the starting point from which to search for value.

Returns

Number - The position of the last occurrence of the specified substring or -1.

590FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example shows how to use lastIndexOf() to return the index of a certain character:

 var searchString:String = "Lorem ipsum dolor sit amet.";
 var index:Number;

 index = searchString.lastIndexOf("L");
 trace(index); // output: 0

 index = searchString.lastIndexOf("l");
 trace(index); // output: 14

 index = searchString.lastIndexOf("i");
 trace(index); // output: 19

 index = searchString.lastIndexOf("ipsum");
 trace(index); // output: 6

 index = searchString.lastIndexOf("i", 18);
 trace(index); // output: 6

 index = searchString.lastIndexOf("z");
 trace(index); // output: -1

See also

indexOf (String.indexOf method)

length (String.length property)
 public length : Number

An integer specifying the number of characters in the specified String object.

Because all string indexes are zero-based, the index of the last character for any string x is x.length - 1.

Availability

Flash Lite 2.0

Example

The following example creates a new String object and uses String.length to count the number of characters:

 var my_str:String = "Hello world!";
 trace(my_str.length); // output: 12

The following example loops from 0 to my_str.length. The code checks the characters within a string, and if the

string contains the @ character, true displays in the Output panel. If it does not contain the @ character, then false

displays in the Output panel.

591FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 function checkAtSymbol(my_str:String):Boolean {
 for (var i = 0; i<my_str.length; i++) {
 if (my_str.charAt(i) == "@") {
 return true;
 }
 }
 return false;
 }

 trace(checkAtSymbol("dog@house.net")); // output: true
 trace(checkAtSymbol("Chris")); // output: false

An example is also in the Strings.fla file in the ActionScript samples folder at www.adobe.com/go/learn_fl_samples.

Download and decompress the .zip file and navigate to the folder for your version of ActionScript to access the sample.

slice (String.slice method)
 public slice(start:Number, end:Number) : String

Returns a string that includes the start character and all characters up to, but not including, the end character. The

original String object is not modified. If the end parameter is not specified, the end of the substring is the end of the

string. If the character indexed by start is the same as or to the right of the character indexed by end, the method

returns an empty string.

Availability

Flash Lite 2.0

Parameters

start:Number - The zero-based index of the starting point for the slice. If start is a negative number, the starting

point is determined from the end of the string, where -1 is the last character.

end:Number - An integer that is one greater than the index of the ending point for the slice. The character indexed by

the end parameter is not included in the extracted string. If this parameter is omitted, String.length is used. If end

is a negative number, the ending point is determined by counting back from the end of the string, where -1 is the last

character.

Returns

String - A substring of the specified string.

Example

The following example creates a variable, my_str, assigns it a String value, and then calls the slice() method using

a variety of values for both the start and end parameters. Each call to slice() is wrapped in a trace() statement

that displays the output in the Output panel.

592FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // Index values for the string literal
 // positive index: 0 1 2 3 4
 // string: L o r e m
 // negative index: -5 -4 -3 -2 -1

 var my_str:String = "Lorem";

 // slice the first character
 trace("slice(0,1): "+my_str.slice(0, 1)); // output: slice(0,1): L
 trace("slice(-5,1): "+my_str.slice(-5, 1)); // output: slice(-5,1): L

 // slice the middle three characters
 trace("slice(1,4): "+my_str.slice(1, 4)); // slice(1,4): ore
 trace("slice(1,-1): "+my_str.slice(1, -1)); // slice(1,-1): ore

 // slices that return empty strings because start is not to the left of end
 trace("slice(1,1): "+my_str.slice(1, 1)); // slice(1,1):
 trace("slice(3,2): "+my_str.slice(3, 2)); // slice(3,2):
 trace("slice(-2,2): "+my_str.slice(-2, 2)); // slice(-2,2):

 // slices that omit the end parameter use String.length, which equals 5
 trace("slice(0): "+my_str.slice(0)); // slice(0): Lorem
 trace("slice(3): "+my_str.slice(3)); // slice(3): em

An example is also in the Strings.fla file in the ActionScript samples folder at www.adobe.com/go/learn_fl_samples.

Download and decompress the .zip file and navigate to the folder for your version of ActionScript to access the sample.

See also

substr (String.substr method), substring (String.substring method)

split (String.split method)
 public split(delimiter:String, [limit:Number]) : Array

Splits a String object into substrings by breaking it wherever the specified delimiter parameter occurs and returns

the substrings in an array. If you use an empty string ("") as a delimiter, each character in the string is placed as an

element in the array.

If the delimiter parameter is undefined, the entire string is placed into the first element of the returned array.

Availability

Flash Lite 2.0

Parameters

delimiter:String - A string; the character or string at which my_str splits.

limit:Number [optional] - The number of items to place into the array.

Returns

Array - An array containing the substrings of my_str.

Example

The following example returns an array with five elements:

593FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_str:String = "P,A,T,S,Y";
 var my_array:Array = my_str.split(",");
 for (var i = 0; i<my_array.length; i++) {
 trace(my_array[i]);
 }
 // output:
 P
 A
 T
 S
 Y

The following example returns an array with two elements, "P" and "A":

 var my_str:String = "P,A,T,S,Y";
 var my_array:Array = my_str.split(",", 2);
 trace(my_array); // output: P,A

The following example shows that if you use an empty string ("") for the delimiter parameter, each character in the

string is placed as an element in the array:

 var my_str:String = new String("Joe");
 var my_array:Array = my_str.split("");
 for (var i = 0; i<my_array.length; i++) {
 trace(my_array[i]);
 }
 // output:
 J
 o
 e

An example is also in the Strings.fla file in the ActionScript samples folder at www.adobe.com/go/learn_fl_samples.

Download and decompress the .zip file and navigate to the folder for your version of ActionScript to access the sample.

See also

join (Array.join method)

String constructor
 public String(value:String)

Creates a new String object.

Note: Because string literals use less overhead than String objects and are generally easier to use, you should use string

literals instead of the constructor for the String class unless you have a good reason to use a String object rather than

a string literal.

Availability

Flash Lite 2.0

Parameters

value:String - The initial value of the new String object.

594FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

substr (String.substr method)
 public substr(start:Number, length:Number) : String

Returns the characters in a string from the index specified in the start parameter through the number of characters

specified in the length parameter. The substr method does not change the string specified by my_str; it returns a

new string.

Availability

Flash Lite 2.0

Parameters

start:Number - An integer that indicates the position of the first character in my_str to be used to create the substring.

If start is a negative number, the starting position is determined from the end of the string, where the -1 is the last

character.

length:Number - The number of characters in the substring being created. If length is not specified, the substring

includes all the characters from the start to the end of the string.

Returns

String - A substring of the specified string.

Example

The following example creates a new string, my_str and uses substr() to return the second word in the string; first,

using a positive start parameter, and then using a negative start parameter:

 var my_str:String = new String("Hello world");
 var mySubstring:String = new String();
 mySubstring = my_str.substr(6,5);
 trace(mySubstring); // output: world

 mySubstring = my_str.substr(-5,5);
 trace(mySubstring); // output: world

An example is also in the Strings.fla file in the ActionScript samples folder at www.adobe.com/go/learn_fl_samples.

Download and decompress the .zip file and navigate to the folder for your version of ActionScript to access the sample.

substring (String.substring method)
 public substring(start:Number, end:Number) : String

Returns a string comprising the characters between the points specified by the start and end parameters. If the end

parameter is not specified, the end of the substring is the end of the string. If the value of start equals the value of end,

the method returns an empty string. If the value of start is greater than the value of end, the parameters are

automatically swapped before the function executes and the original value is unchanged.

Availability

Flash Lite 2.0

Parameters

start:Number - An integer that indicates the position of the first character of my_str used to create the substring.

Valid values for start are 0 through String.length - 1. If start is a negative value, 0 is used.

595FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

end:Number - An integer that is 1+ the index of the last character in my_str to be extracted. Valid values for end are

1 through String.length. The character indexed by the end parameter is not included in the extracted string. If this

parameter is omitted, String.length is used. If this parameter is a negative value, 0 is used.

Returns

String - A substring of the specified string.

Example

The following example shows how to use substring():

 var my_str:String = "Hello world";
 var mySubstring:String = my_str.substring(6,11);
 trace(mySubstring); // output: world

The following example shows what happens if a negative start parameter is used:

 var my_str:String = "Hello world";
 var mySubstring:String = my_str.substring(-5,5);
 trace(mySubstring); // output: Hello

An example is also in the Strings.fla file in the ActionScript samples folder at www.adobe.com/go/learn_fl_samples.

Download and decompress the .zip file and navigate to the folder for your version of ActionScript to access the sample.

toLowerCase (String.toLowerCase method)
 public toLowerCase() : String

Returns a copy of the String object, with all uppercase characters converted to lowercase. The original value is

unchanged.

Availability

Flash Lite 2.0

Returns

String - A string.

Example

The following example creates a string with all uppercase characters and then creates a copy of that string using

toLowerCase() to convert all uppercase characters to lowercase characters:

 var upperCase:String = "LOREM IPSUM DOLOR";
 var lowerCase:String = upperCase.toLowerCase();
 trace("upperCase: " + upperCase); // output: upperCase: LOREM IPSUM DOLOR
 trace("lowerCase: " + lowerCase); // output: lowerCase: lorem ipsum dolor

An example is also in the Strings.fla file in the ActionScript samples folder at The Adobe Flash samples page. Download

and decompress the .zip file and navigate to the folder for your version of ActionScript to access the sample.

See also

toUpperCase (String.toUpperCase method)

toString (String.toString method)
 public toString() : String

http://www.adobe.com/go/learn_fl_samples

596FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns an object's properties as strings regardless of whether the properties are strings.

Availability

Flash Lite 2.0

Returns

String - The string.

Example

The following example outputs an uppercase string that lists all of an object's properties (regardless of whether the

properties are strings):

 var employee:Object = new Object();
 employee.name = "bob";
 employee.salary = 60000;
 employee.id = 284759021;

 var employeeData:String = new String();
 for (prop in employee)
 {
 employeeData += employee[prop].toString().toUpperCase() + " ";
 }
 trace(employeeData);

If the toString() method were not included in this code (and the line within the for loop used

employee[prop].toUpperCase()), the output would be "undefined undefined BOB". By including the

toString() method, the desired output is produced: "284759021 60000 BOB".

toUpperCase (String.toUpperCase method)
 public toUpperCase() : String

Returns a copy of the String object, with all lowercase characters converted to uppercase. The original value is

unchanged.

Availability

Flash Lite 2.0

Returns

String - A string.

Example

The following example creates a string with all lowercase characters and then creates a copy of that string using

toUpperCase():

 var lowerCase:String = "lorem ipsum dolor";
 var upperCase:String = lowerCase.toUpperCase();
 trace("lowerCase: " + lowerCase); // output: lowerCase: lorem ipsum dolor
 trace("upperCase: " + upperCase); // output: upperCase: LOREM IPSUM DOLOR

An example is also in the Strings.fla file in the ActionScript samples folder at the Adobe Flash samples page. Download

and decompress the .zip file and navigate to the folder for your version of ActionScript to access the sample.

http://www.adobe.com/go/learn_fl_samples

597FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

toLowerCase (String.toLowerCase method)

valueOf (String.valueOf method)
 public valueOf() : String

Returns the string.

Availability

Flash Lite 2.0

Returns

String - The value of the string.

Example

The following example creates a new instance of the String object and then shows that the valueOf method returns a

reference to the primitive value, rather than an instance of the object.

 var str:String = new String("Hello World");
 var value:String = str.valueOf();
 trace(str instanceof String); // true
 trace(value instanceof String); // false
 trace(str === value); // false

System

 Object
 |
 +-System

 public class System
 extends Object

The System class contains properties related to certain operations that take place on the user's computer, such as

operations with shared objects and the clipboard. Additional properties and methods are in specific classes within the

System package: the capabilities class (see System.capabilities) and the security class (see System.security).

Availability

Flash Lite 2.0

See also

capabilities (System.capabilities), Security (System.security)

Property summary

Modifiers Property Description

static useCodepage:Boolean A Boolean value that tells Flash Lite player whether to use

Unicode or the traditional code page of the operating system

running the player to interpret external text files.

598FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Properties inherited from class Object

Event summary

Method summary

Methods inherited from class Object

onStatus (System.onStatus handler)
 onStatus = function(infoObject:Object) {}

Event handler: provides a super event handler for certain objects.

The SharedObject class provides an onStatus() event handler that uses an information object for providing

information, status, or error messages. To respond to this event handler, you must create a function to process the

information object, and you must know the format and contents of the returned information object.

In addition to the SharedObject.onStatus() method, Flash also provides a super function called

System.onStatus(), which serves as a secondary error message handler. If an instance of the SharedObject class

passes an information object with a level property of "error", but you did not define an onStatus() function for that

particular instance, then Flash uses the function you define for System.onStatus() instead.

Availability

Flash Lite 2.0

Parameters

infoObject:Object - A parameter defined according to the status message.

Example

The following example shows how to create a System.onStatus() function to process information objects when a

class-specific onStatus() function does not exist:

 // Create generic function
 System.onStatus = function(genericError:Object){
 // Your script would do something more meaningful here
 trace("An error has occurred. Please try again.");
 }

See also

onStatus (SharedObject.onStatus handler)

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onStatus =
function(infoObject:Object) {}

Event handler: provides a super event handler for certain objects.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

599FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

useCodepage (System.useCodepage property)
 public static useCodepage : Boolean

A Boolean value that tells Flash Lite player whether to use Unicode or the traditional code page of the operating system

running the player to interpret external text files. The default value of System.useCodepage is false.

• When the property is set to false, Flash Lite player interprets external text files as Unicode. (These files must be

encoded as Unicode when you save them.)

• When the property is set to true, Flash Lite player interprets external text files using the traditional code page of the

operating system running the player.

Text that you load as an external file (using the loadVariables() or getURL() statements, or the LoadVars class or

XML class) must be encoded as Unicode when you save the text file in order for Flash Lite player to recognize it as

Unicode. To encode external files as Unicode, save the files in an application that supports Unicode, such as Notepad

on Windows 2000.

If you load external text files that are not Unicode-encoded, you should set System.useCodepage to true. Add the

following code as the first line of code in the first frame of the SWF file that is loading the data:

 System.useCodepage = true;

When this code is present, Flash Lite player interprets external text using the traditional code page of the operating

system running Flash Lite player. This is generally CP1252 for an English Windows operating system and Shift-JIS for

a Japanese operating system. If you set System.useCodepage to true, Flash Player 6 and later treat text as Flash Player

5 does. (Flash Player 5 treated all text as if it were in the traditional code page of the operating system running the

player.)

If you set System.useCodepage to true, remember that the traditional code page of the operating system running the

player must include the characters used in your external text file in order for the text to display. For example, if you

load an external text file that contains Chinese characters, those characters cannot display on a system that uses the

CP1252 code page because that code page does not include Chinese characters.

To ensure that users on all platforms can view external text files used in your SWF files, you should encode all external

text files as Unicode and leave System.useCodepage set to false by default. This way, Flash Player 6 and later

interprets the text as Unicode.

Availability

Flash Lite 2.0

TextField

 Object
 |
 +-TextField

 public dynamic class TextField
 extends Object

The TextField class is used to create areas for text display and input. All dynamic and input text fields are instances of

the TextField class. You can give a text field an instance name in the Property inspector and use the methods and

properties of the TextField class to manipulate it with ActionScript. TextField instance names are displayed in the

Movie Explorer and in the Insert Target Path dialog box in the Actions panel.

600FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

To create a text field dynamically, call MovieClip.createTextField().

The methods of the TextField class let you set, select, and manipulate text in a dynamic or input text field that you

create during authoring or at runtime.

Availability

Flash Lite 2.0

See also

Object, createTextField (MovieClip.createTextField method)

Property summary

Modifiers Property Description

_alpha:Number Sets or retrieves the alpha transparency value of the text field.

 autoSize:Object Controls automatic sizing and alignment of text fields.

 background:Boolean Specifies if the text field has a background fill.

 backgroundColor:Numbe

r

The color of the text field background.

 border:Boolean Specifies if the text field has a border.

 borderColor:Number The color of the text field border.

 bottomScroll:Number

[read-only]

An integer (one-based index) that indicates the bottommost

line that is currently visible the text field.

 condenseWhite:Boolean A Boolean value that specifies whether extra white space

(spaces, line breaks, and so on) in an HTML text field should be

removed when the field is rendered in a browser.

 embedFonts:Boolean A Boolean value that specifies whether to render the text using

embedded font outlines.

 _height:Number The height of the text field in pixels.

 _highquality:Number Deprecated since Flash Player 7. This property was deprecated

in favor of TextField._quality.

Specifies the level of anti-aliasing applied to the current SWF

file.

 hscroll:Number Indicates the current horizontal scrolling position.

 html:Boolean A flag that indicates whether the text field contains an HTML

representation.

 htmlText:String If the text field is an HTML text field, this property contains the

HTML representation of the text field's contents.

 length:Number [read-

only]

Indicates the number of characters in a text field.

 maxChars:Number Indicates the maximum number of characters that the text

field can contain.

 maxhscroll:Number [read-

only]

Indicates the maximum value of TextField.hscroll.

601FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 maxscroll:Number [read-

only]

Indicates the maximum value of TextField.scroll.

 multiline:Boolean Indicates whether the text field is a multiline text field.

 _name:String The instance name of the text field.

 _parent:MovieClip A reference to the movie clip or object that contains the

current text field or object.

 password:Boolean Specifies whether the text field is a password text field.

 _quality:String Property (global); sets or retrieves the rendering quality used

for a SWF file.

 _rotation:Number The rotation of the text field, in degrees, from its original

orientation.

 scroll:Number Defines the vertical position of text in a text field.

 selectable:Boolean A Boolean value that indicates whether the text field is

selectable.

 _soundbuftime:Number Specifies the number of seconds a sound prebuffers before it

starts to stream.

 tabEnabled:Boolean Specifies whether the text field is included in automatic tab

ordering.

 tabIndex:Number Lets you customize the tab ordering of objects in a SWF file.

 _target:String [read-only] The target path of the text field instance.

 text:String Indicates the current text in the text field.

 textColor:Number Indicates the color of the text in a text field.

 textHeight:Number Indicates the height of the text.

 textWidth:Number Indicates the width of the text.

 type:String Specifies the type of text field.

 _url:String [read-only] Retrieves the URL of the SWF file that created the text field.

 variable:String The name of the variable to which the text field is associated.

 _visible:Boolean A Boolean value that indicates whether the text field my_txt

is visible.

 _width:Number The width of the text field, in pixels.

 wordWrap:Boolean A Boolean value that indicates if the text field has word wrap.

 _x:Number An integer that sets the x coordinate of a text field relative to

the local coordinates of the parent movie clip.

 _xmouse:Number [read-

only]

Returns the x coordinate of the mouse position relative to the

text field.

 _xscale:Number Determines the horizontal scale of the text field as applied

from the registration point of the text field, expressed as a

percentage.

Modifiers Property Description

602FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Properties inherited from class Object

Event summary

Method summary

 _y:Number The y coordinate of a text field relative to the local coordinates

of the parent movie clip.

 _ymouse:Number [read-

only]

Indicates the y coordinate of the mouse position relative to the

text field.

 _yscale:Number The vertical scale of the text field as applied from the

registration point of the text field, expressed as a percentage.

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onChanged =
function(changedFie
ld:TextField) {}

Event handler/listener; invoked when the content of a text field changes.

onKillFocus =
function(newFocus:
Object) {}

Invoked when a text field loses keyboard focus.

onScroller =
function(scrolledFi
eld:TextField) {}

Event handler/listener; invoked when one of the text field scroll properties changes.

onSetFocus =
function(oldFocus:
Object) {}

Invoked when a text field receives keyboard focus.

Modifiers Signature Description

 addListener(listener:
Object) : Boolean

Registers an object to receive TextField event notifications.

 getDepth() : Number Returns the depth of a text field.

 getNewTextFormat() :
TextFormat

Returns a TextFormat object containing a copy of the text

field's text format object.

 getTextFormat([beginI
ndex:Number],
[endIndex:Number])
: TextFormat

Returns a TextFormat object for a character, for a range of

characters, or for an entire TextField object.

 removeListener(listene
r:Object) : Boolean

Removes a listener object previously registered to a text field

instance with TextField.addListener().

 removeTextField() :
Void

Removes the text field.

 replaceSel(newText:Stri

ng) : Void
Replaces the current selection with the contents of the

newText parameter.

Modifiers Property Description

603FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Methods inherited from class Object

addListener (TextField.addListener method)
 public addListener(listener:Object) : Boolean

Registers an object to receive TextField event notifications. The object will receive event notifications whenever the

onChanged and onScroller event handlers have been invoked. When a text field changes or is scrolled, the

TextField.onChanged and TextField.onScroller event handlers are invoked, followed by the onChanged and

onScroller event handlers of any objects registered as listeners. Multiple objects can be registered as listeners.

To remove a listener object from a text field, call TextField.removeListener().

A reference to the text field instance is passed as a parameter to the onScroller and onChanged handlers by the event

source. You can capture this data by putting a parameter in the event handler method. For example, the following code

uses txt as the parameter that is passed to the onScroller event handler. The parameter is then used in a trace

statement to send the instance name of the text field to the Output panel.The parameter is then used in a trace()

method to write the instance name of the text field to the log file.

 my_txt.onScroller = function(textfield_txt:TextField) {
 trace(textfield_txt._name+" scrolled");
 };

Availability

Flash Lite 2.0

Parameters

listener:Object - An object with an onChanged or onScroller event handler.

Returns

Boolean -

 replaceText(beginIndex
:Number,
endIndex:Number,
newText:String) :
Void

Replaces a range of characters, specified by the beginIndex

and endIndex parameters, in the specified text field with the

contents of the newText parameter.

 setNewTextFormat(tf:T

extFormat) : Void
Sets the default new text format of a text field.

 setTextFormat([beginIn
dex:Number],
[endIndex:Number],
textFormat:TextFormat

) : Void

Applies the text formatting specified by the textFormat

parameter to some or all of the text in a text field.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method)visPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

Modifiers Signature Description

604FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example defines an onChanged handler for the input text field my_txt. It then defines a new listener

object, txtListener, and defines an onChanged handler for that object. This handler will be invoked when the text

field my_txt is changed. The final line of code calls TextField.addListener to register the listener object

txtListener with the text field my_txt so that it will be notified when my_txt changes.

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 my_txt.border = true;
 my_txt.type = "input";

 my_txt.onChanged = function(textfield_(xt:TextField) {
 trace(textfield_txt._name+" changed");
 };
 var txtListener:Object = new Object();
 txtListener.onChanged = function(textfield_txt:TextField) {
 trace(textfield_txt._name+" changed and notified myListener");
 };
 my_txt.addListener(txtListener);

See also

onChanged (TextField.onChanged handler), onScroller (TextField.onScroller handler),

removeListener (TextField.removeListener method)

_alpha (TextField._alpha property)
 public _alpha : Number

Sets or retrieves the alpha transparency value of the text field. Valid values are 0 (fully transparent) to 100 (fully

opaque). The default value is 100. Transparency values are not supported for text fields that use device fonts. You must

use embedded fonts to use the _alpha transparency property with a text field.

Note: This property is not supported for Arabic, Hebrew, and Thai.

Availability

Flash Lite 2.0

Example

The following code sets the _alpha property of a text field named my_txt to 20%. Create a new font symbol in the

library by selecting New Font from the Library options menu. Then set the linkage of the font to my font. Set the

linkage for a font symbol to my font. Add the following ActionScript to your FLA or ActionScript file:

 var my_fmt:TextFormat = new TextFormat();
 my_fmt.font = "my font";
 // where 'my font' is the linkage name of a font in the Library
 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 my_txt.border = true;
 my_txt.embedFonts = true;
 my_txt.text = "Hello World";
 my_txt.setTextFormat(my_fmt);
 my_txt._alpha = 20;

See also

_alpha (Button._alpha property), _alpha (MovieClip._alpha property)

605FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

autoSize (TextField.autoSize property)
 public autoSize : Object

Controls automatic sizing and alignment of text fields. Acceptable values for autoSize are "none" (the default),

"left", "right", and "center". When you set the autoSize property, true is a synonym for "left" and false is

a synonym for "none".

The values of autoSize and TextField.wordWrap determine whether a text field expands or contracts to the left side,

right side, or bottom side. The default value for each of these properties is false.

If autoSize is set to "none" (the default) or false, then no resizing will occur.

If autoSize is set to "left" or true, then the text is treated as left-justified text, meaning the left side of the text field

will remain fixed and any resizing of a single line text field will be on the right side. If the text includes a line break (for

example, "\n" or "\r"), then the bottom side will also be resized to fit the next line of text. If wordWrap is also set

to true, then only the bottom side of the text field will be resized and the right side will remain fixed.

If autoSize is set to "right", then the text is treated as right-justified text, meaning the right side of the text field will

remain fixed and any resizing of a single line text field will be on the left side. If the text includes a line break (for

example, "\n" or "\r"), then the bottom side will also be resized to fit the next line of text. If wordWrap is also set

to true, then only the bottom side of the text field will be resized and the left side will remain fixed.

If autoSize is set to "center", then the text is treated as center-justified text, meaning any resizing of a single line text

field will be equally distributed to both the right and left sides. If the text includes a line break (for example, "\n" or

"\r"), then the bottom side will also be resized to fit the next line of text. If wordWrap is also set to true, then only the

bottom side of the text field will be resized and the left and right sides will remain fixed.

Availability

Flash Lite 2.0

Example

You can use the following code and enter different values for autoSize to see how the field resizes when these values

change. A mouse click while the SWF file is playing will replace each text field's "short text" string with longer text

using several different settings for autoSize.

606FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("left_txt", 997, 10, 10, 70, 30);
 this.createTextField("center_txt", 998, 10, 50, 70, 30);
 this.createTextField("right_txt", 999, 10, 100, 70, 30);
 this.createTextField("true_txt", 1000, 10, 150, 70, 30);
 this.createTextField("false_txt", 1001, 10, 200, 70, 30);

 left_txt.text = "short text";
 left_txt.border = true;

 center_txt.text = "short text";
 center_txt.border = true;

 right_txt.text = "short text";
 right_txt.border = true;

 true_txt.text = "short text";
 true_txt.border = true;

 false_txt.text = "short text";
 false_txt.border = true;

 // create a mouse listener object to detect mouse clicks
 var myMouseListener:Object = new Object();
 // define a function that executes when a user clicks the mouse
 myMouseListener.onMouseDown = function() {
 left_txt.autoSize = "left";
 left_txt.text = "This is much longer text";
 center_txt.autoSize = "center";
 center_txt.text = "This is much longer text";
 right_txt.autoSize = "right";
 right_txt.text = "This is much longer text";
 true_txt.autoSize = true;
 true_txt.text = "This is much longer text";
 false_txt.autoSize = false;
 false_txt.text = "This is much longer text";
 };
 // register the listener object with the Mouse object
 Mouse.addListener(myMouseListener);

background (TextField.background property)
 public background : Boolean

Specifies if the text field has a background fill. If true, the text field has a background fill. If false, the text field has

no background fill.

Availability

Flash Lite 2.0

Example

The following example creates a text field with a background color that toggles on and off when nearly any key on the

keyboard is pressed.

607FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 320, 240);
 my_txt.border = true;
 my_txt.text = "Lorum ipsum";
 my_txt.backgroundColor = 0xFF0000;

 var keyListener:Object = new Object();
 keyListener.onKeyDown = function() {
 my_txt.background = !my_txt.background;
 };
 Key.addListener(keyListener);

backgroundColor (TextField.backgroundColor property)
 public backgroundColor : Number

The color of the text field background. Default is 0xFFFFFF (white). This property may be retrieved or set, even if there

currently is no background, but the color is only visible if the text field has a border.

Availability

Flash Lite 2.0

Example

See the example for TextField.background.

See also

background (TextField.background property)

border (TextField.border property)
 public border : Boolean

Specifies if the text field has a border. If true, the text field has a border. If false, the text field has no border.

Availability

Flash Lite 2.0

Example

The following example creates a text field called my_txt, sets the border property to true, and displays some text in

the field.

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 320, 240);
 my_txt.border = true;
 my_txt.text = "Lorum ipsum";

borderColor (TextField.borderColor property)
 public borderColor : Number

The color of the text field border. The default is 0x000000 (black). This property may be retrieved or set, even if there

is currently no border.

Availability

Flash Lite 2.0

608FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a text field called my_txt, sets the border property to true, and displays some text in

the field.

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 100, 100);
 my_txt.border = true;
 my_txt.borderColor = 0x00FF00;
 my_txt.text = "Lorum ipsum";

See also

border (TextField.border property)

bottomScroll (TextField.bottomScroll property)
 public bottomScroll : Number [read-only]

An integer (one-based index) that indicates the bottommost line that is currently visible the text field. Think of the text

field as a window onto a block of text. The property TextField.scroll is the one-based index of the topmost visible

line in the window.

All the text between lines TextField.scroll and TextField.bottomScroll is currently visible in the text field.

Availability

Flash Lite 2.0

Example

The following example creates a text field and fills it with text. Create a button with the instance name my_btn, and

when you click it, the scroll and bottomScroll properties for the text field display in the comment_txt field.

 this.createTextField("comment_txt", this.getNextHighestDepth(), 0, 0, 160, 120);
 comment_txt.html = true;
 comment_txt.selectable = true;
 comment_txt.multiline = true;
 comment_txt.wordWrap = true;
 comment_txt.htmlText = "What is hexadecimal?
"
 + "The hexadecimal color system uses six digits to represent color values. "
 + "Each digit has sixteen possible values or characters. The characters range"
 + " from 0 to 9 and then A to F. Black is represented by (#000000) and white, "
 + "at the (pposite end of the color system, is (#FFFFFF).";
 my_btn.onRelease = function() {
 trace("scroll: "+comment_txt.scroll);
 trace("bottomScroll: "+comment_txt.bottomScroll);
 };

condenseWhite (TextField.condenseWhite property)
 public condenseWhite : Boolean

A Boolean value that specifies whether extra white space (spaces, line breaks, and so on) in an HTML text field should

be removed when the field is rendered in a browser. The default value is false.

If you set this value to true, you must use standard HTML commands such as
 and <P> to place line breaks in

the text field.

If the text field's .html is false, this property is ignored.

609FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example creates two text fields, called first_txt and second_txt. The white space is removed from

the second text field. Add the following ActionScript to your FLA or ActionScript file:

 var my_str:String = "Hello\tWorld\nHow are you?\t\t\tEnd";

 this.createTextField("first_txt", this.getNextHighestDepth(), 10, 10, 160, 120);
 first_txt.html = true;
 first_txt.multiline = true;
 first_txt.wordWrap = true;
 first_txt.condenseWhite = false;
 first_txt.border = true;
 first_txt.htmlText = my_str;

 this.createTextField("second_txt", this.getNextHighestDepth(), 180, 10, 160, 120);
 second_txt.html = true;
 second_txt.multiline = true;
 second_txt.wordWrap = true;
 second_txt.condenseWhite = true;
 second_txt.border = true;
 second_txt.htmlText = my_str;

See also

html (TextField.html property)

embedFonts (TextField.embedFonts property)
 public embedFonts : Boolean

A Boolean value that specifies whether to render the text using embedded font outlines. If the value is true, Flash Lite

renders the text field using embedded font outlines. If the value is false, Flash Lite renders the text field using device

fonts.

If you set embedFonts to true for a text field, you must specify a font for that text using the font property of a

TextFormat object applied to the text field. If the specified font does not exist in the library (with the corresponding

linkage identifier), the text is not displayed.

Note: This property is not supported for Arabic, Hebrew, and Thai.

Availability

Flash Lite 2.0

Example

In this example, you need to create a dynamic text field called my_txt, and then use the following ActionScript to

embed fonts and rotate the text field. The string my font refers to a font symbol in the library, with the linkage

identifier name my font. The example assumes that you have a font symbol in the library called my font, with linkage

properties set as follows: the identifier set to my font and Export for ActionScript and Export in First Frame selected.

610FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_fmt:TextFormat = new TextFormat();
 my_fmt.font = "my font";

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 160, 120);
 my_txt.wordWrap = true;
 my_txt.embedFonts = true;
 my_txt.text = "Hello world";
 my_txt.setTextFormat(my_fmt);
 my_txt._rotation = 45;

getDepth (TextField.getDepth method)
 public getDepth() : Number

Returns the depth of a text field.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

The following example demonstrates text fields residing at different depths. Create a dynamic text field on the Stage.

Add the following ActionScript to your FLA or ActionScript file, which dynamically creates two text fields at runtime

and outputs their depths.

 this.createTextField("first_mc", this.getNextHighestDepth(), 10, 10, 100, 22);
 this.createTextField("second_mc", this.getNextHighestDepth(), 10, 10, 100, 22);
 for (var prop in this) {
 if (this[prop] instanceof TextField) {
 var this_txt:TextField = this[prop];
 trace(this_txt._name+" is a TextField at depth: "+this_txt.getDepth());
 }
 }

getNewTextFormat (TextField.getNewTextFormat method)
 public getNewTextFormat() : TextFormat

Returns a TextFormat object containing a copy of the text field's text format object. The text format object is the format

that newly inserted text, such as text entered by a user, receives. When getNewTextFormat() is invoked, the

TextFormat object returned has all of its properties defined. No property is null.

Availability

Flash Lite 2.0

Returns

TextFormat - A TextFormat object.

Example

The following example displays the specified text field's (my_txt) TextFormat object.

611FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 160, 120);
 var my_fmt:TextFormat = my_txt.getNewTextFormat();
 trace("TextFormat has the following properties:");
 for (var prop in my_fmt) {
 trace(prop+": "+my_fmt[prop]);
 }

getTextFormat (TextField.getTextFormat method)
 public getTextFormat([beginIndex:Number], [endIndex:Number]) : TextFormat

Returns a TextFormat object for a character, for a range of characters, or for an entire TextField object.

• Usage 1: my_textField.getTextFormat()

Returns a TextFormat object containing formatting information for all text in a text field. Only properties that are

common to all text in the text field are set in the resulting TextFormat object. Any property which is mixed,

meaning that it has different values at different points in the text, has a value of null.

• Usage 2: my_textField.getTextFormat(beginIndex:Number)

Returns a TextFormat object containing a copy of the text field's text format at the beginIndex position.

• Usage 3: my_(extField.getTextFormat(beginIndex:Number,endIndex:Number)

Returns a TextFormat object containing formatting information for the span of text from beginIndex to

endIndex. Only properties that are common to all of the text in the specified range is set in the resulting

TextFormat object. Any property that is mixed (it has different values at different points in the range) has its value

set to null.

Availability

Flash Lite 2.0

Parameters

beginIndex:Number [optional] - An integer that specifies a character in a string. If you do not specify beginIndex

and endIndex, the TextFormat object returned is for the entire TextField.

endIndex:Number [optional] - An integer that specifies the end position of a span of text. If you specify beginIndex

but do not specify endIndex, the TextFormat returned is for the single character specified by beginIndex.

Returns

TextFormat - An object.

Example

The following ActionScript traces all of the formatting information for a text field that is created at runtime.

 this.createTextField("dyn_txt", this.getNextHighestDepth(), 0, 0, 100, 200);
 dyn_txt.text = "Frank";
 dyn_txt.setTextFormat(new TextFormat());
 var my_fmt:TextFormat = dyn_txt.getTextFormat();
 for (var prop in my_fmt) {
 trace(prop+": "+my_fmt[prop]);
 }

612FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

getNewTextFormat (TextField.getNewTextFormat method), setNewTextFormat

(TextField.setNewTextFormat method)setTextFormat (TextField.setTextFormat method)

_height (TextField._height property)
 public _height : Number

The height of the text field in pixels.

Availability

Flash Lite 2.0

Example

The following code example sets the height and width of a text field:

 my_txt._width = 200;
 my_txt._height = 200;

_highquality (TextField._highquality property)
 public _highquality : Number

Deprecated since Flash Player 7. This property was deprecated in favor of TextField._quality.

Specifies the level of anti-aliasing applied to the current SWF file. Specify 2 (best quality) to apply high quality with

bitmap smoothing always on. Specify 1 (high quality) to apply anti-aliasing; this smooths bitmaps if the SWF file does

not contain animation and is the default value. Specify 0 (low quality) to prevent anti-aliasing.

Availability

Flash Lite 2.0

See also

_quality (TextField._quality property)

hscroll (TextField.hscroll property)
 public hscroll : Number

Indicates the current horizontal scrolling position. If the hscroll property is 0, the text is not horizontally scrolled.

The units of horizontal scrolling are pixels, while the units of vertical scrolling are lines. Horizontal scrolling is

measured in pixels because most fonts that are typically used are proportionally spaced, and therefore the characters

can have different widths. Flash performs vertical scrolling by line because users usually want to see a line of text in its

entirety, as opposed to seeing a partial line. Even if there are multiple fonts on a line, the height of the line adjusts to

fit the largest font in use.

Note: The hscroll property is zero-based, not one-based like the vertical scrolling property TextField.scroll.

Availability

Flash Lite 2.0

613FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example scrolls the my_txt text field horizontally using two buttons called scrollLeft_btn and

scrollRight_btn. The amount of scroll appears in a text field called scroll_txt. Add the following ActionScript to

your FLA or ActionScript file:

 this.createTextField("scroll_txt", this.getNextHighestDepth(), 10, 10, 160, 20);
 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 30, 160, 22);
 my_txt.border = true;
 my_txt.multiline = false;
 my_txt.wordWrap = false;
 my_txt.text = "Lorem ipsum dolor sit amet, consectetuer adipiscing...";

 scrollLeft_btn.onRelease = function() {
 my_txt.hscroll -= 10;
 scroll_txt.text = my_txt.hscroll+" of "+my_txt.maxhscroll;
 };
 scrollRight_btn.onRelease = function() {
 my_txt.hscroll += 10;
 scroll_txt.text = my_txt.hscroll+" of "+my_txt.maxhscroll;
 };

See also

maxhscroll (TextField.maxhscroll property), scroll (TextField.scroll property)

html (TextField.html property)
 public html : Boolean

A flag that indicates whether the text field contains an HTML representation. If the html property is true, the text

field is an HTML text field. If html is false, the text field is a non-HTML text field.

Availability

Flash Lite 2.0

Example

The following example creates a text field that sets the html property to true. HTML-formatted text appears in the

text field.

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 160, 22);
 my_txt.html = true;
 my_txt.htmlText = " this is bold text ";

See also

htmlText (TextField.htmlText property)

htmlText (TextField.htmlText property)
 public htmlText : String

If the text field is an HTML text field, this property contains the HTML representation of the text field's contents. If

the text field is not an HTML text field, it behaves identically to the text property. You can indicate that a text field is

an HTML text field in the Property inspector, or by setting the text field's html property to true.

614FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example creates a text field that sets the html property to true. HTML-formatted text appears in the

text field.

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 160, 22);
 my_txt.html = true;
 my_txt.htmlText = "< this is bold text >";

See also

html (TextField.html property)

length (TextField.length property)
 public length : Number [read-only]

Indicates the number of characters in a text field. This property returns the same value as text.length, but is faster.

A character such as tab (\t) counts as one character.

Availability

Flash Lite 2.0

Example

The following example outputs the number of characters in the date_txt text field, which displays the current date.

 var today:Date = new Date();
 this.createTextField("date_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 date_txt.autoSize = true;
 date_txt.text = today.toString();
 trace(date_txt.length);

maxChars (TextField.maxChars property)
 public maxChars : Number

Indicates the maximum number of characters that the text field can contain. A script may insert more text than

maxChars allows; the maxChars property indicates only how much text a user can enter. If the value of this property

is null, there is no limit on the amount of text a user can enter.

Availability

Flash Lite 2.0

Example

The following example creates a text field called age_txt that only lets users enter up to two numbers in the field.

 this.createTextField("age_txt", this.getNextHighestDepth(), 10, 10, 30, 22);
 age_txt.type = "input";
 age_txt.border = true;
 age_txt.maxChars = 2;

615FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

maxhscroll (TextField.maxhscroll property)
 public maxhscroll : Number [read-only]

Indicates the maximum value of TextField.hscroll.

Availability

Flash Lite 2.0

Example

See the example for TextField.hscroll.

maxscroll (TextField.maxscroll property)
 public maxscroll : Number [read-only]

Indicates the maximum value of TextField.scroll.

Availability

Flash Lite 2.0

Example

The following example sets the maximum value for the scrolling text field my_txt. Create two buttons, scrollUp_btn

and scrollDown_btn, to scroll the text field. Add the following ActionScript to your FLA or ActionScript file.

 this.createTextField("scroll_txt", this.getNextHighestDepth(), 10, 10, 160, 20);
 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 30, 320, 240);
 my_txt.multiline = true;
 my_txt.wordWrap = true;
 for (var i = 0; i<10; i++) {
 my_txt.text += "Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy
nibh "
 + "euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.";
 }
 scrollUp_btn.onRelease = function() {
 my_txt.scroll--;
 scroll_txt.text = my_txt.scroll+" of "+my_txt.maxscroll;
 };
 scrollDown_btn.onRelease = function() {
 my_txt.scroll++;
 scroll_txt.text = my_txt.scroll+" of "+my_txt.maxscroll;
 };

multiline (TextField.multiline property)
 public multiline : Boolean

Indicates whether the text field is a multiline text field. If the value is true, the text field is multiline; if the value is

false, the text field is a single-line text field.

Availability

Flash Lite 2.0

616FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a multiline text field called myText.

 this.createTextField("myText", this.getNextHighestDepth(), 10, 30, 110, 100);
 myText.text = "Flash is an authoring tool that designers and developers use to create
presentations,
 applications, and other content that enables user interaction.";
 myText.border = true;
 myText.wordWrap = true;
 myText.multiline = true;

_name (TextField._name property)
 public _name : String

The instance name of the text field.

Availability

Flash Lite 2.0

Example

The following example demonstrates text fields residing at different depths. Create a dynamic text field on the Stage.

Add the following ActionScript to your FLA or ActionScript file, which dynamically creates two text fields at runtime

and displays their depths in the Output panel.

 this.createTextField("first_mc", this.getNextHighestDepth(), 10, 10, 100, 22);
 this.createTextField("second_mc", this.getNextHighestDepth(), 10, 10, 100, 22);
 for (var prop in this) {
 if (this[prop] instanceof TextField) {
 var this_txt:TextField = this[prop];
 trace(this_txt._name+" is a TextField at depth: "+this_txt.getDepth());
 }
 }

When you test the document, the instance name and depth is displayed in the Output panel.When you test the

document, the instance name and depth writes to the log file.

onChanged (TextField.onChanged handler)
 onChanged = function(changedField:TextField) {}

Invoked when the content of a text field changes. By default, it is undefined. You can define it in a script.

A reference to the text field instance is passed as a parameter to the onChanged handler. You can capture this data by

putting a parameter in the event handler method. For example, the following code uses textfield_txt as the

parameter that is passed to the onChanged event handler. The parameter is then used in a trace() statement to send

the instance name of the text field to the Output panel:

 this.createTextField("myInputText_txt", 99, 10, 10, 300, 20);
 myInputText_txt.border = true;
 myInputText_txt.type = "input";

 myInputText_txt.onChanged = function(textfield_txt:TextField) {
 trace("the value of "+textfield_txt._name+" was changed. New value is: "+textfield_txt.text);
 };

617FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The onChanged handler is called only when the change results from user interaction; for example, when the user is

typing something on the keyboard, changing something in the text field using the mouse, or selecting a menu item.

Programmatic changes to the text field do not trigger the onChanged event because the code recognizes changes that

are made to the text field.

Availability

Flash Lite 2.0

Parameters

changedField:TextField - The field triggering the event.

See also

getNewTextFormat (TextField.getNewTextFormat method), setNewTextFormat

(TextField.setNewTextFormat method)

onKillFocus (TextField.onKillFocus handler)
 onKillFocus = function(newFocus:Object) {}

Invoked when a text field loses keyboard focus. The onKillFocus method receives one parameter, newFocus, which is an

object representing the new object receiving the focus. If no object receives the focus, newFocus contains the value null.

Availability

Flash Lite 2.0

Parameters

newFocus:Object - The object that is receiving the focus.

Example

The following example creates two text fields called first_txt and second_txt. When you give focus to a text field,

information about the text field with current focus and the text field that lost focus is displayed in the Output panel.

 this.createTextField("first_txt", 1, 10, 10, 300, 20);
 first_txt.border = true;
 first_txt.type = "input";
 this.createTextField("second_txt", 2, 10, 40, 300, 20);
 second_txt.border = true;
 second_txt.type = "input";
 first_txt.onKillFocus = function(newFocus:Object) {
 trace(this._name+" lost focus. New focus changed to: "+newFocus._name);
 };
 first_txt.onSetFocus = function(oldFocus:Object) {
 trace(this._name+" gained focus. Old focus changed from: "+oldFocus._name);
 }

See also

onSetFocus (TextField.onSetFocus handler)

onScroller (TextField.onScroller handler)
 onScroller = function(scrolledField:TextField) {}

618FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Invoked when one of the text field scroll properties changes.

A reference to the text field instance is passed as a parameter to the onScroller handler. You can capture this data by

putting a parameter in the event handler method. For example, the following code uses my_txt as the parameter that

is passed to the onScroller event handler. The parameter is then used in a trace() statement to send the instance

name of the text field to the Output panel.

 myTextField.onScroller = function (my_txt:TextField) {
 trace (my_txt._name + " scrolled");
 };

The TextField.onScroller event handler is commonly used to implement scroll bars. Scroll bars typically have a

thumb or other indicator that shows the current horizontal or vertical scrolling position in a text field. Text fields can

be navigated using the mouse and keyboard, which causes the scroll position to change. The scroll bar code needs to be

notified if the scroll position changes because of such user interaction. This is what TextField.onScroller is used for.

onScroller is called whether the scroll position changed because of a user’s interaction with the text field, or due to

programmatic changes. The onChanged handler fires only if a user interaction causes the change. These two options

are necessary because often one piece of code changes the scrolling position, while the scroll bar code is unrelated and

won't know that the scroll position changed without being notified.

Availability

Flash Lite 2.0

Parameters

scrolledField:TextField - A reference to the TextField object whose scroll position was changed.

Example

The following example creates a text field called my_txt, and uses two buttons called scrollUp_btn and

scrollDown_btn to scroll the contents of the text field. When the onScroller event handler is called, a trace

statement is used to display information in the Output panel. Create two buttons with instance names scrollUp_btn

and scrollDown_btn, and add the following ActionScript to your FLA or ActionScript file:

 this.createTextField("scroll_txt", this.getNextHighestDepth(), 10, 10, 160, 20);
 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 30, 320, 240);
 my_txt.multiline = true;
 my_txt.wordWrap = true;

 for (var i = 0; i<10; i++) {
 my_txt.text += "Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam "
 + "nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.";
 }
 scrollUp_btn.onRelease = function() {
 my_txt.scroll--;
 };
 scrollDown_btn.onRelease = function() {
 my_txt.scroll++;
 };
 my_txt.onScroller = function() {
 trace("onScroller called");
 scroll_txt.text = my_txt.scroll+" of "+my_txt.maxscroll;
 };

619FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

hscroll (TextField.hscroll property), maxhscroll (TextField.maxhscroll property), maxscroll

(TextField.maxscroll property)scroll (TextField.scroll property)

onSetFocus (TextField.onSetFocus handler)
 onSetFocus = function(oldFocus:Object) {}

Invoked when a text field receives keyboard focus. The oldFocus parameter is the object that loses the focus. For

example, if the user presses the Tab key to move the input focus from a button to a text field, oldFocus contains the

button instance. If there is no previously focused object, oldFocus contains a null value.

Availability

Flash Lite 2.0

Parameters

oldFocus:Object - The object to lose focus.

Example

See the example for TextField.onKillFocus.

See also

onKillFocus (TextField.onKillFocus handler)

_parent (TextField._parent property)
 public _parent : MovieClip

A reference to the movie clip or object that contains the current text field or object. The current object is the one

containing the ActionScript code that references _parent.

Use _parent to specify a relative path to movie clips or objects that are above the current text field. You can use

_parent to climb up multiple levels in the display list as in the following:

 _parent._parent._alpha = 20;

Availability

Flash Lite 2.0

Example

The following ActionScript creates two text fields and outputs information about the _parent of each object. The first

text field, first_txt, is created on the main Timeline. The second text field, second_txt, is created inside the movie

clip called holder_mc.

 this.createTextField("first_txt", this.getNextHighestDepth(), 10, 10, 160, 22);
 first_txt.border = true;
 trace(first_txt._name+"'s _parent is: "+first_txt._parent);

 this.createEmptyMovieClip("holder_mc", this.getNextHighestDepth());
 holder_mc.createTextField("second_txt", holder_mc.getNextHighestDepth(), 10, 40, 160, 22);
 holder_mc.second_txt.border = true;
 trace(holder_mc.second_txt._name+"'s _parent is: "+holder_mc.second_txt._parent);

620FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The following information is displayed in the Output panel:

 first_txt'(_parent is: _level0
 second_txt's _parent is: _level0.holder_mc

See also

_parent (Button._parent property), _parent (MovieClip._parent property), _root property

password (TextField.password property)
 public password : Boolean

Specifies whether the text field is a password text field. If the value of password is true, the text field is a password text

field: once the user completes entering the password and clicks OK, the text field hides the input characters using

asterisks instead of the actual characters. If false, the text field is not a password text field. When password mode is

enabled, the Cut and Copy commands and their corresponding keyboard accelerators will not function. This security

mechanism prevents an unscrupulous user from using the shortcuts to discover a password on an unattended

computer.

Availability

Flash Lite 2.0

Example

The following example creates two text fields: username_txt and password_txt. Text is entered into both text fields;

however, password_txt has the password property set to true. After the user clicks OK to complete the password

entry, the characters display as asterisks instead of as characters in the password_txt field.

 this.createTextField("username_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 username_txt.border = true;
 username_txt.type = "input";
 username_txt.maxChars = 16;
 username_txt.text = "hello";

 this.createTextField("password_txt", this.getNextHighestDepth(), 10, 40, 100, 22);
 password_txt.border = true;
 password_txt.type = "input";
 password_txt.maxChars = 16;
 password_tx(.password = true;
 password_txt.text = "world";

_quality (TextField._quality property)
 public _quality : String

Property (global); sets or retrieves the rendering quality used for a SWF file. Device fonts are always aliased and,

therefore, are unaffected by the _quality property.

Note: Although you can specify this property for a TextField object, it is actually a global property, and you can specify

its value simply as _quality. For more information, see the _quality property.

The _quality property can be set to the following values:

• "LOW" Low rendering quality. Graphics are not anti-aliased, and bitmaps are not smoothed.

• "MEDIUM" Medium rendering quality. Graphics are anti-aliased using a 2 x 2 pixel grid, but bitmaps are not

smoothed. The quality is suitable for movies that do not contain text.

621FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

• "HIGH" High rendering quality. Graphics are anti-aliased using a 4 x 4 pixel grid, and bitmaps are smoothed if the

movie is static. This is the default rendering quality used by Flash.

• "BEST" Very high rendering quality. Graphics are anti-aliased using a 4 x 4 pixel grid and bitmaps are always

smoothed.

Note: This property is not supported for Arabic, Hebrew, and Thai.

Availability

Flash Lite 2.0

Example

The following example sets the rendering quality to LOW:

 my_txt._quality = "LOW";

See also

_quality property

removeListener (TextField.removeListener method)
 public removeListener(listener:Object) : Boolean

Removes a listener object previously registered to a text field instance with TextField.addListener().

Availability

Flash Lite 2.0

Parameters

listener:Object - The object that will no longer receive notifications from TextField.onChanged or

TextField.onScroller.

Returns

Boolean - If listener was successfully removed, the method returns a true value. If listener was not successfully

removed (for example, if listener was not on the TextField object's listener list), the method returns a value of false.

Example

The following example creates an input text field called my_txt. When the user types into the field, information about

the number of characters in the text field is displayed in the Output panel. When the user types into the field,

information about the number of characters in the text field writes to the log file. If the user clicks the

removeListener_btn instance, then the listener is removed and the information is no longer displayed. If the user

clicks the removeListener_btn instance, then the listener is removed and the information no longer writes to the log

file.

622FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 160, 20);
 my_txt.border = true;
 my_txt.type = "input";

 var txtListener:Object = new Object();
 txtListener.onChanged = function(textfield_txt:TextField) {
 trace(textfield_txt+" changed. Current length is: "+textfield_txt.length);
 };
 my_txt.addListener(txtListener);

 removeListener_btn.onRelease = function() {
 trace("Removing listener...");
 if (!my_txt.removeListener(txtListener)) {
 trace("Error! Unable to remove listener");
 }
 };

(

removeTextField (TextField.removeTextField method)
 public removeTextField() : Void

Removes the text field. This operation can only be performed on a text field that was created with

MovieClip.createTextField(). When you call this method, the text field is removed. This method is similar to

MovieClip.removeMovieClip().

Availability

Flash Lite 2.0

Example

The following example creates a text field that you can remove from the Stage when you click the remove_btn instance.

Create a button and call it remove_btn, and then add the following ActionScript to your FLA or ActionScript file.

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 300, 22);
 my_txt.text = new Date().toString();
 my_txt.border = true;

 remove_btn.onRelease = function() {
 my_txt.removeTextField();
 };

replaceSel (TextField.replaceSel method)
 public replaceSel(newText:String) : Void

Replaces the current selection with the contents of the newText parameter. The text is inserted at the position of the

current selection, using the current default character format and default paragraph format. The text is not treated as

HTML, even if the text field is an HTML text field.

You can use the replaceSel() method to insert and delete text without disrupting the character and paragraph

formatting of the rest of the text.

Note: You must use the Selection.setFocus() method to focus the field before you call the replaceSel() method.

623FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Parameters

newText:String - A string.

Example

The following example code creates a multiline text field with text on the Stage. When you select some text and then

right-click or Control-click over the text field, you can select Enter current date from the context menu. This

selection calls a function that replaces the selected text with the current date.

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 320, 240);
 my_txt.border = true;
 my_txt.wordWrap = true;
 my_txt.multiline = true;
 my_txt.type = "input";
 my_txt.text = "Select some sample text from the text field and then right-click/control click "
 + "and select 'Enter current date' from the context menu to replace the "
 + "currently selected text with the current date.";

 var my_cm:ContextMenu = new ContextMenu();
 my_cm.customItems.push(new ContextMenuItem("Enter current date", enterDate));
 function enterDate(obj:Object, menuItem:ContextMenuItem) {
 var today_str:String = new Date().toString();
 var date_str:String = today_str.split(" ", 3).join(" ");
 my_txt.replaceSel(date_str);
 }
 my_txt.menu = my_cm;

See also

setFocus (Selection.setFocus method)

replaceText (TextField.replaceText method)
 public replaceText(beginIndex:Number, endIndex:Number, newText:String) : Void

Replaces a range of characters, specified by the beginIndex and endIndex parameters, in the specified text field with

the contents of the newText parameter.

Availability

Flash Lite 2.0

Parameters

beginIndex:Number - The start index value for the replacement range.

endIndex:Number - The end index value for the replacement range.

newText:String - The text to use to replace the specified range of characters.

624FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a text field called my_txt and assigns the text dog@house.net to the field. The

indexOf() method is used to find the first occurrence of the specified symbol (@). If the symbol is found, the specified

text (between the index of 0 and the symbol) replaces with the string bird. If the symbol is not found, an error message

is displayed in the Output panel. If the symbol is not found, an error message writes to the log file.

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 320, 22);
 my_txt.autoSize = true;
 my_txt.text = "dog@house.net";

 var symbol:String = "@";
 var symbolPos:Number = my_txt.text.indexOf(symbol);
 if (symbolPos>-1) {
 my_txt.replaceText(0, symbolPos, "bird");
 } else {
 trace("symbol '"+symbol+"' not found.");
 }

_rotation (TextField._rotation property)
 public _rotation : Number

The rotation of the text field, in degrees, from its original orientation. Values from 0 to 180 represent clockwise

rotation; values from 0 to -180 represent counterclockwise rotation. Values outside this range are added to or

subtracted from 360 to obtain a value within the range. For example, the statement my_txt._rotation = 450 is the

same as my_txt._rotation = 90.

Rotation values are not supported for text fields that use device fonts. You must use embedded fonts to use _rotation

with a text field.

Note: This property is not supported for Arabic, Hebrew, and Thai.

Availability

Flash Lite 2.0

Example

In this example, you need to create a dynamic text field called my_txt, and then use the following ActionScript to

embed fonts and rotate the text field. The string my font refers to a font symbol in the library, with a linkage identifier

of my font.

 var my_fmt:TextFormat = new TextFormat();
 my_fmt.font = "my font";

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 160, 120);
 my_txt.wordWrap = true;
 my_txt.embedFonts = true;
 my_txt.text = "Hello world";
 my_txt.setTextFormat(my_fmt);
 my_txt._rotation = 45;

Apply additional formatting for the text field using the TextFormat class.

See also

_rotation (Button._rotation property), _rotation (MovieClip._rotation property),

getNewTextFormat (TextField.getNewTextFormat method)

625FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

scroll (TextField.scroll property)
 public scroll : Number

Defines the vertical position of text in a text field. The scroll property is useful for directing users to a specific paragraph

in a long passage, or creating scrolling text fields. This property can be retrieved and modified.

The units of horizontal scrolling are pixels, while the units of vertical scrolling are lines. Horizontal scrolling is

measured in pixels because most fonts that are typically used are proportionally spaced. This means that the characters

can have different widths. Flash performs vertical scrolling by line because users usually want to see a line of text in its

entirety, as opposed to seeing a partial line. Even if there are multiple fonts on a line, the height of the line adjusts to

fit the largest font in use.

Availability

Flash Lite 2.0

Example

The following example sets the maximum value for the scrolling text field my_txt. Create two buttons, scrollUp_btn

and scrollDown_btn, to scroll the text field. Add the following ActionScript to your FLA or ActionScript file.

 this.createTextField("scroll_txt", this.getNextHighestDepth(), 10, 10, 160, 20);
 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 30, 320, 240);
 my_txt.multiline = true;
 my_txt.wordWrap = true;
 for (var i = 0; i<10; i++) {
 my_txt.text += "Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy "
 + "nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.";
 }
 scrollUp_btn.onRelease = function() {
 my_txt.scroll--;
 scroll_txt.text = my_txt.scroll+" of "+my_txt.maxscroll;
 };
 scrollDown_btn.onRelease = function() {
 my_txt.scroll++;
 scroll_txt.text = my_txt.scroll+" of "+my_txt.maxscroll;
 };

See also

hscroll (TextField.hscroll property), maxscroll (TextField.maxscroll property)

selectable (TextField.selectable property)
 public selectable : Boolean

A Boolean value that indicates whether the text field is selectable. If the value is true, the text is selectable. The

selectable property controls whether a text field is selectable, not whether a text field is editable. A dynamic text field

can be selectable even if it is not editable. If a dynamic text field is not selectable, you cannot select its text.

If selectable is set to false, the text in the text field does not respond to selection commands from the mouse or

keyboard, and the text cannot be copied using the Copy command. If selectable is set to true, the text in the text field

can be selected using the mouse or keyboard. You can select text this way even if the text field is a dynamic text field

instead of an input text field. You can also copy the text using the Copy command.

Note: This property is not supported for Arabic, Hebrew, and Thai.

626FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example creates a selectable text field that is constantly updated with the current date and time.

 this.createTextField("date_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 date_txt.autoSize = true;
 date_txt.selectable = true;

 (var date_interval:Number = setInterval(updateTime, 500, date_txt);
 function updateTime(my_txt:TextField) {
 my_txt.text = new Date().toString();
 }

setNewTextFormat (TextField.setNewTextFormat method)
 public setNewTextFormat(tf:TextFormat) : Void

Sets the default new text format of a text field. The default new text format is the new text format used for newly

inserted text such as text entered by a user. When text is inserted, the newly inserted text is assigned the default new

text format.

The new default text format is specified by textFormat, which is a TextFormat object.

Availability

Flash Lite 2.0

Parameters

tf:TextFormat - A TextFormat object.

Example

In the following example, a new text field (called my_txt) is created at runtime and several properties are set. The

format of the newly inserted text is applied.

 var my_fmt:TextForma(= new TextFormat();
 my_fmt.bold = true;
 my_fmt.font = "Arial";
 my_fmt.color = 0xFF9900;

 this.createTextField("my_txt", 999, 0, 0, 400, 300);
 my_txt.wordWrap = true;
 my_txt.multiline = true;
 my_txt.border = true;
 my_txt.type = "input";
 my_txt.setNewTextFormat(my_fmt);
 my_txt.text = "Oranges are a good source of vitamin C";

See also

getNewTextFormat (TextField.getNewTextFormat method), getTextFormat (TextField.getTextFormat

method)setTextFormat (TextField.setTextFormat method)

627FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

setTextFormat (TextField.setTextFormat method)
 public setTextFormat([beginIndex:Number], [endIndex:Number], textFormat:TextFormat) : Void

Applies the text formatting specified by the textFormat parameter to some or all of the text in a text field. textFormat

must be a TextFormat object that specifies the text formatting changes desired. Only the non-null properties of

TextFormat are applied to the text field. Any property of textFormat that is set to null will not be applied. By default,

all of the properties of a newly created TextFormat object are set to null.

There are two types of formatting information in a TextFormat object: character level, and paragraph level formatting.

Each character in a text field might have its own character formatting settings, such as font name, font size, bold, and

italic.

For paragraphs, the first character of the paragraph is examined for the paragraph formatting settings for the entire

paragraph. Examples of paragraph formatting settings are left margin, right margin, and indentation.

The setTextFormat() method changes the text formatting applied to an individual character, to a range of

characters, or to the entire body of text in a text field:

• Usage 1: my_textField.setTextFormat(textFormat:TextFormat)

Applies the properties of textFormat to all text in the text field.

• Usage 2: my_textField.setTextFormat(beginIndex:Number, textFormat:TextFormat)

Applies the properties of textFormat to the character at the beginIndex position.

• Usage 3: my_textField.setTextFormat(beginIndex:Number, endIndex:Number,

textFormat:TextFormat)

Applies the properties of the textFormat parameter to the span of text from the beginIndex position to the

endIndex position.

Notice that any text inserted manually by the user receives the text field's default formatting for new text, and not the

formatting specified for the text insertion point. To set a text field's default formatting for new text, use

TextField.setNewTextFormat().

Availability

Flash Lite 2.0

Parameters

beginIndex:Number [optional] - An integer that specifies the first character of the desired text span. If you do not

specify beginIndex and endIndex, the TextFormat is applied to the entire TextField.

endIndex:Number [optional] - An integer that specifies the first character after the desired text span. If you specify

beginIndex but do not specify endIndex, the TextFormat is applied to the single character specified by beginIndex.

textFormat:TextFormat - A TextFormat object, which contains character and paragraph formatting information.

Example

The following example sets the text format for two different strings of text. The setTextFormat() method is called and

applied to the my_txt text field.

628FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var format1_fmt:TextFormat = new TextFormat();
 format1_fmt.font = "Arial";
 var format2_fmt:TextFormat = new TextFormat();
 format2_fmt.font = "Courier";

 var string1:String = "Sample string number one."+newline;
 var string2:String = "Sample string number two."+newline;

 this.createTextField("my_txt", this.getNextHighestDepth(), 0, 0, 300, 200);
 my_txt.multiline = true;
 my_txt.wordWrap = true;
 my_txt.text = string1;
 var firstIndex:Number = my_txt.length;
 my_txt.text += string2;
 var secondIndex:Number = my_txt.length;

 my_txt.setTextFormat(0, firstIndex, format1_fmt);
 my_txt.setTextFormat(firstIndex, secondIndex, format2_fmt);

See also

getNewTextFormat (TextField.getNewTextFormat method), setNewTextFormat

(TextField.setNewTextFormat method)

_soundbuftime (TextField._soundbuftime property)
 public _soundbuftime : Number

Specifies the number of seconds a sound prebuffers before it starts to stream. Note: Although you can specify this

property for a TextField object, it is actually a global property that applies to all sounds loaded, and you can specify its

value simply as _soundbuftime. Setting this property for a TextField object actually sets the global property. For more

information and an example, see _soundbuftime.

Availability

Flash Lite 2.0

See also

_soundbuftime property

tabEnabled (TextField.tabEnabled property)
 public tabEnabled : Boolean

Specifies whether the text field is included in automatic tab ordering. It is undefined by default.

If the tabEnabled property is undefined or true, the object is included in automatic tab ordering. If the tabIndex

property is also set to a value, the object is included in custom tab ordering as well. If tabEnabled is false, the object

is not included in automatic or custom tab ordering, even if the tabIndex property is set.

Availability

Flash Lite 2.0

629FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates several text fields, called one_txt, two_txt, three_txt and four_txt. The

three_txt text field has the tabEnabled property set to false, so it is excluded from the automatic tab ordering.

 this.createTextField("one_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 one_txt.border = true;
 one_txt.type = "input";
 this.createTextField("two_txt", this.getNextHighestDepth(), 10, 40, 100, 22);
 two_txt.border = true;
 two_txt.type = "input";
 this.createTextField("three_txt", this.getNextHighestDepth(), 10, 70, 100, 22);
 three_txt.border = true;
 three_txt.type = "input";
 this.createTextField("four_txt", this.getNextHighestDepth(), 10, 100, 100, 22);
 four_txt.border = true;
 four_txt.type = "input";

 three_txt.tabEnabled = false;
 three_txt.text = "tabEnabled = false;";

See also

tabEnabled (Button.tabEnabled property), tabEnabled (MovieClip.tabEnabled property)

tabIndex (TextField.tabIndex property)
 public tabIndex : Number

Lets you customize the tab ordering of objects in a SWF file. You can set the tabIndex property on a button, movie

clip, or text field instance; it is undefined by default.

If any currently displayed object in the SWF file contains a tabIndex property, automatic tab ordering is disabled, and

the tab ordering is calculated from the tabIndex properties of objects in the SWF file. The custom tab ordering only

includes objects that have tabIndex properties.

The tabIndex property must be a positive integer. The objects are ordered according to their tabIndex properties, in

ascending order. An object with a tabIndex value of 1 precedes an object with a tabIndex value of 2. If two objects

have the same tabIndex value, the one that precedes the other in the tab ordering is undefined.

The custom tab ordering defined by the tabIndex property is flat. This means that no attention is paid to the

hierarchical relationships of objects in the SWF file. All objects in the SWF file with tabIndex properties are placed in

the tab order, and the tab order is determined by the order of the tabIndex values. If two objects have the same

tabIndex value, the one that goes first is undefined. You should not use the same tabIndex value for multiple

objects.

Availability

Flash Lite 2.0

Example

The following ActionScript dynamically creates four text fields and assigns them to a custom tab order. Add the

following ActionScript to your FLA or ActionScript file:

630FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("one_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 one_txt.border = true;
 one_txt.type = "input";
 this.createTextField("two_txt", this.getNextHighestDepth(), 10, 40, 100, 22);
 two_txt.border = true;
 two_txt.type = "input";
 this.createTextField("three_txt", this.getNextHighestDepth(), 10, 70, 100, 22);
 three_txt.border = true;
 three_txt.type = "input";
 this.createTextField("four_txt", this.getNextHighestDepth(), 10, 100, 100, 22);
 four_txt.border = true;
 four_txt.type = "input";

 one_txt.tabIndex = 3;
 two_txt.tabIndex = 1;
 three_txt.tabIndex = 2;
 four_txt.tabIndex = 4;

See also

tabIndex (Button.tabIndex property), tabIndex (MovieClip.tabIndex property)

_target (TextField._target property)
 public _target : String [read-only]

The target path of the text field instance. The _self target specifies the current frame in the current window, _blank

specifies a new window, _parent specifies the parent of the current frame, and _top specifies the top-level frame in

the current window.

Availability

Flash Lite 2.0

Example

The following ActionScript creates a text field called my_txt and outputs the target path of the new field, in both slash

and dot notation.

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 trace(my_txt._target); // output: /my_txt
 trace(eval(my_txt._target)); // output: _level0.my_txt

text (TextField.text property)
 public text : String

Indicates the current text in the text field. Lines are separated by the carriage return character ("\r", ASCII 13). This

property contains the normal, unformatted text in the text field, without HTML tags, even if the text field is HTML.

Availability

Flash Lite 2.0

631FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates an HTML text field called my_txt, and assigns an HTML-formatted string of text to the

field. When you trace the htmlText property, the Output panel displays the HTML-formatted string. When you trace

the value of the text property, the unformatted string with HTML tags appears in the Output panel.When you trace

the value of the text property, the unformatted string with HTML tags writes to the log file.

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 10, 400, 22);
 my_txt.html = true;
 my_txt.htmlText = "Remember to always update the help panel.";

 trace("htmlText: "+my_txt.htmlText);
 trace("text: "+my_txt.text);

 // output:
 htmlText: <P ALIGN="LEFT">
 Remember to always update your help panel.</P>
 text: Remember to always update your help panel.

See also

htmlText (TextField.htmlText property)

textColor (TextField.textColor property)
 public textColor : Number

Indicates the color of the text in a text field. The hexadecimal color system uses six digits to represent color values. Each

digit has sixteen possible values or characters. The characters range from 0 to 9 and then A to F. Black is represented

by (#000000) and white, at the opposite end of the color system, is (#FFFFFF).

Availability

Flash Lite 2.0

Example

The following ActionScript creates a text field and changes its color property to red.

 this.createTextField("my_txt", 99, 10, 10, 100, 300);
 my_txt.text = "this will be red text";
 my_txt.textColor = 0xFF0000;

textHeight (TextField.textHeight property)
 public textHeight : Number

Indicates the height of the text.

Availability

Flash Lite 2.0

632FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a text field, and assigns a string of text to the field. A trace statement is used to display

the text height and width in the Output panel. The trace() method is used to write the text height and width in the

log file. The autoSize property is then used to resize the text field, and the new height and width will also be displayed

in the Output panel. The autoSize property is then used to resize the text field, and the new height and width also

write to the log file.

 this.createTextField("my_txt", 99, 10, 10, 100, 300);
 my_txt.text = "Sample text";
 trace("textHeight: "+my_txt.textHeight+", textWidth: "+my_txt.textWidth);
 trace("_height: "+my_txt._height+", _width: "+my_txt._width+"\n");
 my_txt.autoSize = true;
 trace("after my_txt.autoSize = true;");
 trace("_height: "+my_txt._height+", _width: "+my_txt._width);

Which outputs the following information:

 textHeight: 15, textWidth: 56
 _height: 300, _width: 100

 after my_txt.autoSize = true;
 _height: 19, _width: 60

See also

textWidth (TextField.textWidth property)

textWidth (TextField.textWidth property)
 public textWidth : Number

Indicates the width of the text.

Availability

Flash Lite 2.0

Example

See the example for TextField.textHeight.

See also

textHeight (TextField.textHeight property)

type (TextField.type property)
 public type : String

Specifies the type of text field. There are two values: dynamic, which specifies a dynamic text field that cannot be edited

by the user, and input, which specifies an input text field.

Availability

Flash Lite 2.0

633FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates two text fields: username_txt and password_txt. Text is entered into both text fields;

however, password_txt has the password property set to true. Therefore, the characters display as asterisks instead

of as characters in the password_txt field.

 this.createTextField("username_txt", this.getNextHighestDepth(), 10, 10, 100, 22);
 username_txt.border = true;
 username_txt.type = "input";
 username_txt.maxChars = 16;
 username_txt.text = "hello";

 this.createTextField("password_txt", this.getNextHighestDepth(), 10, 40, 100, 22);
 password_txt.border = true;
 password_txt.type = "input";
 password_txt.maxChars = 16;
 password_txt.password = true;
 password_txt.text = "world";

_url (TextField._url property)
 public _url : String [read-only]

Retrieves the URL of the SWF file that created the text field.

Availability

Flash Lite 2.0

Example

The following example retrieves the URL of the SWF file that created the text field, and the SWF file that loads into it.

 this.createTextField("my_txt", 1, 10, 10, 100, 22);
 trace(my_txt._url);

 var mclListener:Object = new Object();
 mclListener.onLoadInit = function(target_mc:MovieClip) {
 trace(target_mc._url);
 };
 var holder_mcl:MovieClipLoader = new MovieClipLoader();
 holder_mcl.addListener(mclListener);
 holder_mcl.loadClip("best_flash_ever.swf", this.createEmptyMovieClip("holder_mc", 2));

When you test this example, the URL of the SWF file you are testing, and the file called best_flash_ever.swf are

displayed in the Output panel.When you test this example, the URL of the SWF file you are testing, and the file called

best_flash_ever.swf write to the log file.

variable (TextField.variable property)
 public variable : String

The name of the variable that the text field is associated with. The type of this property is String.

Availability

Flash Lite 2.0

634FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates a text field called my_txt and associates the variable today_date with the text field.

When you change the variable today_date, then the text that appears in my_txt updates.

 this.(reateTextField("my_txt", 1, 10, 10, 200, 22);
 my_txt.variable = "today_date";
 var today_date:Date = new Date();

 var date_interval:Number = setInterval(updateDate, 500);
 function updateDate():Void {
 today_date = new Date();
 }

_visible (TextField._visible property)
 public _visible : Boolean

A Boolean value that indicates whether the text field my_txt is visible. Text fields that are not visible (_visible

property set to false) are disabled.

Availability

Flash Lite 2.0

Example

The following example creates a text field called my_txt. A button called visible_btn toggles the visibility(of my_txt.

 this.createTextField("my_txt", 1, 10, 10, 200, 22);
 my_txt.background = true;
 my_txt.backgroundColor = 0xDFDFDF;
 my_txt.border = true;
 my_txt.type = "input";

 visible_btn.onRelease = function() {
 my_txt._visible = !my_txt._visible;
 };

See also

_visible (Button._visible property), _visible (MovieClip._visible property)

_width (TextField._width property)
 public _width : Number

The width of the text field, in pixels.

Availability

Flash Lite 2.0

Example

The following example creates two text fields that you can use to change the width and height of a third text field on

the Stage. Add the following ActionScript to a FLA or ActionScript file.

635FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("my_txt", this.getNextHighestDepth(), 10, 40, 160, 120);
 my_txt.background = true;
 my_txt.backgroundColor = 0xFF0000;
 my_txt.border = true;
 my_txt.multiline = true;
 my_txt.type = "input";
 my_txt.wordWrap = true;

 this.createTextField("width_txt", this.getNextHighestDepth(), 10, 10, 30, 20);
 width_txt.border = true;
 width_txt.maxChars = 3;
 width_txt.type = "input";
 width_txt.text = my_txt._width;
 width_txt.onChanged = function() {
 my_txt._width = this.text;
 }

 this.createTextField("height_txt", this.getNextHighestDepth(), 70, 10, 30, 20);
 height_txt.border = true;
 height_txt.maxChars = 3;
 height_txt.type = "input";
 height_txt.text = my_txt._height;
 height_txt.onChanged = function() {
 my_txt._height = this.text;
 }

When you test the example, try entering new values into width_txt and height_txt to change the dimensions of

my_txt.

See also

_height (TextField._height property)

wordWrap (TextField.wordWrap property)
 public wordWrap : Boolean

A Boolean value that indicates if the text field has word wrap. If the value of wordWrap is true, the text field has word

wrap; if the value is false, the text field does not have word wrap.

Availability

Flash Lite 2.0

Example

The following example demonstrates how wordWrap affects long text in a text field that is created at runtime.

 this.createTextField("my_txt", 99, 10, 10, 100, 200);
 my_txt.text = "This is very long text that will certainly extend beyond the width of this text
field";
 my_txt.border = true;

Test the SWF file in Flash Lite player by selecting Control > Test Movie. Then return to your ActionScript, and add

the following line to the code and test the SWF file again:

 my_txt.wordWrap = true;

636FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

_x (TextField._x property)
 public _x : Number

An integer that sets the x coordinate of a text field relative to the local coordinates of the parent movie clip. If a text

field is on the main Timeline, then its coordinate system refers to the upper-left corner of the Stage as (0, 0). If the text

field is inside a movie clip that has transformations, the text field is in the local coordinate system of the enclosing

movie clip. Thus, for a movie clip rotated 90 degrees counterclockwise, the enclosed text field inherits a coordinate

system that is rotated 90 degrees counterclockwise. The text field's coordinates refer to the registration point position.

Availability

Flash Lite 2.0

Example

The following example creates a text field wherever you click the mouse. When it creates a text field, that field displays

the current x and y coordinates of the text field.

 this.createTextField("coords_txt", this.getNextHighestDepth(), 0, 0, 60, 22);
 coords_txt.autoSize = true;
 coords_txt.selectable = false;
 coords_txt.border = true;

 var mouseListener:Object = new Object();
 mouseListener.onMouseDown = function() {
 coords_txt.text = "X:"+Math.round(_xmouse)+", Y:"+Math.round(_ymouse);
 coords_txt._x = _xmouse;
 coords_txt._y = _ymouse;
 };
 Mouse.addListener(mouseListe(er);

See also

_xscale (TextField._xscale property), _y (TextField._y property), _yscale (TextField._yscale

property)

_xmouse (TextField._xmouse property)
 public _xmouse : Number [read-only]

Returns the x coordinate of the mouse position relative to the text field.

Note: This property is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

The following example creates three text fields on the Stage. The mouse_txt instance displays the current position of

the mouse in relation to the Stage. The textfield_txt instance displays the current position of the mouse pointer in

relation to the my_txt instance. Add the following ActionScript to a FLA or ActionScript file:

637FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("mouse_txt", this.getNextHighestDepth(), 10, 10, 200, 22);
 mouse_txt.border = true;
 this.createTextField("textfield_txt", this.getNextHighestDepth(), 220, 10, 200, 22);
 textfield_txt.border = true;
 this.createTextField("my_txt", this.getNextHighestDepth(), 100, 100, 160, 120);
 my_txt.border = true;

 var mouseListener:Object = new Object();
 mouseListener.onMouseMove = function() {
 mouse_txt.text = "MOUSE ... X:" + Math.round(_xmouse) + ",\tY:" + Math.round(_ymouse);
 textfield_txt.text = "TEXTFIELD ... X:" + Math.round(my_txt._xmouse) + ",\tY:" +
 Math.round(my_txt._ymouse);
 }

 Mouse.addListener(mouseListener);

See also

_ymouse (TextField._ymouse property)

_xscale (TextField._xscale property)
 public _xscale : Number

Determines the horizontal scale of the text field as applied from the registration point of the text field, expressed as a

percentage. The default registration point is (0,0).

Availability

Flash Lite 2.0

Example

The following example scales the my_txt instance when you click the scaleUp_btn and scaleDown_btn instances.

 this.createTextField("my_txt", 99, 10, 40, 100, 22);
 my_txt.autoSize = true;
 my_txt.border = true;
 my_txt.selectable = false;
 my_txt.text = "Sample text goes here.";

 scaleUp_btn.onRelease = function() {
 my_txt._xscale = 2;
 my_txt._yscale = 2;
 }
 scaleDown_btn.onRelease = function() {
 my_txt._xscale /= 2;
 my_txt._yscale /= 2;
 }

See also

_x (TextField._x property), _y (TextField._y property), _yscale (TextField._yscale property)

_y (TextField._y property)
 public _y : Number

638FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The y coordinate of a text field relative to the local coordinates of the parent movie clip. If a text field is in the main

Timeline, then its coordinate system refers to the upper-left corner of the Stage as (0, 0). If the text field is inside

another movie clip that has transformations, the text field is in the local coordinate system of the enclosing movie clip.

Thus, for a movie clip rotated 90 degrees counterclockwise, the enclosed text field inherits a coordinate system that is

rotated 90 degrees counterclockwise. The text field's coordinates refer to the registration point position.

Availability

Flash Lite 2.0

Example

See the example for TextField._x.

See also

_x (TextField._x property), _xscale (TextField._xscale property), _yscale (TextField._yscale

property)

_ymouse (TextField._ymouse property)
 public _ymouse : Number [read-only]

Indicates the y coordinate of the mouse position relative to the text field.

Note: This property is supported in Flash Lite only if System.capabilities.hasMouse is true or

System.capabilities.hasStylus is true.

Availability

Flash Lite 2.0

Example

See the example for TextField._xmouse.

See also

_xmouse (TextField._xmouse property)

_yscale (TextField._yscale property)
 public _yscale : Number

The vertical scale of the text field as applied from the registration point of the text field, expressed as a percentage. The

default registration point is (0,0).

Availability

Flash Lite 2.0

Example

See the example for TextField._xscale.

See also

_x (TextField._x property), _xscale (TextField._xscale property), _y (TextField._y property)

639FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

TextFormat

 Object
 |
 +-TextFormat

 public class TextFormat
 extends Object

The TextFormat class represents character formatting information. Use the TextFormat class to create specific text

formatting for text fields. You can apply text formatting to both static and dynamic text fields. Some properties of the

TextFormat class are not available for both embedded and device fonts.

Availability

Flash Lite 2.0

See also

setTextFormat (TextField.setTextFormat method), getTextFormat (TextField.getTextFormat method)

Property summary

Properties inherited from class Object

Modifiers Property Description

 align:String A string that indicates the alignment of the paragraph.

 blockIndent:Number A number that indicates the block indentation in points.

 bold:Boolean A Boolean value that specifies whether the text is boldface.

 bullet:Boolean A Boolean value that indicates that the text is part of a bulleted

list.

 color:Number A number that indicates the color of text.

 font:String A string that specifies the name of the font for text.

 indent:Number An integer that indicates the indentation from the left margin

to the first character in the paragraph.

 italic:Boolean A Boolean value that indicates whether text in this text format

is italicized.

 leading:Number An integer that represents the amount of vertical space in

pixels (called leading) between lines.

 leftMargin:Number The left margin of the paragraph, in points.

 rightMargin:Number The right margin of the paragraph, in points.

 size:Number The point size of text in this text format.

 tabStops:Array Specifies custom tab stops as an array of non-negative

integers.

 target:String Indicates the target window where the hyperlink is displayed.

 underline:Boolean A Boolean value that indicates whether the text that uses this

text format is underlined (true) or not (false).

 url:String Indicates the URL to which text in this text format hyperlinks.

640FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Constructor summary

Method summary

Methods inherited from class Object

align (TextFormat.align property)
 public align : String

A string that indicates the alignment of the paragraph. You can apply this property to static and dynamic text. The

following list shows possible values for this property:

• "left"—the paragraph is left-aligned.

• "center"—the paragraph is centered.

• "right"—the paragraph is right-aligned.

The default value is null, which indicates that the property is undefined.

Availability

Flash Lite 2.0

Example

The following example creates a text field with a border and uses TextFormat.align to center the text.

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

Signature Description

TextFormat([font:String],
[size:Number],
[color:Number],
[bold:Boolean],
[italic:Boolean],
[underline:Boolean],
[url:String], [target:String],
[align:String],
[leftMargin:Number],
[rightMargin:Number],
[indent:Number],
[leading:Number])

Creates a TextFormat object with the specified properties.

Modifiers Signature Description

 getTextExtent(text:Stri

ng, [width:Number])
: Object

Returns text measurement information for the text string text

in the format specified by my_fmt.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

641FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_fmt:TextFormat = new TextFormat();
 my_fmt.align = "center";

 this.createTextField("my_txt", 1, 100, 100, 300, 100);
 my_txt.multiline = true;
 my_txt.wordWrap = true;
 my_txt.border = true;
 my_txt.text = "this is my first text field object text";
 my_txt.setTextFormat(my_fmt);

blockIndent (TextFormat.blockIndent property)
 public blockIndent : Number

A number that indicates the block indentation in points. Block indentation is applied to an entire block of text; that is,

to all lines of the text. In contrast, normal indentation (TextFormat.indent) affects only the first line of each

paragraph. If this property is null, the TextFormat object does not specify block indentation.

Availability

Flash Lite 2.0

Example

This example creates a text field with a border and sets the blockIndent to 20.

 this.createTextField("mytext",1,100,100,100,100);
 mytext.multiline = true;
 mytext.wordWrap = true;
 mytext.border = true;

 var myformat:TextFormat = new TextFormat();
 myformat.blockIndent = 20;

 mytext.text = "This is my first text field object text";
 mytext.setTextFormat(myformat);

bold (TextFormat.bold property)
 public bold : Boolean

A Boolean value that specifies whether the text is boldface. The default value is null, which indicates that the property

is undefined. If the value is true, the text is boldface.

Note: For Arabic, Hebrew, and Thai, this property works for paragraph-level formatting only.

Availability

Flash Lite 2.0

Example

The following example creates a text field that includes characters in boldface.

642FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_fmt:TextFormat = new TextFormat();
 my_fmt.bold = true;

 this.createTextField("my_txt", 1, 100, 100, 300, 100);
 my_txt.multiline = true;
 my_txt.wordWrap = true;
 my_txt.border = true;
 my_txt.text = "This is my text field object text";
 my_txt.setTextFormat(my_fmt);

bullet (TextFormat.bullet property)
 public bullet : Boolean

A Boolean value that indicates that the text is part of a bulleted list. In a bulleted list, each paragraph of text is indented.

To the left of the first line of each paragraph, a bullet symbol is displayed. The default value is null.

Note: For Flash Lite, this property works for embedded fonts only. This property is not supported for Arabic, Hebrew,

and Thai.

Availability

Flash Lite 2.0

Example

The following example creates a new text field at runtime, and puts a string with a line break into the field. The

TextFormat class is used to format the characters by adding bullets to each line in the text field. This is demonstrated

in the following ActionScript:

 var my_fmt:TextFormat = new TextFormat();
 my_fmt.bullet = true;

 this.createTextField("my_txt", 1, 100, 100, 300, 100);
 my_txt.multiline = true;
 my_txt.wordWrap = true;
 my_txt.border = true;
 my_txt.text = "this is my text"+newline;
 my_txt.text += "this is more text"+newline;
 my_txt.setTextFormat(my_fmt);

color (TextFormat.color property)
 public color : Number

A number that indicates the color of text. The number contains three 8-bit RGB components; for example, 0xFF0000

is red, and 0x00FF00 is green.

Note: For Arabic, Hebrew, and Thai, this property works for paragraph-level formatting only.

Availability

Flash Lite 2.0

Example

The following example creates a text field and sets the text color to red.

643FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_fmt:TextFormat = new TextFormat();
 my_fmt.blockIndent = 20;
 my_fmt.color = 0xFF0000; // hex value for red

 this.createTextField("my_txt", 1, 100, 100, 300, 100);
 my_txt.multiline = true;
 my_txt.wordWrap = true;
 my_txt.border = true;
 my_txt.text = "this is my first text field object text";
 my_txt.setTextFormat(my_fmt);

font (TextFormat.font property)
 public font : String

A string that specifies the name of the font for text. The default value is null, which indicates that the property is

undefined.

Note: For Flash Lite, this property works for embedded fonts only. This property is not supported for Arabic, Hebrew,

and Thai.

Availability

Flash Lite 2.0

Example

The following example creates a text field and sets the font to Courier.

 this.createTextField("mytext",1,100,100,100,100);
 mytext.multiline = true;
 mytext.wordWrap = true;
 mytext.border = true;

 var myformat:TextFormat = new TextFormat();
 myformat.font = "Courier";

 mytext.text = "this is my first text field object text";
 mytext.setTextFormat(myformat);

getTextExtent (TextFormat.getTextExtent method)
 public getTextExtent(text:String, [width:Number]) : Object

Returns text measurement information for the text string text in the format specified by my_fmt. The text string is

treated as plain text (not HTML).

The method returns an object with six properties: ascent, descent, width, height, textFieldHeight, and

textFieldWidth. All measurements are in pixels.

If a width parameter is specified, word wrapping is applied to the specified text. This lets you determine the height at

which a text box shows all of the specified text.

The ascent and descent measurements provide, respectively, the distance above and below the baseline for a line of

text. The baseline for the first line of text is positioned at the text field's origin plus its ascent measurement.

644FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The width and height measurements provide the width and height of the text string. The textFieldHeight and

textFieldWidth measurements provide the height and width required for a text field object to display the entire text

string. Text fields have a 2-pixel-wide gutter around them, so the value of textFieldHeight is equal the value of

height + 4; likewise, the value of textFieldWidth is always equal to the value of width + 4.

If you are creating a text field based on the text metrics, use textFieldHeight rather than height and

textFieldWidth rather than width.

The following figure illustrates these measurements:

When setting up your TextFormat object, set all the attributes exactly as they will be set for the creation of the text field,

including font name, font size, and leading. The default value for leading is 2.

Availability

Flash Lite 2.0

Parameters

text:String - A string.

width:Number [optional] - A number that represents the width, in pixels, at which the specified text should wrap.

Returns

Object - An object with the properties width, height, ascent, descent, textFieldHeight, textFieldWidth.

Example

This example creates a single-line text field that's just big enough to display a text string using the specified formatting.

645FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_str:String = "Small string";

 // Create a TextFormat object,
 // and apply its properties.
 var my_fmt:TextFormat = new TextFormat();
 with (my_fmt) {
 font = "Arial";
 bold = true;
 }

 // Obtain metrics information for the text string
 // with the specified formatting.
 var metrics:Object = my_fmt.getTextExtent(my_str);

 // Create a text field just large enough to display the text.
 this.createTextField("my_txt", this.getNextHighestDepth(), 100, 100, metrics.textFieldWidth,
 metrics.textFieldHeight);
 my_txt.border = true;
 my_txt.wordWrap = true;
 // Assign the same text string and TextFormat object to the my_txt object.
 my_txt.text = my_str;
 my_txt.setTextFormat(my_fmt);

The following example creates a multiline, 100-pixel-wide text field that's high enough to display a string with the

specified formatting.

 // Create a TextFormat object.
 var my_fmt:TextFormat = new TextFormat();
 // Specify formatting properties for the TextFormat object:
 my_fmt.font = "Arial";
 my_fmt.bold = true;
 my_fmt.leading = 4;

 // The string of text to be displayed
 var textToDisplay:String = "Adobe Flash Player 7, now with improved text metrics.";

 // Obtain text measurement information for the string,
 // wrapped at 100 pixels.
 var metrics:Object = my_fmt.getTextExtent(textToDisplay, 100);

 // Create a new TextField object using the metric
 // information just obtained.
 this.createTextField("my_txt", this.getNextHighestDepth(), 50, 50-metrics.ascent, 100,
 metrics.textFieldHeight);
 my_txt.wordWrap = true;
 my_txt.border = true;
 // Assign the text and the TextFormat object to the TextObject:
 my_txt.text = textToDisplay;
 my_txt.setTextFormat(my_fmt);

indent (TextFormat.indent property)
 public indent : Number

An integer that indicates the indentation from the left margin to the first character in the paragraph. The default value

is null, which indicates that the property is undefined.

646FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example creates a text field and sets the indentation to 10:

 this.createTextField("mytext",1,100,100,100,100);
 mytext.multiline = true;
 mytext.wordWrap = true;
 mytext.border = true;

 var myformat:TextFormat = new TextFormat();
 myformat.indent = 10;

 mytext.text = "this is my first text field object text";
 mytext.setTextFormat(myformat);

See also

blockIndent (TextFormat.blockIndent property)

italic (TextFormat.italic property)
 public italic : Boolean

A Boolean value that indicates whether text in this text format is italicized. The default value is null, which indicates

that the property is undefined.

Note: For Arabic, Hebrew, and Thai, this property works for paragraph-level formatting only.

Availability

Flash Lite 2.0

Example

The following example creates a text field and sets the text style to italic.

 this.createTextField("mytext",1,100,100,100,100);
 mytext.multiline = true;
 mytext.wordWrap = true;
 mytext.border = true;

 var myformat:TextFormat = new TextFormat();
 myformat.italic = true;

 mytext.text = "This is my first text field object text";
 mytext.setTextFormat(myformat);

leading (TextFormat.leading property)
 public leading : Number

An integer that represents the amount of vertical space in pixels (called leading) between lines. The default value is

null, which indicates that the property is undefined.

647FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example creates a text field and sets the leading to 10.

 var my_fmt:TextFormat = new TextFormat();
 my_fmt.leading = 10;

 this.createTextField("my_txt", 1, 100, 100, 100, 100);
 my_txt.multiline = true;
 my_txt.wordWrap = true;
 my_txt.border = true;
 my_txt.text = "This is my first text field object text";
 my_txt.setTextFormat(my_fmt);

leftMargin (TextFormat.leftMargin property)
 public leftMargin : Number

The left margin of the paragraph, in points. The default value is null, which indicates that the property is undefined.

Availability

Flash Lite 2.0

Example

The following example creates a text field and sets the left margin to 20 points.

 this.createTextField("mytext",1,100,100,100,100);
 mytext.multiline = true;
 mytext.wordWrap = true;
 mytext.border = true;

 var myformat:TextFormat = new TextFormat();
 myformat.leftMargin = 20;

 mytext.text = "this is my first text field object text";
 mytext.setTextFormat(myformat);

rightMargin (TextFormat.rightMargin property)
 public rightMargin : Number

The right margin of the paragraph, in points. The default value is null, which indicates that the property is undefined.

Availability

Flash Lite 2.0

Example

The following example creates a text field and sets the right margin to 20 points.

648FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("mytext",1,100,100,100,100);
 mytext.multiline = true;
 mytext.wordWrap = true;
 mytext.border = true;

 var myformat:TextFormat = new TextFormat();
 myformat.rightMargin = 20;

 mytext.text = "this is my first text field object text";
 mytext.setTextFormat(myformat);

size (TextFormat.size property)
 public size : Number

The point size of text in this text format. The default value is null, which indicates that the property is undefined.

Note: For Arabic, Hebrew, and Thai, this property works for paragraph-level formatting only.

Availability

Flash Lite 2.0

Example

The following example creates a text field and sets the text size to 20 points.

 this.createTextField("mytext",1,100,100,100,100);
 mytext.multiline = true;
 mytext.wordWrap = true;
 mytext.border = true;

 var myformat:TextFormat = new TextFormat();
 myformat.size = 20;

 mytext.text = "This is my first text field object text";
 mytext.setTextFormat(myformat);

tabStops (TextFormat.tabStops property)
 public tabStops : Array

Specifies custom tab stops as an array of non-negative integers. Each tab stop is specified in pixels. If custom tab stops

are not specified (null), the default tab stop is 4 (average character width).

Note: For Flash Lite, this property works for embedded fonts only. This property is not supported for Arabic, Hebrew,

and Thai.

Availability

Flash Lite 2.0

Example

The following example creates two text fields, one with tab stops every 40 pixels, and the other with tab stops every 75

pixels.

649FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 this.createTextField("mytext",1,100,100,400,100);
 mytext.border = true;
 var myformat:TextFormat = new TextFormat();
 myformat.tabStops = [40,80,120,160];
 mytext.text = "A\tB\tC\tD"; // \t is the tab stop character
 mytext.setTextFormat(myformat);

 this.createTextField("mytext2",2,100,220,400,100);
 mytext2.border = true;
 var myformat2:TextFormat = new TextFormat();
 myformat2.tabStops = [75,150,225,300];
 mytext2.text ="A\tB\tC\tD";
 mytext2.setTextFormat(myformat2);

target (TextFormat.target property)
 public target : String

Indicates the target window in which the hyperlink is displayed. If the target window is an empty string, the text is

displayed in the default target window _self. You can choose a custom name or one of the following four names:

_self specifies the current frame in the current window, _blank specifies a new window, _parent specifies the parent

of the current frame, and _top specifies the top-level frame in the current window. If the TextFormat.url property

is an empty string or null, you can get or set this property, but the property will have no effect.

Availability

Flash Lite 2.0

Example

The following example creates a text field with a hyperlink to the Adobe website. The example uses

TextFormat.target to display the Adobe website in a new browser window.

 var myformat:TextFormat = new TextFormat();
 myformat.url = "http://www.adobe.com";
 myformat.target = "_blank";

 this.createTextField("mytext",1,100,100,200,100);
 mytext.multiline = true;
 mytext.wordWrap = true;
 mytext.border = true;
 mytext.html = true;
 mytext.text = "Go to Adobe.com";
 mytext.setTextFormat(myformat);

See also

url (TextFormat.url property)

TextFormat constructor
 public TextFormat([font:String], [size:Number], [color:Number], [bold:Boolean],
[italic:Boolean], [underline:Boolean], [url:String], [target:String], [align:String],
[leftMargin:Number], [rightMargin:Number], [indent:Number], [leading:Number])

Creates a TextFormat object with the specified properties. You can then change the properties of the TextFormat

object to change the formatting of text fields.

650FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Any parameter may be set to null to indicate that it is not defined. All of the parameters are optional; any omitted

parameters are treated as null.

Availability

Flash Lite 2.0

Parameters

font:String [optional] - The name of a font for text as a string.

size:Number [optional] - An integer that indicates the point size.

color:Number [optional] - The color of text using this text format. A number containing three 8-bit RGB

components; for example, 0xFF0000 is red, and 0x00FF00 is green.

bold:Boolean [optional] - A Boolean value that indicates whether the text is boldface.

italic:Boolean [optional] - A Boolean value that indicates whether the text is italicized.

underline:Boolean [optional] - A Boolean value that indicates whether the text is underlined.

url:String [optional] - The URL to which the text in this text format hyperlinks. If url is an empty string, the text does

not have a hyperlink.

target:String [optional] - The target window in which the hyperlink is displayed. If the target window is an empty

string, the text is displayed in the default target window _self. If the url parameter is set to an empty string or to the

value null, you can get or set this property, but the property will have no effect.

align:String [optional] - The alignment of the paragraph, represented as a string. If "left", the paragraph is left-

aligned. If "center", the paragraph is centered. If "right", the paragraph is right-aligned.

leftMargin:Number [optional] - Indicates the left margin of the paragraph, in points.

rightMargin:Number [optional] - Indicates the right margin of the paragraph, in points.

indent:Number [optional] - An integer that indicates the indentation from the left margin to the first character in the

paragraph.

leading:Number [optional] - A number that indicates the amount of leading vertical space between lines.

Availability

Flash Lite 2.0

Example

The following example creates a TextFormat object, formats the stats_txt text field, and creates a new text field in

which to display the text:

651FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // Define a TextFormat which is used to format the stats_txt text field.
 var my_fmt:TextFormat = new TextFormat();
 my_fmt.bold = true;
 my_fmt.font = "Arial";
 my_fmt.size = 12;
 my_fmt.color = 0xFF0000;
 // Create a text field to display the player's statistics.
 this.createTextField("stats_txt", 5000, 10, 0, 530, 22);
 // Apply the TextFormat to the text field.
 stats_txt.setNewTextFormat(my_fmt);
 stats_txt.selectable = false;
 stats_txt.text = "Lorem ipsum dolor sit amet...";

To view another example, see the animations.fla file in the ActionScript samples folder at The Adobe Flash samples

page. Download and decompress the .zip file and navigate to the folder for your version of ActionScript to access the

sample.

underline (TextFormat.underline property)
 public underline : Boolean

A Boolean value that indicates whether the text that uses this text format is underlined (true) or not (false). This

underlining is similar to that produced by the <U> tag, but the latter is not true underlining, because it does not skip

descenders correctly. The default value is null, which indicates that the property is undefined.

Note: For Arabic, Hebrew, and Thai, this property works for paragraph-level formatting only.

Availability

Flash Lite 2.0

Example

The following example creates a text field and sets the text style to underline.

 this.createTextField("mytext",1,100,100,200,100);
 mytext.multiline = true;
 mytext.wordWrap = true;
 mytext.border = true;

 var myformat:TextFormat = new TextFormat();
 myformat.underline = true;
 mytext.text = "This is my first text field object text";
 mytext.setTextFormat(myformat);

url (TextFormat.url property)
 public url : String

Indicates the URL to which text in this text format hyperlinks. If the url property is an empty string, the text does not

have a hyperlink. The default value is null, which indicates that the property is undefined.

Availability

Flash Lite 2.0

http://www.adobe.com/go/learn_fl_samples
http://www.adobe.com/go/learn_fl_samples

652FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

This example creates a text field that is a hyperlink to the Adobe website.

 var myformat:TextFormat = new TextFormat();
 myformat.url = "http://www.adobe.com";

 this.createTextField("mytext",1,100,100,200,100);
 mytext.multiline = true;
 mytext.wordWrap = true;
 mytext.border = true;
 mytext.html = true;
 mytext.text = "Go to Adobe.com";
 mytext.setTextFormat(myformat);

Transform (flash.geom.Transform)

 Object
 |
 +-flash.geom.transform

 public class Transform
 extends Object

The Transform class collects data about color transformations and coordinate manipulations that are applied to a

MovieClip object.

A Transform object is normally obtained by getting the value of the transform property from a MovieClip object.

Availability

Flash Lite 3.1

See also

transform (MovieClip.transform property), ColorTransform (flash.geom.ColorTransform), Matrix

(flash.geom.Matrix)

Property summary

Modifiers Property Description

 colorTransform:ColorTran

sform

A ColorTransform object containing values that universally adjust

the colors in the movie clip.

 concatenatedColorTransfo

rm:ColorTransform
[read-only]

A ColorTransform object representing the combined color

transformations applied to this object and all of its parent objects,

back to the root level.

 ConcatenatedMatrix:Matr

ix [read-only]
A Matrix object representing the combined transformation

matrixes of this object and all of its parent objects, back to the root

level.

 matrix:Matrix A transformation Matrix object containing values that affect the

scaling, rotation, and translation of the movie clip.

 pixelBounds:Rectangle A Rectangle object that defines the bounding rectangle of the

MovieClip object on the Stage.

653FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Constructor summary

Method summary

colorTransform (Transform.colorTransform property)
 public colorTransform : ColorTransform

A ColorTransform object containing values that universally adjust the colors in the movie clip.

Availability

Flash Lite 3.1

Example

The following example applies the ColorTransform object blueColorTransform to the Transform object trans. This

ColorTransform converts the color of the MovieClip rect from red to blue.

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

“prototype (Object.prototype property)” on page 499, __resolve (Object.__resolve
property)

Signature Description

Transform(mc:MovieClip

)
Creates a new Transform object attached to the given MovieClip object.

“addProperty (Object.addProperty method)” on page 494, “hasOwnProperty
(Object.hasOwnProperty method)” on page 497, “isPropertyEnumerable
(Object.isPropertyEnumerable method)” on page 497, “isPrototypeOf (Object.isPrototypeOf
method)” on page 498, “registerClass (Object.registerClass method)” on page 500, “toString
(Object.toString method)” on page 504, “unwatch (Object.unwatch method)” on page 505,

“valueOf (Object.valueOf method)” on page 506, “watch (Object.watch method)” on page 507

654FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Transform;
 import flash.geom.ColorTransform;

 var rect:MovieClip = createRectangle(20, 80, 0xFF0000);

 var trans:Transform = new Transform(rect);
 trace(trans.colorTransform);
 // (redMultiplier=1, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=1, redOffset=0,
greenOffset=0, blueOffset=0, alphaOffset=0)

 var blueColorTransform:ColorTransform = new ColorTransform(0, 1, 1, 1, 0, 0, 255, 0);

 rect.onPress = function() {
 trans.colorTransform = blueColorTransform;
 trace(trans.colorTransform);
 // (redMultiplier=0, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=1, redOffset=0,
greenOffset=0, blueOffset=255, alphaOffset=0)
 }

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

See also

“ColorTransform (flash.geom.ColorTransform)” on page 263

concatenatedColorTransform (Transform.concatenatedColorTransform

property)
 public concatenatedColorTransform : ColorTransform [read-only]

A ColorTransform object representing the combined color transformations applied to this object and all of its parent

objects, back to the root level. If different color transformations have been applied at different levels, each of those

transformations will be concatenated into one ColorTransform object for this property.

Availability

Flash Lite 3.1

Example

The following example applies two Transform objects to both a parent and child MovieClip object. A

blueColorTransform variable is then applied to the Transform object parentTrans, which adjusts the color of both

parent and child MovieClip objects toward blue. You can see how child.concatenatedColorTransform is the

combination of parentTrans and childTrans.

655FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Transform;
 import flash.geom.ColorTransform;

 var parentRect:MovieClip = createRectangle(20, 80, 0xFF0000);
 var childRect:MovieClip = createRectangle(10, 40, 0x00FF00, parentRect);

 var parentTrans:Transform = new Transform(parentRect);
 var childTrans:Transform = new Transform(childRect);

 var blueColorTransform:ColorTransform = new ColorTransform(0, 1, 1, 1, 0, 0, 255, 0);

 parentTrans.colorTransform = blueColorTransform;

 trace(childTrans.concatenatedColorTransform);
 // (redMultiplier=0, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=1, redOffset=0,
greenOffset=0, blueOffset=255, alphaOffset=0)
 trace(childTrans.colorTransform);
 // (redMultiplier=1, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=1, redOffset=0,
greenOffset=0, blueOffset=0, alphaOffset=0)
 trace(parentTrans.concatenatedColorTransform);
 // (redMultiplier=0, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=1, redOffset=0,
greenOffset=0, blueOffset=255, alphaOffset=0)

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

See also

“ColorTransform (flash.geom.ColorTransform)” on page 263

concatenatedMatrix (Transform.concatenatedMatrix property)
 public concatenatedMatrix : Matrix [read-only]

A Matrix object representing the combined transformation matrixes of this object and all of its parent objects, back to

the root level. If different transformation matrixes have been applied at different levels, each of those matrixes will be

concatenated into one matrix for this property.

Availability

Flash Lite 3.1

Example

The following example applies two Transform objects to both a child and parent MovieClip object. A scaleMatrix is

then applied to the Transform object parentTrans, which scales both parent and child MovieClip objects. You can

see how child.concatenatedMatrix is the combination of parentTrans and childTrans.

656FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Transform;
 import flash.geom.Matrix;

 var parentRect:MovieClip = createRectangle(20, 80, 0xFF0000);
 var childRect:MovieClip = createRectangle(10, 40, 0x00FF00, parentRect);

 var parentTrans:Transform = new Transform(parentRect);
 var childTrans:Transform = new Transform(childRect);

 var scaleMatrix:Matrix = new Matrix();
 scaleMatrix.scale(2, 2);

 parentTrans.matrix = scaleMatrix;

 trace(childTrans.concatenatedMatrix); // (a=2, b=0, c=0, d=2, tx=0, ty=0)
 trace(childTrans.matrix); // (a=1, b=0, c=0, d=1, tx=0, ty=0)
 trace(parentTrans.concatenatedMatrix); // (a=2, b=0, c=0, d=2, tx=0, ty=0)

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

matrix (Transform.matrix property)
 public matrix : Matrix

A transformation Matrix object containing values that affect the scaling, rotation, and translation of the movie clip.

Availability

Flash Lite 3.1

Example

The following example applies the Matrix object scaleMatrix to the Transform object trans. This Matrix scales the

MovieClip rect by a factor of two.

657FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Transform;
 import flash.geom.Matrix;

 var rect:MovieClip = createRectangle(20, 80, 0xFF0000);

 var trans:Transform = new Transform(rect);
 trace(trans.matrix); // (a=1, b=0, c=0, d=1, tx=0, ty=0)

 var scaleMatrix:Matrix = new Matrix();
 scaleMatrix.scale(2, 2);

 rect.onPress() = function() {
 trans.matrix = scaleMatrix;
 trace(trans.matrix); // (a=2, b=0, c=0, d=2, tx=0, ty=0)
 }

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

See also

“Matrix (flash.geom.Matrix)” on page 362

pixelBounds (Transform.pixelBounds property)
 public pixelBounds : Rectangle

A Rectangle object that defines the bounding rectangle of the MovieClip object on the Stage.

Availability

Flash Lite 3.1

Example

The following example creates a Transform object trans and traces out its pixelBounds property. Notice that

pixelBounds returns a bounding box with values equal to the MovieClip object's getBounds() and getRect()

methods.

658FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Transform;

 var rect:MovieClip = createRectangle(20, 80, 0xFF0000);
 var trans:Transform = new Transform(rect);
 trace(trans.pixelBounds); // (x=0, y=0, w=20, h=80)

 var boundsObj:Object = rect.getBounds();
 trace(boundsObj.xMin); // 0
 trace(boundsObj.yMin); // 0
 trace(boundsObj.xMax); // 20
 trace(boundsObj.yMax); // 80

 var rectObj:Object = rect.getRect();
 trace(rectObj.xMin); // 0
 trace(rectObj.yMin); // 0
 trace(rectObj.xMax); // 20
 trace(rectObj.yMax); // 80

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

Transform constructor
 public Transform(mc:MovieClip)

Creates a new Transform object attached to the given MovieClip object.

When it is created, the new Transform object can be retrieved by getting the transform property of the given

MovieClip object.

Availability

Flash Lite 3.1

Parameters

mc: MovieClip - The MovieClip object to which the new Transform object is applied.

Example

The following example creates the Transform trans and applies it to the MovieClip rect. You can see that the

Transform object's trans and rect.transform do not evaluate as equals even though they contain the same values.

659FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 import flash.geom.Transform;

 var rect:MovieClip = createRectangle(20, 80, 0xFF0000);

 var trans:Transform = new Transform(rect);

 trace(rect.transform == trans); // false

 for(var i in trans) {
 trace(">> " + i + ": " + trans[i]);
 // >> pixelBounds: (x=0, y=0, w=20, h=80)
 // >> concatenatedColorTransform: (redMultiplier=1, greenMultiplier=1, blueMultiplier=1,
alphaMultiplier=1, redOffset=0, greenOffset=0, blueOffset=0, alphaOffset=0)
 // >> colorTransform: (redMultiplier=1, greenMultiplier=1, blueMultiplier=1,
alphaMultiplier=1, redOffset=0, greenOffset=0, blueOffset=0, alphaOffset=0)
 // >> concatenatedMatrix: (a=1, b=0, c=0, d=1, tx=0, ty=0)
 // >> matrix: (a=1, b=0, c=0, d=1, tx=0, ty=0)
 }

 for(var i in rect.transform) {
 trace(">> " + i + ": " + rect.transform[i]);
 // >> pixelBounds: (x=0, y=0, w=20, h=80)
 // >> concatenatedColorTransform: (redMultiplier=1, greenMultiplier=1, blueMultiplier=1,
alphaMultiplier=1, redOffset=0, greenOffset=0, blueOffset=0, alphaOffset=0)
 // >> colorTransform: (redMultiplier=1, greenMultiplier=1, blueMultiplier=1,
alphaMultiplier=1, redOffset=0, greenOffset=0, blueOffset=0, alphaOffset=0)
 // >> concatenatedMatrix: (a=1, b=0, c=0, d=1, tx=0, ty=0)
 // >> matrix: (a=1, b=0, c=0, d=1, tx=0, ty=0)
 }

 function createRectangle(width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
 scope = (scope == undefined) ? this : scope;
 var depth:Number = scope.getNextHighestDepth();
 var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
 mc.beginFill(color);
 mc.lineTo(0, height);
 mc.lineTo(width, height);
 mc.lineTo(width, 0);
 mc.lineTo(0, 0);
 return mc;
 }

Video

 Object
 |
 +-Video

 public class Video
 extends Object

The Video class enables you to display video content that is embedded in your SWF file, stored locally on the host

device, or streamed in from a remote location.

660FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Note: The player for Flash Lite 2.0 handles video differently than Flash Player 7 does. These are the major differences:

• Flash Player 7 directly renders the video data (embedded or streaming). The player for Flash Lite 2.0 does not

render the video data; instead it hands off the data to the mobile device. The player for Flash Lite 3.0 supports the

rendering of Flash Video (FLV) directly by Flash Lite.

• Flash Player 7 supports many video formats in addition to FLV. Flash Lite 2.0 supports video playback in the

following cases: video embedded in a SWF file; video that resides in a separate file on the host device; and video data

that is streamed in over the network (in real time). The player for Flash Lite 2.0 supports only those video formats

that a specific mobile device supports, while the player for Flash Lite 3.0 supports the rendering of FLV natively.

• Flash Player 7 lets you bundle the data in a SWF file or stream it by using the Video object and assigning either a

NetStream object or Camera object as the source of the video information. However, the player for Flash Lite 2.0

does not support the NetStream and Camera objects. Instead, Flash Lite 2.0 uses a new library symbol type called

Video to embed source video data and to stream video for mobile devices. Because Flash Lite 2.0 does not support

the NetStream object, you use the methods and properties of the Video class to control the video playback. The

player for Flash Lite 3.0 does support the NetStream and NetConnection objects, and you use the methods and

properties of these classes to control FLV playback. Flash Lite 3.0 also supports a new property in the Video class,

attachVideo, that specifies a video stream to be displayed within the Video object on the Stage. Flash Lite 3.0 does

not support the Camera object.

Because of the requirements of mobile devices (smaller processor speeds, memory restrictions, and proprietary

encoding formats), Flash Lite 2.0 cannot render the video information directly. The supported file formats for video

depend on the mobile device manufacturer. For more information about supported video formats, check the hardware

platforms on which you plan to deploy your application. In contrast, Flash Lite 3.0 does render Flash video directly.

Flash Lite 2.0 does not support the following Flash Player 7 features:

• Streaming of video data from a Flash Media Server

• Recording video

Flash Lite 3.0 adds support the following Flash Player 7 features:

• Flash video rendered directly by the player using versions of the On2 and Sorenson codecs optimized for mobile

devices

• Streaming of video data over an RTMP (Real Time Messaging Protocol) connection to a Flash Media Server.

(RTMPT (Real Time Messaging Protocol Tunnel) and RTMPS (Real Time Messaging Protocol Secure) connections

are not supported, nor are multiple connections.)

Flash Lite 3.0 does not support the following Flash Player 7 features:

• Recording video

• Camera object

Availability

Flash Lite 2.0

Property summary

Properties inherited from class Object

constructor (Object.constructor property), __proto__ (Object.__proto__ property),

prototype (Object.prototype property), __resolve (Object.__resolve property)

661FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Event summary

Method summary

Methods inherited from class Object

attachVideo (Video.attachVideo method)
 public attachVideo(source:Object) : Void

Specifies a video stream (source) to be displayed within the boundaries of the Video object on the Stage. The video

stream is either an FLV file being displayed by means of the NetStream.play() command, or null. If source is null,

video is no longer played within the Video object.

You don't have to use this method if the FLV file contains only audio; the audio portion of FLV files is played

automatically when the NetStream.play() command is issued.

If you want to control the audio associated with an FLV file, you can use MovieClip.attachAudio() to route the

audio to a movie clip; you can then create a Sound object to control some aspects of the audio. For more information,

see MovieClip.attachAudio().

Availability

Flash Lite 3.0

Example

The following example plays a previously recorded file named video1.flv that is stored in the same directory as the SWF file.

Event Description

onStatus =
function(infoObject
:Object) {}

Callback handler that can be invoked by the device to indicate status or error

conditions.

Modifiers Signature Description

 close() : Void Stops playback of the video, frees the memory associated with

this Video object, and clears the video area onscreen.

 pause() : Void Stops playback of the video and continues to render the

current frame onscreen.

 play() : Boolean Calling this method opens a video source and begins playback

of a video.

 resume() : Void Calling this method resumes playback of the video.

 stop() : Void Stops playback of the video and continues to render the

current frame onscreen.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty method),

isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method), unwatch (Object.unwatch method), valueOf (Object.valueOf
method), watch (Object.watch method)

662FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_video:Video; // my_video is a Video object on the Stage
 var my_nc:NetConnection = new NetConnection();
 my_nc.connect(null);
 var my_ns:NetStream = new NetStream(my_nc);
 my_video.attachVideo(my_ns);
 my_ns.play("video1.flv");

See also

play (Video.play method), stop (Video.stop method), resume (Video.resume method)

close (Video.close method)
 public close() : Void

Stops playback of the video, frees the memory associated with this Video object, and clears the video area onscreen.

Availability

Flash Lite 2.0

Example

The following example closes the video that is playing in a Video object named video1.

 video1.close()

See also

play (Video.play method), pause (Video.pause method), resume (Video.resume method)

onStatus (Video.onStatus handler)
 onStatus = function(infoObject:Object) {}

Callback handler that can be invoked by the device to indicate status or error conditions.

Availability

Flash Lite 3.0

Parameters

infoObject:Object - The infoObject parameter has two properties:

• code:String — Description of the error or status condition (device specific).

• level:Number — Zero for error and non-zero for success (device specific).

Example

The following example shows how to create a Video.onStatus() function that displays a status or error condition.

663FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var v:Video; // v is a Video object on the stage.
 v.onStatus = function(o:Object)
 {
 if (o.level)
 {
 trace("Video Status Msg (" + o.level + "): " + o.code);
 }
 else
 {
 trace("Video Status Error: " + o.code);
 }
 }
 v.play("a.vid");

pause (Video.pause method)
 public pause() : Void

Stops playback of the video and continues to render the current frame onscreen. A subsequent call to Video.resume()

resumes playback from the current position.

Availability

Flash Lite 2.0

Example

The following example stops the video that is playing in a Video object (called my_video) when the user clicks the

close_btn instance.

 // video1 is the name of a Video object on Stage
 video1.pause()

See also

play (Video.play method), stop (Video.stop method), resume (Video.resume method)

play (Video.play method)
 public play() : Boolean

Calling this method opens a video source and begins playback of a video.

Availability

Flash Lite 2.0

Returns

Boolean - A value of true if the mobile device can render the video; otherwise, false.

Example

The following example pauses and clears video1.flv, which is playing in a Video object (called video1).

 video1.play("http://www.macromedia.com/samples/videos/clock.3gp");

664FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

You can also use a Video object on the Stage to play bundled device videos directly from the library. To do this, you

bundle the device video in your application's library. You also assign an identifier to the video symbol that lets you

reference the video symbol with ActionScript. You can play a device video from the library by passing the symbol's

ActionScript identifier to the Video.play() method, as the following example shows:

 placeHolderVideo.play("symbol://ocean_video");

For more information about playing video from the library, see "Playing a bundled video directly from the library" in

Developing Flash Lite 2.x Applications.

See also

stop (Video.stop method), pause (Video.pause method), resume (Video.resume method)

resume (Video.resume method)
 public resume() : Void

Calling this method resumes playback of the video.

If Video.pause() was previously called, playback begins from the current position. If Video.stop() was previously

called, playback begins from the first frame.

Availability

Flash Lite 2.0

Example

The following example resumes the video that is playing in a Video object called video1.

 video1.resume()

See also

pause (Video.pause method), stop (Video.stop method)

stop (Video.stop method)
 public stop() : Void

Stops playback of the video and continues to render the current frame onscreen. A subsequent call to Video.resume()

resumes playback from the first frame of the video.

Availability

Flash Lite 2.0

Example

The following example stops the video that is playing in a Video object (called my_video) when the user clicks the

close_btn instance.

 // video1 is the name of a Video object on Stage
 video1.stop();

See also

play (Video.play method), pause (Video.pause method), resume (Video.resume method)

665FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

XML

 Object
 |
 +-XMLNode
 |
 +-XML

 public class XML
 extends XMLNode

Use the methods and properties of the XML class to load, parse, send, build, and manipulate XML document trees.

You must use the constructor new XML() to create an XML object before calling any method of the XML class.

An XML document is represented in Flash by the XML class. Each element of the hierarchical document is represented

by an XMLNode object.

For information on the following methods and properties, see the XMLNode class: appendChild(), attributes,

childNodes, cloneNode(), firstChild, hasChildNodes(), insertBefore(), lastChild, nextSibling,

nodeName, nodeType, nodeValue, parentNode, previousSibling, removeNode(), toString()

In earlier versions of the ActionScript Language Reference, the methods and properties above were documented in the

XML class. They are now documented in the XMLNode class.

Note: The XML and XMLNode objects are modeled after the W3C DOM Level 1 recommendation:

http://www.w3.org/tr/1998/REC-DOM-Level-1-19981001/level-one-core.html. That recommendation specifies a

Node interface and a Document interface. The Document interface inherits from the Node interface, and adds

methods such as createElement() and createTextNode(). In ActionScript, the XML and XMLNode objects are

designed to divide functionality along similar lines.

Availability

Flash Lite 2.0

See also

appendChild (XMLNode.appendChild method), attributes (XMLNode.attributes property), childNodes

(XMLNode.childNodes property), cloneNode (XMLNode.cloneNode method), firstChild

(XMLNode.firstChild property)hasChildNodes (XMLNode.hasChildNodes method), insertBefore

(XMLNode.insertBefore method)lastChild (XMLNode.lastChild property), nextSibling

(XMLNode.nextSibling property)nodeName (XMLNode.nodeName property), nodeType (XMLNode.nodeType

property)nodeValue (XMLNode.nodeValue property), parentNode (XMLNode.parentNode

property)previousSibling (XMLNode.previousSibling property), removeNode (XMLNode.removeNode

method)toString (XMLNode.toString method)

Property summary

Modifiers Property Description

 contentType:String The MIME content type that is sent to the server when you call

the XML.send() or XML.sendAndLoad() method.

 docTypeDecl:String Specifies information about the XML document's DOCTYPE

declaration.

 ignoreWhite:Boolean Default setting is false.

http://www.w3.org/tr/1998/REC-DOM-Level-1-19981001/level-one-core.html
http://www.w3.org/tr/1998/REC-DOM-Level-1-19981001/level-one-core.html

666FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Properties inherited from class XMLNode

Properties inherited from class Object

Event summary

Constructor summary

Method summary

 loaded:Boolean Indicates if the XML document has successfully loaded.

 status:Number Automatically sets and returns a numeric value that indicates

whether an XML document was successfully parsed into an

XML object.

 xmlDecl:String A string that specifies information about a document's XML

declaration.

attributes (XMLNode.attributes property), childNodes (XMLNode.childNodes
property)firstChild (XMLNode.firstChild property), lastChild (XMLNode.lastChild
property)nextSibling (XMLNode.nextSibling property), nodeName (XMLNode.nodeName
property), nodeType (XMLNode.nodeType property), nodeValue (XMLNode.nodeValue property),

parentNode (XMLNode.parentNode property)previousSibling (XMLNode.previousSibling
property)

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onData =
function(src:String)
{}

Invoked when XML text has been completely downloaded from the server, or when an

error occurs downloading XML text from a server.

onLoad =
function(success:Bo

olean) {}

Invoked by Flash Lite player when an XML document is received from the server.

Signature Description

XML(text:String) Creates a new XML object.

Modifiers Signature Description

 addRequestHeader(head
er:Object,
headerValue:String) :
Void

Adds or changes HTTP request headers (such as Content-
Type or SOAPAction) sent with POST actions.

 createElement(name:Stri

ng) : XMLNode

Creates a new XML element with the name specified in the

parameter.

 createTextNode(value:S

tring) : XMLNode

Creates a new XML text node with the specified text.

 getBytesLoaded() :
Number

Returns the number of bytes loaded (streamed) for the XML

document.

Modifiers Property Description

667FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Methods inherited from class XMLNode

Methods inherited from class Object

addRequestHeader (XML.addRequestHeader method)
 public addRequestHeader(header:Object, headerValue:String) : Void

Adds or changes HTTP request headers (such as Content-Type or SOAPAction) sent with POST actions. In the first

usage, you pass two strings (header and headerValue) to the method. In the second usage, you pass an array of

strings, alternating header names and header values.

If multiple calls are made to set the same header name, each successive value replaces the value set in the previous call.

You cannot add or change the following standard HTTP headers using this method: Accept-Ranges, Age, Allow,

Allowed, Connection, Content-Length, Content-Location, Content-Range, ETag, Host, Last-Modified,

Locations, Max-Forwards, Proxy-Authenticate, Proxy-Authorization, Public, Range, Retry-After, Server,

TE, Trailer, Transfer-Encoding, Upgrade, URI, Vary, Via, Warning, and WWW-Authenticate.

Availability

Flash Lite 2.0

Parameters

header:Object - A string that represents an HTTP request header name.

 getBytesTotal() :
Number

Returns the size, in bytes, of the XML document.

 load(url:String) :
Boolean

Loads an XML document from the specified URL, and replaces

the contents of the specified XML object with the downloaded

XML data.

 parseXML(value:String)
: Void

Parses the XML text specified in the value parameter, and

populates the specified XML object with the resulting XML

tree.

 send(url:String,
[target:String],
method:String) :
Boolean

Encodes the specified XML object into an XML document, and

sends it to the specified URL using the POST method in a

browser.

 sendAndLoad(url:Strin

g, resultXML:XML) :
Void

Encodes the specified XML object into an XML document,

sends it to the specified URL using the POST method,

downloads the server's response, and loads it into

resultXMLobject, specified in the parameters.

appendChild (XMLNode.appendChild method), cloneNode (XMLNode.cloneNode
method)hasChildNodes (XMLNode.hasChildNodes method), insertBefore
(XMLNode.insertBefore method)removeNode (XMLNode.removeNode method), toString
(XMLNode.toString method)

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method)watch (Object.watch method)

Modifiers Signature Description

668FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

headerValue:String - A string that represents the value associated with header.

Example

The following example adds a custom HTTP header named SOAPAction with a value of Foo to an XML object named

my_xml:

 my_xml.addRequestHeader("SOAPAction", "'Foo'");

The following example creates an array named headers that contains two alternating HTTP headers and their

associated values. The array is passed as a parameter to the addRequestHeader() method.

 var headers:Array = new Array("Content-Type", "text/plain",
 "X-ClientAppVersion", "2.0");
 my_xml.addRequestHeader(headers);

See also

addRequestHeader (LoadVars.addRequestHeader method)

contentType (XML.contentType property)
 public contentType : String

The MIME content type that is sent to the server when you call the XML.send() or XML.sendAndLoad() method. The

default is application/x-www-form-urlencoded, which is the standard MIME content type used for most HTML

forms.

Availability

Flash Lite 2.0

Example

The following example creates a new XML document and checks its default content type:

 // create a new XML document
 var doc:XML = new XML();

 // trace the default content type
 trace(doc.contentType); // output: application/x-www-form-urlencoded

The following example defines an XML packet, and sets the content type for the XML object. The data is then sent to

a server and shows a result in a browser window.

 var my_xml:XML = new XML("<highscore><name>Ernie</name><score>13045</score>
 </highscore>");
 my_xml.contentType = "text/xml";
 my_xml.send("http://www.flash-mx.com/mm/highscore.cfm", "_blank");

Press F12 to test this example in a browser.

See also

send (XML.send method), sendAndLoad (XML.sendAndLoad method)

createElement (XML.createElement method)
 public createElement(name:String) : XMLNode

669FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Creates a new XML element with the name specified in the parameter. The new element initially has no parent, no

children, and no siblings. The method returns a reference to the newly created XML object that represents the element.

This method and the XML.createTextNode() method are the constructor methods for creating nodes for an XML

object.

Availability

Flash Lite 2.0

Parameters

name:String - The tag name of the XML element being created.

Returns

XMLNode - An XMLNode object; an XML element.

Example

The following example creates three XML nodes using the createElement() method:

 // create an XML document
 var doc:XML = new XML();

 // create three XML nodes using createElement()
 var element1:XMLNode = doc.createElement("element1");
 var element2:XMLNode = doc.createElement("element2");
 var element3:XMLNode = doc.createElement("element3");

 // place the new nodes into the XML tree
 doc.appendChild(element1);
 element1.appendChild(element2);
 element1.appendChild(element3);

 trace(doc);
 // output: <element1><element2 /><element3 /></element1>

See also

createTextNode (XML.createTextNode method)

createTextNode (XML.createTextNode method)
 public createTextNode(value:String) : XMLNode

Creates a new XML text node with the specified text. The new node initially has no parent, and text nodes cannot have

children or siblings. This method returns a reference to the XML object that represents the new text node. This method

and the XML.createElement() method are the constructor methods for creating nodes for an XML object.

Availability

Flash Lite 2.0

Parameters

value:String - A string; the text used to create the new text node.

670FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Returns

XMLNode - An XMLNode object.

Example

The following example creates two XML text nodes using the createTextNode() method, and places them into

existing XML nodes:

 // create an XML document
 var doc:XML = new XML();

 // create three XML nodes using createElement()
 var element1:XMLNode = doc.createElement("element1");
 var element2:XMLNode = doc.createElement("element2");
 var element3:XMLNode = doc.createElement("element3");

 // place the new nodes into the XML tree
 doc.appendChild(element1);
 element1.appendChild(element2);
 element1.appendChild(element3);

 // create two XML text nodes using createTextNode()
 var textNode1:XMLNode = doc.createTextNode("textNode1 String value");
 var textNode2:XMLNode = doc.createTextNode("textNode2 String value");

 // place the new nodes into the XML tree
 element2.appendChild(textNode1);
 element3.appendChild(textNode2);

 trace(doc);
 // output (with line breaks added between tags):
 // <element1>
 // <element2>textNode1 String value</element2>
 // <element3>textNode2 String value</element3>
 // </element1>

See also

createElement (XML.createElement method)

docTypeDecl (XML.docTypeDecl property)
 public docTypeDecl : String

Specifies information about the XML document's DOCTYPE declaration. After the XML text has been parsed into an

XML object, the XML.docTypeDecl property of the XML object is set to the text of the XML document's DOCTYPE

declaration (for example, <!DOCTYPEgreeting SYSTEM "hello.dtd">). This property is set using a string

representation of the DOCTYPE declaration, not an XML node object.

The ActionScript XML parser is not a validating parser. The DOCTYPE declaration is read by the parser and stored in

the XML.docTypeDecl property, but no DTD validation is performed.

If no DOCTYPE declaration was encountered during a parse operation, the XML.docTypeDecl property is set to

undefined. The XML.toString() method outputs the contents of XML.docTypeDecl immediately after the XML

declaration stored in XML.xmlDecl, and before any other text in the XML object. If XML.docTypeDecl is undefined,

no DOCTYPE declaration is output.

671FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example uses the XML.docTypeDecl property to set the DOCTYPE declaration for an XML object:

 my_xml.docTypeDecl = "<!DOCTYPE greeting SYSTEM \"hello.dtd\">";

See also

xmlDecl (XML.xmlDecl property)

getBytesLoaded (XML.getBytesLoaded method)
 public getBytesLoaded() : Number

Returns the number of bytes loaded (streamed) for the XML document. You can compare the value of

getBytesLoaded() with the value of getBytesTotal() to determine what percentage of an XML document has

loaded.

Availability

Flash Lite 2.0

Returns

Number - An integer that indicates the number of bytes loaded.

Example

The following example shows how to use the XML.getBytesLoaded() method with the XML.getBytesTotal()

method to trace the progress of an XML.load() command. You must replace the URL parameter of the XML.load()

command so that the parameter refers to a valid XML file using HTTP. If you attempt to use this example to load a

local file that resides on your hard disk, this example will not work properly because in test movie mode, Flash Lite

player loads local files in their entirety.

 // create a new XML document
 var doc:XML = new XML();

 var checkProgress = function(xmlObj:XML) {
 var bytesLoaded:Number = xmlObj.getBytesLoaded();
 var bytesTotal:Number = xmlObj.getBytesTotal();
 var percentLoaded:Number = Math.floor((bytesLoaded / bytesTotal) 100);
 trace ("milliseconds elapsed: " + getTimer());
 trace ("bytesLoaded: " + bytesLoaded);
 trace ("bytesTotal: " + bytesTotal);
 trace ("percent loaded: " + percentLoaded);
 trace ("---------------------------------");
 }

 doc.onLoad = function(success:Boolean) {
 clearInterval(intervalID);
 trace("intervalID: " + intervalID);
 }
 doc.load("[place a valid URL pointing to an XML file here]");
 var intervalID:Number = setInterval(checkProgress, 100, doc);

672FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

getBytesTotal (XML.getBytesTotal method)

getBytesTotal (XML.getBytesTotal method)
 public getBytesTotal() : Number

Returns the size, in bytes, of the XML document.

Availability

Flash Lite 2.0

Returns

Number - An integer.

Example

See example for XML.getBytesLoaded().

See also

getBytesLoaded (XML.getBytesLoaded method)

ignoreWhite (XML.ignoreWhite property)
 public ignoreWhite : Boolean

Default setting is false. When set to true, text nodes that contain only white space are discarded during the parsing

process. Text nodes with leading or trailing white space are unaffected.

Usage 1: You can set the ignoreWhite property for individual XML objects, as the following code shows:

 my_xml.ignoreWhite = true;

Usage 2: You can set the default ignoreWhite property for XML objects, as the following code shows:

 XML.prototype.ignoreWhite = true;

Availability

Flash Lite 2.0

Example

The following example loads an XML file with a text node that contains only white space; the foyer tag comprises

fourteen space characters. To run this example, create a text file named flooring.xml, and copy the following tags into it:

 <house>
 <kitchen> ceramic tile </kitchen>
 <bathroom>linoleum</bathroom>
 <foyer> </foyer>
 </house>

Create a new Flash document named flooring.fla and save it to the same directory as the XML file. Place the following

code into the main Timeline:

673FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // create a new XML object
 var flooring:XML = new XML();

 // set the ignoreWhite property to true (default value is false)
 flooring.ignoreWhite = true;

 // After loading is complete, trace the XML object
 flooring.onLoad = function(success:Boolean) {
 trace(flooring);
 }

 // load the XML into the flooring object
 flooring.load("flooring.xml");

 // output (line breaks added for clarity):
 <house>
 <kitchen> ceramic tile </kitchen>
 <bathroom>linoleum</bathroom>
 <foyer />
 </house>

If you then change the setting of flooring.ignoreWhite to false, or simply remove that line of code entirely, the

fourteen space characters in the foyer tag will be preserved:

 ...
 // set the ignoreWhite property to false (default value)
 flooring.ignoreWhite = false;
 ...
 // output (line breaks added for clarity):
 <house>
 <kitchen> ceramic tile </kitchen>
 <bathroom>linoleum</bathroom>
 <foyer> </foyer>
 </house>

For an example, see the XML_blogTracker.fla and XML_languagePicker.fla files in the ActionScript samples folder at

www.adobe.com/go/learn_fl_samples. Download and decompress the .zip file and navigate to the folder for your

version of ActionScript to access the sample.

load (XML.load method)
 public load(url:String) : Boolean

Loads an XML document from the specified URL, and replaces the contents of the specified XML object with the

downloaded XML data. The URL is relative and is called using HTTP. The load process is asynchronous; it does not

finish immediately after the load() method is executed.

In SWF files running in a version of the player earlier than Flash Player 7, the url parameter must be in the same

superdomain as the SWF file that issues this call. A superdomain is derived by removing the leftmost component of a

file's URL. For example, a SWF file at www.someDomain.com can load data from sources at store.someDomain.com,

because both files are in the same superdomain of someDomain.com.

http://www.adobe.com/go/learn_fl_samples

674FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

In SWF files of any version running in Flash Player 7 or later, the url parameter must be in exactly the same domain.

For example, a SWF file at www.someDomain.com can load data only from sources that are also at

www.someDomain.com. If you want to load data from a different domain, you can place a cross-domain policy file on

the server that is hosting the SWF file.

When the load() method is executed, the XML object property loaded is set to false. When the XML data finishes

downloading, the loaded property is set to true, and the onLoad event handler is invoked. The XML data is not parsed

until it is completely downloaded. If the XML object previously contained any XML trees, they are discarded.

You can define a custom function that executes when the onLoad event handler of the XML object is invoked.

Availability

Flash Lite 2.0

Parameters

url:String - A string that represents the URL where the XML document to be loaded is located. If the SWF file that

issues this call is running in a web browser, url must be in the same domain as the SWF file; for details, see the

Description section.

Returns

Boolean - false if no parameter (null) is passed; true otherwise. Use the onLoad() event handler to check the

success of a loaded XML document.

Example

The following simple example uses the XML.load() method:

 // create a new XML object
 var flooring:XML = new XML();

 // set the ignoreWhite property to true (default value is false)
 flooring.ignoreWhite = true;

 // After loading is complete, trace the XML object
 flooring.onLoad = function(success) {
 trace(flooring);
 };

 // load the XML into the flooring object
 flooring.load("flooring.xml");

For the contents of the flooring.xml file, and the output that this example produces, see the example for

XML.ignoreWhite.

See also

ignoreWhite (XML.ignoreWhite property), loaded (XML.loaded property), onLoad (XML.onLoad

handler)

loaded (XML.loaded property)
 public loaded : Boolean

675FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Indicates if the XML document has successfully loaded. If there is no custom onLoad() event handler defined for the

XML object, then this property is set to true when the document-loading process initiated by the XML.load() call has

completed successfully; otherwise, it is false. However, if you define a custom behavior for the onLoad() event

handler for the XML object, be sure to set onload in that function.

Availability

Flash Lite 2.0

Example

The following example uses the XML.loaded property in a simple script:

 var my_xml:XML = new XML();
 my_xml.ignoreWhite = true;
 my_xml.onLoad = function(success:Boolean) {
 trace("success: "+success);
 trace("loaded: "+my_xml.loaded);
 trace("status: "+my_xml.status);
 };
 my_xml.load("http://www.flash-mx.com/mm/problems/products.xml");

Information displays in the Output panel when the onLoad handler invokes. If the call completes successfully, true

displays for the loaded status in the Output panel.

 success: true
 loaded: true
 status: 0

See also

load (XML.load method), onLoad (XML.onLoad handler)

onData (XML.onData handler)
 onData = function(src:String) {}

Invoked when XML text has been completely downloaded from the server, or when an error occurs downloading XML

text from a server. This handler is invoked before the XML is parsed, and you can use it to call a custom parsing routine

instead of using the Flash XML parser. The src parameter is a string that contains XML text downloaded from the

server, unless an error occurs during the download, in which case the src parameter is undefined.

By default, the XML.onData event handler invokes XML.onLoad. You can override the XML.onData event handler with

custom behavior, but XML.onLoad is not called unless you call it in your implementation of XML.onData.

Availability

Flash Lite 2.0

Parameters

src:String - A string or undefined; the raw data, usually in XML format, that is sent by the server.

Example

The following example shows what the XML.onData event handler looks like by default:

676FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 XML.prototype.onData = function (src:String) {
 if (src == undefined) {
 this.onLoad(false);
 } else {
 this.parseXML(src);
 this.loaded = true;
 this.onLoad(true);
 }
 }

You can override the XML.onData event handler to intercept the XML text without parsing it.

See also

onLoad (XML.onLoad handler)

onLoad (XML.onLoad handler)
 onLoad = function(success:Boolean) {}

Invoked by Flash Lite player when an XML document is received from the server. If the XML document is received

successfully, the success parameter is true. If the document was not received, or if an error occurred in receiving the

response from the server, the success parameter is false. The default, implementation of this method is not active.

To override the default implementation, you must assign a function that contains custom actions.

Availability

Flash Lite 2.0

Parameters

success:Boolean - A Boolean value that evaluates to true if the XML object is successfully loaded with a XML.load()

or XML.sendAndLoad() operation; otherwise, it is false.

Example

The following example includes ActionScript for a simple e-commerce storefront application. The sendAndLoad()

method transmits an XML element that contains the user's name and password, and uses an XML.onLoad handler to

process the reply from the server.

677FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var login_str:String = "<login username=\""+username_txt.text+"\"
password=\""+password_txt.text+"\" />";
 var my_xml:XML = new XML(login_str);
 var myLoginReply_xml:XML = new XML();

 myLoginReply_xml.ignoreWhite = true;

 myLoginReply_xml.onLoad = function(success:Boolean){

 if (success) {

 if ((myLoginReply_xml.firstChild.nodeName == "packet") &&
 (myLoginReply_xml.firstChild.attributes.success == "true")) {
 gotoAndStop("loggedIn");
 } else {
 gotoAndStop("loginFailed");
 }

 } else {
 gotoAndStop("connectionFailed");
 }

 };

 my_xml.sendAndLoad("http://www.flash-mx.com/mm/login_xml.cfm", myLoginReply_xml);

See also

load (XML.load method), sendAndLoad (XML.sendAndLoad method)

parseXML (XML.parseXML method)
 public parseXML(value:String) : Void

Parses the XML text specified in the value parameter, and populates the specified XML object with the resulting XML

tree. Any existing trees in the XML object are discarded.

Availability

Flash Lite 2.0

Parameters

value:String - A string that represents the XML text to be parsed and passed to the specified XML object.

Example

The following example creates and parses an XML packet:

678FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var xml_str:String = "<state name=\"California\">
 <city>San Francisco</city></state>"

 // defining the XML source within the XML constructor:
 var my1_xml:XML = new XML(xml_str);
 trace(my1_xml.firstChild.attributes.name); // output: California

 // defining the XML source using the XML.parseXML method:
 var my2_xml:XML = new XML();
 my2_xml.parseXML(xml_str);
 trace(my2_xml.firstChild.attributes.name); // output: California

send (XML.send method)
 public send(url:String, [target:String], method:String) : Boolean

Encodes the specified XML object into an XML document, and sends it to the specified URL using the POST method

in a browser. The Flash test environment only uses the GET method.

Availability

Flash Lite 2.0

Parameters

url:String - String; the destination URL for the specified XML object.

target:String [optional] - String; the browser window to show data that the server returns:

• _self specifies the current frame in the current window.

• _blank specifies a new window.

• _parent specifies the parent of the current frame.

• _top specifies the top-level frame in the current window.

If you do not specify a window parameter, it is the same as specifying _self.

method:String [optional] - the method of the HTTP protocol used: either GET or POST. In a browser, the default value

is POST. In the Flash test environment, the default value is GET.

Returns

Boolean - false if no parameters are specified, true otherwise

Example

The following example defines an XML packet and sets the content type for the XML object. The data is then sent to

a server and shows a result in a browser window.

 var my_xml:XML = new XML("<highscore><name>Ernie</name>
 <score>13045</score></highscore>");
 my_xml.contentType = "text/xml";
 my_xml.send("http://www.flash-mx.com/mm/highscore.cfm", "_blank");

Press F12 to test this example in a browser.

See also

sendAndLoad (XML.sendAndLoad method)

679FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

sendAndLoad (XML.sendAndLoad method)
 public sendAndLoad(url:String, resultXML:XML) : Void

Encodes the specified XML object into an XML document, sends it to the specified URL using the POST method,

downloads the server's response, and loads it into the resultXMLobject specified in the parameters. The server

response loads in the same manner used by the XML.load() method.

In SWF files running in a version of the player earlier than Flash Player 7, the url parameter must be in the same

superdomain as the SWF file that is issuing this call. A superdomain is derived by removing the leftmost component

of a file's URL. For example, a SWF file at www.someDomain.com can load data from sources at

store.someDomain.com, because both files are in the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later, the url parameter must be in exactly the same domain.

For example, a SWF file at www.someDomain.com can load data only from sources that are also at

www.someDomain.com. If you want to load data from a different domain, you can place a cross-domain policy file on

the server hosting the SWF file.

When sendAndLoad() is executed, the XML object property loaded is set to false. When the XML data finishes

downloading, the loaded property is set to true if the data successfully loaded, and the onLoad event handler is

invoked. The XML data is not parsed until it is completely downloaded. If the XML object previously contained any

XML trees, they are discarded.

Availability

Flash Lite 2.0

Parameters

url:String - A string; the destination URL for the specified XML object. If the SWF file issuing this call is running in

a web browser, url must be in the same domain as the SWF file; for details, see the Description section.

resultXML:XML - A target XML object created with the XML constructor method that will receive the return

information from the server.

Example

The following example includes ActionScript for a simple e-commerce storefront application. The

XML.sendAndLoad() method transmits an XML element that contains the user's name and password, and uses an

onLoad handler to process the reply from the server.

680FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var login_str:String = "<login username=\""+username_txt.text+"\"
password=\""+password_txt.text+"\" />";
 var my_xml:XML = new XML(login_str);
 var myLoginReply_xml:XML = new XML();
 myLoginReply_xml.ignoreWhite = true;
 myLoginReply_xml.onLoad = myOnLoad;
 my_xml.sendAndLoad("http://www.flash-mx.com/mm/login_xml.cfm", myLoginReply_xml);
 function myOnLoad(success:Boolean) {
 if (success) {
 if ((myLoginReply_xml.firstChild.nodeName == "packet") &&
 (myLoginReply_xml.firstChild.attributes.success == "true")) {
 gotoAndStop("loggedIn");
 } else {
 gotoAndStop("loginFailed");
 }
 } else {
 gotoAndStop("connectionFailed");
 }
 }

See also

send (XML.send method), load (XML.load method), loaded (XML.loaded property), onLoad (XML.onLoad

handler)

status (XML.status property)
 public status : Number

Automatically sets and returns a numeric value that indicates whether an XML document was successfully parsed into

an XML object. The following are the numeric status codes, with descriptions:

• 0 No error; parse was completed successfully.

• -2 A CDATA (character data) section was not properly terminated.

• -3 The XML declaration was not properly terminated.

• -4 The DOCTYPE declaration was not properly terminated.

• -5 A comment was not properly terminated.

• -6 An XML element was malformed.

• -7 Out of memory.

• -8 An attribute value was not properly terminated.

• -9 A start-tag was not matched with an end-tag.

• -10 An end-tag was encountered without a matching start-tag.

Availability

Flash Lite 2.0

Example

The following example loads an XML packet into a SWF file. A status message displays, depending on whether the

XML loads and parses successfully. Add the following ActionScript to your FLA or AS file:

681FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_xml:XML = new XML();
 my_xml.onLoad = function(success:Boolean) {
 if (success) {
 if (my_xml.status == 0) {
 trace("XML was loaded and parsed successfully");
 } else {
 trace("XML was loaded successfully, but was unable to be parsed.");
 }
 var errorMessage:String;
 switch (my_xml.status) {
 case 0 :
 errorMessage = "No error; parse was completed successfully.";
 break;
 case -2 :
 errorMessage = "A CDATA section was not properly terminated.";
 break;
 case -3 :
 errorMessage = "The XML declaration was not properly terminated.";
 break;
 case -4 :
 errorMessage = "The DOCTYPE declaration was not properly terminated.";
 break;
 case -5 :
 errorMessage = "A comment was not properly terminated.";
 break;
 case -6 :
 errorMessage = "An XML element was malformed.";
 break;
 case -7 :
 errorMessage = "Out of memory.";
 break;
 case -8 :
 errorMessage = "An attribute value was not properly terminated.";
 break;
 case -9 :
 errorMessage = "A start-tag was not matched with an end-tag.";
 break;
 case -10 :
 errorMessage = "An end-tag was encountered without a matching
 start-tag.";
 break;
 default :
 errorMessage = "An unknown error has occurred.";
 break;
 }
 trace("status: "+my_xml.status+" ("+errorMessage+")");
 } else {
 trace("Unable to load/parse XML. (status: "+my_xml.status+")");
 }
 };
 my_xml.load("http://www.helpexamples.com/flash/badxml.xml");

XML constructor
 public XML(text:String)

682FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Creates a new XML object. You must use the constructor to create an XML object before you call any of the methods

of the XML class.

Note: Use the createElement() and createTextNode() methods to add elements and text nodes to an XML

document tree.

Availability

Flash Lite 2.0

Parameters

text:String - A string; the XML text parsed to create the new XML object.

Example

The following example creates a new, empty XML object:

 var my_xml:XML = new XML();

The following example creates an XML object by parsing the XML text specified in the source parameter, and

populates the newly created XML object with the resulting XML document tree:

 var other_xml:XML = new XML("<state name=\"California\"><city>San Francisco</city></state>");

See also

createElement (XML.createElement method), createTextNode (XML.createTextNode method)

xmlDecl (XML.xmlDecl property)
 public xmlDecl : String

A string that specifies information about a document's XML declaration. After the XML document is parsed into an

XML object, this property is set to the text of the document's XML declaration. This property is set using a string

representation of the XML declaration, not an XML node object. If no XML declaration is encountered during a parse

operation, the property is set to undefined.XML. The XML.toString() method outputs the contents of the

XML.xmlDecl property before any other text in the XML object. If the XML.xmlDecl property contains the undefined

type, no XML declaration is output.

Availability

Flash Lite 2.0

Example

The following example creates a text field called my_txt that has the same dimensions as the Stage. The text field

displays properties of the XML packet that loads into the SWF file. The doc type declaration displays in my_txt. Add

the following ActionScript to your FLA or AS file:

683FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_fmt:TextFormat = new TextFormat();
 my_fmt.font = "_typewriter";
 my_fmt.size = 12;
 my_fmt.leftMargin = 10;

 this.createTextField("my_txt", this.getNextHighestDepth(), 0, 0, Stage.width, Stage.height);
 my_txt.border = true;
 my_txt.multiline = true;
 my_txt.wordWrap = true;
 my_txt.setNewTextFormat(my_fmt);

 var my_xml:XML = new XML();
 my_xml.ignoreWhite = true;
 my_xml.onLoad = function(success:Boolean) {
 var endTime:Number = getTimer();
 var elapsedTime:Number = endTime-startTime;
 if (success) {
 my_txt.text = "xmlDecl:"+newline+my_xml.xmlDecl+newline+newline;
 my_txt.text += "contentType:"+newline+my_xml.contentType+newline+newline;
 my_txt.text += "docTypeDecl:"+newline+my_xml.docTypeDecl+newline+newline;
 my_txt.text += "packet:"+newline+my_xml.toString()+newline+newline;
 } else {
 my_txt.text = "Unable to load remote XML."+newline+newline;
 }
 my_txt.text += "loaded in: "+elapsedTime+" ms.";
 };
 my_xml.load("http://www.helpexamples.com/crossdomain.xml");
 var startTime:Number = getTimer();

See also

docTypeDecl (XML.docTypeDecl property)

XMLNode

 Object
 |
 +-XMLNode

 public class XMLNode
 extends Object

An XML document is represented in Flash by the XML class. Each element of the hierarchical document is represented

by an XMLNode object.

Availability

Flash Lite 2.0

See also

hasXMLSocket (capabilities.hasXMLSocket property)

684FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Property summary

Properties inherited from class Object

Method summary

Methods inherited from class Object

Modifiers Property Description

 attributes:Object An object containing all of the attributes of the specified XML

instance.

 childNodes:Array [read-

only]

An array of the specified XML object's children.

 firstChild:XMLNode [read-

only]

Evaluates the specified XML object and references the first

child in the parent node's child list.

 lastChild:XMLNode [read-

only]

An XMLNode value that references the last child in the node's

child list.

 nextSibling:XMLNode

[read-only]

An XMLNode value that references the next sibling in the

parent node's child list.

 nodeName:String A string representing the node name of the XML object.

 nodeType:Number [read-

only]

A nodeType value, either 1 for an XML element or 3 for a text

node.

 nodeValue:String The node value of the XML object.

 parentNode:XMLNode

[read-only]

An XMLNode value that references the parent node of the

specified XML object, or returns null if the node has no

parent.

 previousSibling:XMLNode

[read-only]

An XMLNode value that references the previous sibling in the

parent node's child list.

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

Modifiers Signature Description

 appendChild(newChild:
XMLNode) : Void

Appends the specified node to the XML object's child list.

 cloneNode(deep:Boolea

n) : XMLNode

Constructs and returns a new XML node of the same type,

name, value, and attributes as the specified XML object.

 hasChildNodes() :
Boolean

Specifies whether or not the XML object has child nodes.

 insertBefore(newChild:
XMLNode,
insertPoint:XMLNode

) : Void

Inserts a newChild node into the XML object's child list,

before the insertPoint node.

 removeNode() : Void Removes the specified XML object from its parent.

 toString() : String Evaluates the specified XML object, constructs a textual

representation of the XML structure, including the node,

children, and attributes, and returns the result as a string.

685FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

appendChild (XMLNode.appendChild method)
 public appendChild(newChild:XMLNode) : Void

Appends the specified node to the XML object's child list. This method operates directly on the node referenced by the

childNode parameter; it does not append a copy of the node. If the node to be appended already exists in another tree

structure, appending the node to the new location will remove it from its current location. If the childNode parameter

refers to a node that already exists in another XML tree structure, the appended child node is placed in the new tree

structure after it is removed from its existing parent node.

Availability

Flash Lite 2.0

Parameters

newChild:XMLNode - An XMLNode object that represents the node to be moved from its current location to the

child list of the my_xml object.

Example

This example does the following things in the order shown:

• Creates two empty XML documents, doc1 and doc2.

• Creates a new node using the createElement() method and appends it, using the appendChild() method, to the

XML document named doc1.

• Shows how to move a node using the appendChild() method by moving the root node from doc1 to doc2.

• Clones the root node from doc2 and appends it to doc1.

• Creates a new node and appends it to the root node of the XML document doc1.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method)watch (Object.watch method)

686FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var doc1:XML = new XML();
 var doc2:XML = new XML();

 // create a root node and add it to doc1
 var rootnode:XMLNode = doc1.createElement("root");
 doc1.appendChild(rootnode);
 trace ("doc1: " + doc1); // output: doc1: <root />
 trace ("doc2: " + doc2); // output: doc2:

 // move the root node to doc2
 doc2.appendChild(rootnode);
 trace ("doc1: " + doc1); // output: doc1:
 trace ("doc2: " + doc2); // output: doc2: <root />

 // clone the root node and append it to doc1
 var clone:XMLNode = doc2.firstChild.cloneNode(true);
 doc1.appendChild(clone);
 trace ("doc1: " + doc1); // output: doc1: <root />
 trace ("doc2: " + doc2); // output: doc2: <root />

 // create a new node to append to root node (named clone) of doc1
 var newNode:XMLNode = doc1.createElement("newbie");
 clone.appendChild(newNode);
 trace ("doc1: " + doc1); // output: doc1: <root><newbie /></root>

attributes (XMLNode.attributes property)
 public attributes : Object

An object containing all of the attributes of the specified XML instance. The XML.attributes object contains one

variable for each attribute of the XML instance. Because these variables are defined as part of the object, they are

generally referred to as properties of the object. The value of each attribute is stored in the corresponding property as

a string. For example, if you have an attribute named color, you would retrieve that attribute's value by specifying

color as the property name, as the following code shows:

 var myColor:String = doc.firstChild.attributes.color

Availability

Flash Lite 2.0

Example

The following example shows the XML attribute names:

687FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // create a tag called 'mytag' with
 // an attribute called 'name' with value 'Val'
 var doc:XML = new XML("<mytag name=\"Val\"> item </mytag>");

 // assign the value of the 'name' attribute to variable y
 var y:String = doc.firstChild.attributes.name;
 trace (y); // output: Val

 // create a new attribute named 'order' with value 'first'
 doc.firstChild.attributes.order = "first";

 // assign the value of the 'order' attribute to variable z
 var z:String = doc.firstChild.attributes.order
 trace(z); // output: first

The following is displayed in the Output panel:

 Val
 first

childNodes (XMLNode.childNodes property)
 public childNodes : Array [read-only]

An array of the specified XML object's children. Each element in the array is a reference to an XML object that

represents a child node. This is a read-only property and cannot be used to manipulate child nodes. Use the

appendChild(), insertBefore(), and removeNode() methods to manipulate child nodes.

This property is undefined for text nodes (nodeType == 3).

Availability

Flash Lite 2.0

Example

The following example shows how to use the XML.childNodes property to return an array of child nodes:

688FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // create a new XML document
 var doc:XML = new XML();

 // create a root node
 var rootNode:XMLNode = doc.createElement("rootNode");

 // create three child nodes
 var oldest:XMLNode = doc.createElement("oldest");
 var middle:XMLNode = doc.createElement("middle");
 var youngest:XMLNode = doc.createElement("youngest");

 // add the rootNode as the root of the XML document tree
 doc.appendChild(rootNode);

 // add each of the child nodes as children of rootNode
 rootNode.appendChild(oldest);
 rootNode.appendChild(middle);
 rootNode.appendChild(youngest);

 // create an array and use rootNode to populate it
 var firstArray:Array = doc.childNodes;
 trace (firstArray);
 // output: <rootNode><oldest /><middle /><youngest /></rootNode>

 // create another array and use the child nodes to populate it
 var secondArray:Array = rootNode.childNodes;
 trace(secondArray);
 // output: <oldest />,<middle />,<youngest />

See also

nodeType (XMLNode.nodeType property), appendChild (XMLNode.appendChild method), insertBefore

(XMLNode.insertBefore method)removeNode (XMLNode.removeNode method)

cloneNode (XMLNode.cloneNode method)
 public cloneNode(deep:Boolean) : XMLNode

Constructs and returns a new XML node of the same type, name, value, and attributes as the specified XML object. If

deep is set to true, all child nodes are recursively cloned, resulting in an exact copy of the original object's document

tree.

The clone of the node that is returned is no longer associated with the tree of the cloned item. Consequently,

nextSibling, parentNode, and previousSibling all have a value of null. If the deep parameter is set to false, or

the my_xml node has no child nodes, firstChild and lastChild are also null.

Availability

Flash Lite 2.0

Parameters

deep:Boolean - A Boolean value; if set to true, the children of the specified XML object will be recursively cloned.

Returns

XMLNode - An XMLNode object.

689FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example shows how to use the XML.cloneNode() method to create a copy of a node:

 // create a new XML document
 var doc:XML = new XML();

 // create a root node
 var rootNode:XMLNode = doc.createElement("rootNode");

 // create three child nodes
 var oldest:XMLNode = doc.createElement("oldest");
 var middle:XMLNode = doc.createElement("middle");
 var youngest:XMLNode = doc.createElement("youngest");

 // add the rootNode as the root of the XML document tree
 doc.appendChild(rootNode);

 // add each of the child nodes as children of rootNode
 rootNode.appendChild(oldest);
 rootNode.appendChild(middle);
 rootNode.appendChild(youngest);

 // create a copy of the middle node using cloneNode()
 var middle2:XMLNode = middle.cloneNode(false);

 // insert the clone node into rootNode between the middle and youngest nodes
 rootNode.insertBefore(middle2, youngest);
 trace(rootNode);
 // output (with line breaks added):
 // <rootNode>
 // <oldest />
 // <middle />
 // <middle />
 // <youngest />
 // </rootNode>

 // create a copy of rootNode using cloneNode() to demonstrate a deep copy
 var rootClone:XMLNode = rootNode.cloneNode(true);

 // insert the clone, which contains all child nodes, to rootNode
 rootNode.appendChild(rootClone);
 trace(rootNode);
 // output (with line breaks added):
 // <rootNode>
 // <oldest />
 // <middle />
 // <middle />
 // <youngest />
 // <rootNode>
 // <oldest />
 // <middle />
 // <middle />
 // <youngest />
 // </rootNode>
 // </rootNode>

690FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

firstChild (XMLNode.firstChild property)
 public firstChild : XMLNode [read-only]

Evaluates the specified XML object and references the first child in the parent node's child list. This property is null

if the node does not have children. This property is undefined if the node is a text node. This is a read-only property

and cannot be used to manipulate child nodes; use the appendChild(), insertBefore(), and removeNode()

methods to manipulate child nodes.

Availability

Flash Lite 2.0

Example

The following example shows how to use XML.firstChild to loop through a node's child nodes:

 // create a new XML document
 var doc:XML = new XML();

 // create a root node
 var rootNode:XMLNode = doc.createElement("rootNode");

 // create three child nodes
 var oldest:XMLNode = doc.createElement("oldest");
 var middle:XMLNode = doc.createElement("middle");
 var youngest:XMLNode = doc.createElement("youngest");

 // add the rootNode as the root of the XML document tree
 doc.appendChild(rootNode);

 // add each of the child nodes as children of rootNode
 rootNode.appendChild(oldest);
 rootNode.appendChild(middle);
 rootNode.appendChild(youngest);

 // use firstChild to iterate through the child nodes of rootNode
 for (var aNode:XMLNode = rootNode.firstChild; aNode != null; aNode = aNode.nextSibling) {
 trace(aNode);
 }

 // output:
 // <oldest />
 // <middle />
 // <youngest />

The following example is from the XML_languagePicker.fla file in the Examples directory and can be found in the

languageXML.onLoad event handler function definition:

 // loop through the strings in each language node
 // adding each string as a new element in the language array
 for (var stringNode:XMLNode = childNode.firstChild; stringNode != null; stringNode =
stringNode.nextSibling, j++) {
 masterArray[i][j] = stringNode.firstChild.nodeValue;
 }

To view the entire script, see XML_languagePicker.fla in the ActionScript samples folder at

www.adobe.com/go/learn_fl_samples. Download and decompress the .zip file and navigate to the folder for your

version of ActionScript to access the sample.

http://www.adobe.com/go/learn_fl_samples

691FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

See also

appendChild (XMLNode.appendChild method), insertBefore (XMLNode.insertBefore method),

removeNode (XMLNode.removeNode method)

hasChildNodes (XMLNode.hasChildNodes method)
 public hasChildNodes() : Boolean

Specifies whether or not the XML object has child nodes.

Availability

Flash Lite 2.0

Returns

Boolean - true if the specified XMLNode object has one or more child nodes; otherwise false.

Example

The following example creates a new XML packet. If the root node has child nodes, the code loops over each child node

to display the name and value of the node. Add the following ActionScript to your FLA or AS file:

 var my_xml:XML = new XML("hankrudolph");
 if (my_xml.firstChild.hasChildNodes()) {
 // use firstChild to iterate through the child nodes of rootNode
 for (var aNode:XMLNode = my_xml.firstChild.firstChild; aNode != null;
aNode=aNode.nextSibling) {
 if (aNode.nodeType == 1) {
 trace(aNode.nodeName+":\t"+aNode.firstChild.nodeValue);
 }
 }
 }

The following is displayed in the Output panel:

 output:
 username: hank
 password: rudolph

insertBefore (XMLNode.insertBefore method)
 public insertBefore(newChild:XMLNode, insertPoint:XMLNode) : Void

Inserts a newChild node into the XML object's child list, before the insertPoint node. If insertPoint is not a child

of the XMLNode object, the insertion fails.

Availability

Flash Lite 2.0

Parameters

newChild:XMLNode - The XMLNode object to be inserted.

insertPoint:XMLNode - The XMLNode object that will follow the newChild node after the method is invoked.

Example

The following inserts a new XML node between two existing nodes:

692FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var my_xml:XML = new XML("<a>1\n<c>3</c>");
 var insertPoint:XMLNode = my_xml.lastChild;
 var newNode:XML = new XML("2\n");
 my_xml.insertBefore(newNode, insertPoint);
 trace(my_xml);

See also

hasXMLSocket (capabilities.hasXMLSocket property), cloneNode (XMLNode.cloneNode method)

lastChild (XMLNode.lastChild property)
 public lastChild : XMLNode [read-only]

An XMLNode value that references the last child in the node's child list. The XML.lastChild property is null if the

node does not have children. This property cannot be used to manipulate child nodes; use the appendChild(),

insertBefore(), and removeNode() methods to manipulate child nodes.

Availability

Flash Lite 2.0

Example

The following example uses the XML.lastChild property to iterate through the child nodes of an XML node,

beginning with the last item in the node's child list and ending with the first child of the node's child list:

 // create a new XML document
 var doc:XML = new XML();

 // create a root node
 var rootNode:XMLNode = doc.createElement("rootNode");

 // create three child nodes
 var oldest:XMLNode = doc.createElement("oldest");
 var middle:XMLNode = doc.createElement("middle");
 var youngest:XMLNode = doc.createElement("youngest");

 // add the rootNode as the root of the XML document tree
 doc.appendChild(rootNode);

 // add each of the child nodes as children of rootNode
 rootNode.appendChild(oldest);
 rootNode.appendChild(middle);
 rootNode.appendChild(youngest);

 // use lastChild to iterate through the child nodes of rootNode
 for (var aNode:XMLNode = rootNode.lastChild; aNode != null; aNode = aNode.previousSibling) {
 trace(aNode);
 }

 // output:
 // <youngest />
 // <middle />
 // <oldest />

The following example creates a new XML packet and uses the XML.lastChild property to iterate through the child

nodes of the root node:

693FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 // create a new XML document
 var doc:XML = new XML("");

 var rootNode:XMLNode = doc.firstChild;

 // use lastChild to iterate through the child nodes of rootNode
 for (var aNode:XMLNode = rootNode.lastChild; aNode != null; aNode=aNode.previousSibling) {
 trace(aNode);
 }

 // output:
 // <youngest />
 // <middle />
 // <oldest />

See also

appendChild (XMLNode.appendChild method), insertBefore (XMLNode.insertBefore method),

removeNode (XMLNode.removeNode method), hasXMLSocket (capabilities.hasXMLSocket property)

nextSibling (XMLNode.nextSibling property)
 public nextSibling : XMLNode [read-only]

An XMLNode value that references the next sibling in the parent node's child list. This property is null if the node

does not have a next sibling node. This property cannot be used to manipulate child nodes; use the appendChild(),

insertBefore(), and removeNode() methods to manipulate child nodes.

Availability

Flash Lite 2.0

Example

The following example is an excerpt from the example for the XML.firstChild property, and shows how you can use

the XML.nextSibling property to loop through an XML node's child nodes:

 for (var aNode:XMLNode = rootNode.firstChild; aNode != null; aNode = aNode.nextSibling) {
 trace(aNode);
 }

See also

firstChild (XMLNode.firstChild property), appendChild (XMLNode.appendChild method),

insertBefore (XMLNode.insertBefore method), removeNode (XMLNode.removeNode method),

hasXMLSocket (capabilities.hasXMLSocket property)

nodeName (XMLNode.nodeName property)
 public nodeName : String

A string representing the node name of the XML object. If the XML object is an XML element (nodeType == 1),

nodeName is the name of the tag that represents the node in the XML file. For example, TITLE is the nodeName of an

HTML TITLE tag. If the XML object is a text node (nodeType == 3), nodeName is null.

Availability

Flash Lite 2.0

694FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Example

The following example creates an element node and a text node, and checks the node name of each:

 // create an XML document
 var doc:XML = new XML();

 // create an XML node using createElement()
 var myNode:XMLNode = doc.createElement("rootNode");

 // place the new node into the XML tree
 doc.appendChild(myNode);

 // create an XML text node using createTextNode()
 var myTextNode:XMLNode = doc.createTextNode("textNode");

 // place the new node into the XML tree
 myNode.appendChild(myTextNode);

 trace(myNode.nodeName);
 trace(myTextNode.nodeName);

 // output:
 // rootNode
 // null

The following example creates a new XML packet. If the root node has child nodes, the code loops over each child node

to display the name and value of the node. Add the following ActionScript to your FLA or AS file:

 var my_xml:XML = new XML("hankrudolph");
 if (my_xml.firstChild.hasChildNodes()) {
 // use firstChild to iterate through the child nodes of rootNode
 for (var aNode:XMLNode = my_xml.firstChild.firstChild; aNode != null;
aNode=aNode.nextSibling) {
 if (aNode.nodeType == 1) {
 trace(aNode.nodeName+":\t"+aNode.firstChild.nodeValue);
 }
 }
 }

The following node names are displayed in the Output panel:

 output:
 username: hank
 password: rudolph

See also

nodeType (XMLNode.nodeType property)

nodeType (XMLNode.nodeType property)
 public nodeType : Number [read-only]

A nodeType value, either 1 for an XML element or 3 for a text node.

The nodeType is a numeric value from the NodeType enumeration in the W3C DOM Level 1 recommendation at

www.w3.org. The following table lists the values:

695FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

In Flash Lite player, the built-in XML class only supports 1 (ELEMENT_NODE) and 3 (TEXT_NODE).

Availability

Flash Lite 2.0

Example

The following example creates an element node and a text node, and checks the node type of each:

 // create an XML document
 var doc:XML = new XML();

 // create an XML node using createElement()
 var myNode:XMLNode = doc.createElement("rootNode");

 // place the new node into the XML tree
 doc.appendChild(myNode);

 // create an XML text node using createTextNode()
 var myTextNode:XMLNode = doc.createTextNode("textNode");

 // place the new node into the XML tree
 myNode.appendChild(myTextNode);

 trace(myNode.nodeType);
 trace(myTextNode.nodeType);

 // output:
 // 1
 // 3

See also

nodeValue (XMLNode.nodeValue property)

Integer value Defined constant

1 ELEMENT_NODE

2 ATTRIBUTE_NODE

3 TEXT_NODE

4 CDATA_SECTION_NODE

5 NTITY_REFERENCE_NODE

6 ENTITY_NODE

7 PROCESSING_INStrUCTION_NODE

8 COMMENT_NODE

9 DOCUMENT_NODE

10 DOCUMENT_TYPE_NODE

11 DOCUMENT_FRAGMENT_NODE

12 NOTATION_NODE

696FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

nodeValue (XMLNode.nodeValue property)
 public nodeValue : String

The node value of the XML object. If the XML object is a text node, the nodeType is 3, and the nodeValue is the text

of the node. If the XML object is an XML element (nodeType is 1), nodeValue is null and read-only

Availability

Flash Lite 2.0

Example

The following example creates an element node and a text node, and checks the node value of each:

 // create an XML document
 var doc:XML = new XML();

 // create an XML node using createElement()
 var myNode:XMLNode = doc.createElement("rootNode");

 // place the new node into the XML tree
 doc.appendChild(myNode);

 // create an XML text node using createTextNode()
 var myTextNode:XMLNode = doc.createTextNode("textNode");

 // place the new node into the XML tree
 myNode.appendChild(myTextNode);

 trace(myNode.nodeValue);
 trace(myTextNode.nodeValue);

 // output:
 // null
 // myTextNode

The following example creates and parses an XML packet. The code loops through each child node, and displays the

node value using the firstChild property and firstChild.nodeValue. When you use firstChild to display

contents of the node, it maintains the & entity. However, when you explicitly use nodeValue, it converts to the

ampersand character (&).

 var my_xml:XML = new XML("mortongood&evil");
 trace("using firstChild:");
 for (var i = 0; i<my_xml.firstChild.childNodes.length; i++) {
 trace("\t"+my_xml.firstChild.childNodes[i].firstChild);
 }
 trace("");
 trace("using firstChild.nodeValue:");
 for (var i = 0; i<my_xml.firstChild.childNodes.length; i++) {
 trace("\t"+my_xml.firstChild.childNodes[i].firstChild.nodeValue);
 }

The following information is displayed in the Output panel:

697FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 using firstChild:
 morton
 good&evil

 using firstChild.nodeValue:
 morton
 good&evil

See also

nodeType (XMLNode.nodeType property)

parentNode (XMLNode.parentNode property)
 public parentNode : XMLNode [read-only]

An XMLNode value that references the parent node of the specified XML object, or returns null if the node has no

parent. This is a read-only property and cannot be used to manipulate child nodes; use the appendChild(),

insertBefore(), and removeNode() methods to manipulate child nodes.

Availability

Flash Lite 2.0

Example

The following example creates an XML packet and displays the parent node of the username node in the Output panel:

 var my_xml:XML = new XML("mortongood&evil");

 // first child is the <login /> node
 var rootNode:XMLNode = my_xml.firstChild;

 // first child of the root is the <username /> node
 var targetNode:XMLNode = rootNode.firstChild;
 trace("the parent node of '"+targetNode.nodeName+"' is: "+targetNode.parentNode.nodeName);
 trace("contents of the parent node are:\n"+targetNode.parentNode);

 // output (line breaks added for clarity):

 the parent node of 'username' is: login
 contents of the parent node are:
 morton
 good&evil

See also

appendChild (XMLNode.appendChild method), insertBefore (XMLNode.insertBefore method),

removeNode (XMLNode.removeNode method), hasXMLSocket (capabilities.hasXMLSocket property)

previousSibling (XMLNode.previousSibling property)
 public previousSibling : XMLNode [read-only]

An XMLNode value that references the previous sibling in the parent node's child list. The property has a value of null

if the node does not have a previous sibling node. This property cannot be used to manipulate child nodes; use the

appendChild(), insertBefore(), and removeNode() methods to manipulate child nodes.

698FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.0

Example

The following example is an excerpt from the example for the XML.lastChild property, and shows how you can use

the XML.previousSibling property to loop through an XML node's child nodes:

 for (var aNode:XMLNode = rootNode.lastChild; aNode != null; aNode = aNode.previousSibling) {
 trace(aNode);
 }

See also

lastChild (XMLNode.lastChild property), appendChild (XMLNode.appendChild method), insertBefore

(XMLNode.insertBefore method), removeNode (XMLNode.removeNode method), hasXMLSocket

(capabilities.hasXMLSocket property)

removeNode (XMLNode.removeNode method)
 public removeNode() : Void

Removes the specified XML object from its parent. Also deletes all descendants of the node.

Availability

Flash Lite 2.0

Example

The following example creates an XML packet, and then deletes the specified XML object and its descendant nodes:

 var xml_str:String = "<state name=\"California\"><city>San Francisco</city></state>";

 var my_xml:XML = new XML(xml_str);
 var cityNode:XMLNode = my_xml.firstChild.firstChild;
 trace("before XML.removeNode():\n"+my_xml);
 cityNode.removeNode();
 trace("");
 trace("after XML.removeNode():\n"+my_xml);

 // output (line breaks added for clarity):
 //
 // before XML.removeNode():
 // <state name="California">
 // <city>San Francisco</city>
 // </state>
 //
 // after XML.removeNode():
 // <state name="California" />

toString (XMLNode.toString method)
 public toString() : String

Evaluates the specified XML object, constructs a textual representation of the XML structure, including the node,

children, and attributes, and returns the result as a string.

699FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

For top-level XML objects (those created with the constructor), the XML.toString() method outputs the document's

XML declaration (stored in the XML.xmlDecl property), followed by the document's DOCTYPE declaration (stored in

the XML.docTypeDecl property), followed by the text representation of all XML nodes in the object. The XML

declaration is not output if the XML.xmlDecl property is undefined. The DOCTYPE declaration is not output if the

XML.docTypeDecl property is undefined.

Availability

Flash Lite 2.0

Returns

String - String.

Example

The following code uses the toString() method to convert an XMLNode object to a String, and then uses the

toUpperCase() method of the String class:

 var xString = "<first>Mary</first>"
 + "<last>Ng</last>"
 var my_xml:XML = new XML(xString);
 var my_node:XMLNode = my_xml.childNodes[1];
 trace(my_node.toString().toUpperCase());
 // <LAST>NG<

See also

docTypeDecl (XML.docTypeDecl property), xmlDecl (XML.xmlDecl property)

XMLSocket

 Object
 |
 +-XMLSocket

 public class XMLSocket
 extends Object

The XMLSocket class implements client sockets that let the device running the Flash Lite player communicate with a

server computer that an IP address or domain name identifies. The XMLSocket class is useful for client-server

applications that require low latency, such as real-time chat systems. A traditional HTTP-based chat system frequently

polls the server and downloads new messages by using an HTTP request. In contrast, an XMLSocket chat solution

maintains an open connection to the server, which lets the server immediately send incoming messages without a

request from the client.

To use the XMLSocket class, the server computer must run a daemon process that understands the protocol that the

XMLSocket class uses. The following list describes the protocol:

• XML messages are sent over a full-duplex TCP/IP stream socket connection.

• Each XML message is a complete XML document, terminated by a zero (0) byte.

• An unlimited number of XML messages can be sent and received over a single XMLSocket connection.

700FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The following restrictions apply to how and where an XMLSocket object can connect to the server:

• To connect an XMLSocket to a port lower than 1024, you must first load a policy file with the

System.security.loadPolicyFile() method, even when your application connects to its own exact domain.

• The XMLSocket.connect() method can connect only to computers in the same domain where the SWF file

resides. This restriction does not apply to SWF files running on a local disk. (This restriction is identical to the

security rules for the loadVariables() function, and the XML.sendAndLoad() and XML.load() methods.) To

connect to a server daemon running in a domain other than the one where the SWF file resides, you can create a

security policy file on the server that allows access from specific domains.

Setting up a server to communicate with the XMLSocket object can be challenging. If your application does not require

real-time interactivity, use the loadVariables() function, or Flash HTTP-based XML server connectivity methods

(XML.load(), XML.sendAndLoad(), XML.send()), instead of the XMLSocket class.

To use the methods of the XMLSocket class, you must first use the constructor, XMLSocket(), to create an XMLSocket

object.

Availability

Flash Lite 2.1

See also

loadPolicyFile (security.loadPolicyFile method)

Property summary

Properties inherited from class Object

Event summary

Constructor summary

constructor (Object.constructor property), __proto__ (Object.__proto__
property)prototype (Object.prototype property), __resolve (Object.__resolve property)

Event Description

onClose = function()
{}

Invoked only when the server closes an open connection.

onConnect =
function(success:Bool

ean) {}

An asynchronous callback that the Flash Lite player invokes when a connection

request initiated through XMLSocket.connect() succeeds or fails.

onData =
function(src:String)
{}

Invoked when a message is downloaded from the server and terminated by a zero (0)

byte.

onXML =
function(src:XML) {}

Invoked by the Flash Lite player when the specified XML object containing an XML

document arrives over an open XMLSocket connection.

Signature Description

XMLSocket() Creates a new XMLSocket object.

701FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Method summary

Methods inherited from class Object

close (XMLSocket.close method)
 public close() : Void

Closes the connection that the XMLSocket object specifies.

Availability

Flash Lite 2.1

Example

The following simple example creates an XMLSocket object, attempts to connect to the server, and then closes the

connection.

 var socket:XMLSocket = new XMLSocket();
 socket.connect(null, 2000);
 socket.close();

See also

connect (XMLSocket.connect method)

connect (XMLSocket.connect method)
 public connect(url:String, port:Number) : Boolean

Establishes a connection to the specified Internet host by using the specified TCP port and returns true or false,

depending on whether a connection is successfully initiated. If the XMLSocket.connect() method returns a value of

true, the initial stage of the connection process is successful; later, the XMLSocket.onConnect() method is invoked

to determine whether the final connection succeeded or failed. If XMLSocket.connect() returns false, a connection

could not be established.

If you do not know the port number of your Internet host computer, contact your network administrator. To connect

an XMLSocket to a port lower than 1024, you must first load a policy file with the

System.security.loadPolicyFile() method.

Modifiers Signature Description

 close() : Void Closes the connection that the XMLSocket object specifies.

 connect(url:String,
port:Number) :
Boolean

Establishes a connection to the specified Internet host by using

the specified TCP port and returns true or false, depending

on whether a connection is successfully initiated.

 send(data:Object) :
Void

Converts the XML object or data specified in the object

parameter to a string and transmits it to the server, followed by

a zero (0) byte.

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method)isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method), valueOf (Object.valueOf
method)watch (Object.watch method)

702FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

If you specify null for the host parameter, the host contacted is the one where the SWF file calling

XMLSocket.connect() resides. For example, if the SWF file was downloaded from www.example.com, specifying

null for the host parameter is the same as entering the IP address for www.example.com.

In SWF files of any version running in Flash Player 7 or later, the host parameter must be in exactly the same domain.

For example, a SWF file at www.someDomain.com that is published for Flash Player 5, but is running in Flash Player

7 or later, can load variables only from SWF files that are also at www.someDomain.com. If you want to load variables

from a different domain, you can place a cross-domain policy file on the server hosting the SWF file that is being

accessed.

Note: The XMLSocket.connect() method returns false if System.capabilities.hasXMLSocket is false.

Availability

Flash Lite 2.1

Parameters

url:String - String; A fully qualified DNS domain name or an IP address in the form aaa.bbb.ccc.ddd. You can also

specify null to connect to the host server on which the SWF file resides. If the SWF file issuing this call is running in

a web browser, the host parameter must be in the same domain as the SWF file.

port:Number - Number; The TCP port number on the host used to establish a connection.

Returns

Boolean - A value of true if the connection is successful; false otherwise.

Example

The following example uses the XMLSocket.connect() method to connect to the host where the SWF file resides and

uses the trace() function to display the return value indicating the success or failure of the connection:

 var socket:XMLSocket = new XMLSocket()
 socket.onConnect = function (success:Boolean) {
 if (success) {
 trace ("Connection succeeded!");
 } else {
 trace ("Connection failed!");
 }
 }
 if (!socket.connect(null, 2000)) {
 trace ("Connection failed!");
 }

See also

onConnect (XMLSocket.onConnect handler), Array function, loadPolicyFile

(security.loadPolicyFile method)

onClose (XMLSocket.onClose handler)
 onClose = function() {}

Invoked only when the server closes an open connection. The default implementation of this method performs no

actions. To override the default implementation, you must assign a function containing custom actions.

703FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Availability

Flash Lite 2.1

Example

The following example executes a trace statement if the server closes an open connection:

 var socket:XMLSocket = new XMLSocket();
 socket.connect(null, 2000);
 socket.onClose = function () {
 trace("Connection to server lost.");
 }

See also

onConnect (XMLSocket.onConnect handler), Array function

onConnect (XMLSocket.onConnect handler)
 onConnect = function(success:Boolean) {}

An asynchronous callback that the Flash Lite player invokes when a connection request initiated through

XMLSocket.connect() succeeds or fails. If the connection succeeds, the success parameter has a value of true;

otherwise the success parameter has a value of false.

The default implementation of this method performs no actions. To override the default implementation, you must

assign a function containing custom actions.

Availability

Flash Lite 2.1

Parameters

success:Boolean - A Boolean value indicating whether a socket connection is successfully established. If the

connection succeeded, the success parameter has a value of true; otherwise the success parameter has a value of

false.

Example

The following example illustrates the process of specifying a replacement function for the onConnect() event handler

in a simple chat application.

After creating the XMLSocket object by using the constructor method, the script defines the custom function to be

executed when the onConnect() event handler is invoked. The function controls the screen to which users are taken,

depending on whether a connection is successfully established. If the connection is successfully made, users are taken

to the main chat screen on the frame labeled startChat. If the connection is not successful, users go to a screen with

troubleshooting information on the frame labeled connectionFailed.

 var socket:XMLSocket = new XMLSocket();
 socket.onConnect = function (success) {
 if (success) {
 gotoAndPlay("startChat");
 } else {
 gotoAndStop("connectionFailed");
 }
 }

704FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

Now that the onConnect() handler is defined, the connect() method is invoked to attempt to establish the connection.

If the connect() method returns a value of false, the SWF file is sent directly to the frame labeled connectionFailed,

and onConnect() is never invoked. If the connect() method returns true, the SWF file jumps to a frame labeled

waitForConnection, which is the "Please wait" screen. The SWF file remains on the waitForConnection frame until the

onConnect() handler is invoked, which happens at some point in the future depending on network latency.

 if (!socket.connect(null, 2000)) {
 gotoAndStop("connectionFailed");
 } else {
 gotoAndStop("waitForConnection");
 }

See also

connect (XMLSocket.connect method), Array function

onData (XMLSocket.onData handler)
 onData = function(src:String) {}

Invoked when a message is downloaded from the server and terminated by a zero (0) byte. You can override the

XMLSocket.onData event handler to intercept data that the server sends without parsing it as XML. This capability is

useful if you're transmitting arbitrarily formatted data packets, and you'd prefer to manipulate the data directly when

it arrives, rather than have Flash Lite player parse the data as XML.

By default, the XMLSocket.onData method invokes the XMLSocket.onXML method. If you override

XMLSocket.onData with custom behavior, XMLSocket.onXML is not called unless you call it in your implementation

of XMLSocket.onData.

Availability

Flash Lite 2.1

Parameters

src:String - A string containing data that the server sends.

Example

In this example, the src parameter is a string containing XML text downloaded from the server. The zero (0) byte

terminator is not included in the string.

 XMLSocket.prototype.onData = function (src) {
 this.onXML(new XML(src));
 }

onXML (XMLSocket.onXML handler)
 onXML = function(src:XML) {}

Invoked by the Flash Lite player when the specified XML object containing an XML document arrives over an open

XMLSocket connection. An XMLSocket connection can be used to transfer an unlimited number of XML documents

between the client and the server. Each document is terminated with a zero (0) byte. When the Flash Lite player

receives the zero byte, it parses all the XML received since the previous zero byte or since the connection was

established if this is the first message received. Each batch of parsed XML is treated as a single XML document and

passed to the onXML() method.

705FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

The default implementation of this method performs no actions. To override the default implementation, you must

assign a function containing actions that you define.

Availability

Flash Lite 2.1

Parameters

src:XML - An XML object that contains a parsed XML document received from a server.

Example

The following function overrides the default implementation of the onXML() method in a simple chat application. The

myOnXML() function instructs the chat application to recognize a single XML element, MESSAGE, in the following

format:

 <MESSAGE USER="John" TEXT="Hello, my name is John!" />
 var socket:XMLSocket = new XMLSocket();

In the following example, the displayMessage() function is assumed to be a user-defined function that displays the

message that the user receives:

 socket.onXML = function (doc) {
 var e = doc.firstChild;
 if (e != null && e.nodeName == "MESSAGE") {
 displayMessage(e.attributes.user, e.attributes.text);
 }
 }

See also

Array function

send (XMLSocket.send method)
 public send(data:Object) : Void

Converts the XML object or data specified in the object parameter to a string and transmits it to the server, followed

by a zero (0) byte. If object is an XML object, the string is the textual representation of the XML object. The send

operation is asynchronous; it returns immediately, but the data can be transmitted at a later time. The

XMLSocket.send() method does not return a value indicating whether the data was successfully transmitted.

If the XMLSocket object is not connected to the server (using the XMLSocket.connect() method), the

XMLSocket.send() operation fails.

Availability

Flash Lite 2.1

Parameters

data:Object - An XML object or other data to transmit to the server.

Example

The following example shows how to specify a user name and password to send the my_xml XML object to the server:

706FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Last updated 3/22/2011

 var myXMLSocket:XMLSocket = new XMLSocket();
 var my_xml:XML = new XML();
 var myLogin:XMLNode = my_xml.createElement("login");
 myLogin.attributes.username = usernameTextField;
 myLogin.attributes.password = passwordTextField;
 my_xml.appendChild(myLogin);
 myXMLSocket.send(my_xml);

See also

connect (XMLSocket.connect method)

XMLSocket constructor
 public XMLSocket()

Creates a new XMLSocket object. The XMLSocket object is not initially connected to any server. You must call the

XMLSocket.connect() method to connect the object to a server.

Availability

Flash Lite 2.1

Example

The following example creates an XMLSocket object:

 var socket:XMLSocket = new XMLSocket();

707

Last updated 3/22/2011

Chapter 3: Deprecated ActionScript

The evolution of ActionScript has deprecated many elements of the language. This section lists the deprecated items

and suggests alternatives when available. While deprecated elements still work in Flash Lite 2.0 and later, Adobe

recommends that you do not continue using deprecated elements in your code. Support of deprecated elements in the

future is not guaranteed.

Deprecated Function summary

Modifiers Function Name Description

 call(frame:Object) Deprecated since Flash Player 5. This action was deprecated in

favor of the function statement.

 chr(number:Number)String Deprecated since Flash Player 5. This function was deprecated

in favor of String.fromCharCode().

 getProperty(my_mc:Object,

property:Object)Object

Deprecated since Flash Player 5. This function was deprecated

in favor of the dot syntax, which was introduced in Flash Player

5.

 ifFrameLoaded([scene:String],

frame:Object,

statement(s):Object)

Deprecated since Flash Player 5. Adobe recommends that you

use the MovieClip._framesloaded property.

 int(value:Number)Number Deprecated since Flash Player 5. This function was deprecated

in favor of Math.round().

 length(expression:String,

variable:Object)Number

Deprecated since Flash Player 5. This function, along with all

the string functions, has been deprecated. Adobe

recommends that you use the methods of the String class and

the String.length property to perform the same

operations.

 mbchr(number:Number) Deprecated since Flash Player 5. This function was deprecated

in favor of the String.fromCharCode() method.

 mblength(string:String)Number Deprecated since Flash Player 5. This function was deprecated

in favor of the String.length property.

 mbord(character:String)Number Deprecated since Flash Player 5. This function was deprecated

in favor of String.charCodeAt() method.

 mbsubstring(value:String,

index:Number,

count:Number)String

Deprecated since Flash Player 5. This function was deprecated

in favor of String.substr() method.

 ord(character:String)Number Deprecated since Flash Player 5. This function was deprecated

in favor of the methods and properties of the String class.

 random(value:Number)Number Deprecated since Flash Player 5. This function was deprecated

in favor of Math.random().

708FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

Deprecated ActionScript

Last updated 3/22/2011

Deprecated Property summary

 substring(string:String,

index:Number,

count:Number)String

Deprecated since Flash Player 5. This function was deprecated

in favor of String.substr().

 tellTarget(target:String,

statement(s):Object)

Deprecated since Flash Player 5. Adobe recommends that you

use dot (.) notation and the with statement.

 toggleHighQuality() Deprecated since Flash Player 5. This function was deprecated

in favor of _quality.

Modifiers Property Name Description

 $version Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the

System.capabilities.version property.

 _cap4WayKeyAS Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the

System.capabilities.has4WayKeyAS property.

 _capCompoundSound Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the

System.capabilities.hasCompoundSound property.

 _capEmail Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the

System.capabilities.hasEmail property.

 _capLoadData Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the

System.capabilities.hasDataLoading property.

 _capMFi Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the System.capabilities.hasMFi

property.

 _capMIDI Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the

System.capabilities.hasMIDI property.

 _capMMS Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the System.capabilities.hasMMS

property.

 _capSMAF Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the

System.capabilities.hasSMAF property.

 _capSMS Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the System.capabilities.hasSMS

property.

 _capStreamSound Deprecated since Flash Lite Player 2.0. This action was

deprecated in favor of the

System.capabilities.hasStreamingAudio property.

 Button._highquality Deprecated since Flash Player 7. This property was deprecated

in favor of Button._quality.

Modifiers Function Name Description

709FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

Deprecated ActionScript

Last updated 3/22/2011

Deprecated Operator summary

 MovieClip._highquality Deprecated since Flash Player 7. This property was deprecated

in favor of MovieClip._quality.

 TextField._highquality Deprecated since Flash Player 7. This property was deprecated

in favor of TextField._quality.

 _highquality Deprecated since Flash Player 5. This property was deprecated

in favor of _quality.

 maxscroll Deprecated since Flash Player 5. This property was deprecated

in favor of TextField.maxscroll.

 scroll Deprecated since Flash Player 5. This property was deprecated

in favor of TextField.scroll.

Operator Description

<> (inequality) Deprecated since Flash Player 5. Adobe recommends that you

use the != (inequality) operator.

add (concatenation (strings)) Deprecated since Flash Player 5. Adobe recommends you use

the addition (+) operator when creating content for Flash

Player 5 or later.

Note: Flash Lite 2.0 also deprecates the add operator in favor

of the addition (+) operator.

and (logical AND) Deprecated since Flash Player 5. Adobe recommends that you

use the logical AND (&&) operator.

eq (equality (strings)) Deprecated since Flash Player 5. This operator was deprecated

in favor of the == (equality) operator.

ge (greater than or equal to (strings)) Deprecated since Flash Player 5. This operator was deprecated

in favor of the >= (greater than or equal to) operator.

gt (greater than (strings)) Deprecated since Flash Player 5. This operator was deprecated

in favor of the > (greater than) operator.

le (less than or equal to (strings)) Deprecated since Flash Player 5. This operator was deprecated

in Flash 5 in favor of the <= (less than or equal to) operator.

lt (less than (strings)) Deprecated since Flash Player 5. This operator was deprecated

in favor of the < (less than) operator.

ne (not equal (strings)) Deprecated since Flash Player 5. This operator was deprecated

in favor of the != (inequality) operator.

not (logical NOT) Deprecated since Flash Player 5. This operator was deprecated

in favor of the ! (logical NOT) operator.

or (logical OR) Deprecated since Flash Player 5. This operator was deprecated

in favor of the || (logical OR) operator.

Modifiers Property Name Description

710

Last updated 3/22/2011

Chapter 4: Unsupported ActionScript

The following lists show the classes, methods, properties, global functions, event handlers, and fscommands that are

supported in ActionScript 2.0 but are not supported in any version of Flash Lite. For a more detailed presentation of

this information, see Supported, partially supported, and unsupported ActionScript classes and language elements in

Developing Adobe Flash Lite 2.x and 3.x Applications.

Unsupported Classes

Unsupported Methods

Unsupported Properties

Unsupported Global Functions

Accessibility, BevelFilter, BitmapFilter, BlurFilter, Camera, ColorMatrixFilter, ContextMenu, ContextMenuItem,

ConvolutionFilter, CustomActions, DisplacementMapFilter, DropShadowFilter, FileReference, FileReferenceList,

GlowFilter, GradientBevelFilter, GradientGlowFilter, IME, Locale (mx.lang.Locale), Microphone, PrintJob,

TextField.StyleSheet, TextRenderer, TextSnapshot, XMLUI

BitmapData.applyFilter, BitmapData.generateFilterRect, BitmapData.noise, BitmapData.paletteMap,

BitmapData.perlinNoise, BitmapData.pixelDissolve, BitmapData.scroll, BitmapData.threshold,

Matrix.createGradientBox, Mouse.hide, Mouse.show, MovieClip.attachAudio, MovieClip.getTextSnapshot,

Selection.getBeginIndex, Selection.getCaretIndex, Selection.getEndIndex, System.setClipboard,

System.showSettings, TextField.getFontList, Video.clear

Button.blendMode, Button.cacheAsBitmap, Button.filters, Button.menu, Button.useHandCursor,

System.capabilities.language, System.capabilities.manufacturer, System.capabilities.pixelAspectRatio,

System.capabilities.playerType, System.capabilities.screenColor, System.capabilities.screenDPI,

System.capabilities.serverString, Key.isToggled, MovieClip.menu, MovieClip.useHandCursor, Stage.showMenu,

System.exactSettings, TextField.menu, TextField.mouseWheelEnabled, TextField.restrict, Video._alpha,

Video.deblocking, Video._height, Video.height, Video._name, Video._parent, Video._rotation, Video.smoothing,

Video._visible, Video._width, Video.width, Video._x, Video._xmouse, Video._xscale, Video._y, Video._ymouse,

Video._yscale

asfunction, MMExecute, print, printAsBitmap, printAsBitmapNum, printNum, updateAfterEvent

711FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

Unsupported ActionScript

Last updated 3/22/2011

Unsupported Event Handlers

Unsupported fscommands

onUpdate, Mouse.onMouseWheel

allowscale, exec, fullscreen, quit, showmenu, trapallkeys

712Last updated 3/22/2011

Index

A

a property 366

add() method 510

allowDomain event 337

allowInsecureDomain event 340

alphaMultiplier property 265

alphaOffset property 266

attachBitmap() method 394

B

b property 366

BitmapData

BitmapData() constructor 200

clone() method 201

colorTransform() method 203

copyChannel() method 203

copyPixels() method 204

dispose() method 205

draw() method 206

fillRect() method 207

floodFill() method 208

getColorBoundsRect() method 209

getPixel() method 210

getPixel32() method 211

height property 212

hitTest() method 212

loadBitmap() method 214

merge() method 215

rectangle property 216

setPixel() method 217

setPixel32() method 217

transparent property 217

BitmapData() constructor 200

blueMultiplier property 266

blueOffset property 267

bottom property 519

bottomRight property 519

C

c property 367

class

dispatched by LocalConnection 337, 340,
345

clone() method 201, 367, 510, 520

close() method 341

ColorTransform

alphaMultiplier property 265

alphaOffset property 266

blueMultiplier property 266

blueOffset property 267

ColorTransform() constructor 268

concat() method 269

greenMultiplier property 270

greenOffset property 271

redMultiplier property 272

redOffset property 273

rgb property 274

toString() method 275

ColorTransform class 263

colorTransform property 653

ColorTransform() constructor 268

colorTransform() method 203

concat() method 269, 368

concatenatedColorTransform property 654

concatenatedMatrix property 655

connect() method 341

contains() method 522

containsPoint() method 523

containsRectangle() method 524

ContextMenu class 275

copyChannel() method 203

copyPixels() method 204

createBox() method 369

createGradientBox() method 370

D

d property 371

deltaTransformPoint() method 371

dispose() method 205

distance() method 511

domain() method 342

draw() method 206

E

equals() method 511, 524

F

fillRect() method 207

floodFill() method 208

G

getColorBoundsRect() method 209

getPixel() method 210

getPixel32() method 211

greenMultiplier property 270

greenOffset property 271

H

height property 212, 525

hitTest() method 212

I

identity() method 372

inflate() method 526

inflatePoint() method 527

interpolate() method 512

intersection() method 527

intersects() method 528

invert() method 374

isEmpty() method 529

L

left property 529

length property 512

loadBitmap() method 214

LocalConnection

close() method 341

connect() method 341

domain() method 342

LocalConnection() constructor 344

send() method 346

LocalConnection class 336

allowDomain event 337

allowInsecureDomain event 340

onStatus event 345

LocalConnection() constructor 344

M

Matrix

a property 366

b property 366

c property 367

clone() method 367

concat() method 368

createBox() method 369

713FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

Index
Last updated 3/22/2011

createGradientBox() method 370

d property 371

deltaTransformPoint() method 371

identity() method 372

invert() method 374

Matrix() constructor 375

rotate() method 376

scale() method 378

toString() method 379

transformPoint() method 379

translate() method 380

tx property 381

ty property 382

Matrix class 362

matrix property 656

Matrix() constructor 375

merge() method 215

MovieClip

attachBitmap() method 394

transform property 452

N

NetConnection

NetConnection() constructor 473

NetConnection() constructor 473

NetStream

NetStream() constructor 479

NetStream() constructor 479

normalize() method 513

O

offset() method 513, 530

offsetPoint() method 530

onStatus event 345

P

pixelBounds property 657

Point

add() method 510

clone() method 510

distance() method 511

equals() method 511

interpolate() method 512

length property 512

normalize() method 513

offset() method 513

Point() constructor 514

polar() method 514

subtract() method 515

toString() method 516

x property 516

y property 516

Point() constructor 514

polar() method 514

PrintJob class 516

R

Rectangle

bottom property 519

bottomRight property 519

clone() method 520

contains() method 522

containsPoint() method 523

containsRectangle() method 524

equals() method 524

height property 525

inflate() method 526

inflatePoint() method 527

intersection() method 527

intersects() method 528

isEmpty() method 529

left property 529

offset() method 530

offsetPoint() method 530

Rectangle() constructor 531

right property 532

setEmpty() method 532

size property 533

top property 533

topLeft property 534

toString() method 535

union() method 535

width property 536

x property 537

y property 537

rectangle property 216

Rectangle() constructor 531

redMultiplier property 272

redOffset property 273

rgb property 274

right property 532

rotate() method 376

S

scale() method 378

send() method 346

setEmpty() method 532

setPixel() method 217

setPixel32() method 217

size property 533

subtract() method 515

T

top property 533

topLeft property 534

toString() method 275, 379, 516, 535

Transform

colorTransform property 653

concatenatedColorTransform
property 654

concatenatedMatrix property 655

matrix property 656

pixelBounds property 657

Transform() constructor 658

Transform class 652

transform property 452

Transform() constructor 658

transformPoint() method 379

translate() method 380

transparent property 217

tx property 381

ty property 382

U

union() method 535

W

width property 536

X

x property 516, 537

Y

y property 516, 537

	Contents
	Chapter 1: ActionScript language elements
	Compiler directives
	#endinitclip directive
	#include directive
	#initclip directive

	Constants
	false constant
	Infinity constant
	-Infinity constant
	NaN constant
	newline constant
	null constant
	true constant
	undefined constant

	Global functions
	Array function
	Boolean function
	call function
	chr function
	clearInterval function
	duplicateMovieClip function
	escape function
	eval function
	fscommand function
	fscommand2 function
	getProperty function
	getTimer function
	getURL function
	getVersion function
	gotoAndPlay function
	gotoAndStop function
	ifFrameLoaded function
	int function
	isFinite function
	isNaN function
	length function
	loadMovie function
	loadMovieNum function
	loadVariables function
	loadVariablesNum function
	mbchr function
	mblength function
	mbord function
	mbsubstring function
	nextFrame function
	nextScene function
	Number function
	Object function
	on handler
	onClipEvent handler
	ord function
	parseFloat function
	parseInt function
	play function
	prevFrame function
	prevScene function
	random function
	removeMovieClip function
	setInterval function
	setProperty function
	startDrag function
	stop function
	stopAllSounds function
	stopDrag function
	String function
	substring function
	targetPath function
	tellTarget function
	toggleHighQuality function
	trace function
	unescape function
	unloadMovie function
	unloadMovieNum function

	Global properties
	$version property
	_cap4WayKeyAS property
	_capCompoundSound property
	_capEmail property
	_capLoadData property
	_capMFi property
	_capMIDI property
	_capMMS property
	_capSMAF property
	_capSMS property
	_capStreamSound property
	_focusrect property
	_forceframerate property
	_global property
	_highquality property
	_level property
	maxscroll property
	_parent property
	_quality property
	_root property
	scroll property
	_soundbuftime property
	this property

	Operators
	+ addition operator
	+= addition assignment operator
	[] array access operator
	= assignment operator
	& bitwise AND operator
	&= bitwise AND assignment operator
	<< bitwise left shift operator
	<<= bitwise left shift and assignment operator
	~ bitwise NOT operator
	| bitwise OR operator
	|= bitwise OR assignment operator
	>> bitwise right shift operator
	>>= bitwise right shift and assignment operator
	>>> bitwise unsigned right shift operator
	>>>= bitwise unsigned right shift and assignment operator
	^ bitwise XOR operator
	^= bitwise XOR assignment operator
	/* block comment delimiter operator
	, comma operator
	add concatenation (strings) operator
	?: conditional operator
	-- decrement operator
	/ division operator
	/= division assignment operator
	. dot operator
	== equality operator
	eq equality (strings) operator
	> greater than operator
	gt greater than (strings) operator
	>= greater than or equal to operator
	ge greater than or equal to (strings) operator
	++ increment operator
	!= inequality operator
	<> inequality operator
	instanceof operator
	< less than operator
	lt less than (strings) operator
	<= less than or equal to operator
	le less than or equal to (strings) operator
	// line comment delimiter operator
	&& logical AND operator
	and logical AND operator
	! logical NOT operator
	not logical NOT operator
	|| logical OR operator
	or logical OR operator
	% modulo operator
	%= modulo assignment operator
	* multiplication operator
	*= multiplication assignment operator
	new operator
	ne not equal (strings) operator
	{} object initializer operator
	() parentheses operator
	=== strict equality operator
	!== strict inequality operator
	" string delimiter operator
	- subtraction operator
	-= subtraction assignment operator
	: type operator
	typeof operator
	void operator

	Statements
	break statement
	case statement
	class statement
	continue statement
	default statement
	delete statement
	do..while statement
	dynamic statement
	else statement
	else if statement
	extends statement
	for statement
	for..in statement
	function statement
	get statement
	if statement
	implements statement
	import statement
	interface statement
	intrinsic statement
	private statement
	public statement
	return statement
	set statement
	set variable statement
	static statement
	super statement
	switch statement
	throw statement
	try..catch..finally statement
	var statement
	while statement
	with statement

	fscommand2 commands
	ExtendBacklightDuration fscommand2 command
	FullScreen fscommand2 command
	GetBatteryLevel fscommand2 command
	GetDevice fscommand2 command
	GetDeviceID fscommand2 command
	GetFreePlayerMemory fscommand2 command
	GetMaxBatteryLevel fscommand2 command
	GetMaxSignalLevel fscommand2 command
	GetMaxVolumeLevel fscommand2 command
	GetNetworkConnectionName fscommand2 command
	GetNetworkConnectStatus fscommand2 command
	GetNetworkGeneration fscommand2 command
	GetNetworkName fscommand2 command
	GetNetworkRequestStatus fscommand2 command
	GetNetworkStatus fscommand2 command
	GetPlatform fscommand2 command
	GetPowerSource fscommand2 command
	GetSignalLevel fscommand2 command
	GetSoftKeyLocation fscommand2 command
	GetTotalPlayerMemory fscommand2 command
	GetVolumeLevel fscommand2 command
	Quit fscommand2 command
	ResetSoftKeys fscommand2 command
	SetFocusRectColor fscommand2 command
	SetInputTextType fscommand2 command
	SetSoftKeys fscommand2 command
	StartVibrate fscommand2 command
	StopVibrate fscommand2 command

	Chapter 2: ActionScript classes
	arguments
	callee (arguments.callee property)
	caller (arguments.caller property)
	length (arguments.length property)

	Array
	Array constructor
	CASEINSENSITIVE (Array.CASEINSENSITIVE property)
	concat (Array.concat method)
	DESCENDING (Array.DESCENDING property)
	join (Array.join method)
	length (Array.length property)
	NUMERIC (Array.NUMERIC property)
	pop (Array.pop method)
	push (Array.push method)
	RETURNINDEXEDARRAY (Array.RETURNINDEXEDARRAY property)
	reverse (Array.reverse method)
	shift (Array.shift method)
	slice (Array.slice method)
	sort (Array.sort method)
	sortOn (Array.sortOn method)
	splice (Array.splice method)
	toString (Array.toString method)
	UNIQUESORT (Array.UNIQUESORT property)
	unshift (Array.unshift method)

	BitmapData (flash.display.BitmapData)
	BitmapData constructor
	clone (BitmapData.clone method)
	colorTransform (BitmapData.colorTransform method)
	copyChannel (BitmapData.copyChannel method)
	copyPixels (BitmapData.copyPixels method)
	dispose (BitmapData.dispose method)
	draw (BitmapData.draw method)
	fillRect (BitmapData.fillRect method)
	floodFill (BitmapData.floodFill method)
	getColorBoundsRect (BitmapData.getColorBoundsRect method)
	getPixel (BitmapData.getPixel method)
	getPixel32 (BitmapData.getPixel32 method)
	height (BitmapData.height property)
	hitTest (BitmapData.hitTest method)
	loadBitmap (BitmapData.loadBitmap method)
	merge (BitmapData.merge method)
	rectangle (BitmapData.rectangle property)
	setPixel (BitmapData.setPixel method)
	setPixel32 (BitmapData.setPixel32 method)
	transparent (BitmapData.transparent property)
	width (BitmapData.width property)

	Boolean
	Boolean constructor
	toString (Boolean.toString method)
	valueOf (Boolean.valueOf method)

	Button
	_alpha (Button._alpha property)
	enabled (Button.enabled property)
	_focusrect (Button._focusrect property)
	getDepth (Button.getDepth method)
	_height (Button._height property)
	_highquality (Button._highquality property)
	_name (Button._name property)
	onDragOut (Button.onDragOut handler)
	onDragOver (Button.onDragOver handler)
	onKeyDown (Button.onKeyDown handler)
	onKeyUp (Button.onKeyUp handler)
	onKillFocus (Button.onKillFocus handler)
	onPress (Button.onPress handler)
	onRelease (Button.onRelease handler)
	onReleaseOutside (Button.onReleaseOutside handler)
	onRollOut (Button.onRollOut handler)
	onRollOver (Button.onRollOver handler)
	onSetFocus (Button.onSetFocus handler)
	_parent (Button._parent property)
	_quality (Button._quality property)
	_rotation (Button._rotation property)
	_soundbuftime (Button._soundbuftime property)
	tabEnabled (Button.tabEnabled property)
	tabIndex (Button.tabIndex property)
	_target (Button._target property)
	trackAsMenu (Button.trackAsMenu property)
	_url (Button._url property)
	_visible (Button._visible property)
	_width (Button._width property)
	_x (Button._x property)
	_xmouse (Button._xmouse property)
	_xscale (Button._xscale property)
	_y (Button._y property)
	_ymouse (Button._ymouse property)
	_yscale (Button._yscale property)

	capabilities (System.capabilities)
	audioMIMETypes (capabilities.audioMIMETypes property)
	avHardwareDisable (capabilities.avHardwareDisable property)
	has4WayKeyAS (capabilities.has4WayKeyAS property)
	hasAccessibility (capabilities.hasAccessibility property)
	hasAudio (capabilities.hasAudio property)
	hasAudioEncoder (capabilities.hasAudioEncoder property)
	hasCMIDI (capabilities.hasCMIDI property)
	hasCompoundSound (capabilities.hasCompoundSound property)
	hasDataLoading (capabilities.hasDataLoading property)
	hasEmail (capabilities.hasEmail property)
	hasEmbeddedVideo (capabilities.hasEmbeddedVideo property)
	hasMappableSoftKeys (capabilities.hasMappableSoftKeys property)
	hasMFI (capabilities.hasMFI property)
	hasMIDI (capabilities.hasMIDI property)
	hasMMS (capabilities.hasMMS property)
	hasMouse (capabilities.hasMouse property)
	hasMP3 (capabilities.hasMP3 property)
	hasPrinting (capabilities.hasPrinting property)
	hasQWERTYKeyboard (capabilities.hasQWERTYKeyboard property)
	hasScreenBroadcast (capabilities.hasScreenBroadcast property)
	hasScreenPlayback (capabilities.hasScreenPlayback property)
	hasSharedObjects (capabilities.hasSharedObjects property)
	hasSMAF (capabilities.hasSMAF property)
	hasSMS (capabilities.hasSMS property)
	hasStreamingAudio (capabilities.hasStreamingAudio property)
	hasStreamingVideo (capabilities.hasStreamingVideo property)
	hasStylus (capabilities.hasStylus property)
	hasVideoEncoder (capabilities.hasVideoEncoder property)
	hasXMLSocket (capabilities.hasXMLSocket property)
	imageMIMETypes (capabilities.imageMIMETypes property)
	isDebugger (capabilities.isDebugger property)
	language (capabilities.language property)
	localFileReadDisable (capabilities.localFileReadDisable property)
	MIMETypes (capabilities.MIMETypes property)
	os (capabilities.os property)
	screenOrientation (capabilities.screenOrientation property)
	screenResolutionX (capabilities.screenResolutionX property)
	screenResolutionY (capabilities.screenResolutionY property)
	softKeyCount (capabilities.softKeyCount property)
	version (capabilities.version property)
	videoMIMETypes (capabilities.videoMIMETypes property)

	Color
	Color constructor
	getRGB (Color.getRGB method)
	getTransform (Color.getTransform method)
	setRGB (Color.setRGB method)
	setTransform (Color.setTransform method)

	ColorTransform (flash.geom.ColorTransform)
	alphaMultiplier (ColorTransform.alphaMultiplier property)
	alphaOffset (ColorTransform.alphaOffset property)
	blueMultiplier (ColorTransform.blueMultiplier property)
	blueOffset (ColorTransform.blueOffset property)
	ColorTransform constructor
	concat (ColorTransform.concat method)
	greenMultiplier (ColorTransform.greenMultiplier property)
	greenOffset (ColorTransform.greenOffset property)
	redMultiplier (ColorTransform.redMultiplier property)
	redOffset (ColorTransform.redOffset property)
	rgb (ColorTransform.rgb property)
	toString (ColorTransform.toString method)

	Date
	Date constructor
	getDate (Date.getDate method)
	getDay (Date.getDay method)
	getFullYear (Date.getFullYear method)
	getHours (Date.getHours method)
	getLocaleLongDate (Date.getLocaleLongDate method)
	getLocaleShortDate (Date.getLocaleShortDate method)
	getLocaleTime (Date.getLocaleTime method)
	getMilliseconds (Date.getMilliseconds method)
	getMinutes (Date.getMinutes method)
	getMonth (Date.getMonth method)
	getSeconds (Date.getSeconds method)
	getTime (Date.getTime method)
	getTimezoneOffset (Date.getTimezoneOffset method)
	getUTCDate (Date.getUTCDate method)
	getUTCDay (Date.getUTCDay method)
	getUTCFullYear (Date.getUTCFullYear method)
	getUTCHours (Date.getUTCHours method)
	getUTCMilliseconds (Date.getUTCMilliseconds method)
	getUTCMinutes (Date.getUTCMinutes method)
	getUTCMonth (Date.getUTCMonth method)
	getUTCSeconds (Date.getUTCSeconds method)
	getUTCYear (Date.getUTCYear method)
	getYear (Date.getYear method)
	setDate (Date.setDate method)
	setFullYear (Date.setFullYear method)
	setHours (Date.setHours method)
	setMilliseconds (Date.setMilliseconds method)
	setMinutes (Date.setMinutes method)
	setMonth (Date.setMonth method)
	setSeconds (Date.setSeconds method)
	setTime (Date.setTime method)
	setUTCDate (Date.setUTCDate method)
	setUTCFullYear (Date.setUTCFullYear method)
	setUTCHours (Date.setUTCHours method)
	setUTCMilliseconds (Date.setUTCMilliseconds method)
	setUTCMinutes (Date.setUTCMinutes method)
	setUTCMonth (Date.setUTCMonth method)
	setUTCSeconds (Date.setUTCSeconds method)
	setYear (Date.setYear method)
	toString (Date.toString method)
	UTC (Date.UTC method)
	valueOf (Date.valueOf method)

	Error
	Error constructor
	message (Error.message property)
	name (Error.name property)
	toString (Error.toString method)

	ExtendedKey
	SOFT1 (ExtendedKey.SOFT1 property)
	SOFT2 (ExtendedKey.SOFT2 property)
	SOFT3 (ExtendedKey.SOFT3 property)
	SOFT4 (ExtendedKey.SOFT4 property)
	SOFT5 (ExtendedKey.SOFT5 property)
	SOFT6 (ExtendedKey.SOFT6 property)
	SOFT7 (ExtendedKey.SOFT7 property)
	SOFT8 (ExtendedKey.SOFT8 property)
	SOFT9 (ExtendedKey.SOFT9 property)
	SOFT10 (ExtendedKey.SOFT10 property)
	SOFT11 (ExtendedKey.SOFT11 property)
	SOFT12 (ExtendedKey.SOFT12 property)

	Function
	apply (Function.apply method)
	call (Function.call method)

	Key
	addListener (Key.addListener method)
	BACKSPACE (Key.BACKSPACE property)
	CAPSLOCK (Key.CAPSLOCK property)
	CONTROL (Key.CONTROL property)
	DELETEKEY (Key.DELETEKEY property)
	DOWN (Key.DOWN property)
	END (Key.END property)
	ENTER (Key.ENTER property)
	ESCAPE (Key.ESCAPE property)
	getAscii (Key.getAscii method)
	getCode (Key.getCode method)
	HOME (Key.HOME property)
	INSERT (Key.INSERT property)
	isDown (Key.isDown method)
	LEFT (Key.LEFT property)
	_listeners (Key._listeners property)
	onKeyDown (Key.onKeyDown event listener)
	onKeyUp (Key.onKeyUp event listener)
	PGDN (Key.PGDN property)
	PGUP (Key.PGUP property)
	removeListener (Key.removeListener method)
	RIGHT (Key.RIGHT property)
	SHIFT (Key.SHIFT property)
	SPACE (Key.SPACE property)
	TAB (Key.TAB property)
	UP (Key.UP property)

	LoadVars
	addRequestHeader (LoadVars.addRequestHeader method)
	contentType (LoadVars.contentType property)
	decode (LoadVars.decode method)
	getBytesLoaded (LoadVars.getBytesLoaded method)
	getBytesTotal (LoadVars.getBytesTotal method)
	load (LoadVars.load method)
	loaded (LoadVars.loaded property)
	LoadVars constructor
	onData (LoadVars.onData handler)
	onLoad (LoadVars.onLoad handler)
	send (LoadVars.send method)
	sendAndLoad (LoadVars.sendAndLoad method)
	toString (LoadVars.toString method)

	LocalConnection
	allowDomain (LocalConnection.allowDomain handler)
	allowInsecureDomain (LocalConnection.allowInsecureDomain handler)
	close (LocalConnection.close method)
	connect (LocalConnection.connect method)
	domain (LocalConnection.domain method)
	LocalConnection constructor
	onStatus (LocalConnection.onStatus handler)
	send (LocalConnection.send method)

	Math
	abs (Math.abs method)
	acos (Math.acos method)
	asin (Math.asin method)
	atan (Math.atan method)
	atan2 (Math.atan2 method)
	ceil (Math.ceil method)
	cos (Math.cos method)
	E (Math.E property)
	exp (Math.exp method)
	floor (Math.floor method)
	LN10 (Math.LN10 property)
	LN2 (Math.LN2 property)
	log (Math.log method)
	LOG10E (Math.LOG10E property)
	LOG2E (Math.LOG2E property)
	max (Math.max method)
	min (Math.min method)
	PI (Math.PI property)
	pow (Math.pow method)
	random (Math.random method)
	round (Math.round method)
	sin (Math.sin method)
	sqrt (Math.sqrt method)
	SQRT1_2 (Math.SQRT1_2 property)
	SQRT2 (Math.SQRT2 property)
	tan (Math.tan method)

	Matrix (flash.geom.Matrix)
	a (Matrix.a property)
	b (Matrix.b property)
	c (Matrix.c property)
	clone (Matrix.clone method)
	concat (Matrix.concat method)
	createBox (Matrix.createBox method)
	createGradientBox (Matrix.createGradientBox method)
	d (Matrix.d property)
	deltaTransformPoint (Matrix.deltaTransformPoint method)
	identity (Matrix.identity method)
	invert (Matrix.invert method)
	Matrix constructor
	rotate (Matrix.rotate method)
	scale (Matrix.scale method)
	toString (Matrix.toString method)
	transformPoint (Matrix.transformPoint method)
	translate (Matrix.translate method)
	tx (Matrix.tx property)
	ty (Matrix.ty property)

	Mouse
	addListener (Mouse.addListener method)
	onMouseDown (Mouse.onMouseDown event listener)
	onMouseMove (Mouse.onMouseMove event listener)
	onMouseUp (Mouse.onMouseUp event listener)
	removeListener (Mouse.removeListener method)

	MovieClip
	_alpha (MovieClip._alpha property)
	attachBitmap (MovieClip.attachBitmap method)
	attachMovie (MovieClip.attachMovie method)
	beginFill (MovieClip.beginFill method)
	beginGradientFill (MovieClip.beginGradientFill method)
	clear (MovieClip.clear method)
	createEmptyMovieClip (MovieClip.createEmptyMovieClip method)
	createTextField (MovieClip.createTextField method)
	_currentframe (MovieClip._currentframe property)
	curveTo (MovieClip.curveTo method)
	_droptarget (MovieClip._droptarget property)
	duplicateMovieClip (MovieClip.duplicateMovieClip method)
	enabled (MovieClip.enabled property)
	endFill (MovieClip.endFill method)
	focusEnabled (MovieClip.focusEnabled property)
	_focusrect (MovieClip._focusrect property)
	_framesloaded (MovieClip._framesloaded property)
	getBounds (MovieClip.getBounds method)
	getBytesLoaded (MovieClip.getBytesLoaded method)
	getBytesTotal (MovieClip.getBytesTotal method)
	getDepth (MovieClip.getDepth method)
	getInstanceAtDepth (MovieClip.getInstanceAtDepth method)
	getNextHighestDepth (MovieClip.getNextHighestDepth method)
	getSWFVersion (MovieClip.getSWFVersion method)
	getURL (MovieClip.getURL method)
	globalToLocal (MovieClip.globalToLocal method)
	gotoAndPlay (MovieClip.gotoAndPlay method)
	gotoAndStop (MovieClip.gotoAndStop method)
	_height (MovieClip._height property)
	_highquality (MovieClip._highquality property)
	hitArea (MovieClip.hitArea property)
	hitTest (MovieClip.hitTest method)
	lineStyle (MovieClip.lineStyle method)
	lineTo (MovieClip.lineTo method)
	loadMovie (MovieClip.loadMovie method)
	loadVariables (MovieClip.loadVariables method)
	localToGlobal (MovieClip.localToGlobal method)
	_lockroot (MovieClip._lockroot property)
	moveTo (MovieClip.moveTo method)
	_name (MovieClip._name property)
	nextFrame (MovieClip.nextFrame method)
	onData (MovieClip.onData handler)
	onDragOut (MovieClip.onDragOut handler)
	onDragOver (MovieClip.onDragOver handler)
	onEnterFrame (MovieClip.onEnterFrame handler)
	onKeyDown (MovieClip.onKeyDown handler)
	onKeyUp (MovieClip.onKeyUp handler)
	onKillFocus (MovieClip.onKillFocus handler)
	onLoad (MovieClip.onLoad handler)
	onMouseDown (MovieClip.onMouseDown handler)
	onMouseMove (MovieClip.onMouseMove handler)
	onMouseUp (MovieClip.onMouseUp handler)
	onPress (MovieClip.onPress handler)
	onRelease (MovieClip.onRelease handler)
	onReleaseOutside (MovieClip.onReleaseOutside handler)
	onRollOut (MovieClip.onRollOut handler)
	onRollOver (MovieClip.onRollOver handler)
	onSetFocus (MovieClip.onSetFocus handler)
	onUnload (MovieClip.onUnload handler)
	_parent (MovieClip._parent property)
	play (MovieClip.play method)
	prevFrame (MovieClip.prevFrame method)
	_quality (MovieClip._quality property)
	removeMovieClip (MovieClip.removeMovieClip method)
	_rotation (MovieClip._rotation property)
	setMask (MovieClip.setMask method)
	_soundbuftime (MovieClip._soundbuftime property)
	startDrag (MovieClip.startDrag method)
	stop (MovieClip.stop method)
	stopDrag (MovieClip.stopDrag method)
	swapDepths (MovieClip.swapDepths method)
	tabChildren (MovieClip.tabChildren property)
	tabEnabled (MovieClip.tabEnabled property)
	tabIndex (MovieClip.tabIndex property)
	_target (MovieClip._target property)
	_totalframes (MovieClip._totalframes property)
	trackAsMenu (MovieClip.trackAsMenu property)
	transform (MovieClip.transform property)
	unloadMovie (MovieClip.unloadMovie method)
	_url (MovieClip._url property)
	_visible (MovieClip._visible property)
	_width (MovieClip._width property)
	_x (MovieClip._x property)
	_xmouse (MovieClip._xmouse property)
	_xscale (MovieClip._xscale property)
	_y (MovieClip._y property)
	_ymouse (MovieClip._ymouse property)
	_yscale (MovieClip._yscale property)

	MovieClipLoader
	addListener (MovieClipLoader.addListener method)
	getProgress (MovieClipLoader.getProgress method)
	loadClip (MovieClipLoader.loadClip method)
	MovieClipLoader constructor
	onLoadComplete (MovieClipLoader.onLoadComplete event listener)
	onLoadError (MovieClipLoader.onLoadError event listener)
	onLoadInit (MovieClipLoader.onLoadInit event listener)
	onLoadProgress (MovieClipLoader.onLoadProgress event listener)
	onLoadStart (MovieClipLoader.onLoadStart event listener)
	removeListener (MovieClipLoader.removeListener method)
	unloadClip (MovieClipLoader.unloadClip method)

	NetConnection
	connect (NetConnection.connect) method
	close (NetConnection.close method)
	NetConnection constructor

	NetStream
	bufferLength (NetStream.bufferLength property)
	bufferTime (NetStream.bufferTime property)
	bytesLoaded (NetStream.bytesLoaded property)
	bytesTotal (NetStream.bytesTotal property)
	currentFps (NetStream.currentFps property)
	NetStream constructor
	time (NetStream.time property)
	onStatus (NetStream.onStatus handler)
	onCuePoint (NetStream.onCuePoint handler)
	onMetaData (NetStream.onMetaData handler)
	close (NetStream.close) method
	pause (NetStream.pause) method
	play (NetStream.play method)
	seek (NetStream.seek method)
	setBufferTime (NetStream.setBufferTime) method

	Number
	MAX_VALUE (Number.MAX_VALUE property)
	MIN_VALUE (Number.MIN_VALUE property)
	NaN (Number.NaN property)
	NEGATIVE_INFINITY (Number.NEGATIVE_INFINITY property)
	Number constructor
	POSITIVE_INFINITY (Number.POSITIVE_INFINITY property)
	toString (Number.toString method)
	valueOf (Number.valueOf method)

	Object
	addProperty (Object.addProperty method)
	constructor (Object.constructor property)
	hasOwnProperty (Object.hasOwnProperty method)
	isPropertyEnumerable (Object.isPropertyEnumerable method)
	isPrototypeOf (Object.isPrototypeOf method)
	Object constructor
	__proto__ (Object.__proto__ property)
	prototype (Object.prototype property)
	registerClass (Object.registerClass method)
	__resolve (Object.__resolve property)
	toString (Object.toString method)
	unwatch (Object.unwatch method)
	valueOf (Object.valueOf method)
	watch (Object.watch method)

	Point (flash.geom.Point)
	add (Point.add method)
	clone (Point.clone method)
	distance (Point.distance method)
	equals (Point.equals method)
	interpolate (Point.interpolate method)
	length (Point.length property)
	normalize (Point.normalize method)
	offset (Point.offset method)
	Point constructor
	polar (Point.polar method)
	subtract (Point.subtract method)
	toString (Point.toString method)
	x (Point.x. property)
	y (Point.y property)

	Rectangle (flash.geom.Rectangle)
	bottom (Rectangle.bottom property)
	bottomright (Rectangle.bottomright property)
	clone (Rectangle.clone method)
	contains (Rectangle.contains method)
	containsPoint (Rectangle.containsPoint method)
	containsRectangle (Rectangle.containsRectangle method)
	equals (Rectangle.equals method)
	height (Rectangle.height property)
	inflate (Rectangle.inflate method)
	inflatePoint (Rectangle.inflatePoint method)
	intersection (Rectangle.intersection method)
	intersects (Rectangle.intersects method)
	isEmpty (Rectangle.isEmpty method)
	left (Rectangle.left property)
	offset (Rectangle.offset method)
	offsetPoint (Rectangle.offsetPoint method)
	Rectangle constructor
	right (Rectangle.right property)
	setEmpty (Rectangle.setEmpty method)
	size (Rectangle.size property)
	top (Rectangle.top property)
	topLeft (Rectangle.topLeft property)
	toString (Rectangle.toString method)
	union (Rectangle.union method)
	width (Rectangle.width property)
	x (Rectangle.x property)
	y (Rectangle.y property)

	Security (System.security)
	allowDomain (security.allowDomain method)
	allowInsecureDomain (security.allowInsecureDomain method)
	loadPolicyFile (security.loadPolicyFile method)

	Selection
	addListener (Selection.addListener method)
	getFocus (Selection.getFocus method)
	onSetFocus (Selection.onSetFocus event listener)
	removeListener (Selection.removeListener method)
	setFocus (Selection.setFocus method)
	setSelection (Selection.setSelection method)

	SharedObject
	addListener (SharedObject.addListener method)
	clear (SharedObject.clear method)
	data (SharedObject.data property)
	flush (SharedObject.flush method)
	getLocal (SharedObject.getLocal method)
	getMaxSize (SharedObject.getMaxSize method)
	getSize (SharedObject.getSize method)
	onStatus (SharedObject.onStatus handler)
	removeListener (SharedObject.removeListener method)

	Sound
	attachSound (Sound.attachSound method)
	duration (Sound.duration property)
	getBytesLoaded (Sound.getBytesLoaded method)
	getBytesTotal (Sound.getBytesTotal method)
	getPan (Sound.getPan method)
	getTransform (Sound.getTransform method)
	getVolume (Sound.getVolume method)
	id3 (Sound.id3 property)
	loadSound (Sound.loadSound method)
	onID3 (Sound.onID3 handler)
	onLoad (Sound.onLoad handler)
	onSoundComplete (Sound.onSoundComplete handler)
	position (Sound.position property)
	setPan (Sound.setPan method)
	setTransform (Sound.setTransform method)
	setVolume (Sound.setVolume method)
	Sound constructor
	start (Sound.start method)
	stop (Sound.stop method)

	Stage
	addListener (Stage.addListener method)
	align (Stage.align property)
	height (Stage.height property)
	onResize (Stage.onResize event listener)
	removeListener (Stage.removeListener method)
	scaleMode (Stage.scaleMode property)
	width (Stage.width property)

	String
	charAt (String.charAt method)
	charCodeAt (String.charCodeAt method)
	concat (String.concat method)
	fromCharCode (String.fromCharCode method)
	indexOf (String.indexOf method)
	lastIndexOf (String.lastIndexOf method)
	length (String.length property)
	slice (String.slice method)
	split (String.split method)
	String constructor
	substr (String.substr method)
	substring (String.substring method)
	toLowerCase (String.toLowerCase method)
	toString (String.toString method)
	toUpperCase (String.toUpperCase method)
	valueOf (String.valueOf method)

	System
	onStatus (System.onStatus handler)
	useCodepage (System.useCodepage property)

	TextField
	addListener (TextField.addListener method)
	_alpha (TextField._alpha property)
	autoSize (TextField.autoSize property)
	background (TextField.background property)
	backgroundColor (TextField.backgroundColor property)
	border (TextField.border property)
	borderColor (TextField.borderColor property)
	bottomScroll (TextField.bottomScroll property)
	condenseWhite (TextField.condenseWhite property)
	embedFonts (TextField.embedFonts property)
	getDepth (TextField.getDepth method)
	getNewTextFormat (TextField.getNewTextFormat method)
	getTextFormat (TextField.getTextFormat method)
	_height (TextField._height property)
	_highquality (TextField._highquality property)
	hscroll (TextField.hscroll property)
	html (TextField.html property)
	htmlText (TextField.htmlText property)
	length (TextField.length property)
	maxChars (TextField.maxChars property)
	maxhscroll (TextField.maxhscroll property)
	maxscroll (TextField.maxscroll property)
	multiline (TextField.multiline property)
	_name (TextField._name property)
	onChanged (TextField.onChanged handler)
	onKillFocus (TextField.onKillFocus handler)
	onScroller (TextField.onScroller handler)
	onSetFocus (TextField.onSetFocus handler)
	_parent (TextField._parent property)
	password (TextField.password property)
	_quality (TextField._quality property)
	removeListener (TextField.removeListener method)
	removeTextField (TextField.removeTextField method)
	replaceSel (TextField.replaceSel method)
	replaceText (TextField.replaceText method)
	_rotation (TextField._rotation property)
	scroll (TextField.scroll property)
	selectable (TextField.selectable property)
	setNewTextFormat (TextField.setNewTextFormat method)
	setTextFormat (TextField.setTextFormat method)
	_soundbuftime (TextField._soundbuftime property)
	tabEnabled (TextField.tabEnabled property)
	tabIndex (TextField.tabIndex property)
	_target (TextField._target property)
	text (TextField.text property)
	textColor (TextField.textColor property)
	textHeight (TextField.textHeight property)
	textWidth (TextField.textWidth property)
	type (TextField.type property)
	_url (TextField._url property)
	variable (TextField.variable property)
	_visible (TextField._visible property)
	_width (TextField._width property)
	wordWrap (TextField.wordWrap property)
	_x (TextField._x property)
	_xmouse (TextField._xmouse property)
	_xscale (TextField._xscale property)
	_y (TextField._y property)
	_ymouse (TextField._ymouse property)
	_yscale (TextField._yscale property)

	TextFormat
	align (TextFormat.align property)
	blockIndent (TextFormat.blockIndent property)
	bold (TextFormat.bold property)
	bullet (TextFormat.bullet property)
	color (TextFormat.color property)
	font (TextFormat.font property)
	getTextExtent (TextFormat.getTextExtent method)
	indent (TextFormat.indent property)
	italic (TextFormat.italic property)
	leading (TextFormat.leading property)
	leftMargin (TextFormat.leftMargin property)
	rightMargin (TextFormat.rightMargin property)
	size (TextFormat.size property)
	tabStops (TextFormat.tabStops property)
	target (TextFormat.target property)
	TextFormat constructor
	underline (TextFormat.underline property)
	url (TextFormat.url property)

	Transform (flash.geom.Transform)
	colorTransform (Transform.colorTransform property)
	concatenatedColorTransform (Transform.concatenatedColorTransform property)
	concatenatedMatrix (Transform.concatenatedMatrix property)
	matrix (Transform.matrix property)
	pixelBounds (Transform.pixelBounds property)
	Transform constructor

	Video
	attachVideo (Video.attachVideo method)
	close (Video.close method)
	onStatus (Video.onStatus handler)
	pause (Video.pause method)
	play (Video.play method)
	resume (Video.resume method)
	stop (Video.stop method)

	XML
	addRequestHeader (XML.addRequestHeader method)
	contentType (XML.contentType property)
	createElement (XML.createElement method)
	createTextNode (XML.createTextNode method)
	docTypeDecl (XML.docTypeDecl property)
	getBytesLoaded (XML.getBytesLoaded method)
	getBytesTotal (XML.getBytesTotal method)
	ignoreWhite (XML.ignoreWhite property)
	load (XML.load method)
	loaded (XML.loaded property)
	onData (XML.onData handler)
	onLoad (XML.onLoad handler)
	parseXML (XML.parseXML method)
	send (XML.send method)
	sendAndLoad (XML.sendAndLoad method)
	status (XML.status property)
	XML constructor
	xmlDecl (XML.xmlDecl property)

	XMLNode
	appendChild (XMLNode.appendChild method)
	attributes (XMLNode.attributes property)
	childNodes (XMLNode.childNodes property)
	cloneNode (XMLNode.cloneNode method)
	firstChild (XMLNode.firstChild property)
	hasChildNodes (XMLNode.hasChildNodes method)
	insertBefore (XMLNode.insertBefore method)
	lastChild (XMLNode.lastChild property)
	nextSibling (XMLNode.nextSibling property)
	nodeName (XMLNode.nodeName property)
	nodeType (XMLNode.nodeType property)
	nodeValue (XMLNode.nodeValue property)
	parentNode (XMLNode.parentNode property)
	previousSibling (XMLNode.previousSibling property)
	removeNode (XMLNode.removeNode method)
	toString (XMLNode.toString method)

	XMLSocket
	close (XMLSocket.close method)
	connect (XMLSocket.connect method)
	onClose (XMLSocket.onClose handler)
	onConnect (XMLSocket.onConnect handler)
	onData (XMLSocket.onData handler)
	onXML (XMLSocket.onXML handler)
	send (XMLSocket.send method)
	XMLSocket constructor

	Chapter 3: Deprecated ActionScript
	Deprecated Function summary
	Deprecated Property summary
	Deprecated Operator summary

	Chapter 4: Unsupported ActionScript
	Unsupported Classes
	Unsupported Methods
	Unsupported Properties
	Unsupported Global Functions
	Unsupported Event Handlers
	Unsupported fscommands

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000630072006500610074006500200049006e0073007400720075006300740069006f006e0061006c00200043006f006d006d0075006e00690063006100740069006f006e002700730020005000720069006e0074002d006f006e002d00440065006d0061006e0064002000500044004600200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e000d005b007500700064006100740065006400200033002d007300650070002d0032003000300034005d>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

