Adobe FrameMaker

N

Adobe

Contents

Chapter 1: Introduction

WY USE MIF? ettt et e et e e e e e et e e e e e 1
Using thismanual ... e 1
Style CONVENLIONS .ottt e e e e e e e e 2
Overview of MIF statementsoouiiuiiii e e 2
MIF statement SyntaX ...t e e 4

Chapter 2: Using MIF Statements

Working with MIF files ..o e e e 9
Creating a simple MIF file for FrameMaker —ooiiiii i i 11
Creating and applying character formats —ooniiiiiii i 24
Creating and formatting tables ... 25
Specifying page [ayout ... e 32
Creating MarKEIS oottt et ettt e e e e e e e 37
Creating CroSS-TefEr8NCES ..ttt ettt e ettt et 37
Creating variables o e 39
Creating conditional teXt ... ottt 4
Creating filters .. e e 44
Including template files ... oo e 45
Setting View Only document options iueiiin et 47
APPlIcations Of MIF oL e e et e e 48
Debugging MIF files ..ot e e 51
Other application to0ls i i e 52
Where to go from here ..o o e 52

Chapter 3: MIF Document Statements

MIFfile layout ... 53
MIFFile statement ... oo e 55
Macro statements 56
Track edited teXt ... oo e 57
Conditional tEXt oo e ettt e 57
BOOIEaN EXPIESSIONS Lttt et e e 59
Filter By AttribULe oo e e 60
Paragraph formats ..o e 61
Character formatsiiuiii i 66
(0 o) =Tt] 4 [71
LN NUMDEIS e e e e e 74
L1 1=t 74
L0 T 84
VA ablES 87
CrOSSTEIEIBNCES ettt ettt e e e e 88

Global document Propertieso.iuiii e 88

PGS e 109

1T 110
Graphic objects and graphic frameso 111
TEXE OIS et e e 130
Text insets (text imported by reference)c.iiiiii i 138

Chapter 4: MIF Book File Statements

MIF boOoK file OVEIVIEW L.t e e e e e e 145
MIF book file identification linet e 146
BOOK StatEMENTS oo e 146

Chapter 5: MIF Statements for Structured Documents and Books

Structural element definitions o 157
Attribute definitions ... oo 160
FOrmMat FUIES oo e e et e 162
Format change listsot e 168
=0 1= T o 174
Banner texXt . 177
Filter By Attribute ... o i 177
XML data for structured documentsot e 178
Preference settings for structured documentsccooiiiiiiiiiiiii i 179
Text in structured dOCUMENTS ... it 182
Structured book statements ... e 182
MIF MBSSAgES ..ttt ettt ettt et e e e e ettt e 186

Chapter 6: MIF Equation Statements

MathML statementoo. i e e 188
Document statement i 189
Math statement ... e 193
MathFullForm statement ... i e 194

Chapter 7: MIF Asian Text Processing Statements

Asian Character ENCodingooiii i e e 213
Combined FONES oo 214
KumihanTables ... e e e 217
RUDI Xt e 227
Chapter 8: Examples

TEXt EXAMIP e ottt 231
Bar chart eXxample oo e 232
Pie chart eXxample ... e 235
Custom dashed INes ... ot e 236
Table EXAMIPIES et 238
Database publishing ... e 241

Chapter 9: MIF Messages
General form for MIF MeSSagesueu ettt e e ie e ie e neenns 248

List Of MIF MESSag@S oottt ettt et e et et et e e e 248

Chapter 10: MIF Compatibility

Changes between version 12.0and 2015releasecoviiiiiiiiiiiiiiiniininn, 251
Changes between version 11.0and 12.0 ...ttt e 253
Changes between version 9.0and 10.0 ... iuiiiit it it 254
MIF syntax changes in FrameMaker 8ottt e 254
Changes between version 6.0 and 7.0 ... ittt e 255
Changes between version 5.5and 6.0 ...ttt e 256
Changes between version 5and 5.5 ... it 257
Changes between versions 4 and 5 ...ttt s 259
Changes between versions 3and 4 ... oottt e 262

Chapter 11: Facet Formats for Graphics

Facets for imported graphics —ouinii i e 267
Basicfacetformatiiuiii e 268
Graphic insets (UNIX VEISIONS) ..ottt et ettt e eie i eanes 269
General rules for reading and writing facets ... 274

Chapter 12: EPSI Facet Format
Specification of an EPSIfacet ooiiiir e e 275
Example of an EPSIfacet ooiii e e 275

Chapter 13: Framelmage Facet Format

Specification of a Framelmage facetoiiiiiiiiii e 277
Specification of Framelmage dataot e 277
Differences between monochromeand colorot 280
Sample unencoded Framelmage facetoouiiiiiiiii i 281
Sample encoded Framelmage facet oooiiiiiiiiii i e 282

Chapter 14: FrameVector Facet Format

Specification of a FrameVector facetoviiiiiiiii i 284
Specification of FrameVectordatac.ieuiiniiii i 284
Sample FrameVector facet ...t e 300

Chapter 15: Legal notices

Chapter 1: Introduction

MIF (Maker Interchange Format) is a group of ASCII statements that create an easily parsed, readable text file of all
the text, graphics, formatting, and layout constructs that Adobe® FrameMaker® understands. Because MIF is an alter-
native representation of a FrameMaker document, it allows FrameMaker and other applications to exchange infor-
mation while preserving graphics, document content, and format.

Why use MIF?

You can use MIF files to allow FrameMaker and other applications to exchange information. For example, you can
write programs to convert graphics and text MIF and then import the MIF file into FrameMaker with the graphics
and text intact. You can also save a FrameMaker document or book file as a MIF file and then write a program to
convert the MIF file to another format. These conversion programs are called filters; filters allow you to convert
FrameMaker document files into foreign files (files in another word processing or desktop publishing format), and
foreign files into FrameMaker document files.

You can use MIF files with database publishing applications, which allow you to capture changing data from
databases and format the data into high-quality documents containing both text and graphics information. You use
the database to enter, manipulate, sort, and select data. You use FrameMaker to format the resulting data. You use
MIF files as the data interchange format between the database and FrameMaker.

You can also use MIF files to do the following:

+ Share documents with earlier versions of FrameMaker
« Perform custom document processing

« Set options for online documents in View Only format

These tasks are described in “Applications of MIF” on page 48. You can use other FrameMaker to perform some of
these tasks. See “Other application tools” on page 52.

Using this manual

This manual:

+ Describes the layout of MIF files.

« Provides a complete description of each MIF statement and its syntax.
« Provides examples of how to use MIF statements.

« Includes MIF statements for FrameMaker .

To get the most from this manual you should be familiar with FrameMaker. For information about FrameMaker and
its features, see the documentation for your product. In addition, if you are using MIF as an interchange format
between FrameMaker and another application, you should be familiar with the tools needed to create and manip-
ulate the other application, such as a programming language or database query language.

This chapter provides basic information about working with MIF files, including opening and saving MIF files in
FrameMaker. It goes on to provide detailed information about the MIF language and its syntax.

ADOBE FRAMEMAKER
MIF Reference

For an introduction to writing MIF files, read , “Using MIF Statements.” You can then use the statement index,
subject index, and table of contents to locate more specific information about a particular MIF statement.

For a description of a MIF statement, use the table of contents or statement index to locate the statement.

For a description of the differences between the MIF statements for this version of FrameMaker and earlier versions,
see , “MIF Compatibility.”

Style conventions

This manual uses different fonts to represent different types of information.

+ What you type is shown in

vgzv"nkmg"vijku.

+ MIF statement names, pathnames, and filenames are also shown in
vgzv'"nkmg"viku.

« Placeholders (such as MIF data) are shown in

vgzv'nkmg"viku.

« For example, the statement description for Rihvei is shown as:
<PgfTag vciuvtkpis

* Youreplace veiuvtkpi with the tag of a paragraph format.

This manual also uses the term FrameMaker, (as in FrameMaker document, or FrameMaker session) to refer to
FrameMaker and to refer to structured or unstructured documents.

Overview of MIF statements

When you are learning about MIF statements, you may find it useful to understand how FrameMaker represents
documents.

How MIF statements represent documents

FrameMaker represents document components as objects. Different types of objects represent different components
in a FrameMaker document. For example, a paragraph is considered an object; a paragraph format is considered a
formatting object. The graphic objects that you create by using the Tools palette are yet another type of object.

Each object has properties that represent its characteristics. For example, a paragraph has properties that represent
its left indent, the space above it, and its default font. A rectangle has properties that represent its width, height, and
position on the page.

When FrameMaker creates a MIF file, it writes an ASCII statement for each object in the document or book. The
statement includes substatements for the object’s properties.

For example, suppose a document (with no text frame) contains a rectangle that is 2 inches wide and 1 inch high.
The rectangle is located 3 inches from the left side of the page and 1.5 inches from the top. MIF represents this
rectangle with the following statement:
<Rectangle # Type of graphic object

Position and size: left offset, top offset,

width, and height
<ShapeRect 3.0" 1.5" 2.0" 1.0">

ADOBE FRAMEMAKER
MIF Reference

FrameMaker also treats each document as an object and stores document preferences as properties of the document.
For example, a document’s page size and page numbering style are document properties.

FrameMaker documents have default objects

A FrameMaker document always has a certain set of default objects, formats, and preferences, even when you create
anew document. When you create a MIF file, you usually provide the objects and properties that your document
needs. However, if you don’t provide all the objects and properties required in a FrameMaker document, the MIF
interpreter fills in a set of default objects and document formats.

The MIF interpreter normally provides the following default objects:

« Predefined paragraph formats for body text, headers, and table cells

+ Predefined character formats

« A right master page for single-sided documents and left and right master pages for double-sided documents

« A reference page

« Predefined table formats

+ Predefined cross-reference formats

+ Default pen and fill values and dash patterns for graphics

+ Default colors

+ Default document preferences, such as ruler settings

+ Default condition tags

Although you can rely on the MIF interpreter to provide defaults, the exact properties and objects provided may vary
depending on your FrameMaker configuration. The MIF interpreter uses default objects and properties that are
specified in setup files and in templates. In UNIX® versions, these templates are CUEKKVgorncvg and PgyVgornevg.

You can modify these default objects and document formats by creating your own version of CUEKKVgorncvg or
PgyVgorncvg or by modifying your setup files.

For more information about modifying the default templates and setup files, see the online manual Customizing
FrameMaker for UNIX versions of FrameMaker. For the and Windows® version, see the chapter on templates in your
user manual.

Current state and inheritance

FrameMaker has a MIF interpreter that reads and parses MIF files. When you open or import a MIF file, the inter-
preter reads the MIF statements and creates a FrameMaker document that contains the objects described in the MIF
file.

When the interpreter reads a MIF file, it keeps track of the current state of certain objects. If the interpreter reads an
object with properties that are not fully specified, it applies the current state to that object. When an object acquires
the current state, it inherits the properties stored in that state.

For example, if the line width is set to 1 point for a graphic object, the interpreter continues to use a 1-point line width
for graphic objects until a new value is specified in the MIF file. Similarly, if the MIF file specifies a format for a
paragraph, the interpreter uses the same format until a new format is specified in the file.

The MIF interpreter keeps track of the following document objects and properties:
+ Units

« Condition tag properties

« Paragraph format properties

+ Character format properties

3

ADOBE FRAMEMAKER | 4
MIF Reference

+ Page properties

+ Graphic frame properties

« Text frame properties

« Fill pattern

» Pen pattern

+ Line width

» Line cap

+ Line style (dash or solid)

« Color

« Text line alignment and character format

Because the interpreter also provides default objects for a document, the current state of an object may be deter-
mined by a default object. For example, if a document does not provide any paragraph formats, the interpreter

applies a set of default paragraph properties to the first paragraph. Subsequent paragraphs use the same properties
unless otherwise specified.

How FrameMaker identifies MIF files

A MIF file must be identified by a 0kHHkng or Dggm statement at the beginning of the file; otherwise FrameMaker
simply reads the file as a text file. All other statements are optional; that is, a valid MIF file can contain only the
OKHHkng statement. Other document objects can be added as needed; FrameMaker provides a set of default objects
if a MIF file does not supply them.

MIF statement syntax

The statement descriptions in this manual use the following conventions to describe syntax:

>vgmgp" fcve@

vgmgp "fcve "where vgmgp represents one of the MIF statement names (such as Rih) listed in the MIF statement
descriptions later in this manual, and fcve represents one or more numbers, a string, a token, or nested statements.
Markup statements are always delimited by angle brackets (<>); macro statements are not. For the syntax of macro
statements, see “Macro statements” on page 56.

A token is an indivisible group of characters that identify a reserved word in a MIF statement. Tokens in MIF are
case-sensitive. A token cannot contain white space characters, such as spaces, tabs, or newlines. For example, the
following MIF statement is invalid because the token contains white space characters: >Wp"kvu"Wkpe

When the MIF interpreter finds white space characters that aren’t part of the text of the document (as in the example
MIF statement, >"Wpkvu" "Wkp" "@), it interprets the white space as token delimiters. When parsing the example
statement, the MIF interpreter ignores the white space characters between the left angle bracket (<) and the first
character of the token, wpkvu. After reading the token, the MIF interpreter checks its validity. If the token is valid,
the interpreter reads and parses the data portion of the statement. If the token is not valid, the interpreter ignores all
text up to the corresponding right angle bracket (>), including any nested substatements. The interpreter then scans
the file for the next left angle bracket that marks the beginning of the next MIF statement.

All statements, as well as all data portions of a statement, are optional. If you do not provide a data portion, the MIF
interpreter assigns a default value to the statement.

ADOBE FRAMEMAKER

Statement hierarchy

MIF Reference

Some MIF statements can contain other statements. The contained statements are called substatements. In this
manual, substatements are usually shown indented within the containing statements as follows:

<Document
<DStartPage 1>
>

The indentation is not required in a MIF file, although it may make the file easier for you to read.

A MIF main statement appears at the top level of a file. A main statement cannot be nested within other statements.
Some substatements can only appear within certain main statements.

The statement descriptions in this manual indicate the valid locations for a substatement by including it in all of the
valid main statements. Main statements are identified in the statement description; for the correct order of main

statements, see “MIF file layout” on page 53.

MIF data items

There are several general types of data items in a MIF statement. This manual uses the following terms and symbols

to identify data items.

This term or symbol Means

uvtkpi Left quotation mark ("), zero or more standard ASCII characters (you can also include UTF-8 char-
acters), and a straight quotation mark (').
Example:bcd"efgh"ijkl)

veiuvtkpi A string that names a format tag, such as a paragraph format tag. A vciuvtkpi value must be
unique; case is significant. A statement that refers to a veiuvtkpi must exactly match the
vciuvtkpivalue. A veiuvtkpi value caninclude any character from the FrameMaker char-
acter set.

revjpcog A string specifying a pathname (see “Device-independent pathnames” on page 7).

dggngcp A value of either [gu or Pqg. Case is significant.

kpvgigt"” Integer whose range depends on the associated statement name.

KF Integer that specifies a unique ID. An ID can be any positive integer between 1 and 65535, inclu-
sive. A statement that refers to an ID must exactly match the ID.

fkogpukgp Decimal number signifying a dimension. You can specify the units, such as 3033$, 94" rv, and
: 05" eo. If no units are specified, the default unit is used.

fgitggu A decimal number signifying an angle value in degrees. You cannot specify units; any number is
interpreted as a degree value.

rgtegpveig A decimal number signifying a percentage value. You cannot specify units; any number is inter-
preted as a percentage value.

ogvtke A dimension specified in units that represent points, where one point is 1/72 inch (see “Math
values” on page 6). Only used in OcvjHwnnHgto statements.

yngn Pair of dimensions representing width and height. You can specify the units.

VAN Coordinates of a point. Coordinates originate at the upper-left corner of the page or graphic frame.
You can specify the units.

N"yrTHDn Coordinates representing left, top, right, and bottom indents. You can specify the units.

NTyrY g Coordinates representing the left and top indents plus the dimensions representing the width and
height of an object. You can specify the units.

5

ADOBE FRAMEMAKER
MIF Reference

This term or symbol Means

Z"[ny"Jg Coordinates of a point on the physical screen represented by Zand [plus dimensions describing
the width and height. Used only by the FYkpfqyTgev and FXkgyTgev statements within the
Fgewogpv statement and the DYkpfgyTgev statement within the Dggm statement. The
values are in pixels; you cannot specify the units.

mg{ygtf A token value. The allowed token values are listed for each statement; you can provide only one
value.
>vgmgp...> Ellipsis points in a statement indicate required substatements or arguments. The entire expanded

statement occurs at this point.

Unit values

You can specify the unit of measurement for most dimension data items. The following table lists the units of
measurement that FrameMaker supports and their notation in MIF.

Measurement unit Notation in MIF Relationship to other units
point rvor rgkpv 1/72inch

inch $ orkp 72 points

millimeter oo or oknnkogvgt 1inchis 254 mm
centimeter eo"gt "egpvkogvgt Tinchis 2.54 cm

pica re"gt"rkec 12 points

didot ffrgt"fkfqv 0.01483 inches

cicero ee""gt"ekegtqg 12 didots

pixel rz .0625 pica

Dimension data types can mix different units of measurement. For example, the statement >Egnnoctikpu"N"V"T"
De can be written as either of the following:

<CellMargins 6 pt 18 pt 6 pt 24 pt>
<CellMargins 6 pt .25" .5 pica 2 picas>

Math values

The ocviHwnnHgto statement uses ogvtke values in formatting codes. A ogvtke unit represents one point (1/72
inch). The ogvtke type is a 32-bit fixed-point number. The 16 most significant bits of a ogvtke value represent the
digits before the decimal; the 16 least significant bits represent the digits after the decimal. Therefore, 1 point is
expressed as hexadecimal 2z32222 or decimal 87758. The following table shows how to convert ogvtke values into
equivalent measurement units.

To get this unit Divide the metric value by this number
point 65536

inch 4718592

millimeter 185771

centimeter 1857713

pica 786432

didot 6997

6

ADOBE FRAMEMAKER
MIF Reference

To get this unit Divide the metric value by this number
cicero 839724
pixel 49152

Character set in strings

MIF string data uses the FrameMaker character set (see the Quick Reference for your FrameMaker product). MIF
strings must begin with a left quotation mark (ASCII character code 2z82) and end with a straight quotation mark
(ASCII character code 2z49). Within a string, you can include any character in the FrameMaker character set.
However, because a MIF file can contain only standard ASCII characters and because of MIF parsing requirements,
you must represent certain characters with backslash (\) sequences.

Character Representation
Tab \t
> \>
) \q
\Q
\ \\
nonstandard ASCII \xpp

Note: The \xnn character is supported only for legacy MIF files.

All FrameMaker characters with values above the standard ASCII range (greater than “zoh) are represented in a
string by using *zpp notation, where pp represents the hexadecimal code for the character. The hexadecimal digits
must be followed by a space.

When using special characters in a variable definition, you can also use a hexadecimal notation or Unicode notation.
In the previous example, the hexadecimal notation for the paragraph symbol () is \xa6. Alternatively, you can use
the \u00B6 Unicode notation to represent the same character.

The following example shows a FrameMaker document line and its representation in a MIF string.

In a FrameMaker document In MIF

Some ‘symbols'": > \@;! “Some \Qsymbols\qg: \> \\@;!"'

You can also use the Ejct statement to include certain predefined special characters in a Ret cNkpg statement (see
“Char statement” on page 134).

Device-independent pathnames

Several MIF statements require pathnames as values. You should supply a device-independent pathname so that files
can easily be transported across different system types. Because of MIF parsing requirements, you must use the
following syntax to supply a pathname:

b>eqfg’@pcog>eqfg*@pcog>eqfg @pcog..)

7

ADOBE FRAMEMAKER | 8
MIF Reference

where pcog is the name of a component in the file’s path and egfg identifies the role of the component in the path.
The following table lists codes and their meanings.

Code Meaning

r Root of UNIX file tree (UNIX only)
v Volume or drive (Windows)

h Host (Apollo only)

c Component

u Up one level in the file tree

When you specify a device-independent pathname in a MIF string, you must precede any right angle brackets (>)
with backslashes (1), as shown in the syntax above.

Absolute pathnames

An absolute pathname shows the location of a file beginning with the root directory, volume, or drive. The following
table specifies device-independent, absolute pathnames for the different versions of FrameMaker.

In this version The pathname appears as this MIF string
UNIX “<r\><c\>MyDirectory<c\>MySubdirectory<c\>Filename'
Windows “<v\>c:<c\>mydir<c\>subdir<c\>filename'

Relative pathnames

A relative pathname shows the location of a file relative to the current directory. In all FrameMaker versions, the
device-independent, relative pathname for the same file is:

“<c\>Filename'

Chapter 2: Using MIF Statements

MIF statements can completely describe any Adobe® FrameMaker® document, no matter how complex. As a result,
you often need many MIF statements to describe a document. To learn how to use MIF statements, it helps to begin
with some simple examples.

This chapter introduces you to MIFE, beginning with a simple MIF example file with only a few lines of text.
Additional examples show how to add common document objects, such as paragraph formats, a table, and a custom
page layout, to this simple MIF file.

The examples in this chapter are also provided in online sample files. You can open these examples in FrameMaker
and experiment with them by adding additional MIF statements. Look for the sample files in the following location:

In this version Look here

UNIX &HOJQOG1lhokpkvlncpiweiglUcorngulOKH, where ncpiwcigisthelanguageinuse, suchas
wugpinkuj

Windows The OKH directory under the ucorngu directory

Working with MIF files

A MIF file is an alternate representation of a FrameMaker document in ASCII format. MIF files are usually generated
by FrameMaker or by an application that writes out MIF statements. You can, however, create MIF files by using a
text editor or by using FrameMaker as a text editor. This section provides some general information about working
with MIF files regardless of the method you use to create them.

Opening and saving MIF files

When you save a FrameMaker document, you usually save it in Normal format, FrameMaker’s binary format for
document files. To save a document as a MIF file, choose Save As from the File menu. In the Save Document dialog
box, choose Interchange (MIF) from the Format pop-up menu. You should give the saved file the suffix cokh to
distinguish it from a file saved in binary format.

When you open or import a MIF file, FrameMaker reads the file directly, translating it into a FrameMaker document
or book. When you save the document in Normal format, FrameMaker creates a binary document file. To prevent
overwriting the original MIF file, remove the ookh file suffix and replace it with a different suffix (or no suffix).

If you use FrameMaker to edit a MIF file, you must prevent it from interpreting MIF statements when you open the
file by holding down a modifier key and clicking Open in the Open dialog box.

In this version Use this modifier key
UNIX Shift
Windows Control or Shift

Save the edited MIF file as a text file by using the Save As command and choosing Text Only from the Format pop-
up menu. Give the saved file the suffix ookh. When you save a document as Text Only, FrameMaker asks you where
to place carriage returns. For a MIF file, choose the Only between Paragraphs option.

ADOBE FRAMEMAKER
MIF Reference

In UNIX versions, FrameMaker saves a document in text format in the ISO Latin-1 character encoding. You can
change the character encoding to ASCII by changing the value of an X resource. See the description of character
encoding in the online manual Customizing FrameMaker. In the Windows version, press Esc F t ¢ to toggle between
FrameMaker’s character encoding and ANSI for Windows.

Importing MIF files

You can use the File menu’s Import>File command to import MIF files into an existing document, but you must
make sure that the imported statements are valid at the location where you are importing them. A MIF file can
describe both text and graphics; make sure that you have selected either a place in the text flow (if you are importing
text or graphics) or an anchored frame (if you are importing graphics).

For example, to import a MIF file that describes a graphic, first create an anchored frame in a document, select the
frame, and then import the MIF file (see “Bar chart example” on page 232).
When you import or include MIF files, make sure that object IDs are unique in the final document and that refer-

ences to object IDs are correct (see “Generic object statements” on page 112). The object IDs must be unique for all
objects (TextRect, Tblld, Group, and AFrame use the ID for identification) in the document.

Editing MIF files

You normally use a text editor to edit a MIF file. If you use FrameMaker to enter text into a MIF file, be sure to open
the MIF file as a text file and turn off Smart Quotes. If you leave Smart Quotes on, you must use a key sequence to
type the quotation marks that enclose a MIF string (b)). To enter a left quotation mark, type Control-". To enter a
straight quotation mark, type Control-'.

Although MIF statements are usually generated by a program, while you learn MIF or test and debug an application
that generates MIF, you may need to manually generate MIF statements. In either case, you can minimize the
number of MIF statements that your application needs to generate or that you need to type in.

The following suggestions may be helpful when you are working with MIF statements:

« Edit a MIF file generated by FrameMaker.

+ You can edit a MIF file generated by FrameMaker or copy a group of statements from a MIF file into your file
and then edit the statements. An easy way to use FrameMaker to generate a MIF file is to create an empty
document by using the New command and then saving it as a MIF file.

+ Test one object at a time.

« While testing an object in a document or learning about the MIF statements that describe an object, work with
just that object. For example, if you work with a document that contains both tables and anchored frames, start
by creating the MIF statements that describe tables. Then add the statements that describe anchored frames.

+ Use the default properties provided by FrameMaker.

« If you are not concerned with testing certain document components, let FrameMaker provide a set of default
document objects and formats.

MIF file layout

FrameMaker writes the objects in a MIF document file in the following order:
This section Contains these objects
File ID MIF file identification line (OKHHkng statement)

Units Default units (Wpkvu statement)

10

ADOBE FRAMEMAKER | 11
MIF Reference

This section Contains these objects
Catalogs Color
Condition

Paragraph Format
Element

Font or Character Format
Ruling

Table Format

Views

Formats Variable

Cross-reference

Objects Document
Dictionary
Anchored frames
Tables

Pages

Text flows

FrameMaker provides all of these objects, even if the object is empty. To avoid unpredictable results in a document,
you must follow this order when you create a MIF file.

Creating a simple MIF file for FrameMaker

Note: The rest of this chapter explains how to create some simple MIF files for FrameMaker by hand. These instructions
do not apply to structured documents, which require that you create elements first.

The most accurate source of information about MIF files is a MIF file generated by FrameMaker. MIF files generated
by FrameMaker can be very lengthy because FrameMaker repeats information and provides default objects and
formats for all documents. You may find it difficult to determine the minimum number of statements that are
necessary to define your document by looking at a FrameMaker-generated MIF file.

To better understand how FrameMaker reads MIF files, study the following example. This MIF file uses only four
statements to describe a document that contains one line of text:

<MIFFile 2015> # The only required statement
<Para # Begin a paragraph
<ParaLine # Begin a line within the paragraph
<String "Hello World's># The actual text of this document
> # end of Paraline #End of Paraline statement
> # end of Para #End of Para statement

The okHHkng statement is required in each MIF file. It identifies the FrameMaker version and must appear on the
first line of the file. All other statements are optional; that is, FrameMaker provides a set of default objects if you
specify none.

Comments in a MIF file are preceded by a number sign (#). By convention, the substatements in a MIF statement
are indented to show their nesting level and to make the file easier to read. The MIF interpreter ignores spaces at the
beginning of a line.

ADOBE FRAMEMAKER |12
MIF Reference

This example is in the sample file jgnngookh. To see how FrameMaker provides defaults for a document, open this
file in FrameMaker. Even though the MIF file does not specify any formatting, FrameMaker provides a default
Paragraph Catalog and Character Catalog. In addition, it provides a right master page, as well as many other default
properties.

Save this document as a MIF file and open the FrameMaker-generated MIF file in a text editor or in FrameMaker as
a text file. (For information on how to save and open MIF files, see “Opening and saving MIF files” on page 9.)

You’ll see that the MIF interpreter has taken the original 6-line file and generated over 1,000 lines of MIF statements
that describe all the default objects and their properties. To see the actual text of the document, go to the end of the
file.

This example demonstrates an important point about MIF files. Your MIF file can be very sparse; the MIF interpreter
supplies missing information. Most documents are not this simple, however, and require some formatting. The
following sections describe how to add additional document components, such as paragraph and character formats,
a table, and custom page layouts, to this minimal MIF file.

Creating and applying paragraph formats

In a FrameMaker document, paragraphs have formatting properties that specify the appearance of the paragraph’s
text. A paragraph format includes the font family and size, indents, tab stops, the space between lines in a paragraph,
the space before and after a paragraph, and the direction of the text. The text direction can be either left to right for
languages like English and German, or right to left for languages like Arabic and Hebrew. In a FrameMaker
document, the end of a paragraph is denoted by a single carriage return. You control the amount of space above and
below the paragraph by modifying the paragraph’s format, not by adding extra carriage returns.

In a FrameMaker document, you store paragraph formats in a Paragraph Catalog and assign a tag (name) to the
format. You can then apply the same format to many paragraphs by assigning the format tag to the paragraphs. You
can also format a paragraph individually, without storing the format in the Paragraph Catalog. Or, you can assign a
format from the Paragraph Catalog and then override some of the properties within a particular paragraph. Formats
that are not stored in the Paragraph Catalog are called local formats.

Creating a paragraph
In a MIF file, paragraphs are defined by a Rctc statement. A Rctc statement contains one or more RctcNkpg state-
ments that contain the lines in a paragraph; the actual text of the line is enclosed in one or more Uvtkpi statements:

<Para # Begin a paragraph
<ParalLine # Begin a line within the paragraph
<String “Hello World's# The actual text of this document
> # End of Paraline statement
> # End of Para statement

The Rctc, RetceNkpg, and Uvtkpi statements are the only required statements to import text. You could use this

example to import a simple document into FrameMaker by placing each paragraph in a Rctc statement. Break the
paragraph text into a series of Uvtkpi statements contained in one RetcNkpg statement. It doesn’t matter how you
break up text lines within a Retc statement; the MIF interpreter automatically wraps lines when it reads the MIF file.

Some characters must be represented by backslash sequences in a MIF string. For more information, see “Character
set in strings” on page 7.

Creating a paragraph format

Within a FrameMaker document, you define a paragraph format by using the Paragraph Designer to specify the
paragraph’s properties. In a MIF file, you define a paragraph format by using the Rih statement.

ADOBE FRAMEMAKER | 13
MIF Reference

The rih statement contains a group of substatements that describe all of a paragraph’s properties. It has the following
syntax:
<Pgf

<rtgrgtv{"xcnwgs>

<rtgrgtv{"xcnwgs>

>

A Rrihstatement is quite long, so learning how to relate its substatements to the paragraph’s properties may take some
practice. Usually a MIF statement name is similar to the name of the setting within a dialog box. The following
examples show the property dialog boxes from the Paragraph Designer with the related Rih substatements.

Suppose you have created a paragraph format for a numbered list item with Basic properties defined as follows in

the Paragraph Designer.

Faragraph Designer =
Style: |Numbered ~ |
: Basic Fonit Pagination Mumbering

Advanced Asian Table Cell Direction
Indent

First: Left: Right:
0.0 | 025" | o0 |
Spacing
Above Paragraph: Below Paragraph:
00pt v| [00pt v]
Others
Alignment: Tab Stops:

Left AW New Tab Stop

0.25" L

Line Space:

14.0pt ~ |] Fied

["] Next Paragraph Tag:

v | Edit...

v | Rename Update Style Apply

Basic properties

The following table shows the corresponding MIF statements:

In MIF file In Paragraph Designer

<PgfTag “Numbered'> Paragraph Tag
<PgfFIndent 0.0"> First Indent
<PgfLIndent 0.25"> Left Indent
<PgfRIndent 0.0"> Right Indent
<PgfAlignment Left > Alignment
<PgfSpBefore 0.0 pt> Space Above 1

ADOBE FRAMEMAKER | 14
MIF Reference

In MIF file

In Paragraph Designer

<PgfSpAfter 0.0 pt>

Space Below 4

<PgflLeading 2.0 pt>

Line Spacing (leading is added to font size)

<PgflLineSpacing Fixed>

Line Spacing (fixed)

<PgfNumTabs 1>

Number of tab stops

<TabStop Begin definition of tab
<TSX 0.25"> Tab position
<TSType Left > Tab type

<TSLeaderStr ~'>

Tab leader (none)

> # end of TabStop

<PgfUseNextTag No >

Turn off Next 9 Tag feature

Sy

<PgfNextTag

Next 9 Tag name (none)

The Default Font properties are defined as follows in the Paragraph Designer.

Paragraph Designer

Style: |Numbered ~ |
Basic Fonit Pagination Mumbering

Advanced Asian Table Cell Direction
Famity: Size:
|T|mes MNew Roman V| 12.0pt b
Color: Background:

M Biack ~ None w
Weight: Angle: Wariation:

Regular ~ | Regular ~ | Regular w
[/ Undedine | []Ovedine [] Strkethrough
Letter Spacing: Stretch: Language:

[0.0% | [100.0% | |Engish (US) ~
| Superscript ~| [Small Caps w
Pair Kem []Change Bar [] Teume

Font properties

The following table shows the corresponding MIF statements:

In MIF file

In Paragraph Designer

<PgfFont

<FFamily “Times'>

Family

ADOBE FRAMEMAKER | 15
MIF Reference

In MIF file In Paragraph Designer
<FSize 12.0 pt> Size
<FEncoding>

<FAngle “Regular's> Angle

<FWeight “Regular's> Weight
<FLanguage> Language

<FVar “Regular's> Variation

<FColor "Black's> Color

<FDW 0.0 pt> Spread
<FStretch 100%> Stretch
<FUnderlining NoUnderlining > Underline
<FOverline No > Overline
<FStrike No > Strikethrough
<FChangeBar No > Change Bar
<FPosition FNormal > Superscript/Subscript

<FCase FAsTyped >

Capitalization

<FPairKern Yes >

Pair Kern

<FTsume No>

Tsume (Asian systems only)

> # end of PgfFont

The Pagination properties are defined as follows in the Paragraph Designer.

Paragraph Designer

Format :

() Defauit

(®) In Column

() Run-n Head

() Side Head

() Across All Columns

(") Across All Columns and Side Heads

Style: |Numbered R |
Basic Font Pagination Mumbering
Advanced Asian Table Cell Direction
Start: | Amywhere e

Keep With: [_| Previous Paragraph | Next Paragraph

Widow/Ormphan Lines:

First Baseline

fe RS Rename Update Style Apphy

Pagination properties

The following table shows the corresponding MIF statements:

ADOBE FRAMEMAKER | 16
MIF Reference

In MIF file

In Paragraph Designer

<PgfPlacement Anywhere >

Start

<PgfWithNext No >

Keep With Next Pgf

<PgfWithPrev No >

Keep With Previous Pgf

<PgfBlockSize 1>

Widow/Orphan Lines

<PgfPlacementStyle Normal >

Format (paragraph placement)

<PgfRunInDefaultPunct ">

Run-in Head Default Punctuation (a period followed by an em space)

The Numbering properties are defined as follows in the Paragraph Designer.

Paragraph Designer

Style: |Numbered

> |

Basic Font
Advanced Asian

Pagination
Table Cell

Mumbering
Direction

Autonumber Paragraphs:

Format:

|<n+>.\t

Building Blocks:

Posttion: | Start of Paragraph

Character Format: | Default 1 Font

~
fe RS Rename

Update Ste

Numbering properties

The following table shows the corresponding MIF statements:

ADOBE FRAMEMAKER |17
MIF Reference

In MIF file

In Paragraph Designer

<PgfAutoNum Yes >

Turn on Autonumber

<PgfNumFormat ~<n+\>.\\t' >

Autonumber Format (a number followed by a period and a tab)

Rl

<PgfNumberFont >

Character Format (Default 9 Format)

<PgfNumAtEnd No >

Position (Start of Paragraph)

The Advanced properties are defined as follows in the Paragraph Designer.

Paragraph Designer

Style: [Numbered v
Basic Font Pagination Mumbering
Asian TableCell | Direction
Automatic Hyphenation
Hyphenate
Ma. Adjacent Hyphens: Shortest Word Length:
2 |[7 |
Shortest Prefoc Shortest Suffoc:
5 | [5 |
Word Spacing (% of Standard Space)
] Mllow Automatic Letter Spacing
Minimum: Madmum: Optimum:
|75% | [125% N[00

Standard Space = 0.25 em
Frame Above Paf: Frame Below Paf: Paf. Box:

None ~ | |None ~ | | None ~
fe RS Rename Update Style Apply
Advanced properties

The following table shows the corresponding MIF statements:

ADOBE FRAMEMAKER | 18
MIF Reference

In MIF file

In Paragraph Designer

<PgfHyphenate Yes >

Automatic Hyphenation (on)

<HyphenMaxLines 2>

Max. # Adjacent

<HyphenMinWord 5> Shortest Word
<HyphenMinPrefix 3> Shortest Prefix
<HyphenMinSuffix 3> Shortest Suffix

<PgfMinWordSpace 90>

Minimum Word Spacing

<PgfOptWordSpace 100>

Optimum Word Spacing

<PgfMaxWordSpace 110>

Maximum Word Spacing

<PgfLetterSpace Yes >

Allow Automatic Letter Spacing

">

<PgfTopSeparator

Frame Above 4

<PgfBotSeparator ~'>

Frame Below 1

The Asian properties are defined as follows in the Paragraph Designer.

Paragraph Designer

Style: |Numbered R |
Basic Font Pagination Mumbering
Advanced Asian Table Cell Direction
Westem / Asian Spacing (% OF Font Size)
Minimum: Madmum: Optimum:
0.0% | [50.0% | [25.0% |
Asian Character Spacing (% OF Font Size)
Minimum: Madmum: Optimum:
0.0% | [10.0% | 0.0 |
Squeere Punctuation:
Squeeze as Necessary w
[]Use Asian Composer
(Recommended for Chinese, Japanese, Korean and similar
languages)
fe RS Rename Update Style Apply

Asian properties

The following table shows the corresponding MIF statements:

ADOBE FRAMEMAKER | 19
MIF Reference

In MIF file

In Paragraph Designer

<PgfMinJRomanLetterSpace rgtegpvcigs

Minimum (Western/Asian Spacing)

<PgfOptJRomanLetterSpace rgtegpvcigs

Optimum (Western/Asian Spacing)

<PgfMaxJRomanLetterSpace rgtegpvcigs>

Maximum (Western/Asian Spacing)

<PgfMinJLetterSpace rgtegpvcigs>

Minimum (Asian Character Spacing)

<PgfOptJLetterSpace rgtegpvcigs>

Optimum (Asian Character Spacing)

<PgfMaxJLetterSpace rgtegpvcigs>

Maximum (Asian Character Spacing)

<PgfYakumonoType uvtkpis

Asian Punctuation

The Table Cell properties are defined as follows in the Paragraph Designer.

Paragraph Designer

Style: |Numbered R |
Basic Font Pagination Mumbering
Advanced Asian Table Cell Direction
Cell Vertical Alignment:
Top w
Cell Margins:
Top: | From Table Format, Plus:
Bottom: | From Table Format, Plus:
Left: | From Table Format, Plus:
Right: | From Table: Format, Plus:
fe RS Rename Update Style Apply
Table cell properties

The following table shows the corresponding MIF statements:

ADOBE FRAMEMAKER | 20
MIF Reference

In MIF file

In Paragraph Designer

<PgfCellAlignment Top >

Cell Vertical Alignment

<PgfCellMargins 0.0 pt 0.0 pt 0.0 pt 0.0 pt> |[CellMargins
<PgfCellTMarginFixed No > Top
<PgfCellBMarginFixed No > Bottom
<PgfCelllMarginFixed No > Left

<PgfCellRMarginFixed No >

Right

ADOBE FRAMEMAKER | 21
MIF Reference

The Direction properties are defined as follows in the Paragraph Designer.

Paragraph Designer

Style: |Numbered ~ |
Basic Fonit Pagination Mumbering
Advanced Asian Table Cell Direction
Direction:
Inheit ~

Az s
Left+o-Right
Right to-Left |

v | Rename Update Style Fpply

Direction properties

The following table shows the corresponding MIF statements:

In MIF file In Paragraph Designer

<PgfDir LTR> Direction of the paragraph text

> # end of Pgf

Adding a Paragraph Catalog

In a MIF file, you define a Paragraph Catalog by using a RihEcvengi statement. The Paragraph Catalog contains one
or more paragraph formats, which are defined by Rih statements. A RihEcvengi statement looks like this:

<PgfCatalog
<Pgf..> # A paragraph format description
<Pgf..> # More paragraph formats

> # end of PgfCatalog

The Rih statement describes a complete paragraph format. For example, the sample file rihecvookh stores the
paragraph format 1Heading in the Paragraph Catalog:

<MIFFile 2015> # Hand generated
<PgfCatalog
<Pgf
<PgfTag "1Heading'>
<PgfUseNextTag Yes >
<PgfNextTag “Body'>
<PgfAlignment Left >

ADOBE FRAMEMAKER | 22
MIF Reference

<PgfFIndent 0.0">
<PgfLIndent 0.0">
<PgfRIndent 0.0">

<PgfBoxColor NoColors>

<PgfAsianComposer No>

<PgfDir LTR>

> # end of Pgf

> # end of PgfCatalog
If you open rihecvookh in FrameMaker, you'll see that the Paragraph Catalog contains a single paragraph format
called 1Heading. If you supply a Paragraph Catalog, the paragraph formats in your catalog replace those in the
default catalog; they do not supplement the default formats.

If you do not supply a Paragraph Catalog in a MIF file, the MIF interpreter provides a default Paragraph Catalog with
predefined paragraph formats.

If a Rih statement provides only the name of a paragraph format, the MIF interpreter supplies default values for the
rest of the paragraph properties when it reads in the MIF file.

Applying a paragraph format

To apply a format from the Paragraph Catalog to a paragraph, use the Rihvci statement to include the format tag
name within the Rctc statement. For example, to apply the previously defined format 1Heading to a paragraph, use
the following statements:

<Para
<PgfTag ~1lHeading'>
<Paraline
<String “This line has the format called 1Heading.'>
> # end of ParalLine
> # end of Para

To apply a format from the Paragraph Catalog and then locally override some properties, use a partial Rih statement
within the Rctc statement. The following MIF example applies the paragraph format 1Heading, then changes the
alignment:

<Para
<PgfTag ~1lHeading's>
<Pgf
<PgfAlignment Centers
> # end of Pgf
<ParaLine
<String "This line is centered.'s>
> # end of ParaLine
> # end of Para

To locally define a paragraph format, include a complete Rih statement within the Rctc statement:

<Para
<Pgf
<PgfTag ~2Heading'>
<PgfUseNextTag Yes >
<PgfNextTag ~Body'>
<PgfAlignment Left >
<PgfFIndent 0.0">
<PgfLIndent 0.0">
> # end of Pgf
<ParaLine
<String A locally formatted heading'>
> # end of ParaLine

> # end of Para

ADOBE FRAMEMAKER
MIF Reference

For a complete description of Rih property statements, see page 62.

How paragraphs inherit properties

Paragraphs can inherit properties from other paragraphs in a MIF file. If a Rih statement does not provide values for
each paragraph property, it acquires any property values explicitly defined in a previous Rih statement. Because the
MIF interpreter sequentially reads MIF files, it uses the most recently defined Rih statement that occurs before the
current statement in the file.

For example, the following MIF code applies the default format named Body to the first paragraph in a document
and locally overrides the paragraph font:

<Para
<Pgf
<PgfTag “Body'>
<PgfFont
<FWeight “Bold's>
> # end of PgfFont
> # end of Pgf
<Paraline
<String “First paragraph in document.'s>
> # end of ParalLine
> # end of Para
<Para
<ParaLine
<String ~Second paragraph in document.'s>
> # end of ParaLine
> # end of Para

The previous example is in the sample file rihhovookh. If you open this file in FrameMaker, you’ll find that the
second paragraph also has the new font property.

A paragraph property remains in effect until the property value is changed by a subsequent MIF statement. To
change a paragraph property to another state, supply a Rih statement containing the paragraph property statement
set to the new state.

Thus, in the previous example, you could change the font from Bold to Regular in a Rih statement in the second Rctc

statement:
<Para
<Pgf
<PgfFont
<FWeight “Regular's>
> # end of PgfFont
> # end of Pgf
<ParalLine
<String “Second paragraph in document.'s>
> # end of Paraline
> # end of Para

To summarize, paragraphs inherit formats as follows:
+ Formats in the Paragraph Catalog inherit properties from the formats above them.
 Locally defined paragraph formats inherit properties from previously specified formats.

+ Textlines in anchored frames inherit font properties from previously specified formats, including the last format
in the Paragraph Catalog and previous text lines.

Tips

The following hints may help you minimize the MIF statements for paragraph formats:

23

ADOBE FRAMEMAKER | 24
MIF Reference

« Ifpossible, use the formats in the default Paragraph Catalog (don’t supply a RihEcvengi statement). If you know
the names of the default paragraph formats, you can tag paragraphs with the Rihvci statement.

+ If you know that a document will use a particular template when it is imported into a FrameMaker document,
you can just tag the paragraphs in the text flow. Don’t create a new Paragraph Catalog in MIF; it’s easier to create
catalogs in FrameMaker document templates.

« Ifyouneed to provide a full Paragraph Catalog in a MIF file, you can still use FrameMaker to ease the task of
creating a catalog. Create a template in FrameMaker, save the template as a MIF file, and include the Paragraph
Catalog in your document. For instructions, see “Including template files” on page 45.

Creating and applying character formats

You can define character formats locally or store them in the Character Catalog and apply the formats to text selec-
tions. Creating and applying character formats is very similar to creating and applying paragraph formats as
described in the previous section. Because the two methods are similar, this section just summarizes how to create
and apply character formats.

In a MIF file, the Character Catalog is contained in a HgpvEcvengi statement. The HgpvEcvengi statement contains
named character formats in a list of Hgpv statements. A HgpvEcvengi statement looks like this:

<FontCatalog
<Font...> # Describes a character format
<Font...> # Describes a character format
> # end of FontCatalog

A Hgpv statement specifies the properties of a character format; these are the same properties specified in the
Character Designer. The Hgpv statement is just like the RihHgpv statement that you use to define the default font in
a paragraph format. See “PgfFont and Font statements” on page 67 for a complete description of a Hqpv statement.

To apply a predefined character format to text, use the Hvci statement:

<MIFFile 2015> # Hand generated
<FontCatalog
<Font
<FTag ~“Emphasis'>
<FAngle “Italic's>

> # end of Font
> # end of FontCatalog
<Para
<PgfTag “Body's>
<ParalLine
<String “You can format characters within a paragraph by 's>
<Font
<FTag “Emphasis'>
> # end of Font
<String “applying's
<Font
<FTag ~'>
> # end of Font
<String ~ a character format from the character catalog.'s>
> # end of ParaLine
> # end of Para

Remember to include a second Hgpv statement to end the scope of the applied character format.
To locally define a character format, use a complete Hgpv statement:

<Para
<PgfTag “Body's>

>

ADOBE FRAMEMAKER
MIF Reference

<ParaLine
<String “You can also format characters by 's>
<Font
<FTag “Emphasis'>
mejctcevgt”rtqrgtv{”uvcvgogpvu"

> # end of Font
<String Tapplying's>
<Font
<FTag ~'>
> # end of Font
<String ~ a locally defined character format.'s>
> # end of ParaLine

end of Para

Like paragraph formats, character formats inherit properties from previously defined character formats. Unlike
paragraph formats, however, a character format ends at the close of a Rctc statement.

See the sample file ejcthovookh for examples of using character formats.

Creating and formatting tables

You can create tables in FrameMaker documents, edit them, and apply table formats to them. Tables can have
heading rows, body rows, and footing rows. Each row consists of table cells that contain the actual contents of the

table.
Table 1: Coffee Inventory Title
Coffee Bags Status Price per bag - Heading row
Brazil Santos 50 Prompt $455.00
Celebes Kalossi 29 In Stock $924.00 | Body rows
Colombian 25 In Stock $474.35
$1,853.35 — Footing row

Tables are like paragraphs in that they have a format. A table format controls the appearance of a table, including the
number and width of columns, the types of ruling or shading in rows and columns, and the table’s position in a text
column. Table formats can be named, stored in a Table Catalog, and applied to many tables. A table format can also
be defined locally.

In a FrameMaker document, tables appear where they have been placed in the text flow. A table behaves like an
anchored frame, so a table flows with the surrounding text unless you give it a specific location. In a MIF file, the
document’s tables are collected in one place and a placeholder for each table indicates the table’s position in the text

flow.

You create a table in a MIF file as follows:

Specify the contents of the table by using a vdn statement. An individual table is called a table instance. All table
instances are stored in one vdnu statement. Assign each table instance a unique ID number.

Indicate the position of the table in the text flow by using an cvdn statement. The cvdn statement is the place-
holder, or anchor, for the table instance. It refers to the table instance’s unique ID.

25

ADOBE FRAMEMAKER | 26
MIF Reference

Specify the table format by using a vdnHgt ocv statement. Formats can be named and stored in the Table Catalog,
which is defined by a vanEcvengi statement, or locally defined within a table.

Creating a table instance

All table instances in a document are contained in a Vdnu statement. The vdnu statement contains a list of vdn state-
ments, one for each table instance. A document can have only one vdnu statement, which must occur before any of
the table anchors in the text flow.

The vdn statement contains the actual contents of the table cells in a list of MIF substatements. Like other MIF state-
ments, this list can be quite long. The following is a template for a vdn statement:

<Tbl
<TblID...> # A unique ID for the table
<TblFormat...> # The table format
<TblNumColumns...> # Number of columns in this table--required
<TblColumnWidth...> # Column width, one for each column
<TblH # The heading; omit if no heading
<Row # One Row statement for each row
<Cell..> # One statement for each cell in the row
> # end of Row
<TblBody # The body of the table
<ROW...> # One for each row in body
> # end of TblBody
<TblF # The footer; omit if no footer
<ROW...> # One for each row in footer
> # end of TblF
> # end of Tbl

The vdnKF statement assigns a unique ID to the table instance. The vanHgtocv statement provides the table format.
You can use the vanHgtocv statement to apply a table format from the Table Catalog, apply a format from the catalog
and override some of its properties, or completely specify the table format locally. Because the tables in a document
often share similar characteristics, you usually store table formats in the Table Catalog. Table instances can always
override the applied format.

The vanPwoEgnwopu statement specifies the number of columns in the table instance. It is required in every table.

The vdnJ, vanDgf {, and vdnH statements contain the table heading, body, and footer rows. If a table does not have
a heading or footing, omit the statements.

Here’s an example of a simple table that uses a default format from the Table Catalog. The table has one heading row,
one body row, and no footing rows:

Coffee Price per Bag

Brazil Santos $455.00

You can use the following MIF statements to create this simple table:

<MIFFile 2015>
<Tbls
<Tbl

<TblID 1> # ID for this table
<TblTag “Format A's> # Applies format from Table Catalog
<TblNumColumns 2> # Number of columns in this table
<TblColumnWidth 2.0"> # Width of first column
<TblColumnWidth 1.5"> # Width of second column
<TblH # Begin table heading

<Row # Begin row

ADOBE FRAMEMAKER | 27
MIF Reference

<Cell # First cell in row
<CellContent
<Para # Cells can contain paragraphs
<PgfTag ~“CellHeading'># Applies format from Paragraph Catalog
<ParalLine

<String “Coffee's# Text in this cell

end of Para
end of CellContent
end of Cell
Second cell in row

>
<Cell
<CellContent
<Para
<PgfTag “CellHeading'>
<ParalLine
<String "Price per Bag's>

H*+ HF F FH

end of Para

end of CellContent
end of Cell

end of Row

end of TblH

Table body

Begin row

First cell in row

>
<Tb1lBody
<Row
<Cell
<CellContent
<Para
<PgfTag “CellBody'>
<ParalLine
<String "Brazil Santos's>

HH F H H H HF HF HE

end of Para
end of CellContent
end of Cell
Second cell in row

>
<Cell
<CellContent
<Para
<PgfTag ~“CellBody'>
<ParaLine
<String ~$455.00'>

H*+ HF F FH

end of Para

end of CellContent
end of Cell

end of Row

end of TblBody

> end of Tbl

> # end of Tbls

\
H* HF F H H HF

A table cell is a text column that contains an untagged text flow not connected to any other flows. You can put any
kind of text or graphics in a table cell. The cell automatically grows vertically to accommodate the inserted text or
graphic; however, the width of the column remains fixed.

Adding a table anchor

To indicate the position of a table in the text flow, you must add an cvdn statement. The cvdn statement refers to the
unique ID specified by the vdnKF statement in the table instance. For example, to insert the table defined in the
previous example, you would add the following statements to the minimal MIF file:

<Para

ADOBE FRAMEMAKER
MIF Reference

<Paraline
<String “Coffee prices for January'>
<ATbl 1> # Matches table ID in Vdn statement
> # end of Paraline
> # end of Para

This example is in the sample file vedngookh. If you open this file in FrameMaker, you'll see that the anchor symbol
for the table appears at the end of the sentence. To place the table anchor between two words in the sentence, use the

following statements:

<Para
<ParaLine
<String “Coffee prices 's>
<ATbl 1>
<String “for January's
> # end of ParaLine

> # end of Para

Note that the cvdn statement appears outside the Uvtkpi statement. A RetcNkpg statement usually consists of
Uvtkpi statements that contain text interspersed with statements for table anchors, frame anchors, markers, and

cross-references.

About ID numbers

The table ID used by the cvdn statement must exactly match the ID given by the vdankF statement. If it does not, the
MIF interpreter ignores the cvdn statement and the table instance does not appear in the document. You cannot use
multiple cvdn statements that refer to the same table ID.

AnID can be any positive integer from 1 to 65535, inclusive. The only other statements that require an ID are CHtcog
statements, linked vgzvTgev statements, and Itqwr statements. For more information about these statements, see

“Graphic objects and graphic frames” on page 111.

Rotated cells
A table can have rotated cells and straddle cells. The following table includes rotated cells in the heading row:

Coffee
Price

Brazil Santos $455.00

In a MIF file, a cell that is rotated simply includes a EgnnCping statement that specifies the angle of rotation:

<Cell
<CellAngle 270>

<CellContent..>
> # end of Cell

Cells can only be rotated by 90, 180, or 270 degrees. Cells are rotated clockwise.

28

ADOBE FRAMEMAKER
MIF Reference

Straddle cells

The contents of a straddle cell cross cell borders as if there were a single cell. You can straddle cells horizontally or
vertically. The following table includes a heading row that straddles two columns:

Brazilian Coffee

Coffee Price per Bag

Brazil Santos $455.00

The MIF code for the straddle cell includes a EgnnEgnwopu statement that specifies the number of columns that the
cell crosses. The contents of the straddle cell appear in the first of the straddle columns; the subsequent Egnn state-
ments for the row must appear even if they are empty.

<Row
<Cell
<CellColumns 2> # Number of straddle columns.
<CellContent # Content is in the first cell.
<Para
<PgfTag ~CellHeading'>
<Paraline
<String “Brazilian Coffee's>
>
> # end of Para
> # end of CellContent
> # end of Cell
<Cell # Second cell appears, even though
<CellContent # it is empty.
<Para
<PgfTag “CellHeading'>
<ParaLine>
> # end of Para
> # end of CellContent
> # end of Cell
> # end of Row

If the cell straddles rows, the substatement is EgnnTqyu.

Creating a table format
A table format includes the following properties:
« The properties specified by the Table Designer

+ These include the row and column ruling and shading styles, the position of text within cell margins, the table’s
placement within the text column, and the table title position.

+ The number and widths of columns
« The paragraph format of the first paragraph in the title (if there is one)
+ The paragraph format of the topmost paragraph in the heading, body, and footing cell of each column

For example, you could change the format of the previous table to include shaded rows and a different ruling style:

Coffee Price per Bag

Brazil Santos $455.00

Celebes Kalossi $924.00

29

ADOBE FRAMEMAKER
MIF Reference

Coffee Price per Bag
Colombian $474.35
The following MIF statements define this table format:
<TblFormat
<TblTag ~“Coffee Table's>
Every table must have at least one TblColumn
statement.
<TblColumn
<TblColumnNum 0> # Columns are numbered from 0.
<TblColumnWidth 2.0"> # Width of first column.
> # end of TblColumn
<TblColumn
<TblColumnNum 1> # Second column.
<TblColumnWidth 1.5"> # Width of second column.
> # end of TblColumn
<TblCellMargins 6.0 pt 6.0 pt 6.0 pt 4.0 pt>
<TblLIndent 0.0"> # These are exactly like paragraph
<TblRIndent 0.0"> # format properties.

<TblAlignment Center >
<TblPlacement Anywhere >

<TblSpBefore 12.0 pt>
<TblSpAfter 12.0 pt>
<TblBlockSize 1>
<TblHFFill 15>
<TblHFColor ~Black's>
<TblBodyFill 5>

<TblBodyColor “Black'>

<TblShadeByColumn No >
<TblShadePeriod 1>
<TblXFill 15>
<TblXColor “Black's>
<TblAltShadePeriod 1>

<TblLRuling “Thin'>
<TblBRuling “Thin's>
<TblRRuling “Thin'>
<TblTRuling “Medium'>
<TblColumnRuling ~Thin's>
<TblXColumnRuling “Thin'>
<TblBodyRowRuling “Thin'>
<TblXRowRuling “Thin'>
<TblHFRowRuling
<TblSeparatorRuling “Medium'>
<TblXColumnNum 1>
<TblRulingPeriod 4>
<TblLastBRuling No >
<TblTitlePlacement InHeader>
<TblTitlePgfl

<PgfTag "TableTitle's>

S

>

<TblTitleGap 6.0 pt>
<TblInitNumColumns 2>
<TblInitNumHRows 1>
<TblInitNumBodyRows
<TblInitNumFRows 0>
<TblNumByColumn No >

4>

H*H HF F H

H*+ HF HF H H*

FH HF FH oH H HF F H

No fill for heading row.
Use 10% gray fill for main body rows.

Shade by row, not by column.
Shade every other row.

No fill for alternate rows.
Color for alternate rows.

thin left outside rule.

thin bottom outside rule.
thin right outside
medium top outside
thin rules between

Use
Use
Use
Use
Use

rule.
rule.
columns.
Use thin rules between rows.
No rules between heading rows.
Use medium rule after heading row.

Place title above table.
Paragraph format for first
paragraph in title.

end of TblTitlePgfl

Gap between title and table.
Initial number of rows and
columns for new tables with
this format.

end of TblFormat

30

ADOBE FRAMEMAKER
MIF Reference

The vanEgnwop statement numbers each column and sets its width. A table can have more columns than vdnEgnwop
statements; if a column does not have a specified format, the MIF interpreter uses the format of the most recently
defined column.

Note: A table instance must have at least one vanEqnwop statement. A table can use a format from the Table Catalog
that includes a vdnEqnwop statement or it can include a local VvanHgt ocv statement that supplies the VdnEgnwop
statement.

Adding a Table Catalog

You can store table formats in a Table Catalog by using a VdnEcvengi statement. A document can have only one
VdnEcvengi statement, which must occur before the vdnu statement.

The VdnEcvengi statement contains one vdnHgtocv statement for each format, as shown in the following template:

<TblCatalog

<TblFormat..>
<TblFormat...>
> # end of TblCatalog

As with the Paragraph Catalog, if your MIF file does not provide a Table Catalog, the MIF interpreter supplies a
default catalog and formats. If you do provide a Table Catalog, your defined table formats supersede those in the
default Table Catalog.

You can add a minimal table format to the catalog by simply supplying a table format tag name. The MIF interpreter
supplies a set of default values to the table’s properties when it reads in the MIF file.

The ruling styles in a table format are defined in a separate catalog called the Ruling Catalog. You can define your
own Ruling Catalog with the TwnkpiEcvengi statement. Whether you use the default ruling styles or create your
own, substatements that refer to ruling styles, such as the"vanNTwnkpi "statement, must use the name of a ruling
style from the Ruling Catalog. See “RulingCatalog statement” on page 83.

Applying a table format
You can apply a table format from the Table Catalog or you can define a table format locally.

To apply a table format from the Table Catalog, use the vdnvci statement within the vdn statement:

<Tbls
<Tbl
<Tb1lID 1>
<TblTag “Format A'> # Tag of format in Table Catalog
<TblNumColumns 1>
<TblBody
> # end of TblBody
> # end of Tbl
> # end of Tbls

To locally define a table format, use a complete vdnHgtocv statement:

<Tbls

<Tbl
<TblID 1>
<TblFormat
<TblTag

'>
Every table must have one TblColumn statement.
<TblColumn
<TblColumnNum 0>
<TblColumnWidth 1.0">
> # end of TblColumn
..vedng"rtgrgtvy uvcvgogpvu..

31

ADOBE FRAMEMAKER | 32
MIF Reference

> # end of TblFormat
> # end of Tbl
> # end of Tbls

Creating default paragraph formats for new tables

You can use the vanHgtocv and VdnEgnwop statements to define default paragraph formats for the columns in new
tables. These default formats do not affect tables that are defined within the MIF file; they only affect tables that the
user inserts after the MIF file has been opened in FrameMaker. Your filter or application should provide these
defaults only for documents that might be edited later.

For example, the following MIF code assigns a paragraph format named Description to body cells in new tables that
are given the format called Coffee Table:

<TblFormat
<TblTag ~Coffee Table's>
<TblColumn

<TblColumnNum 0>
<TblColumnWidth 1.0">

<TblColumnBody
<PgfTag “Description's>
> # end of TblColumnBody
> # end of TblColumn
> # end of TblFormat

Tables inherit properties differently

Tables inherit formatting properties somewhat differently than other document components. A table without an
applied table format does not inherit one from a previously defined table. Instead, it gets a set of default properties
from the MIF interpreter. Thus, if you apply a named format to a table, a following table will not inherit that format.

Paragraphs in table cells still inherit properties from previously defined paragraph formats. If you give a table cell a
certain paragraph style, all subsequent cells inherit the same property unless it is explicitly reset. Table cells can
inherit paragraph properties from any previously specified paragraph format, including other tables, paragraphs, or
even the Paragraph Format catalog.

Tips
To avoid problems when creating tables:
+ Give each table a unique ID number.

« Make sure that each vdn statement has only one corresponding cvdn statement, and that each cvdn statement
has a corresponding vdn statement.

+ Make sure that each cvdn statement matches the ID of its corresponding table instance.

Specifying page layout

FrameMaker documents have two kinds of pages that determine the position and appearance of text in the
document: body pages and master pages.

ADOBE FRAMEMAKER
MIF Reference

Body pages contain the text and graphics that form the content of the document. Master pages control the layout of
body pages. Each body page is associated with one master page, which specifies the number, size, and placement of
the page’s text frames and the page background, such as headers, footers, and graphics.

Untagged
background text
frame

Tt

————| ——— On body pages, you type in a
Tagged template - — column of a tagged text frame.
text frame —

—+]

Master page Body page

Untagged
background text
frame

Text frames define the layout of the document’s text on a page. A text frame can arrange text in one or more columns.
In MIF, a text frame is represented by a vgzvTgev statement. The dimensions of the text frame and the number of
columns in the text frame are specified by substatements under the vgzvTgev statement.

A text flow describes the text contained in one or more text frames. In MIE a text flow is represented by a Vgzvingy
statement. The actual text of the document is specified by substatements under the vgzvingy statement.

If the text flow has the autoconnect property (if the text flow uses the MIF statement >VHCwvqEgppgev" [gue), the
text flow runs through a series of text frames; when you fill up one text frame, text continues into the next text frame.
Most documents have only one text flow, although you can create many separate flows.

FrameMaker provides a default right master page for single-sided documents and default right and left master pages
for double-sided documents. A MIF file can either use the default page layout or provide a custom layout.

Using the default layout

If you don’t need to control the page layout of a document, you can use the default page layout by putting all of the
document’s text into a VgzvHnqy statement. When reading the file, the MIF interpreter creates default master pages
and body pages. The MIF file creates a single-column text frame for the body pages to contain the document’s text.
The MIF interpreter associates the text flow with this text frame.

The following example is in the sample file fghrcigookh:

<MIFFile 2015> # Hand generated
<TextFlow # All document text is in this text flow.
<TFTag "A'> # Make this a tagged text flow.
<TFAutoConnect Yes> # Automatically connect text frames.
<Para
<ParalLine

<String "This paragraph appears on a body page within a's>
<String ~ text flow tagged A.'>

end of ParaLine

end of Para

end of TextFlow

End of MIFFile

\%
H*+ HF HF

A text flow must be tagged, and it must include >VHCwvgEgppgev" [gue; otherwise, when the user adds text to the
document, FrameMaker won’t create additional pages and text frames to hold the added text.

33

ADOBE FRAMEMAKER
MIF Reference

Creating a simple page layout

If you want some control of the page layout but do not want to create master pages, you can use the Fgewogpv
substatements FRcigUk | g, FOct ikpu, and FEqnwopu to specify the page size, margins, and number of columns in
the text frame in the document. The MIF interpreter uses this information to create master pages and body pages.
These statements correspond to the Normal Page Layout options.

The following example is in the sample file eqnwonc { 0okh:

<MIFFile 2015> # Hand generated
<Document

<DPageSize 7.5" 9.0"> # Set the page size.
<DMargins 2" 1" .5" .5"> # Set the margins.
<DColumns 1> # Set the number of columns in the default
text frame.
<DTwoSides No> # Set document to single-sided.
> # end of Document
<TextFlow # Document text is in this text flow.
<TFTag "A'> # Make this a tagged text flow.
<TFAutoConnect Yes> # Automatically connect text frames.
<Para
<ParalLine

<String "This paragraph appears on a body page within a's>
<String ~ text flow tagged A.'s>

end of ParalLine

end of Para

end of TextFlow

End of MIFFile

H*H HF H H*

Creating a single-sided custom layout

If the document that you’re importing needs a custom master page, you must specify a custom page layout. For
example, a document might need a master page for background graphics.

To create a custom layout for a single-sided document, you do the following:

+ Create a right master page.

« Create a single, empty body page.

« Create an empty, tagged text flow that is linked to the master page.

+ Create a tagged text flow that is linked to the body page and contains all the document’s text.

The MIF code shown in this section is also in the sample file upinrcigookh.

To create the master page

To create a master page layout, use the Rcig statement to create the page and use the vgzvTgev statement to create
the text frame.

To specify the number of text columns in the text frame, use the vTPwoEgnwopu statement. By default, if the text
frame’s specification does not include this statement, the text frame has only one column.

This example sets up a right master page with a text frame containing one text column:

<MIFFile 2015> # Hand generated
<Document

<DPageSize 7.5" 9.0">
<DTwoSides No>

Set the document page size.

Make this a single-sided document.
end of Document

Create a right master page.

>

H*+ H HF FHF

<Page
<PageType RightMasterPage>
<PageTag “Right's>

34

<TextRect
<ID 1>
<Pen 15>
<Fill 15>
<ShapeRect 2" 1" 5" 7.5">
<TRNumColumns 1>
<TRColumnGap 0.0">

>

>

H* H HF H H H HF FHF

++

ADOBE FRAMEMAKER

Set up a text frame.

Give the text frame a unique ID.
Set the pen style.

Set the fill pattern (none).
Specify the text frame size.
Specify number of text columns.
Specify gap between text columns.
end of TextRect

end of Page

MIF Reference

The KF statement assigns a unique ID number to this text frame. You must give text frames a unique ID in a MIF file;
other objects that require unique IDs are anchored graphic frames and table instances.

To create an empty body page

To create the body page, use the Rcig statement. Then use the VgzvTgev statement to create a text frame with dimen-

sions that are exactly the same as the text frame on the master page. Give the text frame a unique ID:

<Page
<PageType BodyPage>
<PageBackground “Default's>
<TextRect

<ID 2>

<ShapeRect 2" 1" 5" 7.5">
<TRNumColumns 1>
<TRColumnGap 0.0">

>

>

This text frame has a unique ID.

+

master page.

The column layout must also match.

end TextRect
end Page

The body page dimensions match those of the

If the dimensions (specified by the UjcrgTgev statement) and column layout (specified by the vTPwoEqnwopu and
VTEgnwopIcr statements) of the master page and body page do not match, the body page will not use the page layout
from the master page. Instead, the body page will use the page layout defined for the body page.

To create the text flow for the master page

The text flow for the master page is not contained in the Rcig statement; instead, it is contained in a VgzvHnqy
statement that is linked to the text frame on the master page. The Rcig statements must come before any vgzvHngy

statements.

Link the text flow to the master page’s text frame by using the vgzvTgevKF statement to refer to the text frame’s

unique ID:

<TextFlow
<TFTag "A'>
<TFAutoConnect Yes>
<Para
<ParaLine
<TextRectID 1>

>

Ees

*+ HF F*F

#

The text flow must be tagged.
Autoconnect must be turned on.

Refers
end of
end of
end of

to text frame ID on master page.
ParaLine

Para

TextFlow

The text flow for the master page must be empty. Be sure to give the text flow the same flow tag that you give the text

flow for the body page and to turn on the autoconnect feature.

35

ADOBE FRAMEMAKER
MIF Reference

To create the text flow for the body page

The text flow for the body page is contained in a separate vgzvHnqy statement that is linked to the body page’s text
frame. The text flow contains the actual text of the document in one or more Rctc statements. If text overflows the
first text frame, the MIF interpreter creates another body page with a layout that matches the right master page and
pours text into the body page’s text frame.

<TextFlow
<TFTag "A'>
<TFAutoConnect Yes>
<Para
<TextRectID 2>
<PgfTag “Body's>
<ParalLine
<String "This appears on a body page within a text flow's>

<String tagged A.'>
> # end of Paraline
> # end of Para
> # end of TextFlow
Why one body page?

The method you use to create body pages is different from the method that FrameMaker uses when it writes a MIF
file. When FrameMaker writes a file, it knows where each page break occurs in the file, so it creates a series of Rcig
statements that each contain the text and graphics located on that page. When you are importing a document, you

do not know where page breaks will fall, so you cannot break the document into a series of Rcig statements. Instead,
you simply create one text flow for the entire document and link it to a single, empty body page. When the MIF inter-
preter reads the file, it creates as many pages as the document requires and gives each page the background specified
by the master page.

Creating a double-sided custom layout

If you import a two-sided document, you might need to specify different page layouts for right and left pages. For
example, a document might have a wider inside margin to allow extra room for binding. You can do this in a MIF
file by creating and linking a second master page and a second body page. As with a single-sided layout, all the
document’s text is in one text flow. When the MIF interpreter reads the file, it adds alternate left and right body pages
to the document. You can control whether the document starts with a right page or a left page by using the FRetkv {
statement.

For an example of a document with left and right master pages, see the sample file £dnrcigookh.

Creating a first master page

In addition to left and right master pages, you can create custom master page layouts that you can apply to body
pages. For example, some books have a special layout for the first page in a chapter.

In a MIF file, you can create as many master pages as you need, but you cannot apply all of them to the appropriate
body pages. You can only apply a left page, a right page, and one additional custom master page to the body pages.
Furthermore, you can only link the custom master page to the first page in a document.

When you are importing a document into FrameMaker, you do not know how much text the MIF interpreter will
put on a page; you can only determine where the first page begins. When the interpreter reads the MIF file, it applies
the custom master page layout to the first page in the document. For each subsequent page, it uses the FRctkv{ and
FVyqUkfgu statements to determine when to add a left page and when to add a

right page.

36

ADOBE FRAMEMAKER | 37
MIF Reference

Other master page layouts that you’ve defined are not lost when the interpreter reads a MIF file. The user can still
apply these page layouts to individual body pages.

For an example of a MIF file with a first page layout, see the sample file htuvrcigookh.

Adding headers and footers

Headers and footers are defined in untagged text flows on the master pages of a document. When FrameMaker
creates default master pages, it automatically provides untagged text flows for headers and footers.

If you are importing a document that has headers and footers, you define additional text frames on the master pages.
Link an untagged text flow to each additional text frame on the master page. The untagged text flow contains the
text of the header or footer.

For an example of a MIF file with a footer, see the sample file hqgvgtuookh. Note that the footer text flow contains
a variable; you can place variables only in untagged text flows on a master page, not in tagged flows.

Creating markers

A FrameMaker document can contain markers that hold hidden text and mark locations. For example, you use
markers to add index entries, cross-references, and hypertext commands to a document. FrameMaker provides both
predefined marker types and markers that you can define as needed. (For more information about markers and
marker types, see page 136.)

Within a FrameMaker document, you insert a marker by choosing the Marker command from the Special menu. In
a MIF file you insert a marker by using a octmgt statement. The octmgt statement specifies the marker type and the
marker text.

The following example inserts an index marker:

<Para
<ParaLine
<Marker
<MType 2> # Index marker
<MText “Hello world's# Index entry
> # end of Marker
<String "Hello world's>
> # end of ParalLine
> # end of Para

The ovgzv statement contains the complete index entry.

When FrameMaker writes a Octmgt statement, the statement includes an 0Ewt tRcig substatement with the page
number on which the marker appears. You do not need to provide an OEwt tRcig statement when you generate a
MIF file; this statement is ignored when the MIF interpreter reads a MIF file.

Creating cross-references

In a FrameMaker document, you can create cross-references that are automatically updated. A cross-reference can
refer to an entire paragraph or to a particular word or phrase in a paragraph. The text to which a cross-reference
points is called the reference source; the actual location of the cross-reference is the reference point.

ADOBE FRAMEMAKER
MIF Reference

The format of a cross-reference determines its appearance and the wording. Cross-reference formats include building
blocks, instructions to FrameMaker about what information to extract from the reference source. A common
building block is >&rcigpwoe, which FrameMaker replaces with the page number of the reference source. Another
common building block is <$paratext>, which FrameMaker replaces with the text content of the paragraph,
excluding autonumbering and special characters such as tabs and forced line breaks.

Within a FrameMaker document, you insert and format cross-references by choosing Cross-Reference from the
Special menu. In a MIF file, you create a cross-reference as follows:

+ Create the format of cross-references by using ZTghHgtocvu and zTghHgtocv statements.

+ Insert a marker at the reference source by using a octmgt statement.

+ Insert the reference point by using an zTgh statement.

Creating cross-reference formats

The cross-reference formats for a document are defined in one zZTghHgt ocvu statement. A document can have only
one ZTghHgtocvu statement.

The zTghHgt ocvu statement contains one or more ZTghHgt ocv statements that define the cross-reference formats.
A cross-reference format consists of a name and a definition.
<XRefFormats
<XRefFormat
<XRefName ~Page'>
<XRefDef “page\x1ll <Spagenum\>'>
> # end of XRefFormat
> # end of XRefFormats

The name can be any string allowed in a MIF file (see “Character set in strings” on page 7). In this example, a
nonbreaking space (“z33) appears between the word “page” and the page number. Each cross-reference format must
have a unique name; names are case-sensitive. The cross-reference definition contains text and cross-reference
building blocks. See your user’s manual or the online Help system for a list of building blocks.

Inserting the reference source marker

To mark the location of the reference source, insert a octmgt statement at the beginning of the reference source. The
following example creates a cross-reference to a heading:

<Para
<PgfTag “Heading'>
<ParaLine
<Marker
<MType 9> # Identifies this as a cross-reference
<MText °34126: Heading: My Heading'>
Cross-reference source
> # end of Marker
<String "My Heading's>
> # end of ParalLine
> # end of Para

The >ov{rg" ;e statement identifies this as a cross-reference marker; it is required. The ovgzv statement contains
the cross-reference source text, which must be unique. When FrameMaker writes a cross-reference, it adds a unique
number and the paragraph tag to the ovgzv statement, as shown in the previous example. While the number is not
required, it guarantees that the cross-reference points to a unique source when the number is present. In the previous
example, the number in <MText > is not mandatory. However, the number in the example ensures that the new cross-
reference points to the ‘My heading’ heading.

38

ADOBE FRAMEMAKER
MIF Reference

Inserting the reference point

The final step in creating a cross-reference is to insert an zTgh statement at the position in text where the cross-
reference should appear. The zTgh statement provides the name of the cross-reference format (defined in
ZTghHgtocv), the source text, and the pathname of the file containing the source:

<Para
<PgfTag “Body'>
<ParaLine
<String “This is a cross-reference to '>
<XRef
<XRefName “Page'> # Cross-reference format
<XRefSrcText “34126: Heading: My Heading'>
Source text
<XRefSrcFile ~'> # File containing source
> # end of XRef
<XRefEnd>
<String ~.'s>
> # end of ParalLine
> # end of Para

The format name must exactly match the name of a format defined in zZTghHgt ocvu. The source text must be unique
and must match the string in the ovgzv statement in the corresponding reference point marker. The zTghUteHkng
statement is only required if the reference source is in a different file from the reference point. It must be a valid MIF
filename (see “Device-independent pathnames” on page 7).

You must also supply an zTghGpf statement after the ZTgh statement.

How FrameMaker writes cross-references

When FrameMaker writes a cross-reference, it provides the actual text that will appear at the reference point. This
information is not required in a MIF input file. The previous example would be written as follows:

<XRef
<XRefName ~Page'>
<XRefSrcText “34126: Heading: My Heading'>
<XRefSrcFile ~'>

> # end of XRef
<String “page'> # The text that appears in the document;
<Char HardSpace > # in this case, a page number followed a
<String “1's> # hard space and the number 1
<XRefEnd> # End of cross-reference text

If you do include the text of the cross-reference, make sure that the zTghGpf statement follows the text. FrameMaker
considers everything between the zTgh statement and the ZTghGp£ statement to be part of the cross-reference.

Creating variables

In a FrameMaker document, variables act as placeholders for text that might change. For example, many documents
use a variable for the current date. A variable consists of a name, which is how you choose a variable, and a definition,
which contains the text and formatting that appear where a variable is inserted.

FrameMaker provides two kinds of variables: system variables that are predefined by FrameMaker, and user variables
that are defined by the user. System variables contain building blocks that allow FrameMaker to extract certain infor-
mation from the document or the system, such as the current date or the current page number, and place it in text.

Headers and footers frequently use system variables. You can modify a system variable’s definition but you cannot

create new system variables. User variables contain only text and formatting information.

39

ADOBE FRAMEMAKER
MIF Reference

Within a FrameMaker document, you insert and define variables by choosing Variable from the Special menu. The
variable appears in the document text where it is inserted.

In a MIF file, you define and insert variables as follows:
+ Define and name the document variables by using XctkcdngHgtocvu and XctkedngHgtocv statements.

« Insert the variable in text by using the xctkcdng statement.

Defining user variables

All variable definitions for a document are contained in a single XctkcdngHgtocvu statement. The Xctkcdng-
Hgtocvu statement contains a XctkedngHgtocv statement for each document variable. The XctkedngHgtocv
statement provides the variable name and definition.
<VariableFormats

<VariableFormat

<VariableName ~Product Number's

<VariableDef “Al5-24'>

> # end of VariableFormat
> # end of VariableFormats

The variable name must be unique; case and spaces are significant. For a user variable, the variable definition can
contain only text and character formats; you can provide any character format defined in the Character Catalog. The
following example applies the default character format Emphasis to a variable:
<VariableFormat

<VariableName ~Product Number's

<VariableDef ~<Emphasis\>Al15-24<Default § Font\>'>
> # end of VariableFormat

You can specify character formats as building blocks; that is, the character format name must be enclosed in angle
brackets. Because of MIF parsing requirements, you must use a backslash sequence for the closing angle bracket.

Using system variables

Whenever you open or import a MIF file, the MIF interpreter provides the default system variables. You can redefine
a system variable but you cannot provide new system variables.

System variables are defined by a XctkcdngHgtocv statement. For example, the following statement shows the
default definition for the system variable Page Count:
<VariableFormat

<VariableName ~Page Count's>

<VariableDef ~<s$lastpagenum\>'>
> # end of VariableFormat
System variables contain building blocks that provide certain information to FrameMaker. These building blocks are
preceded by a dollar sign (&) and can only appear in system variables. Some system variables have restrictions on
which building blocks they can contain. These restrictions are discussed in your user’s manual and in the online Help
system. You can add any text and character formatting to any system variable.

Inserting variables

To insert a user variable or a system variable in text, use the Xctkecdng statement. The following example inserts the
system variable Page Count into a paragraph:

<Para
<ParalLine
<String “This document has 's>
<Variable

<VariableName ~Page Count's>

40

ADOBE FRAMEMAKER | 41
MIF Reference

> # end of Variable
<String “pages.'>
> # end of Paraline
> # end of Para

The XctkcdngPcog string must match the name of a variable format defined in the XctkcdngHgtocvu statement.
Variables are subject to the following restrictions:
+ You cannot place any variable in a tagged text flow on a master page.

+ The system variable Ewt tgpv"Rcig % and the system variables for running headers and footers can only appear
in untagged text flows on a master page.

+ The system variables Table Continuation and Table Sheet can only appear in tables.

Creating conditional text

You can produce several slightly different versions of a document from a single conditional document. In a condi-

tional document, you use condition tags to differentiate conditional text (text that is specific to one version of the

document) from unconditional text (text that is common to all versions of the document).

In a MIF file, you create a conditional document as follows:

+ Create the condition tags to be used in the document and specify their format via EqpfkvkgpEcvengi and
Egpfkvkgp statements.

« Apply one or more condition tags to the appropriate sections of the document via Eqpfkvkgpcn and Wpegpfk-
vkgpcn Statements.

+ Show or hide conditional text by using the EUvcvg statement.

Creating and applying condition tags

In MIE all condition tags are defined in a EqpfkvkgpEcvengi statement, which contains one or more Eqpfkvkgp
statements. A Eqpfkvkgp statement specifies the condition tag name, the condition indicators (how conditional text
appears in the document window), a color, and a state (either hidden or shown).

For example, the following statements create a Condition Catalog with two conditional tags named Summer and
Winter:

<ConditionCatalog
<Condition

<CTag ~Summer'> # Condition tag name
<CState CHidden > # Condition state (now hidden)
<CStyle COverline > # Condition indicator
<CColor "Blue's> # Condition indicator

> # end of Condition

<Condition
<CTag “Winter's>
<CState CShown > # This condition is shown
<CStyle CUnderline >
<CColor "Red'>

> # end of Condition

> # end of ConditionCatalog

To mark conditional and unconditional passages within document text, use Eqpfkvkgpcn and WpEgpfkvkgpen
statements as shown in the following example:
<Para

<ParaLine
<String “Our company makes a full line of '>

ADOBE FRAMEMAKER | 42
MIF Reference

Unconditional text
Begin conditional text
Specifies condition tag
end of Conditional

<Conditional
<InCondition “Winter's

H*+ H HF FHF

>

<String “warm and soft sweaters's>

Conditional text

Begin conditional text
<InCondition ~Summer's> Specifies condition tag

> # end of Conditional

<String “cool and comfortable tank tops's>

<Unconditional >

<Conditional

H*+ HF F

<String ~ for those '> # Unconditional text
> # end of Paraline
<ParalLine

<Conditional

<InCondition “Winter's

> # end of Conditional

<String “chilly winter's

<Conditional

<InCondition ~Summer's>
> # end of Conditional
<String “hot summer's>
<Unconditional >
<String ~ days.'>
> # end of Paraline
> # end of Para

You can apply multiple condition tags to text by using multiple kpEqpfkvkgp statements:

<Conditional
<InCondition “Winter's
<InCondition ~Summer's>

> # end of Conditional

Showing and hiding conditional text using Boolean expressions

You can also use Boolean expressions to show or hide conditional text. Boolean condition expressions are identified
using the DggnEqp£Vei. You can create these expressions by linking condition tags with boolean operators and
describe them in the DggnEqgpfGzrt statement. If the value of DggnEgpfUvcvg of a Boolean condition expression is
set to ‘Active’ the show/hide state of the text in that document is governed by that Boolean condition expression. All
text for which the expression evaluates to “True’ is shown, while the rest are hidden.

Consider a scenario where you have created Conditions summary, detail, comment, and a boolean expression
“comment"OR"summary"OR"detail”. If the value of DggqnEqgpfUvevg is ‘Active, FrameMaker uses this expression to
determine the Show/Hide state of conditional text.

The Boolcond statement appears in the BoolCondcCatalog as shown below :

<BoolCond

<BoolCondTag ~Conditional Expression's
<BoolCondExpr ~"comment"OR"summary"OR"detail"'s>
<BoolCondState T“Active's>

> # end of BoolCond

When you save a FrameMaker 8 document as MIF, the following system tags are displayed in the MIF:
« FM8_SYSTEM_HIDEELEMENT

- FM8_TRACK_CHANGES_ADDED

+ FM8_TRACK_CHANGES_DELETED

Note: These tags are used by the system and are reserved for internal use only.

ADOBE FRAMEMAKER
MIF Reference

How FrameMaker writes a conditional document

If you are converting a MIF file that was generated by FrameMaker, you need to understand how FrameMaker writes
a file that contains hidden conditional text.

When FrameMaker writes a MIF file, it places all hidden conditional text in a text flow with the tag name JKFFGP.
Within the document text flow, a conditional text marker, >Octmgt ">0v{rg"32ee, indicates where hidden condi-
tional text would appear if shown.

The marker text contains a plus sign (+) followed by a unique five-digit integer. The corresponding block of hidden
text is in the hidden text flow. It begins with a conditional text marker containing a minus sign (-) and a matching
integer and ends with a marker containing an equal sign (=) and the same integer. One or more Rctc statements
appear between the markers. If the hidden conditional text doesn’t span paragraphs, all the text appears in one Rctc
statement. If the hidden text spans paragraphs, each end of paragraph in the conditional text forces a new Rctc
statement in the hidden text flow.

The following example shows how FrameMaker writes the sentence used in the previous example:

This text flow contains the sentence as it appears in
the document body.
<TextFlow
<TFTag "A'>
<TFAutoConnect Yes >

<Para
<ParalLine
<String “Our company makes a full line of '>
This marker indicates that hidden text appears in the
hidden text flow.
<Marker
<MType 10>
<MText ~+88793'>
<MCurrPage 0>
> # end of Marker
<Conditional
<InCondition ~Summer's>
> # end of Conditional
<String “cool and comfortable tank tops's>
<Unconditional >
> # end of Para
> # end of TextFlow
This text flow contains the hidden conditional text.
<TextFlow
<TFTag "HIDDEN'>
<Para
<PgfEndCond Yes >
<ParalLine

<Marker
<MType 10>
This marker shows the beginning of hidden text.
Its ID matches the marker ID in the body text flow.
<MText ~-88793'>
<MCurrPage 0>

> # end of Marker
<Conditional

<InCondition “Winter's
> # end of Conditional

Here's the hidden text.
<String “chilly winter's
<Marker
<MType 10>

43

ADOBE FRAMEMAKER
MIF Reference

This marker shows the end of hidden text. It must
match the marker that begins with a minus sign (-).
<MText ~=88793'>
<MCurrPage 0>
> # end of Marker

> # end of Para

> # end of TextFlow

Creating filters

Structured FrameMaker allows specific components in a structured document to be processed differently to generate
different output formats. Consider a case where you want some text in a document to be included in the Print output,
but not in the HTML Help output. You can create a filter based on the values of the attributes of elements, and process
only those elements in the document that match the filter, and include such elements in the Print output.

In a MIF file, you create a filter required for generating the output of a structured document using the Fghcvvtxcn-
wguEcvengi, FghCvvtXcnwgu, CvvtEqpfGzrtEcvengi, and CvvtEqpfGzrt statements.

All MIF 8 documents contain a catalog of predefined filters. The catalog is empty if a filter is not defined in a struc-
tured document. A filter comprises a tag called cvvtEqpfGzrtvei, the expression tag CvvtEqpfGzrtUvt, and the

state of the filter which is stored in the cvvtEqpfUvevg tag. The state of the filter indicates whether the filter is active
in the document. Although the catalog can have several filters, only one filter must be active at any time.

To create filters, use the cvvtEqpfGzrtEcvengi statement as illustrated in the following example where two filters
are created:

<AttrCondExprCatalog
<AttrCondExpr
<AttrCondExprTag ~NewExprl's>
<AttrCondExprStr -~ (A="vall" OR A="valll") AND (B="val2" OR B="val22")'s>
<AttrCondState ~Inactive's>
> # end of AttrCondExpr
<AttrCondExpr
<AttrCondExprTag ~NewExpr2's>
<AttrCondExprStr ~ (A="vald" OR A="val44") OR (B="val3" OR B="val33")'>
<AttrCondState “Active's>
> # end of AttrCondExpr
> # end of AttrCondExprCatalog

The following statements create an empty filter catalog:

<AttrCondExprCatalog
> # end of AttrCondExprCatalog

All MIF 8 documents contain attribute-value pairs.

To create a catalog of attributes with values, use the FghcvvtXcnwguEcvengi statement as illustrated in the following
example:

<DefAttrValuesCatalog
<DefAttrValues
<AttributeTag "A'>
<AttributevValue “vall's
<Attributevalue “val2's>
> # end of DefAttrValues
<DefAttrValues
<AttributeTag "B's>
<AttributevValue ~val3'>

44

ADOBE FRAMEMAKER | 45
MIF Reference

<AttributevValue “val4d's>
> # end of DefAttrValues
> # end of DefAttrValuesCatalog

The following statements create a catalog of attributes without values:
<DefAttrValuesCatalog
> # end of DefAttrValuesCatalog

Including template files

When you write an application, such as a filter or a database publishing application, to generate a MIF file, you have
two ways to include all formatting information in the file:

+ Generate all paragraph formats and other formatting information directly from the application.

+ Create a template document in FrameMaker, save it as a MIF file, and include the template file in your generated
MIF file.

It’s usually easier to create a template in FrameMaker than it is to generate the formatting information directly.
To create the template as a MIF file, do the following:

1 Create the template in FrameMaker and save it as a MIF file.

2 Edit the MIF file to preserve the formatting catalogs and the page definitions and delete the text flow.

3 Generate the text flow for your document and use the kpenwfg statement to read the formatting information
from the template.

Creating the template

Create the template document in FrameMaker. Define the paragraph and character formats, table formats, variable
and cross-reference formats, master pages, and any other formatting and page layout information that your
document needs. Generally, a template contains some sample lines that illustrate each format in the document. Save
the completed template as a MIF file. For more information about creating templates, see your user’s manual.

Editing the MIF file

You need to edit the resulting MIF file to extract just the formatting and page layout information.
1 Delete the MIFFile statement.

2 Search for the first body page and locate its TextRect statement.

To find the first body page, search for the first occurrence of >Rcigv{rg"Dgf {Rcige. Suppose the first body page
in your MIF file looks like this:

<Page

<Unique 45155>

<PageType BodyPage >
<PageNum ~1'>

<PageSize 8.5" 11.0">
<PageOrientation Portrait >
<PageAngle 0.0>
<PageBackground ~Default's>
<TextRect

<ID 7>

<Unique 45158>

<Pen 15>

<Fill 15>

ADOBE FRAMEMAKER
MIF Reference

<PenWidth 1.0 pt>
<ObColor “Black'>
<DashedPattern
<DashedStyle Solids>
> # end of DashedPattern
<ShapeRect 1.0" 1.0" 6.5" 9.0">
<TRNext 0>
> # end of TextRect
> # end of Page
The ID for the vgzvTgev on this body page is 7. Remember this ID number. If there is more than one vgzvTgev

on the body page, remember the ID of the first one.

3 Locate the text flow associated with the TextRect statement on the first body page and delete it.

Suppose you are working with the previous example. You would search for the statement >vgzvTgevKF" e to
locate the text flow. It might look similar to the following:

<TextFlow
<Notes> # end of Notes
<Para
<Unique 45157>
<PgfTag “MyFormat's>
<ParalLine
<TextRectID 7>
<String "A single line of text.'s>

> # end of Para
> # end of TextFlow
Delete the entire text flow.

4 From your application, generate a MIF file that includes the edited template file.

Suppose the edited MIF file is called o {vgorncvgookh. Your application would generate the following two lines
at the top of any new MIF file:
<MIFFile 2015> # Generated by my application

include (mytemplate.mif)
The kpenwfg statement is similar to a C skpenwfg directive. It causes the MIF interpreter to read the contents of

the file named o{vgorncvgookh. For more information about filenames in MIF, see “Device-independent
pathnames” on page 7.

5 From your application, generate a text flow that contains the entire document contents.

The text flow should use the ID and tag name of the text flow you deleted from the template file; this associates
the new text flow with the first body page in the template.

The entire generated MIF file would look something like this:

<MIFFile 2015> # Generated by my application
include (mytemplate.mif)
<TextFlow

<TFTag "A'>

<TFAutoConnect Yes>

<TextRectID 7>

<Para
<ParalLine
<String "This is the content of the generated document.'s>
>
> # end of Para
> # end of TextFlow

A user can open the generated MIF file to get a fully formatted FrameMaker document.

46

ADOBE FRAMEMAKER | 47
MIF Reference

Setting View Only document options

You can use MIF statements to control the display of View Only documents. A View Only document is a locked
FrameMaker hypertext document that a user can open, read, and print but not edit. You can use MIF statements to
control the appearance and behavior of the document window and to control the behavior of cross-references in
locked documents.

The MIF statements for View Only documents are intended for hypertext authors who want more control over
hypertext documents. They do not have corresponding commands in the user interface.

The View Only MIF statements described in this section must appear in a Fgewogpv statement. These statements
have no effect in an unlocked document. Make sure that the Fgewogpv statement also includes the following
substatement:

<DViewOnly Yes>

Changing the document window
You can use MIF statements to change the appearance and behavior of the document window in the following ways:

« To suppress the document window menu bar, use the following statement:

>FXkgyQpn{ YkpOgpwdct "Pge

This statement has no effect in the Windows version of FrameMaker because those versions have an application
menu bar rather than a document window menu bar.

+ To suppress the display of scroll bars and border buttons in the document window, use the following statement:
>FXkgyQpn{YkpDgt fgtu"Pge

« To suppress selection in the document window, include the following statement:

>FXkgyQpn{Ugngev"Pge

You can normally select text and objects in a locked document by Control-dragging in UNIX and Windows versions.
Specifying >FxkgyQpn{Ugngev"Pqge prevents all selection in a locked document.

« To suppress the appearance of a document region pop-up menu, use the statement:
>FXkgyQpn { YkpRgrwr "Pge

A document region pop-up menu is a menu activated by the right mouse button. For example, in UNIX versions of
FrameMaker, the Maker menu can be accessed by pressing the right mouse button. If the FxkgyQpn { YkpRgrwr
statement has a value of Pq, the background menu does not appear when the right mouse button is pressed. This
statement has no effect in the Windows version of FrameMaker.

+ To make a window behave as a palette window, use the following statement:

>FXkgyQpn{YkpRcngvvg" [gue

A palette window is a command window, such as the Equations palette, that exhibits special platform-dependent
behavior. In UNIX versions of FrameMaker, a palette window can only be dismissed; it cannot be closed to an icon.
In Windows versions, a palette floats outside the main application window and cannot be unlocked. To edit the
palette, you need to reset the FxkgyQpn{ YkpRcngvvg statement to Pg in the MIF file before opening it in
FrameMaker.

Using active cross-references

A locked document automatically has active cross-references. An active cross-reference behaves like a hypertext
igvgnkpm command; when the user clicks on a cross-reference, FrameMaker displays the link’s destination page. By
default, the destination page is shown in the same document window as the link’s source.

ADOBE FRAMEMAKER
MIF Reference

You can use MIF statements to turn off active cross-references and to change the type of hypertext link that the cross-

reference emulates. (By default, cross-references emulate the igqvgnkpm behavior.)

+ To make cross-references emulate the grgpnkpm command, which displays the destination page in a new
document window, use the following statement:

>FXkgyQpn{ZTgh"QrgpDgjcxkgte

Use this setting to allow users to see both the source page and the destination page.

+ To turn off active cross-references, use the following statement:

>FXkgyQpn { ZTgh"PqvCevkxg@

Use this setting to emulate the behavior in earlier FrameMaker versions.

You can use the FXkgyQpn {Ugngev statement to control whether active cross-references highlight the marker

associated with destination text.

« When cross-references are active and >FxkgyQpn{Ugngev" [gue is specified, clicking a cross-reference in the
document highlights the marker associated with the destination text.

« When cross-references are active and >FxkgyQpn{Ugngev"WugtQpn{e is specified, clicking a cross-reference
does not highlight the marker. However, the user can select text in the locked document.

« When cross-references are active and >FxkgyQpn {Ugngev"Pqe is specified, clicking a cross-reference does not
highlight the marker. The user cannot select text in the locked document.

By default, clicking a cross-reference does not highlight the marker associated with the destination text but the user

can select text in the locked document.

Disabling commands

You can disable specific commands in a View Only document. For example, a hypertext author might disable copy
and print commands for sensitive documents.

To disable a command, you must supply the hex code, called an fcode, that internally represents that command in
FrameMaker. For example, you can disable printing, copying, and unlocking the document by supplying the
following statements:

<DViewOnlyNoOp 0x313># Disable printing
<DViewOnlyNoOp 0x322># Disable copying
<DViewOnlyNoOp O0xF00># Disable unlocking the document

The following table lists the files where you can find fcodes for commands:

For this version Look here

UNIX &HOJQOG1lhokpkvlncpiwciglegphkiwklEgoocpfu, where ncpiwcigisthe languagein
use, such as wugpinkuj

Windows install_dirihokpkviegphkiwkleofu.ehi, where install_dir is the directory where
FrameMaker is installed

See the online manual Customizing FrameMaker for more information about the commands file in UNIX versions.

Applications of MIF

You can use MIF files any time you need access to FrameMaker’s formatting capabilities. This section provides some
examples of how MIF can be used and some tips on minimizing MIF statements.

You can use MIF to:

48

ADOBE FRAMEMAKER | 49
MIF Reference

Share files with earlier versions of FrameMaker
+ Perform custom document processing
« Write import and export filters for FrameMaker documents

« Perform database publishing

Sharing files with earlier versions
FrameMaker automatically opens documents created with an earlier version of FrameMaker (2.0 or higher).

To use an earlier version of FrameMaker (such as 5.5) to edit a document created with a later version of FrameMaker
(such as 7.0):

1 Use the newer FrameMaker product version to save the document in MIF.
2 Open the MIF file with the earlier version of FrameMaker.

Note: Earlier versions of FrameMaker do not support all MIF statements in the current version. For example, when you
use version 5.5.6 or earlier of FrameMaker to open a document created in version 6.0 or later, MIF statements specifying
optimized PDF size are skipped. You can ignore the related error messages. However, to regain the optimized PDF size
you will need to use the Optimize Pdf Size command. For a description of the differences between MIF 7.0 and previous
versions, see , “MIF Compatibility.”

Modifying documents

You can use MIF to perform custom document processing. For example, you can create a program or write a series
of text editor macros to search for and change paragraph tags in a MIF file. You can also edit a MIF book file to easily
add or change document names in a book.

For an example of using MIF to easily update the values in a table, see “Updating several values in a table” on
page 240.

Writing filters

MIF allows you to write filters to convert data from other formats to FrameMaker format and to convert a MIF file
to another document format. While FrameMaker will change in future versions, MIF will always remain compatible
with earlier versions, so your filters can continue to write MIF files.

Import filters

MIF statements can completely describe a FrameMaker document or book file. Because documents created with
most word processors and text editors have fewer features than a FrameMaker document, your import filters
normally use only a subset of MIF statements.

To write an import filter, first determine which MIF statements describe the format of the input file. Then write a
program to translate the file from its original file format to MIF. If the imported document doesn’t use sophisticated
formatting and layout features, don’t include the corresponding MIF statements in your filter.

For example, if the file was created by a word processor, your filter should convert document text to a single
VgzvHngy statement. Ignore line and page breaks (except forced breaks) in your source document, because the text
will be repaginated by the MIF interpreter. If the document uses style sheets, convert paragraph styles to paragraph
formats in a RihEcvengi statement, and convert table styles to table formats in a VdnEcvengi statement.

ADOBE FRAMEMAKER
MIF Reference

Output filters

You can write output filters that convert a MIF file to any format you want. While you should be familiar with all
MIF statements to determine which ones you need to translate a FrameMaker document, your output filter doesn’t
need to convert all the possible MIF statements.

In most cases, a MIF description of a FrameMaker document contains more information than you need. Because
MIF appears as a series of nested statements, your output filter must be able to scan a MIF file for the information it
needs and skip over statements that it will not use.

Installing a filter

In UNIX versions, you can set up FrameMaker to automatically start a script that runs a filter based on the filename
suffix. The filter can convert a file to a MIF file. FrameMaker then interprets the MIF file, storing the results in a
FrameMaker document. For more information about installing your filter, see the online manual Customizing
FrameMaker.

Minimizing MIF statements
The following tips may help you minimize the number of MIF statements that your filter needs to generate:

+ If youare not concerned about controlling the format of a document, use the default formats that FrameMaker
provides for new documents. The user can always change formats as needed within the FrameMaker document.

+ Ifyouare filtering a document from another application into FrameMaker and then back to the application, you
may want to import the filter’s MIF file into a FrameMaker document, save the document as a MIF file, and then
convert the file back to the original format from the MIF file generated by FrameMaker. This technique takes
advantage of FrameMaker’s syntactically complete MIF statements, but allows your filter to write a shorter MIF
file.

« Ifyour filter needs to generate fully-formatted MIF files, you can minimize the number of formatting statements
by creating a template in FrameMaker, saving the template as a MIF file, and then including the MIF template
file in your filter’s generated document. You must edit the saved MIF template (see “Including template files” on
page 45). An advantage of this technique is that you can use the same template for more than one document.

+ Define macros to ease the process of generating statements. For an example of using macros, see “Text example”
on page 231.

Database publishing

You can use MIF files to import information from an external application, such as a database, into a FrameMaker
document. This type of information transfer is often called database publishing. For example, you can write a C
program or a database script to retrieve information from a database and store that information as a MIF file. A user
can then open or import the MIF file to get a fully formatted FrameMaker document that contains up-to-date infor-
mation from the database.

There are four key elements to a typical database publishing solution:
+ The database provides a system to enter, manipulate, select, and sort data. You can use any database that can
create text-based output files.

« MIF provides the data interchange format between the database and FrameMaker. MIF can completely describe
a document in ASCII format, including information such as text and graphics, page layout, and indexes and
cross-references.

« FrameMaker provides the text formatting. FrameMaker reads MIF files and dynamically manages line breaks,
page breaks, headers and footers, and graphics. The user can view, print, save, or even navigate through an online
document using hypertext commands.

50

ADOBE FRAMEMAKER
MIF Reference

« Optional control programs allow you to tightly integrate the database and FrameMaker. Some database
publishing applications are controlled entirely from the database system or through hypertext commands
embedded in a FrameMaker document. More complicated applications may require an external control
program, such as a C program that issues queries and selects a FrameMaker document template.

Text

=
5
=R
o
S
o
<
=
(¢}
3
g

CAD or Other
Illustration

Packages

MIF (ASCII text)

&

el
1‘:‘”‘:‘:‘ “““““‘

Database

For an example of a database publishing application, see “Database publishing” on page 241.

Debugging MIF files

When FrameMaker reads a MIF file, it might detect errors such as unexpected character sequences. In UNIX and
Windows versions, FrameMaker displays messages in a console window. In the Windows version, you must turn on
Show File Translation Errors in the Preferences dialog box to display messages in a window. If FrameMaker finds an
error, it continues to process the MIF file and reads as much of the document as possible.

When you are debugging MIF files, you should examine the error messages for clues. The MIF interpreter reports
line numbers for most errors. For a description of MIF error messages, see , “MIF Messages.”

In some cases, the MIF interpreter reports an “invalid opcode” message for a statement. If the statement seems
correct to you, check the statements above it. A missing right angle bracket can cause the interpreter to parse a
statement incorrectly.

If the MIF interpreter brings up an empty document when it reads your file, it has stopped trying to interpret your
file and opened an empty custom document instead. Close the document and check your MIF file for errors. Try
adding a xgtdqug statement to your file to get more complete messages.

If your MIF statements are syntactically correct but cause unexpected results in the document, check for mismatched
ID numbers and check the placement of statements. Many MIF statements are position-dependent and can cause
errors if they appear in the wrong place in a file. For example, an cvdn statement that comes before its corresponding
Vdn statement causes an error.

51

ADOBE FRAMEMAKER | 52
MIF Reference

Here are some additional tips for debugging MIF files:

+ Use the Xgtdqug statement to generate comments. To debug a specific section of a MIF file, you can precede the
section with the">xgtdqug" [gue"statement and end the section with the">Xgtdqug" Pge"statement.

+ Make sure angle brackets are balanced.

« Make sure that MIF statement names are capitalized correctly. MIF statement names and keyword values are
case-sensitive.

+ Make sure that string arguments are enclosed in straight single quotation marks. (See “MIF data items” on page 5
for an example.)

» Make sure ID numbers are unique.

+ Make sure that every table anchor has a corresponding table instance, and that every table instance has an anchor
in the text flow.

+ Make sure that tag names with spaces are enclosed in straight single quotation marks.
+ Make sure paired statements are balanced. For example, ZTgh and ZTghGpf statements must be paired.
« Make sure that right angle bracket (>) and backslash (\) characters in text are preceded by a backslash.

+ Make sure that hexadecimal characters, for example “zgs, have a space after them.

Other application tools

The Frame Developer’s Kit (FDK) provides tools that you can use to write filters and to perform custom document
processing. The FDK includes the Application Program Interface (API), which you can use to create a C application
that can create and save documents, modify documents, and interact with the user. The FDK also includes the Frame
Development Environment (FDE), which allows you to make your FDK clients portable to the platforms that
FrameMaker supports.

MIF files can be used by C applications, text processing utilities, or UNIX shell scripts. You might want to work
directly with MIF files if you are filtering large numbers of files in batch mode. You also might want to work with
MIF files if you are doing simple document processing, such as changing a few tag names, or if you are setting options
for View Only documents.

You can use the FDK and MIF files together; for example, a database publishing application can extract values from
a database and write out the information as a table in a MIF file. An FDK client can then automatically open the MIF
file as a FrameMaker document.

Where to go from here

This chapter has given you a start at working with MIF files. You can use the information in this chapter as guidelines
for working with similar MIF statements. Once you have experimented with basic MIF files, you can learn about
other MIF statements by creating small FrameMaker documents that contain a specific feature and saving these
documents as MIF files. Because FrameMaker writes complete and precise MIF code, it is your ultimate source for
learning about MIF statements.

For more information about document components not described in this chapter, see the MIF statement descrip-
tions in , “MIF Document Statements”, , “MIF Book File Statements”, and , “MIF Statements for Structured
Documents and Books”.

‘53

Chapter 3: MIF Document Statements

This chapter describes the structure of MIF document files and the MIF statements they can contain. Most MIF
statements are listed in the order that they appear in a MIF file, as described in the following section. If you are
looking for information about a particular statement, use this manual’s statement index to locate it. If you are looking
for information about a type of object, such as a table or paragraph, use the table of contents to locate the MIF state-
ments that describe the object.

MIF file layout

The following table lists the main statements in a MIF document file in the order that Adobe® FrameMaker® writes
them. You must follow the same order that FrameMaker uses, with the exception of the macro statements and control
statements, which can appear anywhere at the top level of a file. Each statement, except the OKHHkng statement, is
optional. Most main statements use substatements to describe objects and their properties.

Statement Description

MIFFile Labels the file as a MIF document file. The OKHHkng statement is required and must be
the first statement in the file.

Control statements Establish the default units in a Wpkvu statement, the debugging setting in a Xgtdqug
statement, and comments in a Eqoogpv statement. These statements can appear
anywhere at the top level as well as in some substatements.

Macro statements Define macros with a fghkpg statement and read in files with an kpenwfg statement.
These statements can appear anywhere at the top level.

ColorCatalog Describes document colors. The Eqngt Ecvengi statement contains EQngt state-
ments that define each color and tag.

ConditionCatalog Describes condition tags. The EgqpfkvkgpEcvengi statement contains Egpfkvkagp
statements that define each condition tag and its properties.

BoolCondCatalog Describes Boolean Condition Expressions.The Bool CondCatalog statement contains
BoolCond statements that define each Boolean condition expression with its
show/hide properties.

CombinedFontCatalog Describes combined fonts. The EqodkpgfHgpvEcvengi statement contains
EqodkpgfHgpvFghp statements that define each combined font and its component
fonts.

PgfCatalog Describes paragraph formats. The RihEcvengi statement contains R1h statements

that define the properties and tag for each paragraph format.

ElementDefCatalog Defines the contents of the Element Catalog for a structured document. For more infor-
mation, see , “MIF Statements for Structured Documents and Books.”

FmtChangeListCatalog Defines the contents of the Format Change List Catalog for a structured document. For
more information, see , “MIF Statements for Structured Documents and Books.”

DefAttrValuesCatalog Defines the DefAttrValuesCatalog for a structured document. For more information, see
, “MIF Statements for Structured Documents and Books.”

AttrCondExprCatalog Defines the AttrCondExprCatalog for a structured document. For more information, see
, "MIF Statements for Structured Documents and Books.”

ADOBE FRAMEMAKER

Statement

Description

FontCatalog

Describes character formats. The HgpvEcvengi statement contains Hgpv statements
that define the properties and tag for each character format.

RulingCatalog

Describes ruling styles for tables. The TwnkpiEcvengi statement contains Twnkpi
statements that define the properties for each ruling style.

TblCatalog

Describes table formats. The VdnEcvcngi statement contains VdnHgtocv state-
ments that define the properties and tag for each table format.

StyleCatalog

Describes object styles. The Uv { ngEcvcngi statement contains Uv { ng statements
that define the properties and tags for each object style.

KumihanCatalog

Contains the Kumihan tables that specify line composition rules for Japanese text.

Views

Describes color views for the document. The Xkgyu statement contains Xkgy state-
ments that define which colors are visible in each color view.

VariableFormats

Defines variables.The XctkcdngHgtocvu statement contains XctkedngHgtocv
statements that define each variable.

MarkerTypeCatalog

Defines a catalog of user-defined markers for the current document. The Octmgt V{rg-
Ecvcngi statement contains OctmgtV{rgEcvcngi statements that specify each
user-defined marker.

XRefFormats

Defines cross-reference formats. The ZTghHgt ocvu statement contains ZTgh-
Hgtocv statements that define each cross-reference format.

Document

Controls document features such as page size, margins, and column layout. Because the
MIF interpreter assumes the same page defaults as the New command, this section is
necessary only if you want to override those default settings.

BookComponent

Provides the setup information for files generated from the document. DggmEgorg-
pgpvV statements describe the filename, filename suffix, file type, and paragraph tags or
marker types to include.

InitialAutoNums

Provides a starting value for the autonumber series in a document.

Dictionary

Lists allowed words in the document.

AFrames

Describes all anchored frames in the document. The CHt cogu statement contains
Htcog statements that define the contents ID number of each anchored frame. Later in
the MIF file, where the document contents are described, the MIF file must include an
CHt cog statement that corresponds to each Ht cog statement. The CHt cog statement
identifies where a specific anchored frame appears in a text flow; it need only supply the
frame’s ID number.

Tbls

Describes all tables in the document. The Vdnu statement contains Vdn statements that
define the contents of each table and its ID number. Later in the MIF file, where the docu-
ment contents are described, the MIF file must include a short CVdn statement that corre-
sponds to each Vdn statement. The CVdn statement identifies where a specific table
appears in a text flow; it need only supply the table’s ID number.

Page

Describes the layout of each page in the document. The description includes the layout of
each page, the dimensions of the text frames, and the objects and other graphic frames
on that page. A MIF file created by FrameMaker includes a Rc ig statement for each page
in the document, including the master pages. When you write an import filter, you can
omit Rcig statements; the MIF interpreter repaginates the document as needed.

InlineComponentsInfo

Describes the mini table of contents (mini TOC) in the document. The KpnkpgEgorg-
pgpvuKphg statement contains KpnkpgEgorgpgpvKphg statement that define
the properties of the mini TOC.

MIF Reference

54

ADOBE FRAMEMAKER
MIF Reference

Statement Description

TextFlow Represents the actual text in the document. Within VgzvHngy statements, the text is
expressed in paragraphs which in turn contain paragraph lines. Line endings of
RctcNkpg statements are not significant because the MIF interpreter wraps the
contents of Rct cNkpg statements into paragraphs.

MIFFile statement

The oxHHkng statement identifies the file as a MIF file. The oxHHkng statement is required and must be the first line
of the file with no leading white space.

Syntax

>OKHHkng" xgtukgp@" % egqoogpv (Required) Identifies a MIF file

The xgtukgp argument indicates the version number of the MIF language used in the file, and egoogpv shows the
name and version number of the program that generated the file. For example, a MIF file saved in FrameMaker (2015
release) begins with the following line:"

<MIFFile 2015> # Generated by FrameMaker 12.0.2.366

MIF is compatible across versions, so a MIF interpreter can parse any MIF file. The results may sometimes differ
from your intentions if a MIF file describes features that are not included in FrameMaker that reads the MIF file. For
more information, see , “MIF Compatibility.”

Comment statement

The Eqoogpv statement identifies an optional comment.

Syntax

<Comment "eqoogpv/vgzvs Identifies a comment

Usage
Comments can appear within Eqoogpv statements, or they can follow a number sign (#). When it encounters a
number sign, the MIF interpreter ignores all text until the end of the line, including angle brackets.

Because Eqoogpv statements can be nested within one another, the MIF interpreter examines all characters following
an angle bracket until it finds the corresponding angle bracket that ends the comment.

<Comment - The following statements define the paragraph formatss>

<Comment <These statements have been removed: <Font <FBold> <FItalic>>>>

The MIF interpreter processes number signs within Eqoogpv statements as normal comments, ignoring the
remainder of the line.

<Comment - When a number sign appears within a <Comments> statement,

the MIF interpreter ignores the rest of the characters in that

line--including angle brackets < >.>
End of <Comment> Statement.

55

ADOBE FRAMEMAKER | 56
MIF Reference

Macro statements

MIF has two statements that allow you to define macros and include information from other files. Although these
statements usually appear near the beginning of a MIF file, you need not put them in that position. However, the
MIF interpreter does not interpret a macro that occurs before its definition.

define statement

The fghkpg statement creates a macro. When the MIF interpreter reads a MIF file, it replaces the macro name with
its replacement text. A £ghkpg statement can appear anywhere in a MIF file; however, the macro definition must
appear before any occurrences of the macro name.

Syntax

fghkpg"*pcog. " tgrncegogpv+ Creates a macro

Usage

Once a macro has been defined, you can use the macro name anywhere that the replacement text is valid. For
example, suppose you define the following macro:

fghkpg"*Dgnf . ">Hgpv">HYgkijv"bDgnf) @@+

When you use the macro in MIF statements, write >Dgnfe. The interpreter replaces >Dgnfe"with >Hgpv">Hygkijv"

bDgnf) @ee. Note that it retains the outer angle brackets in the replacement text.

Note that when you use a macro in a MIF file, you must enclose macro names in brackets to comply with the MIF
syntax (for example, write >Dgnfe instead of Dgnf). The MIF parser requires these brackets to interpret the macro
correctly.

include statement

The kpenwfg statement reads information from other files. It is similar to an $kpenwfg statement in a C program.
When the MIF interpreter reads a MIF file, it replaces the kpenwfg statement with the contents of the included file.
An kpenwfg statement can appear anywhere in a MIF file. However, make sure that the contents of the included file
appear in a valid location when they are read into the MIF file.

Syntax

kpenwfg"* rcvjpcog+ Reads in afile

Usage

The rcvipcog argument specifies a UNIX-style pathname, which uses a slash (/) to separate directory names (for
example, 1wut1fgelvgorncvg0okh). For the Windows version of FrameMaker, use the following guideline for
specifying absolute pathnames:

« For Windows versions, start an absolute pathname with the drive name. For example, to include the file
o{hkngofge from the directory o{ £kt on the e< drive, specify the pathname e<10{fkt1o{hkngofqge. Don’t
start an absolute path with a slash (/).

If you specify a relative pathname, the MIF interpreter searches for the file to include in the directory or folder that

contains the file being interpreted. In UNIX versions of FrameMaker, the MIF interpreter also searches the
&HOJQOG1hokpkv and the sHOJQOG1hokpkvihknvgtu directories for a file with a relative pathname.

ADOBE FRAMEMAKER
MIF Reference

In general, you would use an kpenwfg statement to read a header file containing £fghkpg statements that a filter
needs to translate a file. Isolate the data in a header file to simplify the process of changing important mappings. You
can also use an kpenwfg statement to read in a template file containing formatting information. Your application can
then simply generate a document’s text. For more information, see “Including template files” on page 45.

Track edited text

Reviewers can edit FrameMaker documents sent for review with the Track Text Edit feature enabled. In a MIF file,
you can enable the Track Text Edit feature using the FvtcemEjcpiguQp statement. FrameMaker retains the
Windows/Unix login name of the reviewer and a timestamp indicating the time of the edit in each of the edits. Before
you accept all text edits, you can preview the final document with all the text edits or the text edits by a specific
reviewer incorporated in the document. Alternatively, you can preview the original document without the text edits
incorporated in the document. To preview how a document will appear if you accept all text edits or reject all text

edits, use the FvtcemEjcpiguRtgxkgyUvevg statement.

Syntax

<DTrackChangesOn boolean>

Preserves the On/Off state of the Track Text Edit feature

<DTrackChangesPreviewState integers

Preserves the preview state of the Track Text Edit feature
The preview state can have one of the following values:

Preview Off: DTrackChangesPreviewState set with the
value No

Preview OnFinal: DTrackChangesPreviewState set with the
valueAll

Preview On Original: DTrackChangesPreviewState set with
the value Yes

<DTrackChangesReviewerName strings>

The windows/unix login name of the reviewer whose edits are visible
in the document

The Show Reviewer Name popup menu lets you select the name of the
reviewer whose changes you want to display in the document. The
reviewer’s name selected in the Show Reviewer Name popup menu
appears in this tag. When you select All Users, this tag is empty.

<ReviewerName strings

The windows/unix login name of the reviewer who made a particular
change

<ReviewTimeInfo strings>

The time when an edit was made

The number of seconds past after 00:00 hours, Jan 1, 1970 UTC

Conditional text

FrameMaker documents can contain conditional text. In a MIF file, the condition tags are defined by a Eqpfkvkaqp
statement, which specifies whether the condition tag is hidden or shown. The condition tags for a document are

stored in a EqpfkvkgpEcvengi statement.

Within the text flow, Eqpfkvkgpen and Wpegpfkvkgpen statements show where conditional text begins and ends.

57

ADOBE FRAMEMAKER

ConditionCatalog statement

The EqpfkvkgpEcvengi statement defines the contents of the Condition Catalog. A MIF file can have only one
EqpfkvkgpEcvengi statement, which must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax

<ConditionCatalog

>Egqpfkvkgp...>

Defines a condition tag (see “Condition statement,” next)

>Egpfkvkgp...>

Additional statements as needed

End of EgqpfkvkgpEcvengi statement

Condition statement

The Egqpfkvkgp statement defines the state of a condition tag and its condition indicators, which control how condi-
tional text is displayed in the document window. The statement must appear in a EqpfkvkgpEcvengi statement. The

property statements can appear in any order.

Syntax

<Condition

>EVci"uvtkpi@

Condition tag string

>EUvcvg"mg{ygtfe

Whether text with this tag is shown or hidden

mg {ygt £ can be one of:
EJkffgp

EUjQyp

>EUv{ng"mg{yqgtfe

Format of text with this condition

mg{ygt £ can be one of:
ECuKu

EWpfgtnkpg
EFgwdngWpfgtnkpg
EUvtkmg
EQxgtnkpg
EEjcpigDct

>EEqngt " vciuvtkpi@

Color for condition tag (see “ColorCatalog statement” on page 84)

>EUgrctcvkgp"kpvgigt@

Color for condition tag; no longer used, but written out by FrameMaker for backward-
compatibility (see “Color statements” on page 263)

>EDcemitqwpfEqngt " vci-
uvtkpi@

Background color of the conditional tag's text

End of Egqpfkvkgp statement

Conditional and Unconditional statements

The Egpfkvkgpen statement marks the beginning of conditional text and the wpegpfkvkgpen statement marks the

end. These statements must appear in a Tqy or RctcNkpg statement.

58

ADOBE FRAMEMAKER
MIF Reference

Syntax
<Conditional Begin conditional text
>KpEgpfkvkagp" vciuvtkpi@ Specifies condition tag from Condition Catalog
>KpEgpfkvkagp" veiuvtkpi@ Additional statements as needed
> End of Egpfkvkgpcn statement
<Unconditionals> Returns to unconditional state

System generated colors

FrameMaker will automatically generate new colors when multiple tags are applied on text. The ColorTag tag that
is generated is named with the "fm_gen_" prefix and appended with a system-generated integer.

Boolean expressions

A Boolean expression is defined in a DggnEqgp£ statement.

BoolCondCatalog statement

You can create Boolean expressions by linking different conditional tags using Boolean operators. In a MIF file,
Boolean condition expressions are defined using a Boolcond statement. The Boolean expressions for a document
are stored in a BoolCondCatalog statement.

The Boolcondcatalog statement defines the contents of Boolean Expression Catalog for conditional text. A MIF
file can have only one BoolCondcatalog statement, after Condition Catalog.

Syntax
<BoolCondCatalog
>DggnEqpf000000000@" Defines a Boolean expression
>DgqnEgpf000000000@"
> # End of BoolCondCatalog

BoolCond statement

The Boolcond statement defines a new boolean expression, which is used to evaluate the show/hide state of condi-
tional text. Statement must appear in BoolCondCatalog statement. The property statement can appear in any order.

Syntax

<BoolCond

>DggnEgpfVveci"uvtkpi@ Tag name used for Boolean expressions.

59

ADOBE FRAMEMAKER

>DggnEgpfGzrt"uvtkpi@

Boolean expression used for show/hide evaluation of conditional
text. (OR, NOT, and AND are the operators and condition tags are
operands within a quoted string) For example, “Comment” OR
“Tagl”.

>DggnEgpfUvcvg"uvtkpi@"

Indicates whether the evaluation of showing or hiding conditional
text is based on this expression.

The string must contain one of the following values:
e 'Active'

e 'Inactive’

MIF Reference

> # End of BoolCond

Filter By Attribute

Elements in a structured document can have one or more attributes associated with them. Using FrameMaker, you

can filter a structured document based on the value of these attributes.

All MIF 8 documents contain a catalog of predefined attribute values. If no values are defined, the catalog remains
empty. Each definition in a catalog includes an attribute tag (cvvtkdwvgvei) and the corresponding list of values

(vatkdwngcnwg).

DefAttrValuesCatalog statement

The FghcvvtXcnwguEcvengi statement is used to define the contents of the Defined Attribute Values catalog. A

MIF file can contain one FghCvvtXcnwguEcvengi statement only.

Syntax

<DefAttrValuesCatalog

>FghCvvtXcnwgu000000000@ Defines an attribute and its corresponding values
>FghCvvtXcnwgu000000000@ Additional statements, as required.
> # End of DefAttrValuesCatalog

All MIF 8 documents contain a catalog of predefined filters.

DefAttrValues statement

The FghcvvtXcnwgu statement is used to define a set of attributes with relevant values.

Syntax
<DefAttrValues
>CvvtkdwvgVci"""string@ Attribute Name
>CvvtkdwvgXcnwg" string@" Attribute Value
>CvvtkdwvgXcnwg" st ring@ Additional attribute values, as required.
> # End of DefAttrValues

60

ADOBE FRAMEMAKER | 61
MIF Reference

AttrCondExprCatalog statement
The cvvtEqpfGzrtEcvengi statement is used to define the contents of the Attribute Expression catalog. A MIF file
can contain one CvvtEqgpfGzrtEcvengi statement only.

Syntax
<AttrCondExprCatalog
">CvvtEqgqpfGzrt000000000@ Defines a filter
>CvvtEgqpfGzrt000000000@ Additional filters, as required.
> # End of AttrCondExprCatalog

AttrCondExpr statement

The cvvtEqpfGzrt statement is used to define a set of attributes with values.

Syntax
<AttrCondExpr
>CvvtEgqpfGzrtVeci"uvtkpie Expression Tag string
>CvvtEgpfGzrtUvt"uvtkpie Expression string
>CvvtEgpfUvevg" "uvtkpie@ Indicates whether the At t rCondExpr is applied to the document.
The string must have one of the following values:
'Active’
'Inactive’
> # End of AttrCondExpr

Paragraph formats

A paragraph format is defined in a Rih statement. Paragraph formats can be defined locally or stored in the
Paragraph Catalog, which is defined by a RihEcvengi statement.

PgfCatalog statement

The RihEcvengi statement defines the contents of the Paragraph Catalog. A MIF file can have only one RihEcvengi
statement, which must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax
<PgfCatalog
>Rih..> Defines a paragraph format (see “Pgf statement” on page 62)
>Rih..> Additional statements as needed

> End of RihEcvengi statement

ADOBE FRAMEMAKER
MIF Reference

Usage

If you don’t include a RihEcvengi statement, the MIF interpreter uses the paragraph formats defined in pgyvgo-
rnevg. (For information on defaults specified in templates, see page 3.) If you include RihEcvengi, paragraph
formats in the MIF file replace default formats. The MIF interpreter does not add your paragraph format to the
default Paragraph Catalog, although it provides default values for unspecified properties in a paragraph format (see
“Creating and applying paragraph formats” on page 12).

Pgf statement

The Rih statement defines a paragraph format. Rih statements can appear in many statements; the statement
descriptions show where Rih can be used.

The rih statement contains substatements that set the properties of a paragraph format. Most of these properties
correspond to those in the Paragraph Designer. Properties can appear in any order within a Rih statement, with the
following exception: the RihPwovcdu statement must appear before any veduvgr statements.

Syntax

Basic properties

<Pgf Begin paragraph format

>RihVeci'" tagstringe Paragraph tag name
>RihWugPgzvVci"dggngcp@ Turns on following paragraph tag feature
>RihPgzvVci"vciuvtkpi@ Tag name of following paragraph
>RihHKpfgpv" fkogpukgpe@ First line left margin, measured from left side of current text column
>RihHKpfgpvTgncvkxg"dggngcp@ Used for structured documents only
>RihHKpfgpvQhhugv" fkogpukgp@ Used for structured documents only
>RihNKpfgpv"dimensione@ Left margin, measured from left side of current text column
>RihTKpfgpv"dimensione@ Right margin, measured from right side of current text column
>RihCnkipogpv"mg{ygtfe Alignment within the text column

mg {yqt £ can be one of:

NghvTkijv

Nghv

Egpvgt

Tkijv
">RihFkt"mg{ygtfe Direction of the paragraph.

mg {ygqt £ can be one of:
NVT" /" The direction of the paragraph is set to left to right
TVN" / The direction of the paragraph is set to right to left.

KPJGTKVNVT" / Derive the direction from the parent object. If it
resolves to left to right, then KPJGTKVNVT is assigned to RihFkt.

KPJGTKVTVN" / "Derive the direction from the parent object. If it
resolves to right to left, then KPOGTKVTVN is assigned to RihFkt.

>RihUrDghgtg"dimension@ Space above paragraph

>RihUrChvgt"dimension@ Space below paragraph

62

ADOBE FRAMEMAKER

>RihNkpgUrcekpi "mg{yqtf@

Amount of space between lines in paragraph measured from baseline
to baseline

mg{yqt £ can be one of:
Hkzgf (default font size)
Rtgrgtvkgpen (largest font in line)

>RihNgcfkpi"dimensione

Space below each line in a paragraph

>RihPwoVcdu'" kpvgigte

Number of tabs in a paragraph

The statement is not required for input files; the MIF interpreter calcu-
lates the number of tabs. If it does appear, it must appear before any
VcedUvgr statements; otherwise, the MIF interpreter ignores the tab
settings.

>VcdUvqgr

Begin definition of tab stop; the following property statements can
appear in any order, but must appear within a VedUvgr statement

>VUZ"dimension@

Horizontal position of tab stop

>VUV{rg"mg{yqtfe

Tab stop alignment

mg {yqt £ can be one of:
Nghv

Egpvgt

Tkijv

Fgekocn

>VUNgcfgtUvt "uvtkpie@

Tab stop leader string (for example, *.")

>VUFgekocnEjct" integer@

Align decimal tab around a character by ASClI value; in UNIX versions,
type ocp " cuekk in a UNIX window for a list of characters and their
corresponding ASClI values

@

End of VcdUvqgr statement

>VcdUvqgr...>

Additional statements as needed

Default font properties

>RihHgpv...>

Default font (see page 67)

Pagination properties

>RihRncegogpv"mg{yqt fe

Vertical placement of paragraph in text column

mg {yqt £ can be one of:
cp{yigtg
EgqnwopVgr
RcigVvgr

NRcigVgr
TRcigvgr

>RihRncegogpvUv{ng"mg{yqtfe

Placement of side heads, run-in heads, and paragraphs that straddle
text columns

mg {yqt £ can be one of:
Pgtocn

TwpKp

Ukfgjgcfvgr
UkfgjgcfHktuvDcugnkpg
UkfgjgcfNcuvDcugnkpg
Uvtcffng
UvtcffngPgtocnQpn{

See page 66

MIF Reference

63

ADOBE FRAMEMAKER

>RihTwpKpFghcwnvRwpev" string@

Default punctuation for run-in heads

>RihYkvjRtgx" dggngcp@

[gu keeps paragraph with previous paragraph

>RihYkvjPgzv"dggngcp@

[gu keeps paragraph with next paragraph

>RihDngemUk |g iIntegere

Widow/orphan lines

Numbering properties

>RihCwvgPwo" dggngcp@

[gu turns on autonumbering

>RihPwoHgtocv"uvtkpi@

Autonumber formatting string

>RihPwodgtHgpv" vciuvtkpi@

Tag from Character Catalog

>RihPwoCvGpf " dggngcpe@

[gu places number at end of line, instead of beginning

Advanced properties

>RihJ{rjgpcvg" dggngcp@

[gu turns on automatic hyphenation

>J{rjgpOczNkpgu" integere

Maximum number of consecutive lines that can end in a hyphen

>J{rjgpOkpRtghkz" integere

Minimum number of letters that must precede hyphen

>J{rjgpOkpUwhhkz" integere

Minimum number of letters that must follow a hyphen

>J{rjgpOkpYgtf" integere

Minimum length of a hyphenated word

>RihNgvvgtUrceg" dggngcp@

Spread characters to fill line

>RihOkpYqgtfUrceg"integere

Minimum word spacing (as a percentage of a standard space in the
paragraph’s default font)

>RihQrvYqgtfUrceg" integere

Optimum word spacing (as a percentage of a standard space in the
paragraph’s default font)

>RihOczYqgtfUrceg”integere

Maximum word spacing (as a percentage of a standard space in the
paragraph’s default font)

64

ADOBE FRAMEMAKER

>RihNcpiwcig"mg{ygtfe

Language to use for spelling and hyphenation. Note that FrameMaker
writes this statement so MIF files can be opened in older versions of
FrameMaker. However, the language for a paragraph format or char-
acter format is now properly specified in the RihHgpv and Hgpv
statements (see page 67)

mg {yqt £ can be one of:
PgNcpiwcig
WUGpinkuj
WMGpinkuj

Igtocp
UykuuIgtocp
CwuvtkcIgtocp
Igtocp3; ;8
UykuuIgtocp3;;8
Htgpej
EcpcfkcpHtgpe]j
Urcpkuj

Ecvencp

Kvcnkep
Rgtvwiwgug

Dtc |knkecp

Fcpkuj

Fwvej

Pgtygikcp
P{pgtum

Hkppkuj

Uygfkuj

Lcrepgug
vVtcfkvkgpenEjkpgug
UkornkhkgfEjkpgug
Mgtgcp"

Ctcdke"

Jgdtgy

>RihvgrUgrctcevgt "uvtkpi@

Name of reference frame (from reference page) to put above paragraph

>RihVgrUgrCvKpfgpv" dggngcp@

Used for structured documents only

>RihVgrUgrQhhugv" fkogpukgp@

Used for structured documents only

>RihDgzEqngt "uvtkpi@

The background color for the entire box that surrounds a paragraph.

>RihDgvUgrctcvgt"uvtkpi@

Name of reference frame (from reference page) to put below paragraph

>RihDgvUgrCvKpfgpv" dggngcp@

Used for structured documents only

>RihDgvUgrQhhugv" fkogpukgp@

Used for structured documents only

Table cell properties

>RihEgnnCnkipogpv" mg{yqtf@

Vertical alignment for first paragraph in a cell

mg {yqt £ can be one of:
vgr

Okffng

Dgvvgo

>RihEgnnOctikpu"N"V"T"D@

Cell margins for first paragraph in a cell

>RihEgnnNOctikpHkzgf " dggngcp@

[gu means left cell margin is added to VdnEgnnOct ikpu; Pq
means left cell margin overrides VdnEgnnOct ikpu

>RihEgnnVOctikpHkzgf " dggngcpe

[gu means top cell margin is added to VdnEgnnOct ikpu; Pg
means top cell margin overrides VdnEgnnOct ikpu

MIF Reference

65

ADOBE FRAMEMAKER
MIF Reference

>RihEgnnTOct ikpHkzgf " dggngcp@ [gu means right cell margin is added to VdnEgnnOct ikpu; Pq
means right cell margin overrides VdnEgnnOct ikpu

>RihEgnnDOctikpHkzgf " dggngcp@ [gu means bottom cell margin is added to VdnEgnnOct ikpu; Pq
means width of bottom cell margin overrides VdnEgnnOct ikpu

Miscellaneous properties

>RihNgemgf " dggngcp@ [gu means the paragraph is part of a text inset that obtains its format-
ting properties from the source document. See page 66

>RihCetqgdcvNgxgn" kpvgigt@ Level at which the paragraph is shown in an outline of Acrobat Book-
marks; 2 "indicates that the paragraph does not appear as a bookmark

Usage
Within a RihEcvengi statement, the Rihvei statement assigns a tag to a paragraph format. To apply a paragraph
format from the Paragraph Catalog to the current paragraph, use the Rihvci statement in a RetcNkpg statement.

If the Rihvci statement within a text flow does not match a format in the Paragraph Catalog, then the Rih statement
makes changes to the current paragraph format. That is, a Rih statement after Rihvci specifies how the paragraph
differs from the format in the catalog.

If a document has side heads, indents and tabs are measured from the text column, not the side head. In a table cell,
tab and indent settings are measured from the cell margins, not the cell edges.

Usage of some aspects of the Rih statement is described in the following sections.

Paragraph placement across text columns and side heads

The RihRncegogpvUv{ng statement specifies the placement of a paragraph across text columns and side heads in a
text frame:

« Ifaparagraph spans across all columns and side heads, the RihRncegogpvUv{ng statement is set to Uvtcf fng.

+ Ifa paragraph spans across all columns, but not across the side heads in a text frame, the RihRncegogpvUv{ng
statement is set to UvtcffngPgtocn.

Locked paragraphs and text insets
The RihNgemgf statement does not correspond to any setting in the Paragraph Designer. The statement is used for

text insets that retain formatting information from the source document.

If the >RihNgemgf [gue statement appears in a specific paragraph, that paragraph is part of a text inset that retains
formatting information from the source document. The paragraph is not affected by global formatting performed
on the document.

If the >RihNgemgf "Pge statement appears in a specific paragraph, that paragraph is not part of a text inset, or is part
of a text inset that reads formatting information from the current document. The paragraph is affected by global
formatting performed on the document.

For more information about text insets, see “Text insets (text imported by reference)” on page 138.

Character formats

A character format is defined by a RihHgpv or a Hgpv statement. Character formats can be defined locally or they
can be stored in the Character Catalog, which is defined by a HgpvEcvengi statement.

66

ADOBE FRAMEMAKER | 67
MIF Reference

FontCatalog statement

The HgpvEcvengi statement defines the contents of the Character Catalog. A document can have only one
HgpvEcvengi statement, which must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax
<FontCatalog
>Hgpv...> Defines a character format (see “PgfFont and Font statements,” next)
>Hgpv...> Additional statements as needed
> End of HgpvEcvcngi statement

PgfFont and Font statements

The RihHgpv and Hgpv statements both define character formats. The RihHgpv statement must appear in a Rih
statement. The Hgpv statement must appear in a HgpvEcvengi, Rete, or VgzvNkpg statement.

New statements have been added to the PgfFont and Font statements to express combined fonts in FrameMaker
documents. For more information, see “Combined Fonts” on page 214.

Syntax

<PgfFont | Font
>HVci"veciuvtkpi@ Character format tag name

Font name
>HHcokn{ "uvtkpi@ Name of font family
>HCping"uvtkpi@ Name of angle, such as Qdnkswg
>HYgkijv"uvtkpi@ Name of weight, such as Dgnf
>HXct"uvtkpi@ Name of variation, such as Pcttqy
>HRquvUetkrvPcog"uvtkpi@ Name of font when sent to PostScript printer (see “Font name” on page 70)
>HRncvhgtoPcog" uvtkpi@ Platform-specific font name, only read by the Windows version (see page 71)

ADOBE FRAMEMAKER

Font language

>HNcpiwcig"mg{ygtf@

Language to use for spelling and hyphenation

mg {yqt £ can be one of:
PgNcpiwcig
WUGpinkuj
WMGpinkuj

Igtocp
UykuuIgtocp
Htgpej
EcpcfkcpHtgpe]j
Urcpkuj

Ecvencp

Kvecnkep
Rgtvwiwgug

Dtc |knkep

Fcpkuj

Fwvej

Pgtygikcp
P{pgtum

Hkppkuj

Uygfkuj

Lcrepgug
VtcefkvkgpenEjkpgug
UkornkhkgfEjkpgug
Mgtgcp"

Ctcdke

Jgdtgy

Font encoding

>HGpeqfkpi"mg{ygtf@

Specifies the encoding for this font. This is to specify the encoding for a
double-byte font. If not present, the default is Roman.

mg {yqt £ can be one of these:
HtcogTgocp"
LKUZ242:0UjkhvLKU
DKI7

ID4534/:20GWE
MUE7823/3; ;4

Font size, color, and width

>HUk | g" fkogpukgp@

Size, in points only (or in Q on a Japanese system)

>HEgQngt " veciuvtkpi@

Font color (see “ColorCatalog statement” on page 84)

>HUgrctcvkagp"kpvgigt@

Font color; no longer used, but written out by FrameMaker for backward-
compatibility (see “Color statements” on page 263)

>HUvtgve]"rgtegpve

The amount to stretch or compress the font, where 100% means no change

>HDcemitqwpfEqngt"vciuvtkpi@

Background color of the paragraph text.

Font style

>HWpfgtnkpkpi"mg{ygtfe

Turns on underlining and specifies underlining style

mg {yqt £ can be one of:
HPgWpfgtnkpkpi
HUkping

HFgwdng

HPwogtke

MIF Reference

68

ADOBE FRAMEMAKER

>HOxgtnkpg" dggngcp@

Turns on overline style

>HUvtkmg" dggngcp@

Turns on strikethrough style

>HEjcpigDet " dggngcp@

Turns on the change bar

>HRqukvkagp"mg{ygtf@

Specifies subscript and superscript characters; font size and position relative
to baseline determined by Fgewogpv substatements (see page 94)

mg {yqt £ can be one of:
HPgtocn
HUwrgtuetkrv
HUwduetkrv

>HQwvnkpg" dggngcp@

Turns on outline style

>HUjcfqy"dggngcpe@

Turns on shadow style

>HRcktMgtp" dggngcp@

Turns on pair kerning

>HEcug"mg{yqgtfe

Applies capitalization style to string

mg {yqt £ can be one of:
HCuv{rgf
HUocnnEcru
HNgygtecug
HWrrgtecug

Kerning information

>HFZ" percent@

Horizontal kern value for manual kerning expressed as percentage of an em;
positive value moves characters right and negative value moves characters
left

>HF ["percente@

Vertical kern value for manual kerning expressed as percentage of an em; posi-
tive value moves characters down and negative value moves characters up

>HFY"percent@

Spread value for space between characters expressed as percentage of an em;
positive value increases the space and negative value decreases the space

>HVuwog" dggngcp@

[gu turns on Tsume (variable width rendering) for Asian characters

Filter statements

Valid when text properties are applied to a file imported into FrameMaker

>HRnckp " dggngcp@

Used only by filters

>HDgnf "dggngcp@

Used only by filters

>HKvcnke " dggngcp@

Used only by filters

Miscellaneous information

>HNgemgf " dggngcp@

[gu means the font is part of a text inset that obtains its formatting properties
from the source document

End of R1ihHgpv or Hgpv statement

Usage

Use RihHgpv within a Rih statement to override the default font for the paragraph. Use Hgpv within a HgpvEcvengi
statement to define a font or in a Rctc statement to override the default character format. Substatements in the Hgpv
and RihHgpv statements are optional. Like the Rih substatements, Hgpv substatements reset the current font.

69

ADOBE FRAMEMAKER
MIF Reference

When the MIF interpreter reads a Hqpv statement, it continues using the character format properties until it either
reads another Hgpv statement or reads the end of the Rctc statement. You can set the character format back to its
previous state by providing an empty Hvci statement. A Hgpv statement that does not supply all property substate-
ments inherits the current font state for those properties not supplied.

For more information about creating and applying character formats in a MIF file, see “Creating and applying
character formats” on page 24. For more information about character formats in general, see your user’s manual.

Usage of some aspects of the RihHgpv and Hqpv statements is described in the following sections.

Locked fonts and text insets
The HNgemgf statement does not correspond to any setting in the Character Designer. The statement is used for text

insets that retain formatting information from the source document.

If the >HNgemgf [gue statement appears in a specific character format, that character format is part of a text inset
that retains formatting information from the source document. The character format is not affected by global
formatting performed on the document.

If the >HNgemg£ "Pqe statement appears in a specific character format, either that character format is not part of a
text inset, or that character format is part of a text inset that reads formatting information from the current
document. The character format is affected by global formatting performed on the document.

For more information about text insets, see “Text insets (text imported by reference)” on page 138.

Font name

When a RihHgpv or Hgpv statement includes all of the family, angle, weight, and variation properties, FrameMaker

identifies the font in one or more of the following ways:

+ The statement HRncvhgtoPcog specifies a font name that uniquely identifies the font on a specific platform.

+ The statements HHcokn {, HCping, HYgkijv, and Hxct specify how FrameMaker stores font information inter-
nally.

+ The statement HRquvUetkrvPcog specifies the name given to a font when it is sent to a PostScript printer (specif-
ically, the name that would be passed to the PostScript Hkp£fHgpv operator before any font coordination opera-
tions). The PostScript name is unique for all PostScript fonts, but may not be available for fonts that have no
PostScript version.

For complete font specifications, FrameMaker always writes the HHcokn{, HCping, HYgkijv, HXct, and HRquv-
UetkrvPcog statements. In addition, the Windows version of FrameMaker also writes the HRncvhgtoPcog
statement. A UNIX version of FrameMaker ignores HRncvhgtoPcog.

When FrameMaker reads a MIF file that includes more than one way of identifying a font, it checks the font name
in the following order:

1 Platform name

2 Combination of family, angle, weight, and variation properties

3 PostScript name

If you are writing filters to generate MIF, you do not need to use all three methods. You should always specify the
PostScript name, if it is available. You should use the platform name only if your filter will be run on a specific

platform. A filter running on a specific platform can easily find and write out the platform name, but the name
cannot be used on other platforms.

Font encoding

The >HGpegfkpie statement specifies which encoding to use for a font. The default is Roman, or standard 7-bit
encoding. If this statement is not included for a font, 7-bit encoding is assumed.

70

ADOBE FRAMEMAKER
MIF Reference

This statement takes precedence over all other font attributes. For example, if the document includes a font with
>HGpeqfkpi"bLKUZ242 : 0UjkhvLKU’ >, but that font family is not available on the user’s system, then the text will
appear in some other font on the system that uses Japanese encoding. If there is no Japanese encoded font on the
system, the text appears in Roman encoding and the user will see garbled characters.

FPlatformName statement

The >HRncvhgtoPcog" uvtkpie statement provides a platform-specific ASCII string name that uniquely identifies
a font for a particular platform. The uvtkpi value consists of several fields separated by a period.

Windows: The Windows platform name has the following syntax:

<FPlatformName W.HcegPcog.KvcnkeHnci0YgkijvOXctkcvkgp>

W Platform designator
HcegPcog Windows face name (for more information, see your Windows documentation)
KvenkeHncl Whether font is italic; use one of the following flags:
K (Italic)
T (Regular)
Ygkijv Weight classification, for example 622 (regular) or 922 (bold)
Xctkcvkgp Optional variation, for example Pct tqy

The following statements are valid representations of the Windows font Helvetica Narrow Bold Oblique:

<FPlatformName W.Helvetica-Narrow.I.700>
<FPlatformName W.Helvetica.I.700.Narrow>

Object styles

An object style is defined by a Uv{ng statement. Object styles can be defined locally or they can be stored in the
Object Style catalog, which is defined by a Uv{ngEcvcngi statement.

StyleCatalog statement

The Uv{ngEcvengi statement defines the object styles. A document can have only one Uv{ngEcvecngi statement,
which must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax
<StyleCatalog
>Uv{ng " Defines a character format (see “PgfFont and Font statements,” next)
> End of Uv {ngEcvcngi statement

Style statement

The uv{ng statement defines the object style properties. A document can have only one Uv{ngEcvengi statement,
which must appear at the top level in the order given in “MIF file layout” on page 53.

71

ADOBE FRAMEMAKER |72
MIF Reference

Syntax
<Style

>Uv{ngVci"uvtkpi@ The name of the object style.

>Rgp"kpvgigt@ Pen pattern for lines and edges (see “Values for Pen and Fill statements” on
page 107)

>RgpYkfvj" fkogpukgp@ Line and edge thickness

>QdVkpv" "rgtegpvcig@ Applies a tint to the object color; 100% is equivalent to the pure object color and 0%
is equivalent to no color at all

>FcujgfRecvvgtp

"sFcujgfUv{ng"mg{yqtfe Specifies whether object is drawn with a dashed or a solid line

mg {yqt £ can be one of:
Uagnkf
Fcujgf

>JgcfEcr"mg{ygtfe Type of head cap for lines and arcs

mg {yqt £ can be one of:
Cttgydgct

Dwvv

Tgwpf

Uswctg

>VcknEcr"mg{ygtfe Type of tail cap for lines and arcs

mg {yqt £ can be one of:
Cttgydgct

Dwvv

Tgwpf

Uswctg

>CttqgyUv{ng"000@ See “ArrowStyle statement”on page 116.

>TwpctqwpfIcr" fkogpukgp@ Space between the object and the text flowing around the object; must be a value
between 0.0 and 432.0 points.

>Cping"kpvgigt@ Angle of rotation in degrees: 0, 90, 180, 270

>Qhhugvvgr" " fkogpukgp@ Offset from top

>QhhugvNghv" fkogpukgp@ Offset from left

>Uk | gYk£vj " fkogpukgp@ Width of text

>Uk | gdgkijv" fkogpukgp@ Height of text

>CHtcogFkt"keyword> Controls the direction of the anchored frame.

mg{ygtf can be one of:
NVT" / Set the direction for the anchored frame to left to right.
TVN" / Set the direction for the anchored frame to right to left.

KPJGTKVNVT"/ Derive the direction from the parent object. If it resolves to left to
right then KPOGTKVNVT is assigned to CHt cogFkt.

KPJGTKVTVN" / "Derive the direction from the parent object. If it resolves to right
to left then KPJGTKVTVN is assigned to CHt cogFkt.

>VHt cogPwoEgnwopu" kpvg- Number of columns in the text frame (1-10)
igt@

ADOBE FRAMEMAKER | 73
MIF Reference

>VHtcogEgnwopIcr""kpvg- Space between columns in the text frame (0"-50")
igt@

>VHt cogUjTggo" dggngcp@ [gu gives room for side heads

>VHtcogUjYkfvj"" Side head width
fkogpukgp@

>VHtcogUjIcr""fkogpukgp@ Gap between side head and body text areas

>VHt cogCwvgegppgev" [gu adds text frames as needed to extend flows

dggngcpe@

>VHtcogRguvuetkrv" [gu identifies text in the flow as printer code

dggngcp@

>VHt cogEgnwopDcncpeg" [gu means columns in the text frame are automatically adjusted to the same height
dggngcpe

>VHtcogFkt " keyworde Controls the direction of the text frame and its child objects.

mg {yqt £ can be one of:

NVT" / "Set the direction of the text flow object to left to right. The text flow propa-
gates its direction to all child objects that derive their direction from the text flow
object.

TVN" / Set the direction of the text flow object to right to left. The text flow propa-
gates its direction to all child objects that derive their direction from the text flow
object.

KPJGTKVNVT"/ Derive the direction from the parent object. If it resolves to left to
right, then INHERITLTR is assigned to VHt cogFkt.

KPJGTKVTVN" / "Derive the direction from the parent object. If it resolves to right
to left, then INHERITRTL is assigned to VHt cogFkt.

>VNkpgFkt" keyword@ Controls the direction in which the text line is drawn.

mg {yqt £ can be one of:
NVT" / Set the direction for the text line object to left to right.
TVN" / Set the direction for the text line object to right to left.

KPJGTKVNVT"/ Derive the direction from the parent object. If it resolves to left to
right then KPOGTKVNVT is assigned to VNkpgFkt.

KPJGTKVTVN" / "Derive the direction from the parent object. If it resolves to right
to left then INHERITRTL is assigned to VNkpgFkt.

>CVjgve""fkogpukgp@ Start angle
>CFVjgvc""fkogpukgp@ Arc angle length
>KpugvUecnkpi"" Scaling of the inset
fkogpukgp@

>KpugvQrcekv{"kpvgigt@ Opacity value defined for an object.

>GswcvkgpDtgem" Set line-width after which the equation breaks to the next line
fkogpukgp@

>0cvjONUv{ngFrk" Scaling value using which bitmap file is imported
kpvgigte

>0cvjONUv{ngEgorqugFrk" Scaling value using which bitmap file is created
kpvgigte

ADOBE FRAMEMAKER |74
MIF Reference

>0cvjONUv{ngHgpvUk |g" Font size of the MathML to which the style is applied
fkogpukgp@

>0cvjONUv{ngKpnkpg"dggn- [gu places the equation inline with the paragraph text
gcpe

Line numbers

FrameMaker documents can have the line numbers displayed for assisting in the reviewing process. Multiple
contributors to the document can refer to the content using the Page number and then line number. The following
are the statements relevant to line numbers:

Syntax
<DLineNumGap fkogpukqgp> The width of the line number field.
<DLineNumRestart dggngcp> Setting this property to [gu restarts the line numbering to 1 for each page of a
document.
<DLineNumShow dggngcps> Setting this property to [gu displays the line numbers.
<DLineNumFontFam uvtkpis Name of the font family for the line numbers.
<DLineNumSize fkogpukgp> Size of the line number text, in points.
<DLineNumColor vciuvtkpis Color of the line number text.

Tables

Table formats are defined by a vdnHgtocv statement. Table formats can be locally defined or they can be stored in a
Table Catalog, which is defined by a vdnEcvengi statement. The ruling styles used in a table are defined in a
TwnkpiEcvengi statement.

In a MIF file, all document tables are contained in one vdnu statement. Each table instance is contained in a vdn
statement. The cvdn statement specifies where each table instance appears in the text flow.

TbilCatalog statement

The vanEcvengi statement defines the Table Catalog. A document can have only one vdnEcvengi statement, which
must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax

<TblCatalog

>VdnHgtocv...> Defines a table format (see “TblFormat statement,” next)

>VdnHgtocv...> Additional statements as needed

ADOBE FRAMEMAKER | 75
MIF Reference

> End of VdnEcvengi statement

TblFormat statement

The vdnHgtocv statement defines the format of a table. A vdnHgtocv statement must appear in a vdnEcvengi or in
a vdn statement. A vdnHgtocv statement contains property substatements that define a table’s properties. Table
property statements can appear in any order.

Syntax
Basic properties
<TblFormat
>VdnVeci"veciuvtkpi@ Table format tag name
>VdnNKpfgpv" fkogpukgp@ Left indent for the table relative to the table’s containing text column; has no
effect on right-aligned tables
>VdnTKpfgpv" fkogpukgp@ Right indent for the table relative to the table’s containing text column; has no
effect on left-aligned tables
>VdnUrDghgtg" fkogpukgp@ Space above table
>VdnUrChvgt " fkogpukgp@ Space below table
>VdnCnkipogpv"mg{ygtfe Horizontal alignment within text column or text frame
mg {ygt £ can be one of:
Nghv
Egpvgt
Tkijv
Kpukfg
Qwvukfg
See page 78
>VdnRncegogpv"mg{ygtfe Vertical placement of table within text column
mg {ygt £ can be one of:
cp{yjgtg
Hngcv
EgnwopVagr
RcigVgr
NRcigVgr
TRcigvgr
>VdnDngemUk | g" integere Widow/orphan rows for body rows
>VdnEgnnOctikpu"N"V"T"D@ Left, top, right, bottom default cell margins
>VdnVkvngRncegogpv " mg{yqt f@ Table title placement
mg {ygt £ can be one of:
KpJdgcfgt
KpHggvgt
Pgpg
>VdnVkvngRih3 Paragraph format of title for a new table created with the table format
>RihVci"vciuvtkpi@ Applies format from Paragraph Catalog
>Rih..> Overrides Paragraph Catalog format as needed (see page 62)

ADOBE FRAMEMAKER | 76
MIF Reference

@

End of VdnvkvngRih3 statement

>VdnVkvngIcr" fkogpukgp@

Gap between title and top or bottom row

>VdnPwoD { Eqnwop " dggngcp@

Autonumber paragraphs in cells; [gu numbers down each column and Pg
numbers across each row

">VdnFkt "mg{ygtfe

Direction of the table.

mg {ygt £ can be one of:
NVT" /" The direction of the table is set to left to right.
TVN" / The direction of the table is set to right to left.

KPJGTKVNVT" / Derive the direction from the parent object. If it resolves to
left to right, then KPOGTKVNVT is assigned to VdnFkt.

KPJGTKVTVN" / "Derive the direction from the parent object. If it resolves to
right to left, then KPJGTKVTVN is assigned to VdnFkt.

Ruling properties

>VdnEgnwopTwnkpi" veiuvtkpi@

Ruling style for most columns; value must match a ruling style name specified
in the TwnkpiEcvengi statement

>VdnZEgnwopPwo" integer@

Number of column with a right side that uses the VdnZEgqnwopTwnkpi "
statement

>VdnZEgnwopTwnkpi "vciuvtkpi@

Ruling style for the right side of column VdnZEgnwopPwo

>VdnDqf { TqyTwnkpi "vciuvtkpi@

Default ruling style for most body rows

>VdnZTqyTwnkpi"vciuvtkpi@

Exception ruling style for every pv3j body row

>VdnTwnkpiRgtkgf"integere

Number of body rows after which VdnZTqyTwnkpi should appear

>VdnJHTqyTwnkpi "vciuvtkpi@

Ruling style between rows in the heading and footing

>VdnUgrctevgtTwnkpi"veiuvtkpi@

Ruling style for rule between the last heading row and first body row, and also
between the last body row and the first footing row

>VdnNTwnkpi"veiuvtkpi@

Left outside table ruling style

>VdnDTwnkpi" veiuvtkpi@

Bottom outside table ruling style

>VdnTTwnkpi"veciuvtkpi@

Right outside table ruling style

>VdnVTwnkpi"veciuvtkpi@

Top outside table ruling style

>VdnNcuvDTwnkpi " dggngcp@

[gu means draw bottom rule on the last sheet only; Pqg means draw rule on the
bottom of every sheet

Shading properties

>VdnJHHknn" integere@

Default fill pattern for table heading and footing (see page 113)

>VdnJHEQngt " tagstringe

Default color for table heading and footing (see page 85)

>VdnJHUgrctcvkgp" kpvgigt@

Default color for table heading and footing; no longer used, but written out by
FrameMaker for backward-compatibility (see “Color statements” on page 263)

>VdnDqgf {Hknn" integere

Default fill pattern for body cells (see page 113)

>VdnDqf { Eqngt " vciuvtinge

Default color for body cells (see page 85)

>VdnDqf {Ugrctcevkgp"kpvgigte

Default color for body cells; no longer used, but written out by FrameMaker for
backward-compatibility (see “Color statements” on page 263)

ADOBE FRAMEMAKER |77
MIF Reference

>VdnUjcfgD{ Eqnwop" dggngcp@

[gu specifies column shading; Pq specifies body row shading

>VdnUjcfgRgtkgf"integere

Number of consecutive columns/rows that use VadnDgf { Hknn

>VdnZHknn" integere

Exception fill pattern for columns or body rows (see page 113)

>VdnZEgngt " tagstringe

Exception color for columns or body rows (see page 85)

>VdnZUgrctcvkgp" kpvgigt@

Exception color for columns or body rows; no longer used, but written out by
FrameMaker for backward-compatibility (see “Color statements” on page 263)

>VdnCnvUjcfgRgtkgf "kpvgigt@

Number of consecutive columns/rows that use VdnZHknn; exception
columns/rows alternate with default body columns/rows to form a repeating
pattern

Column properties

>VdnYkfvi" fkogpukgp@

Not generated by FrameMaker, but can be used by filters to determine table
width

>VdnEgnwop

Each table must have at least one VdnEgnwop statement; a column without a
statement uses the format of the rightmost column

>VdnEgnwopPwo" integer@

Column number; columns are numbered from left to right starting at 2

>VdnEgqnwopYkfvij" fkogpukgp@

Width of column. See page 82

>VdnEgnwopYkfvjR"integere

Not generated by FrameMaker, but a temporary column width when filtering
proportionally-spaced tables from another application; converted to a fixed
width when read in (see page 82)

>VdnEgnwopYkfvjC"Y"Ya@

Not generated by FrameMaker, but a width based on a cell width, for filters only;
converted into a fixed width when read in. First value is minimum width; second
value is maximum width. Values limit the range of a computed column width,
and are usually set to a wide range (see page 82).

>VdnEgnwopd Default paragraph format for the column’s heading cells in new tables
>VcdngEgnwop If the table column is conditionalized, the conditional properties are specified in
the VcdngEgnwop property.
>Egpfkvkgpcn Specifies that the column is conditional.

>KpEgpfkvkgp"vciuvtkpi@

Applies the specified conditional tag to the column.

s

End of Egpfkvkgpcn statement.

@

End of end of VedngEgnwop statement.

>RihVci"vciuvtkpi@

Applies format from Paragraph Catalog

>Rih...@ Overrides Paragraph Catalog format as needed (see page 62)
@ End of VdnEgnwopJ statement
>VdnEgnwopDgf { " Default paragraph format for the column’s body cells in new tables

>RihVeci"veciuvtkpi@

Applies format from Paragraph Catalog

>Rih...@

Overrides Paragraph Catalog format as needed (see page 62)

@

End of VdnEgnwopDgf£ { statement

>VdnEgnwopH"

Default paragraph format for the column'’s footing cells in new tables

ADOBE FRAMEMAKER | 78
MIF Reference

<PgfTag vciuvtkpi> Applies format from Paragraph Catalog
<Pgf...> Overrides Paragraph Catalog format as needed (see page 62)
@ End of VAnEgnwopH statement
@ End of VdnEgnwop statement
>VdnEgnwop...> More VdnEgnwop statements as needed, one per column

New table properties

>VdnKpkvPwoEgnwopu'" integer@ Number of columns for new table
>VdnKpkvPwoJTqyu "kpvgigt@ Number of heading rows for new table
>VdnKpkvPwoDgf { Tqyu "kpvgigt@ Number of body rows for new tables
>VdnKpkvPwoHTgyu" integer@ Number of footing rows for new tables

Miscellaneous properties

>VdnNgemgf " dggngcp@ [gu means the table is part of a text inset that obtains its formatting properties
from the source document
> End of VdnHgtocv statement
Usage

The basic properties, ruling properties, and shading properties correspond to settings in the Table Designer. The
veiuvtkpi value specified in any ruling substatement (such as VdnEgnwopTwnkpi) must match a ruling tag defined
in the TwnkpiEcvengi statement (see page 83). The veiuvtkpi value specified in any color substatement (such as
vdnDgf { Eqngt) must match a color tag defined in the EqngtEcvengi statement (see page 84).

Usage of some of the aspects of the vanHgtocv statement is described in the following sections.

Alignment of tables
The horizontal alignment of a table within a text column or text frame is specified by the vdncnkipogpv statement:

+ Ifthe table is aligned with the left, center, or right side of a text column or text frame, the vdncnkipogpv
statement is set to Nghv, Egpvgt, or Tkijv, respectively.

« Ifthe table is aligned with the closer edge or farther edge of a text frame (closer or farther relative to the binding
of the book), the vdncnkipogpv statement is set to Kpuk£fg or Qwvuk£g, respectively.

Locked tables and text insets

The vdnNgemgf statement does not correspond to any setting in the Table Designer. The statement is for text insets
that retain formatting information from the source document.

If the >vdnNgemgf " [gue statement appears in a specific table, that table is part of a text inset that retains formatting
information from the source document. The table is not affected by global formatting performed on the document.

If the >vdnNgemgf " Pge statement appears in a specific table, that table is not part of a text inset or is part of a text
inset that reads formatting information from the current document. The table is affected by global formatting
performed on the document.

For details about text insets, see “Text insets (text imported by reference)” on page 138.

Tbls statement

ADOBE FRAMEMAKER | 79
MIF Reference

The vanu statement lists the contents of each table in the document. A document can have only one vdnu statement,
which must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax
<Tbls Beginning of tables list
>Vdn...> Defines a table instance (see “Tbl statement,” next)
>vdn...> Additional statements as needed

End of Vdnu statement

Tbl statement

The vdn statement contains the contents of a table instance. It must appear in a vdnu statement.

Each vdn statement is tied to a location in a text flow by the ID number in a VanKF statement. Each vdn statement
has an associated cvdn statement within a Ret cNkpg statement that inserts the table in the flow. The vdn statement
must appear before the cvdn statement that refers to it. Each vdn statement can have only one associated cvdn
statement, and vice versa. For more information about the cvdn statement, see “ParaLine statement” on page 133.

Syntax

<Tbl

>VdnKF" ID@

Table ID number

>VdnVci"veciuvtkpi@

Applies format from Table Catalog

>VdnHgtocv...>

Overrides Table Catalog format as needed (see page 75)

Table columns

>VdnPwoEgnwopu" integer@

Number of columns in the table

>VdnEgqnwopYkfvij" fkogpukgp@

Width of first column

>VdnEgqnwopYkfvij" fkogpukgp@

Width of second column

Width of remaining columns as needed

>Gswenk |gYkEviu

Makes specified columns the same width as the widest column (for filters only, see
page 82)

>VdnEgnwopPwo" integer@

First column

>VdnEgnwopPwo" integer@

More columns as needed

@ End of Gswenk | gYk£vju statement
Table title
>VdnVkvng Begin definition of table title
>VdnVkvngEgpvgpv Table title’s content, represented in one or more Rctc statements
>Pgvgu...> Footnotes for table title (see page 131)

ADOBE FRAMEMAKER

MIF Reference

>Rctc..> Title text (see page 132)
>Rctc..> Additional statements as needed
@" End of VdnVkvngEgpvgpv statement
@" End of VdnVkvng statement
Table rows
>VdnJd Table heading rows; omit if no table headings
>Tqy..> See “Row statement,” next
>Tqy...> Additional statements as needed
@ End of VdnJ statement
>VdnDqf { Table body rows
>Tqy...> See "Row statement,” next
>Tqy...> Additional statements as needed
@" End of VdnDgf { statement
>VdnH Table footing rows; omit if no table footing
>Tqy...> See “Row statement,” next
>Tqy...> Additional statements as needed
@" End of VdnH statement
> End of Vdn statement
Usage

The table column statements specify the actual width of the table instance columns. They override the column
widths specified in the vdnHgtocv statement.

Row statement

A Tqy statement contains a list of cells. It also includes row properties as needed. The statement must appear in a vdn

statement.

Syntax

<Row

>Egpfkvkgpcn..>

Specifies conditional row (row is unconditional if the statement is omitted)

>TqyYkvijPgzv" dggngcp@

Keep with next body row

80

ADOBE FRAMEMAKER
MIF Reference

>TqyYkvjRtgx" dggngcp@

Keep with previous body row

>TqyOkpJdgkijv" fkogpukgp@

Minimum row height

>TqyOczJdgkijv" fkogpukgp@

Maximum row height

>TqyJdgkijv" fkogpukgp@ Row height

>TgyRncegogpv"mg{ygtf@ Row placement

mg {ygqt £ can be one of:
cp{yjgtg
EgnwopVagr
NRcigVgr
TRcigVgr

Rcigvgr

Each Tqy statement contains one Egnn statement for each column (see “Cell state-
ment,” next)

>Egnn...>

>Egnn...> Additional statements as needed

> End of Tqy statement

Usage
Each Tqy statement contains a Egnn statement for each column in the table, even if a straddle hides a cell. Extra Egnn
statements are ignored; too few Egnn statements result in empty cells in the rightmost columns of the row.

When you rotate a cell to a vertical orientation, the width of unwrapped text affects the height of the row. You can
use TqyOczJdgkijv and TqyOkpJgkijv to protect a row’s height from extremes caused by rotating cells containing
multiline paragraphs, or to enforce a uniform height for the rows.

FrameMaker writes out the TqyJgkijv statement for use by other programs. It is not used by the MIF interpreter.
Even if the statement is present, the MIF interpreter recalculates the height of each row based on the row contents
and the TqyOkpJgkijv and TqyOczJgkijv statements.

Cell statement

A Egnn statement specifies a cell’s contents. It also includes format, straddle, and rotation information as needed. The
statement must appear in a Tqy statement.

Syntax

<Cell

>EgnnHknn" integere@ Fill pattern for cell, 2-37 (see page 113)

>EgnnEgngt" tagstringe@ Color for cell (see “ColorCatalog statement” on page 84)

Color for cell; no longer used, but written out by FrameMaker for back-
ward-compatibility (see “Color statements” on page 263)

>EgnnUgrctcvkgp"kpvgigt@

>EgnnNTwnkpi"veiuvtkpi@ Left edge ruling style (from Ruling Catalog)

>EgnnDTwnkpi"vciuvtkpi@ Bottom edge ruling style

>EgnnTTwnkpi"veciuvtkpi@ Right edge ruling style

Top edge ruling style

>EgnnVTwnkpi"vciuvtkpi@

81

ADOBE FRAMEMAKER
MIF Reference

>EgnnEgnwopu" integer@

Number of columns in a straddle cell

>EgnnTgyu" integere@

Number of rows in a straddle cell

>EgnnChhgevuEgnwopYkfvjC"dggngcp@

[gu restricts column width to cell width

>EgnnCping" fgitggu@

Angle of rotation in degrees: 2, ;2,3 :2,0r492

>EgnnEgpvgpv Cell’s content
>Pgvgu...> Footnotes for cell (see page 131)
>Rctc..> Cell’s content, represented in one or more Rct c statements (see

page 132)

>Rcte.> Additional statements as needed

@" End of EgnnEgpvgpv statement

> End of Egnn statement
Usage

You can use the Rotate command on the Graphics menu to change the EgnnCping, but it does not affect the location
of cell margins. EgnnCping affects only the orientation and alignment of the text flow. When Egnncping is 90 or 270

degrees, use RihEgnnCnkipogpv to move vertically oriented text closer to or farther from a column edge. For infor-

mation about aligning text in a cell, see RihEgnnCnkipogpv on page 65.

MIF uses EgnnChhgevuEgnwopYk£vjC only with the vanEqnwopyk £vj ¢ statement. The MIF default for computing

a cell’s width is vanEqnwopyk£vjc. However, if any cells in the column have >EgnnChhgevuEgqnwopYkfviC" [gue,
then only those cells affect the computed column width.

Usage of MIF statements to calculate the width of a column is described in the following sections.

Determining table width

When FrameMaker writes MIF files, it uses vdnEqnwopYk£vj in the Vdn statement to specify column width.

However, filters that generate MIF files can use other statements to determine the table width.

This method Uses these statements To do this

Fixed width TblColumnWidth Give a fixed value for column’s width (see page 77)

Shrink-wrap TblColumnWidthA Fit a column within minimum and maximum values (see page 77)
Restricted VdnEqnwopYkfvjC and EgnnCh- Use particular cells to determine column width (see page 82)

hgevuEgnwopYkfvjC

Proportional

ThlColumnWidthP

Create a temporary value for a column width when filtering propor-
tional-width columns from another application; the MIF interpreter
converts the value to a fixed width (see page 77 and “Calculating propor-
tional-width columns,” next)

Equalized

Gswenk | g¥kfvju and
VdnEgnwopPwo

Apply the width of the widest column to specified columns in the same
table (see page 79)

The table example in “Creating an entire table” on page 238 shows several ways to determine column width.

82

ADOBE FRAMEMAKER | 83
MIF Reference

Calculating proportional-width columns

MIF uses this formula to calculate the width of proportional-width columns:

n .
PTotal x PWidth

The arguments have the following values:

n Value of VdnEgnwopYkfvjR
PTotal Sum of the values for all VdnEgnwop Yk fvjR statements in the table
PWidth Available space for all proportional columns (VdnYkfvj - the sum of fixed-width columns)

For example, suppose you want a four-column table to be 7 inches wide, but only the last three columns to have
proportional width.

+ The columns have the following widths:
Column 1 has a fixed-width value of 1": >VdnEgqnwopYkfvj"3se
Column 2 has a proportional value of 2: >vVdnEqnwopYkfvjR"4@
Column 3 has a proportional value of 1: >vdnEgnwopYk£fviR"3@
Column 4 has a proportional value of 1: >VdnEqnwopYkfvjR"3@
« Available width for proportional columns *rvkfvj+is 7" - 1" or 6".
+ Sum of all proportional values *RVgvcn+is2 + 1+ 1 or 4.
« Width for Column 2 is (2/RVqven) X RYkfvi = (2/4) x 6" or 3".
« Width for Column 3 or Column 4 is (1/Rvqven) x RYkfvi = (1/4) x 6" or 1.5".

RulingCatalog statement

The TwnkpiEcvengi statement defines the contents of the Ruling Catalog, which describes ruling styles for tables.
A document can have only one TwnkpiEcvengi statement, which must appear at the top level in the order given in
“MIF file layout” on page 53.

Syntax
<RulingCatalog
>Twnkpi..> Defines ruling style (see “Ruling statement” on page 83)
>Twnkpi...> Additional statements as needed
> End of TwnkpiEcvengi statement

Ruling statement

The Twnkpi statement defines the ruling styles used in table formats. It must appear within the TwnkpiEcvengi
statement.

ADOBE FRAMEMAKER
MIF Reference

Syntax

<Ruling
>TwnkpiVci"veiuvtkpi@ Ruling style name; an empty string indicates no ruling style
>TwnkpiRgpYkfvj" fkogpukgp@ Ruling line thickness
>TwnkpiIcr" fkogpukgp@ Gap between double ruling lines
>TwnkpiEqgngt " tagstringe Color of ruling line (see “ColorCatalog statement” on page 84)
>TwnkpiUgrctcvkgp"kpvgigt@ Color of ruling line; no longer used, but written out by FrameMaker for back-

ward-compatibility (see “Color statements” on page 263)

>TwnkpiRgp"integere Pen pattern 2 through 9, or 37 (see page 113)
>TwnkpiNkpgu" integer@ 2 (none), 3 (single), or 4 (double) ruling lines

> End of Twnkpi statement

Color

You can assign colors to text and objects in a FrameMaker document. A FrameMaker document has a set of default
colors; you can also define your own colors and store them in the document’s Color Catalog. A FrameMaker
document has three color models you can use to create colors: CMYK, RGB, and HLS. You can also choose inks from
installed color libraries.

In a MIF file, colors are defined by a Eqngt statement within a EqngtEcvengi statement. Regardless of the color
model used to define a new color, colors are stored in a MIF file in CMYK.

You can define a color as a tint of an existing color. Tints are colors that are mixed with white. A tint is expressed by
the percentage of the base color that is printed or displayed. A tint of 100% is equivalent to the pure base color, and
a tint of 0% is equivalent to no color at all.

You can specify overprinting for a color. However, if overprinting is set for a graphic object, the object’s setting takes
precedence. When a graphic object has no overprint statement, the overprint setting for the color is assumed.

You can set up color views to specify which colors are visible in a document. The color views for a document are
specified in the xkgyu statement. The current view for the document is identified in a FEwt tgpvXkgy statement.

The color of a FrameMaker document object is expressed in a property statement for that object. In this manual, the

syntax description of a FrameMaker document object that can have a color property includes the appropriate color
property substatement.

ColorCatalog statement
The EqngtEcvengi statement defines the contents of the Color Catalog. A document can have only one Eqngt -
Ecvengi statement, which must appear at the top level in the order given in “MIF file layout” on page 53.

FrameMaker automatically generates new colors while specific operations are performed. For example, FrameMaker
generates new colors when multiple conditional tags are applied to text. These colors are identified by their

»

ColorTag, which contains the prefix “fm_gen_”".

Syntax

<ColorCatalog

84

ADOBE FRAMEMAKER
MIF Reference

>Egngt...> Defines a color (see “Color statement,” next)
>Egngt...> Additional statements as needed
> End of EqngtEcvengi statement
Color statement

The Eqngt statement defines a color. It must appear within the Eqngt Ecvengi statement. Note that MIF version 5.5

and later supports multiple color libraries.

Syntax

<Color

>EqngtVeci"veciuvtkpi@

Color tag name

>EqngtE{cp"rgtegpvcige

Percentage of cyan (2-322)

>EqngtOcigpvec" rgtegpveige

Percentage of magenta (2-322)

>Egqngt [gnngy" rgtegpvecige

Percentage of yellow (2-322)

>EgqngtDncem" rgtegpvcige

Percentage of black (2-322)

>EqngtNkdtct {Hcokn{Pcog"uvtkpie

Color library name

>EqngtNkdtct {KpmPcog" uvtkpi@

Specifies name of the color library pigment. The full ink name must be
used.

>EgqngtCvvtkdwvg"mg{ygtf@

Identifies a default FrameMaker document color

mg {yqt £ can be one of:
EgngtKuDncem
EgqngtKuYjkvg
EgngtKuTgf
EgngtKuItggp
EgngtKuDnwg
EqngtKuE{cp
EgqngtKuOcigpvce
EgngtKu [gnngy
EqngtKuFctmItg{
EgngtKuRcngItggp
EgngtKuHgtguvItggp
EgngtKuTqg{cnDnwg
EgqngtKuOcwxg
EgngtKuNkijvUcnogp
EgngtKuQnkxg
EgngtKuUcnogp
EgngtKuTgugtxgf

>EqngtVkpv"rgtegpvcige

100% indicates solid color; less than 100% indicates a reduced
percentage of the color

>EqngtVkpvDcugEgngt "uvtkpi

The name of the color from which the tint is derived. If the base color
does not exist in the document, black will be used.

>EgqngtQxgtrtkpv"dggngcp@

[gu indicates overprint is set for the color; Pq indicates knockout.

End of Egqngt statement

85

ADOBE FRAMEMAKER
MIF Reference

Usage

In a MIF file, all colors are expressed as a mixture of cyan, magenta, yellow, and black. The Eqngt cvvtkdwvg
statement identifies a default FrameMaker document color; the default colors are all reserved (specified by the
EgqngtKuTgugtxgf keyword) and cannot be modified or deleted by the user. A reserved default color can have two
EqngtCvvtkdwvg statements, for example:

<ColorAttribute ColorIsCyan>
<ColorAttribute ColorIsReserveds>

A color tint must be based on an existing color. This has two implications:
« If the base color doesn’t exist in the document, black is used as the base color for the tint.

+ The color value statements (values for CMYK, color family, and ink name) are ignored when included in a tint
statement. However, FrameMaker writes out color value statements for a tint, even though they will be ignored.
To modify the color values of a tint, modify the color value statements for the base color used by the tint.

Views statement

The xkgyu statement contains the color views for the document. A document can have only one xkgyu statement,
which must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax
<Views
>Xkgy...> Defines a color view (see “View statement,” next)
>Xkgy...> Additional statements as needed
> End of Xkgyu statement
View statement

For each color view, the xkgy statement specifies which colors will be displayed, which will be displayed as cutouts,
and which will not be displayed at all. The xkgy statement must appear in a Xkgyu statement.

Syntax
<View
>XkgyPwodgt"integere View number (3-8)
>XkgyEwvqwv" veiuvtkpi@ Name of color to print as cutout separation
>XkgyEwvgwv...> Additional statements as needed
>XkgyKpxkukdng" vciuvtkpi@ Name of color to hide
>XkgyKpxkukdng...> Additional statements as needed

> End of Xkgy statement

86

ADOBE FRAMEMAKER
MIF Reference

Variables

All variable definitions for a document are contained in a XctkcdngHgtocvu statement. Both user-defined and
system-defined variables are defined by a xctkcdngHgtocv statement. A Xctkcdng statement that refers to the
variable name shows where the variable appears in text (see “ParaLine statement” on page 133).

VariableFormats and VariableFormat statements

The XctkedngHgtocvu statement defines document variables to be used in document text flows. A MIF file can have
only one XctkcdngHgtocvu statement, which must appear at the top level in the order given in “MIF file layout” on
page 53.

Each XctkedngHgtocv statement supplies a variable name and its definition. The statement must appear in a
XctkedngHgtocvu statement.

Syntax
<VariableFormats
>XctkcdngHgtocv
>XctkedngPcog" veiuvtkpi@ Name of variable
>XctkedngFgh"uvtkpi@ Variable definition
@ End of XctkcdngHgtocv statement
>XctkcdngHgtocv...> Additional statements as needed
> End of XctkcdngHgtocvu statement
Usage

XctkedngPcog contains the name of the variable, used later in the MIF file by xctkedng to position the variable in
text. XctkedngFgh contains the variable’s definition. A system-defined variable definition consists of a sequence of
building blocks, text, and character formats. A user-defined variable consists of text and character formats only.

The system variables for the current page number and running headers and footers can only appear on a master page
in an untagged text flow. You cannot insert any variables in a tagged text flow on a master page. You can insert
variables anywhere else in a text flow.

For more information about variables and the building blocks they can contain, see your user’s manual or the online
Help system.

Cross-references

A FrameMaker document can contain cross-references that refer to other portions of the document or to other
documents. A cross-reference has a marker that indicates the source (where the cross-reference points) and a format
that determines the text and its formatting in the cross-reference.

All cross-reference formats in a document are contained in one ZTghHgtocvu statement. A cross-reference format
is defined by an zTghHgt ocv statement. Within text, an ZTgh statement and a Octmgt statement indicate where each
cross-reference appears.

87

ADOBE FRAMEMAKER | 88
MIF Reference

XRefFormats and XRefFormat statements

The zTghHgtocvu statement defines the formats of cross-references to be used in document text flows. A MIF file
can have only one zTghHgt ocvu statement, which must appear at the top level in the order given in “MIF file layout”
on page 53.

The zTghHgtocv statement supplies a cross-reference format name and its definition. The statement must appear in
an zZTghHgtocvu Statement.

Syntax
<XRefFormats
>ZTghHgtocv
>ZTghPcog"uvtkpi@ Cross-reference name
>ZTghFgh"uvtkpi@ Cross-reference definition
@ End of ZTghHgt ocv statement
>ZTghHgtocv...> More cross-reference definitions as needed
> End of ZTghHgt ocvu statement
Usage

ZTghPcog supplies the cross-reference format name, which is used later by the zTgh statement to apply a format to
the text of the cross-reference. The zZTghFgh statement supplies the cross-reference format definition, which is a
string that contains text and cross-reference building blocks.

For more information about cross-references and their building blocks, see your user’s manual or the online Help
system.

Global document properties

A FrameMaker document has properties that specify the document page size, pagination style, view options, current
user preferences, and other global document information. The user sets these properties by using various
commands, such as the Document command, the View command, the Normal Page Layout command, and others.

In a MIF file, global document properties are specified as substatements in a Fqewogpv statement. If you do not
provide these property statements, the MIF interpreter assumes the properties specified in Pgyvgorncvg. (For infor-
mation on defaults specified in templates, see page 3.)

The DggmEqorgpgpv statement specifies setup information for files generated from the document. The Fkevkgpct {
statement contains the user’s list of allowed words for the document.

Document statement

The Fgewogpv statement defines global document properties. A document can have only one Fgewogpv statement,
which must appear at the top level in the order given in “MIF file layout” on page 53.

A Fgewogpv statement does not need any of these property substatements, which can occur in any order. It can also
contain additional substatements describing standard equation formats. (See , “MIF Equation Statements.”)

ADOBE FRAMEMAKER | 89
MIF Reference

Document File Info

For versions 7.0 and later, FrameMaker stores file information in packets (XMP) of encoded data. This data can be
used by applications that support XMP. In MIF these data packets are expressed in the <DocFileInfo> statement.
This data is generated by FrameMaker in an encoded form, and you should not edit the information. Note that this
information corresponds to the values of fields in the File Info dialog box. It also corresponds to the data in the
>RFHFgeKphge statement. However, unlike >RFHFgeKphge, this XMP data also includes the values of the File Info
dialog box default fields for Etgcvqt, Etgevkgp"Fevg, and OgveFcve "Fevg.

PDF Document Info

For versions 6.0 and later, FrameMaker stores PDF File Info in the document file. FrameMaker automatically
supplies values for Creator, Creation Date and Metadata Date; these Document Info fields do not appear in MIF
statements for PDF Document Info. However, a user can use the File Info dialog box to specify values for Author,
Title, Subject, Keywords, Copyright, Web Statement, Job Reference, and Marked. The values for all these values
appear in PDF Document Info. A document can also contain arbitrary Document Info fields if they have been
entered via an FDK client or by editing a MIF file. In MIF, each Document Info entry consists of one Mg{ statement
and at least one Xcnwg statement.

A Mg{ statement contains a string of up to 255 ASCII characters. The Mg{ names a File Info field; in PDF the field
name can be up to 126 characters long. In MIF you represent non-printable characters via $3J, where # identifies a
hexadecimal representation of a character, and JJ is the hexadecimal value for the character. For example, use %45
to represent the “#” character. Zero-value hex-codes (%22) are illegal. In PDF, these hexadecimal representations are
interpreted as PDFDocEncoding (see Portable Document Format Reference Manual, Addison-Wesley, ISBN 0-201-
62628-4).

Note that a a File Info field name can be up to 126 characters long, and a MIF string can contain up to 255 characters.
Some characters in the key string may be hexadecimal representations, and each hexadecimal representation uses
three ASCII characters. For example, a Mg{ of 126 non-printing characters would require 378 ASCII characters.
However, since a valid MIF string can only have up to 255 ASCII characters, such a Mg{ statement would be invalid
in MIE

The contents of the File Info field is represented by a series of xcnwg statements. Each value statement can contain a
string of up to 255 ASCII characters. In PDF the File Info contents can contain up to 32765 Unicode characters. To
accommodate this number of Unicode characters, FrameMaker generates MIF in the following ways:

+ Itrepresents the Document Info contents as a series of Value statements, each one 255 ASCII characters long, or

less.
« It uses special codes to indicate Unicode characters that are outside the standard ASCII range. Mif represents

Unicode characters as ($zJJJJg=, where (%z opens the character code, the “=” character closes the character
code, and 7337 are as many hexadecimal values as are required to represent the character.

Note that each Unicode representation of a character uses up to seven ASCII characters. For example, a string of 255
Unicode characters could require as many as 1785 ASCII characters.

For example, The following MIF statements show three possible Document Info fields:

<PDFDocInfo
<Key “Author's>
<Value “Thomas Aquinas's>
<Key "Title's>
<Value “That the Soul Never Thinks Without an Image's>
<Key ~Subject's>

<Value “Modern translation of the views of T. A. concerning cognition; "It is'>
<Value °~ impossible for our intellect, in its present state of being joined t'>
<Value "o a body capable of receiving impressions, actually to understand...'>

> # end of PDFDocInfo

Syntax

ADOBE FRAMEMAKER
MIF Reference

<Document

Document properties

>FPgzvWpkswg" KF@

Refers to the next object with a >Wpkswg" KF@ statement; gener-
ated by FrameMaker and should not be used by filters

Window properties

>FXkgyTgev" Z" ["Y"J@

Position and size of document window based on position and size of
the document region within containing window; FXkgyTgev takes
precedence over FYkpfgyTgev

>FYkpfqgyTgev"X Y W He

Position and size of document window based on the containing
window (including the title bar, etc.)

>FXkgyUecng" rgtegpvcig@

Current zoom setting

Column properties

>FOctikpu"N"V"T"D@

Not generated by FrameMaker, but used by filters to specify text
margins; ignored unless FEgqnwopu is specified

>FEgqnwopu" integere@

Not generated by FrameMaker, but used by filters to specify number
of columns

>FEgnwopIcr" fkogpukgp@

Not generated by FrameMaker, but used by filters to specify column
gap

>FRcigUk |g"Y"J@

Document’s default page size and orientation; if Y'is less than J, the
document’s orientation is portrait; otherwise it is landscape

Pagination

>FUvctvRcig"integere

Starting page number

>FRcigPwoUv{ng" mg{ygtfe

Page numbering style

mg{ygt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETgocp

NETqocp

WECnrijc

NECnrjc
\gpNECnrjc
\gpWECnrjc
McplkPwogtke
McplkMc|w
DwukpguuMc |w

>FRcigRakpvUv{ng"mg{yqtf@

Point page number style

mg {ygt £ can be one of:
WETgocp
NETgocp
WECnrjc
NECnrijc

>FVyqUkfgu" dggngcp@

[gu specifies two-sided layout

20

ADOBE FRAMEMAKER
MIF Reference

>FRctkv{"mg{ygtfe

Specifies whether first page is left or right page

mg {ygt £ can be one of:
HktuvNghv
HktuvTkijv

>FRcigTqwpfkpi"mg{ygtfe

Method for removing blank pages or modifying total page count
before saving or printing

mg {ygt £ can be one of:
FgngvgGorv{Rcigu
OcmgRcigEqQwpvGxgp
OcmgRcigEgqwpvQff
FgpvEjcpigRcigEqwpv

>FHtq | gpRecigu" dggngcp@

[gu if Freeze Pagination is on

Document format properties

>FUoctvSwgvguQp" dggngcp@

Use curved left and right quotation marks

>FUoctvUrceguQp" dggngcp@

Prevents entry of multiple spaces

>FNkpgdtgcmEjctu"uvtkpi@

OK to break lines at these characters

>FRwpevwcvkgpEjctu"uvtkpi@

Punctuation characters that FrameMaker does not strip from run-in
heads; these characters override the default punctuation set in
RihTwpKpFghcwnvRwpev (see page 64)

Conditional text defaults

>FUjqgyCnnEgpfkvkgpu" dggngcpe@

Shows or hides all conditional text

>FFkurnc{Qxgttkfgu" dggngcpe

Turns format indicators of conditional text on or off

Footnote properties

>FHPqvgVci"uvtkpi@

Paragraph and reference frame tag for document footnotes

>FHPQvgOczJ" fkogpukgp@

Maximum height allowed for document footnotes

>FHPqvgTguvctv"mg{ygtfe

Document footnote numbering control by page or text flow

mg{yqt £ can be one of:
RgtRcig
RgtHnqgy

>HPgqvgUvctvPwo" integere@

First document footnote number

91

ADOBE FRAMEMAKER

MIF Reference

>FHPqvgPwoUv{ng"mg{yqgt fe@

Document footnote numbering style

mg {ygt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETgocp

NETgocp

WECnrjc

NECnrjc
\gpNECnrjc
\gpWECnrjc
McplkPwogtke
McplkMc|w
DwukpguuMc |w
Ewuvqgo

>FHPgvgNcdgnu" uvtkpi@

Characters to use in custom document footnote numbers

>FHPgvgCpejqgtRqu"mg{ygt f@

Placement of document footnote number in text

mg{ygt £ can be one of:
HPUwrgtuetkrv
HPDcugnkpg
HPUwduetkrv

>FHPgvgPwodgtRqu"mg{ygtfe

Placement of number in document footnote

mg{yqt £ can be one of:
HPUwrgtuetkrv
HPDcugnkpg
HPUwduetkrv

>FHPgvgCpejgtRtghkz"uvtkpi@

Prefix before document footnote number in text

>FHPgvgCpejgtUwhhkz"uvtkpi@

Suffix after document footnote number in text

>FHPgvgPwodgtRtghkz"uvtkpi@

Prefix before number in document footnote

>FHPgvgPwodgtUwhhkz "uvtkpi@

Suffix after number in document footnote

Table footnote properties

>FVdnHPgvgVci"uvtkpi@

Same meaning for the following statements as the corresponding

document footnote properties

>FVdnHPgvgNcdgnu'" uvtkpi@

>FVdnHPgvgPwoUv{ng"mg{yqt f@

>FVdnHPgvgCpejgtRqu" mg{ygt fe@

>FVdnHPgvgPwodgtRqu" mg{ygt f@

>FVdnHPgvgCpejgtRtghkz"uvtkpi@

>FVdnHPgvgCpejgtUwhhkz"uvtkpi@

>FVdnHPgvgPwodgtRtghkz"uvtkpi@

>FVdnHPgvgPwodgtUwhhkz"uvtkpi@

Change bar properties

92

ADOBE FRAMEMAKER
MIF Reference

>FEjDctIcr" fkogpukgp@

Change bar distance from column

>FEjDctYkfv]" fkogpukgp@

Thickness of change bar

>FEjDctRqukvkgp"mg{yqgt f@

Position of change bar

mg{ygt £ can be one of:
NghvQhEgn
TkijvQhEgn
PgctguvGiig
HwtvjguvGfig

>FEjDctEqgnqgt " veiuvtkpi@

Change bar color (see “ColorCatalog statement” on page 84)

>FCwvgEjDctu" dggngcp@

Turns automatic change bars on or off

Document view properties

>FItkfQp"dggngcp@

Turns on page grid upon opening

>FRcigItkf" fkogpukgp@

Spacing of page grid

>FUpcrItkf" fkogpukgp@

Spacing of snap grid

>FUpcrTgvevkgp" fgitggu@

Angle of rotation snap

>FTwngtuQp" dggngcp@

Turns on rulers upon opening

>FHwnnTwngtu" dggngcp@

Turns on formatting ruler upon opening

>FDgt fgtuQp" dggngcp@

Turns on borders upon opening

>FU{odgnuQp" dggngcp@

Turns on text symbols upon opening

>FJIgvurqvKpfkecvgtuQp"dggngcp@

Turns on the hotspot indicators.

>FItcrjkeuQhh"dggngcpe@

[gu displays text only

>FRcigUetqnnkpi"mg{ygtfe

Specifies how FrameMaker displays consecutive pages

mg {ygt £ can be one of:
Xctkedng

Jatk |gpven
Xgtvkecn

Hcekpi

>FEwttgpvXkgy"integere

Specifies current color view (3 /8)

View Only document properties

>FXkgyQpn { " dggngcp@

[gu specifies View Only document (locked)

>FXkgyQpn{ZTgh"mg{yqtf@

Changes behavior of active cross-references in View Only document
(see page 47)

mg{yqgt £ can be one of:
IgvgDgjcxkgt
QrgpDgjcxkgt
PgvCevkxg

93

ADOBE FRAMEMAKER
MIF Reference

>FXkgyQpn{Ugngev"mg{yqtf@

Disables/enables user selection in View Only document, including
selection with modifier keys, and sets highlighting style of destina-
tion markers for active cross-references (see “Using active cross-refer-
ences”on page 47)

mg {ygt £ can be one of:

Pq (disable user selection)

[gu (enable user selection and highlighting)
WugtQpn{ (enable selection but not highlighting)

>FXkgyQpn{PqQr"2zpppe

Disables acommand in a View Only document; command is specified
by hex function code (see page 48)

>FXkgyQpn{ YkpDgt fgtu" dggngcpe

Pqg suppresses display of scroll bars and border buttons in document
window of View Only document

>FXkgyQpn { YkpOgpwdct " dggngcp@

Pq suppresses display of document window menu bar in View Only
document

>FXkgyQpn { YkpRgrwr " dggngcp@

Pq suppresses display of document-region pop-up menus in View
Only document

The dotted boundary line of a document is the document-region.

>FXkgyQpn { YkpRengvvg" dggngcp@

[gu makes window behave as command palette window in View
Only document

The FrameMaker console is the Command palette window.

Document default language

>FNcpiwcig"mg{ygtf@

Hyphenation and spell-checking language for text lines; for allowed
keywords, see RihNcpiwcig on page 65

Color printing

>FPgRtkpvUgrEgngt "veiuvtkpi@

Tag name of color not to print; any color not included here is printed.
If you have multiple colors you don’t want to print, use multiple state-
ments.

>FRtkpvRtgeguuEgngt "veiuvtkpi@

Tag name of process color to print as separation

>FRtkpvUgrctcvkgpu" dggngcp@

[gu prints separations

>FVtcrykugEgorcvkdknkv{ " dggngcpe

When printing to a PostScript file, [gu generates postscript opti-
mized for use with the TrapWise application

>FRtkpvUmkrDncpmRcigu" dggngcp@

[gu skips blank pages when printing

Superscripts and subscripts

>FUwrgtuetkrvUk | g"percente

Scaling factor for superscripts expressed as percentage of the current
font size

>FUwduetkrvUk | g"percent@

Scaling factor for subscripts expressed as percentage of current font
size

>FUocnnEcruUk |g"percente

Scaling factor for small caps expressed as percentage of current font
size

>FUwrgtuetkrvUjkhv"percente

Baseline offset of superscripts expressed as percentage of current
font size

>FUwduetkrvUjkhv"percent@

Baseline offset of subscripts expressed as percentage of current font
size

94

ADOBE FRAMEMAKER
MIF Reference

>FUwrgtuetkrvUvtgvej"percente

Amount to stretch or compress superscript, where 100% means no
change

>FUwduetkrvUvtgve]j"percente

Amount to stretch or compress subscript, where 100% means no
change

>FUocnnEcruUvtgvej"percente@

Amount to stretch or compress small caps, where 100% means no
change

>FTwdkUk |g" rgtegpvcige"

The size of the rubi characters, proportional to the size of the oyamoji
characters (see “Rubi text” on page 227.)

Reference properties

>FWrfcvgZTghuQpQrgp"boolean@

[gu specifies that cross-references are automatically updated when
the document is opened

>SFWrfcvgVgzvKpugvuQpQrgp" boolean@

[gu specifies that text insets are automatically updated when the
document is opened

Acrobat preferences

>FCetgdcvDggmoctmuKpenwfgVciPcogu"
boolean@

[gu specifies that each Acrobat Bookmark title begins with the name
of the paragraph tag

Document-specific menu bars

>FOgpwDct" stringe

Name of the menu bar displayed by an FDK client when the docu-
ment is opened; if an empty string is specified or if the menu baris not
found, the standard FrameMaker menu bar is used

>FXgOgpwDct " string@

Name of the menu bar displayed by an FDK client when the docu-
ment is opened in View Only mode; if an empty string is specified or
if the menu bar is not found, the standard view-only menu bar is used

Custom catalogs

>EwuvgoHgpvHnci"dggngcp@

[gu means the document has a custom character tag list

>EwuvgoRihHnci"dggngcp@

[gu means the document has a custom paragraph formats list

>EwuvgoVdnHnci"dggngcp@

[gu means the document has a custom table formats list

>FEwuvqoHgpvNkuv"000@

Signifies the start of the custom character tag list in the document

This tag is present in the document only when you have created a
custom character tag list in the document.

>FEwuvqoHgpvVci"uvtkpi@

Name of the tag in the custom character tag list

>FEwuvgoRihNkuv"000@

Signifies the start of the custom paragraph formats list in the docu-
ment

This tag is present in the document only when you have created a
custom paragraph formats list in the document.

>FEwuvqgoRihVci"uvtkpi@

Name of the paragraph tag in the custom paragraph list

>FEwuvgoVdnNkuv"000@

Signifies the start of the custom table formats list in the document

This tag is present in the document only when you have created a
custom table formats list in the document.

>FEwuvqgoVdnVci"uvtkpi@

Name of the table tag in the custom table tag

95

ADOBE FRAMEMAKER
MIF Reference

Math properties

For more information, see , “MIF Equation Statements.”

Structure properties

For more information, see , “MIF Statements for Structured Docu-
ments and Books.”

Track Text Edit properties

>FVtcemEjcpiguQp" boolean@

Preserves the On/Off state of the Track Text Edit option.

>FVtcemEjcpiguRtgxkgyUvecvg" integere

Preserves the preview state of edited text.

DTrackChangesPreviewState property can have one of the
following states:

* Preview Off: DTrackChangesPreviewState set with
the value No.

¢ Preview On Final: DTrackChangesPreviewState set
with the value A11.

¢ Preview On Original: DTrackChangesPreviewState
set with the value Yes.

WebDAV properties

<WEBDAV

<DocServerUrl uvtkpi>

URL of the MIF document on the WEBDAV Server. Any HTTP path is
valid.

Example:

<DocServerUrl “http://mikej-
xp/joewebdav/myfile.mif'>

#jvvr<llokmgl/zrllggygdfcx"is the path of the server.

<DocServerState>

Indicates whether the MIF document is checked in or checked out on
the WebDAV server.

The DocServerState property can contain one of the following
values:

¢ EjgemgfQwv

¢ EjgemgfKp

>

End of WEBDAV Document statement

Miscellaneous properties

<DMagicMarker integers>

Type number of the marker used to represent a delete mark

<Document

Document properties

<DNextUnique ID>

Refers to the next object with a >Wpkswg"KF@ statement; gener-
ated by FrameMaker and should not be used by filters

Window properties

<DViewRect X Y W H>

Position and size of document window based on position and size of
the document region within containing window; FXkgyTgev takes
precedence over FYkpfqyTgev

<DWindowRect X Y W H>

Position and size of document window based on the containing
window (including the title bar, etc.)

<DViewScale percentages>

Current zoom setting

ADOBE FRAMEMAKER
MIF Reference

Column properties

<DMargins L T R B>

Not generated by FrameMaker, but used by filters to specify text
margins; ignored unless FEgqnwopu is specified

<DColumns integers

Not generated by FrameMaker, but used by filters to specify number
of columns

<DColumnGap dimension>

Not generated by FrameMaker, but used by filters to specify column
gap

<DPageSize W H>

Document’s default page size and orientation; if W is less than H, the
document’s orientation is portrait; otherwise it is landscape

Volume, chapter, and page numbering properties

Volume numbering

<VolumeNumStart integers

Starting volume number

<VolumeNumStyle keywords

Style of volume numbering

mg {ygt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETgocp
NETgocp"
WECnrjc

NECnrijc
McplkPwogtke
\gpCtcdke
\gpWECnrjc"
\gpNECnrjc"
Mcplkme |w"
DwukpguuMc |w"
Ewuvgo"

<VolumeNumText string>

When XgnwogPwoUv { ng is set to Ewuvgo, this is the string to use

<VolNumComputeMethod keywords

Volume numbering

mg{yqt £ can be one of:
UvctvPwodgtkpi (restart numbering)
EgpvkpwgPwodgtkpi (continue numbering from previous
document in book)
WugUcogPwodgtkpi (use the same numbering as previous docu-
ment in book)

Chapter numbering

<ChapterNumStart integers>

Starting chapter number

97

ADOBE FRAMEMAKER
MIF Reference

<ChapterNumStyle keywords>

Style of chapter numbering

mg {yqt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETgocp"
NETqgocp

WECnrjc
NECnrjc"
McplkPwogtke"
\gpCtcdke™"
\gpWECnrjc"
\gpNECnrjc"
Mcplkme |w
DwukpguuMc | w"
Ewuvgo"

<ChapterNumText strings>

When Ej crvgt PwoUv {ng is set to Ewuvgo, this is the string to
use

<ChapterNumComputeMethod keywords>

Chapter numbering

mg {yqt £ can be one of:
UvctvPwodgtkpi (restart numbering)
EgpvkpwgPwodgtkpi (continue numbering from previous
document in book)
WugUcogPwodgtkpi (use the same numbering as previous docu-
ment in book)

Section numbering

<SectionNumStart integers>

Starting section number

<SectionNumStyle keywords

Style of section numbering

mg {ygt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETgocp
NETgocp"
WECnrjc"
NECnrjc"
McplkPwogtke
\gpCtcdke"
\gpWECnrjc"
\gpNECnrjc"
Mcplkme |w
DwukpguuMc | w
Ewuvgo"

<SectionNumText string>

When SectionPwoUv{ngis set to Ewuvgo, this is the string to
use

98

ADOBE FRAMEMAKER
MIF Reference

<SectionNumComputeMethod keywords>

Section numbering

mg {yqt £ can be one of:
UvctvPwodgtkpi (restart numbering)
EgpvkpwgPwodgtkpi (continue numbering from previous
component)
WugUcogPwodgtkpi (use the same numbering as previous
component)

TgcfHtgoHkng (use numbering set for the component’s docu-
ment)

Sub section numbering

<SubSectionNumStart integers

Starting Sub section number

<SubSectionNumStyle keywords

Style of Sub section numbering

keyword can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETgocp
NETgocp"
WECnrjc"
NECnrjc"
McplkPwogtke
\gpCtcdke™"
\gpWECnrjc"
\gpNECnrjc"
Mcplkme |w
DwukpguuMc | w
Ewuvgo"

<SubSectionNumText strings>

When SubSect ionPwoUv{ngis set to Ewuvgo, this s the string
to use

<SubSectionNumComputeMethod keywords>

Sub section numbering

keyword can be one of:
UvctvPwodgtkpi (restart numbering)
EgpvkpwgPwodgtkpi (continue numbering from previous
component)
WugUcogPwodgtkpi (use the same numbering as previous
component)

TgcfHtgoHkng (use numbering set for the component’s docu-
ment)

Page numbering

929

ADOBE FRAMEMAKER
MIF Reference

<DPageNumStyle keywords>

Page numbering style

mg {yqt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETgocp

NETqgocp

WECnrjc

NECnrjc
\gpNECnrjc
\gpWECnrjc
McplkPwogtke
McplkMc |w
DwukpguuMc | w

<DPagePointStyle keywords>

Point page number style

mg {yqt £ can be one of:
WETqocp
NETgocp
WECnrjc
NECnrijc

<DStartPage integers

Starting page number

<ContPageNum boolean>

[gu means continue page numbering from the previous document
in the book

Pagination

<DTwoSides booleanx>

[gu specifies two-sided layout

<DParity keywords>

Specifies whether first page is left or right page

mg {yqt £ can be one of:
HktuvNghv
HktuvTkijwv

<DPageRounding keywords>

Method for removing blank pages or modifying total page count
before saving or printing

mg {yqt £ can be one of:
FgngvgGorv{Rcigu"
OcmgRcigEqQwpvGxgp
OcmgRcigEqwpvQf £
FgpvEjcpigRcigEqwpv

<DFrozenPages booleanx>

[gu if Freeze Pagination is on

Document format properties

<DSmartQuotesOn boolean>

Use curved left and right quotation marks

<DSmartSpacesOn boolean>

Prevents entry of multiple spaces

<DLinebreakChars strings>

OK to break lines at these characters

<DPunctuationChars strings>

Punctuation characters that FrameMaker does not strip from run-in
heads; these characters override the default punctuation set in
RihTwpKpFghcwnvRwpev (see page 64)

Conditional text defaults

<DShowAllConditions booleans>

Shows or hides all conditional text

100

ADOBE FRAMEMAKER
MIF Reference

<DDisplayOverrides boolean>

Turns format indicators of conditional text on or off

Footnote properties

<DFNoteTag strings>

Paragraph and reference frame tag for document footnotes

<DFNoteMaxH dimension>

Maximum height allowed for document footnotes

<DFNoteRestart keywords>

Document footnote numbering control by page or text flow

mg {yqt £ can be one of:
RgtRcig
RgtHnqgy

<FNoteStartNum integers

First document footnote number

<DFNoteNumStyle keywords>

Document footnote numbering style

mg{yqt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETqocp

NETgocp

WECnrjc

NECnrijc
\gpNECnrjc
\gpWECnrjc
McplkPwogtke
McplkMc |w
DwukpguuMc | w
Ewuvqgo

<DFNoteLabels strings>

Characters to use in custom document footnote numbers

<DFNoteComputeMethod keywords>

Footnote numbering

mg {yqt £ can be one of:

Egpvkpwg (continue numbering from previous component in
book)

Tguvctv (restart numbering)

<DFNoteAnchorPos keywords>

Placement of document footnote number in text

mg {yqt £ can be one of:
ONZvrepoypLTT
DONBaocehive
ONXZvBoypint

<DFNoteNumberPos keywords>

Placement of number in document footnote

mg {yqt £ can be one of:
HPUwrgtuetkrv"
HPDcugnkpg
HPUwduetkrv

<DFNoteAnchorPrefix strings>

Prefix before document footnote number in text

<DFNoteAnchorSuffix string>

Suffix after document footnote number in text

<DFNoteNumberPrefix string>

Prefix before number in document footnote

<DFNoteNumberSuffix string>

Suffix after number in document footnote

Table footnote properties

101

ADOBE FRAMEMAKER
MIF Reference

<DTblFNoteTag strings>

Same meaning for the following statements as the corresponding

document footnote properties

<DTblFNoteLabels string

>

<DTblFNoteNumStyle keyw

ord>

<DTblFNoteAnchorPos keywords>

<DTblFNoteNumberPos keywords>

<DTblFNoteAnchorPrefix

string>

<DTblFNoteAnchorSuffix

string>

<DTblFNoteNumberPrefix

string>

<DTblFNoteNumberSuffix

string>

Change bar properties

<DChBarGap dimensions>

Change bar distance from column

<DChBarWidth dimensions>

Thickness of change bar

<DChBarPosition keywords>

Position of change bar

mg {yqt £ can be one of:
NghvQhEgn"
TkijvQhEgn
PgctguvGfig
HwtvjguvGfig

<DChBarColor tagstring>

Change bar color (see “ColorCatalog statement” on page 84)

<DAutoChBars booleanx>

Turns automatic change bars on or off

Document view properties

<DGridOn booleans

Turns on page grid upon opening

<DPageGrid dimensions>

Spacing of page grid

<DSnapGrid dimensions>

Spacing of snap grid

<DSnapRotation degreess>

Angle of rotation snap

<DRulersOn boolean>

Turns on rulers upon opening

<DFullRulers booleanx>

Turns on formatting ruler upon opening

<DBordersOn boolean>

Turns on borders upon opening

<DSymbolsOn boolean>

Turns on text symbols upon opening

<DGraphicsOff booleans>

[gu displays text only

<DPageScrolling keyword

>

Specifies how FrameMaker displays consecutive pages

mg {yqt £ can be one of:
Xctkedng
Jgtk|gpven
Xgtvkecn

Hcekpi

<DCurrentView integers

Specifies current color view (3/8)

102

ADOBE FRAMEMAKER
MIF Reference

View Only document properties

<DViewOnly booleanx>

[gu specifies View Only document (locked)

<DViewOnlyXRef keywords>

Changes behavior of active cross-references in View Only document
(see page 47)

mg {yqt £ can be one of:
IgvgDgjexkgt™"
QrgpDgjcxkgt
PgvCevkxg

<DViewOnlySelect keywords>

Disables/enables user selection in View Only document, including
selection with modifier keys, and sets highlighting style of destina-
tion markers for active cross-references (see “Using active cross-refer-
ences”on page 47)

mg {yqt £ can be one of:

Pq (disable user selection)

[gu (enable user selection and highlighting)
WugtQpn{ (enable selection but not highlighting)

<DViewOnlyNoOp Oxnnns>

Disables acommand in aView Only document; command is specified
by hex function code (see page 48)

<DViewOnlyWinBorders booleans

Pqg suppresses display of scroll bars and border buttons in document
window of View Only document

<DViewOnlyWinMenubar booleans>

Pqg suppresses display of document window menu bar in View Only
document

<DViewOnlyWinPopup boolean>

Pqg suppresses display of document-region pop-up menus in View
Only document

The dotted boundary line of a document is the document-region.

<DViewOnlyWinPalette boolean>

[gu makes window behave as command palette window in View
Only document

The FrameMaker console is the Command palette window.

Document default language

<DLanguage keywords>

Hyphenation and spell-checking language for text lines; for allowed
keywords, see RihNcpiwcig on page 65

Color printing

<DNoPrintSepColor tagstrings>

Tag name of color not to print; any color not included here is printed

If you have multiple colors you don’t want to print, use multiple state-
ments.

<DPrintProcessColor tagstrings

Tag name of process color to print as separation

<DPrintSeparations booleans>

[gu prints separations

<DTrapwiseCompatibility booleans>

When printing to a PostScript file, [gu generates postscript opti-
mized for use with the TrapWise application

<DPrintSkipBlankPages boolean>

[gu skips blank pages when printing

Superscripts and subscripts

<DSuperscriptSize percents>

Scaling factor for superscripts expressed as percentage of the current
font size

103

ADOBE FRAMEMAKER
MIF Reference

<DSubscriptSize percents>

Scaling factor for subscripts expressed as percentage of current font
size

<DSmallCapsSize percents

Scaling factor for small caps expressed as percentage of current font
size

<DSuperscriptShift percents

Baseline offset of superscripts expressed as percentage of current
font size

<DSubscriptShift percent>

Baseline offset of subscripts expressed as percentage of current font
size

<DSuperscriptStretch percents

Amount to stretch or compress superscript, where 100% means no
change

<DSubscriptStretch percent>

Amount to stretch or compress subscript, where 100% means no
change

<DSmallCapsStretch percents>

Amount to stretch or compress small caps, where 100% means no
change

<DRubiSize percentages>

The size of the rubi characters, proportional to the size of the oyamoji
characters (see “Rubi text” on page 227.)

Reference properties

<DUpdateXRefsOnOpen booleans>

[gu specifies that cross-references are automatically updated when
the document is opened

<DUpdateTextInsetsOnOpen
boolean>

[gu specifies that text insets are automatically updated when the
document is opened

PDF preferences

<DAcrobatBookmarksIncludeTagNames boolean>

[gu specifies that each PDF Bookmark title begins with the name of
the paragraph tag

<DPDFAl1NamedDestinations boolean>

[guindicates that FrameMaker will create named destinations for all
paragraphs and elements in the document; this style of marking
creates larger PDF files

<DPDFAllPages boolean>

A statement to indicate whether to use the values in FRFHUvCctv-
Rcigand FRFHGpfRcig to distill a range of pages. When set to
[gu, FrameMaker distills all pages in the document.

<DPDFBookmarks booleans>

[guindicates that FrameMaker will create PDF bookmarks when you
save as PDF

<DPDFConvertCMYK boolean>

A setting that determines whether to send CMYK or RGB color values
to the Distiller. This setting can be made and stored on documentsin
any platform.

<DPDFTagsConfigurationDefined boolean>

[gu indicates that tags configuration is defined for the PDF

<PDFTagConfigurationTOCBeginsWithList
string>

A list of strings from which any TOC tag can begin

<PDFTagConfigurationTOCEndsWithList string>

A list of strings from which any TOC tag can end

<PDFTagConfigurationListBeginsWithList
string>

A list of strings from which any list tag can begin

<PDFTagConfigurationListEndsWithList string>

A list of strings from which any list tag can end

<PgfPDFStructureTagType integers

Specifies PDF tag name

104

ADOBE FRAMEMAKER
MIF Reference

<DPDFDestsMarked boolean>

[gu indicates that the paragraphs and elements that are targets of
hypertext markers or cross-references have been marked according
to optimization rules for version 6.0 or later; this style of marking
makes it unnecessary to use >FRFHEtgcvgPcogfFguvkpc-
vkagpu" [gue@

<DPDFEndPage ‘string’>

A string for the page number for the ending page in the page range
_ to use this setting, FRFHCnnRcigu must be set to Pq.

<DPDFJobOptions ‘string’>

A string specifying the Distiller job options to use when distilling the
document.

<DPDFOpenBookmarkLevel number>

A setting to specify at what level of the bookmark hierarchy to close
all bookmarks. A setting of 2 closes all bookmarks.

<DPDFOpenFit ‘string’s>

A string to specify how to fit the PDF document into the Acrobat
application window when it opens — can be one of Fghcwnv,
Rcig, Ykfvij,dgkijv, or Pgpg0 "Any other string value resolves
to Fghcwnv. Use Pgpg in conjunction with FRFHQrgp \ ggo.

<DPDFOpenPage ‘string’>

A string for the page number for the page at which you want the PDF
file to open.

<DPDFOpenzZoom number>

A number to specify the zoom percentage when opening the PDF
document. To use this setting, FREHQrgpRcig must either be

absent or set to Pqpg — otherwise FrameMaker ignores this setting.

<DPDFPageHeight numbers>

Anumber for the page width — to use this setting FREHRcigUk | -
gUgv must be set to [gu.

<DPDFPageSizeSet boolean>

A statement to indicate whether to use the values in FRFHRcig-
Ykfvj and FRFHRcigJdgkijv when distilling the document.
When set to Pg, FrameMaker ignores the width and height settings.

<DPDFPageWidth numbers>

A number for the page height — to use this setting, FRFHRcig-
Uk | gUgv must be set to [gu

<DPDFRegMarks ‘string’>

A string specifying which registration marks to use. Can be one of
Pgpg, Yguvgtp, or Vqgodg — any other string resolves to Pgpg.

<DPDFSaveSeparate Yes/No>

A setting that specifies whether to save a book as one PDF file oras a
collection of separate PDF files for each component in the book. This
setting is ignored in individual documents.

<DPDFStartPage ‘string’s>

A string for the page number for the starting page in the page range
_ top use this setting, FRFHCnnRcigu must be set to Pqg.

<DPDFStructure boolean>

[gu indicates that the document includes structure statements for
Structured PDF

<DPDFStructureDefined boolean>

Statement to determine how FrameMaker should display the PDF
structure settings in the PDF Setup dialog box; this statement is for
internal FrameMaker use, and you should not modify it

<PDFDoclnfo>

Specifies the information that appears in the File Info dictionary
when you save the document as PDF

Each File Info entry consists of one Mg { statement followed by at
least one Xcnwg statement. FrameMaker ignores any Mg { state-
ment that is not followed by at least one Xcnwg statement.

There is no representation in this statement of the default fields for
Etgcvat, Etgevkgp"Fcvg, or OgvcFcve"Fevg.

For more information, see “PDF Document Info” on page 89.

105

ADOBE FRAMEMAKER
MIF Reference

<Key string>

A string of up to 255 ASCII characters that represents the name of a
Document Info field; in PDF the name of a Document Info field must
be 126 characters or less.

Represent non-printable characters via #HH, where # identifies a
hexadecimal representation of a character, and HH is the hexadec-
imal value for the character. For example, use #2 3 to represent the
“#" character. Zero-value hex -codes (#00) are illegal.

For more information, see “PDF Document Info” on page 89.

<Value string>

A string of up to 255 ASCII characters that represents the value of a
Document Info field; because a single MIF string contains no more
than 255 ASCII characters, you can use more than one Xcnwg state-
ment for a given Mg {

A Value can include Unicode characters; represent Unicode charac-
tersvia &#xHHHH;, where &#Xx opens the character code, the
“;" character closes the character code,and HHHH are as many
hexadecimal values as are required to represent the character.

For more information, see “PDF Document Info” on page 89.

>

End of RFHFgeKphg statement

<DocFilelnfo>

Specifies the same information that appears in
>RFHFgeKphqge@, except it expresses these values as encoded data.
You should not try to edit this data.

DocFilelnfo also represents the values of the default fields for
Etgcvgt, Etgevkgp"Fevg, and OgvcFeve"Fevg.

For more information, see “Document File Info” on page 89.

<encoded> XMP information as encoded data which is generated by
FrameMaker. This information corresponds to the values set in the
File Info dialog box. For any document, there can be an arbitrary
number of XMP statements.

> End of DocFilelnfo statement

Document-specific menu bars

<DMenuBar string>

Name of the menu bar displayed by an FDK client when the docu-
ment is opened; if an empty string is specified or if the menu bar is
not found, the standard FrameMaker menu bar is used

<DVoMenuBar string>

Name of the menu bar displayed by an FDK client when the docu-
ment is opened in View Only mode; if an empty string is specified or
if the menu bar is not found, the standard view-only menu bar is used

Math properties

For more information, see , “MIF Equation Statements.”

Structure properties

For more information, see , “MIF Statements for Structured Docu-
ments and Books.”

Document Direction

106

ADOBE FRAMEMAKER
MIF Reference

>FgeFkt"keyword> Specifies the direction — left-to-right (LTR) or right-to-left (RTL), in
which you can author your document. The direction of objects,
which derive their direction from the document, is set to LTR or RTL.

mg {yqt £ can be one of:

NVT
TVN
Miscellaneous properties
<DMagicMarker integer> Type number of the marker used to represent a delete mark

BookComponent statement

DggmEgorgpgpv statements contain the setup information for files that are generated from the document (for
example, a table of contents or an index). DggmEqorqpgpv statements must appear at the top level in the order given
in “MIF file layout” on page 53. These statements are used even if the document does not occur as part of a book. A
DggmEgorgpgpv statement can contain one or more FgtkxgVci statements.

Syntax

<BookComponent Book components

>HkngPcog" rcvjipcog@ Generated file’s device-independent pathname (for rcvjpcog syntax, see page 7)

>HkngPcogUwhhkz"uvtkpi@ Suffix for the generated file

>FgtkxgV{rg"mg{ygtfe Type of generated file

mg {ygt £ can be one of:
CON (alphabetic marker list)
CRN (alphabetic paragraph list)
KFZ (index)

KQC (author index)

KQO (index of markers)
KQU (subject index)

KT (index of references)
NOQH (list of figures)

NQO (list of markers)

NQR (list of paragraphs)
NQV (list of tables)

NT (list of references)

VQE (table of contents)

>FgtkxgVci"veiuvtkpi@ Tags to include in the generated file

>FgtkxgNkpmu" dggngcp@ [gu automatically creates hypertext links in generated files

> End of DggmEgorgpgpvV statement

InitialAutoNums statement

The KpkvkenCwvgPwou statement controls the starting values for autonumber series in a document. A MIF file can
have only one xpkvkcnCwvgpwou statement, which must appear at the top level in the order given in “MIF file layout”
on page 53.

An autonumber format includes a series label to identify the type of autonumber series and one or more counters.
The KpkvkenCwvgPwou statement initializes the counters so that series that continue across files in a book are
numbered correctly. Any statement that increments the counter value starts from the initial setting.

107

Syntax

ADOBE FRAMEMAKER
MIF Reference

<InitialAutoNums

>CwvgPwoUgtkgu

>HnqgyVci"uvtkpi@

Specifies flow that the file uses to number the series

>Ugtkgu"uvtkpi@

Specifies autonumber series

>PwoEqwpvgt "kpvgigt@

Initializes autonumber counter

>PwoEgwpvgt...>

Additional statements as needed

@

End of CwvgPwoUgtkgu statement

>CwvgPwoUgtkgu...>

Additional statements as needed

End of KpkvkcnCwvgPwou statement

Dictionary statement

The Fkevkgpct { statement lists all the words in the document dictionary. A MIF file can have only one Fkevkgpct {
statement, which must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax

<Dictionary

>QMYgtf"uvtkpi@

Word in dictionary

>QMYqgtf"uvtkpi@

Additional statements as needed

End of Fkevkgpct { statement

Dictionary preferences

Use the Fkevkgpet { preferences to specify Proximity or Hunspell dictionaries for Spelling and Hyphenation for

various languages.

Syntax

<Dictionary

>FkNcpiwcigu

">FkNcpiwcig"uvtkpi@

Name of the language, such as US English or Dutch.

">FkUgtxkeg

Name of the spelling and hyphenation service provider in the following
tagsunderDiService:

<DiSpellProvider string>
<DiHyphenProvider strings

You can set these tags to Jwpurgnn or Rtgzkokv{.

108

ADOBE FRAMEMAKER
MIF Reference

Pages

Pages in a MIF file are defined by a Rcig statement. A FrameMaker document can have four types of pages:
« Body pages contain the document’s text and graphics.
+ Master pages control the appearance of body pages.

+ Reference pages contain boilerplate material or graphic art that is used repeatedly in a document, or custom
math elements.

« Hidden pages contain hidden conditional text in a special text flow.

When FrameMaker writes a MIF file, it writes a sequence of numbered body pages. When you generate a MIF file,
you should only define one body page and allow the MIF interpreter to automatically create new body pages as
needed. For more information about using body pages in a MIF file, see “Specifying page layout” on page 32.

Page statement

The Rcig statement adds a new page to the document. Rcig statements must appear at the top level in the order
given in “MIF file layout” on page 53.

Syntax
<Page

>RcigV{rg"mg{ygtre Page type
mg {yqt £ can be one of:
NghvOcuvgtRcig
TkijvOcuvgtRecig
QvjgtOcuvgtRecig
TghgtgpegRcig
Dgf{Rcig
JkffgpRcig

>RcigPwo"uvtkpi@ Page number for additive pages (provided for output filters)

>RcigVei"veiuvtkpi@ Names master or reference page; for a body page, specifies a different page number
(for example, a point page) to be used instead of the default page number

>RcigUk | g"vy"je Page width and height; written by FrameMaker but ignored when a MIF file is read
orimported (see FRcigUk | g on page 90)

>RcigCping" fgitggu@ Rotation angle of page in degrees (2, ; 2, 3 : 2, 492); angles are measured in a
counterclockwise direction with respect to the page’s original orientation as deter-
mined by the page size (see FRcigUk | g on page 90)

>RcigDcemitgwpf "mg{yqtfe Names master page to use for current page background (body pages only)
mg {yqt £ can be one of:
Papg
Fghcwnv
rcigpcog

>VgzvTgev...> Defines text frame (see page 129)

>Htcog...> Graphic frames on the page (see the section “Graphic objects and graphic frames”
on page 111)

Itcrjke"qdlgev"uvcvgogpvu" Objects on the page (see the section “Graphic objects and graphic frames” on
page 111)

Filter statements

109

ADOBE FRAMEMAKER
MIF Reference

>JgcfgtN"uvtkpi@ Left header string
>JgcfgtE"uvtkpi@ Center header string
>JgcfgtT"uvtkpi@ Right header string
SHQQvgtN"uvtkpi@ Left footer string
>SHQQvgtE"uvtkpi@ Center footer string
>HqgvgtT"uvtkpi@ Right footer string
>JHOctikpu"N"V"T"D@ Header/footer margins
>JHHgpV Header/footer font (see page 67)
>Hgpv...>
@
>Egqnwopu" integer@ Default number of columns
>EqnwopIcr" fkogpukgp@ Default column gap
> End of Rcig statement
Usage

Master and reference page names (supplied by the Reigvei statement) appear in the status bar of a document
window. The RcigDcemitqwpf statement names the master page to use as the background for a body page. A value
of Fghcwnv tells FrameMaker to use the right master page for single-sided documents and to alternate between the
right and left master pages for a two-sided document. For more information about applying master page layouts to
body pages, see “Specifying page layout” on page 32.

A page of type JkffgpRcig contains the document’s hidden conditional text. (See “How FrameMaker writes a
conditional document” on page 43.)

A page’s size and orientation (landscape or portrait) is determined by the RecigCping statement and the Fgewogpv
substatement FRcigUk | g. If FReigUk | g defines a portrait page (one whose height is greater than its width), pages
with an angle of 0 or 180 degrees are portrait; pages with an angle of 90 or 270 degrees are landscape. If FReigUk |g
defines a landscape page (one whose width is greater than its height), pages with an angle of 0 or 180 degrees are
landscape; pages with an angle of 90 or 270 degrees are portrait.

The filter statements are not generated by FrameMaker. When it reads a MIF file generated by a filter, the MIF inter-
preter uses these statements to set up columns and text flows on master pages.

Mini TOC

FrameMaker document can contain a mini TOC. In a MIF file, a mini TOC tag is defined in an KpnkpgEqorgpgp-
vuKphg statement.

InlineComponentsinfo statement

A mini TOC is the only inline component that is available in a document. The KpnkpgEqorgpgpvuKphg statement
defines the information about all type of inline components present in the document. Information about a particular
type of inline component is defined using the KpnkpgEqorgpgpvKphg statement.

110

ADOBE FRAMEMAKER
MIF Reference

A MIF file can have only one KpnkpgEgorgpgpvuKphg statement, which must appear at the top level in the order
given in the “MIF file layout” on page 53.

Syntax

<InlineComponentsInfo

>KpnkpgEgorgpgpvKphg000@ Defines an inline component.

> # End of KpnkpgEgorgpgpvuKphg0

InlineComponentinfo statement

The XKpnkpgEqorgpgpvKphg statement is used to define a set of attributes with values.

Syntax
>KpnkpgEqgorgpgpvKphg
>KpnkpgEgorgpgpvV{rg"OVQE@ Type of inline component, which is the mini TOC.
>KpnkpgEgorgpgpvNkpmu"boolean> Specifies whether entries in an inline component are hyperlinked or not.
>KpnkpgEgorgpgpvVci"string> Name of the paragraph tags included in the inline component, for
example 'Heading 1.
> # End of KpnkpgEgorgpgpvKphg.

Graphic objects and graphic frames

In a FrameMaker document, graphic objects can appear directly on a page or within a graphic frame. The following
objects are considered graphic objects:

+ Anchored and unanchored frames
« Text frames
o Textlines

+ Objects created with the drawing tools on the Tools palette: arcs, arrows, ellipses, polygons, polylines, rectangles,
and rounded rectangles

« Math equations
» Groups
+ Imported graphic images, such as xwd, TIFE bitmap images, or vector images

In a MIF file, graphic objects are defined by 0dIgevand Htcog statements. 9dlgev refers to any MIF statement that
describes an object, such as cte, VgzvNkpg, or VgzvTgev. Generally, these objects are created and manipulated by
using the Tools palette in a FrameMaker document. This section describes general information that pertains to all
graphic objects, and then lists the MIF statements for graphic objects in alphabetic order.

Object positioning
Each Rcig statement has nested within it 0d1gevand Ht cog statements. If a graphic frame contains objects and other
graphic frames, the graphic frames and objects are listed in the order that they are drawn (object in back first).

111

ADOBE FRAMEMAKER | 112
MIF Reference

For odlgevand Htcog statements, the interpreter keeps track of the current page and current graphic frame. When
the interpreter encounters a Ht cog statement, it assumes the graphic frame is on the current page. Similarly, when
the interpreter encounters an object statement, it assumes the object is in the current graphic frame or page.

When you open a MIF file as a FrameMaker document, the default current page is page 1, and the default current
frame is the page frame for page 1. A page frame is an invisible frame that “contains” objects or graphic frames placed
directly on a page. The page frame is not described by any MIF statement. When you import a MIF file into an
existing FrameMaker document, the default current page is the first page visible when the Import command is
invoked; the current frame is the currently selected frame on that page. If there is no currently selected frame, the
current frame is the page frame for that page.

Generic object statements

All object descriptions consist of the object type, generic object statements containing information that is common
to all objects, and statements containing information that is specific to that type of object. This section describes the
generic object statements.

Syntax

>KF" ID@

Object ID number

>ItgwrKF" ID@

ID of parent group object

>Wpkswg" ID@

ID, persistent across sessions, assigned when FrameMaker generates a MIF file; used
by the FDK client and should not be used by filters

>Rgp"integer@

Pen pattern for lines and edges (see “Values for Pen and Fill statements” on
page 113)

>Hknn" integere

Fill pattern for objects (see “Values for Pen and Fill statements” on page 113)

>RgpYkfv]" fkogpukgp@

Line and edge thickness

>QdEgngt "veciuvtkpi@

Applies color from Color Catalog (see page 84)

>QdVkpv" rgtegpvcige

Applies a tint to the object color; 100% is equivalent to the pure object color and 0%
is equivalent to no color at all

>Ugrctcvkgp"kpvgigte@

Applies color; no longer used, but written out by FrameMaker for backward-
compatibility (see “Color statements” on page 263)

>Qxgtrtkpv"dggngcp@

[gu turns on overprinting for the graphic object. Pg turns on knockout. If this
statement is not present, then the overprint setting from the object’s color is
assumed.

>TwpctqwpfV{rg"mg{ygtfe

Specifies whether text can flow around the object and, if so, whether the text
follows the contour of the object or a box shape surrounding the object

mg{ygtf can be one of:
Egpvgwt

Dqgz

Papg

>TwpctqwpfIcr" fkogpukgp@

Space between the object and the text flowing around the object; must be a value
between 0.0 and 432.0 points

>Cping" fgitggue

Rotation angle of object in degrees; default is 2

Frames, cells, and equations can only be rotated in 90-degree increments; all other
objects can be arbitrarily rotated.

>TgTqgvcvgCping" fkogpukgp@

Previous rotation angle of object in degrees

ADOBE FRAMEMAKER
MIF Reference

>FcujgfRcvvgtp
>FcujgfUuv{ng"mg{ygtre Specifies whether object is drawn with a dashed or a solid line
mg {yqt £ can be one of:
Uagnkf
Fcujgf
>PwoUgiogpvu" integer@ Number of dash segments; ignored when MIF file is read
>FcujUgiogpv" fkogpukgp@ Defines a dash segment (see “DashSegment values” on page 114)
>FcujUgiogpv" fkogpukgp@ Additional statements as needed
@ End of FcujgfRcvvgtp statement
>QdlgevCvvtkdwvg Tagged information that gets stored with the object when you save a document as
Structured PDF
A graphic object can have ny number of ObjectAttribute statements
>Vci"uvtkpi@ The tag name for the object attribute
>Xcnwg" uvtkpi@ The text of the object attribute
@ End of QdlgevCvvtkdwvg statement
Usage

The kF substatement is necessary only if other objects refer to the object. For example, anchored frames, groups, and
linked text frames require KF substatements.

The TtqwrKF statement is necessary only if the object belongs to a set of grouped objects (Itqwr statement). All
objects in the set have the TtqwrKF of the parent object. See “Group statement” on page 120.

Values for Pen and Fill statements

Values for the Rgp and Hknn statements refer to selections in the Tools palette. Graphics can use all the Rgp and Hknn
values illustrated below. Ruling lines and table shadings use only the first seven pen/fill values and 37 (none). The
pen and fill patterns might look different on your system.

Pen/Fill 0 — — 2
3 — — 5

6 — — 8

9 — — 1N

12 — — 14

None |— 15

Pen/Fill Patterns in Tools palette

Each Rgp, Hknn, or RgpYk£vj substatement resets the MIF interpreter’s corresponding current value. If an odlgev
statement doesn’t include one of these statements, the MIF interpreter uses the current default value for the object
data.

113

ADOBE FRAMEMAKER
MIF Reference

In a FrameMaker document, patterns aren’t associated directly with a document, but with FrameMaker itself. Each
FrameMaker document contains indexes to FrameMaker patterns. You cannot define document patterns in MIF;
you can only specify the values 0-15. However, you can customize a UNIX or Windows version of FrameMaker to
use patterns that differ from the standard set. For information, see the online manuals Customizing FrameMaker for
UNIX and Working on Multiple Platforms for Windows.

Values for the Angle and ReRotateAngle statements

The cping statement specifies the number of degrees by which an object is rotated before it is printed or displayed.
In a FrameMaker document, you can rotate an object in either a counterclockwise or clockwise direction. In a MIF
file, the rotation angle is always measured in a counterclockwise direction.

An object without an cping statement has an angle of 0 degrees. If an object has a TgTgvevgCping statement, it

specifies the angle to use when Esc g 0 (zero) is used to return the object to a previous rotation angle. An object with

a TgTgvcvgCping statement must have an angle of 0 degrees.

The cping and TgTqvevgCping statements are mutually exclusive. When the MIF interpreter reads an Cping

statement with a nonzero value, it sets the value of the TgTqvcvgCping statement to 0. When it reads a TgTqvevg-

Cping statement with a nonzero value, it sets cping to 0. Thus, if an object has both statements, the MIF interpreter

keeps the state of the most recently read statement.

Objects do not inherit rotation angles from other objects.

FrameMaker rotates objects as follows:

+ Polygons, polylines, and Bezier curves are rotated around the center of the edge mass.

+ Text lines are rotated around the vNotkikp point.

+ Arcsare rotated around the center of the bounding rectangle of the arc, not the bounding rectangle of the under-
lying ellipse. The bounding rectangle is the smallest rectangle that encloses an object. See your user’s manual for
more information about rotation.

+ Other objects are rotated around the center of the object.

DashSegment values

If the FcujgfUv{ng statement has a value of Fcujgf, the following Fcujugiogpv statements describe the dashed
pattern. The value of a FcujUgiogpv statement specifies the length of a line segment or a gap in a dashed line. See
the online manual Customizing Adobe FrameMaker for information on changing default dashed patterns in UNIX
versions of FrameMaker. In Windows versions, edit the ocmgt 0kpk file in the directory where FrameMaker is
installed. See Customizing Adobe FrameMaker for more information. You can also define custom dash patterns. For
examples, see “Custom dashed lines” on page 236.

Values for the RunaroundType and RunaroundGap statements

The TwpctqwpfV{rg and TwpctqwpfIcr statements specify the styles used for the runaround properties of objects:

« Ifthe Twpctqwp£fVv{rg statement is set to Eqpvqwt, text flows around objects in the shape of the contours of the
objects. The TwpctqwpfIcr statement specifies the distance between the objects and the text that flows around
them.

« Ifthe Twpctqwp£V{rg statement is set to Dgz, text flows around objects in the shape of boxes surrounding the
objects. The TwpctqwpfIcr statement specifies the distance between the objects and the text that flows around
them.

« Ifthe TwpctqwpfVv{rg statement is set to Pqgpg, text doesn’t flow around objects, and the value specified by the
Twpctqwpf Icr statement is ignored.

114

ADOBE FRAMEMAKER
MIF Reference

Objects inherit the values of these statements from previous objects. Since these statements are used only to change
the inherited value from a previous object, the statements are not needed for every object. For example, if you write
out a MIF file, not all objects will contain these statements.

If these statements do not appear in an object or MIF file, the following rules apply:

If an object does not contain the Twpctqwp£V{rg statement or the Twpctqwpf Icr statement, FrameMaker uses
the values from the previous TwpctqwpfV{rg and TwpctgwpfIcr statements.

If no previous TwpctqwpfV{rg and Twpctqwpf Icr statements exist in the MIF file, FrameMaker uses the default
values >TwpctgwpfV{rg Pgpge and >TwpctgwpfIcr 802@.

For example, if the >TwpctqwpfIcr 3402> statement appears, all objects after that statement have a 12.0 point
gap from text that flows around them. If this is the only TwpctqwpfIcr statement in the MIF file, all objects
before that statement have a 6.0 point gap (the default gap value) from the text that flows around them.

If the MIF file does not contain any Twpctqwp£V{rg statements or Twpctqwpf Icr statements, FrameMaker uses
the default values >Twpctquwpfv{rg Pgpge and >TwpctqwpfIcr 802e for all objects in the file.

For example, 3.x and 4.x MIF files do not contain any TwpctqwpfV{rg statements. When opening these files,
FrameMaker uses the default value >TwpctqwpfVv{rg Pgpge, and text does not flow around any of the existing
graphic objects in these files.

AFrames statement

The cHt cogu statement contains the contents of all anchored frames in a document. A document can have only one
CHtcogu statement, which must appear at the top level in the order given in “MIF file layout” on page 53.

The contents of each anchored frame are defined in a Ht cog statement. Within the text flow, an cCHtcog statement
indicates where each anchored frame appears by referring to the ID provided in the original frame description (see

«

ParaLine statement” on page 133).

Syntax
<AFrames
>Htcog...> Defines a graphic frame (see “Frame statement” on page 117)
>Htcog...> Additional statements as needed
> End of CHt cogu statement

Arc statement

The cte statement describes an arc. It can appear anywhere at the top level, or in a Htcog or Reig statement.

Syntax

<Arc

Igpgtke"qdlgev"uvcvgogpvu” Information common to all objects (see page 112)

115

ADOBE FRAMEMAKER
MIF Reference

>JgcfEcr"mg{ygtfe

Type of head cap for lines and arcs

mg {yqt £ can be one of:
CttqyJdgct

Dwvv

Tgwpf

Uswctg

>VcknEcr"mg{ygtfe

Type of tail cap for lines and arcs

mg {yqt £ can be one of:
CttgyJdgct

Dwvv

Tgwpf

Uswctg

>CttqyUv{ng..>

See “ArrowStyle statement”on page 116

>CteTgev"N"V"Y"J@

Underlying ellipse rectangle

>CteVjgvc"dimension@

Start angle

>CteFVjgvec"dimension@

Arc angle length

End of Cte statement

Usage

The arc is a segment of an ellipse whose bounding rectangle is defined in cteTgev. ctevigvc specifies the starting
point of the arc in degrees. Zero corresponds to twelve o’clock, 90 to three o’clock, 180 to six o’clock, and 270 to nine
o’clock. cteFvigve corresponds to the length of the arc. Positive and negative values correspond to clockwise and

counterclockwise extents.

ArrowStyle statement

The cttqyUv{ng statement defines both the head cap (at the starting point) and the tail cap (at the ending point) of

lines and arcs.

The arrow style property statements can appear in any order in an CttqyUv{ng statement. For a complete

description of arrow style properties, see your user’s manual.

Syntax

<ArrowStyle

>VkrCping"integere

Arrowhead tip angle in degrees

>DcugCping integere@

Arrowhead base angle in degrees

>Ngpivj" fkogpukgp@

Arrowhead length

>Jgcfv{rg"mg{yqt e

Arrowhead type

mg {yqt £ can be one of:
Uvkem
Jqnngy
Hknngf

>Uecngdgcf "dggngcp@

[gu scales head as arrow line gets wider

>UecngHcevqgt " fkogpukgp@

Scaling factor for arrowhead as line gets wider

116

ADOBE FRAMEMAKER | 117
MIF Reference

> End of Ct tgyUv {ng statement

Ellipse statement
The ennkrug statement describes circles and noncircular ellipses. It can appear anywhere at the top level, or in a

Htcog or Rcig statement.

Syntax
<Ellipse
Igpgtke"gdlgev"uvcvgogpvu” Information common to all objects (see page 112)
>UjcrgTgev"N"V"Y"J@ Position and size of object’s bounding rectangle, before rotation, in the page
or graphic frame coordinates
> End of Gnnkrug statement

Frame statement

Usually, a Ht cog statement contains a list of 0d1gev and Htcog statements that define the contents of the graphic
frame and are listed in the draw order from back to front.

The Htcog statement can appear at the top level or in a Reig, Htcog, or CHtcog statement.

Syntax
<Frame

Igpgtke"qdlgev"uvcvgogpvu" Information common to all objects (see page 112)

>KuJgvurgv" dggngcp@ Whether or not the object is a hotspot.

>JgvurgvEofUvt " Uvtkpi@ When you click on the hotspot, you can execute a command. When executed, the
command takes the user to a URL or a named destination.
Example syntax:
‘'message URL http://www.adobe.com’
-Or-
‘gotolink linkname'

>Jgvurgvvkvng"uvtkpi@ The tooltip text string.

>UjcrgTgev"N"V"Y"J@ Position and size of object, before rotation, in page or graphic frame coordinates

ADOBE FRAMEMAKER
MIF Reference

>HtcogV{rg"mg{yqgtf@

Whether graphic frame is anchored, and if anchored, the position of the anchored
frame

mg{yqt £ can be one of:
Dgngy

Var

Dgvvqgo

Kpnkpg

Nghv

Tkijv

Kpukfg

Qwvukfg

Pgct

Hct
TwpKpvgRctciterj
PgvCpejgtgf

>CpejqtFktgevkgp"mg{yqtf@

Controls the direction of the anchored frame.

mg{ygt £ can be one of:
NVT" / Set the direction for the anchored frame to left to right.
TVN" / Set the direction for the anchored frame to right to left.

KPJGTKVNVT"/ Derive the direction from the parent object. If it resolves to left
to right then KPJGTKVNVT is assigned to Cpej gt Fktgevkgp.

KPJGTKVTVN" /" Derive the direction from the parent object. If it resolves to
right to left then KPJGTKVTVN is assigned to Cpejgt Fktgevkagp.

>Veci"veiuvtkpi@

Name of graphic frame

>Hngcv" dggngcp@

[gu floats graphic frame to avoid large white space that results when anchored
frame and the line containing it are moved to the next page

>PUQhhugv" fkogpukgp@

Near-side offset

>DNQhhugv" fkogpukgp@

Baseline offset

>CpejqtCnkip"mg{ygtfe

Alignment of anchored frame

mg{ygt £ can be one of:
Nghv

Egpvgt

Tkijv

Kpukfg

Qwvukfg

>CpejqgtDgukfg"mg{ygtfe

Whether the graphic frame is anchored outside of a text frame or a columnin a
text frame

mg{ygt £ can be one of:
Egnwop
VgzvHtcog

>Etqgrrgf "dggngcp@

[gu clips sides of graphic frame to fit column

>Htcog...>

Other graphic frames within this frame

Itcrjke"qdlgev"uvcvgogpvu"

Objects in the graphic frame (see page 111)

End of Ht cog statement

Usage

Unless the generic object data indicates otherwise, the MIF interpreter assumes that each graphic frame inherits the

properties of the current state.

118

ADOBE FRAMEMAKER | 119
MIF Reference

A Htcog statement that is contained within an cHt cogu statement defines an anchored frame. Any other Htcog
statement defines an unanchored frame. The assumed value for Ht cogV{rg is PqvCpejqtgf.

For anchored frames, an CHt cog statement that refers to the frame ID indicates where the anchored frame appears
within the text flow (see “ParaLine statement” on page 133).

Specifications for the position and alignment of anchored frames are described in the following sections.

Position of anchored frames

The cpejgtDgukfg statement determines whether the graphic frame is anchored to a text column (Eqnwop) or a text
frame (VgzvHtcog).

The HtcogV{rg statement specifies the position of an anchored frame. A graphic frame can be anchored within a
text column or text frame or outside a text column or text frame.

If the graphic frame is anchored within a text column or text frame, the anchored frame can be positioned in one of
the following ways.

If the graphic frame is anchored within a text column or text frame The Frame statement contains

At the insertion point of the cursor <FrameType Inlines

At the top of the text column <FrameType Top>

Below the insertion point of the cursor <FrameType Below>

At the bottom of the text column <FrameType Bottom>

Running into the paragraph <FrameType RunIntoParagraph>

If the graphic frame is anchored outside a text column or a text frame, the anchored frame can be positioned in one
of the following ways.

If the graphic frame is anchored outside a text column or text frame The Frame statement contains

On the left side of the text column or text frame <FrameType Left>

On the right side of the text column or text frame <FrameType Right>

On the side of the text column or text frame closer to the binding of the ~ <FrameType Insides>
book (the “inside edge”)

On the side of the text column or text frame farther from the binding of the <FrameType Outsides>
book (the “outside edge”)

On the side of the text column or text frame closer to any page edge <FrameType Near>

On the side of the text column or text frame farther from any page edge =~ <FrameType Fars>

Alignment of anchored frames

If a graphic frame is anchored within a text column or text frame, the cpejgtCnkip statement specifies the
alignment of the anchored frame. Unless anchored at the insertion point of the cursor, the graphic frame can be
aligned in one of the following ways.

If the graphic frame is aligned The Frame statement contains
With the left side of the text column or text frame <AnchorAlign Lefts>
In the center of the text column or text frame <AnchorAlign Centers>

With the right side of the text column or text frame <AnchorAlign Right>

ADOBE FRAMEMAKER
MIF Reference

120

If the graphic frame is aligned The Frame statement contains

With the side of the text column or text frame closer to the binding of the
book (the “inside edge”)

<AnchorAlign Inside>

With the side of the text column or text frame farther from the binding
of the book (the “outside edge”)

<AnchorAlign Outsides>

Group statement

The Ttqwr statement defines a group of graphic objects and allows objects to be nested. The Ttqwr statement must
appear after all the objects that form the group. It can appear at the top level or within a Reig or Htcog statement.

Syntax

<Group

>KF" ID@ Group ID

ID, persistent across sessions, assigned when FrameMaker generates a MIF file; used by the FDK client
and should not be used by filters

>Wpkswg" ID@

>Cping...> Rotation angle of group (see page 112)

> End of It gwr statement

Usage

When the MIF interpreter encounters a ITtqwr statement, it searches all objects within the current graphic frame for
those group IDs that match the ID of the Ttqwr statement. These objects are then collected to form the group. All
objects with the same group ID must be listed in the MIF file before their associated Itqwr statement is listed. If
multiple Ttqwr statements have the same ID, the results will be unpredictable. For more information about the group
ID, see “Generic object statements” on page 112.

ImportObject statement

The Korgtvodlgev statement describes an imported graphic. It can appear at the top level or within a Rcig or Htcog

statement.

The imported graphic is either copied into the document or imported by reference:

« If the imported graphic is copied into the document, the data describing the graphic is recorded within the
KorgtvQdlgev statement. The description of a graphic in a given format is called a facet.

« FrameMaker uses facets to display graphics, print graphics, or store additional graphic information. Imported
graphics can have more than one facet, which means that the graphic is described in more than one format.

« If the graphic is imported by reference, the data describing the graphic is not stored within the Korgtvodlgev
statement. Instead, a directory path to the file containing the graphic data is recorded in the korgtvodlgev
statement.

Syntax

<ImportObject

Igpgtke"gdlgev"uvcvgogpvu"

Information common to all objects (see page 112)

>KorgtvQdHkng" rcvjpcoge

Object’s UNIX-style pathname; no longer used, but written out by FrameMaker
for backward-compatibility

ADOBE FRAMEMAKER
MIF Reference

>KorgtvQdHkngFK" rcvipcoge

Object’s device-independent pathname (see page 7)

>KorgtvJkpv"uvtkpi@

Record identifying the filter used for graphics imported by reference (see
“Record of the filter used to import graphic by reference” on page 124)

>RquvgtHkngFK" revipcog@

Poster file’s pathname

A poster file is the default image that appears when the movie is not playing. By
default, either standard icons or the first frame of the movie is used as its poster
image.

>UjcrgTgev"N"V"Y"Je

Position and size of object, before rotation, in the page or graphic frame coordi-
nates

>DkvOcrFrk"integere@

Scaling value for bitmap file; ignored for FrameVector graphics

>KorqtvQdHkzgfUk | g" dggngcp@

[guinhibits scaling of bitmap file (see “Size, position, and angle of imported
graphics” on page 122); ignored for FrameVector graphics

>qgrcekv{"kpvgigte

Opacity value defined in an object style

>HnkrNT" dggngcp@

[gu flips object about the vertical axis

>KorgtvQdPcogFK" rcvjipcoge

This contains a name for the inset object but it is valid only of inset contains
facets FLV, SWF and U3D.

>QdlgevCevkxcvgKpRFH" dggngcp@

On creation of PDF, if this flag is ON for the object, the corresponding annotation
in PDF will get active as soon as the page containing this object becomes visible.
This is only valid for inset having facets FLV, SWF and U3D.

>QdlgevQrgpKpHngcvYkpfqy" dggngcp@

On creation of PDF, if this flag is ON for the object, the corresponding annotation
in PDF will open in new window inside PDF reader soon as the page containing
this object becomes visible. This is only valid for inset having facets FLV, SWF and
U3D.

>QdlgevUwrrgtvOONkpm" dggngcp@

This tag represents if the inset support creation of multimedia link to it from text.
The inset having facets FLV, SWF and U3D supports this.

?uvtkpi

Specifies the name of the facet used to describe the graphic imported by
copying (see, “Facet Formats for Graphics.”)

("mg{ygtf

Identifies the data type used in the facet (see , “Facet Formats for Graphics.”).

mg {yqt £ can be one of:
x (for unsigned bytes)

k (for integer data)

o (for metric data)

Data describing the imported graphic; data must begin with the ampersand
character (see, “Facet Formats for Graphics.”)

(*z

Marks the beginning or end of data represented in hexadecimal (see, “Facet
Formats for Graphics.”)

?GpfKpugv

End of the data describing the imported graphic

>PcvkxgQtkikp" 2" [@

Coordinates of the origin of the imported graphic within the page or frame;
applicable for graphics that use coordinate systems, such as EPS

>KorgtvQdGfkvgt"uvtkpi@

Name of application to call to edit bitmap graphic inset or imported object;
ignored for FrameVector graphics

>KorgtvQdWrfcvgt "uvtkpi@

Identifies the imported graphic object or an embedded Windows OLE object.
For a description of the syntax of the string, see “Methods of importing graphics”
on page 123.

121

ADOBE FRAMEMAKER
MIF Reference

>KorgtvWIN" uvtkpi@ The http file path of graphic files imported by reference

>QdlgevKphg"uvtkpi@ U3D model properties such as lighting scheme, background color, existing view,
and rendering mode. The properties specified in this tag are applied to the U3D
object when a MIF file containing a U3D object is opened in FrameMaker.

Description of record: >xkgy"pcog@;>eqngt@;>nkijvkpi"
uejgog@;>tgpfgtkpi"ogfge@

* >xkgy"pcoge: Valid view of the given U3D object

¢ >nkijvkpi"uejgoge:Valid values are from “-2"to “9"
(where “-2" corresponds to ‘Lights From File’and “9” to ‘HeadLamp’)

* >tgpfgtkpi"ogfge:Valid values are from “1”to “15" (where “1” corre-
sponds to ‘Bounding Box’and “15” to ‘Hidden Wireframe’)

Example:

>QdlgevKphg"becogtc3=38999437=8=:=)@

> End of KorgtvQdlgev statement

Usage

The KorgtvQdlgev statement describes the imported graphic’s position, size, and angle. If the graphic is imported
by reference, the statement describes the path to the graphic file. If the imported graphic is copied into the document,
the statement contains the data describing the graphic. Data describing the graphic is stored in one or more facets.
If the graphic is linked with an application (through FrameServer or an FDK client), the statement also describes the
path to the application used to edit the graphic.

Usage of some of the aspects of the Korgtvodlgev statement is described in the following sections.

Graphic file formats
You can import different types of graphic files into a FrameMaker document.
Bitmaps: The term bitmap graphics (also called raster graphics) refers to graphics represented by bitmap data.

Graphics file formats recognized by FrameMaker include Framelmage, Sun™ rasterfile, xwd, TIFF, PCX, and GIF
files.

Vector: The term vector graphics (also called object-oriented graphics) refers to graphics represented by geometric
data. Graphics file formats recognized by FrameMaker include FrameVector, CGM, Corel Draw, Micrografx
Drawing Format, DXF, EPS, GEM, HPGL, IGES, PICT, WME, and WPG. Note that some of these graphic file formats
can also contain bitmap data.

Size, position, and angle of imported graphics
When you import a MIF file, FrameMaker determines the size of the graphic by the graphic type and the value of
the KorgtvQdHkzgfUk | g statement.

If the file format is Image scaled Size determined by

Bitmap with" >KorqtvQdHkzgfUk |g" [gu> No UjcrgTgev statement

Bitmap with >KorgtvQdHkzgfUk | g"Pge@ Yes DkvOcrFrk statement

Vector Yes Dimensions specified in the vector data
Encapsulated PostScript, QuickDraw PICT No Bounding box information in imported image

122

ADOBE FRAMEMAKER
MIF Reference

Position and coordinate systems: Some types of graphics (such as EPS) use coordinate systems to specify the
position of the graphic. When these types of graphics are imported into a FrameMaker document, the PcvkxgQ-
tkikp"statement specifies the coordinates of the origin of the graphic within the page or frame. If the imported
graphic is updated, FrameMaker uses the coordinates from the"PcvkxgQtkikp"statement to prevent the graphic
from shifting on the page or frame.

Size and scale of TIFF graphics: FrameMaker doesn’t use internal TIFF dpi information for sizing purposes
because not all TIFF files contain that information and because it may be incorrect. FrameMaker allows users to set
the dpi manually when importing the TIFF file. Once the graphic is imported, FrameMaker displays the dpi infor-
mation in the Object Properties dialog box.

Angle of imported graphics: If an object contains both a >HnkrNT" [gue statement and an Cping statement with
a nonzero value, the object is first flipped around the vertical axis and then rotated by the value specified in cping.

Methods of importing graphics

As mentioned previously, an imported graphic can be imported by reference or copied into the document. In the
Windows version, an imported graphic can be a SWF object.

The following table shows how the structure of the Korgtvodlgev statement differs, depending on how the graphic
is imported. For an explanation of the facet syntax, see , “Facet Formats for Graphics.”

If the graphicis The ImportObject statement contains
Copied into the FrameMaker document ?hcegvapcog”

(fcvcav{rg"

(hcegvafcvc”

?GpfKpugv
Imported by reference >KorgtvQdHkngFK" revjpcoge

>KorgtvJkpv" uvtkpi@

Imported graphic or embedded OLE object (Windows ?"hcegvapcog’gh"cp"korgtvgf"itcrjke"gdlgev"gt"cp"QNG"
only) gdlgev
(fevecav{rg"
(hcegvafcve”
?hcegvapcog”
(fevcav{rg"
(hcegvafcve”
?GpfKpugv
Gzcorng<">KorgtvQdWrfcvgt"bUYH) @

Filenames of objects imported by reference
When an object is imported by reference to an external file, the KorgtvQdlgev statement contains the file pathname.

The KorgtvQdHkngFK statement specifies the pathname for graphics imported by reference. The statement supplies
a device-independent pathname so that files can easily be transported across different types of systems (see “Device-
independent pathnames” on page 7).

In previous versions of FrameMaker, the KorgtvQdHkng statement was used to specify the pathname for graphics
imported by reference. The statement, which is no longer used, supplies a UNIX-style pathname, which uses a slash
(/) to separate directories (for example, >KorgtvQdHkng"blwut1lfgelvgorncvgookh) @). FrameMaker still writes
the"KorgtvQdHkng"statements to a MIF file for compatibility with version 1.0 of FrameMaker.

123

ADOBE FRAMEMAKER
MIF Reference

Facets in imported graphics

If a graphic is copied into a document, the data describing the graphic is stored as facets in the MIF file. (Graphics
imported by reference also use facets, but these are temporary and are not saved to the file. A MIF file with a graphic
imported by reference does not contain any facets.)

A facet contains graphic data in a specific format. For example, a TIFF facet contains graphic data described in TIFF
format. An EPSI facet contains graphic data in EPSI format.

Facets and facet formats are described in the appendixes of this manual:

« For a general description of facets and facet formats, see , “Facet Formats for Graphics.”

« For a description of the facet format for EPSI graphic data, see , “EPSI Facet Format.”

+ For a description of the FrameImage format used in facets, see , “Framelmage Facet Format.”

« For a description of the FrameVector format in facets, see , “FrameVector Facet Format.”

Record of the filter used to import graphic by reference

The Korgtvakpv statement contains a record to identify the filter that was used to import the graphic by reference.
FrameMaker uses the record to find the correct filter to reimport the graphic when a user opens the document again.
Note that for graphics imported by copy, FrameMaker uses the facet name stored with the graphic. The KorgtvJkpv
statement is not written for graphics imported by copy.

The record specified by the Korgtvakpv statement uses the following syntax:

tgeqtfaxgtu xgpfgt hgtocvakf rncvhqto hknvgtaxgtu hknvgtapcog

Note that the fields in the record are not separated by spaces. For example:

“0001PGRFPICTMAC61.0 Built-in PICT reader'

The rest of this section describes each field in the record.

tgegtfaxgtuis the version on the record (for example, 0001).

xgpfqt is a code specifying the filter’s vendor. The code is a string of four characters. The following table lists some
of the possible codes.

Code Description

‘PGRF’ Built-in FrameMaker filters
‘FAPI’ External FDK client filter
‘FFLT' External FrameMaker filters
‘IMAG' External ImageMark filters
‘XTND'’ External XTND filters

Note that this is not a comprehensive list of codes. Codes may be added to this list by Adobe or by developers at your
site.

hgtocvakf'is a code specifying the format that the filter translates. The code is a string of four characters. The
following table lists some of the possible codes.

Code Description
‘PICT' QuickDraw PICT
‘WMF’ Windows MetaFile

‘EPSF’ Encapsulated PostScript (Macintosh)

124

ADOBE FRAMEMAKER
MIF Reference

Code Description

‘EPSI’ Encapsulated PostScript Interchange

‘EPSB’ Encapsulated PostScript Binary (Windows)
‘EPSD’ Encapsulated PostScript with Desktop Control Separations (DCS)
‘SNRF’ Sun Raster File

“PNTG’ MacPaint

‘PCX’ PC Paintbrush

‘TIFF' Tag Image File Format

‘XWD' X Windows System Window Dump file

‘GIF' Graphics Interchange Format (CompuServe)
‘MIF' Maker Interchange Format

‘FRMI' Framelmage

‘FRMV' FrameVector

‘*SRGB’ SGIRGB

*CDR’ CorelDRAW

‘CGM’ Computer Graphics Metafile

*DRW’ Micrografx CAD

‘DXF'’ Autodesk Drawing eXchange file (CAD files)
‘GEM' GEM file (Windows)

‘HPGL' Hewlett-Packard Graphics Language

‘IGES' Initial Graphics Exchange Specification (CAD files)
‘WPG’ WordPerfect Graphics

‘DIB’ Device-independent bitmap (Windows)

‘OLE’ Object Linking and Embedding Client (Microsoft)
‘EMF’ Enhanced MetaFile (Windows)

*MooV’ QuickTime Movie

‘IMG4 ' Image to CCITT Group 4 (UNIX)

‘G4IM’ CCITT Group 4 to Image

‘SWF' Shockwave Flash file

‘U3D’ U3D file format

Note that this is not a comprehensive list of codes. Codes may be added to this list by Adobe or by developers at your

site.

125

ADOBE FRAMEMAKER
MIF Reference

rncvhgto is a code specifying the platform on which the filter was run. The code is a string of four characters. The
following table lists some of the possible codes.

Code Description

‘WINT' Windows NT®

‘WIN3' Windows 3.1

‘WIN4' Windows 95

‘UNIX' Generic X/11 (Sun, HP)

hknvgtaxgtuis a string of four characters identifying the version of the filter on that platform. For example, version
1.0 of a filter is represented by the string b3o2").

hknvgtapcog is a text string (less than 31 characters long) that describes the filter.

Importing a Flash file

When a Flash file is imported into a FrameMaker document, the filter_id data is rendered as a device independent
bitmap (DIB). You can import a Shockwave Flash (SWF) file by referencing it from the document or by pasting it
into the document. In both cases, the graphic object is made up of two facets—DIB and SWF—that are streamed
when the document is saved as a MIF file.

Importing a U3D file

When a U3D file is imported into a FrameMaker document, the filter_id data is rendered as a device independent
bitmap (DIB).You can import a U3D file by referencing it from the document or by pasting it into the document. In
both cases, the graphic object is made up of two facets—DIB and U3D—that are streamed when the document is
saved as a MIF file. When you import a U3D file by reference, the MIF file contains the name and path of the U3D
file.

More information about imported graphics
For additional information on imported graphics, consult one of the following sources:

« For instructions about modifying an application to create graphic insets for FrameMaker documents, see the
FDK Programmer's Guide.

+ Ifyou are using FrameServer or Live Links with graphic insets, see the online manual, Using FrameServer with
Applications and Insets, which is included in the UNIX version of the Frame Developer’s Kit.

+ For more information about importing graphics, see your user’s manual.

Math statement

A ocvj statement describes an equation. For its description, see , “MIF Equation Statements.”

Polygon statement

The rRgn {igp statement describes a polygon. It can appear at the top level or in a Rcig or Htcog statement.

Syntax

<Polygon

Igpgtke"qdlgev"uvcvgogpvu” Information common to all objects (see page 112)

126

ADOBE FRAMEMAKER
MIF Reference

>Uoqqgvjgf"dggngcp@

[gu smooths angles to rounded curves

>PwoRgkpvu" integere@

Number of vertices

>Rgkpv" Z" [@

Position of object in page or frame coordinates

More points as needed

End of Ran { igp statement

Usage

The PwoRgkpvu statement is optional. When the MIF interpreter reads a MIF file, it counts the Rgkpv statements to

determine the number of points in the polygon.

PolyLine statement

The rRgn {Nkpg statement describes a polyline. It can appear at the top level or in a Rcig or Htcog statement.

Syntax

<PolyLine

Igpgtke"gdlgev"uvcvgogpvu"

Information common to all objects (see page 112)

>JgcfEcr"mg{ygtfe

Type of head cap for lines and arcs

mg {yqt £ can be one of:
CttqgyJdgct

Dwvv

Tgwpf

Uswctg

>VcknEcr"mg{yqgtfe

Type of tail cap for lines and arcs

mg {yqt £ can be one of:
Cttqgydgct

Dwvv

Tgwpf

Uswctg

>CttqyUv{ng..>

See "ArrowStyle statement” on page 116

>Uoqqgvjgf"dggngcp@

[gu smooths angles to rounded curves

>PwoRgkpvu" integere@

Number of vertices

>Rgkpv" Z" [@

Position in page or graphic frame coordinates

More points as needed

End of Rgn { Nkpg statement

Usage

The rRgn {Nkpg statement is used for both simple and complex lines. A simple line is represented as a Rqn {Nkpg with
>PwoRgkpvu"4@. The PwoRgkpvu statement is optional. When the MIF interpreter reads a MIF file, it counts the
Rgkpv statements to determine the number of points in the polyline.

127

ADOBE FRAMEMAKER
MIF Reference

Rectangle statement

The Tgevcping statement describes rectangles and squares. It can appear at the top level or in a Reig or Htcog

statement.
Syntax
<Rectangle
Igpgtke"qdlgev"uvcvgogpvu” Information common to all objects (see page 112)
>UjcrgTgev"N"V"Y"J@ Position and size of object, before rotation, in page or graphic frame coordinates
>Uoqgavjgf"dggngcp@ [gu smooths angles to rounded curves
> End of Tgevcping statement
RoundRect statement
A TquwpfTgev statement describes a rectangle with curved corners. It can appear at the top level orinaRecig or Htcog
statement.
Syntax
<RoundRect
Igpgtke"gdlgev"uvcvgogpvu" Information common to all objects (see page 112)
>UjcrgTgev"N"V"Y"J@ Position and size of object, before rotation, in page or graphic frame coordinates
>Tcfkwu" fkogpukgp@ Radius of corner; 0=square corner
> End of TqwpfTgev statement

TextLine statement
The vgzvNkpg statement describes a text line. It can appear at the top level or in a Reig or Htcog statement.

A text line is a single line of text that FrameMaker treats differently from other text. Text lines grow and shrink as
they are edited, but they do not automatically wrap the way text in a text column does. Text lines cannot contain
paragraph formats, markers, variables, cross-references, or elements.

Syntax
<TextLine
Igpgtke"gdlgev"uvcvgogpvu" Information common to all objects (see page 112)
>VNQtkikp"Z" [@ Alignment point origin
>VNCnkipogpv"mg{ygtfe Alignment
mg {yqt £ can be one of:
Egpvgt
Nghv

Tkijv

128

ADOBE FRAMEMAKER
MIF Reference

>VNFktgevkgp"mg{ygtfe

Controls the direction in which the text line is drawn.

mg {yqt £ can be one of:
NVT" / Set the direction for the text line object to left to right.
TVN" / Set the direction for the text line object to right to left.

KPJGTKVNVT"/ Derive the direction from the parent object. If it resolves to left to right
then KPOGTKVNVT is assigned to VNFktgevkagp.

KPJGTKVTVN" / "Derive the direction from the parent object. If it resolves to right to
left then INHERITRTL is assigned to VNFktgevkgp.

>VNNcpiwcig"mg{ygtfe

Spell checking and hyphenation language for text line; for list of allowed keywords, see
RihNcpiwcigon page 65

>Ejct"integere

Nonprinting ASCII character code

>Hgpv...>

Embedded font change (see “PgfFont and Font statements” on page 67)

>Uvtkpi"uvtkpi@

Printable ASCII text in single quotation marks; required

End of VgzvNkpg statement

Usage

The vNQtkikp statement specifies the baseline (Y) and the left, center, or right edge of the text line (X), depending

on VNCnkipogpv. The text line is rotated by the value specified in an cping statement. The default angle is 0.

A vgzvNkpg statement contains one or more Uvtkpi statements. Each Uvtkpi statement is preceded by an optional
Hgpv statement. The Ej ct statements provide codes for characters outside the printable ASCII range. You can define

macros that make Ejct statements more readable, and there are several predefined constants for character values.

(See “Char statement” on page 134.)

TextRect statement

The vgzvTgev statement defines a text frame. It can appear at the top level or in a Rcig or Htcog statement.

Syntax

<TextRect

Igpgtke"gdlgev"uvcvgogpvu"

Information common to all objects (see page 112)

>UjcrgTgev"N"V"Y"J@

Position and size of object, before rotation, in page or graphic frame coordi-
nates

>VTPgzv"integere@

ID of next text frame in flow

>VTPwoEgnwopu" kpvgigt@

Number of columns in the text frame (3 /32)

>VTEgqnwopIcr" fkogpukgp@

Space between columns in the text frame (2$/72$)

>VTEgnwopDcncpeg" dggngcp@

[gu means columns in the text frame are automatically adjusted to the same
height

>VTUkfgjgcfYkfv]" fkogpukgp@

Width of side head area (2$/723)

>VTUkfgjgcfIcr" fkogpukgp@

Gap between side head area and body text area (2$/72$)

129

ADOBE FRAMEMAKER
MIF Reference

>VTUkfgjgcfRncegogpv"mg{ygt f@ Placement of side head in text frame

mg{ygt £ can be one of:
Nghv

Tkijv

Kpukfg

Qwvukfg

>VgzvHnqy See “Text flows,” next

> End of VgzvTgev statement

Usage

A text frame can contain one or more text columns (up to ten text columns). The number of columns and the space
between columns are specified by the vTPwoEqnwopu and VTEqnwopIcr statements, respectively. The space between
columns cannot exceed 50 inches.

FrameMaker can adjust the height of the text columns to evenly distribute the text in the columns if the vTEqnwop-
Dcncpeg statement is set to [gu.

A text frame also contains the specifications for the placement of side heads. The width and location of the side head
in a text frame are specified by the vTUkfgjgcfYkfvj and VTUkfgjgcERncegogpv statements. The side head area
cannot be wider than 50 inches. In the VTUkfgjgcfRncegogpv statement, the Kpukfg and Qwvukfg settings corre-
spond to the side closer to the binding and the side farther from the binding, respectively. The spacing between the
side head and the text columns in the text frame is specified by the vTUkfgjgcfIcr statement. The spacing cannot
exceed 50 inches.

vTPgzv indicates the ID of the next text frame in the flow. If there is no next vgzvTgev, use a >VTPgzv"2@ statement
or omit the entire vTPgzv statement. The text frame is rotated by the value specified in an cping statement. The
default angle is 0.

Text flows

Text flows contain the actual text of a FrameMaker document. In a MIF file, text flows are contained in vgzvHngy
statements. Typically, the vgzvHngy statement consists of a list of embedded Rctc statements that contain
paragraphs, special characters, table and graphic frame anchors, and graphic objects.

When the MIF interpreter encounters the first vgzvHngy statement, it sets up a default text flow environment. The
default environment consists of the current text frame, current paragraph properties, and current font properties.
The vgzvHngy statement can override all of these defaults.

TextFlow statement

The vgzvHngy statement defines a text flow. It can appear at the top level or in a vgzvTgev statement. It must appear
after all other main statements in the file.

Syntax

<TextFlow

>VHVci"veciuvtkpi@ Text flow tag name

>VHCwvgEgppgev" dggngcp@ [gu adds text frames as needed to extend flows

130

ADOBE FRAMEMAKER
MIF Reference

>HngyFkt"keyword> Controls the flow direction and of the direction of child objects that derive their
direction from the flow.

mg{ygtf can be one of:

NVT"/"Set the direction of the text flow object to left to right. The text flow
propagates its direction to all child objects that derive their direction from the
text flow object.

TVN"/ Set the direction of the text flow object to right to left. The text flow prop-
agates its direction to all child objects that derive their direction from the text
flow object.

KPJGTKVNVT"/ Derive the direction from the parent object. If it resolves to left
to right, then KPJGTKVNVT is assigned to HngyFkt.

KPJGTKVTVN" / " Derive the direction from the parent object. If it resolves to
right to left, then KPOGTKVTVN is assigned to HngyFkt.

>VHRquvUetkrv"dggngcp@ [gu identifies text in the flow as printer code

>VHHgcvjgt "dggngcp@ [gu adjusts vertical space in column so that last line of text lies against the
bottom of the column

>VHU{pejtqgpk | gf " dggngcpe [gu aligns baselines of text in adjacent columns

>VHNkpgUrcekpi" fkogpukqp@ Line spacing for synchronized baselines

>VHOkpJcpidgkijv" fkogpukgp@ Maximum character height for synchronization of first line in column; if charac-
ters exceed this height, FrameMaker doesn’t synchronize the first line

>VHUkfgjgcfu"dggngcp@ [gu means text flow contains side heads

>VHOczKpvgtNkpg" fkogpukgp@ Maximum interline spacing

>VHOczKpvgtRih" fkogpukgp@ Maximum interparagraph spacing

>Pgvgu...> Defines a footnote (see “Notes statement,” next)

>Rctec...> Defines a paragraph (see “Para statement” on page 132)

> End of VgzvHnqy statement
Usage

Most MIF generators will put all document text in one VgzvHnqy statement. However, if there are subsequent
VgzvHngy statements, the interpreter assumes they have the same settings (current paragraph format, current font,
and so forth) as the previous text flow.

To divert the flow into a new, unlinked text frame, there must be a vgzvTgevKF statement in the first Ret cNkpg
statement of the new VgzvHnqy statement (see page 133). The VgzvTgevKF statement resets the current text frame
definition so subsequent text is placed within the identified text frame; this is necessary only if you want to reset the
text frame defaults.

If the text flow contains side heads, the vHUkfgjgcfu statement is set to [gu. The RihRncegogpvUv{ng statement
(under paragraph properties) identifies the side heads, and the vgzvTgev statement contains specifications for their
size and placement.

For information about text flow properties, see your user’s manual.

Notes statement

The Pgvgu statement defines all of the footnotes that will be used in a table title, cell, or text flow. It can appear at the
top level or at the beginning of a vanvkvngEqpvgpv, EgnnEgpvgpv, or VgzvHngy statement.

131

Syntax

ADOBE FRAMEMAKER
MIF Reference

<Notes

>HPQgvg

>KF" ID@

>Wpkswg" ID@

ID, persistent across sessions, assigned when FrameMaker generates a MIF file; used by the
FDK client and should not be used by filters

>HQpvV...> Changes font as needed (see “PgfFont and Font statements” on page 67)
>Rctec..> Footnote text (see “Para statement,” next)
>Rctc..> Additional statements as needed
@ End of HPgvg statement
>HPgvg...> Additional statements as needed
> End of Pgqvgu statement
Usage

Within the document text, footnotes are referred to with the >HPgvg" kFe statement, where k7 is the ID specified in

the corresponding HPqvg statement. See “ParaLine statement” on page 133.

Para statement

The Rete statement defines a paragraph. It can appear in a VgzvHngy, HPqvg, EgnnEgpvgpv, Of VdnvkvngEqpvgpv
statement. In simple MIF files without page or document statements (such as the jgnngookh sample file), the Rctc
statement can also appear at the top level. It usually consists of a list of embedded Rct cNkpg statements that contain

the document text.

Syntax

<Para

>Wpkswg" ID@

ID, persistent across sessions, assigned when FrameMaker generates a MIF file;
used by the FDK client and should not be used by filters

>RihVeci"veciuvtkpi@

Applies format from Paragraph Catalog

>Rih..>

Sets current paragraph format (see page 62)

>RihPwoUvtkpi"uvtkpi@

Paragraph number (contains the actual string)

>RihGpfEgpf " dggngcp@

Used only for hidden conditional text; [gu indicates this is the last paragraph in
the current block of conditional text in the HIDDEN text flow (see page 43)

>RihEgpfHwnnRih" dggngcp@

Used only for hidden conditional text; [gu indicates paragraph contains end of
current block of hidden text and current block ends with a paragraph symbol

>RctcNkpg...>

See “Paraline statement,” next

End of Rctc statement

132

ADOBE FRAMEMAKER
MIF Reference

Usage

By default, a paragraph uses the current Rih settings (the same settings as its predecessor). Optional Rihvci and Rih
statements reset the current format. If there is a Rihvci statement, the MIF interpreter searches the document’s
Paragraph Catalog for a Rih definition with the same tag. If the tag exists, then the Paragraph Catalog’s Rih
definition is used. If no definition is found in the catalog, the Rih definition of the previous paragraph is used;
however, its tag string is reset to the tag in the Rihvci statement.

ParalLine statement

The RctcNkpg statement defines a line within a paragraph. It must appear in a Rctc statement.

Syntax
<ParaLine
>GngogpvDgikp"...> See , “MIF Statements for Structured Documents and Books.”
>VgzvTgevKF" ID@ Where the following text goes
>KpnkpgEgorgpgpv
>Wpkswg" ID@ Unique ID number assigned by FrameMaker.
>KpnkpgEgorgpgpvV{rg"OVQE®@ Type of inline component, which is the mini TOC.
@"% End of KonkpgEgorgpgpv statement.
>KpnkpgEgqorgpgpvGpf"@ End of inline component content.
>Urend {rjgpcvkgp" dggngcpe Hyphenation of a word at the end of a line causes the word to be spelled
differently, as with German hyphenation
>Hgpv...> Embedded character change for the following text (see page 67)
>Egpfkvkgpcn...> Turns on conditional text (see page 58)
>Wpegpfkvkgpcne Returns to unconditional state
>Uvtkpi"uvtkpie Printable ASCII text in single quotation marks; required
>Ejct..> An extended ASCII character code or special character name (see
page 134)
>Cvdn" ID@ ID of embedded table
>CHtcog" ID@ ID of embedded anchored frame
>HPqgvg" ID@ ID of embedded footnote
>Octmgt...> Embedded marker (see page 135)
>Xctkecdng Embedded variable
>XctkedngPcog"uvtkpi@ Variable name (see page 87)
>XctkcdngNgemgf " dggngcp@ [gu means the variable is part of a text inset that obtains its formatting
information from the source document
@ End of Xctkcdng statement
>ZTgh...> Embedded cross-reference (see page 88)

133

ADOBE FRAMEMAKER
MIF Reference

>ZTghGpf@
>GngogpvGpf"..> See, “MIF Statements for Structured Documents and Books.”
> End of Rct cNkpg statement
Usage

A typical RetcNkpg statement consists of one or more Uvtkpi, Ejct, CVdn, CHt cog, HPQvg, Xctkedng, ZTgh, and
octmgt statements that define the contents of the line of text. These statements are interspersed with statements that
indicate the scope of document components such as structure elements and conditional text.

The XctkcdngNgemgf statement is used for text insets that retain formatting information from the source document.

If the >XctkcdngNgemgf " [gue statement appears in a specific variable, that variable is part of a text inset that retains
formatting information from the source document. The variable is not affected by global formatting performed on
the document.

If the >XctkcdngNgemgf " Pge statement appears in a specific variable, that variable is not part of a text inset or is
part of a text inset that reads formatting information from the current document. The variable is affected by global
formatting performed on the document.

For more information about text insets, see “Text insets (text imported by reference)” on page 138.

Char statement

The Ejct statement inserts an extended ASCII character in a RetcNkpg statement. It must appear in a RetcNkpg,
VgzvNkpg, or DggmZTgh statement.

Syntax

<Char mg{yqtf> Preset name for special character (for allowed mg { yqt £ values, see “Usage,” next)

Usage
To include an extended ASCII character in a RetcNkpg statement, use the Char statement with a predefined
character name.

For example, you can represent the pound sterling character (£) with the statement >Ejct "Rqwpfe, as shown in the
following example:

<Para

<ParalLine
<String “the pound sterling's>
<Char Pounds>

<String ~ symbol's>
> # end of ParalLine
> # end of Para
<Para
<ParalLine
<String “the pound sterling \xa3 symbol's>
> # end of ParalLine
> # end of Para

You can use the >Ejct "Jct £Tgvwtpe statement to insert a forced return in a paragraph. The >Ejct "Jct£Tgvwtpe
statement must be the last substatement in a Ret cNkpg statement.

<Para

<ParalLine
<String “string 1's>
<Char HardReturn>

134

> # end of ParalLine
<ParaLine
<String “string 2'>
> # end of ParalLine
> # end of Para

ADOBE FRAMEMAKER
MIF Reference

For a list of character codes, see the Quick Reference for your FrameMaker product. Use the Ejct statement for a

small set of predefined special characters.

Character name Description

Tab Tab

HardSpace Nonbreaking space
SoftHyphen Soft hyphen
HardHyphen Nonbreaking hyphen
DiscHyphen Discretionary hyphen
NoHyphen Suppress hyphenation
Cent Cent (¢)

Pound Sterling (£)

Yen Yen (¥)

EnDash En dash (—)
EmDash Em dash (—)
Dagger Dagger ()
DoubleDagger DouHedagga(I)
Bullet Bullet (*)
HardReturn Forced return
NumberSpace Numeric space
ThinSpace Thin space
EnSpace En space

EmSpace Em space

In MIF 8 documents, the following 10 special characters are no longer represented by Character Names. You can

directly enter the UTF-8 code points of these characters:

¢ <Char DiscHyphenx>
¢ <Char NoHyphen>

¢ <Char HardHyphen>
¢ <Char Tab>

¢ <Char HardReturns>
¢ <Char NumberSpace>
* <Char HardSpace>

¢ <Char ThinSpace>

* <Char EnSpace>

* <Char EmSpace>

However, these special characters continue to be represented by Character Names in dialog boxes.

135

ADOBE FRAMEMAKER
MIF Reference

MarkerTypeCatalog statement

The octmgtV{rgEcvengi statement defines the contents of the catalog of user-defined markers for the current
document. A document can have only one octmgtVv{rgEcvcngi statement.

Syntax
<MarkerTypeCatalog
>OV{rgPcog"uvtkpie Marker name, as it appears in the Marker Type popup menu of the Marker dialog
box.
@%gpf"gh"OctmgtV{rgEcvcngi End of OctmgtV{rgEcvcngi statement
Marker statement

The octmgt statement inserts a marker. It must appear in a RetcNkpg statement.

For version 5.5 of MIF and later, markers are identified by their names. If you open an earlier version MIF file that
uses markers of type 11 through type 25, the document will show those marker numbers as the marker names. For
MIEF version 5.5 or later, ov{ rg numbers are still assigned for backward compatibility, but the assignment of numbers
is fairly arbitrary. If the document includes more than 15 custom markers (Type 11 through Type 25), then the extra
custom markers will be assigned >ov{rg 47e.

Syntax
<Marker
>Wpkswg" ID@ ID, persistent across sessions, assigned when FrameMaker generates a MIF file; used by the FDK
client and should not be used by filters
>OV{rg"integere Marker type number (for list of allowed values, see “Usage,” next). Marker type numbers are not
used for the current versions of FrameMaker, but they are included for backward compatibility
>OV{ rgPcog"uvtkpi@ Marker name, as it appears in the Marker Type popup menu of the Marker dialog box
>0Vgzv"uvtkpi@ Marker text string
>OEwttRcig" integere Current page of marker assigned when FrameMaker generates a file; ignored when FrameMaker
reads or imports a MIF file
> End of Octmgt statement
Usage
Marker type numbers correspond to the marker names in the Marker window as follows.
This number Represents this marker name
0 Header/Footer $1
1 Header/Footer $2
2 Index
3 Comment
4 Subject
5 Author
6 Glossary

136

ADOBE FRAMEMAKER
MIF Reference

This number Represents this marker name

7 Equation

8 Hypertext

9 X-Ref

10 Conditional Text

11 through 25 Type 11 through Type 25, for versions of FrameMaker earlier than 5.5. If more than 25 markers are
defined for the document, all extra markers are assigned the number 25.

In UNIX versions, you can change the default marker names. For more information, see the online manual, Custom-

izing FrameMaker.

XRef statement

The zTgh statement marks a cross-reference in text. It must appear in a RctcNkpg statement.

Syntax

<XRef

>Wpkswg" ID@

ID, persistent across sessions, assigned when FrameMaker generates a
MIF file; used by the FDK client and should not be used by filters

>ZTghPcog" vciuvtkpi@

Name of cross-reference format (see “XRefFormats and XRefFormat
statements” on page 88)

>ZTghNcuvWr fcvg"seconds" microseconds@

Specifies the time when the cross-reference was last updated; time is
measured in the number of seconds and microseconds that have passed
since January 1, 1970

>ZTghNgemgf " dggngcp@

[gu means the cross-reference is part of a text inset that obtains its
formatting information from the source document

>ZTghUteVgzv"uvtkpi@

Text to search for

>ZTghUteKuGngo" dggngcp@

[gu means the source of the cross-reference is an element from a struc-
tured document

>ZTghUteHkng" rcvjpcog@

Device-independent pathname of file in which to search for source text
(for revjpcog syntax, see page 7)

>ZTghUteGngoPgpWpkswgKf "uvtkpi@

A string specifying the 'id' attribute of the source element, in case it is not
aunique ID

>ZTghCnvVgzv"uvtkpi@

Alternate display text

>ZTghCrkEnkgpv

The client for the cross-reference. Contains ZTghEnkgpvPcog and
ZTghEnkgpvV{rg

>ZTghEnkgpvPcog" uvtkpi@

The registered name of the client that created the cross-reference

>ZTghEnkgpvV{rg"uvtkpie

The type of the client that created the cross-reference

@ End of ZTghCrkEnkgpv statement
@ End of ZTgh statement
>Hgpv...> Embedded character change for the following cross-reference text (see

page 67)

137

ADOBE FRAMEMAKER | 138
MIF Reference

>Uvtkpi'uvtkpi@ Text of cross-reference
>ZTghGpf@ End of cross-reference
Usage

The zTgh statement marks where a cross-reference appears in text. The zZTghPcog statement applies a format to the
cross-reference text; its string argument must match the name of the format provided by an zTghHgt ocv statement.

The zTghUtevgzv statement identifies the cross-reference source. If the source text is in a separate file, the zTghu-
teHkng statement provides a device-independent filename. You can omit it or give it an empty string argument if the
cross-reference source is in the same file.

The zTghcpf statement marks the end of the cross-reference.

Any Uvtkpi or Ejct statements between the zTgh and ZTghGpf statements represent the actual text of the cross-
reference. These intermediary statements are optional.

For an example of a cross-reference in MIF, see “Creating cross-references” on page 37.
The zTghNgemgf statement is used for text insets that retain formatting information from the source document.

If the >ZTghNgemgf " [gue statement appears in a specific cross-reference, that cross-reference is part of a text inset
that retains formatting information from the source document. The cross-reference is not affected by global
formatting performed on the document.

If the >z2TghNgemg£ " Pqe statement appears in a specific cross-reference, that cross-reference is not part of a text
inset, or is part of a text inset that reads formatting information from the current document. The cross-reference is
affected by global formatting performed on the document.

For more information about text insets, see “Text insets (text imported by reference),” next.

Text insets (text imported by reference)

In a FrameMaker document, text can be imported by reference from another file. When the text in the original file
is modified, the imported text in the FrameMaker document is updated with changes. Text imported by reference is
called a text inset. In a MIF file, text insets are defined by the vgzvkpugv statement.

A vgzvKpugv statement appears in the RctcNkpg statement representing the location of the text being imported.
When text is imported by reference, the resulting text inset can be formatted either as regular text or as a table.
The source file (from which the text is imported) can be a FrameMaker document or any other kind of text file. The
source file can also be a file that is created, maintained, and updated by an FDK client (a program created with the
Frame Developer’s Kit.

TextInset statement

The vgzvKpugv statement defines text that has been imported by reference. A vgzvkpugv statement appears in a
RctcNkpg statement.

ADOBE FRAMEMAKER
MIF Reference

Syntax
<TextInset
>Wpkswg" nume@ Unique ID number assigned by FrameMaker
>VkPcog" string@ Specifies a name for the text inset that may be assigned by an FDK client
or by this statement in a MIF file; FrameMaker does not automatically
assign a name for the text inset
>VkUteHkng" pathname@ Specifies the source file with a device-independent filename (for rcvy -
pcog syntax, see page 7)
>VkCwvgWrfcvg"boolean@ [gu specifies that the text inset is updated automatically when the
source file changes
>VkNcuvWrfcvg"seconds microseconds@ Specifies the time when the text inset was last updated; time is measured
in the number of seconds and microseconds that have passed since
January 1, 1970
>VkKorgtvJkpv"uvtkpi@ Identifies the filter used to convert the file (see “Record of the filter used
to import text” on page 140)
<TiApiClient ..> Identifies the text inset as one created and maintained by an FDK client
(see "TiApiClient statement” on page 141)
>VkHngy"...> Identifies the text inset as an imported text flow from another document
(see "TiFlow statement” on page 142)
>VkvVgzv"..> Identifies the text inset as an imported text file (see “TiText statement”
on page 143)
>VkVgzvVcdng"...> Identifies the text inset as text imported into a table (see “TiTextTable
statement” on page 143)
> End of VgzvKpugv statement
..(Free-form text+ Rctc"statements containing and describing the imported text (see
“Para statement” on page 132)
>VgzvKpugvGpf@ End of imported text
Usage

All text insets require information about the source file and the imported text. The information is used to update the
text inset when changes are made to the original file.

There are several different types of text insets. The type of the text inset is identified and described by a substatement:

« Text created and maintained by an FDK client is described by the vkcrkEnkgpv substatement. For information
on the statement, see the section “TiApiClient statement” on page 141.

+ A text flow imported from another FrameMaker document or from a document filtered by FrameMaker is
described by the vkHnqgy substatement. For information on the statement, see the section “TiFlow statement” on
page 142.

+ Plain text imported by reference is described by the vkvgzv substatement. For information on the statement, see
the section “TiText statement” on page 143.

+ Text imported into a tabular format is described by the vkvgzvvedng substatement. For information on the
statement, see the section “TiTextTable statement” on page 143.

Usage of some of the aspects of the vgzvKpugv statement is described in the following section.

139

ADOBE FRAMEMAKER
MIF Reference

Record of the filter used to import text

The vgzvKpugv statement contains a record to identify the filter that was used to import text by reference.
FrameMaker uses the record to find the correct filter to use when updating the text inset.

The record is specified in the vkkorgtvdkpv statement and uses the following syntax:

tgeqtfaxgtu xgpfgt hqgtocvakf rncvhqto hknvgtaxgtu hknvgtapcog

Note that the fields in the record are not separated by spaces. For example:

~0001XTNDWDBNMACP0002MS Word 4,5

In this example, 2223 is the record version; zvpF is the vendor; YFDP is the format id; OCER is the platform; 2224 is
the filter version; and ou"yqt£"6. 7 is the filter name. The rest of this section describes each field in the record.

tgegtfaxgtuis the version on the record (for example, 2223).

xgpfgt is a code specifying the filter’s vendor. The code is a string of four characters. The following table lists some
of the possible codes.

Code Description

‘PGRF’ Built-in FrameMaker filters
‘FAPI' External FDK client filter
‘FFLT' External FrameMaker filters
‘IMAG’ External ImageMark filters
‘XTND' External XTND filters

Note that this is not a comprehensive list of codes. Codes may be added to this list by Adobe or by developers at your
site.

hgtocvakf is a code specifying the format that the filter translates. The code is a string of four characters. The
following table lists some of the possible codes.

Code Description

‘WDBN' Microsoft Word compound document
‘WPBN' WordPerfect compound document
‘RTF’ Microsoft’s RTF compound document
‘IAF’ Interleaf compound document
‘MIF’ Maker Interchange Format

‘MRTF’ MIF to RTF export

‘MIAF’ MIF to IAF export

*MWPB' MIF to WordPerfect export

‘TRFF’ vtghh to MIF (UNIX only)

*MML’ Maker Mark-up Language

‘CVBN’ Corel Ventura compound document (Windows)
‘DCA’ DCA to MIF (UNIX)

‘TEXT' Plain text

‘TXIS' Text ISO Latin 1

140

ADOBE FRAMEMAKER | 141
MIF Reference

Code Description
‘TXRM’ Text Roman 8
*TANS' Text ANSI
‘TASC’ Text ASCII
‘TSJS’ Shift-JIS
‘TBG5' Big5

‘TGB’ GB-2312
*TKOR' Korean
‘TUT8' UTF-8
‘TU1B' UTF-16BE
‘TU1L' UTF-16LE
‘TU3B' UTF-32BE
‘TU3L' UTF-32LE

Note that this is not a comprehensive list of codes. Codes may be added to this list by Adobe or by developers at your
site.

rncvhgto is a code specifying the platform on which the filter was run. The code is a string of four characters. The
following table lists some of the possible codes.

Code Description
‘WINT' Windows NT
‘WIN3' Windows 3.1
‘WIN4'’ Windows 95
‘UNIX'’ Generic X/11 (Sun, HP)

hknvgtaxgtuis a string of four characters identifying the version of the filter on that platform. For example, version
1.0 of a filter is represented by the string b3o2").

hknvgtapcog is a text string (less than 31 characters long) that describes the filter.

TiApiClient statement

The vkCcrkEnkgpv statement defines a text inset created and maintained by an FDK client application.

Syntax
<TiApiClient
>VkEnkgpvPcog"string@ Specifies the name used to register the FDK client application with FrameMaker
>VkEnkgpvUgwteg" string@ Specifies the location of the source file for the text inset
>VkEnkgpvV{rg"string@ Specifies the type of the source file
>VkEnkgpvFcve" string@ Specifies additional data that can be used by an FDK client (for example, SQL query
information)

ADOBE FRAMEMAKER | 142
MIF Reference

> End of VkCrkEnkgpv statement

Usage

When updating text insets, the FDK client can use the VkEnkgpvPcog substatement to determine if it should update
a given text inset.

If the FDK client requires additional information, the client can store the information in the VkEnkgpvFcve
substatement. For example, if the FDK client queries a database for text, the SQL query can be stored in the VkEnk-
gpvFcve substatement.

TiFlow statement

The vkHnqgy statement defines a text flow that is imported by reference from a FrameMaker document or a MIF file.
The statement also defines imported text from other formatted documents that FrameMaker can filter (for example,
a Microsoft Word document).

Syntax
<TiFlow

>VkHgtocvvkpi"keyworde@ Specifies which document formats are used for the text inset
mg {yqt £ can be one of:
VkUgwteg
VkGpenqukpi
VkRnckpVgzv

>VkOckpHnqgy "boolean@ [gu specifies that the text inset is imported from the main flow of the
source document; Pq specifies that the text inset is imported from a
different flow

>VkRcigUrceg" keyworde@ If the text inset is notimported from the main flow, specifies whether the
text inset is imported from a flow in the body page or the reference page
of the source document
mg {yqt £ can be one of:
Dgf{Rcig
TghgtgpegRcig

>VkHngyPcog"string®@ If the text inset is not imported from the main flow, specifies the tag of
the flow to import; if the source file is an edition, set to bYkpfgyu"
gfkvkgp)

>VkHgtocvTgogxgQxgttkfgu"boolean@ When reformatting to use the current document’s formats, [gu specifies
that format overrides are removed

>VkHgtocvTgogxgRcigDtgecmu"boolean@ When reformatting to use the current document’s formats, [gu specifies
that manual page breaks are removed

> End of VkHngy statement
Usage

If the imported text flow is not the main flow of the source document, the VkRcigUrceg and VkHngyPcog substate-
ments identify the flow in the source document that serves as the imported text flow.

Text imported from another document can obtain formatting information from the original document (if the
VkHgtocvvkpi statement is set to VkUgwteg) or from the current document (if the vkHgtocvvkpi statement is set
to VkGpenqukpi):

ADOBE FRAMEMAKER
MIF Reference

« Ifthe imported text flow is reformatted to use the current document’s formats, the VkHgt ocvTgogxgQxgt tkfgu
substatement specifies whether or not format overrides in the text are removed, and the VkHgt ocvTgogxgRcig-
Dtgcmu substatement specifies whether or not manual page breaks in the text are removed.

+ Iftheimported text flow retains the formatting of the source document, the paragraph, character, table, variable,
and cross-reference formats used in the inset are marked with special MIF statements to indicate that these
formats should not be affected by global updates. These statements are RihNgemgf, HNgemgf, VdnNgemgf,
XctkedngNgemgf, and ZTghNgemgf, respectively. The MIF statements appear under the descriptions of these
formats.

Plain text formatting can also be used, if the vkHgtocvvkpi statement is set to VkRnckpVgzv.

TiText statement

The vkvgzv statement defines a text file imported by reference. It appears in a vgzvKpugv statement.

Syntax

<TiText

>VKkGONkUuGQR"boolean@ [gu specifies that the end of the line marks the end of a paragraph; Pq specifies that a
blank line identifies the end of a paragraph

>VkVzvGpeqgfkpi"mg{ygtfe Specifies the text encoding for the source file

mg {ygt £ can be one of:
VkKugNcvkp
VkCUEKK
VkCPUK
VkLKU

VKU khvLKU
VkGWE
VkDki7
VKGWEEPU
VKID

VkJ\
VkMgtgcp
VKWVH :
VKWVH3 8DG
VKWVH3 8NG
VKWVH54DG
VKkWVH54NG

> End of VkVgzv statement

TiTextTable statement

The vkvgzvVedng statement defines imported text formatted as a table. It appears in a vgzvKpugv statement.

Syntax
<TiTextTable
>VkVdnVci"string@ Specifies the name of the table format used for the table
>VkVdnKuD{Tqy"boolean@ [gu specifies that each paragraph in the imported text is converted to a
row of table cells; Pq specifies that each paragraph in the imported text is
converted to a table cell

143

ADOBE FRAMEMAKER
MIF Reference

>VkVdnPwoEqgnu " num@ If each paragraph is converted to a separate cell, specifies the number of
columns in the table

>VkVdnUgr"uvtkpi@ If each paragraph is converted to a row of cells, specifies the character used
to indicate the contents of each cell

>VkVdnPwoUgr" pwo@ If characters are used to indicate the contents of each cell, specifies the
number of these characters used as a single divider

>VkVdnPwoJftTgyu" pwo@ Specifies the number of heading rows in the table

>VkvdnJgcfgtuGorv{"booleane [gu indicates that the imported text is not inserted in the heading rows

>VkVdnVzvGpeqfkpi "mg{yqgtfe Specifies the text encoding for the source file

mg{ygt £ can be one of:
VkKugNcvkp
VKCUEKK
VKkCPUK
VKLKU
VkU{khvLKU
VKGWE
VkDki7
VKGWEEPU
VKID

VkJ\
VkMgtgcp
VKWVH :
VKWVH38DG
VKWVH3 8NG
VKWVH54DG
VKWVH54NG

> End of VkVgzvVcdng statement

Usage
When imported text is converted to a tabular format, each paragraph can be converted into either a cell or a row of
cells:

« If each paragraph is converted to a table cell, the vkvdnkuD{Tqy substatement is set to Pq. The number of
columns in the table is specified by the vkvdnPwoEqgnu substatement.

« Ifeach paragraph is converted to a row of cells, the VkvdnkuD{ Tqy substatement is set to [gu. The character used
in the imported text to delimit the contents of each cell is specified by the vkvdnugr substatement, and the
number of these characters used as a single divider is specified by the VkvanPwoUgr substatement.

« For example, if the imported text uses a single tab character to distinguish the contents of one table cell from the
next, the following substatements are used:

<TiTblSep ~\t's>

<TiTblNumSep 1>

« Asanother example, if the imported text uses two spaces to distinguish the contents of one table cell from the
next, the following substatements are used:

<TiTblSep ~ '>

<TiTblNumSep 2>

If the VkvdnPwoJft Tgyu substatement is not set to 2, the table has header rows. If the vkvdnggcfgtuGorv{
substatement is set to Pg, these rows are filled with imported text.

144

145

Chapter 4: MIF Book File Statements

MIF book file overview

The following table lists the main statements in a MIF book file in the order that Adobe” FrameMaker® writes them.
You should follow the same order that FrameMaker uses, with the exception of the macro statements and control
statements, which can appear anywhere at the top level of a file. Each statement, except the Dggm statement, is
optional. Most main statements use substatements to describe objects and their properties.

Section

Description

Book

Labels the file as a MIF book file. The Dggm statement is required and must be the
first statement in the file.

Macro statements

Defines macros with a £ghkpg statement and reads in files with an kpenwfg
statement. These statements can appear anywhere at the top level.

Control statements

Establishes the default units in a Wpkvu statement, the debugging setting in a
Xgtdgug statement, and comments in a Eqoogpv statement. These statements
can appear anywhere at the top level.

BWindowRect

Specifies position of book window on the screen.

View only statements

Specify whether the book is View Only, and how to display View Only book windows

BDisplayText

Specifies the type of text to display in the book window for each book component
icon.

PDF statements

Specify document info entries and how to handle named destinations when you
save the book as PDF

BookComponent

Provides the setup information for each file in the book.

Color Catalog

The color definitions of each document in the book.

Condition Catalog

Defines the condition tags of each document in the book.

Combined Font Catalog

Defines the combined fonts of each document in the book.

FontCatalog

Defines the character formats of each document in the book. The HgpvEcvengi
statement contains a series of Hgpv statements that define the tags that appear in
the Character Catalog of generated files.

PgfCatalog

Defines the paragraph formats of each document in the book. The RihEcvengi
statement contains a series of Rih statements that define the tags that appear in
the Include and Don't Include scroll lists of the setup dialog boxes for generated
files.

BookXRef

Names and defines the book’s internal cross-references. The DagmZTgh statement
contains cross-reference definitions in ZTghFgh statements, cross-reference text
in ZTghUteVgzv statements, and the source filename in ZTghUt eHkng state-
ments.

BookUpdateReferences

Specifies whether or not cross-references and text insets are automatically updated
when the book file is opened.

WEBDAV statements

Specifies whether or not a book is marked as managed content on the WebDAV
server.

ADOBE FRAMEMAKER
MIF Reference

MIF book file identification line

The MIF book file identification line must be the first line of the file with no leading white space.

Syntax

<Book xgtukqp> # egoogpv

The xgtukgpargument indicates the version number of the MIF language used in the file, and egoogpvis a comment
showing the name and version number of the program that generated the file.

For example, a MIF book file saved in version 9 of FrameMaker begins with the following line:
>Dgagm"2015@"%"Igpgtcvgf "d{ "xgtukgp" ; 02"gh"HtcogOcmgt

MIF is compatible across versions, so a MIF interpreter should be able to parse any MIF file, although the results can
sometimes differ from the user’s intentions.

A MIF book file identification line is the only statement required in a MIF book file.

Book statements

A MIF file for a book contains statements specific to books (DykpfqyTgev, DgamEqorgpgpv, DggmzTgh, and
DggmWrfcvgTghgtgpegu), plus the following statements, which can also occur in a MIF file for a document:
Eqoogpv, Wpkvu, Xgtdqug, RihEcvengi, and HgpvEcvengi, Eqngt Ecvengi, and EqpfkvkgpEcvengi.

BWindowRect statement

The DYkpfgyTgev statement defines the position of the book window on the screen. It can appear anywhere in the
file but normally appears just after the Dggm statement.

Syntax

<BWindowRect X Y W H> Book window placement on screen

PDF statements

The RFHDggmKphqg statement specifies the information to include in the Document Info dictionary when you save
the book as PDE Each data entry consists of one Mg{ statement, followed by at least one xcnwg statement; you can
include as many Xcnwg statements as you like. FrameMaker ignores any Mg{ that does not have at least one Xcnwg
following it. MIF does not represent entries for Etgcvqt, Etgevkgp" Fevg, or Ogfkhkecvkgp"Fevg.

For additional information and an example of the syntax for the Mg{ and xcnwg statements, see “PDF Document Info”
on page 89

Syntax

<PDFBookInfo Specifies the information that appears in the File Info dictionary when you save the book as PDF

Each Document Info entry consists of one Mg { statement followed by at least one Xcnwg statement.

146

ADOBE FRAMEMAKER

<Key strings>

A string of up to 255 ASCII characters that represents the name of a Document Info field; in PDF the
name of a File Info field must be 126 characters or less.

Represent non-printable characters via $JJ, where % identifies a hexadecimal representation of a
character, and JJ is the hexadecimal value for the character. For example, use $45 to represent the
"%" character. Zero-value hex -codes ($22) are illegal.

For more information, see”PDF Document Info” on page 89.

<Value string>

A string of up to 255 ASCII characters that represents the value of a Document Info field; because a
single MIF string contains no more than 255 ASCII characters, you can use more than one Xcnwg
statement for a given Mg {

A Value can include Unicode characters; represent Unicode characters via ($zJJJdJ=, where (%$z
opens the character code, the “;” character closes the character code, and JJJJ are as many hexadec-
imal values as are required to represent the character.

For more information, see “PDF Document Info” on page 89.

You can repeat paired groupings of Mg { and Xcnwg statements

End of RFHDggmKphg statement

MIF Reference

The DggmikngKphgstatement stores encoded packets of information (XMP data) that corresponds with values of
fields in the File Info dialog box. This statement can only appear in the bggm statement.

Syntax®

<BookFilelnfo>

Specifies the same information that appears in
>RFHDgQmKphg®, except it expresses these values as encoded
data. You should not try to edit this data.

BookFilelnfo also represents the values of the default fields for
Etgcvgt, Etgevkgp"Fecvg, and OgvcFcve "Fevg.

For more information, see “Document File Info” on page 89.

<encoded> XMP information as encoded data which is generated by
FrameMaker. This information corresponds to the values set in
the File Info dialog box. For any book, there can be an arbitrary
number of XMP statements.
> End of BookFileInfo
XML book statements

In versions 7.0 and later, FrameMaker supports XML import and export. The following statements store information
necessary to properly save a book as XML.

Syntax
<BXmlVersion strings> The XML version that was specified in the XML declaration when the
XML file was opened
<BXmlEncoding strings The XML encoding parameter that was specified in the XML declara-
tion when the XML file was opened
<BXmlStandAlone ints> The XML standalone parameter that was specified in the XML declara-

tion when the XML file was opened—determines whether or not the
XML document requires a DTD

147

ADOBE FRAMEMAKER

<BXmlStyleSheet strings>

The path or URI to the stylesheet that was specified for the XML file,
plus the type parameter specifying the type of stylesheet

View only book statements

MIF Reference

In versions 6.0 and later, a book can be View Only. The following statements indicate whether the book is View Only,

and how to display the book window when it is View Only.

Syntax

<BViewOnly booleans>

[gu specifies View Only book (locked)

<BViewOnlyWinBorders booleans>

Pq suppresses display of scroll bars and border buttons in book
window of View Only book

<BViewOnlyWinMenubar booleans>

Pqg suppresses display of book window menu bar in View Only book
(Unix only)

<BViewOnlyPopup booleanx>

Pq suppresses display of book context menus in View Only book

<BViewOnlyNoOp Oxnnns

Disables a command in a View Only document; command is specified
by hex function code (see page 48)

BDisplayText statement

The DFkurnc{Vgzv statement defines the type of text to display in the book window next to the book component

icons. It can appear anywhere in the file but normally appears just after the book’s View Only statements.

Syntax

<BWindowRect Z"["Y"J>

Book window placement on screen

<BDisplayText keywords>

The type of text to display next to componenticons in the book window;
mg {ygt £ can be one of:

CuHkngpcog= displays the filename of the book component in the
book window.

CuVgzv= displays a text snippet from the first paragraph of the
component in the book window

BookComponent statement

The DggmEgorgpgpv statement contains the setup information for a folder, group, document, or generated file in a
book. The bggmEgorgpgpv statements must precede all other statements that represent book content. The order of
DggqmEqorgpgpv statements determines the order of the documents in the book.

If the DggmEgorgpgpvV{rg is either a folder or a group, the following DggmEgorgpgpv statements should begin

under a DgikpHgnfgt and GpfHgnfgt statements or DgikpItqgwr and GpfItqwr statements. The sequence should

be as follows.

148

ADOBE FRAMEMAKER
MIF Reference

<BookComponent
<BookComponentType FolderBookComponent>
<ComponentTitle 'Folder Name'>
<Expanded Yes>
<ExcludeComponent No>

<ComponentTemplateFilePath 'folder template.fm'>
> # end of BookComponent
<BeginFolder> or <BeginGroup>
<BookComponent
<BookComponentType GeneralBookComponent>

> # end of BookComponent for file 1
#There can be multiple BookComponent statements within a BeginFolder and EndFolder
statements.
<EndFolder> or <EndGroup>
You specify the setup information as substatements nested within the overall book component statement. A
DggmEgorgpgpv statement doesn’t need all these substatements, which can occur in any order. A DggmEqgorgpgpv
statement can contain one or more FgtkxgVci statements.

Folder components

<BeginFolder>

Ifthe BookComponentType is HgnfgtDgamEgorgpgpv
then this tag appears before the following BookComponent tag

<ComponentTitle>

The name for the folder or group.

<EndFolder>

GpfHgnfgt indicates the end of the folder started with the immedi-
ately previous DgikpHgnfgt statement.

Group components

<BeginGroup>

Ifthe BookComponentType is ItgwrDggmEgorgpgpv then
this tag appears before the following BookComponent tag.

<EndGroup> GpfItgwr indicates the end of the group started with the immedi-
ately previous DgikpItgwr statement.

Syntax

<BookComponent Book components

<FileName pathnamex>

A document or generated file in the book (for pathname syntax, see
page 7)

<DisplayText string>

The text to display in the book window next to the icon for this compo-
nent; FrameMaker displays this text when DFkurnc {Vgzv is set to
CuVvgzv (see “<BDisplayText keyword>" on page 148).

<BookComponentType string>

The type of book component

ItgwrDggmEgorgpgpv " (group)
HgnfgtDggmEgorgpgpv " (folder)
IgpgtcnDggmEgorgpgpv " (regular component)

<Expanded boolean>

[gu expands the node in case of a hierarchy

<ExcludeComponent boolean>

[gu exludes the component

Generated components

<FileNameSuffix string>

Filename suffix added to generated file

149

ADOBE FRAMEMAKER

<DeriveType keywords>

Type of generated file

mg {ygt £ can be one of:
CON (alphabetic marker list)
CRN (alphabetic paragraph list)
KFZ (index)

KQC (author index)

KQO (index of markers)
KQU (subject index)

KT (index of references)
NOQH (list of figures)

NQO (list of markers)

NOQR (list of paragraphs)
NQV (list of tables)

NT (list of references)

VQE (table of contents)

<DeriveTag tagstrings>

Tags to include in generated file

<DeriveLinks boolean>

[gu automatically creates hypertext links in generated files

Book component pagination and numbering properties

<StartPageSide keywords>

The page side on which to start

mg {yqt £ can be one of:
TgcfHtgoHkng (default)
PgzvCxckncdngUkfg
UvctvNghvUkfg
UvetvTkijvUkEg

Volume numbering

<VolumeNumStart integers

Starting volume number

<VolumeNumStyle keywords>

Style of volume numbering

mg {yqt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETgqocp
NETgocp"
WECnrjc"
NECnrjc"
McplkPwogtke"
\gpCtcdke™"
\gpWECnrjc"
\gpNECnrjc"
Mcplkme |w"
DwukpguuMc |w"
Ewuvgo"

<VolumeNumText string>

When XgnwogPwoUv {ng is set to Ewuvqo, this is the string to use

<VolNumComputeMethod keywords

Volume numbering

mg {yqt £ can be one of:

UvctvPwodgtkpi (restart numbering)
EgpvkpwgPwodgtkpi (continue numbering from previous compo-
nent)
WugUcogPwodgtkpi (use the same numbering as previous compo-
nent)

TgcfHtgoHkng (use numbering set for the component’s document)

MIF Reference

150

ADOBE FRAMEMAKER

Chapter numbering

<ChapterNumStart integers>

Starting chapter number

<ChapterNumStyle keywords>

Style of chapter numbering

mg {yqt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETqocp
NETgocp"
WECnrjc"
NECnrjc"
McplkPwogtke
\gpCtcdke™"
\gpWECnrjc"
\gpNECnrjc"
Mcplkme |w
DwukpguuMc | w
Ewuvgo"

<ChapterNumText strings>

When Ej crvgt PwoUv {ng is set to Ewuvqo, this is the string to use

<ChapterNumComputeMethod keywords>

Chapter numbering

mg {yqt £ can be one of:

UvctvPwodgtkpi (restart numbering)
EgpvkpwgPwodgtkpi (continue numbering from previous compo-
nent)
WugUcogPwodgtkpi (use the same numbering as previous compo-
nent)

TgcfHtgoHkng (use numbering set for the component’s document)

Section numbering

<SectionNumStart integers>

Starting section number

<SectionNumStyle keywords>

Style of section numbering

mg {yqt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETgqocp
NETgocp"
WECnrjc"
NECnrjc"
McplkPwogtke
\gpCtcdke™"
\gpWECnrjc"
\gpNECnrjc"
Mcplkme|w
DwukpguuMc | w
Ewuvgo"

<SectionNumText string>

When SectionPwoUv{ngis set to Ewuvqo, this is the string to use

MIF Reference

151

ADOBE FRAMEMAKER

<SectionNumComputeMethod keywords>

Section numbering

mg {ygt £ can be one of:

UvctvPwodgtkpi (restart numbering)

EgpvkpwgPwodgtkpi (continue numbering from previous compo-
nent)
WugUcogPwodgtkpi (use the same numbering as previous compo-
nent)

TgcfHtgoHkng (use numbering set for the component’s document)

Sub section numbering

<SubSectionNumStart integers>

Starting sub section number

<SubSectionNumStyle keywords>

Style of sub section numbering

mg {yqt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETgqocp
NETgocp"
WECnrjc"
NECnrjc"
McplkPwogtke
\gpCtcdke™"
\gpWECnrjc"
\gpNECnrjc"
Mcplkme |w
DwukpguuMc | w
Ewuvgo"

<SubSectionNumText strings>

When SubSect ionPwoUv {ngis set to Ewuvqo, this is the string to
use

<SubSectionNumComputeMethod
keyword>

Sub section numbering

mg {yqt £ can be one of:

UvctvPwodgtkpi (restart numbering)
EgpvkpwgPwodgtkpi (continue numbering from previous compo-
nent)
WugUcogPwodgtkpi (use the same numbering as previous compo-
nent)

TgcfHtgoHkng (use numbering set for the component’s document)

Page numbering

<ContPageNum booleanx>

[gu continues page numbering from the previous file in the book

<PageNumStart integers

Starting page number

MIF Reference

152

ADOBE FRAMEMAKER

<PageNumStyle keywords>

Style of page numbering

mg {ygt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETgocp"
NETgocp"
WECnrjc"
NECnrjc"
McplkPwogtke
\gpCtcdke
\gpWECnrjc
\gpNECnrjc
Mcplkme |w"
DwukpguuMc | w

<PageNumbering keywords>

Page numbering

mg {yqt £ can be one of:
Egpvkpwg (default)
Tguvectv
TgcfHtgoHkng

Paragraph numbering

<PgfNumbering keywords>

Paragraph numbering

mg {yqt £ can be one of:
Egpvkpwg (default)
Tguvctv
TgcfHtgoHkng

Footnote numbering

<BFNoteStartNum integers

Starting number for footnote numbering

<BFNoteNumStyle keywords

Style of footnote numbering

mg{yqgt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETqocp"
NETgocp"
WECnrjc
NECnrjc"
McplkPwogtke
\gpCtcdke™"
\gpWECnrjc
\gpNECnrjc
Mcplkme|w
DwukpguuMc | w
Ewuvgo"

<BFNoteLabels string>

When DHPgqvgPwoUv { ng is set to Ewuvqo, this is the string to use

MIF Reference

153

ADOBE FRAMEMAKER

<BFNoteComputeMethod keywords>

Footnote numbering

mg {ygt £ can be one of:

Egpvkpwg (continue numbering from previous component in book)
Tguvctv (restart numbering; typically to restart per flow, according to
DHPgvgTguvctv setting)

RgtRcig (restart footnote numbering for each page; overrides
DHPgvgTguvctv setting)

TgcfHtgoHkng (use numbering set for the component’s document)

<BFNoteRestart keywords>

When to restart numbering, if DHPgvgEgorwvgOgvjgf is set to
Tguvctv

mg{yqgt £ can be one of:
RgtHnqy (restart footnote numbering for each flow in the document
RgtRcig (restart footnote numbering for each page)

Table footnote numbering

<BTb1lFNoteNumStyle keywords>

Style of table footnote numbering

mg {yqt £ can be one of:
KpfkePwogtke
HctukPwogtke
JgdtgyPwogtke
CdlcfPwogtke
CnkhdcvcPwogtke
WETgocp"
NETqocp"
WECnrjc"
NECnrjc"
McplkPwogtke"
\gpCtcdke"
\gpWECnrjc"
\gpNECnrjc"
Mcplkme |w"
DwukpguuMc | w
Ewuvgo"

<BTblFNoteLabels strings>

When DVdnHPgvgPwoUv { ng is set to Ewuvgo, this is the string to
use

<BTblFNoteComputeMethod keywords>

Table footnote numbering; either value causes the component to read
the numbering style from its document

mg {yqt £ can be one of:

Tguvctv (use numbering style specified in the component)
TgcfHtgoHkng (use numbering style set for the component’s docu-
ment)

Book component defaults

<DefaultPrint booleans

[gu adds file to Print scroll list in Print Files in Book dialog box (file is
printed); saved for compatibility with versions earlier than 6.0

<DefaultApply boolean>

[gu adds file to Update scroll list in the Import Formats dialog box (file
is updated); saved for compatibility with versions earlier than 6.0

<DefaultDerive booleans>

[gu adds file to Generate scroll list in the Generate/Update Book dialog
box

<NumPages integers>

The number of pages in the components document, as calculated the
last time the book was updated

<ComponentIsDitaMap booleanx>

[gu if the component file path is a DITA map

MIF Reference

154

ADOBE FRAMEMAKER
MIF Reference

Book autonumbering

<BookInitialAutoNums

Provides a starting value for the autonumber series in a book.

<FlowTag string>

Specifies flow that the book uses to number the series

<Series string>

Specifies autonumber series

<NumCounter integers

Initializes autonumber counter

<NumCounter ...>

Additional statements as needed

>

End of CwvgPwoUgtkgu statement

Folder or group properties

<ComponentApplication string>

Name of the application for a folder, template, or XML file

<ComponentTemplateFilePath string>

The path and filename of the folder template

Book conditional tags

<AllConditionTags

Container object that contains objects of type VciPcog

<TagName string>

Name of the managed condition tag

End of CnnEgpfkvkgpVeiu statement

<ShownConditionalTags

Container object that contains objects of type VciPcog

<TagName string>

Name of the managed condition tag

End of ShownConditionalTags statement

End of DggmEgorgpgpv statement

155

BookXRef statement

ADOBE FRAMEMAKER

The DggmzTgh statement defines the cross-reference formats for the book.

Syntax

<BookXRef

<XRefDef uvtkpis

Cross-reference format definition

<XRefSrcText uvtkpis>

Text for which to search

<XRefSrcIsElem dggngcp>

[gu means the source of the cross-reference is an element from a
structured document

<XRefSrcFile rcvjpcog>

File in which to search for source text (for rcvjpcog syntax, see
page 7)

<XRefSrcElemNonUniqueId uvtkpis>

A string specifying the 'id" attribute of the source element, in case it is
not a unique ID

<XRefAltText uvtkpi>

Alternate display text

End of DggmZTgh statement

BookUpdateReferences statement

MIF Reference

The DggmWrfcvgTghgtgpegu statement specifies whether or not cross-references and text insets are automatically

updated when the book file is opened.

Syntax

<BookUpdateReferences dqgngcp>

[gu specifies that cross-references and text insets are automati-
cally updated when the book file is opened

WEBDAY statements

The BookServerURL and BookServerState MIF statements mark a book as managed content from the WebDAV

perspective.

Syntax

>DgamUgtxgtWIN" uvtkpi@

URL of the MIF book file on the WEBDAV Server. All http path values are
valid.

Example:

<BookServerUrl “http://mikej-
xp/joewebdav/myfile.book.mif'> #
http://mikej-xp/joewebdav is the path of the
server.

>DgamUgtxgtUvevg"mg{yqtf"ejgemgr -
gwv'"ejgemgfkp@

Indicates whether a book is checked in or checked out on the WebDAV
server.

Example:

<BookServerState CheckedIn>

156

‘157

Chapter 5: MIF Statements for Structured
Documents and Books

This chapter describes the MIF statements that define structured documents created with Adobe® FrameMaker®. For
more information about creating and editing structured documents, see the FrameMaker User Guide.

Structural element definitions

A structured document is divided into logical units called structural elements. Elements have tags (or names) that
indicate their role in the document. For example, a document might contain Section, Para, List, and Item elements.
Each element has a definition that specifies its valid contents (such as text and graphics). A structured template
specifies a document’s elements, and the correct order of elements and text in the document.

There are two basic groups of structure elements:
« Containers, tables and footnotes, which can hold text and other elements.

+ Object elements, such as graphic frames, equations, markers, system variables, and cross-references. An object
element holds one of its specified type of object and nothing more.

Tables belong to both groups of elements. Although they can contain other elements (table parts such as rows and
cells), tables are also object elements.

In a MIF file, an element definition is defined by an GngogpvFgh statement. Element definitions are stored in the
Element Catalog, which is defined by the GngogpvFghEcvengi statement. Within a text flow, elements are indicated
by GngogpvDgikp and GngogpvGpf statements.

When FrameMaker reads a MIF file that does not support structure, they strip MIF statements for structure, such as"
GngogpvDgikp,"GngogpvGepf, and"GngogpvFghEcvengi "statements.

ElementDefCatalog statement

The GngogpvFghEcvengi statement defines the contents of the Element Catalog. A document or book file can have
only one GngogpvFghEcvengi statement which must appear at the top level in the order given in “MIF file layout”

on page 10.
Syntax
<ElementDefCatalog Begin Element Catalog
>GngogpvFgh...> Defines an element (see “ElementDef statement,” next)
>GngogpvFgh...> Additional statements as needed

> End of "GngogpvFghEcvcngi "statement

ElementDef statement

ADOBE FRAMEMAKER

MIF Reference

The GngogpvFgh statement creates an element definition, which specifies an element’s tag name, content rules, and

optional format rules. It must appear within an GngogpvFghEcvengi statement.

Syntax

<ElementDef

Begin element definition

>GFVci"veciuvtkpi@

Element tag name

>GFQdlgev"mg{yqgtfe

Type of formatter object represented by the element

mg {yqt £ can be one of:
GFEgpvckpgt
GFGswcvkgp
GFHgqvpgvg
GFItcrjke
GFOctmgt

GFVcdng
GFVdnVkvng
GFVdnJdgcfkpi
GFVdnDgf {
GFVdnHggvkpi
GFvVdnTqy
GFVdnEgnn
GFU{uvgoXctkcdng
GFZTgh

GFEgpvckpgt identifies a container element; all other values
identify object (non-container) elements

>GFXcnkfJkijguvNgxgn" dggngcp@

[gu"indicates element can be used as the highest level element
for a flow; only a container element is allowed to be the highest
level element

>GFIgpgtcnTwng" uvtkpi@

The general rule for the element; the following types of elements
can have general rules: containers, tables, table parts (table titles,
headings, bodies, footings, rows, and cells), and footnotes

>GFGzenwukgpu

List of excluded elements

>Gzenwukgp" veiuvtkpi@

Tag of excluded element

>Gzenwukgp" vciuvtkpi@

Additional statements as needed

@

End of "GFGzenwukgpu " statement

>GFKpenwukgpu

List of included elements

>Kpenwukgp" vciuvtkpi@

Tag of included element

>Kpenwukgp" vciuvtkpi@

Additional statements as needed

@

End of "GFKpenwukgpu " statement

>GFCnugKpugtv

List of elements that are automatically inserted in a container
element when the element is initially added

>CnugKpugtv" vciuvtkpi@

Tag of inserted element

158

ADOBE FRAMEMAKER

>CnugKpugtv"vciuvtkpi@

Additional statements as needed

@

End of "GFCnugKpugtv"statement

>GFKpkvkcnVedngRevvgtp" uvtkpi@

List of the tags of table child elements that are automatically
created when a table is inserted

Valid only if"GFQdlgev"is one of the following:
GFVcdng

GFvVdnJdgcfkpi

GFVdnDgf {

GFVdnHgqgvkpi

GFvVdnTqy

GFVdnEgnn

>GFCvvtFghkpkvkagpu

List of attribute definitions

>GFCvvtFgh..>

Definition of attribute (see “Attribute definitions” on page 160)

>GFCvvtFgh..>

Additional statements as needed

@

End of "GFCvvt Fghkpkvkgpu"statement

>GFRihHgtocv"uvtkpi@

Paragraph format of the element

>GFUv{ngHgtocv"uvtkpi@

Style format of the element

>GFVgzvHgtocvTwngu...>

See “EDTextFormatRules statement” on page 162

>GFQdlgevHgtocvTwngu...>

See “EDObjectFormatRules statement” on page 162

>GFRtghkzTwngu...>

See “EDPrefixRules statement” on page 163

>GFUwhhkzTwngu...>

See “EDSuffixRules statement” on page 163

>GFUvctvGngogpvTwngu...>

See “EDStartElementRules statement” on page 164

>GFGpfGngogpvTwngu...>

See “"EDEndElementRules statement” on page 164

>GFDcppgtVgzv"uvtkpi@

The banner text that appears inside a new element instance

>GFFguetkrvkxgVci"uvtkpi@

Description of the element tag that appears next to the element in
the element catalog

>GFEqgoogpvu" uvtkpi@

Comments for the element definition

End of"GngogpvFgh "statement"

Usage

The element name can contain any characters from the FrameMaker character set except the following:

(

)&|,*+?<>%[]=l;

Content rules

NN

The content rule for a container element consists of the following statements:

A required >GFQdlgev"GFEgpvckpgte statement specifies the element type.

MIF Reference

A required GFIgpgtcnTwng statement specifies what the element can contain and in what order the element’s

contents can appear.

159

ADOBE FRAMEMAKER
MIF Reference

« An optional GFGzenwukqgpu statement specifies elements that cannot appear in the defined element or in its
descendants.

+ Anoptional GFKpenwukgpu statement specifies elements that can appear anywhere in the defined element or in
its descendants.

The general rule specification must follow the conventions for data in a MIF string. If a general rule contains angle
brackets (>@), the right angle bracket must be preceded by a backslash in the MIF string. For example, an element
that can contain text might have the following general rule:

<EDGeneralRule “<TEXT\>'>

If you don’t provide a general rule statement for a container element, the MIF interpreter applies the default rule
>CP [@. The rule means that any element or text is allowed.

The following general rule describes an element that must contain at least one element named Item.

<ElementDef
<EDTag “BulletList's>
<EDValidHighestLevel No >
<EDGeneralRule “Item+'>
<EDObject EDContainer >

> # end of ElementDef

For more information about content rules, see the online manual FrameMaker Structure Application Developer’s
Guide.

Attribute definitions

Element definitions can specify attribute definitions, which describe attributes (information stored with an element
other than its content). The definition of an attribute can specify that the attribute is required for all elements with
the element definition. It can also provide a list of the values the attribute can have and a default value.

EDAttrDef statement

The cFcvvtFgh statement defines the formatting properties to be applied to a container, table, table child, or
footnote element in different contexts. It must appear in an GngogpvFgh statement.

Syntax

<EDAttrDef Begin attribute definition

>GFCvvtPcog"uvtkpi@ Attribute name

160

ADOBE FRAMEMAKER

>GFCvvtV{rg"mg{yqtf@

Attribute type

mg {ygt £ "can be one of:

HCvvtEjgkeg: avalue from a list of choices

HCvvtKpv: a signed whole number (optionally restricted to a
range of values)

HCvvtKpvu:one or moreintegers (optionally restricted toarange
of values)

HCvvtTgcen: a real number (optionally restricted to a range of
values)

HCvvtTgcnu: one or more real numbers (optionally restricted to
a range of values)

HCvvtUvtkpi:an arbitrary text string

HCvvtUvtkpiu: one or more arbitrary text strings
HCvvtWpkswgKf£: a string that uniquely identifies the element
HCvvtWpkswgKETgh: a reference to a UniquelD attribute
HCvvtWpkswgKEfTghu: one or more references to a UniquelD
attribute

>GFCvvtTgswktgf"dggngcp@

[gu"means the attribute is required

>GFCvvtTgcfQpn{ " dggngcp@

[gu"means the attribute is read-only

>GFCvvtJdkffgp" dggngcp@

[gu"means the attribute is hidden and will not appear in the Struc-
ture view or in the Edit Attributes dialog box

>GFCvvtEjgkegu"

The choices, if the attribute type is"HCvvtEjgkeg

>GFCvvtEjgkeg"uvtkpi@

A choice

>GFCvvtEjgkeg"uvtkpi@

Additional statements as needed

@

End of "GFCvvtEjgkegu"statement.

>GFCvvtFghXcnwgu"

The default if the attribute is not required. If the attribute type is"
HCvvtKpvu,"HCvvtTgenu, HCvvtUvtkpiu, or"
HCvvtWpkswgKfTghuy, the default can have multiple strings

>GFCvvtFghXcnwg" uvtkpi@

A default value

>GFCvvtFghXcnwg" uvtkpi@

Additional statements as needed

@

End of "GFCvvt FghXcnwgu "statement

>GFCvvtTcpig"

Range of values the attribute is allowed to have

>GFTcpigUvctv"uvtkpi@

The minimum value the attribute must have

>GFTcpigGpf"uvtkpi@

The maximum value the attribute must have

@

End of "GFCvvtTcpig"statement

End of "GFCvvtFgh" statement

MIF Reference

161

ADOBE FRAMEMAKER
MIF Reference

Format rules

Format rules allow the template builder to specify the format of an element in specific circumstances. A format rule
can be either a context rule or a level rule.

A context rule contains clauses that specify an element’s formatting based on its parent and sibling elements. For
example, one clause of a format rule could specify that a Para element has the FirstBody paragraph format if it is the
first child of a Heading element. Another clause could specify that a Para element has the Body paragraph format in
all other contexts.

A level rule contains clauses that specify an element’s formatting on the basis of the level to which it is nested within
specific types of ancestor elements. For example, one clause of a level rule could specify that a Para element appears
in 12-point type if it has only one Section element among its ancestors. Another clause could specify that a Para
element appears in 10-point type if there are two Section elements among its ancestors.

Element definitions contain format rules grouped into the following statements:
* GFVgzvHgtocvTwngu

¢ GFQdlgevHgtocvTwngu

¢ GFRtghkzTwngu

* GFUwhhkzTwngu

* GFUvctvGngogpvTwngu

* GFGpfGngogpvTwngu

EDTextFormatRules statement

The GFvgzvHgtocvTwngu statement defines the formatting properties to be applied to a container, table, table child,
or footnote element in different contexts. It must appear in an GngogpvFgh statement. An GFVgzvHgtocvTwngu
statement can contain zero or more substatements describing level and context format rules.

Syntax
<EDTextFormatRules Any combination of level and context format rules
>NgxgnHgtocvTwng...> Alevel format rule (see “LevelFormatRule statement” on page 165)
>EgpvgzvHgtocvTwng...> A context format rule (see “ContextFormatRule statement” on page 165)
>EgpvgzvHgtocvTwng...> Additional context format rule statements as needed
>NgxgnHgtocvTwng...> Additional level format rule statements as needed
> End of "GFVgzvHgt ocvTwngu"statement

EDObjectFormatRules statement

The GFQdlgevHgtocvTwngu statement defines the formatting properties to be applied to a table, cross-reference,
system variable, marker, graphic, or equation element in different contexts. It must appear in an GngogpvFgh
statement.

An GFQdlgevHqgtocvTwngu statement can contain a single level format rule or a single context format rule.

162

Syntax

ADOBE FRAMEMAKER
MIF Reference

<EDObjectFormatRules

Begin object format rules (a single level format rule or a single context

format rule)

>NgxgnHgtocvTwng...>

A level format rule (see “LevelFormatRule statement” on page 165)

End of "GFQdlgevHgtocvTwngu" statement

or

<EDObjectFormatRules

>EgpvgzvHgtocvTwng...>

A context format rule (see “ContextFormatRule statement” on page 165)

End of "GFQdlgevHgtocvTwngu" statement

EDPrefixRules statement

A prefix is a fixed text range that appears at the beginning of an element (before the element’s content). The GFrtg-
hkzTwngu statement defines the formatting properties to be applied to a prefix in different contexts. It must appear

in an GngogpvFgh statement. It is valid only for container elements.

An GFRtghkzTwngu statement can contain zero or more substatements describing level and context format rules.

Syntax

<EDPrefixRules

Begin prefix rules (any combination of level and context format rules)

>NgxgnHgtocvTwng...>

A level format rule (see “LevelFormatRule statement” on page 165)

>EgpvgzvHgtocvTwng...>

A context format rule (see “ContextFormatRule statement” on page 165)

>EgpvgzvHgtocvTwng...>

Additional context format rule statements as needed

>NgxgnHgtocvTwng...>

Additional level format rule statements as needed

End of "GFRtghkzTwngu" statement

EDSuffixRules statement

A suffix is a fixed text range that appears at the end of an element (after the element’s content). The GFUwhhkzTwngu
statement defines the formatting properties to be applied to a suffix in different contexts. It must appear in an
GngogpvFgh statement. It is valid only for container elements.

An GFUwhhkzTwngu statement can contain zero or more substatements describing level and context format rules.

Syntax

<EDSuffixRules

Begin suffix rules (any combination of level and context format rules)

>NgxgnHgtocvTwng...>

A level format rule (see “LevelFormatRule statement” on page 165)

>EgqpvgzvHgtocvTwng...>

A context format rule (see “ContextFormatRule statement” on page 165)

>EgqpvgzvHgtocvTwng...>

Additional context format rule statements as needed

>NgxgnHgtocvTwng...>

Additional level format rule statements as needed

163

ADOBE FRAMEMAKER

End of "GFUwhhkzTwngu" statement

EDStartElementRules statement

MIF Reference

The GFUvctvGngogpvTwngu statement defines a special set of format rules to be applied to the first paragraph in a

parent element. The GFUvctvGngogpvTwngu statement must appear in an GngogpvFgh statement. It is valid only for

container elements.

An GFUvctvGngogpvTwngu statement can contain zero or more substatements describing level and context format

rules.

Syntax

<EDStartElementRules

Begin start element rules (any combination of level and context format
rules)

>NgxgnHgtocvTwng...>

A level format rule (see “LevelFormatRule statement” on page 165)

>EgqpvgzvHgtocvTwng...>

A context format rule (see “ContextFormatRule statement” on page 165)

>EgpvgzvHgtocvTwng...>

Additional context format rule statements as needed

>NgxgnHgtocvTwng...>

Additional level format rule statements as needed

End of "GFUvctvGngogpvTwngu " statement

EDEndElementRules statement

The cFGpfGngogpvTwngu statement defines a special set of format rules to be applied to the last paragraph in a

parent element. The"GFGpfGngogpvTwngu"statement must appear in an GngogpvFgh statement. It is valid only for

container elements.

An GFGpfGngogpvTwngu statement can contain zero or more substatements describing level and context format

rules.

Syntax

<EDEndElementRules

Begin end element rules (any combination of level and context format
rules)

>NgxgnHgtocvTwng...>

A level format rule (see “LevelFormatRule statement” on page 165)

>EgqpvgzvHgtocvTwng...>

A context format rule (see “ContextFormatRule statement” on page 165)

>EgpvgzvHgtocvTwng...>

Additional context format rule statements as needed

>NgxgnHgtocvTwng...>

Additional level format rule statements as needed

End of "GFGpfGngogpvTwngu " statement

164

ADOBE FRAMEMAKER
MIF Reference

ContextFormatRule statement

The"EgpvgzvHgtocvTwng"statement contains clauses that specify an element’s formatting on the basis of the
element’s parent and sibling elements. It contains an Kh"statement and zero or more Gnugkh statements. It can also
contain an"Gnug"statement.

The"EqpvgzvHgt ocvTwng "statement must appearina format rules statement, such as an GFvgzvHgtocvTwngu"or"
GFGpfGngogpvTwngu"statement.

Syntax

<ContextFormatRule Begin context format rule
>Kh...> An If clause (see “If, Elself, and Else statements” on page 166)
>Gnugkh...> An Elself clause (see “If, Elself, and Else statements” on page 166)
>Gnugkh...> Additional statements as needed
>Gnug...> An optional Else clause (see “If, Elself, and Else statements” on

page 166)
> End of "EqpvgzvHgt ocvTwng " statement

LevelFormatRule statement

The"NgxgnHqgt ocvTwng "statement contains statements that specify an element’s formatting on the basis of the level
to which the element is nested within specific types of ancestor elements.

The"NgxgnHgt ocvTwng" statement contains a"EqwpvGngogpvu"statement listing the tags of elements to count
among the element’s ancestors and a statement specifying the tag of the element at which to stop counting. The"
NgxgnHqgtocvTwng"statement also contains an Kh'statement, zero or more Gnugkh statements, and an optional 'Gnug"
statement. The"Kh,"Gnugkh, and"Gnug"statements define the formatting applied to the element at specified levels
of nesting within the ancestor elements specified by the"EqwpvGngogpvustatement.

The"NgxgnHgt ocvTwng" statement must appear in a format rules statement, such as an GFvgzvHgtocvTwngu"or"
GFGpfGngogpvTwngu"statement.

Syntax
<LevelFormatRule Begin level format rule

>EqwpvGngogpvu Optional list of elements to count among the element’s ancestors
>EgwpvGngogpv" veiuvtkpi@ Tag of element to count
>EqwpvGngogpv" veiuvtkpi@ Additional statements as needed

@ End of "EgqwpvGngogpvu " statement

>UvgrEqwpvkpiCv" veiuvtkpi@ Optional tag of element at which to stop counting

>Kh...> An If clause (see “If, Elself, and Else statements” on page 166)

>Gnugkh...> An optional Elself clause (see “If, Elself, and Else statements” on

page 166)

165

ADOBE FRAMEMAKER

>Gnugkh...> Additional statements as needed
>Gnug...> An optional Else clause (see “If, Elself, and Else statements” on
page 166)
> End of LevelFormatRule

If, Elself, and Else statements

MIF Reference

Kh,"Gnugkh, and"Gnug"statements specify clauses within EqpvgzvHgtocvTwng"and"NgxgnHgt ocvTwng " state-
ments. In a EqpvgzvHgtocvTwng statement, they specify a context and one or more statements that define how to
change formatting when the context applies. If an Kh"or"Gnugkh"statement does not include a"Eqpvgzv"or"Ngxgn"
statement, or the Eqpvgzv"or"Ngxgn"statement contains an empty string, this indicates that the"kh"or"cnugkh"

statement applies in all contexts.

In a EgpvgzvHgtocvTwng"statement,"Kh"and "Gnugkh, and Gnug statements take the following form:

<If Begin If clause

>Egpvgzv"egpvgzvuvtkpi@ String specifying a context, such as Ugevkgp " >"Ugevkgp. If this
context applies to the element, the following formatting statements are
used to format the element.

>Hgtocvvkpi "uvcvgogpve A statement (such asa"HgtocvVci"or"HovEjcpigNkuvVci "state-
ment) that specifies how to change the formatting when the "Egqpvgzv"
statement applies (see “Formatting statements,” next, for a list of format-
ting statements)

> End of "Kh"statement

<ElseIf

>EqQpvgzv"eqpvgzvuvtkpi@

>Hqtocvvkpi "uvcvgogpve

> End of "GnugKh "statement

<Else An optional Else clause

>Hgtocvvkpi "uvcvgogpve

> End of "Gnug"statement

In a NgxgnHgtocvTwng" statement, Kh"and"Gnugkh, and Gnug statements take the following form:

<If Begin If clause

>Ngxgn" ngxgnuvtkpi@ String specifying a level of nesting, such as"3 "or" 7. If the element is nested
to this level, the following formatting statements are used to format the
element.

166

ADOBE FRAMEMAKER

>Hgtocvvkpi "uvcvgogpve

A statement (such as a"HgtocvVci"or"HovEjcpigNkuvVei "state-
ment) that specifies how to change the formatting when the "Ngxgn "state-
ment applies (see “Formatting statements,” next, for a list of formatting state-
ments)

End of "Kh "statement

<ElseIf

Begin Elself clause

>Ngxgn"ngxgnuvtkpi@

>Hqtocvvkpl "uvcvgogpve

Additional formatting statements as needed

End of "GnugKh "statement

<Else

An optional Else clause

>Hgtocvvkpi "uvcvgogpve

Additional formatting statements as needed

End of "Gnug " statement

Formatting statements

Kh,"GnugKh, and "Gnug"statements can use the following statements to specify an element’s formatting:

<IsTextRange dqgngcp>

[gu if the element is formatted as a text range instead of as a paragraph

Only text format rules can include this statement.

<FormatTag vciuvtkpis

The format tag. If "KuVgzvTcpig"specifies" [gu, veiuvtkpi "specifies
a character format tag; otherwise, it specifies a paragraph tag, table tag,
marker type, cross-reference format, or equation size

Only text and object format rules can include this statement

<FmtChangelListTag vciuvtkpi>

The tag of a named format change list (a format change list in the format
change list catalog). For more information on format change lists, see “Format
change lists” on page 168

Object format rules can’t include this statement

<FmtChangeList ..>

The definition of an unnamed format change list. For more information on
format change lists, see “Format change lists” on page 168

Object format rules can’t include this statement

<ContextFormatRule ..>

The definition of a nested context format rule

<LevelFormatRule ..>

The definition of a nested level format rule

<ContextLabel ncdgnuvtkpis>

The context label for generated files. It cannot contain white-space characters
or any of these special characters:

*0gn (nNn_||’||_||A||>n@nln] n n?n#n=n<n}nin$

When a user displays the Set Up dialog box to set up a generated file, the label
appears next to elements to which the "Kh, "GnugKh, or"Gnug "statement
applies

Only text and object format rules can include this statement

MIF Reference

167

ADOBE FRAMEMAKER
MIF Reference

<ElementPrefix uvtkpis A string that appears before the element

Only prefix rules can include this statement

<ElementSuffix uvtkpis> A string that appears after the element

Only suffix rules can include this statement

Each"kh,"Gnugkh, and "Gnug" statement can include only one of the following formatting statements:
* Hgtocvvcei

¢ HovEjcpigNkuv

¢ HovEjcpigNkuvVci

* EgpvgzvHgtocvTwng

¢ NgxgnHgtocvTwng

Format change lists

A format change list specifies how a paragraph format changes when a format rule clause applies. A change list can
specify a change to just a single paragraph property, or it can specify changes to a long list of properties.

A format change list can be named or unnamed. A named change list appears in the Format Change List Catalog.
Format rule clauses that use a named change list specify its name (or tag). Multiple rule clauses can specify the same
named change list. An unnamed change list appears in a rule clause. It is used only by the rule clause in which it
appears.

FmtChangelistCatalog statement

The HovEjcpigNkuvEcvengi statement defines the contents of the Format Change List Catalog. A document can
have only one HovEj cpigNkuvEcvengi statement which must appear at the top level in the order given in “MIF file
layout” on page 10.

Syntax
<FmtChangeListCatalog Begin Format Change List Catalog
>HovEjcpigNkuv..> Defines an element (see “FmtChangeList statement,” next)
>HovEjcpigNkuv...> Additional statements as needed
> End of "HovEj cpigNkuvEcvengi "statement

FmtChangelist statement

The HovEj cpigNkuv statement creates a format change list definition. The "HovEj cpigNkuv"statement for a named
change list must appear in the HovEj cpigNkuvEcvengi "statement. The"HovE] cpigNkuvstatement for a unnamed
change list must appear in the format rule clause that uses it.

168

ADOBE FRAMEMAKER
MIF Reference

A change list can specify absolute values or relative values. For example, it can specify that the paragraph left indent
is one inch or it can specify that it is one inch greater than the inherited left indent. Alternatively, a change list can
simply specify a paragraph catalog format to apply to a paragraph. If it does this, it can’t specify changes to any other
paragraph properties.

If a HovEj cpigNkuv statement defines a named change list, it must include an"Henvci "statement specifying its
name. In addition, it must contain one statement for each paragraph format property it changes. For example, if a
named change list changes only the first indent by a relative value, it contains only Henvci "and RihHKpfgpvEjcpig"
statements. If it changes the space below and the leading with absolute values, it contains"HenvVci,"RihUrDghgtg,"
and"RihNgcfkpi "statements.

If a HovEj cpigNkuv statement changes a paragraph property to an absolute value, the statement it uses is the same
as the corresponding paragraph format statement (for example,"RihNKp£gpv). If the change list changes a property
with a relative value, the statement it uses has the name of the corresponding paragraph format statement with the
word"Ejcpig"appended to it (for example,"RihNKpfgpvE]cpig).

Syntax

Basic properties

<FmtChangeList Begin format change list
>HenVci'" tagstringe Format change list name if the format change list is named
>HenRihEcvcngiTgh" tagstringe A paragraph catalog format to apply. If the"HovEjcpig-

Nkuv "statement includes this statement, it can't include any
of the following statements

>RihHKpfgpv" fkogpukqp@ First line left margin, measured from left side of current text

column
>RihHKpfgpvEjcpig" fkogpukgp@ Change to the first line left margin
>RihHKpfgpvTgncvkxg"booleane@ [gu means the firstindent is relative to the left indent instead

of the left side of the current text column
>RihNKpfgpv"dimension@ Left margin, measured from left side of current text column
>RihNKpfgpvEjcpig" fkogpukqp@ Change to the left margin
>RihTKpfgpv"dimensione Right margin, measured from right side of current text column
>RihTKpfgpvEjcpig"dimension@ Change to the right margin
>RihCnkipogpv"mg{ygtf@ Alignment within the text column

mg {ygt £ can be one of:

NghvTkijv

Nghv

Egpvgt

Tkijv
>RihUrDghqgtg"dimension@ Space above paragraph
>RihUrDghgtgEjcpig"dimension@ Change to space above paragraph
>RihUrChvgt"dimension@ Space below paragraph
>RihUrChvgtEjcpig"dimensione Change to space below paragraph

>RihNkpgUrcekpilkzgf"boolean@ [gu means the lines spacing is fixed (to the default font size)

169

ADOBE FRAMEMAKER

>RihNgcfkpi"dimensione@

Space below each line in a paragraph

>RihNgcfkpiEjcpig"dimensione

Change to space below each line in a paragraph

>RihPwoVcdu'" kpvgigte

Number of tabs in a paragraph. To clear all the tabs in a para-
graph, specify" 2

>VcdUvqgr

Begin definition of tab stop; the following property statements
can appear in any order, but must appear within a"VedUvgr"
statement

>VUZ"dimension@

Horizontal position of tab stop

>VUZTgncvkxg"boolean@

[gu"means the tab stop is relative to the left indent

>VUV{rg"mg{ygtre

Tab stop alignment

mg {ygt £ can be one of:
Nghv

Egpvgt

Tkijv

Fgekocn

>VUNgcfgtUvt"uvtkpie

Tab stop leader string (for example, . ")

>VUFgekocnEjct"integer@

Align decimal tab around a character by ASCII value; in UNIX
versions, type ocp "cuekk in a UNIX window for a list of char-
acters and their corresponding ASClI values

@

End of "VcdUvqgr "statement

>VcdUvar...>

Additional statements as needed

>0gxgVedu" dimension@

Move all tabs by a specified distance. A format change list can
have one or more VcdUvqgd "statements, or a OgxgVcdu
statement. It can’t have both

Default font name properties

>HHcokn{ "uvtkpi@

Name of font family

>HCping"uvtkpi@

Name of angle

>HYgkijv"uvtkpi@

Name of weight

>HXct"uvtkpi@

Name of variation

>HRquvUetkrvPcog" uvtkpi@

Name of font when sent to PostScript printer (see “Font name”
on page 70)

>HRncvhgtoPcog" uvtkpi@

Platform-specific font name, only read by the Windows version
(see “FPlatformName statement” on page 71)

Default font size color and width

>HUk | g" fkogpukgp@

Size, in points only

>HUk | gEjcpig"dimension@

Change to default font size

>HEgQngt " veciuvtkpi@

Font color (see “ColorCatalog statement” on page 84)

>HUgrctcvkgp"kpvgigt@

Font color; no longer used, but written out by FrameMaker for
backward-compatibility (see “Color statements” on page 263)

170

ADOBE FRAMEMAKER

>sHUvtgve]"rgtegpve

The amount to stretch or compress the font, where 100%
means no change

>HUvtgvejEjcpig" rgtegpve

The amount to change the width setting for the font, where
100% means no change

Default font style

>HWpfgtnkpkpi"mg{ygtfe

Turns on underlining and specifies underlining style

mg {ygt £ can be one of:
HPgWpfgtnkpkpi
HUkping

HFgwdng

HPwogtke

>HOxgtnkpg" dggngcp@

Turns on overline style

>HUvtkmg" dggngcp@

Turns on strikethrough style

>HEjcpigDct "dggngcp@

Turns on the change bar

>HRqukvkgp"mg{ygtf@

Specifies subscript and superscript characters; font size and
position relative to baseline determined by Fgewogpv
substatements (see page 94)

mg {ygt £ can be one of:
HPgtocn
HUwrgtuetkrv
HUwduetkrv

>HRcktMgtp" dggngcp@

Turns on pair kerning

>HEcug"mg{ygtfe

Applies capitalization style to string

mg{yqt £ can be one of:
HCuv{rgf
HUocnnEcru
HNgygtecug
HWrrgtecug

Default font kerning information

>HFZ"percent@

Horizontal kern value for manual kerning expressed as
percentage of an em; positive value moves characters right
and negative value moves characters left

>HF ["percent@

Vertical kern value for manual kerning expressed as
percentage of an em; positive value moves characters down
and negative value moves characters up

>HFY"percent@

Spread value for space between characters expressed as
percentage of an em; positive value increases the space and
negative value decreases the space

>HFYEjcpig"dimension@

Change to spread value for space between characters
expressed as percentage of an em; positive value increases the
space and negative value decreases the space

Default font miscellaneous information

>HNgemgf " dggngcp@

[gu means the font is part of a text inset that obtains its
formatting properties from the source document

MIF Reference

171

ADOBE FRAMEMAKER

Pagination properties

>RihRncegogpv"mg{yqgtf@

Vertical placement of paragraph in text column

mg {ygt £ can be one of:
cp{yjgtg
EgnwopVgr
RcigVgr

NRcigvgr
TRcigVgr

>RihRncegogpvUv{ng"mg{ygtfe

Placement of side heads, run-in heads, and paragraphs that
straddle text columns

mg {ygt £ can be one of:
Pgtocn

TwpKp

Ukfgjgcfvgr
UkfgjgcfHktuvDcugnkpg
UkfgjgcfNcuvDcugnkpg
Uvtcffng
UvtcffngPgtocnQpn

>RihTwpKpFghcwnvRwpev" string@

Default punctuation for run-in heads

>RihYkvjRtgx" dggngcpe@

[gu keeps paragraph with previous paragraph

>RihYkvijPgzv" dggngcp@

[gu keeps paragraph with next paragraph

>RihDngemUk |g integere

Widow/orphan lines

Numbering properties

>RihCwvgPwo" dggngcp@

[gu turns on autonumbering

>RihPwoHgtocv"uvtkpi@

Autonumber formatting string

>RihPwodgtHgpv" vciuvtkpi@

Tag from Character Catalog

>RihPwoCvGpf "dggngcp@

[gu places number at end of line, instead of beginning

Advanced properties

>RihJ{rjgpcvg"dggngcp@

[gu turns on automatic hyphenation

>J{rjgpOczNkpgu" integere

Maximum number of consecutive lines that can end in a
hyphen

>J{rjgpOkpRtghkz" integere

Minimum number of letters that must precede hyphen

>J{rjgpOkpUwhhkz" integere

Minimum number of letters that must follow a hyphen

>J{rjogpOkpYgtf" integere

Minimum length of a hyphenated word

>RihNgvvgtUrceg" dggngcp@

Spread characters to fill line

>RihOkpYqgtfUrceg"integere

Minimum word spacing (as a percentage of a standard space in
the paragraph’s default font)

>RihQrvYqgtfUrceg" integere

Optimum word spacing (as a percentage of a standard space in
the paragraph’s default font)

>RihOczYqgtfUrceg”integere

Maximum word spacing (as a percentage of a standard space
in the paragraph'’s default font)

MIF Reference

172

ADOBE FRAMEMAKER

>RihNcpiwcig"mg{ygtfe

Language to use for spelling and hyphenation

mg {ygqt £ can be one of:
PgNcpiwcig
WUGpinkuj
WMGpinkuj
Igtocp
UykuuIgtocp
Htgpej
EcpcfkcpHtgpe]j
Urcpkuj
Ecvencp
Kvecnkep
Rgtvwiwgug

Dtc |knkcp
Fcpkuj

Fwve]j
Pgtygikcp
P{pgtum
Hkppkuj
Uygfkuj

>RihvVgrUgrctevqgt "uvtkpi@

Name of reference frame (from reference page) to put above
paragraph

>RihvVgrUgrCvKpfgpv" dggngcp@

[gu if the position of the frame specified by the"RihvqgrU-
grctcvgt statement is at the current left indent

>RihVgrUgrQhhugv" fkogpukgp@

Position at which to place the reference frame above the para-
graph

>RihDgvUgrctcevgt"uvtkpi@

Name of reference frame (from reference page) to put below
paragraph

>RihDgvUgrCvKpfgpv" dggngcp@

[gu if the position of the frame specified by the"RihDg-
vUgrctcvgt statement is at the current left indent

>RihDgvUgrQhhugv" fkogpukgp@

Position at which to place the reference frame below the para-
graph

MIF Reference

173

ADOBE FRAMEMAKER

Table cell properties

>RihEgnnCnkipogpv"mg{yqtfe

Vertical alignment for first paragraph in a cell

mg {ygt £ can be one of:
vgr

Okffng

Dgvvqgo

>RihEgnnNOctikp" fkogpukgp@

Left cell margin for first paragraph in a cell

>RihEgnnNOctikpEjcpig" fkogpukgp@

Change to left cell margin for first paragraph in a cell

>RihEgnnDOctikp" fkogpukqp@

Bottom cell margin for first paragraph in a cell

>RihEgnnDOctikpEjcpig" fkogpukgp@

Change to bottom cell margin for first paragraph in a cell

>RihEgnnVOctikp" fkogpukgp@

Top cell margin for first paragraph in a cell

>RihEgnnVOctikpEjcpig" fkogpukgp@

Change to top cell margin for first paragraph in a cell

>RihEgnnTOctikp" fkogpukgp@

Right cell margin for first paragraph in a cell

>RihEgnnTOctikpEjcpig" fkogpukgp@

Change to right cell margin for first paragraph in a cell

>RihEgnnNOctikpHkzgf "dggngcpe@

[gu means the left cell margin is fixed

>RihEgnnVOctikpHkzgf " dggngcpe

[gu means the top cell margin is fixed

>RihEgnnTOctikpHkzgf " dggngcpe

[gu means the right cell margin is fixed

>RihEgnnDOctikpHkzgf " dggngcpe

[gu means the bottom cell margin is fixed

End of "HovEjcpigNkuv"statement.

Elements

ElementBegin and ElementEnd statements

MIF Reference

The cngogpvDgikp and GngogpvGpf statements indicate where a structural element begins and ends. These state-

ments must appear in a RetcNkpg statement (see page 182) or in a DggmGngogpvu statement (see page 185).

Syntax

<ElementBegin

Begin element

>Wpkswg" ID@

ID, persistent across sessions, assigned when FrameMaker generates a
MIF file; used by the APl and should not be used by filters

>GngogpvTghgtgpegf " dggngcp@

[gu means the element is marked as a PDF named destination for cross-
references, hypertext markers, or bookmarks (version 6.0 or later)

>GVci"veiuvtkpi@

Tag name of element from Element Catalog

>Egqnncrugf " dggngcp@

Collapse element in structure view

>UrgekcnEcug" dggngcp@

Treat element as a special case for validation

>GPcogurceg" >

The element’s namespace declarations; a declaration consists of one
>GPcogurcegRtghkz@ and one >GPcogurcegRcvj@

174

ADOBE FRAMEMAKER

>GPcogurcegRtghkz"uvtkpi@

The prefix that identifies the namespace

>GPcogurcegRcvj "uvtkpi@

The system path or URI to the DTD or schema that defines the namespace

Additional pairs of prefix and path statements as needed

@

End of"Pcogurceg" statement

>DcppgtVgzvRtgeguugf "dggngcp@

Qp means the banner text for the element was created once for this
element.

QOhh means the banner text was not created for this element.

>CvvtkdwvgFkurnc{ "mg{yqtfe

Default attribute display setting for element

mg {yqt £ can be one of:

CnnCvvtkdwvgu: display all attributes
TgsCpfUrge: display required and specified attributes
Pgpg: don't display attributes

>GngoFkt "mg{ygtfe

Direction of an element.

mg {ygt £ can be one of:

NVT"/ Set the direction of an element to left to right. The element prop-
agates its direction to all child elements that derive their direction from
the parent element object.

TVN"/ Set the direction of an element to right to left. The element prop-
agates its direction to all child elements that derive their direction from
the parent element object.

KPJGTKVNVT" / Derive the direction from the parent object. If it
resolves to left to right then KPJGTKVNVT is assigned to GngoFkt.

KPJGTKVTVN" / " Derive the direction from the parent object. If it
resolves to right to left then KPJGTKVTVN is assigned to GngoFkt.

>Cvtkdwvgu

Element’s attributes

>Cvvtkdwvg

Attribute’s name and values

>CvvtPcog"uvtkpi@

Attribute name

>CvvtXcnwg"uvtkpi@

Attribute value

>CvvtXcnwg" uvtkpi@

Attribute value if attribute allows more than one value

@

End of " Cvvtkdwvg" statement

>Cvvtkdwvg...>

Additional statements as needed

@

End of " Cvvtkdwvgu"statement

>WugtUvtkpi"uvtkpi@

A string in which clients can store private data — can be up to 1023 char-
actersin length

>

End of"GngogpvDgikp"statement

<ElementEnd vciuvtkpis>

End of specified element

MIF Reference

175

ADOBE FRAMEMAKER
MIF Reference

Usage
FrameMaker writes out the veiuvtkpi value in an GngogpvGpf statement for use by filters. Your application does
not need to supply the vciuvtkpi value when it writes MIF files.

If the interpreter reads unbalanced GngogpvDgikp and GngogpvGpf statements, it ignores superfluous element ends
and closes all open elements at the end of a vgzvHngy statement. If the interpreter reads a flow that does not have an
element enclosing all of the flow’s contents, it creates a highest-level element with the tag PqPcog. GngogpvDgikp
and GngogpvGpf statements are nested within Ret cNkpg and Dggméngogpvu statements. The following example
shows how FrameMaker writes an UnorderedList element:

<Para
<PgfTag “Bullet'>
The autonumber contains a bullet and a tab.
<PgfNumString ~e \t'>
<ParaLine
Note that the ElementBegin statement is nested inside both
the Para and Paraline statements.
<ElementBegin
<ETag “UnorderedList'>
<Collapsed No >
<SpecialCase No >
> # end of ElementBegin
<ElementBegin
<ETag “Item's>
<Collapsed No >
<SpecialCase No >
> # end of ElementBegin
<String “Light rail provides transportation for those who '>
>
<ParaLine
<String “are unable to drive or cannot afford an automobile.'>
<ElementEnd “Item'>

> # end of Para
<Para
<PgfTag “Bullet'>
<PgfNumString ~e \t'>
<Paraline
<ElementBegin
<ETag “Item'>
<Collapsed No >
<SpecialCase No >
> # end of ElementBegin
<String "Light rail lures commuters away from rush hour traffic.'s
Again, note that both the Item and Bulletlist elements end
before the end of the Para and ParalLine statements.
<ElementEnd “Item'>
<ElementEnd “UnorderedList's>

> # end of Para

PrefixEnd and SuffixBegin statements

The RtghkzGpf£ statement appears after the"GngogpvDgikp "statement and any prefix strings the element has. Every-
thing between the"GngogpvDgikp"statement and the RtghkzGpf£ statement is treated as the element prefix. The
RtghkzGpf statement does not appear when the element has no prefix.

176

ADOBE FRAMEMAKER
MIF Reference

The uwhhkzDgikp statement appears before the element suffix string, which is followed by the"Gngogpvep£ "
statement. Everything between the UwhhkzDgikp statement and the"GngogpvGpf "statement is treated as the
element suffix. The"engogpvGp£ "statement does not appear when the element has no suffix.

Banner text

Banner text in a FrameMaker file instructs you about what to enter in an element. Banner text is controlled using the
BannerText element in the EDD. You can control the instructional text you want to display for each of the elements.

FrameMaker does not treat banner text as real content in the document. Banner text is included in FM and MIF
output but is not included in XML output.

Banner text in FrameMaker is governed with the following settings:

Syntax
<BannerTextBegin > For Internal use - please ignore
<BannerTextEnd > For Internal use - please ignore
<EDBannerText strings> The banner text that appears inside a new element instance
<DBannerTextOn Dggngcp> [gu turns on banner text for tags in document window.

>DcppgtVgzvRtgeguugt " dggngepe Qp means the banner text for the element was created once for this
element.

Qhh means the banner text was not created for this element.

Filter By Attribute

DefAttrValuesCatalog and AttrCondExprCatalog statements

The Filter By Attribute feature in FrameMaker supports filtering a structured document for complex output
scenarios based on the value of attributes. You define a filter using a Boolean expression containing attribute-value
pairs. You can create multiple filters, save them, and use them for filtering a document based on different output
scenarios.

The DefattrvaluesCatalog statement and the AttrCondExprCatalog statement store information required for
generating the output.

The DefattrvaluesCatalog statement defines the contents of the defined attribute values catalog. If no values are
defined, the catalog is empty. Each definition has an attribute tag (attributeTag) and a corresponding list of values
(attributevalue).

The AttrcondExprcCatalog defines the contents of the filters catalog defined for a structured document. A MIF file
can have only one AttrCondExprCatalog statement.

177

ADOBE FRAMEMAKER | 178
MIF Reference

XML data for structured documents

Document and book statements

In versions 7.0 and later, FrameMaker supports XML import and export. The following statements store information
necessary to properly save a document or book as XML. Statements that begin with FZon000 are document state-
ments, and statements that begin with DZonooo are book statements.

Syntax

<DXmlDocType string>
<BXmlDocType strings>

The name given to the XML document type

<DXmlSystemId strings>
<DXmlSystemId string>

The system identifier for the XML document type

<DXmlEncoding string>
<BXmlEncoding string>

The XML encoding parameter that was specified in the XML declara-
tion when the XML file was opened

<DXmlFileEncoding string>
<BXmlFileEncoding string>

The XML encoding that was found in the imported XML file

<DXmlPublicId strings>
<DXmlPublicId string>

The public identifier for the XML document type

<DXmlStandAlone int>
<BXmlStandAlone int>

The XML standalone parameter that was specified in the XML declara-
tion when the XML file was opened—determines whether or not the
XML document requires a DTD

<DXmlStyleSheet string>
<BXmlStyleSheet string>

The URI for the stylesheet associated with the imported XML docu-
ment

<DXmlUseBOM int>
<BXmlUseBOM int>

The Byte Order Mark that was specified in the imported XML docu-
ment

<DXmlWellFormed int>
<BXmlWellFormed int>

Indicates whether the XML document was wellformed or not

<DXmlVersion string>
<BXmlVersion string>

The XML version that was specified in the XML declaration when the
XML file was opened

ADOBE FRAMEMAKER

Preference settings for structured documents

Document statement

In addition to document preferences for standard FrameMaker documents (see “Document statement” on page 89),

the MIF Fqewogpv statement describes preferences for structured FrameMaker documents.

Syntax

<Document

See page 89

>FGngogpvEcvcengiUeqrg" mg{yqgt f@

Validation scope

mg {ygt £ can be one of:
Uvtkev"

Ngqug

Ejknftgp

Cnn

EwuvgoNkuv

>FEwuvgoGngogpvNkuv

List of tags to display when"FGngogpvEcvcngiUeqrg"spec-
ifies" EwuvgoNkuv

>GFVci"uvtkpi@

Element definition name

>GFVci"uvtkpi@

Additional statements as needed

@

End of " FEwuvgoGngogpvNkuv "statement

>FUjqyGngogpvFguetkrvkxgVciu"dggn-
gcpe

[gu displays descriptive text against elements in the element
catalog for the document.

>FCvvtkdwvgFkurnc{ "mg{yqtfe

Default attribute display setting for document

mg {yqt £ can be one of:

CnnCvvtkdwvgu: display all attributes
TgsCpfUrge: display required and specified attributes
Pgpg: don't display attributes

>FCvvtGEkvgt "mg{ygtfe

When Edit Attributes dialog box appears for new elements

mg{yqgt £ can be one of:

Pgxgt: never

Cnyc{u:always

YjgpTgswktgf: when there are required attributes

>FGngogpvDgt £gtuQp" dggngcp@

[gu turns on element borders in document window. This state-
ment and "FGngogpvVciu"are mutually exclusive. If both state-
ments appear in a MIF file, the later statement overrides the earlier
one

>FGngogpvVciu" dggngcpe@

[gu turns on element tags in document window. This statement
and"FGngogpvDgt £gtuQp "are mutually exclusive. If both
statements appear in a MIF file, the later statement overrides the
earlier one

>FDcppgtVgzvQp" dggngcp@

[gu turns on banner text for tags in document window.

>FWugKpkvUvtwevwtg" dggngcp@

[gu"means structured FrameMaker inserts initial structure for
new elements

179

ADOBE FRAMEMAKER

>FWugKpkvUvtwevwtgTgewtukxgn{ "dggn- Vtwg"means inserting an element in a structured document will

gcpe

allow its child element (or elements) with their hierarchy to be
inserted as defined in the EDD

>FUIONCrrPcog"uvtkpi@

The name of the SGML application associated with the document.
For information on registering SGML applications, see the online
manual FrameMaker Structure Application Developer’s Guide

>FGzenwukgpu...>

Lists exclusions inherited when document is included in a struc-
tured book (see " “ElementDef statement” on page 158)

>FKpenwukgpu...>

Lists inclusions inherited when document is included in a struc-
tured book (see " “ElementDef statement” on page 158)

>FUgrctcvgKpenwukgpu" dggngcp@

[gu"means structured FrameMaker lists inclusions separately in
the element catalog

>FCrrn{HgtocvTwngu" dggngcp@

[gu uses element format rules to reformat document on opening
and to remove format overrides; for input filters only, not gener-
ated by FrameMaker

>FDgamGngogpvJkgtcte] {

If the document is in a book, list of ancestors of the document'’s
root element

>GngogpvEgpvgzv

Describes ancestor element of the document'’s root element

>RtgxGngogpv

>GVci"vciuvtkpi@

Tag of sibling element preceding ancestor element

>Cvvtkdwvgu"..>

@
>Gngogpv
>GVeci"veciuvtkpi@ Tag of ancestor element
>Cvvtkdwvgu"..>
@
>PgzvGngogpv
>GVci"veiuvtkpi@ Tag of sibling element following ancestor element
>Cvvtkdwvgu"..>
@
@ End of "GngogpvEgpvgzv" statement
@ End of " FDggmGngogpvJkgtctej { "statement
>FHENOczkowou Upper change list limits. Format change lists cannot increment

properties beyond these values

>RihHKpfgpv" fkogpukgp@

Maximum first indent allowed in document

>RihNKpfgpv" fkogpukgp@

Maximum left indent allowed in document

>RihTKpfgpv" fkogpukgp@

Maximum right indent allowed in document

>RihUrDghqgtg" fkogpukgp@

Maximum space before allowed in document

MIF Reference

180

ADOBE FRAMEMAKER

>RihUrChvgt" fkogpukgp@

Maximum space after allowed in document

>RihNgcfkpi" fkogpukgp@

Maximum leading allowed in document

>HUk | g" fkogpukgp@

Maximum font size allowed in document

>HFY" fkogpukqp@

Maximum character spread allowed in document

>VUZ"dimension@

Maximum horizontal position of tab stop

>RihEgnnNOctikp" fkogpukqp@

Maximum left cell margin for first paragraph in a cell

>RihEgnnDOctikp" fkogpukgp@

Maximum bottom cell margin for first paragraph in a cell

>RihEgnnVOctikp" fkogpukgp@

Maximum top cell margin for first paragraph in a cell

>RihEgnnTOctikp" fkogpukgp@

Maximum right cell margin for first paragraph in a cell

End of " FHENOc zkowou " statement

>FHENOkpkowou

Lower change list limits. Format change lists cannot decrement
properties below these values

>RihHKpfgpv" fkogpukgp@

Minimum first indent allowed in document

>RihNKpfgpv" fkogpukqp@

Minimum left indent allowed in document

>RihTKpfgpv" fkogpukgp@

Minimum right indent allowed in document

>RihUrDghgtg" fkogpukgp@

Minimum space before allowed in document

>RihUrChvgt " fkogpukgp@

Minimum space after allowed in document

>RihNgcfkpi" fkogpukgp@

Minimum leading allowed in document

>HUk | g" fkogpukgp@

Minimum font size allowed in document.

>HFY" fkogpukqp@

Minimum character spread allowed in document.

>VUZ"dimension@

Minimum horizontal position of tab stop

>RihEgnnNOctikp" fkogpukgp@

Minimum left cell margin for first paragraph in a cell

>RihEgnnDOctikp" fkogpukgp@

Minimum bottom cell margin for first paragraph in a cell

>RihEgnnVvOctikp" fkogpukgp@

Minimum top cell margin for first paragraph in a cell

>RihEgnnTOctikp" fkogpukqp@

Minimum right cell margin for first paragraph in a cell

@

End of " FHENOkpkowou " statement

>YGDFCX

>FgeUgtxgtWtn"uvtkpi@

URL of the MIF file on the WEBDAV Server. Any HTTP path is valid.

Example:

>FgeUgtxgtWtn"bjvvr<llokmgl/zrl
lggygdfcxlo{hkngOokh) @

$jvvr<llokmgl/zrllggygdfex"ku"vjg"rcvj"gh"
vjg"ugtxgto0

MIF Reference

181

ADOBE FRAMEMAKER
MIF Reference

>FgeUgtxgtUvcvge Valid values:
¢ EjgemgfQwv if checked out

* EjgemgfKp if not checked out

@ End of YGDFCX"Fgewogpv " statement

> End of "Fgewogpv "statement

Text in structured documents

TextLine statement

Text lines cannot contain elements.

ParalLine statement

The RctcNkpg statement defines a line within a paragraph. It must appear in a Rctc statement.

Syntax
<ParaLine
>GngogpvDgikp...> Begin structural element (see page 174)
>GngogpvGpf "vciuvtkpi@ End structural element
> End of "Rct cNkpg "statement
Usage

A typical RetcNkpg statement consists of one or more Uvtkpi, Ejct, CVdn, CHtcog, HPqvg, Xctkedng, ZTgh, and
Octmgt statements that define the contents of the line of text. These statements are interspersed with statements that
indicate the scope of document components such as structural elements and conditional text.

Structured book statements

A structured book file contains documents that were created in FrameMaker. These documents normally contain
structural elements. A structured book file has the same book statements that appear in a normal book file plus two
additional types of information about structural elements:

+ An Element Catalog defined in GngogpvFghEcvengi

« A structure tree defined in DggmGngogpvu

ElementDefCatalog statement

The GngogpvFghEcvengi statement contains the definitions of all elements in the book file. A book file can have
only one GngogpvFghEcvengi statement. It normally appears near the beginning of the file.

182

Syntax

ADOBE FRAMEMAKER

<ElementDefCatalog

Begin Element Catalog

>GngogpvFgh...>

Element definitions (defined on page 158)

>GngogpvFgh...>

Additional statements as needed

End of "GngogpvFghEcvcngi "statement

Usage

MIF Reference

The book file inherits the Element Catalog from the document used to generate the book file or from a document
given as the source for the Import>Element Definitions command. In a MIF file, you should copy the Element
Catalog from one of the structure documents included in the book.

BookSettings statement

The bggmugvvkpiu statement contains the definitions of all elements in the book file. A book file can have only one

DggmUgvvkpiu statement. It normally appears near the beginning of the file. The statements in the DggmUgvvkpiu
statement correspond to statements in the DggmUgvvkpiu statement, except that they begin with the letter D instead

of the letter F.

Syntax

<BookSettings

Begin book settings

>DGngogpvEcvcengiUeqrg" mg{ygt f@

Validation scope

mg {ygt £ can be one of:
Uvtkev"

Ngqug

Ejknftgp

Cnn

EwuvgoNkuv

>DEwuvgoGngogpvNkuv

List of tags to display when"DGngogpvEcvengiUeqgrg "specifies"
EwuvgoNkuv

>GFVci"uvtkpi@

Element definition name

>GFVci"uvtkpi@

Additional statements as needed

@

End of " FEwuvgoGngogpvNkuv " statement

>DUjqgyGngogpvFguetkrvkxgVciu"
dggngcpe

[gu displays descriptive text against elements in the element catalog
for the book.

>DCvvtkdwvgFkurnc{ "mg{yqtfe

Default attribute display setting for document

mg{ygt £ can be one of:

CnnCvvtkdwvgu: display all attributes
TgsCpfUrge:display required and specified attributes
Pgpg: don't display attributes

183

ADOBE FRAMEMAKER

>DCvvtGfkvgt "mg{ygtfe

When Edit Attributes dialog box appears for new elements

mg {ygt £ can be one of:

Pgxgt: never

Cnyc{u:always

YjgpTgswktgf: whenitis required

>DWugKpkvUvtwevwtg" dggngcp@

[gu"means structured FrameMaker inserts initial structure for new
elements

>DWugKpkvUvtwevwtgTgewtukxgn{"

dggngcp@

Vtwg"means inserting an element in a structured book will allow its
child element (or elements) with their hierarchy to be inserted as
defined in the EDD

>DUIONCrrPcog"uvtkpi@

The name of the SGML application associated with the document. For
information on registering SGML applications, see the online manual
FrameMaker Structure Application Developer’s Guide

>DUgrctcvgKpenwukgpu" dggngcp@

[gu"means structured FrameMaker lists inclusions separately in the
element catalog

>DHENOczkowou

Upper change list limits. Format change lists cannot increment proper-
ties beyond these values

>RihHKpfgpv" fkogpukgp@

Maximum first indent allowed in book

>RihNKpfgpv" fkogpukgp@

Maximum left indent allowed in book

>RihTKpfgpv" fkogpukgp@

Maximum right indent allowed in book

>RihUrDghgtg" fkogpukgp@

Maximum space before allowed in book

>RihUrChvgt" fkogpukgp@

Maximum space after allowed in book

>RihNgcfkpi" fkogpukgp@

Maximum leading allowed in book

>HUk | g" fkogpukgp@

Maximum font size allowed in book

>HFY" fkogpukqp@

Maximum character spread allowed in book

>VUZ"dimension@

Minimum horizontal position of tab stop

>RihEgnnNOctikp" fkogpukgp@

Minimum left cell margin for first paragraph in a cell

>RihEgnnDOctikp" fkogpukgp@

Minimum bottom cell margin for first paragraph in a cell

>RihEgnnVOctikp" fkogpukgp@

Minimum top cell margin for first paragraph in a cell

>RihEgnnTOctikp" fkogpukgp@

Minimum right cell margin for first paragraph in a cell

End of "DHENOc zkowou " statement

>DHENOkpkowou

Lower change list limits. Format change lists cannot decrement proper-
ties below these values

>RihHKpfgpv" fkogpukgp@

Minimum first indent allowed in book

>RihNKpfgpv" fkogpukgp@

Minimum left indent allowed in book

>RihTKpfgpv" fkogpukgp@

Minimum right indent allowed in book

>RihUrDghgtg" fkogpukgp@

Minimum space before allowed in book

>RihUrChvgt " fkogpukgp@

Minimum space after allowed in book

MIF Reference

184

ADOBE FRAMEMAKER
MIF Reference

>RihNgcfkpi" fkogpukgp@

Minimum leading allowed in book

>HUk | g" fkogpukgp@

Minimum font size allowed in book

>HFY" fkogpukqp@

Minimum character spread allowed in book

>VUZ"dimension@

Minimum horizontal position of tab stop

>RihEgnnNOctikp" fkogpukqp@

Minimum left cell margin for first paragraph in a cell

>RihEgnnDOctikp" fkogpukqp@

Minimum bottom cell margin for first paragraph in a cell

>RihEgnnVOctikp" fkogpukgp@

Minimum top cell margin for first paragraph in a cell

>RihEgnnTOctikp" fkogpukgp@

Minimum right cell margin for first paragraph in a cell

End of "DHENOkpkowou " statement

End of "DggmUgvvkpiu"statement

BookElements statement

The Dggméngogpvu statement contains all of the elements in the book’s hierarchy. This statement must appear after
the DggmEgorgpgpv statements. Otherwise, the MIF interpreter warns you about out-of-bounds GEgorgpgpv

values.

Syntax

<BookElements

Begin structure tree

>GngogpvDgikp...>

Begin element that contains other elements

>GngogpvGpf@

End element that contains other elements

>GngogpvDgikp...>

Additional statements as needed

>GngogpvGpf@

>Gngogpv

Begin element with no subelements

>GVci"veiuvtkpi@

Element tag name from Element Catalog

>GEgorgpgpVv" kpvgigte@

Corresponding book component (numbering starts at 1)

>GVgzvUpkrrgv"uvtkpi@

Text snippet for structure window

@ End of "Gngogpv " statement
>Gngogpv...> Additional statements as needed
> End of "DggmGngogpvu " statement
Usage

The engogpvDgikp and GngogpvGpf statements define elements that contain other elements.

The Gngogpv statement defines an element with no subelements. If the element is inserted in the book structure

from the Element Catalog, this statement includes only the Gvci substatement. If the element corresponds to a book
component, this statement encodes the sequence number of the corresponding component file. If the element corre-
sponds to an unstructured component file, the Gvei string value is empty. (For more information about structured

documents, see Using FrameMaker.)

185

ADOBE FRAMEMAKER | 186
MIF Reference

MIF Messages

Invalid context specification: parameter.

There is a syntax error in an >GFEgqpvgzvUrgee statement in an element definition.

EDContainerType has an invalid value.

An >GFEgpvckpgtV{rge statement uses an invalid value.

EDContainerType ignored for object element definition.
An element definition contains an >GFEgpvckpgtV{rge statement but the">0d1gevv{rge statement doesn’t specify
GFEgpvckpgt.

Value of EDODbject is invalid.

Anr>cgFodlgeve statement uses an invalid value.

General rule not allowed for object element definition.

An element definition for an object element contains an >GFIgpgtcnTwnge statement.

Exclusions not allowed for object element definition.

An element definition for an object element contains an >GFGzenwukgpue statement.

Inclusions not allowed for object element definition.

An element definition for an object element contains an >GFKpenwukgpue statement.

Discarding element definition--no EDTag name was specified.

An element definition has no tag name, so it is ignored.

Bad general rule for element definition: Name or '(' expected.

A general rule is invalid.

Bad general rule for: Cannot use different connectors in a group.

A general rule is invalid.

Bad general rule for: '(' expected.

A general rule is invalid.

Bad general rule for element definition: ')’ expected.

A general rule is invalid.

Ambiguous general rule for element definition:

A general rule is invalid.

Bad general rule for element definition: Syntax Error.

A general rule is invalid.

Bad general rule for element definition: Connector (, or | or &) expected.

A general rule is invalid.

Duplicate definition: only first element definition for tag will be used.

Two or more element definitions use the same tag.

Format tag is invalid for an element of type EDEquation - defaulting to Medium.

Only small, medium, and large format tags are valid for an equation element.

Element name contains characters that are not allowed.

Element name contains at least one disallowed character, such as (,"~", or ,.

ADOBE FRAMEMAKER
MIF Reference

187

188

Chapter 6: MIF Equation Statements

This chapter describes the MIF statements that define equations. Use it as a reference when you write filters for trans-
lating documents that include equations. For more information about creating and editing equations, see your
Adobe® FrameMaker® user’s manual.

MathML statement

FrameMaker provides support for MathML, which is an XML application for representing mathematical notation.
This support is provided through out-of-the-box integration with MathFlow Editor by Design Science. FrameMaker
includes 30-day trial licenses of the following MathFlow editors: Style Editor and Structure Editor.

Following is a sample MIF tags snippet that shows MathML MIF syntax:

<MathML

<MathMLDataLen 489>
<MathMLData ~'>
<ShapeRect 0.0" 0.0" 1.30666" 0.59999">
<BRect 0.0" 0.0" 1.30666" 0.59999">
<MathMLDpi 150>
<MathMLComposeDpi 300>
<MathMLfontSize 14>
<MathMLinLine Yes>
<MathMLApplyPgfStyle Yes>
<MathMLF1ipLR No>
> # end of MathML

Syntax

>0cvjON

>0cvjONFcveNgp" kpvgigt@ Number of characters in the equation’s XML.

>0cvjONFcve" Uvtkpi@ The actual data of XML representation of the MathML equation. Using the XML tags, the MIF
file displays the structure of the equation. For example:
<math\>\x0d <mrow\>\x0d <msgrt\>\x0d <mrow\ >\x0d
<msup\>\x0d <mrow\>\x0d
<mi\>a</mi\>\x0d4d </mrow\>\x0d <mrow\ >\x0d
<mn\>2</mn\>\x0d </mrow\>\x0d </msup\>\x0d
<mo\ >+</mo\>\x0d <msup\ >\x0d <mrow)\ >\x0d
<mi\>b</mi\>\x04d </mrow\>\x0d <mrow\ >\x0d
<mn\>2</mn\>\x0d </mrow\>\x0d </msup\>\x0d
</mrow)\ >\x0d </msqgrt\>\x0d </mrow\>\x0d </math\>\x0d

>

<ShapeRect 0.0" 0.0" 1.30666" 0.59999"

>0cvjONFrk" kpvgigt@ Scaling value for the image file created for the equation.
>0cvjONEgorqugFrk" kpvg- To show the equation corresponding to MathML FrameMaker creates a temporary image and
igte this ComposeDpi is used to provide the resolution at the time of creation of that image.

>0cvjONhgpvUk |g"kpvgigt@ The font size of the MathML equation content.

>0cvjONkpNkpg"boolean> [gu places the equation inline with the enclosing paragraph.

ADOBE FRAMEMAKER

MIF Reference

<MathMLApplyPgfStyle
boolean>

[gu applies the formats of the enclosing paragraph to the equation. Formats include, the font,
font family, background color, and foreground color.

>0cvjONHnkrNT" dggngcp@

[gu inverts the equation image sideways.

Document statement

In addition to document preferences (see “Document statement” on page 89), the MIF Fgewogpv statement

describes standard formats for equations. The equation formatting substatements correspond to settings in the

Equations palette.

Syntax

<Document

See “Document statement” on page 89

Equation sizes

>FOcvjUocnnKpvgitcen" fkogpukgp@

Size in points of integral symbols in small equations

>FOcvjOgfkwoKpvgitcn" fkogpukgp@

Size in points of integral symbols in medium equations

>FOcvjNctigKpvgiten" fkogpukgp@

Size in points of integral symbols in large equations

>FOcvjUocnnUkioc" fkogpukgp@

Size in points of summation and product symbols in small equa-
tions

>FOcvjOgfkwoUkioc" fkogpukgp@

Size in points of summation and product symbols in medium
equations

>FOcvjNctigUkioc" fkogpukgp@

Size in points of summation and product symbols in large equa-
tions

>FOcvjUocnnNgxgn3 " fkogpukgp@

Size in points of level 1 expression (normal level) in small equations

>FOcvjOgfkwoNgxgn3" fkogpukgp@

Size in points of level 1 expression in medium equations

>FOcvjNctigNgxgn3 " fkogpukgp@

Size in points of level 1 expression in large equations

>FOcvjUocnnNgxgn4 " fkogpukgp@

Size in points of level 2 expression (first level subscripts and super-
scripts) in small equations

>FOcvjOgfkwoNgxgn4 " fkogpukqp@

Size in points of level 2 expression in medium equations

>FOcvjNctigNgxgn4 " fkogpukgp@

Size in points of level 2 expression in large equations

>FOcvjUocnnNgxgn5 " fkogpukgp@

Size in points of level 3 expression (second level subscripts and
superscripts) in small equations

>FOcvjOgfkwoNgxgn5" fkogpukgp@

Size in points of level 3 expression in medium equations

>FOcvjNctigNgxgn5" fkogpukgp@

Size in points of level 3 expression in large equations

>FOcvjUocnndgtk | "kpvgigte

Horizontal spread for small equations expressed as a percentage of
equation’s point size; negative values decrease space and positive
values increase space

>FOcvjogfkwodqgtk | "kpvgigte

Horizontal spread for medium equations

>FOcvjNctigdgtk| "kpvgigte

Horizontal spread for large equations

189

ADOBE FRAMEMAKER

>FOcvjUocnnXgtv"kpvgigt@

Vertical spread for small equations expressed as a percentage of
equation’s point size; negative values decrease space and positive
values increase space

>FOcvjOgfkwoXgtv"kpvgigt@

Vertical spread for medium equations

>FOcvjNctigXgtv"kpvgigt@

Vertical spread for large equations

>FOcvjUjgyEwuvgo" dggngcp@

Specifies whether to show all math elements or only custom
elements in Insert Math Element dialog box

>FOcvjHwpevkgpu" veiuvtkpi@

Font for functions

>FOcvjPwodgtu"vciuvtkpi@

Font for numbers

>FOcvjXctkedngu"veiuvtkpi@

Font for variables

>FOcvjUvtkpiu"veiuvtkpi@

Font for strings

>FOcvjItggm"veiuvtkpi@

Font for Greek characters

>FOcvjEcvengi..>

Describes custom math elements (see “DMathCatalog statement,”
next)

End of Fgewogpv statement

DMathCatalog statement

MIF Reference

The FocviEcvengi statement describes the custom math elements in a document. It must appear in a Fgewogpv

statement.

Syntax

<DMathCatalog

Lists custom math elements

>FOcvjItggmOxgttkfgu"veiuvtkpi@

Identifies a redefined Greek symbol and forces lookup on reference
page; veiuvtkpi argument must match the name of reference
frame

>FOcvjItggmOxgttkfgu"veiuvtkpi@

Additional statements as needed

>FOcvijQroxgttkfgu

Identifies built-in operator with redefined display properties

>FOcvjQrPcog" veiuvtkpi@

Name of built-in operator from reference frame

>FOcvjQrVNkpgQxgt tkfg" dggngcp@

No uses default glyph for operator; Yes looks up operator on text
line in reference frame

>FOcvjQrRqukvkgpC" kpvgigt@

Position of first operand expressed as a percentage of equation
font size

>FOcvjQrRqukvkgpD" kpvgigt@

Position of second operand

>FOcvjQrRqukvkgpE" kpvgigt@

Position of third operand

@

End of FOcvjQrOxgttkfgu statement

>FOcvjPgy

Defines new math element

>FOcvjQrPcog" vciuvtkpi@

Name of math element from reference frame

190

ADOBE FRAMEMAKER
MIF Reference

>FOcviPgyV{rg"mg{ygtfe Specifies custom math element type; for a list of types, see the
chapter on creating equations in your user’'s manual

mg{yqtf can be one of:
Cvgo

Fgnkokvgt
Hwpevkgp

Kphkz

Nctig

Nkokv

Rguvhkz

Rtghkz
XgtvkecnNkuv

>FOcvjQrVNkpgQxgttkfg" dggngcp@ No uses default glyph for operator; Yes looks up operator on text
line in reference frame

>FOcvjQrRqukvkgpC"kpvgigt@ Position of first operand expressed as a percentage of equation
font size

>FOcvjQrRqukvkgpD" kpvgigt@ Position of second operand

>FOcvjQrRqukvkgpE" kpvgigt@ Position of third operand

@ End of FOcvjPgy statement

> End of FOcvjEcvengi statement

Usage

You can define new math elements or redefine math elements that appear on the Equations palette. To create a
custom math element, add the element’s name and type to the FocvijEcvengi statement. On a reference page with
aname beginning with the word FrameMath, define the math element in a named unanchored graphic frame. In the
frame (called a reference frame), create a text line that contains one or more characters that represent the math
symbol; you can apply specialized math fonts and change the position of the characters to get the appearance you
want. You can use custom elements in equations by including them in a 0cvjHwnnHgto statement.

For example, to create a symbol for the set of real numbers, add the new element to the Math Catalog as follows:

<Document
<DMathCatalog
<DMathNew
Name of new math element
<DMathOpName “Real Numbers's>
Type of math element
<DMathNewType Atom >
> # end of DMathNew
> # end of DMathCatalog
> # end of Document

Define the custom element on a reference page that has a name beginning with FrameMath:

<Page
Create a named reference page.
<PageType ReferencePage >
<PageTag ~FrameMathl's>
Create a named, unanchored frame.
<Frame
<FrameType NotAnchored >
<Tag “Real Numbers'>

Create the math element in the first text line in the frame.
<TextLine

191

ADOBE FRAMEMAKER
MIF Reference

Apply a specialized math font to the letter R.

<Font
<FTag
<FFamily “MathematicalPi's>
<FVar ~Six's>
<FWeight “Regular's>

> # end of Font

<String "R's>

> # end of TextLine
> # end of Frame
> # end of Page

'>

To insert the new element in an equation, use the ejct expression (see page 197) and the element’s name in a
OcviHwnnHgto statement as shown in the following equation:

<MathFullForm ~equal [in[forall [char[x]], comma[char[(*T"Real Numbers"T*)New],
times[char[f],id[char[x]]]1]], indexes[1l,0,char([x],num[3.00000000,"3"]]]"
> # end of MathFullForm

The equation looks like this in the FrameMaker document:

v e R, F(x) = %

You can change the appearance of a built-in math element, although you cannot change the element’s type or
behavior. For example, to redefine the built-in inverse sine function (asin) so that it appears as sin”!, add the
redefined element to the Math Catalog as follows:

<DMathCatalog
<DMathOpOverrides
The name of the built-in operator as it appears in MIF.
<DMathOpName ~asin's>
Forces lookup from the reference page.
<DMathOpTLineOverride Yes >
> # end of DMathOpOverrides
> # end of DMathCatalog

Redefine the appearance of the element in a reference frame as follows:

<Page
Create a named reference page.
<PageType ReferencePage >
<PageTag “FrameMathl's>
Create a named, unanchored frame.
<Frame
<FrameType NotAnchored >

The name of the built-in element as it appears in

the Equations palette.
<Tag ~Inverse Sine'>

Define the element in the first text line in the frame.
<TextLine

Apply a new font style and position to change the
appearance of the math element.
<Font
<FTag
<FWeight “Regular's>
> # end of Font
<String “sin's>
<Font

">

192

<FTag ~'>
<FWeight “Regular's>

ADOBE FRAMEMAKER

<FPosition FSuperscript >

> # end of Font
<String “-1 '>
> # end of TextLine
> # end of Frame
> # end of Page

MIF Reference

When you create the reference frame that specifies the new appearance of the math element, you must give the frame

the name of the built-in element as it appears in the Equations palette. To find the name of a built-in element, choose

Insert Math Element from the equations pop-up menu on the Equations palette. Turn off Show Custom Only in the
dialog box and scroll through the element names until you find the one you want.

To use the redefined element in an equation, include the cukp expression (see page 202) along with the name of the

reference frame as follows:

<MathFullForm “asin[(*T"Inverse Sine"T*)char[x]]'

> # end of MathFullForm

For more information about including custom operators in equations, see “Custom operators” on page 211. For more

information about format codes, see “MathFullForm statement syntax” on page 195.

Math statement

A ocvj statement describes an equation within a document. It can appear at the top level or within a Reig or Htcog

statement.

Syntax

<Math

Igpgtke"gdlgev"uvcvgogpvu"

Information common to all objects (see “Generic object statements” on
page 112)

>Cping"kpvgigt@

Angle of rotation in degrees: 2, ;2,3:2,492

>UjcrgTgev"N"V"Y"Je

Position and size of bounding rectangle, before rotation, in enclosing
page or frame

>OcvjHwnnHgto" uvtkpi@

"

Description of equation (defined in “MathFullForm statement syntax
on page 195)

>0cvjNkpgDtgem" fkogpukgp@

Allows automatic line breaks after this position

>0cviQtkikp" 2" [@

Position of equation in current frame or page

>0cviCnkipogpv" mg{ygtfe

Alignment of equation within UjcrgTgev

mg {ygt £ can be one of:
Nghv"

Egpvgt

Tkijv

Ocpwcn

>0cviUk |g"mg{ygtfe

Equation size (defined on page 189)

mg {ygt £ can be one of:
OcvijNctig
Ocvjogfkwo
OcvjUocnn

193

ADOBE FRAMEMAKER
MIF Reference

> End of Ocvj statement

Usage

Values of the"UjcrgTgev"statement specify the coordinates and size of the bounding rectangle before it is rotated.
The equation is rotated by the value specified in an cping statement. The 0cvjHwnnHqto string defines the mathe-
matical properties of the equation. For a complete description, see “MathFullForm statement,” next.

Whenever you save a document as a MIF file using the Save As command, FrameMaker writes all the ocvj substate-
ments, except QdEqnqt, to the file. It writes an QdEgnqt statement only when the equation is in a color other than
black. The odEqgngt statement specifies the color for the entire equation object. To specify color for an individual
element within an equation, use the formatting code *, suvtkpis, + (see “MathFullForm statement syntax” on
page 195).

If you are writing an output filter for converting FrameMaker equations to a format used by another application, you
might be able to ignore some of the ocvj substatements. You don’t need MIF statements for FrameMaker’s math
features that are unsupported by another application.

If you are writing an input filter for converting equations created with another application to FrameMaker equations,
you must provide a UjcrgTgev or OcviQtkikp substatement to specify the equation’s location on the page. The

other ocvj substatements are not required. If you don’t provide them, the MIF interpreter uses preset values. If you
don’t define the equation in a OcvjHwnnHgt o statement, an equation prompt appears in the FrameMaker document.

MathFullForm statement

The ocviHwnnHgto statement consists of a string containing a series of expressions that define the mathematical
structure of an equation. Each expression defines a component of the equation and can be nested within other
expressions.

A sample MathFullForm statement

This example shows an equation and the ocvjHwnnHgto statement that defines it. The diagram shows the hierarchy
of the ocvjHwnnHgto statement. Symbols that appear in the equation are shown in parentheses following the
OcvjHwnnHgto expression.

y = a(x+b)’

<MathFullForm ~equal [char[y], times[char[a],power [id[plus[char [x],char[b]l]],num[2,"2"]]]]"
> # end of MathFullForm

194

ADOBE FRAMEMAKER | 195
MIF Reference

eq u?l i=)
char (v) tinl'les
[I
char (a) power
I
| I
id num (z)
([parenthezes)
pllus| [+]
I
char (x) char (k)

MathFullForm statement syntax

In addition to the mathematical structure of the equation, a 0OcvjHwnnHgto statement can contain special instruc-
tions for character formatting, manual alignment points, and positioning and spacing values. Expressions have the
following syntax:

GzrtguukgpPcogl (* HgtocvEgfgu*) grgtcpf, qrgtcpft, . . .]

Where Is

GzrtguukgpPcog The expression name (for example, cdu)

HgtocvEqfgu Optional formatting codes (for example, 12 1), described next
grgtcpf Another expression

Formatting codes are enclosed within asterisk (,) delimiters. If an expression doesn’t contain formatting codes, it
cannot contain asterisks. Formatting codes consist of a pair of flags enclosing a numeric value or string, except for
boolean flags, which are a single flag. For example, the following expression contains formatting codes that select a
display format and a boolean flag to set a manual line break point:

<MathFullForm ~id[(*i2i*)char[x]]'>

String values in format codes must be enclosed in straight, double quotation marks ("). To include characters in the
extended ASCII range (above 2z349), use a backslash sequence (see “Character set in strings” on page 7).

You can use the following formatting codes, which can appear in any order. The default for all numeric values is 0.

Format code Meaning

AkpvgigtA Manual alignment mark in element (O=none, 1=right, 2=left)

bogvtkeb Extra space at bottom of expression; corresponds to Spacing values in the Position Settings
dialog box

BuvtkpiB Font angle (for example, "Italic")

ckpvgigtc Alignment for horizontal lists and matrices (O=baseline, 1=top, 2=bottom)

CkpvgigtC Character case

DkpvgigtD Double underline (0=no underline, 1=underline)

ADOBE FRAMEMAKER

Format code Meaning

fuvtkpif Font family (for example, £" Times")

ikpvgigti Display format number (0, 1, 2)

j kpvgigtj Alignment for vertical lists and matrices (O=center, 1=left, 2=right,3=at equal symbol, 4=left of
equal symbol)

logvtkel Extra space to left of expression; corresponds to Spacing values in the Position Settings dialog
box

M In a matrix, makes all column widths equal (boolean)

m In a matrix, makes all row heights equal (boolean)

n No automatic parentheses (boolean)

NkpvgigtN Numeric underline (0=no underline, 1=underline)

okpvgigto Outline (0=no outline, 1=outline)

0 kpvgigtO Overline (0=no overline, 1=overline)

quvtkpiq Color name (for example, Tgf)

rogvtker Extra space to right of expression; corresponds to Spacing values in the Position Settings dialog
box

RkpvgigtR Shadow (0=no shadow, 1=shadow)

s fgekocns Character size in points (for example, s12.00s)

Skpvgigts Strikeout (0=no strikeout, 1=strikeout)

togvtket Extra space at top of expression; corresponds to Spacing values in the Position Settings dialog
box

TuvtkpiT Name of custom element from reference page frame

u Manual line break to left (boolean)

UkpvgigtU Underline (0=no underline, T=underline)

v Manual line break to right (boolean)

Vuvtkpiv Font variation (for example, "Narrow")

WuvtkpiW Font weight (for example, "Bo1d")

xogvtkex Horizontal kern value

yogvtkey Vertical kern value

MIF Reference

When expressions have multiple display formats, there is one default format. Additional formats are numbered. For
example, the k£ expression has three display formats.

Example

MathFullForm statement

>OcvjHwnnHgto"bkflejct]lz)@

<MathFullForm ~id[(*ili*)char[x]]'>

<MathFullForm ~id[(*i2i*)char[x]]'>

196

ADOBE FRAMEMAKER | 197
MIF Reference

Atomic expressions

Atomic expressions are expressions that don’t take other expressions as operands. They usually act as operands in
more complex expressions.

prompt
rtgorv is a placeholder to show an expression’s undefined operands. Of the character formatting specifications,
only kerning values affect the appearance of a prompt.

Example MathFullForm statement
? <MathFullForm ~prompt[]'>
num

pwo describes a number. It always has two operands: the first shows the number as used for computations (internal
precision), and the second shows the number as displayed. When fewer digits are displayed than are used internally,
an ellipsis appears after the number.

Example MathFullForm statement

3.1415927 <MathFullForm “num([3.141592653589793,"3.1415927"]"'>

There are two special cases of the pwo expression.

Example MathFullForm statement
Kphkpkv{ <MathFullForm “num[Infinity,"Infinity"]'>
PcP <MathFullForm ~num[NaN, "NaN"]'>

pcP means not a number. These forms of pwo usually result from computations.

string

uvtkpi contains a character string. Character strings must be enclosed in straight, double quotation marks ("). To
include characters in the extended ASCII range (above 2z349), use a backslash sequence (see “Character set in
strings” on page 7). To include a straight, double quotation mark, precede the quotation mark with a straight, double
quotation mark.

Example MathFullForm statement

HtcogOcvj <MathFullForm ~string["FrameMath"]'>
wukpi"$swgvgu$ <MathFullForm ~“string["using ""quotes"""]'>
char

ejct describes a character.

Example MathFullForm statement

X <MathFullForm ~char[x]'>

ADOBE FRAMEMAKER
MIF Reference

The ejct expression can contain one of the letters a through z, one of the letters A through Z, a custom math

element, or one of the character names shown in the following table.

Example MathFullForm statement

N <MathFullForm ~char[aleph]'>

o <MathFullForm ~char[alphal'>

B <MathFullForm ~char [beta]'>

1 <MathFullForm ~char [bot]'>

X <MathFullForm ~char [chi]'>

o <MathFullForm ~char[cpartial]'>

o <MathFullForm ~char [degree] ' >

S <MathFullForm ~char [deltal'>

A <MathFullForm ~char[Delta]'>

%) <MathFullForm ~char [emptyset]'>

€ <MathFullForm ~char [epsilon]'>

n <MathFullForm ~char[etal'>

Y <MathFullForm ~char [gamma] ' >

T <MathFullForm ~char [Gamma]'>

3 <MathFullForm ~char[Im]'>

0 <MathFullForm ~char[infty]'>

1 <MathFullForm ~char[iota] '>

K <MathFullForm ~char [kappa]'>

by <MathFullForm ~char[lambda]'>

A <MathFullForm ~char [Lambda]'>
<MathFullForm ~char[ldots]'>

u <MathFullForm ~char[mu]'>

\V/ <MathFullForm ~char[nablal'>
<MathFullForm ~char[nu]'>

198

ADOBE FRAMEMAKER
MIF Reference

Example MathFullForm statement

o) <MathFullForm ~char [omegal '>

Q <MathFullForm ~char [Omegal '>

d) <MathFullForm ~char[phi]'>

) <MathFullForm ~char [Phi]'>

P <MathFullForm ~char[pi]'>

11 <MathFullForm ~char[Pi]'>

" <MathFullForm ~char [pprime] '>

’ <MathFullForm ~char[prime]'>

v <MathFullForm ~char[psi]'>

¥ <MathFullForm ~char[Psi]'>

R <MathFullForm ~char[Re]'>

p <MathFullForm ~char[rho]'>

o <MathFullForm ~char[sigma]'>

3 <MathFullForm ~char[Sigmal'>

T <MathFullForm ~char[tau]'>

0 <MathFullForm ~char [theta]'>

® <MathFullForm ~char [Thetal '>

L <MathFullForm ~char[upsilon]'>

Y <MathFullForm ~char[Upsilon]'>

¢ <MathFullForm ~char [varphi]'>

o) <MathFullForm ~char [varpi]'>

c <MathFullForm ~char [varsigma]'>

9 <MathFullForm ~char [vartheta] '>

%) <MathFullForm ~char[wp]'>
<MathFullForm ~char[xi]'>

199

ADOBE FRAMEMAKER
MIF Reference

Example

MathFullForm statement

—
—
—

<MathFullForm ~char[Xi]'>

G

<MathFullForm ~char[zeta]'>

Using char for custom math elements

The ejct expression can contain a custom math element by using the following syntax:

<MathFullForm ~char [(*T"GngogpvPcog"T*)New] ' >

where GngogpvPcog is the name of the reference frame that contains the custom element.

Using char and diacritical for diacritical marks

Vig"ejct"cpf"vig" fkcetkvkecn"expressions both describe diacritical marks around an operand.

The char expression places diacritical marks around a single operand, as shown in the following table. The ejct

expression is backward-compatible.

Example <MathFullForm> statement

2 <MathFullForm ~char[x,1,0,0,0,0]"'>
)AC <MathFullForm ~char[x,2,0,0,0,0]"'>
x <MathFullForm ~char[x,3,0,0,0,0]"'>
X' <MathFullForm ~char[x,0,1,0,0,0]"'>
X" <MathFullForm ~char[x,0,2,0,0,0]"'>
X" <MathFullForm ~char[x,0,3,0,0,0]"'>
% <MathFullForm ~char[x,0,0,1,0,0]"'>
¥ <MathFullForm “char((x,0,0,2,0,0]"'>
% <MathFullForm ~char[x,0,0,3,0,0]"'>
¥ <MathFullForm ~char[x,0,0,0,1,0]"'>
X <MathFullForm ~char[x,0,0,0,0,1]"'>
X <MathFullForm ~char[x,0,0,0,0,2]"'>

The ejct expression can also describe composite diacritical marks. The following table contains examples.

Example

MathFullForm statement

1=V

<MathFullForm ~char[x,1,0,0,0,2]"'>

<MathFullForm ~char[x,3,1,0,0,2]'>

200

ADOBE FRAMEMAKER | 201
MIF Reference

The fkcetkvkecn expression places diacritical marks around multiple operands and describes two additional
diacritical marks. The fkcetkvkecn expression describes the same marks that the ejct expression describes, but it
can take multiple operands. In addition, the fkcetkvkecn expression describes two forms of diacritical mark not
described by the ejct expression. The following table shows examples of fkcetkvkecn expressions.

Example MathFullForm statement

))C <MathFullForm “diacritical(4,0,0,0,0,char([x]]"'>
/)-c\ <MathFullForm “diacriticall[5,0,0,0,0,char([x]]"'>
—> <MathFullForm

AB “diacriticall4,0,0,0,0,times [char [A],char([B]]]'>

Note: The tkcetkvkecn expression is not backward compatible. When an earlier version (previous to 4.x) of
FrameMaker reads a MIF file saved in version 4 or later of FrameMaker, any equations that contain fkcetkvkecn
expressions are lost. You should edit any ocviHwnnHgto statements that contain fkcetkvkecn expressions before
opening the file in earlier versions of FrameMaker. For more information, see “Math statements” on page 264.

dummy

The fwoo{ expression describes a dummy variable that you can use as a placeholder in equations. For example, in
the following equation, i is a dummy variable:

4

[2 3 4
le =1l+x+x"+x +x
i=0

The fwoo{ expression has the same syntax as the ejct expression and can contain the same character symbols or
names.

Example MathFullForm statement
X <MathFullForm ~dummy [x]'>
Operator expressions

Operator expressions take at least one expression as an operand. There are no restrictions on the complexity of
operator expressions, and they are not restricted by any concepts of domain or typing.

Unary operators

Unary operators have one expression as an operand. Three of the unary operators— k£, nrctgp, and trctgp—have
multiple display formats. The following table contains an example of each unary operator (in all of its display
formats) with ejct]z_ as a sample operand.

Example MathFullForm statement
|x| <MathFullForm ~abs[char([x]]'>
acosx <MathFullForm ~acos[char[x]]'>

acoshx <MathFullForm ~acosh[char[x]]'>

ADOBE FRAMEMAKER
MIF Reference

Example MathFullForm statement
acotx <MathFullForm ~acot [char([x]]'>
acothx <MathFullForm ~acoth[char([x]]'>
acscx <MathFullForm ~acsc[char[x]]'>
acschx <MathFullForm ~acschlchar[x]]'>
/x <MathFullForm ~angle[char[x]]'>
argx <MathFullForm ~argl[char[x]]'>
asecx <MathFullForm ~asec[char([x]]'>
asechx <MathFullForm ~asech[char[x]]'>
asinx <MathFullForm ~asin([char([x]]'>
asinhx <MathFullForm ~asinh([char([x]]'>
x* <MathFullForm ~ast[char[x]]'>
atanx <MathFullForm ~atan[char[x]]'>
atanhx <MathFullForm “atanh[char[x]]'>
Ox <MathFullForm ~box[char[x]]'>
sz <MathFullForm ~box2 [char[x]]'>
Oex <MathFullForm ~boxdot [char[x]]'>
x| <MathFullForm “bra[char[x]]'>
|—x—| <MathFullForm ~ceil[char([x]]'>
Ax <MathFullForm ~change[char[x]]'>
COSXx <MathFullForm ~cos[char[x]]'>
coshx <MathFullForm ~cosh[char[x]]'>
cotx <MathFullForm ~cot[char[x]]'>
cothx <MathFullForm ~coth[char([x]]"'>
cscx <MathFullForm ~csc([char([x]]'>
<MathFullForm ~cschlchar[x]]'>

cschx

202

ADOBE FRAMEMAKER
MIF Reference

Example MathFullForm statement

Vxx <MathFullForm ~curl[char([x]]"'>

xT <MathFullForm ~dagger [char([x]]'>

<x> <MathFullForm ~dangle[char([x]]'>

dx <MathFullForm ~diff [char[x]]'>

Vex <MathFullForm ~diver[char[x]]'>

~ <MathFullForm ~downbrace [char[x]]'>

X

expx <MathFullForm “exp [char[x]]'>

Ix <MathFullForm ~exists[char[x]]'>

x! <MathFullForm ~fact [char[x]]'>

I_xJ <MathFullForm ~floor[char[x]]'>

Yy <MathFullForm ~forall[char([x]]'>

(x) <MathFullForm ~id[char[x]]'>

[x] <MathFullForm ~id[(*ili*)char[x]]'>

{x} <MathFullForm ~id[(*i2i*)char([x]]'>

imagx <MathFullForm ~imag[char[x]]'>

|x> <MathFullForm ket [char[x]]'>

V2 <MathFullForm ~lap[char[x]]'>

Inx <MathFullForm ~1n[char[x]]'>

(x <MathFullForm ~lparen[char[x]]'>

[x <MathFullForm ~1lparen[(*ili*)char[x]]'>

{x <MathFullForm ~lparen[(*i2i*)char[x]]'>

—x <MathFullForm “minus [char[x]]'>

X <MathFullForm “mp [char[x]]'>

—x <MathFullForm ~“neg[char[x]]'>
<MathFullForm “norm[char[x]]'>

203

ADOBE FRAMEMAKER
MIF Reference

Example MathFullForm statement

)_C <MathFullForm ~overline[char[x]]'>
ox <MathFullForm ~“partial [char[x]]'>
+y <MathFullForm “pm[char[x]]'>

realx <MathFullForm “real [char[x]]'>

<MathFullForm ~rparen[char[x]]'>

x] <MathFullForm ~rparen[(*ili*)char[x]]'>
x} <MathFullForm ~rparen[(*i2i*)char[x]]'>
secx <MathFullForm ~sec[char[x]]'>

sechx <MathFullForm ~sech[char([x]]'>

X <MathFullForm ~semicolon[char[x]]'>
sgnx <MathFullForm ~sgn[char[x]]'>

sinx <MathFullForm ~sin[char[x]]'>

sinhx <MathFullForm ~sinh[char[x]]'>

tanx <MathFullForm ~tan[char[x]]'>

tanhx <MathFullForm ~tanh[char([x]]'>

X <MathFullForm ~therefore[char[x]]'>

X <MathFullForm ~ucomma [char([x]]'>

= x <MathFullForm ~uequal [char[x]]'>

X <MathFullForm ~upbrace[char[x]]'>

o

Sx <MathFullForm ~var [char[x]]'>

Binary operators

Binary operators have two operand expressions. One of the binary operators, up (scientific notation), has two display
formats. The following table contains an example of each binary operator with ejct]z_ as a sample operand.

Example

MathFullForm statement

{xx

<MathFullForm ~acmut [char [x],char[x]]'>

Xex

<MathFullForm ~bullet [char [x],char[x]]'>

204

ADOBE FRAMEMAKER
MIF Reference

Example MathFullForm statement
<x|x> <MathFullForm ~bket [char[x],char([x]]'>
@ <MathFullForm ~choice[char([x],char([x]]'>

[x x] <MathFullForm ~cmut [char [x],char([x]]'>

>
X XX <MathFullForm ~cross [char[x],char[x]]'>
X=X <MathFullForm ~div[char[x],char[x]]'>
X/x <MathFullForm = fract [char[x],char[x]]'>
x(x) <MathFullForm °~ function[char[x],char[x]]'>
Ox <MathFullForm ~function[oppartial [char[x]],char[x]]"'>?
ox
dx <MathFullForm - function[optotal [char[x]],char[x]]'>
dx
(x x) <MathFullForm ~inprod[char [x], char([x]]'>
>

limx <MathFullForm ~lim[char[x],char[x]]'>

X
X <MathFullForm ~over [char[x],char([x]]'>
X

X <MathFullForm ~power [char[x],char[x]]'>
X

X <MathFullForm ~sn([char([x],char(x]]"'>
xx10
<MathFullForm ~sn[(*ili*)char[x],char[x]]'>

xEx

a. Partial and full differentials are a special case of hwpevkgp.

N-ary operators

N-ary operators have two or more operand expressions. When one of these operators has more than two operands,

FrameMaker displays an additional operand symbol for each operand expression. For example, the following table
shows several forms of rnwu.

Example MathFullForm statement

1+2 <MathFullForm “plus[num[1l,"1"],num[2,"2"]]"'>

1+2+3 <MathFullForm ~“plus[num[1l,"1"],num[2,"2"],num[3,"3"]]"'>
1+2+3+4 <MathFullForm

“plus[num(l,"1"] ,num[2,"2"] ,num[3,"3"] ,num[4, "4"]]"'>

205

The following table contains an example of each n-ary operator. Each example shows two operands.

ADOBE FRAMEMAKER
MIF Reference

Example MathFullForm statement

X <MathFullForm ~atop[char[x],char([x]]'>

X

X=X <MathFullForm ~approx[char [x],char([x]]'>

XX <MathFullForm ~cap[char[x],char[x]]'>

X-Xx <MathFullForm ~cdot [char[x],char[x]]'>

X, X <MathFullForm ~comma [char [x],char([x]]'>

Y=x <MathFullForm ~cong[char[x],char([x]]'>

XUXx <MathFullForm ~cup [char[x],char[x]]'>

X = x <MathFullForm ~equal [char[x],char[x]]'>

x=x <MathFullForm ~equiv[char[x],char[x]]'>

x> x <MathFullForm ~geqlchar[x],char[x]]'>

X» X <MathFullForm ~ggl[char([x],char([x]]'>

X>x <MathFullForm ~greaterthan|[char [x],char[x]]'>

xex <MathFullForm ~in[char([x],char([x]]'>

xOx <MathFullForm ~jotdot [char [x], char[x]]'>

X < x <MathFullForm ~leftarrow[char[x],char[x]]'>

X< x <MathFullForm ~Leftarrow[char[x],char[x]]'>

x<x <MathFullForm ~leql[char[x],char[x]]'>

x<Xx <MathFullForm ~lessthan[char[x],char[x]]'>

X X <MathFullForm ~1list [char([x],char[x]]'>

X «x <MathFullForm ~11[char([x],char([x]]'>

X< x <MathFullForm ~lrarrow[char[x],char[x]]'>

X< x <MathFullForm ~LRarrow [char[x],char[x]]'>

x3x <MathFullForm ~ni[char [x],char([x]]'>
<MathFullForm ~notequal [char [x], char[x]]'>

X#*X

206

ADOBE FRAMEMAKER
MIF Reference

Example MathFullForm statement

Xex <MathFullForm “notin[char [x],char[x]]"'>
XX <MathFullForm “notsubset [char[x],char[x]]'>
x®x <MathFullForm ~oplus [char[x],char[x]]'>

x® x <MathFullForm ~otimes [char [x],char([x]]'>

X H X <MathFullForm ~parallel [char[x],char[x]]'>

x 1l x <MathFullForm ~perp[char[x],char([x]]'>

x+x <MathFullForm ~plus[char[x],char([x]]'>

X —x <MathFullForm “plus [char [x],minus[char[x]]]"'>
X oC X <MathFullForm ~propto[char([x], char([x]]'>

X = x <MathFullForm ~rightarrow[char [x], char([x]]'>
X=X <MathFullForm ~Rightarrow [char [x],char([x]]'>
X ~X <MathFullForm ~sim[char[x],char[x]]'>

xCx <MathFullForm °~ subset [char[x],char[x]]'>
xXcx <MathFullForm ~subseteqg[char[x],char([x]]'>
XOXx <MathFullForm - supset [char[x], char([x]]'>
XDx <MathFullForm ~supseteql[char([x],char[x]]'>
XX <MathFullForm ~times [char [x],char[x]]'>

XV X <MathFullForm ~vee [char[x],char[x]]'>

XAX <MathFullForm ~wedge [char [x],char[x]]'>
Large operators

Large operator expressions have one primary operand. In addition, they can have one or two range operands. The
following table contains an example of each large operator with only one operand with ejct]z_ asa sample operand.

Example

MathFullForm statement

mx

<MathFullForm ~bigcap[char([x]]'>

Ux

<MathFullForm ~bigcup[char([x]]'>

207

ADOBE FRAMEMAKER
MIF Reference

Example

MathFullForm statement

<MathFullForm ~int[char([x]]'>

<MathFullForm ~oint [char[x]]'>

<MathFullForm ~prod[char([x]]"'>

<MathFullForm ~sum[char[x]]'>

Expressions with range operands have multiple display formats that change how operands are positioned around the
symbol. Extended unions and intersections have two display formats. The formats are the same for both expressions;
as an example, the following table shows the two display formats for an intersection with three operands:

Example MathFullForm statement
3 <MathFullForm
| “bigcap [num[1.0,"1"] ,num[2.0,"2"] ,num[3.0,"3"]]"'>
M
2
3 | <MathFullForm
ﬁz “bigcap[(*ili*)num[1.0,"1"],num([2.0,"2"] ,num[3.0,"3"]]"'>

Sums, products, and integrals have three display formats. The formats are the same for all of these operators; as an

example, the following table shows the display formats for an integral with three operands.

Example

MathFullForm statement

b

<MathFullForm ~int [char [x], char[a]l,char[b]]'>

<MathFullForm ~int[(*ili*)char[x],char[a],6 char[b]l]"'>

<MathFullForm ~int[(*12i*)char[x],char[a], char[b]l]'>

Expressions with optional operands

Some expressions have optional operands. In these expressions, the optional operands follow the primary operand.
The following table contains an example of each expression with optional operands.

Example

MathFullForm statement

Vx

<MathFullForm ~grad[char[x]]'>

V,1

<MathFullForm ~grad[num[1,"1"],num([2,"2"]]"'>

208

ADOBE FRAMEMAKER

Example MathFullForm statement

logx <MathFullForm ~logl[char([x]]'>

logxx <MathFullForm ~logl[char[x],char[x]]"'>

0 <MathFullForm ~oppartial [char[x]]'>

ox

8x <MathFullForm ~oppartial [char[x], char[x]]'>
Ox

d <MathFullForm ~optotal [char[x]]'>

dx

dx <MathFullForm ~optotal [char[x],char[x]]'>
dx

A/)—C <MathFullForm ~sqgrt [char[x]]'>

<MathFullForm ~sqgrt [char([x],char([x]]'>

<MathFullForm ~substitution[char([x]]'>

x|
x| <MathFullForm ~substitution[char [x],char[x]]'>

x

|x <MathFullForm ~substitution[char[x],char([x],char[x]]'>
X

X

For partial and full differentials (such as g_)_c and g_)_c), see page 205.
X X

Indexes

There are three expressions for describing indexes: kpfgzgu, ejgo, and vgpugt.

MIF Reference

indexes: The kpfgzgu expression describes any number of subscripts and superscripts. The first operand is the

number of superscripts and the second operand is the number of subscripts. Subsequent operands define the

subscripts and then the superscripts.

Note: Note that the number of superscripts is listed before the number of subscripts. However, superscript operands are

listed after subscript operands.

The following table contains an example of each kpfgzgu form.

Example MathFullForm statement

xl <MathFullForm ~indexes[0,1,char[x],num[1,"1"]]"'>

x12 <MathFullForm ~indexes[0,2,char[x],num[1,"1"],num[2,"2"]]"'>
xl <MathFullForm ~indexes[1,0,char[x],num[1,"1"]]"'>

209

ADOBE FRAMEMAKER

Example MathFullForm statement
12 <MathFullForm ~indexes[2,0,char([x],num[1,"1"],num([2,"2"]]"'>
2 <MathFullForm ~indexes[1l,1,char[x],num[1,"1"],num[2,"2"]]"'>
X
34 <MathFullForm
X12 “indexes[2,2,char[x],num[1l,"1"],num[2,"2"] ,num([3,"3"] ,num[4,
ll4ll]] 1 >

MIF Reference

chem: The ejgo expression defines pre-upper and pre-lower indexes, subscripts, and superscripts. Each position

can have one expression. The following table shows all possible forms of ejgo.

Example MathFullForm statement
X <MathFullForm ~chem[1,0,0,0,char([x],num[1,"1"]]"'>
1 <MathFullForm ~chem[0,0,1,0,char([x],num([1,"1"]]"'>
X
1 <MathFullForm “~chem[1,0,1,0,char([x],num([1,"1"],num[2,"2"]]"'>
2)6
% <MathFullForm ~chem[1,1,0,0,char([x],num[1,"1"],num([2,"2"]]"'>
12 <MathFullForm ~chem[0,0,1,1,char([x],num([1,"1"],num[2,"2"]]"'>
X
1 <MathFullForm
2)63 “chem([1,1,1,0,char([x] ,num[1,"1"],num[2,"2"] ,num([3,"3"]]"'>
12 <MathFullForm
3 “chem[1,0,1,1,char[x],num[1,"1"],num([2,"2"] ,num([3,"3"]]"'>
12 <MathFullForm
3% “chem([1,1,1,1,char[x],num[1l,"1"],num[2,"2"],num([3,"3"],num[4
s n4ll]] LES

tensor: The vgpugt expression represents specially formatted tensor notation. The first operand describes the

position of the tensor indexes; subsequent operands define the indexes. The leftmost tensor index corresponds to
the least significant bit of the first operand in binary format; the rightmost index corresponds to the most significant
bit. 0 is the subscript position; 1 is the superscript position. The following table shows forms of vgpugt.

Example MathFullForm statement
2 <MathFullForm ~tensor[2,char[x],num[1,"1"],num([2,"2"]]"'>
X1
1 <MathFullForm ~tensor[l,char[x],num[1,"1"],num[2,"2"]]"'>
X2
1 <MathFullForm
X 23 “tensor[1,char([x] ,num([1,"1"],num[2,"2"] ,num[3,"3"]]"'>
23 <MathFullForm
X1 “tensor[6,char[x],num([1,"1"],num[2,"2"] ,num[3,"3"]1]"'>

210

ADOBE FRAMEMAKER | 211
MIF Reference

Example MathFullForm statement
2 <MathFullForm

xl 3 “tensor[2,char([x] ,num([1,"1"],num[2,"2"] ,num[3,"3"]]"'>
13 <MathFullForm

X 9 “tensor [5,char [x],num[1,"1"] ,num([2,"2"] ,num([3,"3"]]"'>

3 <MathFullForm

X12 “tensor [4,char [x],num[1,"1"],num([2,"2"] ,num[3,"3"]]"'>
12 <MathFullForm

X 3 “tensor[3,char[x],num([1,"1"] ,num[2,"2"] ,num[3,"3"]1]"'>

Matrices

The ocvtkz expression defines a matrix. The first operand is the number of rows in the matrix; the second operand
is the number of columns. Subsequent operands are expressions representing the elements of the matrix. The
elements are listed from left to right and from top to bottom. The ocvtkz expression has an alternate display format.
The following table shows examples of ocvtkz.

Example MathFullForm statement
<MathFullForm “matrix[1,1,char[x]]'>
B
X <MathFullForm “matrix[(*ili*)1,1,char[x]]'>
r <MathFullForm
123 "matrix[2,3,num[1,"1"],num[2,"2"] ,num([3,"3"] ,num[4,"4"] ,num[
45 6 5,"5"],DUm[6,"6"]]'>
r <MathFullForm
12 “matrix([3,2,num[1,"1"],num[2,"2"] ,num[3,"3"] ,num([4,"4"] ,numl[
34 5,"5"],num[6,"6"]]'>
56

Custom operators

The following expressions allow you to use custom operators that have been defined on a math reference page:

Expression Definition

newinfix[x,y] Inserts custom infix operator
newprefix[x] Inserts custom prefix operator
newpostfix[x] Inserts custom postfix operator
newfunction [x] Inserts custom function operator
newlarge [x,V, 2] Inserts custom large element
newdelimiter [x] Inserts custom delimiter
newlimit [x,y] Inserts custom limit function
newvlist [x,y, z] Inserts custom vertical list

ADOBE FRAMEMAKER
MIF Reference

The expressions that insert new custom operators must include the name of the custom operator from the reference
page. For example, suppose a document has a custom operator o {Hwpevkgp that is added to the FocvjEcvengi
statement as follows:
<DMathCatalog
<DMathNew
Names the new operator
<DMathOpName “MyFunction's
Specifies the operator type
<DMathNewType Functions>
> # end of DMathNew
> # end of DMathCatalog

The corresponding ocviHwnnHgto statement appears as follows:

<MathFullForm “newfunction[(*T"MyFunction"T*) [char[x]]]'>

You do not use one of the custom operator expressions to insert a redefined math operator in an equation. Instead,
you use the expression for the built-in operator, but force FrameMaker to use the new symbol from the reference
page. For example, suppose you redefine the built-in operator cukp and add it to the Math Catalog as follows:

<DMathCatalog
<DMathOpOverrides
Names the built-in operator
<DMathOpName “asin's>
Forces lookup from reference page
<DMathOpTLineOverride Yes>
> # end of DMathOpOverrides
> # end of DMathCatalog

You would use the following ocviHwnnHqgto statement:
<MathFullForm “asin[(*T"Inverse Sine"T¥*)grgtcpful '>

where the string $Kpxgtug"Ukpg" is the name given to the frame on the reference page.

Sample equations

The following examples show ocviHwnnHgto statements for complete equations.

Example 1
2
_—b+t Nb" —4ac
2a
<MathFullForm

“equal [char [x] ,over [plus [minus [char [b]],pm[sgrt [plus [power [char [b] ,num[2,"2"]] ,minus [times
[num([4,"4"],char[a],char[c]]]]]]],times[num([2,"2"],char([al]l]l]"'>

212

213

Chapter 7: MIF Asian Text Processing
Statements

This chapter describes the MIF statements used to express Asian text in a document. It includes character encoding
statements, combined Asian and Western fonts, Kumihan tables, and rubi text.

Asian Character Encoding

Western text in a MIF file is written out as 7-bit ASCIL. However, 7-bit encoding is insufficient for Asian text. Asian
text in MIF files is represented by double-byte encoding. There are different encoding schemes for each supported
language, and the MIF file must include a statement that can be used to determine which encoding to use.

The MIF file can be edited with an Asian-enabled text editor on the platform on which the MIF was written. If the
text in a MIF file is in more than one Asian language, then only the language of the MIF encoding statement will be
directly readable in a text editor. All other non 7-bit ASCII text will be backslashed escaped using the MIF backslash
X convention.

MIFEncoding statement for Japanese

Adobe® FrameMaker® recognizes two encoding schemes for Japanese; Shift-JIS and EUC. The Windows versions of
FrameMaker write Shift-]JIS for Japanese text, and the UNIX versions of FrameMaker write out EUC. The MIF can
converted between Shift-JIS and EUC using a Japanese text conversion utility. The MIF encoding statement is
converted along with the text in the MIF file.

To determine which encoding was used, each MIF file that contains Japanese text must include a OKHGpegfkpi
statement near the beginning of the file. It must appear before any Japanese text in the file. The string value in the
OKHGpeqfkpi statement is the Japanese spelling of the word “Nihongo,” which means Japanese. FrameMaker reads
this fixed string and determines what the encoding is for it. From that, FrameMaker expects the same encoding to
be used for all subsequent 8-bit text in the document.

To see the characters spelling the word Nihongo, you must view the MIF file on a system that is enabled for Japanese
character display. When the MIF is displayed on a Roman system, the characters appear garbled.

Syntax

<MIFEncoding ° E
<MIFEncoding ~

‘> # originally written as Japanese (Shift-JIS)
‘> # originally written as Japanese (EUC)

oBoH

MIFEncoding statement for Chinese

FrameMaker recognizes three encoding schemes for Chinese; Big5 and CNS for Traditional Chinese, and GB2312-
80 for Simplified Chinese. The Windows versions of FrameMaker write Big5 for Traditional Chinese text, and the
UNIX versions of FrameMaker write out CNS for Traditional Chinese text. All platform versions of FrameMaker
write GB2312-80 for Simplified Chinese.

ADOBE FRAMEMAKER
MIF Reference

To determine which encoding was used, each MIF file that contains Chinese text must include a OxHGpeqfkpi
statement near the beginning of the file. It must appear before any Chinese text in the file. The string value in the
OKHGpeqfkpi statement is the Chinese spelling of the word “Chinese”. FrameMaker reads this fixed string and deter-
mines what the hexadecimal encoding is for it. From that, FrameMaker expects the same encoding to be used for all
subsequent Asian text in the document.

To see the characters spelling the word “Chinese”, you must view the MIF file on a system that is enabled for Chinese
character display. When the MIF is displayed on a Roman system, the characters appear garbled.

Syntax

<MIFEncoding \qﬁit ‘> # originally written as Traditional Chinese (Big5)
<MIFEncoding *Eh ‘> # originally written as Traditional Chinese (CNS)
<MIFEncoding ~ ‘> # originally written as Simplified Chinese

MIFEncoding statement for Korean

FrameMaker recognizes one encoding scheme for Korean: KSC5601. All platform versions of FrameMaker write
KSC5601 for Korean.

Each MIF file that contains Korean text must include a OkHGpeqfkpi statement near the beginning of the file. It must
appear before any Korean text in the file. The string value in the OkHGpeqfkpi statement is the Korean spelling of
the word “Korean.” FrameMaker reads this fixed string and determines what the hexadecimal encoding is for it.
From that, FrameMaker expects the same encoding to be used for all subsequent Asian text in the document.

To see the characters spelling the word “Korean.”, you must view the MIF file on a system that is enabled for Korean
character display. When the MIF is displayed on a Roman system, the characters appear garbled.

Syntax

=1 1.
<MIFEncoding \§}3?04‘> # originally written as Korean

Combined Fonts

Combined fonts assign two component fonts to one combined font name. This is done to handle both an Asian font
and a Western font as though they are in one font family. In a combined font, the Asian font is the base font, and the
Roman font is the Western font. For example, you can create a combined font named Mincho-Palatino that uses
Mincho for Asian characters and switches to Palatino for Roman characters.

When reading a MIF paragraph that uses Mincho-Palatino, FrameMaker displays Asian characters in Mincho and

Roman characters in Palatino. If the Mincho font is not installed on the user’s system, FrameMaker displays the Asian
text in a font that uses the same character encoding as Mincho.

CombinedFontCatalog statement

Combined fonts are defined for the document in the EqodkpgfHgpvEcvengi statement. For each combined font,
there is a EqodkpgfHgpvFghp statement that specifies the combined font name and identifies the Asian and the
Roman component fonts. Note that the combined font catalog must precede the first RihHgpv and Hgpv statements
in the document.

Syntax

<CombinedFontCatalog

214

ADOBE FRAMEMAKER

>EqodkpgfHgpvFghp

Defines a single combined font

>EqodkpgfHgpvPcog" uvtkpi@

The name of the combined font

>EqodkpgfHgpvDcugHcokn{ "uvtkpi@

The name of the Asian component font

>EqodkpgfHgpvYguvgtpHcokn{ " uvtkpi@

The name of the Roman component font

>EqodkpgfHgpvYguvgtpUk | g" rgtegpve

The size of the Roman component font,
expressed as a percentage of the base font
size; allowed values are 1.0% through
1000.0%

>EqodkpgfHgpvYguvgtpUjkhv"rgtegpv@

The baseline offset of the Roman font,
expressed as a percentage of the base font
size where a positive value raises the
Roman baseline above the Asian baseline;
allowed values are -1000.0% through
1000.0%

>EqodkpgfHgpvDcugGpeqfkpi "mg{ygtf@

Specifies the encoding for the base font.

mg {yqt £ can be one of:
LKUZ242:0UjkhvLKU
DKI7
ID4534/:20GWE
MUE7823/3; ;4

>EqodkpgfHgpvCnngyDcugHcokn{DgnfgfCpfQdnkswgf "
dggngcp@

[gu allows a simulation of the bold or
italic Asian component font to be used if
Bold or Italic/Oblique is applied to the
combined font.

@ End of the EqodkpgfHgpvFghp state-
ment
000 More EqgodkpgfHgpvFghp statements
as needed
> End of the EqodkpgfHgpvEcvengi
statement
Example

The following is an example of a combined font catalog:

<CombinedFontCatalog

<CombinedFontDefn
<CombinedFontName ~MyCombinedFont'>
<CombinedFontBaseFamily ~Osaka'>
<CombinedFontWesternFamily “Times'>
<CombinedFontWesternSize 75.0%>
<CombinedFontWesternShift 0.0%>
<CombinedFontBaseEncoding ~JISX0208.ShiftJIS'>
<CombinedFontAllowBaseFamilyBoldedAndObliqued Yes>
> # end of CombinedFontDefn

> # end of CombinedFontCatalog

PgfFont or Font statement

MIF Reference

When a combined font is used in a paragraph or text line, the RihHgpv or Hgpv statement includes the combined
font name and the base font’s family name. These statements also include the PostScriptName and PlatformName

for both the base and the Roman fonts.

215

ADOBE FRAMEMAKER
MIF Reference

HEqgodkpgfHgpvPcog is a new statement to express the combined font name. The HHcokn { statement expresses the

base font’s family name.

The HRquvUetkrvPcog and HRncvhgtoPcog statements all refer to the base font. The following new statements have
been added to express the corresponding values for the Roman font:

* HYguvgtpRquvUetkrvPcog
¢ HYguvgtpRncvhgtoPcog

Syntax

<PgfFont

>HRquvUetkrvPcog" uvtkpi@

The PostScript name for the base font

>HRncvhgtoPcog" uvtkpi@

The platform name for the base font

>HYguvgtpRguvUetkrvPcog" uvtkpi@

The PostScript name for the Roman font

>HYguvgtpRncvhgtoPcog" uvtkpi@

The platform name for the Roman font

>HEqodkpgfHgpvPcog" uvtkpi@

The name of the combined font, as defined in the combined font
catalog

>HGpeqfkpi"uvtkpi@

Specifies the encoding for the base font. This is to specify the
encoding for a double-byte font. If not present, the default is
Roman.

mg {ygt £ can be one of:
LKUZ242 :0UjkhvLKU
DKI7
ID4534/:20GWE
MUE7823/3; ;4

End of the PgfFont statement

Example

The following is an example of a combined font in a Rctc statement:

<Para
<Unique 996885>
<PgfTag “Body's>
<ParalLine
<Font
<FTag ~'>
<FPlatformName “M.Osaka.P's>

<FWesternPlatformName ~“M.Times.P'>

<FFamily “Osaka'>

<FCombinedFontName ~MyCombinedFont's>

<FEncoding ~JISX0208.ShiftJIS'>
<FLocked No>

> # end of Font
<String ~CombinedFontStatement 's>
<Font

<FTag ~'>

<FPlatformName “M.Osaka.P's>

<FWesternPlatformName “M.Times.P'>

<FFamily ~Osaka's>

<FCombinedFontName ~MyCombinedFont'>

216

ADOBE FRAMEMAKER
MIF Reference

<FWeight “Medium'>

<FEncoding ~JISX0208.ShiftJIS's>
<FLanguage Japanese>

<FLocked No>

>
<String “%HHE‘>
>

end of Font

end of ParalLine
> # end of Para

Kumihan Tables

Kumihan tables specify line composition rules for Japanese documents. FrameMaker uses standard JIS 4051
Kumihan rules by default. In most cases, the JIS standard is fine, but there are cases where corporate standards might
differ from the JIS rules.

Kumihan tables are associated with a document. To customize the Kumihan tables for a document, you specify the
tables in MIE Then you can import the MIF into an existing document, or into a template you will use to create new
documents.

Understanding Kumihan tables

Kumihan tables specify line composition rules by assigning characters to various classes, and then specifying four
tables of rules that apply to the characters of each class.

The Ej ctEncuu statement assigns each character to one of 25 classes. For example, the DgiRctgpvigugu"encuu"
and the GpfRctgpviguguclass are defined by the following MIF statements, and they contain the characters shown
in the statement.

<BegParentheses ~“ {[[{4{F[>
<EndParentheses ~*™11vind] v

For more information on the EjctEncuu statement, see “CharClass statement” on page 219.

The four statements that define the tables of rules that apply to the characters of each class are Uswgg | gVcdng,
UrtgcfVedng, NkpgDtgemVedng, and GzvtcUrcegVedng. Each of these statements specify the actions FrameMaker
takes for the characters in each of the 25 classes.

For example, the NkpgDtgemvVedng statement specifies whether a line break can occur between a character of one
class and a character of another class. Here is an example of a NkpgDtgemvedng statement that specifies when a line
break can occur between a character in the DgiRctgpvigugu"class and a character in each of the 25 classes:

<BegParentheses 1 1111111111111 11111311111>

217

ADOBE FRAMEMAKER
MIF Reference

The 25 numerical values for the DgiRctgpvjgugu statement specify the actions FrameMaker takes when a
character from each of the 25 classes, such as an ending parenthesis character, follows a character in the bgiRctgp-
vigugu"class. The position of each numerical value after the DgiRctgpvjgugu statement specifies the class. For
example, the first position is the bgiRctgpvigugu"class, the GpfRctgpvigugu "class is the second position, and so
on. If a numerical value of 0 is specified, FrameMaker allows a line break between a character the"DgiRctgpvigugu"
class and a character in the class specified in that position in the statement. If a value of 1 is specified, FrameMaker
does not allow a line break.

~ 3

o — [N <

S @ - O Q Q O 3

n un S 0 Q9 S 3 -~ g

O 0 g in) U Q9 E 0 M 84 O

n uw O o 0 O E > S S (L]

QO 0 & g g @ >0 FE R = M

g 9 4 © 3 E Q n o o Rl —~ 0 a ©

2 D oM A E © O g 0 = = 0O U 4 H =

g g 0 g v 0 4 g +d © © IS Q ® ® O T

O 0o m O VU @ A T Qg G © 4 g Q 9 O g
4 4 0OHA 8T T 0O NG S © N0 U MAEAAN®SF W0
T © & £ O 0 O O O g 0 840U U 4L g g g 9 00 00 o0
o Y AL BN I 7 T O T B B AN ()) O)RS B - B O O B (R Y I S |
D 8 4 0 g 848 g 0 U A 8 g n n g A g E 84 4 © ©C © © O
O g 0 3 0 0 0 4 3 un-+d P o o 3 g 0 0 © © X U QU O
M A Z2 Q0 MAZ A I OMMZ D MMM DN N
<BegParentheses 1111111111111 1111113 11111

The column position of each numerical value in the statement specifies the action to
take for each class.

In the preceding example, a line break does not occur between a character in the bgiRctgpvigugu"class and a
character in the GpfRctgpvigugu"class because the value 1 is in the second position, which is the column position
for the EndParentheses class of characters. For more information on the NkpgbDtgemvedng statement, see
“LineBreakTable statement” on page 224.

Writing Kumihan tables as MIF

FrameMaker only writes out Kumihan tables in MIF when you are running FrameMaker on Asian system software.
If you are running on an Asian system, when you save a document as MIFE, the Kumihan tables are written out as part
of the document.

This is most critical with the character classes. To specify a character class in MIF, you must be able to type the
character and save it in a text file. The standard Western system doesn’t include these character sets in its character

code page, so these characters would appear garbled. You need the Asian system to represent the characters in a text
file.

To see an example of a Kumihan table, it is best to save a document as MIE, open the MIF on an Asian system in a
text editor, and search for the MwokjcpEcvengi statement.

Specifying Kumihan tables in MIF

The following statements specify the Kumihan catalog and all of its component tables.

KumihanCatalog statement

The MwokjcpEcvengi statement begins the Kumihan table specification for the document. Note that the Kumihan
catalog is not included in the >Fgewogpve block, but is in a block of its own.

Each Asian language can have its own Kumihan tables. This means that one Kumihan catalog can have up to four
sets of tables, one set for each of the four supported Asian languages (Japanese, Traditional Chinese, SimpleChinese,
and Korean).

218

ADOBE FRAMEMAKER
MIF Reference

Syntax
<KumihanCatalog
>Mwokjcp Defines a Kumihan table set
000
>Mwokjcp Additional Kumihan table sets as needed (one for each Asian
language - up to four per document)
000

End of MwokjcpEcvengi "statement

Kumihan statement

The Mwokj cp statement defines a set of Kumihan tables. A document can have one set of tables for each of the four

supported Asian languages.

Syntax

<Kumihan

Defines a Kumihan table

>Mncpiwcig"mg{ygtf@

The language for this table

mg {yqt £ can be one of:
Lecrcpgug
VtcfkvkgpenEjkpgug
UkorngEjkpgug
Mgtgcp

>EjctEncuu

Defines character class assignments

000

>Uswgg | gVedng

Defines the squeeze table

000

>UrtgcfVedng

Defines the spread table

000

>NkpgDtgcmVedng

Defines the line break table

000

>GzvtcUrcegVedng

Defines the extra space table

CharClass statement

The Ej ctEncuu statement assigns individual characters to one of 25 classes. The JIS standard recognizes 20 classes,
and MIF includes an additional five classes (Urctg3 through Urctg7) so you can assign characters custom character

classes.

MIF Statement

Column
Position

Description

<CharClass

219

ADOBE FRAMEMAKER

MIF Statement Column Description
Position

>DgiRctgpvjgugu"ejctu@ 1 The characters to use as opening parentheses

>GpfRctgpvjgugu"ejctu@ 2 The characters to use as ending parentheses

>PgNkpgDgikpEjct"ejctu@ 3 Characters that cannot start a new line of text

>SwguvkgpDcpi"ejctu@ 4 Characters for questions and exclamations

>EgpvgtgfRwpev"ejctu@ 5 Punctuation characters that must be centered between characters

>RgtkgfEqooc"ejctue@ 6 Punctuation that is not centered

>PgpUgrctcdngEjct"ejctu@ 7 Characters that cannot have line breaks between them

>RtgegfkpiU{odgn"ejctu@ 8 Characters such as currency symbols (¥ or $)

>UweeggfkpiU{odgn"ejctu@ 9 Characters such as % or ° (degree)

>CukcpUrceg"ejctu@ 10 Characters for spaces in Asian text

>Jktcicpc"ejctue@ 11 The set of hiragana characters

>Qvjgtue 12 All characters not assigned to any class automatically belong to"
>Qvjgtue

>DcugEjctYkvjUwrgt"ejctu@ 13 FrameMaker uses this class to allow spreading between the end of
afootnote and the next character. Do not assign any characters to
this class.

>DcugEjctYkvjTwdk"ejctue@ 14 The rubi block, including oyamoji and rubi text. This class has to do
with Rubikake and Nibukake rules that specify how to handle
spacing between a rubi block and an adjacent character.

>Pwogtcn"ejctu@ 15 Characters for numerals

>WpkvU{odgn"ejctue 16 This class is not used by FrameMaker

>TgocpUrceg"ejctu@ 17 Characters for spaces in Roman text

>TgocpEjct"ejctue@ 18 Characters for Roman text

>RctgpDgikpYctkEjw'" ejctu@ 19 The current version of FrameMaker does not support Warichu; this
class is not used by FrameMaker

>RctgpGpfYctkEjw"ejctu@ 20 The current version of FrameMaker does not support Warichu; this
class is not used by FrameMaker

>Urctg3"ejctu@ 21 Reserved for a user-defined character class

>Urctg4"ejctu@ 22 Reserved for a user-defined character class

>Urctg5"ejctu@ 23 Reserved for a user-defined character class

>Urctgé6"ejctu@ 24 Reserved for a user-defined character class

>Urctg7"ejctu@ 25 Reserved for a user-defined character class

End of the Ej ct Encuu statement

MIF Reference

220

ADOBE FRAMEMAKER
MIF Reference

Usage
Assigning characters to a class identifies them in the succeeding tables so the various typographical rules can be

specified for each class of character.

Any character that is not assigned to a class is automatically assigned to the >Qvjgtue class. When specifying classes,
you should not assign any characters to >0vjgtue. In fact, it is not necessary to include a MIF statement for
>ovjgtue. In the following tables, the 12th column position corresponds to the >gvjgtue class.

If you are using Asian system software, you can enter the characters for each class directly in a text file.

Example
The following is an example of a portion of a Ej ctEncuu statement:

<CharClass
<BegParentheses ~%{[[{4lF['~
<EndParentheses ~'™111Mihdl ' >
<NoLineBeginChar “* ¥ *» ¥¥— gL Sifaww thFai 24w r1annr s

> # end of CharClass

SqueezeTable statement

The Uswgg | gVedng statement defines how to compress the space surrounding characters of each class. Note that
each character is rendered within a specific area. For Asian characters, this area is the same for each character. These
rules determine how to compress this area for optimum line rendering.

Syntax
<SqueezeTable
>Uswgg | gdgtk | gpven" pwogt cnu@ Defines how to squeeze horizontal text
>Uswgg | gXgtvkecn" pwogtcnu@ Defines how to squeeze vertical text
> End of Uswgg | gVcdng " statement

The possible values for pwogt cnu are:

- No squeeze

- Half squeeze from top or left

- Half squeeze from bottom or right

Quarter squeeze from all sides

- Same as 3, but do not apply vertical squeeze to a semicolon
- This character pair should not have occurred

Dbk W= O
'

221

Usage

ADOBE FRAMEMAKER

MIF Reference

The Uswgg |gdgtk | gpven and Uswgg | gXgtvkecn statements include 25 numerical values, one for each character

class. The values are separated by a space. An example of a squeeze table statement is:

<SqueezeTable

<SqueezeHorizontal
<SqueezeVertical

> # end of SqueezeTable

BegParentheses
EndParentheses
NoLineBeginChar
QuestionBang

CenteredPunct

PeriodComma

NonSeparableChar

PrecedingSymbol

SucceedingSymbol

AsianSpace

Hiragana
Others

BaseCharWithSuper
BaseCharWithRubi

Numeral

UnitSymbol
RomanSpace

RomanChar

ParenBeginWariChu

ParenEndWariChu

Sparel

Spare2

Spare3

Spare4

112003 2000O0O0OO0O0OS500O012000O0GO0
120042 00O0O0O0OO0OCO0OD5O0O0O01I20000TO0

Spareb

0
0

In the preceding example, the Uswgg | gdgtk | gpven value for a character in the PqNkpgDgikpEjct class is 4, which

specifies half squeeze from the right.

SpreadTable statement

The Urtgcfvedng statement defines how to reduce the squeeze that was applied to adjacent characters. There are 25

statement rows in this table, each corresponding to the 25 character classes, respectively.

There are 26 numeric values in each statement row. The first 25 values correspond to the 25 character classes, respec-
tively. The 26th value corresponds to the beginning or end of a line. These values specify how to spread a character
of the class identified by the row statement, when followed by a character in the class identified by the column

position in the statement.

Syntax

<SpreadTable

>DgiRctgpvjgugu' pwogtcnu@

>GpfRctgpvjgugu" pwogtcnu@

>PgNkpgDgikpEjct " pwogtcnu@

>SwguvkgpDcpi " pwogtcnu@

>EgpvgtgfRwpev" pwogtcnu@

>RgtkgfEgooc" pwogtcnu@

>PgpUgrctcdngEjct " pwogtcnu@

>RtgegfkpiU{odgn" pwogtcnu@

>UweeggfkpiU{odqgn" pwogtcnue

>CukcpUrceg" pwogtcnu@

>Jktcicpc"pwogtcnu@

>Qvjgtu@

222

ADOBE FRAMEMAKER

>DcugEjctYkvjUwrgt " pwogtcnu@

>DcugEjctYkvjTwdk" pwogtcnu@

>Pwogtcn" pwogtcnu@

>WpkvU{odgn" pwogtcnue

>TgocpUrceg" pwogtcnu@

>TgocpEjct " pwogtcnu@

>RctgpDgikpYctkEjw" pwogtcnu@

>RctgpGpfYctkEjw" pwogtcnu@

>Urctg3 " pwogtcnu@

>Urctg4 " pwogtcnu@

>Urctg5" pwogtcnu@

>Urctgé6 " pwogtcnu@

>Urctg7" pwogtcnu@

>

End of Urtgcf£Vedng statement

The possible values for pwogt cnu are:

SO0 W —=O

—_

No spread

Spread the first character of the pair by 1/2 em

Spread the second character of the pair by 1/2 em

Spread the first character of the pair by 1/4 em

Spread the second character of the pair by 1/4 em

Spread both characters of the pair by 1/4 em

Spread the first character by 1/2 em and the second character by 1/4 em

Add spread to the first character of an Asian/Roman character pair

Add spread to the second character of a Roman/Asian character pair

Delete the first occurance of the two spaces; for example, delete the first of two adjacent Roman space characters
Nibukake - Rubi may extend over the preceding nibukake, but it cannot exceed the nibukake; add space to the first oyamoji
character

Nibukake - Rubi may extend over the following nibukake, but it cannot exceed the nibukake; add space to the last oyamoji
character

Allow rubi text to extend over oyamoji character when betagumi; no space is added

Place oyamoji character with rubi based on the standard rule

Double yakumono - Double yakumono rule is applied

This character pair should not have occurred

MIF Reference

223

ADOBE FRAMEMAKER | 224
MIF Reference

Usage

Each statement row in the spread table includes 26 numerical values, one for each character class, and an added value
for the characters at the beginning or the end of a line. The values are separated by a space. An example of a spread
table is:

<SpreadTable < 5
9 —~ o A <

“ S —~ O 9, Q o 3

n n S 0 Q9 3 3 - g

0O 0 g iS) U Q9 E n M 84 0O

n n U o 0 O E e © A

QO 0 g g g 8 d >~ 0 R} = N

S S 4 © 3 E Q oo el —~ 0 [=I]

2L oM A E © O & O = = 0O U 4 A =

g g 0 g 8 0 4 g -+ ©a IS Q © © O T

O O M 0O VO @A T Qg C © 4 & & S 0 g
4 4 04 8T T 0N g 8 ¢6>x00UMBEANMSLWD
@ ¢ & L OO0 0 0 0 g8V U Y g g e g 000 oo
ANy A P A WU U 8000 0 P 8 8 0 0 N H Y Ny
oo 4 0 g 84 g 00 A4 g ®n n g4 E E 4 4 ©©C©C O
O g 0 3 00 O 84 3 nd P o @ 3 0 0 @ © U U Q Q4
M AEd Z2 00 A 2 A OO M M ZD MM A A DN N
<BegParentheses 10 00 40 0O0O0OO0OO0OO0OO0OT1IO0O0O0OTO0ODOT11IO0O0O0OO0OO0OT1
4 2 5 5
<EndParentheses 111141 11101111 111111 111101
4 4 0 5

> # end of SpreadTable

In the preceding example, no spread occurs between a character in the bgiRctgpvigugu"class and a character in
the swguvkgpDepi class because the value 2 (No spread) is in the fourth position, which is the column position for
the swguvkagpDcepi class of characters.

LineBreakTable statement

The NkpgDtgcmVedng statement defines how to break lines between characters. There are 25 statement rows in this
table, each corresponding to the 25 character classes, respectively.

There are 25 numeric values in each statement row. Each value corresponds to one of the 25 character classes, respec-
tively. These values specify how to break a line after a character of the class identified by the row statement, when
followed by a character of the class identified by the column position.

Syntax

<LineBreakTable

>DgiRctgpvjgugu' pwogtcnu@

>GpfRctgpvjgugu" pwogtcnu@

>PgNkpgDgikpEjct " pwogtcnu@

>SwguvkgpDcpi " pwogtcnu@

>EgpvgtgfRwpev" pwogtcnu@

>RgtkgfEgooc" pwogtcnu@

>PgpUgrctcdngEjct " pwogtcnu@

>RtgegfkpiU{odgn" pwogtcnu@

>UweeggfkpiU{odgn" pwogtcnu@

>CukcpUrceg" pwogtcnu@

ADOBE FRAMEMAKER

>Jktcicpc" pwogtcnu@

>Qvjgtu@

>DcugEjctYkvjUwrgt " pwogtcnu@

>DcugEjctYkvjTwdk" pwogtcnu@

>Pwogtcn'" pwogt cnu@

>WpkvU{odgn" pwogtcnue@

>TgocpUrceg" pwogtcnu@

>TqgocpEjct " pwogtcnu@

>RctgpDgikpYctkEjw" pwogtcnu@

>RctgpGpfYctkEjw" pwogtcnu@

>Urctg3 " pwogtcnu@

>Urctg4 " pwogtcnu@

>Urctg5" pwogtcnu@

>Urctgé " pwogtcnu@

>Urctg7" pwogtcnu@

> End of NkpgDtgcmVedng statement

The possible values for pwogtcnu are:

0 - Line break is allowed

1 - Line break is not allowed

2 - Break the line according to Roman text rules

3 - This character pair should not have occurred
Usage

MIF Reference

Each statement row in the line break table includes 25 numerical values, one for each character class. The values are

separated by a space. An example of a line break table is:

<LineBreakTable
“ —
5 ¢ — O
n un S 0 Q9
o 0 g IS} U Q9 E
n n U o 0 [0) &
O 0 & g g © o 0
g 9 4 © 3 E Q nn O 0
L L DM A E © O & O
g g 0 g o 0 4 &8 +H4 ©®
0 0 M 0 0O ®© A T Qg
4 4 0 H 4T T O 0B
C © & £ 0 0 O O O ¢ O
oY Y I S B B /> B 6 B G T € A
" T8 44 0 g 84 & O 0 AN
O ¢ 0 3 0 0 0O 4 3 w-d
M MEd Z OO0 A Z2 4 D o
<BegParentheses 111111 11 1 11
<EndParentheses 01 1111 0 0 0 00

> # end of LineBreakTable

. BaseCharWithSuper

o

o BaseCharWithRubi

o ~ Numeral
o = UnitSymbol

— RomanSpace

o

3

ks

O 3

-~ g

8 O

® -

= N

o ®©
H od =
o O T
S 0 og
O M [4
g g g9 oo
T O O N Y
£ M 4 © ®
O ® © Q O
(s s VR s VIR) I)

2]

pare3
pare4

Spare5

2]

11 3 0O0O0O0O

0 0 1 0O0O0O0OO

225

ADOBE FRAMEMAKER
MIF Reference

In the preceding example, a line break can occur between a character in the GpfRctgpvigugu"class and a character
in the PgpUgrctcdngEjct class because the value 2 (Line break is allowed) is in the seventh position, which is the
column position for the PgpUgrctcdngEjct class of characters.

ExtraSpaceTable statement

The GzvtcUrcegVedng statement defines how to add extra space between characters when needed for full justifi-
cation. There are 25 statement rows in this table, each corresponding to the 25 character classes, respectively.

There are 25 numeric values in each statement row. Each value corresponds to one of the 25 character classes, respec-
tively. These values specify how to add space after a character of the class identified by the row statement, when
followed by a character of the class identified by the column position.

Syntax

<ExtraSpaceTable

>DgiRctgpvjgugu" pwogtcnu@

>GpfRctgpvjgugu" pwogtcnu@

>PgNkpgDgikpEjct " pwogtcnu@

>SwguvkgpDcpi " pwogtcnu@

>EgpvgtgfRwpev" pwogtcnu@

>RgtkgfEgooc" pwogtcnu@

>PgpUgrctcdngEjct " pwogtcnu@

>RtgegfkpiU{odgn" pwogtcnu@

>UweeggfkpiU{odqgn" pwogtcnue

>CukcpUrceg" pwogtcnu@

>Jktcicpc" pwogtcnu@

>Qvjgtue@

>DcugEjctYkvjUwrgt " pwogtcnu@

>DcugEjctYkviTwdk" pwogtcnu@

>Pwogtcn" pwogtcnu@

>WpkvU{odgn" pwogtcnue

>TgocpUrceg" pwogtcnu@

>TqgocpEjct " pwogtcnu@

>RctgpDgikpYctkEjw" pwogtcnu@

>RctgpGpfYctkEjw" pwogtcnu@

>Urctg3 " pwogtcnue@

>Urctg4 " pwogtcnu@

226

ADOBE FRAMEMAKER | 227
MIF Reference

>Urctg5" pwogtcnu@

>Urctg6 " pwogtcnue@

>Urctg7" pwogtcnu@

> End of Gzvt cUrcegVedng"statement

The possible values for pwogt cnu are:

0 - Extra space is allowed
1 - Extra space is not allowed
2 - Add extra space to the last character of a Roman word
3 - Add extra space after a Roman character
4 - Add extra space if the adjacent characters are one each of Japanese and Roman characters
5 - Delete one of two space characters. Note that FrameMaker does not use this action because the Smart Spaces feature performs
it automatically
6 - This character pair should not have occurred
Usage

Each statement row in the extra space table includes 25 numerical values, one for each character class. The values are
separated by a space. An example of a extra space table is:

<ExtraSpaceTable

4 3
“ — (O] <
4 G —~ O Q Q o 3
n un © .CIO,.E 3 3 g
0 0 G 5} U,g [4 O
n n U o 0 o] > S g © A
O 0 8 g g 8 4 >~ 0 FERE} =z Y
g 9 4 8 3 E 9 nn 0 o o) S
L L oM A E © O & O =z = 0O U 4 HA =
g 9 0 g B 0 4 g -+ ®©©] ,.gr\‘jﬂSO')'U
O 0 M O VU ® A T &g ©c © o, O 0 g
H 4 0 A 8T T 0 WO ®B.LS S 8 >0 UM AN®MS 0
@ & £ 0O 0O 0 0 0 g’ HyYL L H®LW &g & & & 0 0 0 0o
Ay H WP A ® D U 80 00 0 O T -8 0 0 Y4 Y Y Y Y
D8 4 0 g 4 g 0 0 A4 89 0 0 g4 E £ 4 4 ©OC O ©C ®
O & 0 3 0 0 0 4 3 wHA P o © 35 O O @ © O & Q0 &
M MEd Z2 0 A Z2 &4 0 5 0OM M ZPD KM KM A A Dl i W
<BegParentheses 11 111111111111 11011966 11111
<EndParentheses 11 111111111111 11011 1 11111

> # end of ExtraSpaceTable

In the preceding example, a extra space is not allowed between a character in the GpfRctgpvigugu"class and a
character in the EgpvgtgfRwpev class because the value 3 (Extra space is not allowed) is in the fifth position, which
is the column position for the EgpvgtgfRwpev class of characters.

Rubi text

Rubi text is a Japanese system for representing the pronunciation of words as a string of phonetic characters
(hiragana) directly above the word in question (oyamoji). A MIF file includes document-level statements that
describe the settings made in the Rubi Properties dialog box, as well as MIF statements for a rubi composite.

A rubi composite includes both oyamoji text and rubi text. If the document is structured, the rubi composite
contains an object tagged RubiGroup, the oyamoji text, an element tagged Rubi, and the rubi text.

Document statement

In addition to document preferences (see “Document statement” on page 89), the MIF Fgewogpv statement
describes standard formats for rubi text. The rubi formatting substatements correspond to settings in the Rubi

Properties dialog box.

Syntax

ADOBE FRAMEMAKER

<Document

See page 89

>FTwdkUk | g" rgtegpveige
QT

The size of the rubi characters, proportional to the size of the
oyamoji characters

Allowed values are 1.0% through 1000.0%

>FTwdkHkzgfUk | g" rgkpv'uk[g

The fixed size of the rubi characters in points only.

Either the DRubiSize statement or the DRubiFixedSize state-
ment can be specified, but not both in the same document.

>FTwdkQxgtjcpi"dggngcpe@

Yes allows rubi to overhang hiragana oyamoji text

>FTwdkCnkipCvDgwpfu" dggngcpe@

Yes aligns all rubi and oyamoji characters at line boundaries

>FYkfgTwdkUrcegHgtLerepgug" mg{ygt f@

Determines how to space rubi characters for Japanese
oyamoji that is wider than the rubi text

mg{ygt £ can be:
Ykfg

Pcttqy
Rtgrgtvkgpcn

>FPcttqyTwdkUrcegHgtLecrepgug" mg{ygtf@

Determines how to space rubi characters for Japanese
oyamoji that is narrower than the rubi text

mg{ygt £ can be:
Ykfg

Pcttqy
Rtgrgtvkgpcn

>FYkfgTwdkUrcegHqtQvigt "mg{ygtfe

Determines how to space rubi characters for non-Japanese
oyamoji that is wider than the rubi text

mg {ygt £ can be:
Ykfg

Pcttaqgy
Rtgrgtvkgpcn

>FPcttgyTwdkUrcegHgtQvigt "mg{yqtf@

Determines how to space rubi characters for non-Japanese
oyamoiji that is narrower than the rubi text

mg{yqtf can be:
Ykfg

Pcttagy
Rtgrgtvkgpcn

End of the Fgewogpv "statement

Example

<Document

<DRubiSize 50%>
<DRubiOverhang Yes>
<DRubiAlignAtBounds Yess>

<DWideSpaceForJapanese Proportionals

228

ADOBE FRAMEMAKER

<DNarrowSpaceForJapanese Proportionals>

<DWideSpaceForOther Narrows
<DNarrowSpaceForOther Narrows>

> # end of Document

RubiCompositeBegin statement

MIF Reference

The TwdkEgorqukvgDgikp"statement is always matched with a TwakEqorqukvgGpf statement. Between them are

the contents of the rubi composite; the oyamoji and the rubi text. A rubi composite can occur anywhere in a
Rctenkpg statement. Also, anything that can occur within a Retenkpg, except another rubi composite, can also
occur between the TwdkEqorqukvgDgikp and TwdkEqorqukvgGpf statements.

In a structured document, the rubi composite includes a RubiGroup element and a Rubi element.

Syntax

<RubiCompositeBegins>

Starts the rubi composite

>Gngogpv For structured documents only - Defines the RubiGroup element
000 Continue the RubiGroup element specification
@ End of the RubiGroup element

>Uvtkpi"uvtkpi@

The oyamoji text

>TwdkVgzvDgikp@ Begins the rubi text
>Gngogpv For structured documents only - Defines the Rubi element
000 Continue the Rubi element specification
@ End of the Rubi element

>Uvtkpi"uvtkpi@

The rubi text

>TwdkVgzvGpf@

Ends the rubi text

<RubiCompositeEnd>

Ends the rubi composite

Example - unstructured

<Paraline
<String

kumihan '>

<RubiCompositeBegin
<String ~iBRE '>
<RubiTextBegin
<String “H¥IHF'>
<RubiTextEnd >
<RubiCompositeEnd >
> # end of Paraline

Example - structured

<Paraline
<String ‘Some text ’>

<RubiCompositeBegin
<Element
<Unique 123456>

229

ADOBE FRAMEMAKER | 230
MIF Reference

<ETag ‘RubiGroup’ >
<Attributes
. #. . Typical MIF to define attributes
> # end of Attributes
<Collapsed No>
<SpecialCase No>
<AttributeDisplay AllAttributess>

> # end of Element

> # end of RubiCompositeBegin
<String ‘Oyamoji text’s>

<RubiTextBegin
<Element

<Unique 123457>
<ETag ‘Rubi’>
<Attributes
#. . Typical MIF to define attributes
> # end of Attributes
<Collapsed No>
<SpecialCase No>
<AttributeDisplay AllAttributes>

> # end of Element
<String ‘Rubi text’>
<RubiTextEnd>

<RubiCompositeEnd>
<String ‘Some more text ‘>

end of Paraline

231

Chapter 8: Examples

The examples in this appendix show how to describe text and graphics in MIF files. (The current examples are valid
only for unstructured documents.) You can import the MIF file into an existing Adobe® FrameMaker® template, or
you can open the MIF file as a FrameMaker document. In either case, if you save the resulting document in MIF
format, you will create a complete description of the document—not just the text or graphics.

If you find any MIF statement difficult to understand, the best way to learn more is to create a sample file that uses
the statement. Use FrameMaker to edit and format a document that uses the MIF feature and then save the document
as a MIF file. Examine the MIF file with any standard text editor.

The examples in this appendix are provided online.

For FrameMaker on this platform Look here

UNIX &HOJQOG1lhokpkvlncpiwciglUcorngu, where ncpiwcigis the
language in use, such as wugpinkuj

Windows The ucorngu directory where MIF Reference is installed

Text example

This example shows a simple text file and the MIF file that describes it. If you are writing a filter program to convert
text files to MIF, your program should create a similar MIF file. The following text file was created with a text editor:

MIF (Maker Interchange Format) is a group of statements that describe all text and
graphics understood by FrameMaker in an easily parsed, readable text file. MIF
provides a way to exchange information between FrameMaker and other applications
while preserving graphics, document structure, and format.

You can write programs that convert graphics or documents into a MIF file and then
import the MIF file into a FrameMaker document with the graphics and document
formats intact.

A filter program translated the text file to produce the following MIF file:

<MIFFile 2015> # Identifies this as a MIF file.
The macros below are used only for the second paragraph
of
text, to illustrate how they can ease the process of
MIF generation.
define (pr, ~<Para"))
define(ep, ~>))
define (ln, “<Paraline <String) +
define(en, ~>>))
First paragraph of text.
<Para
#
<PgfTag> statement forces a lookup in the document’s
Paragraph Catalog, so you don’t have to specify the
format

in detail here.
<PgfTag “Body' >

“You can write programs that convert graphics or documents'
“into a MIF file and then import the MIF file into a FrameMaker'

paragraph.
line
<Paraline
<String
>
<Paraline
<String
>
<Paraline
<String
>
<Paraline
<String
>
<Paraline
<String
>
<Paraline
<String
>
<Paraline
<String
>
>
used
it.
pr
1n
1n
1n

€p

“document with the graphics and document formats intact.'

ADOBE FRAMEMAKER
MIF Reference

#

One <Paraline> statement for each line in the
Line breaks don’t matter; the MIF interpreter adjusts
breaks when the file is opened or imported.

“MIF (Maker Interchange format) is a group of '>

statements that describe all text and graphics '>

“understood by FrameMaker in an easily parsed, '>

“readable text file. MIF provides a way to exchange '>

“information between FrameMaker and other ' >

“applications while preserving graphics, document 's>

“structure, and format. ' >

end of Para
#
Second paragraph of text.Macros defined earlier are

here.
This paragraph inherits the format of the previous one,
since there’s no PgfTag or Pgf statement to override

en
en
en

End of MIF File

Bar chart example

This example shows a bar chart and the MIF file that describes it. This example is in the file dctejctvookh.

232

ADOBE FRAMEMAKER | 233
MIF Reference

To draw the bar chart, you open or import the MIF file in FrameMaker. Normally, you would create an anchored
frame in a document, select the frame, and then import this file. The MIF statements to describe the bar chart can
be created by a database publishing application that uses the values in a database to determine the size of the bars.

Market Shares
100% I Brand F
I Brand I
75%
50%
25%

1986 1987 1988 1989

<MIFFile 2015> # Generated by SomeChartPack 1.4; identifies this

as a MIF file.

Chart title, in a text line.

All objects in the chart are grouped, so they have the
same

Group ID.

<TextLine <GroupID 1>

<Font <FFamily “Times's> <FSize 14> <FPlain Yes> <FBold Yes>

<FDX 0> <FDY 0> <FDAX 0> <FNoAdvance No>

>

<TLOrigin 1.85" 0.21"> <TLAlignment Center> <String ~Market Shares's>
> # end of TextLine

Boxes for Brand F and Brand I legends.

<Rectangle <GroupID 1>

<Fill 1>

<ShapeRect 1.36" 0.33" 0.38" 0.13">
>
<Rectangle <GroupID 1>

<Fill 4>

<ShapeRect 1.36" 0.54" 0.38" 0.13">

Text lines for Brand F and Brand I legends.
<TextLine <GroupID 1>
<Font <FSize 12> <FPlain Yes>>
<TLOrigin 1.80" 0.46"> <TLAlignment Left> <String “Brand F'>

Second text line inherits the current font from the
preceding text line.
<TextLine <GroupID 1>
<TLOrigin 1.80" 0.67"> <TLAlignment Left> <String “Brand I'>

Reset the current pen pattern and pen width for
subsequent

objects.
<Pen 0>
<PenWidth 0.500>

ADOBE FRAMEMAKER | 234
MIF Reference

Axes for the chart.
<PolyLine <GroupID 1> <Fill 15>
<NumPoints 3> <Point 0.60" 0.08"> <Point 0.60" 2.35"> <Point 3.10" 2.35">

Tick marks along the y axis.

<PolyLine <GroupID 1>

<NumPoints 2> <Point 0.60" 1.83"> <Point 0.47" 1.83">
>
<PolyLine <GroupID 1>

<NumPoints 2> <Point 0.60" 1.33"> <Point 0.47" 1.33">
>
<PolyLine <GroupID 1>

<NumPoints 2> <Point 0.60" 0.83"> <Point 0.47" 0.83">
>
<PolyLine <GroupID 1>

<NumPoints 2> <Point 0.60" 0.33"> <Point 0.47" 0.33">

X-axis labels.

<TextLine <GroupID 1>

<TLOrigin 1.08" 2.51"> <TLAlignment Center> <String ~ 1986 '>
>
<TextLine <GroupID 1>

<TLOrigin 1.58" 2.51"> <TLAlignment Center> <String ~ 1987 '>
>
<TextLine <GroupID 1>

<TLOrigin 2.08" 2.51"> <TLAlignment Center> <String ~ 1988 '>
>
<TextLine <GroupID 1>

<TLOrigin 2.58" 2.51"> <TLAlignment Center> <String ~ 1989 '>

Y-axis labels.

<TextLine <GroupID 1>

<TLOrigin 0.46" 1.92"> <TLAlignment Right> <String ~ 25% '>
>
<TextLine <GroupID 1>

<TLOrigin 0.46" 1.42"> <TLAlignment Right> <String ~ 50% '>
>
<TextLine <GroupID 1>

<TLOrigin 0.46" 0.92"> <TLAlignment Right> <String ~ 75% '>
>
<TextLine <GroupID 1>

<TLOrigin 0.46" 0.42"> <TLAlignment Right> <String ~ 100% '>

Draw all the gray bars first, since they have the same
£ill.
Set the fill for the first bar; the others inherit the
£ill
pattern.
<Rectangle <GroupID 1>
<Fill 4>
<ShapeRect 0.97" 1.10" 0.13" 1.25">
>
<Rectangle <GroupID 1>
<ShapeRect 1.47" 1.47" 0.13" 0.88">
>
<Rectangle <GroupID 1>
<ShapeRect 1.97" 1.72" 0.13" 0.63">
>
<Rectangle <GroupID 1>
<ShapeRect 2.47" 1.97" 0.13" 0.38">

£ill.
£ill

<Rectangle <GroupID 1>
<Fill 1>
<ShapeRect 1.10" 1.97" 0

>

<Rectangle <GroupID 1>
<ShapeRect 1.60" 1.72" 0

>

<Rectangle <GroupID 1>
<ShapeRect 2.10" 1.22" 0

>

<Rectangle <GroupID 1>
<ShapeRect 2.60" 0.85" 0

easier

document.
<Group <ID 1>
>

Pie chart example

.13"

.13"

.13"

.13"

0

1

1

Now draw all the black bars,

ADOBE FRAMEMAKER
MIF Reference

since they have the same

Set the fill for the first bar; the others inherit the

pattern.

.38">

.63">

13>

.50">
Define the group for

to

all the objects to make the chart

manipulate after it's imported into a FrameMaker

When the MIF in this sample is imported into a page or graphic frame in a document, FrameMaker centers the chart

in the page or graphic frame. This example is in the file rkgejctvookh.

<MIFFile 2015>

<Units Upt >

<Pen 0>

Generated by xyzgrapher 3.5;

MIF file.

identifies this as a

All dimensions are in points.

Set the current pen pattern, width, and f£ill pattern.

235

<PenWidth
<Fill 0>

.5>

same

same

<Arc <GroupID
<ArcRect

<Arc <Fill 5>
<ArcRect

>

<Arc <Fill 2>
<ArcRect

>

<Arc <Fill 4>
<ArcRect

>

<Arc <Fill 6>
<ArcRect

easier

<Group <ID 1>

1>
12 11 144 144

<GroupID 1>
12 11 144 144

<GroupID 1>
12 11 144 144

<GroupID 1>
12 11 144 144

<GroupID 1>
12 11 144 144

>

ADOBE FRAMEMAKER
MIF Reference

Draw the black arc.

All arcs are part of the same circle, so they have the

ArcRect.
All objects in the chart are grouped, so they have the

Group ID.
<ArcTheta 0> <ArcDTheta 58>
Continue clockwise around the chart.

<ArcTheta 58> <ArcDTheta 77>

<ArcTheta 135> <ArcDTheta 108>

<ArcTheta 243> <ArcDTheta 66>

<ArcTheta 309> <ArcDTheta 51>
Define the group for all the objects to make the chart

to manipulate after it’s imported into a FrameMaker
document.

Custom dashed lines

FrameMaker provides eight predefined dashed line options. You can define a custom pattern for dashed lines by
using the FcujgfRevvgtp statement within an 9dlgev statement. This example is in the file ewuvfcujookh.

<MIFFile 2015>

<PolyLine

<Pen 0>

<Fill 15>
<PenWidth 4pt
<ObColor “Bla
<DashedPatter:
<DashedStyle
<NumSegments
<DashSegment
<DashSegment
<DashSegment
<DashSegment
>

<HeadCap Roun
<TailCap Roun
<NumPoints 2>
<Point 1.0" 1
<Point 7.5" 1

>

ck'>

n
Dashed>
4>
10pt>
10pt>
0.5pt>
10pt>

d>
d>

LB

LS

This is a sparse dot-dash line.

end of DashedPattern

end of PolyLine
This is a very sparse dotted line.

236

ADOBE FRAMEMAKER | 237
MIF Reference

<PolyLine
<DashedPattern
<DashedStyle Dashed>
<NumSegments 2>
<DashSegment 0.5pt>
<DashSegment 20pt>
> # end of DashedPattern
The polyline inherits round head caps and tail caps
from
the previous PolyLine statement.
<NumPoints 2>
<Point 1.0" 2">
<Point 7.5" 2">
> # end of PolyLine
This is a wild one!
<PolyLine
<DashedPattern
<DashedStyle Dashed>
<NumSegments 8>

<DashSegment 4pts> # solid
<DashSegment 8pt>

<DashSegment 12pt> # solid
<DashSegment 16pt>

<DashSegment 20pt> # solid
<DashSegment 24pt>

<DashSegment 20pt> # solid
<DashSegment 16pt>

<DashSegment 12pt> # solid
<DashSegment 8pt>

> # end of DashedPattern

<HeadCap Butts>
<TailCap Butt>
<NumPoints 2>
<Point 1.0" 3">
<Point 7.5" 3">
> # end of PolyLine
This one has a missing DashSegment statement, so the
first
10-point segment is repeated with a default gap of 10
points.
<PolyLine
<DashedPattern
<DashedStyle Dashed>
Missing NumSegments.
<DashSegment 10pt>
Missing a second DashSegment.

This polyline inherits the butt cap and tail style
from the previous PolyLine statement.
<NumPoints 2>
<Point 1.0" 4">
<Point 7.5" 4">
> # end PolyLine
This one is a really dense dotted line.
<PolyLine
<DashedPattern
<DashedStyle Dashed>
<DashSegment 1pt>
<DashSegment 1pt>
>
This polyline also inherits the butt cap and tail style

ADOBE FRAMEMAKER
MIF Reference

from the previous PolyLine statement.

<PenWidth 1pt>

<NumPoints 2>

<Point 1.0" 5">

<Point 7.5" 5">

> # end PolyLine
When you've defined a custom dashed line style in one FrameMaker document, you can easily copy and paste the
custom style into another document by pressing Shift and choosing Pick Up Object Properties from the Graphics
menu. For more information, see your user’s manual.

Table examples

You can use MIF to create a table or to update a few values in an existing table.

Creating an entire table

This example shows a table and the MIF file that describes it. This table is in the sample file uvgemvdnookh. The
widths of columns is calculated using MIF statements that are only for input filters. Rather than specifying an exact
width for each column, the table uses the substatement vdnEgqnwopyk£vjC for two of the columns to specify that the
column width is determined by the width of a particular cell.

Column widths are further affected by the Gswenk | gvk£vju statement, which sets the columns to the width of the
widest column within the limits specified by the vdnEgnwop substatements. As you examine this example, note how
the column width statements interact: the column widths are originally set by the applied table format from the Table
Catalog. The vdnHgtocv statement then specifies how this table instance’s column properties override those in the
default format. The Gswenk | gvkfvju statement further overrides the format established by vanHgtocv.

Table 2: StockWatch

Mining and Metal | 10/31/90 Weekly %
Close Change
Ace Aluminum $24.00 -3.50
Streck Metals $27.25 +2.75
Linbrech Alloys $63.75 -2.50
<MIFFile 2015> # Generated by StockWatcher; identifies this as a
MIF file.
<Tbls
<Tbl
<TblID 1> # This table’s ID is 1.
<TblFormat

<TblTag “Format A'>
Forces a lookup in the Table Catalog with the following
exceptions:
<TblColumn
<TblColumnNum 0>
Shrink-wrap the first column so it’s between 0 and 2
inches
wide.
<TblColumnWidthA 0 2">
>

238

ADOBE FRAMEMAKER
MIF Reference

<Tb1lColumn
<TblColumnNum 1>
Make 2nd column 1 inch wide. This establishes a minimum
width for the columns.
<TblColumnWidth 1">
>
<Tb1lColumn
<TblColumnNum 2>
Shrink-wrap the third column to the width of its
heading
cell.
See CellAffectsColumnWidthA statement below.
<TblColumnWidthA 0 2">
>
> # end of TblFormat
The table instance has three columns.
<TblNumColumns 3>
<EqualizeWidths
Make the width of the second and third columns equal to
the larger of the two. However, the columns cannot be
wider
than 2 inches or narrower than 1 inch.
<TblColumnNum 1>
<TblColumnNum 2>
> # end of EqualizeColWidth
<TblTitle
<TblTitleContent
<Para
Forces lookup in Paragraph Catalog.
<PgfTag "TableTitle's>
<ParalLine
<String ~StockWatch'>

> # end of ParalLine
> # end of Para
> # end of TblTitleContent
> # end of TblTitle
<TblH # The heading.
<Row # The heading row.
<Cell <CellContent <Para # Cell in column O.
<PgfTag “CellHeading'> # Forces lookup in Paragraph Catalog.
<Paraline <String "Mining and Metal's>>>>
> # end of Cell
<Cell <CellContent <Para # Cell in column 1
<PgfTag ~“CellHeading'> # Forces lookup in Paragraph Catalog.
<ParalLine <String ~10/31/90 Close'>>>>
> # end of Cell
<Cell <CellContent <Para # Cell in column 2
<PgfTag “CellHeading'> # Forces lookup in Paragraph Catalog.

o

<Paraline <String “Weekly %'s> <Char HardReturn>>
<Paraline <String ~Change'>>>>

For shrink-wrap.
<CellAffectsColumnWidthA Yess>

> # end of Cell
> # end of Row
> # end of TblH
<TblBody # The body.
<Row # The first body row.
<Cell <CellContent <Para
<PgfTag “CellBody'> # Forces lookup in Paragraph Catalog.

<ParalLine <String “Ace Aluminum'>>>>
> # end of Cell

239

ADOBE FRAMEMAKER
MIF Reference

240

<Cell <CellContent <Para
<PgfTag ~CellBody'> # Forces lookup in Paragraph Catalog.
<ParalLine <String ~$24.00'>>>>
> # end of Cell
<Cell <CellContent <Para
<PgfTag ~“CellBody'> # Forces lookup in Paragraph Catalog.
<Paraline <String ~-3.50'>>>>
> # end of Cell
> # end of Row
<Row # The second body row.
<Cell <CellContent <Para
<PgfTag ~“CellBody'> # Forces lookup in Paragraph Catalog.
<Paraline <String ~“Streck Metals'>>>>
> # end of Cell
<Cell <CellContent <Para
<PgfTag “CellBody'> # Forces lookup in Paragraph Catalog.
<Paraline <String ~$27.25'>>>>
> # end of Cell
<Cell <CellContent <Para
<PgfTag ~“CellBody'> # Forces lookup in Paragraph Catalog.
<ParalLine <String ~+2.75'>>>>
> # end of Cell
> # end of Row
<Row # The third body row
<Cell <CellContent <Para
<PgfTag ~“CellBody'> # Forces lookup in Paragraph Catalog.

<ParalLine <String “Linbrech Alloys'>>>>

> # end of Cell
<Cell <CellContent <Para

<PgfTag ~CellBody'>

<Paraline <String ~$63.75'>>>>
> #
<Cell <CellContent <Para

<PgfTag “CellBody'>

<Paraline <String “-2.50'>>>>

Forces lookup in Paragraph Catalog.

end of Cell

Forces lookup in Paragraph Catalog.
Cell

Row

TblBody

Tbl

Tbls

end of
end of
end of
end of
end of

\2
HH HF H H H*

<TextFlow <Para
<PgfTag Body>

<Paraline <ATbl 1>> # Reference to table ID 1.>>

Updating several values in a table
You can update several values in a table (or elsewhere in a document) by importing a MIF file.

To update a table, insert a table in a FrameMaker document and create user variables for the values you want to
update (see your user’s manual); then insert the variables in the table where you want them.

To change the values of the variables, create a MIF file with new variable definitions. You can create MIF variable
definitions from sources such as records in a database, values in a spreadsheet, or data gathered from measurement
equipment. For example, the following MIF file defines two variables:
<MIFFile 2015>
<VariableFormats

<VariableFormat

<VariableName ~90 Revenue's>

<VariableDef °2,342,165'>

ADOBE FRAMEMAKER | 241
MIF Reference

<VariableFormat
<VariableName ~91 Revenue'>
<VariableDef ~3,145,365'>

>>
When you import the MIF file into the document that contains the table, FrameMaker updates the variables in the
table.

Database publishing

This database publishing example shows how to use the data storage and manipulation capabilities of a database and
the formatting capabilities of FrameMaker through MIE

In this example, inventory information for a coffee distributor is stored in a database. Database fields contain a
reference number, the type of coffee, the number of bags in inventory, the current inventory status, and the price per
bag. A sales representative creates an up-to-date report on the coffee inventory by using a customized dialog box in
the database application to select the category of information and sort order:

Publish Price List

- 5dles Rep
Name |Darrell Dexter |

Phone [(800) 555-1212 |

Discount

- Selection
Select Sort
All 0fferings | |By Coffee |

ADOBE FRAMEMAKER
MIF Reference

When the sales representative clicks Publish, a database procedure scans the database, retrieves the requested infor-
mation, and writes a MIF file that contains all of the information in a fully formatted document. The final document
looks like this:

GREEN COFFEE PRICE LIST

To oy, corbact:

Darrell Dexter ‘GREEM COFFEE IMPORTERS
Sales Representative SINCE 1879

Prirno Coffee Distributars

(BOCH 3551212

Offerings as of August 12, 1992

The data from the database is published as a FrameMaker table. The database procedure makes one pass through the
records in the database and writes the contents of each record in a row of the table. The procedure then creates a
VgzvHngy statement that contains the text that appears above the table and creates an cvdn statement to refer to the
table instance.

You can set up a report generator like the previous example by following these general steps:

1 Create the template for the final report in FrameMaker. Design the master pages and body pages for the
document and create paragraph and character formats. You can include graphics (such as a company logo) on the
master page.

2 Create a table format for the report. Specify the table position, column format, shading, and title format. Store
the format in the Table Catalog.

3 When the document has the appearance you want, save it as a MIF file.

4 Edit the MIF file to create a MIF template that you can include in your generated MIF file (see “Including
template files” on page 45). The MIF template used for this example is in the sample file eqghhggookh.

5 Use your database to create any custom dialog boxes or report-generating procedures.

6 Create a database query, or procedure, that extracts data from the database and writes it out into a MIF file. Use
a MIF kpenwfg statement to include the document template in the new document.

The database user can now open a fully formatted report.

242

ADOBE FRAMEMAKER
MIF Reference

The code for the procedure that extracts information from the database and outputs the MIF strings is shown in this
appendix. This procedure is written in the ACIUS 4th DIMENSION command language. You could use any database
query language to perform the same task.

The procedure does the following:

7 Creates a new document.

8 Sends the okHHkng identification line.

9 Uses kpenwfg to read in the formatting information stored in the template eghhggookh.

10 Sends the MIF statements to create a table instance.

11 In each body cell, sends a field that includes the information extracted from the database.

12 Creates a text flow that uses the vgzvTgevKkF from the empty body page in the eqghhggookh template.
13 Includes the cvdn statement that places the table instance in the document text flow.

14 Closes the document.

In the following example, database commands are shown like this: SEND PACKET. Comments are preceded by a
single back quote (b). Local variables are preceded by a dollar sign ($).

*This procedure first gets the information entered by the user and stores it in local variables:

= $1 = Name of sales representative

h $2 = Phone number

= $3 = Discount
CR:=char (13) ~ carriage return character
DQ:=char (34) ~ double quotation mark character
C_TIME (vDoc)

CLOSE DOCUMENT (vDoc)
vDoc : =Create document (" ")
vDisc:=1- (Num($3»)/100)
“Send header.
SEND PACKET (vDoc; "<MIFFile 4237> #Generated by 4th Dimension for Version 7.0 of
FrameMaker"+CR)
“Read in the MIF template for the report.
SEND PACKET (vDoc; "include (coffee.mif) "+CR)
“Generate table.

243

ADOBE FRAMEMAKER | 244
MIF Reference

SEND PACKET (vDoc; "<Tbls <Tbl <TblID 2> <TblFormat <TblTag “Format A's>>"+CR)
SEND PACKET(vDoc;"<TbINumColumns 5> <TblColumnWidth .6"+DQ+">"+CR)

SEND PACKET(vDoc;"<TblColumnWidth 3.25"+DQ+">"+CR)
SEND PACKET(vDoc;"<TblColumnWidth .5"+DQ+">"+CR)
SEND PACKET(vDoc;"<TblColumnWidth 1.7"+DQ+">"+CR)
SEND PACKET(vDoc;"<TblColumnWidth 1.0"+DQ+">"+CR)
SEND PACKET(vDoc;"<TblITitle"+CR)
SEND PACKET(vDoc;"<TblTitleContent"+CR)
SEND PACKET(vDoc;"<Para <PgfTag "TableTitle>"+CR)
SEND PACKET(vDoc;"<ParaLine <String "Offerings as of "+String(Current
date;5)+">>>>>"+CR)
“Table Heading Row.
SEND PACKET(vDoc;"<TblH <Row <RowMaxHeight 14.0"+DQ+"> "+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag "CellHeading'>"+CR)
SEND PACKET(vDoc;"<ParaLine <String ‘Ref No.">>>>>"+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag "CellHeading'>"+CR)
SEND PACKET(vDoc;"<ParaLine <String "Coffee'>>>>>"+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag "CellHeading'>"+CR)
SEND PACKET(vDoc;"<ParaLine <String ‘Bags'>>>>>"+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag "CellHeading'>"+CR)
SEND PACKET(vDoc;"<ParaLine <String "Status'>>>>>"+CR)
SEND PACKET(vDoc;"<Cell <CellContent <Para <PgfTag "CellHeading'>"+CR)
‘Retail and Discount prices are conditional.
SEND PACKET(vDoc;"<ParaLine <Conditional <InCondition 'Retail>>"+CR)
SEND PACKET(vDoc;"<String "Price per Bag™>"+CR)
SEND PACKET(vDoc;"<Conditional <InCondition "Discount'>> <String "Discount
Price'>"+CR)
SEND PACKET(vDoc;"<Unconditional> >>>>>>"+CR)
‘Table Body.
FIRST RECORD([Inventory])
SEND PACKET(vDoc;"<TblBody"+CR)
For ($n;1;Records in selection([Inventory])
‘Change shading of row depending on inventory status.
If ([Inventory]Status="In stock")
vFill:="<CellFill 6> <CellColor *Green'>"
Else
vFill:=" <CellFill 6> <CellColor "Red"'>"
End if
"Compute discount price.
vDiscPrice:=[Inventory]Price per Bag*vDisc
RELATE ONE([Inventory]Name)
SEND PACKET(vDoc;"<Row <RowMaxHeight 14.0"+DQ+">"+CR)
SEND PACKET(vDoc;"<Cell "+vFill+" <CellContent <Para <PgfTag
‘Number>"+CR)
SEND PACKET(vDoc;"<ParaLine <String ""+String([Inventory]Ref
Number;"###")+"'>>>>>"+CR)
SEND PACKET(vDoc;"<Cell "+vFill+" <CellContent <Para <PgfTag ‘Body'>"+CR)
SEND PACKET(vDoc;"<ParaLine <String ""+[Inventory]Name+">>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag "CellBody">"+CR)
SEND PACKET(vDoc;"<ParaLine <String ""+[Beans]Description+">>>>>"+CR)
SEND PACKET(vDoc;"<Cell "+vFill+" <CellContent <Para <PgfTag

ADOBE FRAMEMAKER
MIF Reference

‘Number>"+CR)
SEND PACKET(vDoc;"<ParaLine <String
“"+String([Inventory]Bags;"###")+">>>>>"+CR)
SEND PACKET(vDoc;"<Cell "+vFill+" <CellContent <Para <PgfTag ‘Body'>"+CR)
SEND PACKET(vDoc;"<ParaLine <String ""+[Inventory]Status+">>>>>"+CR)
SEND PACKET(vDoc;"<Cell "+vFill+" <CellContent <Para <PgfTag
‘Number>"+CR)
SEND PACKET(vDoc;"<ParaLine <Conditional <InCondition "Retail’>>"+CR)
SEND PACKET(vDoc;"<String “"+String([Inventory]Price per Bag;"$#,###.00")+">")
SEND PACKET(vDoc;"<Conditional <InCondition "Discount'>>"+CR)
SEND PACKET(vDoc;"<String “"+String(vDiscPrice;"$### ###.00")+"> "+CR)
SEND PACKET(vDoc;"<Unconditional> >>>>>"+CR)
MESSAGE("Generating MIF for "+[Inventory]Name+", Status:
"+[Inventory]Status+".")
NEXT RECORD([Inventory])
End for
SEND PACKET(vDoc;">>>"+CR) "End of table.
‘Body of page.
SEND PACKET(vDoc;"<TextFlow <TFTag 'A'> <TFAutoConnect Yes>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Heading> <ParaLine <TextRectID 8>"+CR)
SEND PACKET(vDoc;"<String "GREEN COFFEE PRICE LIST'> <AFrame
1>>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Prepared> <ParaLine <String "To order,
contact:'>>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Body'> <ParaLine <String
"+$1»+">>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Body2>"+CR)
SEND PACKET(vDoc;"<ParaLine <String "Sales Representative'>>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Body2>"+CR)
SEND PACKET(vDoc;"<ParaLine <String "Primo Coffee Distributors'>>>"+CR)
SEND PACKET(vDoc;"<Para <PgfTag ‘Body2'> <ParaLine "+CR)
SEND PACKET(vDoc;"<String ""+String(Num($2»);" (#Ht) #HH-#HHH")+">"+CR)
SEND PACKET(vDoc;"<ATbl 2> >>>"+CR) “Send the anchor for the table
CLOSE DOCUMENT(vDoc)
ALERT("Your MIF file is awaiting your attention.")

Creating several tables

The previous example illustrates how to use a database to create one table instance. Both the vdnu and the vgzvingy
statements are written to a single text file. This approach, however, is limited to this simple case. If the document
contains several tables, it may be more convenient to use the database to write the vdnu statement to a separate file
and then use a MIF kpenwfg statement to read the file into FrameMaker.

245

ADOBE FRAMEMAKER
MIF Reference

For example, suppose you need to publish a parts catalog. Each part has a name, a description, and a table that gives
pricing information. A typical record looks like this:

Valve Box Lids Put the part name and
. . . | description in a VgzvHnqy
For 5.25" Shaft Buffalo style valve boxes. Lids come in three styles: water, statement.

gas, and sewer.

Marking Stock Number Price

Water 367-5044 $11.36 Put the table in a Vdnu
statement in a separate file.

Sewer 367-5046 $10.25

Gas 367-5048 $12.49

In the database, all the information about each part is associated with its record. Due to the structure of MIF,
however, the information must appear in different portions of the MIF file: the part name and description belong in
the vgzvHngy statement, while the table belongs in the Vdnu statement. To accomplish this, you can make the
following modifications to the design of the database procedure shown in the previous example.

+ At the beginning of the procedure, create two text files—one for the main MIF file that will contain the MIF file
identification line and the main text flow and the other for the vdanu statement.

« Use a second kpenwfg statement to read in the vdnu statement

« Asyour procedure passes through each record, write the data that belongs in the vgzvHnqgy statement in the
main text file and write the table data to the vdnu file.

If you are using 4th Dimension, the procedure should have the following statements:

vDoc:=CREATE DOCUMENT (") ‘Prompts user to name main file.
vTbls:=CREATE DOCUMENT (Tbls.mif) "Hard codes name of include file.
SEND PACKET (vDoc;"<MIFFile 4237> #File ID")

SEND PACKET (vDoc;"include (template.mif")

SEND PACKET (vDoc;"include (Tbls.mif")

As you process the records, you write the table data to the second include file by referring to the vTbls variable in a
SEND PACKET command. For example:

SEND PACKET (vTbls; "<Cell <CellContent"+CR)

The main MIF file would have the following components:

<MIFFile 2015> # File ID

include (template.mif) # MIF template

include (Tbls.mif) # Table instances, created by
the database

<TextFlow # Main text flow

> # end of text flow

When FrameMaker opens the main MIF file, it will use the two kpenwfg statements to place the data and template
information in the required order.

246

ADOBE FRAMEMAKER | 247
MIF Reference

Creating anchored frames

You can extend the technique of writing separate MIF files to handle both tables and graphics. Like table instances,
anchored frame instances must appear in the MIF file prior to the vgzvHngy statement. If each record contains a
graphic or a reference to a graphics file on disk, you would create a separate text file called cHt coguookh for only the
CHtcogu statement. Using the technique described in the previous section, you would insert the code for the tables
in the vdnuookh file, the graphics in the CHt coguookh file, and the main text flow in the main text file. You use an
kpenwfg statement to read in the CHtcoguookh file.

Note: Remember to assign unique ID numbers in the"vdnKF " statement for each table and the"xr "statement for each

frame.

248

Chapter 9: MIF Messages

When the MIF interpreter reads a MIF file, it might detect errors such as unexpected character sequences. In UNIX
versions, the MIF interpreter displays messages in a console window. In the Windows versions, you must turn on
Show File Translation Errors in the Preferences dialog box to display messages in a window (a console window in
the Windows version). If the MIF interpreter finds an error, it continues to process the MIF file and reads as much
of the document as possible.

General form for MIF messages

The general form of all MIF messages is:
OKH< "Nkpg"NkpgPwo< "Oguucig

The NkpgPwo may be approximate because it represents the absolute line number in the file after all macros in the
file have been expanded. In addition, if you open the MIF file in Adobe® FrameMaker®, lines are wrapped and the
line numbers may change.

The oguucig”portion consists of one of the messages in the following table. (Italicized words/characters (for
example, n) indicate variable words or values in a message.)

List of MIF messages

The tables in this section lists the MIF messages produced by the MIF interpreter and describes their meanings.

This message Means

--- Skipping these chars: The MIF file contains a syntax error or a MIF statement not
supported in this version of FrameMaker. FrameMaker ignores

~(MIF statements).. all MIF statements contained within the erroneous or unsup-

__________ Done skipping. ported MIF statement. The ignored MIF statements are listed in

the error message.

A footnote cannot contain another footnote.

One footnote in the MIF file is embedded in another.

Bad parameter: parameter.

The MIF file contains a syntax error.

Cannot connect to TRNext ID N.

The text frame ID specified in a VTPgzv statement has no
corresponding defined text frame.

Cannot find anchored frame N.

The graphic frame ID specified in an CHt cogu statement has
no corresponding defined graphic frame.

Cannot find footnote N.

The footnote ID specified in a HPgvg statement has no corre-
sponding defined footnote.

Cannot find table ID n.

MIF cannot match >CVdn"z@ with an earlier >Vdn">VdnKF"
Z@@ statement.

Cannot find text frame ID N.

The text frame ID specified in a VgzvTgevKF statement has
no corresponding defined text frame.

Cannot open filename.

Make sure that the file exists and that you have read access to it;
then try again.

ADOBE FRAMEMAKER

This message

Means

Cannot store inset’s facets.

The MIF file contains a graphic inset, but the MIF interpreter
can’t store the graphicinset in the document. There might be an
error in the MIF syntax, or there might not be enough temporary
disk space available. In UNIX versions, try to increase the space
available in your home directory or the 1wut 1vor directory
and try again. In the Windows versions, try quitting other appli-
cations and closing other open windows; then start
FrameMaker again.

Char out of range: character_value.

A characterina Ej ct statement or a character expressed using
* z in a string is out of range.

Condition settings must not change between <XRef> and
<XRefEnd>.

You cannot change a condition tag setting in the middle of a
cross-reference. Make sure the entire cross-reference is
contained in one condition setting.

DashedPattern statement has no DashedSegment state-
ments.

AFcujgfRcvvgtp statement gives FcujgfUv{ngavalue
of Fcujgf but has no FcujgfUgiogpv statements to
define the dashed pattern.

Empty group: ID=n.

The group ID specified in a ITtgwr statement has no corre-
sponding defined objects with a matching group ID.

Expected comma/identifier/left parenthesis/right paren-
thesis/right quote.

The MIF file contains a syntax error.

Following <TabStop> statements will determine actual
number of tabs.

The RihPwoVcdu statement is present in MIF for use by other
programs that read MIF files; it is not used by the MIF interpreter.
When the MIF interpreter reads a MIF file, it counts the number
of VedUvgr statements to determine the number of tabs stops
in a paragraph.

Frames are nested too deeply (over 10); skipping statement.

There are too many nested frames. The maximum nesting depth
is 10.

Graphic frame has an invalid <Angle> attribute.

An invalid value is specified by the Cping statement for a
graphic frame.

Insufficient memory!

FrameMaker cannot allocate enough memory for one of its
work buffers. In UNIX versions, try to free some swap space and
restart FrameMaker. In the Windows versions, try quitting other
applications and closing other open windows; then start
FrameMaker again.

Invalid opcode: 0p_code.

The MIF file contains a syntax error.

Macro/IncludeFile nesting too deep.

The define orinclude statements specify too many nested levels
of statements.

Missing dimension.

A necessary dimension value was not found in a MIF statement.

No name was given for the cross-reference format:
format_definition.

The ZTghPcog statement is not specified for a cross-reference
format.

No name was given for the variable definition: vari-
able_definition.

The XctkedngPcog statement is not specified for a variable.

Object ignored; must come before <TextFlow> statements.

All object statements must come before the first VgzvHnqgy
statement in a MIF file.

Processing opcode Op_COde.

FrameMaker is currently processing the specified opcode.

Skipped ‘string:.

The MIF file contains a syntax error.

MIF Reference

249

ADOBE FRAMEMAKER

This message

Means

String too long (over 255 or 1023 characters); overflow
ignored.

The maximum length for most <UserString> strings is 1023
characters. The maximum length for all other strings is 255 char-
acters.

Structured MIF statement ignored.

This FrameMaker is set to use the unstructured program inter-
face, and so it does not support structured MIF statements.

Syntax error in <MathFullForm> statement.

The MIF file contains a syntax error in a OcvjHwnnHgt o state-
ment.

Unable to start new object.

FrameMaker cannot allocate memory for a new object. In UNIX
versions, try to free some swap space and restart FrameMaker. In
the Windows versions, try quitting other applications and
closing other open windows; then start FrameMaker again.

Unable to store marker.

The marker table is full. In UNIX versions, FrameMaker is prob-
ably running out of swap space. Try to free some swap space
and restart FrameMaker. In the Windows versions, try quitting
other applications and closing other open windows; then start
FrameMaker again.

Unbalanced right angle bracket.

A right angle bracket (>) was found that has no corresponding
left angle bracket (<).

Unexpected opcode.

A statement was found in a context where it is not valid (for
example, an HHcokn { statement in a Fgewogpv statement).

Unexpected right angle bracket.

Aright angle bracket (>) was found where a data value was
expected or was found outside a statement.

Unknown font angle.

The requested font angle is not available.

Unknown font family.

The requested font family is not available.

Unknown font variation.

The requested font variation is not available.

Unknown font weight.

The requested font weight is not available.

Unknown PANTONE name: string.

The name specified in the Eqngt RcpvgpgXcnwg statement
is not the name of a valid PANTONE color.

Note: Adobe and Pantone have been working together to
support your color needs. Pantone Matches are no longer
supported in Adobe. Pantone color libraries currently preloaded
in FrameMaker and FrameMaker Publishing Server will be
phased out starting August 31, 2022 (with the exception of
PANTONE+ CMYK Coated, PANTONE+ CMYK Uncoated,
PANTONE+ Metallic Coated).

Value of n out of range (M).

A statement’s data value was too large or too small.

WARNING: Circular text flow was found and cut.

The MIF file defined a set of linked text frames resulting in a
circular text flow. (The last text frame in the flow is linked to the
first or to one in the middle.) The MIF interpreter attempted to
solve the problem by disconnecting a text frame.

WARNING: Circular text flow. Don’t use the document.

The MIF file defined a set of linked text frames resulting in a
circular text flow. (The last text frame in the flow is linked to the
first or to one in the middle.) The MIF interpreter was unable to
solve the problem. A FrameMaker document file will open, but
do not use it.

MIF Reference

250

251

Chapter 10: MIF Compatibility

MIF files are compatible across versions. However, some MIF statements have changed in version 7.0 of Adobe®
FrameMaker®. This appendix lists the MIF statements that are new or have changed in version 7.0 and describes how
these statements are treated when an earlier version reads a 7.0 MIF file. The appendix also lists changes between
versions 7.0 and 6.0, and between earlier version upgrades of FrameMaker. MIF statements are listed by feature.

In general, when previous versions of FrameMaker read new MIF statements, the new MIF statements are stripped
out and ignored. For example, if version 4 of FrameMaker reads a new 7.0 MIF statement in a 7.0 MIF file,
FrameMaker ignores the statement.

Changes between version 12.0 and 2015 release

This section describes changes to MIF syntax between versions 12.0 and FrameMaker (2015 release).

Language support

The RihNcpiwcig property of the Rih statement now supports Arabic and Hebrew languages.

Numbering style
The following new numbering styles have been added:

¢ IndicNumeric

¢ FarsiNumeric

¢ HebrewNumeric

¢ AbjadNumeric

e AlifbataNumeric

These new numbering styles can be assigned at the paragraph level (RihPwoHgtocv), document level, or book level.
At the document level, the numbering style is defined in the Fgewogpv statement. The following properties of the
Fgewogpv statement can be configured to use the new numbering styles:

¢ VolumeNumStyle

e ChapterNumStyle

¢ DPageNumStyle

¢ SectionNumStyle

¢ SubSectionNumStyle
¢ DFNoteNumStyle

¢ DTblFNoteNumStyle

At the book level, the following properties of the DggmEgorgpgpv statement can be configured to use the new
numbering styles:

e VolumeNumStyle

¢ ChapterNumStyle

¢ SectionNumStyle

¢ SubSectionNumStyle
¢ PageNumStyle

¢ BFNoteNumStyle

* BTblFNoteNumStyle

ADOBE FRAMEMAKER
MIF Reference

Document direction

The FgeFkt property defines the direction — left-to-right (LTR) or right-to-left (RTL), in which you can author
your document. The objects that inherit their direction property from the Fgewogpv would get affected if the FgeFkt
property is changed.

Text flow direction

The HngyFkt property controls the direction of the child objects that derive their direction from the flow. For
example, a text frame can derive its direction from the text flow object.

You can also change the style of a text frame, in which case the Uv{ngEcvcngi statement would contain a property
named VHtcogFkt. This property controls the direction of all text frames created using the same style.

Paragraph direction

You can set the direction of a paragraph by using the RihFkt property. You can either change the direction of a single
paragraph (Rctc statement) or a paragraph format (Rih statement).

Table direction

You can set the direction of a table by using the vanFkt property. You can either change the direction of a single table
(vdn statement) or a table format (VvdnHgtov statement).

Text line Direction
The vNFktgevkgp property controls the direction in which the text line is drawn.

You can also change the style of a text line object, in which case the Uv{ngEcvengi statement contain a property
named VNkpgFkt. This property controls the direction of all text lines created using the same style.

Anchored frame direction
The cpejgtFktgevkagp property controls the direction of individual anchored frame.

You can also change the style of an anchored frame, in which case the Uv{ngEcvengi statement would contain a
property named cHtcogFkt. This property controls the direction of all anchored frames created using the same style.

Element direction

GngoFkt property control the direction of an element in a structured document.

MathML style

You can change the style of the MathML equation by using the ocvjONUv{ngKpnkpg and 0cvjONCrrn{RihUv{ng
properties. These properties allow a MathML equation to be inline with the enclosing paragraph’s text or apply the
formats of the enclosing paragraph.

Mini TOC
You can add a mini TOC to an unstructured document. The properties of KpnkpgEqgorgpgpvuKphg statement
defines the mini TOC properties.

252

ADOBE FRAMEMAKER
MIF Reference

Conditional table columns

Along with table rows, you can conditionalize table columns by using the vedngEgnwop statement.

Changes between version 11.0 and 12.0

This section describes changes to MIF syntax between versions 11.0 and 12.0 of FrameMaker.

MathML

FrameMaker provides support for MathML, which is an XML application for representing mathematical notation.
This support is provided through out-of-the-box integration with MathFlow Editor by Design Science. FrameMaker
includes 30-day trial licenses of two MathFlow editors: Style Editor and Structure Editor.

In a MIF file, the MathML tag contains the various tags that hold MathML properties and data.

Paragraph box properties

You can set background color for paragraphs. In a MIF file, you can use the PgfBoxColor tag to set the background
color of a paragraph.

Hotspot
A hotspot is an active area in a document that you can link to different areas of the document, to another document,

or to a URL. You can apply hotspots to various objects, such as graphics, images, and anchored frames. In a MIF file,
you can make an object a hotspot using the IsHot spot boolean tag. Using the Hot spotCmdstr tag, you can specify
the target URL or bookmark the user will go to after clicking the hotspot.

Object Style

You can save your frequently used object properties as a style. You can apply these object styles to various objects,
such as images, anchored frames, and text frames for consistent size and appearance. For example, you can create
and apply an object style to all the anchored frames in a document, or across documents, to make them of the same
size.

In MIF files, the stylecatalog tag contains the object styles and you can specify an object style using the style tag.

Control Multimedia with links

You can insert links to interactively control embedded U3D (Universal 3D), FLV, and SWF objects in the PDF
output. You can insert links to 3D and multimedia objects that control various aspects of these objects. You can also
create a multimedia links table for the 3d\multimedia object of the type View, Parts, or Animation. For example, the
multimedia links table of the type parts includes links that focus on different parts of the 3D\multimedia object.

In MIF files, you can specify support for multimedia links for an imported multimedia object using output but is not
included in XML output. In a MIF document, you can turn on the banner text using the DBannerTexton tag.

Line Numbers

Line numbers in FrameMaker files help you identify particular lines of content. Line numbers are set at a document

253

ADOBE FRAMEMAKER
MIF Reference

level (for a .fm file) and appear before each inserted line in a FrameMaker document. In a MIF document, you can
enable line numbers using the DLineNumShow tag.

Dictionary Preferences

Using the dictionary preferences, you can specify Proximity or Hunspell dictionaries for Spelling and Hyphenation
for various languages. In a MIF file, dictionary preferences are set in the Dictionary tag.

Changes between version 9.0 and 10.0

This section describes changes to MIF syntax between versions 9.0 and 10.0 of FrameMaker.

Text background color

In FrameMaker 10, you can add a background color for the paragraph and conditional text. In a MIF file, the
background color for a paragraph tag is added using the HDcemitqwp£fEqngt tag and the background color for a
conditional tag is added using the EDcemitqwpfEqnqt tag.

Track text edits

FrameMaker tracks the Windows/Unix username of the user who edits a document in track changes mode.
FrameMaker also tracks the time of the edit. In a MIF document, this information is in the Fvt cemEjcpiguTgxkgy-
gtPcog, TgxkgygtPcog, and TgxkgyVkogKphg.

Descriptive tags

FrameMaker displays the description of the elements in the element catalog. In a mif file, the GFFguetkrvkxgvei
tag contains the descriptive tag of an element and using a boolean tag FUj gyGnogpvFguetkrvkxgVciu, you can
decide whether or not to display the element descriptions.

Custom catalogs

FrameMaker allows you to create custom catalogs of character formats, paragraph formats, and table formats. A mif
document contains the boolean tags, EwuvgoRihHnc1i, EwuvgoHgpvHnci, and EwuvgoVdnHnci, to control whether
or not these custom catalogs exist in the document. For the custom catalogs, a mif document contains one tag each
to Signify the start of a custom Catalog: FEwuvqoHgpvNkuv, FEwuvgoRihNkuv, or FEwuvgovdnNkuv. The FEwuvgo-
HgpvVci, FEwuvgoRihvei, and FEwuvgovdnvei tags specify the names of the tags in the custom catalogs.

MIF syntax changes in FrameMaker 8

This section describes the MIF syntax changes in FrameMaker 8.

254

ADOBE FRAMEMAKER
MIF Reference

Filter By Attribute

Elements in a structured document can have one or more attributes associated with them. Using structured
FrameMaker, you can filter a structured document based on the value of these attributes. The Filter by Attribute
feature simplifies the task of filtering a structured document for complex output scenarios. You create a filter using
the FghcvvtXcnwguEcvengi, FghCvvtXenwgu, CvvtEgpfGzrtEcvengi, and CvvtEqpfGzrt statements.

Track edited text

FrameMaker documents sent for review can be edited with the Track Text Edit feature enabled. In a MIF file, the
Track Text Edit feature is enabled using the FvtcemEjcpigugp Boolean statement.

Before you accept all text edits, you can choose to preview the final document with all the text edits incorporated in
the document. Alternatively, you can preview the original document without the text edits incorporated in the
document. You use the FvtcemEjcpiguRtgxkgyUvevg statement to preview the document.

Boolean condition expression

You can build Boolean expressions with complex combinations of condition tags and Boolean operators to generate
conditional output.

In a MIF file, Boolean condition expressions are defined using a BoolCond statement. The DggnEqpf statement
defines a new Boolean condition expression, which is used to evaluate the show/hide state of conditional text. This
statement appears in the DggqnEgpfEcvengi statement.

New Book and Document related WebDAYV statements

The DggmUgt xgtWTN and DggmUgtxgtUvevg MIF statements mark a book as managed content on the WebDAV -
server. The FqeUgtxgtWTN and FqeUgtxgtUvevg MIF statements mark a document as managed content on the
WebDAVserver.

Import graphics from HTTP file paths

You can specify an HTTP file path to import a graphic into a FrameMaker document either by copying or by
reference.

The syntax of the KorgtvQdlgev statement has been modified to provide this feature in FrameMaker. The
ImportURL and ObjectInfo parameters have been included in the Korgtvodlgev MIF statement.

Changes between version 6.0 and 7.0

This section describes changes to MIF syntax between versions 6.0 and 7.0 of FrameMaker.

Changes to structured PDF

FrameMaker now includes attributes for graphic objects that are to be included when a document is saved as struc-
tured PDE A graphic object can have an arbitrary number of attributes. Each attribute is stored in an gdlgevcv-
vtkdwvg statement. This statement contains one vci statement and an arbitrary number of Xxcnwg statements.

255

ADOBE FRAMEMAKER
MIF Reference

General XML support

In versions 7.0 and later, documents and books store general XML information such as XML version, encoding, and
whether the XML is based on a DTD. This information is stored in the following statements:

Book statements Document statements
BXmIDocType DXmIDocType
BXmlEncoding DXmlEncoding
BXmlFileEncoding DXmlFileEncoding
BXmIPublicld DXmlPublicld
BXmlStandAlone DXmlStandAlone
BXmiStyleSheet DXmIStyleSheet
BXmISystemId DXmISystemId
BXmIUseBOM DXmlUseBOM
BXmlVersion DXmlVersion
BXmIWellFormed DXmlIWellFormed

XML Namespaces

In versions 7.0 and later, elements in structured FrameMaker documents now store namespace information. The
GPcogurceg statement contains an arbitrary number of namespace declaration. Each namespace declaration
consists of one GPcogurcegRtghkz statement and one GPcogogurcegRevj statement.

XMP job control packets

FrameMaker book and document files now store information to support XMP, the Adobe standard for collaboration
and electronic job control. MIF stores XMP data in a series of encoded XMP statements that contain the data. You
should not try to edit this data manually—FrameMaker generates the encoding when you save a file as MIE This
XMP data corresponds with the values of fields in the File Info dialog box. In MIF, this data is stored as sub-state-
ments of >FgeHkngKphg@ and >DggmHkngKphg@.

This XMP data contains the data that is stored in the RFHFgeKphg and RFHDggmKphg statements.

Changes between version 5.5 and 6.0

This section describes changes to MIF syntax between versions 5.5 and 6.0 of FrameMaker.

Saving documents and books as PDF

FrameMaker documents now store information to support Structured PDE. FRFHUvtwevwtg is a new statement
added to Fgewogpv that specifies whether or not the document contains structure information to use when saving
as PDE RihRFHUvtwevwtgNgxgn has been added to the Rih statement to assign a structure level to paragraph
formats.

Books and documents can also include arbitrary fields of Document Info information. Documents use the
RFHFgeKphq statement, and books use RFHDggmKphg.

256

ADOBE FRAMEMAKER
MIF Reference

To improve handling of bookmarks hypertext links within and across PDF files, FrameMaker now stores reference
data within documents. RihTghgtgpegf identifies each paragraph that is marked as a named destination; Gngogp-
vTghgtgpegf similarly identified structure elements. If you like, you can specify that the Save As PDF function
creates a named destination for every paragraph in the document; this is done via HRaRFHFguvuOctmgf within the
Fgewogpv statement.

Books

Version 6.0 of FrameMaker has brought significant change to books. The book window now can display the filename
of each book component, or a text snippet from the component’s document. In MIE, DFkurnc{vgzv determines
which type of information to display.

A book can also be view-only; MIF now includes bxkgyQpn {, DxkgyQpn { YkpDgt £gtu, DXxkgyQpn { YkpOgpwDct,
DxkgyQpn{Rqrwr, and DXkgyQpn { PqQr statements to express whether a book is view-only, and how it should
appear.

Book Components

Book components store numbering properties to use when generating a book. The following table shows the new
MIF statements for managing different types of numbering:

Volume Chapter Page Footnote Table Footnote
VolumeNumStart ChapterNumStart ContPageNum BFNoteStartNum BTbIFNoteNumStyle
VolumeNumStyle ChapterNumStyle PageNumStart BFNoteNumStyle BTbIFNoteLabels
VolumeNumText ChapterNumText PageNumStyle BFNoteRestart BTbIFNoteCompute
Method

VolNumCompute- ChapterNumCompute- BFNoteLabels
Method Method

BFNoteCompute-

Method
Documents

Because there are new numbering properties for documents and books, documents now have new numbering state-
ments. The following table shows the new MIF statements for managing different types of numbering in documents:

Volume Chapter Page Footnote
VolumeNumStart ChapterNumStart ContPageNum DFNoteComputeMethod
VolumeNumStyle ChapterNumStyle PageNumStart

VolumeNumText ChapterNumText PageNumStyle

VolNumComputeMethod ChapterNumComputemethod

Changes between version 5 and 5.5

This section describes changes to MIF syntax between versions 5 and 5.5 of FrameMaker.

257

ADOBE FRAMEMAKER
MIF Reference

Asian text processing

A section has been added to the MIF Reference to describe the new MIF statements that were added for Asian text
in a document. See , “MIF Asian Text Processing Statements.” for more information.

MIF file layout

A MIF file can now include a EqodkpgfHgpvEcvengi statement that contains EqodkpgfHgpvFghp statements to
define each combined font for the document. The EqodkpgfHgpvEcvengi statement must occur before the
Fgewogpv statement. For information about combined fonts, see “Combined Fonts” on page 214.

Control statements

A new control statement, Ej ctWpkvu, has been added to express whether characters and line spacing is measured by
points or by Q (the standard units of measurement for Japanese typography). The keywords for this statement are
EWrv and EWS.

Document statements

The FRcigPwoUv{ng and FHPqvgPwoUv {ng statements have new keywords to express Japanese footnote numbering
formats. The new keywords are \gpNECnrjc, \gpWECnrjc, McplkPwogtke, McplkMc |w, and DwukpguuMc | w.

FVtcrykugEgorcvkdknkv{ is a new statement that determines whether generated PostScript will be optimized for
the TrapWise application.

FUwrgtuetkrvUvtgvej, FUwduetkrvUvtgvej, and FUocnnEcruUvtgvej are new statements that specify the
amount to stretch or compress superscript, subscript, or small caps text.

Color statements

MIEF 5.5 now supports a number of color libraries. Eqngt Hcokn{Pcog specifies the color library to use, and Eqngt -
KpmPcog identifies the specific pigment. Note that the full name must be provided for EqngtkKpmPcog.

The Eqngt statement can also express a tint as a percentage of a base color. Eqngt VkpvRgtegpvcig specifies the
percentage, and Eqngt VkpvDcugEqngt specifies the base color to use.

EqngtQxgtrtkpv is a new statement that assigns overprinting to the color. If a graphic object has no overprint
statement in it, the overprint setting for that object’s color is assumed.

Paragraph and Character statements

In version 5.5, the RihHgpv and Hgpv statements can now include the HNcpiwcig statement to define a language for
a range of text within a paragraph.

The PgfFont and Font statements include statements to describe combined fonts. For information on combined
fonts, see “Combined Fonts” on page 214.

The PgfFont and Font statements include a new HGpeqfkpi statement to specify the encoding used for the font. The
keywords for this statement are: LKUZ242 : 0UjkhvLKU. "DKI7."ID4534/: 20GWE . "qt "MUE7823/3; ; 40

HUvtgvej is a new statement to define the amount to stretch or compress a range of characters.

258

ADOBE FRAMEMAKER
MIF Reference

Text inset statements

The vkvgzv and Vkvgzvvedng statements respectively include two new statements, vkvzvGpeqgfkpi and
VkVzvvdnGpeqgfkpi, to specify the text encoding for the source file. Both of these new statements can have one of
the following keywords: vkkugNcvkp, VkCUEKK, VkCPUK, VkOceCUEKK, VKLKU, VkU]jkhvLKU, VKGWE, VkDki7,
VKGWEEPU, VKID, VkJ\, Or VkMgtgcp.

Marker statements

In FrameMaker, users can define named custom markers. ov{rgPcog is a new statement to specify the marker name.
The ov{rg statement is still written out for backward compatibility, but FrameMaker reads ov{rgpcog when
present.

Graphic object statements

If the oxgt rtkpv statement is not present in a graphic object, the overprint setting for the object’s color is assumed.

Qdvkpv applies a tint to whatever color is assigned to the object. If the object’s color already has a tint, the two tint
values are added together.

Structured element definition statements
GFCvvtJIkEfgp is a new statement in the GFCvvtFgh that specifies whether an attribute is hidden or not.

HUvtgvej and HUvtgvejEjcpig are new statements added to the HovEjcpigNkuv to specify how much to stretch
or compress the characters in an element.

Changes between versions 4 and 5

This section describes changes to MIF syntax between versions 4 and 5 of FrameMaker.

Changes to existing MIF statements
In version 5, the following MIF statements have changed or now have additional property statements.
« Paragraph statements

« Character statements

« Table statements

« Document statements

« Text frame statements

» Text flow statements

+ Graphic frame statements

« Text inset and data link statements

+ Structured document statements

Version 5 also introduces a new internal graphic format for imported vector graphics.

259

ADOBE FRAMEMAKER
MIF Reference

Paragraph statements

In version 5, paragraphs can span all text columns and side heads or span columns only. As a result of this change,
the RihRncegogpvUv{ng statement now supports the additional keyword UvtcffngPgtocngpnf{, which indicates
that the paragraph spans text columns but not side heads.

For supporting the capability to create PDF bookmarks from paragraph tags, the new RihCetgdcvNgxgn statement
has been added. This statement specifies the paragraph’s level in an outline of bookmarks.

For more information about the MIF syntax for paragraphs, see “Pgf statement” on page 62.

Character statements

In version 5, the HFz, HF [, and HFY statements, which specify the horizontal kern value, the vertical kern value, and
the spread of characters, now measure in terms of the percentage of an em.

In previous versions, the HFz and HF [statements specified values in points. When reading MIF files from previous
versions, FrameMaker in version 5 will convert points into the percentage of an em. Previous versions of
FrameMaker generate error messages when reading HFz and HF [statements specifying percentages, since these
products expect the kerning value in points.

Table statements

In version 5, tables can be aligned along the inside or outside edge (in relation to the binding of a book) of a text
column or text frame. As a result of this change, the Vdncnkipogpv statement now supports the additional keywords
Kpukfg and Quvukfg.

In addition, the existing vdnvkvngEqgpvgpv statement is now contained in the new vdnvkvng statement.

For more information about the MIF syntax for tables, see “Tbl statement” on page 79.

Document statements

In version 5, the FCetgdcvDggmoctmuKpenwfgVeiPcogu statement has been added under the Fqewogpv statement

to support the conversion of paragraph tags to bookmarks in Adobe Acrobat. By default, this statement is set to pg.

Another new statement. FIgpgtcvgCetgdcvKphg, sets print options to the required states for generating Acrobat
information. By default, this statement is set to [gu.

For View Only documents, the default value of the FXkgyQpn { Ugngev statement has changed from [gu to wugtQpn{.

For text insets, the following statement has been renamed:

MIF 4.00 MIF 5.00

<DUpdateDataLinksOnOpen dqgngcp> <DUpdateTextInsetsOnOpen dggngcp>

Document and text flow statements

In version 5, the MIF statements describing interline spacing and padding, which appeared under the Fgewogpv
statement in previous versions, have been replaced by corresponding statements under the vgzvHngy statement:

MIF 4.00 MIF 5.00
<DMaxInterLine fkogpukqp> <TFMaxInterLine fkogpukqp>
<DMaxInterPgf fkogpukgp> <TFMaxInterPgf fkogpukgp>

In version 5, if FrameMaker finds the FOczKpvgtNkpg and FOczKpvgtRih statements in a 4.00 document,
FrameMaker applies these settings to all flows in the document.

260

ADOBE FRAMEMAKER
MIF Reference

Text frame and text flow statements

Version 5 introduces fext frames, which are composed of any number of text columns separated by a standard gap.
In MIF files, text frames are described by the same statement used in previous versions for text columns, the
VgzvTgev statement.

In version 5, three new statements have been added under the vgzvTgev statement to specify multicolumn text
frames:

* >VTPwoEgnwopu'"kpvgigt@

¢ >SVTEgnwopIcr" fkogpukqp@

¢ >VTEgnwopDcncpeg" dggngcp@

When reading 5.00 MIF files, previous versions of FrameMaker will remove these statements and assume that the
text frame is actually a single text column.

When reading MIF files from previous versions, FrameMaker in version 5 will convert multiple text columns on a
page into a single, multicolumn text frame. To represent each text column as a separate text frame, include the MIF
statement >VTPwoEqnwopu"3e in the description of each vgzvTgev statement.

Side head layout information has been transferred from the vgzvHngy statement to the vgzvTgev statement. The

following statements, which appeared under the vgzvHngy statement in previous versions, are replaced by corre-
sponding statements under the vgzvTgev statement in 5.00:

MIF 4.00 MIF 5.00

<TFSideheadWidth fkogpukgp> <TRSideheadWidth fkogpukgp>
<TFSideheadGap fkogpukqp> <TRSideheadGap fkogpukqgp>
<TFSideheadPlacement mg{ygtf> <TRSideheadPlacement mg{ygtf>

If FrameMaker in version 5 finds the vgzvingy MIF statements for side heads, FrameMaker will convert these state-
ments to the equivalent statements under the vgzvTgev statement.

If these types of statements are found under both the vgzvTgev statement and the VvgzvHnqy statement, the state-
ments under the vgzvTgev statement will be used.

Note that the existence of side heads in a text flow is still specified by the vHUkfgjgcfu statement, which is under
the vgzvHnqy statement.

For more information about the MIF syntax for text frames, see “TextRect statement” on page 129. For more infor-
mation about the MIF syntax for text flows, see “Text flows” on page 130.

Graphic frame statements

In version 5, graphic frames can be anchored inside or outside text frames. Graphic frames can also be aligned along
the inside or outside edge of a text frame (in relation to the binding of a book). Finally, graphic frames can be
anchored outside the entire text frame or one column in the text frame.

As a result, the following changes to 4.00 MIF have been made:
+ The Htcogv{rg statement now supports the additional keywords xpuk£fg, Qwvukfg, and TwpKpvgRctciters.
+ The cpejgtcnkip statement now supports the additional keywords kpukfg and Quwvuk£g.

+ Version 5 introduces the new CpejgtDgukfg statement to indicate whether the graphic frame is anchored
outside the entire text frame (VgzvHtcog) or outside one column in the text frame (Eqnwop).

+ When editing FrameMaker document files from previous versions, FrameMaker assumes that this statement has
the value >CpejgtDgukfg"Eqnwope@.

For more information about the MIF syntax for graphic frames, see “Frame statement” on page 117.

261

ADOBE FRAMEMAKER
MIF Reference

Text inset and data link statements

In previous versions, Macintosh versions of FrameMaker allowed you to import text by reference with the Publish
and Subscribe mechanism. The MIF FcveNkpm statement described text that was published or subscribed.

In version 5, the capability to import text by reference, which creates a text inset, is available on all platforms. As a
result of this new feature, the new vgzvkpugv statement replaces the FcveNkpm statements for subscribers.

Note that the FeveNkpm statements for publishers are still used.

The following table lists the old FcveNkpm statements and the new VgzvKpugv statements that replace them.

MIF 4.00 MIF 5.00

<DatalLink...> >VgzvKpugv000@

<DLSource rcvjpcog> <TiSrcFile rcvjpcog>
<DLParentFormats Yes> <TiFormatting TiEnclosings>
<DLParentFormats No> <TiFormatting TiSource>
<OneLinePerRec dggngcp> <EOLisEOP dgqngcp>
<MacEdition kpvgigts> <TiMacEditionId kpvgigts>
<DataLinkEnd> <TextInsetEnd>

If you open a 5.00 MIF file with text insets in a version 4 FrameMaker product, the older version of the product will
strip out the text inset MIF statements. The text inset becomes plain text that cannot be updated.

For more information about the MIF syntax for text insets, see “Text insets (text imported by reference)” on

page 138. For information about the MIF syntax for publishers, see “If the VkvdnPwoJft Tgyu"uwduvcvgogpv"ku"
pav'ugv"vg"2. "vjg"vedng"jcu'jgefgt "tqyu0 "Kh"vjg"vkvdndgcfgtuGorv{ "uwduvecvgogpv"ku"ugv"vg"pPq. "
vjgug"tgyu"ctg"hknngf"ykvj"korgtvgf"vgzv0” gp"rcig 366.

Structured document statements

In version 5, FrameMaker does not support statements for structured documents, such as GngogpvFghEcvengi and
FGngogpvDgt £gtuQp. FrameMaker strips these statements when reading in a MIF file. When writing out a MIF file,
FrameMaker does not write these statements.

FrameVector graphic format

The internal graphic format FrameVector is supported for imported vector graphics. The specifications for this facet
are described in , “FrameVector Facet Format.”

Changes between versions 3 and 4

This section describes the changes to MIF syntax between versions 3 and 4 of FrameMaker.

4.00 top-level MIF statements

The following table lists top-level statements introduced between versions 3 and 4 of FrameMaker.

New statement Action in earlier versions

<ColorCatalog..> All custom colors revert to Cyan

262

ADOBE FRAMEMAKER
MIF Reference

New statement

Action in earlier versions

<Views..>

Ignored

Changes to 3.00 MIF statements

This section describes the statements that have changed or that have introduced additional property statements

between versions 3 and 4 of FrameMaker. MIF statements that have changed include:
« Color statements

« Math statements

« Character format statements

« Object statements

» Page statements

Color statements

The following table lists the changes for color property statements.

MIF 3.00

MIF 4.00

<FSeparation kpvgigts

<FColor uvtkpis

<CSeparation kpvgigts

<CColor uvtkpis

<RulingSeparation kpvgigts

<RulingColor uvtkpis>

<Separation kpvgigts

<ObColor uvtkpis

<TblHFSeparation kpvgigts

<TblHFColor string>

<TblBodySeparation kpvgigts

<TblBodyColor uvtkpis

<TblXSeparation kpvgigts

<TblXColor uvtkpis>

<CellSeparation kpvgigts

<CellColor uvtkpis>

<DChBarSeparation kpvgigts

<DChBarColor uvtkpis>

Ugrctcvkgp values refer to the reserved, default colors that appear in the Color pop-up menu in the FrameMaker

Tools palette.

This value Corresponds to this color
<Separation 0> Black
<Separation 1> White
<Separation 2> Red
<Separation 3> Green
<Separation 4> Blue
<Separation 5> Cyan
<Separation 6> Magenta
<Separation 7> Yellow
<Separation 8> Dark Grey

263

ADOBE FRAMEMAKER
MIF Reference

This value Corresponds to this color
<Separation 9> Pale Green
<Separation 10> Forest Green
<Separation 11> Royal Blue
<Separation 12> Mauve

<Separation 13> Light Salmon
<Separation 14> Olive

<Separation 15> Salmon

Version 4 and later versions of FrameMaker read separation statements and convert them to the equivalent color
statements. FrameMaker writes both color statements and separation statements for backward compatibility. For the
reserved default colors, FrameMaker writes the equivalent separation value. For custom colors, FrameMaker writes
the separation value 7 (Cyan) so that you can easily find and change custom colors.

If your application creates files that will be read by both older (before version 4) and newer (after version 4)
FrameMaker product versions, include both color and separation statements in the MIF files; otherwise, use only the
color statements.

Math statements

The following table lists the changes for math statements.

MIF 3.00 MIF 4.00
DMathItalicFunctionName DMathFunctions
DMathItalicOtherText DMathNumbers, DMathStrings, DMathvariables

In addition, the fkcetkvkecn expression defines new diacritical marks (see “Using char and diacritical for
diacritical marks” on page 200). The fkcetkvkecn expression is not backward compatible.

Character format statements

The following table lists the changes in Hgpv and RihHgpv statements.

MIF 3.00 MIF 4.00

<FUnderline dggngcp> <FUnderlining FSingle>
<FDoubleUnderline "dggngcp> <FUnderlining FDouble>
<FNumericUnderline dqqngcp> <FUnderlining FNumeric>
<FSupScript dggngcp> <FPosition FSuperscripts>
<FSubScript dggngcp> <FPosition FSubscripts>

If your application only reads or writes files for version 4 or later versions of FrameMaker, use only the 4.00 state-
ments. If your application reads or writes files for version 3 or previous versions of FrameMaker, use only the 3.00
statements. Do not use both statements.

The MIF interpreter always reads the MIF 3.00 statements. It writes both 3.00 and 4.00 statements for backward
compatibility.

264

ADOBE FRAMEMAKER
MIF Reference

Object statements

The following table lists the changes in graphic object statements (see “Graphic objects and graphic frames” on

page 111).

MIF 3.00 MIF 4.00

<Angle 0[90|180[270 > >Cping" fgitggue
<BRect> <ShapeRect >

Text lines, text frames, imported graphics, table cells, and equations that are rotated at an angle of 90, 180, or 270
degrees retain rotation in earlier versions. If these objects are rotated at any other angle, they are rotated back to 0
degrees in the earlier version. All other objects are rotated back to 0 degrees.

FrameMaker writes both DTgev and UjcrgTgev values for backward compatibility. For text lines, text frames,
imported graphics, table cells, and equations that are rotated at an angle of 90, 180, or 270 degrees, the DTgev value
is the position and size of the object after rotation. For any object rotated at any other angle, the DTgev value is the
position and size of the object before rotation, which is the same as the UjcrgTgev value.

Device-independent pathnames

The following codes for pathname components in a device-independent pathname are obsolete and are ignored by
the MIF interpreter.

Code Meaning

A Apollo-dependent pathname

D DOS-dependent pathname

M Macintosh-dependent pathname
V] UNIX-dependent pathname

For information about valid codes, see “Device-independent pathnames” on page 7.

Document statements

The following changes have been made to Fgewogpv statements.

MIF 3.00 MIF 4.00

<DCollateSeparations dggngcp> <DNoPrintSepColor> and <DPrintProcessColor>

In addition, the Fgewogpv statement has a number of new property statements that set options for View Only
documents (see page 93), set options for structured documents, and define custom math operators (see page 190).

Page statement

The following change has been made to the Rcig statement.

MIF 3.00 MIF 4.00

<PageOrientation mg{ygtfs> >RcigCping@ and >FRcigUk|ge

A page’s size and orientation (landscape or portrait) is determined by the ReigCping statement and the Fgewogpv
substatement FRcigUk | g. FrameMaker writes the Reigotkgpvevkagp statement for backward compatibility. MIF
generators should use the ReigCping statement instead of ReigQtkgpvevkap.

265

ADOBE FRAMEMAKER
MIF Reference

When the MIF interpreter reads a Rcig statement that includes both a ReigCping and a ReigQtkgpvevkap
statement, it ignores the RcigQtkgpvevkgp statement. When the interpreter reads a Reig statement that contains a
RcigQtkgpvevkgp statement but no ReigCping statement, it determines the page’s angle from the RcigQtkgp-
vevkgp statement. If the page orientation matches the orientation determined by the FrRcigUk | g statement, the
page’s angle is 0 degrees; otherwise, the page’s angle is 90 degrees. A page that has neither a ReigCping nor a
RcigQtkgpvevkgp statement has an angle of 0 degrees.

266

Chapter 11: Facet Formats for Graphics

When you copy a graphic into an Adobe® FrameMaker® document, the FrameMaker document stores the graphic
data in one or more facets. Each facet contains data in a specific graphic format. FrameMaker uses facets to display
and print graphics.

In UNIX versions of FrameMaker, you can associate a graphic application with FrameMaker through the
FrameMaker API or through the FrameServer interface. You can set this up so that the graphics created and modified
in the graphic application can be imported directly into a FrameMaker document. The graphic application becomes
a graphic inset editor. Graphic inset editors write graphic data to graphic insets, which can be read by FrameMaker.

For more information on setting up graphic inset editors, see the FDK Programmer’s Guide and the online manual,
Using FrameServer with Applications and Insets. Both manuals are provided with the UNIX version of the Frame
Developer’s Kit.

The first part of this appendix describes the general format for a facet in a MIF file. The second part of this appendix
explains the graphic inset format.

Note: If you are using the API to implement the graphic inset editor, the syntax described in this appendix applies only
to external graphic insets. For information on specifying facet names, data types, and data for internal graphic insets,
see the FDK Programmer’s Guide.

Facets for imported graphics

A graphic imported by copying into a FrameMaker document contains one or more facets. Each facet describes the
imported graphic in a specific graphic format. All imported graphics copied into a document contain one or more
facets used to display and print the file.

FrameMaker might not use the same facet for displaying and printing a graphic.

When printing an imported graphic, FrameMaker selects one of the following facets (in order of preference):
« EPSI (Encapsulated PostScript)

+ Native platform facet (QuickDraw PICT, WMF)

+ FrameVector

- TIFF

+ Framelmage and other bitmap facets

When displaying an imported graphic, FrameMaker selects one of the following facets (in order of preference):
» Native platform facet (QuickDraw PICT, WMF)

+ FrameVector

+ Framelmage

- TIFF

+ Other bitmap facets

All versions of FrameMaker recognize EPSI (with DCS Cyan, DCS Magenta, DCS Yellow, and DCS Black for color
separations), TIFF, Framelmage, and FrameVector facets. Windows versions of FrameMaker recognize WMF and
OLE facets.

‘ 267

ADOBE FRAMEMAKER
MIF Reference

If the graphic data does not have a corresponding facet supported by FrameMaker for displaying or printing,
FrameMaker can use filters to convert the graphic data into one of two internal facets: FrameImage (for bitmap data)
and FrameVector (for vector data). For example, FrameMaker does not have a facet for HPGL, so HPGL data is
converted into a FrameVector facet.

In Windows versions of FrameMaker, users can choose to automatically save a cross-platform facet of an imported
graphic. If a cross-platform facet does not already exist, FrameMaker generates a FrameImage facet for the imported
graphic.

Basic facet format

A facet consists of a facet name, a data type, and a series of lines containing facet data. For example:

=EPST
&%V
&% ! PS-Adobe-2.0 EPSF-2.0\n

Facet name
The first line of a facet identifies the facet by name. The facet name line has the following format:
=facet name

The facet name can be one of the standard display and print facets or an application-specific name registered with
FrameMaker. (For information about registering your application-specific facets, see the FDK Platform Guide for
your platform, which is included with the Frame Developer’s Kit.)

Data type
The second line provides the data type of the facet: unsigned bytes ((’ x), integer ((' k), or metric ((’ o).

If the facet data is binary (such as FrameImage and FrameVector data) or if it contains ASCII characters (such as
EPSI data, as shown in the preceding example), the facet uses the unsigned bytes data type (().

For example, the following line is the second line in a facet that contains data represented as unsigned bytes:

&3V

Facet data

The remaining lines contain the facet data. Each line begins with an ampersand (&).

The end of the data for a facet is marked by the beginning of a new facet. Thus, a line with a new facet name signals
the end of the previous facet data.

The end of the last facet in the graphic inset is marked by the following line:

=EndInset

Unsigned bytes
If the facet data contains a backslash character, another backslash precedes it as an escape character. For example, if

the data contains the string"z*{ |, the facet contains"z**{|.

Within the facet data, nonprintable ASCII characters or non-ASCII bytes (greater than"oh) are represented in
hexadecimal.

268

ADOBE FRAMEMAKER
MIF Reference

Any section of data represented in hexadecimal is preceded and followed by the characters *z. For example, the
following Framelmage facet contains data represented in hexadecimal, which is enclosed between two sets of *z
characters:

=FrameImage

&5V

&\x

&59266295

&00000040

&0000FCO0001FC0000
&\x
=EndInset

Integer data

The integer data type stores integer values in a facet. For example, the hodkvocr program stores the dimensions of
the graphic, the x-coordinate of the hot spot, and the y-coordinate of the hot spot as integer data in a facet:
=Data.facet

&%1

&64

&64

&-1

&1

Metric data

Metric data describes a graphic in terms of units of measurement. The following table shows the abbreviations used
to denote units within a facet.

Units Abbreviation
Centimeters eo

Ciceros ekegtg, ee
Didots ff

Inches kp, $
Millimeters oo

Picas rkec, rk, re
Points rgkpv, rv
pixels px

Graphicinsets (UNIX versions)

A graphic inset contains graphic data that can be written by a graphic application and used by FrameMaker to display
and print an imported graphic. A graphic inset can also specify a live link, which associates an imported graphic in
a FrameMaker document with the graphic application used to edit the graphic. A live link can be set up through
FrameServer functions or through an FDK client.

269

ADOBE FRAMEMAKER
MIF Reference

When a live link is established between an imported graphic and a graphic application, users can edit the graphic in
a graphic application and directly import the graphic into a FrameMaker document. For more information on live
links, see the FDK Programmer’s Guide, which is provided with the FDK, or the online manual, Using FrameServer
with Applications and Insets, which is provided with the UNIX version of the FDK.

To set up a live link between a graphic application and a FrameMaker document, you need to add functions to your
application to write out graphic data as a graphic inset.

A graphic inset consists of an"KorgtvQdlgev"statement that contains one or more facets for display and print. If
your application requires additional information not supported by the display and print facet, the graphic inset also
needs one or more application-specific facets to store this additional information.

The two types of graphic insets are internal graphic insets and external graphic inset files. Each type results in a slightly
different type of integration between FrameMaker and your application. You can choose the type of graphic inset
that your application supports. In most cases, one format is adequate, but you might want to give users more than
one option. Both types require a display and print facet.

External graphic insets

An external graphic inset file remains independent of the FrameMaker document. The FrameMaker document
contains only a pathname for the graphic inset file. Because the graphic inset data is not contained in the
FrameMaker document, users can access the graphic inset data from FrameMaker, from your application, or from
another application.

To edit an external graphic inset from FrameMaker, users must open FrameMaker document, select the graphic
inset, and choose the Graphic Inset command from the Special menu. FrameMaker passes the external graphic inset
filename to your application and instructs your application to edit the graphic inset. When users finish editing a
graphic inset, they issue your application’s command for pasting a graphic inset to FrameMaker, and FrameMaker
immediately updates the graphic inset file.

If users edit the graphic inset from another application, FrameMaker displays the updated graphic inset the next time
the document is opened. Note that if the graphic inset file is moved or deleted, FrameMaker will be unable to display
the data and will inform the user that the graphic inset is missing.

‘E“ \ I

| — —
| < > = —
@ ——
I Zh
Your graphic External graphic inset J— 23
application file —_—

External graphic insets are best suited to situations in which users are documenting projects in progress or in which
the document’s graphics are updated by external sources (for example, by a database).

An external graphic inset file contains a OkHHkng statement and an KorgtvQdlgev"statement. The"KorgtvQdlgev"
statement lists the graphic inset file’s pathname, the name of the inset editor that created it, and all of its facets.

An external graphic inset file has the following format:

270

ADOBE FRAMEMAKER | 271
MIF Reference

<MIFFile 2015>
<ImportObject
<ImportObEditor kpugvagfkvgtapcog>
<ImportObFileDI fgxkegakpfgrgpfgpvarcvjpcog>
=hcegvapcog
s&fcvecavirg
&hcegvafcve

=hcegvapcog
s&fcvecavirg
&hcegvafcve

=EndInset

>

A MIF"KorgtvQdGfkvgt"statement names the main editor for application-specific facets in the
graphic inset file.

A MIF"KorgtvQdHkngFK "statement specifies the device-independent pathname for the graphic inset file. For more
information on device-independent pathnames, see the section “Device-independent pathnames” on page 7.

Internal graphic insets
An internal graphic inset is entirely contained within FrameMaker document file. Once the link is established, the

graphic inset data exists only in FrameMaker document.

Users can access the graphic only through FrameMaker. To edit an internal graphic inset, users must open
FrameMaker document, select the graphic inset, and choose the Graphic Inset command from the Special menu.
FrameMaker writes the graphic inset to a temporary file and instructs your application to edit it.

= FE]

A
\J

Your graphic
application

FrameMaker document with internal
graphic inset

Internal graphic insets are best suited for environments in which portability of FrameMaker document across
different types of systems is most important.

When FrameMaker creates temporary files for internal graphic insets, the temporary files have the following format:

<MIFFile 2015>
<ImportObject
<ImportObEditor kpugvagfkvqtapcog>
<ImportObFile “2.0 internal inset’s>
=hcegvapcog
s&fcveavirg
&hcegvafcve

=hcegvapcog
&fcvecav{rg

ADOBE FRAMEMAKER
MIF Reference

&hcegvafcve

=EndInset

>

Because the graphic inset is stored in FrameMaker document, the file does not have an"
KorgtvQdHkngFK"statement.

The"KorgtvQdHkng"statement identifies the file as a FrameMaker version 2.0 internal graphic inset file for compat-
ibility with earlier versions of FrameMaker. If you do not plan to use the graphic insets generated by your application
with earlier versions of FrameMaker, you can omit this statement.

Application-specific facets

Application-specific facets can be in any format your application understands, and a graphic inset file can contain as
many application-specific facets as you want.

When selecting application-specific facets for your graphic inset file, you might want to include an industry-
standard facet (for example, EDIF for EDA applications) so that you can use the graphic inset file to share data with
applications other than FrameMaker.

Application-specific facets can be contained entirely within the graphic inset file (a local facet), or the graphic inset
file can contain a reference to an external data file or database (a remote facet).

Local application-specific facets

A local application-specific facet is contained in the graphic inset file. The formats for external and internal graphic
insets (described in the sections “External graphic insets” on page 270 and “Internal graphic insets” on page 271)
apply to local application-specific facets.

The following illustration shows the relationship between your application, FrameMaker document, and a graphic
inset file with a local application-specific facet.

=

Display and print facet

Y

=7

Your graphic
application

Application-specific facet

FrameMaker document

\i

Graphic inset with a local application-
specific facet

272

ADOBE FRAMEMAKER | 273
MIF Reference

Remote application-specific facets

A remote application-specific facet contains the pathname or database key for an existing data file or database. Since
application-specific data is normally duplicated in a separate application file, remote facets conserve file space.
Because the application-specific facet contains only a pathname, remote facets are easier to implement.

Display and print facet

\i

Your graphic
application

PP Graphic inset with a remote A
application-specific facet

FrameMaker document

Application-specific facet

Y

Remote application-specific facet data

Note: Display and print facets must be contained in the graphic inset file. They cannot be remote facets.

To write a remote facet, your graphic application must write an application data file and store its data type and
pathname in the graphic inset file. A remote application-specific facet has the following format:
=facet name

&facet type

&path for facet file

=EndInset

For example, the following lines describe the remote facet described in the application data file"
1fkcitcoulDngemFkcitco

=application_name.facet

&%V

&/diagrams/BlockDiagram

=EndInset

Example of graphic inset file

The following example is the external graphic inset file generated by the "hodkvocr "program, which is shipped with
the UNIX version of the FDK.

The graphic inset file is named" 1vor1fghcwnvohk. The application-specific facet for this graphic inset (the file
generated by the"hodkvocr"program) is stored in a remote facet in the file" 1vor1fghcwnvo

ADOBE FRAMEMAKER
MIF Reference

Note that although the"hodkvocr"program writes out the "Korgt vQdHkng "statement, this statement is obsolete and
is only used with older versions of FrameMaker. When defining a function to write a graphic inset file, use the"
KorgtvQdHkngFK"statement and specify a device-independent pathname. For more information on device-
independent pathnames, see “Device-independent pathnames” on page 7.
<MIFFile 2015> # Generated by fmbitmap

<ImportObject

<ImportObFile /tmp/default.fis
<ImportObEditor fmbitmap>

=BitmapFile.facet
&5V
&/tmp/default
=Data.facet
&%1
&64
&64
&1
&1
=FrameImage
&5V
&\x
& ...
&\x
=EndInset

>

To see more examples of the graphic inset format, you can import a graphic into a FrameMaker document (import
by copying) and save the FrameMaker document as a MIF file.

General rules for reading and writing facets

To write a facet, you need to modify the existing function in your application for writing data. The function must
write the facet name and data type lines and insert an ampersand at the beginning of each line of facet data. If
necessary, convert data lines to the appropriate facet data format. Unsigned bytes should follow the conventions
described in “Unsigned bytes” on page 268, and metric data should follow the conventions described in “Metric data

»

on page 269.

When writing the facet data, your application can use as many lines as necessary. Each line should be short enough
to read with a text editor, in case you need to debug the graphic inset file. There are no counts, offsets, or facet size
limits.

Facet data in hexadecimal must contain valid hexadecimal digits only (0-9, A-F) and cannot contain backslash (\)
characters. When you write a facet containing hexadecimal data, do not write newline characters (*t"or"*p) at the
end of the lines.

Graphic insets cannot contain any blank lines within or between facets.

When reading a graphic inset, your application need only scan for facet name lines and then read the appropriate
facets. Since facets begin and end with the"? hcegvapcog"token, your program should read facet data until it
encounters an equal sign in column 1.

If your application encounters the characters “z"when reading facet data, it should process the subsequent data as
hexadecimal until it encounters another"* z. If your facet contains a mix of ASCII characters and hexadecimal data,
it might be simpler for you to represent the ASCII characters as character codes in hexadecimal. For example, the
FrameVector format represents strings (such as dncem) as character codes in hexadecimal (such as 84 "ge"83"85"8d).

274

275

Chapter 12: EPSI Facet Format

EPSI is an interchange standard developed by Adobe Systems Incorporated. You can obtain a complete specification
of the EPSI format from Adobe Systems Incorporated.

Imported graphics can contain graphic data in EPSI format. This data is called the EPSI facet of the graphic. Adobe®
FrameMaker® can use this facet to display and print the graphic. For more information about facets, see , “Facet
Formats for Graphics.”

In a MIF file, the EPSI facet is contained in the KorgtvQdlgev statement. For more information about the statement,
see “ImportObject statement” on page 120.

Specification of an EPSI facet

An EPSI facet begins with the following facet name and data type lines:
=EPSI
&%V

Each line of EPSI facet data ends with"*p.

When FrameMaker imports a graphic inset with an EPSI facet, FrameMaker uses the EPSI bounding box to
determine the graphic inset’s size. If the bounding box does not fit on the page, FrameMaker halves its dimensions
until it fits.

Example of an EPSI facet

The following rectangle is an imported graphic:

The following MIF statements describe the imported graphic. The graphic data that specifies the rectangle is an EPSI
facet.

<ImportObject

<BRect 0 0 0.25" 0.25">

<Pen 15> <Fill 15>

<ImportObFile ~2.0 internal inset's>
=EPST
&%V
&% ! PS-Adobe-2.0 EPSF-2.0\n
&%%BoundingBox: 0 0 18 18\n
Pages: 0\n

QR
o°
o°

&%%Creator: contr2\n
&%%CreationDate: Tue Apr 25 16:09:56 1989\n
&%%EndComments\n

&%%BeginPreview: 18 18 1 18\n
&%$FFFFCO\n

ADOBE FRAMEMAKER | 276
MIF Reference

&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%FFFFCO\n
&%%EndPreview\n
&%%EndProlog\n
&%%Page: "one" 1\n
&0 0 moveto 18 0 rlineto 0 18 rlineto -18 0 rlineto closepath 0 setgray\n
&fill\n
&%%Trailer\n
=EndInset

> # End ImportObject

o\
o\

o oo
o oo

‘ 277

Chapter 13: Framelmage Facet Format

Framelmage is a format for bitmap graphics that is recognized by Adobe® FrameMaker® on all platforms. The speci-
fication of the FrameImage format is documented in this appendix.

Imported graphics can contain graphic data in Framelmage format. This data is called the Framelmage facet of the
graphic. FrameMaker can use this facet to display and print the graphic. For more information about facets, see
, “Facet Formats for Graphics.”

In a MIF file, the Framelmage facet is contained in the KorgtvQdlgev statement. For more information about the
statement, see “ImportObject statement” on page 120.

Specification of a Framelmage facet

A Framelmage facet begins with the following facet name and data type lines:

=FrameImage

&%V

When importing a graphic with a Framelmage display and print facet, FrameMaker prompts the user to specify the
graphic inset’s print resolution in the Imported Graphic Scaling dialog box. The print resolution determines the size
of the imported graphic.

Specification of Framelmage data

A description of a graphic in Framelmage format consists of three parts:

+ A header, which describes the dimensions and other characteristics of the graphic
+ An optional color map, included only if the graphic uses colors

+ Data describing the bitmap of the imported graphic

The description is written as integer values in hexadecimal format. Each line is preceded by an ampersand ((). The
data section begins with the x characters, which indicate that the FrameImage data is represented as unsigned bytes.
The beginning and end of the data are bracketed by the symbol *z, which indicates that the data is in hexadecimal
format.

Header

The header describes properties of the imported graphic. These properties are described by eight 32-bit integer
values, such as the values shown in the following example:

&59a66a95
&00000040
&00000040
&00000001
&00000000
&00000001
&00000000
&00000000

Each value identifies a property of the imported graphic:

ADOBE FRAMEMAKER
MIF Reference

« The first value is always the constant value 2z7; c8sc; 7.

+ The second value is the width of the graphic in pixels. In the preceding example, the graphic is 64 pixels wide
(converting the hexadecimal value 2z22222262 to the decimal value 86).

+ The third value is the height of the graphic in pixels. In the example, the graphic is 64 pixels high (converting the
hexadecimal value 2z22222262 to the decimal value 86).

+ The fourth value is the number of bits used to describe a single pixel. This value is sometimes referred to as the
depth of the graphic. For black and white graphics, only one bit is used to describe a single pixel. For color
images, eight bits are used to describe a single pixel. In the example, the value 2z22222223 indicates that the
graphic is in black and white.

« The fifth value is not currently used and is set to 2z22222222 by default.

« The sixth value specifies whether or not the data is encoded. If the data is encoded, this value is set to
2222222224, If the data is not encoded (that is, if the data is in uncompressed format), this value is set to
2222222223. In the example, the data is uncompressed.

+ The seventh value identifies the type of color map used by the graphic. If the graphic is in black and white, no
color map is used, and this value is set to 2z22222222. If the graphic is in color, an RGB color map is used, and
this value is set to 2z22222223 or 2z22222224. In the example, because the graphic is in black and white, the
value is set to 2z22222222.

+ The eighth value is the length of the color map in bytes. If the graphic is in black and white, no color map is used,
and this value is set to 2z22222222. If the graphic is in color, a color map with 256 colors is used (described by
768 bytes of information), and this value is set to 2z22222522 (the hexadecimal representation of the number
768). In the example, because the graphic is in black and white, the value 2z22222222 is used.

The Framelmage format is similar to the Sun rasterfile format for bitmap images. The following section of code is
part of the"1wut 1kpenwfgltcuvgthkngoj "header file, which describes the Sun rasterfile format:

struct rasterfile {

IntT ras magic; /* magic number */

IntT ras_width; /* width (pixels) of image */

IntT ras_height; /* height (pixels) of image */

IntT ras_depth; /* depth (1, 8, or 24 bits) of pixel */

IntT ras_length; /* length (bytes) of image */

IntT ras_type; /* type of file; see RT * below */

IntT ras_maptype; /* type of colormap; see RMT_* below */

IntT ras_maplength; /* length (bytes) of following map */
/* color map follows for ras maplength bytes, followed by image */
}i

#define RAS_MAGIC 0x59a66a95

/* Sun supported ras_type's */

#define RT STANDARD 1 /* Raw image in 68000 byte order */
#define RT BYTE ENCODED 2 /* Run-length compression of bytes */

/* Sun registered ras _maptype's */

#define RMT RAW 2

/* Sun supported ras maptype's */

#define RMT NONE 0 /* ras maplength is expected to be 0 */
#define RMT EQUAL RGB 1 /* red[ras_maplength/3],green(], bluel] */

For more information, see the"1wut1kpenwfgltcuvgthkng07j "header file and the Sun man page on tcuvgthkng.

278

ADOBE FRAMEMAKER
MIF Reference

Color map

The optional color map defines colors used for the imported graphic. It consists of 256 bytes of red, followed by 256
bytes of green, followed by 256 bytes of blue. Each byte contains an intensity value for a color. FF is the maximum
intensity and 00 is the minimum (none).

Color 05 = bright red = FF red + 00 green + 00 blue \@

array of 256 red levels
’ 00 ’ 0C ‘ A2 ‘ OF [FF C5 ‘ F6 ‘ D7 (256 bytes)

Red level = FF I
array of 256 green levels
’ 0A ’ Al ‘ B3 ‘ 03 ‘ 00 ‘ 0cC ‘ E6 ‘ F7 (256 bytes)

Green level = 00 { I
array of 256 blue levels
‘ FF ‘ EE ‘ AA ‘ 11 T\OO DD ‘ 66 ‘ 77 (256 bytes)

\V

Blue level = 00

The color map defines 256 colors. Each color contains a red, green, and blue level of intensity. The values of the first
red byte, first green byte, and first blue byte define the first color in the map; the values of the second red, green, and
blue bytes define the second color, and so forth.

For example, the data value 05 represents the color defined by the level of red stored in the fifth byte of red, the level
of green stored in the fifth byte of green, and the level of blue stored in the fifth byte of blue. If the fifth byte of red
contains FF (the maximum red intensity) and the fifth bytes of green and blue are both 00, then 05 would represent
bright red.

Data describing the graphic
The data type can be either byte encoded or standard. Each type uses different data formats.

Byte-encoded data

Ifrt cuav{rg"is"TvaD [VGaGPEQFGF (if the sixth value in the header is 2z22222224), the data is a run-length encoded
pixel matrix. The byte value 80 hexadecimal (decimal 128) is used as a separator for encoding several bytes of the
same color. The encoding scheme uses the following format:

80 pp"rr

where pp+1 is the number of times to repeat the data byte (zz).

For example, the following values represent seven data bytes of the hex value 55:

80 06 55

A single pixel value of 80 must be encoded as 80 00 in the data. If the value 80 occurs sequentially, use the format:
80 pp 80

where pp+1 is the number of times 80 occurs.

Standard data

Ifrecuav{rg"is"TvauvcpFCTF (if the sixth value in the header is 2z22222223), the data contains uncompressed hex
data corresponding to the graphic. Each byte is eight pixels for a monochrome graphic or one pixel for color. Each
scanline of data must be padded to a word (16 bit) boundary.

279

Differences between monochrome and color

There are two types of Framelmage files: monochrome and pseudocolor.

Monochrome images

A monochrome graphic has the following header properties:

ADOBE FRAMEMAKER
MIF Reference

Property

Value
ras_depth 1
ras_maptype RMT_NONE
ras_maplength 0

An example of the header for a monochrome graphic is shown below:

&59a66a95
&00000040
&00000040
&00000001
&00000000
&00000001
&00000000
&00000000

A monochrome graphic has no color map. Each data byte represents eight pixels, and the most significant bit is the

leftmost pixel.

Graphic data bytes are hex values that represent bit patterns of black and white. For example, hex 55 represents
binary 01010101, which produces a gray shade; hex FF represents binary 11111111, which produces black; and hex
00 represents binary 00000000, which produces white.

Pseudocolor and gray images

A pseudocolor or gray graphic has the following header properties:

Property

Value

ras_depth

8

ras_maptype

RMT EQUAL RGB or RMT RAW

ras_maplength

300

An example of the header for a color graphic is shown below:

&59a66a95
&00000040
&00000040
&00000008
&00000000
&00000001
&00000002
&00000300

Each graphic data byte represents one pixel of a particular color. The value of a data byte is an index to a color stored
in the color map. (See “Color map” on page 279.)

280

Sample unencoded Framelmage facet

ADOBE FRAMEMAKER
MIF Reference

The sample Framelmage facet in this section describes the following illustration. Note that no color map is included

in the description, because the graphic is in black and white.

Header _

Graphic data

=FrameImage

&%V

&\x

&59a66a95
&00000040
&00000010
&00000001
&00000000
&00000001
&00000000
&00000000
&FFFFFFFFFFFFFEFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&80000000FFFFFFFF
&FFFFFFFF00000001
&FFFFFFFF00000001
&FFFFFFFF00000001
&FFFFFFFF00000001
&FFFFFFFF00000001
&FFFFFFFF00000001
&FFFFFFFF00000001
&FFFFFFFFFFFFFFFF
&\x

=EndInset

281

ADOBE FRAMEMAKER
MIF Reference

Sample encoded Framelmage facet

The sample Framelmage facet in this section describes the same illustration. Note that no color map is included in
the description, because the graphic is in black and white. Unlike the previous file, this graphic file is in encoded

format.

Header —_ .
=FrameImage
&%V

&\x
&59A66A95
&00000040
&00000010
&00000001
&00000000
&00000002
&00000000
&00000000
&8007FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8003FF
&8000000000
&8007FF
&00000001

Graphic data —

282

Graphic data

ADOBE FRAMEMAKER
MIF Reference

&8003FF
&00000001
&8003FF
&00000001
&8003FF
&00000001
&8003FF
&00000001
&8003FF
&00000001
&8003FF
&00000001
&8007FF
&\x
=EndInset

283

‘ 284

Chapter 14: FrameVector Facet Format

FrameVector is a format for vector graphics that is recognized by Adobe® FrameMaker® on all platforms. The speci-
fication of the FrameVector format is documented in this appendix.

Imported graphics can contain graphic data in FrameVector format. This data is called the FrameVector facet of the
graphic. FrameMaker can use this facet to display and print the graphic. For more information about facets, see
, “Facet Formats for Graphics.”

In a MIF file, the FrameVector facet is contained in the Korgtvodlgev statement. For more information about the
statement, see “ImportObject statement” on page 120.

Specification of a FrameVector facet

A FrameVector facet begins with the following facet name, facet data type, and version number lines:

=FrameVector
&%V
&<MakerVectorZzzZz>

In the version number line, XXX is a three-character string identifying the version of FrameMaker. For example, the
character string <MakerVectors . 0> identifies an imported graphic created in FrameMaker.

If the imported graphic is stored in a separate file, the file must include the header string >0OcmgtXgevqgt zzze.

Specification of FrameVector data

A description of a graphic in FrameVector format consists of records. Each record contains the following fields:
+ A unique one-byte op code

« A four-byte integer specifying the size of the data

+ The actual data

The following figure illustrates the breakdown of a typical record:

One-byte op code Four-byte field describing the size of Actual data of variable length
the data (9 bytes long in this case, as
| specified by the previous field)

I
87 00000009 017A0000002D000000 _J

Types and listing of op codes
Each record begins with an op code. The op code can be one of the following three types:
+ Definition

+ The definition op codes specify the version of the FrameVector graphic and any global information used in the
graphic, such as colors. Any definitions used by the style and object op codes must be specified before these op
codes.

« Style

ADOBE FRAMEMAKER
MIF Reference

« Thestyle op codes define the styles applied to all operations until the styles are changed. For example, all graphics
objects use the same line width, fill pattern, and color until the style op codes change. All styles need to be

defined before specifying the first object op code.
« Object
+ The object op codes define graphics objects.

The following tables list the op codes, with a brief description of each op code and the number of the page where

each op code is described. The definitions of many of these op codes are similar to corresponding MIF statements.

Definition op codes

Op code Description of op code Location
0x01 Version number page 287
0x02 Bounding rectangle page 287
0x03 CMYK color definition page 288
0x04 RGB color definition page 288
OxFF End of the vector graphics page 288

Note that the colors defined in a FrameVector graphic can be used only within the FrameVector graphic. These

colors cannot be used for other purposes in the document.

If the definition of a color in the FrameVector graphic does not match the definition in the color catalog of the
document, FrameMaker uses the definition in the color catalog when displaying the graphic.

Style op codes

Op code Description of op code Location
0x06 Dashed line style page 289
0x07 Arrow style page 289
0x20 Rotation angle page 290
0x21 Pen pattern page 290
0x22 Fill pattern page 290
0x23 Line width page 290
0x24 Color page 291
0x25 Overprint page 291
0x26 Dashed/solid line page 291
0x27 Head cap style page 291
0x28 Tail cap style page 292
0x29 Smoothed page 292
0x2A Font name page 292
0x2B Font size page 292
0x2C Font style page 293

285

ADOBE FRAMEMAKER
MIF Reference

Op code Description of op code Location
0x2D Font color page 293
0x2E Font weight page 293
0x2F Font angle page 294
0x30 Font variation page 294
0x31 Font horizontal kerning page 294
0x32 Font vertical kerning page 294
0x33 Font word spread value page 295
Object op codes
Op code Description of op code Location
0x80 Ellipse page 295
0x81 Polygon page 295
0x82 Polyline page 296
0x83 Rectangle page 296
0x84 Rounded rectangle page 296
0x85 Arc page 297
0x86 Framelmage graphic imported within this graphic page 297
0x87 Beginning of text line page 298
0x88 Text in text line page 298
0x89 End of text line page 299
0x8A Beginning of clipping rectangle page 299
0x8B End of clipping rectangle page 299
0x8C FrameVector graphic imported within this graphic page 299

Data types used in specifications

The following table lists the data types used for the specifications in this appendix.

Type Definition

byte unsigned 8-bit integer
short unsigned 16-bit integer
long signed 32-bit integer

unsigned long

unsigned 32-bit integer

metric signed 32-bit, fixed point; the first 16 bits represent the digits preceding the decimal, the last 16 bits repre-
sent the digits following the decimal

string string of bytes in UTF-8 encoding

point 2 metrics interpreted as the position of the point in x and y coordinates

286

ADOBE FRAMEMAKER
MIF Reference

Type Definition

rectangle 4 metrics interpreted as the position of the rectangle in x and y coordinates and the size of the rectangle
in width and height

All integer values are stored in big endian order.

The x and y coordinates are relative to the rectangle bounding the vector graphics. The origin of the coordinate

system is the upper left corner of this rectangle.

- . . o . .
For the specifications of angles, positive values are measured clockwise from 0~ (the x-axis), and negative values are

measured counterclockwise.

Specifications of definition op codes

This section describes each definition op code. Op codes are listed by number and description. The op code number

is shown in parentheses.

Version number (0x01)

Specification by data type:

Byte

Description of data:

Bits 7-4: major version number

Bits 3-0: minor version number

Size of data in bytes:

1

Example: 0100000001 50
representing version 5.0
Note: This must be the first op code for a FrameVector graphic.

Bounding rectangle (0x02)

Specification by data type:

Metric, metric, metric, metric

Description of data:

Position of graphic (metric, metric)

Width of graphic (metric)

Height of graphic (metric)

Size of data in bytes:

16

Example:

02 00000010 00000000 00000000 020A0000 00BD000O
for a graphic with the following specifications:

x position = 0 points (0000)

y position = 0 points (0000)

width = 522 points (020A)

height = 189 points (00BD)

Note:

This must be the second op code for a FrameVector graphic.

CMYK color definition (0x03)

Specification by data type:

String, metric, metric, metric, metric

287

ADOBE FRAMEMAKER
MIF Reference

Description of data:

Name of color tag (string)

Percentages of cyan, magenta, yellow, and black (metric, metric, metric, metric)

Size of data in bytes:

Variable

Example:

03 0000001B 00 0B 53 61 67 65 20 47 72 65 65 6E 00 00500000 00230000 00320000
00000000

for a color named Sage Green with the following specifications:
cyan = 80% (0050)

magenta = 35% (0023)

yellow = 50% (0032)

black = 0% (0000)

Note:

See "Definition op codes” on page 285 for more information on color definitions.

RGB color definition (0x04)

Specification by data type:

String, metric, metric, metric

Description of data:

Name of color tag (string)

Percentages of red, green, and blue (metric, metric, metric)

Size of data in bytes:

Variable

Example:

03 0000001B 00 0B 53 61 67 65 20 47 72 65 65 6E 00 00280000 00410000 00330000
for a color named Sage Green with the following specifications:

red = 40% (0028)

green = 65% (0041)

blue = 51% (0033)

Note:

See “Definition op codes” on page 285 for more information on color definitions.

End of the vector graphic (0xFF)

Specification by data type: N/A

Description of data: None

Size of data in bytes: 0

Example: FF 00000000

Note: This must be the last op code for a FrameVector graphic.

Specifications of style op codes

This section describes each style op code. Op codes are listed by number and description. The op code number is

shown in parentheses.

Note that these styles remain in place until another style op code resets the style.

Dashed line style (0x06)

Specification by data type:

Short, metric, ..., metric

288

ADOBE FRAMEMAKER
MIF Reference

Description of data:

Number of dash segments (short)

Length of dash segments in points (metric, ..., metric)

Size of data in bytes:

Variable

Default value:

None (solid)

Example: 06 0000000A 0002 00080000 00060000
for a dashed line with the following specifications:
number of dash segments =2
dash segment #1 (line segment) = 8.0 points long
dash segment #2 (gap in dashed line) = 6.0 points long
Arrow style (0x07)

Specification by data type:

Byte, byte, byte, byte, metric, metric

Description of data:

Tip angle in degrees (byte — between 5 and 85 degrees)

Base angle in degrees (byte — between 10 and 175 degrees)

Arrow type (byte — 0:stick, 1:hollow, 2:filled)

Scale the arrow? (byte — 0:no, 1:yes)

Length in points (metric)

Scale factor (metric)

Size of data in bytes:

12

Default value:

default arrow style

Example:

07 0000000C 10 5A 02 00 000C0000 00004000

for an arrow style with the following specifications:
tip angle = 16° (10)

base angle = 90° (5A)

arrow type = filled (02)

arrow scaled? = no (00)

length = 12 points (000C0000)

scale factor = 0.25 (00004000)

Rotation angle (0x20)

Specification by data type:

Metric

Description of data:

Angle in degrees

Size of data in bytes: 4
Default value: 0
Example: 20 00000004 00500000

for the rotation angle of 80°

289

Pen pattern (0x21)

ADOBE FRAMEMAKER
MIF Reference

Specification by data type:

Byte

Description of data:

Index to pen patterns (see “Values for Pen and Fill statements” on page 113)

Size of data in bytes:

1

Default value:

0 (solid)

Example:

2100000001 00

for a solid pen pattern

Fill pattern (0x22)

Specification by data type:

Byte

Description of data:

Index to pen patterns (see “Values for Pen and Fill statements” on page 113)

Size of data in bytes:

1

Default value:

7 (white)

Example:

2200000001 07

for a white fill pattern

Line width (0x23)

Specification by data type:

Metric

Description of data:

Width of line in points

Size of data in bytes: 4
Default value: 1 point
Example: 23 00000004 00008000
for the line width of 0.5 point
Color (0x24)

Specification by data type:

String

Description of data:

Name of color tag

Size of data in bytes:

Variable

Default value:

Black

Example:

24 00000006 00 06 42 6C 61 63 6B 00

for the color Black

Overprint (0x25)

Specification by data type:

Byte

Description of data:

Is the object overprinted? (0: no, 1:yes)

Size of data in bytes:

1

Default value:

0 (no)

290

ADOBE FRAMEMAKER
MIF Reference

Example:

2500000001 00
if not overprinted
2500000001 01

if overprinted

Dashed/solid line (0x26)

Specification by data type:

Byte

Description of data:

Is the line dashed? (0: no, 1:yes)

Size of data in bytes:

1

Default value:

0 (no)

Examples: 26 00000001 00
for a solid line
26 00000001 01
for a dashed line
Note: The style of the dashed line is specified by op code 0x06.
Head cap style (0x27)

Specification by data type:

Byte

Description of data:

Style of head cap or line end (0:arrow, 1:butt, 2:round, 3:square)

Size of data in bytes:

1

Default value:

3 (square)

Example:

27 00000001 00

for arrow style

Tail cap style (0x28)

Specification by data type:

Byte

Description of data:

Style of tail cap or line end (0:arrow, 1:butt, 2:round, 3:square)

Size of data in bytes:

1

Default value:

3 (square)

Example:

2800000001 00

for arrow style

Smoothed (0x29)

Specification by data type:

Byte

Description of data:

Is the object smoothed? (0: no, 1:yes)

Size of data in bytes:

1

Default value:

0 (no)

291

ADOBE FRAMEMAKER

Example: 2900000001 00
for an unsmoothed object
2900000001 01
for a smoothed object
Font name (0x2A)

Specification by data type:

Byte, string, string, string (some strings not used, depending on flag)

Description of data:

Flag indicating which names are used to identify the font (byte — 0:family name, 1:family
and PostScript name, 2:family and platform name, 3:all three names)

Family name (string)

PostScript name (string)

Platform name (string)

Size of data in bytes:

Variable

Default value:

default font name

Example:

2A 0000000A 00 00 08 43 6F 7572 69 65 72 00

for a font specified by the family name Courier

Font size (0x2B)

Specification by data type:

Metric

Description of data:

Point size of font

Size of data in bytes:

4

Default value:

default font size

Example:

2B 00000004 000C0000

for a 12 point font

Font style (0x2C)

Specification by data type:

Unsigned long

Description of data:

Described by 14 bits, where bit 0 is the least significant bit:

Bit 0: bold (equivalent to setting the font weight to bold)

Bit 1: italic (equivalent to setting the font angle to italic)

Bits 2-4: underline style — 0:no underline, 1:single, 2:double, 3:numeric (bit 4 is not
currently used)

Bit 5: overline

Bit 6: strikethrough

Bit 7: superscript

Bit 8: subscript

Bit 9: outline

MIF Reference

292

ADOBE FRAMEMAKER
MIF Reference

Bit 10: shadow

Bit 11: pair kern

Bits 12-13: case — 0O:as is, 1:small caps, 2:lower case, 3:upper case

Size of data in bytes:

4

Default value:

default font style

Example:

2C 00000004 00000043

for a font with bold, italic, and strikethrough styles

Font color (0x2D)

Specification by data type:

String

Description of data:

Name of color tag

Size of data in bytes:

Variable

Default value:

Black

Example:

03 0000001B 00 0B 53 61 67 65 20 47 72 65 65 6E 00

for a font in the color Sage Green

Font weight (0x2E)

Specification by data type:

String

Description of data:

Name of font weight type (uses the same values as the MIF HYgk1 j v statement)

Size of data in bytes:

Variable

Default value:

default font weight

Example:

2E 00000008 00 08 52 65 67 75 6C 61 72 00

for the font weight Regular

Font angle (0x2F)

Specification by data type:

String

Description of data:

Name of font angle type (uses the same values as the MIF HCping statement)

Size of data in bytes:

Variable

Default value:

default font angle

Example:

2F 00000008 00 08 52 65 67 75 6C 61 72 00

for the font angle Regular

Font variation (0x30)

Specification by data type:

String

Description of data:

Name of font variation type (uses the same values as the MIF HXct statement)

Size of data in bytes:

Variable

Default value:

default font variation

293

ADOBE FRAMEMAKER

Example:

3000000008 00 08 52 6567 75 6C 61 72 00

for the font variation Regular

Font horizontal kerning (0x31)

Specification by data type:

Metric

Description of data:

Horizontal kerning in percentage on an em (a positive value moves characters to the right,
a negative value moves characters to the left)

Size of data in bytes:

4

Default value:

default horizontal kerning

Example:

3100000004 00008000
for a font kerning of 50% of an em to the right (0.50)
3100000004 FFFF8000

for a font kerning of 50% of an em to the left (-0.50)

Font vertical kerning (0x32)

Specification by data type:

Metric

Description of data:

Vertical kerning in percentage of an em (a positive value moves characters downward, a
negative value moves characters upward)

Size of data in bytes:

4

Default value:

default vertical kerning

Example:

3200000004 00008000
for a font kerning of 50% of an em downward (0.50)
3200000004 FFFF8000

for a font kerning of 50% of an em upward (-0.50)

Font word spread value (0x33)

Specification by data type:

Metric

Description of data:

Percentage of spread

Size of data in bytes:

4

Default value:

default word spread

Example:

3300000004 00008000
for a word spread of 50% (0.50)
33 00000004 FFFF8000

for a word spread of -50% (-0.50)

Specifications of object op codes

This section describes each object op code. Op codes are listed by number and description. The op code number is
shown in parentheses.

Ellipse (0x80)

ADOBE FRAMEMAKER
MIF Reference

Specification by data type:

Rectangle

Description of data:

Position and size of ellipse in points

Size of data in bytes:

16

Example:

80 00000010 01320000 00240000 007E0000 007E0000
for an ellipse with the following specifications:

X position = 306 points (0132)

y position = 36 points (0024)

width = 126 points (007E)

height = 126 points (007E)

Polygon (0x81)

Specification by data type:

Long, point, ..., point

Description of data:

Number of points (long)

Position of each point in points (point, ..., point)

Size of data in bytes:

Variable

Example:

8100000010 00000003 01320000 002E0000 01100000 007E0000 01680000 007D0000

for a polygon with the following specifications:
number of points =3

x position of point #1 = 306 points (0132)

y position of point #1 = 46 points (002E)

x position of point #2 = 272 points (0110)

y position of point #2 = 126 points (007E)

x position of point #3 = 360 points (0168)

y position of point #3 = 125 points (007D)

Note:

When smoothed style is on, this object is a closed Bezier curve.

Polyline (0x82)

Specification by data type:

Long, point, ..., point

Description of data:

Number of points (long)

Position of each point in points (point, ..., point)

Size of data in bytes:

Variable

295

ADOBE FRAMEMAKER
MIF Reference

Example:

82 0000000C 00000002 00120000 00360000 00FCO000 003F0000
for a polyline with the following specifications:

number of points = 2 (00000002)

point #1, x position = 18 points (0012)

point #1, y position = 54 points (0036)

point #2, x position = 252 points (00FC)

point #2, y position = 63 points (003F)

Note:

When smoothed style is on, this object becomes a Bezier curve.

Rectangle (0x83)

Specification by data type:

Rectangle

Description of data:

Position and size of rectangle in points

Size of data in bytes:

166

Example:

83 00000010 00670000 004F0000 00130000 003C0000
for a rectangle with the following specifications:

X position = 103 points (0067)

y position = 79 points (004F)

width =19 points (0013)

height = 60 points (003C)

Rounded rectangle (0x84)

Specification by data type:

Metric, rectangle

Description of data:

Radius of corners in points (metric)

Position and size of rectangle in points (rectangle)

Size of data in bytes:

20

Example:

84 00000014 00120000 007E0000 007E0000 00630000 00240000
for a rounded rectangle with the following specifications:

radius of corners = 18 points (0012)

X position = 126 points (007E)

y position = 126 points (007E)

width = 99 points (0063)

height = 36 points (0024)

Arc (0x85)

Specification by data type:

Rectangle, metric, metric

Description of data:

Position and size of arc in points (rectangle)

Start angle in degrees (metric)

296

ADOBE FRAMEMAKER
MIF Reference

values correspond to counterclockwise arcs (metric)

Length of arcin degrees, where positive values correspond to clockwise arcs and negative

Size of data in bytes:

24

Example:

for an arc with the following specifications:
X position = 73 points (0049)

y position = 39 points (0027)

width = 124 points (007C)

height = 140 points (008C)

start angle =0°

arc angle length = 90°

8500000018 00490000 00270000 007C0000 008C0000 00000000 005A0000

Framelmage graphic imported wi

thin this graphic (0x86)

Specification by data type:

Rectangle, byte, bitmap

Description of data:

Position and size of the bounding rectangle in points (rectangle)

Is the object flipped left/right? (byte — 0:no, 1:yes)

Framelmage data (bitmap)

Size of data in bytes:

Variable

Example:

86 00000035 00F20000 00740000 00080000 00080000 00
59A66A95

00000008

00000008

00000001

00000000

00000002

00000000

00000000

80 OE FF

20

X position = 242 points
y position = 116 points
width = 8 points
height = 8 points

flipped left/right = no

for an imported bitmap graphic of a black square with the following specifications:

Note:

The bitmap is scaled to the size of the bounding rectangle.

Beginning of text line (0x87)

Specification by data type:

Point, byte

297

ADOBE FRAMEMAKER
MIF Reference

Description of data:

Baseline origin of the text line in points (point)

Text line alignment (byte — 0O:left, 1:center, 2:right)

Size of data in bytes:

9

Example:

87 00000009 017A0000 002D0000 00

for a text line with the following specifications:
X position = 378 points (017A)

y position = 45 points (002D)

alignment = left

Note:

The specification of the start of a text line begins with op code 87 and can contain combi-
nations of fonts and text. A text line must end with op code 89.

Text in text line (0x88)

Specification by data type:

String

Description of data:

Actual text written in text line

Size of data in bytes:

Variable

Example: 88 00000005 0005 74 65 78 74 00
for the text line “text”
End of text line (0x89)
Specification by data type: N/A
Description of data: None
Size of data in bytes: 0
Example: 89 00000000

Beginning of clipping rectangle (0x8A)

Specification by data type:

Rectangle

Description of data:

Position and size of clipping rectangle in points

Size of data in bytes:

16

Example:

8A 00000010 00670000 004F0000 00130000 003C0000

for a clipping rectangle with the following specifications:

x position = 103 points (0067)
y position = 79 points (004F)
width = 19 points (0013)

height = 60 points (003C)

298

ADOBE FRAMEMAKER

Note:

Clipping rectangles are unique to the FrameVector format. All objects within a clipping
rectangle are drawn to the boundaries of the rectangle. If an object extends beyond this
region, the portion that passes the rectangle boundary is not drawn.

The specification of the start of a clipping rectangle begins with op code 8A and ends with
op code 8B. All objects within the clipping rectangle must be specified between these two
op codes.

End of clipping rectangle (0x8B)

Specification by data type: N/A
Description of data: None

Size of data in bytes: 0

Example: 8B 00000000

FrameVector graphic imported within this graphic (0x8C)

Specification by data type:

Rectangle, byte, vector data

Description of data:

Position and size of the bounding rectangle in points (rectangle)

Is the object flipped left/right? (byte — 0:no, 1:yes)

FrameVector data (vector data)

Size of data in bytes:

Variable

Example:

8C 00000046 00670000 004F0000 00130000 003CO000 00
...(FrameVector data)...

for a FrameVector graphic with the following specifications:
X position = 103 points (0067)

y position = 79 points (004F)

width = 19 points (0013)

height = 60 points (003C)

flipped left/right = no

Note:

The vector graphic is scaled to the size of the bounding rectangle.

Sample FrameVector facet

The sample FrameVector facet in this section describes the following illustration:

FRAMEVECTOR GRAPHIC

This illustration is composed of the following graphic objects:

+ A rectangle with no border and a gray fill

MIF Reference

299

ADOBE FRAMEMAKER
MIF Reference

« A polygon defined by three points, a black border, and no fill
+ A rectangle with a black border and a white fill

+ A text line with the text “FrameVector Graphic” in small caps
« A polyline defined by two points and an arrow style head

« An arc with a black border and no fill

The following sample facet describes this graphic.

=FrameVector

&%V

&<MakerVector6.0>

&\x

&010000000150
&020000001000000000000000000168000000D80000
&230000000400008000

&21000000010F

&24000000080006426C61636B00

&260000000100

&220000000104

&200000000400000000
&8300000010007A00000052000000C0000000190000
&210000000100

&220000000107
&810000001C00000003000E0000004100000029000000710000004C000000410000
&830000001000720000004A000000C0000000190000
&8700000009007B0000005C000000
&2A0000000C00000A\xHelvetica\x00
&2B0000000400090000
&300000000A0008526567756C617200
&2F0000000A0008526567756C617200
&2E0000000A0008526567756C617200
&330000000400008000

&2C0000000400001000
&88000000160014\xFrameVector Graphic\x00
&8900000000
&070000000C10780201000C00000004000
&270000000100
&82000000140000000200720000005500000033000000550000
&22000000010F

&270000000103
&850000001800040000002B0000002F0000002C0000005A0000005A0000
&FF00000000

&\x

=EndInset

The following sections explain the syntax used to describe this facet.

Definition op codes for the FrameVector graphic

The example begins with the ASCII string <MakerVector 6.0>. The *z characters indicate that the data that follows
is in hexadecimal format.

The following lines specify the FrameVector version 6.0 and the size (5" x 3", or 360 points by 216 points) and
position (0,0) of the FrameVector graphic:

&010000000150
&020000001000000000000000000168000000D80000

Since colors are not used in this example, the color op codes are not specified.

300

ADOBE FRAMEMAKER | 301
MIF Reference

Specification of the rectangle shadow

The drop shadow of the rectangle is drawn first, since it appears behind the other graphic objects. The rectangle has
the following specifications:

+ The line width is 0.5 point.

£230000000400008000

« The pen pattern is none (OF).

&21000000010F

+ The color is black.

&24000000080006426C61636B00

« Theline is solid (not dashed).

&260000000100

+ The fill pattern is grey (04).

&220000000104

+ The rotation angle is 0°.

&200000000400000000

« The position of the rectangle is (122 points, 82 points).
&8300000010007A000000520000

+ The size of the rectangle is 192 points by 25 points.
00C0000000190000

Specification of the polygon

The polygon in this example has the following specifications:

« The pen pattern is solid (00).

&210000000100

« The fill pattern is white (07).

&220000000107

« The polygon has three points.

&810000001C00000003

« The positions of the three points are (15 points, 65 points), (41 points, 113 points), and (76 points, 65 points).
000E0000004100000029000000710000004C000000410000

The rest of the styles are inherited from the previous object.

Specification of the rectangle

The white rectangle in this example has the following specifications:
« The position of the rectangle is (114 points, 74pt).
&830000001000720000004A0000

+ The size of the rectangle is 192 points by 25 points.
00C0000000190000

The rest of the styles are inherited from previous objects.

Specification of the text line
The text line in this example has the following specifications:

+ The position of the text line is (123 points, 92 points), and the text line is left-aligned.

&8700000009007B0000005C000000

« The text line uses the Helvetica font.
&2A0000000C00000A\xHelvetica\x00
+ The text line uses a 9-point font.
&2B0000000400090000

+ The font variation is Regular.
&300000000A0008526567756C617200
+ The font angle is Regular.
&2F0000000A0008526567756C617200
+ The font weight is Regular.
&2E0000000A0008526567756C617200
+ The font word spread value is 50%.
&330000000400008000

+ The font style is Small Caps.
&2C0000000400001000

+ The text in the text line is "FrameVector Graphic."
&88000000160014\xFrameVector Graphic\x00
The rest of the styles are inherited from previous objects.

The following record specifies the end of the text line:

&8900000000

Specification of the polyline

The polyline in this example has the following specifications:

« The arrow style has a tip angle of 16° and a base angle of 120°.

&070000000C1078

ADOBE FRAMEMAKER
MIF Reference

+ The arrow style is defined so that the arrow is filled and is scaled as it gets wider. The length of the arrow is 12

points. If the line is widened, the arrow head also is widened by a corresponding factor of 0.25.

0201000C00000004000

+ The style of the head cap of the polyline is arrow.

&270000000100
« The polyline consists of two points.
&820000001400000002

+ The positions of the two points are (114 points, 85 points) and (51 points, 85 points).

00720000005500000033000000550000

The rest of the styles are inherited from previous objects.

Specification of the arc

The arc in this example has the following specifications:

+ The fill pattern of the arc is none (OF).

&22000000010F

+ The style of the head cap of the arc is square.

&270000000103

+ The position of the arc is (4 points, 43 points).

&850000001800040000002B0000

302

+ The size of the arc is 43 points by 40 points.

002F0000002C0000
+ The start angle of the arc is 90°, and the arc angle length is 90°.

005A0000005A0000
The rest of the styles are inherited from previous objects.

Specification of the end of the FrameVector graphic
The following record specifies the end of the FrameVector graphic:

&FF00000000
The *z characters specify the end of data in hexadecimal format.

ADOBE FRAMEMAKER
MIF Reference

303

ADOBE FRAMEMAKER | 1
MIF Reference

Chapter 15: Legal notices

For legal notices, visit the Legal Notices page.

https://helpx.adobe.com/legal/legal-notices.html

	Contents
	Chapter 1: Introduction
	Why use MIF?
	Using this manual
	Style conventions
	Overview of MIF statements
	How MIF statements represent documents
	FrameMaker documents have default objects
	Current state and inheritance
	How FrameMaker identifies MIF files

	MIF statement syntax
	Statement hierarchy
	MIF data items
	Unit values
	Character set in strings
	Device-independent pathnames

	Chapter 2: Using MIF Statements
	Working with MIF files
	Opening and saving MIF files
	Importing MIF files
	Editing MIF files
	MIF file layout

	Creating a simple MIF file for FrameMaker
	Creating and applying paragraph formats
	Creating a paragraph
	Creating a paragraph format
	Adding a Paragraph Catalog
	Applying a paragraph format
	How paragraphs inherit properties
	Tips

	Creating and applying character formats
	Creating and formatting tables
	Creating a table instance
	Adding a table anchor
	Creating a table format
	Adding a Table Catalog
	Applying a table format
	Creating default paragraph formats for new tables
	Tables inherit properties differently
	Tips

	Specifying page layout
	Using the default layout
	Creating a simple page layout
	Creating a single-sided custom layout
	Creating a double-sided custom layout
	Creating a first master page
	Adding headers and footers

	Creating markers
	Creating cross-references
	Creating cross-reference formats
	Inserting the reference source marker
	Inserting the reference point
	How FrameMaker writes cross-references

	Creating variables
	Defining user variables
	Using system variables
	Inserting variables

	Creating conditional text
	Creating and applying condition tags
	Showing and hiding conditional text using Boolean expressions
	How FrameMaker writes a conditional document

	Creating filters
	Including template files
	Creating the template
	Editing the MIF file

	Setting View Only document options
	Changing the document window
	Using active cross-references
	Disabling commands

	Applications of MIF
	Sharing files with earlier versions
	Modifying documents
	Writing filters
	Database publishing

	Debugging MIF files
	Other application tools
	Where to go from here

	Chapter 3: MIF Document Statements
	MIF file layout
	MIFFile statement
	Comment statement

	Macro statements
	define statement
	include statement

	Track edited text
	Conditional text
	ConditionCatalog statement
	Condition statement
	Conditional and Unconditional statements
	System generated colors

	Boolean expressions
	BoolCondCatalog statement
	BoolCond statement

	Filter By Attribute
	DefAttrValuesCatalog statement
	DefAttrValues statement
	AttrCondExprCatalog statement
	AttrCondExpr statement

	Paragraph formats
	PgfCatalog statement
	Pgf statement

	Character formats
	FontCatalog statement
	PgfFont and Font statements

	Object styles
	StyleCatalog statement
	Style statement

	Line numbers
	Tables
	TblCatalog statement
	TblFormat statement
	Tbls statement
	Tbl statement
	Row statement
	Cell statement
	RulingCatalog statement
	Ruling statement

	Color
	ColorCatalog statement
	Color statement
	Views statement
	View statement

	Variables
	VariableFormats and VariableFormat statements

	Cross-references
	XRefFormats and XRefFormat statements

	Global document properties
	Document statement
	BookComponent statement
	InitialAutoNums statement
	Dictionary statement
	Dictionary preferences

	Pages
	Page statement

	Mini TOC
	InlineComponentsInfo statement
	InlineComponentInfo statement

	Graphic objects and graphic frames
	Object positioning
	Generic object statements
	AFrames statement
	Arc statement
	ArrowStyle statement
	Ellipse statement
	Frame statement
	Group statement
	ImportObject statement
	Math statement
	Polygon statement
	PolyLine statement
	Rectangle statement
	RoundRect statement
	TextLine statement
	TextRect statement

	Text flows
	TextFlow statement
	Notes statement
	Para statement
	ParaLine statement
	Char statement
	MarkerTypeCatalog statement
	Marker statement
	XRef statement

	Text insets (text imported by reference)
	TextInset statement
	TiApiClient statement
	TiFlow statement
	TiText statement
	TiTextTable statement

	Chapter 4: MIF Book File Statements
	MIF book file overview
	MIF book file identification line
	Book statements
	BWindowRect statement
	PDF statements
	XML book statements
	View only book statements
	BDisplayText statement
	BookComponent statement
	BookXRef statement
	BookUpdateReferences statement
	WEBDAV statements

	Chapter 5: MIF Statements for Structured Documents and Books
	Structural element definitions
	ElementDefCatalog statement
	ElementDef statement

	Attribute definitions
	EDAttrDef statement

	Format rules
	EDTextFormatRules statement
	EDObjectFormatRules statement
	EDPrefixRules statement
	EDSuffixRules statement
	EDStartElementRules statement
	EDEndElementRules statement
	ContextFormatRule statement
	LevelFormatRule statement
	If, ElseIf, and Else statements

	Format change lists
	FmtChangeListCatalog statement
	FmtChangeList statement

	Elements
	ElementBegin and ElementEnd statements
	PrefixEnd and SuffixBegin statements

	Banner text
	Filter By Attribute
	DefAttrValuesCatalog and AttrCondExprCatalog statements

	XML data for structured documents
	Document and book statements

	Preference settings for structured documents
	Document statement

	Text in structured documents
	TextLine statement
	ParaLine statement

	Structured book statements
	ElementDefCatalog statement
	BookSettings statement
	BookElements statement

	MIF Messages

	Chapter 6: MIF Equation Statements
	MathML statement
	Document statement
	DMathCatalog statement

	Math statement
	MathFullForm statement
	A sample MathFullForm statement
	MathFullForm statement syntax
	Atomic expressions
	Operator expressions
	Sample equations

	Chapter 7: MIF Asian Text Processing Statements
	Asian Character Encoding
	MIFEncoding statement for Japanese
	MIFEncoding statement for Chinese
	MIFEncoding statement for Korean

	Combined Fonts
	CombinedFontCatalog statement
	PgfFont or Font statement

	Kumihan Tables
	Understanding Kumihan tables
	Writing Kumihan tables as MIF
	Specifying Kumihan tables in MIF
	KumihanCatalog statement
	Kumihan statement
	CharClass statement
	SqueezeTable statement
	SpreadTable statement
	LineBreakTable statement
	ExtraSpaceTable statement

	Rubi text
	Document statement

	Chapter 8: Examples
	Text example
	Bar chart example
	Pie chart example
	Custom dashed lines
	Table examples
	Creating an entire table
	Updating several values in a table

	Database publishing
	Creating several tables
	Creating anchored frames

	Chapter 9: MIF Messages
	General form for MIF messages
	List of MIF messages

	Chapter 10: MIF Compatibility
	Changes between version 12.0 and 2015 release
	Language support
	Numbering style
	Document direction
	Text flow direction
	Paragraph direction
	Table direction
	Text line Direction
	Anchored frame direction
	Element direction
	MathML style
	Mini TOC
	Conditional table columns

	Changes between version 11.0 and 12.0
	MathML
	Paragraph box properties
	Hotspot
	Object Style
	Control Multimedia with links
	Line Numbers
	Dictionary Preferences

	Changes between version 9.0 and 10.0
	Text background color
	Track text edits
	Descriptive tags
	Custom catalogs

	MIF syntax changes in FrameMaker 8
	Filter By Attribute
	Track edited text
	Boolean condition expression
	New Book and Document related WebDAV statements
	Import graphics from HTTP file paths

	Changes between version 6.0 and 7.0
	Changes to structured PDF
	General XML support
	XML Namespaces
	XMP job control packets

	Changes between version 5.5 and 6.0
	Saving documents and books as PDF
	Books
	Book Components
	Documents

	Changes between version 5 and 5.5
	Asian text processing
	MIF file layout
	Control statements
	Document statements
	Color statements
	Paragraph and Character statements
	Text inset statements
	Marker statements
	Graphic object statements
	Structured element definition statements

	Changes between versions 4 and 5
	Changes to existing MIF statements

	Changes between versions 3 and 4
	4.00 top-level MIF statements
	Changes to 3.00 MIF statements

	Chapter 11: Facet Formats for Graphics
	Facets for imported graphics
	Basic facet format
	Facet name
	Data type
	Facet data

	Graphic insets (UNIX versions)
	External graphic insets
	Internal graphic insets
	Application-specific facets
	Example of graphic inset file

	General rules for reading and writing facets

	Chapter 12: EPSI Facet Format
	Specification of an EPSI facet
	Example of an EPSI facet

	Chapter 13: FrameImage Facet Format
	Specification of a FrameImage facet
	Specification of FrameImage data
	Header
	Color map
	Data describing the graphic

	Differences between monochrome and color
	Sample unencoded FrameImage facet
	Sample encoded FrameImage facet

	Chapter 14: FrameVector Facet Format
	Specification of a FrameVector facet
	Specification of FrameVector data
	Types and listing of op codes
	Data types used in specifications
	Specifications of definition op codes
	Specifications of style op codes
	Specifications of object op codes

	Sample FrameVector facet
	Definition op codes for the FrameVector graphic
	Specification of the rectangle shadow
	Specification of the polygon
	Specification of the rectangle
	Specification of the text line
	Specification of the polyline
	Specification of the arc
	Specification of the end of the FrameVector graphic

	Chapter 15: Legal notices

