ADOBE FLASH LITE 2.x and 3.x
Adobe ActionScript Language Reference

© 2010 Adobe Systems Incorporated. All rights reserved.
Adobe® Flash® Lite® 2.x and 3.x ActionScript” Language Reference

This Language Reference is licensed for use under the terms of the Creative Commons Attribution Non-Commercial 3.0 License. This License allows users to
copy, distribute, and transmit the user guide for noncommercial purposes only so long as (1) proper attribution to Adobe is given as the owner of the guide; and
(2) any reuse or distribution of the guide contains a notice that use of the user guide is governed by these terms. The best way to provide notice is to include the
following link. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

Adobe, the Adobe logo, ActionScript, Flash, and Flash Lite are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries. Windows, Windows NT, and Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United
States and/or other countries. Linux is the registered trademark of Linus Torvalds in the U.S. and other countries. All other trademarks are the property of their
respective owners.

Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Last updated 3/22/2011

http://creativecommons.org/licenses/by-nc-sa/3.0/

Contents

Chapter 1: ActionScript language elements

(@00 T80T o 11T e [T =T et 417 1
(00 T3 T T) 4
L€ To] o= I 07 ot 4o o T3 8
(€1 0] o F= I o] o] o<1 s« 11 55
(O] 0T (o T3 71
] 2= Y (=T 0 =T 122
fSCOMMANA2 COMMANAS .ttt ettt ettt et et et e ettt e e e et e e e et e e e et et e ie e eenns 160

Chapter 2: ActionScript classes

=T o 18 1 0 T= 0 3 AN 178
2 £ 179
BitmapData (flash.display.BitmapData) oueutintit ittt e e e e 197
3 T] =T Vo 218
UL O e e 220
capabilities (System.capabilities)ouiu i e 241
L0 o N 259
ColorTransform (flash.geom.ColorTransform)ottt et ettt e et eaeens 263
5 276
] (0 302
RG] g e [=Te = 306
FUNCE O 310
KOy ottt 313
[T 1o Y 325
[et 1 [@eT o o T o o 335
1 o 348
Matrix (lash.gEOMUMAIIX) ...ttt ittt ettt et ettt ettt ettt et e e e e e 362
OUS e 382
1 1Y =T e T 388
1oV 1T e o - o =T 459
Nt ONNEC ION ot e 472
L] 5] 4= 474
U Er s 488
10 o) =Tt 493
POINt (flash.g@OM L POINT) L.ttt et et e et e e e e 508
Rectangle (flash.geom.Rectangle)t e 517
SECUNTY (SYSTEMLSECUNITY) .ttt ettt ettt et et et e ettt et e et et e ettt et et e et aenenens 538
ST =] [T 4 T o 542
E] =T =T (@] o =T e 549
LYo T T N 560
] o P 579
1] 12T P 584

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

Contents

15321 (=] 12 597
L2 1 L 599
B =) T €2 - | 639
Transform (flash.geomM. TranS OrM) L. . ittt et et e e e ettt 652
12T 1< T 659
XML e e e 665
€ 8T = 683
DY Yo Yol = P 699

Chapter 3: Deprecated ActionScript

Deprecated FUNCHION SUMMAIY ...ttt ettt et e et e e et e e e et e et e e e et e e e e e eeens 707
Deprecated Property SUMMAIY ...ttt ettt et ettt et et et et ettt e e 708
Deprecated OPErator SUMMAIYuueun ettt ettt et et et e e e e e et e et et e e et et e e e e e e e e e eeeneeneens 709

Chapter 4: Unsupported ActionScript

[0S Y0 o o o] 4 =Te [- 113 710
UNSUPPOItEd Methoas ..ottt ettt ettt e e et e et e e e et e e e 710
UNSUPPOIEd PrOperties .ttt et ettt e e ettt e e ettt 710
Unsupported Global FUNCHIONS et ettt e ettt e e e eaenens 710
Unsupported EVent Handlers e e e et e et e e 711
UNSUPPOrted fSCOMMAaNAS ..ottt ettt ettt et e et e e e e e e e e e 711
Ve =) 712

Last updated 3/22/2011

Chapter 1: ActionScript language elements

This section provides syntax, usage information, and code samples for global functions and properties (those elements
that do not belong to an ActionScript class); compiler directives; and for the constants, operators, statements, and
keywords used in ActionScript and defined in the ECMAScript (ECMA-262) edition 4 draft language specification.

Compiler directives

This section contains the directives to include in your ActionScript file to direct the compiler to preprocess certain
instructions.

Compiler directives summary

Directive Description
#endinitclip Compiler directive; indicates the end of a block of initialization actions.
#include Compiler directive; includes the contents of the specified file, as if the commands in

the file are part of the calling script.

#initclip Compiler directive; indicates the beginning of a block of initialization actions.

#endinitclip directive

#endinitclip

Compiler directive; indicates the end of a block of initialization actions.

Availability
Flash Lite™ 2.0

Example

#initclip

...initialization actions go here...
#endinitclip

#include directive

#include " [path]filename.as"
Note: Do not place a semicolon (;) at the end of the line that contains the #include statement.

Compiler directive; includes the contents of the specified file, as if the commands in the file are part of the calling script.
The #include directive is invoked at compile time. Therefore, if you make any changes to an external file, you must
save the file and recompile any FLA files that use it.

If you use the Check Syntax button for a script that contains #include statements, the syntax of the included files is
also checked.

You can use #include in FLA files and in external script files, but not in ActionScript 2.0 class files.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

You can specify no path, a relative path, or an absolute path for the file to be included. If you don't specify a path, the
AS file must be in one of the following locations:

+ The same directory as the FLA file. The same directory as the script containing the #include statement
+ The global Include directory, which is one of the following:
Windows® 2000 or Windows XP: C:\Documents and Settings\user \Local
Settings\ Application Data\Adobe\Flash 10\language\Configuration\Include
Windows Vista®: C:\Users\user \Local Settings\ Application Data\Adobe\Flash 8\language\Configuration\Include

Macintosh® OS X: Hard Drive/Users/Library/Application Support/Adobe/Flash
10/language/Configuration/Include

« The Flash program\language\First Run\Include directory; if you save a file here, it is copied to the global Include
directory the next time you start Flash®.

To specify a relative path for the AS file, use a single dot (.) to indicate the current directory, two dots (. .) to indicate
a parent directory, and forward slashes (/) to indicate subdirectories. See the following example section.

To specify an absolute path for the AS file, use the format supported by your platform (Macintosh or Windows). See
the following example section. (This usage is not recommended because it requires the directory structure to be the
same on any computer that you use to compile the script.)

Note: If you place files in the First Run/Include directory or in the global Include directory, back up these files. If you ever
need to uninstall and reinstall Flash, these directories might be deleted and overwritten.

Availability
Flash Lite 2.0

Parameters
[path] filename.as - filename.as The filename and optional path for the script to add to the Actions panel or to

the current script; .as is the recommended filename extension.

Example
The following examples show various ways of specifying a path for a file to be included in your script:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

// Note that #include statements do not end with a semicolon (;)

// AS file is in same directory as FLA file or script

// or is in the global Include directory or the First Run/Include directory
#include "init_script.as"

// AS file is in a subdirectory of one of the above directories
// The subdirectory is named "FLA includes"

#include "FLA includes/init_script.as"

// AS file is in a subdirectory of the script file directory

// The subdirectory is named "SCRIPT includes"

#include "SCRIPT includes/init script.as"

// AS file is in a directory at the same level as one of the above directories
// AS file is in a directory at the same level as the directory
// that contains the script file

// The directory is named "ALL_ includes"

#include "../ALL includes/init_script.as"

// AS file is specified by an absolute path in Windows
// Note use of forward slashes, not backslashes
#include "C:/Flash scripts/init_script.as"

// AS file is specified by an absolute path on Macintosh
#include "Mac HD:Flash scripts:init script.as"

#initclip directive

#initclip order
Note: Do not place a semicolon (;) at the end of the line that contains the #initclip statement.

Compiler directive; indicates the beginning of a block of initialization actions. When multiple clips are initialized at
the same time, you can use the order parameter to specify which initialization occurs first. Initialization actions
execute when a movie clip symbol is defined. If the movie clip is an exported symbol, the initialization actions execute
before the actions on Frame 1 of the SWF file. Otherwise, they execute immediately before the frame actions of the
frame that contains the first instance of the associated movie clip symbol.

Initialization actions execute only once when a SWF file plays; use them for one-time initializations, such as class
definition and registration.

Availability
Flash Lite 2.0

Parameters

order - A non-negative integer that specifies the execution order of blocks of #initclip code. This is an optional
parameter. You must specify the value by using an integer literal (only decimal—not hexadecimal—values are
allowed), and not by using a variable. If you include multiple #initclip blocks in a single movie clip symbol, then the
compiler uses the last order value specified in that movie clip symbol for all #initclip blocks in that symbol.

Example
In the following example, ActionScript is placed on Frame 1 inside a movie clip instance. A variables.txt text file is
placed in the same directory.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

#initclip

trace("initializing app") ;

var variables:LoadVars = new LoadVars() ;

variables.load ("variables.txt") ;

variables.onLoad = function (success:Boolean) {
trace("variables loaded:"+success) ;

if (success) f{
for (i in variables) {

trace ("variables."+i+" = "+variables[i]) ;
1
1

Vi

#endinitclip

Constants

A constant is a variable used to represent a property whose value never changes. This section describes global constants
that are available to every script.

Constants summary

Modifiers Constant Description
false A unique Boolean value that represents the opposite of t rue.
Infinity Specifies the IEEE-754 value representing positive infinity.
-Infinity Specifies the IEEE-754 value representing negative infinity.
NaN A predefined variable with the IEEE-754 value for NaN (not a
number).
newline Inserts a carriage return character (\r) that generates a blank

line in text output generated by your code.

null A special value that can be assigned to variables or returned by
a function if no data was provided.

true A unique Boolean value that represents the opposite of
false.
undefined A special value, usually used to indicate that a variable has not

yet been assigned a value.

false constant

A unique Boolean value that represents the opposite of true.

When automatic data typing converts false to a number, it becomes 0; when it converts £alse to a string, it becomes

"false".

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Availability
Flash Lite 1.1

Example
This example shows how automatic data typing converts false to a number and to a string:

var booll:Boolean = Boolean(false) ;

// converts it to the number 0
trace(l + booll); // outputs 1

// converts it to a string
trace("String: " + booll); // outputs String: false

Infinity constant

Specifies the IEEE-754 value representing positive infinity. The value of this constant is the same as
Number.POSITIVE_ INFINITY.

Availability
Flash Lite 2.0

See also
POSITIVE INFINITY (Number.POSITIVE INFINITY property)

-Infinity constant

Specifies the IEEE-754 value representing negative infinity. The value of this constant is the same as
Number .NEGATIVE INFINITY.

Availability
Flash Lite 2.0

See also
NEGATIVE INFINITY (Number.NEGATIVE INFINITY property)

NaN constant

A predefined variable with the IEEE-754 value for NaN (not a number). To determine if a number is NaN, use
isNaN ().

Availability
Flash Lite 1.1

See also

isNaN function, NaN (Number.NaN property)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

newline constant

Inserts a carriage return character (\r) that generates a blank line in text output generated by your code. Use newline
to make space for information that is retrieved by a function or statement in your code.

Availability
Flash Lite 1.1

Example

The following example shows how newline displays output from the trace () statement on multiple lines.
var myName:String = "Lisa", myAge:Number = 30;

trace (myName+myAge) ;

trace("----- "

trace (myName+newline+myAge) ;

// output:

Lisa30

See also

trace function

null constant

A special value that can be assigned to variables or returned by a function if no data was provided. You can use null
to represent values that are missing or that do not have a defined data type.

Availability
Flash Lite 1.1

Example
In a numeric context, null evaluates to 0. Equality tests can be performed with nul1l. In this statement, a binary tree
node has no left child, so the field for its left child could be set to nu11.

if (tree.left == null) {
tree.left = new TreeNode() ;

true constant

A unique Boolean value that represents the opposite of false. When automatic data typing converts true to a
number, it becomes 1; when it converts true to a string, it becomes "true.

Availability
Flash Lite 1.1

Example
The following example shows the use of true in an if statement:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 7
ActionScript language elements

var shouldExecute:Boolean;

//
// code that sets shouldExecute to either true or false goes here
// shouldExecute is set to true for this example:

shouldExecute = true;

if (shouldExecute == true) ({
trace ("your statements here");

// true is also implied, so the if statement could also be written:
// if (shouldExecute) {
// trace("your statements here");

/7}
The following example shows how automatic data typing converts true to the number 1:

var myNum:Number ;
myNum = 1 + true;
trace (myNum) ; // output: 2

See also

false constant, Boolean

undefined constant

A special value, usually used to indicate that a variable has not yet been assigned a value. A reference to an undefined
value returns the special value undefined. The ActionScript code typeof (undefined) returns the string
“undefined“.The(nﬂyvahw(ﬁfypeundefinedisundefined

In files published for Flash Player 6 or earlier, the value of String (undefined) is " (an empty string). In files
published for Flash Player 7 or later, the value of String (undefined) is "undefined" (undefined is converted to a
string).

In files published for Flash Player 6 or earlier, the value of Number (undefined) is 0. In files published for Flash Player
7 or later, the value of Number (undefined) is NaN

The value undefined is similar to the special value nu11. When null and undefined are compared with the equality
==) operator, they compare as equal. However, when nul1 and undef ined are compared with the strict equality (===)
operator, they compare as not equal.

Availability
Flash Lite 1.1

Example
In the following example, the variable x has not been declared and therefore has the value undefined.

In the first section of code, the equality operator (==) compares the value of x to the value undefined, and the
appropriate result is sent to the Output panel. In the first section of code, the equality operator (==) compares the value
of x to the value undefined, and the appropriate result is sent to the log file.

In the second section of code, the equality (==) operator compares the values null and undefined.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

// x has not been declared
trace ("The value of x is "+x);

if (x == undefined) ({
trace("x is undefined") ;
} else {
trace("x is not undefined") ;

trace ("typeof (x) 1is "+typeof (x));

if (null == undefined) {
trace("null and undefined are equal");
} else {
trace("null and undefined are not equal");

}
The following result is displayed in the Output panel.

The value of x is undefined
x is undefined

typeof (x) is undefined

null and undefined are equal

Global functions

This section contains a set of built-in functions that are available in any part of a SWF file where ActionScript is used.
These global functions cover a wide variety of common programming tasks such as working with data types
(Boolean (), int (), and so on), producing debugging information (trace ()), and communicating with Flash Player
or the browser (fscommand ()).

Global functions summary

Modifiers Signature Description
Array ([numElements], Creates a new, empty array or converts specified elements to an
[elementN]) : Array array.

Boolean (expression:0Obje | Converts the parameter expression to a Boolean value and
ct) : Boolean returns true or false.

call (frame:Object) Deprecated since Flash Player 5. This action was deprecated in
favor of the function statement.

Executes the script in the called frame without moving the

playhead to that frame.
chr (number : Number) : Deprecated since Flash Player 5. This function was deprecated in
String favor of String. fromCharCode ().

Converts ASCII code numbers to characters.

clearinterval (intervalID:N | Cancels an interval created by a call to setInterval ().
umber)

duplicateMovieClip (target : | Creates an instance of a movie clip while the SWF file is playing.
Object, newname:String,
depth:Number)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Modifiers

Signature

Description

escape (expression:Strin
g) : String

Converts the parameter to a string and encodes it in a URL-
encoded format, where all nonalphanumeric characters are
replaced with % hexadecimal sequences.

eval (expression:Object)
Object

Accesses variables, properties, objects, or movie clips by name.

fscommand (command: Stri
ng, parameters:String)

Lets a SWF file communicate with the Flash Lite player or the
environment for a mobile device (such as an operating system).

fscommand2 (command: Stri
ng, parameters:String)

Lets the SWF file communicate with the Flash Lite player or a host
application on a mobile device.

getProperty (my_mc:0bject
, property:0Object)
Object

Deprecated since Flash Player 5. This function was deprecated in
favor of the dot syntax, which was introduced in Flash Player 5.

Returns the value of the specified property for the movie clip
my_mc.

getTimer () Number

Returns the number of milliseconds that have elapsed since the
SWEF file started playing.

getURL (url:String,
[window:String],
[method:String])

Loads a document from a specific URL into a window or passes
variables to another application at a defined URL.

getVersion () String

Returns a string containing Flash Player version and platform
information.

gotoAndPlay ([scene:Strin
gl, frame:Object)

Sends the playhead to the specified frame in a scene and plays
from that frame.

gotoAndStop ([scene:Stri
ngl, frame:Object)

Sends the playhead to the specified frame in a scene and stops it.

ifframelLoaded ([scene:Str
ing], frame:Object,
statement (s) :Object)

Deprecated since Flash Player 5. This function has been
deprecated. Adobe recommends that you use the
MovieClip._ framesloaded property.

Checks whether the contents of a specific frame are available
locally.

int (value :Number)
Number

Deprecated since Flash Player 5. This function was deprecated in
favor of Math.round ().

Converts a decimal number to an integer value by truncating the
decimal value.

isFinite (expression:0Objec
t) : Boolean

Evaluates expressionandreturns true if itis a finite number or
false if it is infinity or negative infinity.

isNaN (expression:Object
) : Boolean

Evaluates the parameter and returns t rue if the value is NaN (not
a number).

length (expression:Strin
g, variable:Object)
Number

Deprecated since Flash Player 5. This function, along with all the
string functions, has been deprecated. Adobe recommends that
you use the methods of the String class and the String. length
property to perform the same operations.

Returns the length of the specified string or variable.

loadMovie (url:String,
target:0bject,
[method:String])

Loads a SWF or JPEG file into Flash Player while the original SWF
file plays.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Modifiers

Signature

Description

loadMovieNum (url:String
, level:Number,
[method:Stringl)

Loads a SWF or JPEG file into a level in Flash Player while the
originally loaded SWF file plays.

loadVariables (url:String,
target:0Object,
[method:Stringl)

Reads data from an external file, such as a text file or text
generated by ColdFusion, a CGl script, Active Server Pages (ASP),
PHP, or Perl script, and sets the values for variables in a target
movie clip.

loadVariablesNum (url:stri
ng, level:Number,
[method:Stringl)

Reads data from an external file, such as a text file or text
generated by a ColdFusion, CGl script, ASP, PHP, or Perl script, and
sets the values for variables in a Flash Player level.

mbchr (number : Number)

Deprecated since Flash Player 5. This function was deprecated in
favor of the String. fromCharCode () method.

Converts an ASCIl code number to a multibyte character.

mblength (string:String)
: Number

Deprecated since Flash Player 5. This function was deprecated in
favor of the String. length property.

Returns the length of the multibyte character string.

mbord (character:String
) : Number

Deprecated since Flash Player 5. This function was deprecated in
favor of String.charCodeat () method.

Converts the specified character to a multibyte number.

mbsubstring (value:String
, index:Number,

Deprecated since Flash Player 5. This function was deprecated in
favor of String.substr () method.

count :Number) : String . . .
Extracts a new multibyte character string from a multibyte
character string.

nextFrame () Sends the playhead to the next frame.

nextScene () Sends the playhead to Frame 1 of the next scene.

Number (expression:0Obje
ct) : Number

Converts the parameter expression to a number.

Object ([value:Object]) :
Object

Creates a new empty object or converts the specified number,
string, or Boolean value to an object.

on (mouseEvent :Object)

Specifies the mouse event or keypress that triggers an action.

onClipEvent (movieEvent : 0
bject)

Triggers actions defined for a specific instance of a movie clip.

ord (character:String)
Number

Deprecated since Flash Player 5. This function was deprecated in
favor of the methods and properties of the String class.

Converts characters to ASCIl code numbers.

parseFloat (string:String)
: Number

Converts a string to a floating-point number.

parselnt (expression:Stri
ng, [radix:Number])

Converts a string to an integer.

Number

play () Moves the playhead forward in the Timeline.
prevFrame () Sends the playhead to the previous frame.

prevScene () Sends the playhead to Frame 1 of the previous scene.

Last updated 3/22/2011

10

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Modifiers

Signature

Description

random (value : Number)
Number

Deprecated since Flash Player 5. This function was deprecated in
favor of Math.random().

Returns a random integer between 0 and one less than the
integer specified in the value parameter.

removeMovieClip (target : O
bject)

Deletes the specified movie clip.

setInterval (functionName:0
bject, interval :Number,
[param:Object],
objectName:Object,
methodName: String)
Number

Calls a function or a method or an object at periodic intervals
while a SWF file plays.

setProperty (target :Object
, property:0Object,
expression:Object)

Changes a property value of a movie clip as the movie clip plays.

startDrag (target :Object,
[lock:Boolean],

[left, top,right,bottom
:Number])

Makes the target movie clip draggable while the movie plays.

stop ()

Stops the SWF file that is currently playing.

stopAllSounds ()

Stops all sounds currently playing in a SWF file without stopping
the playhead.

stopDrag ()

Stops the current drag operation.

String (expression:Object
) : String

Returns a string representation of the specified parameter.

substring (string:String,
index:Number,
count :Number) : String

Deprecated since Flash Player 5. This function was deprecated in
favor of String.substr ().

Extracts part of a string.

targetPath (targetObject :
Object) : String

Returns a string containing the target path of
movieClipObject.

tellTarget (target :String,
statement (s) :Object)

Deprecated since Flash Player 5. Adobe recommends that you
use dot (.) notation and the with statement.

Applies the instructions specified in the statements parameter
to the Timeline specified in the target parameter.

toggleHighQuality ()

Deprecated since Flash Player 5. This function was deprecated in
favorof quality.

Turns anti-aliasing on and off in Flash Player.

trace (expression:Object)

Evaluates the expression and outputs the result.

unescape (string:String)
String

Evaluates the parameter x as a string, decodes the string from
URL-encoded format (converting all hexadecimal sequences to
ASCll characters), and returns the string.

unloadMovie (target)

Removes a movie clip that was loaded by means of
loadMovie () from Flash Player.

unloadMovieNum (level :Nu
mber)

Removes a SWF or image that was loaded by means of
loadMovieNum () from Flash Player.

Last updated 3/22/2011

11

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 12
ActionScript language elements

Array function

Array () : Array Array (numElements:Number) : Array Array([element0:0bject [, elementl, element2,
..elementN]]) : Array

Creates a new array of length zero or more, or an array populated by a list of specified elements, possibly of different
data types.

Lets you create one of the following:

* an empty array

« an array with a specific length but whose elements have undefined values

« an array whose elements have specific values.

Using this function is similar to creating an array with the Array constructor (see "Constructor for the Array class").

You can pass a number (numElements) or a list of elements comprising one or more different types (elemento,

elementl, ..., elementN)

Parameters that can accept more than one data type are listed as in the signature as type object.

Availability
Flash Lite 2.0

Parameters

numElements [optional] - A positive integer that specifies the number of elements in the array. You can specify either
numElements or the list of elements, not both.

elementN [optional] - one or more parameters, element0, element]l, ..., elementN, the values of which can be of any
type. Parameters that can accept more than one data type are listed as type object. You can specify either
numElements or the list of elements, not both.

Returns

Array - An array.

Example

var myArray:Array = Array();

myArray.push(12) ;

trace (myArray); //traces 12

myArray [4] = 7;

trace (myArray); //traces 12,undefined,undefined,undefined, 7

Usage 2: The following example creates an array of length 4 but with no elements defined:

var myArray:Array = Array(4);
trace (myArray.length); // traces 4
trace (myArray); // traces undefined,undefined,undefined,undefined

Usage 3: The following example creates an array with three defined elements:

var myArray:Array = Array("firstElement", "secondElement", "thirdElement") ;
trace (myArray); // traces firstElement, secondElement,thirdElement

Note: Unlike the Array class constructor, the Array() function does not use the keyword new.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 13
ActionScript language elements

See also

Array

Boolean function

Boolean (expression:0Object) : Boolean

Converts the parameter expression to a Boolean value and returns a value as described in the following list:

« If expression is a Boolean value, the return value is expression.

« If expression is a number, the return value is true if the number is not zero; otherwise the return value is false.

If expression is a string, the return value is as follows:

« In files published for Flash Player 6 or earlier, the string is first converted to a number; the value is true if the
number is not zero, false otherwise.

« In files published for Flash Player 7 or later, the result is t rue if the string has a length greater than zero; the value
is false for an empty string.

If expression is a string, the result is true if the string has a length greater than zero; the value is false for an empty
string.

« If expression is undefined or NaN (not a number), the return value is false.
« If expression is a movie clip or an object, the return value is true.

Note: Unlike the Boolean class constructor, the Boolean() function does not use the keyword new. Moreover, the Boolean
class constructor initializes a Boolean object to false if no parameter is specified, while the Boolean() function returns
undefined if no parameter is specified.

Availability
Flash Lite 2.0

Parameters

expression:Object - An expression to convert to a Boolean value.

Returns
Boolean - A Boolean value.

Example

trace(Boolean(-1)); // output: true

trace (Boolean(0)); // output: false
1)

trace (Boolean(1l)); // output: true

trace (Boolean (true)); // output: true

trace (Boolean(false)); // output: false

trace (Boolean("true")); // output: true

trace (Boolean("false")); // output: true

trace (Boolean ("Craiggers")); // output: true
trace(Boolean("")); // output: false

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

If files are published for Flash Player 6 and earlier, the results differ for three of the preceding examples:

trace (Boolean("true")); // output: false
trace (Boolean("false")); // output: false
trace (Boolean ("Craiggers")); // output: false

This example shows a significant difference between use of the Boolean () function and the Boolean class. The
Boolean () function creates a Boolean value, and the Boolean class creates a Boolean object. Boolean values are
compared by value, and Boolean objects are compared by reference.

// Variables representing Boolean values are compared by value
var a:Boolean = Boolean("a"); // a is true

var b:Boolean = Boolean(l); // b is true

trace(a==b); // true

// Variables representing Boolean objects are compared by reference

var a:Boolean = new Boolean("a"); // a is true
var b:Boolean = new Boolean(l); // b is true
trace(a == b); // false

See also

Boolean

call function

call (frame)
Deprecated since Flash Player 5. This action was deprecated in favor of the function statement.

Executes the script in the called frame without moving the playhead to that frame. Local variables do not exist after the
script executes.

» Ifvariables are not declared inside a block ({ }) but the action list was executed with a call() action, the variables are
local and expire at the end of the current list.

 If variables are not declared inside a block and the current action list was not executed with the call() action, the
variables are interpreted as Timeline variables.

Availability
Flash Lite 1.0

Parameters

frame:Object - The label or number of a frame in the Timeline.

See also

Array function, call (Function.call method)

chr function

chr (number) : String
Deprecated since Flash Player 5. This function was deprecated in favor of string. fromCharCode ().

Converts ASCII code numbers to characters.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Availability
Flash Lite 1.0

Parameters
number : Number - An ASCII code number.

Returns
String - The character value of the specified ASCII code.

Example

The following example converts the number 65 to the letter A and assigns it to the variable myvar: myvar = chr(65) ;

See also

fromCharCode (String.fromCharCode method)

clearinterval function

clearInterval (intervalID:Number) : Void

Cancels an interval created by a call to setInterval().

Availability
Flash Lite 2.0

Parameters
intervalID:Number - A numeric (integer) identifier returned from a call to set Interval().

Example
The following example first sets and then clears an interval call:

function callback() ({
trace ("interval called: "+getTimer ()+" ms.");

var intervalID:Number = setInterval (callback, 1000) ;

You need to clear the interval when you have finished using the function. Create a button called clearint_btn and
use the following ActionScript to clear setInterval():

clearInt btn.onRelease = function() {
clearInterval (intervallD) ;
trace ("cleared interval") ;

}i

See also

setInterval function

duplicateMovieClip function

duplicateMovieClip (target:String, newname:String, depth:Number) : Void
duplicateMovieClip (target:MovieClip, newname:String, depth:Number) : Void

Last updated 3/22/2011

15

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 16
ActionScript language elements

Creates an instance of a movie clip while the SWF file is playing. The playhead in duplicate movie clips always starts
at Frame 1, regardless of where the playhead is in the original movie clip. Variables in the original movie clip are not
copied into the duplicate movie clip. Use the removeMovieclip () function or method to delete a movie clip instance
created with duplicateMovieClip ().

Availability
Flash Lite 2.0

Parameters

target :Object - The target path of the movie clip to duplicate. This parameter can be either a string (e.g. "my_mc")
or a direct reference to the movie clip instance (e.g. my_mc). Parameters that can accept more than one data type are
listed as type Object.

newname: String - A unique identifier for the duplicated movie clip.

depth:Number - A unique depth level for the duplicated movie clip. The depth level is a stacking order for duplicated
movie clips. This stacking order is similar to the stacking order of layers in the Timeline; movie clips with alower depth
level are hidden under clips with a higher stacking order. You must assign each duplicated movie clip a unique depth
level to prevent it from replacing SWF files on occupied depths.

Example

In the following example, a new movie clip instance is created called img_mc. An image is loaded into the movie clip,
and then the img_mc clip is duplicated. The duplicated clip is called newImg mc, and this new clip is moved on the Stage
so it does not overlap the original clip, and the same image is loaded into the second clip.

this.createEmptyMovieClip ("img mc", this.getNextHighestDepth()) ;

img mc.loadMovie ("http://www.helpexamples.com/flash/images/imagel.jpg") ;
duplicateMovieClip (img _mc, "newImg mc", this.getNextHighestDepth()) ;

newImg mc._x = 200;

newImg_mc.loadMovie ("http://www.helpexamples.com/flash/images/imagel.jpg") ;

To remove the duplicate movie clip, you could add this code for a button called myButton_btn.

this.myButton btn.onRelease = function() {
removeMovieClip (newImg mc) ;

}i

See also
removeMovieClip function, duplicateMovieClip (MovieClip.duplicateMovieClip method),

removeMovieClip (MovieClip.removeMovieClip method)

escape function

escape (expression:String) : String

Converts the parameter to a string and encodes it in a URL-encoded format, where all nonalphanumeric characters
are replaced with % hexadecimal sequences. When used in a URL-encoded string, the percentage symbol (%) is used
to introduce escape characters, and is not equivalent to the modulo operator (%).

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Parameters
expression:String - The expression to convert into a string and encode in a URL-encoded format.

Returns
String - URL-encoded string.

Example

The following code produces the result someuser%40somedomain%2Ecom:

var email:String = "someuser@somedomain.com";
trace (escape (email)) ;

In this example, the at symbol (@) was replaced with %40 and the dot symbol (.) was replaced with $2E. This is useful
if you're trying to pass information to a remote server and the data has special characters in it (for example, & or ?), as
shown in the following code:

var redirectUrl = "http://www.somedomain.com?loggedin=true&username=Gus";
getURL ("http://www.myothersite.com?returnurl="+ escape (redirectUrl)) ;

See also

unescape function

eval function

eval (expression:0Object) : Objecteval (expression:String) : Object

Accesses variables, properties, objects, or movie clips by name. If expression is a variable or a property, the value of the
variable or property is returned. If expression is an object or movie clip, a reference to the object or movie clip is
returned. If the element named in expression cannot be found, undefined is returned.

In Flash 4, eval () was used to simulate arrays; in Flash 5 or later, you should use the Array class to simulate arrays.

In Flash 4, you can also use eval () to dynamically set and retrieve the value of a variable or instance name. However,
you can also do this with the array access operator ([1).

In Flash 5 or later, you cannot use eval () to dynamically set and retrieve the value of a variable or instance name,
because you cannot useeval () on the left side of an equation. For example, replace the code

eval ("var" + i) = "first";
with this:

this["var"+i] = "first"

or this:

set ("var" + i, "first");
Availability

Flash Lite 1.0
Parameters

expression:Object - The name of a variable, property, object, or movie clip to retrieve. This parameter can be either
a string or a direct reference to the object instance (i.e., use of quotation marks (" ") is optional.)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Returns

object - A value, reference to an object or movie clip, or undefined.

Example

The following example uses eval () to set properties for dynamically named movie clips. This ActionScript sets the
rotation property for three movie Clips, called squarel mc, square2 mc, and square3_mc.

for (var i = 1; i <= 3; i++) {

setProperty (eval ("square"+i+" mc"), _rotation, 5);

}

You can also use the following ActionScript:

for (var i = 1; i <= 3; i++) {
this["square"+i+" mc"]. rotation = -5;

}

See also

Array, set variable statement

fscommand function

fscommand (command:String, parameters:String) : Void

The £scommand () function lets a SWF file communicate with the Flash Lite player or the environment for a mobile
device (such as an operating system). The parameters define the name of the application being started and the
parameters to it, separated by commas.

Last updated 3/22/2011

18

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Command Parameters Purpose
launch application-path, This command launches another application on a mobile
argl, arg2,..., argn |device.The name of the application and its parameters are

passed in as a single argument.

Note: This feature is operating-system dependent. Please
use this command carefully as it can call on the host device
to perform an unsupported operation. Using it in this way
could cause the host device to crash.

This command is supported only when the Flash Lite
player is running in stand-alone mode. It is not supported
when the player is running in the context of another
application (for example, as a plug-in to a browser).

activateTextFiel |"" (ignored) This command asynchronously activates the currently

d selected text field, making it active for user edits. Because
it behaves asynchronously, this command is processed at
the end of the frame. ActionScript that immediately
follows the call to £scommand () executes first. If no text
field is selected when the command is processed, nothing
happens. This command gives focus to a text field
previously passed to the Selection.setFocus ()
method and activates the text field for editing. This
command has an effect only when the handset supports
inline text editing.

This command can be called as part of the
Selection.onSetFocus () event listener callback. This
causes text fields to become active for editing when they
are selected.

Note: Because the fscommand () function is executed
asynchronously, the text field does not immediately
become active; it becomes active at the end of the frame.

Availability
Flash Lite 1.1

Parameters
command: String - A string passed to the host application for any use, or a command passed to the Flash Lite player.

parameters:String - A string passed to the host application for any use, or a value passed to the Flash Lite player.

Example
In the following example, the £scommand () function opens wap.yahoo.com on the services/Web browser on Series 60
phones:

on (keyPress "9") ({

status = fscommand ("launch", "z:\\system\apps\browser\browser.app, http://wap.yahoo.com") ;
}
fscommand2 function
fscommand2 (command:String, parameterl:String, ...parameterN:String) : Void

Lets the SWF file communicate with the Flash Lite player or a host application on a mobile device.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 20

ActionScript language elements

To use £scommand2 () to send a message to the Flash Lite player, you must use predefined commands and parameters.
See the "fscommand2 Commands” section under "ActionScript language elements" for the values you can specify for
the £scommand () function's commands and parameters. These values control SWF files that are playing in the Flash
Lite player.

The £scommand2 () function is similar to the fscommand () function, with the following differences:

+ The £scommand2 () function can take any number of arguments. By contrast, £scommand () can take only one
argument.

+ Flash Lite executes fscommand2 () immediately (in other words, within the frame), whereas £scommand () is
executed at the end of the frame being processed.

+ The fscommand2 () function returns a value that can be used to report success, failure, or the result of the

command.

Note: None of the £scommand2 () commands are available in Web players.

Availability
Flash Lite 1.1

Deprecated fscommand2() commands

Some fscommand2 () commands from Flash Lite 1.1 have been deprecated in Flash Lite 2.0. The following table shows

the deprecated £scommand2 () commands:

Command Deprecated By

Escape escape global function

GetDateDay getDate () method of Date object
GetDateMonth getMonth () method of Date object
GetDateWeekday getDay () method of Date object
GetDateYear getYear () method of Date object
GetlLanguage System.capabilities.language property

GetLocaleLongDate

getLocaleLongDate () method of Date object

GetLocaleShortDate

getLocaleShortDate () method of Date object

GetLocaleTime

getLocaleTime () method of Date object

GetTimeHours

getHours () method of Date object

GetTimeMinutes

getMinutes () method of Date object

GetTimeSeconds

getSeconds () method of Date object

GetTimeZoneOffset getTimeZoneOffset () method of Date object
SetQuality MovieClip. quality
Unescape unescape () global function

Parameters

command:String - A string passed to the host application for any use, or a command passed to the Flash Lite player.

parameters:String - A string passed to the host application for any use, or a value passed to the Flash Lite player.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 21
ActionScript language elements

getProperty function

getProperty (my mc:0bject, property:0bject) : Object

Deprecated since Flash Player 5. This function was deprecated in favor of the dot syntax, which was introduced in
Flash Player 5.

Returns the value of the specified property for the movie clip my_mc.

Availability
Flash Lite 1.0

Parameters

my_mc:Object - The instance name of a movie clip for which the property is being retrieved.

property:Object - A property of a movie clip.

Returns

object - The value of the specified property.

Example
The following example creates a new movie clip someclip mc and shows the alpha value (_alpha) for the movie clip
someClip_ mc in the Output panel:

this.createEmptyMovieClip ("someClip mc", 999);

trace("The alpha of "+getProperty(someClip mc, _name)+" is: "+getProperty(someClip mc,
_alpha)) ;

getTimer function

getTimer () : Number

Returns the number of milliseconds that have elapsed since the SWF file started playing.

Availability
Flash Lite 1.0

Returns

Number - The number of milliseconds that have elapsed since the SWF file started playing.

Example

In the following example, the getTimer () and setInterval () functions are used to create a simple timer:

this.createTextField("timer txt", this.getNextHighestDepth(), 0, 0, 100, 22);
function updateTimer () :Void ({
timer txt.text = getTimer();

}

var intervalID:Number = setInterval (updateTimer, 100);

getURL function

getURL (url:String [, window:String [, method:String]]) : Void

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 22
ActionScript language elements

Loads a document from a specific URL into a window or passes variables to another application at a defined URL. To
test this function, make sure the file to be loaded is at the specified location. To use an absolute URL (for example,
http://www.myserver.com), you need a network connection.

Note: This function is not supported for BREW devices.

Availability
Flash Lite 1.0

Parameters
url:String - The URL from which to obtain the document.

window:String [optional] - Specifies the window or HTML frame into which the document should load. You can
enter the name of a specific window or select from the following reserved target names:

+ _self specifies the current frame in the current window.
+ _blank specifies a new window.

+ _parent specifies the parent of the current frame.

+ _top specifies the top-level frame in the current window.

method: String [optional] - A GET or PoST method for sending variables. If there are no variables, omit this
parameter. The GET method appends the variables to the end of the URL, and is used for small numbers of variables.
The posT method sends the variables in a separate HTTP header and is used for sending long strings of variables.

Example
This example loads an image into a movie clip. When the image is clicked, a new URL is loaded in a new browser
window.

var listenerObject:0bject = new Object () ;

listenerObject.onLoadInit = function(target mc:MovieClip) {
target mc.onRelease = function() {
getURL ("http://www.macromedia.com/software/flash/flashpro/", " blank");

}i

i

var logo:MovieClipLoader = new MovieClipLoader() ;

logo.addListener (listenerObject) ;

logo.loadClip ("http://www.helpexamples.com/flash/images/imagel.jpg",
this.createEmptyMovieClip ("macromedia mc", this.getNextHighestDepth())) ;

In the following example, getURL () is used to send an e-mail message:

myBtn btn.onRelease = function() {
getURL ("mailto:you@somedomain.com") ;

}i

You can also use GET or POST for sending variables. The following example uses GET to append variables to a URL:

var firstName:String = "Gus";
var lastName:String = "Richardson";
var age:Number = 92;
myBtn btn.onRelease = function() {
getURL ("http://www.macromedia.com", " blank", "GET");

}i

The following ActionScript uses POST to send variables in the HTTP header. Make sure you test your documents in a
browser window, because otherwise your variables are sent using GET:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 23
ActionScript language elements

var firstName:String = "Gus";

var lastName:String = "Richardson";

var age:Number = 92;

getURL ("http://www.macromedia.com", " blank", "POST");
See also

loadVariables function, send (XML.send method), sendAndLoad (XML.sendAndLoad method)

getVersion function

getVersion() : String

Returns a string containing Flash Player version and platform information. The getversion function returns
information only for Flash Player 5 or later versions of Flash Player.

Availability
Flash Lite 2.0

Returns
String - A string containing Flash Player version and platform information.

Example
The following examples trace the version number of the Flash Player playing the SWF file:

var flashVersion:String = getVersion() ;

trace (flashVersion); // output: WIN 8,0,1,0
trace(Sversion); // output: WIN 8,0,1,0

trace (System.capabilities.version); // output: WIN 8,0,1,0

The following string is returned by the getversion function:
WIN 8,0,1,0

This returned string indicates that the platform is Microsoft Windows, and the version number of Flash Player is major
version 8, minor version 1 (8.1).

See also

os (capabilities.os property),version (capabilities.version property)

gotoAndPlay function

gotoAndPlay([scene:String,] frame:0Object) : Void

Sends the playhead to the specified frame in a scene and plays from that frame. If no scene is specified, the playhead
goes to the specified frame in the current scene. You can use the scene parameter only on the root Timeline, not within
Timelines for movie clips or other objects in the document.

Availability
Flash Lite 1.0

Parameters

scene:String [optional] - A string specifying the name of the scene to which the playhead is sent.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 24
ActionScript language elements

frame:Object - A number representing the frame number, or a string representing the label of the frame, to which
the playhead is sent.

Example

In the following example, a document has two scenes: sceneone and sceneTwo. Scene one contains a frame label on
Frame 10 called newFrame and two buttons, myBtn btn and myotherBtn btn. This ActionScript is placed on Frame
1, Scene 1 of the main Timeline.

stop () ;
myBtn btn.onRelease = function() {
gotoAndPlay ("newFrame") ;

}i

myOtherBtn btn.onRelease = function() {
gotoAndPlay ("sceneTwo", 1);

}i

When the user clicks the buttons, the playhead moves to the specified location and continues playing.

See also

gotoAndPlay (MovieClip.gotoAndPlay method),nextFrame function,play function,prevFrame function

gotoAndStop function

gotoAndStop ([scene:String,] frame:0bject) : Void

Sends the playhead to the specified frame in a scene and stops it. If no scene is specified, the playhead is sent to the
frame in the current scene.You can use the scene parameter only on the root Timeline, not within Timelines for movie
clips or other objects in the document.

Availability
Flash Lite 1.0

Parameters

scene:String [optional] - A string specifying the name of the scene to which the playhead is sent.

frame:Object - A number representing the frame number, or a string representing the label of the frame, to which
the playhead is sent.

Example

In the following example, a document has two scenes: sceneOne and sceneTwo. Scene one contains a frame label on
Frame 10 called newFrame, and two buttons, myBtn_btn and myotherBtn_btn. This ActionScript is placed on Frame
1, Scene 1 of the main Timeline:

stop () ;

myBtn btn.onRelease = function()
gotoAndStop ("newFrame") ;

}i

myOtherBtn btn.onRelease = function() {
gotoAndStop ("sceneTwo", 1);

}i

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 25
ActionScript language elements

When the user clicks the buttons, the playhead moves to the specified location and stops.

See also

gotoAndStop (MovieClip.gotoAndStop method), stop function,play function, gotoAndPlay function

ifFrameLoaded function

ifFrameLoaded([scene,] frame) { statement(s); }

Deprecated since Flash Player 5. This function has been deprecated. Adobe recommends that you use the
MovieClip._framesloaded property.

Checks whether the contents of a specific frame are available locally. Use ifFrameLoaded to start playing a simple
animation while the rest of the SWF file downloads to the local computer. The difference between using
_framesloaded and ifFrameLoaded isthat framesloaded lets you add custom if or else statements.

Availability
Flash Lite 1.0

Parameters
scene:String [optional] - A string that specifies the name of the scene that must be loaded.

frame:Object - The frame number or frame label that must be loaded before the next statement is executed.

statement (s) :Object - The instructions to execute if the specified scene, or scene and frame, are loaded.

See also

addListener (MovieClipLoader.addListener method)

int function

int (value) : Number
Deprecated since Flash Player 5. This function was deprecated in favor of Math.round ().

Converts a decimal number to an integer value by truncating the decimal value. This function is equivalent to
Math.floor () if the value parameter is positive and Math.ceil () if the value parameter is negative.

Availability
Flash Lite 1.0

Parameters

value:Number - A number to be rounded to an integer.

Returns
Number - The truncated integer value.

See also

round (Math.round method), floor (Math.floor method),ceil (Math.ceil method)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

isFinite function

isFinite (expression:0bject) : Boolean

Evaluates expression and returns true if it is a finite number or false ifit is infinity or negative infinity. The presence
of infinity or negative infinity indicates a mathematical error condition such as division by 0.

Availability
Flash Lite 2.0

Parameters

expression:Object - A Boolean value, variable, or other expression to be evaluated.

Returns

Boolean - A Boolean value.

Example

The following example shows return values for isFinite:

isFinite (56)
// returns true

isFinite (Number.POSITIVE INFINITY)
//returns false

isNaN function

isNaN (expression:0bject) : Boolean

Evaluates the parameter and returns true if the value is NaN(not a number). This function is useful for checking
whether a mathematical expression evaluates successfully to a number.

Availability
Flash Lite 2.0

Parameters

expression:Object - A Boolean, variable, or other expression to be evaluated.

Returns

Boolean - A Boolean value.

Example

The following code illustrates return values for the isNaN () function:

trace(isNaN("Tree"));
// returns true

trace(isNaN(56));
// returns false

trace (isNaN (Number. POSITIVE_INFINITY))
// returns false

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 27
ActionScript language elements

The following example shows how you can use isNAN () to check whether a mathematical expression contains an
error:

var dividend:Number;

var divisor:Number;

divisor = 1;

trace(isNaN(dividend/divisor)) ;

// output: true

// The output is true because the variable dividend is undefined.

// Do not use isNAN() to check for division by 0 because it will return false.
// A positive number divided by 0 equals Infinity (Number.POSITIVE INFINITY) .
// A negative number divided by 0 equals -Infinity (Number.NEGATIVE INFINITY).

See also

NaN constant, NaN (Number.NaN property)

length function

length (expression) length(variable)

Deprecated since Flash Player 5. This function, along with all the string functions, has been deprecated. Adobe
recommends that you use the methods of the String class and the string. length property to perform the same
operations.

Returns the length of the specified string or variable.

Availability
Flash Lite 1.0

Parameters

expression:String - A string.

variable:Object - The name of a variable.

Returns
Number - The length of the specified string or variable.

Example
The following example returns the length of the string "Hello": 1ength ("Hello") ; The result is 5.

See also

" string delimiter operator, String, length (String.length property)

loadMovie function
loadMovie (url:String, target:0bject [, method:Stringl) : Void
loadMovie (url:String, target:String [, method:String]) : Void

Loads a SWF or JPEG file into Flash Player while the original SWF file plays. JPEG files saved in progressive format
are not supported.

If you want to monitor the progress of the download, use MovieClipLoader.loadClip () instead of this function.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

The loadMovie () function lets you display several SWF files at once and switch among SWF files without loading
another HTML document. Without the 1oadMovie () function, Flash Player displays a single SWF file.

If you want to load a SWF or JPEG file into a specific level, use 1oadMovieNum() instead of loadMovie ().

When a SWF file is loaded into a target movie clip, you can use the target path of that movie clip to target the loaded
SWEF file. A SWF file or image loaded into a target inherits the position, rotation, and scale properties of the targeted
movie clip. The upper left corner of the loaded image or SWF file aligns with the registration point of the targeted
movie clip. Alternatively, if the target is the root Timeline, the upper left corner of the image or SWF file aligns with
the upper left corner of the Stage.

Use unloadMovie () to remove SWF files that were loaded with 1oadMovie ().

Availability
Flash Lite 1.1

Parameters

url:String - The absolute or relative URL of the SWF or JPEG file to be loaded. A relative path must be relative to
the SWF file at level 0. Absolute URLs must include the protocol reference, such as http:// or file:///.

target:Object - A reference to a movie clip object or a string representing the path to a target movie clip. The target
movie clip is replaced by the loaded SWF file or image.

method: String [optional] - Specifies an HTTP method for sending variables. The parameter must be the string GET
or PoST. If there are no variables to be sent, omit this parameter. The GET method appends the variables to the end of
the URL and is used for small numbers of variables. The PosT method sends the variables in a separate HTTP header
and is used for long strings of variables.

Example
Usage 1: The following example loads the SWF file circle.swf from the same directory and replaces a movie clip called
mySquare that already exists on the Stage:

loadMovie ("circle.swf", mySquare) ;

// equivalent statement (Usage 1): loadMovie ("circle.swf", levelO.mySquare) ;
q g9 _ ySq

// equivalent statement (Usage 2): loadMovie("circle.swf", "mySquare") ;

The following example loads the SWF file circle.swf from the same directory, but replaces the main movie clip instead
of the mySquare movie clip:

loadMovie ("circle.swf", this);
// Note that using "this" as a string for the target parameter will not work
// equivalent statement (Usage 2): loadMovie ("circle.swf", " levelO");

The following loadMovie () statement loads the SWF file sub.swf from the same directory into a new movie clip called
logo_mc that's created using createEmptyMovieClip ():

this.createEmptyMovieClip("logo mc", 999) ;
loadMovie ("sub.swf", logo_mc) ;

You could add the following code to load a JPEG image called imagel.jpg from the same directory as the SWF file
loading sub.swf. The JPEG is loaded when you click a button called myBtn_btn. This code loads the JPEG into
logo_mec. Therefore, it will replace sub.swf with the JPEG image.

myBtn btn.onRelease = function() {
loadMovie ("imagel.jpg", logo mc) ;

}i

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Usage 2: The following example loads the SWF file circle.swf from the same directory and replaces a movie clip called
mySquare that already exists on the Stage:

loadMovie ("circle.swf", "mySquare") ;

See also
_level property, loadMovieNum function, loadMovie (MovieClip.loadMovie method), loadClip

(MovieClipLoader.loadClip method)unloadMovie function

loadMovieNum function

loadMovieNum (url:String, level:Number [, method:String]) : Void
Loads a SWF or JPEG file into a level in Flash Player while the originally loaded SWF file plays.

If you want to monitor the progress of the download, use MovieClipLoader.loadClip () instead of this function.

Normally, Flash Player displays a single SWF file and then closes. The 1oadMovieNum () action lets you display several
SWF files at once and switch among SWF files without loading another HTML document.

If you want to specify a target instead of a level, use loadMovie () instead of 1oadMovieNum().

Flash Player has a stacking order of levels starting with level 0. These levels are like layers of acetate; they are
transparent except for the objects on each level. When you use loadMovieNum (), you must specify a level in Flash
Player into which the SWEF file will load. When a SWE file is loaded into a level, you can use the syntax, _levelN, where
N is the level number, to target the SWF file.

When you load a SWF file, you can specify any level number and you can load SWF files into a level that already has
a SWF file loaded into it. If you do, the new SWF file will replace the existing SWF file. If you load a SWF file into level
0, every level in Flash Player is unloaded, and level 0 is replaced with the new file. The SWF file in level 0 sets the frame
rate, background color, and frame size for all other loaded SWF files.

The 1loadMovieNum () action also lets you load JPEG files into a SWF file while it plays. For images and SWF files, the
upper left corner of the image aligns with the upper left corner of the Stage when the file loads. Also in both cases, the
loaded file inherits rotation and scaling, and the original content is overwritten in the specified level.

Note: JPEG files saved in progressive format are not supported.

Use unloadMovieNum() to remove SWF files or images that were loaded with 1oadMovieNum ().

Availability
Flash Lite 1.1

Parameters

url:String - The absolute or relative URL of the SWF or JPEG file to be loaded. A relative path must be relative to
the SWF file at level 0. For use in the stand-alone Flash Player or for testing in test mode in the Flash authoring
application, all SWF files must be stored in the same folder and the filenames cannot include folder or disk drive
specifications.

level :Number - An integer specifying the level in Flash Player into which the SWF file will load.

method: String [optional] - Specifies an HTTP method for sending variables. The parameter must be the string GET
or posT. If there are no variables to be sent, omit this parameter. The GET method appends the variables to the end of
the URL and is used for small numbers of variables. The posT method sends the variables in a separate HTTP header
and is used for long strings of variables.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 30
ActionScript language elements

Example
The following example loads the JPEG image tim.jpg into level 2 of Flash Player:

loadMovieNum ("http://www.helpexamples.com/flash/images/imagel.jpg", 2);

See also
unloadMovieNum function, loadMovie function,loadClip (MovieClipLoader.loadClip method), level

property

loadVariables function

loadvariables (url:String, target:0bject [, method:String]) : Void

Reads data from an external file, such as a text file or text generated by ColdFusion, a CGI script, Active Server Pages
(ASP), PHP, or Perl script, and sets the values for variables in a target movie clip. This action can also be used to update
variables in the active SWF file with new values.

The text at the specified URL must be in the standard MIME format application/x-www-form-urlencoded (a standard
format used by CGI scripts). Any number of variables can be specified. For example, the following phrase defines
several variables:

company=Macromedia&address=600+Townsend&city=San+Francisco&zip=94103

In SWF files running in a version earlier than Flash Player 7, url must be in the same superdomain as the SWF file that
is issuing this call. A superdomain is derived by removing the leftmost component of a file's URL. For example, a SWF
file at www.someDomain.com can load data from a source at store.someDomain.com because both files are in the
same superdomain of someDomain.com.

In SWFE files of any version running in Flash Player 7 or later, url must be in exactly the same domain as the SWF file
that is issuing this call (see "Flash Player security features" in Using ActionScript in Flash). For example, a SWF file at
www.someDomain.com can load data only from sources that are also at www.someDomain.com. If you want to load
data from a different domain, you can place a cross-domain policy file on the server hosting the SWF file that is being
accessed. For more information, see "About allowing cross-domain data loading" in Using ActionScript in Flash.

If you want to load variables into a specific level, use loadvariablesNum() instead of loadvariables ().

Availability
Flash Lite 1.1

Parameters
url:String - An absolute or relative URL where the variables are located. If the SWF file issuing this call is running
in a web browser, url must be in the same domain as the SWF file; for details, see the Description section.

target:Object - The target path to a movie clip that receives the loaded variables.

method: String [optional] - Specifies an HTTP method for sending variables. The parameter must be the string GET
or POST. If there are no variables to be sent, omit this parameter. The GET method appends the variables to the end of
the URL and is used for small numbers of variables. The posT method sends the variables in a separate HTTP header
and is used for long strings of variables.

Example

The following example loads information from a text file called params.txt into the target_mc movie clip that is
created using createEmptyMovieClip (). The setInterval () function is used to check the loading progress. The
script checks for a variable in the params.txt file named done.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

this.createEmptyMovieClip ("target mc", this.getNextHighestDepth()) ;
loadVariables ("params.txt", target mc);
function checkParamsLoaded ()
if (target mc.done == undefined)
trace ("not yet.");
} else {
trace("finished loading. killing interval.");
trace("------------- ")
for (i in target mc) {
trace(i+": "+target mc[i]);

}

trace("------------- ") ;
clearInterval (param_interval) ;

}
}

var param_interval = setInterval (checkParamsLoaded, 100);
The external file, params . txt, includes the following text:

varl="hello"&var2="goodbye"&done="done"

See also

loadvVariablesNum function, loadMovie function, loadMovieNum function, getURL function, loadMovie
(MovieClip.loadMovie method) loadVariables (MovieClip.loadVariables method), load
(LoadVars.load method)

loadVariablesNum function

loadvVariablesNum(url:String, level:Number [, method:String]) : Void

Reads data from an external file, such as a text file or text generated by ColdFusion, a CGI script, ASP, PHP, or a Perl
script, and sets the values for variables in a Flash Player level. You can also use this function to update variables in the
active SWF file with new values.

The text at the specified URL must be in the standard MIME format application/x-www-form-urlencoded (a standard
format used by CGI scripts). Any number of variables can be specified. For example, the following phrase defines
several variables:

company=Macromedia&address=601+Townsend&city=San+Francisco&zip=94103

In SWFE files running in a version of the player earlier than Flash Player 7, url must be in the same superdomain as the
SWE file that is issuing this call. A superdomain is derived by removing the leftmost component of a file's URL. For
example, a SWF file at www.someDomain.com can load data from a source at store.someDomain.com, because both
files are in the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later, url must be in exactly the same domain as the SWF file
that is issuing this call (see "Flash Player security features" in Using ActionScript in Flash). For example, a SWF file at
www.someDomain.com can load data only from sources that are also at www.someDomain.com. If you want to load
data from a different domain, you can place a cross-domain policy file on the server hosting the SWF file. For more
information, see "About allowing cross-domain data loading" in Using ActionScript in Flash.

If you want to load variables into a target MovieClip, use loadvariables () instead of loadvariablesNum().

Availability
Flash Lite 1.1

Last updated 3/22/2011

31

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Parameters

url:String - An absolute or relative URL where the variables are located. If the SWF file issuing this call is running
in a web browser, url must be in the same domain as the SWF file; for details, see the Description section.

level:Number - An integer specifying the level in Flash Player to receive the variables.

method: String [optional] - Specifies an HTTP method for sending variables. The parameter must be the string GET
or PoST. If there are no variables to be sent, omit this parameter. The GET method appends the variables to the end of
the URL and is used for small numbers of variables. The PosT method sends the variables in a separate HTTP header
and is used for long strings of variables.

Example

The following example loads information from a text file called params.txt into the main Timeline of the SWF at level
2 in Flash Player. The variable names of the text fields must match the variable names in the params.txt file. The
setInterval () function is used to check the progress of the data being loaded into the SWF. The script checks for a
variable in the params.txt file named done.

loadVariablesNum("params.txt", 2);
function checkParamsLoaded () ({
if (_level2.done == undefined) ({
trace("not yet.");
} else {
trace("finished loading. killing interval.");
trace("------------- ") ;
for (i in level2) {
trace (i+": "+ _level2[i]);

}

trace("------------- ") ;
clearInterval (param interval) ;

}
}

var param_interval = setInterval (checkParamsLoaded, 100);

// Params.txt includes the following text
varl="hello"&var2="goodbye"&done="done"

See also

getURL function, loadMovie function, loadMovieNum function, loadVariables function, loadMovie
(MovieClip.loadMovie method) loadVariables (MovieClip.loadVariables method), load
(LoadVars.load method)

mbchr function

mbchr (number)
Deprecated since Flash Player 5. This function was deprecated in favor of the string. fromCharcode () method.

Converts an ASCII code number to a multibyte character.

Availability
Flash Lite 1.0

Parameters

number : Number - The number to convert to a multibyte character.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

See also

fromCharCode (String.fromCharCode method)

mblength function

mblength(string) : Number
Deprecated since Flash Player 5. This function was deprecated in favor of the string. length property.

Returns the length of the multibyte character string.

Availability
Flash Lite 1.0

Parameters

string:String - The string to measure.

Returns
Number - The length of the multibyte character string.

See also

String, length (String.length property)

mbord function

mbord (character) : Number
Deprecated since Flash Player 5. This function was deprecated in favor of string. charCodeat () method.

Converts the specified character to a multibyte number.

Availability
Flash Lite 1.0

Parameters
character:String - The character to convert to a multibyte number.

Returns
Number - The converted character.

See also
charCodeAt (String.charCodeAt method)

mbsubstring function

mbsubstring(value, index, count) : String
Deprecated since Flash Player 5. This function was deprecated in favor of string. substr () method.

Extracts a new multibyte character string from a multibyte character string.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Availability
Flash Lite 1.0

Parameters

value:String - The multibyte string from which to extract a new multibyte string.
index :Number - The number of the first character to extract.

count : Number - The number of characters to include in the extracted string, not including the index character.

Returns

String - The string extracted from the multibyte character string.

See also

substr (String.substr method)

nextFrame function

nextFrame () : Void

Sends the playhead to the next frame.

Availability
Flash Lite 1.0

Example

In the following example, when the user presses the Right or Down Arrow key, the playhead goes to the next frame
and stops. If the user presses the Left or Up Arrow key, the playhead goes to the previous frame and stops. The listener
is initialized to wait for the arrow key to be pressed, and the init variable is used to prevent the listener from being
redefined if the playhead returns to Frame 1.

stop () ;

if (init == undefined) {
someListener = new Object();
someListener.onKeyDown = function() ({
if (Key.isDown (Key.LEFT) || Key.isDown (Key.UP)) {

_levelO.prevFrame () ;
} else if (Key.isDown (Key.RIGHT) || Key.isDown (Key.DOWN)) {
_levelO.nextFrame () ;

Key.addListener (someListener) ;
init = 1;

See also

prevFrame function

nextScene function

nextScene () : Void

Last updated 3/22/2011

34

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Sends the playhead to Frame 1 of the next scene.

Availability
Flash Lite 1.0

Example
In the following example, when a user clicks the button that is created at runtime, the playhead is sent to Frame 1 of
the next scene. Create two scenes, and enter the following ActionScript on Frame 1 of Scene 1.

stop () ;
if (init == undefined) ({
this.createEmptyMovieClip ("nextscene mc", this.getNextHighestDepth()) ;
nextscene_mc.createTextField("nextscene txt", this.getNextHighestDepth(), 200, 0, 100,
22) ;
nextscene mc.nextscene txt.autoSize = true;
nextscene mc.nextscene_ txt.border = true;
nextscene_mc.nextscene_ txt.text = "Next Scene";
this.createEmptyMovieClip ("prevscene mc", this.getNextHighestDepth()) ;
prevscene mc.createTextField("prevscene_ txt", this.getNextHighestDepth(), 00, 0, 100, 22);
prevscene_mc.prevscene_ txt.autoSize = true;
prevscene mc.prevscene txt.border = true;
prevscene mc.prevscene_ txt.text = "Prev Scene";
nextscene mc.onRelease = function() {
nextScene () ;
i
prevscene mc.onRelease = function() {
prevScene () ;
}i
init = true;
}

Make sure you place a stop () action on Frame 1 of Scene 2.

See also

prevScene function

Number function

Number (expression) : Number

Converts the parameter expression to a number and returns a value as described in the following list:
« If expression is a number, the return value is expression.

« If expression is a Boolean value, the return value is 1 if expression is true, 0 if expression is false.

« If expression is a string, the function attempts to parse expression as a decimal number with an optional trailing
exponent (that is, 1.57505e-3).

« If expression is NaN, the return value is NaN.
« If expression is undefined, the return value is as follows:

« - Infiles published for Flash Player 6 or earlier, the result is 0.

Last updated 3/22/2011

35

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

+ - Infiles published for Flash Player 7 or later, the result is NaN.

Availability
Flash Lite 2.0

Parameters
expression:Object - An expression to convert to a number. Numbers or strings that begin with Ox are interpreted
as hexadecimal values. Numbers or strings that begin with 0 are interpreted as octal values.

Returns

Number - A number or NaN (not a number).

Example
In the following example, a text field is created on the Stage at runtime:
this.createTextField("counter txt", this.getNextHighestDepth(), 0, 0, 100, 22);
counter_txt.autosize = true;
counter_txt.text = 0;
function incrementInterval () :Void ({
var counter:Number = counter txt.text;
// Without the Number () function, Flash would concatenate the value instead
// of adding values. You could also use "counter txt.text++;"
counter_txt.text = Number (counter) + 1;

}

var intervalID:Number = setInterval (incrementInterval, 1000) ;

See also

NaN constant, Number, parseInt function, parseFloat function

Object function

Object ([value]) : Object

Creates a new empty object or converts the specified number, string, or Boolean value to an object. This command is
equivalent to creating an object using the Object constructor (see "Constructor for the Object class").

Availability
Flash Lite 2.0

Parameters

value:Object [optional] - A number, string, or Boolean value.

Returns
Object - An object.

Example
In the following example, a new empty object is created, and then the object is populated with values:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

var company:0Object = new Object () ;

company.name = "Macromedia, Inc.";
company .address = "600 Townsend Street";
company.city = "San Francisco";
company.state = "CA";
company.postal = "94103";
for (var i in company) {

trace ("company."+i+" = "+company[il);
}
See also
Object
on handler

n (mouseEvent :Object) { // your statements here }

Specifies the mouse event or keypress that triggers an action.

Availability
Flash Lite 2.0

Parameters

mouseEvent :Object - A mouseEvent is a trigger called an event. When the event occurs, the statements following it

within curly braces ({ }) execute. Any of the following values can be specified for the mouseEvent parameter:

press The mouse button is pressed while the pointer is over the button.
release The mouse button is released while the pointer is over the button.

releaseOutside While the pointer is over the button, the mouse button is pressed, rolled outside the button area,
and released. Both the press and the dragout events always precede a releaseoutside event. (This event is
supported in Flash Lite only if System.capabilities.hasMouse is true or System.capabilities.hasStylus

is true.)

rollout The pointer rolls outside the button area. (This event is supported in Flash Lite only if

System.capabilities.hasMouse is true Or System.capabilities.hasStylus is true.)
rollover The mouse pointer rolls over the button.
dragout While the pointer is over the button, the mouse button is pressed and then rolls outside the button area.

dragover While the pointer is over the button, the mouse button has been pressed, then rolled outside the button,
and then rolled back over the button.

keyPress "<key> " The specified keyboard key is pressed. For the key portion of the parameter, specify a key
constant, as shown in the code hinting in the Actions panel. You can use this parameter to intercept a key press,
that is, to override any built-in behavior for the specified key. The button can be anywhere in your application, on
or off the Stage. One limitation of this technique is that you can't apply the on () handler at runtime; you must do
it at authoring time. Make sure that you select Control > Disable Keyboard Shortcuts, or certain keys with built-in
behavior won't be overridden when you test the application using Control > Test Movie.

For a list of key constants, see the Key class.

Last updated 3/22/2011

37

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 38
ActionScript language elements

Example
In the following script, the startDrag () function executes when the mouse is pressed, and the conditional script is
executed when the mouse is released and the object is dropped:

on (press) ({
startDrag (this) ;

}

on (release) {
trace ("X:"+this. x);
trace("Y:"+this._ y);
stopDrag () ;

See also

onClipEvent handler, Key

onClipEvent handler

onClipEvent (movieEvent:0Object) { // your statements here }

Triggers actions defined for a specific instance of a movie clip.

Availability
Flash Lite 2.0

Parameters
movieEvent :Object - The movieEvent is a trigger called an event. When the event occurs, the statements following it
within curly braces ({}) are executed. Any of the following values can be specified for the movieEvent parameter:

+ load The action is initiated as soon as the movie clip is instantiated and appears in the Timeline.

+ unload The action is initiated in the first frame after the movie clip is removed from the Timeline. The actions
associated with the tnload movie clip event are processed before any actions are attached to the affected frame.

+ enterFrame The action is triggered continually at the frame rate of the movie clip. The actions associated with the
enterFrame clip event are processed before any frame actions that are attached to the affected frames.

 mouseMove The action is initiated every time the mouse is moved. Use the _xmouse and _ymouse properties to
determine the current mouse position. (This event is supported in Flash Lite only if

System.capabilities.hasMouse is true.)

« mouseDown The action is initiated when the left mouse button is pressed. (This event is supported in Flash Lite only
if System.capabilities.hasMouse is true Or System.capabilities.hasStylus is true.)

+ mouseUp The action is initiated when the left mouse button is released. (This event is supported in Flash Lite only
if System.capabilities.hasMouse is true Or System.capabilities.hasStylus is true.)

+ keyDown The action is initiated when a key is pressed. Use Key .getCode () to retrieve information about the last
key pressed.

+ keyUp The action is initiated when a key is released. Use the Key . get Code () method to retrieve information about
the last key pressed.

+ data The action is initiated when data is received in a loadvariables () or loadMovie () action. When specified
with a loadvariables () action, the data event occurs only once, when the last variable is loaded. When specified
with a loadMovie () action, the data event occurs repeatedly, as each section of data is retrieved.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 39
ActionScript language elements

Example

The following example uses onClipEvent () with the keyDown movie event and is designed to be attached to a movie
clip or button. The keyDown movie event is usually used with one or more methods and properties of the Key object.
The following script uses Key.getCode () to find out which key the user has pressed; if the pressed key matches the
Key.RIGHT property, the playhead is sent to the next frame; if the pressed key matches the key . LEFT property, the
playhead is sent to the previous frame.

onClipEvent (keyDown) {
if (Key.getCode() =
this. parent.nextFrame

= Key.RIGHT) ({

() ;
} else if (Key.getCode() == Key.LEFT) ({
this. parent.prevFrame () ;

}
}

The following example uses onClipEvent () with the 1oad and mouseMove movie events. The _xmouse and _ymouse
properties track the position of the mouse each time the mouse moves, which appears in the text field that's created at
runtime.

onClipEvent (load) {
this.createTextField("coords_txt", this.getNextHighestDepth(), 0, 0, 100, 22);
coords_txt.autoSize = true;
coords_txt.selectable = false;

}

onClipEvent (mouseMove) {
coords_txt.text = "X:"+_ root._ xmouse+",Y:"+ root._ ymouse;

See also

Key, xmouse (MovieClip. xmouse property), ymouse (MovieClip. ymouse property), Constants

ord function

ord (character) : Number

Deprecated since Flash Player 5. This function was deprecated in favor of the methods and properties of the String
class.

Converts characters to ASCII code numbers.

Availability
Flash Lite 1.0

Parameters
character:String - The character to convert to an ASCII code number.

Returns
Number - The ASCII code number of the specified character.

See also
String, charCodeAt (String.charCodeAt method)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 40
ActionScript language elements

parseFloat function

parseFloat (string:String) : Number

Converts a string to a floating-point number. The function reads, or parses, and returns the numbers in a string until
it reaches a character that is not a part of the initial number. If the string does not begin with a number that can be
parsed, parseFloat () returns NaN. White space preceding valid integers is ignored, as are trailing nonnumeric
characters.

Availability
Flash Lite 2.0

Parameters

string:String - The string to read and convert to a floating-point number.

Returns

Number - A number or NaN (not a number).

Example
The following examples use the parseFloat () function to evaluate various types of numbers:

trace (parseFloat ("-2")); // output: -2

trace (parseFloat ("2.5")); // output: 2.5

trace (parseFloat (" 2.5")); // output: 2.5
trace (parseFloat ("3.5e6")); // output: 3500000
trace (parseFloat ("foobar")); // output: NaN
trace (parseFloat ("3.75math")); // output: 3.75
trace (parseFloat ("Ogarbage")); // output: 0

See also

NaN constant, parseInt function

parseint function

parselnt (expression:String [, radix:Number]) : Number

Converts a string to an integer. If the specified string in the parameters cannot be converted to a number, the function
returns NaN. Strings beginning with Ox are interpreted as hexadecimal numbers. Integers beginning with 0 or
specifying a radix of 8 are interpreted as octal numbers. White space preceding valid integers is ignored, as are trailing
nonnumeric characters.

Availability
Flash Lite 2.0

Parameters

expression:String - A string to convert to an integer.

radix:Number [optional] - An integer representing the radix (base) of the number to parse. Legal values are from 2 to 36.

Returns

Number - A number or NaN (not a number).

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 41
ActionScript language elements

Example

The examples in this section use the parseInt () function to evaluate various types of numbers.

The following example returns 3:

parseInt ("3.5")

The following example returns NaN:

parselnt ("bar")

The following example returns 4:

parselnt ("4foo")

The following example shows a hexadecimal conversion that returns 1016:

parselnt ("0x3F8")

The following example shows a hexadecimal conversion using the optional radix parameter that returns 1000:
parselnt ("3E8", 16)

The following example shows a binary conversion and returns 10, which is the decimal representation of the binary 1010:
parselnt ("1010", 2)

The following examples show octal number parsing and return 511, which is the decimal representation of the octal 777:

parseInt ("0777")
parselInt ("777", 8)

See also

NaN constant, parseFloat function

play function
play() : Void

Moves the playhead forward in the Timeline.

Availability
Flash Lite 1.0

Example

In the following example, there are two movie clip instances on the Stage with the instance names stop_mc and
play mec. The ActionScript stops the SWEF file's playback when the stop_mc movie clip instance is clicked. Playback
resumes when the play mc instance is clicked.

this.stop mc.onRelease = function() {
stop () ;

}i

this.play mc.onRelease = function() ({
play();

}i

trace ("frame 1");

See also

gotoAndPlay function, gotoAndPlay (MovieClip.gotoAndPlay method)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

prevFrame function

prevFrame () : Void

Sends the playhead to the previous frame. If the current frame is Frame 1, the playhead does not move.

Availability
Flash Lite 1.0

Example
When the user clicks a button called myBtn_btn and the following ActionScript is placed on a frame in the Timeline
for that button, the playhead is sent to the previous frame:

stop () ;
this.myBtn btn.onRelease = function() {
prevFrame () ;

}i

See also

nextFrame function, prevFrame (MovieClip.prevFrame method)

prevScene function

prevScene () : Void

Sends the playhead to Frame 1 of the previous scene.

Availability
Flash Lite 1.0

See also

nextScene function

random function

random(value) : Number
Deprecated since Flash Player 5. This function was deprecated in favor of Math.random ().

Returns a random integer between 0 and one less than the integer specified in the value parameter.

Availability
Flash Lite 1.1

Parameters

value:Number - An integer.

Returns

Number - A random integer.

Example

The following use of random () returns a value of 0, 1, 2, 3, or 4: random (5) ;

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

See also

random (Math.random method)

removeMovieClip function

removeMovieClip (target:0bject)

Deletes the specified movie clip.

Availability
Flash Lite 1.0

Parameters

target :Object - The target path of a movie clip instance created with duplicateMovieclip () or the instance name
of a movie clip created with MovieClip.attachMovie (), MovieClip.duplicateMovieClip (), Or
MovieClip.createEmptyMovieClip ().

Example

The following example creates a new movie clip called myclip_mec and duplicates the movie clip. The second movie
clip is called newClip_mc. Images are loaded into both movie clips. When a button, button_mc, is clicked, the
duplicated movie clip is removed from the Stage.

this.createEmptyMovieClip ("myClip mc", this.getNextHighestDepth()) ;

myClip mc.loadMovie ("http://www.helpexamples.com/flash/images/imagel.jpg") ;

duplicateMovieClip (this.myClip mc, "newClip mc", this.getNextHighestDepth()) ;
)

7

newClip mc.loadMovie ("http://www.helpexamples.com/flash/images/imagel.jpg"

newClip mc. x = 200;

this.button mc.onRelease = function() {
removeMovieClip (this. parent.newClip_mc) ;

}i

See also
duplicateMovieClip function, duplicateMovieClip (MovieClip.duplicateMovieClip method),
attachMovie (MovieClip.attachMovie method), removeMovieClip (MovieClip.removeMovieClip

method) createEmptyMovieClip (MovieClip.createEmptyMovieClip method)

setinterval function

setInterval (functionName:0Object, interval:Number [, paraml:Object, param2, ..., paramN])

Number

setInterval (objectName:0bject, methodName:String, interval:Number [, paraml:Object, param2,
., paramN]) : Number

Calls a function or a method or an object at periodic intervals while a SWF file plays. You can use an interval function
to update variables from a database or to update a time display.

If interval is greater than the SWF file's frame rate, the interval function is only called each time the playhead enters a
frame; this minimizes the impact each time the screen is refreshed.

Note: In Flash Lite 2.0, the interval passed into this method is ignored if it is less than the SWF file's frame rate and the
interval function is called on the SWF file's frame rate interval only. If the interval is greater than the SWF file's frame
rate, the event is called on the next frame after the interval has elapsed.

Last updated 3/22/2011

43

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Availability
Flash Lite 2.0

Parameters

functionName:Object - A function name or a reference to an anonymous function.
interval:Number - The time in milliseconds between calls to the functionName or methodName parameter.

param:Object [optional] - Parameters passed to the functionName or methodName parameter. Multiple parameters
should be separated by commas: paraml, param2, ..., paramN.

objectName:Object - An object containing the method methodName.

methodName : String - A method of objectName.

Returns

Number - An identifying integer that you can pass to clearInterval () to cancel the interval.

Example

Usage 1: The following example calls an anonymous function every 1000 milliseconds (1 second).
setInterval (function(){ trace("interval called"); }, 1000);

Usage 2: The following example defines two event handlers and calls each of them. The first call to set Interval ()
calls the callbackl () function, which contains a trace () statement. The second call to setInterval () passes the
"interval called" string to the function callback2 () asa parameter.

function callbackl()
trace ("interval called") ;

function callback2 (arg) {
trace (arg) ;

setInterval (callbackl, 1000);
setInterval (callback2, 1000, "interval called");

Usage 3: This example uses a method of an object. You must use this syntax when you want to call a method that is
defined for an object.

obj = new Object();
obj.interval = function() {
trace ("interval function called");

setInterval(obj, "interval", 1000);

obj2 = new Object();

obj2.interval = function(s) {
trace(s) ;
}
setInterval(obj2, "interval", 1000, "interval function called");

You must use the second form of the set Interval () syntax to call a method of an object, as shown in the following
example:

Last updated 3/22/2011

44

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 45
ActionScript language elements

setInterval(obj2, "interval", 1000, "interval function called");

When working with this function, you need to be careful about the memory you use in a SWF file. For example, when
you remove a movie clip from the SWF file, it will not remove any set Interval () function running within it. Always
remove the setInterval () function by using clearInterval () when you have finished using it, as shown in the
following example:

// create an event listener object for our MovieClipLoader instance

var listenerObjectbject = new Object () ;

listenerObject.onLoadInit = function(target mc:MovieClip) {
trace ("start interval") ;
/* after the target movie clip loaded, create a callback which executes
about every 1000 ms (1 second) and calls the intervalFunc function. */
target mc.myInterval = setInterval (intervalFunc, 1000, target mc);

}i

function intervalFunc (target mc) {
// display a trivial message which displays the instance name and arbitrary text.
trace (target_mc+" has been loaded for "+getTimer()/1000+" seconds.");
/* when the target movie clip is clicked (and released) you clear the interval
and remove the movie clip. If you don't clear the interval before deleting
the movie clip, the function still calls itself every second even though the
movie clip instance is no longer present. */
target mc.onRelease = function() {
trace("clear interval");
clearInterval (this.myInterval) ;
// delete the target movie clip
removeMovieClip (this) ;
}i

}

var jpeg mcl:MovieClipLoader = new MovieClipLoader () ;

jpeg mcl.addListener (listenerObject) ;

jpeg _mcl.loadClip ("http://www.helpexamples.com/flash/images/imagel.jpg",
this.createEmptyMovieClip ("jpeg mc", this.getNextHighestDepth())) ;

If you work with setInterval () within classes, you need to be sure to use the this keyword when you call the
function. The setInterval () function does not have access to class members if you do not use the keyword. This is
illustrated in the following example. For a FLA file with a button called deleteUser btn, add the following
ActionScript to Frame 1:

var me:User = new User ("Gary");
this.deleteUser btn.onRelease = function() ({
trace ("Goodbye, "+me.username) ;
clearInterval (me.intervallID) ;
delete me;

}i

Then create a file called User.as in the same directory as your FLA file. Enter the following ActionScript:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 46
ActionScript language elements

class User {
var intervalID:Number;
var username:String;
function User (param username:String) {
trace ("Welcome, "+param username) ;
this.username = param username;
this.intervallID = setInterval (this, "traceUsername", 1000, this.username) ;

}

function traceUsername (str:String) {
trace (this.username+" is "+getTimer()/1000+" seconds old, happy birthday.");

}

See also

clearInterval function

setProperty function

setProperty (target:0bject, property:0bject, expression:0Object) : Void

Changes a property value of a movie clip as the movie clip plays.

Availability
Flash Lite 1.0

Parameters

target:Object - The path to the instance name of the movie clip whose property is to be set.
property:Object - The property to be set.

expression:Object - Either the new literal value of the property, or an equation that evaluates to the new value of
the property.

Example
The following ActionScript creates a new movie clip and loads an image into it. The _xand _y coordinates are set for

the clip using set Property (). When you click the button called right_btn, the _x coordinate of a movie clip named
params_mc is incremented by 20 pixels.

this.createEmptyMovieClip ("params_mc", 999);
params_mc.loadMovie ("http://www.helpexamples.com/flash/images/imagel.jpg") ;
setProperty (this.params_mc, _y, 20);
setProperty (this.params_mc, _x, 20);
this.right btn.onRelease = function() {
setProperty (params_mc, _x, getProperty(params_mc, _x)+20);

}i

See also

getProperty function

startDrag function

startDrag (target:0Object [, lock:Boolean, left:Number, top:Number, right:Number,
bottom:Number]) : Void

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 47
ActionScript language elements

Makes the target movie clip draggable while the movie plays. Only one movie clip can be dragged at a time. After a
startDrag () operation is executed, the movie clip remains draggable until it is explicitly stopped by stopbrag () or
until a startDrag () action for another movie clip is called.

Note: This method is supported in Flash Lite only if System.capabilities.hasMouse is true or
System.capabilities.hasStylus is true

Availability
Flash Lite 2.0

Parameters

target :Object - The target path of the movie clip to drag.

lock:Boolean [optional] - A Boolean value specifying whether the draggable movie clip is locked to the center of the
mouse position (true) or locked to the point where the user first clicked the movie clip (false).

left, top, right,bottom:Number [optional] - Values relative to the coordinates of the movie clip's parent that
specify a constraint rectangle for the movie clip.

Example

The following example creates a movie clip, pic_mc, at runtime that users can drag to any location by attaching the
startDrag () and stopDrag () actions to the movie clip. An image is loaded into pic_mc using the MovieClipLoader
class.

var pic_mcl:MovieClipLoader = new MovieClipLoader () ;
pic_mcl.loadClip ("http://www.helpexamples.com/flash/images/imagel.jpg",
this.createEmptyMovieClip ("pic_mc", this.getNextHighestDepth()));
var listenerObject:0Object = new Object() ;
listenerObject.onLoadInit = function(target mc) {
target mc.onPress = function()
startDrag (this) ;
i
target_mc.onRelease = function() {
stopDrag () ;
i
}i

pic_mcl.addListener (listenerObject) ;

See also
stopDrag function, droptarget (MovieClip. droptarget property),startDrag (MovieClip.startDrag

method)
stop function
stop () : Void

Stops the SWE file that is currently playing. The most common use of this action is to control movie clips with buttons.

Availability
Flash Lite 1.0

See also

gotoAndStop function, gotoAndStop (MovieClip.gotoAndStop method)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 48
ActionScript language elements

stopAllSounds function

stopAllSounds () : Void

Stops all sounds currently playing in a SWF file without stopping the playhead. Sounds set to stream will resume
playing as the playhead moves over the frames in which they are located.

Availability
Flash Lite 1.0

Example

The following code creates a text field, in which the song's ID3 information appears. A new Sound object instance is
created, and your MP3 is loaded into the SWF file. ID3 information is extracted from the sound file. When the user
clicks stop_mc, the sound is paused. When the user clicks play_mc, the song resumes from its paused position.

this.createTextField("songinfo_txt", this.getNextHighestDepth, 0, 0, Stage.width, 22);
var bg sound:Sound = new Sound() ;

bg_sound.loadSound ("yourSong.mp3", true);
bg sound.onID3 = function()
songinfo_txt.text = " (" + this.id3.artist + ") " + this.id3.album + " - " + this.id3.track

+ n - n
+ this.id3.songname;
for (prop in this.id3) {
trace (prop+" = "+this.id3 [prop]) ;

}

trace ("ID3 loaded.") ;
Vi
this.play mc.onRelease = function() {

/* get the current offset. if you stop all sounds and click the play button, the MP3
continues from

where it was stopped, instead of restarting from the beginning. */

var numSecondsOffset:Number = (bg sound.position/1000) ;

bg_sound.start (numSecondsOffset) ;

}i
this.stop mc.onRelease = function() {
stopAllSounds () ;

}i

See also

Sound

stopDrag function

stopDrag () : Void
Stops the current drag operation.

Note: This method is supported in Flash Lite only if System.capabilities.hasMouse is true or
System.capabilities.hasStylus is true

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 49
ActionScript language elements

Example
The following code, placed in the main Timeline, stops the drag action on the movie clip instance my_mc when the user
releases the mouse button:

my mc.onPress = function () {
startDrag (this) ;

}

my mc.onRelease = function() {
stopDrag () ;

}

See also
startDrag function, droptarget (MovieClip. droptarget property), startDrag
(MovieClip.startDrag method) stopDrag (MovieClip.stopDrag method)

String function

String(expression:0bject) : String

Returns a string representation of the specified parameter, as described in the following list:
« If expression is a number, the return string is a text representation of the number.

« If expression is a string, the return string is expression.

« If expression is an object, the return value is a string representation of the object generated by calling the string
property for the object or by calling object . tostring () if no such property exists.

« If expression is a Boolean value, the return string is "true" or "false".

« If expression is a movie clip, the return value is the target path of the movie clip in slash (/) notation.
If expression is undefined, the return values are as follows:

+ In files published for Flash Player 6 or earlier, the result is an empty string (™).

« Infiles published for Flash Player 7 or later, the result is undefined.

Note: Slash notation is not supported by ActionScript 2.0.

Availability
Flash Lite 1.0

Parameters

expression:Object - An expression to convert to a string.

Returns
String - A string.

Example

In the following example, you use ActionScript to convert specified expressions to a string:

var stringl:String = String("3");
var string2:String = String("9");
trace(stringl+string2); // output: 39

Because both parameters are strings, the values are concatenated rather than added.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 50
ActionScript language elements

See also
toString (Number.toString method), toString (Object.toString method), String, " string delimiter

operator

substring function

substring("string", index, count) : String
Deprecated since Flash Player 5. This function was deprecated in favor of string. substr ().

Extracts part of a string. This function is one-based, whereas the String object methods are zero-based.

Availability
Flash Lite 1.0

Parameters

string:String - The string from which to extract the new string.
index:Number - The number of the first character to extract.

count : Number - The number of characters to include in the extracted string, not including the index character.

Returns

String - The extracted substring.

See also

substr (String.substr method)

targetPath function

targetpath(targetObject:0bject) : String

Returns a string containing the target path of a MovieClip, Button, or TextField object. The target path is returned in
dot (.) notation. To retrieve the target path in slash (/) notation, use the _target property.

Availability
Flash Lite 2.0

Parameters
targetObject:Object - Reference (for example, _root or _parent) to the object for which the target path is being
retrieved. This can be a MovieClip, Button, or TextField object.

Returns
String - A string containing the target path of the specified object.

Example
The following example traces the target path of a movie clip as soon as it loads:

this.createEmptyMovieClip ("myClip mc", this.getNextHighestDepth()) ;
trace (targetPath (myClip mc)); // _levelO.myClip mc

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 51
ActionScript language elements

See also

eval function

tellTarget function

tellTarget ("target") { statement(s); }
Deprecated since Flash Player 5. Adobe recommends that you use dot (.) notation and the with statement.

Applies the instructions specified in the statements parameter to the Timeline specified in the target parameter. The
tellTarget action is useful for navigation controls. Assign tellTarget to buttons that stop or start movie clips
elsewhere on the Stage. You can also make movie clips go to a particular frame in that clip. For example, you might
assign tellTarget to buttons that stop or start movie clips on the Stage or prompt movie clips to jump to a particular
frame.

In Flash 5 or later, you can use dot (.) notation instead of the tel1Target action. You can use the with action to issue
multiple actions to the same Timeline. You can use the with action to target any object, whereas the tellTarget
action can target only movie clips.

Availability
Flash Lite 1.0

Parameters
target:String - A string that specifies the target path of the Timeline to be controlled.

statement (s) :Object - The instructions to execute if the condition is true.

Example

This tellTarget statement controls the movie clip instance ball on the main Timeline. Frame 1 of the ball instance is
blank and has a stop() action so it isn't visible on the Stage. When you click the button with the following action,
tellTarget tells the playhead in ball to go to Frame 2, where the animation starts:

n(release) {
tellTarget (" parent.ball")
gotoAndPlay (2) ;

}
}

The following example uses dot (.) notation to achieve the same results:

n(release)
_parent.ball.gotoAndPlay (2) ;

}

If you need to issue multiple commands to the ball instance, you can use the with action, as shown in the following
statement:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

on(release)

with(parent.ball) {
gotoAndPlay (2) ;
_alpha = 15;

_xscale = 50;
_yscale = 50;

}

}

See also

with statement

toggleHighQuality function

toggleHighQuality ()
Deprecated since Flash Player 5. This function was deprecated in favor of _quality.

Turns anti-aliasing on and off in Flash Player. Anti-aliasing smooths the edges of objects and slows down SWF
playback. This action affects all SWF files in Flash Player.

Availability
Flash Lite 1.0

Example
The following code could be applied to a button that, when clicked, would toggle anti-aliasing on and off:

on(release)
toggleHighQuality () ;

}

See also

_highquality property, quality property

trace function

trace (expression:Object)
You can use Flash Debug Player to capture output from the trace () function and write that output to the log file.
Statement; evaluates the expression and displays the result in the Output panel in test mode.

Use this statement to record programming notes or to display messages in the Output panel while testing a SWF file.
Use the expression parameter to check whether a condition exists, or to display values in the Output panel. The
trace () statement is similar to the alert function in JavaScript.

You can use the Omit Trace Actions command in the Publish Settings dialog box to remove trace () actions from the
exported SWF file.

Availability
Flash Lite 1.0

Last updated 3/22/2011

52

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 53
ActionScript language elements

Parameters

expression:Object - An expression to evaluate. When a SWF file is opened in the Flash authoring tool (using the
Test Movie command), the value of the expression parameter is displayed in the Output panel.

Example
The following example uses a trace () statement to display in the Output panel the methods and properties of the
dynamically created text field called error_txt:

this.createTextField("error txt", this.getNextHighestDepth(), 0, 0, 100, 22);
for (var i in error_ txt) {

trace("error txt."+i+" = "+error txt[i]);

/* output:

error_ txt.styleSheet = undefined
error_txt.mouseWheelEnabled = true
error_txt.condenseWhite = false

error_txt.maxscroll = 1
error_txt.scroll = 1

*/
unescape function
unescape (x:String) : String

Evaluates the parameter x as a string, decodes the string from URL-encoded format (converting all hexadecimal
sequences to ASCII characters), and returns the string.

Availability
Flash Lite 1.1

Parameters

string:String - A string with hexadecimal sequences to escape.

Returns

String - A string decoded from a URL-encoded parameter.

Example
The following example shows the escape-to-unescape conversion process:

var email:String = "user@somedomain.com";

trace (email) ;

var escapedEmail:String = escape(email) ;

trace (escapedEmail) ;

var unescapedEmail:String = unescape (escapedEmail) ;
trace (unescapedEmail) ;

The following result is displayed in the Output panel.

user@somedomain.com
user%40somedomain%2Ecom
user@somedomain.com

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 54
ActionScript language elements

unloadMovie function

unloadMovie (target:MovieClip) : Void
unloadMovie (target:String) : Void

Removes a movie clip that was loaded by means of 1loadMovie () from Flash Player. To unload a movie clip that was
loadedeIneanSOfloadMovieNum(),useunloadMovieNum()inﬁeadofunloadMovie(L

Availability
Flash Lite 1.1

Parameters
target - The target path of a movie clip. This parameter can be either a string (e.g. "my_mc") or a direct reference to
the movie clip instance (e.g. my_mc). Parameters that can accept more than one data type are listed as type Object.

Example
The following example creates a new movie clip called pic_mc and loads an image into that clip. It is loaded using the
MovieClipLoader class. When you click the image, the movie clip unloads from the SWF file:

var pic_mcl:MovieClipLoader = new MovieClipLoader () ;
pic_mcl.loadClip ("http://www.helpexamples.com/flash/images/imagel.jpg",
this.createEmptyMovieClip ("pic_mc", this.getNextHighestDepth())) ;
var listenerObject:0Object = new Object() ;
listenerObject.onLoadInit = function(target mc) {
target mc.onRelease = function() {
unloadMovie (pic_mc) ;
/* or you could use the following, which refers to the movie clip referenced by 'target mc'.
*/
//unloadMovie (this) ;
}i
}i

pic_mcl.addListener (listenerObject) ;

See also
loadMovie (MovieClip.loadMovie method), unloadClip (MovieClipLoader.unloadClip method)

unloadMovieNum function

unloadMovieNum (level :Number) : Void

Removes a SWF or image that was loaded by means of loadMovieNum() from Flash Player. To unload a SWF or image
that was loaded with MovieClip.loadMovie (), use unloadMovie () instead of unloadMovieNum().

Availability
Flash Lite 1.1

Parameters
level:Number - The level (_1evel N) of aloaded movie.

Example
The following example loads an image into a SWF file. When you click unload_btn, the loaded content is removed.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 55
ActionScript language elements

loadMovieNum ("yourimage.jpg", 1);

unload btn.onRelease = function() ({
unloadMovieNum (1) ;

}

See also

loadMovieNum function,unloadMovie function, loadMovie (MovieClip.loadMovie method)

Global properties

Global properties are available in every script, and are visible to every Timeline and scope in your document. For
example, global properties allow access to the timelines of other loaded movie clips, both relative (_parent) and
absolute (_root). They also let you restrict (this) or expand (super) scope. And, you can use global properties to
adjust runtime settings like screen reader accessibility, playback quality, and sound buffer size.

Global properties summary

Modifiers Property Description
Sversion Deprecated since Flash Lite Player 2.0. This action was
deprecated in favor of the System.capabilities.version
property.

Contains the version number of Flash Lite.

_cap4WayKeyAS Deprecated since Flash Lite Player 2.0. This action was
deprecated in favor of the
System.capabilities.has4WayKeyAS property.

Indicates whether Flash Lite executes ActionScript expressions
attached to key event handlers associated with the Right, Left,
Up, and Down Arrow keys.

_capCompoundSound Deprecated since Flash Lite Player 2.0. This action was
deprecated in favor of the
System.capabilities.hasCompoundSound property.

Indicates whether Flash Lite can process compound sound
data.

_capEmail Deprecated since Flash Lite Player 2.0. This action was
deprecated in favor of the
System.capabilities.hasEmail property.

Indicates whether the Flash Lite client can send e-mail
messages by using the GetURL () ActionScript command.

_caplLoadData Deprecated since Flash Lite Player 2.0. This action was
deprecated in favor of the
System.capabilities.hasDataLoading property.

Indicates whether the host application can dynamically load
additional data through calls to the 1oadMovie (),
loadMovieNum (), loadvariables (), and
loadVariablesNum () functions.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Modifiers

Property

Description

_capMFi

Deprecated since Flash Lite Player 2.0. This action was
deprecated in favor of the System.capabilities.hasMFi

property.

Indicates whether the device can play sound data in the Melody
Format for i-mode (MFi) audio format.

_capMIDI

Deprecated since Flash Lite Player 2.0. This action was
deprecated in favor of the System.capabilities.hasMIDI
property.

Indicates whether the device can play sound data in the Musical
Instrument Digital Interface (MIDI) audio format.

_capMMS

Deprecated since Flash Lite Player 2.0. This action was
deprecated in favor of the System.capabilities.hasMMS

property.

Indicates whether Flash Lite can send Multimedia Messaging
Service (MMS) messages by using the GetURL () ActionScript
command. If so, this variable is defined and has a value of 1; if
not, this variable is undefined.

_capSMAF

Deprecated since Flash Lite Player 2.0. This action was
deprecated in favor of the System.capabilities.hasSMAF

property.

Indicates whether the device can play multimedia files in the
Synthetic music Mobile Application Format (SMAF). If so, this
variable is defined and has a value of 1; if not, this variable is
undefined.

_capSMS

Deprecated since Flash Lite Player 2.0. This action was
deprecated in favor of the System.capabilities.hasSMS

property.
Indicates whether Flash Lite can send Short Message Service

(SMS) messages by using the Get URL () ActionScript
command.

_capStreamSound

Deprecated since Flash Lite Player 2.0. This action was
deprecated in favor of the
System.capabilities.hasStreamingAudio property.

Indicates whether the device can play streaming (synchronized)
sound.

_focusrect

Property (global); specifies whether a yellow rectangle appears
around the button or movie clip that has keyboard focus.

_forceframerate

Tells the Flash Lite player to render at the specified frame rate.

_global

A reference to the global object that holds the core ActionScript
classes, such as String, Object, Math, and Array.

_highquality

Deprecated since Flash Player 5. This property was deprecated
in favorof quality.

Specifies the level of anti-aliasing applied to the current SWF
file.

_level

A reference to the root Timeline of _levelN.

Last updated 3/22/2011

56

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Modifiers Property Description

maxscroll Deprecated since Flash Player 5. This property was deprecated
in favor of TextField.maxscroll.

Indicates the line number of the top line of visible text in a text
field when the bottom line in the field is also visible.

_parent Specifies or returns a reference to the movie clip or object that
contains the current movie clip or object.

_quality Sets or retrieves the rendering quality used for a movie clip.
_root Specifies or returns a reference to the root movie clip Timeline.
scroll Deprecated since Flash Player 5. This property was deprecated

in favor of TextField.scroll.

Controls the display of information in a text field associated
with a variable.

_soundbuftime Establishes the number of seconds of streaming sound to
buffer.
this References an object or movie clip instance.

$version property

Sversion
Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.version
property.

String variable; contains the version number of Flash Lite. It contains a major number, minor number, build number,
and an internal build number, which is generally o in all released versions. The major number reported for all Flash
Lite 1.x products is 5. Flash Lite 1.0 has a minor number of 1; Flash Lite 1.1 has a minor number of 2.

Availability
Flash Lite 1.1

Example
In the Flash Lite 1.1 player, the following code sets the value of myversion to "5, 2,12, 0"

myVersion = $version;

See also

version (capabilities.version property)

_cap4WayKeyAS property
_cap4WayKeyAS
Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the

System.capabilities.has4WayKeyAS property.

Numeric variable; indicates whether Flash Lite executes ActionScript expressions attached to key event handlers
associated with the Right, Left, Up, and Down Arrow keys. This variable is defined and has a value of 1 only when the
host application uses four-way key navigation mode to move between Flash controls (buttons and input text fields).
Otherwise, this variable is undefined.

Last updated 3/22/2011

57

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

When one of the four-way keys is pressed, if the value of the _capawaykeyas variable is 1, Flash Lite first looks for a
handler for that key. If it finds none, Flash control navigation occurs. However, if an event handler is found, no
navigation action occurs for that key. For example, if a key press handler for the Down Arrow key is found, the user
cannot navigate.

Availability
Flash Lite 1.1

Example
The following example sets canUse4Way to 1 in Flash Lite 1.1, but leaves it undefined in Flash Lite 1.0 (however, not
all Flash Lite 1.1 phones support four-way keys, so this code is still dependent on the phone):

canUse4Way = _cap4WayKeyAS;
if (canUse4Way == 1) {
msg = "Use your directional joypad to navigate this application";
} else {
msg = "Please use the 2 key to scroll up, the 6 key to scroll right,

the 8 key to scroll down, and the 4 key to scroll left.";

}

See also

capabilities (System.capabilities)

_capCompoundSound property

_capCompoundSound

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the
System.capabilities.hasCompoundSound property.

Numeric variable; indicates whether Flash Lite can process compound sound data. If so, this variable is defined and
has a value of 1; if not, this variable is undefined. For example, a single Flash file can contain the same sound
represented in both MIDI and MFi formats. The player will then play back data in the appropriate format based on the
format supported by the device. This variable defines whether the Flash Lite player supports this ability on the current
handset.

Availability
Flash Lite 1.1

Example
In the following example, useCompoundSound is set to 1 in Flash Lite 1.1, but is undefined in Flash Lite 1.0:

useCompoundSound = _capCompoundSound;

if (useCompoundSound == 1) ({
gotoAndPlay ("withSound") ;

} else {
gotoAndPlay ("withoutSound") ;

See also

capabilities (System.capabilities)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 59
ActionScript language elements

_capEmail property

_capEmail

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.hasEmail
property.

Numeric variable; indicates whether the Flash Lite client can send e-mail messages by using the GetURL ()
ActionScript command. If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Availability
Flash Lite 1.1

Example
If the host application can send e-mail messages by using the Get URL () ActionScript command, the following example
sets canEmail () to 1:

canEmail = _capEmail;

if (canEmail == 1) ({
getURL ("mailto:someone@somewhere.com?subject=foo&body=bar") ;

See also

capabilities (System.capabilities)

_capLoadData property

_capLoadbData

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the
System.capabilities.hasDataLoading property.

Numeric variable; indicates whether the host application can dynamically load additional data through calls to the
loadMovie (), loadMovieNum (), loadVariables (), and loadvariablesNum () functions. If so, this variable is
defined and has a value of 1; if not, this variable is undefined.

Availability
Flash Lite 1.1

Example

If the host application can perform dynamic loading of movies and variables, the following example sets canLoad to 1:

canlLoad = _capLoadData;

if (canLoad == 1) {

loadvVariables ("http://www.somewhere.com/myVars.php", GET);
} else {

trace ("client does not support loading dynamic data");

}

See also

capabilities (System.capabilities)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 60
ActionScript language elements

_capMFi property

__capMFi

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.hasMFi
property.

Numeric variable; indicates whether the device can play sound data in the Melody Format for i-mode (MFi) audio
format. If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Availability
Flash Lite 1.1

Example
If the device can play MFi sound data, the following example sets canMFi to 1:

canMFi = _capMFi;

if (canMFi == 1) {
// send movieclip buttons to frame with buttons that trigger events

sounds
tellTarget ("buttons") {
gotoAndPlay (2) ;

}

See also

hasMFI (capabilities.hasMFI property)

_capMIDI property

_capMIDI

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.hasMIDI
property.

Numeric variable; indicates whether the device can play sound data in the Musical Instrument Digital Interface (MIDI)
audio format. If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Availability
Flash Lite 1.1

Example
If the device can play MIDI sound data, the following example sets _capMIDI to 1:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 61
ActionScript language elements

canMIDI = _capMIDI;

if (canMIDI == 1) {
// send movieclip buttons to frame with buttons that trigger events

sounds
tellTarget ("buttons") {
gotoAndPlay (2) ;

}

See also

capabilities (System.capabilities)

_capMMS property

__capMMS

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.hasMMsS
property.

Numeric variable; indicates whether Flash Lite can send Multimedia Messaging Service (MMS) messages by using the
GetURL () ActionScript command. If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Availability
Flash Lite 1.1

Example
The following example sets canMMs to 1 in Flash Lite 1.1, but leaves it undefined in Flash Lite 1.0 (however, not all Flash
Lite 1.1 phones can send MMS messages, so this code is still dependent on the phone):

on(release) {

canMMS = _capMMS;
if (canMMS == 1) ({

// send an MMS

myMessage = "mms:4156095555?body=sample mms message";
} else {

// send an SMS

myMessage = "sms:4156095555?body=sample sms message";

}

getURL (myMessage) ;

See also

capabilities (System.capabilities)

_capSMAF property

_CcapSMAF

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.hasSMAF
property.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 62
ActionScript language elements

Numeric variable; indicates whether the device can play multimedia files in the Synthetic music Mobile Application
Format (SMAF). If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Availability
Flash Lite 1.1

Example
The following example sets cansMAF to 1 in Flash Lite 1.1, but leaves it undefined in Flash Lite 1.0 (however, not all
Flash Lite 1.1 phones can send SMAF messages, so this code is still dependent on the phone):

canSMAF = _capSMAF;

if (canSMAF)
// send movieclip buttons to frame with buttons that trigger events

sounds
tellTarget ("buttons") {
gotoAndPlay (2) ;

}

See also

capabilities (System.capabilities)

_capSMS property

_capSMS

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the System.capabilities.hasSMS
property.

Numeric variable; indicates whether Flash Lite can send Short Message Service (SMS) messages by using the GetURL ()
ActionScript command. If so, this variable is defined and has a value of 1; if not, this variable is undefined.

Availability
Flash Lite 1.1

Example
The following example sets cansMs to 1 in Flash Lite 1.1, but leaves it undefined in Flash Lite 1.0 (however, not all Flash
Lite 1.1 phones can send SMS messages, so this code is still dependent on the phone):

on(release) {
canSMS = _capSMS;
if (cansMs) {
// send an SMS
myMessage = "sms:4156095555?body=sample sms message";
getURL (myMessage) ;

}

See also

capabilities (System.capabilities)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

_capStreamSound property

_capStreamSound

Deprecated since Flash Lite Player 2.0. This action was deprecated in favor of the
System.capabilities.hasStreamingAudio property.

Numeric variable; indicates whether the device can play streaming (synchronized) sound. If so, this variable is defined
and has a value of 1; if not, this variable is undefined.

Availability
Flash Lite 1.1

Example

The following example plays streaming sound if canstreamSound is enabled:

on (press) {
canStreamSound = _capStreamSound;
if (canStreamSound) {
// play a streaming sound in a movieclip with this button

tellTarget ("music") {
gotoAndPlay (2) ;
1
1
}
See also

capabilities (System.capabilities)

_focusrect property

_focusrect = Boolean;

Specifies whether a yellow rectangle appears around the button or movie clip that has keyboard focus. If _focusrect
is set to its default value of true, a yellow rectangle appears around the currently focused button or movie clip as the
user presses the Tab key to navigate through objects in a SWEF file. Specify false if you do not want to show the yellow
rectangle. This is a property that can be overridden for specific instances.

If the global _focusrect property is set to false, the default behavior for all buttons and movie clips is that keyboard
navigation is limited to the Tab key. All other keys, including the Enter and arrow keys, are ignored. To restore full
keyboard navigation, you must set _focusrect to true. To restore full keyboard functionality for a specific button or
movie clip, you can override this global property by using either Button._focusrect or MovieClip._focusrect.

Note: If you use a component, FocusManager overrides Flash Player's focus handling, including use of this global
property.

Note: For the Flash Lite 2.0 player, when the _focusrect property is disabled (such as Button. focusRect = false
orMovieClip.focusRect = false), the button or movie clip still receives all events. This behavior is different from

the Flash player, for when the _focusrect property is disabled, the button or movie clip will receive the rollover
and rollout events but will not receive the press and release events.

Also for Flash Lite 2.0, you can change the color of the focus rectangle by using the fscommand2 set FocusRectColor
command. This behavior is different from Flash Player, where the color of the focus rectangle is restricted to yellow.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 64
ActionScript language elements

Availability
Flash Lite 1.0

Example

The following example demonstrates how to hide the yellow rectangle around any instances in a SWF file when they
have focus in a browser window. Create some buttons or movie clips and add the following ActionScript in Frame 1
of the Timeline:

_focusrect = false;

See also

_focusrect (Button. focusrect property), focusrect (MovieClip. focusrect property)

_forceframerate property

_forceframerate

If set to true, this property tells the Flash Lite player to render at the specified frame rate. You can use this property
for pseudo-synchronized sound when the content contains device sound. It is set to false by default, which causes
Flash Lite to render normally. When set to true, the Flash Lite player might skip rendering certain frames to maintain
the frame rate.

Availability
Flash Lite 2.0

_global property

_global.identifier

A reference to the global object that holds the core ActionScript classes, such as String, Object, Math, and Array. For
example, you could create a library that is exposed as a global ActionScript object, similar to the Math or Date object.
Unlike Timeline-declared or locally declared variables and functions, global variables and functions are visible to every
timeline and scope in the SWF file, provided they are not obscured by identifiers with the same names in inner scopes.

Note: When setting the value of a global variable, you must use the fully qualified name of the variable, for instance,
_global.variableName. Failure to do so creates a local variable of the same name that obscures the global variable you
are attempting to set.

Availability
Flash Lite 2.0

Returns
A reference to the global object that holds the core ActionScript classes, such as String, Object, Math, and Array.

Example

The following example creates a top-level function, factorial (), that is available to every timeline and scope in a
SWE file:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 65
ActionScript language elements

_global.factorial = function (n:Number) {
if (n<=1) {
return 1;
} else {
return n*factorial (n-1);
}
}

// Note: factorial 4 == 4*3*2*1 == 24
trace (factorial(4)); // output: 24

The following example shows how the failure to use the fully qualified variable name when setting the value of a global
variable leads to unexpected results:

_global.myVar = "global";
trace (" _global.myVar: " + _global.myVar); // _global.myVar: global

trace("myVar: " + myVar); // myVar: global

myVar = "local";

trace (" global.myVar: " + global.myVar); // _global.myVar: global
trace("myVar: " + myVar); // myVar: local

See also

set variable statement

_highquality property
_highquality
Deprecated since Flash Player 5. This property was deprecated in favor of _quality.

Specifies the level of anti-aliasing applied to the current SWF file. Specify 2 (best quality) to apply the best quality.
Specify 1 (high quality) to apply anti-aliasing. Specify 0 (low quality) to prevent anti-aliasing.

Availability
Flash Lite 1.0

Example
The following ActionScript is placed on the main timeline, and sets the global quality property to apply anti-aliasing.
_highquality = 1;

See also

_quality property

_level property
_levelN
A reference to the root Timeline of _levelN. You must use loadMovieNum() toload SWF files into the Flash Player

before you use the _level property to target them. You can also use _levelN to target a loaded SWF file at the level
assigned by N.

The initial SWF file loaded into an instance of the Flash Player is automatically loaded into _1levelo. The SWEF file in
_levelo sets the frame rate, background color, and frame size for all subsequently loaded SWF files. SWF files are then
stacked in higher-numbered levels above the SWF file in _1levelo.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 66
ActionScript language elements

You must assign a level to each SWF file that you load into the Flash Player using 1oadMovieNum (). You can assign
levels in any order. If you assign a level that already contains a SWEF file (including _1level0), the SWEF file at that level
is unloaded and replaced by the new SWF file.

Availability
Flash Lite 1.0

Example

The following example stops the playhead in the main timeline of the SWF file sub.swf that is loaded into _levels.
The sub.swf file contains animation and is in the same directory as the document that contains the following
ActionScript:

loadMovieNum ("sub.swf", 9);
myBtn btn.onRelease = function() {
_level9.stop();

}i
You could replace _level9.stop () in the previous example with the following code:
_level9.gotoAndStop (5) ;

This action sends the playhead in the main Timeline of the SWF file in _levels to Frame 5 instead of stopping the
playhead.

See also

loadMovie function, swapDepths (MovieClip.swapDepths method)

maxscroll property

variable name.maxscroll
Deprecated since Flash Player 5. This property was deprecated in favor of TextField.maxscroll.

Indicates the line number of the top line of visible text in a text field when the bottom line in the field is also visible.
The maxscroll property works with the scroll property to control how information appears in a text field. This
property can be retrieved, but not modified.

Availability
Flash Lite 1.1

See also

maxscroll (TextField.maxscroll property), scroll (TextField.scroll property)

_parent property

_parent.property
_parent. parent.property

Specifies or returns a reference to the movie clip or object that contains the current movie clip or object. The current
object is the object containing the ActionScript code that references _parent. Use _parent to specify a relative path
to movie clips or objects that are above the current movie clip or object.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Availability
Flash Lite 2.0

Example

In the following example, there is a movie clip on the Stage with the instance name square_mc. Within that movie clip
is another movie clip with an instance name circle_mc. The following ActionScript lets you modify the circle_mc
parent instance (which is square_mc) when the circle is clicked. When you are working with relative addressing (using
_parent instead of _root), it might be easier to use the Insert Target Path button in the Actions panel at first.

this.square mc.circle mc.onRelease = function() {
this. parent. alpha -= 5;
See also

_root property, targetPath function

_quality property

_quality:String

Sets or retrieves the rendering quality used for a movie clip. Device fonts are always aliased and therefore are unaffected
by the _quality property.

The _quality property can be set to the following values:

Value Description Graphic Anti-Aliasing Bitmap Smoothing
"LOW" Low rendering quality. Graphics are not anti-aliased. Bitmaps are not smoothed.
"MEDIUM" Medium rendering quality. This | Graphics are anti-aliased usinga 2 | Bitmaps are not smoothed.

setting is suitable for movies that | x 2 pixel grid.
do not contain text.

"HIGH" High rendering quality. This Graphics are anti-aliased usinga4 | Bitmaps are not smoothed.
setting is the default rendering | x 4 pixel grid.
quality setting that Flash uses.

Availability
Flash Lite 2.0

Example
The following example sets the rendering quality to Low:

_quality = "LOW";

_root property

_root.movieClip
_root.action
_root.property

Specifies or returns a reference to the root movie clip Timeline. If a movie clip has multiple levels, the root movie clip
Timeline is on the level containing the currently executing script. For example, if a script in level 1 evaluates _root,
_levell is returned.

Last updated 3/22/2011

67

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 68
ActionScript language elements

Specifying _root is the same as using the deprecated slash notation (/) to specify an absolute path within the current
level.

Note: If a movie clip that contains _root is loaded into another movie clip, _root refers to the Timeline of the loading
movie clip, not the Timeline that contains _root. If you want to ensure that _root refers to the Timeline of the loaded
movie clip even if it is loaded into another movie clip, use MovieClip._lockroot.

Availability
Flash Lite 2.0

Parameters

movieClip: string - The instance name of a movie clip.
action:string - An action or field.

property:string - A property of the MovieClip object.

Example

The following example stops the Timeline of the level containing the currently executing script:
_root.stop () ;
The following example traces variables and instances in the scope of _root:

for (prop in root) ({
trace (" root."+prop+" = "+ root [prop]) ;

}

See also

_lockroot (MovieClip. lockroot property), parent property, targetPath function

scroll property

textFieldVariableName.scroll = x
Deprecated since Flash Player 5. This property was deprecated in favor of TextField.scroll.

Controls the display of information in a text field associated with a variable. The scroll property defines where the
text field begins displaying content; after you set it, Flash Player updates it as the user scrolls through the text field. The
scroll property is useful for directing users to a specific paragraph in a long passage or creating scrolling text fields.
This property can be retrieved and modified.

Availability
Flash Lite 1.1

Example
The following code is attached to an Up button that scrolls the text field named myText:

on (release)
myText.scroll = myText.scroll + 1;

}

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

See also

maxscroll (TextField.maxscroll property), scroll (TextField.scroll property)

_soundbuftime property

_soundbuftime:Number = integer

Establishes the number of seconds of streaming sound to buffer. The default value is 5 seconds.

Availability
Flash Lite 2.0

Parameters

integer : Number - The number of seconds before the SWF file starts to stream.

Example

The following example streams an MP3 file and buffers the sound before it plays for the user. Two text fields are created
at runtime to hold a timer and debugging information. The _soundbuftime property is set to buffer the MP3 for 10
seconds. A new Sound object instance is created for the MP3.

// create text fields to hold debug information.

this.createTextField("counter txt", this.getNextHighestDepth(), 0, 0, 100, 22);
this.createTextField("debug txt", this.getNextHighestDepth(), 0, 20, 100, 22);
// set the sound buffer to 10 seconds.

_soundbuftime = 10;

// create the new sound object instance.
var bg_sound:Sound = new Sound() ;
// load the MP3 sound file and set streaming to true.
bg_sound.loadSound ("yourSound.mp3", true);
// function is triggered when the song finishes loading.
bg sound.onlLoad = function() {

debug txt.text = "sound loaded";

Vi

debug txt.text = "sound init";

function updateCounter () {
counter txt.text++;

}

counter_ txt.text = 0;
setInterval (updateCounter, 1000) ;

this property

this

References an object or movie clip instance. When a script executes, this references the movie clip instance that
contains the script. When a field is called, this contains a reference to the object that contains the called field.

Inside an on () event handler attached to a button, this refers to the Timeline that contains the button. Inside an
onClipEvent () event handler attached to a movie clip, this refers to the Timeline of the movie clip itself.

Because this is evaluated in the context of the script that contains it, you can't use this in a script to refer to a variable
defined in a class file. Create ApplyThis.as, and enter the following code:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

class ApplyThis {

var str:String = "Defined in ApplyThis.as";
function conctStr (x:String) :String

return x+x;

}

function addStr () :String {

return str;

}

}

Then, in a FLA or AS file, add the following ActionScript:

var obj:ApplyThis = new ApplyThis() ;
var abj:ApplyThis = new ApplyThis() ;

abj.str = "defined in FLA or AS";
trace (obj.addStr.call (abj, null)); //output: defined in FLA or AS
trace (obj.addStr.call (this, null)); //output: undefined

)

trace (obj.addStr.call (obj, null)); //output: Defined in applyThis.as

Similarly, to call a function defined in a dynamic class, you must use this to invoke the function in the proper scope:

// incorrect version of Simple.as
/*

dynamic class Simple {

function callfunc() ({

trace (func()) ;

}

}

*/

// correct version of Simple.as
dynamic class simple {

function callfunc() ({
trace(this.func()) ;

}

}

Inside the FLA or AS file, add the following ActionScript:

var obj:Simple = new Simple() ;
obj.num = 0;

obj.func = function() ({

return true;

Vi
obj.callfunc() ;
// output: true

You get a syntax error when you use the incorrect version of Simple.as.

Availability
Flash Lite 2.0

Example
In the following example, the keyword this references the Circle object:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

function Circle (radius:Number) :Void {
this.radius = radius;
this.area = Math.PI*Math.pow(radius, 2);

}

var myCircle = new Circle(4);
trace (myCircle.area) ;

In the following statement assigned to a frame inside a movie clip, the keyword this references the current movie clip.

// sets the alpha property of the current movie clip to 20
this. _alpha = 20;

In the following statement inside a MovieClip.onPress handler, the keyword this references the current movie clip:

this.square mc.onPress = function() ({
startDrag (this) ;

}i

this.square mc.onRelease = function() {

stopDrag () ;

}i

See also

Constants, onClipEvent handler

Operators

Symbolic operators are characters that specify how to combine, compare, or modify the values of an expression.

Operators summary

Operator Description

+ (addition) Adds numeric expressions or concatenates (combines) strings.

+= (addition Assigns expression1 the value of expressionl + expression2.

assignment)

[1 (array access) Initializes a new array or multidimensional array with the specified elements (a0, and

so on), or accesses elements in an array.

= (assignment) Assigns the value of expression2 (the parameter on the right) to the variable, array
element, or property in expression1.

& (bitwise AND) Converts expressionl and expression2 to 32-bit unsigned integers, and
performs a Boolean AND operation on each bit of the integer parameters.

&= (bitwise AND Assigns expressionl the value of expressionl& expression2.
assignment)
<< (bitwise left shift) Converts expressionland expression2to 32-bitintegers, and shifts all the bits in

expressionl to the left by the number of places specified by the integer resulting
from the conversion of expression2.

<<= (bitwise left shiftand | This operator performs a bitwise left shift (<<) operation and stores the contents as a
assignment) result in expressionl.

~ (bitwise NOT) Also known as the one's complement operator or the bitwise complement operator.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Operator Description

| (bitwise OR) Converts expressionl and expression2 to 32-bit unsigned integers, and returns
a 1in each bit position where the corresponding bits of either expressioni or
expression2are 1.

|= (bitwise OR Assigns expression1 the value of expression1 | expression2.

assignment)

>> (bitwise right shift)

Converts expression1 and expression2 to 32-bit integers, and shifts all the bits in
expression1 to the right by the number of places specified by the integer that results
from the conversion of expression2.

>>= (bitwise right shift
and assignment)

This operator performs a bitwise right-shift operation and stores the contents as a
result in expression.

>>> (bitwise unsigned
right shift)

The same as the bitwise right shift (>>) operator except that it does not preserve the
sign of the original expression because the bits on the left are always filled with 0.
Floating-point numbers are converted to integers by discarding any digits after the
decimal point.

>>>= (bitwise unsigned

Performs an unsigned bitwise right-shift operation and stores the contents as a result

right shift and in expression.
assignment)
(bitwise XOR) Converts expression1 and expression2 to 32-bit unsigned integers, and returnsa 1 in

each bit position where the corresponding bits in expression1 or expression2, but not
both, are 1.

~= (bitwise XOR
assignment)

A

Assigns expressionl the value of expression1 expression2.

/* (block comment
delimiter)

Indicates one or more lines of script comments.

, (comma)

Evaluates expressionli, then expression2,and so on.

add (concatenation
(strings))

Deprecated since Flash Player 5. Adobe recommends you use the addition (+)
operator when creating content for Flash Player 5 or later.

Note: Flash Lite 2.0 also deprecates the add operator in favor of the addition (+)
operator.

Concatenates two or more strings.

?: (conditional)

Instructs Flash to evaluate expression1,and if the value of expressionT is t rue, it returns
the value of expression2; otherwise it returns the value of expression3.

-- (decrement) A pre-decrement and post-decrement unary operator that subtracts 1 from the
expression.
/ (division) Divides expression1 by expression2.

/= (division assignment)

Assigns expressionl the value of expressionl / expression2.

(dot) Used to navigate movie clip hierarchies to access nested (child) movie clips, variables,
or properties.
== (equality) Tests two expressions for equality.

eqg (equality (strings))

Deprecated since Flash Player 5. This operator was deprecated in favor of the ==
(equality) operator.

Returns true if the string representation of expression1 is equal to the string
representation of expression2, f£alse otherwise.

> (greater than)

Compares two expressions and determines whether expressionT is greater than
expression2; if it is, the operator returns true.

Last updated 3/22/2011

72

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Operator

Description

gt (greater than
(strings))

Deprecated since Flash Player 5. This operator was deprecated in favor of the >
(greater than) operator.

Compares the string representation of expression1 with the string representation of
expression2 and returns true if expression1 is greater than expression2, false
otherwise.

>= (greater than or equal
to)

Compares two expressions and determines whether expression1 is greater than or
equal to expression2 (true) or expression1 is less than expression2 (false).

ge (greater than or equal
to (strings))

Deprecated since Flash Player 5. This operator was deprecated in favor of the >=
(greater than or equal to) operator.

Returns true if expressionT is greater than or equal to expression2, false otherwise.

++ (increment)

A pre-increment and post-increment unary operator that adds 1 to expression .

1= (inequality)

Tests for the exact opposite of the equality (==) operator.

<> (inequality)

Deprecated since Flash Player 5. This operator has been deprecated. Adobe
recommends that you use the != (inequality) operator.

Tests for the exact opposite of the equality (==) operator.

instanceof Tests whether object is an instance of classConstructor or a subclass of
classConstructor.
< (lessthan) Compares two expressions and determines whether expressionT is less than

expression2; if so, the operator returns true.

1t (less than (strings))

Deprecated since Flash Player 5. This operator was deprecated in favor of the < (less
than) operator.

Returns true if expression1 is less than expression2, false otherwise.

<= (lessthan or equal to)

Compares two expressions and determines whether expression1 is less than or equal
to expression2; if it is, the operator returns true.

le (lessthan orequal to
(strings))

Deprecated since Flash Player 5. This operator was deprecated in Flash 5 in favor of
the <= (less than or equal to) operator.

Returns true if expressionT is less than or equal to expression2, false otherwise.

// (line comment
delimiter)

Indicates the beginning of a script comment.

&& (logical AND)

Performs a Boolean operation on the values of one or both of the expressions.

and (logical AND)

Deprecated since Flash Player 5. Adobe recommends that you use the logical AND
(&) operator.

Performs a logical AND (&&) operation in Flash Player 4.

1 (logical NOT)

Inverts the Boolean value of a variable or expression.

not (logical NOT)

Deprecated since Flash Player 5. This operator was deprecated in favor of the !
(logical NOT) operator.

Performs a logical NOT (!) operation in Flash Player 4.

|| (logical OR) Evaluates expressionT (the expression on the left side of the operator) and returns
true if the expression evaluates to true.
or (logical OR) Deprecated since Flash Player 5. This operator was deprecated in favor of the | |

(logical OR) operator.

Evaluates condition1 and condition2, and if either expression is t rue, the whole
expression is true.

Last updated 3/22/2011

73

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Operator

Description

% (modulo)

Calculates the remainder of expression1 divided by expression2.

%= (modulo assignment)

Assigns expression1 the value of expression1 % expression2.

* (multiplication)

Multiplies two numerical expressions.

*= (multiplication
assignment)

Assigns expression1 the value of expression1 * expression2.

new

Creates a new, initially anonymous, object and calls the function identified by the
constructor parameter.

ne (notequal (strings))

Deprecated since Flash Player 5. This operator was deprecated in favor of the ! =
(inequality) operator.

Returns true if expressionT is not equal to expression2; false otherwise.

{} (objectinitializer)

Creates a new object and initializes it with the specified name and value property pairs.

() (parentheses)

Performs a grouping operation on one or more parameters, performs sequential
evaluation of expressions, or surrounds one or more parameters and passes them as
parameters to a function outside the parentheses.

=== (strict equality)

Tests two expressions for equality; the strict equality (===) operator performs in the
same way as the equality (==) operator, except that data types are not converted.

1==(strict inequality)

Tests for the exact opposite of the strict equality (===) operator.

" (string delimiter)

When used before and after characters, quotation marks (") indicate that the
characters have a literal value and are considered a string, not a variable, numerical
value, or other ActionScript element.

- (subtraction)

Used for negating or subtracting.

-= (subtraction

Assigns expression1 the value of expression1 - expression2.

assignment)
(type) Used for strict data typing; this operator specifies the variable type, function return
type, or function parameter type.
typeof The typeof operator evaluate the expression and returns a string specifying
whether the expressionisa String, MovieClip, Object, Function,
Number, or Boolean value.
void The void operator evaluates an expression and then discards its value, returning

undefined.

+ addition operator

expressionl + expression2

Adds numeric expressions or concatenates (combines) strings. If one expression is a string, all other expressions are
converted to strings and concatenated. If both expressions are integers, the sum is an integer; if either or both
expressions are floating-point numbers, the sum is a floating-point number.

Note: Flash Lite 2.0 supports the addition (+) operator for adding numeric expressions and concatenating strings.
Flash Lite 1.x only supports the addition (+) operator for adding numeric expressions (suchas vari = 1 + 2 //
output: 3). For Flash Lite 1.x, you must use the add operator to concatenate strings.

Availability
Flash Lite 2.0

Last updated 3/22/2011

74

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Operands

expressionl - A number or string.

expression2 - A number or string.

Returns

Object - A string, integer, or floating-point number.

Example
Usage 1: The following example concatenates two strings and displays the result in the Output panel.
var name:String = "Cola";

var instrument:String = "Drums";
trace(name + " plays " + instrument); // output: Cola plays Drums

Note: Flash Lite 1.x does not support the addition (+) operator for concatenating strings. For Flash Lite 1.x, you must
use the add operator to concatenate strings.

Usage 2: This statement adds the integers 2 and 3 and displays the resulting integer, 5, in the Output panel:
trace(2 + 3); // output: 5

This statement adds the floating-point numbers 2.5 and 3.25 and displays the resulting floating-point number, 5.75,
in the Output panel

trace(2.5 + 3.25); // output: 5.75

Usage 3: Variables associated with dynamic and input text fields have the data type String. In the following example,
the variable deposit is an input text field on the Stage. After a user enters a deposit amount, the script attempts to add
deposit tooldBalance. However, because deposit isa String data type, the script concatenates (combines to form
one string) the variable values rather than summing them.

var oldBalance:Number = 1345.23;
var currentBalance = deposit_txt.text + oldBalance;
trace (currentBalance) ;

For example, if a user enters 475 in the deposit text field, the trace () function sends the value 4751345.23 to the
Output panel. To correct this, use the Number () function to convert the string to a number, as in the following:

var oldBalance:Number = 1345.23;
var currentBalance:Number = Number (deposit txt.text) + oldBalance;
trace (currentBalance) ;

The following example shows how numeric sums to the right of a string expression are not calculated:

var a:String = 3 + 10 + "asdf";
trace(a); // 13asdf
var b:String = "asdf" + 3 + 10;
trace(b); // asdf310

+= addition assignment operator

expressionl += expression2

Assigns expressionl the value of expressionl+ expression2. For example, the following two statements have the same
result:

X += Y;

X =X + Y;

Last updated 3/22/2011

75

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

This operator also performs string concatenation. All the rules of the addition (+) operator apply to the addition
assignment (+=) operator.

Availability
Flash Lite 1.0

Operands

expressionl : Number - A number or string.

expression2 : Number - A number or string.

Returns
Number - The result of the addition.

Example

Usage 1: This example uses the += operator with a string expression and sends "My name is Gilbert" to the Output
panel.

var x1:String = "My name is ";

x1 += "Gilbert";
trace(xl); // output: My name is Gilbert

Usage 2: The following example shows a numeric use of the addition assignment (+=) operator:

var x:Number = 5;

var y:Number = 10;

X += Y;

trace(x); // output: 15

See also

+ addition operator

[1array access operator

myArray = [a0, al,...aN]
myArray[1] = value
myObject [propertyName]

Initializes a new array or multidimensional array with the specified elements (a0, and so on), or accesses elements in
an array. The array access operator lets you dynamically set and retrieve instance, variable, and object names. It also
lets you access object properties.

Usage 1: An array is an object whose properties are called elements, which are each identified by a number called an
index. When you create an array, you surround the elements with the array access ([]) operator (or brackets). An array
can contain elements of various types. For example, the following array, called employee, has three elements; the first
is a number and the second two are strings (inside quotation marks):

var employee:Array = [15, "Barbara", "Jay"l;

You can nest brackets to simulate multidimensional arrays. You can nest arrays up to 256 levels deep. The following
code creates an array called ticTacToe with three elements; each element is also an array with three elements:

var ticTacToe:Array = [[1, 2, 3], [4, 5, 6], [7, 8, 911; // Select Debug > List Variables in
test mode
// to see a list of the array elements.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 77
ActionScript language elements

Usage 2: Surround the index of each element with brackets ([]) to access it directly; you can add a new element to an
array, or you can change or retrieve the value of an existing element. The first index in an array is always 0, as shown
in the following example:

var my_ array:Array = new Array();

my array[0] = 15;
my array[l] = "Hello";
my_array[2] = true;

You can use brackets ([]) to add a fourth element, as shown in the following example:
my_array[3] = "George";

You can use brackets ([]) to access an element in a multidimensional array. The first set of brackets identifies the
element in the original array, and the second set identifies the element in the nested array. The following lines of code
send the number 6 to the Output panel.

var ticTacToe:Array = [[1, 2, 3], [4, 5, 61, [7, 8, 911;
trace(ticTacToe [1] [2]);// output: 6

Usage 3: You can use the array access ([]) operator instead of the eval () function to dynamically set and retrieve
values for movie clip names or any property of an object. The following line of code sets the name of the movie clip
determined by concatenating the string “mc” with the value of the i variable to “left_corner”.

name ["mc" + i] = "left_ corner";

Availability
Flash Lite 2.0

Operands
myArray : Object - The name of an array.

a0, al,...aN : Object - Elements in an array; any native type or object instance, including nested arrays.
i : Number - An integer index greater than or equal to 0.
myObject : Object - The name of an object.

propertyName : String - A string that names a property of the object.

Returns
Object -

Usage 1: A reference to an array.
Usage 2: A value from the array; either a native type or an object instance (including an array instance).

Usage 3: A property from the object; either a native type or an object instance (including an array instance).

Example
The following example shows two ways to create a new empty Array object; the first line uses brackets ([]):

[1;

var my_array:Array = new Array();

var my_array:Array

The following example creates an array called employee_array and uses the trace() statement to send the elements to
the Output panel. In the fourth line, an element in the array is changed, and the fifth line sends the newly modified
array to the Output panel:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

var employee array = ["Barbara", "George", "Mary"];
trace (employee array); // output: Barbara,George,Mary
employee_array[2] = "Sam";
trace (employee_array); // output: Barbara,George,Sam
In the following example, the expression inside the brackets ("piece + i) is evaluated and the result is used as the
name of the variable to be retrieved from the my_mc movie clip. In this example, the variable i must live on the same
Timeline as the button. If the variable i is equal to 5, for example, the value of the variable pieces in the my_mc movie
clip is displayed in the Output panel:
myBtn btn.onRelease = function() {

x = my_mc["piece"+i];

trace(x) ;
i
In the following example, the expression inside the brackets is evaluated, and the result is used as the name of the
variable to be retrieved from movie clip name_mc:

name _mc ["A" + 1i];

If you are familiar with the Flash 4 ActionScript slash syntax, you can use the eval () function to accomplish the same
result:

eval ("name mc.A" & 1i);
You can use the following ActionScript to loop over all objects in the _root scope, which is useful for debugging:

for (i in _root) {
trace(i+": "+ _root[i]);

}

You can also use the array access ([]) operator on the left side of an assignment statement to dynamically set instance,
variable, and object names:

employee_arrayl[2] = "Sam";

See also

Array, Object, eval function

= assignment operator

expressionl = expression2

Assigns the value of expression2 (the parameter on the right) to the variable, array element, or property in expressionl.
Assignment can be either by value or by reference. Assignment by value copies the actual value of expression2 and
stores it in expressionl. Assignment by value is used when a variable is assigned a number or string literal. Assignment
by reference stores a reference to expression2 in expressionl. Assignment by reference is commonly used with the new
operator. Use of the new operator creates an object in memory and a reference to that location in memory is assigned
to a variable.

Availability
Flash Lite 1.0

Operands
expressionl : Object - A variable, element of an array, or property of an object.

expression2 : Object - A value of any type.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 79
ActionScript language elements

Returns
object - The assigned value, expression2.

Example
The following example uses assignment by value to assign the value of 5 to the variable x.

var X:Number = 5;
The following example uses assignment by value to assign the value "hel1o" to the variable x:
var x:String;x = " hello ";

The following example uses assignment by reference to create the moonsOfJupiter variable, which contains a reference
to a newly created Array object. Assignment by value is then used to copy the value "Callisto" to the first element of the
array referenced by the variable moonsofJupiter:

var moonsOfJupiter:Array = new Array () ;moonsOfJupiter[0] = "Callisto";

The following example uses assignment by reference to create a new object, and assign a reference to that object to the
variable mercury. Assignment by value is then used to assign the value of 3030 to the diameter property of the
mercury object:

var mercury:0Object = new Object(); mercury.diameter = 3030; // in miles trace

(mercury.diameter); // output: 3030

The following example builds upon the previous example by creating a variable named merkur (the German word for
mercury) and assigning it the value of mercury. This creates two variables that reference the same object in memory,
which means you can use either variable to access the object's properties. We can then change the diameter property
to use kilometers instead of miles:

var merkur:0bject = mercury; merkur.diameter = 4878; // in kilometers trace (mercury.diameter) ;

// output: 4878

See also

== equality operator

& bitwise AND operator

expressionl & expression2

Converts expression] and expression2 to 32-bit unsigned integers, and performs a Boolean AND operation on each bit
of the integer parameters. Floating-point numbers are converted to integers by discarding any digits after the decimal
point. The result is a new 32-bit integer.

Positive integers are converted to an unsigned hex value with a maximum value of 4294967295 or OxXFFFFFFFF; values
larger than the maximum have their most significant digits discarded when they are converted so the value is still 32-
bit. Negative numbers are converted to an unsigned hex value using the two's complement notation, with the
minimum being -2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement
with greater precision and then have the most significant digits discarded as well.

The return value is interpreted as a signed two's complement number, so the return is an integer in the range -
2147483648 to 2147483647.

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Operands

expressionl : Number - A number.

expression2 : Number - A number.

Returns

Number - The result of the bitwise operation.

Example

The following example compares the bit representation of the numbers and returns 1 only if both bits at the same
position are 1. In the following ActionScript code, you add 13 (binary 1101) and 11 (binary 1011) and return 1 only in
the position where both numbers have a 1.

var insert:Number = 13;
var update:Number = 11;
trace (insert & update); // output : 9 (or 1001 binary)

In the numbers 13 and 11 the result is 9 because only the first and last positions in both numbers have the number 1.
The following example shows the behavior of the return value conversion:

trace (OXFFFFFFFF) // 4294967295

(i
trace (OXFFFFFFFF & OxFFFFFFFF); // -1
trace (0xFFFFFFFF & -1); // -1
(&
(&

trace (4294967295 -1); // -1

trace (4294967295 4294967295); // -1

See also
&= bitwise AND assignment operator,” bitwise XOR operator, = bitwise XOR assignment operator

| bitwise OR operator, |= bitwise OR assignment operator, ~ bitwise NOT operator

&= bitwise AND assignment operator

expressionl &= expression2

Assigns expression] the value of expressionl & expression2. For example, the following two expressions are equivalent:
X &= y;

X =X & Y;

Availability
Flash Lite 2.0

Operands

expressionl : Number - A number.

expression2 : Number - A number.

Returns

Number - The value of expressionl & expression2.

Example
The following example assigns the value 9 to x:

Last updated 3/22/2011

80

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 81
ActionScript language elements

var X:Number = 15;
var y:Number = 9;
trace(x &= y); // output: 9

See also
& bitwise AND operator,” bitwise XOR operator, *= bitwise XOR assignment operator, | bitwise OR

operator|= bitwise OR assignment operator, ~ bitwise NOT operator

<< bitwise left shift operator

expressionl << expression2

Converts expressionl and expression2 to 32-bit integers, and shifts all the bits in expressionl to the left by the number
of places specified by the integer resulting from the conversion of expression2. The bit positions that are emptied as a
result of this operation are filled in with 0 and bits shifted off the left end are discarded. Shifting a value left by one
position is the equivalent of multiplying it by 2.

Floating-point numbers are converted to integers by discarding any digits after the decimal point. Positive integers are
converted to an unsigned hex value with a maximum value of 4294967295 or OxXFFFFFFFF; values larger than the
maximum have their most significant digits discarded when they are converted so the value is still 32-bit. Negative
numbers are converted to an unsigned hex value via the two's complement notation, with the minimum being -
2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement with greater
precision and also have the most significant digits discarded.

The return value is interpreted as a two's complement number with sign, so the return value will be an integer in the
range -2147483648 to 2147483647.

Availability
Flash Lite 2.0

Operands

expressionl : Number - A number or expression to be shifted left.

expression2 : Number - A number or expression that converts to an integer from 0 to 31.

Returns
Number - The result of the bitwise operation.

Example

In the following example, the integer 1 is shifted 10 bits to theleft: x = 1 << 10 The result of this operation is x =
1024. This is because 1 decimal equals 1 binary, 1 binary shifted left by 10 is 10000000000 binary, and 10000000000
binary is 1024 decimal. In the following example, the integer 7 is shifted 8 bits to the left: x = 7 << 8 The result of
this operationisx = 1792. This is because 7 decimal equals 111 binary, 111 binary shifted left by 8 bits is 11100000000
binary, and 11100000000 binary is 1792 decimal. If you trace the following example, you see that the bits have been
pushed two spaces to the left:

// 2 binary == 0010
// 8 binary == 1000
trace(2 << 2); // output: 8

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 82
ActionScript language elements

See also
>>= bitwise right shift and assignment operator, >> bitwise right shift operator, <<= bitwise
left shift and assignment operator>>> bitwise unsigned right shift operator, >>>= bitwise

unsigned right shift and assignment operator

<<= bitwise left shift and assignment operator

expressionl <<= expression2

This operator performs a bitwise left shift (<<) operation and stores the contents as a result in expressionl. The
following two expressions are equivalent:

A <<= BA = (A << B)

Availability
Flash Lite 2.0

Operands
expressionl : Number - A number or expression to be shifted left.

expression2 : Number - A number or expression that converts to an integer from 0 to 31.

Returns

Number - The result of the bitwise operation.

Example

In the following example, you use the bitwise left shift and assignment (<<=) operator to shift all bits one space to the
left:

var x:Number = 4;
// shift all bits one slot to the left.
X <<= 1;
trace(x); // output: 8
// 4 decimal = 0100 binary
// 8 decimal = 1000 binary

See also
<< bitwise left shift operator, >>= bitwise right shift and assignment operator, >> bitwise right

shift operator

~ bitwise NOT operator

~expression

Also known as the one's complement operator or the bitwise complement operator. Converts the expression to a 32-
bit signed integer, and then applies a bitwise one's complement. That is, every bit that is a 0 is set to 1 in the result, and
every bit that is a 1 is set to 0 in the result. The result is a signed 32-bit integer.

For example, the hex value 0x7777 is represented as this binary number: 0111011101110111
The bitwise negation of that hex value, ~0x7777, is this binary number: 1000100010001000
In hexadecimal, this is 0x8888. Therefore, ~0x7777 is 0x8888.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 83
ActionScript language elements

The most common use of bitwise operators is for representing flag bits (Boolean values packed into 1 bit each).

Floating-point numbers are converted to integers by discarding any digits after the decimal point. Positive integers are
converted to an unsigned hex value with a maximum value of 4294967295 or OXFFFFFFFF; values larger than the
maximum have their most significant digits discarded when they are converted so the value is still 32-bit. Negative
numbers are converted to an unsigned hex value via the two's complement notation, with the minimum being -
2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement with greater
precision and also have the most significant digits discarded.

The return value is interpreted as a two's complement number with sign, so the return value is an integer in the range
-2147483648 to 2147483647.

Availability
Flash Lite 2.0

Operands

expression : Number - A number.

Returns

Number - The result of the bitwise operation.

Example
The following example demonstrates a use of the bitwise NOT (~) operator with flag bits:

var ReadOnlyFlag:Number = 0x0001; // defines bit 0 as the read-only flag
var flags:Number = 0;
trace (flags) ;
/* To set the read-only flag in the flags variable,
the following code uses the bitwise OR:
*/
flags |= ReadOnlyFlag;
trace (flags) ;
/* To clear the read-only flag in the flags variable,
first construct a mask by using bitwise NOT on ReadOnlyFlag.
In the mask, every bit is a 1 except for the read-only flag.
Then, use bitwise AND with the mask to clear the read-only flag.
The following code constructs the mask and performs the bitwise AND:
*/
flags &= ~ReadOnlyFlag;
trace (flags) ;
// output: 0 1 0

See also

A

& bitwise AND operator, &= bitwise AND assignment operator,” bitwise XOR operator, "= bitwise

XOR assignment operator| bitwise OR operator, |= bitwise OR assignment operator

| bitwise OR operator

expressionl | expression2

Converts expressionl and expression2 to 32-bit unsigned integers, and returns a 1 in each bit position where the
corresponding bits of either expressionl or expression2 are 1. Floating-point numbers are converted to integers by
discarding any digits after the decimal point. The result is a new 32-bit integer.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 84
ActionScript language elements

Positive integers are converted to an unsigned hex value with a maximum value of 4294967295 or OxFFFFFFFF; values
larger than the maximum have their most significant digits discarded when they are converted so the value is still 32-
bit. Negative numbers are converted to an unsigned hex value via the two's complement notation, with the minimum
being -2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement with greater
precision and also have the most significant digits discarded.

The return value is interpreted as a two's complement number with sign, so the return value will be an integer in the
range -2147483648 to 2147483647.

Availability
Flash Lite 2.0

Operands

expressionl : Number - A number.

expression2 : Number - A number.

Returns

Number - The result of the bitwise operation.

Example

The following is an example of a bitwise OR (|) operation:

// 15 decimal = 1111 binary

var X:Number = 15;

// 9 decimal = 1001 binary

var y:Number = 9;

// 1111 | 1001 = 1111

trace(x | y); // returns 15 decimal (1111 binary)

Don't confuse the single | (bitwise OR) with || (logical OR).

See also

& bitwise AND operator, &= bitwise AND assignment operator,” bitwise XOR operator, *= bitwise

XOR assignment operator|= bitwise OR assignment operator, ~ bitwise NOT operator

|= bitwise OR assignment operator

expressionl |= expression2
Assigns expression] the value of expressionl | expression2. For example, the following two statements are equivalent:

X |=y; and x = x | y;

Availability
Flash Lite 2.0

Operands

expressionl : Number - A number or variable.

expression2 : Number - A number or variable.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Returns
Number - The result of the bitwise operation.

Example
The following example uses the bitwise OR assignment (|=) operator:

// 15 decimal = 1111 binary
var X:Number = 15;

// 9 decimal = 1001 binary
var y:Number = 9;

// 1111 |= 1001 = 1111
trace(x |= y); // returns 15 decimal (1111 binary)
See also

& bitwise AND operator, &= bitwise AND assignment operator,” bitwise XOR operator, “= bitwise

XOR assignment operator| bitwise OR operator, ~ bitwise NOT operator

>> bitwise right shift operator

expressionl >> expression2

Converts expression] and expression2 to 32-bit integers, and shifts all the bits in expressionI to the right by the number
of places specified by the integer that results from the conversion of expression2. Bits that are shifted off the right end
are discarded. To preserve the sign of the original expression, the bits on the left are filled in with 0 if the most
significant bit (the bit farthest to the left) of expression1 is 0, and filled in with 1 if the most significant bit is 1. Shifting
a value right by one position is the equivalent of dividing by 2 and discarding the remainder.

Floating-point numbers are converted to integers by discarding any digits after the decimal point. Positive integers are
converted to an unsigned hex value with a maximum value of 4294967295 or OXFFFFFFFF; values larger than the
maximum have their most significant digits discarded when they are converted so the value is still 32-bit. Negative
numbers are converted to an unsigned hex value via the two's complement notation, with the minimum being -
2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement with greater
precision and also have the most significant digits discarded.

The return value is interpreted as a two's complement number with sign, so the return value will be an integer in the
range -2147483648 to 2147483647.

Availability
Flash Lite 2.0

Operands
expressionl : Number - A number or expression to be shifted right.

expression2 : Number - A number or expression that converts to an integer from 0 to 31.

Returns

Number - The result of the bitwise operation.

Example
The following example converts 65535 to a 32-bit integer and shifts it 8 bits to the right:

var x:Number = 65535 >> §;
trace(x); // outputs 255

Last updated 3/22/2011

85

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

The following example shows the result of the previous example:
var X:Number = 255;

This is because 65535 decimal equals 1111111111111111 binary (sixteen 1s), 1111111111111111 binary shifted right
by 8 bitsis 11111111 binary, and 11111111 binary is 255 decimal. The most significant bit is 0 because the integers are
32-bit, so the fill bit is 0.

The following example converts -1 to a 32-bit integer and shifts it 1 bit to the right:

var X:Number = -1 >> 1;
trace(x); // outputs -1

The following example shows the result of the previous example:
var X:Number = -1;

This is because -1 decimal equals 11111111111111111111111111111111 binary (thirty-two 1s), shifting right by one
bit causes the least significant (bit farthest to the right) to be discarded and the most significant bit to be filled in with
1. The resultis 11111111111111111111111111111111 (thirty-two 1s) binary, which represents the 32-bit integer -1.

See also

>>= bitwise right shift and assignment operator

>>= bitwise right shift and assignment operator

expressionl >>= expression2
This operator performs a bitwise right shift operation and stores the contents as a result in expressionl.
The following two statements are equivalent:

A >>= B; and A = (A >> B);

Availability
Flash Lite 2.0

Operands
expressionl : Number - A number or expression to be shifted right.

expression2 : Number - A number or expression that converts to an integer from 0 to 31.

Returns

Number - The result of the bitwise operation.

Example
The following commented code uses the bitwise right shift and assignment (>>=) operator.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

function convertToBinary (numberToConvert :Number) :String {
var result:String = "";
for (var i = 0; i<32; i++) {
// Extract least significant bit using bitwise AND
var lsb:Number = numberToConvert & 1;
// Add this bit to the result
string result = (lsb 2 "1" : "O")+result;
// Shift numberToConvert right by one bit, to see next bit
numberToConvert >>= 1;

}

return result;

}

trace (convertToBinary (479)) ;

// Returns the string 00000000000000000000000111011111

// This string is the binary representation of the decimal
// number 479

See also

>> bitwise right shift operator

>>> bitwise unsigned right shift operator

expressionl >>> expression2

The same as the bitwise right shift (>>) operator except that it does not preserve the sign of the original expression
because the bits on the left are always filled with 0.

Floating-point numbers are converted to integers by discarding any digits after the decimal point. Positive integers are
converted to an unsigned hex value with a maximum value of 4294967295 or OXFFFFFFFF; values larger than the
maximum have their most significant digits discarded when they are converted so the value is still 32-bit. Negative
numbers are converted to an unsigned hex value via the two's complement notation, with the minimum being -
2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement with greater
precision and also have the most significant digits discarded.

Availability
Flash Lite 2.0

Operands
expressionl : Number - A number or expression to be shifted right.

expression2 : Number - A number or expression that converts to an integer between 0 and 31.

Returns

Number - The result of the bitwise operation.

Example
The following example converts -1 to a 32-bit integer and shifts it 1 bit to the right:

var X:Number = -1 >>> 1;
trace(x); // output: 2147483647

This is because -1 decimal is 11111111111111111111111111111111 binary (thirty-two 1s), and when you shift right
(unsigned) by 1 bit, the least significant (rightmost) bit is discarded, and the most significant (leftmost) bit is filled with
a0. The resultis 01111111111111111111111111111111 binary, which represents the 32-bit integer 2147483647.

Last updated 3/22/2011

87

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 88
ActionScript language elements

See also

>>= bitwise right shift and assignment operator

>>>= bitwise unsigned right shift and assignment operator
expressionl >>>= expression2

Performs an unsigned bitwise right-shift operation and stores the contents as a result in expression1. The following two
statements are equivalent:

A >>>= B; and A = (A >>> B);

Availability
Flash Lite 2.0

Operands
expressionl : Number - A number or expression to be shifted right.

expression2 : Number - A number or expression that converts to an integer from 0 to 31.

Returns
Number - The result of the bitwise operation.

See also

>>> bitwise unsigned right shift operator, >>= bitwise right shift and assignment operator

A bitwise XOR operator

A

expressionl expression2

Converts expressionl and expression2 to 32-bit unsigned integers, and returns a 1 in each bit position where the
corresponding bits in expressionl or expression2, but not both, are 1. Floating-point numbers are converted to integers
by discarding any digits after the decimal point. The result is a new 32-bit integer.

Positive integers are converted to an unsigned hex value with a maximum value of 4294967295 or OxXFFFFFFFF; values
larger than the maximum have their most significant digits discarded when they are converted so the value is still 32-
bit. Negative numbers are converted to an unsigned hex value via the two's complement notation, with the minimum
being -2147483648 or 0x800000000; numbers less than the minimum are converted to two's complement with greater
precision and also have the most significant digits discarded.

The return value is interpreted as a two's complement number with sign, so the return value will be an integer in the
range -2147483648 to 2147483647.

Availability
Flash Lite 2.0

Operands

expressionl : Number - A number.

expression2 : Number - A number.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 89
ActionScript language elements

Returns

Number - The result of the bitwise operation.

Example
The following example uses the bitwise XOR operator on the decimals 15 and 9, and assigns the result to the variable x:
// 15 decimal = 1111 binary

// 9 decimal = 1001 binary

var x:Number = 15 * 9;

trace (x) ;
// 1111 * 1001 = 0110
// returns 6 decimal (0110 binary)

See also

& bitwise AND operator, &= bitwise AND assignment operator, "= bitwise XOR assignment operator

| bitwise OR operator, |= bitwise OR assignment operator, ~ bitwise NOT operator

A= bitwise XOR assignment operator

expressionl “= expression2

Assigns expression] the value of expressionl * expression2. For example, the following two statements are equivalent:

x*=yx=x"y
Availability
Flash Lite 2.0

Operands

expressionl : Number - Integers and variables.

expression2 : Number - Integers and variables.

Returns

Number - The result of the bitwise operation.

Example

The following example shows a bitwise XOR assignment (A=) operation:
// 15 decimal = 1111 binary

var X:Number = 15;

// 9 decimal = 1001 binary

var y:Number = 9;

trace(x “= y); // returns 6 decimal (0110 binary)

See also

& bitwise AND operator, &= bitwise AND assignment operator,” bitwise XOR operator, | bitwise OR

operator|= bitwise OR assignment operator, ~ bitwise NOT operator

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 90
ActionScript language elements

/* block comment delimiter operator

/* comment */
/* comment
comment */

Indicates one or more lines of script comments. Any characters that appear between the opening comment tag (/*)
and the closing comment tag (*/) are interpreted as a comment and ignored by the ActionScript interpreter. Use the
/I (comment delimiter) to identify single-line comments. Use the /* comment delimiter to identify comments on
multiple successive lines. Leaving off the closing tag (* /) when using this form of comment delimiter returns an error
message. Attempting to nest comments also returns an error message. After an opening comment tag (/*) is used, the
first closing comment tag (* /) will end the comment, regardless of the number of opening comment tags (/*) placed
between them.

Availability
Flash Lite 1.0

Operands
comment - Any characters.

Example

The following script uses comment delimiters at the beginning of the script:
/* records the X and Y positions of

the ball and bat movie clips */

var ballX:Number = ball mc._x;

var ballY:Number = ball mc._y;

var batX:Number = bat_mc._x;

var batY:Number = bat_mc._y;

The following attempt to nest comments will result in an error message:

/* this is an attempt to nest comments.

/* But the first closing tag will be paired

with the first opening tag */

and this text will not be interpreted as a comment */

See also

// line comment delimiter operator

, comma operator

(expressionl , expression2 [, expressionN...]

Evaluates expressionl, then expression2, and so on. This operator is primarily used with the for loop statement and is
often used with the parentheses () operator.

Availability
Flash Lite 1.0

Operands

expressionl : Number - An expression to be evaluated.

expression2 : Number - An expression to be evaluated.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

expressionN : Number - Any number of additional expressions to be evaluated.

Returns

object - The value of expressionl, expression2, and so on.

Example
The following example uses the comma (,) operator in a for loop:

for (1 =0, jJ =0; 1 <3 && J < 3; i++, j+=2) {
trace("i = " + i+ ", J =" + J);

}

// Output:

// 1 =0, J=0

// 1 =1, 3 =2

The following example uses the comma (,) operator without the parentheses () operator and illustrates that the comma
operator returns only the value of the first expression without the parentheses () operator:

var v:Number = 0;
v =4, 5, 6;
trace(v); // output: 4

The following example uses the comma (,) operator with the parentheses () operator and illustrates that the comma
operator returns the value of the last expression when used with the parentheses () operator:

var v:Number = 0;
v = (4, 5, 6);
trace(v); // output: 6

The following example uses the comma (,) operator without the parentheses () operator and illustrates that the comma
operator sequentially evaluates all of the expressions but returns the value of the first expression. The second
expression, z++, is evaluated and z is incremented by one.

var v:Number = 0;
var z:Number = 0;
V=vV+4, zZ++, V + 6;

trace(v); // output: 4
trace(z); // output: 1
The following example is identical to the previous example except for the addition of the parentheses () operator and

illustrates once again that, when used with the parentheses () operator, the comma (,) operator returns the value of the
last expression in the series:

var v:Number = 0;

var z:Number = 0;

v = (Vv + 4, z++, V + 6);
trace(v); // output: 6
trace(z); // output: 1

See also

() parentheses operator

add concatenation (strings) operator

stringl add string2

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 92
ActionScript language elements

Deprecated since Flash Player 5. Adobe recommends you use the addition (+) operator when creating content for
Flash Player 5 or later.

Note: Flash Lite 2.0 also deprecates the add operator in favor of the addition (+) operator.

Concatenates two or more strings. The add (+) operator replaces the Flash 4 & operator; Flash Player 4 files that use
the & operator are automatically converted to use the add (+) operator for string concatenation when brought into the
Flash 5 or later authoring environment. You must use the add (+) operator to concatenate strings if you are creating
content for Flash Player 4 or earlier versions of the Flash Player.

Availability
Flash Lite 1.0

Operands
stringl : String- A string.

string2 : String- A string.

Returns

String - The concatenated string.

See also

+ addition operator

?: conditional operator

expressionl ? expression2 : expression3

Instructs Flash to evaluate expressionl, and if the value of expressionl is true, it returns the value of expression2;
otherwise it returns the value of expression3.

Availability
Flash Lite 1.0

Operands

expressionl : Object - An expression that evaluates to a Boolean value; usually a comparison expression, such as

x < 5.
expression2 : Object - Values of any type.

expression3 : Object - Values of any type.

Returns

object - The value of expression2 or expression3.

Example

The following statement assigns the value of variable x to variable z because expressionl evaluates to true:
var X:Number = 5;

var y:Number = 10;

var z = (x < 6) ? xX: y;

trace (z); // returns 5

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 93
ActionScript language elements

The following example shows a conditional statement written in shorthand:

var timecode:String = (new Date() .getHours() < 11) ? "AM" : "PM";
trace (timecode) ;

The same conditional statement could also be written in longhand, as shown in the following example:

if (new Date() .getHours() < 11) {
var timecode:String = "AM";

} else {
var timecode:String = "PM";

} trace(timecode) ;

-- decrement operator

--expression
expression--

A pre-decrement and post-decrement unary operator that subtracts 1 from the expression. The expression can be a
variable, element in an array, or property of an object. The pre-decrement form of the operator (--expression) subtracts
1 from expression and returns the result. The post-decrement form of the operator (expression--) subtracts 1 from the
expression and returns the initial value of expression (the value prior to the subtraction).

Availability
Flash Lite 1.0

Operands
expression : Number - A number or a variable that evaluates to a number.

Returns
Number - The result of the decremented value.

Example

The pre-decrement form of the operator decrements x to 2 (x - 1 = 2) and returns the result as y:

var X:Number = 3;
var y:Number = --x; //y is equal to 2

The post-decrement form of the operator decrements x to 2 (x - 1 = 2) and returns the original value of x as the result y:

var x:Number = 3;
var y:Number = x--; //y is equal to 3

The following example loops from 10 to 1, and each iteration of the loop decreases the counter variable i by 1.

for (var i = 10; i>0; i--) {
trace (i) ;

/ division operator

expressionl |/ expression2

Divides expressionl by expression2. The result of the division operation is a double-precision floating-point number.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Availability
Flash Lite 1.0

Operands
expression : Number - A number or a variable that evaluates to a number.

Returns

Number - The floating-point result of the operation.

Example

The following statement divides the current width and height of the Stage, and then displays the result in the Output
panel.

trace (Stage.width/2) ;
trace (Stage.height/2) ;

For a default Stage width and height of 550 x 400, the output is 275 and 150.

See also

% modulo operator

/= division assignment operator

expressionl /= expression2
Assigns expression] the value of expressionl / expression2. For example, the following two statements are equivalent:

x /=yi and x = x / V;

Availability
Flash Lite 1.0

Operands
expressionl : Number - A number or a variable that evaluates to a number.

expression2 : Number - A number or a variable that evaluates to a number.

Returns

Number - A number.

Example

The following code illustrates using the division assignment (/=) operator with variables and numbers:

var x:Number = 10;
var y:Number = 2;
x /= y; trace(x); // output: 5

See also

/ division operator

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

. dot operator

object.property or method
instancename.variable
instancename.childinstance
instancename.childinstance.variable

Used to navigate movie clip hierarchies to access nested (child) movie clips, variables, or properties. The dot operator
is also used to test or set the properties of an object or top-level class, execute a method of an object or top-level class,
or create a data structure.

Availability
Flash Lite 1.0

Operands
object : Object - An instance of a class. The object can be an instance of any of the built-in ActionScript classes or
a custom class. This parameter is always to the left of the dot (.) operator.

property or method - The name of a property or method associated with an object. All the valid methods and
properties for the built-in classes are listed in the method and property summary tables for that class. This parameter
is always to the right of the dot (.) operator.

instancename : MovieClip - The instance name of a movie clip.

variable — The instance name to the left of the dot (.) operator can also represent a variable on the Timeline of the
movie clip.

childinstance : MovieClip - A movie clip instance that is a child of, or nested in, another movie clip.

Returns
object - The method, property, or movie clip named on the right side of the dot.

Example
The following example identifies the current value of the variable haircolor in the movie clip person_me:

person_mc.hairColor

The Flash 4 authoring environment did not support dot syntax, but Flash MX 2004 files published for Flash Player 4
can use the dot operator. The preceding example is equivalent to the following (deprecated) Flash 4 syntax:

/person_mc:hairColor

The following example creates a new movie clip within the _root scope. Then a text field is created inside the movie
clip called container_mc. The text field's autosize property is set to t rue and then populated with the current date.

this.createEmptyMovieClip ("container mc", this.getNextHighestDepth()) ;

this.container mc.createTextField("date_ txt", this.getNextHighestDepth(), 0, 0, 100, 22);
this.container_mc.date_txt.autoSize = true;

this.container mc.date_txt.text = new Date();

The dot (.) operator is used when targeting instances within the SWF file and when you need to set properties and
values for those instances.

== equality operator

expressionl == expression2

Last updated 3/22/2011

95

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 96
ActionScript language elements

Tests two expressions for equality. The result is t rue if the expressions are equal.

The definition of equal depends on the data type of the parameter:

+ Numbers and Boolean values are compared by value and are considered equal if they have the same value.
« String expressions are equal if they have the same number of characters and the characters are identical.

+ Variables representing objects, arrays, and functions are compared by reference. Two such variables are equal if
they refer to the same object, array, or function. Two separate arrays are never considered equal, even if they have
the same number of elements.

When comparing by value, if expressionl and expression2 are different data types, ActionScript will attempt to convert
the data type of expression2 to match that of expressionl.

Availability
Flash Lite 1.0

Operands
expressionl : Object - A number, string, Boolean value, variable, object, array, or function.

expression2 : Object - A number, string, Boolean value, variable, object, array, or function.

Returns
Boolean - The Boolean result of the comparison.

Example
The following example uses the equality (==) operator with an if statement:

var a:String = "David", b:String = "David";
if (a == b) {
trace ("David is David") ;

}
The following examples show the results of operations that compare mixed types:

var X:Number = 5;

var y:String = "5";

trace(x == y); // output: true
var x:String = "5";

var y:String = "66";

trace(x == y); // output: false
var x:String = "chris";

var y:String = "steve";

trace(x == y); // output: false

The following examples show comparison by reference. The first example compares two arrays with identical length
and elements. The equality operator will return false for these two arrays. Although the arrays appear equal,
comparison by reference requires that they both refer to the same array. The second example creates the thirdArray
variable, which points to the same array as the variable firstArray. The equality operator will return true for these two
arrays because the two variables refer to the same array.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 97
ActionScript language elements

var firstArray:Array = new Array("one", "two", "three");
var secondArray:Array = new Array("one", "two", "three");
trace (firstArray == secondArray) ;

// will output false

// Arrays are only considered equal

// if the variables refer to the same array.
var thirdArray:Array = firstArray;

trace (firstArray == thirdArray); // will output true

See also

! logical NOT operator, != inequality operator, !== strict inequality operator, && logical AND
operator|| logical OR operator, === strict equality operator

eq equality (strings) operator

expressionl eq expression2
Deprecated since Flash Player 5. This operator was deprecated in favor of the == (equality) operator.

Compares two expressions for equality and returns a value of true if the string representation of expressionl is equal
to the string representation of expression2, false otherwise.

Availability
Flash Lite 1.0

Operands
expressionl : Object - Numbers, strings, or variables.

expression2 : Object - Numbers, strings, or variables.

Returns

Boolean - The result of the comparison.

See also

== equality operator

> greater than operator

expressionl > expression2

Compares two expressions and determines whether expression1 is greater than expression2; if it is, the operator returns
true. If expressionl is less than or equal to expression2, the operator returns false. String expressions are evaluated
using alphabetical order; all capital letters come before lowercase letters.

Availability
Flash Lite 1.0

Operands

expressionl : Object - A number or string.

expression2 : Object - A number or string.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Returns
Boolean - The Boolean result of the comparison.

Example
In the following example, the greater than (>) operator is used to determine whether the value of the text field
score_txt is greater than 90:

if (score txt.text>90)

trace ("Congratulations, you win!");
} else {

trace ("sorry, try again");

gt greater than (strings) operator

expressionl gt expression2
Deprecated since Flash Player 5. This operator was deprecated in favor of the > (greater than) operator.

Compares the string representation of expressionl with the string representation of expression2 and returns true if
expressionl is greater than expression2, false otherwise.

Availability
Flash Lite 1.0

Operands

expressionl : Object - Numbers, strings, or variables.

expression2 : Object - Numbers, strings, or variables.

Returns
Boolean - The Boolean result of the comparison.

See also

> greater than operator

>= greater than or equal to operator

expressionl >= expression2

Compares two expressions and determines whether expression1 is greater than or equal to expression2 (true) or
expressionl is less than expression2 (false).

Availability
Flash Lite 1.0

Operands
expressionl : Object - A string, integer, or floating-point number.

expression2 : Object - A string, integer, or floating-point number.

Last updated 3/22/2011

98

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 99
ActionScript language elements

Returns

Boolean - The Boolean result of the comparison.

Example
In the following example, the greater than or equal to (>=) operator is used to determine whether the current hour is
greater than or equal to 12:

if (new Date () .getHours() >= 12) ({
trace ("good afternoon") ;

} else {
trace ("good morning") ;

ge greater than or equal to (strings) operator

expressionl ge expression2
Deprecated since Flash Player 5. This operator was deprecated in favor of the >= (greater than or equal to) operator.

Compares the string representation of expressionl with the string representation of expression2 and returns true if
expressionl is greater than or equal to expression2, false otherwise.

Availability
Flash Lite 1.0

Operands

expressionl : Object - Numbers, strings, or variables.

expression2 : Object - Numbers, strings, or variables.

Returns
Boolean - The result of the comparison.

See also

>= greater than or equal to operator

++ increment operator

++expression
expression++

A pre-increment and post-increment unary operator that adds 1 to expression. The expression can be a variable,
element in an array, or property of an object. The pre-increment form of the operator (++expression) adds 1 to
expression and returns the result. The post-increment form of the operator (expression++) adds 1 to expression and
returns the initial value of expression (the value prior to the addition).

The pre-increment form of the operator increments x to 2 (x + 1 = 2) and returns the result as y:

var X:Number = 1;

var y:Number = ++X;
trace("x:"+x); //traces x:2
trace("y:"+y); //traces y:2

The post-increment form of the operator incrementsxto 2 (x + 1 = 2) and returns the original value of x as the result y:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

var X:Number = 1;

var y:Number = X++;
trace("x:"+x); //traces x:2
trace("y:"+y); //traces y:1

Availability
Flash Lite 1.0

Operands

expression : Number - A number or a variable that evaluates to a number.

Returns

Number - The result of the increment.

Example

The following example uses ++ as a post-increment operator to make a while loop run five times:

var i:Number = 0;
while (i++ < 5) {
trace("this is execution " + 1i);
}
/* output:
this is execution
this is execution
this is execution
this is execution

U w N

this is execution

*/

The following example uses ++ as a pre-increment operator:

var a:Array = new Array();
var i:Number = 0;
while (i < 10) {

a.push (++1i) ;

}

trace(a.toString()); //traces: 1,2,3,4,5,6,7,8,9,10

This example also uses ++ as a pre-increment operator.

var a:Array = [];

for (var i = 1; i <= 10; ++1i) {
a.push(i);
}
trace(a.toString()); //traces: 1,2,3,4,5,6,7,8,9,10

This script shows the following result in the Output panel: 1,2,3,4,5,6,7,8,9,10

The following example uses ++ as a post-increment operator in a while loop:

// using a while loop

var a:Array = new Array();

var i:Number = 0;

while (i < 10) {
a.push(i++) ;

}

trace(a.toString()); //traces 0,1,2,3,4,5,6,7,8,9

Last updated 3/22/2011

100

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 101
ActionScript language elements

The following example uses ++ as a post-increment operator in a for loop:

// using a for loop
var a:Array = new Array();

for (var i = 0; i < 10; i++) {
a.push(i);
}
trace(a.toString()); //traces 0,1,2,3,4,5,6,7,8,9

This script displays the following result in the Output panel:

0,1,2,3,4,5,6,7,8,9

= inequality operator
expressionl != expression2

Tests for the exact opposite of the equality (==) operator. If expressionl is equal to expression2 , the result is false. As
with the equality (==) operator, the definition of equal depends on the data types being compared, as illustrated in the
following list:

+ Numbers, strings, and Boolean values are compared by value.
« Objects, arrays, and functions are compared by reference.
A variable is compared by value or by reference, depending on its type.

Comparison by value means what most people would expect equals to mean -that two expressions have the same
value. For example, the expression (2 + 3) is equal to the expression (1 + 4) when compared by value.

Comparison by reference means that two expressions are equal only if they both refer to the same object, array, or
function. Values inside the object, array, or function are not compared.

When comparing by value, if expressionl and expression2 are different data types, ActionScript will attempt to convert
the data type of expression2 to match that of expressionl.

Availability
Flash Lite 2.0

Operands
expressionl : Object - A number, string, Boolean value, variable, object, array, or function.

expression2 : Object - A number, string, Boolean value, variable, object, array, or function.

Returns
Boolean - The Boolean result of the comparison.

Example
The following example illustrates the result of the inequality (=) operator:

trace(5 != 8); // returns true
trace(5 != 5); //returns false

The following example illustrates the use of the inequality (! =) operator in an if statement:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

var a:String = "David";
var b:String "Fool";
if (a !'= b) {

trace ("David is not a fool");

}

The following example illustrates comparison by reference with two functions:

}i
}i

var a:Function = function() { trace ("foo") ;
var b:Function = function|() { trace ("foo") ;
a(); // foo

b(); // foo

trace(a != b); // true

a = b;

a(); // foo

b(); // foo

trace(a != b); // false

// trace statement output: foo foo true foo foo false

The following example illustrates comparison by reference with two arrays:

var a:Array = [1, 2, 3];
var b:Array = [1, 2, 3 1;
trace(a); // 1, 2, 3
trace(b); // 1, 2, 3
trace(al!=b); // true

a = b;

trace(a); // 1, 2, 3
trace(b); // 1, 2, 3
trace(a != b); // false

// trace statement output: 1,2,3 1,2,3 true 1,2,3 1,2,3 false

See also

! logical NOT operator, !== strict inequality operator, && logical AND operator, || logical OR

operator== equality operator, === strict equality operator

<> inequality operator

expressionl <> expression2

Deprecated since Flash Player 5. This operator has been deprecated. Adobe recommends that you use the ! =

(inequality) operator.

Tests for the exact opposite of the equality (==) operator. If expressionl is equal to expression2, the result is false. As
with the equality (==) operator, the definition of equal depends on the data types being compared:

+ Numbers, strings, and Boolean values are compared by value.
+ Objects, arrays, and functions are compared by reference.

 Variables are compared by value or by reference depending on their type.

Availability
Flash Lite 1.0

Operands

expressionl : Object - A number, string, Boolean value, variable, object, array, or function.

Last updated 3/22/2011

102

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

expression2 : Object - A number, string, Boolean value, variable, object, array, or function.

Returns

Boolean - The Boolean result of the comparison.

See also

= inequality operator

instanceof operator

object instanceof classConstructor

Tests whether object is an instance of classConstructor or a subclass of classConstructor. The instanceof
operator does not convert primitive types to wrapper objects. For example, the following code returns true:

new String("Hello") instanceof String;
Whereas the following code returns false:

"Hello" instanceof String;

Availability
Flash Lite 2.0

Operands
object : Object - An ActionScript object.

classConstructor : Function - A reference to an ActionScript constructor function, such as string or Date.

Returns
Boolean - If object is an instance of or a subclass of classConstructor, instanceof returns true, otherwise it
reUHnSfalse“Ako,_global instanceof Object returns false.

See also

typeof operator

< less than operator

expressionl < expression2

Compares two expressions and determines whether expressionI is less than expression2; if so, the operator returns

true. Ifexpressionl is greater than or equal to expression2, the operator returns false. String expressions are evaluated

using alphabetical order; all capital letters come before lowercase letters.

Availability
Flash Lite 1.0

Operands

expressionl : Number - A number or string.

expression2 : Number - A number or string.

Last updated 3/22/2011

103

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 104
ActionScript language elements

Returns
Boolean - The Boolean result of the comparison.

Example

The following examples show true and false returns for both numeric and string comparisons:

trace(3 < 10); // true

trace(10 < 3); // false

trace ("Allen" < "Jack"); // true

trace ("Jack" < "Allen"); //false

trace("11" < "3"); // true

trace("11" < 3); // false (numeric comparison)
trace("C" < "abc"); // true

trace("A" < "a"); // true

It less than (strings) operator

expressionl lt expression2
Deprecated since Flash Player 5. This operator was deprecated in favor of the < (less than) operator.

Compares expressionl to expression2 and returns true if expressionl is less than expression2, false otherwise.

Availability
Flash Lite 1.0

Operands
expressionl : Object - Numbers, strings, or variables.

expression2 : Object - Numbers, strings, or variables.

Returns

Boolean - The result of the comparison.

See also

< less than operator

<= less than or equal to operator

expressionl <= expression2

Compares two expressions and determines whether expression1 is less than or equal to expression2; if it is, the operator
returns true. If expressionl is greater than expression2, the operator returns false. String expressions are evaluated
using alphabetical order; all capital letters come before lowercase letters.

Availability
Flash Lite 1.0

Operands
expressionl : Object - A number or string.

expression2 : Object - A number or string.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Returns
Boolean - The Boolean result of the comparison.

Example

The following examples show true and false results for both numeric and string comparisons:

trace(5 <= 10); // true

trace(2 <= 2); // true

trace (10 <= 3); // false

trace ("Allen" <= "Jack"); // true

trace ("Jack" <= "Allen"); // false

trace("11" <= "3"); // true

trace("11l" <= 3); // false (numeric comparison)
trace("C" <= "abc"); // true

trace ("A" <= a); // true

le less than or equal to (strings) operator

expressionl le expression2

Deprecated since Flash Player 5. This operator was deprecated in Flash 5 in favor of the <= (less than or equal to)

operator.

Compares expressionl to expression2 and returns a value of true if expressionl is less than or equal to expression2,

false otherwise.

Availability
Flash Lite 1.0

Operands
expressionl : Object - Numbers, strings, or variables.

expression2 : Object - Numbers, strings, or variables.

Returns

Boolean - The result of the comparison.

See also

<= less than or equal to operator

// line comment delimiter operator

// comment

Indicates the beginning of a script comment. Any characters that appear between the comment delimiter (//) and the

end-of-line character are interpreted as a comment and ignored by the ActionScript interpreter.

Availability
Flash Lite 1.0

Operands

comment - Any characters.

Last updated 3/22/2011

105

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 106
ActionScript language elements

Example

The following script uses comment delimiters to identify the first, third, fifth, and seventh lines as comments:

// record the X position of the ball movie clip
var ballX:Number = ball mc. x;

// record the Y position of the ball movie clip
var ballY:Number = ball mc._ y;

// record the X position of the bat movie clip
var batX:Number = bat_mc._x;

// record the Y position of the ball movie clip
var batY:Number = bat mc. y;

See also

/* block comment delimiter operator

&& logical AND operator

expressionl && expression2

Performs a Boolean operation on the values of one or both of the expressions. Evaluates expressionl (the expression
on the left side of the operator) and returns false if the expression evaluates to false. If expressionl evaluates to true,
expression2 (the expression on the right side of the operator) is evaluated. If expression2 evaluates to true, the final
result is true; otherwise, it is false. The expression truesstrue evaluates to true, truessfalse evaluates to false,
falses&afalse evaluates to false, and falsesstrue evaluates to false

Availability
Flash Lite 1.0

Operands

expressionl : Number - A Boolean value or an expression that converts to a Boolean value.

expression2 : Number - A Boolean value or an expression that converts to a Boolean value.

Returns

Boolean - A Boolean result of the logical operation.

Example

The following example uses the logical AND (&s&) operator to perform a test to determine if a player has won the game.
The turns variable and the score variable are updated when a player takes a turn or scores points during the game.
The script shows "You Win the Game!" in the Output panel when the player's score reaches 75 or higher in 3 turns or
less.

var turns:Number = 2;

var score:Number = 77;

if ((turns <= 3) && (score >= 75)) {
trace("You Win the Game!") ;

} else {
trace ("Try Again!");

}

// output: You Win the Game!

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 107
ActionScript language elements

See also
! logical NOT operator, != inequality operator, !== strict inequality operator, || logical OR
operator== equality operator, === strict equality operator

and logical AND operator

conditionl and condition2
Deprecated since Flash Player 5. Adobe recommends that you use the logical AND (&&) operator.

Performs a logical AND (&&) operation in Flash Player 4. If both expressions evaluate to true, the entire expression is

true.

Availability
Flash Lite 1.0

Operands
conditionl : Boolean - A condition or expression that evaluates to true or false.

condition2 : Boolean - A condition or expression that evaluates to true or false.

Returns

Boolean - A Boolean result of the logical operation.

See also

&& logical AND operator

!logical NOT operator
| expression
Inverts the Boolean value of a variable or expression. If expression is a variable with the absolute or converted value

true, the value of 1expression is false. If the expression x && y evaluates to false, the expression ! (x && y)
evaluates to true. Therefore, ! true returns false, and ! false returns true.

Availability
Flash Lite 1.0

Operands

expression : Boolean - An expression or a variable that evaluates to a Boolean value.

Returns
Boolean - The Boolean result of the logical operation.

Example
In the following example, the variable happy is set to false. The if condition evaluates the condition !happy, and if
the condition is true, the trace() statement sends a string to the Output panel.

var happy:Boolean = false;
if (thappy) {
trace("don't worry, be happy"); //traces don't worry, be happy

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 108
ActionScript language elements

The statement traces because ! false equals true.

See also
I= inequality operator, !== strict inequality operator, && logical AND operator, || logical OR
operator== equality operator, === strict equality operator

not logical NOT operator

not expression
Deprecated since Flash Player 5. This operator was deprecated in favor of the! (logical NOT) operator.

Performs a logical NOT () operation in Flash Player 4.

Availability
Flash Lite 1.0

Operands
expression : Object - A variable or other expression that converts to a Boolean value.

Returns
Boolean - The result of the logical operation.

See also
! logical NOT operator

|| logical OR operator

expressionl || expression2

Evaluates expressionl (the expression on the left side of the operator) and returns true if the expression evaluates to
true. If expressionl evaluates to false, expression2 (the expression on the right side of the operator) is evaluated. If
expression2 evaluates to false, the final result is false; otherwise, it is true.

If you use a function call as expression2, the function will not be executed by that call if expression1 evaluates to true.

The result is true if either or both expressions evaluate to true; the result is f£alse only if both expressions evaluate
to false. You can use the logical OR operator with any number of operands; if any operand evaluates to true, the
result is true.

Availability
Flash Lite 1.0

Operands
expressionl : Number - A Boolean value or an expression that converts to a Boolean value.

expression2 : Number - A Boolean value or an expression that converts to a Boolean value.

Returns
Boolean - The result of the logical operation.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 109
ActionScript language elements

Example
The following example uses the logical OR (| |) operator in an i f statement. The second expression evaluates to true,
so the final result is true:

var x:Number = 10;
var y:Number = 250;
var start:Boolean = false;
if ((x > 25) || (y > 200) || (start)) ({
trace("the logical OR test passed"); // output: the logical OR test passed

}

The message the logical OR test passed appears because one of the conditions in the if statement is true (y>200).
Although the other two expressions evaluate to false, the if block is executed because one condition evaluates to

true.

The following example demonstrates how using a function call as expression2 can lead to unexpected results. If the
expression on the left of the operator evaluates to true, that result is returned without evaluating the expression on
the right (the function £x2 () is not called).

function fx1 () :Boolean {
trace ("fx1l called");
return true;
}
function fx2() :Boolean ({
trace ("fx2 called") ;
return true;
}
if (£x1() || £x2()) |
trace ("IF statement entered") ;
}
/* The following is sent to the Output panel: /* The following is sent to the log file: fx1
called IF statement entered */

See also
! logical NOT operator, != inequality operator, !== strict inequality operator, && logical AND
operator== equality operator, === strict equality operator

or logical OR operator

conditionl or condition2
Deprecated since Flash Player 5. This operator was deprecated in favor of the | | (logical OR) operator.

Evaluates conditionl and condition2, and if either expression is true, the whole expression is true.

Availability
Flash Lite 1.0

Operands
conditionl : Boolean - An expression that evaluates to true or false.

condition2 : Boolean - An expression that evaluates to true or false.

Returns

Boolean - The result of the logical operation.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 110
ActionScript language elements

See also

|| logical OR operator, | bitwise OR operator

% modulo operator

°

expressionl % expression2

Calculates the remainder of expressionl divided by expression2. If either of the expression parameters are non-
numeric, the modulo (%) operator attempts to convert them to numbers. The expression can be a number or string that
converts to a numeric value.

The sign of the result of modulo operation matches the sign of the dividend (the first number). For example, -4 % 3
and -4 % -3 both evaluate to -1.

Availability
Flash Lite 1.0

Operands
expressionl : Number - A number or expression that evaluates to a number.

expression2 : Number - A number or expression that evaluates to a number.

Returns

Number - The result of the arithmetic operation.

Example
The following numeric example uses the modulo (%) operator:

trace(12%5); // traces 2
trace(4.3%2.1); // traces 0.0999999999999996
trace(4%4); // traces 0

The first trace returns 2, rather than 12/5 or 2.4, because the modulo (%) operator returns only the remainder. The
second trace returns 0.0999999999999996 instead of the expected 0.1 because of the limitations of floating-point
accuracy in binary computing.

See also

/ division operator, round (Math.round method)

%= modulo assignment operator

expressionl %= expression2
Assigns expressionl the value of expressionl % expression2. The following two statements are equivalent:

X %= y; and X = X % Yy;

Availability
Flash Lite 1.0

Operands
expressionl : Number - A number or expression that evaluates to a number.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 111
ActionScript language elements

expression2 : Number - A number or expression that evaluates to a number.

Returns

Number - The result of the arithmetic operation.

Example
The following example assigns the value 4 to the variable x:

var x:Number = 14;
var y:Number = 5;
trace(x %= y); // output: 4

See also

% modulo operator

* multiplication operator

expressionl * expression2

Multiplies two numerical expressions. If both expressions are integers, the product is an integer. If either or both
expressions are floating-point numbers, the product is a floating-point number.

Availability
Flash Lite 1.0

Operands
expressionl : Number - A number or expression that evaluates to a number.

expression2 : Number - A number or expression that evaluates to a number.

Returns

Number - An integer or floating-point number.

Example
Usage 1: The following statement multiplies the integers 2 and 3:

trace(2*3); // output: 6
The result, 6, is an integer. Usage 2: This statement multiplies the floating-point numbers 2.0 and 3.1416:
trace (2.0 * 3.1416); // output: 6.2832

The result, 6.2832, is a floating-point number.
*= multiplication assignment operator

expressionl *= expression2

Assigns expressionl the value of expressionl * expression2. For example, the following two expressions are equivalent:

Availability
Flash Lite 1.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 112
ActionScript language elements

Operands

expressionl : Number - A number or expression that evaluates to a number.

expression2 : Number - A number or expression that evaluates to a number.

Returns
Number - The value of expressionl * expression2. If an expression cannot be converted to a numeric value, it returns
NaN (not a number).

Example
Usage 1: The following example assigns the value 50 to the variable x:
var X:Number = 5;

var y:Number = 10;
trace(x *= y); // output: 50

Usage 2: The second and third lines of the following example calculate the expressions on the right side of the equal
sign and assign the results to x and y:

var 1i:Number = 5;

var x:Number = 4 - 6;

var y:Number = 1 + 2;

trace(x *= y); // output: -14

See also

* multiplication operator

hew operator

new constructor ()

Creates a new, initially anonymous, object and calls the function identified by the constructor parameter. The new
operator passes to the function any optional parameters in parentheses, as well as the newly created object, which is
referenced using the keyword this. The constructor function can then use this to set the variables of the object.

Availability
Flash Lite 2.0

Operands

constructor : Object - A function followed by any optional parameters in parentheses. The function is usually the
name of the object type (for example, Array, Number, or Object) to be constructed.

Example
The following example creates the Book () function and then uses the new operator to create the objects book1 and
book2.

function Book (name, price){
this.name = name;
this.price = price;

bookl = new Book ("Confederacy of Dunces", 19.95);
book2 = new Book ("The Floating Opera", 10.95);

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 113
ActionScript language elements

The following example uses the new operator to create an Array object with 18 elements:

golfCourse array = new Array(18);

See also

[1 array access operator, {} object initializer operator

ne not equal (strings) operator

expressionl ne expression2
Deprecated since Flash Player 5. This operator was deprecated in favor of the 1= (inequality) operator.

Compares expressionl to expression2 and returns true if expressionl is not equal to expression2; false otherwise.

Availability
Flash Lite 1.0

Operands
expressionl : Object - Numbers, strings, or variables.

expression2 : Object - Numbers, strings, or variables.

Returns

Boolean - Returns true if expressionl is not equal to expression2; false otherwise.

See also

!= inequality operator

{} object initializer operator

object = { namel : valuel , name2 : value2 ,... nameN : valueN }
{expressionl; [...expressionN]}

Creates a new object and initializes it with the specified name and value property pairs. Using this operator is the same
as using the new Object syntax and populating the property pairs using the assignment operator. The prototype of
the newly created object is generically named the Object object.

This operator is also used to mark blocks of contiguous code associated with flow control statements (for, while, if,
else, switch) and functions.

Availability
Flash Lite 2.0

Operands
object : Object - The object to create. namel,2,...N The names of the properties. valuel,2,...N The corresponding
values for each name property.

Returns
Object -

Usage 1: An Object object.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 114
ActionScript language elements

Usage 2: Nothing, except when a function has an explicit return statement, in which case the return type is specified
in the function implementation.

Example
The first line of the following code creates an empty object using the object initializer ({}) operator; the second line
creates a new object using a constructor function:

var object:Object = {};
var object:0bject = new Object () ;

The following example creates an object account and initializes the properties name, address, city, state, zip, and
balance with accompanying values:

var account:0Object = {name:"Macromedia, Inc.", address:"600 Townsend Street", city:"San
Francisco", state:"California", zip:"94103", balance:"lOOO"};
for (i in account) ({

trace("account." + 1 4+ " = " 4+ account[i]);

}
The following example shows how array and object initializers can be nested within each other:
var person:Object = {name:"Gina Vechio", children: ["Ruby", "Chickie", "Puppa"l};

The following example uses the information in the previous example and produces the same result using constructor
functions:

var person:0bject = new Object () ;
person.name = "Gina Vechio";
person.children = new Array();

person.children[0] = "Ruby";
person.children[1] = "Chickie";
person.children[2] = "Puppa";

The previous ActionScript example can also be written in the following format:

var person:0bject = new Object () ;

person.name = "Gina Vechio";

person.children = new Array ("Ruby", "Chickie", "Puppa");
See also

Object

() parentheses operator

(expressionl [, expression2])
(expressionl, expression2)
function (parameterl, ..., parameterN)

Performs a grouping operation on one or more parameters, performs sequential evaluation of expressions, or
surrounds one or more parameters and passes them as parameters to a function outside the parentheses.

Usage 1: Controls the order in which the operators execute in the expression. Parentheses override the normal
precedence order and cause the expressions within the parentheses to be evaluated first. When parentheses are nested,
the contents of the innermost parentheses are evaluated before the contents of the outer ones.

Usage 2: Evaluates a series of expressions, separated by commas, in sequence, and returns the result of the final
expression.

Usage 3: Surrounds one or more parameters and passes them as parameters to the function outside the parentheses.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 115
ActionScript language elements

Availability
Flash Lite 1.0

Operands
expressionl : Object - Numbers, strings, variables, or text.

expression2 : Object - Numbers, strings, variables, or text.
function : Function - The function to be performed on the contents of the parentheses.

parameterl...parameterN : Object - A series of parameters to execute before the results are passed as parameters
to the function outside the parentheses.

Example
Usage 1: The following statements show the use of parentheses to control the order in which expressions are executed
(the value of each expression appears in the Output panel):

trace((2 + 3)*(4 + 5)); // displays 45
trace((2 + 3) * (4 + 5)); // writes 45
trace(2 + (3 * (4 + 5))); // displays 29
trace(2 + (3 * (4 + 5))); // writes 29
trace(2+(3*4)+5); // displays 19

trace(2 + (3 * 4) + 5); // writesl9

Usage 2: The following example evaluates the function foo (), and then the function bar (), and returns the result of
the expression a + b:

var a:Number = 1;

var b:Number = 2;

function foo() { a += b; }

function bar() { b *= 10; }

trace((foo(), bar(), a + b)); // outputs 23

Usage 3: The following example shows the use of parentheses with functions:

var today:Date = new Date() ;
trace(today.getFullYear()); // traces current year
function traceParameter (param):Void { trace(param); }
traceParameter (2 * 2); //traces 4

See also

with statement

=== strict equality operator
expressionl === expression2

Tests two expressions for equality; the strict equality (===) operator performs in the same way as the equality (==)
operator, except that data types are not converted. The result is true if both expressions, including their data types,
are equal.

The definition of equal depends on the data type of the parameter:

+ Numbers and Boolean values are compared by value and are considered equal if they have the same value.

« String expressions are equal if they have the same number of characters and the characters are identical.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 116
ActionScript language elements

+ Variables representing objects, arrays, and functions are compared by reference. Two such variables are equal if
they refer to the same object, array, or function. Two separate arrays are never considered equal, even if they have
the same number of elements.

Availability
Flash Lite 2.0

Operands
expressionl : Object - A number, string, Boolean value, variable, object, array, or function.

expression2 : Object - A number, string, Boolean value, variable, object, array, or function.

Returns
Boolean - The Boolean result of the comparison.

Example
The comments in the following code show the returned value of operations that use the equality and strict equality
operators:

// Both return true because no conversion is done

var stringl:String = "5";

var string2:String = "5";

trace(stringl == string2); // true

trace(stringl === string2); // true

// Automatic data typing in this example converts 5 to "5"
var stringl:String = "5";

var num:Number = 5;

trace(stringl == num); // true

trace(stringl === num); // false

// Automatic data typing in this example converts true to "1"
var stringl:String = "1";

var booll:Boolean = true;

trace(stringl == booll); // true

trace(stringl === booll); // false

// Automatic data typing in this example converts false to "0"
var stringl:String = "0";

var bool2:Boolean = false;

trace(stringl == bool2); // true

trace(stringl === bool2); // false

The following examples show how strict equality treats variables that are references differently than it treats variables
that contain literal values. This is one reason to consistently use String literals and to avoid the use of the new operator
with the String class.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 117
ActionScript language elements

// Create a string variable using a literal value
var str:String = "asdf";
// Create a variable that is a reference
var stringRef:String = new String("asdf");
// The equality operator does not distinguish among literals, variables,
// and references

trace (stringRef == "asdf"); // true
trace(stringRef == str); // true
trace ("asdf" == str); // true

// The strict equality operator considers variables that are references
// distinct from literals and variables

trace (stringRef === "asdf"); // false

trace (stringRef === str); // false

See also

! logical NOT operator, != inequality operator, !|== strict inequality operator, && logical AND
operator|| logical OR operator, == equality operator

== strict inequality operator
expressionl !== expression2

Tests for the exact opposite of the strict equality (===) operator. The strict inequality operator performs the same as
the inequality operator except that data types are not converted.

If expressionl is equal to expression2, and their data types are equal, the result is false. As with the strict equality (===)
operator, the definition of equal depends on the data types being compared, as illustrated in the following list:

« Numbers, strings, and Boolean values are compared by value.
+ Objects, arrays, and functions are compared by reference.

A variable is compared by value or by reference, depending on its type.

Availability
Flash Lite 2.0

Operands
expressionl : Object - A number, string, Boolean value, variable, object, array, or function.

expression2 : Object - A number, string, Boolean value, variable, object, array, or function.

Returns

Boolean - The Boolean result of the comparison.
Example

The comments in the following code show the returned value of operations that use the equality (==), strict equality
(===), and strict inequality (! ==) operators:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

var sl:String = "5";
var s2:String = "5";
var s3:String = "Hello";

var n:Number = 5;

var b:Boolean = true;

trace(sl == s2); // true

trace(sl == s3); // false

trace(sl == n); // true

trace(sl == b); // false

trace(sl === s82); // true

trace(sl === s3); // false

trace(sl === n); // false

trace(sl === b); // false

trace(sl !== s2); // false

trace(sl !== s3); // true

trace(sl !== n); // true

trace(sl !== b); // true

See also

! logical NOT operator, != inequality operator, && logical AND operator, || logical OR operator
== equality operator, === strict equality operator

" string delimiter operator

"Eext"

When used before and after characters, quotation marks (") indicate that the characters have a literal value and are
considered a string, not a variable, numerical value, or other ActionScript element.

Availability
Flash Lite 1.0

Operands
text : String - A sequence of zero or more characters.

Example
The following example uses quotation marks (") to indicate that the value of the variable yourGuess is the literal string
"Prince Edward Island" and notthe name of a variable. The value of province is a variable, not a literal; to
determine the value of province, the value of yourGuess must be located.

var yourGuess:String = "Prince Edward Island";
submit_btn.onRelease = function() { trace (yourGuess) ; };

// displays Prince Edward Island in the Output panel
// writes Prince Edward Island to the log file

See also

String, String function

- subtraction operator

(Negation) -expression
(Subtraction) expressionl - expression2

Last updated 3/22/2011

118

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 119
ActionScript language elements

Used for negating or subtracting.
Usage 1: When used for negating, it reverses the sign of the numerical expression.

Usage 2: When used for subtracting, it performs an arithmetic subtraction on two numerical expressions, subtracting
expression2 from expressionl. When both expressions are integers, the difference is an integer. When either or both
expressions are floating-point numbers, the difference is a floating-point number.

Availability
Flash Lite 1.0

Operands

expressionl : Number - A number or expression that evaluates to a number.

expression2 : Number - A number or expression that evaluates to a number.

Returns
Number - An integer or floating-point number.

Example
Usage 1: The following statement reverses the sign of the expression 2 + 3:

trace(-(2+3)); // output: -5

Usage 2: The following statement subtracts the integer 2 from the integer 5:

trace(5-2); // output: 3

The result, 3, is an integer.

The following statement subtracts the floating-point number 1.5 from the floating-point number 3.25:
trace(3.25-1.5); // output: 1.75

The result, 1.75, is a floating-point number.

-= subtraction assignment operator

expressionl -= expression2
Assigns expressionl the value of expressionl - expression2. For example, the following two statements are equivalent:
X -=Yy i X=X-Y;

String expressions must be converted to numbers; otherwise, Nan (not a number) is returned.

Availability
Flash Lite 1.0

Operands
expressionl : Number - A number or expression that evaluates to a number.

expression2 : Number - A number or expression that evaluates to a number.

Returns
Number - The result of the arithmetic operation.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 120
ActionScript language elements

Example
The following example uses the subtraction assignment (-=) operator to subtract 10 from 5 and assign the result to
the variable x:

var x:Number = 5;
var y:Number = 10;
X -= y; trace(x); // output: -5

The following example shows how strings are converted to numbers:

var x:String = "5";
var y:String = "10";
x -= y; trace(x); // output: -5

See also

- subtraction operator

: type operator

[modifiers] var variableName : type
function functionName () : type { ... }
function functionName (parameterl:type , ... , parameterN:type) [:type 1{ ... }

Used for strict data typing; this operator specifies the variable type, function return type, or function parameter type.
When used in a variable declaration or assignment, this operator specifies the variable's type; when used in a function
declaration or definition, this operator specifies the function's return type; when used with a function parameter in a
function definition, this operator specifies the variable type expected for that parameter.

Types are a compile-time-only feature. All types are checked at compile time, and errors are generated when there is
a mismatch. Mismatches can occur during assignment operations, function calls, and class member dereferencing
using the dot (.) operator. To avoid type mismatch errors, use strict data typing.

Types that you can use include all native object types, classes and interfaces that you define, and Function and Void.
The recognized native types are Boolean, Number, and String. All built-in classes are also supported as native types.

Availability
Flash Lite 2.0

Operands
variableName : Object - An identifier for a variable.

type : A native data type, class name that you have defined, or interface name.
functionName : An identifier for a function.

parameter : An identifier for a function parameter.

Example
Usage 1: The following example declares a public variable named userName whose type is String and assigns an empty
string to it:

var userName:String = "";

Usage 2: The following example shows how to specify a function's parameter type by defining a function named
randomInt () that takes a parameter named integer of type Number:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

function randomlInt (integer:Number) :Number {
return Math.round (Math.random() *integer) ;

1

trace (randomInt (8)) ;

Usage 3: The following example defines a function named squareRroot () that takes a parameter named val of the
Number type and returns the square root of val, also a Number type:

function squareRoot (val:Number) :Number {
return Math.sqgrt (val) ;

}

trace (squareRoot (121)) ;

See also

set variable statement, Array function

typeof operator
typeof (expression)

The typeof operator evaluates the expression and returns a string specifying whether the expression is a string,
MovieClip,Object,Function,Number,OrBooleanvahw.

Availability
Flash Lite 2.0

Operands
expression : Object - A string, movie clip, button, object, or function.

Returns
String - A String representation of the type of expression. The following table shows the results of the typeof
operator on each type of expression.

Expression Type Result
String string
Movie clip movieclip
Button object
Text field object
Number number
Boolean boolean
Object object
Function function
See also

instanceof operator

Last updated 3/22/2011

121

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 122
ActionScript language elements

void operator

void expression

The void operator evaluates an expression and then discards its value, returning undefined. The void operator is
often used in comparisons using the == operator to test for undefined values.

Availability
Flash Lite 2.0

Operands
expression : Object - An expression to be evaluated.

Statements
Statements are language elements that perform or specify an action. For example, the return statement returns a
result as a value of the function in which it executes. The if statement evaluates a condition to determine the next

action that should be taken. The switch statement creates a branching structure for ActionScript statements.

Statements summary

Statement Description

break Appears withinaloop (for, for..in, do..while,orwhile)or within a block of
statements associated with a particular case within a switch statement.

case Defines a condition for the switch statement.

class Defines a custom class, which lets you instantiate objects that share methods and
properties that you define.

continue Jumps past all remaining statements in the innermost loop and starts the next
iteration of the loop as if control had passed through to the end of the loop normally.

default Defines the default case for a switch statement.

delete Destroys the object reference specified by the reference parameter, and returns
true if the reference is successfully deleted; false otherwise.

do..while Similar to a while loop, except that the statements are executed once before the
initial evaluation of the condition.

dynamic Specifies that objects based on the specified class can add and access dynamic
properties at runtime.

else Specifies the statements to run if the condition in the if statement returns false.

else if Evaluates a condition and specifies the statements to run if the condition in the initial
if statement returns false.

extends Defines a class that is a subclass of another class; the latter is the superclass.
for Evaluates the init (initialize) expression once and then starts a looping sequence.
for..in Iterates over the properties of an object or elements in an array and executes the

statement for each property or element.

function Comprises a set of statements that you define to perform a certain task.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Statement Description

get Permits implicit getting of properties associated with objects based on classes you
have defined in external class files.

if Evaluates a condition to determine the next action in a SWF file.

implements Specifies that a class must define all the methods declared in the interface (or
interfaces) being implemented.

import Lets you access classes without specifying their fully qualified names.

interface Defines an interface.

intrinsic Allows compile-time type checking of previously defined classes.

private Specifies that a variable or function is available only to the class that declares or
defines it or to subclasses of that class.

public Specifies that a variable or function is available to any caller.

return Specifies the value returned by a function.

set Permits implicit setting of properties associated with objects based on classes you
have defined in external class files.

set variable Assigns a value to a variable.

static Specifies that a variable or function is created only once per class rather than being
created in every object based on that class.

super Invokes the superclass version of a method or constructor.

switch Creates a branching structure for ActionScript statements.

throw Generates, or throws, an error that can be handled, or caught, by a catch{} code

block.

try..catch.finally

Enclose a block of code in which an error can occur, and then respond to the error.

var Used to declare local or Timeline variables.
while Evaluates a condition and if the condition evaluates to true, runs a statement or
series of statements before looping back to evaluate the condition again.
with Lets you specify an object (such as a movie clip) with the object parameter and
evaluate expressions and actions inside that object with the statement (s)
parameter.
break statement
break

Appears within a loop (for, for. .in, do. .while, or while) or within a block of statements associated with a
particular case within a switch statement. When used in a loop, the break statement instructs Flash to skip the rest
of the loop body, stop the looping action, and execute the statement following the loop statement. When used in a
switch, the break statement instructs Flash to skip the rest of the statements in that case block and jump to the first

statement following the enclosing switch statement.

In nested loops, the break statement only skips the rest of the immediate loop and does not break out of the entire
series of nested loops. For breaking out of an entire series of nested loops, see try..catch..finally.

Availability
Flash Lite 1.0

Last updated 3/22/2011

123

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 124
ActionScript language elements

Example
The following example uses the break statement to exit an otherwise infinite loop:

var i:Number = 0;
while (true) ({
trace (i) ;
if (1 >= 10) {
break; // this will terminate/exit the loop
1
1++;

}

which traces the following output:

W O 3 O U1 b W N BB O

[y
o

See also

_forceframerate property

case statement
case expression : statement (s)
Defines a condition for the switch statement. If the expression parameter equals the expression parameter of the

switch statement using strict equality (===), then Flash Player will execute statements in the statement(s) parameter
until it encounters a break statement or the end of the switch statement.

If you use the case statement outside a switch statement, it produces an error and the script doesn't compile.

Note: You should always end the statement(s) parameter with a break statement. If you omit the break statement from
the statement(s) parameter, it continues executing with the next case statement instead of exiting the switch
statement.

Availability
Flash Lite 1.0

Parameters

expression: String - Any expression.
Example

The following example defines conditions for the switch statement thisMonth. If thisMonth equals the expression
in the case statement, the statement executes.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

var thisMonth:Number = new Date () .getMonth() ;
switch (thisMonth) ({

case 0

trace ("January") ;

break;

case 1

trace ("February") ;

break;

case 5

case 6

case 7

trace ("Some summer month") ;

break;

case 8

trace ("September") ;

break;

default

trace ("some other month") ;

See also

break statement

class statement

[dynamic] class className [extends superClass] [implements interfaceName[, interfaceName. ..
11 { // class definition here}

Defines a custom class, which lets you instantiate objects that share methods and properties that you define. For
example, if you are developing an invoice-tracking system, you could create an invoice class that defines all the
methods and properties that each invoice should have. You would then use the new invoice () command to create
invoice objects.

The name of the class must match the name of the external file that contains the class. The name of the external file
must be the name of the class with the file extension .as appended. For example, if you name a class Student, the file
that defines the class must be named Student.as.

If a class is within a package, the class declaration must use the fully qualified class name of the form
base.subl.sub2.MyClass. Also, the class's AS file must be stored within the path in a directory structure that reflects the
package structure, such as base/sub1/sub2/MyClass.as. If a class definition is of the form "class MyClass," it is in the
default package and the MyClass.as file should be in the top level of some directory in the path.

For this reason, it's good practice to plan your directory structure before you begin creating classes. Otherwise, if you
decide to move class files after you create them, you have to modify the class declaration statements to reflect their new
location.

You cannot nest class definitions; that is, you cannot define additional classes within a class definition.

To indicate that objects can add and access dynamic properties at runtime, precede the class statement with the
dynamic keyword. To declare that a class implements an interface, use the implements keyword. To create subclasses
of a class, use the extends keyword. (A class can extend only one class, but can implement several interfaces.) You can
use implements and extends in a single statement. The following examples show typical uses of the implements and
extendskeyword$

Last updated 3/22/2011

125

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 126
ActionScript language elements

class C implements Interface i, Interface j // OK
class C extends Class_d implements Interface i, Interface j // OK
class C extends Class_d, Class e // not OK

Availability
Flash Lite 2.0

Parameters

className: string - The fully qualified name of the class.

Example

The following example creates a class called Plant. The Plant constructor takes two parameters.

// Filename Plant.as
class Plant {
// Define property names and types
var leafType:String;
var bloomSeason:String;
// Following line is constructor
// because it has the same name as the class
function Plant (param leafType:String, param bloomSeason:String) {
// Assign passed values to properties when new Plant object is created
this.leafType = param leafType;
this.bloomSeason = param bloomSeason;
1
// Create methods to return property values, because best practice
// recommends against directly referencing a property of a class
function getLeafType () :String {
return leafType;
1
function getBloomSeason () :String {
return bloomSeason;
1
}

In an external script file or in the Actions panel, use the new operator to create a Plant object.

var pineTree:Plant = new Plant ("Evergreen", "N/A");
// Confirm parameters were passed correctly

trace (pineTree.getLeafType()) ;

trace (pineTree.getBloomSeason()) ;

The following example creates a class called ImageLoader. The ImageLoader constructor takes three parameters.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 127
ActionScript language elements

// Filename ImageLoader.as

class ImageLoader extends MovieClip ({
function ImageLoader (image:String, target mc:MovieClip, init:Object) {
var listenerObject:0Object = new Object();
listenerObject.onLoadInit = function(target)
for (var i in init) {
target [i] = init[i];
}
i
var JPEG mcl:MovieClipLoader = new MovieClipLoader () ;
JPEG mcl.addListener (listenerObject) ;
JPEG_mcl.loadClip(image, target mc);

}
}

In an external script file or in the Actions panel, use the new operator to create an ImageLoader object.

var jakob mc:MovieClip = this.createEmptyMovieClip("jakob mc", this.getNextHighestDepth()) ;
var jakob:ImagelLoader = new

ImageLoader ("http://www.helpexamples.com/flash/images/imagel.jpg", jakob mc, { x:10, _y:10,
_alpha:70, _rotation:-5});

See also

dynamic statement

continue statement

continue

Jumps past all remaining statements in the innermost loop and starts the next iteration of the loop as if control had
passed through to the end of the loop normally. It has no effect outside a loop.

Availability
Flash Lite 1.0

Example

In the following while loop, continue causes the Flash interpreter to skip the rest of the loop body and jump to the
top of the loop, where the condition is tested:

trace ("example 1");
var i:Number = 0;
) |
== 0) {

while (i < 10
if (1 % 3

1++;

continue;

}

trace (i) ;

i+4;

}

In the following do. . while loop, continue causes the Flash interpreter to skip the rest of the loop body and jump to
the bottom of the loop, where the condition is tested:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

trace ("example 2");
var i:Number = 0;
do {

1++;
continue;

1
trace (i) ;
i++;

}

while (i < 10);

In a for loop, cont inue causes the Flash interpreter to skip the rest of the loop body. In the following example, if the
i modulo 3 equals 0, then the trace (i) statement is skipped:

trace ("example 3");

for (var i = 0; i < 10; i++) {
if (1 % 3 == 0) {
continue;
1
trace (i) ;

}

In the following for. . in loop, continue causes the Flash interpreter to skip the rest of the loop body and jump back
to the top of the loop, where the next value in the enumeration is processed:

for (i in _root) ({
if (i == "$version") ({
continue;

}

trace (i) ;

See also

do..while statement

default statement

default: statements

Defines the default case for a switch statement. The statements execute if the expression parameter of the switch
statement doesn't equal (using the strict equality [===] operation) any of the expression parameters that follow the
case keywords for a given switch statement.

A switch is not required to have a default case statement. A default case statement does not have to be last in the
list. If you use a default statement outside a switch statement, it produces an error and the script doesn't compile.

Availability
Flash Lite 2.0

Parameters
statements: String - Any statements.

Last updated 3/22/2011

128

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Example
In the following example, the expression A does not equal the expressions B or D, so the statement following the
default keyword is run and the trace () statement is sent to the Output panel.

var dayOfWeek:Number = new Date() .getDay() ;
switch (dayOfWeek) {
case 1
trace ("Monday") ;
break;
case 2
trace ("Tuesday") ;
break;
case 3
trace ("Wednesday") ;
break;
case 4
trace ("Thursday") ;
break;
case 5
trace ("Friday") ;
break;
default
trace ("Weekend") ;

See also

switch statement

delete statement

delete reference

Destroys the object reference specified by the reference parameter, and returns true if the reference is successfully
deleted; £alse otherwise. This operator is useful for freeing memory used by scripts. You can use the delete operator
to remove references to objects. After all references to an object are removed, Flash Player takes care of removing the
object and freeing the memory used by that object.

Although delete is an operator, it is typically used as a statement, as shown in the following example:
delete x;

The delete operator can fail and return false if the reference parameter does not exist or cannot be deleted. You
cannot delete predefined objects and properties, nor can you delete variables that are declared within a function with
the var statement. You cannot use the delete operator to remove movie clips.

Availability
Flash Lite 2.0

Returns

Boolean - A Boolean value.

Parameters
reference:Object - The name of the variable or object to eliminate.

Last updated 3/22/2011

129

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Example
Usage 1: The following example creates an object, uses it, and deletes it after it is no longer needed:

var account:0Object = new Object () ;

account.name = "Jon";
account.balance = 10000;
trace (account.name) ; //output: Jon

delete account;
trace (account.name) ; //output: undefined

Usage 2: The following example deletes a property of an object:

// create the new object "account"

var account:0bject = new Object();

// assign property name to the account
account.name = "Jon";

// delete the property

delete account.name;

Usage 3: The following example deletes an object property:

var my_array:Array = new Array();

my array[0] = "abc"; // my array.length == 1
my array[l] = "def"; // my array.length == 2
my array[2] = "ghi"; // my array.length == 3

// my_array[2] is deleted, but Array.length is not changed
delete my arrayl[2];

trace (my_ array.length); // output: 3

trace (my array); // output: abc,def,undefined

Usage 4: The following example shows the behavior of delete on object references:

var refl:0Object = new Object();

refl.name = "Jody";

// copy the reference variable into a new variable

// and delete refl

ref2 = refl;

delete refl;

trace("refl.name "+refl.name); //output: refl.name undefined
trace("ref2.name "+ref2.name); //output: ref2.name Jody

If re£1 had not been copied into ref2, the object would have been deleted when ref1 was deleted because there would
be no references to it. If you delete ref2, there are no references to the object; it will be destroyed, and the memory it
used becomes available.

See also

set variable statement

do..while statement

do { statement(s) } while (condition)

Similar to a while loop, except that the statements are executed once before the initial evaluation of the condition.
Subsequently, the statements are executed only if the condition evaluates to true.

A do. .while loop ensures that the code inside the loop executes at least once. Although this can also be done with a
while loop by placing a copy of the statements to be executed before the while loop begins, many programmers
believe that do. .while loops are easier to read.

Last updated 3/22/2011

130

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 131
ActionScript language elements

If the condition always evaluates to true, the do. .while loop is infinite. If you enter an infinite loop, you encounter
problems with Flash Player and eventually get a warning message or crash the player. Whenever possible, you should
use a for loop if you know the number of times you want to loop. Although for loops are easy to read and debug, they
cannot replace do. .while loops in all circumstances.

Availability
Flash Lite 1.0

Parameters
condition :Boolean - The condition to evaluate. The statement(s) within the do block of code will execute as long as
the condition parameter evaluates to true.

Example
The following example uses a do. . while loop to evaluate whether a condition is true, and traces myvar until myvar
is greater than 5. When myvar is greater than 5, the loop ends.

var myVar:Number = 0;

do {
trace (myvar) ;
myVar++;

}

while (myVar < 5);

/* output:

0

* b W N R

See also

break statement

dynamic statement

dynamic class className [extends superClass] [implements interfaceName[, interfaceName.. .
11 { // class definition here }

Specifies that objects based on the specified class can add and access dynamic properties at runtime.

Type checking on dynamic classes is less strict than type checking on nondynamic classes, because members accessed
inside the class definition and on class instances are not compared with those defined in the class scope. Class member
functions, however, can still be type checked for return type and parameter types. This behavior is especially useful
when you work with MovieClip objects, because there are many different ways of adding properties and objects to a
movie clip dynamically, such as MovieClip.createEmptyMovieClip () and MovieClip.createTextField().

Subclasses of dynamic classes are also dynamic.

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 132
ActionScript language elements

Example
In the following example, class Person2 has not yet been marked as dynamic, so calling an undeclared function on it
generates an error at compile time:

class Person2 {
var name:String;
var age:Number;
function Person2 (param name:String, param age:Number) {
trace ("anything");
this.name = param_name;
this.age = param_age;
}
}

In a FLA or AS file that's in the same directory, add the following ActionScript to Frame 1 on the Timeline:

// Before dynamic is added
var craig:Person2 = new Person2 ("Craiggers", 32);
for (i in craig) {

trace("craig." + i + " = " + craigl[il);

}

/* output:

craig.age = 32

craig.name = Craiggers */

If you add an undeclared function, dance, an error is generated, as shown in the following example:

trace("");
craig.dance = true;
for (i in craig) {
trace("craig." + i + " = " + craigl[il);

}

/* output: **Error** Scene=Scene 1, layer=Layer 1, frame=1:Line 14: There is no property with
the name 'dance'. craig.dance = true; Total ActionScript Errors: 1 Reported Errors: 1 */

Add the dynamic keyword to the Person2 class, so that the first line appears as follows:
dynamic class Person2 {
Test the code again, and you see the following output:

craig.dance = true craig.age = 32 craig.name = Craiggers

See also

class statement

else statement

if (condition){ statement (s); } else { statement(s); }

Specifies the statements to run if the condition in the i f statement returns £alse. The curly braces ({ }) used to enclose
the block of statements to be executed by the else statement are not necessary if only one statement will execute.

Availability
Flash Lite 1.0

Parameters
condition:Boolean - An expression that evaluates to true or false.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 133
ActionScript language elements

Example
In the following example, the else condition is used to check whether the age_txt variable is greater than or less than 18:

if (age_txt.text>=18) { trace("welcome, user"); } else { trace("sorry, junior");
userObject.minor = true; userObject.accessAllowed = false; }

In the following example, curly braces ({}) are not necessary because only one statement follows the else statement:

if (age_txt.text>18) { trace ("welcome, user"); } else trace("sorry, junior");

See also

ifFrameLoaded function

else if statement
if (condition){ statement(s); }

else if (condition){ statement (s);}
Evaluates a condition and specifies the statements to run if the condition in the initial i f statement returns false. If
the else if condition returns true, the Flash interpreter runs the statements that follow the condition inside curly
braces ({}). If the else if condition is false, Flash skips the statements inside the curly braces and runs the
statements following the curly braces.

Use the else if statement to create branching logic in your scripts. If there are multiple branches, you should
consider using a switch statement.

Availability
Flash Lite 1.0

Parameters

condition:Boolean - An expression that evaluates to true or false.

Example

The following example uses else if statements to compare score_txt to a specified value:

if (score txt.text>90) { trace("A"); } else if (score txt.text>75) { trace("B"); } else if
(score txt.text>60) { trace("C"); } else { trace("F"); }
See also

ifFrameLoaded function

extends statement

Usage 1:

class className extends otherClassName {}

Usage 2:

interface interfaceName extends otherInterfaceName {}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA
file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts
written in the Actions panel.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 134
ActionScript language elements

Defines a class that is a subclass of another class; the latter is the superclass. The subclass inherits all the methods,
properties, functions, and so on that are defined in the superclass.

Interfaces can also be extended using the extends keyword. An interface that extends another interface includes all
the original interface's method declarations.

Availability
Flash Lite 2.0

Parameters

className: string - The name of the class you are defining.

Example

In the following example, the Car class extends the Vehicle class so that all its methods, properties, and functions are
inherited. If your script instantiates a Car object, methods from both the Car class and the Vehicle class can be used.

The following example shows the contents of a file called Vehicle.as, which defines the Vehicle class:

class Vehicle ({
var numDoors:Number;
var color:String;
function Vehicle (param numDoors:Number, param color:String) {
this.numDoors = param numDoors;
this.color = param color;
function start () :Void {
trace (" [Vehicle] start");
function stop () :Void {
trace (" [Vehicle] stop");
function reverse() :Void
trace (" [Vehicle] reverse");

}
}

The following example shows a second AS file, called Car.as, in the same directory. This class extends the Vehicle class,
modifying it in three ways. First, the Car class adds a variable fullsizeSpare to track whether the car object has a
full-size spare tire. Second, it adds a new method specific to cars, activatecarAlarm(), that activates the car's anti-
theft alarm. Third, it overrides the stop () function to add the fact that the Car class uses an anti-lock braking system
to stop.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

class Car extends Vehicle {
var fullSizeSpare:Boolean;
function Car (param numDoors:Number, param color:String, param fullSizeSpare:Boolean) {
this.numbDoors = param numDoors;
this.color = param color;
this.fullSizeSpare = param_ fullSizeSpare;
}
function activateCarAlarm() :Void {
trace (" [Car] activateCarAlarm") ;
}
function stop () :Void {
trace (" [Car] stop with anti-lock brakes") ;

}
}

The following example instantiates a Car object, calls a method defined in the Vehicle class (start ()), then calls the
method overridden by the Car class (stop ()), and finally calls a method from the Car class (activateCaralarm()):

var myNewCar:Car = new Car (2, "Red", true);

myNewCar.start (); // output: [Vehicle] start

myNewCar.stop(); // output: [Car] stop with anti-lock brakes
myNewCar.activateCarAlarm(); // output: [Car] activateCarAlarm

A subclass of the Vehicle class can also be written using the keyword super, which the subclass can use to access
properties and methods of the superclass. The following example shows a third AS file, called Truck.as, again in the

same directory. The Truck class uses the super keyword in the constructor and again in the overridden reverse ()
function.

class Truck extends Vehicle {
var numWheels:Number;
function Truck (param numDoors:Number, param color:String, param numWheels:Number) {
super (param_numDoors, param color) ;
this.numWheels = param numWheels;
}
function reverse() :Void {
beep () ;
super.reverse () ;
}
function beep () :Void {
trace (" [Truck] make beeping sound") ;

}
}

The following example instantiates a Truck object, calls a method overridden by the Truck class (reverse ()), then
calls a method defined in the Vehicle class (stop ()):

var myTruck:Truck = new Truck(2, "White", 18);

myTruck.reverse(); // output: [Truck] make beeping sound [Vehicle] reverse
myTruck.stop(); // output: [Vehicle] stop
See also

class statement

Last updated 3/22/2011

135

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 136
ActionScript language elements

for statement

for(init; condition; next) f{
statement (s) ;

}

Evaluates the init (initialize) expression once and then starts a looping sequence. The looping sequence begins by
evaluating the condition expression. If the condition expression evaluates to true, statement is executed and the
next expression is evaluated. The looping sequence then begins again with the evaluation of the condition
expression.

The curly braces ({ }) used to enclose the block of statements to be executed by the for statement are not necessary if
only one statement will execute.

Availability
Flash Lite 1.0

Parameters
init - An expression to evaluate before beginning the looping sequence; usually an assignment expression. A var
statement is also permitted for this parameter.

Example
The following example uses for to add the elements in an array:

var my_ array:Array = new Array();
for (var i:Number = 0; i < 10; i++) {
my_array[i] = (i + 5) * 10;

}

trace (my_array); // output: 50,60,70,80,90,100,110,120,130,140

The following example uses for to perform the same action repeatedly. In the code, the for loop adds the numbers
from 1 to 100.

var sum:Number = 0;
for (var i:Number = 1; i <= 100; i++) {
sum += 1i;

}

trace(sum); // output: 5050
The following example shows that curly braces ({}) are not necessary if only one statement will execute:

var sum:Number = 0;
for (var i:Number = 1; 1 <= 100; i++)
sum += 1;

trace(sum); // output: 5050

See also

++ increment operator

for..in statement

for (variableIterant in object) { 1
statement (s) ;

}

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 137
ActionScript language elements

Iterates over the properties of an object or elements in an array and executes the statement for each property or
element. Methods of an object are not enumerated by the for. .in action.

Some properties cannot be enumerated by the for. . in action. For example, movie clip properties, suchas_xand _vy,
are not enumerated. In external class files, static members are not enumerable, unlike instance members.

The for. . in statement iterates over properties of objects in the iterated object's prototype chain. Properties of the
object are enumerated first, then properties of its immediate prototype, then properties of the prototype's prototype,
and so on. The for. . in statement does not enumerate the same property name twice. If the object child has
prototype parent and both contain the property prop, the for. . in statement called on child enumerates prop from
child but ignores the one in parent.

The curly braces ({}) used to enclose the block of statements to be executed by the for. . in statement are not
necessary if only one statement will execute.

If you write a for. . in loop in a class file (an external AS file), then instance members are not available for the loop,
but static members are. However, if you write a for. . in loop in a FLA file for an instance of the class, then instance
members are available but static ones are not.

Availability
Flash Lite 2.0

Parameters
variablelterant: string - The name of a variable to act as the iterant, referencing each property of an object or element
in an array.

Example

The following example shows using for. . in to iterate over the properties of an object:

var myObject:Object = {firstName:"Tara", age:27, city:"San Francisco"};
for (var prop in myObject) {
trace ("myObject."+prop+" = "+myObject [prop]l) ;
}
//output

myObject.firstName = Tara
myObject.age = 27
myObject.city = San Francisco

The following example shows using for. . in to iterate over the elements of an array:

var myArray:Array = new Array("one", "two", "three");
for (var index in myArray)

trace ("myArray ["+index+"] = " + myArray[index]) ;
// output:
myArray [2] = three
myArray [1l] = two
myArray[0] = one

The following example uses the typeof operator with for. . in to iterate over a particular type of child:

for (var name in this) {
if (typeof (this[namel]) == "movieclip") ({
trace ("I have a movie clip child named "+name) ;
}

}

Note: If you have several movie clips, the output consists of the instance names of those clips.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 138
ActionScript language elements

The following example enumerates the children of a movie clip and sends each to Frame 2 in their respective
Timelines. The RadioButtonGroup movie clip is a parent with several children, _RedradioButton_,
_GreenRadioButton , and BlueRadioButton .

for (var name in RadioButtonGroup) { RadioButtonGroup [name] .gotoAndStop(2); }

function statement

Usage 1: (Declares a named function.)

function functionname ([parameter(, parameterl, ...parameterN]) {statement (s)}
Usage 2: (Declares an anonymous function and returns a reference to it.)

function ([parameter0, parameterl,...parameterN]){ statement(s) }

Comprises a set of statements that you define to perform a certain task. You can define a function in one location and
invoke, or call, it from different scripts in a SWF file. When you define a function, you can also specify parameters for
the function. Parameters are placeholders for values on which the function operates. You can pass different parameters
to a function each time you call it so you can reuse a function in different situations.

Use the return statement in a function's statement(s) to cause a function to generate, or return, a value.

You can use this statement to define a funct ion with the specified functionname, parameters, and statement(s). When
a script calls a function, the statements in the function's definition are executed. Forward referencing is permitted;
within the same script, a function may be declared after it is called. A function definition replaces any prior definition
of the same function. You can use this syntax wherever a statement is permitted.

You can also use this statement to create an anonymous function and return a reference to it. This syntax is used in
expressions and is particularly useful for installing methods in objects.

For additional functionality, you can use the arguments object in your function definition. Some common uses of the
arguments object are creating a function that accepts a variable number of parameters and creating a recursive
anonymous function.

Availability
Flash Lite 2.0

Returns
String - Usage 1: The declaration form does not return anything. Usage 2: A reference to the anonymous function.

Parameters

functionname: String - The name of the declared function.

Example
The following example defines the function sqr, which accepts one parameter and returns the Math.pow (x, 2) ofthe
parameter:

function sqr (x:Number)
return Math.pow(x, 2);

}
var y:Number = sqgr(3);
trace(y); // output: 9

If the function is defined and used in the same script, the function definition may appear after using the function:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 139
ActionScript language elements

var y:Number = sqr(3);
trace(y); // output: 9
)

{

return Math.pow(x, 2);

function sqgr (x:Number

}

The following function creates a LoadVars object and loads params.txt into the SWF file. When the file successfully
loads, variables loaded traces:

var myLV:LoadVars = new LoadVars() ;

myLV.load ("params.txt") ;

myLV.onLoad = function (success:Boolean) {
trace ("variables loaded") ;

get statement

function get property () { // your statements here }

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA
file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts
written in the Actions panel.

Permits implicit getting of properties associated with objects based on classes you have defined in external class files.
Using implicit get methods lets you access properties of objects without accessing the property directly. Implicit get/set
methods are syntactic shorthand for the object .addProperty () method in ActionScript 1.

Availability
Flash Lite 2.0

Parameters

property: string - The word you use to refer to the property that get accesses; this value must be the same as the
value used in the corresponding set command.

Example

In the following example, you define a Team class. The Team class includes get/set methods that let you retrieve and
set properties within the class:

class Team {
var teamName:String;
var teamCode:String;
var teamPlayers:Array = new Array();
function Team(param name:String, param code:String)
this.teamName = param name;
this.teamCode = param code;
}
function get name () :String {
return this.teamName;
}
function set name (param name:String) :Void {
this.teamName = param name;
}
}

Enter the following ActionScript in a frame on the Timeline:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 140
ActionScript language elements

var giants:Team = new Team("San Fran", "SFO");
trace (giants.name) ;

giants.name = "San Francisco";

trace (giants.name) ;

/* output:

San Fran San Francisco */

When you trace giants.name, you use the get method to return the value of the property.

See also

addProperty (Object.addProperty method)

if statement

if (condition) { statement(s); }

Evaluates a condition to determine the next action in a SWF file. If the condition is t rue, Flash runs the statements
that follow the condition inside curly braces ({ }). If the condition is £alse, Flash skips the statements inside the curly
braces and runs the statements following the curly braces. Use the if statement along with the else and else if
statements to create branching logic in your scripts.

The curly braces ({}) used to enclose the block of statements to be executed by the if statement are not necessary if
only one statement will execute.

Availability
Flash Lite 1.0

Parameters
condition:Boolean - An expression that evaluates to true or false.

Example
In the following example, the condition inside the parentheses evaluates the variable name to see if it has the literal
value "Erica". If it does, the play () function inside the curly braces runs.

if (name == "Erica") {
play();

}

The following example uses an if statement to evaluate how long it takes a user to click the submit_btn instanceina
SWE file. If a user clicks the button more than 10 seconds after the SWF file plays, the condition evaluates to t rue and
the message inside the curly braces ({}) appears in a text field that's created at runtime (using createTextField()).
If the user clicks the button less than 10 seconds after the SWEF file plays, the condition evaluates to false and a
different message appears.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 141
ActionScript language elements

this.createTextField("message txt", this.getNextHighestDepth, 0, 0, 100, 22);
message_txt.autosize = true;

var startTime:Number = getTimer() ;

this.submit btn.onRelease = function() {

var difference:Number = (getTimer() - startTime) / 1000;

if (difference > 10) ({

this. parent.message_txt.text = "Not very speedy, you took "+difference+" seconds.";
}

else {

this. parent.message txt.text = "Very good, you hit the button in "+difference+" seconds.";

}
i

See also

else statement

implements statement

className implements interface0l [, interface02 , ...]

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA
file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts
written in the Actions panel.

Specifies that a class must define all the methods declared in the interface (or interfaces) being implemented.

Availability
Flash Lite 2.0

Example

See interface.

See also

class statement

import statement

import className
import packageName.*

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA
file's Publish Settings dialog box. This statement is supported in the Actions panel as well as in external class files.

Lets you access classes without specifying their fully qualified names. For example, if you want to use a custom class
macr.util.users.UserClass in a script, you must refer to it by its fully qualified name or import it; if you import it, you
can refer to it by the class name:

// before importing

var myUser:macr.util.users.UserClass = new macr.util.users.UserClass() ;
// after importing

import macr.util.users.UserClass;

var myUser:UserClass = new UserClass() ;

If there are several class files in the package (working_directory/macr/utils/users) that you want to access, you can
import them all in a single statement, as shown in the following example:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 142
ActionScript language elements

import macr.util.users.*;
You must issue the import statement before you try to access the imported class without fully specifying its name.

If you import a class but don't use it in your script, the class isn't exported as part of the SWF file. This means you can
import large packages without being concerned about the size of the SWF file; the bytecode associated with a class is
included in a SWEF file only if that class is actually used.

The import statement applies only to the current script (frame or object) in which it's called. For example, suppose on
Frame 1 of a Flash document you import all the classes in the macr.util package. On that frame, you can reference
classes in that package by their simple names:

// On Frame 1 of a FLA:
import macr.util.*;
var myFoo:foo = new fool() ;

On another frame script, however, you would need to reference classes in that package by their fully qualified names
(var myFoo:foo = new macr.util.foo () ;)oraddan import statement to the other frame that imports the classes
in that package.

Availability
Flash Lite 2.0

Parameters
className: string - The fully qualified name of a class you have defined in an external class file.

interface statement

interface InterfaceName [extends InterfaceName] {}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA
file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts
written in the Actions panel.

Defines an interface. An interface is similar to a class, with the following important differences:

« Interfaces contain only declarations of methods, not their implementation. That is, every class that implements an
interface must provide an implementation for each method declared in the interface.

+ Only public members are allowed in an interface definition; instance and class members are not permitted.

+ The get and set statements are not allowed in interface definitions.

Example
The following example shows several ways to define and implement interfaces:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 143
ActionScript language elements

(in top-level package .as files Ia, B, C, Ib, D, Ic, E)
// filename Ia.as
interface Ia ({
function k() :Number; // method declaration only
function n(x:Number) :Number; // without implementation
1
// filename B.as
class B implements Ia {
function k() :Number {
return 25;
1
function n(x:Number) :Number {
return x + 5;
1
} // external script or Actions panel // script file
var mvar:B = new B();
trace (mvar.k()); // 25
trace(mvar.n(7)); // 12
// filename c.as
class C implements Ia {
function k() :Number {
return 25;
1
} // error: class must implement all interface methods
// filename Ib.as
interface Ib ({
function o() :Void;
1
class D implements Ia, Ib {
function k() :Number {
return 15;
1
function n(x:Number) :Number {
return x * x;
1
function o() :Void {
trace("o") ;
1
} // external script or Actions panel // script file
mvar = new D();

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 144
ActionScript language elements

trace (mvar.k()); // 15
trace (mvar.n(7)); // 49
trace (mvar.o()); // "o"

interface Ic extends Ia {
function p() :Void;

}

class E implements Ib, Ic {
function k() :Number {
return 25;
1
function n(x:Number) :Number {
return x + 5;

}

function o() :Void {

trace("o") ;
1
function p() :Void {
trace("p") ;
1
}
See also

class statement

intrinsic statement

intrinsic class className [extends superClass] [implements interfaceName [, interfaceName...]] {
//class definition here

}

Allows compile-time type checking of previously defined classes. Flash uses intrinsic class declarations to enable
compile-time type checking of built-in classes such as Array, Object, and string. This keyword indicates to the
compiler that no function implementation is required, and that no bytecode should be generated for it.

The intrinsic keyword can also be used with variable and function declarations. Flash uses this keyword to enable
compile-time type checking for global functions and properties.

The intrinsic keyword was created specifically to enable compile-time type checking for built-in classes and objects,
and global variables and functions. This keyword was not meant for general purpose use, but may be of some value to
developers seeking to enable compile-time type checking with previously defined classes, especially if the classes are
defined using ActionScript 1.0.

This keyword is supported only when used in external script files, not in scripts written in the Actions panel.

Availability
Flash Lite 2.0

Example

The following example shows how to enable compile-time file checking for a previously defined ActionScript 1.0 class.
The code will generate a compile-time error because the call mycircle.setRadius () sends a String value asa
parameter instead of a Number value. You can avoid the error by changing the parameter to a Number value (for
example, by changing "10" to 10).

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 145
ActionScript language elements

// The following code must be placed in a file named Circle.as
// that resides within your classpath:
intrinsic class Circle {

var radius:Number;

function Circle (radius:Number) ;

function getArea () :Number;

function getDiameter () :Number;

function setRadius (param_radius:Number) :Number;

// This ActionScript 1.0 class definition may be placed in your FLA file.
// Circle class is defined using ActionScript 1.0
function Circle(radius) {

this.radius = radius;

this.getArea = function() {

return Math.PI*this.radius*this.radius;

}i

this.getDiameter = function()

return 2*this.radius;

i

this.setRadius = function(param radius) {

this.radius = param radius;

}

// ActionScript 2.0 code that uses the Circle class
var myCircle:Circle = new Circle(5);

trace (myCircle.getArea()) ;

trace (myCircle.getDiameter()) ;
myCircle.setRadius ("10") ;

trace (myCircle.radius) ;

trace (myCircle.getArea()) ;

trace (myCircle.getDiameter()) ;

See also

class statement

private statement

class className({

private var name;

private function name() {
// your statements here

}
}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA
file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts
written in the Actions panel.

Specifies that a variable or function is available only to the class that declares or defines it or to subclasses of that class.
By default, a variable or function is available to any caller. Use this keyword if you want to restrict access to a variable
or function.

You can use this keyword only in class definitions, not in interface definitions.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 146
ActionScript language elements

Availability
Flash Lite 2.0

Parameters

name: String - The name of the variable or function that you want to specify as private.

Example

The following example demonstrates how you can hide certain properties within a class using the private keyword.
Create a new AS file called Login.as.

class Login {
private var loginUserName:String;
private var loginPassword:String;
public function Login(param username:String, param password:String) {
this.loginUserName = param_ username;
this.loginPassword = param password;
public function get username () :String {
return this.loginUserName;
public function set username (param username:String) :Void {
this.loginUserName = param username;
public function set password(param password:String) :Void {
this.loginPassword = param password;

}
}

In the same directory as Login.as, create a new FLA or AS document. Enter the following ActionScript in Frame 1 of
the Timeline.

import Login;

var gus:Login = new Login("Gus", "Smith");
trace (gus.username) ; // output: Gus

trace (gus.password) ; // output: undefined
trace(gus.loginPassword); // error

Because loginPassword is a private variable, you cannot access it from outside the Login.as class file. Attempts to
access the private variable generate an error message.

See also

public statement

public statement

class className{
public var name;
public function name() {
// your statements here } }

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA
file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts
written in the Actions panel.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 147
ActionScript language elements

Specifies that a variable or function is available to any caller. Because variables and functions are public by default, this
keyword is used primarily for stylistic reasons. For example, you might want to use it for reasons of consistency in a
block of code that also contains private or static variables.

Availability
Flash Lite 2.0

Parameters
name: String - The name of the variable or function that you want to specify as public.

Example

The following example shows how you can use public variables in a class file. Create a new class file called User.as and
enter the following code:

class User ({

public var age:Number;
public var name:String;

}

Then create a new FLA or AS file in the same directory, and enter the following ActionScript in Frame 1 of the
Timeline:

import User;

var jimmy:User = new User();
jimmy.age = 27;

jimmy.name = "jimmy";

If you change one of the public variables in the User class to a private variable, an error is generated when trying to
access the property.

See also

private statement

return statement

return [expression]

Specifies the value returned by a function. The return statement evaluates expression and returns the result as a
value of the function in which it executes. The return statement causes execution to return immediately to the calling
function. If the return statement is used alone, it returns undefined.

You can't return multiple values. If you try to do so, only the last value is returned. In the following example, c is
returned:

return a, b, c¢ ;

If you need to return multiple values, you might want to use an array or object instead.

Availability
Flash Lite 2.0

Returns
String - The evaluated expression parameter, if provided.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 148
ActionScript language elements

Parameters
expression - A string, number, Boolean, array, or object to evaluate and return as a value of the function. This
parameter is optional.

Example
The following example uses the return statement inside the body of the sum() function to return the added value of
the three parameters. The next line of code calls sum () and assigns the returned value to the variable newvalue.

function sum(a:Number, b:Number, c:Number) :Number {
return (a + b + ¢);

}
var newValue:Number = sum(4, 32, 78);
trace (newValue); // output: 114

See also

Array function

set statement

function set property(varName) {
// your statements here

}

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA
file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts
written in the Actions panel.

Permits implicit setting of properties associated with objects based on classes you have defined in external class files.
Using implicit set methods lets you modify the value of an object's property without accessing the property directly.
Implicit get/set methods are syntactic shorthand for the object .addProperty () method in ActionScript 1.

Availability
Flash Lite 2.0

Parameters
property: string - Word that refers to the property that set will access; this value must be the same as the value used
in the corresponding get command.

Example

The following example creates a Login class that demonstrates how the set keyword can be used to set private
variables:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 149
ActionScript language elements

class Login {
private var loginUserName:String;
private var loginPassword:String;
public function Login(param username:String, param password:String) {
this.loginUserName = param username;
this.loginPassword = param password;
public function get username () :String {
return this.loginUserName;
public function set username (param username:String) :Void {
this.loginUserName = param_username;
public function set password(param password:String) :Void {
this.loginPassword = param password;

Ina FLA or AS file that is in the same directory as Login.as, enter the following ActionScript in Frame 1 of the Timeline:

var gus:Login = new Login("Gus", "Smith");
trace (gus.username); // output: Gus
gus.username = "Rupert";

trace (gus.username); // output: Rupert

In this example, the get function executes when the value is traced. The set function triggers only when you passita
value, as shown in the line:

gus.username = "Rupert";

See also

getProperty function

set variable statement

set ("variableString", expression)

Assigns a value to a variable. A variable is a container that holds data. The container is always the same, but the
contents can change. By changing the value of a variable as the SWF file plays, you can record and save information
about what the user has done, record values that change as the SWF file plays, or evaluate whether a condition is true
or false.

Variables can hold any data type (for example, String, Number, Boolean, Object, or MovieClip). The Timeline of each
SWE file and movie clip has its own set of variables, and each variable has its own value independent of variables on
other Timelines.

Strict data typing is not supported inside a set statement. If you use this statement to set a variable to a value whose
data type is different from the data type associated with the variable in a class file, no compiler error is generated.

A subtle but important distinction to bear in mind is that the parameter variableString is a string, not a variable
name. If you pass an existing variable name as the first parameter to set () without enclosing the name in quotation
marks ("), the variable is evaluated before the value of expression is assigned to it. For example, if you create a string
variable named myvariable and assign it the value "Tuesday", and then forget to use quotation marks, you will
inadvertently create a new variable named Tuesday that contains the value you intended to assign to myvariable:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

var myVariable:String = "Tuesday";
set (myVariable, "Saturday");

trace (myVariable); // outputs Tuesday
trace (Tuesday); // outputs Saturday

You can avoid this situation by using quotation marks ("):

set ("myVariable", "Saturday");
trace (myVariable); //outputs Saturday

Availability
Flash Lite 2.0

Parameters

variableString: String - A string that names a variable to hold the value of the expression parameter.

Example
In the following example, you assign a value to a variable. You are assigning the value of "Jakob" to the name variable.

set ("name", "Jakob") ;
trace (name) ;

The following code loops three times and creates three new variables, called captiono, captioni, and caption2:

for (var i = 0; 1 < 3; i++) {
set ("caption" + i, "this is caption " + 1i);

}

trace (caption0) ;
trace (captionl) ;
trace (caption2) ;

static statement

class className({
static var name;
static function name() {
// your statements here } }

Note: To use this keyword, you must specify ActionScript 2.0 and Flash Player 6 or later in the Flash tab of your FLA
file's Publish Settings dialog box. This keyword is supported only when used in external script files, not in scripts
written in the Actions panel.

Specifies that a variable or function is created only once per class rather than being created in every object based on
that class.

You can access a static class member without creating an instance of the class by using the syntax
someClassName . name. If you do create an instance of the class, you can also access a static member using the instance,
but only through a non-static function that accesses the static member.

You can use this keyword in class definitions only, not in interface definitions.

Availability
Flash Lite 2.0

Parameters

name: String - The name of the variable or function that you want to specify as static.

Last updated 3/22/2011

150

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Example

The following example demonstrates how you can use the static keyword to create a counter that tracks how many
instances of the class have been created. Because the numInstances variable is static, it will be created only once for
the entire class, not for every single instance. Create a new AS file called Users.as and enter the following code:

class Users {

private static var numInstances:Number = 0;
function Users() {
numInstances++;

}

static function get instances () :Number
return numInstances;

Create a FLA or AS document in the same directory, and enter the following ActionScript in Frame 1 of the Timeline:

trace (Users.instances) ;
var userl:Users = new Users() ;
trace (Users.instances) ;
var user2:Users = new Users() ;
trace (Users.instances) ;

See also

private statement

super statement
super.method([argl, ..., argN])
super ([argl, ..., argN])

The first syntax style may be used within the body of an object method to invoke the superclass version of a method,
and can optionally pass parameters (argl ... argN) to the superclass method. This is useful for creating subclass
methods that add additional behavior to superclass methods, but also invoke the superclass methods to perform their
original behavior.

The second syntax style may be used within the body of a constructor function to invoke the superclass version of the
constructor function and may optionally pass it parameters. This is useful for creating a subclass that performs
additional initialization, but also invokes the superclass constructor to perform superclass initialization.

Availability
Flash Lite 2.0

Returns
Both forms invoke a function. The function may return any value.

Parameters
method : Function - The method to invoke in the superclass.

argN - Optional parameters that are passed to the superclass version of the method (syntax 1) or to the constructor
function of the superclass (syntax 2).

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 152
ActionScript language elements

switch statement

switch (expression) {caseClause: [defaultClause:] }

Creates a branching structure for ActionScript statements. As with the if statement, the switch statement tests a
condition and executes statements if the condition returns a value of true. All switch statements should include a
default case. The default case should include a break statement that prevents a fall-through error if another case is
added later. When a case falls through, it doesn't have a break statement.

Availability
Flash Lite 1.0

Parameters

expression - Any expression.

Example

In the following example, if the String. fromCharCode (Key.getAscii ()) parameter evaluates to A, the trace()
statement that follows case "a" executes; if the parameter evaluates to a, the trace () statement that follows case
ranexecutes; and so on. If no case expression matches the string . fromCharCode (Key.getAscii ()) parameter, the
trace () statement that follows the default keyword executes.

var listenerObj:0Object = new Object () ;

listenerObj.onKeyDown = function() ({
switch (String.fromCharCode (Key.getAscii())) {
case "A"

trace ("you pressed A");
break;

case "a"

trace("you pressed a");

break;
case "E"
case "e"

trace("you pressed E or e");

break;
case "I"
case "i"

trace("you pressed I or i");

break;

default

trace ("you pressed some other key");
break;

}
}i

Key.addListener (listenerObj) ;

See also

=== strict equality operator

throw statement

throw expression

Generates, or throws, an error that can be handled, or caught, by a catch{} code block. If an exception is not caught
by a catch block, the string representation of the thrown value is sent to the Output panel.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 153
ActionScript language elements

Typically, you throw instances of the Error class or its subclasses (see the Example section).

Availability
Flash Lite 2.0

Parameters
expression:Object - An ActionScript expression or object.

Example
In this example, a function named checkEmail () checks whether the string that is passed to it is a properly formatted
e-mail address. If the string does not contain an @ symbol, the function throws an error.

function checkEmail (email:String) ({
if (email.indexOf ("e") == -1) {
throw new Error("Invalid email address") ;

}
}

checkEmail ("someuser theirdomain.com") ;

The following code then calls the checkEmail () function within a try code block. If the email_txt string does not
contain a valid e-mail address, the error message appears in a text field (error_txt).

try {
checkEmail ("Joe Smith") ;

}
catch (e) {
error_txt.text = e.toString();

}

In the following example, a subclass of the Error class is thrown. The checkEmail () function is modified to throw an
instance of that subclass.

// Define Error subclass InvalidEmailError // In InvalidEmailError.as: class
InvalidEmailAddress extends Error { var message = "Invalid email address."; }

In a FLA or AS file, enter the following ActionScript in Frame 1 of the Timeline:

import InvalidEmailAddress;

function checkEmail (email:String) {
if (email.indexOf ("e") == -1) {
throw new InvalidEmailAddress() ;
1

}

try {
checkEmail ("Joe Smith") ;

}

catch (e) {
this.createTextField("error_ txt", this.getNextHighestDepth(), 0, 0, 100, 22);
error_txt.autoSize = true;
error txt.text = e.toString();

See also

Error

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 154
ActionScript language elements

try..catch..finally statement

try {// ... try block ... }

finally { // ... finally block ... }
try { // ... try block ... }
catch(error [:ErrorTypell) // ... catch block ... }
[catch(error[:ErrorTypeN]) { // ... catch block ... }]
[finally { // ... finally block ... }]

Enclose a block of code in which an error can occur, and then respond to the error. If any code within the try code
block throws an error (using the throw statement), control passes to the catch block, if one exists, and then to the
finally code block, if one exists. The £inally block always executes, regardless of whether an error was thrown. If
code within the try block doesn't throw an error (that is, if the try block completes normally), then the code in the
finally block is still executed. The £inally block executes even if the try block exits using a return statement.

A try block must be followed by a catch block, a £inally block, or both. A single try block can have multiple catch
blocks but only one £inally block. You can nest try blocks as many levels deep as desired.

The error parameter specified in a catch handler must be a simple identifier such as e or theException or x. The
variable in a catch handler can also be typed. When used with multiple catch blocks, typed errors let you catch
multiple types of errors thrown from a single try block.

If the exception thrown is an object, the type will match if the thrown object is a subclass of the specified type. If an
error of a specific type is thrown, the catch block that handles the corresponding error is executed. If an exception
that is not of the specified type is thrown, the catch block does not execute and the exception is automatically thrown
out of the try block to a catch handler that matches it.

If an error is thrown within a function, and the function does not include a catch handler, then the ActionScript
interpreter exits that function, as well as any caller functions, until a catch block is found. During this process,
finally handlers are called at all levels.

Availability
Flash Lite 2.0

Parameters

error:Object - The expression thrown from a throw statement, typically an instance of the Error class or one of its
subclasses.

Example

The following example shows how to create a try. . finally statement. Because code in the £inally block is
guaranteed to execute, it is typically used to perform any necessary clean-up after a try block executes. In the following
example, set Interval () calls a function every 1000 milliseconds (1 second). If an error occurs, an error is thrown and
is caught by the catch block. The £inally block is always executed whether or not an error occurs. Because
setInterval () isused, clearInterval () must be placed in the £inally block to ensure that the interval is cleared
from memory.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

myFunction = function () ({
trace("this is myFunction");
Vi
try {
myInterval = setInterval (this, "myFunction", 1000);
throw new Error ("my error");
}
catch (myError:Error) ({
trace ("error caught: "+myError) ;
}
finally {
clearInterval (myInterval) ;
trace ("error is cleared") ;

}

In the following example, the £inally block is used to delete an ActionScript object, regardless of whether an error
occurred. Create a new AS file called Account.as.

class Account {

var balance:Number = 1000;

function getAccountInfo () :Number {

return (Math.round(Math.random() * 10) % 2);
}

In the same directory as Account.as, create a new AS or FLA document and enter the following ActionScript in Frame
1 of the Timeline:

import Account;
var account:Account = new Account () ;

try {
var returnVal = account.getAccountInfo() ;
if (returnval != 0) ({

throw new Error ("Error getting account information.") ;

}

}

finally {
if (account != null) {
delete account;

}
}

The following example demonstrates a try. . catch statement. The code within the try block is executed. If an
exception is thrown by any code within the try block, control passes to the catch block, which shows the error
message in a text field using the Error.toString () method.

In the same directory as Account.as, create a new FLA document and enter the following ActionScript in Frame 1 of
the Timeline:

Last updated 3/22/2011

155

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

import Account;
var account:Account = new Account () ;

try {
var returnVal = account.getAccountInfo() ;
if (returnval != 0) {

throw new Error ("Error getting account information.") ;

}

trace ("success") ;
}
catch (e) {
this.createTextField("status_txt", this.getNextHighestDepth(), 0, 0, 100, 22);
status_txt.autosize = true;
status_txt.text = e.toString();

}

The following example shows a try code block with multiple, typed catch code blocks. Depending on the type of error
that occurred, the try code block throws a different type of object. In this case, myRecordset is an instance of a
(hypothetical) class named RecordSet whose sortRows () method can throw two types of errors, RecordSetException
and MalformedRecord.

In the following example, the RecordSetException and MalformedRecord objects are subclasses of the Error class.
Each is defined in its own AS class file.

// In RecordSetException.as:
class RecordSetException extends Error {
var message = "Record set exception occurred.";
}
// In MalformedRecord.as:
class MalformedRecord extends Error {
var message = "Malformed record exception occurred.";

}

Within the RecordSet class's sortRows () method, one of these previously defined error objects is thrown, depending
on the type of exception that occurred. The following example shows how this code might look:

class RecordSet {
function sortRows () {
var returnVal:Number = randomNum() ;
if (returnval == 1) {
throw new RecordSetException() ;
}
else if (returnval == 2) {
throw new MalformedRecord() ;
1
1

function randomNum () :Number {
return Math.round (Math.random() * 10) % 3;

}
}

Finally, in another AS file or FLA script, the following code invokes the sortRows () method on an instance of the
RecordSet class. It defines catch blocks for each type of error that is thrown by sortRows ()

Last updated 3/22/2011

156

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

import RecordSet;
var myRecordSet:RecordSet = new RecordSet () ;

try {
myRecordSet .sortRows () ;
trace ("everything is fine");

}

catch (e:RecordSetException) ({
trace (e.toString()) ;

}

catch (e:MalformedRecord) {
trace (e.toString()) ;

See also

Error

var statement
var variableName [= valuell [...,variableNameN[=valueN]]
Used to declare local variables. If you declare variables inside a function, the variables are local. They are defined for

the function and expire at the end of the function call. More specifically, a variable defined using var is local to the
code block containing it. Code blocks are demarcated by curly braces ({}).

If you declare variables outside a function, the variables are available throughout the timeline containing the statement.

You cannot declare a variable scoped to another object as a local variable.

my array.length = 25; // ok
var my array.length = 25; // syntax error

When you use var, you can strictly type the variable.

You can declare multiple variables in one statement, separating the declarations with commas (although this syntax
may reduce clarity in your code):

var first:String = "Bart", middle:String = "J.", last:String = "Bartleby";

Note: You must also use var when declaring properties inside class definitions in external scripts. Class files also
support public, private, and static variable scopes.

Availability
Flash Lite 2.0

Parameters
variableName: String - An identifier.

Example

The following ActionScript creates a new array of product names. Array.push adds an element onto the end of the
array. If you want to use strict typing, it is essential that you use the var keyword. Without var before product_array,
you get errors when you try to use strict typing.

Last updated 3/22/2011

157

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 158
ActionScript language elements

var product_array:Array = new Array ("MX 2004", "Studio", "Dreamweaver", "Flash", "ColdFusion",
"Contribute", "Breeze") ;

product_array.push("Flex") ;

trace (product_array) ;

// output: MX 2004,Studio,Dreamweaver,Flash, ColdFusion, Contribute, Breeze, Flex

while statement
while(condition) { statement (s); }
Evaluates a condition and if the condition evaluates to true, runs a statement or series of statements before looping

back to evaluate the condition again. After the condition evaluates to £alse, the statement or series of statements is
skipped and the loop ends.

The while statement performs the following series of steps. Each repetition of steps 1 through 4 is called an iteration
of the loop. The condition is retested at the beginning of each iteration, as shown in the following steps:

+ The expression condition is evaluated.

« If condition evaluates to t rue or a value that converts to the Boolean value t rue, such as a nonzero number, go to step
3. Otherwise, the while statement is completed and execution resumes at the next statement after the while loop.

+ Run the statement block statement(s).
« Gotostep 1.

Looping is commonly used to perform an action while a counter variable is less than a specified value. At the end of
each loop, the counter is incremented until the specified value is reached. At that point, the condition is no longer true,
and the loop ends.

The curly braces ({ }) used to enclose the block of statements to be executed by the while statement are not necessary
if only one statement will execute.

Availability
Flash Lite 1.0

Parameters

condition:Boolean - An expression that evaluates to true or false.

Example
In the following example, the while statement is used to test an expression. When the value of i is less than 20, the
value of i is traced. When the condition is no longer true, the loop exits.
var i:Number = 0;
while (i < 20) {
trace (i) ;

i += 3;

}
The following result is displayed in the Output panel.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

See also

continue statement

with statement
with (object:Object) { statement(s); }
Lets you specify an object (such as a movie clip) with the object parameter and evaluate expressions and actions inside

that object with the statement(s) parameter. This prevents you from having to repeatedly write the object's name or the
path to the object.

The object parameter becomes the context in which the properties, variables, and functions in the statement(s)
parameter are read. For example, if object is my_array, and two of the properties specified are length and concat,
those properties are automatically read as my_array.length and my_array.concat. In another example, if object is
state.california, any actions or statements inside the with statement are called from inside the california
instance.

To find the value of an identifier in the statement(s) parameter, ActionScript starts at the beginning of the scope chain
specified by the object and searches for the identifier at each level of the scope chain, in a specific order.

The scope chain used by the with statement to resolve identifiers starts with the first item in the following list and
continues to the last item:

+ The object specified in the object parameter in the innermost with statement.
+ The object specified in the object parameter in the outermost with statement.

+ The Activation object. (A temporary object that is automatically created when a function is called that holds the
local variables called in the function.)

+ The movie clip that contains the currently executing script.
+ The Global object (built-in objects such as Math and String).

To set a variable inside a with statement, you must have declared the variable outside the with statement, or you must
enter the full path to the Timeline on which you want the variable to live. If you set a variable in a with statement
without declaring it, the with statement will look for the value according to the scope chain. If the variable doesn't
already exist, the new value will be set on the Timeline from which the with statement was called.

Instead of using with (), you can use direct paths. If you find that paths are long and cumbersome to type, you can
create a local variable and store the path in the variable, which you can then reuse in your code, as shown in the
following ActionScript:

var shortcut = this. parent. parent.name txt; shortcut.text = "Hank"; shortcut.autoSize = true;

Availability
Flash Lite 2.0

Parameters
object:0bject - An instance of an ActionScript object or movie clip.

Example

The following example sets the _x and _y properties of the someother mc instance, and then instructs someOther mc
to go to Frame 3 and stop.

Last updated 3/22/2011

159

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

with (someOther mc) {
X = 50;
_y = 100;
gotoAndStop (3) ;

}

The following code snippet shows how to write the preceding code without using a with statement.

someOther mc._x = 50;
someOther mc. y = 100;
someOther mc.gotoAndStop(3) ;

The with statement is useful for accessing multiple items in a scope chain list simultaneously. In the following
example, the built-in Math object is placed at the front of the scope chain. Setting Math as a default object resolves the
identifiers cos, sin, and PI to Math.cos, Math.sin, and Math.PI, respectively. The identifiers a, x, y, and r are not
methods or properties of the Math object, but because they exist in the object activation scope of the function polar (),
they resolve to the corresponding local variables.

function polar (r:Number) :Void {
var a:Number, x:Number, y:Number;
with (Math)
a = PI * pow(r, 2);
X = r * cos(PI);
y = r * sin(PI / 2);

}
trace("area = " + a);
trace("x = " + X);
trace("y = " + vy);

} polar(3);

The following result is displayed in the Output panel.

area = 28.2743338823081
x = -3

y =3

fscommand2 commands

The following commands are available for the £scommand2 () function. For a description of the £scommand2 ()
function, see fscommand2 Function under "Global functions."

fscommand2 fommands

Command Description

ExtendBacklightDuration | Extends the duration of a backlight for a specified period of time.

FullScreen Sets the size of the display area to be used for rendering.

GetBatteryLevel Returns the current battery level.

GetDevice Sets a parameter that identifies the device on which Flash Lite is running.
GetDevicelD Sets a parameter that represents the unique identifier of the device (for example, the

serial number).

GetFreePlayerMemory Returns the amount of heap memory, in kilobytes, currently available to Flash Lite.

Last updated 3/22/2011

160

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Command

Description

GetMaxBatteryLevel

Returns the maximum battery level of the device.

GetMaxSignalLevel

Returns the maximum signal strength level as a numeric value.

GetMaxVolumeLevel

Returns the maximum volume level of the device as a numeric value.

GetNetworkConnectionN
ame

Returns the name of the active or default network connection.

GetNetworkConnectStat
us

Returns a value that indicates the current network connection status.

GetNetworkGeneration

Returns the generation of the current mobile wireless network (such as 2G or second
generation of mobile wireless).

GetNetworkName

Sets a parameter to the name of the current network.

GetNetworkRequestStatu
s

Returns a value indicating the status of the most recent HTTP request.

GetNetworkStatus

Returns a value indicating the network status of the phone (that is, whether there is a
network registered and whether the phone is currently roaming).

GetPlatform

Sets a parameter that identifies the current platform, which broadly describes the class
of device.

GetPowerSource

Returns a value that indicates whether the power source is currently supplied from a
battery or from an external power source.

GetSignalLevel

Returns the current signal strength as a numeric value.

GetSoftKeyLocation

Returns a value that indicates the location of soft keys on the device.

GetTotalPlayerMemory

Returns the total amount of heap memory, in kilobytes, allocated to Flash Lite.

GetVolumelLevel

Returns the current volume level of the device as a numeric value.

Quit

Causes the Flash Lite Player to stop playback and exit.

ResetSoftKeys

Resets the soft keys to their original settings.

SetFocusRectColor

Sets the color of the focus rectangle to any color.

SetlnputTextType

Specifies the mode in which the input text field should be opened.

SetSoftKeys

Remaps the softkeys of a mobile device.

StartVibrate

Starts the phone's vibration feature.

StopVibrate

Stops the current vibration, if any.

ExtendBacklightDuration fscommand2 command

ExtendBacklightDuration

Extends the duration of a backlight for a specified period of time.

If the duration is greater than zero, this command specifies the amount of time in seconds (maximum of 60 seconds)
that the backlight should be kept on. If the time elapses without an additional call to this command, the backlight
behavior reverts to the default duration. If duration is zero, the backlight behavior immediately reverts to the default

behavior.

Note: This feature is system dependent. For example, some systems limit the total duration that the backlight can be

extended.

Last updated 3/22/2011

161

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Note: This command is not supported for BREW devices.

Command Parameters Value Returned

ExtendBacklightDuration duration The backlight -1: Not supported.
duration, in seconds.

Maximum value of 60 seconds. 0: An error occurred, and the operation could

not be completed.

1: Success.

Availability
Flash Lite 2.0

Example
The following example extends the duration of the backlight for 45 seconds:

status = FSCommand2 ("ExtendBacklightDuration", 45)

FullScreen fscommand2 command

FullScreen
Sets the size of the display area to be used for rendering.

The size can be a defined variable or a constant string value, with one of these values: true (full screen) or false (less
than full screen). Any other value is treated as the value false.

Note: This command is supported only when Flash Lite is running in stand-alone mode. It is not supported when the
player is running in the context of another application (for example, as a plug-in to a browser).

Command Parameters Value Returned

FullScreen size -1: Not supported.

0: Supported.

Availability
Flash Lite 1.1

Example
The following example sets the size of the display area to the full screen:

status = fscommand2 ("FullScreen", true);

GetBatteryLevel fscommand2 command

GetBatteryLevel

Returns the current battery level. It is a numeric value that ranges from 0 to the maximum value returned by the
GetMaxBatteryLevel variable.

Note: This command is not supported for BREW devices.

Last updated 3/22/2011

162

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Command Parameters Value Returned

GetBatteryLevel None. -1: Not supported.

Other numeric values: The current battery level.

Availability
Flash Lite 1.1

Example

The following example sets the battLevel variable to the current level of the battery:

battLevel = fscommand2 ("GetBatteryLevel") ;

GetDevice fscommand2 command

GetDevice

Sets a parameter that identifies the device on which Flash Lite is running. This identifier is typically the model name.

Command Parameters Value Returned

GetDevice device String to receive the identifier of the device. It can be [-1: Not supported.
either the name of a variable or a string value that contains the

name of a variable. 0: Supported..

Availability
Flash Lite 1.1

Example

The following example assigns the device identifier to the device variable:
status = fscommand2 ("GetDevice", "device");
Some sample results and the devices they signify follow:

D5061 A Mitsubishi 506i phone. DFoMa1 A Mitsubishi FOMA1 phone. F506i A Fujitsu 506i phone. FFoMa1 A Fujitsu
FOMALI phone. N5061 An NEC 506i phone. NFoMA1 An NEC FOMA1 phone. Nokia3650 A Nokia 3650 phone. ps06i
A Panasonic 506i phone. PFoMA1 A Panasonic FOMA1 phone. su506i A Sharp 5061 phone. sHFoMA1 A Sharp FOMAL1
phone. sos06i A Sony 506iphone.

GetDevicelD fscommand2 command

GetDeviceID

Sets a parameter that represents the unique identifier of the device (for example, the serial number).

Command Parameters Value Returned

GetDevicelD id A string to receive the unique identifier of the device. It can [-1: Not supported.
be either the name of a variable or a string value that contains

the name of a variable. 0: Supported.

Availability
Flash Lite 1.1

Last updated 3/22/2011

163

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Example
The following example assigns the unique identifier to the deviceID variable:

status = fscommand2 ("GetDeviceID", "devicelID") ;

GetFreePlayerMemory fscommand2 command

GetFreePlayerMemory

Returns the amount of heap memory, in kilobytes, currently available to Flash Lite.

Command Parameters Value Returned

GetFreePlayerMemory None -1: Not supported.

0 or positive value: Available kilobytes of heap
memory.

Availability
Flash Lite 1.1

Example

The following example sets status equal to the amount of free memory:

status = fscommand2 ("GetFreePlayerMemory") ;

GetMaxBatteryLevel fscommand2 command

GetMaxBatteryLevel
Returns the maximum battery level of the device. It is a numeric value greater than 0.

Note: This command is not supported for BREW devices.

Command Parameters Value Returned

GetMaxBatteryLevel None -1: Not supported.

Other values: The maximum battery level.

Availability
Flash Lite 1.1

Example
The following example sets the maxBatt variable to the maximum battery level:

maxBatt = fscommand2 ("GetMaxBatteryLevel") ;

GetMaxSignalLevel fscommand2 command

GetMaxSignalLevel
Returns the maximum signal strength level as a numeric value.

Note: This command is not supported for BREW devices.

Last updated 3/22/2011

164

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Command Parameters Value Returned

GetMaxSignalLevel None -1: Not supported.

Other numeric values: The maximum signal level.

Availability
Flash Lite 1.1

Example
The following example assigns the maximum signal strength to the sigStrengthMax variable:

sigStrengthMax = fscommand2 ("GetMaxSignallLevel") ;

GetMaxVolumelevel fscommand2 command

GetMaxVolumeLevel

Returns the maximum volume level of the device as a numeric value.

Command Parameters Value Returned

GetMaxVolumelLevel None -1: Not supported.

Other values: The maximum volume level.

Availability
Flash Lite 1.1

Example

The following example sets the maxvolume variable to the maximum volume level of the device:

maxvolume = fscommand?2 ("GetMaxVolumeLevel") ;
trace (maxvolume); // output: 80

GetNetworkConnectionName fscommand2 command

GetNetworkConnectionName

Returns the name of the active or default network connection. For mobile devices, this connection is also known as an

access point.

Note: This command is not supported for BREW devices.

Command Parameters Value Returned

GetNetworkConnectionName None -1: Not supported.

0: Success: returns the active network connection
name.

1: Success: returns the default network connection
name.

2: Unable to retrieve the connection name.

Availability
Flash Lite 2.0

Last updated 3/22/2011

165

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 166
ActionScript language elements

Example
The following example returns the name of the active or default network connection in the argument

myConnectionName:

status = FSCommand2 ("GetNetworkConnectionName", "myConnectionName") ;

GetNetworkConnectStatus fscommand2 command

GetNetworkConnectStatus
Returns a value that indicates the current network connection status.

Note: This command is not supported for BREW devices.

Command Parameters Value Returned

GetNetworkConnectStatus None -1: Not supported.
0: There is currently an active network connection.

1: The device is attempting to connect to the
network.

2: There is currently no active network connection.
3: The network connection is suspended.

4:The network connection cannot be determined.

Availability
Flash Lite 1.1

Example
The following example assigns the network connection status to the connectstatus variable, and then uses a switch
statement to update a text field with the status of the connection:

connectstatus = FSCommand2 ("GetNetworkConnectStatus") ;
switch (connectstatus) ({
case -1
_root.myText += "connectstatus not supported" + "\n";
break;
case 0
_root.myText += "connectstatus shows active connection" + "\n";
break;
case 1
_root.myText += "connectstatus shows attempting connection" + "\n";
break;
case 2
_root.myText += "connectstatus shows no connection" + "\n";
break;
case 3
_root.myText += "connectstatus shows suspended connection" + "\n";
break;
case 4
_root.myText += "connectstatus shows indeterminable state" + "\n";
break;

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 167
ActionScript language elements

GetNetworkGeneration fscommand2 command

GetNetworkGeneration

Returns the generation of the current mobile wireless network, such as 2G (second generation of mobile wireless).

Command Parameters Value Returned

GetNetworkGeneration None -1: Not supported

0: Unknown generation of mobile wireless

network
1:2G
2:2.5G
3:3G

Availability

Flash Lite 2.0

Example

The following example shows syntax for returning the generation of the network:

status = fscommand2 ("GetNetworkGeneration") ;

GetNetworkName fscommand2 command

GetNetworkName
Sets a parameter to the name of the current network.

Note: This command is not supported for BREW devices.

Command Parameters Value Returned

GetNetworkName networkName String representing the -1: Not supported.
network name. It can be either the name of a
variable or a string value that contains the
name of a variable.

0: No network is registered.

1: Network is registered, but network

If the network is registered and its name can name is not known.

be determined, networkname is set to the
network name; otherwise, it is set to the
empty string.

2:Network is registered, and network
name is known.

Availability
Flash Lite 1.1

Example
The following example assigns the name of the current network to the myNetName parameter and a status value to the
netNameStatus variable:

netNameStatus = fscommand2 ("GetNetworkName", "myNetName") ;

GetNetworkRequestStatus fscommand2 command

GetNetworkRequestStatus

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 168
ActionScript language elements

Returns a value indicating the status of the most recent HTTP request.

Note: This command is not supported for BREW devices.

Command Parameters Value Returned

GetNetworkRequestStatus None -1: The command is not supported.

0:Thereis a pending request, a network connection has
been established, the server's host name has been
resolved, and a connection to the server has been
made.

1: There is a pending request, and a network
connection is being established.

2:Thereis a pending request, but a network connection
has not yet been established.

3:Thereis a pending request, a network connection has
been established, and the server's host name is being
resolved.

4:The request failed because of a network error.

5: The request failed because of a failure in connecting
to the server.

6: The server has returned an HTTP error (for example,
404).

7: The request failed because of a failure in accessing
the DNS server or in resolving the server name.

8: The request has been successfully fulfilled.

9: The request failed because of a timeout. 10: The
request has not yet been made.

Availability
Flash Lite 1.1

Example
The following example assigns the status of the most recent HTTP request to the requeststatus variable, and then
uses a switch statement to update a text field with the status:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

requeststatus = fscommand2 ("GetNetworkRequestStatus") ;
switch (requeststatus) {
case -1:
_root.myText += "requeststatus not supported" + "\n";
break;
case 0:
_root.myText += "connection to server has been made" +
break;
case 1:

169

"\1’1";

_root.myText += "connection is being established" + "\n";

break;
case 2:

_root.myText += "pending request, contacting network" +

break;
case 3:

"\1’1";

_root.myText += "pending request, resolving domain" + "\n";

break;

case 4:

_root.myText += "failed, network error" + "\n";
break;

case 5:

_root.myText += "failed, couldn't reach server" + "\n";
break;

case 6:

_root.myText += "HTTP error" + "\n";

break;

case 7:

_root.myText += "DNS failure" + "\n";

break;

case 8:

_root.myText += "request has been fulfilled" + "\n";
break;

case 9:

_root.myText += "request timedout" + "\n";

break;

case 10:

_root.myText += "no HTTP request has been made" + "\n";
break;

GetNetworkStatus fscommand2 command

GetNetworkStatus

Returns a value indicating the network status of the phone (that is, whether there is a network registered and whether

the phone is currently roaming).

Command Parameters Value Returned

0: No network registered.

1: On home network.

GetNetworkStatus None -1: The command is not supported.

2: On extended home network.

3: Roaming (away from home network).

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Availability
Flash Lite 1.1

Example

The following example assigns the status of the network connection to the networkstatus variable, and then uses a

switch statement to update a text field with the status:

networkstatus = fscommand2 ("GetNetworkStatus") ;
switch (networkstatus)
case -1:
_root.myText += "network status not supported" + "\n";
break;
case O:
_root.myText += "no network registered" + "\n";
break;
case 1:
_root.myText += "on home network" + "\n";
break;
case 2:
_root.myText += "on extended home network" + "\n";
break;
case 3:
_root.myText += "roaming" + "\n";
break;

GetPlatform fscommand2 command

GetPlatform

Sets a parameter that identifies the current platform, which broadly describes the class of device. For devices with open

operating systems, this identifier is typically the name and version of the operating system.

Command Parameters Value Returned
GetPlatform platform String to receive the identifier of the | -1: Not supported
platform.
0: Supported.
Availability

Flash Lite 1.1

Example
The following example sets the plat form parameter to the identifier for the current platform:

status = fscommand2 ("GetPlatform", "platform") ;

The following examples show some sample results for platform:

5061 A 506i phone. Fomal A FOMALI phone. Symbiane.1_s60.1 A Symbian 6.1, Series 60 version 1 phone.

Symbian7.0 A Symbian 7.0 phone

GetPowerSource fscommand2 command

GetPowerSource

Last updated 3/22/2011

170

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 171
ActionScript language elements

Returns a value that indicates whether the power source is currently supplied from a battery or from an external power
source.

Note: This command is not supported for BREW devices.

Command Parameters Value Returned

GetPowerSource None -1: Not supported.
0: Device is operating on battery power.

1: Device is operating on an external power
source.

Availability
Flash Lite 1.1

Example
The following example sets the myPower variable to indicate the power source, or to -1 if it was unable to do so:

myPower = fscommand2 ("GetPowerSource") ;

GetSignalLevel fscommand2 command

GetSignalLevel
Returns the current signal strength as a numeric value.

Note: This command is not supported for BREW devices.

Command Parameters Value Returned

GetSignalLevel None -1: Not supported.

Other numeric values: The current signal level, ranging
from 0 to the maximum value returned by
GetMaxSignalLevel.

Availability
Flash Lite 1.1

Example
The following example assigns the signal level value to the sigLevel variable:

sigLevel = fscommand2 ("GetSignalLevel") ;

GetSoftKeyLocation fscommand2 command

GetSoftKeyLocation

Returns a value that indicates the location of soft keys on the device.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Command

Parameters

Value Returned

GetSoftKeyLocation

None

-1: Not supported.
0: Soft keys on top.
1: Soft keys on left.

2: Soft keys on bottom.

3: Soft keys on right.

Availability
Flash Lite 2.0

Example

The following example sets the status variable to indicate the soft key location, or to -1 if soft keys are not supported

on the device:

status = fscommand2 ("GetSoftKeyLocation") ;

GetTotalPlayerMemory fscommand2 command

GetTotalPlayerMemory

Returns the total amount of heap memory, in kilobytes, allocated to Flash Lite.

Command

Parameters

Value Returned

GetTotalPlayerMemory

None

-1: Not supported.

0 or positive value: Total kilobytes of heap
memory.

Availability
Flash Lite 1.1

Example

The following example sets the status variable to the total amount of heap memory:

status = fscommand2 ("GetTotalPlayerMemory") ;

GetVolumelLevel fscommand2 command

GetVolumeLevel

Returns the current volume level of the device as a numeric value.

Command

Parameters

Value Returned

GetVolumeLevel

None

-1: Not supported.

Other numeric values: The current volume level, ranging
from 0 to the value returned by
fscommand2 ("GetMaxVolumeLevel") .

Availability
Flash Lite 1.1

Last updated 3/22/2011

172

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 173
ActionScript language elements

Example
The following example assigns the current volume level to the volume variable:

volume = fscommand2 ("GetVolumeLevel") ;
trace (volume); // output: 50

Quit fscommand2 command
Quit
Causes the Flash Lite player to stop playback and exit.

This command is supported only when Flash Lite is running in stand-alone mode. It is not supported when the player
is running in the context of another application (for example, as a plug-in to a browser).

Command Parameters Value Returned
Quit None -1: Not supported.
Availability

Flash Lite 1.1

Example

The following example causes Flash Lite to stop playback and quit when running in stand-alone mode:

status = fscommand2 ("Quit") ;

ResetSoftKeys fscommand2 command

ResetSoftKeys
Resets the soft keys to their original settings.

This command is supported only when Flash Lite is running in stand-alone mode. It is not supported when the player
is running in the context of another application (for example, as a plug-in to a browser).

Command Parameters Value Returned
ResetSoftKeys None -1: Not supported.
Availability

Flash Lite 1.1

Example
The following statement resets the soft keys to their original settings:

status = fscommand2 ("ResetSoftKeys") ;

SetFocusRectColor fscommand2 command

SetFocusRectColor
Sets the color of the focus rectangle to any color.

The acceptable range of values for red, green, and blue is 0-255. For Flash, you cannot change the default color of the
focus rectangle, which is yellow.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Command

Parameters Value Returned

SetFocusRectColor

None -1: Not supported.
0: Indeterminable.

1:Success.

Availability
Flash Lite 2.0

Example

The following statement resets the color of the focus rectangle:

status = fscommand2 ("SetFocusRectColor, <red>, <green>, <blues>);

SetinputTextType fscommand2 command

SetInputTextType

Specifies the mode in which the input text field should be opened.

Flash Lite supports input text functionality by asking the host application to start the generic device-specific text input
interface, often referred to as the front-end processor (FEP). When the set Input Text Type command is not used, the

FEP is opened in default mode.

Command Parameters Value Returned
SetInputTextType variableName Name of the input text field. It can be either | o: Failure.
the name of a variable or a string value that contains the
1: Success.

name of a variable.

Note: A text field's variable name is not the same as its
instance name. You can specify a text field's variable name in
the Var text box in the Property inspector or by using
ActionScript. For example, the following code restricts input
to numeric characters for the text field instance (numTxt)
whose associated variable name is "numTxt_var".

var numTxt:TextField;numTxt.variable =
"numTxt_var"; fscommand2 ("SetInputTextType",
"numTxt_var", "Numeric");

type One of the values Numeric, Alpha,Alphanumeric,
Latin,NonLatin, or NoRestriction.

The following table shows what effect each mode has, and what modes are substituted:

InputTextType Mode Sets the FEP to one of these If not supported on current device,
mutually exclusive modes opens the FEP in this mode

Numeric Numbers only (0 to 9) Alphanumeric

Alpha Alphabetic charactersonly (AtoZ,ato | Alphanumeric

2)

Alphanumeric

Alphanumeric characters only (0to 9, | Latin
AtoZ,atoz)

Latin

Latin characters only (alphanumeric NoRestriction
and punctuation)

Last updated 3/22/2011

174

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

InputTextType Mode Sets the FEP to one of these If not supported on current device,
mutually exclusive modes opens the FEP in this mode
NonLatin Non-Latin characters only (for NoRestriction

example, Kanji and Kana)

NoRestriction Default mode (sets no restriction on N/A
the FEP)

NOTE: Not all mobile phones
support these input text field
types. For this reason, you
must validate the input text
data.

Availability
Flash Lite 1.1

Example
The following line of code sets the input text type of the field associated with the input1 variable to receive numeric data:

status = fscommand2 ("SetInputTextType", "inputl", "Numeric");

SetSoftKeys fscommand2 command

SetSoftKeys
Remaps the soft keys of a mobile device.

When the user presses a soft key, any ActionScript associated with the soft key event is executed. The Flash Lite player
executes this function immediately upon invocation. This command is supported only when Flash Lite is running in
stand-alone mode. It is not supported when the player is running in the context of another application (for example,
as a plug-in to a browser).

For backward compatibility with Flash Lite 1.1, the soFT1 soft key is always mapped to the left key on the handset, and
the soFT2 soft key is always mapped to the right key on the handset. For the soFT3 soft key and higher, the locations
are dependent on each handset.

The arguments for this command specify the text to be displayed for the corresponding soft keys. When the
SetSoftKeys command is executed, pressing the left key generates a SOFT1 keypress event, and pressing the right key
generates a SOFT2 keypress event. Pressing the SOFT3 through soFT12 soft keys generates their respective events.

Note: The remapping of soft keys depends on the mobile device. Check with the device manufacturer to see if the
remapping of soft keys is supported.

Command Parameters Value Returned

SetSoftKeys soft1 Text to be displayed for the SOFT1 soft key. -1: Not supported.

soft2 Text to be displayed for the SOFT2 soft key.
0: Supported.

These parameters are either names of variables or
constant string values (for example, "Previous").

Availability
Flash Lite 1.1

Last updated 3/22/2011

175

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 176
ActionScript language elements

Example

The following example labels the soFT1 soft key "Previous” and the soFT2 soft key "Next":
status = fscommand2 ("SetSoftKeys", "Previous", "Next");

You can define variables or use constant string values for each soft key:

status = fscommand2 ("SetSoftKeys", softl, soft2, [soft3], [soft4], ., [softn])

Note: You can set one soft key without setting the others. These examples show the syntax and behavior of setting a
specific soft key without affecting other keys:

+ To set the left soft key label to "soft1" and the right soft key to empty:
status = fscommand2 ("SetSoftKeys", "softl", "")

+ To leave the label for the left soft key as is and set right soft key to "soft2":
status = fscommand2 ("SetSoftKeys", undefined, "soft2")

+ To leave the label for the left soft key as is and set the right soft key to "soft2":
status = fscommand2 ("SetSoftKeys", null, "soft2")

+ To set the left soft key label to "soft1" and leave the right soft key as is:

status = fscommand2 ("SetSoftKeys", "softl")

StartVibrate fscommand2 command

StartVibrate
Starts the phone's vibration feature.

If a vibration is already occurring, Flash Lite stops that vibration before starting the new one. Vibrations also stop when
playback of the Flash application is stopped or paused, and when the Flash Lite player quits.

Command Parameters Value Returned

StartVibrate time_on Amount of time, in milliseconds (to a -1: Not supported.

maximum of 5 seconds), that the vibration is on. . .
0: Vibration was started.

time_ off Amount of time, in milliseconds (to a

maximum of 5 seconds), that the vibration is off. 1: An error occurred and vibration

could not be started.
repeat Number of times (to a maximum of 3) to
repeat this vibration.

Availability
Flash Lite 1.1

Example

The following example attempts to start a vibration sequence of 2.5 seconds on, 1 second off, repeated twice. It assigns
a value to the status variable that indicates success or failure:

fscommand2 ("StartVibrate", 2500, 1000, 2);

StopVibrate fscommand2 command

StopVibrate

Stops the current vibration, if any.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript language elements

Command Parameters Value Returned
StopVibrate None -1: Not supported.
0: The vibration stopped.
Availability

Flash Lite 1.1

Example

The following example calls Stopvibrate and saves the result (not supported or vibration stopped) in the status

variable:

status = fscommand2 ("StopVibrate") ;

Last updated 3/22/2011

177

178

Chapter 2: ActionScript classes

Documentation for ActionScript classes includes syntax, usage information, and code samples for methods,
properties, and events that belong to specific classes. The classes are listed alphabetically. If you are not sure to which
class a method, property, or event belongs, search the Index.

arguments

Object

+-arguments

public class arguments
extends Object

An arguments object is used to store and access a function's arguments. While inside the function's body it can be
accessed with the local arguments variable.

The arguments are stored as array elements, the first is accessed as arguments [0], the second as arguments [1], etc.
The arguments. length property indicates the number of arguments passed to the function. Note that there may be
a different number of arguments passed in than the function declares.

Availability
Flash Lite 2.0
See also
Function
Property summary
Modifiers Property Description
callee : Object A reference to the currently executing function.
caller: Object A reference to the function that called the currently executing

function, or null if it wasn't called from another function.

length : Number The number of arguments passed to the function.

Properties inherited from class Object

constructor (Object.constructor property), proto (Object. proto
property)prototype (Object.prototype property),_resolve (Object._ resolve property)
Method summary

Methods inherited from class Object

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method) isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method),valueOf (Object.valueOf
method)watch (Object.watch method)

callee (arguments.callee property)

public callee : Object

A reference to the currently executing function.

Availability
Flash Lite 2.0

See also

caller (arguments.caller property)

caller (arguments.caller property)

public caller : Object

A reference to the function that called the currently executing function, or nu11l if it wasn't called from another

function.

Availability
Flash Lite 2.0

See also

callee (arguments.callee property)

length (arguments.length property)

public length : Number

The number of arguments passed to the function. This may be more or less than the function declares.

Availability
Flash Lite 2.0

Array

Object

+-Array

public dynamic class Array
extends Object

Last updated 3/22/2011

179

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 180
ActionScript classes

The Array class lets you access and manipulate indexed arrays. An indexed array is an object whose properties are
identified by a number representing their position in the array. This number is referred to as the index. All indexed
arrays are zero-based, which means that the first element in the array is [0], the second element is [1], and so on. To
create an Array object, you use the constructor newArray (). To access the elements of an array, you use the array
access ([1) operator.

You can store a wide variety of data types in an array element, including numbers, strings, objects, and even other
arrays. You can create a multidimensional array by creating an indexed array and assigning to each of its elements a
different indexed array. Such an array is considered multidimensional because it can be used to represent data in a
table.

Array assignment is by reference rather than by value: when you assign one array variable to another array variable,
both refer to the same array:

var oneArray:Array = new Array("a", "b", "c");

var twoArray:Array = oneArray; // Both array variables refer to the same array.
twoArray[0] = "z";

trace (oneArray); // Output: z,b,c.

The Array class should not be used to create associative arrays, which are different data structures that contain named
elements instead of numbered elements. You should use the Object class to create associative arrays (also called
hashes). Although ActionScript permits you to create associative arrays using the Array class, you cannot use any of
the Array class methods or properties. At its core, an associative array is an instance of the Object class, and each key-
value pair is represented by a property and its value. Another reason to declare an associative array as a type Object is
that you can then use an object literal to populate your associative array (but only at the time you declare it). The
following example creates an associative array using an object literal, accesses items using both the dot operator and
the array access operator, and then adds a new key-value pair by creating a new property:

var myAssocArray:Object = {fname:"John", lname:"Public"};
trace (myAssocArray.fname); // Output: John

trace (myAssocArray ["lname"]); // Output: Public
myAssocArray.initial = "Q";

trace (myAssocArray.initial); // Output: Q

Availability
Flash Lite 2.0

Example

In the following example, my_array contains four months of the year:

var my_array:Array = new Array();

my array[0] = "January";
my array[l] = "February";
my array[2] = "March";
my array[3] = "April";

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Property summary
Modifiers Property Description
static CASEINSENSITIVE : Numbe | Represents case-insensitive sorting.
r
static DESCENDING : Number Represents a descending sort order.

length : Number

A non-negative integer specifying the number of elements in
the array.

static NUMERIC : Number Represents numeric sorting instead of string-based sorting.

static RETURNINDEXEDARRAY : | Represents the option to return an indexed array as a result of
Number calling the sort () or sorton () method.

static UNIQUESORT : Number Represents the unique sorting requirement.

Properties inherited from class Object

constructor (Object.constructor property), proto (Object._ proto
property)prototype (Object.prototype property),_ resolve (Object._ resolve property)

Constructor summary

Signature Description

Array ([value:Object]) | Letsyou create an array.

Method summary

Modifiers Signature

Description

concat ([value:Object]
) : Array

Concatenates the elements specified in the parameters with
the elements in an array and creates a new array.

join ([delimiter:String

Converts the elements in an array to strings, inserts the

1) : String specified separator between the elements, concatenates
them, and returns the resulting string.
pop () : Object Removes the last element from an array and returns the value

of that element.

push (value:Object)

Adds one or more elements to the end of an array and returns

Number the new length of the array.
reverse () : Void Reverses the array in place.
shift () : Object Removes the first element from an array and returns that

element.

slice ([startIndex:Nu
mber] ,
[endIndex:Number])
: Array

Returns a new array that consists of a range of elements from
the original array, without modifying the original array.

sort ([compareFunctio
n:Object],
[options:Number])
Array

Sorts the elements in an array.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Modifiers Signature Description

sortOn (£ieldName: Obje | Sorts the elements in an array according to one or more fields
ct, [options:Object]) |[inthe array.
: Array

splice (startIndex:Nu | Adds elements to and removes elements from an array.
mber,

[deleteCount : Number
1, I[value:Object])

Array

toString () : String Returns a string value representing the elements in the
specified Array object.

unshift (value : Object) Adds one or more elements to the beginning of an array and

: Number returns the new length of the array.

Methods inherited from class Object

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method) isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method),valueOf (Object.valueOf
method)watch (Object.watch method)

Array constructor

public Array([value:0bject])

Lets you create an array. You can use the constructor to create different types of arrays: an empty array, an array with
a specific length but whose elements have undefined values, or an array whose elements have specific values.

Usage 1: If you don't specify any parameters, an array with a length of 0 is created.

Usage 2: If you specify only a length, an array is created with 1ength number of elements. The value of each element
is set to undefined.

Usage 3: If you use the element parameters to specify values, an array is created with specific values.

Availability
Flash Lite 2.0

Parameters
value : Object [optional] - Either:
+ An integer that specifies the number of elements in the array.

+ Alist of two or more arbitrary values. The values can be of type Boolean, Number, String, Object, or Array. The
first element in an array always has an index or position of 0.

Note: If only a single numeric parameter is passed to the Array constructor, it is assumed to be length and it is
converted to an integer by using the Integer () function.

Example
Usage 1: The following example creates a new Array object with an initial length of 0:

var my_array:Array = new Array();
trace (my_ array.length); // Traces 0.

Last updated 3/22/2011

182

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 183
ActionScript classes

Usage 2: The following example creates a new Array object with an initial length of 4:

var my_array:Array = new Array(4);

trace (my_ array.length); // Returns 4.

trace (my_array[0]); // Returns undefined.

if (my array[0] == undefined) { // No quotation marks around undefined.
trace ("undefined is a special value, not a string");

} // Traces: undefined is a special value, not a string.

Usage 3: The following example creates the new Array object go_gos_array with an initial length of 5:

var go_gos_array:Array = new Array("Belinda", "Gina", "Kathy", "Charlotte", "Jane");
trace(go_gos_array.length); // Returns 5.
trace(go_gos_array.join(", ")); // Displays elements.

The initial elements of the go_gos_array array are identified, as shown in the following example:

go_gos_array[0] = "Belinda";
go_gos_array[1l] = "Gina";
go_gos_array[2] = "Kathy";
go_gos_array[3] = "Charlotte";
go_gos_array[4] = "Jane";

The following code adds a sixth element to the go_gos_array array and changes the second element:

go_gos_array[5] = "Donna";

go_gos_array[1l] = "Nina"

trace(go_gos_array.join(" + "));

// Returns Belinda + Nina + Kathy + Charlotte + Jane + Donna.

See also

[1 array access operator, length (Array.length property)

CASEINSENSITIVE (Array.CASEINSENSITIVE property)

public static CASEINSENSITIVE : Number

Represents case-insensitive sorting. You can use this constant for the options parameter in the sort () or sorton ()
method. The value of this constant is 1.

Availability
Flash Lite 2.0

See also

sort (Array.sort method), sortOn (Array.sortOn method)

concat (Array.concat method)

public concat ([value:0bject]) : Array

Concatenates the elements specified in the parameters with the elements in an array and creates a new array. If the
value parameters specify an array, the elements of that array are concatenated, rather than the array itself. The array
my_array is left unchanged.

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 184
ActionScript classes

Parameters
value : Object [optional] - Numbers, elements, or strings to be concatenated in a new array. If you don't pass any values,
a duplicate of my_array is created.

Returns

Array - An array that contains the elements from this array followed by elements from the parameters.

Example

The following code concatenates two arrays:

var alpha_array:Array = new Array("a","b","c");

var numeric_array:Array = new Array(1l,2,3);

var alphaNumeric_array:Array =alpha array.concat (numeric_array) ;
trace (alphaNumeric_array) ;

// Creates array [a,b,c,1,2,3].

The following code concatenates three arrays:

var numl_array:Array = [1,3,5];
var num2_array:Array = [2,4,6];
var num3_array:Array = [7,8,9];

var nums_array:Array=numl_array.concat (num2_array,num3_array)
trace (nums_array) ;
// Creates array [1,3,5,2,4,6,7,8,9].

Nested arrays are not flattened in the same way as normal arrays. The elements in a nested array are not broken into
separate elements in array x_array, as shown in the following example:

var a_array:Array = new Array ("a","b","c");

// 2 and 3 are elements in a nested array.
var n_array:Array = new Array(1l, [2, 3], 4);

var x_array:Array = a_array.concat (n_array) ;

trace(x_arrayl[0]); // a
trace(x_arrayl[1l); // b
trace(x_arrayl[2]); // c
trace(x_arrayl[31); // 1
trace(x_arrayl[4]l); // 2, 3
trace(x array([5]); // 4

DESCENDING (Array.DESCENDING property)

public static DESCENDING : Number

Represents a descending sort order. You can use this constant for the opt ions parameter in the sort () or sorton ()
method. The value of this constant is 2.

Availability
Flash Lite 2.0

See also

sort (Array.sort method), sortOn (Array.sortOn method)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 185
ActionScript classes

join (Array.join method)

public join([delimiter:String]) : String

Converts the elements in an array to strings, inserts the specified separator between the elements, concatenates them,
and returns the resulting string. A nested array is always separated by a comma (,), not by the separator passed to the
join () method.

Availability
Flash Lite 2.0

Parameters
delimiter : String [optional] - A character or string that separates array elements in the returned string. If you omit this
parameter, a comma (,) is used as the default separator.

Returns
String - A string.

Example

The following example creates an array with three elements: Earth, Moon, and Sun. It then joins the array three
times—first by using the default separator (a comma [,] and a space), then by using a dash (-), and then by using a plus
sign (+).

var a_array:Array = new Array ("Earth", "Moon", "Sun")
trace(a_array.join());

// Displays Earth,Moon, Sun.

trace(a_array.join(" - "));

// Displays Earth - Moon - Sun.
trace(a_array.join(" + "));

// Displays Earth + Moon + Sun.

The following example creates a nested array that contains two arrays. The first array has three elements: Europa, Io,
and Callisto. The second array has two elements: Titan and Rhea. It joins the array by using a plus sign (+), but the
elements within each nested array remain separated by commas (,).

var a_nested array:Array = new Array(["Europa", "Io", "Callisto"], ["Titan", "Rhea"l);
trace(a_nested_array.join(" + "));
// Returns Europa,Io,Callisto + Titan,Rhea.

See also

split (String.split method)

length (Array.length property)

public length : Number

A non-negative integer specifying the number of elements in the array. This property is automatically updated when
new elements are added to the array. When you assign a value to an array element (for example, my array[index] =
value), if index is a number, and index+1 is greater than the length property, the length property is updated to

index+1.

Note: If you assign a value to the 1length property that is shorter than the existing length, the array will be truncated.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 186
ActionScript classes

Availability
Flash Lite 2.0

Example
The following code explains how the 1ength property is updated. The initial length is 0, and then updated to 1, 2, and
10. If you assign a value to the length property that is shorter than the existing length, the array will be truncated:

var my_ array:Array = new Array();

trace (my_array.length); // initial length is 0

my array[0] = "a";

trace (my array.length); // my array.length is updated to 1
my_ array[l] = "b";

trace (my array.length); // my array.length is updated to 2
my array[9] = "c";

trace (my_array.length); // my_ array.length is updated to 10
trace (my_array) ;

// displays:

// a,b,undefined,undefined,undefined,undefined, undefined,undefined,undefined, c

// 1if the length property is now set to 5, the array will be truncated
my_array.length = 5;

trace (my_ array.length); // my array.length is updated to 5

trace(my array); // outputs: a,b,undefined,undefined,undefined

NUMERIC (Array.NUMERIC property)

public static NUMERIC : Number

Represents numeric sorting instead of string-based sorting. String-based sorting, which is the default setting, treats
numbers as strings when sorting them. For example, string-based sorting places 10 before 3. A numeric sort treats the
elements as numbers so that 3 will be placed before 10. You can use this constant for the options parameter in the
sort () or sorton () method. The value of this constant is 16.

Availability
Flash Lite 2.0

See also

sort (Array.sort method), sortOn (Array.sortOn method)

pop (Array.pop method)

public pop() : Object

Removes the last element from an array and returns the value of that element.

Availability
Flash Lite 2.0

Returns
Object - The value of the last element in the specified array.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 187
ActionScript classes

Example

The following code creates the array myPets_array containing four elements, and then removes its last element:
var myPets array:Array = new Array("cat", "dog", "bird", "fish");

var popped:Object = myPets array.pop() ;

trace (popped) ; // Displays fish.

trace (myPets_array); // Displays cat,dog,bird.

See also

push (Array.push method), shift (Array.shift method),unshift (Array.unshift method)

push (Array.push method)

public push(value:0Object) : Number

Adds one or more elements to the end of an array and returns the new length of the array.

Availability
Flash Lite 2.0

Parameters

value: Object - One or more values to append to the array.

Returns
Number - An integer representing the length of the new array.

Example
The following example creates the array myPets_array with two elements, cat and dog. The second line adds two
elements to the array.

Because the push () method returns the new length of the array, the trace () statement in the last line sends the new

length of myPets_array (4) to the Output panel.

var myPets array:Array = new Array("cat", "dog") ;
var pushed:Number = myPets array.push("bird", "fish");
trace (pushed); // Displays 4.

See also

pop (Array.pop method), shift (Array.shift method),unshift (Array.unshift method)

RETURNINDEXEDARRAY (Array.RETURNINDEXEDARRAY property)

public static RETURNINDEXEDARRAY : Number
Represents the option to return an indexed array as a result of calling the sort () or sorton () method. You can use
this constant for the options parameter in the sort () or sorton () method. This provides preview or copy

functionality by returning an array that represents the results of the sort and leaves the original array unmodified. The
value of this constant is 8.

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 188
ActionScript classes

See also

sort (Array.sort method), sortOn (Array.sortOn method)

reverse (Array.reverse method)

public reverse() : Void

Reverses the array in place.

Availability
Flash Lite 2.0

Example

The following example uses this method to reverse the array numbers_array:

var numbers_array:Array = new Array(l, 2, 3, 4, 5, 6);
trace (numbers_array); // Displays 1,2,3,4,5,6.
numbers_array.reverse() ;

trace (numbers_array); // Displays 6,5,4,3,2,1.

shift (Array.shift method)

public shift () : Object

Removes the first element from an array and returns that element.

Availability
Flash Lite 2.0

Returns
Object - The first element in an array.

Example
The following code creates the array myPets_array and then removes the first element from the array and assigns it
to the variable shifted:

var myPets array:Array = new Array("cat", "dog", "bird", "fish");
var shifted:0bject = myPets_array.shift();

trace(shifted); // Displays "cat".

trace (myPets_array); // Displays dog,bird, fish.

See also

pop (Array.pop method), push (Array.push method),unshift (Array.unshift method)

slice (Array.slice method)

public slice([startIndex:Number], [endIndex:Number]) : Array

Returns a new array that consists of a range of elements from the original array, without modifying the original array.
The returned array includes the start Index element and all elements up to, but not including, the endIndex element.

If you don't pass any parameters, a duplicate of the original array is created.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 189
ActionScript classes

Availability
Flash Lite 2.0

Parameters

startIndex: Number [optional] - A number specifying the index of the starting point for the slice. If start is a negative
number, the starting point begins at the end of the array, where -1 is the last element.

endIndex: Number [optional] - A number specifying the index of the ending point for the slice. If you omit this
parameter, the slice includes all elements from the starting point to the end of the array. If end is a negative number,
the ending point is specified from the end of the array, where -1 is the last element.

Returns

Array - An array that consists of a range of elements from the original array.

Example

The following example creates an array of five pets and uses s1ice () to populate a new array that contains only four-
legged pets:

var myPets_ array:Array = new Array("cat", "dog", "fish", "canary", "parrot");
var myFourLeggedPets_array:Array = new Array();

var myFourLeggedPets array = myPets_array.slice(0, 2);

trace (myFourLeggedPets array); // Returns cat,dog.

trace (myPets_array); // Returns cat,dog, fish, canary,parrot.

The following example creates an array of five pets, and then uses slice () with a negative start parameter to copy
the last two elements from the array:

var myPets array:Array = new Array("cat", "dog", "fish", "canary", "parrot");
var myFlyingPets array:Array = myPets array.slice(-2);
trace (myFlyingPets array); // Traces canary,parrot.

The following example creates an array of five pets and uses s1ice () with a negative end parameter to copy the middle
element from the array:

var myPets array:Array = new Array("cat", "dog", "fish", "canary", "parrot");
var myAquaticPets_array:Array = myPets array.slice(2,-2);
trace (myAquaticPets_array); // Returns fish.

sort (Array.sort method)

public sort ([compareFunction:0Object], [options:Number]) : Array

Sorts the elements in an array. Flash sorts according to Unicode values. (ASCII is a subset of Unicode.)
By default, Array.sort () works as described in the following list:

+ Sorting is case-sensitive (Z precedes a).

« Sorting is ascending (a precedes b).

+ The array is modified to reflect the sort order; multiple elements that have identical sort fields are placed
consecutively in the sorted array in no particular order.

+ Numeric fields are sorted as if they were strings, so 100 precedes 99, because "1" is a lower string value than "9".

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 190
ActionScript classes

If you want to sort an array by using settings that deviate from the default settings, you can either use one of the sorting
options described in the entry for the options parameter or you can create your own custom function to do the
sorting. If you create a custom function, you can use it by calling the sort () method, using the name of your custom
function as the first parameter (compareFunction).

Availability
Flash Lite 2.0

Parameters
compareFunction : Object [optional] - A comparison function used to determine the sorting order of elements in an
array. Given the elements A and B, the result of compareFunction can have one of the following three values:

+ -1, if A should appear before B in the sorted sequence
+ 0,if A equals B
1, if A should appear after B in the sorted sequence

options: Number [optional] - One or more numbers or names of defined constants, separated by the | (bitwise OR)
operator, that change the behavior of the sort from the default. The following values are acceptable for the options
parameter:

e Array.CASEINSENSITIVE or 1

e Array.DESCENDING or 2

e Array.UNIQUESORT or 4

* Array.RETURNINDEXEDARRAY Or 8
* Array.NUMERICOr 16

For more information about this parameter, see the Array.sorton () method.

Note: Array.sort () is defined in ECMA-262, but the array sorting options introduced in Flash Player 7 are Flash-
specific extensions to the ECMA-262 specification.

Returns

Array - The return value depends on whether you pass any parameters, as described in the following list:

+ Ifyouspecifyavalue of 4 or Array . UNIQUESORT for the opt ions parameter and two or more elements being sorted
have identical sort fields, Flash returns a value of 0 and does not modify the array.

« Ifyou specify a value of 8 or Array . RETURNINDEXEDARRAY for the options parameter, Flash returns an array that
reflects the results of the sort and does not modify the array.

« Otherwise, Flash returns nothing and modifies the array to reflect the sort order.

Example

Usage 1: The following example shows the use of Array. sort () with and without a value passed for options:

var fruits_ array:Array = new Array("oranges", "apples", "strawberries", "pineapples",
"cherries") ;

trace (fruits_array); // Displays oranges,apples,strawberries,pineapples,cherries.

) .
fruits_array.sort () ;
trace (fruits_array); // Displays apples,cherries,oranges,pineapples, strawberries.
fruits_array.sort (Array.DESCENDING) ;

trace (fruits_array); // Displays strawberries,pineapples,oranges,cherries,apples.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 191
ActionScript classes

Usage 2: The following example uses Array . sort () with a compare function. The entries are sorted in the form
name:password. Sort using only the name part of the entry as a key:

var passwords array:Array = new Array("mom:glam", "ana:ring", "jay:mag", "anne:home",
"regina:silly");
function order (a, b) :Number {

var namel:String = a.split(":") [0];

var name2:String = b.split(":") [0];

if (namel<name2) {

return -1;

} else if (namels>name2) {

return ;
} else
return

}

o~ K

}

trace ("Unsorted:") ;

trace (passwords_array) ;

//Displays mom:glam,ana:ring, jay:mag, anne:home,regina:silly.
passwords_array.sort (order) ;

trace ("Sorted:") ;

trace (passwords_array) ;

//Displays ana:ring, anne:home, jay:mag,mom:glam,regina:silly.

See also

| bitwise OR operator, sortOn (Array.sortOn method)

sortOn (Array.sortOn method)

public sortOn(fieldName:0Object, [options:0Object]) : Array

Sorts the elements in an array according to one or more fields in the array. The array should have the following
characteristics:

+ The array is an indexed array, not an associative array.
+ Each element of the array holds an object with one or more properties.

+ All of the objects have at least one property in common, the values of which can be used to sort the array. Such a
property is called a field.

If you pass multiple fieldName parameters, the first field represents the primary sort field, the second represents the
next sort field, and so on. Flash sorts according to Unicode values. (ASCII is a subset of Unicode.) If either of the
elements being compared does not contain the field specified in the fieldName parameter, the field is assumed to be
undefined, and the elements are placed consecutively in the sorted array in no particular order.

By default, Array.sorton () works as described in the following list:
« Sorting is case-sensitive (Z precedes a).
« Sorting is ascending (a precedes b).

+ The array is modified to reflect the sort order; multiple elements that have identical sort fields are placed
consecutively in the sorted array in no particular order.

+ Numeric fields are sorted as if they were strings, so 100 precedes 99, because "1" is a lower string value than "9".

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 192
ActionScript classes

You can use the options parameter to override the default sort behavior. If you want to sort a simple array (for
example, an array with only one field), or if you want to specify a sort order that the options parameter doesn't
support, use Array.sort ().

To pass multiple flags, separate them with the bitwise OR (|) operator:

my array.sortOn(someFieldName, Array.DESCENDING | Array.NUMERIC) ;

Availability
Flash Lite 2.0

Parameters
fieldName : Object - A string that identifies a field to be used as the sort value, or an array in which the first element
represents the primary sort field, the second represents the secondary sort field, and so on.

options: Object [optional] - One or more numbers or names of defined constants, separated by the | (bitwise OR)
operator, that change the sorting behavior. The following values are acceptable for the options parameter:

* Array.CASEINSENSITIVE or 1

e Array.DESCENDING or 2

e Array.UNIQUESORT or 4

e Array.RETURNINDEXEDARRAY Or 8
e Array.NUMERICor 16

Code hinting is enabled if you use the string form of the flag (for example, DESCENDING) rather than the numeric form (2).

Returns

Array - The return value depends on whether you pass any parameters, as described in the following list:

+ If you specify a value of 4 or Array.UNIQUESORT for the options parameter, and two or more elements being
sorted have identical sort fields, Flash returns a value of 0 and does not modify the array.

« Ifyou specify a value of 8 or Array . RETURNINDEXEDARRAY for the options parameter, Flash returns an array that
reflects the results of the sort and does not modify the array.

« Otherwise, Flash returns nothing and modifies the array to reflect the sort order.
Example

The following example creates a new array and sorts it according to the name and city fields. The first sort uses name
as the first sort value and city as the second. The second sort uses city as the first sort value and name as the second.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 193
ActionScript classes

var rec_array:Array = new Array();
rec_array.push({name: "john", city: "omaha", zip: 68144});
rec_array.push({name: "john", city: "kansas city", zip: 72345});
rec_array.push({name: "bob", city: "omaha", zip: 94010});
for(i=0; i<rec_array.length; i++) {
trace(rec_array[i] .name + ", " + rec_arrayl[i].city);
}
// Results:
// john, omaha
// john, kansas city
// bob, omaha

rec_array.sortOn(["name", "city"]);

for(i=0; i<rec_array.length; i++){
trace(rec_arrayl[i] .name + ", " + rec_arrayl[i].city);

}

// Results:

// bob, omaha

// john, kansas city

// john, omaha

rec_array.sortOn(["city", "name"]);

for(i=0; i<rec_array.length; i++) {
trace(rec_array[i] .name + ", " + rec_arrayl[i].city);

}

// Results:

// john, kansas city

// bob, omaha

// john, omaha

The following array of objects is used by subsequent examples that show how to use the options parameter:

var my_ array:Array = new Array();

7

my array.push({password: "Bob", age:29})

my array.push({password: "abcd", age:3});

my array.push({password: "barb", age:35})
¢

my array.push({password: "catchy", age:4});

Performing a default sort on the password field produces the following results:

my_ array.sortOn ("password") ;
// Bob

// abcd

// barb

// catchy

Performing a case-insensitive sort on the password field produces the following results:

my_array.sortOn ("password", Array.CASEINSENSITIVE) ;
// abcd

// barb

// Bob

// catchy

Performing a case-insensitive, descending sort on the password field produces the following results:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

my array.sortOn ("password", Array.CASEINSENSITIVE | Array.DESCENDING) ;
// catchy

// Bob

// barb

// abcd

Performing a default sort on the age field produces the following results:

my array.sortOn("age") ;
// 29
// 3
// 35
/] 4

Performing a numeric sort on the age field produces the following results:

my_array.sortOn("age", Array.NUMERIC) ;
// my array[0].age = 3
// my_array[l].age = 4
// my_array[2].age = 29
[31.

// my_array age = 35

Performing a descending numeric sort on the age field produces the following results:

my array.sortOn("age", Array.DESCENDING | Array.NUMERIC) ;
// my arrayl[0].age = 35
// my_arrayl[l].age = 29
// my_ array[2].age = 4
[31.

// my_array age = 3

When using the Array . RETURNINDEXARRAY sorting option, you must assign the return value to a different array. The

original array is not modified.

var indexArray:Array = my_array.sortOn("age", Array.RETURNINDEXEDARRAY) ;

See also

| bitwise OR operator, sort (Array.sort method)

splice (Array.splice method)

public splice(startIndex:Number, [deleteCount:Number], [value:0bject])

Adds elements to and removes elements from an array. This method modifies the array without making a copy.

Availability
Flash Lite 2.0

Parameters

startIndex: Number - An integer that specifies the index of the element in the array where the insertion or deletion
begins. You can specify a negative integer to specify a position relative to the end of the array (for example, -1 is the

last element of the array).

deleteCount: Number [optional] - An integer that specifies the number of elements to be deleted. This number
includes the element specified in the startIndex parameter. If no value is specified for the deletecCount parameter,
the method deletes all of the values from the start Index element to the last element in the array. If the value is 0, no

elements are deleted.

Last updated 3/22/2011

194

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 195
ActionScript classes

value : Object [optional] - Specifies the values to insert into the array at the insertion point specified in the start Index
parameter.

Returns

Array - An array containing the elements that were removed from the original array.

Example

The following example creates an array and splices it by using element index 1 for the start Index parameter. This
removes all elements from the array starting with the second element, leaving only the element at index 0 in the
original array:

var myPets array:Array = new Array("cat", "dog", "bird", "fish");
trace(myPets_array.splice(1l)); // Displays dog,bird, fish.
trace(myPets array); // cat

The following example creates an array and splices it by using element index 1 for the start Index parameter and the
number 2 for the deleteCount parameter. This removes two elements from the array, starting with the second
element, leaving the first and last elements in the original array:

var myFlowers array:Array = new Array("roses", "tulips", "lilies", "orchids");
trace(myFlowers array.splice(1,2)); // Displays tulips,lilies.
trace(myFlowers_array); // roses,orchids

The following example creates an array and splices it by using element index 1 for the start Index parameter, the
number 0 for the deleteCount parameter, and the string chair for the value parameter. This does not remove
anything from the original array, and adds the string chair at index 1:

var myFurniture array:Array = new Array("couch", "bed", "desk", "lamp");
trace(myFurniture array.splice(1,0, "chair")); // Displays empty array.
trace(myFurniture array); // displays couch,chair,bed, desk, lamp

toString (Array.toString method)

public toString() : String

Returns a string value representing the elements in the specified Array object. Every element in the array, starting with
index 0 and ending with the highest index, is converted to a concatenated string and separated by commas. To specify
a custom separator, use the Array.join () method.

Availability
Flash Lite 2.0

Returns

String - A string.

Example

The following example creates my_array and converts it to a string.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

var my_array:Array = new Array();
my array[0] = 1;
[1] = 2
my_array[2] = 3;
[3 4
[4 5

i

my_array

1 =
] =
trace (my_ array.toString()); // Displays 1,2,3,4,5.

7

my array

7

my_array

This example outputs 1,2,3,4,5 as a result of the trace statement.

See also

split (String.split method), join (Array.join method)

UNIQUESORT (Array.UNIQUESORT property)

public static UNIQUESORT : Number

Represents the unique sorting requirement. You can use this constant for the options parameter in the sort () or
sorton () method. The unique sorting option aborts the sort if any two elements or fields being sorted have identical
values. The value of this constant is 4.

Availability
Flash Lite 2.0

See also

sort (Array.sort method), sortOn (Array.sortOn method)

unshift (Array.unshift method)

public unshift (value:0Object) : Number

Adds one or more elements to the beginning of an array and returns the new length of the array.

Availability
Flash Lite 2.0

Parameters
value : Object - One or more numbers, elements, or variables to be inserted at the beginning of the array.

Returns

Number - An integer representing the new length of the array.

Example

The following example shows the use of the Array.unshift () method:

var pets_array:Array = new Array("dog", "cat", "fish");

trace(pets_array); // Displays dog,cat,fish.

pets_array.unshift ("ferrets", "gophers", "engineers");

trace(pets_array); // Displays ferrets,gophers, engineers,dog,cat,fish.
See also

pop (Array.pop method),push (Array.push method), shift (Array.shift method)

Last updated 3/22/2011

196

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 197
ActionScript classes

BitmapData (flash.display.BitmapData)

Object

+-flash.display.BitmapData

public class BitmapData
extends Object

The BitmapData class lets you create arbitrarily sized transparent or opaque bitmap images and manipulate them in
various ways at runtime.

This class lets you separate bitmap rendering operations from the Flash Lite player internal display updating routines.
By manipulating a BitmapData object directly, you can create very complex images without incurring the per-frame
overhead of constantly redrawing the content from vector data.

The methods of the BitmapData class support a variety of effects that are not available through the generic filter
interface.

A BitmapData object contains an array of pixel data. This data can represent either a fully opaque bitmap or a
transparent bitmap that contains alpha channel data. Either type of BitmapData object is stored as a buffer of 32-bit
integers. Each 32-bit integer determines the properties of a single pixel in the bitmap.

Each 32-bit integer is a combination of four 8-bit channel values (from 0 to 255) that describe the alpha transparency
and the red, green, and blue (ARGB) values of the pixel.

The four channels (red, green, blue, and alpha) are represented as numbers when you use them with the
BitmapData.copyChannel () method or the DisplacementMapFilter.componentX and
DisplacementMapFilter.componentY properties, as follows:

o 1 (red)

2 (green)

+ 4 (blue)

+ 8 (alpha)

You can attach BitmapData objects to a MovieClip object by using the MovieClip.attachBitmap () method.

You can use a BitmapData object to fill an area in a movie clip by using the MovieClip.beginBitmapFill () method.

The maximum width and maximum height of a BitmapData object is 2880 pixels.

Availability
Flash Lite 3.1

See also

attachBitmap (MovieClip.attachBitmap method), beginFill (MovieClip.beginFill method)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Property summary

Modifiers Property Description
height: Number [read- The height of the bitmap image in pixels.
only]
rectangle : Rectangle The rectangle that defines the size and location of the bitmap
[read-only] image.
transparent : Boolean Defines whether the bitmap image supports per-pixel
[read-only] transparency.
width : Boolean [read- The width of the bitmap image in pixels.
only]

constructor (Object.constructor property),_ proto_ (Object._ proto__ property),

prototype (Object.prototype property), resolve (Object._ resolve property)

Constructor summary

Signature Description

BitmapData (width:Num | Creates a BitmapData object with a specified width and height.
ber,

height :Number, [tran
sparent :Boolean] ,
[fillColor:Number])

Method summary
Modifiers Signature Description
applyFilter Takes a source image and a filter object and generates the filtered
image.
Flash Lite 3.1 does not support filters, so this method is not
supported.
clone () : BitmapData Returns a new BitmapData object that is a clone of the original

instance with an exact copy of the contained bitmap.

colorTransform (rect :Re | Adjusts the color values in a specified area of a bitmap image by

ctangle, using a ColorTransform object.
colorTransform: Color
Transform) : Vvoid

copyChannel (sourceBit | Transfers data from one channel of another BitmapData object or

map : BitmapData, the current BitmapData object into a channel of the current
sourceRect : BitmapData object.
Rectangle,

destPoint :Point,
sourceChannel : Numbe
r, destChannel:
Number: void

Last updated 3/22/2011

198

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Modifiers Signature Description

copyPixels (sourceBitm | Provides a fast routine to perform pixel manipulation between

ap:BitmapData, images with no stretching, rotation, or color effects.

sourceRect

:Rectangle,

destPoint :Point,

[alphaBitmap :BitmapD

ata] ,

[alphaPoint :Point,

[mergeAlpha:Boolean]

) : Void

dispose () : Void Frees memory that is used to store the BitmapData object.

draw (source: Object, Draws a source image or movie clip onto a destination image,

[matrix:Matrix] , [colo | using the Flash Lite player vector renderer.

rTransform: ColorTransf

orm], [blendMode : Obje

ct], [cliprect:Rectang

lel, [smooth:Boolean])

: Void

fillRect (rect : Rectangle, | Fills a rectangular area of pixels with a specified ARGB color.

color:Number) : Void

floodFill (x : Number, Performs a flood fill operation on an image starting at an (x,)

y:Number, coordinate and filling with a certain color.

color:Number) : void

generateFilterRect Determines the destination rectangle that the applyFilter ()
method call affects, given a BitmapData object, a source rectangle,
and a filter object.
Flash Lite does not support this method.

getColorBoundsRect (mas | Determines a rectangular region that fully encloses all pixels of a

k:Number, specified color within the bitmap image.

color:Number,

[findColor:Boolean]

) :Rectangle

getPixel (x:Number, Returns an integer that represents an RGB pixel value from a

y:Number) : Number |BitmapData object at a specific point (x, y).

getPixel32 (x: Number, Returns an ARGB color value that contains alpha channel data and

y:Number) : Number |RGB data.

hitTest (firstPoint :Poi | Performs pixel-level hit detection between one bitmap image and

nt, a point, rectangle or other bitmap image.

firstAlphaThreshold

:Number,

secondObject : Object,

[secondBitmapPoint:

Point]

, [secondAlphaThresh

old:Number])

:Boolean

static loadBitmap (id:String) : | Returns a new BitmapData object that contains a bitmap image

BitmapData

representation of the symbol that is identified by a specified
linkage ID in the library.

Last updated 3/22/2011

199

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Modifiers

Signature

Description

merge (sourceBitmap:B
itmapData,

sourceRect :Rectangle,
destPoint :Point,
redMult : Number,
greenMult : Number,
blueMult : Number,
alphaMult :Number)
Void

Performs per-channel blending from a source image to a
destination image.

noise Fills an image with pixels representing random noise.
Flash Lite does not support this method.
paletteMap Remaps the color channel values in an image that has up to four
arrays of color palette data, one for each channel.
Flash Lite does not support this method.
perlinNoise Generates a Perlin noise image.
Flash Lite does not support this method.
pixelDissolve Performs a pixel dissolve either from a source image to a
destination image or by using the same image.
Flash Lite does not support this method.
scroll Scrolls an image by a certain (x, y) pixel amount.

Flash Lite does not support this method.

setPixel (x: Number,
v :Number,
color:Number) : void

Sets the color of a single pixel of a BitmapData object.

setPixel32 (x: Number,
v :Number,
color:Number) : void

Sets the color and alpha transparency values of a single pixel of a
BitmapData object.

threshold

Tests pixel values in an image against a specified threshold and
sets pixels that pass the test to new color values.

Flash Lite does not support this method.

method), watch

isPropertyEnumerable

(Object.toString method) ,unwatch

(Object.watch method)

addProperty (Object.addProperty method),hasOwnProperty (Object.hasOwnProperty method),
(Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method) ,registerClass (Object.registerClass method), toString
(Object.unwatch method),valueOf (Object.valueOf

BitmapData constructor

public BitmapData (width:Number,

Creates a BitmapData object with a specified width and height. If you specify a value for the £illcolor parameter,

height :Number, [transparent:Boolean], [fillColor:Number])

every pixel in the bitmap is set to that color.

By default, the bitmap is created as opaque, unless you pass the value true for the transparent parameter. Once you
create an opaque bitmap, you cannot change it to a transparent bitmap. Every pixel in an opaque bitmap uses only 24
bits of color channel information. If you define the bitmap as transparent, every pixel uses 32 bits of color channel

information, including an alpha transparency channel.

Last updated 3/22/2011

200

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 201
ActionScript classes

The maximum width and maximum height of a BitmapData object is 2880 pixels. If you specify a width or height value
that is greater than 2880, a new instance is not created.

Availability
Flash Lite 3.1

Parameters

width: Number - The width of the bitmap image in pixels.
height: Number - The height of the bitmap image in pixels.

transparent : Boolean [optional] - Specifies whether the bitmap image supports per-pixel transparency. The default
value is true (transparent). To create a fully transparent bitmap, set the value of the transparent parameter to true
and the value of the fi11Color parameter to 0x00000000 (or to 0).

fillColor : Number [optional] - A 32-bit ARGB color value that you use to fill the bitmap image area. The default value
is OXFFFFFFFF (solid white).

Example

The following example creates a new BitmapData object. The values in this example are the default values for the
transparent and fillColor parameters; you could call the constructor without these parameters and get the same
result.

import flash.display.BitmapData;

var width:Number = 100;

var height:Number = 80;

var transparent:Boolean = true;
var fillColor:Number = OXFFFFFFFF;

var bitmap_ 1l:BitmapData = new BitmapData(width, height, transparent, fillColor) ;

trace (bitmap 1.width); // 100
trace (bitmap 1.height); // 80
trace (bitmap_ 1.transparent); // true

var bitmap_ 2:BitmapData = new BitmapData(width, height) ;

trace (bitmap 2.width); // 100
trace (bitmap 2.height); // 80
trace (bitmap 2.transparent); // true

clone (BitmapData.clone method)

public clone() : BitmapData
Returns a new BitmapData object that is a copy of the cloned bitmap. A clone and and the object cloned have identical
properties. However, a clone does not evaluate as equal to the BitmapData object that was cloned because the

properties of the original object are passed by value to the clone, they are not passed by reference. If you change the
values in the original object after the clone is created, the clone does not receive the new values.

Availability
Flash Lite 3.1

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 202
ActionScript classes

Returns
BitmapData - A new BitmapData object that is identical to the original.

Example

The following example creates three BitmapData objects and compares them. The code uses the BitmapData
constructor to create the bitmap_ 1 instance. It creates the bitmap_2 instance by setting it equal to bitmap_ 1.
It creates the clonedBitmap instance by cloning bitmap_1. Notice that although bitmap_2 evaluates as being equal
tobitmap_1, clonedBitmap does not, even though it contains the same values as bitmap_ 1.

import flash.display.BitmapData;
var bitmap 1l:BitmapData = new BitmapData (100, 80, false, 0x000000);

var bitmap 2:BitmapData = bitmap_1;
var clonedBitmap:BitmapData = bitmap 1l.clone() ;

trace ("bitmap 1 == bitmap 2 " + (bitmap 1 == bitmap 2)); // true
trace("bitmap 1 == clonedBitmap " + (bitmap 1 == clonedBitmap)); // false
trace("------------- bitmap 1 properties------------- ")
for(var i in bitmap 1) {
trace(">> " + i + ": " 4+ bitmap 1[i]);
}
trace("------------- bitmap 2 properties------------- ")
for(var i in bitmap_ 2) {
trace(">> " + 1 + ": " + bitmap 1[i]);
}
trace("------------- clonedBitmap properties------------- "

for(var i in clonedBitmap) ({
trace(">> " + i + ": " + clonedBitmapl[i]) ;

}

To further demonstrate the relationships between bitmap_1,bitmap_2, and clonedBitmap, the following example
modifies the pixel value at (1, 1) of bitmap_1. Modifying pixel value at (1, 1) changes the pixel value for bitmap_2,
because bitmap_2 contains references to bitmap_1. Modifying bitmap_1 does not change clonedBitmap because
clonedBitmap does not reference the values in bitmap_1.

import flash.display.BitmapData;
var bitmap_ 1l:BitmapData = new BitmapData (100, 80, false, 0x000000) ;

var bitmap 2:BitmapData = bitmap 1;
var clonedBitmap:BitmapData = bitmap 1.clone();

trace (bitmap 1.getPixel32(1, 1)); // -16777216
trace (bitmap 2.getPixel32(1, 1)); // -16777216
trace(clonedBitmap.getPixel32(1, 1)); // -16777216

bitmap 1.setPixel32(1, 1, OxFFFFFF);

trace (bitmap 1.getPixel32(1, 1)); // -1
trace (bitmap 2.getPixel32(1, 1)); // -1
trace(clonedBitmap.getPixel32(1, 1)); // -16777216

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 203
ActionScript classes

colorTransform (BitmapData.colorTransform method)

public colorTransform(rect: Rectangle, colorTransform: ColorTransform) : Void

Adjusts the color values in a specified area of a bitmap image by using a ColorTransform object. If the rectangle
matches the boundaries of the bitmap image, this method transforms the color values of the entire image.

Availability
Flash Lite 3.1

Parameters

rect: Rectangle - A Rectangle object that defines the area of the image in which the ColorTransform object is applied.

colorTransform : ColorTransform - A ColorTransform object that describes the color transformation values to apply.

Example

The following example shows how to apply a color transform operation to a BitmapData instance.

fscommand2 ("SetSoftKeys") ;
import flash.display.BitmapData;
import flash.geom.ColorTransform;

var myBitmapData:BitmapData = new BitmapData (100, 80, false, 0x00CCCCCC) ;

var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth()) ;
mc.attachBitmap (myBitmapData, this.getNextHighestDepth()) ;

var myListener:0bject = new Object ();
myListener.onKeyDown = function () {
var keyCode = Key.getCode ();
if (keyCode == ExtendedKey.SOFT1) {
// Handle left soft key event
myBitmapData.colorTransform(myBitmapData.rectangle, new ColorTransform(l, 0, 0, 1, 255, O,

0, 0));
}

}i

See also

ColorTransform (flash.geom.ColorTransform), Rectangle (flash.geom.Rectangle)

copyChannel (BitmapData.copyChannel method)

public copyChannel (sourceBitmap:BitmapData, sourceRect:Rectangle, destPoint:Point,
sourceChannel :Number, destChannel:Number) : Void

Transfers data from one channel of another BitmapData object or the current BitmapData object into a channel of the
current BitmapData object. All of the data in the other channels in the destination BitmapData object are preserved.

The source channel value and destination channel value can be one of following values or a sum of any of the values:

o 1 (red)

« 2 (green)
+ 4 (blue)
+ 8 (alpha)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Availability
Flash Lite 3.1

Parameters
sourceBitmap : BitmapData - The input bitmap image to use. The source image can be a different BitmapData object,
or it can refer to the current BitmapData object.

sourceRect : Rectangle - The source Rectangle object. If you only want to copy channel data from a smaller area within
the bitmap, specify a source rectangle that is smaller than the overall size of the BitmapData object.

destPoint : Point - The destination Point object that represents the upper-left corner of the rectangular area where the
new channel data is placed. If you want to copy channel data from one area to a different area in the destination image,
specify a point other than (0,0).

sourceChannel : Number - The source channel. Use a value from the set (1,2,4,8), which represent red, green, blue,
and alpha channels, respectively, or a sum of any of the values.

destChannel : Number - The destination channel. Use a value from the set (1,2,4,8), which represent red, green, blue,
and alpha channels, respectively, or a sum of any of the values.

Example
The following example shows how to copy a source ARGB channel from a BitmapData object back onto itself at a
different location:

fscommand2 ("SetSoftKeys") ;
import flash.display.BitmapData;
import flash.geom.Rectangle;
import flash.geom.Point;

var myBitmapData:BitmapData = new BitmapData (100, 80, false, 0x00CCCCCC) ;

var mc:MovieClip = this.createEmptyMovieClip ("mc", this.getNextHighestDepth()) ;
mc.attachBitmap (myBitmapData, this.getNextHighestDepth()) ;

var myListener:0bject = new Object () ;
myListener.onKeyDown = function () {
var keyCode = Key.getCode () ;
if (keyCode == ExtendedKey.SOFT1l) {
// Handle left soft key event
myBitmapData.copyChannel (myBitmapData, new Rectangle(0, 0, 50, 80), new Point (51, 0),

See also

Rectangle (flash.geom.Rectangle)

copyPixels (BitmapData.copyPixels method)

public copyPixels (sourceBitmap:BitmapData, sourceRect:Rectangle, destPoint:Point) : Void

Provides a fast routine to perform pixel manipulation between images with no stretching, rotation, or color effects.
This method copies a rectangular area of a source image to a rectangular area of the same size at the destination point
of the destination BitmapData object.

Last updated 3/22/2011

204

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Availability
Flash Lite 3.1

Parameters

sourceBitmap : BitmapData - The input bitmap image from which to copy pixels. The source image can be a different

BitmapData instance, or it can refer to the current BitmapData instance.

sourceRect : Rectangle - A rectangle that defines the area of the source image to use as input.

destPoint : Point - The destination point, that represents the upper-left corner of the rectangular area where the new

pixels are placed.

Example
The following example shows how to copy pixels from one BitmapData instance to another.

fscommand2 ("SetSoftKeys") ;

import flash.display.BitmapData;
import flash.geom.Rectangle;
import flash.geom.Point;

var bitmapData 1:BitmapData = new BitmapData (100, 80, false, 0x00CCCCCC) ;
var bitmapData 2:BitmapData = new BitmapData (100, 80, false, 0x00FF0000) ;

var mc_1l:MovieClip = this.createEmptyMovieClip ("mc", this.getNextHighestDepth()) ;
mc_1.attachBitmap (bitmapData 1, this.getNextHighestDepth()) ;

var mc_2:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth()) ;
mc_2.attachBitmap (bitmapData 2, this.getNextHighestDepth()) ;
mc_2. x = 101;

var myListener:Object = new Object ();
myListener.onKeyDown = function () {
var keyCode = Key.getCode () ;
if (keyCode == ExtendedKey.SOFT1) {
// Handle left soft key event
bitmapData_2.copyPixels (bitmapData_1, new Rectangle(0, 0, 50, 80), new Point (51,
1
else if (keyCode == ExtendedKey.SOFT2) {
// Handle right soft key event
bitmapData 1.copyPixels(bitmapData 2, new Rectangle(0, 0, 50, 80), new Point (51,

}i

dispose (BitmapData.dispose method)

public dispose() : Void

Frees memory that is used to store the BitmapData object.

0));

0));

CallmyBitmapData.dispose () to set the width and height of the image to 0. After a BitmapData object's memory has

been freed, method and property access calls on the instance fail, returning a value of -1.

Availability
Flash Lite 3.1

Last updated 3/22/2011

205

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 206
ActionScript classes

Example
The following example shows how to release the memory of a BitmapData instance, which results in a cleared instance.

import flash.display.BitmapData;
var myBitmapData:BitmapData = new BitmapData (100, 80, false, 0x00CCCCCC) ;

var mc:MovieClip = this.createEmptyMovieClip ("mc", this.getNextHighestDepth()) ;
mc.attachBitmap (myBitmapData, this.getNextHighestDepth()) ;

var myListener:0Object = new Object () ;
myListener.onKeyDown = function () {
var keyCode = Key.getCode () ;
if (keyCode == ExtendedKey.SOFT1l) {
// Handle left soft key event
myBitmapData.dispose ()
trace (myBitmapData.width); // -1
trace (myBitmapData.height); // -1
trace (myBitmapData.transparent); // 1

}i

draw (BitmapData.draw method)

public draw(source:Object, [matrix:Matrix], [colorTransform:ColorTransform],
[clipRect:Rectangle], [smooth:Boolean]) : Void

Draws a source image or movie clip onto a destination image, using the Flash Lite player vector renderer. You can use
Matrix, ColorTransform, BlendMode objects, and a destination Rectangle object to control how the rendering
performs. Optionally, you can specify whether the bitmap should be smoothed when scaled. This works only if the
source object is a BitmapData object.

This method directly corresponds to how objects are drawn using the standard vector renderer for objects in the
authoring tool interface.

A source MovieClip object does not use any of its on-stage transformations for this call. It is treated as it exists in the
library or file, with no matrix transform, no color transform, and no blend mode. If you want to draw the movie clip
by using its own transform properties, you can use its Transform object to pass the various transformation properties.

The blendMode parameter is not supported in Flash Lite.

Availability
Flash Lite 3.1

Parameters
source : Object - The BitmapData object to draw.

matrix : Matrix [optional] - A Matrix object used to scale, rotate, or translate the coordinates of the bitmap. If no object
is supplied, the bitmap image will not be transformed. Set this parameter to an identity matrix, created using the
default new Matrix () constructor, if you must pass this parameter but you do not want to transform the image.

colorTransform: ColorTransform [optional] - A ColorTransform object that you use to adjust the color values of the
bitmap. If no object is supplied, the bitmap image's colors will not be transformed. Set this parameter to a
ColorTransform object created using the default new ColorTransform() constructor, if you must pass this parameter
but you do not want to transform the image.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 207
ActionScript classes

clipRect: Rectangle [optional] - A Rectangle object. If you do not supply this value, no clipping occurs.

smooth : Boolean [optional] - A Boolean value that determines whether a BitmapData object is smoothed when scaled.
The default value is false.

Example
The following example shows how to draw from a source MovieClip instance to a BitmapData object.

fscommand2 ("SetSoftKeys") ;

import flash.display.BitmapData;

import flash.geom.Rectangle;

import flash.geom.Matrix;

import flash.geom.ColorTransform;

var myBitmapData:BitmapData = new BitmapData (100, 80, false, 0x00CCCCCC) ;

var mc_1l: MovieClip = this.createEmptyMovieClip ("mc", this.getNextHighestDepth()) ;
mc_l.attachBitmap (my BitmapData,this.getNextHighestDepth()) ;

var mc_2:MovieClip = createRectangle (50, 40, OxFF0000) ;
mc 2. x = 101;

var myMatrix:Matrix = new Matrix() ;
myMatrix.rotate (Math.PI/2) ;

var translateMatrix:Matrix = new Matrix() ;
translateMatrix.translate (70, 15);
myMatrix.concat (translateMatrix) ;

var myColorTransform:ColorTransform = new ColorTransform (0, 0, 1 , 1, O, 0 , 255, 0);
var blend Mode:String = "normal";
var myRectangle:Rectangle = new Rectangle(0, 0, 100, 80);
var smooth:Boolean = true;
mc_1.onPress = function()
myBitmapData.draw(mc_2, myMatrix, myColorTransform, blendMode, myRectangle,
smooth) ;

function createRectangle (width:Number, height:Number, color:Number) :MovieClip
var depth:Number = this.getNextHighestDepth() ;
var mc:MovieClip = this.createEmptyMovieClip("mc_" + depth, depth);
mc.beginFill (color) ;
mc.lineTo (0, height);
mc.lineTo (width, height);
mc.lineTo (width, 0);
mc.lineTo (0, 0);
return mc;

fillRect (BitmapData.fillRect method)

public fillRect (rect:Rectangle, color:Number) : Void

Fills a rectangular area of pixels with a specified ARGB color.

Availability
Flash Lite 3.1

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 208
ActionScript classes

Parameters
rect:Rectangle - The rectangular area to fill.

color: Number - The ARGB color value that fills the area. ARGB colors are often specified in hexadecimal format; for
example, 0xFF336699.

Example
The following example shows how to fill an area that is defined by a Rectangle within a BitmapData with a color.

fscommand2 ("SetSoftKeys") ;

import flash.display.BitmapData;

import flash.geom.Rectangle;

var myBitmapData:BitmapData = new BitmapData (100, 80, false, 0x00CCCCCC) ;

var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth()) ;
mc.attachBitmap (myBitmapData, this.getNextHighestDepth()) ;

var myListener:0Object = new Object () ;
myListener.onKeyDown = function ()
var keyCode = Key.getCode () ;
if (keyCode == ExtendedKey.SOFT1l) {
// Handle left soft key event
myBitmapData.fillRect (new Rectangle (0, 0, 50, 40), O0xOO0FF0000) ;

}i

See also

Rectangle (flash.geom.Rectangle)

floodFill (BitmapData.floodFill method)

public floodFill (x:Number, y:Number, color:Number) : Void

Performs a flood fill operation on an image starting at an (x, y) coordinate and filling with a certain color. The
floodFill () method is similar to the paint bucket tool in various painting programs. The color is an ARGB color that
contains alpha information and color information.

Availability
Flash Lite 3.1

Parameters

x:Number - The x coordinate of the image.
y:Number - The y coordinate of the image.

color : Number - The ARGB color to use as a fill. ARGB colors are often specified in hexadecimal format, like
0xFF336699.

Example

The following example shows how to apply a flood fill a color into to an image starting at the point where a user clicks
the mouse within a BitmapData object.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 209
ActionScript classes

fscommand2 ("SetSoftKeys") ;

import flash.display.BitmapData;
import flash.geom.Rectangle;

var myBitmapData:BitmapData = new BitmapData (100, 80, false, 0x00CCCCCC) ;
var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth()) ;
mc.attachBitmap (myBitmapData, this.getNextHighestDepth()) ;

myBitmapData.fillRect (new Rectangle (0, 0, 50, 40), 0xO00FF0000) ;

var myListener:0Object = new Object () ;
myListener.onKeyDown = function () {
var keyCode = Key.getCode () ;
if (keyCode == ExtendedKey.SOFT1l) {
// Handle left soft key event
myBitmapData.floodFill (_xmouse, _ymouse, 0x000000FF) ;}

}i

getColorBoundsRect (BitmapData.getColorBoundsRect method)

public getColorBoundsRect (mask:Number, color:Number, [findColor:Boolean]) : Rectangle
Determines a rectangular region that fully encloses all pixels of a specified color within the bitmap image.

For example, if you have a source image and you want to determine the rectangle of the image that contains a nonzero
alpha channel, you pass {mask: 0xFF000000, color: 0x00000000} as parameters. The entire image is searched for
the bounds of pixels whose (value & mask) != color.To determine white space around an image, you pass {mask :
0xFFFFFFFF, color: OxFFFFFFFF} to find the bounds of nonwhite pixels.

Availability
Flash Lite 3.1

Parameters
mask : Number - A hexadecimal color value.

color : Number - A hexadecimal color value.

findColor : Boolean [optional] - If the value is set to true, returns the bounds of a color value in an image. If the value
is set to false, returns the bounds of where this color doesn't exist in an image. The default value is true.

Returns
Rectangle - The region of the image that is the specified color.

Example

The following example shows how to determine a rectangular region that fully encloses all pixels of a specified color
within the bitmap image:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

fscommand2 ("SetSoftKeys") ;

import flash.display.BitmapData;

import flash.geom.Rectangle;

var myBitmapData:BitmapData = new BitmapData (100, 80, false, 0x00CCCCCC) ;

var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth()) ;
mc.attachBitmap (myBitmapData, this.getNextHighestDepth()) ;
myBitmapData.fillRect (new Rectangle (0, 0, 50, 40), 0xO00FF0000) ;

var myListener:Object = new Object ();
myListener.onKeyDown = function ()
var keyCode = Key.getCode () ;
if (keyCode == ExtendedKey.SOFT1) {
// Handle left soft key event
var colorBoundsRect:Rectangle = myBitmapData.getColorBoundsRect (0x00FFFFFF,
0x00FF0000, true);
trace (colorBoundsRect) ; // (x=0, y=0, w=50, h=40)

}
Vi

Key.addListener (myListener) ;

getPixel (BitmapData.getPixel method)

public getPixel (x:Number, y:Number) : Number

Returns an integer that represents an RGB pixel value from a BitmapData object at a specific point (x, y). The
getPixel () method returns an unmultiplied pixel value. No alpha information is returned.

All pixels in a BitmapData object are stored as premultiplied color values. A premultiplied image pixel has the red,
green, and blue color channel values already multiplied by the alpha data. For example, if the alpha value is 0, the values
for the RGB channels are also 0, independent of their unmultiplied values.

This loss of data can cause some problems when you are performing operations. All Flash Lite player methods take
and return unmultiplied values. The internal pixel representation is unmultiplied before it is returned as a value.
During a set operation, the pixel value is premultiplied before setting the raw image pixel.

Availability
Flash Lite 3.1

Parameters
x:Number - The x position of the pixel.

y:Number - The y position of the pixel.
Returns
Number - A number that represents an RGB pixel value. If the (x, y) coordinates are outside the bounds of the image,

0 is returned.

Example
The following example uses the get Pixel () method to retrieve the RGB value of a pixel at a specific x and y position.

Last updated 3/22/2011

210

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 211
ActionScript classes

import flash.display.BitmapData;
var myBitmapData:BitmapData = new BitmapData (100, 80, false, 0x00CCCCCC) ;

var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth()) ;
mc.attachBitmap (myBitmapData, this.getNextHighestDepth()) ;
trace ("0x" + myBitmapData.getPixel (0, 0).toString(16)); // Oxcccccc

See also
getPixel32 (BitmapData.getPixel32 method)

getPixel32 (BitmapData.getPixel32 method)

public getPixel32 (x:Number, y:Number) : Number

Returns an ARGB color value that contains alpha channel data and RGB data. This method is similar to the
getPixel () method, which returns an RGB color without alpha channel data.

Availability
Flash Lite 3.1

Parameters

x:Number - The x position of the pixel.

y:Number - The y position of the pixel.

Returns

Number - A number that represent an ARGB pixel value. If the (x, y) coordinates are outside the bounds of the image,
0 is returned. If the bitmap was created as an opaque bitmap and not a transparent one, then this method will return
an error code of -1.

Example

The following example uses the getPixel32 () method to retrieve the ARGB value of a pixel at a specific x and y
position:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 212
ActionScript classes

import flash.display.BitmapData;

var myBitmapData:BitmapData = new BitmapData (100, 80, true, OxXFFAACCEE) ;

var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth()) ;
mc.attachBitmap (myBitmapData, this.getNextHighestDepth()) ;

var alpha:String = (myBitmapData.getPixel32(0, 0) >> 24 & OxFF).toString(16) ;
trace(">> alpha: " + alpha); // ff

var red:String = (myBitmapData.getPixel32(0, 0) >> 16 & OxXFF).toString(16) ;
trace(">> red: " + red); // aa

var green:String = (myBitmapData.getPixel32(0, 0) >> 8 & OxFF).toString(16) ;
trace(">> green: " + green); // cc

var blue:String = (myBitmapData.getPixel32(0, 0) & OxFF).toString(16);
trace(">> blue: " + blue); // ee

trace("0x" + alpha + red + green + blue); // Oxffaaccee

See also

getPixel (BitmapData.getPixel method)

height (BitmapData.height property)

public height : Number [read-only]

The height of the bitmap image in pixels.

Availability
Flash Lite 3.1

Example
The following example shows that the height property of the BitmapData instance is read-only by trying to set it and
failing:

import flash.display.BitmapData;
var myBitmapData:BitmapData = new BitmapData (100, 80, false, 0x00CCCCCC) ;

var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth()) ;
mc.attachBitmap (myBitmapData, this.getNextHighestDepth()) ;
trace (myBitmapData.height); // 80

myBitmapData.height = 999;
trace (myBitmapData.height); // 80

hitTest (BitmapData.hitTest method)

public hitTest (firstPoint:Point, firstAlphaThreshold:Number, secondObject:0bject,
[secondBitmapPoint:Point], [secondAlphaThreshold:Number]) : Boolean

Performs pixel-level hit detection between one bitmap image and a point, rectangle, or other bitmap image. No
stretching, rotation, or other transformation of either object is considered when doing the hit test.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 213
ActionScript classes

If an image is an opaque image, it is considered a fully opaque rectangle for this method. Both images must be
transparent images to perform pixel-level hit testing that considers transparency. When you are testing two
transparent images, the alpha threshold parameters control what alpha channel values, from 0 to 255, are considered
opaque.

Availability

Flash Lite 3.1

Parameters
firstPoint: Point - A point that defines a pixel location in the current BitmapData instance.

firstAlphaThreshold : Number - The highest alpha channel value that is considered opaque for this hit test.
secondObject : Object - A Rectangle, Point, or BitmapData object.

secondBitmapPoint: Point [optional] - A point that defines a pixel location in the second BitmapData object. Use this
parameter only when the value of secondobject is a BitmapData object.

secondAlphaThreshold : Number [optional] - The highest alpha channel value that is considered opaque in the
second BitmapData object. Use this parameter only when the value of secondobject is a BitmapData object and both
BitmapData objects are transparent.

Returns
Boolean - A Boolean value. If there is a hit, returns a value of true; otherwise, false.

Example
The following example shows how to determine if a BitmapData object is colliding with a Movieclip.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 214
ActionScript classes

import flash.display.BitmapData;
import flash.geom.Point;

var myBitmapData:BitmapData = new BitmapData (100, 80, false, 0x00CCCCCC) ;

var mc_1l:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth()) ;
mc_1l.attachBitmap (myBitmapData, this.getNextHighestDepth()) ;

var mc_2:MovieClip = createRectangle (20, 20, O0xFF0000) ;

var destPoint:Point = new Point (myBitmapData.rectangle.x, myBitmapData.rectangle.y) ;
var currPoint:Point = new Point () ;

mc_1.onEnterFrame = function() ({
currPoint.x = mc_2._ X;
currPoint.y = mc_2._y;
if (myBitmapData.hitTest (destPoint, 255, currPoint))
trace(">> Collision at x:" + currPoint.x + " and y:" + currPoint.y);

mc_2.startDrag(true) ;

function createRectangle (width:Number, height:Number, color:Number) :MovieClip {
var depth:Number = this.getNextHighestDepth() ;
var mc:MovieClip = this.createEmptyMovieClip("mc_" + depth, depth);
mc.beginFill (color) ;
mc.lineTo (0, height) ;
mc.lineTo (width, height);
mc.lineTo (width, 0);
(

mc.lineTo (0, O0);

return mc;

loadBitmap (BitmapData.loadBitmap method)

public static loadBitmap (id:String) : BitmapData

Returns a new BitmapData object that contains a bitmap image representation of the symbol that is identified by a
specified linkage ID in the library.

Availability
Flash Lite 3.1

Parameters
id: String - A linkage ID of a symbol in the library.

Returns
BitmapData - A bitmap image representation of the symbol.

Example

The following example loads a bitmap with the linkageld 1ibraryBitmap from your library. You must attach it to a
MovieClip object to give it a visual representation.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 215
ActionScript classes

import flash.display.BitmapData;

var linkageId:String = "libraryBitmap";
var myBitmapData:BitmapData = BitmapData.loadBitmap (linkageId) ;
trace (myBitmapData instanceof BitmapData); // true

var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth()) ;
mc.attachBitmap (myBitmapData, this.getNextHighestDepth()) ;

merge (BitmapData.merge method)

public merge (sourceBitmap:BitmapData, sourceRect:Rectangle, destPoint:Rectangle,
redMult :Number, greenMult:Number, blueMult:Number, alphaMult:Number) : Void

Performs per-channel blending from a source image to a destination image. The following formula is used for each
channel:

new red dest = (red source * redMult) + (red dest * (256 - redMult) / 256;

The redMult, greenMult, blueMult, and alphaMult values are the multipliers used for each color channel. Their
valid range is from 0 to 256.

Availability
Flash Lite 3.1

Parameters
sourceBitmap : BitmapData - The input bitmap image to use. The source image can be a different BitmapData object,
or it can refer to the current BitmapData object.

sourceRect : Rectangle - A rectangle that defines the area of the source image to use as input.

destPoint: Point - The point within the destination image (the current BitmapData instance) that corresponds to the
upper-left corner of the source rectangle.

redMult: Number - A number by which to multiply the red channel value.
greenMult: Number - A number by which to multiply the green channel value.
blueMult: Number - A number by which to multiply the blue channel value.

alphaMult: Number - A number by which to multiply the alpha transparency value.

Example
The following example shows how to merge part of one BitmapData with another.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 216
ActionScript classes

fscommand2 ("SetSoftKeys") ;

import flash.display.BitmapData;

import flash.geom.Rectangle;

import flash.geom.Point;

var bitmapData 1:BitmapData = new BitmapData (100, 80, false, 0x00CCCCCC) ;

var bitmapData 2:BitmapData = new BitmapData (100, 80, false, 0x00FF0000) ;

var mc_1:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth()) ;
mc_1l.attachBitmap (bitmapData_1, this.getNextHighestDepth()) ;

var mc_2:MovieClip = this.createEmptyMovieClip ("mc", this.getNextHighestDepth()) ;
mc_2.attachBitmap (bitmapData 2, this.getNextHighestDepth()) ;

mc 2. x = 101;

var myListener:0bject = new Object ();
myListener.onKeyDown = function ()
var keyCode = Key.getCode () ;
if (keyCode == ExtendedKey.SOFT1l) {
// Handle left soft key event
bitmapData_ 1.merge (bitmapData_ 2, new Rectangle(0, 0, 50, 40), new Point (25, 20), 128,

Key.addListener (myListener);

rectangle (BitmapData.rectangle property)

public rectangle : Rectangle [read-only]

The rectangle that defines the size and location of the bitmap image. The top and left of the rectangle are 0; the width
and height are equal to the width and height in pixels of the BitmapData object.

Availability
Flash Lite 3.1

Example
The following example shows that the rectangle property of the Bitmap instance is read-only by trying to set it and
failing:

import flash.display.BitmapData;
import flash.geom.Rectangle;

var myBitmapData:BitmapData = new BitmapData (100, 80, false, 0x00CCCCCC) ;
var mc:MovieClip = this.createEmptyMovieClip("mc", this.getNextHighestDepth()) ;
mc.attachBitmap (myBitmapData, this.getNextHighestDepth()) ;

trace (myBitmapData.rectangle); // (x=0, y=0, w=100, h=80)

myBitmapData.rectangle = new Rectangle(l, 2, 4, 8);
trace (myBitmapData.rectangle); // (x=0, y=0, w=100, h=80)

setPixel (BitmapData.setPixel method)

public setPixel (x:Number, y:Number, color:Number) : Void

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 217
ActionScript classes

Sets the color of a single pixel of a BitmapData object. The current alpha channel value of the image pixel is preserved
during this operation. The value of the RGB color parameter is treated as an unmultiplied color value.

Availability
Flash Lite 3.1

Parameters

x:Number - The x position of the pixel whose value changes.
y:Number - The y position of the pixel whose value changes.

color : Number - The RGB color to which to set the pixel.

See also

getPixel (BitmapData.getPixel method), setPixel32 (BitmapData.setPixel32 method)

setPixel32 (BitmapData.setPixel32 method)

public setPixel32 (x:Number, y:Number, color:Number) : Void

Sets the color and alpha transparency values of a single pixel of a BitmapData object. This method is similar to the
setPixel () method; the main difference is that the set Pixe132 () method takes an ARGB color value that contains
alpha channel information.

Availability
Flash Lite 3.1

Parameters

x: Number - The x position of the pixel whose value changes.
y:Number - The y position of the pixel whose value changes.

color: Number - The ARGB color to which to set the pixel. If you created an opaque (not a transparent) bitmap, the
alpha transparency portion of this color value is ignored.

See also

getPixel32 (BitmapData.getPixel32 method), setPixel (BitmapData.setPixel method)

transparent (BitmapData.transparent property)

public transparent : Boolean [read-only]

Defines whether the bitmap image supports per-pixel transparency. You can set this value only when you construct a
BitmapData object by passing in true for the transparent parameter. After you create a BitmapData object, you can
check whether it supports per-pixel transparency by seeing if the value of the transparent property is true.

Availability
Flash Lite 3.1

width (BitmapData.width property)

public width : Number [read-only]

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

The width of the bitmap image in pixels.

Availability
Flash Lite 3.1

Boolean

Object

+-Boolean

public class Boolean
extends Object

The Boolean class is a wrapper object with the same functionality as the standard JavaScript Boolean object. Use the
Boolean class to retrieve the primitive data type or string representation of a Boolean object.

You must use the constructor new Boolean () to create a Boolean object before calling its methods.

Availability
Flash Lite 2.0

Property summary
Properties inherited from class Object

constructor (Object.constructor property), proto (Object._ proto
property)prototype (Object.prototype property), resolve (Object. resolve property)

Constructor summary

Signature Description

Boolean ([value:Objec [Creates a Boolean object.
1)

Method summary
Modifiers Signature Description
toString () : String Returns the string representation ("true" or "false") of the
Boolean object.
valueOf () : Boolean Returns true if the primitive value type of the specified
Boolean object is true; £alse otherwise.

Methods inherited from class Object

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method) isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method),valueOf (Object.valueOf
method)watch (Object.watch method)

Last updated 3/22/2011

218

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 219
ActionScript classes

Boolean constructor

public Boolean([value:0Object])

Creates a Boolean object. If you omit the value parameter, the Boolean object is initialized with a value of false. If
you specify a value for the value parameter, the method evaluates it and returns the result as a Boolean value according
to the rules in the global Boolean () function.

Availability
Flash Lite 2.0

Parameters
value: Object [optional] - Any expression. The default value is false.

Example
The following code creates a new empty Boolean object called myBoolean:

var myBoolean:Boolean = new Boolean() ;

toString (Boolean.toString method)

public toString() : String

Returns the string representation ("true" or "false") of the Boolean object.

Availability
Flash Lite 2.0

Returns

String - A string; "true" or "false".

Example
This example creates a variable of type Boolean and uses toString () to convert the value to a string for use in the
trace statement:

var myBool:Boolean = true;

trace ("The value of the Boolean myBool is: " + myBool.toString()) ;
myBool = false;

trace ("The value of the Boolean myBool is: " + myBool.toString()) ;

valueOf (Boolean.valueOf method)

public valueOf () : Boolean

Returns true if the primitive value type of the specified Boolean object is true; false otherwise.

Availability
Flash Lite 2.0

Returns
Boolean - A Boolean value.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 220
ActionScript classes

Example
The following example shows how this method works, and also shows that the primitive value type of a new Boolean
object is false:

var x:Boolean = new Boolean() ;

trace (x.valueOf ()) ; // false
X = (6==3+3);
trace (x.valueOf ()) ; // true

Button

Object

+-Button

public class Button
extends Object

All button symbols are instances of the Button object. You can give a button an instance name in the Property
inspector, and use the methods and properties of the Button class to manipulate buttons with ActionScript. Button
instance names are displayed in the Movie Explorer and in the Insert Target Path dialog box in the Actions panel.

Availability
Flash Lite 2.0

See also
Object

Property summary

Modifiers Property

Description

_alpha: Number

The alpha transparency value of the button.

enabled : Boolean

A Boolean value that specifies whether a button is enabled.

_focusrect : Boolean

A Boolean value that specifies whether a button has a yellow
rectangle around it when it has input focus.

_height: Number

The height of the button, in pixels.

_highquality : Number

Deprecated since Flash Player 7. This property was
deprecated in favor of Button. quality.

Specifies the level of anti-aliasing applied to the current SWF
file.

_name: String

Instance name of the button.

_parent: MovieClip

A reference to the movie clip or object that contains the
current movie clip or object.

_quality : String

Property (global); sets or retrieves the rendering quality used
for a SWF file.

_rotation : Number

The rotation of the button, in degrees, from its original
orientation.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Modifiers

Property

Description

_soundbuftime : Number

Specifies the number of seconds a sound prebuffers before it
starts to stream.

tabEnabled : Boolean

Specifies whether a button is included in automatic tab
ordering.

tabIindex : Number

Lets you customize the tab ordering of objects in a SWF file.

_target: String [read-only]

Returns the target path of the button instance.

trackAsMenu : Boolean

ABoolean value that indicates whether other buttons or movie
clips can receive a release event from a mouse or stylus.

_url: String [read-only]

Retrieves the URL of the SWF file that created the button.

_visible : Boolean

A Boolean value that indicates whether the button is visible.

_width : Number

The width of the button, in pixels.

_x:Number

An integer that sets the x coordinate of a button relative to the
local coordinates of the parent movie clip.

_xmouse : Number [read-
only]

Returns the x coordinate of the mouse position relative to the
button.

_xscale : Number

The horizontal scale of the button as applied from the
registration point of the button, expressed as a percentage.

_y:Number

They coordinate of the button relative to the local coordinates
of the parent movie clip.

_ymouse : Number [read-
only]

Returns the y coordinate of the mouse position relative to the
button.

_yscale : Number

The vertical scale of the button as applied from the registration
point of the button, expressed as a percentage.

Properties inherited from class Object

function() {}

button.

constructor (Object.constructor property), proto (Object._ proto

property)prototype (Object.prototype property), resolve (Object._ resolve property)
Event summary

Event Description

onDragOut = Invoked when the user clicks on the button and then drags the pointer outside of the

function() {}

onDragOver = Invoked when the user clicks outside of the button and then drags the pointer over the
function() {} button.
onKeyDown = Invoked when a button has keyboard focus and a key is pressed.

Object) {}

function (newFocus:

onKeyUp = Invoked when a button has input focus and a key is released.
function() {}
onKillFocus = Invoked when a button loses keyboard focus.

(3

onPress = function ()

Invoked when a button is pressed.

Last updated 3/22/2011

221

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Event Description
onRelease = Invoked when a button is released.
function() {}
onReleaseOutside = Invoked when the mouse is released with the pointer outside the button after the
function() {} mouse button is pressed with the pointer inside the button.
onRollOut = Invoked when the button loses focus.
function() {}
onRollOver = Invoked when the button gains focus.
function() {}
onSetFocus = Invoked when a button receives keyboard focus.
function (oldFocus:
Object) {}
Method summary
Modifiers Signature Description
getDepth () : Number | Returns the depth of the button instance.

Methods inherited from class Object

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method) isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method),valueOf (Object.valueOf
method)watch (Object.watch method)

_alpha (Button._alpha property)

public alpha : Number

The alpha transparency value of the button specified by my_btn. Valid values are 0 (fully transparent) to 100 (fully
opaque). The default value is 100. Objects in a button with _alpha set to 0 are active, even though they are invisible.

Availability
Flash Lite 2.0

Example

The following code sets the _alpha property of a button named myBtn_btn to 50% when the user clicks the button.
First, add a Button instance on the Stage. Second, give it an instance name of myBtn_btn. Lastly, with frame 1 selected,
place the following code into the Actions panel:

myBtn btn.onRelease = function() {
this. alpha = 50;

}i

See also

alpha (MovieClip. alpha property), alpha (TextField. alpha property)

enabled (Button.enabled property)

public enabled : Boolean

Last updated 3/22/2011

222

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 223
ActionScript classes

A Boolean value that specifies whether a button is enabled. When a button is disabled (the enabled property is set to
false), the button is visible but cannot be clicked. The default value is true. This property is useful if you want to
disable part of your navigation; for example, you may want to disable a button in the currently displayed page so that
it can't be clicked and the page cannot be reloaded.

Availability
Flash Lite 2.0

Example

The following example demonstrates how you can disable and enable buttons from being clicked. Two buttons,
myBtnl_btn and myBtn2_btn, are on the Stage and the following ActionScript is added so that the myBtn2_btn
button cannot be clicked. First, add two button instances on the Stage. Second, give them instance names of
myBtnl_btn and myBtn2_btn. Lastly, place the following code on frame 1 to enable or disable buttons.

myBtnl_btn.enabled = true;
myBtn2_ btn.enabled = false;

//button code
// the following function will not get called
// because myBtn2 btn.enabled was set to false
myBtnl btn.onRelease = function() ({

trace("you clicked : " + this. name);

Vi
myBtn2 btn.onRelease = function() ({
trace("you clicked : " + this. name);

}i

_focusrect (Button._focusrect property)

public focusrect : Boolean

A Boolean value that specifies whether a button has a yellow rectangle around it when it has input focus. This property
can override the global _focusrect property. By default, the _focusrect property of a button instance is null; the
button instance does not override the global _focusrect property. If the _focusrect property of a button instance
is set to true or false, it overrides the setting of the global _focusrect property for the single button instance.

In Flash Player 4 and Flash Player 5 SWF files, the _focusrect property controls the global focusrect property. It
is a Boolean value. This behavior was changed in Flash Player 6 and later to permit customizing the _focusrect
property on an individual movie clip.

Ifthe focusrect property is set to f£alse, then keyboard navigation for that button is limited to the Tab key. All other
keys, including the Enter and arrow keys, are ignored. To restore full keyboard navigation, you must set _focusrect
to true.

Note: For the Flash Lite 2.0 player, when the _focusrect property is disabled (in other words, Button. focusRect is
false), the button receives all events. This behavior is different from Flash Lite player behavior because when the
_focusrect property is disabled, the button receives the rol10over and rollout events but does not receive the
press and release events.

Also for Flash Lite 2.0, you can change the color of the focus rectangle using the fscommand?2 SetFocusRectColor
command. This behavior is also different from Flash Lite player, for which the color of the focus rectangle is restricted
to yellow.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 224
ActionScript classes

Availability
Flash Lite 2.0

Example

This example demonstrates how to hide the yellow rectangle around a specified button instance in a SWF file when it
has focus in a browser window. Create three buttons called myBtnl btn, myBtn2 btn, and myBtn3 btn, and add the
following ActionScript to Frame 1 of the Timeline:

myBtn2 btn. focusrect = false;

getDepth (Button.getDepth method)

public getDepth() : Number
Returns the depth of the button instance.

Each movie clip, button, and text field has a unique depth associated with it that determines how the object appears in
front of or in back of other objects. Objects with higher depths appear in front.

Availability
Flash Lite 2.0

Returns
Number - The depth of the button instance.

Example
If you create myBtn1_btn and myBtn2_btn on the Stage, you can trace their depth using the following ActionScript:

trace (myBtnl btn.getDepth()) ;
trace (myBtn2 btn.getDepth()) ;

If youload a SWF file called buttonMovie.swf into this document, you could trace the depth of a button, myBtn4_btn,
inside that SWF file using another button in the main SWEF:

this.createEmptyMovieClip ("myClip mc", 999);
myClip mc.loadMovie ("buttonMovie.swf") ;
myBtn3 btn.onRelease = function() {

trace (myClip mc.myBtn4 btn.getDepth()) ;

}i

You might notice that two of these buttons have the same depth value, one in the main SWF file and one in the loaded
SWE file. This is misleading, because buttonMovie.swf was loaded at depth 999, which means that the button it
contains will also have a depth of 999 relative to the buttons in the main SWF file. Keep in mind that each movie clip
has its own internal z-order, which means that each movie clip has its own set of depth values. The two buttons may
have the same depth value, but the values only have meaning in relation to other objects in the same z-order. In this
case, the buttons have the same depth value, but the values relate to different movie clips: the depth value of the button
in the main SWF file relates to the z-order of the main Timeline, while the depth value of the button in the loaded SWF
file relates to the internal z-order of the myclip mc movie clip.

See also

getDepth (MovieClip.getDepth method), getDepth (TextField.getDepth method), getInstanceAtDepth
(MovieClip.getInstanceAtDepth method)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 225
ActionScript classes

_height (Button._height property)

public _height : Number

The height of the button, in pixels.

Availability
Flash Lite 2.0

Example
The following example sets the height and width of a button called my_btn to a specified width and height.

my btn. width = 500;
my btn. height = 200;

_highquality (Button._highquality property)
public _highquality : Number
Deprecated since Flash Player 7. This property was deprecated in favor of Button._quality.

Specifies the level of anti-aliasing applied to the current SWF file. Specify 2 (best quality) to apply high quality with
bitmap smoothing always on. Specify 1 (high quality) to apply anti-aliasing; this smooths bitmaps if the SWF file does
not contain animation and is the default value. Specify 0 (low quality) to prevent anti-aliasing.

Availability
Flash Lite 2.0

Example
Add a button instance on the Stage and name it myBtn_btn. Draw an oval on the Stage using the Oval tool that has a
stroke and fill color. Select Frame 1 and add the following ActionScript using the Actions panel:

myBtn btn.onRelease = function() {
myBtn btn. highquality = 0;

i

When you click myBtn_btn, the circle's stroke will look jagged. You could add the following ActionScript instead to
affect the SWF globally:

_quality = 0;

See also

quality (Button. quality property), quality property

_name (Button._name property)

public name : String

Instance name of the button specified by my_btn.

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 226
ActionScript classes

Example
The following example traces all instance names of any Button instances within the current Timeline of a SWF file.
for (i in this) {

if (this[i] instanceof Button) {

trace(this[i] . _name) ;

}

onDragOut (Button.onDragOut handler)

onDragOut = function() {}

Invoked when the user presses the mouse button over the button and then drags the pointer outside of the button. You
must define a function that is executed when the event handler is invoked.

Note: The ondragout Event Handler is supported for Flash Lite 2.0 only if system. capabilities.hasMouse is true
or System.capabilities.hasStylus is true.

Availability
Flash Lite 2.0

Example
The following example demonstrates how you can execute statements when the pointer is dragged off a button. Create
a button called my_btn on the Stage and enter the following ActionScript in a frame on the Timeline:

my btn.onDragOut = function() {
trace ("onDragOut: "+this. name);

my btn.onDragOver = function() {
trace ("onDragOver: "+this. name);

}i

onDragOver (Button.onDragOver handler)

onDragOver = function() {}

Invoked when the user presses the mouse button outside of the button and then drags the pointer over the button. You
must define a function that is executed when the event handler is invoked.

Note: The onbragover Event Handler is supported for Flash Lite 2.0 only if System.capabilities.hasMouse is
true Or System.capabilities.hasStylus is true.

Availability
Flash Lite 2.0

Example

The following example defines a function for the onDragOver handler that sends a trace () statement to the Output
panel. Create a button called my_btn on the Stage and enter the following ActionScript on the Timeline:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 227
ActionScript classes

my btn.onDragOut = function() {
trace ("onDragOut: "+this. name);

}i
my btn.onDragOver = function() {
trace ("onDragOver: "+this. name);

i

When you test the SWEF file, drag the pointer off the button instance. Then, while pressing the mouse button, drag onto
the button instance again. Notice that the Output panel tracks your movements.

See also

onDragOut (Button.onDragOut handler)

onKeyDown (Button.onKeyDown handler)

onKeyDown = function() {}

Invoked when a button has keyboard focus and a key is pressed. The onkeyDown event handler is invoked with no
parameters. You can use the Key . getAscii () and Key.getCode () methods to determine which key was pressed. You
must define a function that is executed when the event handler is invoked.

Availability
Flash Lite 2.0

Example
In the following example, a function that sends text to the Output panel is defined for the onkeyDown handler. Create
a button called my_btn on the Stage, and enter the following ActionScript in a frame on the Timeline:

my btn.onKeyDown = function() {
trace ("onKeyDown: "+this. name+" (Key: "+getKeyPressed()+")");
}i
function getKeyPressed() :String {
var theKey:String;
switch (Key.getAscii()) {
case Key.BACKSPACE
theKey = "BACKSPACE";
break;
case Key.SPACE
theKey = "SPACE";
break;
default
theKey = chr(Key.getAscii()) ;

}

return theKey;

}

Select Control > Test Movie to test the SWF file. Make sure you select Control > Disable Keyboard Shortcuts in the test
environment. Then press the Tab key until the button has focus (a yellow rectangle appears around the my_btn
instance) and start pressing keys on your keyboard. When you press keys, they are displayed in the Output panel.

See also
onKeyUp (Button.onKeyUp handler), getAscii (Key.getAscii method), getCode (Key.getCode method)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 228
ActionScript classes

onKeyUp (Button.onKeyUp handler)

onKeyUp = function() {}

Invoked when a button has input focus and a key is released. The onkeyUp event handler is invoked with no
parameters. You can use the Key.getAscii () and Key.getCode () methods to determine which key was pressed.

Availability
Flash Lite 2.0

Example

In the following example, a function that sends text to the Output panel is defined for the onkeyDown handler. Create
a button called my_btn on the Stage, and enter the following ActionScript in a frame on the Timeline:

my btn.onKeyDown = function() {
trace ("onKeyDown: "+this. name+" (Key: "+getKeyPressed()+")");
}i
my btn.onKeyUp = function()
trace ("onKeyUp: "+this. name+" (Key: "+getKeyPressed()+")");
i
function getKeyPressed() :String {
var theKey:String;
switch (Key.getAscii()) {
case Key.BACKSPACE :
theKey = "BACKSPACE";
break;
case Key.SPACE
theKey = "SPACE";
break;
default
theKey = chr (Key.getAscii());

}

return theKey;

}

Press Control+Enter to test the SWEF file. Make sure you select Control > Disable Keyboard Shortcuts in the test
environment. Then press the Tab key until the button has focus (a yellow rectangle appears around the my_btn
instance) and start pressing keys on your keyboard. When you press keys, they are displayed in the Output panel.

See also

onKeyDown (Button.onKeyDown handler), getAscii (Key.getAscii method), getCode (Key.getCode
method)

onKillFocus (Button.onKillFocus handler)

onKillFocus = function (newFocus:Object) {}

Invoked when a button loses keyboard focus. The onkillFocus handler receives one parameter, newFocus, which is an
object representing the new object receiving the focus. If no object receives the focus, newFocus contains the value nu11.

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 229
ActionScript classes

Parameters

newFocus : Object - The object that is receiving the focus.

Example
The following example demonstrates how statements can be executed when a button loses focus. Create a button
instance on the Stage called my_btn and add the following ActionScript to Frame 1 of the Timeline:
this.createTextField("output txt", this.getNextHighestDepth(), 0, 0, 300, 200);
output_txt.wordWrap = true;
output_txt.multiline = true;
output_txt.border = true;
my btn.onKillFocus = function() {

output_txt.text = "onKillFocus: "+this. name+newline+output_ txt.text;

}i 7

Test the SWF file in a browser window, and try using the Tab key to move through the elements in the window. When
the button instance loses focus, text is sent to the output_txt text field.

onPress (Button.onPress handler)

onPress = function() {}

Invoked when a button is pressed. You must define a function that is executed when the event handler is invoked.

Availability
Flash Lite 2.0

Example
In the following example, a function that sends a trace () statement to the Output panel is defined for the onpress
handler:

my btn.onPress = function () {
trace ("onPress called");

}i

onRelease (Button.onRelease handler)

onRelease = function() {}

Invoked when a button is released. You must define a function that is executed when the event handler is invoked.

Availability
Flash Lite 2.0

Example

In the following example, a function that sends a trace () statement to the Output panel is defined for the onrRelease
handler:

my btn.onRelease = function () ({
trace ("onRelease called");

}i

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 230
ActionScript classes

onReleaseOutside (Button.onReleaseOutside handler)
onReleaseOutside = function() {}

Invoked when the mouse is released with the pointer outside the button after the mouse button is pressed with the
pointer inside the button. You must define a function that is executed when the event handler is invoked.

Note: The onrReleaseoutside Event Handler is supported for Flash Lite 2.0 only if

System.capabilities.hasMouse is true Or System.capabilities.hasStylus is true

Availability
Flash Lite 2.0

Example
In the following example, a function that sends a trace () statement to the Output panel is defined for the
onReleaseOutside handler:

my btn.onReleaseOutside = function () {
trace ("onReleaseOutside called");

}i

onRollOut (Button.onRollOut handler)

onRollOut = function() {}

Invoked when the button loses focus. This can happen when the user clicks another button or area outside of the
currently selected button. You must define a function that is executed when the event handler is invoked.

Availability
Flash Lite 2.0

Example

In the following example, a function that sends a trace () statement to the Output panel is defined for the onrRol1lout
handler:

my btn.onRollOut = function () ({
trace ("onRollOut called");

i

onRollOver (Button.onRollOver handler)
onRollOver = function() {}
Invoked when the button gains focus. This can happen when the user clicks another button outside of the currently

selected button. Invoked when the pointer moves over a button area. You must define a function that is executed when
the event handler is invoked.

Availability
Flash Lite 2.0

Example

In the following example, a function that sends a trace () statement to the Output panel is defined for the onrRol1over
handler:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 231
ActionScript classes

my btn.onRollOver = function () {
trace ("onRollOver called") ;

}i

onSetFocus (Button.onSetFocus handler)

onSetFocus = function(oldFocus:Object) {}

Invoked when a button receives keyboard focus. The o1dFocus parameter is the object that loses the focus. For
example, if the user presses the Tab key to move the input focus from a text field to a button, o1dFocus contains the
text field instance.

If there is no previously focused object, o1dFocus contains a null value.

Availability
Flash Lite 2.0

Parameters
oldFocus: Object - The object to lose keyboard focus.

Example

The following example demonstrates how you can execute statements when the user of a SWF file moves focus from
one button to another. Create two buttons, btnl_btn and btn2_btn, and enter the following ActionScript in Frame
1 of the Timeline:

Selection.setFocus (btnl_btn) ;

trace (Selection.getFocus()) ;

btn2_btn.onSetFocus = function(oldFocus) {
trace (oldFocus. name + "lost focus");

i

Test the SWF file by pressing Control+Enter. Make sure you select Control > Disable Keyboard Shortcuts if it is not
already selected. Focus is set on btn1_btn. When btn1_btn loses focus and btn2_btn gains focus, information is
displayed in the Output panel.

_parent (Button._parent property)

public parent : MovieClip

A reference to the movie clip or object that contains the current movie clip or object. The current object is the one
containing the ActionScript code that references _parent.

Use _parent to specify a relative path to movie clips or objects that are above the current movie clip or object. You
can use _parent to move up multiple levels in the display list as in the following:

this. parent. parent._alpha = 20;

Availability
Flash Lite 2.0

Example
In the following example, a button named my_btn is placed inside a movie clip called my_mc. The following code shows
how to use the _parent property to get a reference to the movie clip my_mc:

trace(my_mc.my_btn._ parent) ;

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 232
ActionScript classes

The Output panel displays the following:

_level0.my_mc

See also

_parent (MovieClip. parent property), target (MovieClip. target property), root property

_quality (Button._quality property)

public quality : String

Property (global); sets or retrieves the rendering quality used for a SWF file. Device fonts are always aliased and
therefore are unaffected by the _quality property.

The _quality property can be set to the following values:

 "Low" Low rendering quality. Graphics are not anti-aliased, and bitmaps are not smoothed.

« "MEDIUM" Medium rendering quality. Graphics are anti-aliased using a 2 x 2 pixel grid, but bitmaps are not
smoothed. This is suitable for movies that do not contain text.

« "HIGH" High rendering quality. Graphics are anti-aliased using a 4 x 4 pixel grid, and bitmaps are smoothed if the
movie is static. This is the default rendering quality setting used by Flash.

Note: Although you can specify this property for a Button object, it is actually a global property, and you can specify
its value simply as _quality.

Availability
Flash Lite 2.0

Example
This example sets the rendering quality of a button named my_btn to Low:

my btn. gquality = "LOW";

_rotation (Button._rotation property)

public _rotation : Number

The rotation of the button, in degrees, from its original orientation. Values from 0 to 180 represent clockwise rotation;
values from 0 to -180 represent counterclockwise rotation. Values outside this range are added to or subtracted from
360 to obtain a value within the range. For example, the statement my_btn._rotation = 450 is the same as

my_btn. rotation = 90.

Availability
Flash Lite 2.0

Example

The following example rotates two buttons on the Stage. Create two buttons on the Stage called control_btn and
my_btn. Make sure thatmy_btn is not perfectly round, so you can see it rotating. Then enter the following ActionScript
in Frame 1 of the Timeline:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

var control btn:Button;

var my_btn:Button;

control btn.onRelease = function() {
my btn. rotation += 10;

}i

Now create another button on the Stage called myother btn, making sure it isn’t perfectly round (so you can see it
rotate). Enter the following ActionScript in Frame 1 of the Timeline.

var myOther btn:Button;
this.createEmptyMovieClip ("rotater mc", this.getNextHighestDepth()) ;
rotater mc.onEnterFrame = function() {

myOther btn. rotation += 2;

}i

See also

_rotation (MovieClip. rotation property), rotation (TextField. rotation property)

_soundbuftime (Button._soundbuftime property)

public soundbuftime : Number
Specifies the number of seconds a sound prebuffers before it starts to stream.

Note: Although you can specify this property for a Button object, it is actually a global property that applies to all
sounds loaded, and you can specify its value simply as _soundbuftime. Setting this property for a Button object
actually sets the global property.

For more information and an example, see _soundbuftime.

Availability
Flash Lite 2.0

See also

_soundbuftime property

tabEnabled (Button.tabEnabled property)

public tabEnabled : Boolean
Specifies whether my_btn is included in automatic tab ordering. It is undefined by default.

If the tabEnabled property is undefined or true, the object is included in automatic tab ordering. If the tabIndex
property is also set to a value, the object is included in custom tab ordering as well. If tabEnabled is £alse, the object
is not included in automatic or custom tab ordering, even if the tabIndex property is set.

Availability
Flash Lite 2.0

Last updated 3/22/2011

233

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 234
ActionScript classes

Example

The following ActionScript is used to set the tabEnabled property for one of four buttons to false. However, all four
buttons (one_btn, two_btn, three_btn, and four_btn) are placed in a custom tab order using tabIndex. Although
tabIndex is set for three btn, three btn is not included in a custom or automatic tab order because tabEnabled
is set to false for that instance. To set the tab ordering for the four buttons, add the following ActionScript to Frame
1 of the Timeline:

three_btn.tabEnabled = false;
two_btn.tabIndex = 1;

four btn.tabIndex = 2;

three btn.tabIndex = 3;
one_btn.tabIndex = 4;

See also

tabIndex (Button.tabIndex property), tabEnabled (MovieClip.tabEnabled property), tabEnabled
(TextField.tabEnabled property)

tabindex (Button.tabindex property)

public tabIndex : Number

Lets you customize the tab ordering of objects in a SWF file. You can set the tabIndex property on a button, movie
clip, or text field instance; it is undefined by default.

If any currently displayed object in the SWF file contains a tabIndex property, automatic tab ordering is disabled, and
the tab ordering is calculated from the tabIndex properties of objects in the SWF file. The custom tab ordering only
includes objects that have tabIndex properties.

The tabIndex property may be a non-negative integer. The objects are ordered according to their tabIndex
properties, in ascending order. An object with a tabIndex value of 1 precedes an object with a tabIndex value of 2. If
two objects have the same tabIndex value, the one that precedes the other in the tab ordering is undefined.

The custom tab ordering defined by the tabIndex property is flat. This means that no attention is paid to the
hierarchical relationships of objects in the SWF file. All objects in the SWF file with tabIndex properties are placed in
the tab order, and the tab order is determined by the order of the tabIndex values. If two objects have the same
tabIndex value, the one that goes first is undefined. You shouldn’t use the same tabIndex value for multiple objects.

Availability
Flash Lite 2.0

Example

The following ActionScript is used to set the tabEnabled property for one of four buttons to £alse. However, all four
buttons (one_btn, two_btn, three_btn, and four_btn) are placed in a custom tab order using tabIndex. Although
tabIndex is set for three btn, three btn is not included in a custom or automatic tab order because tabEnabled
is set to false for that instance. To set the tab ordering for the four buttons, add the following ActionScript to Frame
1 of the Timeline:

three btn.tabEnabled = false;
two_btn.tabIndex = 1;
four_btn.tabIndex = 2;
three_btn.tabIndex = 3;
one_btn.tabIndex = 4;

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 235
ActionScript classes

See also

tabEnabled (Button.tabEnabled property), tabChildren (MovieClip.tabChildren property),
tabEnabled (MovieClip.tabEnabled property), tabIndex (MovieClip.tabIndex property), tabIndex
(TextField.tabIndex property)

_target (Button._target property)

public _target : String [read-only]

Returns the target path of the button instance specified by my_btn.

Availability
Flash Lite 2.0

Example
Add a button instance to the Stage with an instance name my_btn and add the following code to Frame 1 of the
Timeline:

trace (my btn. target); //displays /my btn

Select my_btn and convert it to a movie clip. Give the new movie clip an instance name my_mc. Delete the existing
ActionScript in Frame 1 of the Timeline and replace it with:

my mc.my btn.onRelease = function() {
trace(this. target); //displays /my mc/my btn

}i
To convert the notation from slash notation to dot notation, modify the previous code example to the following:

my mc.my btn.onRelease = function() {
trace (eval (this. target)); //displays levelO.my mc.my btn

}i
This lets you access methods and parameters of the target object, such as:

my mc.my btn.onRelease = function()
var target btn:Button = eval(this. target);
trace (target_btn. name); //displays my btn

}i

See also

_target (MovieClip. target property)

trackAsMenu (Button.trackAsMenu property)

public trackAsMenu : Boolean

A Boolean value that indicates whether other buttons or movie clips can receive a release event from a mouse or stylus.
If you drag a stylus or mouse pointer across a button and then release it on a second button, the onrRelease event is
registered for the second button. This allows you to create menus for the second button. You can set the t rackAsMenu

property on any button or movie clip object. If you have not defined the trackasMenu property, the default behavior
is false.

You can change the trackAsMenu property at any time; the modified button immediately takes on the new behavior.

Note: The trackAsMenu property is supported for Flash Lite 2.0 only if System. capabilities.hasMouse is true
or System.capabilities.hasStylus is true..

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 236
ActionScript classes

Availability
Flash Lite 2.0

Example
The following example demonstrates how to track two buttons as a menu. Place two button instances called one_btn
and two_btn on the Stage. Enter the following ActionScript in the Timeline:

var one_ btn:Button;

var two_btn:Button;

one_btn.trackAsMenu = true;

two_btn.trackAsMenu = true;

one_btn.onRelease = function() {
trace("clicked one btn");

}i

two_btn.onRelease = function() {
trace("clicked two_btn");

}i

To test the SWEF file, click the Stage over one_btn, hold the mouse button down, and release it over two_btn. Then try
commenting out the two lines of ActionScript that contain trackasMenu and test the SWF file again to see the
difference in button behavior.

See also

trackAsMenu (MovieClip.trackAsMenu property)

_url (Button._url property)

public url : String [read-only]

Retrieves the URL of the SWF file that created the button.

Availability
Flash Lite 2.0

Example
Create two button instances on the Stage called one_btn and two_btn. Enter the following ActionScript in Frame 1 of
the Timeline:

var one_btn:Button;
var two_btn:Button;
this.createTextField("output txt", 999, 0, 0, 100, 22);
output_txt.autosize = true;
one btn.onRelease = function() {
trace("clicked one_btn");
trace(this._url);
}i
two_btn.onRelease = function() {
trace("clicked "+this. name);
var url array:Array = this. url.split("/");
var my str:String = String(url_array.pop());
output_txt.text = unescape(my_str) ;

}i
When you click each button, the file name of the SWF containing the buttons displays in the Output panel.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 237
ActionScript classes

_visible (Button._visible property)

public visible : Boolean

A Boolean value that indicates whether the button specified by my_btn is visible. Buttons that are not visible
(_visible property set to false) are disabled.

Availability
Flash Lite 2.0

Example
Create two buttons on the Stage with the instance names myBtn1_btn and myBtn2_btn. Enter the following
ActionScript in Frame 1 of the Timeline:
myBtnl btn.onRelease = function() ({
this. visible = false;
trace("clicked "+this. name);
}i
myBtn2 btn.onRelease = function() {
this._alpha = 0;
trace("clicked "+this._name) ;

}i

Notice how you can still click myBtn2_btn after the alpha is set to 0.

See also

_visible (MovieClip. visible property), visible (TextField. visible property)

_width (Button._width property)

public _width : Number

The width of the button, in pixels.

Availability
Flash Lite 2.0

Example
The following example increases the width property of a button called my_btn, and displays the width in the Output
panel. Enter the following ActionScript in Frame 1 of the Timeline:

my btn.onRelease = function() {
trace(this. width) ;
this. width *= 1.1;

}i

See also

_width (MovieClip. width property)

_X (Button._x property)

public x : Number

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 238

ActionScript classes

An integer that sets the x coordinate of a button relative to the local coordinates of the parent movie clip. If a button
is on the main Timeline, then its coordinate system refers to the upper left corner of the Stage as (0, 0). If the button is
inside a movie clip that has transformations, the button is in the local coordinate system of the enclosing movie clip.
Thus, for a movie clip rotated 90 degrees counterclockwise, the enclosed button inherits a coordinate system that is
rotated 90 degrees counterclockwise. The button's coordinates refer to the registration point position.

Availability
Flash Lite 2.0

Example
The following example sets the coordinates of my_btn to 0 on the Stage. Create a button called my_btn and enter the
following ActionScript in Frame 1 of the Timeline:

my _btn. x = 0;

my _btn. y = 0;

See also

_xscale (Button. xscale property), y (Button. y property), yscale (Button. yscale property)

_Xmouse (Button._xmouse property)

public xmouse : Number [read-only]

Returns the x coordinate of the mouse position relative to the button.

Note: The _xmouse property is supported for Flash Lite 2.0 only if System. capabilities.hasMouse is true or
System.capabilities.hasStylus is true..

Availability
Flash Lite 2.0

Example
The following example displays the x coordinate of the mouse position for the Stage and a button called my_btn that
is placed on the Stage. Enter the following ActionScript in Frame 1 of the Timeline:

this.createTextField("mouse_txt", 40) ;
html

wordWrap

999, 5, 5, 150,

mouse_txt. true;

mouse_ txt. true;

mouse_txt.border true;

mouse_txt.autosize true;

mouse_txt.selectable

//

false;

var mouselListener:0Object
mouselListener.
var table

table_str
table_str
table_str
mouse_txt.

}i

new Object () ;

onMouseMove function() {
"<textformat tabstops='[50,100]"'>";

+= "Stage\t"+"x:"+ xmouse+"\t"+"y:"+ ymouse+newline;

str:String

+= "Button\t"+"x:"+my btn. xmouse+"\t"+"y:"+my btn. ymouse+newline;

+= "</textformats>";

htmlText table_str;

Mouse.addListener (mouselListener) ;

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

See also

_ymouse (Button. ymouse property)

_xscale (Button._xscale property)

public xscale : Number

The horizontal scale of the button as applied from the registration point of the button, expressed as a percentage. The
default registration point is (0,0).

Scaling the local coordinate system affects the xand _y property settings, which are defined in pixels. For example, if
the parent movie clip is scaled to 50%, setting the _x property moves an object in the button by half the number of
pixels that it would if the SWF file were at 100%.

Availability
Flash Lite 2.0

Example
The following example scales a button called my_btn. When you click and release the button, it grows 10% on the x
and y axes. Enter the following ActionScript in Frame 1 of the Timeline:

my btn.onRelease = function() {
this. xscale *= 1.1;
this. yscale *= 1.1;

}i

See also

_x (Button. x property), y (Button. y property), yscale (Button. yscale property)

_y (Button._y property)

public _y : Number

The y coordinate of the button relative to the local coordinates of the parent movie clip. If a button is in the main
Timeline, its coordinate system refers to the upper left corner of the Stage as (0, 0). If the button is inside another movie
clip that has transformations, the button is in the local coordinate system of the enclosing movie clip. Thus, for a movie
clip rotated 90 degrees counterclockwise, the enclosed button inherits a coordinate system that is rotated 90 degrees
counterclockwise. The button's coordinates refer to the registration point position.

Availability
Flash Lite 2.0

Example
The following example sets the coordinates of my_btn to 0 on the Stage. Create a button called my_btn and enter the
following ActionScript in Frame 1 of the Timeline:

my _btn. x = 0;
my _btn. y = 0;

See also

_x (Button. x property), xscale (Button. xscale property), yscale (Button. yscale property)

Last updated 3/22/2011

239

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 240
ActionScript classes

_ymouse (Button._ymouse property)

public _ymouse : Number [read-only]
Returns the y coordinate of the mouse position relative to the button.

Note: The _ymouse property is supported for Flash Lite 2.0 only if System.capabilities.hasMouse is true or
System.capabilities.hasStylus is true..

Availability
Flash Lite 2.0

Example
The following example displays the x coordinate of the mouse position for the Stage and a button called my_btn that
is placed on the Stage. Enter the following ActionScript in Frame 1 of the Timeline:

this.createTextField("mouse_ txt", 999, 5, 5, 150, 40);
mouse_txt.html = true;

mouse_txt.wordWrap = true;

mouse_txt.border = true;

mouse_txt.autosize = true;
mouse_txt.selectable = false;
//
var mouselListener:0bject = new Object () ;
mouseListener.onMouseMove = function() ({
var table str:String = "<textformat tabstops='[50,100]'>";
table str += "Stage\t"+"x:"+ xmouse+"\t"+"y:"+ ymouse+newline;

table str += "Button\t"+"x:"+my btn. xmouse+"\t"+"y:"+my btn. ymouse+newline;
table str += "</textformat>";
mouse_txt.htmlText = table_str;

i

Mouse.addListener (mouselListener) ;

See also

_xmouse (Button. xmouse property)

_yscale (Button._yscale property)

public _yscale : Number

The vertical scale of the button as applied from the registration point of the button, expressed as a percentage. The
default registration point is (0,0).

Availability
Flash Lite 2.0

Example
The following example scales a button called my_btn. When you click and release the button, it grows 10% on the x
and y axes. Enter the following ActionScript in Frame 1 of the Timeline:

my btn.onRelease = function() {
this. xscale *= 1.1;
this. yscale *= 1.1;

}i

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 241
ActionScript classes

See also

_y (Button. y property), x (Button. x property), xscale (Button. xscale property)

capabilities (System.capabilities)

Object

+-System.capabilities

public class capabilities
extends Object

The Capabilities class determines the abilities of the system and player that host a SWF file, which lets you tailor
content for different formats. For example, the screen of a mobile device is different from a computer screen. To
provide appropriate content to as many users as possible, you can use the System.capabilities object to determine
the type of device a user has. You can then either specify to the server to send different SWF files based on the device
capabilities or tell the SWF file to alter its presentation based on the capabilities of the device.

You can send capabilities information using a GET or posT HTTP method.
The following example shows a string for a mobile device:

« that indicates a normal screen orientation

« that is running an undetermined language

« that is running the Symbian7.0sSeries60V2 operating system

« that is configured so the user can't access hard disk, camera, or microphone
« that has the Flash Lite player as the official release version

« for which the Flash Lite player does not support the development nor playback of screen broadcast applications to
be run through Flash Media Server

« that does not support printing on the device
« that the Flash Lite player is running on a mobile device that supports embedded video.

undefinedScreenOrientation=normal
language=xu
OS=Symbian7.0sSeries60V2
localFileReadDisable=true
avHardwareDisable=true
isDebugger=false
hasScreenBroadcast=false
hasScreenPlayback=false
hasPrinting=false
hasEmbeddedvVideo=true

Most properties of the System. capabilities object are read-only.

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Property summary
Modifiers Property Description
static audioMIMETypes : Array Returns an array of MIME types for audio codecs supported by

[read-only]

a mobile device.

static avHardwareDisable : Boole | A Boolean value that specifies whether access to the user's
an [read-only] camera and microphone has been administratively prohibited
(true) or allowed (false).
static has4WayKeyAS :Boolean | A Boolean value that is true if the Flash Lite player executes
[read-only] the ActionScript code associated with key event handlers that
are associated with the Left, Right, Up, and Down keys.
static hasAccessibility : Boolean | A Boolean value that is true if the player is running in an
[read-only] environment that supports communication between Flash
Lite player and accessibility aids; false otherwise.
static hasAudio: Boolean [read- | Specifies if the system has audio capabilities.
only]
static hasAudioEncoder: Boolea | Specifies if the Flash Lite player can encode an audio stream.
n [read-only]
static hasCMIDI: Boolean [read- | Returns true if the mobile device can play sound data in the
only] CMIDI audio format.
static hasCompoundSound : Boo | Returns true if the Flash Lite player can process compound
lean [read-only] sound data.
static hasDatalLoading: Boolean | Returns true if the Flash Lite player can dynamically load
[read-only] additional data through calls to specific functions.
static hasEmail : Boolean [read- | Returns true if the Flash Lite player can send e-mail messages
only] with the Get URL ActionScript command.
static hasEmbeddedVideo : Bool | A Boolean value that indicates whether the mobile device
ean [read-only] supports embedded video.
static hasMappableSoftKeys:Bo | Returns true if the mobile device allows you to reset or
olean reassign softkey labels and handle events from those softkeys.
static hasMFI: Boolean [read- Returns true if the mobile device is capable of playing sound
only] data in the MFI audio format.
static hasMIDI : Boolean [read- Returns true if the mobile device is capable of playing sound
only] data in the MIDI audio format.
static hasMMS : Boolean [read- Returns true if the mobile device can send MMS messages
only] with the Get URL ActionScript command.
static hasMouse : Boolean [read- | Indicates whether the mobile device sends mouse-related
only] events to a Flash Lite player.
static hasMP3 : Boolean [read- Specifies if the mobile device has a MP3 decoder.
only]
static hasPrinting : Boolean A Boolean value that is true if the player is running on a
[read-only] mobile device that supports printing; £alse otherwise.
static hasQWERTYKeyboard :Bo | Returns true if the Flash Lite player can process ActionScript
olean [read-only] code associated with all keys found on a standard QWERTY
keyboard, including the BACKSPACE key.
static hasScreenBroadcast: Bool | A Boolean value that is true if the player supports the

ean [read-only]

development of screen broadcast applications to be run
through Flash Media Server; false otherwise.

Last updated 3/22/2011

242

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

[read-only]

Modifiers Property Description
static hasScreenPlayback: Boole | A Boolean value that is true if the player supports the
an [read-only] playback of screen broadcast applications that are being run
through Flash Media Server; £alse otherwise.
static hasSharedObjects:Boolea | Returns true if the Flash Lite content playing backin an
n [read-only] application can access the Flash Lite version of shared objects.
static hasSMAF : Boolean [read- | Returns true if the mobile device is capable of playing sound
only] data in the SMAF audio format.
static hasSMS : Number [read- Indicates whether the mobile device can send SMS messages
only] with the Get URL ActionScript command.
static hasStreamingAudio : Bool | A Boolean value that is true if the player can play streaming
ean [read-only] audio; false otherwise.
static hasStreamingVideo : Boole | A Boolean value that indicates whether the player can play
an [read-only] streaming video.
static hasStylus : Boolean [read- | Indicates if the mobile device supports stylus-related events.
only]
static hasVideoEncoder: Boolea | Specifies if the Flash Lite player can encode a video stream.
n [read-only]
static hasXMLSocket : Number Indicates whether the host application supports XML sockets.
[read-only]
static imageMIMETypes : Array Returns an array that contains all MIME types that the
[read-only] loadMovie function and the codecs for a mobile device
support for processing images.
static isDebugger: Boolean A Boolean value that indicates whether the player is an
[read-only] officially released version (£alse) or a special debugging
version (true).
static language: String [read- Indicates the language of the system on which the player is
only] running.
static localFileReadDisable : Bool | A Boolean value that indicates whether read access to the
ean [read-only] user's hard disk has been administratively prohibited (t rue) or
allowed (false).
static MIMETypes : Array [read- Returns an array that contains all MIME types that the
only] loadMovie function, Sound and Video objects support.
static os: String [read-only] A string that indicates the current operating system.
static screenOrientation : String | This member variable of the System.capabilities object
[read-only] that indicates the current screen orientation.
static screenResolutionX: Numb | An integer that indicates the maximum horizontal resolution
er [read-only] of the screen.
static screenResolutionY : Numb | An integer that indicates the maximum vertical resolution of
er [read-only] the screen.
static softKeyCount : Number Indicates the number of remappable soft keys that the mobile
[read-only] device supports.
static version : String [read-only] | A string that contains the Flash Lite player platform and
version information (for example, "WIN 7,1,0,0").
static videoMIMETypes : Array Indicates all the MIME types for video that the mobile device's

codecs support.

Last updated 3/22/2011

243

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 244
ActionScript classes

Properties inherited from class Object

constructor (Object.constructor property), proto (Object._ proto
property)prototype (Object.prototype property), resolve (Object. resolve property)
Method summary

Methods inherited from class Object

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method) isPropertyEnumerable (Object.isPropertyEnumerable method) isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method),valueOf (Object.valueOf
method)watch (Object.watch method)

audioMIMETypes (capabilities.audioMIMETypes property)

public static audioMIMETypes : Array [read-only]

Returns an array of MIME types for audio codecs supported by a mobile device.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.audioMIMETypes) ;

avHardwareDisable (capabilities.avHardwareDisable property)

public static avHardwareDisable : Boolean [read-only]

A Boolean value that specifies whether access to the user's camera and microphone has been administratively
prohibited (true) or allowed (£alse). The server string is AvD.

Note: For Flash Lite 2.0, the value returned is always true.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.avHardwareDisable) ;

has4WayKeyAS (capabilities.has4WayKeyAS property)

public static has4WayKeyAS : Boolean [read-only]

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 245
ActionScript classes

A Boolean value that is t rue if the Flash Lite player executes the ActionScript code associated with key event handlers
that are associated with the Left, Right, Up, and Down keys. Otherwise, this property returns false.

If the value of this variable is true, when one of the four-way keys is pressed, the player first looks for a handler for
that key. If none is found, Flash performs control navigation. However, if an event handler is found, no navigation
action occurs for that key. In other words, the presence of a keypress handler for a down key disables the ability to
navigate down.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.has4WayKeyAS) ;

hasAccessibility (capabilities.hasAccessibility property)

public static hasAccessibility : Boolean [read-only]

A Boolean value that is true if the player is running in an environment that supports communication between Flash
Lite player and accessibility aids; £alse otherwise. The server string is Acc.

Note: For Flash Lite 2.0, the value returned is always false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasAccessibility) ;

hasAudio (capabilities.hasAudio property)

public static hasAudio : Boolean [read-only]

Specifies if the system has audio capabilities. A Boolean value that is t rue if the player is running on a system that has
audio capabilities; false otherwise. The server string is A.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasAudio) ;

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 246
ActionScript classes

hasAudioEncoder (capabilities.hasAudioEncoder property)

public static hasAudioEncoder : Boolean [read-only]

Specifies if the Flash Lite player can encode an audio stream. A Boolean value that is t rue if the player can encode an
audio stream, such as that coming from a microphone; £alse otherwise. The server string is AE.

Note: For Flash Lite 2.0, the value returned is always false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasAudioEncoder) ;

hasCMIDI (capabilities.hasCMIDI property)

public static hasCMIDI : Boolean [read-only]

Returns true if the mobile device can play sound data in the CMIDI audio format. Otherwise, this property returns

false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasCMIDI) ;

hasCompoundSound (capabilities.hasCompoundSound property)

public static hasCompoundSound : Boolean [read-only]

Returns true if the Flash Lite player can process compound sound data. Otherwise, it returns false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasCompoundSound) ;

hasDatalLoading (capabilities.hasDataLoading property)

public static hasDataloading : Boolean [read-only]

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 247
ActionScript classes

Returns true if the Flash Lite player can dynamically load additional data through calls to specific functions.
You can call the following specific functions:
* loadMovie()

* loadMovieNum ()

* loadvariables ()

* loadvVariablesNum /()

¢ XML.parseXML ()

¢ Sound.loadSound ()

* MovieClip.loadVariables ()

e MovieClip.loadMovie ()

e MovieClipLoader.loadClip ()

* LoadVars.load()

¢ LoadVars.sendAndLoad ()

Otherwise, this property returns false.

Availability
Flash Lite 2.0

Example

The following example traces the value of this read-only property:

trace (System.capabilities.hasDataLoading) ;

hasEmail (capabilities.hasEmail property)

public static hasEmail : Boolean [read-only]
Returns true if the Flash Lite player can send e-mail messages with the GetURL ActionScript command.

Otherwise, this property returns false.

Availability
Flash Lite 2.0

Example

The following example traces the value of this read-only property:

trace (System.capabilities.hasEmail) ;

hasEmbeddedVideo (capabilities.hasEmbeddedVideo property)

public static hasEmbeddedVideo : Boolean [read-only]

A Boolean value that indicates whether the mobile device supports embedded video.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 248
ActionScript classes

Note: The hasEmbeddedvideo property is always true in Flash Lite 2.0 and Flash Lite 2.1, indicating library support
for device video.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasEmbeddedvideo) ;

hasMappableSoftKeys (capabilities.hasMappableSoftKeys property)

public static hasMappableSoftKeys : Boolean

Returns true if the mobile device allows you to reset or reassign softkey labels and handle events from those softkeys.
Otherwise, false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasMappableSoftKeys) ;

hasMFI (capabilities.hasMFI property)

public static hasMFI : Boolean [read-only]
Returns true if the mobile device is capable of playing sound data in the MFI audio format.

Otherwise, this property returns false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasMFI) ;

hasMIDI (capabilities.hasMIDI property)

public static hasMIDI : Boolean [read-onlyl]

Returns true if the mobile device is capable of playing sound data in the MIDI audio format.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 249
ActionScript classes

Otherwise, this property returns false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasMIDI) ;

hasMMS (capabilities.hasMMS property)

public static hasMMS : Boolean [read-only]
Returns true if the mobile device can send MMS messages with the Get URL ActionScript command.

Otherwise, this property returns false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasMMS) ;

hasMouse (capabilities.hasMouse property)

public static hasMouse : Boolean [read-only]
Indicates whether the mobile device sends mouse-related events to a Flash Lite player.

This property returns true if the mobile device sends mouse-related events to a Flash Lite player. Otherwise, it returns

false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasMouse) ;

hasMP3 (capabilities.hasMP3 property)

public static hasMP3 : Boolean [read-only]

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 250
ActionScript classes

Specifies if the mobile device has an MP3 decoder. A Boolean value that is true if the player is running on a system
that has an MP3 decoder; false otherwise. The server string is Mp3.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasMP3) ;

hasPrinting (capabilities.hasPrinting property)

public static hasPrinting : Boolean [read-only]

A Boolean value that is true if the player is running on a mobile device that supports printing; false otherwise. The
server string is PR.

Note: For Flash Lite 2.0, the value returned is always false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasPrinting) ;

hasQWERTYKeyboard (capabilities.hasQWERTYKeyboard property)

public static hasQWERTYKeyboard : Boolean [read-only]

Returns true if the Flash Lite player can process ActionScript code associated with all keys found on a standard
QWERTY keyboard, including the BACKSPACE key.

Otherwise, this property returns false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasQWERTYKeyboard) ;

hasScreenBroadcast (capabilities.hasScreenBroadcast property)

public static hasScreenBroadcast : Boolean [read-only]

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 251
ActionScript classes

A Boolean value that is t rue if the player supports the development of screen broadcast applications to be run through
Flash Media Server; £alse otherwise. The server string is sB.

Note: For Flash Lite 2.0, the value returned is always false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasScreenBroadcast) ;

hasScreenPlayback (capabilities.hasScreenPlayback property)

public static hasScreenPlayback : Boolean [read-only]

A Boolean value that is true if the player supports the playback of screen broadcast applications that are being run
through Flash Media Server; false otherwise. The server string is sp.

Note: For Flash Lite 2.0, the value returned is always false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasScreenPlayback) ;

hasSharedObjects (capabilities.hasSharedObjects property)

public static hasSharedObjects : Boolean [read-only]
Returns true if the Flash Lite content playing back in an application can access the Flash Lite version of shared objects.

Otherwise, this property returns false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasSharedObjects) ;

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 252
ActionScript classes

hasSMAF (capabilities.hasSMAF property)

public static hasSMAF : Boolean [read-only]
Returns true if the mobile device is capable of playing sound data in the SMAF audio format.

Otherwise, this property returns false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasSMAF) ;

hasSMS (capabilities.hasSMS property)

public static hasSMS : Number [read-only]
Indicates whether the mobile device can send SMS messages with the GetURL ActionScript command.

If Flash Lite can send SMS messages, this variable is defined and has a value of 1. Otherwise, this variable is not defined.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasSMS) ;

hasStreamingAudio (capabilities.hasStreamingAudio property)

public static hasStreamingAudio : Boolean [read-only]

A Boolean value that is true if the player can play streaming audio; false otherwise. The server string is sa.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasStreamingAudio) ;

hasStreamingVideo (capabilities.hasStreamingVideo property)

public static hasStreamingVideo : Boolean [read-only]

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 253
ActionScript classes

A Boolean value that indicates whether the player can play streaming video.

Note: The hasStreamingVideo property is always false in Flash Lite 2.0 and Flash Lite 2.1, indicating that streaming
FLV is not supported.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasStreamingVideo) ;

hasStylus (capabilities.hasStylus property)

public static hasStylus : Boolean [read-only]
Indicates if the mobile device supports stylus-related events.

This property returns true if the platform for the mobile device does not support stylus-related events. Otherwise, this
property returns false.

The stylus does not support the onMouseMove event. This capabilities flag allows the Flash content to check if the
platform for a mobile device supports this event.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasStylus);

hasVideoEncoder (capabilities.hasVideoEncoder property)

public static hasVideoEncoder : Boolean [read-only]

Specifies if the Flash Lite player can encode a video stream. A Boolean value that is true if the player can encode a
video stream, such as that coming from a web camera; false otherwise. The server string is VE.

Note: For Flash Lite 2.0, the value returned is always false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.hasVideoEncoder) ;

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

hasXMLSocket (capabilities.hasXMLSocket property)

public static hasXMLSocket : Number [read-only]
Indicates whether the host application supports XML sockets.

If the host application supports XML sockets, this variable is defined and has a value of 1. Otherwise, this variable is
not defined.

imageMIMETypes (capabilities.imageMIMETypes property)

public static imageMIMETypes : Array [read-only]

Returns an array that contains all MIME types that the 1oadMovie function and the codecs for a mobile device support
for processing images.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.imageMIMETypes) ;

isDebugger (capabilities.isDebugger property)

public static isDebugger : Boolean [read-only]

A Boolean value that indicates whether the player is an officially released version (£alse) or a special debugging
version (true). The server string is DEB.

Note: For Flash Lite 2.0, the value returned is always false.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.isDebugger) ;

***note about space instead of tab used for indents in code

language (capabilities.language property)

public static language : String [read-only]

Indicates the language of the system on which the player is running. This property is specified as a lowercase two-letter
language code from ISO 639-1. For Chinese, an additional uppercase two-letter country code subtag from ISO 3166

distinguishes between Simplified and Traditional Chinese. The languages themselves are named with the English tags.
For example, £r specifies French.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 255
ActionScript classes

This property changed in two ways for Flash Player 7. First, the language code for English systems no longer includes
the country code. In Flash Player 6, all English systems return the language code and the two-letter country code subtag
(en-us). In Flash Player 7, English systems return only the language code (en). Second, on Microsoft Windows
systems this property now returns the User Interface (UI) Language. In Flash Player 6 on the Microsoft Windows
platform, System.capabilities.language returns the User Locale, which controls settings for formatting dates, times,
currency, and large numbers. In Flash Player 7 on the Microsoft Windows platform, this property now returns the UI
Language, which refers to the language used for all menus, dialog boxes, error messages, and help files.

Language Tag
Czech cs
Danish da
Dutch nl
English en
Finnish fi
French fr
German de
Hungarian hu
Italian it
Japanese ja
Korean ko
Norwegian no
Other/unknown XU
Polish pl
Portuguese pt
Russian ru
Simplified Chinese zh-CN
Spanish es
Swedish sv
Traditional Chinese zh-TW
Turkish tr

Availability

Flash Lite 2.0

Example

The following example traces the value of this read-only property:

trace (System.capabilities.language) ;

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 256
ActionScript classes

localFileReadDisable (capabilities.localFileReadDisable property)

public static localFileReadDisable : Boolean [read-only]

A Boolean value that indicates whether read access to the user's hard disk has been administratively prohibited (true)
or allowed (false). If set to true, Flash Lite player will be unable to read files (including the first SWF file that Flash
Lite player launches with) from the user's hard disk. For example, attempts to read a file on the user's hard disk using
XML . load (), LoadMovie (), or LoadVars.load () will fail if this property is set to true.

Reading runtime shared libraries will also be blocked if this property is set to t rue, but reading local shared objects is
allowed without regard to the value of this property. The server string is LFD.

Note: For Flash Lite 2.0, the value returned is always true.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.localFileReadDisable) ;

MIMETypes (capabilities.MIMETypes property)

public static MIMETypes : Array [read-only]

Returns an array that contains all MIME types that the 1oadMovie function, Sound and Video objects support.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.MIMETypes) ;

os (capabilities.os property)

public static os : String [read-only]

A string that indicates the current operating system. The os property can return the following strings: "windows xp",

"Windows 2000", "Windows NT","Windows 98/ME", "Windows 95", "Windows CE"(avaﬂabk(nﬂyinfﬂalehyerSIHQ
not in the desktop version), "Linux", and "Macos". The server string is 0s.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

trace (System.capabilities.os) ;

screenOrientation (capabilities.screenOrientation property)

public static screenOrientation : String [read-only]

A member variable of the System.capabilities object that indicates the current screen orientation.
Possible values for screenorientation property:

» normal the screen is in its normal orientation

+ rotated9o the screen is rotated by 90 degrees

+ rotated180 the screen is rotated by 180 degrees

+ rotated270 the screen is rotated by 270 degrees

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.screenOrientation) ;

screenResolutionX (capabilities.screenResolutionX property)

public static screenResolutionX : Number [read-only]

An integer that indicates the maximum horizontal resolution of the screen. The server string is R (which returns both
the width and height of the screen).

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace(System.capabilities.screenResolutionX) ;

screenResolutionY (capabilities.screenResolutionY property)

public static screenResolutionY : Number [read-only]

An integer that indicates the maximum vertical resolution of the screen. The server string is R (which returns both the
width and height of the screen).

Availability
Flash Lite 2.0

Last updated 3/22/2011

257

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 258
ActionScript classes

Example
The following example traces the value of this read-only property:

trace (System.capabilities.screenResolutionY) ;

softKeyCount (capabilities.softKeyCount property)

public static softKeyCount : Number [read-only]

Indicates the number of remappable soft keys that the mobile device supports.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.softKeyCount) ;

version (capabilities.version property)

public static version : String [read-only]

A string that contains the Flash Lite player platform and version information (for example, "wIN 7,1,0,0"). The
server string is v.

Availability
Flash Lite 2.0

Example
The following example traces the value of this read-only property:

trace (System.capabilities.version) ;

videoMIMETypes (capabilities.videoMIMETypes property)

public static videoMIMETypes : Array [read-only]
Indicates all the MIME types for video that the mobile device's codecs support.

This property returns an array of all the MIME types for video that the mobile device's codecs support.

Availability
Flash Lite 2.0

Example

The following example traces the value of this read-only property:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

trace (System.capabilities.videoMIMETypes) ;

Color

Object

+-Color

public class Color

extends Object

The Color class lets you set the RGB color value and color transform of movie clips and retrieve those values once they

have been set.

You must use the constructor new Color () to create a Color object before calling its methods.

Availability
Flash Lite 2.0

Property summary

Properties inherited from class Object

property)prototype

constructor (Object.constructor property), proto (Object._ proto
(Object.prototype property), resolve (Object. resolve property)

Constructor summary

Signature

Description

Color (target : Object

) | Creates a Color object for the movie clip specified by the target mc parameter.

Method summary
Modifiers Signature Description
getRGB () : Number Returns the R+G+B combination currently in use by the color
object.
getTransform () : Object | Returns the transform value set by the last

Color.setTransform() call.

setRGB (offset : Number
) : Void

Specifies an RGB color for a Color object.

setTransform (transform
Object:Object) : void

Sets color transform information for a Color object.

Methods inherited from class Object

Last updated 3/22/2011

259

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

(Object.toString method)unwatch (Object.unwatch method),valueOf
method)watch (Object.watch method)

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method) isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.valueOf

Color constructor

public Color (target:0bject)

Creates a Color object for the movie clip specified by the target_mc parameter. You can then use the methods of that

Color object to change the color of the entire target movie clip.

Availability
Flash Lite 2.0

Parameters

target : Object - The instance name of a movie clip.

Example

The following example creates a Color object called my_color for the movie clip my_mc and sets its RGB value to

orange:

var my_color:Color = new Color (my mc) ;
my_color.setRGB(0xf£f9933) ;

getRGB (Color.getRGB method)

public getRGB() : Number

Returns the R+G+B combination currently in use by the color object.

Availability
Flash Lite 2.0

Returns

Number - A number that represents the RGB numeric value for the color specified.

Example

The following code retrieves the RGB value for the Color object my_color, converts the value to a hexadecimal string,
and assigns it to the myvalue variable. To see this code work, add a movie clip instance to the Stage, and give it the

instance name my mc:

var my_color:Color = new Color (my_mc) ;

// set the color

my color.setRGB(0xf£9933) ;

var myValue:String = my color.getRGB().toString(16) ;
// trace the color value

trace (myValue); // traces ££9933

See also

setRGB (Color.setRGB method)

Last updated 3/22/2011

260

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 261
ActionScript classes

getTransform (Color.getTransform method)

public getTransform() : Object

Returns the transform value set by the last color.setTransform() call

Availability
Flash Lite 2.0

Returns
Object - An object whose properties contain the current offset and percentage values for the specified color.

Example

The following example gets the transform object, and then sets new percentages for colors and alpha of my_mc relative
to their current values. To see this code work, place a multicolored movie clip on the Stage with the instance name
my_mc. Then place the following code on Frame 1 in the main Timeline and select Control > Test Movie:

var my_ color:Color = new Color (my mc) ;

var myTransform:0bject = my color.getTransform() ;

myTransform = { ra: 50, ba: 50, aa: 30};
my_color.setTransform(myTransform) ;

For descriptions of the parameters for a color transform object, see Color.setTransform().

See also

setTransform (Color.setTransform method)

setRGB (Color.setRGB method)

public setRGB(offset:Number) : Void

Specifies an RGB color for a Color object. Calling this method overrides any previous Color.setTransform ()
settings.

Availability
Flash Lite 2.0

Parameters

offset: Number - 0xRRGGBB The hexadecimal or RGB color to be set. RR, GG, and BB each consist of two hexadecimal
digits that specify the offset of each color component. The ox tells the ActionScript compiler that the number is a
hexadecimal value.

Example

This example sets the RGB color value for the movie clip my_mc. To see this code work, place a movie clip on the Stage
with the instance name my_mc. Then place the following code on Frame 1 in the main Timeline and select Control >
Test Movie:

var my_color:Color = new Color (my_mc) ;
my color.setRGB(0xFF0000); // my mc turns red

See also

setTransform (Color.setTransform method)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

setTransform (Color.setTransform method)
public setTransform(transformObject:0bject) : Void
Sets color transform information for a Color object. The colorTransformObject parameter is a generic object that you

create from the new Object constructor. It has parameters specifying the percentage and offset values for the red,
green, blue, and alpha (transparency) components of a color, entered in the format 0XRRGGBBAA.

The parameters for a color transform object correspond to the settings in the Advanced Effect dialog box and are
defined as follows:

« rais the percentage for the red component (-100 to 100).

« rbis the offset for the red component (-255 to 255).

« gais the percentage for the green component (-100 to 100).
« gbis the offset for the green component (-255 to 255).

« ba is the percentage for the blue component (-100 to 100).
+ bb is the offset for the blue component (-255 to 255).

+ aa is the percentage for alpha (-100 to 100).

« ab is the offset for alpha (-255 to 255).

You create a colorTransformObject parameter as follows:

var myColorTransform:0bject = new Object () ;
myColorTransform.ra = 50;
myColorTransform.rb = 244;
myColorTransform.ga = 40;
myColorTransform.gb = 112;
myColorTransform.ba = 12;
myColorTransform.bb = 90;
myColorTransform.aa = 40;
myColorTransform.ab = 70;

You can also use the following syntax to create a colorTransformObject parameter:

var myColorTransform:Object = { ra: 50, rb: 244, ga: 40, gb: 112, ba: 12, bb: 90, aa: 40, ab: 70}

Availability
Flash Lite 2.0

Parameters

transformObject : Object - An object created with the new object constructor. This instance of the Object class must
have the following properties that specify color transform values: ra, rb, ga, gb, ba, bb, aa, ab. These properties
are explained below.

Example

This example creates a new Color object for a target SWF file, creates a generic object called myColorTransform with
the properties defined above, and uses the setTransform() method to pass the colorTransformObject to a Color
object. To use this code in a Flash (FLA) document, place it on Frame 1 on the main Timeline and place a movie clip
on the Stage with the instance name my_mc, as in the following code:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 263
ActionScript classes

// Create a color object called my color for the target my mc

var my_color:Color = new Color (my mc) ;

// Create a color transform object called myColorTransform using

// Set the values for myColorTransform

var myColorTransform:0Object = { ra: 50, rb: 244, ga: 40, gb: 112, ba: 12, bb: 90, aa: 40, ab:
70};

// Associate the color transform object with the Color object

// created for my mc

my_color.setTransform(myColorTransform) ;

See also
Object

ColorTransform (flash.geom.ColorTransform)

Object

+-flash.geom.ColorTransform
public class ColorTransform
extends Object

The ColorTransform class lets you mathematically adjust all of the color values in a movie clip. The color adjustment
function or color transformation can be applied to all four channels: red, green, blue, and alpha transparency.

When a ColorTransform object is applied to a movie clip, a new value for each color channel is calculated like this:

+ New red value = (old red value * redMultiplier) + redOffset

+ New green value = (old green value * greenMultiplier) + greenOffset

« New blue value = (old blue value * blueMultiplier) + blueOffset

+ New alpha value = (old alpha value * alphaMultiplier) + alphaOffset

If any of the color channel values is greater than 255 after the calculation, it is set to 255. If it is less than 0, it is set to 0.

You must use the new ColorTransform() constructor to create a ColorTransform object before you can call the
methods of the ColorTransform object.

Color transformations do not apply to the background color of a movie clip (such as aloaded SWF object). They apply
only to graphics and symbols that are attached to the movie clip.

Availability
Flash Lite 3.1

See also

colorTransform (Transform.colorTransform property)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Property summary

Modifiers Property

Description

alphaMultiplier : Number

A decimal value that is multiplied by the alpha transparency
channel value.

alphaOffset: Number

A number from -255 to 255 that is added to the alpha transparency
channel value after it has been multiplied by the
alphaMultiplier value.

blueMultiplier : Number

A decimal value that is multiplied by the blue channel value.

blueOffset: Number

A number from -255 to 255 that is added to the blue channel value
after it has been multiplied by the blueMultiplier value.

greenMultiplier : Number

A decimal value that is multiplied by the green channel value.

greenOffset: Number

A number from -255 to 255 that is added to the green channel

value after it has been multiplied by the greenMultiplier value.

redMultiplier : Number

A decimal value that is multiplied by the red channel value.

redOffset : Number

A number from -255 to 255 that is added to the red channel value
after it has been multiplied by the redMultiplier value.

property)” on page 501

rgb : Number The RGB color value for a ColorTransform object.
“constructor (Object.constructor property)”onpage496, proto (Object._ proto
property),prototype (Object.prototype property),“ resolve (Object. resolve

Constructor summary

Signature

Description

ColorTransform ([redMult
iplier: Number],
[greenMultiplier : Number
1,
[blueMultiplier : Number]

[alphaMultiplier : Number
1,

[redOffset: Number] ,
[greenOffset: Number] ,
[blueOffset : Number] ,
[alphaOffset: Number])

Creates a ColorTransform object for a display object with the specified color channel
values and alpha values.

Method summary

Modifiers Signature

Description

concat (second:ColoxrT
ransform) : Void

Applies a second, additive color transformation to the movie clip.

toString () : String

Formats and returns a string that describes all of the properties of
the ColorTransform object.

Last updated 3/22/2011

264

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

“addProperty (Object.addProperty method)”on page 494, “hasOwnProperty

(Object .hasOwnProperty method)” on page 497, “isPropertyEnumerable
(Object.isPropertyEnumerable method)” on page 497, “isPrototypeOf (Object.isPrototypeOf
method)” on page 498, “registerClass (Object.registerClass method)”on page 500, “toString
(Object.toString method)"”onpage 504, “unwatch (Object.unwatch method)”on page 505, valueOf
(Object.valueOf method),“watch (Object.watch method)” on page 507

alphaMultiplier (ColorTransform.alphaMultiplier property)

public alphaMultiplier : Number
A decimal value that is multiplied by the alpha transparency channel value.

If you set the alpha transparency value of a movie clip directly by using the Movieclip. alpha property, it affects the
value of the alphaMultiplier property of that movie clip's ColorTransform object.

Availability
Flash Lite 3.1

Example

The following example creates the ColorTransform object colorTrans and adjusts its alphaMultiplier value from
1to.5.

import flash.geom.ColorTransform;
import flash.geom.Transform;

var colorTrans:ColorTransform = new ColorTransform() ;
trace (colorTrans.alphaMultiplier); // 1

colorTrans.alphaMultiplier = .5;
trace (colorTrans.alphaMultiplier); // .5

var rect:MovieClip = createRectangle (20, 80, 0x000000) ;
var trans:Transform = new Transform(rect) ;
trans.colorTransform = colorTrans;

function createRectangle (width:Number, height:Number, color:Number, scope:MovieClip) :MovieClip {
scope = (scope == undefined) ? this : scope;
var depth:Number = scope.getNextHighestDepth() ;
var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
mc.beginFill (color) ;
mc.lineTo (0, height);
mc.lineTo (width, height) ;
mc.lineTo (width, 0);
mc.lineTo (0, 0);

return mc;

See also

_alpha (MovieClip. alpha property)

alphaOffset (ColorTransform.alphaOffset property)

public alphaOffset : Number

Last updated 3/22/2011

265

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 266
ActionScript classes

A number from -255 to 255 that is added to the alpha transparency channel value after it has been multiplied by the
alphaMultiplier value.

Availability
Flash Lite 3.1

Example

The following example creates the ColorTransform object colorTrans and adjusts its alphaoffset value from 0 to
-128.

import flash.geom.ColorTransform;
import flash.geom.Transform;

var colorTrans:ColorTransform = new ColorTransform() ;
trace (colorTrans.alphaOffset); // 0

colorTrans.alphaOffset = -128;
trace (colorTrans.alphaOffset); // -128

var rect:MovieClip = createRectangle (20, 80, 0x000000) ;
var trans:Transform = new Transform(rect) ;
trans.colorTransform = colorTrans;

function createRectangle (width:Number, height:Number, color:Number, scope:MovieClip) :MovieClip {
scope = (scope == undefined) ? this : scope;
var depth:Number = scope.getNextHighestDepth() ;
var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
mc.beginFill (color) ;
mc.lineTo (0, height);
mc.lineTo (width, height) ;
mc.lineTo (width, 0);
mc.lineTo (0, 0);
return mc;

blueMultiplier (ColorTransform.blueMultiplier property)

public blueMultiplier : Number

A decimal value that is multiplied by the blue channel value.

Availability
Flash Lite 3.1

Example

The following example creates the ColorTransform object colorTrans and adjusts its blueMultiplier value from 1
to .5.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 267
ActionScript classes

import flash.geom.ColorTransform;
import flash.geom.Transform;

var colorTrans:ColorTransform = new ColorTransform() ;
trace (colorTrans.blueMultiplier); // 1

colorTrans.blueMultiplier = .5;
trace (colorTrans.blueMultiplier); // .5

var rect:MovieClip = createRectangle (20, 80, 0x0000FF) ;
var trans:Transform = new Transform(rect) ;
trans.colorTransform = colorTrans;

function createRectangle (width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
scope = (scope == undefined) ? this : scope;
var depth:Number = scope.getNextHighestDepth() ;
var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
mc.beginFill (color) ;
mc.lineTo (0, height);
mc.lineTo(width, height) ;
mc.lineTo (width, 0);
mc.lineTo (0, 0);
return mc;

blueOffset (ColorTransform.blueOffset property)

public blueOffset : Number

A number from -255 to 255 that is added to the blue channel value after it has been multiplied by the blueMultiplier
value.

Availability
Flash Lite 3.1

Example

The following example creates the ColorTransform object colorTrans and adjusts its blueOf £set value from 0 to 255.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 268
ActionScript classes

import flash.geom.ColorTransform;
import flash.geom.Transform;

var colorTrans:ColorTransform = new ColorTransform() ;
trace (colorTrans.blueOffset); // 0

colorTrans.blueOffset = 255;
trace (colorTrans.blueOffset); // 255

var rect:MovieClip = createRectangle (20, 80, 0x000000) ;
var trans:Transform = new Transform(rect) ;
trans.colorTransform = colorTrans;

function createRectangle (width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
scope = (scope == undefined) ? this : scope;
var depth:Number = scope.getNextHighestDepth() ;
var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
mc.beginFill (color) ;
mc.lineTo (0, height);
mc.lineTo(width, height) ;
mc.lineTo (width, 0);
mc.lineTo (0, 0);
return mc;

ColorTransform constructor

public ColorTransform([redMultiplier:Number], [greenMultiplier:Number],
[blueMultiplier:Number], [alphaMultiplier:Number], [redOffset:Number], [greenOffset:Number],
[blueOffset:Number], [alphaOffset:Number])

Creates a ColorTransform object for a display object with the specified color channel values and alpha values.

Availability
Flash Lite 3.1

Parameters

redMultiplier : Number [optional] - The value for the red multiplier, in the range from 0 to 1. The default value is 1.
greenMultiplier : Number [optional] - The value for the green multiplier, in the range from 0 to 1. The default value is 1.
blueMultiplier : Number [optional] - The value for the blue multiplier, in the range from 0 to 1. The default value is 1.

alphaMultiplier : Number [optional] - The value for the alpha transparency multiplier, in the range from 0 to 1. The
default value is 1.

redOffset: Number [optional] - The offset for the red color channel value (-255 to 255). The default value is 0.
greenOffset: Number [optional] - The offset for the green color channel value (-255 to 255). The default value is 0.
blueOffset : Number [optional] - The offset for the blue color channel value (-255 to 255). The default value is 0.

alphaOffset : Number [optional] - The offset for alpha transparency channel value (-255 to 255). The default value is 0.

Example

The following example creates a ColorTransform object called greenTransform:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 269
ActionScript classes

var greenTransform:flash.geom.ColorTransform = new flash.geom.ColorTransform(0.5, 1.0, 0.5,
0.5, 10, 10, 10, 0);

The following example creates the ColorTransform object colorTrans_1 with the default constructor values. The fact
that colorTrans_1 and colorTrans_2 trace the same values is evidence that the default constructor values are used.

import flash.geom.ColorTransform;

var colorTrans_1l:ColorTransform = new ColorTransform(1, 1, 1, 1, 0, 0, 0, 0);
trace(colorTrans_1) ;

// (redMultiplier=1, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=1, redOffset=0,
greenOffset=0, blueOffset=0, alphaOffset=0)

var colorTrans_2:ColorTransform = new ColorTransform() ;

trace(colorTrans_2) ;

// (redMultiplier=1, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=1, redOffset=0,
greenOffset=0, blueOffset=0, alphaOffset=0)

concat (ColorTransform.concat method)

public concat (second:ColorTransform) : Void

Applies a second, additive color transformation to the movie clip. The second set of transformation parameters is
applied to the colors of the movie clip after the first transformation has been completed.

Availability
Flash Lite 3.1

Parameters
second : ColorTransform - A second ColorTransform object to be combined with the current ColorTransform object.

Example

The following example concatenates the ColorTransform object colorTrans_2 to colorTrans_1 resulting in a full
red offset combined with a .5 alpha multiplier.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 270
ActionScript classes

import flash.geom.ColorTransform;
import flash.geom.Transform;

var colorTrans_l:ColorTransform = new ColorTransform(1l, 1, 1, 1, 255, 0, 0, 0);
trace(colorTrans 1) ;

// (redMultiplier=1, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=1, redOffset=255,
greenOffset=0, blueOffset=0, alphaOffset=0)

var colorTrans_2:ColorTransform = new ColorTransform(l, 1, 1, .5, 0, 0, 0, 0);

trace (colorTrans_2) ;

// (redMultiplier=1, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=0.5, redOffset=0,
greenOffset=0, blueOffset=0, alphaOffset=0)

colorTrans_1.concat (colorTrans_2) ;

trace (colorTrans_1) ;

// (redMultiplier=1, greenMultiplier=1, blueMultiplier=1, alphaMultiplier=0.5, redOffset=255,
greenOffset=0, blueOffset=0, alphaOffset=0)

var rect:MovieClip = createRectangle (20, 80, 0x000000) ;
var trans:Transform = new Transform(rect) ;
trans.colorTransform = colorTrans_1;

function createRectangle (width:Number, height:Number, color:Number, scope:MovieClip) :MovieClip {
scope = (scope == undefined) ? this : scope;
var depth:Number = scope.getNextHighestDepth() ;
var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
mc.beginFill (color) ;
mc.lineTo (0, height) ;
mc.lineTo (width, height) ;
mc.lineTo (width, 0);
mc.lineTo (0, 0);

return mc;

greenMultiplier (ColorTransform.greenMultiplier property)

public greenMultiplier : Number

A decimal value that is multiplied by the green channel value.

Availability
Flash Lite 3.1

Example

The following example creates the ColorTransform object colorTrans and adjusts its greenMultiplier from 1 to.5.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

import flash.geom.ColorTransform;
import flash.geom.Transform;

var colorTrans:ColorTransform = new ColorTransform() ;
trace (colorTrans.greenMultiplier); // 1

colorTrans.greenMultiplier = .5;
trace (colorTrans.greenMultiplier); // .5

var rect:MovieClip = createRectangle (20, 80, 0x00FFO00),
var trans:Transform = new Transform(rect) ;
trans.colorTransform = colorTrans;

function createRectangle (width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {

scope = (scope == undefined) ? this : scope;
var depth:Number = scope.getNextHighestDepth() ;

var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);

mc.beginFill (color) ;
mc.lineTo (0, height);
mc.lineTo(width, height) ;
mc.lineTo (width, 0);
mc.lineTo (0, 0);

return mc;

greenOffset (ColorTransform.greenOffset property)

public greenOffset : Number

A number from -255 to 255 that is added to the green channel value after it has been multiplied by the

greenMultiplier value.

Availability
Flash Lite 2.0

Example

The following example creates the ColorTransform object colorTrans and adjusts its greenof £set value from 0 to 255.

this;

Last updated 3/22/2011

271

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 272
ActionScript classes

import flash.geom.ColorTransform;
import flash.geom.Transform;

var colorTrans:ColorTransform = new ColorTransform() ;
trace (colorTrans.greenOffset); // 0

colorTrans.greenOffset = 255;
trace (colorTrans.greenOffset); // 255

var rect:MovieClip = createRectangle (20, 80, 0x000000) ;
var trans:Transform = new Transform(rect) ;
trans.colorTransform = colorTrans;

function createRectangle (width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
scope = (scope == undefined) ? this : scope;
var depth:Number = scope.getNextHighestDepth() ;
var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
mc.beginFill (color) ;
mc.lineTo (0, height);
mc.lineTo(width, height) ;
mc.lineTo (width, 0);
mc.lineTo (0, 0);
return mc;

redMultiplier (ColorTransform.redMultiplier property)

public redMultiplier : Number

A decimal value that is multiplied by the red channel value.

Availability
Flash Lite 2.0

Example

The following example creates the ColorTransform object colorTrans and adjusts its redMultiplier value from 1
to .5.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 273
ActionScript classes

import flash.geom.ColorTransform;
import flash.geom.Transform;

var colorTrans:ColorTransform = new ColorTransform() ;
trace (colorTrans.redMultiplier); // 1

colorTrans.redMultiplier = .5;
trace (colorTrans.redMultiplier); // .5

var rect:MovieClip = createRectangle (20, 80, 0xFF0000);
var trans:Transform = new Transform(rect) ;
trans.colorTransform = colorTrans;

function createRectangle (width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
scope = (scope == undefined) ? this : scope;
var depth:Number = scope.getNextHighestDepth() ;
var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
mc.beginFill (color) ;
mc.lineTo (0, height);
mc.lineTo(width, height) ;
mc.lineTo (width, 0);
mc.lineTo (0, 0);
return mc;

redOffset (ColorTransform.redOffset property)

public redOffset : Number

A number from -255 to 255 that is added to the red channel value after it has been multiplied by the redMultiplier
value.

Availability
Flash Lite 2.0

Example

The following example creates the ColorTransform object colorTrans and adjusts its redof £set value from 0 to 255.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 274
ActionScript classes

import flash.geom.ColorTransform;
import flash.geom.Transform;

var colorTrans:ColorTransform = new ColorTransform() ;
trace (colorTrans.redOffset); // 0

colorTrans.redOffset = 255;
trace (colorTrans.redOffset); // 255

var rect:MovieClip = createRectangle (20, 80, 0x000000) ;
var trans:Transform = new Transform(rect) ;
trans.colorTransform = colorTrans;

function createRectangle (width:Number, height:Number, color:Number, scope:MovieClip):MovieClip {
scope = (scope == undefined) ? this : scope;
var depth:Number = scope.getNextHighestDepth() ;
var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
mc.beginFill (color) ;
mc.lineTo (0, height);
mc.lineTo(width, height) ;
mc.lineTo (width, 0);
mc.lineTo (0, 0);
return mc;

rgb (ColorTransform.rgb property)

public rgb : Number
The RGB color value for a ColorTransform object.

When you set this property, it changes the three color offset values (redof fset, greenOffset, and blueOffset), and
sets the three color multiplier values (redMultiplier, greenMultiplier, and blueMultiplier) to 0. The alpha
transparency multiplier and offset values do not change.

Pass a value for this property in the format: 0XRRGGBB. RR, GG, and BB each consist of two hexadecimal digits that
specify the offset of each color component. The 0x tells the ActionScript compiler that the number is a hexadecimal
value.

Availability
Flash Lite 2.0

Example

The following example creates the ColorTransform object colorTrans and adjusts its rgb value to 0xFF0000.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 275
ActionScript classes

import flash.geom.ColorTransform;
import flash.geom.Transform;

var colorTrans:ColorTransform = new ColorTransform() ;
trace (colorTrans.rgb); // 0

colorTrans.rgb = O0xFF0000;
trace (colorTrans.rgb); // 16711680
trace ("0x" + colorTrans.rgb.toString(16)); // 0x££0000

var rect:MovieClip = createRectangle (20, 80, 0x000000) ;
var trans:Transform = new Transform(rect) ;
trans.colorTransform = colorTrans;

function createRectangle (width:Number, height:Number, color:Number, scope:MovieClip) :MovieClip {
scope = (scope == undefined) ? this : scope;
var depth:Number = scope.getNextHighestDepth() ;
var mc:MovieClip = scope.createEmptyMovieClip("mc_" + depth, depth);
mc.beginFill (color) ;
mc.lineTo (0, height);
mc.lineTo (width, height);
mc.lineTo (width, 0);
mc.lineTo (0, 0);
return mc;

toString (ColorTransform.toString method)

public toString() : String

Formats and returns a string that describes all of the properties of the ColorTransform object.

Availability
Flash Lite 2.0

Returns

String A string that lists all of the properties of the ColorTransform object.

Example

The following example creates the ColorTransform object colorTrans and calls its tosting () method. This method
results in a string with the following format: (redMultiplier=RM, greenMultiplier=GM, blueMultiplier=BM,
alphaMultiplier=AM, redOffset=RO, greenOffset=GO, blueOffset=BO, alphaOffset=A0O).

import flash.geom.ColorTransform;

var colorTrans:ColorTransform = new ColorTransform(1l, 2, 3, 4, -255, -128, 128, 255);

trace (colorTrans.toString()) ;

// (redMultiplier=1, greenMultiplier=2, blueMultiplier=3, alphaMultiplier=4, redOffset=-255,
greenOffset=-128, blueOffset=128, alphaOffset=255)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Date

Object

+-Date

public class Date

extends Object

The Date class lets you retrieve date and time values relative to Universal Time (Greenwich Mean Time, now called
universal time or UTC) or relative to the operating system on which Flash Lite player is running. The methods of the
Date class are not static but apply only to the individual Date object specified when the method is called. The
Date.UTC () method is an exception; it is a static method.

The Date class handles daylight saving time differently, depending on the operating system and Flash Player version.

Flash Player 6 and later versions handle daylight saving time on the following operating systems in these ways:

Windows - the Date object automatically adjusts its output for daylight saving time. The Date object detects
whether daylight saving time is employed in the current locale, and if so, it detects the standard-to-daylight saving
time transition date and times. However, the transition dates currently in effect are applied to dates in the past and
the future, so the daylight saving time bias might calculate incorrectly for dates in the past when the locale had
different transition dates.

Mac OS X - the Date object automatically adjusts its output for daylight saving time. The time zone information
database in Mac OS X is used to determine whether any date or time in the present or past should have a daylight
saving time bias applied.

Mac OS 9 - the operating system provides only enough information to determine whether the current date and time
should have a daylight saving time bias applied. Accordingly, the date object assumes that the current daylight
saving time bias applies to all dates and times in the past or future.

Flash Player 5 handles daylight saving time on the following operating systems as follows:

Windows - the U.S. rules for daylight saving time are always applied, which leads to incorrect transitions in Europe
and other areas that employ daylight saving time but have different transition times than the U.S. Flash correctly
detects whether daylight saving time is used in the current locale.

To call the methods of the Date class, you must first create a Date object using the constructor for the Date class,
described later in this section.

Availability
Flash Lite 2.0

Property summary

Properties inherited from class Object

constructor (Object.constructor property), proto (Object._ proto
property)prototype (Object.prototype property), resolve (Object._ resolve property)

Last updated 3/22/2011

276

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Constructor summary

Signature

Description

Date ([yearOrTimevalue:Number] ,
[month:Number], [date:Number],
[hour : Number] ,
[minute:Number],
[second:Number] ,
[millisecond:Number])

Constructs a new Date object that holds the specified date and time.

Method summary

Modifiers

Signature

Description

getDate () : Number

Returns the day of the month (an integer from 1 to 31) of the
specified Date object according to local time.

getDay () : Number

Returns the day of the week (0 for Sunday, 1 for Monday, and
so on) of the specified Date object according to local time.

getFullYear () : Number | Returns the full year (a four-digit number, such as 2000) of the
specified Date object, according to local time.
getHours () : Number Returns the hour (an integer from 0 to 23) of the specified Date

object, according to local time.

getLocaleLongDate ()
String

Returns a string representing the current date, in long form,
formatted according to the currently defined locale.

getLocaleShortDate ()
String

Returns a string representing the current date, in short form,
formatted according to the currently defined locale.

getLocaleTime ()
String

Returns a string representing the current time, formatted
according to the currently defined locale.

getMilliseconds ()

Returns the milliseconds (an integer from 0 to 999) of the

Number specified Date object, according to local time.

getMinutes () : Number | Returns the minutes (an integer from 0 to 59) of the specified
Date object, according to local time.

getMonth () : Number | Returns the month (0 for January, 1 for February, and so on) of

the specified Date object, according to local time.

getSeconds () : Number

Returns the seconds (an integer from 0 to 59) of the specified
Date object, according to local time.

getTime () : Number

Returns the number of milliseconds since midnight January 1,
1970, universal time, for the specified Date object.

getTimezoneOffset ()
Number

Returns the difference, in minutes, between the computer's
local time and universal time.

getUTCDate () : Number

Returns the day of the month (an integer from 1to 31) in the
specified Date object, according to universal time.

getUTCDay () : Number

Returns the day of the week (0 for Sunday, 1 for Monday, and

so on) of the specified Date object, according to universal time.

getUTCFullYear ()

Returns the four-digit year of the specified Date object,

Number according to universal time.
getUTCHours () Returns the hour (an integer from 0 to 23) of the specified Date
Number object, according to universal time.

Last updated 3/22/2011

277

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Modifiers

Signature

Description

getUTCMilliseconds ()
Number

Returns the milliseconds (an integer from 0 to 999) of the
specified Date object, according to universal time.

getUTCMinutes ()

Returns the minutes (an integer from 0 to 59) of the specified

Number Date object, according to universal time.

getUTCMonth () Returns the month (0 [January] to 11 [December]) of the
Number specified Date object, according to universal time.
getUTCSeconds () Returns the seconds (an integer from 0 to 59) of the specified
Number Date object, according to universal time.

getUTCYear () : Number | Returns the year of this Date according to universal time (UTC).
getYear () : Number Returns the year of the specified Date object, according to local

time.

setDate (date:Number)
Number

Sets the day of the month for the specified Date object,
according to local time, and returns the new time in
milliseconds.

setFullYear (year : Numbe
r, [month:Number],
[date:Number])
Number

Sets the year of the specified Date object, according to local
time and returns the new time in milliseconds.

setHours (hour : Number)
Number

Sets the hours for the specified Date object according to local
time and returns the new time in milliseconds.

setMilliseconds (millise
cond: Number)
Number

Sets the milliseconds for the specified Date object according to
local time and returns the new time in milliseconds.

setMinutes (minute:Nu
mber) : Number

Sets the minutes for a specified Date object according to local
time and returns the new time in milliseconds.

setMonth (month : Numbe
r, [date:Number])
Number

Sets the month for the specified Date object in local time and
returns the new time in milliseconds.

setSeconds (second: Nu
mber) : Number

Sets the seconds for the specified Date object in local time and
returns the new time in milliseconds.

setTime (millisecond:
Number) : Number

Sets the date for the specified Date object in milliseconds since
midnight on January 1, 1970, and returns the new time in
milliseconds.

setUTCDate (date:Numb
er) : Number

Sets the date for the specified Date objectin universal time and
returns the new time in milliseconds.

setUTCFullYear (year:Nu
mber,

[month:Number] ,
[date:Number])
Number

Sets the year for the specified Date object (my_date) in
universal time and returns the new time in milliseconds.

setUTCHours (hour : Num
ber,

[minute:Number],
[second:Number] ,
[millisecond:Number
1) : Number

Sets the hour for the specified Date object in universal time
and returns the new time in milliseconds.

Last updated 3/22/2011

278

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Modifiers Signature Description
setUTCMilliseconds (mill | Sets the milliseconds for the specified Date object in universal
isecond:Number) time and returns the new time in milliseconds.
Number
setUTCMinutes (minute: | Sets the minute for the specified Date object in universal time
Number, and returns the new time in milliseconds.
[second:Number] ,
[millisecond:Number
1) : Number
setUTCMonth (month:Nu | Sets the month, and optionally the day, for the specified Date
mber, object in universal time and returns the new time in
[date:Number]) milliseconds.
Number
setUTCSeconds (second: | Setsthe seconds for the specified Date object in universal time
Number, and returns the new time in milliseconds.
[millisecond:Number
1) : Number
setYear (year:Number) | Sets the year for the specified Date object in local time and
Number returns the new time in milliseconds.
toString () : String Returns a string value for the specified date objectin a
readable format.
static UTC (year:Number, Returns the number of milliseconds between midnight on

month: Number,
[date:Number],
[hour : Number] ,
[minute:Number],
[second:Number] ,
[millisecond:Number
1) : Number

January 1, 1970, universal time, and the time specified in the
parameters.

valueOf () : Number

Returns the number of milliseconds since midnight January 1,
1970, universal time, for this Date.

Methods inherited from class Object

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method) isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method),valueOf (Object.valueOf
method)watch (Object.watch method)

Date constructor

public Date ([yearOrTimevalue:Number], [month:Number], [date:Number], [hour:Number],
[minute:Number], [second:Number], [millisecond:Number])

Constructs a new Date object that holds the specified date and time.

The pate () constructor takes up to seven parameters to specify a date and time to the millisecond. Alternatively, you
can pass a single value to the Date () constructor that indicates a time value based on the number of milliseconds since
January 1, 1970 0:00:000 GMT. Or you can specify no parameters, and the Date () date object is assigned the current
date and time.

The following code shows several different ways to create a Date object:

Last updated 3/22/2011

279

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 280
ActionScript classes

var dl:Date = new Date

7

)
2000, 0, 1);
6

(
var d3:Date = new Date(
var d4:Date = new Date(65, 2, 6, 9, 30, 15, 0);
var d5:Date = new Date(-14159025000) ;

In the first line of code, a Date object is set to the time when the assignment statement is run.

In the second line, a Date object is created with year, month, and date parameters passed to it, resulting in the time
0:00:00 GMT January 1, 2000.

In the third line, a Date object is created with year, month, and date parameters passed to it, resulting in the time
09:30:15 GMT (+ 0 milliseconds) March 6, 1965. Note that since the year parameter is specified as a two-digit integer,
it is interpreted as 1965.

In the fourth line, only one parameter is passed, which is a time value representing the number of milliseconds before
or after 0:00:00 GMT January 1, 1970; since the value is negative, it represents a time before 0:00:00 GMT January 1,
1970, and in this case the time is 02:56:15 GMT July, 21 1969.

Availability
Flash Lite 2.0

Parameters

yearOrTimevalue : Number [optional] - If other parameters are specified, this number represents a year (such as
1965); otherwise, it represents a time value. If the number represents a year, a value of 0 to 99 indicates 1900 through
1999; otherwise all four digits of the year must be specified. If the number represents a time value (no other parameters
are specified), it is the number of milliseconds before or after 0:00:00 GMT January 1, 1970; a negative value represents
a time before 0:00:00 GMT January 1, 1970, and a positive value represents a time after.

month : Number [optional] - An integer from 0 (January) to 11 (December).
date : Number [optional] - An integer from 1 to 31.

hour : Number [optional] - An integer from 0 (midnight) to 23 (11 p.m.).
minute: Number [optional] - An integer from 0 to 59.

second : Number [optional] - An integer from 0 to 59.

millisecond : Number [optional] - An integer from 0 to 999 of milliseconds.

Example
The following example retrieves the current date and time:

var now_date:Date = new Date() ;

The following example creates a new Date object for Mary's birthday, August 12, 1974 (because the month parameter
is zero-based, the example uses 7 for the month, not 8):

var maryBirthday:Date = new Date (74, 7, 12);

The following example creates a new Date object and concatenates the returned values of Date.getMonth (),
Date.getDate (), and Date.getFullYear () :

var today date:Date = new Date();

var date_str:String =

((today date.getMonth()+1)+"/"+today date.getDate()+"/"+today date.getFullYear());
trace(date_str); // displays current date in United States date format

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 281
ActionScript classes

See also

getMonth (Date.getMonth method), getDate (Date.getDate method), getFullYear (Date.getFullYear
method)

getDate (Date.getDate method)

public getDate() : Number

Returns the day of the month (an integer from 1 to 31) of the specified Date object according to local time. Local time
is determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Returns

Number - An integer.

Example

The following example creates a new Date object and concatenates the returned values of bate.getMonth (),
Date.getDate (), and Date.getFullYear () :

var today_date:Date = new Date();

var date str:String =

(today date.getDate()+"/"+ (today date.getMonth()+1)+"/"+today date.getFullYear()) ;
trace(date_str); // displays current date in United States date format

See also
getMonth (Date.getMonth method), getFullYear (Date.getFullYear method)

getDay (Date.getDay method)

public getDay() : Number

Returns the day of the week (0 for Sunday, 1 for Monday, and so on) of the specified Date object according to local
time. Local time is determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Returns
Number -- An integer representing the day of the week.

Example

The following example creates a new Date object and uses getDay () to determine the current day of the week:

var dayOfWeek_ array:Array = new Array ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday") ;

var today date:Date = new Date();

var day str:String = dayOfWeek array[today date.getDay()];

trace("Today is "+day_ str);

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 282
ActionScript classes

getFullYear (Date.getFullYear method)
public getFullYear () : Number

Returns the full year (a four-digit number, such as 2000) of the specified Date object, according to local time. Local
time is determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Returns
Number - An integer representing the year.

Example
The following example uses the constructor to create a Date object. The trace statement shows the value returned by
the getFullvear () method.

var my date:Date = new Date();
trace (my_date.getYear()); // displays 104
trace (my date.getFullYear()); // displays current year

getHours (Date.getHours method)

public getHours () : Number

Returns the hour (an integer from 0 to 23) of the specified Date object, according to local time. Local time is
determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Returns

Number - An integer.
Example

The following example uses the constructor to create a Date object based on the current time and uses the getHours ()
method to display hour values from that object:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

var my_ date:Date = new Date();
trace(my_date.getHours()) ;

var my_date:Date = new Date() ;

var hourObj:0bject = getHoursAmPm(my date.getHours()) ;
trace (hourObj.hours) ;

trace (hourObj.ampm) ;

function getHoursAmPm(hour24:Number) :Object {
var returnObj:0Object = new Object();

returnObj.ampm = (hour24<12) ? "AM" : "PM";
var hourl2:Number = hour24%12;
if (hourl2 == 0) {

hourl2 = 12;

}

returnObj.hours = hourl2;
return returnObj;

getLocaleLongDate (Date.getLocaleLongDate method)

public getLocaleLongDate () : String
Returns a string representing the current date, in long form, formatted according to the currently defined locale.

Note: The format of the date depends on the mobile device and the locale.

Availability
Flash Lite 2.0

Returns

String - A string representing the current date, in long form, formatted according to the currently defined locale.

Example

The following example uses the constructor to create a Date object based on the current time. It also uses the
getLocaleLongDate () method to return the current date, in long form, formatted according to the currently defined
locale, as follows:

var my_ date:Date = new Date();
trace(my_date.getLocaleLongDate()) ;

The following are sample return values that get LocaleLongDate () returns:

October 16, 2005
16 October 2005

getLocaleShortDate (Date.getLocaleShortDate method)

public getLocaleShortDate() : String
Returns a string representing the current date, in short form, formatted according to the currently defined locale.

Note: The format of the date depends on the mobile device and the locale.

Availability
Flash Lite 2.0

Last updated 3/22/2011

283

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 284
ActionScript classes

Returns

String - A string representing the current date, in short form, formatted according to the currently defined locale.

Example

The following example uses the constructor to create a Date object based on the current time. It also uses the
getLocaleShortDate () method to return the current date, in short form, formatted according to the currently
defined locale, as follows:

var my_ date:Date = new Date();
trace(my_date.getLocaleShortDate()) ;

The following are sample return values that get LocaleLongDate () returns:

10/16/2005
16-10-2005

getLocaleTime (Date.getLocaleTime method)

public getLocaleTime () : String
Returns a string representing the current time, formatted according to the currently defined locale.

Note: The format of the date depends on the mobile device and the locale.

Availability
Flash Lite 2.0

Returns

String - A string representing the current time, formatted according to the currently defined locale.

Example
The following example uses the constructor to create a Date object based on the current time. It also uses the
getLocaleTime () method to return the time of the current locale, as follows:

var my_date:Date = new Date();
trace (my date.getLocaleTime()) ;

The following are sample return values that getLocaleTime () returns:

6:10:44 PM
18:10:44

getMilliseconds (Date.getMilliseconds method)

public getMilliseconds () : Number

Returns the milliseconds (an integer from 0 to 999) of the specified Date object, according to local time. Local time is
determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Returns
Number An integer.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 285
ActionScript classes

Example
The following example uses the constructor to create a Date object based on the current time and uses the
getMilliseconds () method to return the milliseconds value from that object:

var my_date:Date = new Date();
trace(my date.getMilliseconds()) ;

getMinutes (Date.getMinutes method)

public getMinutes() : Number

Returns the minutes (an integer from 0 to 59) of the specified Date object, according to local time. Local time is
determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Returns
Number - An integer.

Example
The following example uses the constructor to create a Date object based on the current time, and uses the
getMinutes () method to return the minutes value from that object:

var my_ date:Date = new Date();
trace(my_date.getMinutes()) ;

getMonth (Date.getMonth method)

public getMonth() : Number

Returns the month (0 for January, 1 for February, and so on) of the specified Date object, according to local time. Local
time is determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Returns
Number - An integer.

Example
The following example uses the constructor to create a Date object based on the current time and uses the getMonth ()
method to return the month value from that object:

var my_date:Date = new Date();
trace (my_date.getMonth()) ;

The following example uses the constructor to create a Date object based on the current time and uses the getMonth ()
method to display the current month as a numeric value, and display the name of the month.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 286
ActionScript classes

var my_ date:Date = new Date();
trace(my_date.getMonth()) ;
trace (getMonthAsString (my date.getMonth())) ;
function getMonthAsString (month:Number) :String {
var monthNames array:Array = new Array ("January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November", "December") ;
return monthNames array[month];

getSeconds (Date.getSeconds method)

public getSeconds () : Number

Returns the seconds (an integer from 0 to 59) of the specified Date object, according to local time. Local time is
determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Returns

Number - An integer.

Example

The following example uses the constructor to create a Date object based on the current time and uses the
getSeconds () method to return the seconds value from that object:

var my_date:Date = new Date();
trace (my_date.getSeconds()) ;

getTime (Date.getTime method)

public getTime() : Number

Returns the number of milliseconds since midnight January 1, 1970, universal time, for the specified Date object. Use
this method to represent a specific instant in time when comparing two or more Date objects.

Availability
Flash Lite 2.0

Returns

Number - An integer.

Example

The following example uses the constructor to create a Date object based on the current time, and uses the getTime ()
method to return the number of milliseconds since midnight January 1, 1970:

var my_date:Date = new Date();
trace (my date.getTime()) ;

getTimezoneOffset (Date.getTimezoneOffset method)

public getTimezoneOffset () : Number

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 287
ActionScript classes

Returns the difference, in minutes, between the computer's local time and universal time.

Availability
Flash Lite 2.0

Returns
Number - An integer.

Example

The following example returns the difference between the local daylight saving time for San Francisco and universal
time. Daylight saving time is factored into the returned result only if the date defined in the Date object occurs during
daylight saving time. The output in this example is 420 minutes and displays in the Output panel (7 hours * 60
minutes/hour = 420 minutes). This example is Pacific Daylight Time (PDT, GMT-0700). The result varies depending
on location and time of year.

var my_date:Date = new Date();
trace(my date.getTimezoneOffset()) ;

getUTCDate (Date.getUTCDate method)

public getUTCDate() : Number

Returns the day of the month (an integer from 1 to 31) in the specified Date object, according to universal time.

Availability
Flash Lite 2.0

Returns
Number - An integer.

Example

The following example creates a new Date object and uses Date.getUTCDate () and Date.getDate (). The value
returned by Date.getUTCDate () can differ from the value returned by bate.getDate (), depending on the
relationship between your local time zone and universal time.

var my date:Date = new Date(2004,8,25) ;

trace (my date.getUTCDate()); // output: 25

See also
getDate (Date.getDate method)

getUTCDay (Date.getUTCDay method)

public getUTCDay () : Number

Returns the day of the week (0 for Sunday, 1 for Monday, and so on) of the specified Date object, according to universal time.

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 288
ActionScript classes

Returns
Number An integer.

Example

The following example creates a new Date object and uses Date.getUTCDay () and Date.getDay (). The value
returned by Date.getUTCDay () can differ from the value returned by bate.getbay () , depending on the
relationship between your local time zone and universal time.

var today date:Date = new Date();

trace (today date.getDay()); // output will be based on local timezone
trace (today date.getUTCDay()); // output will equal getDay() plus or minus one
See also

getDay (Date.getDay method)

getUTCFullYear (Date.getUTCFullYear method)

public getUTCFullYear () : Number

Returns the four-digit year of the specified Date object, according to universal time.

Availability
Flash Lite 2.0

Returns
Number - An integer.

Example

The following example creates a new Date object and uses Date.getUTCFullYear () and Date.getFullYear (). The
value returned by Date.getUTCFullYear () may differ from the value returned by bate.getFullvear () if today's
date is December 31 or January 1, depending on the relationship between your local time zone and universal time.

var today_date:Date = new Date();

trace (today date.getFullYear()); // display based on local timezone
trace (today date.getUTCFullYear()); // displays getYear() plus or minus 1
See also

getFullYear (Date.getFullYear method)

getUTCHours (Date.getUTCHours method)

public getUTCHours () : Number

Returns the hour (an integer from 0 to 23) of the specified Date object, according to universal time.

Availability
Flash Lite 2.0

Returns

Number - An integer.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 289
ActionScript classes

Example

The following example creates a new Date object and uses Date .getUTCHours () and Date.getHours (). The value
returned by Date.getUTCHours () may differ from the value returned by Date.getHours () , depending on the
relationship between your local time zone and universal time.

var today_date:Date = new Date();

trace (today date.getHours()); // display based on local timezone
trace (today date.getUTCHours()); // display equals getHours() plus or minus 12
See also

getHours (Date.getHours method)

getUTCMilliseconds (Date.getUTCMilliseconds method)

public getUTCMilliseconds () : Number

Returns the milliseconds (an integer from 0 to 999) of the specified Date object, according to universal time.

Availability
Flash Lite 2.0

Returns

Number - An integer.

Example
The following example creates a new Date object and uses getUTCMilliseconds () to return the milliseconds value
from the Date object.

var today_date:Date = new Date() ;
trace (today date.getUTCMilliseconds()) ;

getUTCMinutes (Date.getUTCMinutes method)

public getUTCMinutes () : Number

Returns the minutes (an integer from 0 to 59) of the specified Date object, according to universal time.

Availability
Flash Lite 2.0

Returns
Number - An integer.

Example

The following example creates a new Date object and uses getUTCMinutes () to return the minutes value from the
Date object:

var today date:Date = new Date();
trace(today date.getUTCMinutes()) ;

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 290
ActionScript classes

getUTCMonth (Date.getUTCMonth method)

public getUTCMonth () : Number

Returns the month (0 [January] to 11 [December]) of the specified Date object, according to universal time.

Availability
Flash Lite 2.0

Returns
Number - An integer.

Example

The following example creates a new Date object and uses Date.getUTCMonth () and Date.getMonth (). The value
returned by Date.getUTCMonth () can differ from the value returned by Date.getMonth () if today's date is the first
or last day of a month, depending on the relationship between your local time zone and universal time.

var today date:Date = new Date();

trace (today date.getMonth()); // output based on local timezone
trace (today date.getUTCMonth()); // output equals getMonth() plus or minus 1
See also

getMonth (Date.getMonth method)

getUTCSeconds (Date.getUTCSeconds method)

public getUTCSeconds () : Number

Returns the seconds (an integer from 0 to 59) of the specified Date object, according to universal time.

Availability
Flash Lite 2.0

Returns
Number - An integer.

Example
The following example creates a new Date object and uses getUTCSeconds () to return the seconds value from the
Date object:

var today date:Date = new Date();
trace(today date.getUTCSeconds()) ;

getUTCYear (Date.getUTCYear method)

public getUTCYear () : Number

Returns the year of this Date according to universal time (UTC). The year is the full year minus 1900. For example,
the year 2000 is represented as 100.

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 291
ActionScript classes

Returns

Number -

Example

The following example creates a new Date object and uses Date.getUTCFullYear () and Date.getFullYear (). The
value returned by Date.getUTCFullYear () may differ from the value returned by bate.getFullvear () if today's
date is December 31 or January 1, depending on the relationship between your local time zone and universal time.

var today date:Date = new Date();
trace (today date.getFullYear()); // display based on local timezone

trace (today date.getUTCFullYear()); // displays getYear() plus or minus 1

getYear (Date.getYear method)
public getYear() : Number
Returns the year of the specified Date object, according to local time. Local time is determined by the operating system

on which Flash Lite player is running. The year is the full year minus 1900. For example, the year 2000 is represented
as 100.

Availability
Flash Lite 2.0

Returns
Number - An integer.

Example
The following example creates a Date object with the month and year set to May 2004. The Date.getYear () method
returns 104, and Date.getFullYear () returns 2004:

var today date:Date = new Date(2004,4);

trace (today date.getYear()); // output: 104
trace (today date.getFullYear()); // output: 2004
See also

getFullYear (Date.getFullYear method)

setDate (Date.setDate method)

public setDate(date:Number) : Number

Sets the day of the month for the specified Date object, according to local time, and returns the new time in
milliseconds. Local time is determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Parameters
date:Number - An integer from 1 to 31.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 292
ActionScript classes

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the date to May 15, 2004, and uses Date . setDate ()
to change the date to May 25, 2004:

var today date:Date = new Date(2004,4,15);

trace (today date.getDate()); //displays 15
today_date.setDate (25) ;
trace (today date.getDate()); //displays 25

setFullYear (Date.setFullYear method)

public setFullYear (year:Number, [month:Number], [date:Number]) : Number

Sets the year of the specified Date object, according to local time and returns the new time in milliseconds. If the month
and date parameters are specified, they are set to local time. Local time is determined by the operating system on
which Flash Lite player is running.

Calling this method does not modify the other fields of the specified Date object but Date.getUTCDay () and
Date.getDay () can report a new value if the day of the week changes as a result of calling this method.

Availability
Flash Lite 2.0

Parameters

year: Number - A four-digit number specifying a year. Two-digit numbers do not represent four-digit years; for
example, 99 is not the year 1999, but the year 99.

month : Number [optional] - An integer from 0 (January) to 11 (December). If you omit this parameter, the month
field of the specified Date object will not be modified.

date : Number [optional] - A number from 1 to 31. If you omit this parameter, the date field of the specified Date object
will not be modified.

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the date to May 15, 2004, and uses
Date.setFullYear () to change the date to May 15, 2002:

var my_ date:Date = new Date(2004,4,15);

trace (my date.getFullYear()); //output: 2004
my_ date.setFullYear (2002) ;

trace (my date.getFullYear()); //output: 2002
See also

getUTCDay (Date.getUTCDay method), getDay (Date.getDay method)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 293
ActionScript classes

setHours (Date.setHours method)

public setHours (hour:Number) : Number

Sets the hours for the specified Date object according to local time and returns the new time in milliseconds. Local time
is determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Parameters
hour : Number - An integer from 0 (midnight) to 23 (11 p.m.).

Returns
Number - An integer.

Example
The following example initially creates a new Date object, setting the time and date to 8:00 a.m. on May 15, 2004, and
uses Date.setHours () to change the time to 4:00 p.m.:

var my date:Date = new Date(2004,4,15,8);
trace (my date.getHours()); // output: 8
my_date.setHours (16) ;

trace (my date.getHours()); // output: 16

setMilliseconds (Date.setMilliseconds method)

public setMilliseconds (millisecond:Number) : Number

Sets the milliseconds for the specified Date object according to local time and returns the new time in milliseconds.
Local time is determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Parameters
millisecond : Number - An integer from 0 to 999.

Returns
Number - An integer.

Example
The following example initially creates a new Date object, setting the date to 8:30 a.m. on May 15, 2004 with the
milliseconds value set to 250, and then uses Date.setMilliseconds () to change the milliseconds value to 575:

var my_date:Date = new Date(2004,4,15,8,30,0,250);
trace (my date.getMilliseconds()); // output: 250
my date.setMilliseconds (575) ;

trace (my date.getMilliseconds()); // output: 575

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 294
ActionScript classes

setMinutes (Date.setMinutes method)
public setMinutes (minute:Number) : Number

Sets the minutes for a specified Date object according to local time and returns the new time in milliseconds. Local
time is determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Parameters
minute : Number - An integer from 0 to 59.

Returns
Number - An integer.

Example
The following example initially creates a new Date object, setting the time and date to 8:00 a.m. on May 15, 2004, and
then uses Date.setMinutes () to change the time to 8:30 a.m.:

var my date:Date = new Date(2004,4,15,8,0);
trace (my date.getMinutes()); // output: 0
my date.setMinutes (30) ;

trace (my date.getMinutes()); // output: 30

setMonth (Date.setMonth method)

public setMonth (month:Number, [date:Number]) : Number

Sets the month for the specified Date object in local time and returns the new time in milliseconds. Local time is
determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Parameters
month : Number - An integer from 0 (January) to 11 (December).

date: Number [optional] - An integer from 1 to 31. If you omit this parameter, the date field of the specified Date object
will not be modified.

Returns
Number - An integer.

Example
The following example initially creates a new Date object, setting the date to May 15,2004, and uses Date. setMonth ()
to change the date to June 15, 2004:

var my date:Date = new Date(2004,4,15);

trace (my date.getMonth()); //output: 4
my_date.setMonth (5) ;
trace (my date.getMonth()); //output: 5

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 295
ActionScript classes

setSeconds (Date.setSeconds method)
public setSeconds (second:Number) : Number

Sets the seconds for the specified Date object in local time and returns the new time in milliseconds. Local time is
determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Parameters
second : Number - An integer from 0 to 59.

Returns

Number - An integer.

Example
The following example initially creates a new Date object, setting the time and date to 8:00:00 a.m. on May 15, 2004,
and uses Date.setSeconds () to change the time to 8:00:45 a.m.:

var my_date:Date = new Date(2004,4,15,8,0,0);
trace (my date.getSeconds()); // output: 0
my_date.setSeconds (45) ;

trace (my date.getSeconds()); // output: 45

setTime (Date.setTime method)

public setTime (millisecond:Number) : Number

Sets the date for the specified Date object in milliseconds since midnight on January 1, 1970, and returns the new time
in milliseconds.

Availability
Flash Lite 2.0

Parameters

millisecond : Number - A number; an integer value where 0 is midnight on January 1, universal time.

Returns

Number - An integer.
Example

The following example initially creates a new Date object, setting the time and date to 8:00 a.m. on May 15, 2004, and
uses Date.setTime () to change the time to 8:30 a.m.:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 296
ActionScript classes

var my date:Date = new Date(2004,4,15,8,0,0);

var myDate num:Number = my date.getTime(); // convert my date to milliseconds
myDate num += 30 * 60 * 1000; // add 30 minutes in milliseconds

my date.setTime (myDate num); // set my date Date object 30 minutes forward

trace (my date.getFullYear()); // output: 2004
trace (my date.getMonth()); // output: 4

trace (my date.getDate()); // output: 15

trace (my date.getHours()); // output: 8

trace (my date.getMinutes()); // output: 30

setUTCDate (Date.setUTCDate method)

public setUTCDate (date:Number) : Number

Sets the date for the specified Date object in universal time and returns the new time in milliseconds. Calling this
method does not modify the other fields of the specified Date object, but Date .getUTCDay () and Date.getDay () can
report a new value if the day of the week changes as a result of calling this method.

Availability
Flash Lite 2.0

Parameters

date: Number - A number; an integer from 1 to 31.

Returns
Number - An integer.

Example
The following example initially creates a new Date object with today's date, uses Date.setUTCDate () to change the
date value to 10, and changes it again to 25:

var my date:Date = new Date();
my date.setUTCDate (10) ;

trace (my date.getUTCDate()); // output: 10
my date.setUTCDate (25) ;

trace (my date.getUTCDate()); // output: 25
See also

getUTCDay (Date.getUTCDay method), getDay (Date.getDay method)

setUTCFullYear (Date.setUTCFullYear method)

public setUTCFullYear (year:Number, [month:Number], [date:Number]) : Number
Sets the year for the specified Date object (1my_date) in universal time and returns the new time in milliseconds.

Optionally, this method can also set the month and date represented by the specified Date object. Calling this method
does not modify the other fields of the specified Date object, but Date .getUTCDay () and Date.getDay () can report
a new value if the day of the week changes as a result of calling this method.

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 297
ActionScript classes

Parameters
year: Number - An integer that represents the year specified as a full four-digit year, such as 2000.

month : Number [optional] - An integer from 0 (January) to 11 (December). If you omit this parameter, the month
field of the specified Date object will not be modified.

date: Number [optional] - An integer from 1 to 31. If you omit this parameter, the date field of the specified Date object
will not be modified.

Returns

Number - An integer.

Example
The following example initially creates a new Date object with today's date, uses Date.setUTCFullyear () to change
the year value to 2001, and changes the date to May 25, 1995:

var my date:Date = new Date();
my date.setUTCFullYear (2001) ;

trace (my date.getUTCFullYear()); // output: 2001
my_ date.setUTCFullYear (1995, 4, 25);

trace (my date.getUTCFullYear()); // output: 1995
trace (my date.getUTCMonth()); // output: 4

trace (my date.getUTCDate()); // output: 25

See also

getUTCDay (Date.getUTCDay method), getDay (Date.getDay method)

setUTCHours (Date.setUTCHours method)

public setUTCHours (hour:Number, [minute:Number], [second:Number], [millisecond:Number])
Number

Sets the hour for the specified Date object in universal time and returns the new time in milliseconds.

Availability
Flash Lite 2.0

Parameters

hour: Number - A number; an integer from 0 (midnight) to 23 (11 p.m.).

minute: Number [optional] - A number; an integer from 0 to 59. If you omit this parameter, the minutes field of the
specified Date object will not be modified.

second : Number [optional] - A number; an integer from 0 to 59. If you omit this parameter, the seconds field of the
specified Date object will not be modified.

millisecond : Number [optional] - A number; an integer from 0 to 999. If you omit this parameter, the milliseconds
field of the specified Date object will not be modified.

Returns

Number - An integer.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Example

The following example initially creates a new Date object with today's date, uses Date . setUTCHours () to change the

time to 8:30 a.m., and changes the time again to 5:30:47 p.m.:

var my_date:Date = new Date();
my date.setUTCHours (8,30) ;
trace (my date.getUTCHours()); // output: 8
trace (my_date.getUTCMinutes()); // output: 30
my_date.setUTCHours (17,30,47)

trace (my_date.getUTCHours ())

i

; // output: 17
trace (my date.getUTCMinutes()); // output: 30
trace (my date.getUTCSeconds()); // output: 47

setUTCMilliseconds (Date.setUTCMailliseconds method)

public setUTCMilliseconds (millisecond:Number) : Number

Sets the milliseconds for the specified Date object in universal time and returns the new time in milliseconds.

Availability
Flash Lite 2.0

Parameters
millisecond : Number - An integer from 0 to 999.

Returns

Number - An integer.

Example
The following example initially creates a new Date object, setting the date to 8:30 a.m. on May 15, 2004 with the
milliseconds value set to 250, and uses Date.setUTCMilliseconds () to change the milliseconds value to 575:

var my_date:Date = new Date(2004,4,15,8,30,0,250);

trace (my date.getUTCMilliseconds()); // output: 250
my date.setUTCMilliseconds (575) ;
trace (my date.getUTCMilliseconds()); // output: 575

setUTCMinutes (Date.setUTCMinutes method)

public setUTCMinutes (minute:Number, [second:Number], [millisecond:Number]) : Number

Sets the minute for the specified Date object in universal time and returns the new time in milliseconds.

Availability
Flash Lite 2.0

Parameters
minute : Number - An integer from 0 to 59.

second : Number [optional] - An integer from 0 to 59. If you omit this parameter, the seconds field of the specified
Date object will not be modified.

Last updated 3/22/2011

298

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 299
ActionScript classes

millisecond : Number [optional] - An integer from 0 to 999. If you omit this parameter, the milliseconds field of the
specified Date object will not be modified.

Returns
Number - An integer.

Example

The following example initially creates a new Date object, setting the time and date to 8:00 a.m. on May 15, 2004, and
uses Date.setUTCMinutes () to change the time to 8:30 a.m.:

var my_date:Date = new Date(2004,4,15,8,0);

trace (my date.getUTCMinutes()); // output: 0
my date.setUTCMinutes (30) ;
trace (my date.getUTCMinutes()); // output: 30

setUTCMonth (Date.setUTCMonth method)

public setUTCMonth (month:Number, [date:Number]) : Number

Sets the month, and optionally the day, for the specified Date object in universal time and returns the new time in
milliseconds. Calling this method does not modify the other fields of the specified Date object, but Date . get UTCDay ()
and Date.getDay () might report a new value if the day of the week changes as a result of specifying a value for the
date parameter.

Availability
Flash Lite 2.0

Parameters
month:Number - An integer from 0 (January) to 11 (December).

date: Number [optional] - An integer from 1 to 31. If you omit this parameter, the date field of the specified Date object
will not be modified.

Returns

Number - An integer.

Example

The following example initially creates a new Date object, setting the date to May 15,2004, and uses Date. setMonth ()
to change the date to June 15, 2004:

var today date:Date = new Date(2004,4,15);

trace (today date.getUTCMonth()); // output: 4
today_date.setUTCMonth (5) ;

trace (today date.getUTCMonth()); // output: 5
See also

getUTCDay (Date.getUTCDay method), getDay (Date.getDay method)

setUTCSeconds (Date.setUTCSeconds method)

public setUTCSeconds (second:Number, [millisecond:Number]) : Number

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Sets the seconds for the specified Date object in universal time and returns the new time in milliseconds.

Availability
Flash Lite 2.0

Parameters
second : Number - An integer from 0 to 59.

millisecond : Number [optional] - An integer from 0 to 999. If you omit this parameter, the milliseconds field of the
specified Date object will not be modified.

Returns
Number - An integer.

Example
The following example initially creates a new Date object, setting the time and date to 8:00:00 a.m. on May 15, 2004,
and uses Date.setSeconds () to change the time to 8:30:45 a.m.:

var my date:Date = new Date(2004,4,15,8,0,0);

trace (my date.getUTCSeconds()); // output: 0
my_date.setUTCSeconds (45) ;
trace (my date.getUTCSeconds()); // output: 45

setYear (Date.setYear method)

public setYear (year:Number) : Number

Sets the year for the specified Date object in local time and returns the new time in milliseconds. Local time is
determined by the operating system on which Flash Lite player is running.

Availability
Flash Lite 2.0

Parameters
year :Number - A number that represents the year. If year is an integer between 0 and 99, setYear sets the year at
1900 + year; otherwise, the year is the value of the year parameter.

Returns
Number - An integer.

Example

The following example creates a new Date object with the date set to May 25, 2004, uses setYear () to change the year
to 1999, and changes the year to 2003:

Last updated 3/22/2011

300

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

var my date:Date = new Date(2004,4,25) ;

trace (my date.getYear()); // output: 104
trace (my date.getFullYear()); // output: 2004
my_date.setYear (99) ;

trace (my date.getYear()); // output: 99

trace (my_ date.getFullYear()); // output: 1999
my date.setYear (2003) ;

trace (my date.getYear()); // output: 103
trace (my date.getFullYear()); // output: 2003

toString (Date.toString method)

public toString() : String

Returns a string value for the specified date object in a readable format.

Availability
Flash Lite 2.0

Returns

String - A string.

Example

The following example returns the information in the dateofBirth_date Date object as a string. The output from the
trace statements are in local time and vary accordingly. For Pacific Daylight Time the output is seven hours earlier than
universal time: Mon Aug 12 18:15:00 GMT-0700 1974.

var dateOfBirth date:Date = new Date(74, 7, 12, 18, 15);
trace (dateOfBirth date);
trace (dateOfBirth date.toString());

UTC (Date.UTC method)
public static UTC(year:Number, month:Number, [date:Number], [hour:Number], [minute:Number],
[second:Number], [millisecond:Number]) : Number

Returns the number of milliseconds between midnight on January 1, 1970, universal time, and the time specified in
the parameters. This is a static method that is invoked through the Date object constructor, not through a specific Date
object. This method lets you create a Date object that assumes universal time, whereas the Date constructor assumes
local time.

Availability
Flash Lite 2.0

Parameters
year :Number - A four-digit integer that represents the year (for example, 2000).

month:Number - An integer from 0 (January) to 11 (December).
date: Number [optional] - An integer from 1 to 31.
hour: Number [optional] - An integer from 0 (midnight) to 23 (11 p.m.).

minute: Number [optional] - An integer from 0 to 59.

Last updated 3/22/2011

301

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 302
ActionScript classes

second : Number [optional] - An integer from 0 to 59.

millisecond : Number [optional] - An integer from 0 to 999.

Returns

Number - An integer.

Example

The following example creates a new maryBirthday_ date Date object defined in universal time. This is the universal
time variation of the example used for the new Date constructor method. The output is in local time and varies
accordingly. For Pacific Daylight Time the output is seven hours earlier than UTC: Sun Aug 11 17:00:00 GMT-0700
1974.

var maryBirthday date:Date = new Date(Date.UTC(1974, 7, 12));
trace (maryBirthday date) ;

valueOf (Date.valueOf method)

public valueOf () : Number

Returns the number of milliseconds since midnight January 1, 1970, universal time, for this Date.

Availability
Flash Lite 2.0

Returns

Number - The number of milliseconds.

Error

Object

+-Error

public class Error
extends Object

Contains information about an error that occurred in a script. You create an Error object using the Error constructor
function. Typically, you throw a new Error object from within a try code block that is then caught by a catch or
finally code block.

You can also create a subclass of the Error class and throw instances of that subclass.

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 303
ActionScript classes

Property summary
Modifiers Property Description
message : String Contains the message associated with the Error object.
name: String Contains the name of the Error object.

Properties inherited from class Object

constructor (Object.constructor property), proto (Object._ proto
property)prototype (Object.prototype property), resolve (Object. resolve property)

Constructor summary

Signature Description

Error ([message:String [Creates a new Error object.
1)

Method summary
Modifiers Signature Description
toString () : String Returns the string "Error" by default or the value contained in
Error.message, if defined.

Methods inherited from class Object

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method) isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method),valueOf (Object.valueOf
method)watch (Object.watch method)

Error constructor

public Error ([message:String])

Creates a new Error object. If you pass a message parameter, its value is assigned to the Error .message property.

Availability
Flash Lite 2.0

Parameters
message : String [optional] - A string associated with the Error object.

Example

In the following example, a function throws an error (with a specified message) if the two strings that are passed to it
are not identical:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 304
ActionScript classes

function compareStrings(strl str:String, str2 str:String) :Void {
if (strl_str != str2 str)
throw new Error ("Strings do not match.");

1
}
try {
compareStrings ("Dog", "dog") ;
// output: Strings do not match.
} catch (e err:Error) {
trace(e_err.toString()) ;

See also

throw statement, try..catch..finally statement

message (Error.message property)

public message : String

The message associated with the Error object. By default, the value of this property is "Error". You can specify a
message property when you create an Error object by passing the error string to the Error constructor function.

Availability
Flash Lite 2.0

Example

In the following example, a function throws a specified message depending on the parameters entered into theNum. If
two numbers can be divided, success and the number are shown. Specific errors are shown if you try to divide by 0
or enter only 1 parameter:

function divideNum (numl:Number, num2:Number) :Number {
if (isNaN(numl) || isNaN(num2)) {
throw new Error ("divideNum function requires two numeric parameters.");
} else if (num2 == 0) ({
throw new Error ("cannot divide by zero.");
1
return numl/num2;
}
try {
var theNum:Number = divideNum(1l, O0);
trace ("SUCCESS! "+theNum) ;
} catch (e err:Error) ({
trace ("ERROR! "+e err.message);
trace ("\t"+e_err.name) ;

}

If you test this ActionScript without any modifications to the numbers you divide, you see an error displayed in the
Output panel because you are trying to divide by 0.

See also

throw statement, try..catch..finally statement

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 305
ActionScript classes

name (Error.name property)

public name : String

Contains the name of the Error object. By default, the value of this property is "Error".

Availability
Flash Lite 2.0

Example
In the following example, a function throws a specified error depending on the two numbers that you try to divide.
Add the following ActionScript to Frame 1 of the Timeline:

function divideNumber (numerator:Number, denominator:Number) :Number {
if (isNaN(numerator) || isNaN(denominator))
throw new Error ("divideNumber () function requires two numeric parameters.");
} else if (denominator == 0) {
throw new DivideByZeroError () ;
}
return numerator/denominator;
}
try {
var theNum:Number = divideNumber (1, 0);
trace ("SUCCESS! "+theNum) ;
// output: DivideByZeroError -> Unable to divide by zero.
} catch (e_err:DivideByZeroError) ({
// divide by zero error occurred
trace(e_err.name+" -> "+e err.toString());
} catch (e err:Error) {
// generic error occurred
trace(e_err.name+" -> "+e err.toString());

}

Add the following code to an .as file called DivideByZeroError.as and save the class file in the same directory as your
fla document.

class DivideByZeroError extends Error {

var name:String = "DivideByZeroError";
var message:String = "Unable to divide by zero.";
See also

throw statement, try..catch..finally statement

toString (Error.toString method)

public toString() : String

Returns the string "Error” or the value contained in Error.message, if defined.

Availability
Flash Lite 2.0

Returns
String A String

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 306
ActionScript classes

Example

In the following example, a function throws an error (with a specified message) if the two strings that are passed to it
are not identical:

function compareStrings(strl str:String, str2 str:String):Void {

if (strl_str != str2 str) {

throw new Error ("Strings do not match.");

1
}
try {
compareStrings ("Dog", "dog") ;
// output: Strings do not match.
} catch (e_err:Error) (
trace(e_err.toString()) ;

See also

message (Error.message property), throw statement, try..catch..finally statement

ExtendedKey

Object

+-ExtendedKey

public class ExtendedKey
extends Object

Provides extended key codes that can be returned from the Key.getCode () method.

Availability
Flash Lite 2.0

Example
The following example creates a listener that is called when a key is pressed. It uses the Key . getCode () method to get
the key code for the key that was pressed:

var myListener = new Object() ;

myListener.onKeyDown = function() {
var code = Key.getCode () ;
trace (code + " down") ;

myListener.onKeyUp = function() ({
trace ("onKeyUp called") ;

Key.addListener (myListener) ;

See also
getCode (Key.getCode method)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Property summary

Modifiers Property Description

static SOFT1 : String The key code value for the SOFT1 soft key.
static SOFT3: String The key code value for the SOFT3 soft key.
static SOFT4: String The key code value for the SOFT4 soft key.
static SOFT5 : String The key code value for the SOFT5 soft key.
static SOFT6 : String The key code value for the SOFT6 soft key.
static SOFT7 : String The key code value for the SOFT7 soft key.
static SOFT8: String The key code value for the SOFT8 soft key.
static SOFT9: String The key code value for the SOFT9 soft key.
static SOFT10: String The key code value for the SOFT10 soft key.
static SOFT11: String The key code value for the SOFT11 soft key.
static SOFT12: String The key code value for the SOFT12 soft key.
static SOFT2: String The key code value for the SOFT2 soft key.

Properties inherited from class Object

constructor (Object.constructor property), proto_ (Object._ proto_
property)prototype (Object.prototype property), resolve (Object._ resolve property)

Method summary
Methods inherited from class Object

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method) isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method),valueOf (Object.valueOf
method)watch (Object.watch method)

SOFT1 (ExtendedKey.SOFT1 property)

public static SOFT1 : String

The key code value for the SOFT1 soft key. The SOFT1 key code always corresponds to the left soft key; the SOFT2

always corresponds to the right soft key.

Availability
Flash Lite 2.0

Example
The following example creates a listener that handles the left and right soft keys:

Last updated 3/22/2011

307

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

var myListener:0Object = new Object () ;
myListener.onKeyDown = function () {
var keyCode = Key.getCode() ;
switch (keyCode) {

case ExtendedKey.SOFT1:

// Handle left soft key.

break;

case ExtendedKey.SOFT2:

// Handle right soft key

break;

}
}

Key.addListener (myListener) ;

SOFT2 (ExtendedKey.SOFT2 property)

public static SOFT2 : String

The key code value for the SOFT2 soft key. The SOFT2 key code always corresponds to the right soft key; the SOFT1

key code always corresponds to the left soft key.

Availability
Flash Lite 2.0

See also
SOFT1 (ExtendedKey.SOFT1 property)

SOFT3 (ExtendedKey.SOFT3 property)

public static SOFT3 : String

The key code value for the SOFT3 soft key.

Availability
Flash Lite 2.0

SOFT4 (ExtendedKey.SOFT4 property)

public static SOFT4 : String

The key code value for the SOFT4 soft key.

Availability
Flash Lite 2.0

SOFTS5 (ExtendedKey.SOFT5 property)

public static SOFT5 : String

The key code value for the SOFT5 soft key.

Availability
Flash Lite 2.0

Last updated 3/22/2011

308

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

SOFT6 (ExtendedKey.SOFT6 property)

public static SOFT6 : String

The key code value for the SOFT®6 soft key.

Availability
Flash Lite 2.0

SOFT7 (ExtendedKey.SOFT7 property)

public static SOFT7 : String

The key code value for the SOFT7 soft key.

Availability
Flash Lite 2.0

SOFT8 (ExtendedKey.SOFT8 property)

public static SOFT8 : String

The key code value for the SOFTS8 soft key.

Availability
Flash Lite 2.0

SOFT9 (ExtendedKey.SOFT9 property)

public static SOFT9 : String

The key code value for the SOFT?9 soft key.

SOFT10 (ExtendedKey.SOFT10 property)

public static SOFT10 : String

The key code value for the SOFT10 soft key.

Availability
Flash Lite 2.0

SOFT11 (ExtendedKey.SOFT11 property)

public static SOFT11 : String

The key code value for the SOFT11 soft key.

Availability
Flash Lite 2.0

SOFT12 (ExtendedKey.SOFT12 property)

public static SOFT12 : String

Last updated 3/22/2011

309

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

The key code value for the SOFT12 soft key.

Availability
Flash Lite 2.0

Function

Object

+-Function

public dynamic class Function
extends Object

Both user-defined and built-in functions in ActionScript are represented by Function objects, which are instances of

the Function class.

Availability
Flash Lite 2.0

Property summary
Properties inherited from class Object

constructor (Object.constructor property), proto__ (Object._ proto_
property)prototype (Object.prototype property), resolve (Object. resolve property)
Method summary

Modifiers Signature Description

apply (thisObject : Obje | Specifies the value of thisobject to be used within any
ct, [argArray:Array]l) |[function that ActionScript calls.

call (thisObject : Object | Invokes the function represented by a Function object.

[parameterl :Object])

Methods inherited from class Object

addProperty (Object.addProperty method), hasOwnProperty (Object.hasOwnProperty
method) isPropertyEnumerable (Object.isPropertyEnumerable method)isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method),valueOf (Object.valueOf
method)watch (Object.watch method)

apply (Function.apply method)

public apply(thisObject:0bject, [argArray:Arrayl)

Specifies the value of thisobject to be used within any function that ActionScript calls. This method also specifies
the parameters to be passed to any called function. Because apply () is a method of the Function class, it is also a

method of every Function object in ActionScript.

Last updated 3/22/2011

310

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

The parameters are specified as an Array object, unlike Function.call (), which specifies parameters as a comma-
delimited list. This is often useful when the number of parameters to be passed is not known until the script actually
executes.

Returns the value that the called function specifies as the return value.

Availability
Flash Lite 2.0

Parameters

thisObject : Object - The object to which myFunction is applied.

argArray: Array [optional] - An array whose elements are passed to myFunction as parameters.

Returns
Any value that the called function specifies.

Example
The following function invocations are equivalent:

Math.atan2 (1, 0)
Math.atan2.apply(null, [1, 0])

The following example shows how apply () passes an array of parameters:

function theFunction() {
trace (arguments) ;

// create a new array to pass as a parameter to apply ()
var firstArray:Array = new Array(1l,2,3);
theFunction.apply (null, firstArray) ;

// outputs: 1,2,3

// create a second array to pass as a parameter to apply()
var secondArray:Array = new Array("a", "b", "c");
theFunction.apply (null, secondArray) ;

// outputs a,b,c

The following example shows how apply () passes an array of parameters and specifies the value of this:

Last updated 3/22/2011

311

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 312
ActionScript classes

// define a function

function theFunction() {
trace("this == myObj? " + (this == myObj));
trace ("arguments: " + arguments) ;

// instantiate an object
var myObj:0bject = new Object () ;

// create arrays to pass as a parameter to apply ()
var firstArray:Array = new Array(1l,2,3);
var secondArray:Array = new Array("a", "b", "c");

// use apply() to set the value of this to be myObj and send firstArray
theFunction.apply (myObj, firstArray) ;

// output:

// this == myObj? true

// arguments: 1,2,3

// use apply() to set the value of this to be myObj and send secondArray
theFunction.apply (myObj, secondArray) ;

// output:

// this == myObj? true

// arguments: a,b,c

See also

call (Function.call method)

call (Function.call method)

public call (thisObject:0bject, [parameterl:Object])

Invokes the function represented by a Function object. Every function in ActionScript is represented by a Function
object, so all functions support this method.

In almost all cases, the function call (()) operator can be used instead of this method. The function call operator
produces code that is concise and readable. This method is primarily useful when the thisobject parameter of the
function invocation needs to be explicitly controlled. Normally, if a function is invoked as a method of an object,
within the body of the function, thisobject is set to myObject, as shown in the following example:

myObject.myMethod (1, 2, 3);

In some situations, you might want thisobject to point somewhere else; for example, if a function must be invoked
as a method of an object, but is not actually stored as a method of that object:

myObject .myMethod.call (myOtherObject, 1, 2, 3);

You can pass the value null for the thisobject parameter to invoke a function as a regular function and not as a
method of an object. For example, the following function invocations are equivalent:

Math.sin (Math.PI / 4)
Math.sin.call (null, Math.PI / 4)

Returns the value that the called function specifies as the return value.

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 313
ActionScript classes

Parameters
thisObject: Object - An object that specifies the value of thisobject within the function body.

parameterl : Object [optional] - A parameter to be passed to the myFunction. You can specify zero or more
parameters.

Example

The following example uses Function.call () to make a function behave as a method of another object, without
storing the function in the object:

function myObject () ({

}

function myMethod (obj)
trace("this == obj? " + (this == obj));

}
var obj:0bject = new myObject () ;
myMethod.call (obj, obj);

The trace () statement displays:

this == obj? true

See also

apply (Function.apply method)

Key

Object

+-Key

public class Key
extends Object

The Key class is a top-level class whose methods and properties you can use without a constructor. Use the methods

of the Key class to build interfaces. The properties of the Key class are constants representing the keys most commonly
used to control applications, such as Arrow keys, Page Up, and Page Down. Use the System.capabilities properties to
determine which keys a device supports.

Not all devices and Flash Lite content types support all keys. For example, devices that support two-way navigation
don’t support the left and right navigation keys. Also, not all devices have access to a device’s soft keys. For
information, see Developing Flash Lite 2.x and 3.x Applications.

Availability
Flash Lite 2.0

See also
ExtendedKey

“has4WayKeyAS (capabilities.has4WayKeyAS property)” on page 244
“hasMappableSoftKeys (capabilities.hasMappableSoftKeys property)” on page 248

>

*hasQWERTYKeyboard (capabilities.hasQWERTYKeyboard property)” on page 250

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

“softKeyCount (capabilities.softKeyCount property)” on page 258

Property summary
Modifiers Property Description
static BACKSPACE : Number The key code value for the Backspace key (8).
static CAPSLOCK : Number The key code value for the Caps Lock key (20).
static CONTROL : Number The key code value for the Control key (17).
static DELETEKEY : Number The key code value for the Delete key (46).
static DOWN : Number The key code value for the Down Arrow key (40).
static END : Number The key code value for the End key (35).
static ENTER : Number The key code value for the Enter key (13).
static ESCAPE : Number The key code value for the Escape key (27).
static HOME : Number The key code value for the Home key (36).
static INSERT : Number The key code value for the Insert key (45).
static LEFT : Number The key code value for the Left Arrow key (37).
static _listeners : Array [read- A list of references to all listener objects registered with the

only] Key object.

static PGDN : Number The key code value for the Page Down key (34).
static PGUP : Number The key code value for the Page Up key (33).
static RIGHT : Number The key code value for the Right Arrow key (39).
static SHIFT : Number The key code value for the Shift key (16).
static SPACE : Number The key code value for the Spacebar (32).
static TAB : Number The key code value for the Tab key (9).
static UP : Number The key code value for the Up Arrow key (38).

Properties inherited from class Object

constructor (Object.constructor property), proto (Object. proto property),
prototype (Object.prototype property), resolve (Object._ resolve property)

Event summary

Event

Description

onKeyDown =
function() {}

Notified when a key is pressed.

onKeyUp =
function() {}

Notified when a key is released.

Last updated 3/22/2011

314

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Method summary

Modifiers Signature Description

static addListener (listener: | Registersan object to receive onKeyDown and onKeyUp
Object) : void notification.

static getAscii () : Number Returns the ASCII code of the last key pressed or released.

static getCode () : Number Returns the key code value of the last key pressed.

static isDown (code :Number) | Returns true if the key specified in code is pressed; false

Boolean otherwise.

static removelistener (1istene | Removes an object previously registered with

r:Object) : Boolean Key.addListener ().

Methods inherited from class Object

addProperty (Object.addProperty method),hasOwnProperty (Object.hasOwnProperty method),
isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method)registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method),valueOf (Object.valueOf
method),watch (Object.watch method)

addListener (Key.addListener method)

public static addListener(listener:0bject) : Void

Registers an object to receive onkeyDown and onkeyUp notifications. When a key is pressed or released, regardless of
the input focus, all listening objects registered with addListener () have either their onkeyDown method or their
onKeyUp method invoked. Multiple objects can listen for keyboard notifications.

Availability
Flash Lite 2.0

Parameters

listener : Object - An object with onkeyDown and onKeyUp methods.

Example
The following example creates a new listener object and defines functions for onkeyDown and onkeyUp. The last line

calls addListener () to register the listener with the Key object so that it can receive notification from the key down
and key up events.

var myListener:Object = new Object();
myListener.onKeyDown = function () {
trace ("You pressed a key.");

}

myListener.onKeyUp = function () ({
trace ("You released a key.");

}

Key.addListener (myListener) ;
See also

getCode (Key.getCode method), isDown (Key.isDown method), onKeyDown (Key.onKeyDown event

listener), onKeyUp (Key.onKeyUp event listener), removeListener (Key.removelListener method)

Last updated 3/22/2011

315

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 316
ActionScript classes

BACKSPACE (Key.BACKSPACE property)

public static BACKSPACE : Number

The key code value for the Backspace key (8).

Availability
Flash Lite 2.0

Example
The following example creates a new listener object and defines a function for onkeyDown. The last line uses
addListener () to register the listener with the Key object so that it can receive notification from the key down event.

var keyListener:Object = new Object () ;
keyListener.onKeyDown = function() {

if (Key.isDown (Key.BACKSPACE)) {

trace ("you pressed the Backspace key.");

} else {

trace("you DIDN'T press the Backspace key.");

}
i

Key.addListener (keyListener) ;

CAPSLOCK (Key.CAPSLOCK property)

public static CAPSLOCK : Number

The key code value for the Caps Lock key (20).

Availability
Flash Lite 2.0

CONTROL (Key.CONTROL property)

public static CONTROL : Number

The key code value for the Control key (17).

Availability
Flash Lite 2.0

DELETEKEY (Key.DELETEKEY property)

public static DELETEKEY : Number

The key code value for the Delete key (46).

Availability
Flash Lite 2.0

DOWN (Key.DOWN property)

public static DOWN : Number

The key code value for the Down Arrow key (40).

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE

ActionScript classes

Availability
Flash Lite 2.0

Example

The following example moves a movie clip called car_mc a constant distance (10) when you press the arrow keys. Place

any movie clip on the Stage and give it the instance name car_mc.

var DISTANCE:Number

var keyListener obj:

= 10;
Object =

new Object () ;

keyListener obj.onKeyDown = function() {
switch (Key.getCode())

case Key.LEFT :

car mc._x -= DISTANCE;

break;
case Key.UP

car mc._y -= DISTANCE;

break;

case Key.RIGHT :

car mc._x += DISTANCE;

break;
case Key.DOWN :

car mc._y += DISTANCE;

break;
1
}i

Key.addListener (keyListener obj) ;

END (Key.END property)

: Number

public static END

The key code value for the End key (35).

Availability
Flash Lite 2.0

ENTER (Key.ENTER property)

public static ENTER :

The key code value for the Enter key (13).

Availability
Flash Lite 2.0

Example

The following example moves a movie clip when you press the arrow keys. The movie clip stops when you press Select
and delete the onEnterFrame event. Place any movie clip on the Stage and give it the instance name car_mc.

Number

Last updated 3/22/2011

317

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

var DISTANCE:Number = 5;
var keylListener:0Object = new Object();

keyListener.onKeyDown = function() {

switch (Key.getCode()) {

case Key.LEFT

car mc.onEnterFrame = function() {
this. x -= DISTANCE;

Vi

break;

case Key.UP

car _mc.onEnterFrame = function()
this. y -= DISTANCE;

i

break;

case Key.RIGHT

car mc.onEnterFrame = function() {

this. x += DISTANCE;

break;

case Key.DOWN

car mc.onEnterFrame = function() {
this. y += DISTANCE;

Vi

break;

case Key.ENTER

delete car_mc.onEnterFrame;
break;

}
}i

Key.addListener (keyListener) ;

ESCAPE (Key.ESCAPE property)

public static ESCAPE : Number

The key code value for the Escape key (27).

Availability
Flash Lite 2.0

Example

The following example sets a timer. When you press Select, the Output panel displays how long it took you to press

the key.

var keyListener:Object = new Object () ;
keyListener.onKeyDown = function() {
if (Key.isDown (Key.ENTER)) {

// get the current timer, convert the value
// to seconds and round it to two decimal places.
var timer:Number = Math.round(getTimer () /10)/100;

trace ("You pressed the Select key after: "+getTimer()+"ms

}i

Key.addListener (keyListener) ;

Last updated 3/22/2011

("+timer+"s) ") ;

318

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 319
ActionScript classes

getAscii (Key.getAscii method)

public static getAscii() : Number

Returns the ASCII code of the last key pressed or released. The ASCII values returned are English keyboard values. For
example, if you press Shift+2 on either a Japanese or English keyboard, Key.getascii () returns e.

Availability
Flash Lite 2.0

Returns
Number - The ASCII value of the last key pressed. This method returns 0 if no key was pressed or released, or if the
ASCII value is not accessible for security reasons.

Example

The following example calls the getAscii () method any time a key is pressed. The example creates a listener object
named keyListener and defines a function that responds to the onkeyDown event by calling Key.getascii (). The
keyListener object is then registered to the Key object, which broadcasts the onkeyDown message whenever a key is
pressed while the SWF file plays.

var keyListener:Object = new Object () ;
keyListener.onKeyDown = function() {
trace ("The ASCII code for the last key typed is: "+Key.getAscii());

}i

Key.addListener (keyListener) ;

The following example adds a call to Key.getAscii () to show how getascii () and getCode () differ. The main
difference is that Key.getAscii () differentiates between uppercase and lowercase letters, and Key . getCode () does not.

var keyListener:0bject = new Object();
keyListener.onKeyDown = function() {
trace ("For the last key typed:");
trace ("\tThe Key code is: "+Key.getCode()) ;
trace ("\tThe ASCII value is: "+Key.getAscii());
(

trace("");

}i

Key.addListener (keyListener) ;

getCode (Key.getCode method)

public static getCode() : Number
Returns the key code value of the last key pressed.

The Flash Lite implementation of this method returns a string or a number, depending on the key code passed in by
the platform. The only valid key codes are the standard key codes accepted by this class and the special key codes listed
as properties of the ExtendedKey class.

Availability
Flash Lite 2.0

Returns

Number - The key code of the last key pressed. This method returns 0 if no key was pressed or released, or if the key
code is not accessible for security reasons.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 320
ActionScript classes

Example

The following example calls the getCode () method any time a key is pressed. The example creates a listener object
named keyListener and defines a function that responds to the onkeyDown event by calling Key .getcCode (). The
keyListener object is registered to the Key object, which broadcasts the onkeyDown message whenever a key is pressed
while the SWF file plays.

var keyListener:0bject = new Object() ;
keyListener.onKeyDown = function() {
// Compare return value of getCode() to constant
if (Key.getCode() == Key.ENTER) ({
trace ("Virtual key code: "+Key.getCode()+" (ENTER key)");

}

else {
trace ("Virtual key code: "+Key.getCode()) ;

}i

Key.addListener (keyListener) ;

The following example adds a call to Key.getAscii () to show how the two methods differ. The main difference is
that Key.getAscii () differentiates between uppercase and lowercase letters, and Key .getCode () does not.

var keyListener:0bject = new Object();
keyListener.onKeyDown = function() {
trace ("For the last key typed:");
trace ("\tThe Key code is: "+Key.getCode()) ;
trace ("\tThe ASCII value is: "+Key.getAscii());
(

trace("") ;

}i

Key.addListener (keyListener) ;

Availability
Flash Lite 2.0

See also

getAscii (Key.getAscii method)

HOME (Key.HOME property)

public static HOME : Number

The key code value for the Home key (36).

Availability
Flash Lite 2.0

INSERT (Key.INSERT property)

public static INSERT : Number

The key code value for the Insert key (45).

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 321
ActionScript classes

isDown (Key.isDown method)

public static isDown (code:Number) : Boolean

Returns true if the key specified in code is pressed; £alse otherwise.

Availability
Flash Lite 2.0

Parameters

code: Number - The key code value assigned to a specific key or a Key class property associated with a specific key.

Returns

Boolean - The value true if the key specified in code is pressed; false otherwise.

Example
The following script lets the user use the Left and Right keys to control the location of a movie clip on the Stage called

car_mc:

car mc.onEnterFrame = function() ({
if (Key.isDown (Key.RIGHT)) {
this. x += 10;
} else if (Key.isDown (Key.LEFT))
this. x -= 10;
}

}i

LEFT (Key.LEFT property)

public static LEFT : Number

The key code value for the Left Arrow key (37).

Availability
Flash Lite 2.0

_listeners (Key._listeners property)
public static _listeners : Array [read-only]
A list of references to all listener objects registered with the Key object. This property is intended for internal use, but

may be useful if you want to ascertain the number of listeners currently registered with the Key object. Objects are
added and removed from this array by calls to the addListener() and removeListener() methods.

Availability
Flash Lite 2.0

Example

The following example shows how to use the length property to ascertain the number of listener objects currently
registered to the Key object.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

var myListener:0Object = new Object () ;
myListener.onKeyDown = function () {
trace ("You pressed a key.");

}

Key.addListener (myListener) ;

trace (Key. listeners.length); // Output: 1

onKeyDown (Key.onKeyDown event listener)

onKeyDown = function() {}

Notified when a key is pressed. To use onkeyDown, you must create a listener object. You can then define a function
for onkeyDown and use addListener () to register the listener with the Key object, as shown in the following example:

var keyListener:0Object = new Object();
keyListener.onKeyDown = function() {

trace ("DOWN -> Code: "+Key.getCode()+"\tACSII: "+Key.getAscii()+"\tKey:
"+chr (Key.getAscii())) ;

Vi
keyListener.onKeyUp = function() {

trace ("UP -> Code: "+Key.getCode ()+"\tACSII: "+Key.getAscii()+"\tKey:
"+chr (Key.getAscii()));

}i

Key.addListener (keyListener) ;

Listeners enable different pieces of code to cooperate because multiple listeners can receive notification about a single
event.

Availability
Flash Lite 2.0

See also

addListener (Key.addListener method)

onKeyUp (Key.onKeyUp event listener)

onKeyUp = function() {}

Notified when a key is released. To use onkeyUp, you must create a listener object. You can then define a function for
onKeyUp and use addListener () to register the listener with the Key object, as shown in the following example:

var keyListener:0bject = new Object() ;
keyListener.onKeyDown = function() {
trace ("DOWN -> Code: "+Key.getCode()+"\tACSII: "+Key.getAscii()+"\tKey:
"+chr (Key.getAscii())) ;
}i
keyListener.onKeyUp = function() {
trace ("UP -> Code: "+Key.getCode ()+"\tACSII: "+Key.getAscii()+"\tKey:
"+chr (Key.getAscii()));
i

Key.addListener (keyListener) ;

Listeners enable different pieces of code to cooperate because multiple listeners can receive notification about a single
event.

Last updated 3/22/2011

322

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Availability
Flash Lite 2.0

See also

addListener (Key.addListener method)

PGDN (Key.PGDN property)

public static PGDN : Number

The key code value for the Page Down key (34).

Availability
Flash Lite 2.0

PGUP (Key.PGUP property)

public static PGUP : Number

The key code value for the Page Up key (33).

Availability
Flash Lite 2.0

removelistener (Key.removelListener method)

public static removelListener (listener:0bject) : Boolean

Removes an object previously registered with Key.addListener ().

Availability
Flash Lite 2.0

Parameters
listener : Object - An object.

Returns
Boolean - If listener was successfully removed, the method returns true. If listener was not successfully removed (for
example, because listener was not on the Key objects listener list), the method returns false.

RIGHT (Key.RIGHT property)

public static RIGHT : Number

The key code value for the Right Arrow key (39).

Availability
Flash Lite 2.0

Example
The following example moves a movie clip on the Stage called car_mc when you press the arrow keys.

Last updated 3/22/2011

323

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

var DISTANCE:Number = 10;

var keyListener obj:0Object = new Object () ;
keyListener obj.onKeyDown = function() {

switch (Key.getCode()) {

case Key.LEFT :

car mc. X -= DISTANCE;

break;

case Key.UP :

car mc._y -= DISTANCE;

break;

case Key.RIGHT :

car mc. X += DISTANCE;
break;

case Key.DOWN :

car mc._y += DISTANCE;
break;

}
i

Key.addListener (keyListener obj) ;

SHIFT (Key.SHIFT property)

public static SHIFT : Number

The key code value for the Shift key (16).

Availability
Flash Lite 2.0

SPACE (Key.SPACE property)

public static SPACE : Number

The key code value for the Spacebar (32).

Availability
Flash Lite 2.0

TAB (Key.TAB property)

public static TAB : Number

The key code value for the Tab key (9).

Availability
Flash Lite 2.0

UP (Key.UP property)

public static UP : Number

The key code value for the Up Arrow key (38).

Last updated 3/22/2011

324

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 325
ActionScript classes

Availability
Flash Lite 2.0

Example
The following example moves a movie clip on the Stage called car_mc a constant distance (10) when you press the
arrow keys.

var DISTANCE:Number = 10;
var keyListener obj:0Object = new Object();

keyListener obj.onKeyDown = function() {
switch (Key.getCode()) {
case Key.LEFT :
car mc._x -= DISTANCE;
break;
case Key.UP
car mc._y -= DISTANCE;
break;

case Key.RIGHT :

car mc._x += DISTANCE;
break;

case Key.DOWN :

car mc._y += DISTANCE;
break;

}
}i

Key.addListener (keyListener obj) ;

LoadVars

Object

+-LoadVars

public dynamic class LoadVars
extends Object

The LoadVars class is an alternative to the loadVariables() function for transferring variables between a Flash Lite and
a web server over HTTP. Use the LoadVars class to obtain verification of successful data loading and to monitor
download progress.

The LoadVars class lets you send all the variables in an object to a specified URL and load all the variables at a specified
URL into an object. It also lets you send specific variables, rather than all the variables, which can make your
application more efficient. Use the LoadVars.onLoad handler to ensure that your application runs when data is loaded,
and not before.

The LoadVars class works much like the XML class; it uses the methods 1oad (), send (), and sendandLoad () to
communicate with a server. The main difference between the LoadVars class and the XML class is that LoadVars
transfers ActionScript name and value pairs, rather than an XML DOM tree stored in the XML object. The LoadVars
class follows the same security restrictions as the XML class.

Availability
Flash Lite 2.0

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

See also
loadVariables function, onLoad (LoadVars.onLoad handler), hasXMLSocket

(capabilities.hasXMLSocket property)

Property summary
Modifiers Property Description
contentType: String The MIME type that is sent to the server when you call
LoadVars.send () or LoadVars.sendAndLoad ().
loaded : Boolean A Boolean value that indicates whether a 1oad or
sendAndLoad operation has completed, undefined by
default.
Properties inherited from class Object
constructor (Object.constructor property), proto (Object. proto
property)prototype (Object.prototype property),_resolve (Object._ resolve property)
Event summary
Event Description
onData = Invoked when data has completely downloaded from the server or when an error

function (src:String) [occurs while data is downloading from a server.

{3

onLoad = Invoked when a Loadvars. load () or LoadVars.sendAndLoad () operation has
function (success:Bo [ended.
olean) {}

Constructor summary

Signature Description

LoadVars () Creates a LoadVars object.
Method summary

Modifiers Signature Description

addRequestHeader (head | Adds or changes HTTP request headers (such as Content -
er:Object, Type Or SOAPAction) sent with POST actions.
headerValue:String)
Void

decode (queryString:S | Converts the variable string to properties of the specified

tring) : Void LoadVars object.

getBytesLoaded () : Returns the number of bytes downloaded by

Number LoadVars.load () or LoadVars.sendAndLoad ().

getBytesTotal () : Returns the total number of bytes downloaded by

Number LoadVars.load () or LoadVars.sendAndLoad ().

load (url:String) : Downloads variables from the specified URL, parses the

Boolean variable data, and places the resulting variables into the
LoadVars object.

Last updated 3/22/2011

326

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Modifiers Signature Description

send (url:String, Sends the variables in the LoadVars object to the specified URL.
target:String,
[method:String])
Boolean

sendAndLoad (url:Strin | Posts variables in the LoadVars object to the specified URL.
g, target:Object,
[method: String])
Boolean

toString () : String Returns a string containing all enumerable variables in the
LoadVars object, in the MIME content encoding application/x-
www-form-urlencoded.

Methods inherited from class Object

addProperty (Object.addProperty method),hasOwnProperty (Object.hasOwnProperty method),
isPropertyEnumerable (Object.isPropertyEnumerable method) isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method)unwatch (Object.unwatch method),valueOf (Object.valueOf
method),watch (Object.watch method)

addRequestHeader (LoadVars.addRequestHeader method)
public addRequestHeader (header:0bject, headerValue:String) : Void
Adds or changes HTTP request headers (such as content -Type or SOAPAction) sent with POST actions. In the first

usage, you pass two strings to the method: header and headervalue. In the second usage, you pass an array of strings,
alternating header names and header values.

If multiple calls are made to set the same header name, each successive value will replace the value set in the previous call.

The following standard HTTP headers cannot be added or changed with this method: Accept -Ranges, Age, Allow,
Allowed, Connection, Content-Length, Content-Location, Content-Range, ETag, Host, Last-Modified,
Locations,Max-Forwards, Proxy-Authenticate, Proxy-Authorization, Public, Range, Retry-After, Server,

TE, Trailer, Transfer-Encoding, Upgrade, URI, Vary, Via, Warning, and WWW-Authenticate.

Availability
Flash Lite 2.0

Parameters

header: Object - A string or array of strings that represents an HTTP request header name.

headerValue: String - A string that represents the value associated with header.

Example

The following example adds a custom HTTP header named soapaction with a value of Foo to the my_lv object:
my lv.addRequestHeader ("SOAPAction", "'Foo'");

The following example creates an array named headers that contains two alternating HTTP headers and their
associated values. The array is passed as an argument to addRequestHeader ().

var headers = ["Content-Type", "text/plain", "X-ClientAppVersion", "2.0"];
my lv.addRequestHeader (headers) ;

Last updated 3/22/2011

327

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 328
ActionScript classes

The following example creates a new LoadVars object that adds a request header called FLASH-UUID. The header
contains a variable that can be checked by the server.

var my_ lv:LoadVars = new LoadVars() ;

my lv.addRequestHeader ("FLASH-UUID", "41472");

my_ lv.name = "Mort";

my lv.age = 26;

my lv.send("http://flash-mx.com/mm/cgivars.cfm", " blank", "POST");
See also

addRequestHeader (XML.addRequestHeader method)

contentType (LoadVars.contentType property)

public contentType : String

The MIME type that is sent to the server when you call Loadvars.send () or LoadvVars . sendAndLoad (). The default
is application/x-www-form-urlencoded.

Availability
Flash Lite 2.0

Example
The following example creates a LoadVars object and displays the default content type of the data that is sent to the
server.

var my_lv:LoadVars = new LoadVars() ;

trace (my_ lv.contentType); // output: application/x-www-form-urlencoded

See also

send (LoadVars.send method), sendAndLoad (LoadVars.sendAndLoad method)

decode (LoadVars.decode method)

public decode (queryString:String) : Void
Converts the variable string to properties of the specified LoadVars object.

This method is used internally by the Loadvars. onData event handler. Most users do not need to call this method
directly. If you override the Loadvars . onData event handler, you can explicitly call Loadvars.decode () to parse a
string of variables.

Availability
Flash Lite 2.0

Parameters
queryString: String - A URL-encoded query string containing name/value pairs.

Example
The following example traces the three variables:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 329
ActionScript classes

// Create a new LoadVars object
var my_lv:LoadVars = new LoadVars() ;
//Convert the variable string to properties
my_lv.decode ("name=Mort&score=250000") ;
trace(my lv.toString()) ;
// Iterate over properties in my lv
for (var prop in my 1v) {

trace (prop+" -> "+my_ lv([propl);

See also
onData (LoadVars.onData handler), parseXML (XML.parseXML method)

getBytesLoaded (LoadVars.getBytesLoaded method)

public getBytesLoaded() : Number

Returns the number of bytes downloaded by a call to Loadvars.load () or LoadvVars . sendAndLoad (). This method
returns undefined if no load operation is in progress or if a load operation has not yet begun.

Note: You cannot use this method to return information about a local file on your hard disk.

Availability
Flash Lite 2.0

Returns
Number - An integer.

See also
load (LoadVars.load method), sendAndLoad (LoadVars.sendAndLoad method)

getBytesTotal (LoadVars.getBytesTotal method)

public getBytesTotal() : Number

Returns the total number of bytes downloaded by Loadvars.load () or LoadVars. sendandLoad (). This method
returns undefined if no load operation is in progress or if a load operation has not started. This method also returns
undefined if the number of total bytes can't be determined (for example, if the download was initiated but the server
did not transmit an HTTP content-length).

Note: You cannot use this method to return information about a local file on your hard disk.

Availability
Flash Lite 2.0

Returns
Number - An integer.

See also
load (LoadVars.load method), sendAndLoad (LoadVars.sendAndLoad method)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 330
ActionScript classes

load (LoadVars.load method)

public load(url:String) : Boolean

Downloads variables from the specified URL, parses the variable data, and places the resulting variables into a
LoadVars object. Any properties in the LoadVars object with the same names as downloaded variables are overwritten.
Any properties in the LoadVars object with different names than downloaded variables are not deleted. This is an
asynchronous action.

The downloaded data must be in the MIME content type application/x-www-form-urlencoded.
This is the same format used by loadvariables ().

In SWF files running in a version of the player earlier than Flash Player 7, url must be in the same superdomain as the
SWE file that is issuing this call. A superdomain is derived by removing the left-most component of a file's URL. For
example, a SWF file at www.someDomain.com can load data from sources at store.someDomain.com because both
files are in the same superdomain named someDomain.com.

In SWFE files of any version running in Flash Player 7 or later, url must be in exactly the same domain. For example,
a SWF file at www.someDomain.com can load data only from sources that are also at www.someDomain.com. If you
want to load data from a different domain, you can place a cross-domain policy file on the server hosting the SWF file.

Also, in files published for Flash Player 7, case-sensitivity is supported for external variables loaded with
LoadVars.load ().

This method is similar to XML .1oad ().

Availability
Flash Lite 2.0

Parameters
url: String - The URL from which to download the variables. If the SWF file issuing this call is running in a web
browser, url must be in the same domain as the SWF file; for details, see the Description section.

Returns
Boolean - If no parameter (null) is passed, false ; otherwise, true . Use the onLoad () event handler to check the
success of loaded data.

Example
The following code defines an onLoad handler that signals when data is returned to the application from a text file,
then loads the data from the text file and sends it to the Output window.

var my_ lv:LoadVars = new LoadVars() ;
my lv.onLoad = function(success:Boolean) ({
if (success) f{
trace(this.toString()) ;
} else {
trace ("Error loading/parsing LoadVars.");
}
}i

my lv.load("http://www.helpexamples.com/flash/params.txt") ;

See also

load (XML.load method), loaded (LoadVars.loaded property),onLoad (LoadVars.onLoad handler)

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 331
ActionScript classes

loaded (LoadVars.loaded property)

public loaded : Boolean

A Boolean value that indicates whether a 1oad or sendAndLoad operation has completed, undefined by default.
When a Loadvars.load () or LoadVars.sendAndLoad () operation is started, the loaded property is set to false;

when the operation completes, the 1oaded property is set to t rue. If the operation has not completed or has failed with
an error, the loaded property remains set to false.

This property is similar to the XML . 1oadedproperty.

Availability
Flash Lite 2.0

Example
The following example loads a text file and displays information in the Output panel when the operation completes.
var my_lv:LoadVars = new LoadVars() ;

my lv.onLoad = function(success:Boolean) {
trace ("LoadVars loaded successfully: "+this.loaded) ;

}i

my 1lv.load("http://www.helpexamples.com/flash/params.txt") ;

See also
load (LoadVars.load method), sendAndLoad (LoadVars.sendAndLoad method), load (XML.load method)

LoadVars constructor

public Loadvars ()

Creates a LoadVars object. Call the methods of that LoadVars object to send and load data.

Availability
Flash Lite 2.0

Example
The following example creates a LoadVars object called my_1v:

var my_lv:LoadVars = new LoadVars() ;

onData (LoadVars.onData handler)

onData = function(src:String) {}

Invoked when data has completely downloaded from the server or when an error occurs while data is downloading
from a server. This handler is invoked before the data is parsed and can be used to call a custom parsing routine instead
of the one built in to Flash Lite. The value of the src parameter passed to the function assigned to Loadvars.onData
can be either undefined or a string that contains the URL-encoded name-value pairs downloaded from the server. If
the src parameter is undefined, an error occurred while downloading the data from the server.

The default implementation of Loadvars.onData invokes Loadvars . onLoad. You can override this default
implementation by assigning a custom function to Loadvars . onData, but Loadvars . onLoad is not called unless you
call it in your implementation of LoadVars. onData.

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Availability
Flash Lite 2.0

Parameters
src: String - A string or undefined; the raw (unparsed) data from a Loadvars. load () or LoadVars. sendAndLoad ()
method call.

Example
The following example loads a text file and displays content in a TextField instance called content_txt when the
operation completes. If an error occurs, information displays in the Output panel.

var my_lv:LoadVars = new LoadVars() ;

my lv.onData = function(src:String) {
if (src == undefined) {
trace ("Error loading content.");
return;
content_txt.text = src;

}i

my lv.load("http://www.helpexamples.com/flash/params.txt", my lv, "GET");

See also
onLoad (LoadVars.onLoad handler),load (LoadVars.load method), sendAndLoad (LoadVars.sendAndLoad
method)

onLoad (LoadVars.onLoad handler)

onLoad = function(success:Boolean) {}

Invoked when a Loadvars.load () or Loadvars.sendAndLoad () operation has ended. If the operation was
successful, my_lv is populated with variables downloaded by the operation, and these variables are available when this
handler is invoked.

This handler is undefined by default.

This event handler is similar to XML . onLoad.

Availability
Flash Lite 2.0

Parameters

success: Boolean - Indicates whether the load operation ended in success (true) or failure (false).

Example
See the example for the LoadVars.sendAndLoad() method.

See also

onLoad (XML.onLoad handler), loaded (LoadVars.loaded property), load (LoadVars.load method),
sendAndLoad (LoadVars.sendAndLoad method)

Last updated 3/22/2011

332

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 333
ActionScript classes

send (LoadVars.send method)

public send(url:String, target:String, [method:Stringl) : Boolean

Sends the variables in the LoadVars object to the specified URL. Variables are concatenated into a string in the
application/x-www-form-urlencoded format, or the value of LoadVars.contentType. The PosT method is used unless
GET is specified.

You must specify the target parameter to execute that the script or application at the specified URL. If you omit the
target parameter, the function returns true, but the script or application is not executed.

The send () method is useful if you want the server response to:

+ Replace the SWF content (use "_self" as the target parameter);

+ Appear in a new window (use "_blank" as the target parameter);

« Appear in the parent or top-level frame (use "_parent" or "_top" as the target parameter);
+ Appear in a named frame (use the frame's name as a string for the target parameter).

A successful send () method call always opens a new browser window or replaces content in an existing window or
frame. If you would rather send information to a server and continue playing your SWF file without opening a new
window or replacing content in a window or frame, use the Loadvars. sendandLoad () method.

This method is similar to XML . send ().

Availability
Flash Lite 2.0

Parameters
url: String - The URL to which to upload variables.

target : String - The browser window or frame in which a response appears. You can enter the name of a specific
window or select from the following reserved target names:

+ " self" specifies the current frame in the current window.
+ " blank" specifies a new window.

+ " _parent" specifies the parent of the current frame.

+ n_top" specifies the top-level frame in the current window.

method: String (optional) - The GET or poST method of the HTTP protocol. The default value is PoST.

Returns

Boolean - If no parameters are specified, false, otherwise, true.

Example

The following example copies two values from text fields and sends the data to a CFM script, which is used to handle
the information. For example, the script might check if the user got a high score and then insert that data into a
database table.

var my_lv:LoadVars = new LoadVars() ;

my lv.playerName = playerName txt.text;

my lv.playerScore = playerScore txt.text;

my lv.send("setscore.cfm", " blank", "POST");

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 334
ActionScript classes

See also
sendAndLoad (LoadVars.sendAndLoad method), send (XML.send method)

sendAndLoad (LoadVars.sendAndLoad method)

public sendAndLoad (url:String, target:0bject, [method:String]) : Boolean

Posts variables in the LoadVars object to the specified URL. The server response is downloaded, parsed, and the
resulting variables are placed in the target object.

Variables are posted in the same manner as Loadvars . send (). Variables are downloaded into target in the same
manner as LoadVars.load ().

In SWF files running in a version of the player earlier than Flash Player 7 (i.e. Flash Lite 1.x), url must be in the same
superdomain as the SWF file that is issuing this call. A superdomain is derived by removing the left-most component
of a file's URL. For example, a SWF file at www.someDomain.com can load data from sources at
store.someDomain.com, because both files are in the same superdomain of someDomain.com.

In SWF files of any version running in Flash Player 7 or later (i.e. Flash Lite 2.x and 3.x), url must be in exactly the
same domain. For example, a SWF file at www.someDomain.com can load data only from sources that are also at
www.someDomain.com. If you want to load data from a different domain, you can place a cross-domain policy file on
the server hosting the SWF file.

This method is similar to XML . sendAndLoad ().

Availability
Flash Lite 2.0

Parameters

url: String - The URL to which to upload variables. If the SWF file issuing this call is running in a web browser, url
must be in the same domain as the SWF file.

target : Object - The LoadVars or XML object that receives the downloaded variables.

method: String (optional) - The GET or poST method of the HTTP protocol. The default value is POST.

Returns
Boolean

Example

For the following example, add an Input text field called name_txt, a Dynamic text field called result_txt,and a
button called submit_btn to the Stage. When the user clicks the button, two LoadVars objects are created: send_1v
and result_1lv. The send_lv object copies the name from the name_txt instance and sends the data to greeting.cfm.
The result from this script loads into the result_lv object, and the server response displays in the result_txt text field.
Add the following ActionScript to Frame 1 of the Timeline:

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 335
ActionScript classes

var send lv:LoadVars = new LoadVars() ;
var result_ lv:LoadVars = new LoadVars() ;
result lv.onLoad = function(success:Boolean) {
if (success) {
result_txt.text = result_lv.welcomeMessage;
} else {
result_txt.text = "Error connecting to server.";

}i

submit btn.onRelease = function() {
send_lv.name = name_ txt.text;
send_1lv.sendAndLoad ("http://www.flash-mx.com/mm/greeting.cfm", result 1lv);

See also

send (LoadVars.send method), load (LoadVars.load method), sendAndLoad (XML.sendAndLoad method)

toString (LoadVars.toString method)

public toString() : String

Returns a string containing all enumerable variables in the LoadVars object, in the MIME content encoding
application/x-www-form-urlencoded.

Availability
Flash Lite 2.0

Returns

String

Example

The following example instantiates a new Loadvars () object, creates two properties, and uses toString () to return
a string containing both properties in URL encoded format:

var my_lv:LoadVars = new LoadVars() ;

my lv.name = "Gary";

my lv.age = 26;

trace (my_lv.toString()); //output: age=26&name=Gary

LocalConnection

Object

+-LocalConnection

public dynamic class LocalConnection
extends Object

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 336
ActionScript classes

The LocalConnection class lets you develop SWF files that can send instructions to each other without the use of
fscommand () or JavaScript. LocalConnection objects can communicate only among SWF files that are running on the
same client device, but they can be running in different applications. You can use LocalConnection objects to send and
receive data within a single SWF file, but this is not a standard implementation; all the examples in this section
illustrate communication between different SWF files.

Use the LocalConnection.send () and LocalConnection. connect () methods to send and receive data. Notice that
both the LocalConnection.send() and LocalConnection.connect () commands specify the same connection
name, lc_name:

// Code in the receiving SWF file

this.createTextField("result_txt", 1, 10, 10, 100, 22);

result txt.border = true;

var receiving lc:LocalConnection = new LocalConnection() ;

receiving lc.methodToExecute = function(paraml:Number, param2:Number) {
result_txt.text = paraml+param2;

}i

receiving lc.connect ("lc_name") ;

// Code in the sending SWF file
var sending lc:LocalConnection = new LocalConnection() ;
sending lc.send("lc_name", "methodToExecute", 5, 7);

The simplest way to use a LocalConnection object is to allow communication only between LocalConnection objects
located in the same domain because you won't have security issues. However, if you need to allow communication
between domains, you have several ways to implement security measures. For more information, see the discussion of
the connectionName parameter in LocalConnection.send () and the LocalConnection.allowDomain and

LocalConnection.domain () entries.

Availability
Flash Lite 3.1

Property summary

constructor (Object.constructor property), proto (Object._ proto property),
prototype (Object.prototype property), resolve (Object._ resolve property)

Event summary

Event Description

allowDomain = Invoked whenever a LocalConnection object receives a request to invoke a method from
function ([sendi |anotherLocalConnection object.

ngDomain:])

{}String

allowlnsecureDomai | Invoked whenever a receiving LocalConnection object, which is in a SWF file hosted at a
n = domain using a secure protocol (HTTPS), receives a request to invoke a method from a
function ([sendi |sending LocalConnection object that isin a SWF file hosted at a nonsecure protocol.
ngDomain:])

{}String

onStatus = Invoked after a sending LocalConnection object tries to send a command to a receiving

function (infoOb | LocalConnection object.
ject:Object) {}

Last updated 3/22/2011

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE
ActionScript classes

Constructor summary

Signature Description
LocalConnection () Creates a LocalConnection object.
Method summary
Modifiers Signature Description
close () : Vvoid Closes (disconnects) a LocalConnection object.

connect (connectionNa | Preparesa LocalConnection object to receive commands from a
me: String) :Boolean LocalConnection.send () command (called the sending
LocalConnection object).

domain () : String Returns a string representing the domain of the location of the
current SWFfile.

send (connectionName: [Invokesthe method named method on aconnection opened with

String, the LocalConnection. connect (connectionName)
methodName : String, command (the receiving LocalConnection object).
[args: Object])

:Boolean

addProperty (Object.addProperty method),hasOwnProperty (Object.hasOwnProperty method),
isPropertyEnumerable (Object.isPropertyEnumerable method), isPrototypeOf
(Object.isPrototypeOf method), registerClass (Object.registerClass method), toString
(Object.toString method),unwatch (Object.unwatch method),valueOf (Object.valueOf
method),watch (Object.watch method)

allowDomain (LocalConnection.allowDomain handler)

allowDomain = function([sendingDomain:String]) {}

Invoked whenever receiving_lc receives a request to invoke a method from a sending LocalConnection object. Flash
expects the code you implement in this handler to return a Boolean value of true or false. If the handler doesn't return
true, the request from the sending object is ignored, and the method is not invoked.

When this event handler is absent, Flash Lite player applies a default security policy, which is equivalent to the
following code:

my lc.allowDomain = function (sendingDomain)

{

return (sendingDomain == this.domain()) ;

}

Use LocalConnection.allowbDomain to explicitly permit LocalConnection objects from specified domains, or from
any domain, to execute methods of the receiving LocalConnection object. If you don't declare the sendingDomain
parameter, you probably want to accept commands from any domain, and the code in your handler would be simply
return true. If you do declare sendingDomain, you probably want to compare the value of sendingDomain with
domains from which you want to accept commands. The following examples show both implementations.

In files authored for Flash Player 6 or earlier (i.e. Flash Lite 1.x), the sendingDomain parameter contains the
superdomain of the caller. In files authored for Flash Player 7 or later (i.e. Flash Lite 2.x and 3.x), the sendingDomain
parameter contains the exact domain of the caller. In the latter case, to allow access by SWF files hosted at either
www.domain.com or store.domain.com, you must explicitly allow access from both domains.

Last updated 3/22/2011

337

FLASH LITE 2.X AND 3.X ACTIONSCRIPT LANGUAGE REFERENCE 338
ActionScript classes

// For Flash Player 6
receiving lc.allowDomain = function(sendingDomain) {
return (sendingDomain=="domain.com") ;

}

// For Flash Player 7 or later
receiving lc.allowDomain = function(sendingDomain) {
return (sendingDomain=="www.domain.com" ||
sendingDomain=="store.domain.com") ;

}

Also, for files authored for Flash Player 7 or later (i.e. Flash Lite 2.x and 3.x), you can't use this method to let SWF files
hosted using a secure protocol (HTTPS) allow access from SWFE files hosted in nonsecure protocols; you must use the
LocalConnection.allowInsecureDomain event handler instead

Occasionally, you might encounter the following situation. Suppose you load a child SWF file from a different domain.
You want to implement this method so that the child SWF file can make LocalConnection calls to the parent SWF file,
but you don't know the final domain from which the child SWF file will come. This can happen, for example, when
you use load-balancing redirects or third-party servers.

In this situation, you can use the MovieClip._url property in your implementation of this method. For example, if
you load a SWF file into my_mc, you can then implement this method by checking whether the domain argument
matches the domain of my_mc._url. (You must parse the domain out of the full URL contained in my _mc._url.)

If you do this, make sure that you wait until the SWF file in my_mc is loaded, because the _url property will not have
its final, correct value until the file is completely loaded. The best way to determine when a child SWF file finishes
loading is to use MovieClipLoader.onLoadComplete.

The opposite situation can also occur: You might create a child SWF file that wants to accept LocalConnection calls
from its pa