ADOBE DREAMWEAVER CS4
API Reference

Al

Adobe



© 2008 Adobe Systems Incorporated. All rights reserved.
Adobe® Dreamweaver® CS4 API Reference for Windows” and Mac OS

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished under license and
may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part of this guide may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe
Systems Incorporated. Please note that the content in this guide is protected under copyright law even if it is not distributed with software that includes an end
user license agreement. The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear
in the informational content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized
incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required
from the copyright owner. Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any
actual organization.

Adobe, the Adobe logo, ColdFusion, Dreamweaver, Fireworks, Flash, Photoshop, and Shockwave are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States.

Java is a trademark or registered trademark of Sun Microsystems, Inc. in the United States and other countries. Windows is either a registered trademark or a
trademark of Microsoft Corporation in the United States and/or other countries. Macintosh and Mac OS are trademarks of Apple Inc., registered in the United
States and other countries. All other trademarks are the property of their respective owners.

This work is licensed under the Creative Commons Attribution Non-Commercial 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc/3.0/us/
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

The Graphics Interchange Format © is the Copyright property of CompuServe Incorporated.
GIF is a Service Mark property of CompuServe Incorporated.

MPEG Layer-3 audio compression technology licensed by Fraunhofer IIS and Thomson Multimedia (http://www.mp3licensing.com). You cannot use the MP3
compressed audio within the Software for real time or live broadcasts. If you require an MP3 decoder for real time or live broadcasts, you are responsible for
obtaining this MP3 technology license.

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com)
Video in Flash Player is powered by On2 TrueMotion video technology. © 1992-2005 On2 Technologies, Inc. All Rights Reserved. http://www.on2.com.

This product includes software developed by the OpenSymphony Group (http://www.opensymphony.com/)
Spark
Sorenson Spark™ video compression and decompression technology licensed from Sorenson Media, Inc.
The Proximity/Merriam-Webster Inc./Franklin Electronic Publishers Inc. Database © 1990/1994 Merriam-Webster Inc./Franklin Electronic Publishers Inc., ©
1994. All Rights Reserved. Proximity Technology Inc. The Proximity/Merriam-Webster Inc./Franklin Electronic Publishers Inc. © 1990 Williams Collins Sons

& Co. Ltd. © 1997 - All rights reserved Proximity Technology Inc. © 1990 Williams Collins Sons & Co. Ltd. © 1990 - All rights reserved Proximity Technology
Inc. © Oxford University Press © 2000. All rights reserved Proximity Technology Inc. © 1990 IDE a.s. © 1990 - All rights reserved Proximity Technology Inc.

This product includes software developed by Fourthought, Inc. (http://www.fourthought.com).
This product includes software developed by CollabNet (http://www.Collab.Net/).
Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of
“Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202,
as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and
Commercial Computer Software Documentation are being licensed to U.S. Government end users (a) only as Commercial Items and (b) with only those rights
as are granted to all other end users pursuant to the terms and conditions herein. Unpublishedrights reserved under the copyright laws of the United States.
Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable
equal opportunity laws including, if appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment
Assistance Act of 1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60,
60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.


http://creativecommons.org/licenses/by-nc/3.0/us/
http://www.apache.org/
http://www.mp3licensing.com
http://www.nellymoser.com
http://www.on2.com
http://www.opensymphony.com/
http://www.fourthought.com
http://www.Collab.Net/

Contents

Chapter 1: Introduction

About extensions ..........c.ieiiiiiin..n.
Extending Dreamweaver ................
Additional resources for extension writers
New functions in Dreamweaver C54  .....
Removed functions .....................

Conventions used in thisguide ..........

Chapter 2: The file I/0 API
About configuration folders .............
About thefile I/OAPI ....................

Chapter 3: The HTTP API
How the HTTP APIworks  ................
The HTTP APl ..o

Chapter 4: The Design Notes API

How Design Noteswork — .................
The Design Notes JavaScript APl .........
The Design Notes CAPl  ..................

Chapter 5: Fireworks integration
The FWLaunch APl .............ooatee

Chapter 6: Flash integration
The Flash Objects APl ....................

Flash panels and dialogs functions .......

Chapter 7: Photoshop integration
How Smart Objectswork —................
The Smart Objects APl ...................

Chapter 8: The database API
How database API functionswork ........
Database connection functions ..........

Database access functions ...............

Chapter 9: The database connectivity API
Select a new connectiontype ............
Develop a new connection type .........
The Connection APl .............couueen
The generated includefile ...............

The definition file for your connection type



DREAMWEAVER CS4 API REFERENCE |iv

Contents
Chapter 10: The source control integration API
How source control integration with Dreamweaver WOrkS .. ... i ettt ieenee 88
Adding source control system fUNCHIONAlILY .. ...ie ittt e e e 89
The source control integration APl required fUNCHIONS ... ettt e et et e e e e eeeeeens 89
The source control integration APl optional fUNCLIONS ... .. .ttt ieieenas 94
ENaD S e 102
Chapter 11: Application
External application fUNCLIONS ... oo e s 108
Global application fFUNCLIONS .. ...ttt et ettt es 116
Bridge communication fUNCLIONS . ..o . ittt ettt et e ettt e e e et e e et 121
Chapter 12: Workspace
L L o VA 0T T« e T3 123
L0 T1=Y ) o) Tt {113 Vet o 3 T3 131
Keyboard fUNCLIONS ... e s 133
=T TV {7 Yt o o - 140
ResUlts WINAOW fUNCLIONS ..ottt et e ettt e e et et e e et 142
LYo e L 0T g Tt e o L= 154
JLe o] o= T ¥ 3T o oL 173
WINAOW fUNCHIONS oottt et e e e e ettt e e e e ettt es 178
INformation bar fUNCLIONS .. ...t e ettt ettt e e e 189
Related files fUNCHIONS ...ttt ettt e e e e et e ettt ettt e et e e e 190
Vertical SPlit VIEW fUNCHIONS ..ottt ettt e et e e e e e et e e e e eenns 191
(@Yo [N el =T o1-Y N { U] Vet u o o V-3 193
Code View t001bar fUNCHIONS ...ttt ettt e e ettt e e ettt 199
Lo o} o ¥ T ot o 3 T3 203
Chapter 13: Site
[3=T e oY o {173 et o) o - 205
Y2 0 ot T o - 206
Chapter 14: Document
CONVETSION fUNCLIONS .ttt ettt ettt e e e ettt et e e e e e e e et e e et e e et et e e e e eiaeeneens 238
Command FUNCHIONS ..ot ettt et ettt 239
File manipulation fUNCHIONS ... ettt e et e e e e e et 240
Global docUMENT FUNCHIONS ...ttt ettt e e ettt e et e e et e eaees 255
o 1 8 Tt o) o -3 R 263
Selection fUNCHLIONS oottt e ettt et 266
StriNg MaNipPUlAtioN fUNCLIONS L. L. et e e e e e e et 271

Translation functions
XSLT functions

Chapter 15: Page content

ASSELS PANEl fUNCHIONS .ttt ettt ettt et e et e et e e e e e e e e
BehaVior fUNCHIONS .ottt e e e e e e e e e e e
Clipboard functions

Library and template functions



DREAMWEAVER CS4 API REFERENCE |V

Contents
SNIPPELS PANEl fUNCHIONS oottt e ettt et e ettt e et e e e 305
Spry widget editing fUNCHIONS ..ottt et et e e e e e e e 309
INSerting SPry Widgets fUNCHIONS ... ..ttt et ettt et ettt e e et e e e et e e e e e et e e e e eeens 311
Browser compatibility check fUNCLIONS .. ... oo et e e et 314
Chapter 16: Dynamic documents
SerVEr COMPONENTS FUNCHIONS ottt ettt et et et e e e e e e e e e e e e e e e e et e e ee e eeeens 322
(DY = 1o LU /8 (] et 4o o -1 323
Extension Data Manager fUNCLIONS .. ...ttt ettt e e e e ettt e 324
LIVE data fUNCHIONS .ottt ettt e et e et e e e e e e e e e e e e e e e e 326
LIVE VIBW fUNCEIONS .ottt ittt ettt et e e e et et ettt et e e e e et et e et e e e e e et 331
Server behavior fUNCHIONS .. . et e e e e e e e e e e 336
Server MOl FUNCHIONS oottt et e e e e e e e e e e e e e 338
Chapter 17: Design
@IS Yo T 1Tt o o T3 345
Frame and frameset fUNCEIONS .. ..o ettt ettt e e e ettt e et e e 364
Layer and image Map fUNCHIONS ... ittt ettt ettt et e et e et e e e et e 366
Layout enVIironNmMENT fUNCLIONS ...ttt ettt ettt et e ettt e e e e e et et et e e e et ie e e eee e 368
LayoUt VIEW fUNCHIONS .ottt ettt ettt e et e e e e e e e et e e e et e e e ettt e e e e e e e e 374
4o Yo o 08 1113 Y 1o T2 13 379
GUIdE fUNCHIONS AN PrOPEITIES o\ttt ettt ettt et et et et et e e et e e e e e e et e e e e e e e e e e e e eeeens 383
B o] LYo L4 T Yo R {1 et T -3 390
Chapter 18: Code
(oY = {11 Vel o3 Y3 400
Find and replace fUNCHIONS .. .o ettt ettt ettt 404
General editiNg fUNCHIONS ..ttt e e e e e e e e e e e e e 410
o 4 o 0t T o 425
(@ TUT T =Tl =T [ oG {1 et 4o -3 426
[@(oTe LR 1LY T o ot T o - 428
Tag editor and tag library fUNCHIONS .. .. ittt e e et 445
Chapter 19: Enablers
AT o1 1= 0 gVt o o T3 450



Chapter 1: Introduction

The Adobe Dreamweaver CS4 API Reference describes the application programming interfaces (APIs). The APIs let
you perform various supporting tasks when developing Adobe® Dreamweaver® CS4 extensions and adding program
code to your Dreamweaver web pages. The APIs include the main JavaScript API which provides access to most of the
core functionalities of Dreamweaver. Core functionalities of Dreamweaver means generally anything that can be done
with a menu, and more. It also includes various utility APIs for performing such common tasks as reading and writing
files, transferring information with HTTP, and communicating with Fireworks and Flash.

The extensive JavaScript API lets you perform a diverse set of smaller tasks. A user would perform many of these tasks
when creating or editing Dreamweaver documents. These API functions are grouped by the parts of the Dreamweaver
user interface that they affect. For example, the JavaScript API includes Workspace functions, Document functions,
Design functions, and so on. The API functions let you perform some of the following tasks and much more in
addition to these tasks:

+ Opening a new document
+  Getting or setting a font size
« Finding the occurrence of a search string in HTML code

+ Making a toolbar visible

About extensions

This book assumes that you are familiar with Dreamweaver, HTML, XML, JavaScript programming and, if applicable,
C programming. If you are writing extensions for building web applications, you should also be familiar with server-
side scripting on at least one platform, such as Active Server Pages (ASP), ASP.NET, PHP: Hypertext Preprocessor
(PHP), Adobe ColdFusion, or Java Server Pages (JSP).

Extending Dreamweaver

To learn about the Dreamweaver framework and the API that enables you to build Dreamweaver extensions, see
Extending Dreamweaver. Extending Dreamweaver describes the API functions that Dreamweaver calls to implement
the objects, menus, floating panels, server behaviors, and so on, that comprise the various features of Dreamweaver.
You can use those APIs to add objects, menus, floating panels, or other features to the product. Extending
Dreamweaver also explains how to customize Dreamweaver by editing and adding tags to various HTML and XML
files to add menu items or document types, and so on.

Additional resources for extension writers

To communicate with other developers who are involved in writing extensions, join the Dreamweaver extensibility
news group. You can access the website for this news group at
http://www.adobe.com/cfusion/webforums/forum/categories.cfm?forumid=12&catid=190.


http://www.adobe.com/cfusion/webforums/forum/categories.cfm?forumid=12&catid=190

DREAMWEAVER CS4 API REFERENCE | 2
Introduction

New functions in Dreamweaver CS4

The following new functions are added to the Dreamweaver CS4 JavaScript APIL The headings designate the chapters
and sections that contain the new functions:

Dynamic documents

The following functions are added to the Dynamic documents chapter.

Live view functions
« “dom.getDesignViewMode()” on page 331

+ “dom.setDesignViewMode()” on page 331

+ “dom.getLiveViewUsingServer()” on page 332

« “dom.setLiveViewUsingServer()” on page 332

+ “dom.getLiveViewDefaultsToUsingServer()” on page 332

+ “dom.getLiveViewDependentsUsingServer()” on page 333
« “dom.setLiveViewDependentsUsingServer()” on page 333
+ “dom.showLiveViewParamatersDialog()” on page 333

+ “dom.browser.getSelection()” on page 334

« “dom.browser.getStatusText()” on page 334

+ “dom.browser.getWindow()” on page 334

+ “browserEle.loadHTML()” on page 335

Photoshop integration

The following new functions are added to the Photoshop integration chapter.

Smart Objects API
« “dreamweaver.assetPalette.canUpdateSmartObjectFromOriginal()” on page 51

+ “dreamweaver.assetPalette.updateSmartObjectFromOriginal()” on page 51

« “dreamweaver.getSmartObjectState()” on page 52

+  “dreamweaver.getSmartObjectOriginal Width()” on page 52

« “dreamweaver.getlmageWidth()” on page 53

+ “dreamweaver.getimageHeight()” on page 53

« “dreamweaver.resolveOriginal AssetFiletURLToAbsoluteLocalFilePath()” on page 53
+ “dreamweaver.canUpdateSmartObjectFromOriginal()” on page 54

« “dreamweaver.updateSmartObjectFromOriginal()” on page 54

Workspace

The following new functions are added to the Workspace chapter.



Related files functions

+ “dreamweaver.getRelatedFiles()” on page 190
+ “dreamweaver.openRelatedFile()” on page 190

+ “dreamweaver.getActiveRelatedFilePath()” on page 190

Information bar functions

+ “dom.showInfoBar()” on page 189
+ “dom.hideInfoBar()” on page 189

Vertical Split view functions
« “dreamweaver.getSplitViewOrientation()” on page 191

+ “dreamweaver.setSplitViewOrientation()” on page 191
« “dreamweaver.getPrimaryView()” on page 192
+ “dreamweaver.setPrimaryView()” on page 192

« “dom.isRelatedFileViewOpen()” on page 193

Toolbar functions

+ “dreamweaver.reloadToolbars()” on page 178

Flash integration

The following new functions are added to the Flash integration chapter.

Flash panels and dialogs functions
« “dreamweaver.flash.newControl()” on page 43

+ “dreamweaver.flash.requestStateChange()” on page 45
+ “dreamweaver.flash.controlEvent()” on page 46

« “dreamweaver.flash.setMenu()” on page 47

+  “dreamweaver.flash.evalScript()” on page 49

+ “dreamweaver.flash.executeScript()” on page 49

« “dreamweaver.flash.controlExists” on page 50

Site
The following new functions are added to the Sites chapter.

« “site.getLocalRootURL()” on page 224
« “site.getSiteRootForURL()” on page 225

Document

The following new functions are added to the Document chapter.

+  “dom.getSelectorsDefinedInStylesheet()” on page 267

« “dreamweaver.absolutetURLToDocRelative()” on page 263

DREAMWEAVER CS4 API REFERENCE | 3
Introduction



Code

The following new functions are added to the Code chapter.

+ “dom.source.doCodeNavItem()” on page 433

Removed functions

The following functions are removed from the Dreamweaver CS4 API because the associated features are removed

from the product.

site.setShowPageTitles()

site.removeLink()

site.canShowPageTitles()

site.invertSelection()

site.getShowPageTitles()

site.selectHomePage()

site.setShowHiddenFiles()

site.newHomePage()

site.getShowHiddenFiles()

site.setLayout()

site.setShowDependents()

dom.createLayoutCell()

site.getShowDependents()

dom.createlLayoutTable()

site.canFindLinkSource()

dom.setColumnAutostretch()

site.findLinkSource()

dom.isColumnAutostretch()

site.viewAsRoot()

dom.doesColumnHaveSpacer()

site.setAsHomePage()

dom.doesGroupHaveSpacer()

site.canSetLayout()

dom.addSpacerToColumn()

site.canRemoveLink()

dom.removeSpacerFromColumn()

site.canChangeLink()

dom.removeAllSpacers()

site.canAddLink()

dom.makeCellWidthsConsistent()

site.addLinkToNewFile()

dom.insertFlashElement()

site.getLinkVisibility()

dreamweaver.exportCSS() (deprecated in CS3)

site.setLinkVisibility()

dreamweaver.canExportCSS() (deprecated in CS3)

site.saveAsimage()

dreamweaver.libraryPalette.deleteSelectedltem()
(deprecated in Dreamweaver 4)

dreamweaver.libraryPalette.get
Selectedltem() (deprecated in
Dreamweaver 4)

dreamweaver.libraryPalette.newFromDocument()
(deprecated in Dreamweaver 4)

dreamweaver.libraryPalette.recr
eateFromDocument()
(deprecated in Dreamweaver 4)

dreamweaver.libraryPalette.renameSelecteditem()
(deprecated in Dreamweaver 4)

dreamweaver.templatePalette.d
eleteSelectedTemplate()
(deprecated in Dreamweaver 4)

dreamweaver.templatePalette.getSelectedTempla
te() (deprecated in Dreamweaver 4)

DREAMWEAVER CS4 API REFERENCE | 4




dreamweaver.templatePalette.r
enameSelectedTemplate()
(deprecated in Dreamweaver 4)

dreamweaver.getBehaviorEvent() (deprecated in
Dreamweaver 2)

dom.clipPasteText()
(deprecated in Dreamweaver 8)

dreamweaver.popupCommand() (deprecated in
Dreamweaver 3)

dom.serverModel.getServerLan
guage() (deprecated in
Dreamweaver MX)

dom.serverModel.getServerExtension()
(deprecated in Dreamweaver MX)

dreamweaver.getObjectRefs()
(deprecated in Dreamweaver 3)

dreamweaver.getObjectTags() (deprecated in
Dreamweaver 3)

dreamweaver.getSelection()
(deprecated in Dreamweaver 3)

dreamweaver.nodeToOffsets() (deprecated in
Dreamweaver 3)

dreamweaver.offsetsToNode()
(deprecated in Dreamweaver 3)

dreamweaver.setSelection() (deprecated in
Dreamweaver 3)

dreamweaver.exportEditableRe
gionsAsXML() (deprecated in
Dreamweaver MX)

dreamweaver.cssStylePalette.getSelectedTarget()
(deprecated in Dreamweaver MX)

MMDB.getDriverUrlTemplateLis
t() (deprecated in Dreamweaver
MX)

DREAMWEAVER CS4 API REFERENCE | 5
Introduction

For more information on these deprecated APIs, see Dreamweaver API Reference for CS3.

Conventions used in this guide

Typographical conventions

The following typographical conventions are used in this guide:

+ Code font indicates code fragments and API literals, including class names, method names, function names, type
names, scripts, SQL statements, and both HTML and XML tag and attribute names.

+ Italic code font indicates replaceable items in code.

+ The continuation symbol (- ) indicates that a long line of code has been broken across two or more lines. Due to
margin limits in this book’s format, what is otherwise a continuous line of code must be split. When copying the

lines of code, eliminate the continuation symbol and type the lines as one line.

 Curly braces ({}) that surround a function argument indicate that the argument is optional.

« Function names that have the prefix dreamweaver. funcname can be abbreviated to dw. funcname when you are
writing code. This manual uses the full dreamweaver. prefix when defining the function and in the index. Many
examples use the dw. prefix, however.

Naming conventions

The following naming conventions are used in this guide:

+ You—the developer who is responsible for writing extensions

+ The user—the person using Dreamweaver


http://livedocs.adobe.com/en_US/Dreamweaver/9.0_API/help.html

Chapter 2: The file I/O API

Adobe® Dreamweaver® CS4 includes a C shared library called DWfile. The DWfile lets authors of objects, commands,
behaviors, data translators, floating panels, and Property inspectors read and write files on the local file system. The
chapter describes the File I/O API and how to use it.

For general information on how C libraries interact with the JavaScript interpreter in Dreamweaver, see “C-Level
Extensibility” in Extending Dreamweaver.

About configuration folders

On Microsoft Windows 2000 and Windows XP, and Mac OS X platforms, users have their own copies of configuration
files. Whenever Dreamweaver writes to a configuration file, Dreamweaver writes it to the user’s Configuration folder.
Similarly, when Dreamweaver reads a configuration file, Dreamweaver searches for it first in the user’s Configuration
folder and then in the Dreamweaver Configuration folder. DWfile functions use the same mechanism. In other words,
if your extension reads or writes a file in the Dreamweaver Configuration folder, your extension also accesses the user’s
Configuration folder. For more information about configuration folders on multiuser platforms, see Extending
Dreamweaver.

About the file I/O API

All functions in the file I/O API are methods of the Dwfile object.

DWfile.copy()

Availability
Dreamweaver 3.

Description
This function copies the specified file to a new location.

Arguments

originalURL, copyURL

+ The originalURL argument, which is expressed as a file:// URL, is the file you want to copy.

« The copyURL argument, which is expressed as a file:// URL, is the location where you want to save the copied file.

Returns
A Boolean value: true if the copy succeeds; £alse otherwise.

Example
The following code copies a file called myconfig.cfg to myconfig_backup.cfg:



DREAMWEAVER CS4 API REFERENCE | 7
Thefile1/0 API

var fileURL = "file:///c|/Config/myconfig.cfg";
var newURL ="file:///c|/Config/myconfig backup.cfg";
DWfile.copy (fileURL, newURL) ;

DWfile.createFolder()

Availability
Dreamweaver 2.

Description
This function creates a folder at the specified location.

Arguments
folderURL

+ The folderURL argument, which is expressed as a file:// URL, is the location of the folder you want to create.

Returns
A Boolean value: true if the folder is created successfully; false otherwise.

Example
The following code tries to create a folder called tempFolder at the top level of the C drive and displays an alert box
that indicates whether the operation was successful:
var folderURL = "file:///c|/tempFolder";
if (DWfile.createFolder (folderURL)) {
alert ("Created " + folderURL) ;

}else{
alert ("Unable to create " + folderURL) ;

}

DWfile.exists()

Availability
Dreamweaver 2.

Description
This function tests for the existence of the specified file.

Arguments
fileURL

+ The fileURL argument, which is expressed as a file:// URL, is the requested file.

Returns
A Boolean value: true if the file exists; false otherwise.

Example
The following code checks for the mydata.txt file and displays an alert message that tells the user whether the file exists:



DREAMWEAVER CS4 API REFERENCE | 8
Thefile1/0 API

var fileURL = "file:///c|/temp/mydata.txt";
if (DWfile.exists (fileURL)) {

alert (£f11eURL + " exists!");
telse(

alert (fileURL + " does not exist.");

}

DWfile.getAttributes()

Availability
Dreamweaver 2.

Description
This function gets the attributes of the specified file or folder.

Arguments
fileURL

« The fileURL argument, which is expressed as a file:// URL, is the file or folder for which you want to get attributes.

Returns
A string that represents the attributes of the specified file or folder. If the file or folder does not exist, this function
returns a null value. The following characters in the string represent the attributes:

« Risread only.
 Dis folder.
« His hidden.

+ sis system file or folder.

Example

The following code gets the attributes of the mydata.txt file and displays an alert box if the file is read only:
var £ileURL = "file:///c|/temp/mydata.txt";

var str = DWfile.getAttributes (fileURL) ;

if (str && (str.indexOf ("R") != -1)){
alert (fileURL + " is read only!");

DWfile.getModificationDate()

Availability
Dreamweaver 2.

Description
This function gets the time when the file was last modified.



DREAMWEAVER CS4 API REFERENCE | 9
Thefile1/0 API

Arguments
fileURL

+ The fileURL argument, which is expressed as a file:// URL, is the file for which you are checking the last modified time.

Returns

A string that contains a hexadecimal number that represents the number of time units that have elapsed since some
base time. The exact meaning of time units and base time is platform-dependent; in Windows, for example, a time unit
is 100ns, and the base time is January 1st, 1600.

Example

It’s useful to call the function twice and compare the return values because the value that this function returns is
platform-dependent and is not a recognizable date and time. The following code example gets the modification dates
of filel.txt and file2.txt and displays an alert message that indicates which file is newer:

var filel = "file:///c|/temp/filel.txt";
var file2 = "file:///c|/temp/file2.txt";
var timel = DWfile.getModificationDate (filel) ;
var time2 = DWfile.getModificationDate (file2) ;
if (timel == time2) {
alert ("filel and file2 were saved at the same time") ;
}else if (timel < time2) {
alert ("filel older that file2");
telse({
alert ("filel is newer than file2");

DWfile.getCreationDate()

Availability
Dreamweaver 4.

Description
This function gets the time when the file was created.

Arguments
fileURL

+ The fileURL argument, which is expressed as a file:// URL, is the file for which you are checking the creation time.

Returns

A string that contains a hexadecimal number that represents the number of time units that have elapsed since some
base time. The exact meaning of time units and base time is platform-dependent; in Windows, for example, a time unit
is 100ns, and the base time is January 1st, 1600.

Example
You can call this function and the DWfile.getModificationDate () function on a file to compare the modification
date to the creation date:



DREAMWEAVER CS4 API REFERENCE | 10
Thefile1/0 API

var filel = "file:///c|/temp/filel.txt";
var timel = DWfile.getCreationDate (filel) ;
var time2 = DWfile.getModificationDate (filel) ;
if (timel == time2) {
alert ("filel has not been modified since it was created");
}else if (timel < time2) {
alert ("filel was last modified on " + time2) ;

}

DWfile.getCreationDateObj()

Availability
Dreamweaver MX.

Description
This function gets the JavaScript object that represents the time when the file was created.

Arguments
fileURL

+ The fileURL argument, which is expressed as a file:// URL, is the file for which you are checking the creation time.

Returns
A JavaScript Date object that represents the date and time when the specified file was created.

DWfile.getModificationDateObj()

Availability
Dreamweaver MX.

Description
This function gets the JavaScript Date object that represents the time when the file was last modified.

Arguments
fileURL

« ThefileURL argument, which is expressed as a file:// URL, is the file for which you are checking the time of the most
recent modification.

Returns
A JavaScript Date object that represents the date and time when the specified file was last modified.

DWfile.getSize()

Availability
Dreamweaver MX.



DREAMWEAVER CS4 API REFERENCE | 11
Thefile1/0 API

Description
This function gets the size of a specified file.

Arguments
fileURL

+ The fileURL argument, which is expressed as a file:// URL, is the file for which you are checking the size.

Returns
An integer that represents the actual size, in bytes, of the specified file.

DWfile.listFolder()

Availability
Dreamweaver 2.

Description
This function gets a list of the contents of the specified folder.

Arguments
folderURL, {constraint}

 The folderURL argument is the folder for which you want a contents list, which is expressed as a file:// URL, plus
an optional wildcard file mask. Valid wildcards are asterisks (*), which match one or more characters, and question
marks (?), which match a single character.

+ The constraint argument, if it is supplied, must be either "files" (return only files) or "directories" (return
only folders). If it is omitted, the function returns files and folders.

Returns
An array of strings that represents the contents of the folder.

Example
The following code gets a list of all the text (TXT) files in the C:/temp folder and displays the list in an alert message:

var folderURL = "file:///c|/temp";
var fileMask = "*.txt";
var list = DWfile.listFolder (folderURL + "/" + fileMask, "files");
if (list){
alert (folderURL + " contains: " + list.join("\n"));
}
DWfile.read()
Availability

Dreamweaver 2.

Description
This function reads the contents of the specified file into a string.



DREAMWEAVER CS4 API REFERENCE | 12
Thefile1/0 API

Arguments
fileURL

« The fileURL argument, which is expressed as a file:// URL, is the file you want to read.

Returns

A string that contains the contents of the file or a nu11 value if the read fails.

Example

The following code reads the mydata.txt file and, if it is successful, displays an alert message with the contents of the file:

var £ileURL = "file:///c|/temp/mydata.txt";
var str = DWfile.read (fileURL) ;
if (str)
alert (fileURL + " contains: " + str);
1
DWfile.remove()
Availability

Dreamweaver 3.

Description
This function deletes the specified file.

Arguments
fileURL

+ The fileURL argument, which is expressed as a file:// URL, is the file you want to remove.

Returns
A Boolean value: true value if the operation succeeds; false otherwise.

Example
The following example uses the DWfile.getAttributes () function to determine whether the file is read-only and
the confirm() function to display a Yes/No dialog box to the user:

function deleteFile () {
var delAnyway = false;
var selIndex = document.theForm.menu.selectedIndex;
var selFile = document.theForm.menu.options[selIndex] .value;
if (DWfile.getAttributes(selFile) .indexOf ('R') != -1){
delAnyway = confirm('This file is read-only. Delete anyway?');
if (delAnyway) {
DWfile.remove (selFile) ;

}



DREAMWEAVER CS4 API REFERENCE | 13
Thefile1/0 API

DWfile.setAttributes()

Availability
Dreamweaver MX.

Description
This function sets the system-level attributes of a particular file.

Arguments
fileURL, strAttrs

+ The fileURL argument, which is expressed as a file:// URL, identifies the file for which you are setting the attributes.

« The strAttrs argument specifies the system-level attributes for the file that is identified by the fileURL argument.
The following table describes valid attribute values and their meaning:

Attribute Value Description

R Read only

W Writable (overrides R)
H Hidden

v Visible (overrides H)

Acceptable values for the strattrs string are R, W, H, V, RH, RV, WH, O WV.

You should not use R and w together because they are mutually exclusive. If you combine them, r becomes
meaningless, and the file is set as writable (w). You should not use 1 and v together because they are also mutually
exclusive. If you combine them, H becomes meaningless, and the file is set as visible (v).

If you specify H or v without specifying an R or w read/write attribute, the existing read/write attribute for the file is
not changed. Likewise, if you specify R or w, without specifying an H or v visibility attribute, the existing visibility
attribute for the file is not changed.

Returns
Nothing.

DWfile.write()

Availability
Dreamweaver 2.

Description
This function writes the specified string to the specified file. If the specified file does not yet exist, it is created.

Arguments
fileURL, text, {mode}

+ The f£ileUrL argument, which is expressed as a file://URL, is the file to which you are writing.

Note: If the path contains spaces, this function will not write files.



DREAMWEAVER CS4 API REFERENCE | 14
Thefile1/0 API

+ The text argument indicates the string the function has to write.

+ The mode argument, if it is supplied, must be append. If this argument is omitted, the string overwrites the contents
of the file.

Returns

A Boolean value: true if the string is successfully written to the file; false otherwise.

Example

The following code attempts to write the string xxx to the mydata.txt file and displays an alert message if the write
operation succeeds. It then tries to append the string aaa to the file and displays a second alert if the write operation
succeeds. After executing this script, the mydata.txt file contains the text xxxaaa and nothing else.

var £ileURL = "file:///c|/temp/mydata.txt";
if (DWfile.write(£ileURL, "xxx")) {
alert ("Wrote xxx to " + fileURL) ;
1
if (DWfile.write(fileURL, "aaa", "append")){
alert ("Appended aaa to " + fileURL) ;



Chapter 3: The HTTP API

Extensions are not limited to working in the local file system. Adobe® Dreamweaver® provides a mechanism to get
information from and send information to a web server by using hypertext transfer protocol (HTTP). The chapter
describes the HTTP API and how to use it.

How the HTTP APl works

All functions in the HTTP API are methods of the MMHEt tp object. Most of these functions take a URL as an argument,
and most return an object. The default port for URL arguments is 80. To specify a port other than 80, append a colon
and the port number to the URL, as shown in the following example:

MMHttp.getText ("http://www.myserver.com:8025") ;
For functions that return an object, the object has two properties: statusCode and data.

The statusCode property indicates the status of the operation; possible values include, but are not limited to, the
following values:

+ 200: Status OK

* 400: Unintelligible request

+ 404: Requested URL not found

+ 405: Server does not support requested method
+ 500: Unknown server error

+ 503: Server capacity reached

For a comprehensive list of status codes for your server, check with your Internet service provider or system
administrator.

The value of the data property varies according to the function; possible values are specified in the individual function
listings.

Functions that return an object also have a callback version. Callback functions let other functions execute while the
web server processes an HTTP request. This capability is useful if you are making multiple HTTP requests from
Dreamweaver. The callback version of a function passes its ID and return value directly to the function that is specified
as its first argument.

The HTTP API

This section details the functions that are methods of the MMHt tp object.

MMHttp.clearServerScriptsFolder()

Availability
Dreamweaver MX.

15



DREAMWEAVER CS4 API REFERENCE | 16
The HTTP API

Description
Deletes the _mmServerScripts folder—and all its files—under the root folder for the current site, which can be local or

remote. The _mmServerScripts folder is located in Configuration/Connections/Scripts/server-model/_mmDBScripts
folder.

Arguments
serverScriptsfolder

« The serverScriptsfolder argument is a string that names a particular folder, relative to the Configuration folder on
the application server, from which you want to retrieve and clear server scripts.

Returns

An object that represents the reply from the server. The data property of this object is a string that contains the
contents of the deleted scripts. If an error occurs, Dreamweaver reports it in the statusCode property of the returned
object.

Example
The following code, in a menu command file inside the Configuration/Menus folder, removes all the files from the
_mmServerScripts folder when it is called from a menu:

<!-- MENU-LOCATION=NONE -->

<html>

<head>

<TITLE>Clear Server Scripts</TITLE>

<SCRIPT SRC="ClearServerScripts.js"></SCRIPT>
<SCRIPT LANGUAGE="javascript"s>

</SCRIPT>

<body onLoad="MMHttp.clearServerScriptsFolder () ">
</body>

</html>

MMHttp.clearTemp()

Description

This function deletes all the files in the Configuration/Temp folder, which is located in the Dreamweaver application
folder.

Arguments
None.

Returns
Nothing.

Example
The following code, when saved in a file within the Configuration/Shutdown folder, removes all the files from the
Configuration/Temp folder when the user quits Dreamweaver:



DREAMWEAVER CS4 API REFERENCE | 17
The HTTP API

<html>

<head>

<title>Clean Up Temp Files on Shutdown</title>
</head>

<body onLoad="MMHttp.clearTemp () ">

</body>

</html>

MMHttp.getFile()

Description

This function gets the file at the specified URL and saves it in the Configuration/Temp folder, which is located in the
Dreamweaver application folder. Dreamweaver automatically creates subfolders that mimic the folder structure of the
server; for example, if the specified file is at www.dreamcentral.com/people/index.html, Dreamweaver stores the
index.html file in the People folder inside the www.dreamcentral.com folder.

Arguments
URL, {prompt}, {saveURL}, {titleBarLabel}

 The URL argument is an absolute URL on a web server; if http:// is omitted from the URL, Dreamweaver assumes
HTTP protocol.

+ The prompt argument, which is optional, is a Boolean value that specifies whether to prompt the user to save the
file. If saveURL is outside the Configuration/Temp folder, a prompt value of £alse is ignored for security reasons.

« The saveURL argument, which is optional, is the location on the user’s hard disk where the file should be saved,
which is expressed as a file:// URL. If prompt is a t rue value or saveURL is outside the Configuration/Temp folder,
the user can override saveURL in the Save dialog box.

« The titleBarLabel argument, which is optional, is the label that should appear in the title bar of the Save dialog box.

Returns

An object that represents the reply from the server. The data property of this object is a string that contains the
location where the file is saved, which is expressed as a file:// URL. Normally, the statusCode property of the object
contains the status code that is received from the server. However, if a disk error occurs while Dreamweaver is saving
the file on the local drive, the statuscode property contains an integer that represents one of the following error codes
if the operation is not successful:

+ 1: Unspecified error
« 2:File not found
3: Invalid path
4: Number of open files limit reached
5: Access denied
+ 6: Invalid file handle
7: Cannot remove current working folder
8: No more folder entries
9: Error setting file pointer

« 10: Hardware error

« 11: Sharing violation



DREAMWEAVER CS4 API REFERENCE | 18
The HTTP API

« 12: Lock violation
« 13: Disk full
+ 14: End of file reached

Example
The following code gets an HTML file, saves all the files in the Configuration/Temp folder, and then opens the local
copy of the HTML file in a browser:

var httpReply = MMHttp.getFile ("http://www.dreamcentral.com/people/profiles/scott.html",
false) ;
if (Boolean == 200) {

var savelLoc = httpReply.data;

dw.browseDocument (saveLoc) ;

MMHttp.getFileCallback()

Description

This function gets the file at the specified URL, saves it in the Configuration/Temp folder inside the Dreamweaver
application folder, and then calls the specified function with the request ID and reply result. When saving the file
locally, Dreamweaver automatically creates subfolders that mimic the folder structure of the server; for example, if the
specified file is at www.dreamcentral.com/people/index.html, Dreamweaver stores the index.html file in the People
folder inside the www.dreamcentral.com folder.

Arguments
callbackFunction, URL, {prompt}, {saveURL}, {titleBarLabel}

« The callbackFunction argument is the name of the JavaScript function to call when the HTTP request is complete.

+ The URL argument is an absolute URL on a web server; if http:// is omitted from the URL, Dreamweaver assumes
HTTP protocol.

+ The prompt argument, which is optional, is a Boolean value that specifies whether to prompt the user to save the
file. If saveURL argument specifies a location outside the Configuration/Temp folder, a prompt value of false is
ignored for security reasons.

+ The saveURL argument, which is optional, is the location on the user’s hard disk where the file should be saved,
which is expressed as a file:// URL. If prompt is a t rue value or saveURL is outside the Configuration/Temp folder,
the user can override saveURL in the Save dialog box.

« The titleBarLabel argument, which is optional, is the label that should appear in the title bar of the Save dialog box.

Returns

An object that represents the reply from the server. The data property of this object is a string that contains the
location where the file was saved, which is expressed as a file:// URL. Normally the statusCode property of the object
contains the status code that is received from the server. However, if a disk error occurs while Dreamweaver is saving
the file on the local drive, the statusCode property contains an integer that represents an error code. See
“MMHttp.getFile()” on page 17 for a list of possible error codes.



DREAMWEAVER CS4 API REFERENCE | 19
The HTTP API

MMHttp.getText()

Availability
Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.

Description
Retrieves the contents of the document at the specified URL.

Arguments
URL, {serverScriptsFolder}

+ The URL argument is an absolute URL on a web server. If http:// is omitted from the URL, Dreamweaver assumes
HTTP protocol.

+ The serverScriptsFolder argument is an optional string that names a particular folder—relative to the Configuration
folder on the application server—from which you want to retrieve server scripts. To retrieve the scripts,
Dreamweaver uses the appropriate transfer protocol (such as FTP, WebDAYV, or Remote File System).
Dreamweaver copies these files to the _mmServerScripts subfolder under the root folder for the current site.

If an error occurs, Dreamweaver reports it in the statusCode property of the returned object.

MMHttp.getTextCallback()

Availability
Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.

Description
Retrieves the contents of the document at the specified URL and passes it to the specified function.

Arguments
callbackFunc, URL, {serverScriptsFolder}

« The callbackFunc argument is the JavaScript function to call when the HTTP request is complete.

 The URL argument is an absolute URL on a web server; if http:// is omitted from the URL, Dreamweaver assumes
HTTP protocol.

+ The serverScriptsFolder argument is an optional string that names a particular folder—relative to the Configuration
folder on the application server—from which you want to retrieve server scripts. To retrieve the scripts,
Dreamweaver uses the appropriate transfer protocol (such as FTP, WebDAYV, or Remote File System).
Dreamweaver retrieves these files and passes them to the function that callbackFunc identifies.

If an error occurs, Dreamweaver MX reports it in the statusCode property of the returned object.

MMHttp.postText()

Availability
Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.



DREAMWEAVER CS4 API REFERENCE | 20
The HTTP API

Description
Performs an HTTP post of the specified data to the specified URL. Typically, the data associated with a post operation
is form-encoded text, but it could be any type of data that the server expects to receive.

Arguments
URL, dataToPost, {contentType}, {serverScriptsFolder}

+ The URL argument is an absolute URL on a web server; if http:// is omitted from the URL, Dreamweaver assumes
HTTP protocol.

+ The dataToPost argument is the data to post. If the third argument is "application/x-www-form-urlencoded"
or omitted, dataToPost must be form-encoded according to section 8.2.1 of the RFC 1866 specification (available
at www.fags.org/rfcs/rfc1866.html).

+ The contentType argument, which is optional, is the content type of the data to post. If omitted, this argument
defaults to "application/x-www-form-urlencoded"

« The serverScriptsFolder argument is an optional string that names a particular folder—relative to the Configuration
folder on the application server—to which you want to post the data. To post the data, Dreamweaver uses the
appropriate transfer protocol (such as FTP, WebDAV, or Remote File System).

If an error occurs, Dreamweaver reports it in the statusCode property of the returned object.

Example
In the following example of an MMHttp.postText () function call, assume that a developer has placed the
myScripts.cfm file in a folder named DeployScripts, which is located in the Configuration folder on the local computer:
MMHttp.postText (

"http://ultraga8/DeployScripts/myScripts.cfm",

"argl=Foo",

"application/x-www-form-urlencoded",

"Configuration/DeployScripts/"
)

When Dreamweaver executes this function call, the following sequence occurs:

1 The myScripts.cfm file in the Configuration/DeployScripts folder on the local computer is copied to another folder
named DeployScripts, which is a subfolder of the root folder on the ultraqa8 website. To deploy the files,
Dreamweaver uses the protocol specified in the site configuration properties.

2 Dreamweaver uses HT'TP protocol to post the arg1=Foo data to the web server.

3 Asaresult of the post request, the web server on ultraqa8 executes the myScripts.cfm script using the arg1 data.

MMHttp.postTextCallback()

Availability
Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.

Description

Performs an HTTP post of the text to the specified URL and passes the reply from the server to the specified function.
Typically, the data associated with a post operation is form-encoded text, but it could be any type of data that the server
expects to receive.


http://www.faqs.org/rfcs/rfc1866.html

DREAMWEAVER CS4 API REFERENCE | 21
The HTTP API

Arguments
callbackFunc, URL, dataToPost, {contentType}, {serverScriptsFolder}

+ The callbackFunc argument is the name of the JavaScript function to call when the HTTP request is complete.

+ The URL argument is an absolute URL on a web server; if http:// is omitted from the URL, Dreamweaver assumes
HTTP protocol.

+ The dataToPost argument is the data to be posted. If the third argument is "application/x-www-form-
urlencoded" or omitted, data must be form-encoded according to section 8.2.1 of the RFC 1866 specification
(available at www.fags.org/rfcs/rfc1866.html).

+ The contentType argument, which is optional, is the content type of the data to be posted. If omitted, this argument
defaults to "application/x-www-form-urlencoded".

« The serverScriptsFolder argument is an optional string. It names a particular folder, relative to the Configuration
folder on the application server—to which you want to post the data. To post the data, Dreamweaver uses the
appropriate transfer protocol (such as FTP, WebDAV, or Remote File System). Dreamweaver retrieves these data
and passes them to the function identified by callbackFunc.

If an error occurs, Dreamweaver reports it in the statusCode property of the returned object.


http://www.faqs.org/rfcs/rfc1866.html

22

Chapter 4: The Design Notes API

Adobe® Dreamweaver®, Adobe® Fireworks®, and Adobe® Flash® give web designers and developers a way to store and
retrieve extra information about documents. The information is stored in files that are called Design Notes. It gives
extra information about documents like review comments, change notes, or the source file for a GIF or JPEG.

For more information about using the Design Notes feature from within Dreamweaver, see Using Dreamweaver.

How Design Notes work

Each Design Notes file stores information for a single document. If one or more documents in a folder has an
associated Design Notes file, Dreamweaver creates a _notes subfolder where Design Notes files can be stored. The
_notes folder and the Design Notes files that it contains are not visible in the Site panel, but they appear in the Finder
(Macintosh) or Windows Explorer. A Design Notes filename comprises the main filename plus the .mno extension.
For example, the Design Notes file that is associated with avocado8.gif is avocado8.gif.mno.

Design Notes files are XML files that store information in a series of key/value pairs. The key describes the type of
information that is being stored, and the value represents the information. Keys are limited to 64 characters.

The following example shows the Design Notes file for foghorn.gif.mno:

<?xml version="1.0" encoding="iso-8859-1" ?>
<info>
<infoitem key="FW_source" value="file:///C|sites/dreamcentral/images/sourceFiles/~
foghorn.png" />
<infoitem key="Author" value="Heidi B." />
<infoitem key="Status" value="Final draft, approved by Jay L." />
</info>

The Design Notes JavaScript API

All functions in the Design Notes JavaScript API are methods of the MMNotes object. MMNotes is a C shared library
that lets extensions authors read and write Design Notes files. As with the DWfile shared library, MMNotes has a
JavaScript API that lets you call the functions. The functions are called from objects, commands, behaviors, floating
panels, Property inspectors, and data translators in the library. The MMNotes shared library can be used
independently, even if Dreamweaver is not installed.

MMNotes.close()

Description

This function closes the specified Design Notes file and saves any changes. If all the key/value pairs are removed,
Dreamweaver deletes the Design Notes file. If it is the last Design Notes file in the _notes folder, Dreamweaver deletes
the folder also.

Note: Always call the MMNotes . close () function when you finish with Design Notes so Dreamweaver writes to the file.



DREAMWEAVER CS4 API REFERENCE | 23
The Design Notes APl

Arguments
fileHandle

« The fileHandle argument is the file handle that the MMNotes . open () function returns.

Returns
Nothing.

Example
See “MMNotes.set()” on page 27.

MMNotes.filePathToLocalURL()

Description
This function converts the specified local drive path to a file:// URL.

Arguments
drivePath
« The drivePath argument is a string that contains the full drive path.

Returns
A string that contains the file:// URL for the specified file.

Example
A call to MMNotes . filePathToLocalURL ('C:\sites\webdev\index.htm') returns
"file:///c|/sites/webdev/index.htm".

MMNotes.get()

Description
This function gets the value of the specified key in the specified Design Notes file.

Arguments
fileHandle, keyName

+ The fileHandle argument is the file handle that MMNotes.open () returns.

+ The keyName argument is a string that contains the name of the key.

Returns
A string that contains the value of the key.

Example
See “MMNotes.getKeys()” on page 24.



DREAMWEAVER CS4 API REFERENCE | 24
The Design Notes APl

MMNotes.getKeyCount()

Description
This function gets the number of key/value pairs in the specified Design Notes file.

Arguments
fileHandle

+ The fileHandle argument is the file handle that the MMNotes . open () function returns.

Returns
An integer that represents the number of key/value pairs in the Design Notes file.

MMNotes.getKeys()

Description
This function gets a list of all the keys in a Design Notes file.

Arguments
fileHandle

+ The fileHandle argument is the file handle that the MMNotes . open () function returns.

Returns
An array of strings where each string contains the name of a key.

Example
The following code might be used in a custom floating panel to display the Design Notes information for the active
document:

var noteHandle = MMNotes.open (dw.getDocumentDOM () .URL) ;
var theKeys = MMNotes.getKeys (noteHandle) ;
var noteString = "";
var thevalue = "";
for (var i=0; i < theKeys.length; i++){
thevalue = MMNotes.get (noteHandle, theKeys[i]) ;
noteString +=0theKeys[i] + " = " theValue + "\n";
}
document .theForm.bigTextField.value = noteString;
// always close noteHandle
MMNotes.close (noteHandle) ;

MMNotes.getSiteRootForFile()

Description
This function determines the site root for the specified Design Notes file.



DREAMWEAVER CS4 API REFERENCE | 25
The Design Notes APl

Arguments
fileURL

+ The fileURL argument, which is expressed as a file:// URL, is the path to a local file.

Returns

A string that contains the path of the Local Root folder for the site, which is expressed as a file:// URL, or an empty
string if Dreamweaver is not installed or the Design Notes file is outside any site that is defined with Dreamweaver.
This function searches for all the sites that are defined in Dreamweaver.

MMNotes.getVersionName()

Description

This function gets the version name of the MMNotes shared library, which indicates the application that implemented it.

Arguments
None.

Returns
A string that contains the name of the application that implemented the MMNotes shared library.

Example

Calling the MMNotes . getVersionName () function from a Dreamweaver command, object, behavior, Property
inspector, floating panel, or data translator returns "Dreamweaver". Calling the MMNotes . get VersionName ()
function from Fireworks also returns "Dreamweaver" because Fireworks uses the same version of the library, which
was created by the Dreamweaver engineering team.

MMNotes.getVersionNum()

Description
This function gets the version number of the MMNotes shared library.

Arguments
None.

Returns
A string that contains the version number.

MMNotes.localURLToFilePath()

Description
This function converts the specified file:// URL to a local drive path.



DREAMWEAVER CS4 API REFERENCE | 26
The Design Notes APl

Arguments
fileURL

+ The fileURL argument, which is expressed as a file:// URL, is the path to a local file.

Returns
A string that contains the local drive path for the specified file.

Example
A call to MMNotes.localURLToFilePath('file: ///MacintoshHD/images/moon.gif') returns

"MacintoshHD:images:moon.gif".

MMNotes.open()

Description
This function opens the Design Notes file that is associated with the specified file or creates one if none exists.

Arguments
filePath, {bForceCreate}

« The filePath argument, which is expressed as a file:// URL, is the path to the main file with which the Design Notes
file is associated.

« The bForceCreate argument is a Boolean value that indicates whether to create the note even if Design Notes is
turned off for the site or if the filePath argument is not associated with any site.

Returns
The file handle for the Design Notes file or 0 if the file was not opened or created.

Example
See “MMNotes.set()” on page 27.

MMNotes.remove()

Description

The function removes the specified key (and its value) from the specified Design Notes file.

Arguments
fileHandle, keyName

+ The fileHandle argument is the file handle that the MMNotes.open () function returns.

+ The keyName argument is a string that contains the name of the key to remove.

Returns

A Boolean value: true indicates the operation is successful; £alse otherwise.



DREAMWEAVER CS4 APl REFERENCE | 27
The Design Notes APl

MMNotes.set()

Description
This function creates or updates one key/value pair in a Design Notes file.

Arguments
fileHandle, keyName, valueString

+ The fileHandle argument is the file handle that the MMNotes . open () function returns.
+ The keyName argument is a string that contains the name of the key.

« The valueString argument is a string that contains the value.

Returns
A Boolean value: true indicates the operation is successful; false otherwise.

Example

The following example opens the Design Notes file that is associated with a file in the dreamcentral site called
peakhike99/index.html, adds a new key/value pair, changes the value of an existing key, and then closes the Design
Notes file:

var noteHandle = MMNotes.open('file:///c|/sites/dreamcentral/peakhike99/
index.html', true) ;

if (noteHandle > 0){
MMNotes.set (noteHandle, "Author","M. G. Miller");
MMNotes.set (noteHandle, "Last Changed", "August 28, 1999");
MMNotes.close (noteHandle) ;

The Design Notes C API

In addition to the JavaScript API, the MMNotes shared library also exposes a C API that lets other applications create
Design Notes files. It is not necessary to call these C functions directly if you use the MMNotes shared library in
Dreamweaver because the JavaScript versions of the functions call them.

This section contains descriptions of the functions, their arguments, and their return values. You can find definitions
for the functions and data types in the MMInfo.h file in the Extending/c_files folder inside the Dreamweaver
application folder.

void CloseNotesFile()

Description

This function closes the specified Design Notes file and saves any changes. If all key/value pairs are removed from the
Design Note file, Dreamweaver deletes it. Dreamweaver deletes the _notes folder when the last Design Notes file is
deleted.



DREAMWEAVER CS4 API REFERENCE | 28
The Design Notes APl

Arguments
noteHandle

+ The noteHandle argument is the file handle that the openNotesFile () function returns.

Returns
Nothing.

BOOL FilePathToLocalURL()

Description
This function converts the specified local drive path to a file:// URL.

Arguments
const char* drivePath, char* local URLBuf, int localURLMaxLen

+ The drivePath argument is a string that contains the full drive path.
« The localURLBuf argument is the buffer where the file:// URL is stored.

+ The localURLMaxLen argument is the maximum size of localURLBuf.

Returns

A Boolean value: true indicates the operation is successful; f£alse otherwise. The local URLBuf argument receives the
file:// URL value.

BOOL GetNote()

Description
This function gets the value of the specified key in the specified Design Notes file.

Arguments
FileHandle noteHandle, const char keyName[64], char* valueBuf, int valueBufLength

+ The noteHandle argument is the file handle that the openNotesFile () function returns.
+ The keyName[64] argument is a string that contains the name of the key.
+ The valueBuf argument is the buffer where the value is stored.

« The valueBufLength argument is the integer that GetNoteLength (noteHandle, keyName) returns, which
indicates the maximum length of the value buffer.

Returns
A Boolean value: true indicates the operation is successful; false otherwise. The valueBuf argument receives the
value of the key.

Example

The following code gets the value of the comment s key in the Design Notes file that is associated with the welcome.html file:



DREAMWEAVER CS4 API REFERENCE | 29
The Design Notes APl

FileHandle noteHandle = OpenNotesFile("file:///c|/sites/avocado8/iwjs/welcome.html") ;
if (noteHandle > 0){

int valueLength = GetNoteLength( noteHandle, "comments") ;

char* valueBuffer = new char[valueLength + 1];

GetNote (noteHandle, "comments", valueBuffer, valueLength + 1);

printf ("Comments: %s",valueBuffer);

CloseNotesFile (noteHandle) ;

int GetNoteLength()

Description
This function gets the length of the value that is associated with the specified key.

Arguments
FileHandle noteHandle, const char keyName[64]

+ The noteHandle argument is the file handle that the openNotesFile () function returns.

+ The keyName[64] argument is a string that contains the name of the key.

Returns
An integer that represents the length of the value.

Example
See “BOOL GetNote()” on page 28.

int GetNotesKeyCount()

Description
This function gets the number of key/value pairs in the specified Design Notes file.

Arguments
FileHandle noteHandle

+ The noteHandle argument is the file handle that the openNotesFile () function returns.

Returns

An integer that represents the number of key/value pairs in the Design Notes file.

BOOL GetNotesKeys()

Description
This function gets a list of all the keys in a Design Notes file.

Arguments
FileHandle noteHandle, char* keyBufArray[64], int keyArrayMaxLen

+ The noteHandle argument is the file handle that openNotesFile () returns.



DREAMWEAVER CS4 API REFERENCE | 30
The Design Notes APl

+ The keyBufArray[64] argument is the buffer array where the keys are stored.

+ The keyArrayMaxLen argument is the integer that GetNotesKeyCount (noteHandle) returns, indicating the
maximum number of items in the key buffer array.

Returns
A Boolean value: true indicates the operation is successful; £alse otherwise. The keyBufArray argument receives the
key names.

Example
The following code prints the key names and values of all the keys in the Design Notes file that are associated with the
welcome.html file:

typedef char[64] InfoKey;
FileHandle noteHandle = OpenNotesFile("file:///c|/sites/avocado8/iwjs/welcome.html") ;
if (noteHandle > 0) {
int keyCount = GetNotesKeyCount (noteHandle) ;
if (keyCount <= 0)
return;
InfoKey* keys = new InfoKey[keyCount];
BOOL succeeded = GetNotesKeys (noteHandle, keys, keyCount) ;
if (succeeded) {
for (int i=0; i < keyCount; i++){
printf ("Key is: %s\n", keys[il);
printf ("Value is: %s\n\n", GetNote (noteHandle, keys[i]);

}

delete [lkeys;

}

CloseNotesFile (noteHandle) ;

BOOL GetSiteRootForFile()

Description
This function determines the site root for the specified Design Notes file.

Arguments
const charxfilePath, char=siteRootBuf, intsiteRootBufMaxLen, {InfoPrefs® infoPrefs}

+ The filePath argument is the file://URL of the file for which you want the site root.
« The siteRootBuf argument is the buffer where the site root is stored.
« The siteRootBufMaxLen argument is the maximum size of the buffer that siteRootBuf references.

« The infoPrefs argument, which is optional, is a reference to a st ruct in which the preferences for the site are stored.

Returns

A Boolean value: true indicates the operation is successful; false otherwise. The siteRootBuf argument receives the
address of the buffer that stores the site root. If you specify the infoPrefs argument, the function also returns the Design
Notes preferences for the site. The Infoprefs struct has two variables: buseDesignNotes and bUploadDesignNotes,
both of type BooL.



DREAMWEAVER CS4 API REFERENCE | 31
The Design Notes APl

BOOL GetVersionName()

Description

This function gets the version name of the MMNotes shared library, which indicates the application that implemented it.

Arguments

char* versionNameBuf, intversionNameBuﬂVIaxLen

+ The versionNameBuf argument is the buffer where the version name is stored.

+ The versionNameBufMaxLen argument is the maximum size of the buffer that the versionNameBuf argument
references.

Returns

A Boolean value: true indicates the operation is successful; false otherwise. Dreamweaver stores "Dreamweaver" in
versionNameBuf argument.

BOOL GetVersionNum()

Description

This function gets the version number of the MMNotes shared library, which lets you determine whether certain
functions are available.

Arguments

char* versionNumBuf, in tversionNumBuﬂVIaxLen

+ The versionNumBuf argument is the buffer where the version number is stored.

+ The versionNumBufMaxLen argument is the maximum size of the buffer that versionNumBuf references.

Returns

A Boolean value: t rue indicates the operation is successful; £alse otherwise. The versionNumBufargument stores the
version number.

BOOL LocalURLToFilePath()

Description
This function converts the specified file:// URL to a local drive path.

Arguments
const char* localURL, char* drivePathBuf, int drivePathMaxLen

+ The localURL argument, which is expressed as a file:// URL, is the path to a local file.
+ The drivePathBuf argument is the buffer where the local drive path is stored.

+ The drivePathMaxLen argument is the maximum size of the buffer that the drivePathBuf argument references.



DREAMWEAVER CS4 API REFERENCE | 32
The Design Notes APl

Returns

A Boolean value: true indicates the operation is successful; £alse otherwise. The drivePathBufargument receives the
local drive path.

FileHandle OpenNotesFile()

Description

This function opens the Design Notes file that is associated with the specified file or creates one if none exists.

Arguments

const char* localFileURL, {BOOL bForceCreate}

« The localFileURL argument, which is expressed as a file:// URL, is a string that contains the path to the main file
with which the Design Notes file is associated.

+ The bForceCreate argument is a Boolean value that indicates whether to create the Design Notes file even if Design
Notes is turned off for the site or if the path specified by the localFileURL argument is not associated with any site.

FileHandle OpenNotesFilewithOpenFlags()

Description

This function opens the Design Notes file that is associated with the specified file or creates one if none exists. You can
open the file in read-only mode.

Arguments
const char* localFileURL, {BOOL bForceCreate}, {BOOL bReadOnly}

« The localFileURL argument, which is expressed as a file:// URL, is a string that contains the path to the main file
with which the Design Notes file is associated.

+ The bForceCreate argument is a Boolean value that indicates whether to create the Design Notes file even if Design
Notes are turned off for the site or the path is not associated with any site. The default value is false. This argument
is optional, but you need to specify it if you specify the third argument.

+ The bReadOnly argument, which is optional, is a Boolean value that indicates whether to open the file in read-only
mode. The default value is false. You can specify the bReadOnly argument starting in version 2 of the
MMNotes.dll file.

BOOL RemoveNote()

Description

This function removes the specified key (and its value) from the specified Design Notes file.

Arguments
FileHandlenoteHandle, const char keyName[64]

+ The noteHandle argument is the file handle that the openNotesFile () function returns.

+ The keyName[64] argument is a string that contains the name of the key to remove.



DREAMWEAVER CS4 API REFERENCE | 33
The Design Notes APl

Returns

A Boolean value: true indicates the operation is successful; false otherwise.

BOOL SetNote()

Description

This function creates or updates one key/value pair in a Design Notes file.

Arguments
FileHandle noteHandle, const char keyName[64], const char* value

+ The noteHandle argument is the file handle that the openNotesFile () function returns.
+ The keyName[64] argument is a string that contains the name of the key.

+ The value argument is a string that contains the value.

Returns

A Boolean value: true indicates the operation is successful; false otherwise.



Chapter 5: Fireworks integration

FWLaunch is a C shared library that lets authors of objects, commands, behaviors, and Property inspectors
communicate with Adobe® Fireworks®. Using FWLaunch, you write JavaScript to open the Fireworks user interface
and provide commands to Fireworks through its own JavaScript API documented in Extending Fireworks. For general
information on how C libraries interact with the JavaScript interpreter in Adobe® Dreamweaver® CS4, and for details
on C-level extensibility see Extending Dreamweaver.

The FWLaunch API

The FWLaunch object lets extensions open Fireworks, perform Fireworks operations using the Fireworks JavaScript
API, and then return values back to Dreamweaver. This chapter describes the FWLaunch Communication API and
how to use it.

FWLaunch.bringDWToFront()

Availability
Dreamweaver 3, Fireworks 3.

Description
This function brings Dreamweaver to the front.

Arguments
None.

Returns
Nothing.

FWLaunch.bringFWToFront()

Availability
Dreamweaver 3, Fireworks 3.

Description
This function brings Fireworks to the front if it is running.

Arguments
None.

Returns
Nothing.

34



DREAMWEAVER CS4 API REFERENCE | 35
Fireworks integration

FWLaunch.execJsInFireworks()

Availability
Dreamweaver 3, Fireworks 3.

Description
This function passes the specified JavaScript, or a reference to a JavaScript file, to Fireworks to execute.

Arguments

javascriptOrFileURL

+ The javascriptOrFileURL argument, which is expressed as a file:// URL, is either a string of literal JavaScript or
the path to a JavaScript file.

Returns
A cookie object if the JavaScript passes successfully or a nonzero error code that indicates one of the following errors
occurred:

+ Invalid usage, which indicates that the javascriptOrFileURL argument is specified as anull value or as an empty
string, or the path to the JS or JSF file is invalid.

« File I/O error, which indicates that Fireworks cannot create a Response file because the disk is full.
« Error notifying Dreamweaver that the user is not running a valid version of Dreamweaver (version 3 or later).

« Error starting Fireworks process, which indicates that the function does not open a valid version of Fireworks
(version 3 or later).

« User cancelled the operation.

FWLaunch.getJsResponse()

Availability
Dreamweaver 3, Fireworks 3.

Description
This function determines whether Fireworks is still executing the JavaScript passed to it by the
FWLaunch.execJsInFireworks () function, whether the script completed successfully, or whether an error occurred.

Arguments

progressTrackerCookie

+ TheprogressTrackerCookie argument is the cookie object that the FWLaunch. execdsInFireworks () function
returns.

Returns

A string that contains the result of the script passed to the FWLaunch . execJsInFireworks () function if the operation
completes successfully, a nul1 value if Fireworks is still executing the JavaScript, or a nonzero error code that indicates
that one of the following errors occurred:

« Invalid usage, which indicates that a JavaScript error occurred while Fireworks executed the script.



DREAMWEAVER CS4 API REFERENCE | 36
Fireworks integration

« File I/O error, which indicates that Fireworks cannot create a Response file because the disk is full.
« Error notifying Dreamweaver that the user is not running a valid version of Dreamweaver (version 3 or later).

+ Error starting Fireworks process, which indicates that the function does not open a valid version of Fireworks

(version 3 or later).

+ User cancelled the operation.

Example
The following code passes the string "prompt (' Please enter your name:')" to
FWLaunch.execJsInFireworks () and checks for the result:

var progressCookie = FWLaunch.execJsInFireworks ("prompt ('Please enter your name:')");
var doneFlag = false;
while (!doneFlag) {

// check for completion every 1/2 second

setTimeout ('checkForCompletion()',500) ;

}

function checkForCompletion () {

if (progressCookie != null)
var response = FWLaunch.getdsResponse (progressCookie) ;
if (response != null) {
if (typeof (response) == "number") {

// error or user-cancel, time to close the window
// and let the user know we got an error
window.close () ;

alert ("An error occurred.");

telse({
// got a valid response!
alert ("Nice to meet you, " + response);

window.close () ;

doneFlag = true;

FWLaunch.mayLaunchFireworks()

Availability
Dreamweaver 2, Fireworks 2.

Description
This function determines whether it is possible to open a Fireworks optimization session.

Arguments
None.

Returns
A Boolean value that indicates whether the platform is Windows or Macintosh; if it is Macintosh, the value indicates

if another Fireworks optimization session is already running.



DREAMWEAVER CS4 API REFERENCE | 37
Fireworks integration

FWLaunch.optimizelnFireworks()

Availability
Dreamweaver 2, Fireworks 2.

Description
This function opens a Fireworks optimization session for the specified image.

Arguments
docURL, imageURL, {targetWidth}, {targetHeight}

+ The docURL argument is the path to the active document, which is expressed as a file:// URL.

+ The imageURL argument is the path to the selected image. If the path is relative, it is relative to the path that you
specify in the docURL argument.

« The target Width argument, which is optional, defines the width to which the image should be resized.
« The targetHeight argument, which is optional, defines the height to which the image should be resized.

Returns
Zero, if a Fireworks optimization session successfully opens for the specified image; otherwise, a nonzero error code
that indicates that one of the following errors occurred:

« Invalid usage, which indicates that the docURL argument, the imageURL argument, or both, are specified as anull
value or an empty string.

« File I/O error, which indicates that Fireworks cannot create a response file because the disk is full.
« Error notifying Dreamweaver that the user is not running a valid version of Dreamweaver (version 2 or later).

« Error starting Fireworks process, which indicates that the function does not open a valid version of Fireworks
(version 2 or later).

+ User cancelled the operation.

FWLaunch.validateFireworks()

Availability
Dreamweaver 2, Fireworks 2.

Description
This function looks for the specified version of Fireworks on the user’s hard disk.

Arguments
{versionNumber}

« The versionNumber argument is an optional floating-point number that is greater than or equal to 2; it represents
the required version of Fireworks. If this argument is omitted, the default is 2.

Returns
A Boolean value that indicates whether the specified version of Fireworks was found.



DREAMWEAVER CS4 API REFERENCE | 38
Fireworks integration

Example

The following code checks whether Fireworks is installed:

if (FWLaunch.validateFireworks(6.0)) {

alert ("Fireworks 6.0 or later is installed.");
telse{

alert ("Fireworks 6.0 is not installed.");

A simple FWLaunch communication example
The following command asks Fireworks to prompt the user for their name and returns the name to Dreamweaver:

<html>

<head>

<title>Prompt in Fireworks</title>

<meta http-equiv="Content-Type" content="text/html; -
charset=1is0-8859-1">

<scripts>

function commandButtons () {
return new Array ("Prompt", "promptInFireworks()", "Cancel", -
"readyToCancel ()", "Close","window.close()");

var gCancelClicked = false;
var gProgressTrackerCookie = null;

function readyToCancel () {
gCancelClicked = true;

function promptInFireworks () {
var isFireworks3 = FWLaunch.validateFireworks (3.0) ;
if (!isFireworks3) {

alert ("You must have Fireworks 3.0 or later to use this -
command") ;
return;

// Tell Fireworks to execute the prompt () method.
gProgressTrackerCookie = FWLaunch.execJsInFireworks-
("prompt ('Please enter your name:')");

// null means it wasn't launched, a number means an error code
if (gProgressTrackerCookie == null || -
typeof (gProgressTrackerCookie) == "number")
window.close () ;
alert ("an error occurred") ;
gProgressTrackerCookie = null;
} else {
// bring Fireworks to the front
FWLaunch.bringFWToFront () ;
// start the checking to see if Fireworks is done yet
checkOneMoreTime () ;



DREAMWEAVER CS4 API REFERENCE | 39
Fireworks integration

function checkOneMoreTime () {
// Call checkJsResponse() every 1/2 second to see if Fireworks
// is done yet
window.setTimeout ("checkJsResponse();", 500);

function checkJsResponse () {
var response = null;

// The user clicked the cancel button, close the window
if (gCancelClicked) ({
window.close () ;
alert ("cancel clicked") ;
} else {
// We're still going, ask Fireworks how it's doing
if (gProgressTrackerCookie != null)
response = FWLaunch.getJsResponse (gProgressTrackerCookie) ;

if (response == null)
// still waiting for a response, call us again in 1/2 a
// second
checkOneMoreTime () ;
} else if (typeof (response) == "number") {
// 1if the response was a number, it means an error occurred
// the user cancelled in Fireworks
window.close () ;
alert ("an error occurred.");

} else {
// got a valid response!This return value might not
// always be a useful one, since not all functions in
// Fireworks return a string, but we know this one does,
// so we can show the user what we got.
window.close () ;
FWLaunch.bringDWToFront () ; // bring Dreamweaver to the front
alert ("Nice to meet you, " + response + "I");

}

</script>

</head>

<body>

<form>

<table width="313" nowrap>

<tr>

<td>This command asks Fireworks to execute the prompt () -
function. When you click Prompt, Fireworks comes forward and -
asks you to enter a value into a dialog box. That value is then -
returned to Dreamweaver and displayed in an alert.</td>

</tr>

</table>

</form>

</body>

</html>



Chapter 6: Flash integration

Adobe® Dreamweaver® provides support for the Flash Object API, which leverages the Flash Generator Template file
to create new Flash objects. The Flash Objects API topic provides details for the creation of Flash objects (SWF files)
from Flash Generator templates (SWT files).

For information about adding Flash content to Dreamweaver objects or commands, see Extending Dreamweaver.

The Flash Objects API

The Flash Objects API lets extension developers build objects that create simple SWEF files through Flash Generator.
This API provides a way to set parameters in a Flash Generator template and output as a SWF file, or image file. The
API lets you create new Flash objects as well as read and manipulate existing Flash objects.

The SWT file is a Flash Generator Template file, which contains all the information necessary for you to construct a
Flash Object file. These API functions let you create a SWF file (or image file) from an SWT file. The SWEF file is created
by replacing the parameters of the SWT file with real values. For more information on Flash, see the Flash
documentation. The following functions are methods of the swrFile object.

SWFFile.createFile()

Description

This function generates a new Flash Object file with the specified template and array of parameters. It also creates a
GIF, PNG, JPEG, and MOV versions of the title if filenames for those formats are specified.

If you want to specify an optional parameter that follows optional parameters that you do not want to include, you
need to specify empty strings for the unused parameters. For example, if you want to specify a PNG file, but not a GIF
file, you need to specify an empty string before specifying the PNG filename.

Arguments
templateFile, templateParams, swfFileName, {gifFileName], {pngFileName}, {jpgFileName}, {movFileName},
{generatorParams}

The templateFile argument is a path to a template file, which is expressed as a file:// URL. This file can be a SWT file.

+ The templateParams argument is an array of name/value pairs where the names are the parameters in the SWT file,
and the values are what you want to specify for those parameters. For Dreamweaver to recognize a SWF file as a
Flash object, the first parameter must be "dwType". Its value should be a string that represents the name of the
object type, such as "Flash Text".

« The swfFileName argument, which is expressed as a file:// URL, is the output filename of an SWF file or an empty
string to ignore.

+ The gifFileName argument, which is expressed as a file:// URL, is the output filename of a GIF file. This argument
is optional.

+ The pngFileName argument, which is expressed as a file:// URL, is the output filename of a PNG file. This argument
is optional.



DREAMWEAVER CS4 API REFERENCE | 41
Flash integration

« ThejpgFileName argument, which is expressed as a file:// URL, is the output filename of a JPEG file. This argument

is optional.

« The movFileName argument, which is expressed as a file:// URL, is the output filename of a QuickTime file. This

argument is optional.

« The generatorParams argument is an array of strings that represents optional Generator command line flags. This

argument is optional. Each flag’s data items must follow it in the array. Some commonly used flags are listed in the

following table:
Option Flag Data Description Example
-defaultsize Width, height Sets the output image size to the "-
specified width and height defaultsize",
nEaQn, "agon
-exactFit None Stretches the contents in the output "-exactFit"
image to fit exactly into the specified
output size
Returns

A string that contains one of the following values:

+ "noError" means the call completed successfully.

+ m"invalidTemplateFile" means the specified template file is invalid or not found.

+ minvalidOutputFile" means at least one of the specified output filenames is invalid.

+ m"invalidData" means that one or more of the templateParams arguments’ name/value pairs is invalid.

+ "initGeneratorFailed" means the Generator cannot be initialized.

+ "outOfMemory" means there is insufficient memory to complete the operation.

« "unknownError" means an unknown error occurred.

Example

The following JavaScript creates a Flash object file of type "myType", which replaces any occurrences of the string
rtext" inside the Template file with the string, "Hello world". It creates a GIF file as well as a SWF file.

var params = new Array;

params [0] = "dwType";
params [1] = "myType";
params [2] = "text";
params [3] = "Hello World";

errorString = SWFFile.createFile( "file:///MyMac/test.swt",
params, "file:///MyMac/test.swf", "file:///MyMac/test.gif");

SWFFile.getNaturalSize()

Description
This function returns the natural size of any uncompressed Flash content.

Arguments
fileName

-

« The fileName argument, which is expressed as a file:// URL, is a path to the Flash content.



DREAMWEAVER CS4 API REFERENCE | 42
Flash integration

Returns
An array that contains two elements that represent the width and the height of an uncompressed SWF file or a null
value if the file is not an uncompressed SWF file.

SWFFile.getObjectType()

Description
This function returns the Flash object type; the value that passed in the dwType parameter when the
SWFFile.createFile () function created the file.

Arguments
fileName

+ The fileName argument, which is expressed as a file:// URL, is a path to a Flash Object file. This file is usually a SWF file.

Returns
A string that represents the object type, or nu11 if the file is not a Flash Object file or if the file cannot be found.

Example
The following code checks to see if the test.swf file is a Flash object of type myType:

if ( SWFFile.getObjectType("file:///MyMac/test.swf") == "myType" ){
alert ("This is a myType object.");
telse({

alert ("This is not a myType object.");

}

SWFFile.readFile()

Description
This function reads a Flash Object file.

Arguments
fileName

+ The fileName argument, which is expressed as a file:// URL, is a path to a Flash Object file.

Returns

An array of strings where the first array element is the full path to the template SWT file. The following strings
represent the parameters (name/value pairs) for the object. Each name is followed in the array by its value. The first
name/value pair is "dwType", followed by its value. The function returns a nul1 value if the file cannot be found or if
it is not a Flash Object file.

Example
Caﬂhu;var params = SWFFile.readFile(”file:///MyMac/test.swf”)reanSthefbﬂowdngvahwsinthe
parameters array:



"file:///MyMac/test.swt"
"dwType"

"myType"

"text"

"Hello World"

//
//
//
//

template file used to create this
first parameter

first parameter value

second parameter
// second parameter value

Flash panels and dialogs functions

The following APIs enable you to add SWF files in panels and dialogs.

dreamweaver.flash.newControl()

Availability
Dreamweaver CS4.

Description

DREAMWEAVER CS4 API REFERENCE | 43
Flash integration

.swf file

This function enables you to create a Flash control. It is referred to later through the control1p parameter. The
control displays the Flash file (.swf) specified by the SWF path. The control is positioned and has the size specified in

the defaultGeometry parameter.

Note: Dreamweaver displays the Flash controls when you call f1ash. requestStateChange. Dreamweaver displays the

Dialog controls when you call newControl; you need not call flash.requestStateChange.

Arguments

controlID, controlType, controlData

+ The controlIpargument is a string value.

+ The controlType argument specifies whether the panel is a standard extension ("standard"), a trusted standard

extension ("trusted"), or a plus extension (any other value). If it is a plus extension, the value is an identifier known

specially to the host application that indicates the type of custom integration required. If the application does not
understand the custom integration type, it returns an error.

+ The controlpata is an object. Some of the following are the key properties of this argument:



DREAMWEAVER CS4 API REFERENCE | 44
Flash integration

Property Description Values
controlData.swfUTF8Path Location of the SWF. This property is The possible values for
required and itis passed in as a string of controlData.windowType
Unicode characters, since all characters
in JavaScript are in unicode. * PanelWindow.The table

following this table lists the
specifications for this value.

* ModalDialogWindow

{controlData.scriptPath Path to js file that contains the

} functions to execute from .swf using
External Interface call. This property is
optional. If you want to call back into
JavaScript code of Dreamweaver from
the .swf file using an External Interface.
You can provide a js file containing
functions that you can then call from
the .swf file. For more information, see
the dw. flash.executeScript call.

controlData.defaultGeom The defaultGeometry values are
etry represented as screen coordinates from
the upper left of the screen. This
property is required.

Object /*!< default creation
geometry, including
positioning */

{ topleftx: Number, toplefty:
Number, width: Number,
height: Number }

The following table lists the Pane1lwindow specifications:

Options Type Descriptions

name String The name of the panel that appears on the tab. If you don't
specify it, it is named "UNDEFINED". All panel names appear in
uppercase. You cannot change it to lowercase.

{controlData.minSize} | Object minSize only applies to controls of type PanelWindow. This
option controls the minimum size that the panel can be resized
to. This option is optional. If minSize is not specified, it
defaults to the width and height specified in
defaultGeometry and the panel cannot be resized.

{ width: Number, height: Number }

{controlData.maxSize} | Object maxSize applies to controls of type PanelWindow only. This
option is optional. This option controls the maximum size that
the panel can be resized to. If maxSize is not specified, it
defaults to the width and height specified in
defaultGeometry and the panel cannot be resized..

{ width: Number, height: Number }




DREAMWEAVER CS4 API REFERENCE | 45
Flash integration

Options Type Descriptions

{iconPathNormal} String Path to icon that must be used in the floating panel when the
panel is collapsed in icon mode. This option is optional.

{iconPathRollOver} String Path to icon that must be used in the floating panel when the
panel is collapsed in icon mode and the user rolls over it. This
option is optional.

{iconPathDisable} String Path to icon that must be used in the floating panel when the
panel is collapsed in icon mode and it is disabled. This option is
optional.

Returns

One of the following success or error codes:

+ The code PlugPlugErrorCode_success indicates that creating the control succeeded.

+ The code PlugPlugErrorCode extensionRegistrationFailed indicates that you were unable to register the
control.

dreamweaver.flash.requestStateChange()

Availability

Dreamweaver CS4.

Description

This function changes the state of the floating panel identified by uniqueID for the extension with extensionIp.

Arguments

controlID, stateChange, stateData
+ The controlIpargument is a string value.

+ The statechange argument is a string with the following possible values:

Value Description

Move Change of origin but not the size

Resize New size and possibly a new origin

Show Visibility only, but no geometric changes

Hide Visibility only, but no geometric changes
Minimize Like hide, but explains why it is hidden

Restore Like show, but explains why it is displayed

Open The window is created and its extension is loaded
Close The contained extension is unloaded

+ The values of the stateData argument are strings as shown in the following table:



DREAMWEAVER CS4 API REFERENCE | 46

Flash integration

Value of stateChange Value of stateData

Move eventData = { topleftx: Number, toplefty: Number }

Resize eventData = { width: Number, height: Number }
Returns

The following table contains the return values, which are strings:

Value Description

RequestPosted An event or command to execute the request has been queued in the host
application.

RequestComplete The host application has successfully completed the request.

RequestFailed The host application attempted to complete the request, but failed.

RequestDenied The host application refused the request, typically because it doesn't support the
action requested.

Example

controlData = {};

controlData.defaultGeometry = {topleftx : 100, toplefty : 100, width : 200, height : 200 };
controlData.minSize = {width : 100; height : 100 };

controlData.maxSize = {width : 300; height : 300 };

var swfPath = dw.getConfigurationPath() ;

swfPath += '/flash/PhotoAlbum.swf';

controlData.swfUTF8Path = swfPath;

// open the window

flash.requestStateChange ("com.adobe.extension.foo", "Open", controlData.defaultGeometry) ;

dreamweaver.flash.controlEvent()

Availability
Dreamweaver CS4.

Description
This function is used to pass events to a flash control. Event calls are passed as an XML string that captures the function
and the relevant parameters. The XML string captures the function in the SWF files that must be started.

Arguments

inControlID, inXMLString
« The inControlIDargument is a string.

+ The inxMLString argument is a string. Pass the following inxMLString to call the function in the flashCallback
flash file and pass a single string, 'Hello' as an argument.

<invoke name="flashCallback" returntype="xml">
<arguments>
<string>Hello</string>
</arguments>
</invoke>



DREAMWEAVER CS4 API REFERENCE | 47
Flash integration

Returns
Returns an XML string.

Example
The following example calls the £1ashcallback function from JavaScript. In this example, you pass the callback
function name and its arguments as an XML string.

var xmlString = '<invoke name="flashCallback" returntype="xml">
<arguments>

<string>Hello</string>

</argumentss>

</invoke>';

In this example, you use dw. f1lash.controlEvent to call back into the flash file (.swf):
dw.flash.controlEvent ('Flickr', xmlString) ;
The following arguments are used in this function:

+ Flickr, which is the ID of the extension that is passed in when the .swf control was created with

dw.flash.newControl
+ The XML string containing call back function and arguments.

The following example is the implementation of the £1ashcallback function implemented in flashcallback.mxml. In
the following example, add the f1ashcallback function. This function must be called from external applications.

public function initApp () :void {
ExternalInterface.addCallback ("flashCallback", flashCallback) ;

}

This function is called back from outside the flash file(.swf).

Note: Ensure that you call the ExternalInterface.addCallback ("flashCallback",flashCallback) before trying
to call this function.

public function flashCallback (inputStr:String) :String

{

out.text += inputStr + " got flashCallback!\n";
return "it worked!";

dreamweaver.flash.setMenu()

Availability
Dreamweaver CS4.

Description
This function enables you to provide Fly Out commands for extensions of type "PanelWindow".

Arguments

inControlID, inMenuPosition, inMenu

+ The incontrolIDis an extension ID. Calling the function affects the Fly Out menu of an open panel housing the
extension. If this argument is undefined, the call affects the main menus of the application.



DREAMWEAVER CS4 API REFERENCE | 48
Flash integration

+ The inMenuPosition is a string describing where the given commands must be placed.
« If this string is undefined, an entire menu is replaced.

« Ifthis string is for a panel, the entire user-settable area of the Fly Out menu is replaced. (The application reserves
some fixed flyout items.)

« If this string is for the application, the entire default Controls submenu of the Windows menu is replaced.

« Ifthis string is an XML string in a to-be-determined schema for setting sections of menus, this form is provided
for future compatibility.

+ inMenuis equivalent to MenuItem. This argument indicates a list of commands, which are added at the indicated
menu position. It replaces any previous items that are added at that position by an earlier call.

Returns
One of the following success or error codes:

+ The code PlugPlugErrorCode success indicates success.

» The code PlugPlugErrorCode extensionMenuCreationFailed indicates that the extension menu creation
failed.

+ The code P1lugPlugErrorCode unknown indicates that the function failed for unknown reasons.

Example
The following example is used for setting up the menu:

function initializeMenultem(menuID, menuName,extensionID, submenu)

{
var menultem = {};
menultem.menuld = menulID; //!< unique menu ID, if NULL menu is disabled
menultem.nameUtf8 = menuName; //!< Item title, if "---" item is a separator
menultem.extensionId = extensionID; //!< optional extension ID, used for panels only
menultem.submenu = submenu; //!< if non-NULL, this is a submenu
return menultem;

}

function setupMenu ()

{

var menultems = new Array () ;

menultems.push(initializeMenuItem('idl', 'Call .swf
ActionScript',undefined,undefined)) ;

menultems.push(initializeMenuItem('id0','---"',undefined,undefined)) ;

menultems.push(initializeMenultem('id2', 'Call Dw JavaScript',undefined,undefined)) ;

dw.flash.setMenu('Flickr',controlID,menultems) ;

}

Note: Specify a function named "onSelectMenuItem” in the JavaScript file specified in the scriptpath in the object
passed to newControl.

The onselectMenuItemisa menu Item Handler. It gets called with the corresponding menu ID when a command is
selected from the Floater's Fly Out menu.

The following example specifies the Callback handler definition in 'Configuration/flash/Flickr.js":



DREAMWEAVER CS4 API REFERENCE | 49

Flash integration

function onSelectMenultem (menulD)

if (menuID == 'idl') {
var flashCallbackString = '<invoke name= " flash Callback"
returntype="xml">
<arguments><string>Hello</strings></arguments></invoke>';
dw.flash.control Event ('Flickr', flashCallbackString) ;
return ("PlugPlugRequestCompleted") ;
} else {
alert ( ' You selected: menuID = ' + menulD);
return ( " PlugPlugRequestCompleted") ;

dreamweaver.flash.evalScript()

Availability
Dreamweaver CS4.

Description
This function is used to call a JavaScript function for one of the following purposes:

+ To execute a JavaScript function defined in the script file associated with the extension (for CSXS extensions).

+ The js file defined in the scriptPath parameter for non-CSXS based Extensions.

Arguments

controlID, javascript function call

+ The controlipargumentis the ID of the extension to execute the script. This ID must match with the ID specified
as the first parameter to the dw. flash.newControl ().

« The JavaScript function call argument enables the user to call a function with any number of parameters.

Returns

A Boolean value: true if the function executed successfully; £alse otherwise.

dreamweaver.flash.executeScript()

Availability
Dreamweaver CS4.

Description
The function is used to execute functions in a .js file. The ActionScript in the .swf file starts the
dreamweaver.flash.executeScript () function.

Arguments

javascript function call

Note: Specify a path to the js file that contains the functions you want to call.



DREAMWEAVER CS4 API REFERENCE | 50
Flash integration

Returns
An XML string that serializes into an ActionScript object.

Example
The following example contains a sample file, Sample.mxml and a JavaScript function in a JavaScript file, Sample.js.

private function executeScript () :void

{

if (ExternalInterface.available)

{

out.text += "SwfCalledHost\n";
var scriptText:String = "helloWorld('scott');\n";
var resultStr:0bject =
ExternalInterface.call ("dw.flash.executeScript", scriptText) ;
out.text += "Result: " + resultStr.strResult + '\n';

}

The following JavaScript file contains a JavaScript function helloworld () that is called from the .swf. This function
uses the dw.getAppLanguage () call to return a five-letter language code that Dreamweaver is running in Sample.js.

function helloWorld (nameStr)

{

alert ('hello ' + nameStr) ;

var applanguage = dw.getAppLanguage () ;

var returnStr = '<object><property id="strResult'"s<string>Language: ' + appLanguage
+ '</strings></property></object>"'

alert (returnStr) ;

return (returnStr);

Seealso

“dreamweaver.flash.newControl()” on page 43

dreamweaver.flash.controlExists

Availability
Dreamweaver CS4.

Description
This function is used to check the existence of the controls. Panelwindow controls are saved between the launches of
Dreamweaver.

Arguments

controlID

Returns
A Boolean value: true if the control has already been created, false otherwise.



Chapter 7: Photoshop integration

Adobe® Dreamweaver CS4° facilitates a compact integration with Adobe® Photoshop®. Users can insert Photoshop
images as Smart Objects in Dreamweaver. Smart Objects automatically updates images in Dreamweaver if changes are
made to the original images using Photoshop.

How Smart Objects work

Photoshop images are inserted as Smart Objects in Dreamweaver. The Smart Objects stay linked to the original
Photoshop images. When users edit the image in Photoshop, they view an updated image in Dreamweaver. A Smart
Object has a specific state, mainly resulting from the connection of the web image to its original asset file. Users can
view the status of a Smart Object visually. The sync state of a Smart Object is indicated with the Sync badge.

The Smart Objects API

The Smart Object functions handle operations related to Dreamweaver and Photoshop integration. The functions
enable you to perform the following tasks:

Retrieve the state of an image

+ Retrieve the height and width of an image

dreamweaver.assetPalette.canUpdateSmartObjectFromOriginal()

Availability
Dreamweaver CS4.

Description
Enabler: This function checks to see whether a Smart Object, on which we can issue the command "Update From

Original," is selected in the Assets panel.

Arguments

None.

Returns
A Boolean value: true if "Update From Original” can be applied to current selection. false otherwise.

dreamweaver.assetPalette.updateSmartObjectFromOriginal()

Availability
Dreamweaver CS4.

51



DREAMWEAVER CS4 API REFERENCE | 52
Photoshop integration

Description
This function re-creates the selected web image based on the current contents of the connected original source file.

Arguments
None.

Returns

None.

dreamweaver.getSmartObjectState()

Availability
Dreamweaver CS4.

Description
This function returns the state of a web image in terms of Smart Objects functionality.

Arguments
Absolute local URL of a web image.

Returns

The state of the Smart Object as a numeric value such as:

Numeric value | Description

-10 Unknown error

0 No Smart Object

1 In sync with contents of the original asset file

100 Web image modified after last sync

200 Original asset modified after last sync

+2 Dimensions of the original asset differ from width and height attributes in HTML
+4 Dimensions of web image differ from width and height attributes in HTML

10 Unable to access the original asset file

20 Unable to access web image file

dreamweaver.getSmartObjectOriginalWidth()

Availability
Dreamweaver CS4.

Description
This function evaluates and returns the pixel width of the original asset file of a Smart Object.



Arguments
Absolute local URL of the web image.

Returns
Pixel width of the original asset file.

dreamweaver.getimageWidth()

Availability
Dreamweaver CS4.

Description
This function evaluates and returns the pixel width of an image.

Arguments

Absolute local URL of a web image.

Returns
Pixel width of the image.

dreamweaver.getimageHeight()

Availability
Dreamweaver CS4.

Description

This function evaluates and returns the pixel height of an image.

Arguments
Absolute local URL of a web image.

Returns

Pixel height of the image.

DREAMWEAVER CS4 API REFERENCE | 53
Photoshop integration

dreamweaver.resolveOriginalAssetFileURLToAbsoluteLocalFilePath()

Availability
Dreamweaver CS4.

Description

This function resolves a file path to an original asset file (as it is stored in Design Notes). The path can be empty, site

relative, or absolute.

Arguments

Absolute local URL or site relative URL to the web image. This URL is required to resolve the site.



DREAMWEAVER CS4 API REFERENCE | 54
Photoshop integration

Returns
Absolute local file path.

dreamweaver.canUpdateSmartObjectFromOriginal()

Availability
Dreamweaver CS4.

Description
This function answers the question whether a Smart Object can be updated from its original asset file.

Arguments
Numeric status of Smart Object. ImageManipulatorSettings:GetSmartObjectStatus () returns this status.

Returns

A Boolean value: true if an update from the original image can be performed according to the status; false otherwise.

dreamweaver.updateSmartObjectFromOriginal()

Availability
Dreamweaver CS4.

Description

This function updates a web image based on the current contents of an original asset file.

Arguments
Absolute local URL of a web image.

Returns
None.



55

Chapter 8: The database API

Functions in the database API let you manage database connections and access information that is stored in databases.
The database API is divided by two distinct purposes: managing database connections and accessing database
connections.

Database API functions are used at design time when users are building web applications, not at runtime when the web
application is deployed.

You can use these functions in any extension. In fact, the Adobe® Dreamweaver® CS4 server behavior, data format, and
data sources APIs all use these database functions.

How database API functions work

The following example shows how the server behavior function, getDynamicBindings (), is defined for Recordset.js.
This example uses the MMDB . get ColumnAndTypeList () function:

function getDynamicBindings (ss)
{
var serverModel = dw.getDocumentDOM () .serverModel.getServerName () ;
var bindingsAndTypeArray = new Array () ;
var connName=ss.connectionName;
var statement = ss.source;
var rsName= ss.rsName;

// remove SQL comments

statement = statement.replace(/\/\*[\S\s]*?\*\//g, " ");
var bIsSimple = ParseSimpleSQL(statement) ;

statement = stripCFIFSimple (statement) ;

if (bIsSimple)

statement = RemoveWhereClause (statement, false) ;
} else {

var pa = new Array();

if (ss.ParamArray != null)

for (var 1 = 0; i < ss.ParamArray.length; i++) {
palil = new Array();
pali] [0] = ss.ParamArrayl[i] .name;
pali] [1] = ss.ParamArrayl[i] .value;

var statement = replaceParamsWithVals (statement, pa, serverModel) ;

bindingsAndTypeArray = MMDB.getColumnAndTypeList (connName, statement) ;
return bindingsAndTypeArray;



DREAMWEAVER CS4 API REFERENCE | 56
The database API

Database connection functions

Database connection functions let you make and manage any connection, including the Dreamweaver-provided ADO,
ColdFusion, and JDBC connections.

These functions interface with the Connection Manager only; they do not access a database. For functions that access
a database, see “Database access functions” on page 68.

In managing database connections, you can get the user name and password to perform activities including:

« Making a connection to a database

+ Opening a database connection dialog box

MMDB.deleteConnection()

Availability
Dreamweaver MX.

Description

This function deletes the named database connection.

Arguments
connName

+ The connName argument is the name of the database connection as it is specified in the Connection Manager. This
argument identifies, by name, the database connection to delete.

Returns
Nothing.

Example

The following example deletes a database connection:

function clickedDelete ()
{
var selectedObj = dw.serverComponents.getSelectedNode () ;
if (selectedObj && selectedObj.objectType=="Connection")
{
var connRec = MMDB.getConnection (selectedObj.name) ;
if (connRec)
{
MMDB.deleteConnection (selectedObj.name) ;
dw.serverComponents.refresh() ;



DREAMWEAVER CS4 API REFERENCE | 57
The database API

MMDB.getColdFusionDsnList()

Availability
Dreamweaver UltraDev 4.

Description
This function gets the ColdFusion data source names (DSNs) from the site server, using the getRDSUserName () and
getRDSPassword () functions.

Arguments

None.

Returns
An array that contains the ColdFusion DSNs that are defined on the server for the current site.

MMDB.getConnection()

Availability

Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.

Description
This function gets a named connection object.

Arguments
name

+ The name argument is a string variable that specifies the name of the connection that you want to reference.

Returns

A reference to a named connection object. Connection objects contain the following properties:

Property Description

name Connection name

type Indicates, if useHTTP is a value of £alse, which DLL to use for connecting to a
database at runtime

string Runtime ADO connection string or JDBC URL

dsn ColdFusion DSN

driver Runtime JDBC driver

username Runtime user name

password Runtime password

useHTTP String that contains either a t rue or £alse value, specifying whether to use a
remote driver (HTTP connection) at design time; otherwise, use a local driver
(DLL)

includePattern Regular expression used to find the file include statement on the page during
Live Data and Preview In Browser




DREAMWEAVER CS4 API REFERENCE | 58
The database API

Property Description

variables Array of page variable names and their corresponding values used during Live
Data and Preview In Browser

catalog Used to restrict the metadata that appears (for more information, see
“MMDB.getProcedures()” on page 71)

schema Used to restrict the metadata that appears (for more information, see
“MMDB.getProcedures()” on page 71)

filename Filename of dialog box that was used to create the connection

Note: These properties are the standard ones that Dreamweaver implements. Developers can define their connection
types and add new properties to this standard set or provide a different set of properties.

MMDB.getConnectionList()

Availability

Dreamweaver UltraDev 1.

Description

This function gets a list of all the connection strings that are defined in the Connection Manager.

Arguments
None.

Returns

An array of strings where each string is the name of a connection as it appears in the Connection Manager.

Example

A call to MMDB . getConnectionList () can return the strings ["EmpDB", "Test", TestEmp"].

MMDB.getConnectionName()

Availability

Dreamweaver UltraDev 1.

Description
This function gets the connection name that corresponds to the specified connection string. This function is useful
when you need to reselect a connection name in the user interface (UI) from data on the page.

If you have a connection string that references two drivers, you can specify the connection string and the driver that
corresponds to the connection name that you want to return. For example, you can have two connections.

+ Connection 1 has the following properties:

ConnectionString="jdbc:inetdae:velcro-ga-5:1433?database=pubs"
DriverName="com.inet.tds.TdsDriver"

« Connection 2 has the following properties:



DREAMWEAVER CS4 API REFERENCE | 59
The database API

ConnectionString="jdbc:inetdae:velcro-ga-5:1433?database=pubs"
DriverName="com.inet.tds.TdsDriver2"

The connection strings for Connection 1 and Connection 2 are the same. Connection 2 connects to a more recent
version of the TdsDriver driver. You should pass the driver name to this function to fully qualify the connection name
you want to return.

Arguments

connString, {driverName}

+ The connString argument is the connection string that gets the connection name.

+ The driverName argument, which is optional, further qualifies the connString argument.

Returns

A connection name string that corresponds to the connection string.

Example
The following code returns the string "EmpDB":

var connectionName = MMDB.getConnectionName -
("dsn=EmpDB;uid=;pwd=") ;

MMDB.getConnectionString()

Availability
Dreamweaver UltraDev 1.

Description

This function gets the connection string that is associated with the named connection.

Arguments
connName

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

Returns

A connection string that corresponds to the named connection.

Example
The code var connectionString = MMDB.getConnectionString ("EmpDB") returns different strings foran ADO
or JDBC connection.

« For an ADO connection, the following string can return:
"dsn=EmpDB;uid=;pwd=";
« For a JDBC connection, the following string can return:

"jdbc:inetdae:192.168.64.49:1433?database=pubs&user=JoeUser&-
password=joesSecret"



DREAMWEAVER CS4 API REFERENCE | 60
The database API

MMDB.getDriverName()

Availability
Dreamweaver UltraDev 1.

Description
This function gets the driver name that is associated with the specified connection. Only a JDBC connection has a
driver name.

Arguments

connName

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

Returns

A string that contains the driver name.

Example
The statement MMDB . getDriverName ("EmpDB"); might return the following string:

"jdbc/oracle/driver/JdbcOracle"

MMDB.getLocalDsnList()

Availability
Dreamweaver UltraDev 4.

Description
This function gets ODBC DSNis that are defined on the user’s system.

Arguments

None.

Returns
An array that contains the ODBC DSNs that are defined on the user’s system.

MMDB.getPassword()

Availability
Dreamweaver UltraDev 1.

Description
This function gets the password that is used for the specified connection.



DREAMWEAVER CS4 API REFERENCE | 61
The database API

Arguments
connName

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

Returns
A password string that is associated with the connection name.

Example
The statement MMDB . get Password ("EmpDB") ; might return "joessecret".

MMDB.getRDSPassword()

Availability
Dreamweaver UltraDev 4.

Description
This function gets the Remote Development Services (RDS) password (for use with ColdFusion connections).

Arguments
None.

Returns
A string that contains the RDS password.

MMDB.getRDSUserName()

Availability
Dreamweaver UltraDev 4.

Description
This function gets the RDS user name (for use with ColdFusion connections).

Arguments
None.

Returns
A string that contains the RDS user name.

MMDB.getRemoteDsnList()

Availability
Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.



DREAMWEAVER CS4 API REFERENCE | 62
The database API

Description

This function gets the ODBC DSNs from the site server. The getRDSUserName () and getRDSPassword () functions
are used when the server model of the current site is ColdFusion. This function provides an option for a developer to
specify a URL parameter string to be appended to the Remote Connectivity URL that MMDB . getRemoteDsnList ()
generates. If the developer provides a parameter string, this function passes it to the HT'TP connectivity scripts.

Arguments
{urlParams}

+ The urlParams argument, which is optional, is a string that contains a list of name=value expressions, which are
separated by ampersand (&) characters. You must not enclose values with quotes. Some characters, such as the
space in the value Hello World, need to be encoded. The following example shows a valid sample argument that
you can pass to MMDB . getRemoteDsnList () : a=1&b=Hello%20World

Returns
Returns an array that contains the ODBC DSNs that are defined on the server for the current site.

MMDB.getRuntimeConnectionType()

Availability
Dreamweaver UltraDev 1.

Description
This function returns the runtime connection type of the specified connection name.

Arguments
connName

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

Returns

A string that corresponds to the connection type. This function can return one of the following values: "apo",
"ADODSN", "JDBC", Or "CFDSN".

Example
The following code returns the string "apo" for an ADO connection:

var connectionType = MMDB.getRuntimeConnectionType ("EmpDB")

MMDB.getUserName()

Availability
Dreamweaver UltraDev 1.

Description
This function returns a user name for the specified connection.



DREAMWEAVER CS4 API REFERENCE | 63
The database API

Arguments
connName

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

Returns

A user name string that is associated with the connection name.

Example
The statement MMDB . getUserName ("EmpDB") ; might return "amit".

MMDB.hasConnectionWithName()

Availability
Dreamweaver UltraDev 4.

Description
This function determines whether a connection of a given name exists.

Arguments
name

« The name argument is the connection name.

Returns
Returns a Boolean value: t rue indicates that a connection with the specified name exists; false otherwise.

MMDB.needToPromptForRdsInfo()

Availability
Dreamweaver MX.

Description
This function determines whether Dreamweaver should open the RDS Login Information dialog box.

Arguments
bForce

« The bForce argument is a Boolean value; t rue indicates that the user who has previously cancelled out of the RDS

login dialog box still needs to be prompted for RDS login information.

Returns
A Boolean value: true indicates that the user needs to be prompted for RDS login information; £alse otherwise.



DREAMWEAVER CS4 API REFERENCE | 64
The database API

MMDB.needToRefreshColdFusionDsnList()

Availability
Dreamweaver MX.

Description

This function tells the Connection Manager to empty the cache and get the ColdFusion data source list from the
application server the next time a user requests the list.

Arguments

None.

Returns
Nothing.

MMDB.popupConnection()

Availability
Dreamweaver MX.

Description

This function starts a connection dialog box. This function has the following three signatures:

« If the argument list consists only of dialogFileName (a string), the popupConnection () function makes
Dreamweaver open the Connection dialog box so you can define a new connection.

« If the argument list consists only of connRec (a connection reference), the popupConnection () function makes
Dreamweaver launch the Connection dialog box in edit mode for editing the named connection. In this mode, the
name text field is dimmed.

« Iftheargumentlist consists of connRec and the Boolean value bDuplicate, the popupConnection () function makes
Dreamweaver open the Connection dialog box in duplicate mode. In this mode, the name text field is blanked out,
and the remaining properties are copied to define a duplicate connection.

Arguments
dialogFileName or connRec or connrec, bDuplicate

+ The dialogFileName argument is a string that contains the name of an HTML file that resides in the
Configuration/Connections/server-model folder. This HTML file defines the dialog box that creates a connection.
This file must implement three JavaScript API functions: £indConnection (), inspectConnection (), and
applyConnection (). Typically, you create a JavaScript file that implements these functions and then include that
file in the HTML file. (For more information on creating a connection, see “The database connectivity API” on
page 80.)

+ The connRec argument is a reference to an existing Connection object.

« The bDuplicate argument is a Boolean value.

Returns
Nothing. The defined connection dialog box appears.



MMDB.setRDSPassword()

Availability
Dreamweaver UltraDev 4.

Description
This function sets the RDS password.

Arguments

password

+ The password argument is a string that contains the RDS password.

Returns
Nothing.

MMDB.setRDSUserName()

Availability
Dreamweaver UltraDev 4.

Description
This function sets the RDS user name.

Arguments
username

« The username argument is a valid RDS user name.

Returns
Nothing.

MMDB.showColdFusionAdmin()

Availability
Dreamweaver MX.

Description

This function displays the ColdFusion Administrator dialog box.

Arguments
None.

Returns
Nothing. The ColdFusion Administrator dialog box appears.

DREAMWEAVER CS4 API REFERENCE | 65
The database API



MMDB.showConnectionMgrDialog()

Availability
Dreamweaver UltraDev 1.

Description

This function displays the Connection Manager dialog box.

Arguments

None.

Returns
Nothing. The Connection Manager dialog box appears.

MMDB.showOdbcDialog()

Availability

Dreamweaver UltraDev 4 (Windows only).

Description

DREAMWEAVER CS4 API REFERENCE | 66
The database API

This function displays the System ODBC Administration dialog box or the ODBC Data Source Administrator dialog box.

Arguments
None.

Returns

Nothing. The System ODBC Administration dialog box or the ODBC Data Source Administrator dialog box appears.

MMDB.showRdsUserDialog()

Availability
Dreamweaver UltraDev 4.

Description

This function displays the RDS user name and password dialog box.

Arguments
username, password

+ The username argument is the initial user name.

« The password argument is the initial password.

Returns

An object that contains the new values in the username and password properties. If either property is not defined, it

indicates that the user cancelled the dialog box.



DREAMWEAVER CS4 API REFERENCE | 67
The database API

MMDB.showRestrictDialog()

Availability
Dreamweaver UltraDev 4.

Description
This function displays the Restrict dialog box.

Arguments

catalog, schema
+ The catalog argument is the initial catalog value.

+ The schema argument is the initial schema value.

Returns
An object that contains the new values in the catalog and schema properties. If either property is not defined, it
indicates that the user cancelled the dialog box.

MMDB.testConnection()

Availability
Dreamweaver UltraDev 4.

Description
This function tests connection settings. It displays a modal dialog box that describes the results.

Arguments
serverPropertiesArray

This function expects a single argument, an array object that contains values from the following list, which are
appropriate for the current server model. For properties that do not apply to the connection being tested, set them to

empty ("").

+ The type argument indicates, when useHTTP is a false value, which DLL to use for connecting to a database at
design time to test connection settings.

+ The string argument is the ADO connection string or JDBC URL.
+ The dsn argument is the data source name.

+ The driver argument is the JDBC driver.

+ The username argument is the user name.

« The password argument is the password.

« The useHTTP argument is a Boolean value. A value of true specifies that Dreamweaver should use an HTTP
connection at design time; otherwise, Dreamweaver uses a DLL.

Returns
A Boolean value: true if the connection test is successful; false otherwise.



DREAMWEAVER CS4 API REFERENCE | 68
The database API

Database access functions

Database access functions let you query a database.

In accessing database information, you can, for example, retrieve metadata that describes the schema or structure of a
database. This metadata includes information such as the names of tables, columns, stored procedures, and views. You
can also show the results of executing a database query or stored procedure. When accessing a database through this
API, you use structured query language (SQL) statements.

For the collection of functions that manage a database connection, see “Database connection functions” on page 56.
The following list describes some of the arguments that are common to the functions that are available:

+ Most database access functions use a connection name as an argument. You can see a list of valid connection names
in the Connection Manager, or you can use the MMDB . getConnectionList () function to get a list of all the
connection names programmatically.

« Stored procedures often require parameters. You can specify parameter values for database access functions in two
ways. First, you can provide an array of parameter values (paramvaluesarray). If you specify only parameter
values, the values must be in the sequence in which the stored procedure requires the parameters. Second, you
specify parameter values to provide an array of parameter names (paramNameArray). You can use the
MMDB . get SPParamsAsString () function to get the parameters of the stored procedure. If you provide parameter
names, the values that you specify in paramvaluesArray must be in the sequence of the parameter names that you
specify in paramNameArray.

MMDB.getColumnAndTypelList()

Availability
Dreamweaver UltraDev 1.

Description
This function gets a list of columns and their types from an executed SQL SELECT statement.

Arguments
connName, statement

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

+ The statement argument is the SQL SELECT statement to execute.

Returns
An array of strings that represents a list of columns (and their types) that match the SELECT statement, or an error if
the SQL statement is invalid or the connection cannot be made.

Example
The code var columnArray = MMDB.getColumnAndTypeList ("EmpDB","Select * from Employees") returns
the following array of strings:



columnArray[0] = "EmpName"
columnArray [1] "varchar"
columnArray [2] "EmpFirstName"
columnArray [3] "varchar"
columnArray [4] "Age"
columnArray [5] "integer"

DREAMWEAVER CS4 API REFERENCE | 69

The database API

MMDB.getColumnList()

Availability
Dreamweaver UltraDev 1.

Description
This function gets a list of columns from an executed SQL SELECT statement.

Arguments

connName, statement

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

« The statement argument is the SQL SELECT statement to execute.

Returns
An array of strings that represents a list of columns that match the SELECT statement, or an error if the SQL statement
is invalid or the connection cannot be made.

Example
The code var columnArray = MMDB.getColumnList ("EmpDB", "Select * from Employees") returns the
following array of strings:

columnArray [0] = "EmpName"
columnArray[l] = "EmpFirstName"
columnArray[2] = "Age"
MMDB.getColumns()
Availability

Dreamweaver MX, arguments updated in Dreamweaver MX 2004.

Description

This function returns an array of objects that describe the columns in the specified table.

Arguments
connName, tableName

« The connName argument is the connection name. This value identifies the connection containing the string that
Dreamweaver should use to make a database connection to a live data source.

+ The tableName argument is the table to query.



DREAMWEAVER CS4 API REFERENCE | 70
The database API

Returns

An array of objects, one object for each column. Each object defines the following three properties for the column with
which it is associated.

Property Name Description

name Name of the column (for example, price)

datatype Data type of the column (for example, small money)

definedsize Defined size of the column (for example, 8)

nullable Indicates whether the column can contain null values
Example

The following example uses MMDB . get Columns () to set the tooltip text value:

var columnNameObjs = MMDB.getColumns (connName, tableName) ;
var databaseType = MMDB.getDatabaseType (connName) ;
for (i = 0; 1 < columnNameObjs.length; i++)

{
var columnObj = columnNameObjs[i];
var columnName = columnObj.name;
var typename = columnObj.datatype;
if (dwscripts.isNumber (typename))

{
// it already is a num

typename = dwscripts.getDBColumnTypeAsString (typename, databaseType) ;

}

var tooltiptext = typename;

MMDB.getColumnsOfTable()

Availability
Dreamweaver UltraDev 1.

Description

This function gets a list of all the columns in the specified table.

Arguments
connName, tableName

« The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

+ The tableName argument is the name of a table in the database that is specified by the connName argument.

Returns

An array of strings where each string is the name of a column in the table.

Example
The statement MMDB . get ColumnsOfTable ("EmpDB", "Employees") ; returns the following strings:



DREAMWEAVER CS4 API REFERENCE | 71
The database API

["EmpID", "FirstName", "LastName"]

MMDB.getPrimaryKeys()

Availability
Dreamweaver MX.

Description
This function returns the column names that combine to form the primary key of the named table. A primary key
serves as the unique identifier for a database row and consists of at least one column.

Arguments

connName, tableName

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

+ The tableName argument is the name of the table for which you want to retrieve the set of columns that comprises
the primary key of that table.

Returns
An array of strings. The array contains one string for each column that comprises the primary key.

Example
The following example returns the primary key for the specified table.

var connName = componentRec.parent.parent.parent.name;
var tableName = componentRec.name;

var primaryKeys = MMDB.getPrimaryKeys (connName, tableName) ;
MMDB.getProcedures()

Availability

Dreamweaver MX.

Description
This function returns an array of procedure objects that are associated with a named connection.

Arguments
connName

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

Returns
An array of procedure objects where each procedure object has the following set of three properties:



DREAMWEAVER CS4 API REFERENCE | 72
The database API

Property Name Description

schema Name of the schema that is associated with the object.

This property identifies the user that is associated with the stored procedure in the SQL
database that the get Procedures () function accesses. The database that this
function accesses depends on the type of connection.

¢ For ODBC connections, the ODBC data source defines the database. The DSN is

specified by the dsn property in the connection object (connName) that you pass to
the getProcedures () function.

* For OLE DB connections, the connection string names the database.

catalog Name of the catalog that is associated with the object (owner qualifier).

The value of the catalog property is defined by an attribute of the OLE DB driver. This
driver attribute defines a default user . database property to use when the OLE DB
connection string does not specify a database.

procedure Name of the procedure.

Note: Dreamweaver connects to and gets all the tables in the database whenever you modify a recordset. If the database
has many tables, Dreamweaver might take a long time to retrieve them on certain systems. If your database contains a
schema or catalog, you can use the schema or catalog to restrict the number of database items Dreamweaver gets at design
time. You must first create a schema or catalog in your database application before you can apply it in Dreamweaver.
Consult your database documentation or your system administrator.

Example
The following code gets a list of procedures:

var procObjects = MMDB.getProcedures (connectionName) ;
for (i = 0; i < procObjects.length; i++)

{
var thisProcedure = procObjects[il]
thisSchema =Trim(thisProcedure.schema)

if (thisSchema.length == 0)

{

thisSchema = Trim(thisProcedure.catalog)

}

if (thisSchema.length > 0)

{

thisSchema += "."

}

var procName = String(thisSchema + thisProcedure.procedure) ;

MMDB.getSPColumnlList()

Availability
Dreamweaver UltraDev 1.

Description

This function gets a list of result set columns that are generated by a call to the specified stored procedure.



DREAMWEAVER CS4 API REFERENCE | 73
The database API

Arguments

connName, statement, paramValuesArray

« The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

+ The statement argument is the name of the stored procedure that returns the result set when it executes.
+ The paramValuesArray argument is an array that contains a list of design-time parameter test values. Specify the

parameter values in the order in which the stored procedure expects them. You can use the
MMDB . get SPParamsAsString () function to get the parameters for the stored procedure.

Returns

An array of strings that represents the list of columns. This function returns an error if the SQL statement or the
connection string is invalid.

Example

The following code can return a list of result set columns that are generated from the executed stored procedure,
getNewEmployeesMakingAtLeast

var paramValueArray = new Array("2/1/2000", "50000")

var columnArray = MMDB.getSPColumnList ("EmpDB", -
"getNewEmployeesMakingAtLeast", paramValueArray)

The following values return:

columnArray [0] = "EmpID", columnArray[l] = "LastName", -
columnArray[2] ="startDate", columnArray[3] = "salary"

MMDB.getSPColumnListNamedParams()

Availability
Dreamweaver UltraDev 1.

Description

This function gets a list of result set columns that are generated by a call to the specified stored procedure.

Arguments

connName, statement, paramNameArray, paramValuesArray

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

+ The statement argument is the name of the stored procedure that returns the result set when it executes.

+ The paramNameArray argument is an array that contains a list of parameter names. You can use the
MMDB. get SPParamsAsString () function to get the parameters of the stored procedure.

+ The paramValuesArray argument is an array that contains a list of design-time parameter test values. You can
specify if the procedure requires parameters when it executes. If you have provided parameter names in
paramNameArray, specify the parameter values in the same order that their corresponding parameter names
appear in paramNameArray. If you did not provide paramNameArray, specify the values in the order in which the
stored procedure expects them.



DREAMWEAVER CS4 API REFERENCE | 74
The database API

Returns
An array of strings that represents the list of columns. This function returns an error if the SQL statement or the
connection string is invalid.

Example
The following code can return a list of result set columns that are generated from the executed stored procedure,
getNewEmployeesMakingAtLeast:

var paramNameArray = new Array ("startDate", "salary")

var paramValueArray = new Array("2/1/2000", "50000")

var columnArray = MMDB.getSPColumnListNamedParams ("EmpDB", -
"getNewEmployeesMakingAtLeast", paramNameArray, paramValueArray)

The following values return:

columnArray[0] = "EmpID", columnArray[l] = "LastName", -
columnArray [2] ="startDate", columnArray[3] = "salary"

MMDB.getSPParameters()

Availability
Dreamweaver MX.

Description
This function returns an array of parameter objects for a named procedure.

Arguments
connName, procName

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

+ The procName argument is the name of the procedure.

Returns

An array of parameter objects, each specifying the following set of properties:

Property name Description

name Name of the parameter (for example, @@lolimit)
datatype Datatype of the parameter (for example, smallmoney)
direction Direction of the parameter:

1-The parameter is used for input only.

2-The parameter is used for output only. In this case, you pass the parameter by
reference and the method places a value in it. You can use the value after the
method returns.

3- The parameter is used for both input and output.

4-The parameter holds a return value.




DREAMWEAVER CS4 API REFERENCE | 75
The database API

Example

The following example retrieves the parameter objects for the specified procedure and creates a tooltip for each object
using its properties.

var paramNameObjs = MMDB.getSPParameters (connName, procName) ;

for (i = 0; i < paramNameObjs.length; i++)
{
var paramObj = paramNameObjs[il];
var tooltiptext = paramObj.datatype;
tooltiptext+=" ";
tooltiptext+=GetDirString (paramObj.directiontype) ;

MMDB.getSPParamsAsString()

Availability
Dreamweaver UltraDev 1.

Description
This function gets a comma-delimited string that contains the list of parameters that the stored procedure takes.

Arguments

connName, procName

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

+ The procName argument is the name of the stored procedure.

Returns
A comma-delimited string that contains the list of parameters that the stored procedure requires. The parameters’
names, direction, and data type are included, separated by semicolons (;).

Example
The code MMDB . get SPParamsAsString ("EmpDB","getNewEmployeesMakingAtLeast")Canrﬁumlashﬁngof
form name startDate;direction:in;datatype:date, salary;direction:in;datatype:integer.

In this example, the stored procedure, getNewEmployeesMakingAtLeast, has two parameters: startDate and
Salary. For startDate, the direction is in and the data type is date. For salary, the direction is in and the data type
is date.

MMDB.getTables()

Availability
Dreamweaver UltraDev 1.

Description
This function gets a list of all the tables that are defined for the specified database. Each table object has three
prOperﬁes:table,schema,and.catalog.



DREAMWEAVER CS4 API REFERENCE | 76
The database API

Arguments
connName

« The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

Returns
An array of objects where each object has three properties: table, schema, and catalog. Table is the name of the
table. Schema is the name of the schema that contains the table. catalog is the catalog that contains the table.

Example
The statement MMDB . getTables ("EmpDB") ; might produce an array of two objects. The first object’s properties
might be similar to the following example:

objectl[table:"Employees", schema:'"personnel", catalog:"syscat"]

The second object’s properties might be similar to the following example:

object2 [table: "Departments", schema:"demo", catalog:"syscat2"]
MMDB.getViews()
Availability

Dreamweaver UltraDev 4.

Description
This function gets a list of all the views that are defined for the specified database. Each view object has catalog,
schema, and view properties.

Arguments
connName

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

Returns

An array of view objects where each object has three properties: catalog, schema, and view. Use catalog or schema
to restrict or filter the number of views that pertain to an individual schema name or catalog name that is defined as
part of the connection information.

Example
The following example returns the views for a given connection value, CONN_LIST.getValue():



DREAMWEAVER CS4 API REFERENCE | 77
The database API

var viewObjects = MMDB.getViews (CONN_LIST.getValue())
for (i = 0; 1 < viewObjects.length; i++)
{

thisView = viewObjects[i]

thisSchema = Trim(thisView.schema)

if (thisSchema.length == 0)

{

thisSchema = Trim(thisView.catalog)
if (thisSchema.length > 0)

thisSchema += "."

}

views.push (String(thisSchema + thisView.view))

MMDB.showResultset()

Availability
Dreamweaver UltraDev 1.

Description

This function displays a dialog box that contains the results of executing the specified SQL statement.The dialog box
displays a tabular grid in which the header provides column information that describes the result set. If the connection
string or the SQL statement is invalid, an error appears. This function validates the SQL statement.

Arguments
connName, SQLstatement

« The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

+ The SQLstatement argument is the SQL SELECT statement.

Returns
Nothing. This function returns an error if the SQL statement or the connection string is invalid.

Example
The following code displays the results of the executed SQL statement:

MMDB.showResultset ("EmpDB", "Select EmpName, EmpFirstName,Age -
from Employees™")

MMDB.showSPResultset()

Availability
Dreamweaver UltraDev 1.



DREAMWEAVER CS4 API REFERENCE | 78
The database API

Description

This function displays a dialog box that contains the results of executing the specified stored procedure. The dialog
box displays a tabular grid in which the header provides column information that describes the result set. If the
connection string or the stored procedure is invalid, an error appears. This function validates the stored procedure.

Arguments
connName, procName, paramValuesArray

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

+ The procName argument is the name of the stored procedure to execute.

+ The paramValuesArrayargument is an array that contains a list of design-time parameter test values. Specify the
parameter values in the order in which the stored procedure expects them. You can use the
MMDB . get SPParamsAsString () function to get the parameters of the stored procedure.

Returns

This function returns an error if the SQL statement or the connection string is invalid; otherwise, it returns nothing.

Example

The following code displays the results of the executed stored procedure:

var paramValueArray = new Array("2/1/2000", "50000")
MMDB.showSPResultset ("EmpDB", "getNewEmployeesMakingAtLeast", -
paramValueArray)

MMDB.showSPResultsetNamedParams()

Availability
Dreamweaver UltraDev 1.

Description

This function displays a dialog box that contains the result set of the specified stored procedure. The dialog box
displays a tabular grid in which the header provides column information that describes the result set. If the connection
string or the stored procedure is invalid, an error appears. This function validates the stored procedure. This function
differs from the MMDB . showSPResultset () function because you can specify the parameter values by name instead
of the order in which the stored procedure expects them.

Arguments
connName, procName, paramNameArray, paramValuesArray

+ The connName argument is a connection name that is specified in the Connection Manager. It identifies the
connection string that Dreamweaver should use to make a database connection to a live data source.

+ The procName argument is the name of the stored procedure that returns the result set when it executes.

+ The paramNameArray argument is an array that contains a list of parameter names. You can use the
MMDB . get SPParamsAsString () function to get the parameters of the stored procedure.

+ The paramValuesArray argument is an array that contains a list of design-time parameter test values.



Returns

DREAMWEAVER CS4 API REFERENCE | 79
The database API

This function returns an error if the SQL statement or the connection string is invalid; otherwise, it returns nothing.

Example

The following code displays the results of the executed stored procedure:

var paramNameArray = new Array ("startDate", "salary")

var paramValueArray = new Array("2/1/2000", "50000"

MMDB. showSPResultsetNamedParams ("EmpDB", "getNewEmployees-
MakingAtLeast", paramNameArray, paramValueArray)



‘so

Chapter 9: The database connectivity API

Asadeveloper, you can create new connection types and corresponding dialog boxes for new or existing server models
for Adobe® Dreamweaver®. Then, a user can create a connection object when setting up a site to start building pages.
To create a connection object, the user has to first select the particular type of connection that you created.

Select a new connection type

The user can select your new connection type in the following ways:

+ On the Application panel, the user can click the Plus (+) button and select Recordset. In the Recordset dialog box,
the user can expand the Connection pop-up menu.

+ On the Database tab of the Databases panel, the user can click the Plus (+) button and select Data Source Name.

Develop a new connection type

The following steps outline the process for creating a new connection type:

1 Create the layout for the connection dialog box.

Create an HTML file that lays out the user interface (UI) for your connection dialog box. Name this file using the
name of the connection (for example, myConnection.htm). For information about creating a dialog box, see
Getting Started with Dreamweaver.

Make sure this HTML file includes a reference to the JavaScript implementation file that you define in Step 2, Create
a JavaScript file that implements at least the following elements, as shown in the following example:

<head>
<script SRC="../myConnectionImpl.js"></scripts>
</head>

Store this HTML file, which defines your connection dialog box, in the Configuration/Connections/server-
model/platform folder (where the platform is either Windows or Macintosh).

For example, the default ADO connection dialog box for an ASP JavaScript document on a Windows platform is
stored in the ASP_Js/Win folder and is named Connection_ado_conn_string.htm.

Note: At runtime, Dreamweaver dynamically builds the list of connection types that are available to the user from the
collection of dialog boxes that are in the ASP_Js/Win folder.

The Configuration/ServerModels folder has HTML files that define each server model. Inside each HTML file is
the getServerModelFolderName () function, which returns the name of the folder that is associated with the
server model. The following example shows the function for the ASP JavaScript document type:



DREAMWEAVER CS4 API REFERENCE | 81
The database connectivity API

function getServerModelFolderName ()

{

return "ASP_JS";

}

You can also look at the MMDocumentTypes.xml file, which is located in the Configuration/DocumentTypes
folder, to determine the mapping between server models and document types.

2 Create a JavaScript file that implements at least the following elements:

Element Description Examples
A set of variables Each variable defines a specific Type of connection, data
connection property source name, and so on
A set of buttons Each button appears in the Test, Help, and so on (OK and
connection dialog box Cancel are automatically
included)
Connectivity functions Together, these functions define the e findConnection ()
Connectivity API
* applyConnection()
¢ inspectConnection()

You can select any name for this implementation file, but it must have a .js extension (for example,
myConnectionImpl.js). You can store this implementation file on either your local or a remote computer. You
might want to store your implementation file in the appropriate subfolder within the Configuration/Connections
folder.

Note: The HTML file that you defined in Step 1, Create the layout for the connection dialog box, must include this
connection type implementation file.

Unless you need to define connection parameters other than the ones provided in the standard
connection_includefile.edml file, these two steps are the minimum to create a new connection dialog box.

Note: The title of the dialog box that the user sees is in the title tag, which is specified in the HTML document.

The functions listed in the next section let you create a connection dialog box. Along with implementing the calls for
generating include files for the user, you can register your connectivity type within the server model section of the
connection XML file.

For information about the Database Connectivity API that is associated with creating a new connection, see “Database
connection functions” on page 56.

The Connection API

To create a new type of connection, including the dialog box with which users interact, you must implement the
following three functions: findConnection (), inspectConnection (), and applyConnection (). You write these
three functions and include them in the JavaScript implementation file that is associated with your new connection
type (see Step 2: Create a JavaScript file that implements at least the following elements:).



DREAMWEAVER CS4 API REFERENCE | 82
The database connectivity API

The applyConnection () function returns an HTML source within an include file. You can see examples of the
HTML source in “The generated include file” on page 84. The findconnection () function takes the HTML source
and extracts its properties. You can implement findConnection () to use the search patterns in XML files to extract
the information that returns from applyConnection (). For an example of such an implementation, see the following
two JavaScript files:

+ The connection_ado_conn_string.js file is located in Configuration/Connections/ASP_Js folder.
« The connection_common.js file is located in Configuration/Connections/Shared folder.

When the user opens a site, Dreamweaver goes through each file in the Connections folder, opens it, and passes the
contents to findConnection (). If the contents of a file match the criteria for a valid connection, findConnection ()
returns a connection object. Dreamweaver then lists all the connection objects in the Database Explorer panel.

When the user opens a connection dialog box and selects to create a new connection or duplicate or edit an existing
connection, Dreamweaver calls the inspectConnection () function and passes back the same connection object that
findConnection () created. This process lets Dreamweaver populate the dialog box with the connection information.

When the user clicks OK in a connection dialog box, Dreamweaver calls the applyConnection () function to build
the HTML, which is placed in the connection include file that is located in the Configuration/Connections folder. The
applyConnection () function returns an empty string that indicates there is an error in one of the fields and the dialog
box should not be closed. The include file has the default file extension type for the current server model.

When the user adds to the page a server behavior that uses the connection, such as a recordset or a stored procedure,
Dreamweaver adds a statement to the page that includes the connection include file.

findConnection()

Availability
Dreamweaver UltraDev 4.

Description

Dreamweaver calls this function to detect a connection in the specified HTML source and to parse the connection
parameters. If the contents of this source file match the criteria for a valid connection, findConnection () returns a
connection object; otherwise, this function returns a null value.

Argument

htmlSource

The htmliSource argument is the HTML source for a connection.

Returns
A connection object that provides values for a particular combination of the properties that are listed in the following
table. The properties for which this function returns a value depend on the document type.

Property Description

name Name of the connection

type If useHTTP is false, indicates which DLL to use for connecting to database at
runtime

string Runtime connection string. For ADO, it is a string of connection parameters; for
JDBC, it is a connection URL




DREAMWEAVER CS4 API REFERENCE | 83
The database connectivity API

Property Description

dsn Data source name used for ODBC or Cold Fusion runtime connections
driver Name of a JDBC driver used at runtime

username Name of the user for the runtime connection

password Password used for the runtime connection

designtimeString Design-time connection string (see string)

designtimeDsn Design-time data source name (see dsn)

designtimeDriver Name of a JDBC driver used at design time

designtimeUsername

Name of the user used for the design-time connection

designtimePassword

Password used for the design-time connection

designtimeType

Design-time connection type

usesDesigntimeInfo

When false, Dreamweaver uses runtime properties at design time; otherwise,
Dreamweaver uses design-time properties

useHTTP String containing either t rue or false: true specifies to use HTTP connection
at design time; f£alse specifies to use DLL

includePattern Regular expression used to find the file include statement on the page during
Live Data and Preview In Browser

variables Object with a property for each page variable that is set to its corresponding
value. This object is used during Live Data and Preview In Browser

catalog String containing a database identifier that restricts the amount of metadata that
appears

schema String containing a database identifier that restricts the amount of metadata that
appears

filename Name of the dialog box used to create the connection

If a connection is not found in htmlSource, a nul1 value returns.

Note: Developers can add custom properties (for example, metadata) to the HTML source, which applyConnection ()

returns along with the standard properties.

inspectConnection()

Availability

Dreamweaver UltraDev 4.

Description

Dreamweaver calls this function to initialize the dialog box data for defining a connection when the user edits an
existing connection. This process lets Dreamweaver populate the dialog box with the appropriate connection

information.

Argument

parameters

The parameters argument is the same object that the findConnection () function returns.




DREAMWEAVER CS4 API REFERENCE | 84
The database connectivity API

Returns
Nothing.

applyConnection()

Availability
Dreamweaver UltraDev 4.

Description

Dreamweaver calls this function when the user clicks OK in the connection dialog box. The applyConnection ()
function generates the HTML source for a connection. Dreamweaver writes the HTML to the
Configuration/Connections/connection-name.ext include file, where connection-name is the name of your connection
(see “Develop a new connection type” on page 80), and .ext is the default extension that is associated with the server
model.

Arguments
None.

Returns

The HTML source for a connection. Dreamweaver also closes the connection dialog box. If a field validation error
occurs, applyConnection () displays an error message and returns an empty string to indicate that the dialog box
should remain open.

The generated include file

The include file that applyConnection () generates declares all the properties of a connection. The filename for the
include file is the connection name. It has the filename extension that is defined for the server model associated with
the current site.

Note: Connections are shared, so set the allowMultiple value to false. It ensures that the connection file is included
in the document only once. It also ensures that the server script remains in the page if any other server behaviors use it.

You can see some sample include files that applyConnection () generates for various default server models illustrated
in the coming sections.

Note: To create a connection include file format, define a new EDML mapping file, which is like
connection_includefile.edml, as shown in “The definition file for your connection type” on page 85.

ASP JavaScript

The ASP and JavaScript include file should be named MyConnectionl.asp, where MyConnection1 is the name of the
connection. The following sample is an include file for an ADO connection string:



DREAMWEAVER CS4 API REFERENCE | 85
The database connectivity API

A
o°

// Filename="Connection_ado conn_string.htm"
// Type="ADO"

// HTTP="true"

// Catalog=""

// Schema=""

var MM _MyConnectionl STRING = "dsn=pubs";

o°

>

The server behavior file includes this connection by using the relative file include statement, as shown in the following
example:

<!--#include file="../Connections/MyConnectionl.asp"-->

ColdFusion

When you use UltraDev 4 ColdFusion, Dreamweaver relies on a ColdFusion include file to get a list of data sources.

Note: For regular Dreamweaver ColdFusion, Dreamweaver ignores any include files and, instead, makes use of RDS to
retrieve the list of data sources from ColdFusion.

The UltraDev 4 ColdFusion include file should be named MyConnectionl.cfm, where MyConnection1 is the name of
your connection. The following example shows the include file for a ColdFusion connection to a product table:

<!-- FileName="Connection cf dsn.htm" "dsn=products" -->
<!-- Type="ADO" -->

<!-- Catalog="" -->

<!-- Schema="" -->

<!-- HTTP="false" -->

<CFSET MM_MyConnectionl_ DSN = "products">

<CFSET MM_MyConnectionl USERNAME = "">

<CFSET MM_Product_USERNAME = ">

<CFSET MM_MyConnectionl PASSWORD = "">

The server behavior file includes this connection by using the cfinclude statement, as shown in the following
example:

<cfinclude template="Connections/MyConnectionl.cfm">

The definition file for your connection type

For each server model, there is a connection_includefile.edml file that defines the connection type and maps the
properties that are defined in the include file to elements in the Dreamweaver interface.

Dreamweaver provides default definition files, one for each of the predefined server models, as listed in the following
table.

Server model Subfolder within the Configuration/Connections folder
ASP JavaScript ASP_Js

ASP.NET CSharp ASP.NET_Csharp

ASP.NET VBScrip ASP.NET_VB

ASP VBScript ASP_Vbs




DREAMWEAVER CS4 API REFERENCE | 86
The database connectivity API

Server model Subfolder within the Configuration/Connections folder
ColdFusion ColdFusion

JavaServer Page JSP

PHP MySq| PHP_MySql

Dreamweaver uses the quicksearch and searchpattern parameters to recognize connection blocks and the
insertText parameter to create connection blocks. For more information on EDML tags and attributes, and regular
expression search patterns, see “Server Behaviors” in Extending Dreamweaver.

Note: If you change the format of your include file or define an include file for a new server model, you need to map the
connection parameters with the Dreamweaver UI, Live Data, and Preview In Browser. The following sample EDML file,
which is associated with the default ASP ]S server model, maps all connection page variables with their respective live
values before sending the page to the server. For more information on EDML and regular expression search patterns, see
“Server Behaviors” in Extending Dreamweaver.

<participant name="connection includefile" version="5.0">

<quickSearch>
<! [CDATA[// HTTP=]]></quickSearch>
<insertText location="">

<! [CDATA [<%
// FileName="@@filename@@"
// Type="@@typee@" @@designtimeStringe@
// DesigntimeType="@e@designtimeTypeee@"
// HITP="@ehttpee"
// Catalog="@ecatalogee"
// Schema="@@schema@e"
var MM_ee@cname@@ STRING = @@stringe@e
%>
11>
</insertText>
<searchPatterns whereToSearch="directive">
<searchPattern paramNames="filename">

<! [CDATA[/\/\/\s*FileName=" ([*"]*)"/]]></searchPattern>
<searchPattern paramNames="type,designtimeString">
<! [CDATA[/\/\/\s+Type=" (\w*) " ([*\r\n] *) /1] ></searchPattern>

<searchPattern paramNames="designtimeType" isOptional="true">

<! [CDATA[/\/\/\s*DesigntimeType=" (\w*)"/]]></searchPattern>
<searchPattern paramNames="http">

<! [CDATA[/\/\/\s*HTTP=" (\w+) "/]]></searchPattern>
<searchPattern paramNames="catalog">

<! [CDATA[/\/\/\s*Catalog=" (\w*)"/]]></searchPattern>
<searchPattern paramNames="schema'>

<! [CDATA[/\/\/\s*Schema=" (\w*)"/]]></searchPatterns>
<searchPattern paramNames="cname,string"s>

<! [CDATA[/var\s+MM_ (\w*) STRING\s*=\s* ([*\r\n]+)/]]></searchPattern>

</searchPatterns>
</participant>

Tokens in an EDML file—such as eefilenameee in this example—map values in the include file to properties of a
connection object. You set the properties of connection objects in the JavaScript implementation file.

All the default connection dialog boxes that come with Dreamweaver use the connection_includefile.edml mapping
file. To let Dreamweaver find this file, its name is set in the JavaScript implementation file, as shown in the following
example:



DREAMWEAVER CS4 API REFERENCE | 87
The database connectivity API

var PARTICIPANT FILE = "connection includefile";

When you create a custom connection type, you can use any mapping file in your custom dialog boxes. If you create a
mapping file, you can use a name other than connection_includefile for your EDML file. If you use a different name,
you need to use this name in your JavaScript implementation file when you specify the value that is assigned to the
PARTICIPANT_ FILE variable, as shown in the following example:

var PARTICIPANT FILE = "myConnection mappingfile";



‘88

Chapter 10: The source control integration
API

The source control integration API lets you write shared libraries. These APIs enable you to extend the Adobe®
Dreamweaver® Check In/Check Out feature using source control systems (such as Sourcesafe or CVS).

Your libraries must support a minimum set of API functions for Dreamweaver to integrate with a source control
system. And, your libraries must reside in the Program Files/Adobe/Adobe Dreamweaver
CS4/Configuration/SourceControl folder.

When Dreamweaver starts, it loads each library. Dreamweaver determines which features the library supports by
calling Get Procaddress () for each API function. If an address does not exist, Dreamweaver assumes that the library
does not support the APL If the address exists, Dreamweaver uses the library version of the function to support the
functionality. When a Dreamweaver user defines or edits a site and then selects the Web Server SCS tab, the choices
that correspond to the DLLs appear on the tab. These choices appear in addition to the standard items on the tab. The
DLLs are loaded from the Program Files/Adobe/Adobe Dreamweaver CS4/Configuration/SourceControl folder.

To create a Site > Source Control menu to which you can add custom items, add the following code. Add the code in
the Site menu in the menus.xml file:

<menu name="Source Control" id="DWMenu MainSite_ Site_ Source-
Control"s<menuitem dynamic name="None"file="Menus/MM/~

File SCSItems.htm" id="DWMenu MainSite_ Site_ NewFeatures_ -
Default" />

</menus>

How source control integration with Dreamweaver
works

When a Dreamweaver user selects server connection, file transfer, or Design Notes features, Dreamweaver calls the
DLL’s version of the corresponding API function (Connect (), Disconnect (), Get (), Put (), Checkin (),
Checkout (), Undocheckout (), and Synchronize ()). The DLL handles the request, including displaying dialog
boxes that gather information or letting the user interact with the DLL. The DLL also displays information or error
messages.

The source control system can optionally support Design Notes and Check In/Check Out. The Dreamweaver user
enables Design Notes in source control systems by selecting the Design Notes tab in the Edit Sites dialog box and
checking the box that enables the feature; this process is same to enable Design Notes with FTP and LAN. If the source
control system does not support Design Notes and the user wants to use this feature, Dreamweaver transports Design
Note (MNO) files to maintain the Design Notes (as it does with FTP and LAN).

Check In/Check Out is treated differently than the Design Notes feature; if the source control system supports it, the
user cannot override its use from the Design Notes dialog box. If the user tries to override the source control system,
an error message appears.



DREAMWEAVER CS4 API REFERENCE | 89
The source control integration APl

Adding source control system functionality

You can add source control system functionality to Dreamweaver by writing a GetNewFeatures handler that returns
a set of menu items and corresponding C functions. For example, if you write a Sourcesafe library and want to let
Dreamweaver users see the history of a file, you can write a GetNewFeatures handler that returns the History menu
item and the C function name of history. Then, in Windows, when the user right-clicks a file, the History menu item
is one of the items on the menu. If a user selects the History menu item, Dreamweaver calls the corresponding
function, passing the selected files to the DLL. The DLL displays the History dialog box so the user can interact with it
in the same way as Sourcesafe.

The source control integration APl required functions

The source control integration API has required and optional functions. The functions listed in this section are
required.

bool SCS_GetAgentinfo()

Description

This function asks the DLL to return its name and description, which appear in the Edit Sites dialog box. The name
appears in the Server Access pop-up menu (for example, Sourcesafe, WebDav, Perforce) and the description below the
pop-up menu.

Arguments
char name[32], char version[32], char description[256], const char *dwApp Version

+ The name argument is the name of the source control system. The name appears in the combo box for selecting a
source control system on the Source Control tab in the Edit Sites dialog box. The name can be a maximum of 32
characters.

+ The version argument is a string that indicates the version of the DLL. The version appears on the Source Control
tab in the Edit Sites dialog box. The version can be a maximum of 32 characters.

+ The description argument is a string that indicates the description of the source control system. The description
appears on the Source Control tab in the Edit Sites dialog box. The description can be a maximum of 256 characters.

 The dwAppVersion argument is a string that indicates the version of Dreamweaver that is calling the DLL. The DLL
can use this string to determine the version and language of Dreamweaver.

Returns
A Boolean value: true if successful; false otherwise.

bool SCS_Connect()

Description
This function connects the user to the source control system. If the DLL does not have log-in information, the DLL
must display a dialog box to prompt the user for the information and must store the data for later use.



DREAMWEAVER CS4 API REFERENCE | 90
The source control integration APl

Arguments
void **connectionData, const char siteName[64]

+ The connectionData argument is a handle to the data that the agent wants Dreamweaver to pass to it when calling
other API functions.

+ The siteName argument is a string that points to the name of the site. The site name can be a maximum of 64
characters.

Returns
A Boolean value: true if successful; false otherwise.

bool SCS Disconnect()

Description
This function disconnects the user from the source control system.

Arguments
void *connectionData

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.

Returns
A Boolean value: true if successful; false otherwise.

bool SCS_IsConnected()

Description
This function determines the state of the connection.

Arguments
void *connectionData

 The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.

Returns
A Boolean value: true if successful; false otherwise.

int SCS_GetRootFolderLength()

Description
This function returns the length of the name of the root folder.

Arguments
void *connectionData

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the connect () call.



DREAMWEAVER CS4 API REFERENCE | 91
The source control integration APl

Returns

An integer that indicates the length of the name of the root folder. If the function returns < o, Dreamweaver considers
it an error and tries to retrieve the error message from the DLL, if supported.

bool SCS_GetRootFolder()

Description

This function returns the name of the root folder.

Arguments
void *connectionData, char remotePath[], const int folderLen

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the connect () call.
+ The remotePath is a buffer where the full remote path of the root folder is stored.

+ The folderLen argument is an integer that indicates the length of remotePath. This is the value that
GetRootFolderLength returns.

Returns

A Boolean value: true if successful; false otherwise.

int SCS_GetFolderListLength()

Description
This function returns the number of items in the passed-in folder.

Arguments
void *connectionData, const char *remotePath

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.

+ The remotePath argument is the full path and name of the remote folder that the DLL checks for the number of
items.

Returns

An integer that indicates the number of items in the current folder. If the function returns < 0, Dreamweaver considers
it an error and tries to retrieve the error message from the DLL, if supported.

bool SCS_GetFolderList()

Description

This function returns a list of files and folders in the passed-in folder, including pertinent information such as
modified date, size, and whether the item is a folder or file.

Arguments

void *connectionData, const char *remotePath, itemInfo itemList[], const int numItems

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.



DREAMWEAVER CS4 API REFERENCE | 92
The source control integration APl

+ The remotePath argument is the path of the remote folder that the DLL checks for the number of items.

+ The itemList argument is a preallocated list of itemInfo structures:

name char[256] Name of file or folder

isFolder bool true if folder; false if file

month int Month component of modification date 1-12

day int Day component of modification date 1-31

year int Year component of modification date 1900+

hour int Hour component of modification date 0-23

minutes int Minute component of modification date 0-59

seconds int Second component of modification date 0-59

type char[256] Type of file (if not set by DLL, Dreamweaver uses file extensions
to determine type, as it does now)

size int In bytes

« The numlItems argument is the number of items that are allocated for the itemList (returned from
GetFolderListLength).

Returns
A Boolean value: true if successful; false otherwise.

bool SCS_Get()

Description
This function gets a list of files or folders and stores them locally.

Arguments
void *connectionData, const char *remotePathList[], const char *localPathList[], const int numlItems

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.

+ The remotePathList argument is a list of the remote files or folders to retrieve, which is specified as complete paths
and names.

« The localPathList argument is a mirrored list of local filenames or folder paths.

+ The numltems argument is the number of items in each list.

Returns
A Boolean value: true if successful; false otherwise.

bool SCS_Put()

Description
This function puts a list of local files or folders into the source control system.



DREAMWEAVER CS4 API REFERENCE | 93
The source control integration APl

Arguments
void *connectionData, const char *localPathList[], const char *remotePathList[], const int numlItems

« The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the connect () call.
+ The localPathList argument is the list of local filenames or folder paths to put into the source control system.
+ The remotePathList argument is a mirrored list of remote filenames or folder paths.

+ The numltems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_NewFolder()

Description
This function creates a new folder.

Arguments

void *connectionData, const char *remotePath

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the connect () call.

+ The remotePath argument is the full path of the remote folder that the DLL creates.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_Delete()

Description
This function deletes a list of files or folders from the source control system.

Arguments
void *connectionData, const char *remotePathList[], const int numlItems

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.
+ The remotePathList argument is a list of remote filenames or folder paths to delete.

+ The numltems argument is the number of items in remotePathList.

Returns

A Boolean value: true if successful; false otherwise.



DREAMWEAVER CS4 API REFERENCE | 94
The source control integration APl

bool SCS_Rename()

Description

This function renames or moves a file or folder, depending on the values that are specified for oldRemotePath and
newRemotePath. For example, if oldRemotePath equals "$/folderl/filel" and newRemotePath equals

"¢ /folderl/renamefilel™, filel is renamed renamefilel and is located in folderl.

If oldRemotePath equals "$/folder1l/filel" and newRemotePath equals "$/folderl/subfolderl/filel", filelis
moved to the subfolderl folder.

To find out if an invocation of this function is a move or a rename, check the parent paths of the two input values; if
they are the same, the operation is a rename.

Arguments
void *connectionData, const char *oldRemotePath, const char *newRemotePath

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the connect () call.
+ The oldRemotePath argument is a remote file or folder path to rename.

+ The newRemotePath argument is the remote path of the new name for the file or folder.

Returns
A Boolean value: true if successful; false otherwise.

bool SCS_ItemExists()

Description
This function determines whether a file or folder exists on the server.

Arguments
void *connectionData, const char *remotePath

« The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.

+ The remotePath argument is a remote file or folder path.

Returns
A Boolean value: true if successful; false otherwise.

The source control integration APl optional functions

The source control integration API has required and optional functions. The functions in this section are optional.



DREAMWEAVER CS4 API REFERENCE | 95
The source control integration APl

bool SCS_GetConnectioninfo()

Description

This function displays a dialog box to let the user change or set the connection information for this site. It does not
make the connection. This function is called when the user clicks the Settings button in the Remote Info section of the
Edit Sites dialog box.

Arguments
void **connectionData, const char siteName[64]

+ The connectionData argument is a handle to data that the agent wants Dreamweaver to pass when calling other API
functions.

+ The siteName argument is a string that points to the name of the site. The name cannot exceed 64 characters.

Returns
A Boolean value: true if successful; false otherwise.

bool SCS_SiteDeleted()

Description
This function notifies the DLL that the site has been deleted or that the site is no longer tied to this source control
system. It indicates that the source control system can delete its persistent information for this site.

Arguments
const char siteName[64]

+ The siteName argument is a string that points to the name of the site. The name cannot exceed 64 characters.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_SiteRenamed()

Description
This function notifies the DLL when the user has renamed the site so that it can update its persistent information about
the site.

Arguments
const char oldSiteName[64], const char newSiteName[64]

+ The oldSiteName argument is a string that points to the original name of the site before it was renamed. The name
cannot exceed 64 characters.

+ The newSiteName argument is a string that points to the new name of the site after it was renamed. The name
cannot exceed 64 characters.

Returns
A Boolean value: true if successful; false otherwise.



DREAMWEAVER CS4 API REFERENCE | 96
The source control integration APl

int SCS_GetNumNewFeatures|()

Description

This function returns the number of new features to add to Dreamweaver (for example, File History, Differences, and
so on).

Arguments
None.

Returns
An integer that indicates the number of new features to add to Dreamweaver. If the function returns < o,
Dreamweaver considers it an error and tries to retrieve the error message from the DLL, if supported.

bool SCS_GetNewFeatures()

Description

This function returns a list of menu items to add to the Dreamweaver main and context menus. For example, the
Sourcesafe DLL can add History and File Differences to the main menu.

Arguments
char menultemList[][32], scFunction functionList[], scFunction enablerList[], const int numNewFeatures

+ The menultemList argument is a string list that is populated by the DLL; it specifies the menu items to add to the
main and context menus. Each string can contain a maximum of 32 characters.

« The functionList argument is populated by the DLL,; it specifies the routines in the DLL to call when the user selects
the corresponding menu item.

« The enablerList argument is populated by the DLL; it specifies the routines in the DLL to call when Dreamweaver
needs to determine whether the corresponding menu item is enabled.

+ The numNewFeatures argument is the number of items being added by the DLL; this value is retrieved from the
GetNumNewFeatures () call.

The following function signature defines the functions and enablers that passed to the scS_GetNewFeatures () call
in the functionlist and enablerList arguments.

bool (*scFunction) (void *connectionData, const char *remotePathList([],
const char *localPathList[], const int numItems)

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_GetCheckoutName()

Description

This function returns the check-out name of the current user. If it is unsupported by the source control system and
this feature is enabled by the user, this function uses the Dreamweaver internal Check In/Check Out functionality,
which transports LCK files to and from the source control system.



DREAMWEAVER CS4 API REFERENCE | 97
The source control integration APl

Arguments
void *connectionData, char checkOutName[64], char emailAddress[64]

« The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the connect () call.
+ The checkOutName argument is the name of the current user.

+ The emailAddress argument is the e-mail address of the current user.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_Checkin()

Description

This function checks a list of local files or folders into the source control system. The DLL is responsible for making
the file read-only. If it is unsupported by the source control system and this feature is enabled by the user, this function
uses the Dreamweaver internal Check In/Check Out functionality, which transports LCK files to and from the source
control system.

Arguments

void *connectionData, const char *localPathList[], const char *remotePathList[], bool successList[], const int numItems

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.
+ The localPathList argument is a list of local filenames or folder paths to check in.
+ The remotePathList argument is a mirrored list of remote filenames or folder paths.

 The successList argument is a list of Boolean values that are populated by the DLL to let Dreamweaver know which
of the corresponding files are checked in successfully.

+ The numlItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_Checkout()

Description

This function checks out a list of local files or folders from the source control system. The DLL is responsible for
granting the privileges that let the file be writable. If it is unsupported by the source control system and this feature is
enabled by the user, this function uses the Dreamweaver internal Check In/Check Out functionality, which transports
LCK files to and from the source control system.

Arguments
void *connectionData, const char *remotePathList[], const char *localPathList[], bool successList[], const int numlItems

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the connect () call.
+ The remotePathList argument is a list of remote filenames or folder paths to check out.

« The localPathList argument is a mirrored list of local filenames or folder paths.



DREAMWEAVER CS4 API REFERENCE | 98
The source control integration APl

+ The successList argument is a list of Boolean values that are populated by the DLL to let Dreamweaver know which
of the corresponding files are checked out successfully.

+ The numltems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_UndoCheckout()

Description

This function undoes the check-out status of a list of files or folders. The DLL is responsible for making the file read-
only. If it is unsupported by the source control system and this feature is enabled by the user, this function uses the
Dreamweaver internal Check In/Check Out functionality, which transports LCK files to and from the source control
system.

Arguments
void *connectionData, const char *remotePathList[], const char *localPathList[], bool successList[], const int numlItems

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.
« The remotePathList argument is a list of remote filenames or folder paths on which to undo the check out.
+ The localPathList argument is a mirrored list of local filenames or folder paths.

« The successList argument is a list of Boolean values that are populated by the DLL to let Dreamweaver know which
corresponding files” check outs are undone successfully.

+ The numlitems argument is the number of items in each list.

Returns
A Boolean value: true if successful; false otherwise.

int SCS_GetNumCheckedOut()

Description
This function returns the number of users who have a file checked out.

Arguments
void *connectionData, const char *remotePath

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.

« The remotePath argument is the remote file or folder path to check to see how many users have it checked out.

Returns
An integer that indicates the number of people who have the file checked out. If the function returns < o,
Dreamweaver considers it an error and tries to retrieve the error message from the DLL, if supported.



DREAMWEAVER CS4 API REFERENCE | 99
The source control integration APl

bool SCS_GetFileCheckoutList()

Description
This function returns a list of users who have a file checked out. If the list is empty, no one has the file checked out.

Arguments
void *connectionData, const char *remotePath, char checkOutList[][64], char emailAddressList[][64], const int
numCheckedOut

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.
+ The remotePath argument is the remote file or folder path to check how many users have it checked out.

« The checkOutList argument is a list of strings that corresponds to the users who have the file checked out. Each user
string cannot exceed a maximum length of 64 characters.

+ The emailAddressList argument is a list of strings that corresponds to the users’ e-mail addresses. Each e-mail
address string cannot exceed a maximum length of 64 characters.

+ The numCheckedOut argument is the number of people who have the file checked out. This is returned from
GetNumCheckedOut ().

Returns
A Boolean value: true if successful; false otherwise.

int SCS_GetErrorMessagelLength()

Description

This function returns the length of the DLL’s current internal error message. This allocates the buffer that passes into
the GetErrorMessage () function. This function should be called only if an API function returns £alse or <0, which
indicates a failure of that API function.

Arguments
void *connectionData

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the connect () call.

Returns
An integer that represents the length of the error message.

bool SCS_GetErrorMessage()

Description
This function returns the last error message. If you implement getErrorMessage (), Dreamweaver calls it each time
one of your API functions returns the value false.

If a routine returns -1 or false, it indicates that an error message should be available.



DREAMWEAVER CS4 API REFERENCE | 100
The source control integration APl

Arguments

void *connectionData, char errorMsg[], const int *msgLength

« The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the connect () call.
+ The errorMsg argument is a preallocated string for the DLL to fill in with the error message.

+ The msgLength argument is the length of the buffer represented by the errorMsg[] argument.

Returns

A Boolean value: true if successful; false otherwise.

int SCS_GetNoteCount()

Description

This function returns the number of Design Note keys for the specified remote file or folder path. If unsupported by
the source control system, Dreamweaver gets this information from the companion MNO file.

Arguments
void *connectionData, const char *remotePath

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.

+ The remotePath argument is the remote file or folder path that the DLL checks for the number of attached Design
Notes.

Returns
An integer that indicates the number of Design Notes that are associated with this file. If the function returns < o,
Dreamweaver considers it an error and tries to retrieve the error message from the DLL, if supported.

int SCS_GetMaxNoteLength()

Description

This function returns the length of the largest Design Note for the specified file or folder. If it is unsupported by the
source control system, Dreamweaver gets this information from the companion MNO file.

Arguments

void *connectionData, const char *remotePath

« The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.

+ The remotePath argument is the remote file or folder path that the DLL checks for the maximum Design Note
length.

Returns

An integer that indicates the size of the longest Design Note that is associated with this file. If the function returns <
0, Dreamweaver considers it an error and tries to retrieve the error message from the DLL, if supported.



DREAMWEAVER CS4 APl REFERENCE
The source control integration APl

bool SCS_GetDesignNotes()

Description

This function retrieves key-value pairs from the meta information for the specified file or folder. If it is unsupported
by the source control system, Dreamweaver retrieves the information from the companion MNO file.

Arguments

void *connectionData, const char *remotePath, char keyList[][64], char *valueList[], bool showColumnList[], const int
noteCount, const int noteLength

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.
+ The remotePath argument is the remote file or folder path that the DLL checks for the number of items.
+ The keyList argument is a list of Design Note keys, such as "status".

+ The valueList argument is a list of Design Note values that correspond to the Design Note keys, such as "Awaiting
Signoff".

+ The showColumnList argument is a list of Boolean values that correspond to the Design Note keys, which indicate
whether Dreamweaver can display the key as a column in the Site panel.

+ The noteCount argument is the number of Design Notes that are attached to a file or folder; the GetNotecCount ()
call returns this value.

+ The noteLength argument is the maximum length of a Design Note; this is the value that the GetMaxNoteLength ()
call returns.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_SetDesignNotes()

Description

This function stores the key-value pairs in the meta information for the specified file or folder. This replaces the set of
meta information for the file. If it is unsupported by the source control system, Dreamweaver stores Design Notes in
MNO files.

Arguments

void *connectionData, const char *remotePath, const char keyList[][64], const char *valueList[], bool showColumnList[],
const int noteCount, const int noteLength

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the connect () call.
 The remotePath argument is the remote file or folder path that the DLL checks for the number of items.
+ The keyList argument is a list of Design Note keys, such as "status".

+ The valueList argument is a list of Design Note values that corresponds to the Design Note keys, such as "Awaiting
Signoff™".

+ The showColumnList argument is a list of Boolean values that correspond to the Design Note keys, which indicate
whether Dreamweaver can display the key as a column in the Site panel.

+ The noteCount argument is the number of Design Notes that are attached to a file or folder; this number lets the
DLL know the size of the specified lists. If noteCount is 0, all the Design Notes are removed from the file.



DREAMWEAVER CS4 APl REFERENCE
The source control integration APl

+ The noteLength argument is the length of the largest Design note for the specified file or folder.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_IsRemoteNewer()

Description
This function checks each specified remote path to see if the remote copy is newer. If it is unsupported by the source
control system, Dreamweaver uses its internal i sRemoteNewer algorithm.

Arguments
void *connectionData, const char *remotePathList[], const char *localPathList[], int remotelsNewerList[], const int
numltems

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.
+ The remotePathList argument is a list of remote filenames or folder paths to compare for newer status.
« The localPathList argument is a mirrored list of local filenames or folder paths.

+ The remotelsNewerList argument is a list of integers that are populated by the DLL to let Dreamweaver know which
of the corresponding files is newer on the remote side. The following values are valid: 1 indicates the remote version
is newer; -1 indicates the local version is newer; 0 indicates the versions are the same.

+ The numlItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

Enablers

If the optional enablers are not supported by the source control system or the application is not connected to the server,
Dreamweaver determines when the menu items are enabled, based on the information it has about the remote files.

bool SCS_canConnect()

Description

This function returns whether the Connect menu item should be enabled.

Arguments
None.

Returns

A Boolean value: true if successful; false otherwise.

102



DREAMWEAVER CS4 API REFERENCE | 103
The source control integration APl

bool SCS_canGet()

Description
This function returns whether the Get menu item should be enabled.

Arguments

void *connectionData, const char *remotePathList[], const char *localPathList[], const int numlItems

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.
+ The remotePathList argument is a list of remote filenames or folder paths to get.

+ The localPathList argument is a mirrored list of local filenames or folder paths.

+ The numlItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_canCheckout()

Description

This function returns whether the Checkout menu item should be enabled.

Arguments

void *connectionData, const char *remotePathList[], const char *localPathList[], const int numlItems

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.
+ The remotePathList argument is a list of remote filenames or folder paths to check out.

« The localPathList argument is a mirrored list of local filenames or folder paths.

+ The numltems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_canPut()

Description
This function returns whether the Put menu item should be enabled.

Arguments

void *connectionData, const char *localPathList[], const char *remotePathList[], const int numlItems
+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the connect () call.
+ The localPathList argument is a list of local filenames or folder paths to put into the source control system.

+ The remotePathList argument is a mirrored list of remote filenames or folder paths to put into the source control
system.

+ The numlItems argument is the number of items in each list.



DREAMWEAVER CS4 API REFERENCE | 104
The source control integration APl

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_canCheckin()

Description

This function returns whether the Checkin menu item should be enabled.

Arguments

void *connectionData, const char *localPathList[], const char *remotePathList[], const int numlItems

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the connect () call.
+ The localPathList argument is a list of local filenames or folder paths to check in.

+ The remotePathList argument is a mirrored list of remote filenames or folder paths.

+ The numltems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_CanUndoCheckout()

Description
This function returns whether the Undo Checkout menu item should be enabled.

Arguments

void *connectionData, const char *remotePathList[], const char *localPathList[], const int numlItems

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the connect () call.
« The remotePathList argument is a list of remote filenames or folder paths to check out.
+ The localPathList argument is a list of the local filenames or folder paths to put to the source control system.

+ The numlItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_canNewFolder()

Description

This function returns whether the New Folder menu item should be enabled.

Arguments
void *connectionData, const char *remotePath

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.



DREAMWEAVER CS4 APl REFERENCE
The source control integration APl

+ The remotePath argument is a list of remote filenames or folder paths that the user selected to indicate where the
new folder will be created.

Returns
A Boolean value: true if successful; false otherwise.

bool SCS_canDelete()

Description
This function returns whether the Delete menu item should be enabled.

Arguments
void *connectionData, const char *remotePathList[], const int numlItems

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.
+ The remotePathList argument is a list of remote filenames or folder paths to delete.

+ The numlItems argument is the number of items in each list.

Returns
A Boolean value: true if successful; false otherwise.

bool SCS_canRename()

Description
This function returns whether the Rename menu item should be enabled.

Arguments
void *connectionData, const char *remotePath

+ The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect ()
call.

+ The remotePathList argument is the remote filenames or folder paths that can be renamed.

Returns
A Boolean value: true if successful; false otherwise.

bool SCS_BeforeGet()

Description
Dreamweaver calls this function before getting or checking out one or more files. This function lets your DLL perform
one operation, such as adding a check-out comment, to a group of files.

Arguments
*connectionData

+ The *connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.

105



DREAMWEAVER CS4 APl REFERENCE
The source control integration APl

Returns
A Boolean value: true if successful; false otherwise.

Example

To get a group of files, Dreamweaver makes calls to the DLL in the following order:
SCS_BeforeGet (connectionbData) ;

SCS_Get (connectionData, remotePathListl,localPathListl, successListl) ;
SCS_Get (connectionData, remotePathList2,localPathList2, successList2) ;

SCS_Get (connectionData, remotePathList3,localPathList3, successList3) ;
SCS_AfterGet (connectionData) ;

bool SCS_BeforePut()

Description
Dreamweaver calls this function before putting or checking in one or more files. This function lets your DLL perform
one operation, such as adding a check-in comment, to a group of files.

Arguments
*connectionData

+ The*connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.

Returns
A Boolean value: true if successful; false otherwise.

Example

To get a group of files, Dreamweaver makes calls to the DLL in the following order:
SCS_BeforePut (connectionbData) ;

SCS_Put (connectionData, localPathListl, remotePathListl, successListl) ;
SCS_Put (connectionData, localPathList2, remotePathList2, successList2) ;

SCS_Put (connectionData, localPathList3, remotePathList3, successList3) ;
SCS_AfterPut (connectionData) ;

bool SCS_AfterGet()

Description
Dreamweaver calls this function after getting or checking out one or more files. This function lets your DLL perform
any operation after a batch get or check out, such as creating a summary dialog box.

Arguments
*connectionData

« The *connectionData argument is a pointer the agent’s data that passed into Dreamweaver during the Connect () call.

Returns

A Boolean value: true if successful; false otherwise.

106



DREAMWEAVER CS4 API REFERENCE | 107
The source control integration APl

Example
See “bool SCS_BeforeGet()” on page 105.

bool SCS_AfterPut()

Description
Dreamweaver calls this function after putting or checking in one or more files. This function lets the DLL perform any
operation after a batch put or check in, such as creating a summary dialog box.

Arguments
*connectionData

+ The*connectionData argument is a pointer to the agent’s data that passed into Dreamweaver during the Connect () call.

Returns

A Boolean value: true if successful; false otherwise.

Example
See “bool SCS_BeforePut()” on page 106.



Chapter 11: Application

The application functions perform operations related to the Adobe® Dreamweaver® interaction with other applications
or Dreamweaver operations independent of individual documents. For example, setting preferences, exiting
Dreamweaver, and so on.

External application functions

External application functions handle operations that are related to applications, such as Adobe® Flash®, and to the
browsers and external editors that are defined in the Preview in Browser and External Editors preferences. These
functions let you get information about these external applications and open files with them.

dreamweaver.browseDocument()

Availability
Dreamweaver 2; enhanced in 3 and 4.

Description
Opens the specified URL in the specified browser.

Arguments

fileName, {browser}

+ The £ileName argument is the name of the file to open, which is expressed as an absolute.

+ The browser argument specifies a browser. This argument can be the name of a browser, as defined in the Preview
in Browser preferences, or either primary or secondary. If the argument is omitted, the URL opens in the primary
browser of the user.

Note: Some browsers cannot locate the file if the URL contains an anchor, such as
"Configuration/ExtensionHelp/browseHelp.htm#helpyou.”

Returns
Nothing.

Example
The following function uses the dreamweaver . browseDocument () function to open the Adobe Home page in a
browser:

function goToadobe () {
dreamweaver .browseDocument ( 'http://www.adobe.com/"') ;

}

In Dreamweaver 4, you can expand this operation to open the document in Microsoft Internet Explorer using the
following code:

108



DREAMWEAVER CS4 API REFERENCE
Application

function goToadobe () {
var prevBrowsers = dw.getBrowserList () ;
var theBrowser = "";
for (var i=1; i < prevBrowsers.length; i+2){
if (prevBrowsers[i].indexOf ('Iexplore.exe') != -1){
theBrowser = prevBrowsers[i];
break;

}

dw.browseDocument ('http://www.adobe.com/', theBrowser) ;

}

For more information on the dreamweaver.getBrowserList () function, see “dreamweaver.getBrowserList()” on
page 109.

dreamweaver.getBrowserList()

Availability
Dreamweaver 3.

Description
Gets a list of all the browsers in the File > Preview in Browser submenu.

Arguments
None.

Returns

An array that contains a pair of strings for each browser in the list. The first string in each pair is the name of the
browser, and the second string is its location on the computer of the user, which is expressed as a file:// URL. If no
browsers appear in the submenu, the function returns nothing.

dreamweaver.getExtensionEditorList()

Availability
Dreamweaver 3

Description
Gets a list of editors for the specified file from the External Editors preferences.

Arguments
fileURL

+ The fileURL argument can be a complete file:// URL, a filename, or a file extension (including the period).

Returns

An array that contains a pair of strings for each editor in the list. The first string in each pair is the name of the editor,
and the second string is its location on the computer of the user, which is expressed as a file:// URL. If no editors appear

in Preferences, the function returns an array that contains one empty string.

109



DREAMWEAVER CS4 API REFERENCE | 110
Application

Example

A call to the dreamweaver.getExtensionEditorList (".gif") function might return an array that contains the
following strings:

e "Fireworks 3"

. "file:///C|/Program Files/Adobe/Fireworks 3/Fireworks 3.exe"

dreamweaver.getExternalTextEditor()

Availability
Dreamweaver 4.

Description

Gets the name of the currently configured external text editor.

Arguments
None.

Returns

A string that contains the name of the text editor that is suitable for presentation in the user interface (UI), not the full path.

dreamweaver.getFlashPath()

Availability
Dreamweaver MX.

Description
Gets the full path to the Flash MX application in the form of a file URL.

Arguments
None.

Returns

An array that contains two elements. Element [0] is a string that contains the name of the Flash MX editor. Element
[1] is a string that contains the path to the Flash application on the local computer, which is expressed as a file:// URL.
If Flash is not installed, it returns nothing.

Example
The following example calls the dw.getFlashPath () function to obtain the path to the Flash application and then
passes the path in the form of a file://URL to the dw. openwithapp () function to open the document with Flash:

var myDoc = dreamweaver.getDocumentDOM () ;
if (dreamweaver.validateFlash()) ({

var flashArray = dreamweaver.getFlashPath() ;
dreamweaver.openWithApp (myDoc.myForm.swfFilePath, flashArray[1]);



DREAMWEAVER CS4 API REFERENCE | 111
Application

dreamweaver.getPrimaryBrowser()

Availability
Dreamweaver 3.

Description
Gets the path to the primary browser.

Arguments

None.

Returns
A string that contains the path on the computer of the user to the primary browser, which is expressed as a file:// URL.
If no primary browser is defined, it returns nothing.

dreamweaver.getPrimaryExtensionEditor()

Availability
Dreamweaver 3.

Description
Gets the primary editor for the specified file.

Arguments
fileURL

The fileURL argument is the path to the file to open, which is expressed as a file:// URL.

Returns

An array that contains a pair of strings. The first string in the pair is the name of the editor, and the second string is its
location on the computer of the user, which is expressed as a file:// URL. If no primary editor is defined, the function
returns an array that contains one empty string.

dreamweaver.getSecondaryBrowser()

Availability
Dreamweaver 3.

Description
Gets the path to the secondary browser.

Arguments

None.



DREAMWEAVER CS4 API REFERENCE | 112
Application

Returns

A string that contains the path on the computer of the user to the secondary browser, which is expressed as a file://
URL. If no secondary browser is defined, it returns nothing.

dreamweaver.openHelpURL()

Availability
Dreamweaver MX.

Description
Opens the specified Help file in the operating system Help viewer.

Dreamweaver displays help content in the standard operating system help viewer instead of a browser. Help content
is in HTML, but it is packaged for Windows HTML Help or Help Viewer for Mac OS X.

The following four types of files comprise the full help content. For more information on Help files, see your operating
system documentation.

+ Help book

The Help book consists of the HTML Help files, images, and indexes. In Windows, the Help book is a file that has
a name with a .chm extension. On the Macintosh, the Help book is a folder.

The Help book files reside in the Dreamweaver Help folder.

+ The help.xml file

The help.xml file maps book IDs to help book names. For example, the following XML code maps the book ID for
Dreamweaver Help to the filenames that contains help on both the Windows and Macintosh operating systems:

<?xml version = "1.0" ?> <help-books><book-id id="DW_Using" win-

mapping:"UsingDreamweaver .chm" mac—mapping:"Dreamweaver Help"/> </help-books>
Each book-id entry has the following attributes:
+ The id attribute is the book ID that is used in the help.map and HelpDoc.js files.
+ The win-mapping attribute is the Windows book name, which is "UsingDreamweaver.chm" in this example.
+ The mac-mapping attribute is the Macintosh book name, which is "Dreamweaver Help" in this example.
+ The help.map file

The help.map file maps a help content ID to a specific help book. Dreamweaver uses the help.map file to locate
specific help content when it calls help internally.

+ The helpDoc.js file

The helpDoc.js file lets you map variable names that you can use in place of the actual book ID and page string. The
helpDoc.js file maps a help content ID to an HTML page in a specific help book. Dreamweaver uses the helpDoc.js
file when it calls help from JavaScript.



DREAMWEAVER CS4 API REFERENCE | 113
Application

Arguments
bookID

+ The bookID argument, which is required, has the format: 1D: page

The 1D portion is the bookID of the entry in the help.xml file that names the file that contains the help content to
display. The page portion of the entry identifies the specific page to display. The pages are referenced in the
help.map file.

Returns

A Boolean value: true if successful; false if Dreamweaver cannot open the specified file in the help viewer.

Example
openHelpURL ("DW_Using:index.htm") ;

dreamweaver.openWithApp()

Availability
Dreamweaver 3.

Description
Opens the specified file with the specified application.

Arguments
fileURL, appURL

+ The fileURL argument is the path to the file to open, which is expressed as a file:// URL.
The appURL argument is the path to the application that is to open the file, which is expressed as a file:// URL.

Returns
Nothing.

dreamweaver.openWithBrowseDialog()

Availability
Dreamweaver 3.

Description
Opens the Select External Editor dialog box to let the user select the application with which to open the specified file.

Arguments
fileURL

« The fileURL argument is the path to the file to open, which is expressed as a file:// URL.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 114
Application

dreamweaver.openWithExternalTextEditor()

Availability
Dreamweaver 3.

Description
Opens the current document in the external text editor that is specified in the External Editors entry in the Preferences
dialog box.

Arguments

None.

Returns
Nothing.

dreamweaver.openWithimageEditor()

Availability
Dreamweaver 3.

Description
Opens the named file with the specified image editor.

Note: This function starts a special Adobe Fireworks integration mechanism that returns information to the active
document if Fireworks is specified as the image editor. To prevent errors if no document is active, never call this function
from the Site panel.

Arguments
fileURL, appURL

+ The fileURL argument is the path to the file to open, which is expressed as a file:// URL.
+ The appURL argument is the path to the application with which to open the file, which is expressed as a file:// URL.

Returns
Nothing.

dreamweaver.validateFlash()

Availability
Dreamweaver MX.

Description
Determines whether Flash MX (or a later version) is installed on the local computer.

Arguments
None.



DREAMWEAVER CS4 API REFERENCE | 115
Application

Returns
A Boolean value: true if Flash MX (or a later version) is installed on the local computer; false otherwise.

dom.insertFiles()

Availability
Dreamweaver CS3.

Description
Inserts one or more files into the current document at the current insertion point or in place of the current selection,
prompting the user for parameters, if necessary.

Arguments:
strFiles

+ The strFilesargument is a string that specifies the file \paths and names of the files to insert. Multiple filenames
can be passed to this function.

Returns
Nothing

dreamweaver.activateApp()

Availability
Dreamweaver CS3.

Description
Makes the specified application the frontmost application.

Arguments:
applicationID

+ The applicationID is a string that specifies the application to activate, such as dreamweaver.

Returns
Nothing

dreamweaver.printDocument()

Availability
Dreamweaver CS3.

Description
Performs the equivalent of the Dreamweaver File > Print Code command on the requested file.



DREAMWEAVER CS4 API REFERENCE | 116
Application

Arguments:
fileName

+ The fileName argument is a string that specifies the name of the file to print, expressed as a URL.

Returns
Nothing

dreamweaver.revealDocument|()

Availability
Dreamweaver CS3.

Description
Gives Dreamweaver the operating-system focus and, if the specified file is open in Dreamweaver, brings it to the

foreground.

Arguments:

fileName

+ The fileName is a string that specifies the name of the file to reveal, expressed as a URL.

Returns
Nothing

Global application functions

Global application functions act on the entire application. They handle tasks such as quitting and accessing
Preferences.

dreamweaver.beep()

Availability
Dreamweaver MX.

Description
Creates a system beep.

Arguments
None.

Returns
Nothing.

Example
The following example calls dw.beep () to call the user’s attention to a message that the alert () function displays:



DREAMWEAVER CS4 API REFERENCE | 117
Application

beep () {
if (confirm("Is your order complete?")

{

dreamweaver .beep () ;
alert ("Click OK to submit your order");

dreamweaver.getShowDialogsOnlinsert()

Availability
Dreamweaver 3.

Description
Checks whether the Show Dialog When Inserting Objects option is turned on in the General category of Preferences.

Arguments
None.

Returns
A Boolean value that indicates whether the option is on.

dreamweaver.quitApplication()

Availability
Dreamweaver 3.

Description
Quits Dreamweaver after the script that calls this function finishes executing.

Arguments
None.

Returns
Nothing.

dreamweaver.showAboutBox()

Availability
Dreamweaver 3.

Description
Opens the About dialog box.

Arguments
None.



DREAMWEAVER CS4 API REFERENCE
Application

Returns
Nothing.

dreamweaver.showDynamicDataDialog()

Availability
Dreamweaver UltraDev 1.

Description

Displays the Dynamic Data or the Dynamic Text dialog box, and waits for the user to dismiss the dialog box. If the user
clicks OK, the showDynamicbataDialog () function returns a string to insert into the user’s document. (This string
returns from the Data Sources API function, generateDynamicDataRef (), and passes to the Data Format API
function, formatDynamicDataRef (); the return value from formatDynamicDataRef () is the one that the
showDynamicDataDialog () function returns.)

Arguments
source, {title}

+ The source argument is a string that contains source code, which represents the dynamic data object. It is the same
string that a previous call to this function returned. The function uses the contents of the source argument to
initialize all the dialog box controls, so they appear exactly as when the user clicked OK to create this string.

Dreamweaver passes this string to the inspectDynamicDataRef () function to determine if the string matches any
of the nodes in the tree. If the string matches a node, that node is selected when the dialog box appears. You can
also pass an empty string, which does not initialize the dialog box. For example, a dialog box is not initialized when
used to create a new item.

+ The title argument, which is optional, is a string that contains the text to display in the title bar of the dialog box. If
this argument is not supplied, Dreamweaver displays Dynamic Data in the title bar.

Returns
A string that represents the dynamic data object, if the user clicks OK.

dreamweaver.showPasteSpecialDialog()

Availability
Dreamweaver 8.

Description
This function displays the Paste Special dialog box. If the user clicks OK, the showPasteSpecialDialog () function
performs the paste.

Arguments
None.

Returns
Nothing.

118



DREAMWEAVER CS4 API REFERENCE | 119
Application

Example
dw.showPasteSpecialDialog() ;

dreamweaver.showPreferencesDialog()

Availability
Dreamweaver 3. Added the strcategory argument in Dreamweaver 8. Updated in CS4.

Description
This function opens the Preferences dialog box.

Arguments

{strCategory}

+ The strcategoryargument, which is optional, must be one of the following strings to open the correlating
category of the Preferences dialog box: general, accessibility, "html colors" (for the Code Coloring
category), "html format" (for the Code Format category), "code hints", "html rewriting" (for the Code
Rewriting category), copyPaste , "css styles", "file compare", "external editors" (for the File
Types/Editors category), fonts, highlighting, "invisible elements", layers,"new document", floaters
(for the Panels category), browsers, (for the Preview in Browser category), "site ftp" (for the Site category),
"status bar",and validator. If Dreamweaver does not recognize the argument as a valid pane name, the dialog
box opens to the last active pane. Dreamweaver does the same, if the argument is omitted.

Returns
Nothing.

Example

The following example opens the Preferences dialog box and selects the Code Coloring category:

dw.showPreferencesDialog ("html colors") ;

dreamweaver.showTagChooser()

Availability
Dreamweaver MX.

Description

Toggles the visibility of the Tag Chooser dialog box for users to insert tags into the Code view. The function shows the
Tag Chooser dialog box on top of all other Dreamweaver windows. If the dialog box is not visible, the function opens
it, brings it to the front, and sets focus to it. If the Tag Chooser is visible, the function hides the dialog box.

Arguments
None.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE
Application

dw.registerldleHandler()

Availability
Dreamweaver CS3.

Description
This function registers a JavaScript function to be called on a periodic basis during idle processing time.

Arguments

id, idleFunction, interval

+ The id argument is a unique string used to identify the idle task to register. To ensure uniqueness, prefix the ID
with a unique identifier. For example you might want a beep every 5 seconds, but you wouldn't want to call the task
"beep", because someone else might also have created a task of the same name. A better name would be something
like "acme_beep_task", thus providing both context and uniqueness.

+ The idleFunction argument is the JavaScript function to be called during idle processing time.

+ The interval argument is the number of seconds between calls of idleFunction, subject to idle-time availability.

Returns
A Boolean value indicating whether the idle task was successfully registered.

Example
The following example causes the system to beep once every 5 seconds:

dw.registerIdleHandler ("acme beep task", function() { dw.beep();}, 5);

dw.revokeldleHandler()

Availability
Dreamweaver CS3.

Description

This function removes an idle task previously spawned by the registerIdleHandler () function. The intention is to
provide a way to remove a previously registered idle task. If an idle task is expected to remain active until the
application is terminated, it is unnecessary to call this function. In this case, the idle task is removed automatically
before termination.

Arguments
id
+ Theid is a unique string used to identify the registered idle task to remove. This is the same ID that was initially

used to register the task.

Returns
A Boolean value indicating whether the idle task was successfully removed.

Example
The following example removes the idle task known as "dw_beep_task" from the idle task queue:

120



DREAMWEAVER CS4 API REFERENCE
Application

dw.revokeIdleHandler ("acme_beep task");

Bridge communication functions

The bridge communication functions allow communication between Dreamweaver and the Bridge application. One
feature of this communication is to allow the user to browse files in Bridge easily from Dreamweaver.

BridgeTalk.bringToFront()

Availability
Dreamweaver CS3.

Description
Makes the specified application the frontmost process, by calling the BridgeTalk: :bringToFront () function.

Arguments
applicationID

« The applicationID argument is a string, such as bridge or dreamweaver, that specifies the application to activate.

Returns
Nothing

Example

This example shows how Dreamweaver implements the browseInBridge () function. First, you create a BridgeTalk
instance, then the two most important properties are set: target and body. <target > is the target application. In this
case it is the Bridge application. It's identifier is bridge. <body> is the message to send. Usually <body> is a script that
the target application can understand and execute after it is received. The send () function is called to send the <body>
to the <targets.

if (!JSBridge.isRunning('bridge'))

{

var bt = new BridgeTalk;

var scriptSavePath = browsePath.replace(/['"\\]l/g, "\$&");

var script = "app.document.thumbnail = new Thumbnail (decodeURI('" + scriptSavePath + "'));";
// Send the script to bridge and give it 10 sec to launch before assuming an error.
bt.target = "bridge";

bt.body = script;

result = bt.send(10) ;

}

if (result)

BridgeTalk.bringToFront ('bridge') ;

Bridgetalk.send()

Availability
Dreamweaver CS3.

121



DREAMWEAVER CS4 API REFERENCE
Application

Description
Establishes communications with the Bridge application.

Arguments:
timeout

+ The timeout argument is an optional attribute that sets the time out interval in seconds.

Returns

A Boolean value indicating whether communication with the Bridge application was a success (True = success, False
= fail).

Example
result = bridgeTalk.send(10) ;

BridgeTalk.suppressStartupScreen()

Availability
Dreamweaver CS3.

Description
Searches the launch options for -nostartupscreen to determine whether to suppress the modal windows after
startup.

Returns

A Boolean value indicating whether to suppress startup screens.

dw.browselnBridge()

Availability
Dreamweaver CS3.

Description
Allows you to browse files in Bridge from Dreamweaver. The dw.browseInBridge () function launches the Bridge
application. If Bridge is already running, dw.browseInBridge switches to the Bridge application.

Arguments:

None.

Returns
A Boolean value indicating whether the browsing script was sent to the Bridge application successfully (t rue = success,
false = fail).

122



123

Chapter 12: Workspace

Workspace API functions create or operate on an element of the Adobe® Dreamweaver® workspace. They perform
tasks that include the following:

+ Redoing steps that appear in the History panel

« Placing an object on the Insert bar

+ Navigating with Keyboard functions

+ Reloading menus

+ Manipulating stand-alone or built-in results windows
+ Setting options

+ Positioning a toolbar

+ Getting or setting focus

History functions

History functions handle undoing, redoing, recording, and playing steps that appear in the History panel. A step is any
repeatable change to the document or to a selection in the document. Methods of the dreamweaver .historyPalette
object either control or act on the selection in the History panel, not in the current document.

dom.redo()

Availability
Dreamweaver 3.

Description
Redoes the step that was most recently undone in the document.

Arguments
None.

Returns
Nothing.

Enabler
See “dom.canRedo()” on page 457.

dom.undo()

Availability
Dreamweaver 3.



DREAMWEAVER CS4 API REFERENCE
Workspace

Description
Undoes the previous step in the document.

Arguments
None.

Returns
Nothing.

Enabler
See “dom.canUndo()” on page 460.

dreamweaver.getRedoText()

Availability
Dreamweaver 3.

Description
Gets the text that is associated with the editing operation that will be redone if the user selects Edit > Redo or presses
Control+Y (Windows) or Command+Y (Macintosh).

Arguments
None.

Returns

A string that contains the text that is associated with the editing operation that will be redone.

Example
If the user’s last action applied bold to selected text, a call to the dreamweaver .getRedoText () function returns
"Repeat Apply Bold".

dreamweaver.getUndoText()

Availability
Dreamweaver 3.

Description
Gets the text that is associated with the editing operation that will be undone if the user selects Edit > Undo or presses
Control+Z (Windows) or Command+Z (Macintosh).

Arguments
None.

Returns

A string that contains the text that is associated with the editing operation that will be undone.

124



DREAMWEAVER CS4 API REFERENCE | 125
Workspace

Example
If the user’s last action applied a Cascading Style Sheet (CSS) style to a selected range of text, a call to the
dreamweaver .getUndoText () function returns "Undo Apply <spans".

dreamweaver.playRecordedCommand()

Availability
Dreamweaver 3.

Description
Plays the recorded command in the active document.

Arguments
None.

Returns
Nothing.

Enabler
See “dreamweaver.canPlayRecordedCommand()” on page 464 .

dreamweaver.redo()

Availability
Dreamweaver 3.

Description
Redoes the step that was most recently undone in the active Document window, dialog box, floating panel, or Site

panel.

Arguments
None.

Returns
Nothing.

Enabler
See “dreamweaver.canRedo()” on page 465.

dreamweaver.startRecording()

Availability
Dreamweaver 3.



DREAMWEAVER CS4 API REFERENCE | 126
Workspace

Description
Starts recording steps in the active document; the previously recorded command is immediately discarded.

Arguments
None.

Returns
Nothing.

Enabler

See “dreamweaver.isRecording()” on page 472 (must return a value of false).

dreamweaver.stopRecording()

Availability
Dreamweaver 3.

Description

Stops recording without prompting the user.

Arguments
None.

Returns
Nothing.

Enabler

See “dreamweaver.isRecording()” on page 472 (must return a value of true).

dreamweaver.undo()

Availability
Dreamweaver 3.

Description

Undoes the previous step in the Document window, dialog box, floating panel, or Site panel that has focus.

Arguments
None.

Returns
Nothing.

Enabler
See “dom.canUndo()” on page 460 .



DREAMWEAVER CS4 API REFERENCE | 127
Workspace

dreamweaver.historyPalette.clearSteps()

Availability
Dreamweaver 3.

Description
Clears all steps from the History panel and disables the Undo and Redo menu items.

Arguments

None.

Returns
Nothing.

dreamweaver.historyPalette.copySteps()

Availability
Dreamweaver 3.

Description
Copies the specified history steps to the Clipboard. Dreamweaver warns the user about possible unintended
consequences if the specified steps include an unrepeatable action.

Arguments
arrayOfindices

The arrayOfIndices argument is an array of position indices in the History panel.

Returns
A string that contains the JavaScript that corresponds to the specified history steps.

Example
The following example copies the first four steps in the History panel:

dreamweaver.historyPalette.copySteps([0,1,2,3]);

dreamweaver.historyPalette.getSelectedSteps()

Availability
Dreamweaver 3.

Description
Determines which portion of the History panel is selected.

Arguments
None.



DREAMWEAVER CS4 API REFERENCE | 128
Workspace

Returns
An array that contains the position indices of all the selected steps. The first position is position 0 (zero).

Example
If the second, third, and fourth steps are selected in the History panel, as shown in the following figure, a call to the
dreamweaver.historyPalette.getSelectedSteps () function returns [1,2,3]:

i ¥ History
ites)T

g, a cak a

= A Typing: You are my sunshine, my ¢

dreamweaver.historyPalette.getStepCount()

Availability
Dreamweaver 3.

Description
Gets the number of steps in the History panel.

Arguments
None.

Returns

An integer that represents the number of steps that are currently listed in the History panel.

dreamweaver.historyPalette.getStepsAsJavaScript()

Availability
Dreamweaver 3.

Description
Gets the JavaScript equivalent of the specified history steps.

Arguments

arrayOfindices

+ The arrayOfindices argument is an array of position indices in the History panel.

Returns
A string that contains the JavaScript that corresponds to the specified history steps.



DREAMWEAVER CS4 API REFERENCE | 129
Workspace

Example

If the three steps shown in the following example are selected in the History panel, a call to the
dreamweaver.historyPalette.getStepsAsJavaScript (dw.historyPalette.getSelectedSteps ()) function
returns "dw.getDocumentDOM () . insertText ('Hey diddle diddle, a cat and a fiddle, the cow jumped
over the moon.');\ ndw.getDocumentDOM () .newBlock () ;\n dw.getDocumentDOM () .insertHTML ('<img

src=\ "../wdw99/50browsers/images/sun.gif\">', true);\n":

i w History

= A Typing: You are my sunshine, my ¢

dreamweaver.historyPalette.getUndoState()

Availability
Dreamweaver 3.

Description
Gets the current undo state.

Arguments
None.

Returns
The position of the Undo marker in the History panel.

dreamweaver.historyPalette.replaySteps()

Availability
Dreamweaver 3.

Description
Replays the specified history steps in the active document. Dreamweaver warns the user of possible unintended
consequences if the specified steps include an unrepeatable action.

Arguments
arrayOfindices

« The arrayOfindices argument is an array of position indices in the History panel.

Returns
A string that contains the JavaScript that corresponds to the specified history steps.



DREAMWEAVER CS4 API REFERENCE | 130
Workspace

Example
A call to dreamweaver.historyPalette.replaySteps ([0, 2,3]) function plays the first, third, and fourth steps in
the History panel.

dreamweaver.historyPalette.saveAsCommand()

Availability
Dreamweaver 3.

Description
Opens the Save As Command dialog box, which lets the user save the specified steps as a command. Dreamweaver
warns the user of possible unintended consequences if the steps include an unrepeatable action.

Arguments
arrayOfindices

+ The arrayOfindices argument is an array of position indexes in the History panel.

Returns
A string that contains the JavaScript that corresponds to the specified history steps.

Example

The following example saves the fourth, sixth, and eighth steps in the History panel as a command:

dreamweaver.historyPalette.saveAsCommand([3,5,7]) ;

dreamweaver.historyPalette.setSelectedSteps()

Availability
Dreamweaver 3.

Description
Selects the specified steps in the History panel.

Arguments
arrayOfindices

+ The arrayOfindices function is an array of position indices in the History panel. If no argument is supplied, all the
steps are unselected.

Returns
Nothing.

Example

The following example selects the first, second, and third steps in the History panel

dreamweaver.historyPalette.setSelectedSteps([0,1,2]);



DREAMWEAVER CS4 API REFERENCE | 131
Workspace

dreamweaver.historyPalette.setUndoState()

Availability
Dreamweaver 3.

Description
Performs the correct number of undo or redo operations to arrive at the specified undo state.

Arguments
undoState

+ The undoState argument is the object that the dreamweaver.historyPalette.getUndoState () function
returns.

Returns
Nothing.

Insert object functions

Insert object functions handle operations related to the objects on the Insert bar or listed on the Insert menu.

dreamweaver.objectPalette.getMenuDefault()

Availability
Dreamweaver MX 2004.

Description
Retrieves the ID string of the default item for the associated menu.

Arguments
menuld

The menuld argument is the string that defines the menu in the insertbar.xml file.

Returns

A string value defining the ID of the default item.

Example
The following example assigns the current default object for the Media menu to the defID variable:

var defId = dw.objectPalette.getMenuDefault ("DW_Media") ;

dreamweaver.objectPalette.setMenuDefault()

Availability
Dreamweaver MX 2004.



DREAMWEAVER CS4 API REFERENCE | 132
Workspace

Description

Sets the default object for a pop-up menu. The default object’s icon represents the specified pop-up menu on the Insert
bar. The user can click on the default object to insert it, or click on the arrow beside the default object to open the pop-
up menu and see the other objects in that menu. Dreamweaver sets the new menu default the next time the user opens
Dreamweaver or uses the Reload Extensions command.

Arguments
menuld, defaultld

+ The menuld argument is the string that defines the menu in the insertbar.xml file.

+ The defaultld argument is the string that defines the new default object in the insertbar.xml field.

Returns

A Boolean value: true if the new default is successfully set; false otherwise.

Example
The following example sets the Flash object as the default object for the Media menu:

dw.objectPalette.setMenuDefault ("DW_Media", "DW_Flash");

dreamweaver.reloadObjects()

Availability
Dreamweaver MX 2004.

Description
Reloads all the objects on the Insert bar. This function is the equivalent of Control+left-clicking the mouse on the

Categories menu on the Insert bar and selecting the Reload Extensions menu option.

Arguments
None.

Returns

A Boolean value: true if the objects were successfully loaded; £alse otherwise.

dom.convertActiveContent()

Availability
Dreamweaver CS3.

Description

Converts all the active content in the given document.



DREAMWEAVER CS4 API REFERENCE
Workspace

Arguments
forceUpdate

+ The forceUpdate argument is a Boolean value that indicates whether to override the user’s preference settings
(true, = override). This argument is optional.

Returns

A Boolean value: true if all active content was converted successfully. Returns false if some active content that
needed to be converted was not converted, such as object tags in a locked region of a template instance.

Example

if ( !dom.convertActiveContent (true) ) {
alert (dw.loadString ("ActiveContent/notAllConverted")) ;

}

dom.convertNextActiveContent()

Availability
Dreamweaver CS3.

Description

Specifies that the next object tag that is inserted (for the remainder of the current edit—one undoable action) has a
script built for it. This function allows you to use a third-party extension to generate the appropriate script for the
specific active content.

Arguments
None.

Returns
Nothing.

Example

dom.convertNextActiveContent () ;

dom.insertHTML ("<object classid=\"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000\" codebase=\
"http://download.Macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=7,0,19,0\"
width=\"100\" height=\"22\"><param name=\"movie\" value=\"buttonl.swf\" /><param name=\
"quality\" value=\"high\" /><embed src=\"buttonl.swf\" quality=\"high\" pluginspage=\
"http://www.Macromedia.com/go/getflashplayer\" type=\"application/
x-shockwave-flash\"width=\"100\" height=\"22\"></embed></object>\") ;

Keyboard functions

Keyboard functions mimic document navigation tasks that are accomplished by pressing the arrow, Backspace, Delete,
Page Up, and Page Down keys. In addition to such general arrow and key functions as arrowLeft () and
backspaceKey (), Dreamweaver also provides methods for moving to the next or previous word or paragraph as well
as moving to the start of the line or document or the end of the line or document.



DREAMWEAVER CS4 API REFERENCE | 134
Workspace

dom.arrowDown()

Availability
Dreamweaver 3.

Description
Moves the insertion point down the specified number of times.

Arguments
{nTimes}, {bShiftlsDown}

+ The nTimes argument is the number of times that the insertion point must move down. If this argument is omitted,
the default is 1.

+ The bShiftIsDown argument is a Boolean value that indicates whether to extend the selection. If this argument is
omitted, the default is false.

Returns
Nothing.

dom.arrowLeft()

Availability
Dreamweaver 3.

Description
Moves the insertion point to the left the specified number of times.

Arguments
{nTimes}, {bShiftIsDown}

+ The nTimes argument, which is optional, is the number of times that the insertion point must move left. If this
argument is omitted, the default is 1.

+ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether to extend the selection. If
this argument is omitted, the default is false.

Returns
Nothing.

dom.arrowRight()

Availability
Dreamweaver 3.

Description
Moves the insertion point to the right the specified number of times.



DREAMWEAVER CS4 API REFERENCE
Workspace

Arguments
{nTimes}, {bShiftIsDown}

 The nTimes argument, which is optional, is the number of times that the insertion point must move right. If this
argument is omitted, the default is 1.

+ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether to extend the selection. If
this argument is omitted, the default is false.

Returns
Nothing.

dom.arrowUp()

Availability
Dreamweaver 3.

Description

This function moves the insertion point up the specified number of times.

Arguments
{nTimes}, {bShiftlsDown}

+ The nTimes argument, which is optional, is the number of times that the insertion point must move up. If this
argument is omitted, the default is 1.

+ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether to extend the selection. If
this argument is omitted, the default is false.

Returns
Nothing.

dom.backspaceKey()

Availability
Dreamweaver 3.

Description
This function is equivalent to pressing the Backspace key a specified number of times. The exact behavior depends on
whether there is a current selection or only an insertion point.

Arguments
{nTimes}
+ The nTimes argument, which is optional, is the number of times that a backspace operation must occur. If the

argument is omitted, the default is 1.

Returns
Nothing.

135



DREAMWEAVER CS4 API REFERENCE
Workspace

dom.deleteKey()

Availability
Dreamweaver 3.

Description
This function is equivalent to pressing the Delete key the specified number of times. The exact behavior depends on
whether there is a current selection or only an insertion point.

Arguments
{nTimes}
« The nTimes argument, which is optional, is the number of times that a delete operation must occur. If the argument

is omitted, the default is 1.

Returns
Nothing.

dom.endOfDocument()

Availability
Dreamweaver 3.

Description
Moves the insertion point to the end of the document (that is, after the last visible content in the Document window
or after the closing HTML tag in the Code inspector, depending on which window has focus).

Arguments
{bShiftIsDown}
« The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether to extend the selection. If

the argument is omitted, the default is false.

Returns
Nothing.

dom.endOfLine()

Availability
Dreamweaver 3.

Description
Moves the insertion point to the end of the line.

136



DREAMWEAVER CS4 API REFERENCE
Workspace

Arguments

{bShiftIsDown}

« The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether to extend the selection. If
the argument is omitted, the default is false.

Returns
Nothing.

dom.nextParagraph()

Availability
Dreamweaver 3.

Description

Moves the insertion point to the beginning of the next paragraph or skips multiple paragraphs if nTimes is greater than 1.

Arguments
{nTimes}, {bShiftIsDown}

+ The nTimes argument, which is optional, is the number of paragraphs that the insertion point must move ahead. If
this argument is omitted, the default is 1.

+ The bShiftIsDown argument is a Boolean value that indicates whether to extend the selection. If this argument is
omitted, the default is false.

Returns
Nothing.

dom.nextWord()

Availability
Dreamweaver 3.

Description

Moves the insertion point to the beginning of the next word or skips multiple words if nTimes is greater than 1.

Arguments
{nTimes}, {bShiftIsDown}

+ The nTimes argument, which is optional, is the number of words that the insertion point must move ahead. If this
argument is omitted, the default is 1.

« The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether to extend the selection. If
this argument is omitted, the default is false.

Returns
Nothing.

137



DREAMWEAVER CS4 API REFERENCE
Workspace

dom.pageDown()

Availability
Dreamweaver 3.

Description
Moves the insertion point down one page (equivalent to pressing the Page Down key).

Arguments
{nTimes}, {bShiftlsDown}

+ The nTimes argument, which is optional, is the number of pages that the insertion point must move down. If this
argument is omitted, the default is 1.

« The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether to extend the selection. If
this argument is omitted, the default is false.

Returns
Nothing.

dom.pageUp()

Availability
Dreamweaver 3.

Description
Moves the insertion point up one page (equivalent to pressing the Page Up key).

Arguments
{nTimes}, {bShiftIsDown}

+ The nTimes argument, which is optional, is the number of pages that the insertion point must move up. If this
argument is omitted, the default is 1.

+ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether to extend the selection. If
this argument is omitted, the default is false.

Returns
Nothing.

dom.previousParagraph()

Availability
Dreamweaver 3.

Description
Moves the insertion point to the beginning of the previous paragraph or skips multiple paragraphs if nTimes is greater
than 1.

138



DREAMWEAVER CS4 API REFERENCE | 139
Workspace

Arguments
{nTimes}, {bShiftIsDown}

« The nTimes argument, which is optional, is the number of paragraphs that the insertion point must move back. If
this argument is omitted, the default is 1.

+ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether to extend the selection. If
this argument is omitted, the default is false.

Returns
Nothing.

dom.previousWord()

Availability
Dreamweaver 3.

Description

Moves the insertion point to the beginning of the previous word or skips multiple words if nTimes is greater than 1.

Arguments
{nTimes}, {bShiftlsDown}

« The nTimes argument, which is optional, is the number of words that the insertion point must move back. If this
argument is omitted, the default is 1.

+ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether to extend the selection. If
this argument is omitted, the default is false.

Returns
Nothing.

dom.startOfDocument()

Availability
Dreamweaver 3.

Description
Moves the insertion point to the beginning of the document (that is, before the first visible content in the Document
window, or before the opening HTML tag in the Code inspector, depending on which window has focus).

Arguments
{bShiftIsDown}
+ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether to extend the selection. If

the argument is omitted, the default is false.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE
Workspace

dom.startOfLine()

Availability
Dreamweaver 3.

Description
Moves the insertion point to the beginning of the line.

Arguments
{bShiftIsDown}

+ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether to extend the selection. If
the argument is omitted, the default is false.

Returns
Nothing.

dreamweaver.mapKeyCodeToChar()

Availability
Dreamweaver 4.

Description

Takes a key code as retrieved from the event object’s keyCode field and translates it to a character. You should check
whether the key code is a special key, such as HOME, PGUP, and so on. If the key code is not a special key, this method
can be used to translate it to a character code that is suitable for display to the user.

Arguments
keyCode

+ The keyCode argument is the key code to translate to a character.

Returns

Returns the character code if mapping was successful. Returns 0 otherwise.

Menu functions

Menu functions handle optimizing and reloading the menus in Dreamweaver. The

dreamweaver .getMenuNeedsUpdating () function and the dreamweaver .notifyMenuUpdated () function are
designed specifically to prevent unnecessary update routines from running on the dynamic menus that are built into
Dreamweaver. See “dreamweaver.getMenuNeedsUpdating()” on page 141 and “dreamweaver.notifyMenuUpdated()”
on page 141 for more information.

140



DREAMWEAVER CS4 API REFERENCE
Workspace

dreamweaver.getMenuNeedsUpdating()

Availability
Dreamweaver 3.

Description
Checks whether the specified menu needs to be updated.

Arguments

menuld

+ The menuld argument is a string that contains the value of the id attribute for the menu item, as specified in the
menus.xml file.

Returns

A Boolean value that indicates whether the menu needs to be updated. This function returns false only if
dreamweaver .notifyMenuUpdated () has been called with this menuld, and the return value of menuListFunction
has not changed. For more information, see “dreamweaver.notifyMenuUpdated()” on page 141.

dreamweaver.notifyMenuUpdated()

Availability
Dreamweaver 3.

Description

Notifies Dreamweaver when the specified menu needs to be updated.

Arguments
menuld, menuListFunction

 The menuld argument is a string that contains the value of the id attribute for the menu item, as specified in the
menus.xml file.

+ The menuListFunction argument must be one of the following strings: "dw.cssStylePalette.getStyles ()",

"dw.getDocumentDOM () .getFrameNames () ", "dw.getDocumentDOM () .getEditableRegionList™",
"dw.getBrowserList () ", "dw.getRecentFileList () ", "dw.getTranslatorList () ", "dw.getFontList () ",
"dw.getDocumentList ()", "dw.htmlStylePalette.getStyles ()", 0r "site.getSites () ".

Returns

Nothing.

dreamweaver.reloadMenus()

Availability
Dreamweaver 3.

Description
Reloads the entire menu structure from the menus.xml file in the Configuration folder.

141



DREAMWEAVER CS4 API REFERENCE
Workspace

Arguments
None.

Returns
Nothing.

Results window functions

Results window functions let you interact with the built-in panels in the Results panel group or create a stand-alone
window that displays columns of formatted data.

The built-in Results panel group

These functions produce output in the Results panel group. The Results panel group displays tabbed panels for
searches, source validation, sitewide reports, browser compatibility checking, server debugging, FTP logging, and link
checking.

Specific child panels

The following child panels are built-in Results windows that always exist in the Dreamweaver interface and can be
accessed directly.

e dreamweaver.resultsPalette.siteReports
* dreamweaver.resultsPalette.validator
¢ dreamweaver.resultsPalette.bcc

Because these panels are Results windows, you can use the following methods that are defined for stand-alone Results
windows:

e getlItem()

¢ getItemCount ()

e getSelectedItem()
e setSelectedItem()

For more information about using the reswin methods, see “A stand-alone results window” on page 147.
The active child panel

The following general API functions apply to whichever child panel is active. Some child panels might ignore some of
these functions. If the active child panel does not support the function, calling it has no effect.

dreamweaver.showResults()

Availability
Dreamweaver MX 2004.

Description

Opens the specified results floating panel and selects the item.

142



DREAMWEAVER CS4 API REFERENCE
Workspace

Note: This function is supported only in the Validation, Browser Compatibility Check, and Site Reports panels of the
Results panel group.

Arguments
floaterName, floaterIndex

+ The floaterName argument is a string that specifies the results floating panel to open. Valid values are

'validation',or'reports'

+ The floaterIndex argument is a number or string. Use a number to specify the index of an item to select in the
Results panel. Use a string to specify the URL of a document. If you specify a URL, the function selects the first
visible item for that document.

Returns
Nothing.

Example

The following example checks for errors at the offset of the current selection in the document and, if errors are present,
displays them in the specified window (£1loaterName) of the Results panel. Otherwise, it opens the Browser
Compatibility Check window of the Results panel and displays the first visible item for the current document.

var offset = dw.getDocumentDOM () .source.getSelection() [0];
var errors = dw.getDocumentDOM () .source.getValidationErrorsForOffset (offset) ;
if ( errors && errors.length > 0 )
dw.showResults( errors[0] .floaterName, errors[0].floaterIndex ) ;
else
dw.showResults ('bcc', dw.getDocumentDOM () .URL) ;

dreamweaver.resultsPalette.siteReports.addResultltem()

Availability
Dreamweaver 4.

Description
Adds a new results entry to the Site Reports panel, based on the information in the file that the processfile ()
function processes.

»

This function is only available in the processFile () callback of a site report. For details on site reports, see “Reports
in Extending Dreamweaver.

Arguments
strFilePath, strlcon, strDisplay, strDesc, {iLineNo}, {iStartSel}, {iEndSel}

« The strFilePath argument is a fully qualified URL path of the file to process.

+ The strlcon argument is the path to the icon to use. To display a built-in icon, use a value "1" through "10" instead
of the fully qualified path for the icon (use "0" for no icon). The following table shows the icons that correspond to
the values of "1" through "10":

12345678910
BOLE Y x 7240

143



DREAMWEAVER CS4 API REFERENCE | 144
Workspace

The strDisplay argument is the string to display to the user in the first column of the Results window (usually, the
filename).

The strDesc argument is the description that goes with the entry.
« The iLineNo argument is the number of lines in the file (optional).

+ The iStartSel argument is the start of offset into the file (optional, but if it is used, the iEndSel argument must also
be used.).

+ The iEndSel argument is the end of offset into the file (required if iStartSel is used).

Returns
Nothing.

dreamweaver.resultsPalette.clear()

Availability
Dreamweaver MX.

Description
Clears the contents of the panel in focus.

Arguments
None.

Returns
Nothing.

Enabler
See “dreamweaver.resultsPalette.canClear()” on page 473.

dreamweaver.resultsPalette.Copy()

Availability
Dreamweaver MX.

Description
Sends a copied message to the window that is in focus (often used for the FTP logging window).

Arguments
None.

Returns
Nothing.

Enabler
See “dreamweaver.resultsPalette.canCopy()” on page 473.



DREAMWEAVER CS4 APl REFERENCE

dreamweaver.resultsPalette.cut()

Availability
Dreamweaver MX.

Description
Sends a cut message to the window in focus (often used for the FTP logging window).

Arguments

None.

Returns
Nothing.

Enabler

See “dreamweaver.resultsPalette.canCut()” on page 473.

dreamweaver.resultsPalette.Paste()

Availability
Dreamweaver MX.

Description

Sends a pasted message to the window in focus (often used for the FTP logging window).

Arguments

None.

Returns
Nothing.

Enabler

See “dreamweaver.resultsPalette.canPaste()” on page 474.

dreamweaver.resultsPalette.openinBrowser

Availability
Dreamweaver MX.

Description

Sends a report (Site Reports, Browser Target Check, Validation, and Link Checker) to the default browser.

Arguments

None.

Workspace

145



DREAMWEAVER CS4 API REFERENCE | 146
Workspace

Returns
Nothing.

Enabler

See “dreamweaver.resultsPalette.canOpenInBrowser()” on page 474.

dreamweaver.resultsPalette.openinEditor()

Availability
Dreamweaver MX.

Description
Jumps to the selected line for specific reports (Site Reports, Browser Target Check, Validation, and Link Checker), and
opens the document in the editor.

Arguments

None.

Returns
Nothing.

Enabler

See “dreamweaver.resultsPalette.canOpenInEditor()” on page 474.

dreamweaver.resultsPalette.save()

Availability
Dreamweaver MX.

Description

Opens the Save dialog box for a window that supports the Save function (Site Reports, Browser Target Check,
Validation, and Link Checker).

Arguments
None.

Returns
Nothing.

Enabler

See “dreamweaver.resultsPalette.canSave()” on page 475.



DREAMWEAVER CS4 APl REFERENCE

dreamweaver.resultsPalette.selectAll()

Availability
Dreamweaver MX.

Description
Sends a Select All command to the window in focus.

Arguments

None.

Returns
Nothing.

Enabler

See “dreamweaver.resultsPalette.canSelectAll()” on page 475.

A stand-alone results window

The dreamweaver.createResultsWindow () function, creates a results window.

dreamweaver.createResultsWindow()

Availability
Dreamweaver 4.

Description

Creates a new Results window and returns a JavaScript object reference to the window.

Arguments

strName, arrColumns
+ The strName argument is the string to use for the window’s title.

+ The arrColumns argument is an array of column names to use in the list control.

Returns
An object reference to the created window.

resWin.addIltem()

Availability
Dreamweaver 4.

Description
Adds a new item to the Results window.

Workspace

147



DREAMWEAVER CS4 API REFERENCE
Workspace

Note: Use only on stand-alone results windows created with “dreamweaver.createResultsWindow()” on page 147. The
resWin.addItem() function cannot be used with the built-in results windows, including Validation, Browser
Compatibility Check, or Site Reports.

Arguments
resultWindowObj, stricon, strDesc, itemData, iStartSel, iEndSel, colNdata

+ The resultWindowObj argument is the object that the createResultsWindow () function returns.

« The strlcon argument is a string that specifies the path to the icon to use. To display a built-in icon, use a value "1"
through "10"instead of the fully qualified path of the icon. Specify "0" (zero) for no icon. The following table shows
the icons that correspond to the values of "1" through "10":

12345678910
BEOBYx?72A0

« The strDesc argument is a detailed description of the item. Specify "0" if there is no description.

« TheitemData argument is a string you can use to store specific data about the item being added such as a document
line number.

+ The iStartSel argument is the start of selection offset in the file. Specify the value nu11 if you are not specifying an
offset.

+ The iEndSel argument is the end of selection offset in the file. Specify the value nul1l if you are not specifying an
offset.

« The colNdata argument is an array of strings that provide the data for each column (that is, if there are 3 columns,
an array of 3 strings).

Returns
A Boolean value: true if the item was added successfully; false otherwise.

Example

The following example creates a Results window called reswin that has the column headings: Frodo, Sam, and
Gollum. The call to the reswin.addItem() function adds a folder icon and then the three strings, msg1, msg2, and
msg3 into the three columns defined for the window.

var resWin = dw.createResultsWindow ("Test Window", ["Frodo", "Sam", "Gollum"]);
resWin.addItem(resWin, "3", "Description", null, null, null, ["msgl", "msg2", "msg3"]);
resWin.getltem()

Availability

Dreamweaver 4.

Description
Retrieves an array of items that include the name of the command that added the item and the same strings that were
passed to the addItem() function.

148



DREAMWEAVER CS4 API REFERENCE | 149
Workspace

Arguments
itemIndex

+ The itemIndex argument is the index of the item whose data is to be retrieved.
Returns

An array of strings. The first element in the array is the name of the command that added the item; the remaining
elements are the same strings that were passed to the addrtem() function.

resWin.getltemCount()

Availability
Dreamweaver 4.

Description
Retrieves the number of items in the list.

Arguments
None.

Returns
The number of items in the list.

resWin.getSelecteditem()

Availability
Dreamweaver 4.

Description
Retrieves the index of the selected item.

Arguments
None.

Returns

The index of the currently selected item.

resWin.setButtons()

Availability
Dreamweaver 4.

Description
Sets the buttons specified by the arrButtons argument.



DREAMWEAVER CS4 API REFERENCE | 150
Workspace

Arguments
cmdDoc, arrButtons

+ The cmdDoc argument is a document object that represents the command that is calling the function. Commands
should use the keyword this.

+ The arrButtons argument is an array of strings that correspond to the button text and the JavaScript code to execute
when the button is clicked. This is similar to the way the commandButtons () function works for commands. Only
two buttons can be set in the window.

Returns
Nothing.

resWin.setCallbackCommands()

Availability
Dreamweaver 4.

Description
Tells the Results window on which commands to call the processFile () method. If this function is not called, the
command that created the Results window is called.

Arguments
arrCmdNames
+ The arrCmdNames argument is an array of command names on which to call the processFile () function.

Returns
Nothing.

resWin.setColumnWidths()

Availability
Dreamweaver 4.

Description
Sets the width of each column.

Arguments
arrWidth
+ The arrWidth argument is an array of integers that represents the widths to use for each column in the control.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 151
Workspace

resWin.setFileList()

Availability
Dreamweaver 4.

Description
Gives the Results window a list of files, folders, or both to call a set of commands to process.

Arguments

arrFilePaths, bRecursive

+ The arrFilePaths argument is an array of file or folder paths to iterate through.

« The bRecursive argument is a Boolean value that indicates whether the iteration should be recursive (true) or not
(false)

Returns
Nothing.

resWin.setSelectedltem()

Availability
Dreamweaver 4.

Description
Sets the selected item to the one specified by itemIndex.

Arguments
itemIndex

« The index of the item in the list to select.

Returns

The index of the previously selected item

resWin.setTitle()

Availability
Dreamweaver 4.

Description
Sets the title of the window.

Arguments
strTitle

+ The strTitle argument is the new name of the floating panel.



DREAMWEAVER CS4 API REFERENCE | 152
Workspace

Returns
Nothing.

resWin.startProcessing()

Availability
Dreamweaver 4.

Description
Starts processing the file.

Arguments
None.

Returns
Nothing.

resWin.stopProcessing()

Availability
Dreamweaver 4.

Description
Stops processing the file.

Arguments
None.

Returns
Nothing.

Server debugging

Dreamweaver can request files from Adobe ColdFusion and display the response in its embedded browser. When the
response returns from the server, Dreamweaver searches the response for a packet of XML that has a known signature.
If Dreamweaver finds XML with that signature, it processes the XML and displays the contained information in a tree
control. This tree displays information about the following items:

« All templates, custom tags, and include files that are used to generate the rendered CFM page
« Exceptions

« SQL queries

+ Object queries

 Variables

« Trace trail



DREAMWEAVER CS4 API REFERENCE | 153
Workspace

Additionally, the Server Debug panel can display debug data from other server models. To set up Dreamweaver to
debug other server models, use the dreamweaver.resultsPalette.debugWindow.addDebugContextData ()
function.

dreamweaver.resultsPalette.debugWindow.addDebugContextData()

Availability
Dreamweaver MX.

Description

Interprets a customized XML file that returns from the server that is specified in the Site Definition dialog box. The
contents of the XML file display as tree data in the Server Debug panel, so you can use the Server Debug panel to
evaluate server-generated content from various server models.

Arguments
treedata

+ The treedata argument is the XML string that the server returns. The XML string should use the following
formatting:

server debug node Root node for the debug XML data
debugnode Corresponds to every node

context Name of item that appears in the context list
icon Icon to use for tree node

name Name to display

value Value to display

timestamp Only applicable to context node

The following strings are optional:

jumptoline Link to a specific line number

template Name of the template file part of the URL
path Path of the file from server point of view
line number Line number within the file

start position Opening character offset within the line
end position Ending character offset within the line

For example:



DREAMWEAVER CS4 API REFERENCE
Workspace

<serverdebuginfo>
<context>
<template><! [CDATA[/ocoo/master.cfm] ] ></template>
<path><! [CDATA [C:\server\wwwroot\ooo\master.cfm] ] ></path>
<timestamp><! [CDATA[0:0:0.0]]></timestamp>
</context>
<debugnode>
<names><! [CDATA[CGI]] ></name>
<icon><! [CDATA [ServerDebugOutput/ColdFusion/CGIVariables.gif]] ></icon>
<debugnode>
<name><! [CDATA [Pubs.name.sourceURL] ] ></name>
<icon><! [CDATA [ServerDebugOutput/ColdFusion/Variable.gif]]></icon>
<value><! [CDATA [jdbc:Macromedia:sglserver:
//name .Macromedia.com:1111;databaseName=Pubs]]></value>
</debugnode >
</debugnode >
<debugnode>
<name><! [CDATA [Element Snippet is undefined in class
coldfusion.compiler.TagInfoNotFoundException]] ></name>
<icon><! [CDATA [ServerDebugOutput/ColdFusion/Exception.gif]] ></icon>
<jumptoline linenumber="3" startposition="2" endposition="20">
<template><! [CDATA[/ooo/master.cfm] ] ></template>
<path><! [CDATA [C:\Neo\wwwroot\ooo\master.cfm] ] ></path>
</jumptolines>
</debugnode>
</serverdebuginfos>

Returns
Nothing.

Toggle functions

Toggle functions get and set various options either on or off.

dom.getEditNoFramesContent()

Availability
Dreamweaver 3.

Description
This function gets the current state of the Modify > Frameset > Edit NoFrames Content option.

Arguments

None.

Returns
A Boolean value: true indicates the NOFRAMES content is the active view; false otherwise.



DREAMWEAVER CS4 APl REFERENCE

dom.getHideAllVisualAids()

Availability
Dreamweaver 4.

Description
This function determines whether visual aids are set as hidden.

Arguments

None.

Returns
A Boolean value: true sets Hide All Visual Aids to hidden; false otherwise.

dom.getPreventLayerOverlaps()

Availability
Dreamweaver 3.

Description
This function gets the current state of the Prevent Layer Overlaps option.

Arguments
None.

Returns

A Boolean value: true turns on the Prevent Layer Overlaps option; false otherwise.

dom.getShowAutoindent()

Availability
Dreamweaver 4.

Description

This function determines whether auto-indenting is on in the Code view of the document window.

Arguments
None.

Returns

A Boolean value: true if auto-indenting is on; false otherwise.

Workspace

155



dom.getShowFrameBorders()

Availability
Dreamweaver 3.

Description
This function gets the current state of the View > Frame Borders option.

Arguments

None.

Returns

A Boolean value: true indicates frame borders are visible; false otherwise.

dom.getShowGrid()

Availability
Dreamweaver 3.

Description
This function gets the current state of the View > Grid > Show option.

Arguments
None.

Returns

A Boolean value: true indicates the grid is visible; false otherwise.

dom.getShowHeadView()

Availability
Dreamweaver 3.

Description

This function gets the current state of the View > Head Content option.

Arguments
None.

Returns

A Boolean value: true indicates the head content is visible; false otherwise.

DREAMWEAVER CS4 API REFERENCE
Workspace

156



DREAMWEAVER CS4 API REFERENCE
Workspace

dom.getShowinvalidHTML()

Availability
Dreamweaver 4.

Description
This function determines whether invalid HTML code is currently highlighted in the Code view of the document

window.

Arguments

None.

Returns
A Boolean value: true if invalid HTML code is highlighted; false otherwise.

dom.getShowimageMaps()

Availability
Dreamweaver 3.

Description
This function gets the current state of the View > Image Maps option.

Arguments
None.

Returns

A Boolean value: true indicates the image maps are visible; false otherwise.

dom.getShowlinvisibleElements()

Availability
Dreamweaver 3.

Description

This function gets the current state of the View > Invisible Elements option.

Arguments
None.

Returns
A Boolean value: true indicates the invisible element markers are visible; false otherwise.

157



dom.getShowLayerBorders()

Availability
Dreamweaver 3.

Description
This function gets the current state of the View > Layer Borders option.

Arguments

None.

Returns

A Boolean value: true indicates the layer borders are visible; false otherwise.

dom.getShowLineNumbers()

Availability
Dreamweaver 4.

Description
This function determines whether line numbers are shown in the Code view.

Arguments
None.

Returns

A Boolean value: true indicates the line numbers are shown; false otherwise.

dom.getShowRulers()

Availability
Dreamweaver 3.

Description

This function gets the current state of the View > Rulers > Show option.

Arguments
None.

Returns
A Boolean value: true indicates the rulers are visible; false otherwise.

DREAMWEAVER CS4 API REFERENCE
Workspace

158



DREAMWEAVER CS4 APl REFERENCE

dom.getShowSyntaxColoring()

Availability
Dreamweaver 4.

Description

This function determines whether syntax coloring is on in the Code view of the document window.

Arguments

None.

Returns

A Boolean value: true if syntax coloring is on; false otherwise.

dom.getShowTableBorders()

Availability
Dreamweaver 3.

Description
This function gets the current state of the View > Table Borders option.

Arguments
None.

Returns

A Boolean value: true indicates the table borders are visible; false otherwise.

dom.getShowToolbar()

Availability
Dreamweaver 4.

Description

This function determines whether the toolbar appears.

Arguments
None.

Returns

A Boolean value: true if the toolbar appears; false otherwise.

Workspace

159



DREAMWEAVER CS4 APl REFERENCE

dom.getShowTracinglmage()

Availability
Dreamweaver 3.

Description
This function gets the current state of the View > Tracing Image > Show option.

Arguments

None.

Returns
A Boolean value: true indicates the option is on; false otherwise.

dom.getShowWordWrap()

Availability
Dreamweaver 4.

Description

This function determines whether word wrap is on in the Code view of the document window.

Arguments
None.

Returns

A Boolean value: true if word wrap is on; false otherwise.

dom.getSnapToGrid()

Availability
Dreamweaver 3.

Description
This function gets the current state of the View > Grid > Snap To option.

Arguments
None.

Returns

A Boolean value: true indicates that the snap-to-grid option is on; false otherwise.

Workspace

160



DREAMWEAVER CS4 API REFERENCE | 161
Workspace

dom.setEditNoFramesContent()

Availability
Dreamweaver 3.

Description
This function toggles the Modify > Frameset > Edit NoFrames Content option on and off.

Arguments
bEditNoFrames

+ The bEditNoFrames argument is a Boolean value: true turns on the Edit NoFrames Content option; false turns
it off.

Returns
Nothing.

Enabler
See “dom.canEditNoFramesContent()” on page 454.

dom.setHideAllVisualAids()

Availability
Dreamweaver 4.

Description
This function turns off the display of all borders, image maps, and invisible elements, regardless of their individual
settings in the View menu.

Arguments
bSet

+ The bSet argument is a Boolean value: true hides visual aids; false otherwise.

Returns
Nothing.

dom.setPreventLayerOverlaps()

Availability
Dreamweaver 3.

Description
This function toggles the Prevent Layer Overlaps option on and off.



DREAMWEAVER CS4 API REFERENCE | 162
Workspace

Arguments
bPreventLayerOverlaps

+ The bPreventLayerOverlaps argument is a Boolean value: t rue turns on the Prevent Layer Overlaps option; false
turns it off.

Returns
Nothing.

dom.setShowFrameBorders()

Availability
Dreamweaver 3.

Description
This function toggles the View > Frame Borders option on and off.

Arguments
bShowFrameBorders

+ The bShowFrameBorders argument is a Boolean value: true turns the Frame Borders on; false otherwise.

Returns
Nothing.

dom.setShowGrid()

Availability
Dreamweaver 3.

Description
This function toggles the View > Grid > Show option on and off.

Arguments
bShowGrid

+ The bShowGrid argument is a Boolean value: true turns on the View > Grid > Show option; false turns it off.

Returns
Nothing.

dom.setShowHeadView()

Availability
Dreamweaver 3.



DREAMWEAVER CS4 API REFERENCE | 163
Workspace

Description
This function toggles the View > Head Content option on and off.

Arguments
bShowHead
+ The bShowHead argument is a Boolean value: true turns on the Head Content option; false turns it off.

Returns
Nothing.

dom.setShowInvalidHTML()

Availability
Dreamweaver 4.

Description
This function turns highlighting of invalid HTML code on or off in the Code view of the document window.

This function determines whether invalid HTML code is currently highlighted.

Arguments

bShow

+ The bShow argument is a Boolean value: true indicates that highlighting invalid HTML code is visible; false

otherwise.

Returns
Nothing.

dom.setShowlmageMaps()

Availability
Dreamweaver 3.

Description
This function toggles the View > Image Maps option on and off.

Arguments
bShowImageMaps

+ The bShowImageMaps argument is a Boolean value, true turns on the Image Maps option; false turns it off.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 164
Workspace

dom.setShowlnvisibleElements()

Availability
Dreamweaver 3.

Description
This function toggles the View > Invisible Elements option on and off.

Arguments
bViewlnvisibleElements
+ The bViewlnvisibleElements argument is a Boolean value: t rue turns on the Invisible Elements option; £alse turns

it off.

Returns
Nothing.

dom.setShowLayerBorders()

Availability
Dreamweaver 3.

Description
This function toggles the View > Layer Borders option on and off.

Arguments
bShowLayerBorders
« The bShowLayerBorders argument is a Boolean value, true turns on the Layer Borders option; false turns it off.

Returns
Nothing.

dom.setShowLineNumbers()

Availability
Dreamweaver 4.

Description
This function shows or hides the line numbers in the Code view of the document window.

Arguments
bShow

+ The bShow argument is a Boolean value: true indicates the line numbers should be visible; false hides them.



DREAMWEAVER CS4 API REFERENCE | 165
Workspace

Returns
Nothing.

dom.setShowRulers()

Availability
Dreamweaver 3.

Description
This function toggles the View >Rulers > Show option on and off.

Arguments
bShowRulers

The bShowRulers argument is a Boolean value: true turns on the Show option; £alse turns it off.

Returns
Nothing.

dom.setShowSyntaxColoring()

Availability
Dreamweaver 4.

Description

This function turns syntax coloring on or off in the Code view of the document window.

Arguments
bShow

+ The bShow argument is a Boolean value: true indicates that syntax coloring should be visible; false otherwise.

Returns
Nothing.

dom.setShowTableBorders()

Availability
Dreamweaver 3.

Description
This function toggles the View > Table Borders option on and off.

Arguments
bShowTableBorders

The bShowTableBorders argument is a Boolean value: true turns on the Table Borders option; false turns it off.



DREAMWEAVER CS4 API REFERENCE
Workspace

Returns
Nothing.

dom.setShowToolbar()

Availability
Dreamweaver 4.

Description
This function shows or hides the Toolbar.

Arguments
bShow

The bShow argument is a Boolean value: true indicates the toolbar should be visible; £alse otherwise.

Returns
Nothing.

dom.setShowTracingimage()

Availability
Dreamweaver 3.

Description

This function toggles the View > Tracing Image > Show option on and off.

Arguments
bShowTracinglmage
+ The bShowTracinglmage argument is a Boolean value: true turns on the Show option; false turns it off.

Returns
Nothing.

dom.setShowWordWrap()

Availability
Dreamweaver 4.

Description
This function toggles the Word Wrap option off or on in the Code view of the document window.

Arguments
bShow

The bShow argument is a Boolean value: true indicates that the lines should wrap; £alse otherwise.

166



DREAMWEAVER CS4 API REFERENCE | 167
Workspace

Returns
Nothing.

dom.setSnapToGrid()

Availability
Dreamweaver 3.

Description
This function toggles the View > Grid > Snap To option on or off.

Arguments
bSnapToGrid

The bSnapToGrid argument is a Boolean value: true turns on the Snap To option; false turns it off.

Returns
Nothing.

dreamweaver.getHideAllFloaters()

Availability
Dreamweaver 3, and updated in CS4.

Description
Determines if all panels, docked or floating, are hidden. The result does not include the visibility state of the Insert bar.
It does not consider the following components hidden:

The closed panels
« The collapsed tab groups
+ The collapsed panels

Note: The result does not include the Insert bar, but includes the Insert panel.

Arguments
None.

Returns
A Boolean value: true if all panels are hidden, false otherwise.

dreamweaver.getShowStatusBar()

Availability
Dreamweaver 3.



DREAMWEAVER CS4 API REFERENCE | 168
Workspace

Description
This function gets the current state of the View > Status Bar option.

Arguments
None.

Returns

A Boolean value: true indicates the status bar is visible; false otherwise.

dreamweaver.htmlinspector.getShowAutolndent()

Availability
Dreamweaver 4.

Description

This function determines whether the Auto Indent option is on in the Code inspector.

Arguments
None.

Returns

A Boolean value: true if auto-indenting is on; false otherwise.

dreamweaver.htmlinspector.getShowinvalidHTML()

Availability
Dreamweaver 4.

Description
This function determines whether invalid HTML code is currently highlighted in the Code inspector.

Arguments

None.

Returns
A Boolean value: true if invalid HTML code is highlighted; false otherwise.

dreamweaver.htmlinspector.getShowLineNumbers()

Availability
Dreamweaver 4.

Description
This function determines whether line numbers appear in the Code inspector.



Arguments
None.

Returns

A Boolean value: true if line numbers appear; false otherwise.

dreamweaver.htmlinspector.getShowSyntaxColoring()

Availability
Dreamweaver 4.

Description
This function determines whether syntax coloring is on in the Code inspector.

Arguments

None.

Returns

A Boolean value: true if syntax coloring is on; false otherwise.

dreamweaver.htmlinspector.getShowWordWrap()

Availability
Dreamweaver 4.

Description
This function determines whether the Word Wrap is on in the Code inspector.

Arguments
None.

Returns

A Boolean value: true if word wrap is on; false otherwise.

dreamweaver.htmlinspector.setShowAutolndent()

Availability
Dreamweaver 4.

Description

This function turns the Auto Indent option on or off in the Code inspector.

Arguments
bShow

DREAMWEAVER CS4 API REFERENCE
Workspace

+ The bShow argument is a Boolean value: true turns the auto-indenting on; £alse turns it off.

169



DREAMWEAVER CS4 API REFERENCE | 170
Workspace

Returns
Nothing.

dreamweaver.htmlinspector.setShowinvalidHTML()

Availability
Dreamweaver 4.

Description
This function turns highlighting of invalid HTML code on or off in the Code inspector.

Arguments
bShow

The bShow argument is a Boolean value: true indicates that the highlighting of invalid HTML code should be
visible; false indicates it should not.

Returns
Nothing.

dreamweaver.htmlinspector.setShowLineNumbers()

Availability
Dreamweaver 4.

Description
This function shows or hides the line numbers in the Code view of the Code inspector.

Arguments
bShow

+ The bShow argument is a Boolean value: true sets the line numbers to visible; false hides them.

Returns
Nothing.

dreamweaver.htmlinspector.setShowSyntaxColoring()

Availability
Dreamweaver 4.

Description
This function turns syntax coloring on or off in the Code view of the Code inspector.



DREAMWEAVER CS4 API REFERENCE
Workspace

Arguments
bShow

+ The bShow argument is a Boolean value: t rue indicates that the syntax coloring should be visible; false turns it off.

Returns
Nothing.

dreamweaver.htmlinspector.setShowWordWrap()

Availability
Dreamweaver 4.

Description
This function turns the Word Wrap option off or on in the Code inspector.

Arguments
bShow

 The bShow argument is a Boolean value: true turns Word Wrap on; £alse turns it off.

Returns
Nothing.

dreamweaver.setHideAllFloaters()

Availability
Dreamweaver 3, and updated in CS4.

Description
This function shows or hides all panels. This operation does not affect the Insert Bar.

Arguments
bShowFloatingPalettes

+ The bshowFloatingPalettes argument is a Boolean value: true to hide all panels; false to show all panels.
When any panel is visible, passing false shows the remaining panels. When all panels are visible, passing false
has no effect.

Note: This command does not hide any panels unless all panels are visible. Therefore, passing true when any panel is
visible has no effect.

Returns
Nothing.

171



DREAMWEAVER CS4 API REFERENCE | 172
Workspace

dreamweaver.setShowStatusBar()

Availability
Dreamweaver 3.

Description
This function toggles the View > Status Bar option on or off.

Arguments
bShowStatusBar

+ The bShowStatusBar argument is a Boolean value: true turns on the Status Bar option; false turns it off.

Returns
Nothing.

site.getShowToolTips()

Availability
Dreamweaver 3.

Description
This function gets the current state of the Tool Tips option.

Arguments
None.

Returns

A Boolean value: true indicates that the tool tips are visible in the Site panel; £alse otherwise.

site.setShowToolTips()

Availability
Dreamweaver 3.

Description
This function toggles the Tool Tips option on or off.

Arguments
bShowToolTips
+ The bShowToolTips argument is a Boolean value: true turns on the Tool Tips option; false turns it off.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 173
Workspace

Toolbar functions

The following JavaScript functions let you get and set the visibility of toolbars and toolbar labels, obtain the labels of
toolbar items in the current window, position toolbars, and obtain toolbar IDs. For more information on creating or
modifying toolbars, see “Toolbars” in Extending Dreamweaver Help.

dom.getShowToolbarlconLabels()

Availability
Dreamweaver MX.

Description
This function determines whether labels for buttons are visible in the current document window. Dreamweaver always
shows labels for non-button controls, if the labels are defined.

Arguments
None.

Returns

A Boolean value: true if labels for buttons are visible in the current document window; false otherwise.

Example
The following example makes labels for buttons visible:

var dom = dw.getDocumentDom() ;
if (dom.getShowToolbarIconLabels() == false)

{

dom.setShowToolbarIconLabels (true) ;

}

dom.getToolbarldArray()

Availability
Dreamweaver MX.

Description
This function returns an array of the IDs of all the toolbars in the application. You can use
dom.getToolbarIdArray () to turn off all toolbars so you can reposition them and make only a specific set visible.

Arguments
None.

Returns
An array of all toolbar IDs.

Example

The following example stores the array of toolbar IDs in the tb_ids variable:



DREAMWEAVER CS4 API REFERENCE
Workspace

var tb_ids = new Array();
tb_ids = dom.getToolbarIdArray() ;

dom.getToolbarltemValue()

Availability
Dreamweaver MX 2004.

Description

Gets the value of the specified toolbar item.

Arguments
toolbarID, itemID

« The toolbarID argument is a string that specifies the ID of the toolbar that contains the item for which you want a
value.

+ The itemID argument is a string that specifies the ID of the item for which you want the value.

Returns
A string that represents the value of the toolbar item.

Example

The following example of receiveArguments () isin a toolbar command that controls the behavior of a Size text field;
it gets the value of the Size field as an argument and then reads the value of the Units field in order to produce a valid
value for the CSS property font -size function:

receiveArguments (newSize) {

var dom = dw.getDocumentDOM () ;

if (newSize != ""){
dom.applyFontMarkupAsStyle ('font-size', newSize +
dom.getToolbarItemValue ("DW_Toolbar Text","DW Text Units"));

}

else{
dom.removeFontMarkupAsStyle ('font-size') ;

}

dom.getToolbarLabel()

Availability
Dreamweaver MX.

Description
This function obtains the label of the specified toolbar. You can use dom.getToolbarLabel () for menus that show
or hide toolbars.

174



DREAMWEAVER CS4 API REFERENCE | 175
Workspace

Arguments
toolbar_id

« The toolbar_id argument is the ID of the toolbar, which is the value of the ID attribute on the toolbar tag in the

toolbars.xml file.

Returns

The label name string that is assigned as an attribute on the toolbar tag.

Example

The following example stores the label for myEditbar in the variable 1abel:

var label = dom.getToolbarLabel ("myEditbar") ;

dom.getToolbarVisibility()

Availability
Dreamweaver MX.

Description

This function returns a Boolean value that indicates whether the toolbar that is specified by toolbar_id is visible.

Arguments
toolbar_id

+ The toolbar_id argument is the ID string that is assigned to the toolbar.

Returns

A Boolean value: true if the toolbar is visible, false if the toolbar is not visible or does not exist.

Example

The following example checks whether the toolbar myEdi tbar is visible in the document window, and then stores that
value in the retval variable:

var retval = dom.getToolbarVisibility ("myEditbar");
return retval;

dom.setToolbarltemAttribute()

Availability
Dreamweaver MX 2004.

Description

Changes an attribute value for the three image attributes or the tooltip attribute on a toolbar item.

Arguments
toolbarID, toolbarltemld, attrName, attrValue

+ The toolbarID argument is a string that specifies the ID of the toolbar.



DREAMWEAVER CS4 API REFERENCE | 176
Workspace

+ The toolbarltemld argument is a string that specifies the ID of the toolbar item.

« The attrName argument is a string that specifies the name of the attribute to set. Valid values are 'image ',

'overImage', disabledImage', Or '‘tooltip'

« The attrValue argument is a string that specifies the value to set.

Returns
Nothing.

Example
The following example calls dom. setToolbarItemAttribute () three times to set the image, imageOver, and
tooltip attributes for the toolbar item MyButton on the toolbar having the ID DW_Toolbar Main:

var dom = dw.getDocumentDOM /() ;

dom.setToolbarItemAttribute ('DW_Toolbar Main', 'MyButton', 'image',
'Toolbars/imgs/newimage.gif') ;

dom.setToolbarItemAttribute ('DW_Toolbar Main', 'MyButton', 'imageOver',
'Toolbars/imgs/newimageOver.gif') ;

dom.setToolbarItemAttribute ('DW_Toolbar Main', 'MyButton', 'tooltip', 'One fine button');

dom.setShowToolbarlconLabels()

Availability
Dreamweaver MX.

Description
This function tells Dreamweaver to show the labels of buttons that have labels. Dreamweaver always shows labels for
non-button controls, if the labels are defined.

Arguments
bShow

+ The bShow argument is a Boolean value: true shows the labels for buttons; false otherwise.

Returns
Nothing.

Example
The following example tells Dreamweaver to show the labels for the buttons on the toolbars:

dom.setShowToolbarIconLabels (true) ;

dom.setToolbarPosition()

Availability
Dreamweaver MX.

Description
This function moves the specified toolbar to the specified position.



DREAMWEAVER CS4 API REFERENCE | 177
Workspace

Note: There is no way to determine the current position of a toolbar.

Arguments

toobar_id, position, relative_to

+ The toolbar_id argument is the ID of the toolbar, which is the value of the ID attribute on the toolbar tag in the
toolbars.xml file.

+ The position argument specifies where Dreamweaver positions the toolbar, relative to other toolbars. The possible
values for position are described in the following list:

 top is the default position. The toolbar appears at the top of the document window.

+ below makes the toolbar appear at the beginning of the row immediately below the toolbar that relative_to
specifies. Dreamweaver reports an error if the toolbar does not find the toolbar that relative to specifies.

+ floating makes the toolbar float above the document. Dreamweaver automatically places the toolbar so it is
offset from other floating toolbars. On the Macintosh, £1oating is treated the same way as top.

+ relative_to="toolbar id" isrequired if position specifies below. Otherwise, it is ignored. Specifies the ID of
the toolbar below which this toolbar should be positioned.

Returns
Nothing.

Example

The following example sets the position of myEditbar below the myPicturebar toolbar:

dom.setToolbarPosition ("myEditbar", "below", "myPicturebar") ;

dom.setToolbarVisibility()

Availability
Dreamweaver MX.

Description

This function shows or hides the specified toolbar.

Arguments
toolbar_id, bShow

+ Thetoolbar_idargument is the ID of the toolbar, the value of the ID attribute on the toolbar tag in the toolbars.xml file.

+ The bShow argument is a Boolean value that indicates whether to show or hide the toolbar. If bshow is true,
dom. setToolbarVisibility () makes the toolbar visible. If bShow is false, dom.setToolbarVisibility ()
makes the toolbar invisible.

Returns
Nothing.

Example

The following example checks to see if the toolbar myEditbar is visible in the document window; if it is not visible, it
sets myEditbar to be visible:



DREAMWEAVER CS4 API REFERENCE
Workspace

var dom = dw.getDocumentDOM () ;
if (dom != null && dom.getToolbarVisibility ("myEditbar") == false)

{

dom.setToolbarVisibility ("myEditbar", true);

{

dreamweaver.reloadToolbars()

Availability
Dreamweaver CS4.

Description
This function reloads all the JavaScript toolbars in the Configuration/Toolbars folder.

Arguments
{resetToDefault}

+ The resetToDefault argument is a Boolean value indicating whether to read the default visibility and position for
each toolbar from the toolbars.xml file. If this value is false or not supplied, toolbar positions and visibilities are
maintained when reloading. This argument is optional.

Returns
Nothing.

Window functions

Window functions handle operations that are related to the document window and the floating panels. The window
functions show and hide floating panels, determine which part of the Document window has focus, and set the active
document. For operations that are related specifically to the Site panel, see “Site functions” on page 206.

Note: Some of the functions in this section operate only on Windows. The description of a function indicates whether this
is the case.

dom.getFocus()

Availability
Dreamweaver 3.

Description
This function determines the part of the document that is currently in focus.

Arguments

None.

178



DREAMWEAVER CS4 API REFERENCE | 179
Workspace

Returns
One of the following strings:

+ The "head" string if the HEAD area is active
+ The "body" string if the BODY or NOFRAMES area is active
+ The "frameset" string if a frameset or any of its frames is selected

+ The "none" string if the focus is not in the document (for example, if it’s in the Property inspector or another
floating panel)

dom.getView()

Availability
Dreamweaver 4, updated in CS4.

Description
This function determines which view is visible.

Arguments

None.

Returns

design, code, split, or "split code" depending on the visible view.

dom.getWindowTitle()

Availability
Dreamweaver 3.

Description
This function gets the title of the window that contains the document.

Arguments
None.

Returns

A string that contains the text that appears between the TITLE tags in the document, or nothing, if the document is not
in an open window.

dom.setView()

Availability
Dreamweaver 4; updated in CS4.

Description

This function shows or hides the Design or Code view to produce a design-only, code-only, or split view.



DREAMWEAVER CS4 API REFERENCE | 180
Workspace

Arguments

viewString

 The viewStringargument is the view to produce; it must be one of the following values: design, code, split, or
"split code".

Returns
Nothing.

dreamweaver.bringAttentionToFloater()

Availability
Dreamweaver MX.

Description
Brings the specified panel or inspector to the front, and draws attention to the panel or inspector by making it flash,
which is a slightly different functionality than dw. toggleFloater ().

Arguments
floaterName

+ The floaterName argument is the name of the window, panel, or inspector.

Returns
Nothing.

Example
The following example opens and flashes the Assets panel:

dw.bringAttentionToFloater ("library") ;

dreamweaver.cascade()

Availability
Dreamweaver MX (Windows only), Dreamweaver 8 (added Macintosh support).

Description
Cascades the document windows, starting in the upper-left corner and positioning each window below and slightly
offset from the previous one.

Arguments
None.

Returns
Nothing.

Example
The following example cascades the open documents:



DREAMWEAVER CS4 API REFERENCE | 181
Workspace

dw.cascade ()

dreamweaver.getActiveWindow()

Availability
Dreamweaver 3.

Description
This function gets the document in the active window.

Arguments
None.

Returns
The document object that corresponds to the document in the active window; or, if the document is in a frame, the
document object that corresponds to the frameset.

dreamweaver.getDocumentList()

Availability
Dreamweaver 3.

Description
This function gets a list of all the open documents.

Arguments
None.

Returns
An array of document objects, each corresponding to an open Document window. If a document window contains a
frameset, the document object refers to the frameset, not the contents of the frames.

dreamweaver.getFloatersVisible()

Availability

Description
Determines if any panel, docked or floating, is visible. The result does not include the following:

+ The visibility state of the Insert bar
+ The closed panels

Note: The result does not include the Insert bar, but includes the Insert panel.

Arguments

None.



DREAMWEAVER CS4 API REFERENCE
Workspace

Returns
A Boolean value: true if any panel is visible; false otherwise.

dreamweaver.getFloaterVisibility()

Availability

Dreamweaver 3, and updated in CS4.

Description
This function checks whether the specified panel or inspector is visible.

Arguments

floaterName

+ The floaterName argument is the name of a floating panel. If £1oaterName does not match one of the built-in
panel names, Dreamweaver searches in the Configuration/Floaters folder for a file called floaterName.htm, where
floaterName is the name of a floating panel.

The floaterName values for built-in Dreamweaver panels are the strings to the right of the panel names in the
following list:

Assets ="assets"

Behaviors = "behaviors"

Bindings ="data bindings"

Code inspector = "html"

Components ="server components

CSS Styles ="css styles"

Databases = "databases"

Frames ="frames"

History = "history"

Insert bar ="objects"

Layers ="layers"

Library ="1ibrary"

Link Checker Results = "1inkchecker"

Properties = "properties"”

Reference ="reference"

Report Results = "reports"

Search Results ="search"

Selection inspector ="selection inspector”

Server Behaviors = "server behaviors"

Site="site"

182



DREAMWEAVER CS4 API REFERENCE | 183
Workspace

Site Files="site files"

Snippets = "snippets"

Browser Compatibility Check = "bcc"

Validation Results = "validation"

Returns

A Boolean value: true if the floating panel is visible and in the front; £alse otherwise or if Dreamweaver cannot find
a floating panel named floaterName.

dreamweaver.getFocus()

Availability
Dreamweaver 4.

Description
This function determines what part of the application is currently in focus.

Arguments
bAllowFloaters

+ TheballowFloaters argument isa Boolean value: true if you want the function to return the name of the floating
panel, if a floating panel has focus; false otherwise.

Returns

One of the following strings:

+ The "document " string if the document window is in focus
+ The "site" string if the Site panel is in focus

+ The "textview" string if the Text view is in focus

« The "html" string if the Code inspector is in focus

+ The floaterName string, if bAllowFloaters is true and a floating panel has focus, where £1oaterName is
"objects", "properties", "launcher", "library", "css styles", "html styles", "behaviors",

"timelines", "layers", "frames", "templates", Or "history"

+ (Macintosh) The "none" string if neither the Site panel nor any document windows are open

dreamweaver.getPrimaryView()

Availability
Dreamweaver 4.

Description

This function determines which view is visible as the primary view in the front.



DREAMWEAVER CS4 API REFERENCE
Workspace

Arguments
None.

Returns

The "design" or "code" strings, depending on which view is visible or on the top in a Split view.

dreamweaver.getSnapDistance()

Availability
Dreamweaver 4.

Description
This function returns the snapping distance in pixels.

Arguments

None.

Returns
An integer that represents the snapping distance in pixels. The default is 10 pixels; 0 indicates that the Snap feature is off.

dreamweaver.minimizeRestoreAll()

Availability
Dreamweaver 4.

Description
This function minimizes (reduces to an icon) or restores all windows in Dreamweaver.

Arguments

bMinimize

« The bMinimize argument is a Boolean value: true if windows should be minimized; false if the minimized
windows should be restored.

Returns
Nothing.

dreamweaver.setActiveWindow()

Availability
Dreamweaver 3.

Description
This function activates the window that contains the specified document.

184



Arguments

documentObject, {bActivateFrame}

DREAMWEAVER CS4 API REFERENCE
Workspace

The documentObject argument is the object at the root of a document’s DOM tree (the value that the

dreamweaver.getDocumentDOM () function returns).

The bActivateFrame argument is optional, and is applicable only if documentObject is inside a frameset. The
bActivateFrame argument is a Boolean value: true activates the frame that contains the document as well as the

window that contains the frameset; false otherwise.

Returns
Nothing.

dreamweaver.setFloaterVisibility()

Availability

Dreamweaver 3, and updated in CS4.

Description

This function specifies whether to make a particular floating panel or inspector visible.

Arguments

floaterName, bIsVisible

+ The floaterName argument is the name of a floating panel. If £1oaterName does not match one of the built-in
panel names, Dreamweaver searches in the Configuration/Floaters folder for a file called fl1oaterName. htm. If
Dreamweaver cannot find a floating panel named floaterName, this function has no effect.

The floaterName values for built-in Dreamweaver panels are the strings to the right of the panel names in the

following list:

Assets ="assets"

Behaviors = "behaviors"

Bindings ="data sources"

Code inspector = "html"

Components ="server components"

CSS Styles ="css styles"

Databases = "databases"

Frames ="frames"

History = "history"

HTML Styles = "html styles"

Insert bar ="objects"

Layers ="layers"

Library="1ibrary"

Link Checker Results = "1inkchecker"

185



DREAMWEAVER CS4 API REFERENCE | 186
Workspace

Properties ="properties"

Reference ="reference"

Report Results = "reports

Search Results ="search"

Server Behaviors ="server behaviors"

Site="site"

Site Files="site files"

Snippets = "snippets"

Tag inspector ="tag inspector”

Browser Compatibility Check="bcc"

Templates ="templates"

Validation Results = "validation"

+ The bIsvisible argument is a Boolean value that indicates whether to make the floating panel visible.

Returns
Nothing.

dreamweaver.setPrimaryView()

Availability
Dreamweaver 4.

Description
This function displays the specified view at the top of the document window.

Arguments
viewString

+ The viewString argument is the view to display at the top of the document window; it can be one of the following
values: "design" or "code".

Returns
Nothing.

dreamweaver.setSnapDistance()

Availability
Dreamweaver 4.

Description
This function sets the snapping distance in pixels.



DREAMWEAVER CS4 API REFERENCE | 187
Workspace

Arguments
snapDistance

+ The snapDistance argument is an integer that represents the snapping distance in pixels. The default is 10 pixels.

Specify 0 to turn off the Snap feature.

Returns
Nothing.

dreamweaver.showProperties()

Availability
Dreamweaver 3.

Description
This function makes the Property inspector visible and gives it focus.

Arguments
None.

Returns
Nothing.

dreamweaver.tileHorizontally()

Availability
Dreamweaver MX (Windows only), Dreamweaver 8 (added Macintosh support).

Description
Tiles the document windows horizontally, positioning each window next to another one without overlapping the
documents. This process is similar to splitting the workspace vertically.

Arguments
None.

Returns
Nothing.

Example

The following example tiles the open documents horizontally:

dw.tileHorizontally ()



DREAMWEAVER CS4 API REFERENCE | 188
Workspace

dreamweaver.tileVertically()

Availability
Dreamweaver MX (Windows only), Dreamweaver 8 (added Macintosh support).

Description
Tiles the document window vertically, positioning one document window behind the other without overlapping
documents. This is similar to splitting the workspace horizontally.

Arguments

None.

Returns
Nothing.

Example
The following example tiles the open documents vertically:

dw.tileVertically ()

dreamweaver.toggleFloater()

Availability
Dreamweaver 3.

Description
This function shows, hides, or brings to the front the specified panel or inspector.

Note: This function is meaningful only in the menus.xml file. To show, bring forward, or hide a floating panel, use
dw.setFloaterVisibility ().

Arguments

floaterName

« The floaterName argument is the name of the window. If the floating panel name is reference, the visible/invisible
state of the Reference panel is updated by the user’s selection in Code view. All other panels track the selection all
the time, but the Reference panel tracks the selection in Code view only when the user starts tracking.

Returns
Nothing.

dreamweaver.updateReference()

Availability
Dreamweaver 4.



DREAMWEAVER CS4 API REFERENCE | 189
Workspace

Description
This function updates the Reference floating panel. If the Reference floating panel is not visible,
dw.updateReference () makes it visible and then updates it.

Arguments
None.

Returns
Nothing.

Information bar functions

The Information bar is used to display error messages without disrupting the workflow. The following Information
bar functions are used to hide or to display the Information bar with error messages.

dom.showinfoBar()

Availability
Dreamweaver CS4.

Description
This function displays the Information bar with the message passed in. If the Information bar is already displayed, the

message is updated with the new message being passed in. If no message is passed in, a JS error occurs.

Arguments
Message.

Returns
None.

dom.hidelnfoBar()

Availability
Dreamweaver CS4.

Description
This function hides the Information bar.

Arguments

None.

Returns
None.



DREAMWEAVER CS4 API REFERENCE | 190
Workspace

Related files functions

The related files functions enhance the editing experience of coders by providing easy access to supporting and related
files that are used actively.

dreamweaver.getRelatedFiles()

Availability
Dreamweaver CS4.

Description
This function gets a list of all the related files. The related files can be child documents, source HTML files, and
generated source files.

Arguments
A Boolean value that specifies the display names of the parent document and generated source files.

Use the value true if you want to display Source HTML and Generated Source in the menu.

« Use the value false if you want to display the actual names of the related files in the menu.

Returns
An array of strings, which contains all the scanned related files in the form of absolute local URLs.

dreamweaver.openRelatedFile()

Availability
Dreamweaver CS4.

Description
Displays the selected related file in the Code view of the current document.

Arguments
A string that is the absolute local URL of the file.

Returns
None.

dreamweaver.getActiveRelatedFilePath()

Availability
Dreamweaver CS4.

Description
This function gets the full path of the currently opened related file.



DREAMWEAVER CS4 API REFERENCE
Workspace

Arguments
None.

Returns
A string that is the absolute local URL of the related file.

Vertical Split view functions

The Vertical Split view functions facilitate a side-by-side view of the Code and Design or Code and Code Layout
modes. The functions also enable users to choose and switch between the horizontal and vertical orientations of Split
view and Split code.

dreamweaver.getSplitViewOrientation()

Availability
Dreamweaver CS4.

Description
This function displays the current Split view orientation. The orientation can be retrieved even if the view is not split.
In such a case, the return value indicates the orientation if the view is changed to Split view or Split code.

Arguments

None.

Returns
A string value that specifies the orientation. Returns the value vertical or horizontal depending on the current
orientation.

dreamweaver.setSplitViewOrientation()

Availability
Dreamweaver CS4.

Description
This function changes the current Split view orientation. The orientation can be changed even if the view is not split.
In such a case, the argument indicates the orientation the next time the view is changed to Split view or Split code.

Arguments
A string value that indicates the orientation. Use vertical or horizontal respectively to indicate the orientation.
This argument is required.

Returns

A Boolean value: true if successful, false if an error occurs.

191



DREAMWEAVER CS4 APl REFERENCE

dreamweaver.getPrimaryView()

Availability

Dreamweaver CS4.

Description

This function gets the name of the primary view. In Split view or Split code, the primary view is the top window or the

left window, depending on the Split view orientation.

Arguments

None.

Returns

A string that contains the name of the primary view, which is one of the following values:

Value Description
code The primary view is the Code window.
design The primary view is the Design window.

related file

The primary view is the related file window. This value is returned when the document
view is Split code and a related file has been opened.

dreamweaver.setPrimaryView()

Availability

Dreamweaver CS4.

Description

This function changes the primary view. In Split view or Split code, the primary view is the top window or the left

window depending on the Split view orientation.

Arguments

A string that contains the name of the primary view, which is one of the following values:

Value Description
code The primary view is the Code window.
design The primary view is the Design window.
related file The primary view is the related file window. This value is used when
the document view is Split code and a related file has been opened.
Returns

A Boolean value: true if successful, false otherwise.

192



DREAMWEAVER CS4 API REFERENCE | 193
Workspace

dom.isRelatedFileViewOpen()

Availability
Dreamweaver CS4.

Description
This function determines if the view contains a related file view.

Arguments

None.

Returns
A Boolean value: true if a related file view is open, false otherwise.

Code collapse functions

Code collapse functions let you visually collapse and expand code. You can collapse or expand arbitrary selections of
code, or fragments between opening and closing tags. Although the code collapse functions exist in both the dom and
htmlInspector, the collapsed ranges are the same in both Code view and Cold Inspector.

dom.collapseFullTag()

Availability
Dreamweaver 8.

Description

This function determines whether the selection in Code view is entirely within a single pair of start and end tags or
contains a single pair of start and end tags. If so, it collapses the code fragment that starts just before the start tag and
ends after the end tag; if not, the function does nothing.

Arguments
allowCodeFragmentAdjustment

+ The allowCodeFragmentAdjustment argument is a required, Boolean value. If t rue, this argument currently has no
effect, or has the same effect as a value of false. If false, Dreamweaver collapses the code that begins immediately
before the opening tag and ends immediately after the ending tag without any modification.

Returns
Nothing.

Example
The following example collapses the code fragment in the current selection in Code view that starts just before the start
tag and ends just after the end tag:

var currentDOM = dw.getDocumentDOM () ;
currentDOM.collapseFullTag (false) ;



DREAMWEAVER CS4 API REFERENCE | 194
Workspace

dom.collapseFullTaginverse()

Availability
Dreamweaver 8.

Description

This function determines whether the selection in Code view is entirely within a single pair of start and end tags or
contains a single pair of start and end tags. If so, it collapses the code that precedes the start tag and the code that
follows the end tag; if not, the function does nothing.

Arguments
allowAdjustmentOfCodeFragments

« The allowAdjustmentOfCodeFragments argument is a required, Boolean value. If t rue, Dreamweaver adjusts the
boundaries of the code before the start tag and of the code after the end tag to perform a smart collapse, which
preserves current indenting and spacing. If f£alse, Dreamweaver collapses the code fragments that are before the
open tag and after the end tag exactly as indicated by the selection.

Returns
Nothing.

Example
The following example adjusts the boundaries of the code before the starting tag after the ending tag to perform a smart
collapse that preserves indenting and spacing:

var currentDOM = dw.getDocumentDOM () ;
currentDOM.collapseFullTagInverse (true) ;

dom.collapseSelectedCodeFragment()

Availability
Dreamweaver 8.

Description
This function collapses the selected code in Code view. If the selection is already collapsed, this function does nothing.

Arguments
allowCodeFragmentAdjustment

« The allowCodeFragmentAdjustment is a required, Boolean value. If t rue, Dreamweaver modifies the boundaries
of the current selection to perform a smart collapse, which preserves current indenting and spacing. If false,
Dreamweaver collapses the currently selected code fragment exactly as indicated by the selection.

Returns
Nothing.

Example
The following example collapses the selected code fragment, without modification, in Code view:



DREAMWEAVER CS4 API REFERENCE | 195
Workspace

var currentDOM = dw.getDocumentDOM () ;
currentDOM.collapseSelectedCodeFragment (false) ;

dom.collapseSelectedCodeFragmentinverse()

Availability
Dreamweaver 8.

Description
This function collapses all code before and after the selected code in Code view.

Arguments
allowAdjustmentOfCodeFragments

« The allowAdjustmentOfCodeFragments argument is a required, Boolean value. If t rue, Dreamweaver adjusts the
boundaries of the code before and after the current selection to perform a smart collapse, which preserves the
current indenting and spacing. If false, Dreamweaver collapses the code fragments exactly as indicated by the
selection.

Returns
Nothing.

Example
The following example adjusts and then collapses all code before and after the selected code in Code view:

var currentDOM = dw.getDocumentDOM () ;
currentDOM.collapseSelectedCodeFragmentInverse (true) ;

dom.expandAllCodeFragments()

Availability
Dreamweaver 8.

Description
This function expands all collapsed code fragments in Code view, including nested collapsed code fragments.

Arguments
None.

Returns
Nothing.

Example

The following example expands all collapsed code in Code view:

var currentDOM = dw.getDocumentDOM () ;
currentDOM. expandAllCodeFragments () ;



DREAMWEAVER CS4 API REFERENCE | 196
Workspace

dom.expandSelectedCodeFragments()

Availability
Dreamweaver 8.

Description
This function expands all collapsed code fragments in Code view that are within the current selection. If the selection
is already expanded, this function does nothing.

Arguments

None.

Returns
Nothing.

Example
The following example expands all collapsed code in the current selection in Code view:

var currentDOM = dw.getDocumentDOM () ;
currentDOM. expandSelectedCodeFragments () ;

dreamweaver.htmlinspector.collapseFullTag()

Availability
Dreamweaver 8.

Description

This function determines whether the selection in the Code inspector is entirely within a single pair of start and end
tags or contains a single pair of start and end tags. If so, it collapses the code fragment that starts just before the start
tag and ends after the end tag; if not, the function does nothing.

Arguments
allowACodeFragmentAdjustment

+ The allowCodeFragmentAdjustment argument is a required, Boolean value. If t rue, this argument currently has no
effect, or has the same effect as a value of false. If false, Dreamweaver collapses the code that begins immediately
before the opening tag and ends immediately after the ending tag, without any modification.

Returns
Nothing.

Example

The following example collapses the code fragment in the current selection in the Code inspector that starts just before
the start tag and ends just after the end tag:

dreamweaver.htmlInspector.collapseFullTag(false) ;



DREAMWEAVER CS4 API REFERENCE
Workspace

dreamweaver.htmlinspector.collapseFullTaginverse()

Availability
Dreamweaver 8.

Description

This function determines whether the selection in the Code inspector is entirely within a single pair of start and end
tags or contains a single pair of start and end tags. If so, it collapses the code before the start tag and the code after the
end tag; if not, the function does nothing.

Arguments
allowAdjustmentOfCodeFragments

« The allowAdjustmentOfCodeFragments argument is a required, Boolean value. If t rue, Dreamweaver adjusts the
boundaries of the code before the start tag and of the code after the end tag to perform a smart collapse, which
preserves the existing indenting and spacing. If false, Dreamweaver collapses the code before the open tag and the
code after the end tag, without any modifications.

Returns
Nothing.

Example
The following example performs a smart collapse on the code sections occurring before the starting tag and after the
ending tag of the current selection:

dreamweaver.htmlInspector.collapseFullTagInverse (true) ;

dreamweaver.htmlinspector.collapseSelectedCodeFragment()

Availability
Dreamweaver 8.

Description
This function collapses the selected code in the Code inspector. If the selection is already collapsed, this function does
nothing.

Arguments
allowCodeFragmentAdjustment

+ The allowCodeFragmentAdjustment is a required, Boolean value. If t rue, Dreamweaver modifies the current
selection to perform a smart collapse, which preserves the existing indenting and spacing. If £alse, Dreamweaver
collapses the currently selected code fragment exactly as indicated by the selection.

Returns
Nothing.

Example

The following example adjusts and collapses the selected code in the Code inspector:

197



DREAMWEAVER CS4 API REFERENCE
Workspace

dreamweaver.htmlInspector.collapseSelectedCodeFragment (true) ;

dreamweaver.htmlinspector.collapseSelectedCodeFragmentinverse()

Availability
Dreamweaver 8.

Description
This function collapses all code before and after the selected code in the Code inspector. If the selection is already
collapsed, this function does nothing.

Arguments
allowAdjustmentOfCodeFragments

+ The allowAdjustmentOfCodeFragments argument is a required, Boolean value. If true, Dreamweaver adjusts the
boundaries of the code sections before and after the current selection to perform a smart collapse, which preserves
the current indenting and spacing. If false, Dreamweaver collapses the code sections exactly as indicated by the
selection.

Returns
Nothing.

Example
The following example collapses all code before and after the selected code in the Code inspector, exactly as indicated
by the selection:

dreamweaver.htmlInspector.collapseSelectedCodeFragmentInverse (false) ;

dreamweaver.htmlinspector.expandAllCodeFragments()

Availability
Dreamweaver 8.

Description
This function expands all collapsed code fragments in the Code inspector, including nested collapsed code fragments.

Arguments
None.

Returns
Nothing.

Example
The following example expands all collapsed code in the Code inspector:

dreamweaver.htmlInspector.expandAllCodeFragments () ;

198



DREAMWEAVER CS4 API REFERENCE | 199
Workspace

dreamweaver.htmlinspector.expandSelectedCodeFragments()

Availability
Dreamweaver 8.

Description
This function expands all collapsed code fragments within the current selection in the Code inspector. If the selection
is already expanded, this function does nothing.

Arguments

None.

Returns
Nothing.

Example
The following example expands all collapsed code in the current selection in the Code inspector:

dreamweaver.htmlInspector.expandSelectedCodeFragments () ;

Code view toolbar functions

Code view toolbar functions let you insert text, remove comments, show or hide special characters for white spaces in
Code view, and get the path of the current document.

Note: There are two different Coding toolbars: one for Code view and one for the Code inspector. Both are customized in
the file Configuration/Toolbars/toolbars.xml.

dom.getOpenPathName()

Availability
Dreamweaver 8.

Description
This function gets the absolute file path of the open document.

Arguments
None.

Returns
A string that is the absolute file path of the open document.

Example
The following example assigns the string that contains the path of the currently open document to the variable

fileName:

var fileName = dom.getOpenPathName () ;



DREAMWEAVER CS4 API REFERENCE | 200
Workspace

dom.getShowHiddenCharacters()

Availability
Dreamweaver 8.

Description
This function determines whether the special characters for white spaces are shown in the Code view of the Document
window.

Arguments

None.

Returns
A Boolean: true if the hidden characters are displayed; false otherwise.

Example
The following example turns off the display of the special characters for white space, if the display of special characters
is turned on initially:

var currentDOM = dw.getDocumentDOM () ;
if (currentDOM.getShowHiddenCharacters()) {
currentDOM. setShowHiddenCharacters (false) ;

}

dom.setShowHiddenCharacters()

Availability
Dreamweaver 8.

Description
This function shows or hides the special characters for white spaces in the Code view of the Code inspector.

See “dom.getShowHiddenCharacters()” on page 200 for an example.

Arguments
show

+ The show argument, which is required, is a Boolean value that indicates whether to display the hidden characters.

Returns
Nothing.

dom.source.applyComment()

Availability
Dreamweaver 8.



DREAMWEAVER CS4 API REFERENCE
Workspace

Description

This function inserts the text specified in the beforeText argument before the current selection and the text specified
in the afterText argument after the current selection. The function then extends the current selection to include the
added text. However, if there is no current selection, the function does not select anything. If the text specified in the
afterText argument is null, the function inserts the text specified in the beforeText argument at the beginning of every
line in the current selection.

Arguments
beforeText, afterText

 The beforeText argument is required. It specifies the text to insert at the beginning of the selection, or, if the value
of the afterText argument is null, it specifies the text to insert at the beginning of every line in the selection.

+ The afterText argument, which is optional, specifies the text to insert at the end of the selection.

Returns
Nothing.

Example

The following example makes the current selection an HTML comment:

dw.getDocumentDOM () . source.applyComment ('<!--"', '-->"')

dom.source.refreshVariableCodeHints()

Availability
Dreamweaver CS3.

Description
Rescans the page looking for variables and corresponding class associations. This function rebuilds the color state
engine and the variable list.

Arguments
bSyncDoc

+ This is a Boolean value. The default is false. If set to true, the Design view is synchronized with the Code view.

Returns
Nothing.

Example

dom.source.refreshVariableCodeHints () ;

dom.source.removeComment|()

Availability
Dreamweaver 8.



DREAMWEAVER CS4 API REFERENCE | 202
Workspace

Description

This function removes comments. If you specify no arguments, it removes all types of comments from the current
selection, except server-side includes and Dreamweaver-specific comments. If there are nested comments, it removes
only the outer comment. If there is no current selection, it removes only the first line comment of the line on which
the cursor is located. If you specify arguments, the function removes only comments that match the values specified
in the beforeText and afterText arguments, even if the matching comments are nested inside other types of comments.

Arguments
beforeText, afterText

 The beforeText argument is optional. It specifies the text to identify the beginning of the comment to remove from
the selection, or, if the value of the afterText argument is null, it specifies the type of line comment to remove from
the current selection.

+ The afterText argument, which is optional, specifies the text to identify the end of the comment to remove from the
selection.

Returns
Nothing.

Example
The following example removes an HTML comment:

dw.getDocumentDOM () . source.removeComment ('<!--"', '-->")

dreamweaver.htmlinspector.getShowHiddenCharacters()

Availability
Dreamweaver 8.

Description
This function determines whether the special characters for white spaces are displayed in the Code view of the Code
inspector.

Arguments
None.

Returns

A Boolean value: true if the hidden characters are displayed; false otherwise.

Example
The following example turns off the display of the special characters for white space in the Code inspector, if the display
of special characters is turned on initially:

if (dreamweaver.htmlinspector.getShowHiddenCharacters()) {
dreamweaver.htmlinspector.setShowHiddenCharacters (false) ;

}



DREAMWEAVER CS4 API REFERENCE | 203
Workspace

dreamweaver.htmlinspector.setShowHiddenCharacters()

Availability
Dreamweaver 8.

Description

This function shows or hides the special characters for white spaces in the Code view of the Code inspector.

Arguments

show

+ The show argument, which is required, is a Boolean value that indicates whether to display hidden characters for
white spaces.

Returns

A Boolean: true if the hidden characters are displayed; £alse otherwise.

Example

See “dreamweaver.htmlInspector.getShowHiddenCharacters()” on page 202.

Color functions

The following color functions enable you to ensure that the extensions have the same skin as the application user
interface.

dreamweaver.getPanelColor()

Availability
Dreamweaver CS4.

Description

This function retrieves the panel colors of the application user interface. You can use these colors as panel colors for
the extensions. This function helps you to ensure that the panel colors of extensions blend with the panel color of the
application user interface.

Arguments
None.

Returns

An array of strings of size 4 with the following values:
+ Red
+ Green
+ Blue
Alpha



Example

var panelColorArray = dw.getPanelColor () ;
The return values for this example are:

+ panelColorArray (0] : Red

* panelColorArray[1] : Green

+ panelColorArray[2] : Blue

+ panelColorArray[3] : Alpha

dreamweaver.getAppBarColor()

Availability

Dreamweaver CS4.

Description

DREAMWEAVER CS4 API REFERENCE
Workspace

This function retrieves the application bar colors of the user interface. You can use these colors as bar colors for the
extensions. This function helps you to ensure that the bar colors of extensions blend with the bar color of the

application user interface.

Arguments
None.

Returns

An array of strings of size 4 with the following values:
+ Red

« Green

+ Blue

+ Alpha

Example
var appBarColorArray = dw.getAppBarColor() ;

The return values for this example are:
« appBarColorArray[0] : Red

* appBarColorArray[1] : Green

+ appBarColorArray[2] : Blue

e appBarColorArray[3] :Alpha

204



205

Chapter 13: Site

The Adobe®” Dreamweaver® CS4 site functions perform operations related to managing a website. These operations
include customizing a report, defining a new site, checking in and checking out files, running validation on a site, and
so on.

Report functions

Report functions provide access to the reporting features so you can initiate, monitor, and customize the reporting
process. For more information, see “Reports® in Extending Dreamweaver Help.

dreamweaver.isReporting()

Availability
Dreamweaver 4.

Description
Checks to see if a reporting process is currently running.

Arguments
None.

Returns

A Boolean value: true if a process is running; false otherwise.

dreamweaver.showReportsDialog()

Availability
Dreamweaver 4.

Description
Opens the Reports dialog box.

Arguments
None.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 206
Site

Site functions

Site functions handle operations that are related to files in the site files. These functions let you perform the following
tasks:

+ Create links between files

*  Get, place, check in, and check out files

+ Select and deselect files

+ Create and remove files

+ Get information about the sites that the user has defined

« Import and export site information

dom.getSiteURLPrefixFromDoc()

Availability
Dreamweaver 8.

Description
This function gets the site URL prefix that is extracted from the HTTP address defined in the Local Info section of the
Site Definition dialog box.

Arguments
None.

Returns
A string, which specifies the site URL prefix.

Example
The following example gets the site URL prefix for the current document:

var currentDOM = dw.getDocumentDOM () ;
var sitePrefix = dom.getSiteURLPrefixFromDoc () ;

dom.localPathToSiteRelative()

Availability
Dreamweaver 8.

Description
This function converts a local file path to a site-relative URI reference.

Arguments
localFilePath

« The localFilePath attribute, which is required, is a string that contains the path to alocal file on your local computer.



DREAMWEAVER CS4 API REFERENCE | 207
Site

Returns
A string, which specifies the site-relative URI.

Example
The following example returns " /myWebApp/myFile.cfm", based on your site mappings and the HTTP address
specified in the Local Info section of the Site Definition dialog box.

var siteRelativeURI = site.localPathToSiteRelative ("C:\Inetpub\wwwroot\siteA\myFile.cfm")

dom.siteRelativeToLocalPath()

Availability
Dreamweaver 8.

Description
This function converts a site-relative URI reference to a local file path.

Arguments
siteRelativeURI

« The siteRelativeURI attribute, which is required, is a string that contains the site-relative URL

Returns
A string, which specifies the path to a local file on your local computer.

Example
The following

var filePath = siteRelativeToLocalPath ("/myWebApp/myFile.xml") ;

returns "C: \Inetpub\wwwroot\siteA\myFile.xml", based on your site mappings and the HTTP address specified
in the Local Info section of the Site Definition dialog box.

dreamweaver.compareFiles()

Availability
Dreamweaver 8.

Description
This function launches the file comparison tool that the user installed in the Diff section of the Preferences dialog box.

Arguments
filel, file2
« The filel attribute, which is required, is a string that contains the full path to the first file to compare.

+ The file2 attribute, which is required, is a string that contains the full path to the second file to compare.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 208
Site

Example
The following example compares two files, red.htm and blue.htm:

dw.compareFiles (hc:\data\red.htm", "e:\data\blue.htm") ;

dreamweaver.loadSitesFromPrefs()

Availability
Dreamweaver 4.

Description

Loads the site information for all the sites from the system registry (Windows) or the Dreamweaver Preferences file
(Macintosh) into Dreamweaver. If a site is connected to a remote server when this function is called, the site is
automatically disconnected.

Arguments
None.

Returns
Nothing.

dreamweaver.saveSitesToPrefs()

Availability
Dreamweaver 4.

Description
Saves all information for each site that the user has defined to the system registry (Windows) or the Dreamweaver
Preferences file (Macintosh).

Arguments
None.

Returns
Nothing.

dreamweaver.siteSyncDialog.compare()

Availability
Dreamweaver 8.

Description
This function runs the file compare application specified in the File Compare Category of the Preferences dialog box
to compare the selected files on the local and remote sites.



DREAMWEAVER CS4 APl REFERENCE

Arguments
None.

Returns
Nothing.

Enabler

See “dreamweaver.siteSyncDialog.canCompare()” on page 475.

dreamweaver.siteSyncDialog.markDelete()

Availability
Dreamweaver 8.

Description

This function changes the action for the selected items in the Site Synchronization dialog box to Delete.

Arguments
None.

Returns
Nothing.

Enabler

See “dreamweaver.siteSyncDialog.canMarkDelete()” on page 476.

dreamweaver.siteSyncDialog.markGet()

Availability
Dreamweaver 8.

Description

This function changes the action for the selected items in the Site Synchronization dialog box to Get.

Arguments
None.

Returns
Nothing.

Enabler
See “dreamweaver.siteSyncDialog.canMarkGet()” on page 476.

Site

209



DREAMWEAVER CS4 APl REFERENCE

dreamweaver.siteSyncDialog.markignore()

Availability
Dreamweaver 8.

Description
This function changes the action for the selected items in the Site Synchronization dialog box to Ignore.

Arguments

None.

Returns
Nothing.

Enabler

See “dreamweaver.siteSyncDialog.canMarkIgnore()” on page 476.

dreamweaver.siteSyncDialog.markPut()

Availability
Dreamweaver 8.

Description
This function changes the action for the selected items in the Site Synchronization dialog box to Put.

Arguments

None.

Returns
Nothing.

Enabler

See “dreamweaver.siteSyncDialog.canMarkPut()” on page 477.

dreamweaver.siteSyncDialog.markSynced()

Availability
Dreamweaver 8.

Description

This function changes the action for the selected items in the Site Synchronization dialog box to Synced.

Arguments

None.

Site

210



DREAMWEAVER CS4 API REFERENCE
Site

Returns
Nothing.

Enabler

See “dreamweaver.siteSyncDialog.canMarkSynced()” on page 477.

dreamweaver.siteSyncDialog.toggleShowAllFiles()

Availability
Dreamweaver 8.

Description
This function lets you see which files Dreamweaver thinks are the same on the remote and local sites in the Site

Synchronize preview dialog box. If the function is called when the Show All Files checkbox is selected, it deselects it;
conversely, if the Show all Files checkbox is not selected, this function selects it.

Arguments
None.

Returns
Nothing.

site.addLinkToExistingFile()

Availability
Dreamweaver 3.

Description
Opens the Select HTML File dialog box to let the user select a file and creates a link from the selected document to that file.

Arguments
None.

Returns
Nothing.

site.changeLinkSitewide()

Availability
Dreamweaver 3.

Description
Opens the Change Link Sitewide dialog box.

211



DREAMWEAVER CS4 API REFERENCE
Site

Arguments
None.

Returns
Nothing.

site.changeLink()

Availability
Dreamweaver 3.

Description
Opens the Select HTML File dialog box to let the user select a new file for the link.

Arguments

None.

Returns
Nothing.

site.checkin()

Availability
Dreamweaver 3.

Description
Checks in the selected files and handles dependent files in one of the following ways:

« If the user selects Prompt on Put/Check In in the Site FTP preferences, the Dependent Files dialog box appears.

« Ifthe user previously selected the Don’t Show Me Again option in the Dependent Files dialog box and clicked Yes,
dependent files are uploaded and no dialog box appears.

If the user previously selected the Don’t Show Me Again option in the Dependent Files dialog box and clicked No,
dependent files are not uploaded and no dialog box appears.

Arguments
siteOrURL
The siteOrURL argument must be the keyword "site", which indicates that the function should act on the

selection in the Files panel or the URL for a single file.

Returns
Nothing.

Enabler
See “site.canCheckIn()” on page 478.

212



DREAMWEAVER CS4 API REFERENCE
Site

site.checkLinks()

Availability
Dreamweaver 3.

Description
Opens the Link Checker dialog box and checks links in the specified files.

Arguments
scopeOfCheck

+ The scopeOfCheck argument specifies the scope of the link checking. The value must be "document",

"selection", Or "site".

Returns
Nothing.

site.checkOut()

Availability
Dreamweaver 3.

Description
Checks out the selected files and handles dependent files in one of the following ways:

« If the user selects Prompt on Get/Check Out in the Site FTP preferences, the Dependent Files dialog box appears.

« Ifthe user previously selected the Don’t Show Me Again option in the Dependent Files dialog box and clicked Yes,
dependent files are downloaded and no dialog box appears.

« If the user previously selected the Don’t Show Me Again option in the Dependent Files dialog box and clicked No,
dependent files are not downloaded and no dialog box appears.

Arguments
siteOrURL
The siteOrURL argument must be the keyword "site", which indicates that the function should act on the

selection in the Files panel or the URL for a single file.

Returns
Nothing.

Enabler
See “site.canCheckOut()” on page 479.

site.checkTargetBrowsers()

Availability
Dreamweaver 3.

213



DREAMWEAVER CS4 API REFERENCE
Site

Description
Runs a target browser check on the selected files.

Arguments
None.

Returns
Nothing.

site.cloak()

Availability
Dreamweaver MX.

Description

Cloaks the current selection in the Files panel or the specified folder.

Arguments
siteOrURL

The siteOrURL argument must contain one of the following two values:

« The keyword "site", which indicates that cloak () should act on the selection in the Files panel.

+ The URL of a particular folder, which indicates that cloak () should act on the specified folder and all its contents.

Returns
Nothing.

Enabler
See “site.canCloak()” on page 479.

site.compareFiles()

Availability
Dreamweaver 8.

Description

This function launches the Diff tool integration application to compare two files.

Arguments
url

The url argument, which is required, must contain one of the following two values:

+ The keyword "site", which indicates that compare () should act on the selection in the Files panel.

+ The URL of alocal file to compare with its remote version.

214



DREAMWEAVER CS4 API REFERENCE | 215
Site

Returns
A Boolean value: true if the compare succeeded; false otherwise.

Enabler

See “site.canCompareFiles()” on page 480.

Example

The following example compares the files selected in the Files panel with their remote versions:

site.compareFiles ("site") ;

site.defineSites()

Availability
Dreamweaver 3.

Description
This function opens the Site Definition dialog box.

Arguments
None.

Returns
Nothing.

site.deleteSelection()

Availability
Dreamweaver 3.

Description
Deletes the selected files.

Arguments
None.

Returns
Nothing.

site.deployFilesToTestingServerBin()

Availability
Dreamweaver MX.



DREAMWEAVER CS4 API REFERENCE | 216
Site

Description

Puts a specified file (or files) in the testing server’s bin folder. If the current site does not have any settings defined for
deploying supporting files, this function starts the Deploy Supporting Files To Testing Server dialog box.

Arguments
filesToDeploy

+ The filesToDeploy argument is an array of filenames that Dreamweaver will deploy.

Returns

A Boolean value: true if the files deploy successfully; false otherwise.

Example
This example deploys the files imagel.jpg and scriptl.js to the testing server’s bin folder:

site.deployFilesToTestingServerBin("imagel.jpg", "scriptl.js");

site.displaySyncinfoForFile()

Availability

Dreamweaver CS3.

Description

Presents a dialog box that contains the local, remote, and testing times of the file corresponding to the parameter
passed. This information is stored in the synchronization dwsync.xml file.

The dialog box displays four times:

+ The Local Remote Time, which indicates for the local file, the time stamp of the last put or get command to the
remote server.

+ The Remote Time, which indicates for the file on the remote server, the time stamp of the last get or put command
to the remote server.

+ The Local Testing Time, which indicates for the local file, the time stamp of the last get or put command to the
testing server.

+ The Testing Time, which indicates for the file on the testing server, the time stamp of the last get or put command
to the testing server.

If the dwsync.xml file does not contain any information for the file, a message appears indicating that no information
is available. If the time is set in the XML file, it is displayed in the date/time format for the locale (such as: 6/24/05
2:43pm). If the time isn't set in the entry for the file, a dash (-) is displayed.

This function works on the selected file in the Local File View, if 'site'is passed, or the file corresponding to the local

URL, if a URL is passed.

Arguments
pathfsite'

+ path is the URL to a local file.

+ 'site'indicates that the function uses the file selected in the Files panel.



DREAMWEAVER CS4 API REFERENCE | 217
Site

Returns
Nothing.

Enabler
See “site.canDisplaySyncInfoForFile()” on page 480.

site.editColumns()

Description
This function displays the Site Definition dialog box, which shows the File View Columns section.

Arguments
None.

Returns
Nothing.

site.exportSite()

Availability
Dreamweaver MX; updated in Dreamweaver CS4.

Description
Exports a Dreamweaver site to an XML file, which can be imported into another Dreamweaver instance to duplicate
the former site.

All the information that is contained in the Site Definition dialog box is saved in an XML file. It includes the list of
cloaked folders and information about the default document type. The exception is that the user can omit the user
login and password when FTP access is set.

Arguments

siteName, {askAboutLoginInfo}, {warnAboutSCS}, {savePath}

+ The siteName argument identifies the site to export. If siteName is an empty string, Dreamweaver exports the
current site.

+ The askaboutLoginInfo argument specifies whether the user is shown a dialog box asking them if they want to
save their login information. This argument is optional.

+ The warnaboutscs argument lets you control whether the user is shown a warning about login information not
being saved if they access their site via source control. This argument is optional.

+ The savepPathargument is the local path to a folder (for example, C: \sites\mySites\). If yousupplya saverath,
the .ste file is always saved with the name of the site. This argument is optional.

Returns
A Boolean value: true if the named site exists and if the XML file is successfully exported; £alse otherwise.



DREAMWEAVER CS4 API REFERENCE | 218
Site

Example

The following example shows a sample XML file that Dreamweaver creates when you export a site:

<?xml version="1.0" ?>
<gite>
<localinfo
sitename="DWOO"
localroot="C:\Documents and Settings\jlondon\Desktop\DWServer\"
imagefolder="C:\Documents and Settings\jlondon\Desktop\DWServer\Images\"
spacerfilepath=""
refreshlocal="TRUE"
cache="FALSE"
httpaddress="http://" curserver="webserver" />
<remoteinfo
accesstype="ftp"
host="dreamweaver"
remoteroot="kojak/"
user="dream"
checkoutname="Jay"
emailaddress="jay@Adobe.com"
usefirewall="FALSE"
usepasv="TRUE"
enablecheckin="TRUE"
checkoutwhenopen="TRUE" />
<designnotes
usedesignnotes="TRUE"
sharedesignnotes="TRUE" />
<sitemap
homepage="C:\Documents and Settings\jlondon\Desktop\DWServer\Untitled-2.htm"
pagesperrow="200" columnwidth="125" showdependentfiles="TRUE"
showpagetitles="FALSE" showhiddenfiles="TRUE" />
<fileviewcolumns sharecolumns="TRUE">
<column name="Local Folder"
align="left" show="TRUE" share="FALSE" builtin="TRUE"
localwidth="180" remotewidth="180" />
<column name="Notes"
align="center" show="TRUE" share="FALSE" builtin="TRUE"
localwidth="36" remotewidth="36" />
<column name="Size"
align="right" show="TRUE" share="FALSE" builtin="TRUE"
localwidth="-2" remotewidth="-2" />
<column name="Type"
align="1left" show="TRUE" share="FALSE" builtin="TRUE"
localwidth="60" remotewidth="60" />
<column name="Modified"
align="left" show="TRUE" share="FALSE" builtin="TRUE"
localwidth="102" remotewidth="102" />
<column name="Checked Out By"
align="1left" show="TRUE" share="FALSE" builtin="TRUE"
localwidth="50" remotewidth="50" />
<column name="Status" note="status"
align="left" show="TRUE" share="FALSE" builtin="FALSE"
localwidth="50" remotewidth="50" />
</fileviewcolumns>
<appserverinfo



DREAMWEAVER CS4 API REFERENCE | 219
Site

servermodel="ColdFusion"
urlprefix="http://dreamweaver/kojak/"
serverscripting="CFML"
serverpageext=""
connectionsmigrated="TRUE"
useUD4andUD5pages="TRUE"
defaultdoctype=""
accesstype="ftp"
host="dreamweaver"
remoteroot="kojak/"
user="dream"
usefirewall="FALSE"
usepasv="TRUE" />

<cloaking enabled="TRUE" patterns="TRUE">
<cloakedfolder folder="databases/" />
<cloakedpattern pattern=".png" />
<cloakedpattern pattern=".jpg" />
<cloakedpattern pattern=".jpeg" />

</cloaking>

</site>

site.get()

Availability
Dreamweaver 3.

Description
Gets the specified files and handles dependent files in one of the following ways:

« If the user selects Prompt on Get/Check Out in the Site FTP preferences, the Dependent Files dialog box appears.

« If the user previously selected the Don’t Show Me Again option in the Dependent Files dialog box and clicked Yes,
dependent files are downloaded and no dialog box appears.

« If the user previously selected the Don’t Show Me Again option in the Dependent Files dialog box and clicked No,
dependent files are not downloaded and no dialog box appears.

Arguments
siteOrURL

« The siteOrURL argument must be the keyword "site", which indicates that the function should act on the

selection in the Files panel or the URL for a single file.

Returns
Nothing.

Enabler
See “site.canGet()” on page 481.



DREAMWEAVER CS4 API REFERENCE | 220
Site

site.getAppServerAccessType()

Availability
Dreamweaver MX.

Description

Returns the access method that is used for all files on the current site’s application server. The current site is the site
that is associated with the document that currently has focus. If no document has focus, the site that you opened in
Dreamweaver is used.

Note: ColdFusion Component Explorer uses this function; see “site.getAppServerPathToFiles()” on page 220 and
“site.getLocalPathToFiles()” on page 223.

Arguments
None.

Returns

One of the following strings:
* "none"

¢ "local/network"

. nftpr

* '"source control"

site.getAppServerPathToFiles()

Availability
Dreamweaver MX.

Description

Determines the path to the remote files on the application server that is defined for the current site. The current site is
the site that is associated with the document that currently has focus. If no document has focus, the site that you
opened in Dreamweaver is used.

Note: ColdFusion Component Explorer uses this function; see “site.getAppServerAccessType()” on page 220 and
“site.getLocalPathToFiles()” on page 223.

Arguments
None.

Returns
If the access type to the application server file is 1ocal/network, this function returns a path; otherwise, this function
returns an empty string.



DREAMWEAVER CS4 API REFERENCE | 221
Site

site.getAppURLPrefixForSite()

Availability
Dreamweaver MX.

Description
Gets the value of the URL prefix that is extracted from the HTTP address defined in the Local Info section of the site
definition dialog. It is the path that appears after the http://hostname:portnumber/.

Arguments

{siteName}

The siteName argument, which is optional, is the name of the site for which you want to get the URL prefix. If you do
not specify a site, the function gets the URL prefix for the current site.

Returns
A string that contains the URL prefix of the currently selected site.

Example
var sitePrefix = site.getAppURLPrefixForSite() ;

site.getCheckOutUser()

Availability
Dreamweaver 3.

Description
Gets the login and check-out name that is associated with the current site.

Arguments

None.

Returns
A string that contains a login and check-out name, if defined, or an empty string if Check In/Check Out is disabled.

Example

A call to site.getCheckOutUser () might return "denise (deniseLaptop)".If no check-out name is specified,
only the login name returns (for example, "denise").

site.getCheckOutUserForFile()

Availability
Dreamweaver 3.

Description
Gets the login and check-out name of the user who has the specified file checked out.



DREAMWEAVER CS4 API REFERENCE | 222
Site

Arguments
fileName

« The fileName argument is the path to the file being queried, which is expressed as a file://URL.

Returns

A string that contains the login and check-out name of the user who has the file checked out or an empty string if the
file is not checked out.

Example

Acallto site. getCheckOutUserForFile ("file://C:/sites/avocado8/index.html") might return "denise
(deniseLaptop) ". If no check-out name is specified, only the login name returns (for example, "denise").

site.getCloakingEnabled()

Availability
Dreamweaver MX.

Description

Determines whether cloaking is enabled for the current site.

Arguments
None.

Returns

A Boolean value: true if cloaking is enabled for the current site; false otherwise.

site.getConnectionState()

Availability

Dreamweaver 3.

Description

Gets the current connection state.

Arguments
None.

Returns

A Boolean value that indicates whether the remote site is connected.

Enabler
See “site.canConnect()” on page 480.



site.getCurrentSite()

Availability
Dreamweaver 3.

Description
Gets the current site.

Arguments

None.

Returns
A string that contains the name of the current site.

Example

DREAMWEAVER CS4 API REFERENCE
Site

If you defined several sites, a call to site.getCurrentSite () returns the one that is currently showing in the Current

Sites List in the Files panel.

site.getFocus()

Availability
Dreamweaver 3, and updated in CS4.

Description

Determines which pane of the Files panel has focus.

Arguments

None.

Returns
One of the following strings local or remote.

site.getLocalPathToFiles()

Availability
Dreamweaver MX.

Description

Determines the path to the local files that are defined for the current site. The current site is the site that is associated

with the document that currently has focus. If no document has focus, the site that you opened in Dreamweaver is

used.

Note: ColdFusion Component Explorer uses this function; see “site.getAppServerAccessType()” on page 220 and

“site.getAppServerPathToFiles()” on page 220.

223



DREAMWEAVER CS4 API REFERENCE | 224
Site

Arguments
None.

Returns

The path to the files residing on the local computer for the current site.

site.getLocalRootURL()

Availability
Dreamweaver CS4.

Description
Gets the local root folder of the site.

Arguments

siteName
+ The siteName argument is a string that specifies the name of the site.
Returns

A string that contains the local root folder of the named site, expressed as file://URL. The string is empty when the
specified site does not exist.

site.getSelection()

Availability
Dreamweaver 3.

Description
Determines which files are currently selected in the Files panel.

Arguments
None.

Returns

An array of strings that represents the paths of the selected files and folders, which is expressed as a file:// URL or an
empty array if no files or folders are selected.

site.getSiteForURL()

Availability
Dreamweaver MX.

Description
Gets the name of the site, if any, that is associated with a specific file.



DREAMWEAVER CS4 API REFERENCE | 225
Site

Arguments
fileURL

+ The fileURL argument is the fully qualified URL (including the string "file://") for a named file.

Returns
A string that contains the name of the site, if any, in which the specified file exists. The string is empty when the
specified file does not exist in any defined site.

site.getSites()

Availability
Dreamweaver 3.

Description
Gets a list of the defined sites.

Arguments
None.

Returns
An array of strings that represents the names of the defined sites, or an empty array if no sites are defined.

site.getSiteRootForURL()

Availability
Dreamweaver CS4.

Description
Gets the local root folder of the site associated with a specific file URL.

Arguments
fileURL

+ The fileURL argument is a string argument that contains the fully qualified URL (including the string file://)
for a named file.

Returns
A string that contains the local root folder of the site, expressed asa £ile: //URL, in which the specified file exists. The
string is empty when the specified file does not exist in any defined site.

Example

var dom = dw.getDocumentDOM () ;
var siteRoot = site.getSiteRootForURL (dom.URL) ;



DREAMWEAVER CS4 API REFERENCE
Site

site.getSiteURLPrefix()

Availability
Dreamweaver 8.

Description
Gets the site URL prefix that is extracted from the HTTP Address defined in Local Info section.

Arguments

None.

Returns
A string that contains the site URL prefix.

Example
sitePrefix = getSiteURLPrefix() ;

site.importSite()

Availability
Dreamweaver MX.

Description

Creates a Dreamweaver site from an XML file. Dreamweaver uses the localroot attribute of the <localinfo>
element to identify the local root folder for the site. During import, if this folder does not exist on the local computer,
Dreamweaver prompts for a different local root folder. Dreamweaver behaves the same way when it tries to locate the
default images folder that the imagefolder attribute of the <1localinfo> element specifies.

Arguments
pathToSteFile

+ The pathToSteFile argument is a string that contains the URL for the STE file. Dreamweaver uses this file to
create a site. If pathToSteFile is an empty string, Dreamweaver prompts the user to select a STE file to import.

Returns
A Boolean value: true if the named STE file exists and if the site is created successfully; false otherwise.

site.isCloaked()

Availability
Dreamweaver MX.

Description
Determines whether the current selection in the Files panel or the specified folder is cloaked.

226



DREAMWEAVER CS4 API REFERENCE | 227
Site

Arguments
siteOrURL

« The siteOrURL argument must contain one of the following two values:
+ Thekeyword "site", which indicates that the isCloaked () function should test the selection in the Files panel.

« The file URL of a particular folder, which indicates that iscloaked () should test the specified folder.

Returns

A Boolean value: true if the specified object is cloaked; false otherwise.

site.locatelnSite()

Availability
Dreamweaver 3.

Description
Locates the specified file (or files) in the specified pane of the Files panel and selects the files.

Arguments
localOrRemote, siteOrURL

« The localOrRemote argument must be either "local" or "remote".

+ The siteOrURL argument must be the keyword "site", which indicates that the function should act on the
selection in the Files panel or the URL for a single file.

Returns
Nothing.

Enabler

See “site.canLocatelnSite()” on page 481.

site.makeEditable()

Availability
Dreamweaver 3.

Description
Turns off the read-only flag on the selected files.

Arguments
None.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 228
Site

Enabler
See “site.canMakeEditable()” on page 482.

site.makeNewDreamweaverFile()

Availability
Dreamweaver 3.

Description
Creates a new Dreamweaver file in the Files panel in the same folder as the first selected file or folder.

Arguments
None.

Returns
Nothing.

Enabler
See “site.canMakeNewFileOrFolder()” on page 482.

site.makeNewFolder()

Availability
Dreamweaver 3.

Description
Creates a new folder in the Files panel in the same folder as the first selected file or folder.

Arguments
None.

Returns
Nothing.

Enabler
See “site.canMakeNewFileOrFolder()” on page 482.

site.newsSite()

Availability
Dreamweaver 3.

Description
Opens the Site Definition dialog box for a new, unnamed site.



DREAMWEAVER CS4 API REFERENCE | 229
Site

Arguments
None.

Returns
Nothing.

site.open()

Availability

Dreamweaver 3.

Description

Opens the files that are currently selected in the Files panel. If any folders are selected, they are expanded in the Site
Files view.

Arguments
None.

Returns
Nothing.

Enabler
See “site.canOpen()” on page 482.

site.put()

Availability

Dreamweaver 3.

Description

Puts the selected files and handles dependent files in one of the following ways:

« If the user selects Prompt on Put/Check In in the Site FTP preferences, the Dependent Files dialog box appears.

« Ifthe user previously selected the Don’t Show Me Again option in the Dependent Files dialog box and clicked Yes,
dependent files are uploaded and no dialog box appears.

« Ifthe user previously selected the Don’t Show Me Again option in the Dependent Files dialog box and clicked No,
dependent files are not uploaded and no dialog box appears.

Arguments
siteOrURL
+ The siteOrURL argument must be the keyword "site", which indicates that the function should act on the

selection in the Files panel or the URL for a single file.

Returns
Nothing.



Enabler
See “site.canPut()” on page 483.

site.recreateCache()

Availability
Dreamweaver 3.

Description
Re-creates the cache for the current site.

Arguments
None.

Returns
Nothing.

Enabler
See “site.canRecreateCache()” on page 483.

site.refresh()

Availability

Dreamweaver 3, and updated in CS4.

Description

Refreshes the file listing on the specified side of the Files panel.

Arguments
whichSide

+ The whichside argument must be local, or remote.

Returns
Nothing.

Enabler
See “site.canRefresh()” on page 483.

site.remotelsValid()

Availability
Dreamweaver 3.

Description
Determines whether the remote site is valid.

DREAMWEAVER CS4 API REFERENCE
Site

230



DREAMWEAVER CS4 API REFERENCE | 231
Site

Arguments
None.

Returns

A Boolean value that indicates whether a remote site has been defined and, if the server type is Local/Network, whether
the drive is mounted.

site.renameSelection()

Availability
Dreamweaver 3.

Description
Turns the name of the selected file into a text field, so the user can rename the file. If more than one file is selected, this
function acts on the last selected file.

Arguments
None.

Returns
Nothing.

site.runValidation()

Availability
Dreamweaver MX.

Description
Runs the Validator on the entire site or only highlighted items.

Arguments
selection

+ The selection argument is the parameter that specifies that the Validator should check only the highlighted items;
otherwise, the Validator checks the entire current site.

Returns
Nothing.

site.selectAll()

Availability
Dreamweaver 3, and updated in CS4.

Description
Selects all files in the active view.



Arguments
None.

Returns
Nothing.

site.selectNewer()

Availability
Dreamweaver 3.

Description

Selects all files that are newer on the specified side of the Files panel.

Arguments
whichSide

+ The whichSide argument must be either "local" or "remote".

Returns
Nothing.

Enabler

See “site.canSelectNewer()” on page 484.

site.serverActivity()

Availability
Dreamweaver 8.

Description

DREAMWEAVER CS4 API REFERENCE
Site

This function determines whether Dreamweaver is currently interacting with a server. Because Dreamweaver cannot

do more than one server activity at a time, this function lets you determine whether to disable functionality that

requires server interaction.

Arguments
None.

Returns

A Boolean value that indicates whether Dreamweaver is currently interacting with a server.

Example

The following example, from the menus.xml file, displays a menu item if there is no server activity (and if there is a

current site specified in Dreamweaver):

232



DREAMWEAVER CS4 API REFERENCE | 233
Site

<menuitem name="Remove Connection Scripts" enabled="!site.serverActivity () &&
site.getCurrentSite() != ''" command="alert (MMDB.removeConnectionScripts())"
id="SiteOptionsSiteMenu RemoveConnectionScripts" />

site.setCloakingEnabled()

Availability
Dreamweaver MX.

Description
Determines whether cloaking should be enabled for the current site.

Arguments
enable

+ The enable argument is a Boolean value that indicates whether cloaking should be enabled. A value of t rue enables

cloaking for the current site; a value of false disables cloaking for the current site.

Returns
None.

site.setConnectionState()

Availability
Dreamweaver 3.

Description
Sets the connection state of the current site.

Arguments
bConnected

+ The bConnected argument is a Boolean value that indicates if there is a connection (true) or not (false) to the
current site.

Returns
Nothing.

site.setCurrentSite()

Availability
Dreamweaver 3.

Description
Opens the specified site in the local pane of the Files panel.



DREAMWEAVER CS4 API REFERENCE | 234
Site

Arguments
whichSite

+ The whichSite argument is the name of a defined site (as it appears in the Current Sites list in the Files panel or the
Site Definition dialog box).

Returns
Nothing.

Example
If three sites are defined (for example, avocado8, dreamcentral, and testsite), a call to
site.setCurrentSite ("dreamcentral"); makes dreamcentral the current site.

site.setFocus()

Availability
Dreamweaver 3, and updated in CS4.

Description
Gives focus to a specified pane in the Files panel. If the specified pane is not showing, this function displays the pane
and gives it focus.

Arguments

whichPane, nextTextView
+ The whichpane argument must be one of the following strings: local or remote.

+ The nextTextViewargument toggles focus between views in split view.

Returns
Nothing.

site.setSelection()

Availability
Dreamweaver 3.

Description
Selects files or folders in the active pane in the Files panel.

Arguments
arrayOfURLs

+ The arrayOfURLs argument is an array of strings where each string is a path to a file or folder in the current site,
which is expressed as a file:// URL.

Note: Omit the trailing slash (/) when specifying folder paths.



DREAMWEAVER CS4 API REFERENCE | 235
Site

Returns
Nothing.

site.siteRelativeToLocalPath()

Availability
Dreamweaver 8.

Description

Converts a site-relative URI reference to a local file path.

Arguments
siteRelativeURI

+ The siterRelativeURI attribute, which is required, is a string that contains the site-relative URI.

Returns

A string, which specifies the path to a local file on your local computer.

Example
The following example

var filePath = site.siteRelativeToLocalPath ("/myWebApp/myFile.xlml") ;

returns "C:\Inetpub\wwwroot\siteA\myFile.xml" based on your site mappings and HTTP address specified in the
Local info of the Site Definition dialog box.

site.synchronize()

Availability
Dreamweaver 3.

Description
Opens the Synchronize Files dialog box.

Arguments
None.

Returns
Nothing.

Enabler
See “site.canSynchronize()” on page 484.



DREAMWEAVER CS4 API REFERENCE | 236
Site

site.uncloak()

Availability
Dreamweaver MX.

Description
Uncloaks the current selection in the Files panel or the specified folder.

Arguments
siteOrURL

+ The siteOrURL argument must contain one of the following values:
+ Thekeyword "site", which indicates that the uncloak () function should act on the selection in the Files panel.

« The URL of a particular folder, which indicates that the uncloak () function should act on the specified folder
and all its contents.

Returns
Nothing.

Enabler
See “site.canUncloak()” on page 485.

site.uncloakAll()

Availability
Dreamweaver MX.

Description
Uncloaks all folders in the current site and deselects the Cloak Files Ending With: checkbox in the Cloaking settings.

Arguments
None.

Returns
Nothing.

Enabler
See “site.canUncloak()” on page 485.

site.undoCheckOut()

Availability
Dreamweaver 3.



DREAMWEAVER CS4 API REFERENCE | 237
Site

Description
Removes the lock files that are associated with the specified files from the local and remote sites, and replaces the local
copy of the specified files with the remote copy.

Arguments
siteOrURL
+ The siteOrURL argument must be the keyword "site", which indicates that the function should act on the

selection in the Files panel or the URL for a single file.

Returns
Nothing.

Enabler
See “site.canUndoCheckOut()” on page 485.



238

Chapter 14: Document

The Document functions in Adobe® Dreamweaver® perform operations that affect the document on which the user is
working. The Document functions enable you to perform the following:

Convert tables to layers
Run a command in the Configuration/Commands folder
+ Browse for a file URL
+ Convert a relative URL to an absolute URL
+ Get the currently selected node
+ Perform URL encoding on a string

Run a translator on the document

Conversion functions

Conversion functions convert tables to layers, layers to tables, and cascading style sheets (CSS) to HTML markup. Each
function exactly duplicates the behavior of one of the conversion commands in the File or Modify menu.

dom.convertLayersToTable()

Availability
Dreamweaver 3.

Description
Opens the Convert Layers to Table dialog box.

Arguments
None.

Returns
Nothing.

Enabler
See “dom.canConvertLayersToTable()” on page 452.

dom.convertTablesToLayers()

Availability
Dreamweaver 3.



DREAMWEAVER CS4 API REFERENCE | 239
Document

Description
Opens the Convert Tables to Layers dialog box.

Arguments
None.

Returns
Nothing.

Enabler
See “dom.canConvertTablesToLayers()” on page 452.

Command functions

Command functions help you make the most of the files in the Configuration/Commands folder. They manage the
Command menu and call commands from other types of extension files.

dreamweaver.editCommandList()

Availability
Dreamweaver 3.

Description
Opens the Edit Command List dialog box.

Arguments
None.

Returns
Nothing.

dreamweaver.runCommand()

Availability
Dreamweaver 3.

Description

Executes the specified command; it works the same as selecting the command from a menu. If a dialog box is associated
with the command, it appears and the command script blocks other edits until the user closes the dialog box. This
function provides the ability to call a command from another extension file.

Note: This function can be called within the objectTag () function, from any script in a command file, or from the
Property inspector file.



DREAMWEAVER CS4 API REFERENCE | 240
Document

Arguments

commandFile, {commandArgl}, {commandArg2},...{commandArgN}
+ The commandFile argument is a filename in the Configuration/Commands folder.

+ The remaining arguments, commandArgl, commandArg2, and so on, which are optional, pass to the
receiveArguments () function in the commandFile argument.

Returns
Nothing.

Example
You can write a custom Property inspector for tables that lets users get to the Format Table command from a button
on the inspector by calling the following function from the button’s onclick event handler:

function callFormatTable () {
dreamweaver .runCommand (' Format Table.htm') ;

}

File manipulation functions

File manipulation functions handle creating, opening, and saving documents (including XML and XHTML),
converting existing HTML documents into XHTML, and exporting CSS to external files. These functions accomplish
such tasks as browsing for files or folders, creating files based on templates, closing documents, and getting
information about recently opened files.

dom.cleanupXHTML()

Availability

Dreamweaver MX.

Description

This function is similar to the convertToXHTML () function, but it cleans up an existing XHTML document. This
function can run on a selection within the document. You can run the cleanupxHTML () function to clean up the
syntax in an entire XHTML document or in the current selection of a document.

Arguments
bWholeDoc

 The bWholeDoc argument holds a Boolean value. If the value is t rue, the cleanupxHTML () function cleans up the
entire document; otherwise, this function cleans up only the selection.

Returns

An array of six integers that quantify the number of the following elements:
« XHTML errors that Dreamweaver fixed
+ The map elements that do not have an id attribute and cannot be fixed

« The script elements that do not have a type attribute and cannot be fixed



DREAMWEAVER CS4 API REFERENCE | 241
Document

« The style elements that do not have a type attribute and cannot be fixed
« The img elements that do not have an alt attribute and cannot be fixed

« The area elements that do not have an alt attribute and cannot be fixed

dom.convertToXHTML()

Availability
Dreamweaver MX.

Description

Parses the HTML into a DOM tree, inserts missing items that are required for XHTML, cleans up the tree, and then
writes the tree as clean XHTML. The missing directives, declarations, elements, and attributes that the
convertToXHTML () function adds to the DOM tree, as necessary, include the following items:

+ An XML directive

+ A doctype declaration

+ The xmlns attribute in the html element
* A head section

+ Atitleelement

» A body section

During the conversion, the dom. convertToXHTML () function converts pure HTML tags and attributes to lowercase,
writes HTML tags and attributes with correct XHTML syntax, and adds missing HTML attributes where it can. This
function treats third-party tags and attributes according to the settings in the Preferences dialog box.

If the document is a template, the dom. convertToxHTML () function alerts the user but does not perform the
conversion.

Arguments
None.

Returns

An array of six integers that quantify the following items:

+ XHTML errors that Dreamweaver fixed

+ The map elements that do not have an id attribute and cannot be fixed

« The script elements that do not have a type attribute and cannot be fixed
+ The style elements that do not have a type attribute and cannot be fixed
« The img elements that do not have an alt attribute and cannot be fixed

+ The area elements that do not have an alt attribute and cannot be fixed



DREAMWEAVER CS4 API REFERENCE | 242
Document

Example

In normal use, an extension first calls the dreamweaver . openDocument () or dreamweaver .getDocumentDOM ()
functions to get a reference to the document. The extension then calls the dom.get IsXHTMLDocument () function to
determine whether the document is already in XHTML form. If it is not, the extension calls the

dom. convertToXHTML () function to convert the document into XHTML. Then the extension calls the
dreamweaver .saveDocument () function to save the converted file with a new filename.

dom.getisXHTMLDocument()

Availability
Dreamweaver MX.

Description
Checks a document (specifically, the <! DocTYPE> declaration) to see whether it is XHTML.

Arguments
None.

Returns
A true value if the document is XHTML; false otherwise.

dreamweaver.browseForFileURL()

Availability
Dreamweaver 1, enhanced in 2, 3, and 4.

Description
Opens the specified type of dialog box with the specified label in the title bar.

Arguments
openSelectOrSave, {titleBarLabel}, {bShowPreviewPane}, {bSupressSiteRootWarnings},
{arrayOfExtensions}, {startFolder}, {allowDynamic}, {fileToLocate}

+ The openSelectorSave argument is a string that indicates the type of dialog box as open, select, or save.

+ The titleBarLabel argument (added in Dreamweaver 2) is the label that appears in the title bar of the dialog box.
If this argument is omitted, Dreamweaver uses the default label that the operating system supplies.

+ The bshowpreviewpane argument (added in Dreamweaver 2) is a Boolean value that indicates whether to display
the Image Preview Pane in the dialog box. If the value of this argument is t rue, the dialog box filters for image files;
if omitted, it defaults to false.

+ The bSupresssiteRootWarnings argument (added in Dreamweaver 3) is a Boolean value that indicates whether
to suppress warnings when the selected file is outside the site root. If this argument is omitted, it defaults to false.

+ The arrayofExtensionsargument (added in Dreamweaver 4) is an array of strings. It specifies the default content
for the Files of type list menu, which appears at the bottom of the dialog box. The syntax for this argument is
menuEntryText | .xxx[; .yyy;.zzz] |cccc|, where:

+ menuEntryText is the name of the file type.



DREAMWEAVER CS4 API REFERENCE
Document

+ You can specify the extensions as .xxx[;.yyy; .zzz] or CCCC:

 .xxx specifies the filename extension for the file type. Use . yyy and . zzz to specify multiple filename
extensions.

« ccccis the four-character file type constant for Macintosh.
The following example provides two filters in your Select dialog, one for mp3 files and one for All Files:

dw.browseForFileURL ("select", "Please select an mp3",false, true, new Array("mp3 Files
(*.MP3) |*.mp3 | |", "All Files (*.*)|*.*||"));

+ The startFolder argument is a string value that can be used to specify the file URL of the folder in which the
search begins. If this argument is not specified, then the search begins from the last directory that was used. This
argument is optional.

+ The allowDynamic argument is a Boolean value that indicates whether to allow dynamic URLs or parameters. If
the value of this argument is true, it indicates that dynamic URLs or parameters are allowed. This argument is
optional.

« The fileToLocate argument is a string value that is used to specify the file URL of the file you want to locate. This
argument is optional.

Returns
A string that contains the name of the file expressed as a file://URL.

dreamweaver.browseForFolderURL()

Availability
Dreamweaver 3.

Description
Opens the Choose Folder dialog box with the specified label in the title bar.

Arguments
{titleBarLabel}, {directoryToStartIn}

« The titleBarLabel argument is the label that should appear in the title bar of the dialog box. If it is omitted, the
titleBarLabel argument defaults to Choose Folder.

« The directoryToStartIn argument is the path where the folder should open, which is expressed as a file:// URL.

Returns
A string that contains the name of the folder, which is expressed as a file:// URL.

Example
The following code returns the URL of a folder:

return dreamweaver.browseForFolderURL('Select a Folder',K -
dreamweaver.getSiteRoot ()) ;



DREAMWEAVER CS4 API REFERENCE
Document

dreamweaver.closeDocument|()

Availability
Dreamweaver 2.

Description
Closes the specified document.

Arguments

documentObject

+ The documentObject argument is the object at the root of a document’s DOM tree (the value that the
dreamweaver .getDocumentDOM () function returns). If the documentObject argument refers to the active
document, the Document window might not close until the script that calls this function finishes executing.

Returns
Nothing.

dreamweaver.createDocument()

Availability
Dreamweaver 2, enhanced in Dreamweaver 4.

Description
Depending on the argument that you pass to this function, it opens a new document either in the same window or in
a new window. The new document becomes the active document.

Note: This function can be called only from the menus.xml file, a command, or the Property inspector file. If a behavior
action or object tries to call this function, Dreamweaver displays an error message.

Arguments
{bOpenInSameWindow}, {type}

+ The bOpenInSameWindow argument is a Boolean value that indicates whether to open the new document in the
current window. If the bOpenInSameWindow argument is a value of £alse, if it is omitted, or if the function is
called on the Macintosh, the new document opens in a separate window.

«+ The type argument specifies the type of document to create, as declared in the Dreamweaver
Configuration/DocumentTypes/MMDocumentTypes.xml file as the id attribute of the documenttype tag. For
example, the type argument could be "HTML", "ASP-Js", "ASP-VB", "ColdFusion", "CFC", "JSP",
"ASP.NET_VB", and so on. For a complete list of possible types, see the MMDocumentTypes.xml file. If you do not
specify type, the value defaults to "HTML".

Note: You can extend the MMDocumentTypes file by adding your own document types. For information on extending
document types, see Extending Dreamweaver.

Returns
The document object for the newly created document. This is the same value that the
dreamweaver .getDocumentDOM () function returns.

244



DREAMWEAVER CS4 API REFERENCE | 245
Document

dreamweaver.createXHTMLDocument()

Availability
Dreamweaver MX.

Description
Depending on the argument that you pass to this function, it opens a new XHTML document either in the same
window or in a new window. The new document becomes the active document. It is similar to the

dreamweaver.createDocument () function.

When Dreamweaver creates a new XHTML document, it reads a file named default.xhtml, which is located in the
Configuration/Templates folder, and, using the content of that file, creates an output file that contains the following
skeleton declarations:

<?xml version="1.0">
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0org/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml">

<heads>

<title>Untitled Document</title>

<meta http-equiv="Content-Type" content="text/html; charset=" />
</head>

<body bgcolor="#FFFFFF" text="#000000">

</body>
</html>

The default document type definition (DTD) declaration is XHTML 1.0 Transitional,ratherthan strict.Ifthe user
adds a frameset to the document, Dreamweaver switches the DTD to XHTML 1.0 Frameset.Content-Type is
text/html, and charset is intentionally left out of the default.xhtml file but is filled in before the user views the new
document. The ?xm1 directive is not required if the document uses UTF-8 or UTF-16 character encoding; if it is
present, it might be rendered by some older browsers. However, because this directive should be in an XHTML
document, by default, Dreamweaver uses it (for both new and converted documents). Users can manually delete the
directive. The ?xm1 directive includes the encoding attribute, which matches the charset in the Content-Type
attribute.

Arguments
{bOpenInSameWindow}

« The bOpenInSameWindow argument is a Boolean value that indicates whether to open the new document in the
current window. If this value is f£alse or omitted, or if the function is called on the Macintosh, the new document
opens in a separate window.

Returns

The document object for the newly created document, which is the same value that the
dreamweaver .getDocumentDOM () function returns.



DREAMWEAVER CS4 API REFERENCE | 246
Document

dreamweaver.createXMLDocument()

Availability
Dreamweaver MX.

Description
Creates and opens a new XML file, which is empty except for the XML directive.

Arguments

None.

Returns
The DOM of the new XML file.

Example

The following example creates a new document, which is empty except for the XML directive:

var theDOM = dreamweaver.createXMLDocument ("document") ;

dreamweaver.exportTemplateDataAsXML()

Availability
Dreamweaver MX.

Description

Exports the current document to the specified file as XML. This function operates on the document that has focus,
which must be a template. If you do not specify a filename argument, Dreamweaver MX opens a dialog box to request
the export file string.

Arguments

{filePath}

+ The filePath argument, which is optional, is a string that specifies the filename to which Dreamweaver exports the
template. Express the filePath argument as a URL file string, such as "file:///c|/temp/mydata.txt".

Returns
Nothing.

Enabler
See “dreamweaver.canExportTemplateDataAsXML()” on page 462.

Example

if (dreamweaver.canExportTemplateDataAsXML () )

{

dreamweaver.exportTemplateDataAsXML ("file:///c|/dw_temps/mytemplate.txt")

}



DREAMWEAVER CS4 API REFERENCE
Document

dreamweaver.getDocumentDOM()

Availability
Dreamweaver 2.

Description

Provides access to the objects tree for the specified document. After the tree of objects returns to the caller, the caller
can edit the tree to change the contents of the document.

Arguments

{sourceDoc}

. TheSounmﬂwcargunwntnnmtbe"document","parent","parent.frames[number]%
"parent . frames [' frameName '] ", or a URL. The sourceDoc value defaults to "document " if you do not supply
a value. These argument values have the following meanings:

+ The document value specifies the document that has focus and contains the current selection.
+ The parent value specifies the parent frameset (if the currently selected document is in a frame).

+ The parent.frames [number] and parent . frames [' frameName '] values specify a document that is in a
particular frame within the frameset that contains the current document.

« Ifthe argument is a relative URL, it is relative to the extension file.

Note: If the argument is "document ", the calling function must be the applyBehavior (), deleteBehavior (),
objectTag () functions, or any function in a command or Property inspector file that can perform edits to the document.

Returns

The JavaScript document object at the root of the tree.

Examples

The following example uses the dreamweaver.getDocumentDOM () function to access the current document:
var theDOM = dreamweaver.getDocumentDOM ("document") ;

In the following example, the current document DOM identifies a selection and pastes it at the end of another
document:

var currentDOM = dreamweaver.getDocumentDOM ('document') ;
currentDOM. setSelection(100,200) ;

currentDOM. clipCopy () ;

var otherDOM = dreamweaver.openDocument (dreamweaver.-
getSiteRoot () + "html/foo.htm") ;

otherDOM. endOfDocument () ;

otherDOM.clipPaste () ;

Note: The openDocument () argument is used because DoM methods normally operate only on open documents. Running
a function on a document that isn’t open causes a Dreamweaver error. The DoM methods that can operate only on the
active document or on closed documents indicate this fact in their descriptions.

247



DREAMWEAVER CS4 API REFERENCE | 248
Document

dreamweaver.getNewDocumentDOM()

Availability
Dreamweaver MX; added document Type argument in Dreamweaver 8.

Description

Provides access to the editable tree for a new, empty document. This function works in the same way as the
getDocumetDOM () function, except that it points to a new document, not an existing one, and does not open the
document.

Arguments
{documentType}

+ The documentType argument is a string. Its value must be a document type specified in the DocumentTypes.xml file.

Returns

A pointer to a new, empty document.

Example
The following code returns the DOM for a new, empty document:

var theDOM = dreamweaver.getNewDocumentDOM() ;

dreamweaver.getRecentFileList()

Availability
Dreamweaver 3.

Description
Gets a list of all the files in the recent files list at the bottom of the File menu.

Arguments

None.

Returns
An array of strings that represents the paths of the most recently accessed files. Each path is expressed as a file:// URL.
If there are no recent files, the function returns nothing.

dreamweaver.importXMLIntoTemplate()

Availability
Dreamweaver 3.

Description

Imports an XML text file into the current template document. This function operates on the document that has focus,
which must be a template. If you do not specify a filename argument, Dreamweaver opens a dialog box to request the
import file string.



DREAMWEAVER CS4 API REFERENCE | 249
Document

Arguments

{filePath}

« The filePath argument, which is optional, is a string that specifies the filename to which Dreamweaver imports the
template. Express the filePath argument as a URL file string, such as "file:///c/temp/mydata.txt".

Returns
Nothing.

dreamweaver.newDocument()

Availability
Dreamweaver MX.

Description
Opens a document in the current site and starts the New Document dialog box.

Arguments
{bopenWithCurSiteAndShowDialog}

« The bopenWithCurSiteAndShowDialog argument, which is optional, has a value of true or £alse. Specify true to
open a document with the current site and to cause the New Document dialog box to appear; false otherwise.

Returns
Nothing.

dreamweaver.newFromTemplate()

Availability
Dreamweaver 3.

Description
Creates a new document from the specified template. If no argument is supplied, the Select Template dialog box
appears.

Arguments
{templateURL}, bMaintain

« The templateURL argument is the path to a template in the current site, which is expressed as a file:// URL.

+ The bMaintain argument is a Boolean value, true or false, that indicates whether to maintain the link to the
original template.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE
Document

dreamweaver.openDocument()

Availability
Dreamweaver 2.

Description

Opens a document for editing in a new Dreamweaver window and gives it the focus. For a user, the effect is the same
as selecting File > Open and selecting a file. If the specified file is already open, the window that contains the document
comes to the front. The window that contains the specified file becomes the currently selected document. In
Dreamweaver 2, if Check In/Check Out is enabled, the file is checked out before it opens. In Dreamweaver 3 and later,
you must use “dreamweaver.openDocumentFromSite()” on page 250 to get this behavior.

Note: This function will cause an error if called from Behavior action or object files.

Arguments
fileName

+ The fileName argument is the name of the file to open, which is expressed as a URL. If the URL is relative, it is
relative to the file that contains the script that called this function.

Returns
The document object for the specified file, which is the same value that the dreamweaver.getDocumentDOM ()
function returns.

dreamweaver.openDocumentFromSite()

Availability
Dreamweaver 3.

Description

Opens a document for editing in a new Dreamweaver window and gives it the focus. For a user, the effect is the same
as double-clicking a file in the Site panel. If the specified file is already open, the window that contains the document
comes to the front. The window that contains the specified file becomes the currently selected document.

Note: This function cannot be called from Behavior action or object files because it causes an etror.

Arguments
fileName

+ The fileName argument is the file to open, which is expressed as a URL. If the URL is relative, it is relative to the file
that contains the script that called this function.

Returns
The document object for the specified file, which is the same value that the dreamweaver . getDocumentDOM ()
function returns.

250



DREAMWEAVER CS4 API REFERENCE | 251
Document

dreamweaver.openinFrame()

Availability
Dreamweaver 3.

Description
Opens the Open In Frame dialog box. When the user selects a document, it opens into the active frame.

Arguments

None.

Returns
Nothing.

Enabler

See “dreamweaver.canOpenInFrame()” on page 463.

dreamweaver.releaseDocument()

Availability
Dreamweaver 2.

Description
Explicitly releases a previously referenced document from memory.

Documents that are referenced by the dreamweaver.getObjectTags (), dreamweaver .getObjectRefs (),
dreamweaver.getDocumentPath (), Or dreamweaver.getDocumentDOM () functions are automatically released
when the script that contains the call finishes executing. If the script opens many documents, you must use this
function to explicitly release documents before finishing the script to avoid running out of memory.

Note: This function is relevant only for documents that were referenced by a URL, are not currently open in a frame or
document window, and are not extension files. Extension files are loaded into memory at startup and are not released
until you quit Dreamweaver.

Arguments
documentObject

+ The documentObject argument is the object at the root of a document’s DOM tree, which is the value that the
dreamweaver.getDocumentDOM () function returns.

Returns
Nothing.

dreamweaver.revertDocument()

Availability
Dreamweaver 3.



DREAMWEAVER CS4 API REFERENCE | 252
Document

Description

Reverts the specified document to the previously saved version.

Arguments

documentObject, warn

+ The documentobject argument is the object at the root of the DOM tree of the document, which is the value that
the dreamweaver.getDocumentDOM () function returns.

+ The warn argument is a Boolean value that specifies whether to warn the users that unsaved changes will be
discarded. If not supplied, this value defaults to true.

Returns

A Boolean value: true if Dreamweaver must warn the user; false otherwise.

Enabler

See “dreamweaver.canRevertDocument()” on page 465.

dreamweaver.saveAll()

Availability

Dreamweaver 3.

Description
Saves all open documents, opening the Save As dialog box for any documents that have not been saved previously.

Arguments
None.

Returns
Nothing.

Enabler

See “dreamweaver.canSaveAll()” on page 465.

dreamweaver.saveDocument()

Availability

Dreamweaver 2.

Description
Saves the specified file on a local computer.

Note: In Dreamweaver 2, if the file is read-only, Dreamweaver tries to check it out. If the document is still read-only after
this attempt, or if it cannot be created, an error message appears.



DREAMWEAVER CS4 API REFERENCE | 253
Document

Arguments
documentObject, {fileURL}

+ The documentObject argument is the object at the root of a document’s DOM tree, which is the value that the
dreamweaver .getDocumentDOM () function returns.

+ The fileURL argument, which is optional, is a URL that represents a location on a local computer. If the URL is
relative, it is relative to the extension file. In Dreamweaver 2, this argument is required. If the fileURL argument is
omitted in Dreamweaver 4, the file is saved to its current location if it has been previously saved; otherwise, a Save
dialog box appears.

Returns
A Boolean value that indicates success (true) or failure (false).

Enabler

See “dreamweaver.canSaveDocument()” on page 466.

dreamweaver.saveDocumentAs()

Availability
Dreamweaver 3.

Description
Opens the Save As dialog box.

Arguments
documentObject

+ The documentObject argument is the object at the root of a document’s DOM tree, which is the value that the
dreamweaver .getDocumentDOM () function returns.

Returns
Nothing.

dreamweaver.saveDocumentAsTemplate()

Availability
Dreamweaver 3.

Description
Opens the Save As Template dialog box.

Arguments
documentObject, {fileName}

+ The documentObject argument is the object at the root of a document’s DOM tree, which is the value that
dreamweaver.getDocumentDOM () returns.

+ The fileName argument, which is optional, is the name of the file to open, expressed as an absolute URL.



DREAMWEAVER CS4 API REFERENCE | 254
Document

Returns
Nothing.

Enabler

See “dreamweaver.canSaveDocumentAsTemplate()” on page 466.

dreamweaver.saveFrameset|()

Availability
Dreamweaver 3.

Description
Saves the specified frameset or opens the Save As dialog box if the frameset has not previously been saved.

Arguments

documentObject

+ The documentObject argument is the object at the root of a document’s DOM tree, which is the value that the
dreamweaver .getDocumentDOM () function returns.

Returns
Nothing.

Enabler

See “dreamweaver.canSaveFrameset()

>

> on page 466.

dreamweaver.saveFramesetAs()

Availability
Dreamweaver 3.

Description
Opens the Save As dialog box for the frameset file that includes the specified DOM.

Arguments
documentObject

+ The documentObject argument is the object at the root of a document’s DOM tree, which is the value that the
dreamweaver.getDocumentDOM () function returns.

Returns
Nothing.

Enabler

See “dreamweaver.canSaveFramesetAs()” on page 467.



DREAMWEAVER CS4 API REFERENCE | 255
Document

Global document functions

Global document functions act on an entire document. They check spelling, check target browsers, set page properties,
and determine correct object references for elements in the document.

dom.checkSpelling()

Availability
Dreamweaver 3.

Description
Checks the spelling in the document, opening the Check Spelling dialog box if necessary, and notifies the user when
the check is complete.

Arguments
None.

Returns
Nothing.

dom.checkTargetBrowsers()

Availability
Dreamweaver 3.

Description
Runs a target browser check on the document. To run a target browser check on a folder or group of files, see
“site.checkTargetBrowsers()” on page 213.

Arguments
None.

Returns
Nothing.

dom.getParseMode()

Availability
Dreamweaver MX 2004.

Description
Gets the current parsing mode of the document, which controls how the document is validated and whether it shows
up in the main document window as HTML.



DREAMWEAVER CS4 API REFERENCE
Document

Arguments
None.

Returns

A string that specifies the current parsing mode: "html", "xml", "css", Or "text".

dom.hidelnfoMessagePopup()

Availability
Dreamweaver MX 2004.

Description

Hides the tooltip-like message, if it is visible, for the document window.

Arguments

None.

Returns
Nothing.

See also

“dom.showInfoMessagePopup()” on page 257.

dom.runValidation()

Availability
Dreamweaver MX, optional arguments added in Dreamweaver MX 2004.

Description

Runs the Validator on a single specified document (this function is similar to “site.runValidation()” on page 231. The
Validator checks the document for conformance with the language specified in the document doctype (such as HTML
4.0 or HTML 3.2) and the language specified by the server model (such as ColdFusion or ASP). If the document has no
doctype, then the Validator uses the language setting specified in the Validator section of the Preferences dialog box.

Arguments
{controlString}, {bOpenResultsWindow}, {bShowInfoMessage}

« The controlString argument is an optional string with four possible values: an empty string, "xml", "auto-

explicit", or "auto-implicit".

« If the argument is an empty string, the Validator performs a default validation. If the argument is "xm1", the
Validator validates the document as XML.

« Ifthe argument is "auto-explicit" or "auto-implicit", Dreamweaver performs an automatic validation
(also known as an inline validation), which underlines errors in the Code view instead of opening the Validation
results window (see “dom.source.getValidationErrorsForOffset()” on page 436 and
“dom.getAutoValidationCount()” on page 430).

256



DREAMWEAVER CS4 API REFERENCE | 257
Document

« If the controlString argument is "auto-explicit", Dreamweaver prompts the user to save an unsaved
document before running the validation.

« Ifthe controlString argument is "auto-implicit", the validation fails without notifying the user that the
current document is unsaved.

Note: An automatic validation (that the controlString value "auto-explicit" or "auto-implicit" defines) is
currently available only for a browser compatibility check.

+ The bOpenResultsWindow argument is an optional Boolean value: true opens the Validation results window;
false otherwise. The default value is true.

« The bShowInfoMessage argument is used only when the controlString argument is defined as "auto-explicit" or
"auto-implicit". The bShowInfoMessage argument is a Boolean value: true shows an informational message
under the toolbar item, bw_validatorErrors, with the number of errors found; £alse displays nothing. The
default value is false.

Returns

The Validation results window object.

Example
The following example runs a regular validation when the user selects the File > Check Page > Validate Markup menu
option (or Validate Current Document in the Validation panel):

dw.getDocumentDOM () .runValidation('"') ;

The following example prompts the user to save an unsaved document, runs an automatic validation, does not open
the Validation results window, but does show the total number of errors over the document toolbar button for

DW_ValidatorErrors:
dw.getDocumentDOM () .runValidation ('auto-explicit', false, true);

The following example does not prompt the user to save an unsaved document. If the document has not been saved,
the validation will not start. If the document has been saved, Dreamweaver runs an automatic validation, does not
open the Validation results window, and does not indicate the total number of errors encountered on the document
toolbar:

dw.getDocumentDOM () .runValidation ('auto-implicit', false);

dom.showInfoMessagePopup()

Availability
Dreamweaver MX 2004.

Description

Shows a tooltip-like message in the document window or under a toolbar item.



DREAMWEAVER CS4 API REFERENCE
Document

Arguments
location, message, timeout

 The location argument is a string that specifies a toolbar item, or is an empty string, or is one of the following
keywords: "top", "topright", "right", "bottomright", "bottom", "bottomleft", "left", or "topleft". The
tooltip is placed against the specified edge or corner and is centered. An empty string causes it to be centered in the
document. To specify a toolbar item, use "toolbar: toolbarID:itemID", where the toolbar ID and toolbar item
ID match the IDs in the toolbars.xml file.

+ The message argument is a string that contains the message.

+ The timeout argument is a number that specifies the milliseconds for which to display the message. The default is
0. If the value is 0, the message stays indefinitely. Dreamweaver automatically dismisses it if the user clicks it or
switches documents, or if the time out expires.

Returns
Nothing.

Example

The following example displays two tooltip messages. The first line of code displays the message "This message is
in the center" in the center of the document. The second call to showInfoMessagePopup () displays the tooltip
message "Don't forget the title for the Window" for the Title text edit box, which has the ID DW_setTit1le,
on the toolbar with the ID bw_Toolbar Main.

dw.getDocumentDOM. showInfoMessagePopup ('', 'This message is in the center', 5000);
dw.getDocumentDOM. showInfoMessagePopup ('toolbar:DW _Toolbar Main:DW_SetTitle', 'Don't
forget the title for the window', 5000) ;

See also
“dom.hideInfoMessagePopup()” on page 256.

dom.showPagePropertiesDialog()

Availability
Dreamweaver 3.

Description
Opens the Page Properties dialog box.

Arguments
None.

Returns
Nothing.

dreamweaver.doURLDecoding()

Availability
Dreamweaver MX.

258



DREAMWEAVER CS4 API REFERENCE | 259
Document

Description
Uses the internal Dreamweaver URL decoding mechanism to decode special characters and symbols in URL strings.
For example, this function decodes %20 to a space character and the name &quot to ".

Arguments

inStr

+ The instr argument is the string to decode.

Returns
A string that contains the decoded URL.

Example

The following example calls dw.doURLDecoding () to decode the special characters in its argument and store the
resulting string in outstr:

outStr = dreamweaver.doURLDecoding ("http://maps.yahoo.com/py/ddResults.py?Pyt= -
Tmap&tarname=&tardesc=&newname=&newdesc=&newHash=&newTHash=&newSts=&newTSts=&tlt=&tln= -
&slt=&sln=&newFL=Use+Address+Below&newaddr=2000+Shamrock+Rd&newcsz=Metroo+Park%2C+CA& -

newcountry=us&newIFL=Use+Address+Below&newtaddr=500+El+Camino&newtcsz=Santa+Clara%2C+CA& -
newtcountry=us&Submit=Get+Directions")

dreamweaver.getElementRef()

Availability
Dreamweaver 2.

Description
Gets the Netscape Navigator or Internet Explorer object reference for a specific tag object in the DOM tree.

Arguments
NSorIE, tagObject

+ The NSorIE argument must be either "NS 4.0" or "IE 4.0". The DOM and rules for nested references differ in
Netscape Navigator 4.0 and Internet Explorer 4.0. This argument specifies for which browser to return a valid
reference.

+ The tagObject argument is a tag object in the DOM tree.

Returns
A string that represents a valid JavaScript reference to the object, such as document . layers [ 'myLayer' 1. The string
is subject to the following conditions:

« Dreamweaver returns correct references for Internet Explorer for A, AREA, APPLET, EMBED, DIV, SPAN, INPUT,
SELECT, OPTION, TEXTAREA, OBJECT, and IMG tags.

+ Dreamweaver returns correct references for Netscape Navigator for A, AREA, APPLET, EMBED, LAYER, ILAYER,
SELECT, OPTION, TEXTAREA, OBJECT, and IMG tags, and for absolutely positioned DIV and SPAN tags. For DIv and
SPAN tags that are not absolutely positioned, Dreamweaver returns "cannot reference <tags".



DREAMWEAVER CS4 API REFERENCE
Document

+ Dreamweaver does not return references for unnamed objects. If an object does not contain either a NAME or an ID
attribute, Dreamweaver returns "unnamed <tags>". If the browser does not support a reference by name,
Dreamweaver references the object by index (for example, document .myform.applets[3]).

+ Dreamweaver returns references for named objects that are contained in unnamed forms and layers (for example,

document . forms [2] . myCheckbox).

dreamweaver.getPreferencelnt()

Availability
Dreamweaver MX.

Description
Lets you retrieve an integer preference setting for an extension.

Arguments

section, key, default_value

« The section argument is a string that specifies the preferences section that contains the entry.
+ The key argument is a string that specifies the entry of the value to retrieve.

+ The default_value argument is the default value that Dreamweaver returns if it cannot find the entry. This value
must be an unsigned integer in the range 0 through 65,535 or a signed integer in the range -32,768 through 32,767.

Returns
Integer value of the specified entry in the specified section or the default value if the function does not find the entry.
Returns 0 if the value of the specified entry is not an integer.

Example

The following example returns the integer value of the Snap Distance setting in the My Extension section of
Preferences. If there is no MyExtension section or no Snap Distance entry, the function returns the specified default
value of 0.

var snapDist; //default value if entry not found
snapDist = dreamweaver.getPreferencelnt ("My Extension", "Snap Distance", 0);

dreamweaver.getPreferenceString()

Availability
Dreamweaver MX.

Note: To access the preferences for sites, you must have version 7.0.1. Check dw. appVersion for the correct version before
accessing site information.

Description
Lets you retrieve a string preference setting that you stored for an extension.

260



DREAMWEAVER CS4 API REFERENCE | 261
Document

Arguments
section, key, default_value

« The section argument is a string that specifies the preferences section that contains the entry.
+ The key argument is a string that specifies the value to retrieve.

+ The default_value argument is the default string value that Dreamweaver returns if it cannot find the entry.

Returns

The requested preference string, or if the string cannot be found, the default value.

Example

The following example returns the String value of the Text Editor setting in the My Extension section of Preferences.
If there is no MyExtension section or no Text Editor entry, the function returns the default value specified by the
variable txtEditor.

var txtEditor = getExternalTextEditor(); //set default text Editor value
txtEditor = dreamweaver.getPreferenceString("My Extension", "Text Editor", txtEditor);

dreamweaver.setPreferencelnt()

Availability
Dreamweaver MX.

Description

Lets you set an integer preference setting for an extension. This setting is stored with Dreamweaver preferences when
Dreamweaver is not running.

Arguments
section, key, new_value

+ The section argument is a string that specifies the preferences category in which the option is set. If the category
does not exist, Dreamweaver creates it.

+ The key argument is a string that specifies the category option that the function sets. If the option does not exist,
Dreamweaver creates it.

 The new_value argument is an integer that specifies the value of the category option.

Returns

A true value if successful; false otherwise.

Example

The following example sets the Snap Distance entry to the value of the variable snapbist in the My Extension category
of Preferences:

var snapDist = getSnapDistance() ;
if (snapDist > 0)
{

dreamweaver.setPreferencelnt ("My Extension", "Snap Distance", snapDist) ;



DREAMWEAVER CS4 API REFERENCE | 262
Document

dreamweaver.setPreferenceString()

Availability
Dreamweaver MX.

Note: To access the preferences for sites, you must have version 7.0.1. Check dw. appVersion for the correct version before
accessing site information.

Description
Lets you write a string preference setting for an extension. This setting is stored with Dreamweaver preferences when
Dreamweaver is not running.

Arguments
section, key, new_value

+ The section argument is a string that specifies the Preferences category in which the option is set. If the category
does not exist, Dreamweaver creates it.

+ The key argument is a string that specifies the category option that the functions sets. If the category option does
not exist, Dreamweaver creates it.

 The new_value argument is a string that specifies the value of the category option.

Returns
A true value if successful; false otherwise.

Example
var txtEditor = getExternalTextEditor() ;
dreamweaver.setPreferenceString ("My Extension", "Text Editor", txtEditor);

dreamweaver.showTargetBrowsersDialog()

Availability
Dreamweaver MX 2004.

Description
Opens the Target Browsers dialog box. The Target Browsers dialog box lets a user specify which browser versions the
Browser Target Check feature should use for checking the current page’s browser compatibility issues.

Arguments
None.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 263
Document

Path functions

Path functions get and manipulate the paths to various files and folders on a user’s hard disk. These functions
determine the path to the root of the site in which the current document resides, convert relative paths to absolute
URLs, and more.

dreamweaver.absoluteURLToDocRelative()

Availability
Dreamweaver 2.

Description
Given an absolute URL and the path to a document, this function converts the absolute URL to a document-relative path.

Arguments
docPathURL, siteRootURL, absoluteURL

+ The docpathURL argument is the path to a document on the computer of the user (for example, the current
document), expressed as a file://URL.

+ The siterootURL argument is the path to the site root, expressed as a file://URL.

+ The absoluteURL argument is the file://URL to convert to a document-relative path.

Returns
A string representing the path to the document at absoluteURL, expressed relative to the document at docPathURL.

Example

In the following example, if the values of docPathURL and siteRootURL are
file://C:/sites/cherrystreet/archives/october.shtml and file://C:/sites/cherrystreet/
respectively, then the return value is . . /includes/header.html". Use this value to reference
/includes/header.html from /archives/october.shtml.

var docPathURL = dw.getDocumentDOM () .URL;

var siteRootURL = dw.getSiteRoot () ;

var absoluteURL= dw.relativeToAbsoluteURL (docPathURL, siteRootURL, "/includes/header.html") ;
var docRelPath = dw.absoluteURLToDocRelative (docPathURL, siteRootURL, absoluteURL) ;

dreamweaver.getConfigurationPath()

Availability
Dreamweaver 2.

Description
Gets the path to the Dreamweaver Configuration folder, which is expressed as a file:// URL.

For information on how Dreamweaver accesses Configuration folders on a multiuser platform, see “C-Level
Extensibility” in Extending Dreamweaver Help.



DREAMWEAVER CS4 API REFERENCE
Document

Arguments
None.

Returns
The path to the application configurations.

Example

The following function is useful when referencing other extension files, which are stored in the Configuration folder
in the Dreamweaver application folder:

var sortCmd = dreamweaver.getConfigurationPath() + -

" /Commands/Sort Table.htm"
var sortDOM = dreamweaver.getDocumentDOM (sortCmd) ;

dreamweaver.getDocumentPath()

Availability
Dreamweaver 1.2.

Description
Gets the path of the specified document, which is expressed as a file:// URL. This function is equivalent to calling
dreamweaver .getDocumentDOM () and reading the URL property of the return value.

Arguments
sourceDoc

+ The value of the sourceDoc argument must be "document", "parent", "parent . frames [number] ", Or
"parent . frames [' frameName '] ". The "document " value specifies the document that has the focus and contains
the current selection. The "parent" value specifies the parent frameset (if the currently selected document is in a
frame), and the "parent . frames [number] " and "parent . frames [' frameName '] " values specify a document
that is in a particular frame within the frameset that contains the current document.

Returns
Either a string that contains the URL of the specified document if the file was saved or an empty string if the file was
not saved.

dreamweaver.getSiteRoot()

Availability
Dreamweaver 1.2.

Description

Gets the local root folder (as specified in the Site Definition dialog box) for the site that is associated with the currently
selected document, which is expressed as a file:// URL.

Arguments
None.

264



DREAMWEAVER CS4 API REFERENCE
Document

Returns

Either a string that contains the URL of the local root folder of the site where the file is saved or an empty string if the
file is not associated with a site.

dreamweaver.getTempFolderPath()

Availability

Dreamweaver MX.

Description

Gets the full path to a temporary folder where you can store temporary or transient files. This function looks for a
Temp folder inside the Dreamweaver Configuration folder. If the system supports multiple users, it looks in the user’s
Configuration folder. If a Temp folder does not exist, the function creates it. Shared files that are not transient should
be stored in the Configuration/Shared folder.

Arguments
None.

Returns
The full path to the folder, which is expressed as a file:// URL.

Example
The following line of code returns the full path for the specified file. The dw.get TempFolderpath () function does not
return a slash (/) at the end of the path, as do other Dreamweaver functions (such as dreamweaver.getSiteRoot () ):

var myTempfile = dw.getTempFolderPath() + "/myTempFile.txt";

dreamweaver.relativeToAbsoluteURL()

Availability
Dreamweaver 2.

Description

Given a relative URL and a point of reference (either the path to the current document or the site root), this function
converts the relative URL to an absolute file:// URL.

Arguments
docPath, siteRoot, relURL

+ The docPath argument is the path to a document on the user’s computer (for example, the current document),
which is expressed as a file:// URL or an empty string if relURL is a root-relative URL.

+ The siteRoot argument is the path to the site root, which is expressed as a file:// URL or an empty string if relURL
is a document-relative URL.

« The relURL argument is the URL to convert.

265



DREAMWEAVER CS4 API REFERENCE | 266
Document

Returns
An absolute URL string. The return value is generated, as described in the following list:

« IfrelURL is an absolute URL, no conversion occurs, and the return value is the same as relURL.
o If relURL is a document-relative URL, the return value is the combination of docPath and relURL.

« If relURL is a root-relative URL, the return value is the combination of siteRoot and relURL.

Selection functions

Selection functions get and set the selection in open documents. For information on getting or setting the selection in
the Site panel, see “Site functions” on page 206.

dom.getSelectedNode()

Availability
Dreamweaver 3.

Description
Gets the selected node. Using this function is equivalent to calling the dom.getSelection () function and passing the
return value to the dom.offsetsToNode () function.

Arguments

None.

Returns
The tag, text, or comment object that completely contains the specified range of characters.

dom.getSelection()

Availability
Dreamweaver 3.

Description
Gets the selection, which is expressed as character offsets into the document’s source code.

Arguments
{bAllowMultiple}

+ The bAllowMultiple argument, which is optional, is a Boolean value that indicates whether the function should
return multiple offsets if more than one table cell, image map hotspot, or layer is selected.

If this argument is omitted, it defaults to false.



DREAMWEAVER CS4 API REFERENCE | 267
Document

Returns

For simple selections, an array that contains two integers. The first integer is the character offset of the opening of the
selection. The second integer is the character offset at the closing of the selection. If the two numbers are the same, the
current selection is an insertion point.

For complex selections (multiple table cells, multiple layers, or multiple image map hotspots), an array that contains
2n integers, where n is the number of selected items. The first integer in each pair is the character offset of the opening
of the selection (including the opening TD, DIV, SPAN, LAYER, ILAYER, Or MAP tag); the second integer in each pair is
the character offset of the closing of the selection (including the closing TD, DIV, SPAN, LAYER, ILAYER, or MAP tag). If
multiple table rows are selected, the offsets of each cell in each row return. The selection never includes the Tr tags.

dom.getSelectorsDefinedinStylesheet()

Availability
Dreamweaver 8.

Description
Gets an array of selectors that match the type passed in as an attribute.

Arguments

selector

+ The selector argument is a string of value class or ID. It specifies whether the function returns selectors of the
type class or ID.

Returns
An array of selectors that can be either of the type class or ID.

Example
The following code is used to get an array of selectors of the type class:

var dom=dw.getDocumentDOM () ;
var classSelectors = dom.getSelectorsDefinedInStylesheet('class');

The following code is used to get an array of selectors of the type 1D:

var dom=dw.getDocumentDOM () ;
var classSelectors = dom.getSelectorsDefinedInStylesheet ('ID');

dom.nodeToOffsets()

Availability
Dreamweaver 3.

Description
Gets the position of a specific node in the DOM tree, which is expressed as character offsets into the document’s source
code. It is valid for any document on a local drive.



DREAMWEAVER CS4 API REFERENCE
Document

Arguments
node

+ The node argument must be a tag, comment, or range of text that is a node in the tree that the
dreamweaver .getDocumentDOM () function returns.

Returns

An array that contains two integers. The first integer is the character offset of the beginning of the tag, text, or
comment. The second integer is the character offset of the end of the node, from the beginning of the HTML
document.

Example

The following code selects the first image object in the current document:
var theDOM = dw.getDocumentDOM () ;

var theImg = theDOM.images[0];

var offsets = theDom.nodeToOffsets (thelmg) ;
theDom.setSelection (offsets[0], offsets[1]);

dom.offsetsToNode()

Availability
Dreamweaver 3.

Description
Gets the object in the DOM tree that completely contains the range of characters between the specified opening and
closing points. It is valid for any document on a local drive.

Arguments
offsetBegin, offsetEnd

+ The offsetBegin argument specifies the offset from the beginning of the document to the beginning of a range of
characters that is an object in the DOM tree.

+ The offsetEnd argument specifies the offset from the beginning of the document to the end of a range of characters
that is an object in the DOM tree.

Returns

The tag, text, or comment object that completely contains the specified range of characters.

Example

The following code displays an alert if the selection is an image:

var offsets = dom.getSelection() ;
var theSelection = dreamweaver.offsetsToNode (offsets[0], =

offsets[1]) ;
if (theSelection.nodeType == Node.ELEMENT NODE && -
theSelection.tagName == 'IMG') {

alert ('The current selection is an image.');

268



DREAMWEAVER CS4 API REFERENCE | 269
Document

dom.selectAll()

Availability
Dreamweaver 3.

Description
Performs a Select All operation.

Note: In most cases, this function selects all the content in the active document. In some cases (for example, when the
insertion point is inside a table), it selects only part of the active document. To set the selection to the entire document,
use dom.setSelection().

Arguments
None.

Returns
Nothing.

dom.setSelectedNode()

Availability
Dreamweaver 3.

Description
Sets the selected node. This function is equivalent to calling the dom.nodeToof£sets () function and passing the
return value to the dom. setSelection () function.

Arguments
node, {bSelectInside}, {bJumpToNode}

« The node argument is a text, comment, or element node in the document.

+ The bSelectInside argument, which is optional, is a Boolean value that indicates whether to select the innterHTML
of the node. This argument is relevant only if node is an element node, and it defaults to false if it is omitted.

« The bJumpToNode argument, which is optional, is a Boolean value that indicates whether to scroll the Document
window, if necessary, to make the selection visible. If it is omitted, this argument defaults to false.

Returns
Nothing.

dom.setSelection()

Availability
Dreamweaver 3.

Description
Sets the selection in the document.



DREAMWEAVER CS4 API REFERENCE | 270
Document

Arguments
offsetBegin, offsetEnd

+ These arguments are the opening and closing points, respectively, for the new selection, which is expressed as
character offsets into the document’s source code. If the two numbers are the same, the new selection is an insertion
point. If the new selection is not a valid HTML selection, it is expanded to include the characters in the first valid
HTML selection. For example, if offsetBegin and offsetEnd define the range SRC="myImage.gif" within <IMG
SRC="myImage.gif">, the selection expands to include the entire IMG tag.

Returns
Nothing.

dreamweaver.nodeExists()

Available
Dreamweaver 3.

Description

Determines whether the reference to the specified node is still good. Often when writing extensions, you reference a
node and then perform an operation that deletes it (such as setting the innerHTML or outerHTML properties of its
parent). This function lets you confirm that the node hasn’t been deleted before you attempt to reference any of its
properties or methods. The referenced node does not need to be in the current document.

Arguments
node

« The node argument is the node that you want to check.

Returns

A Boolean value: true if the node exists; false otherwise.

Example
The following example gets the current node, locates a table within it, and later calls dw.nodeExists () to see if the
original node still exists:



DREAMWEAVER CS4 API REFERENCE | 271
Document

function applyFormatToSelectedTable () {

// get current selection

var selObj = dw.getDocumentDOM () .getSelectedNode () ;

alternateRows (dwscripts.findDOMObject ("presetNames") .selectedIndex,
findTable ()) ;

// restore original selection, if it still exists; if not, just select the
// table.
var selArr;
if (dw.nodeExists (selObj))
selArr = dom.nodeToOffsets (selObj) ;
else
selArr = dom.nodeToOffsets (findTable()) ;

dom.setSelection(selArr[0],selArr[1]);

dreamweaver.selectAll()

Availability
Dreamweaver 3.

Description
Performs a Select All operation in the active document window, the Site panel or, on the Macintosh, the text field that
has focus in a dialog box or floating panel.

Note: If the operation takes place in the active document, it usually selects all the content in the active document. In some
cases (for example, when the insertion point is inside a table), however, it selects only part of the active document. To set
the selection to the entire document, use the dom. setSelection() function.

Arguments
None.

Returns
Nothing.

Enabler
See “dreamweaver.canSelectAll()” on page 467.

String manipulation functions

String manipulation functions help you get information about a string as well as convert a string from Latin 1 encoding
to platform-native encoding and back.



DREAMWEAVER CS4 API REFERENCE | 272
Document

dreamweaver.doURLEncoding()

Availability
Dreamweaver 1.

Description
Takes a string and returns a URL-encoded string by replacing all the spaces and special characters with specified
entities.

Arguments

stringToConvert

+ The stringToConvert argument is a string that contains the unencoded URL that the function encodes.

Returns
A URL-encoded string.

Example
The following example shows the URL.value for "My URL-encoded string™:

var URL = dw.doURLEncoding (theURL.value) ;
returns "My%$20URL-encoded$%20string"

dreamweaver.getTokens()

Availability
Dreamweaver 1.

Description
Accepts a string and splits it into tokens.

Arguments
searchString, separatorCharacters

« The searchString argument is the string to separate into tokens.

« The separatorCharacters argument is the character or characters that signifies the end of a token. Separator
characters in quoted strings are ignored. Any white-space characters that occur in separatorCharacters (such as
tabs) are treated as separator characters, as if they are explicitly specified. Two or more consecutive white space
characters are treated as a single separator.

Returns
An array of token strings.

Example
The following call to the dw.getTokens () function returns the tokens that come after it:

dreamweaver.getTokens ('foo ("my argl", 34)', '(),")

* foo



DREAMWEAVER CS4 API REFERENCE
Document

. "my arg 1"

e 34

dreamweaver.latin1ToNative()

Availability
Dreamweaver 2.

Description
Converts a string in Latin 1 encoding to the native encoding on the user’s computer. This function is intended to
display the UI of an extension file in another language.

Note: This function has no effect in Windows because Windows encodings are already based on Latin 1.

Arguments

stringToConvert

« The stringToConvert argument is the string to convert from Latin 1 encoding to native encoding.

Returns
The converted string.

dreamweaver.nativeTolLatin1()

Availability
Dreamweaver 2.

Description
Converts a string in native encoding to Latin 1 encoding.

Note: This function has no effect in Windows because Windows encodings are already based on Latin 1.

Arguments
stringToConvert

+ The stringToConvert argument is the string to convert from native encoding to Latin 1 encoding.

Returns

The converted string.

dreamweaver.scanSourceString()

Availability
Dreamweaver UltraDev 1.

273



DREAMWEAVER CS4 API REFERENCE | 274
Document

Description

Scans a string of HTML and finds the tags, attributes, directives, and text. For each tag, attribute, directive, and text
span that it finds, the scanSourcestring () function starts a callback function that you must supply. Dreamweaver
supports the following callback functions:

¢ openTagBegin ()
¢ openTagEnd ()

* closeTagBegin ()
e closeTagEnd ()

* directive()

* attribute()

¢ text()

Dreamweaver calls the seven callback functions on the following occasions:

+ Dreamweaver calls openTagBegin () for each opening tag (for example, <font >, as opposed to </font >) and each
empty tag (for example, <img> or <hr>). The openTagBegin () function accepts two arguments: the name of the
tag (for example, "font" or "img") and the document offset, which is the number of bytes in the document before
the beginning of the tag. The function returns true if scanning should continue or £alse if it should stop.

« After openTagBegin () executes, Dreamweaver calls attribute () for each HTML attribute. The attribute ()
function accepts two arguments, a string that contains the attribute name (for example, "color" or "src") and a
string that contains the attribute value (for example, "#000000" or "foo.gif"). The attribute () function
returns a Boolean value that indicates whether scanning should continue.

« After all the attributes in the tag have been scanned, Dreamweaver calls openTagEnd () . The openTagEnd ()
function accepts one argument, the document offset, which is the number of bytes in the document before the end
of the opening tag. It returns a Boolean value that indicates whether scanning should continue.

+ Dreamweaver calls closeTagBegin () for each closing tag (for example, </font>). The function accepts two
arguments, the name of the tag to close (for example, "font") and the document offset, which is the number of
bytes in the document before the beginning of the closing tag. The function returns a Boolean value that indicates
whether scanning should continue.

« After closeTagBegin () returns, Dreamweaver calls the closeTagEnd () function. The closeTagEnd () function
accepts one argument, the document offset, which is the number of bytes in the document before the end of the
closing tag. It returns a Boolean value that indicates whether scanning should continue.

+ Dreamweaver calls the directive () function for each HTML comment, ASP script, JSP script, or PHP script. The
directive () function accepts two arguments, a string that contains the directive and the document offset, which
is the number of bytes in the document before the end of the closing tag. The function returns a Boolean value that
indicates whether scanning should continue.

« Dreamweaver calls the text () function for each span of text in the document (that is, everything that is not a tag
or a directive). Text spans include text that is not visible to the user, such as the text inside a <title> or <option>
tag. The text () function accepts two arguments, a string that contains the text and the document offset, which is
the number of bytes in the document before the closing of the closing tag. The text () function returns a Boolean
value that indicates whether scanning should continue.

Arguments
HTMLstr, parserCallbackObj

« The HTMLstr argument is a string that contains code.



DREAMWEAVER CS4 API REFERENCE
Document

+ The parserCallbackObj argument is a JavaScript object that has one or more of the following methods:
openTagBegin (), openTagEnd (), closeTagBegin (), closeTagEnd (), directive (), attribute (), and
text (). For best performance, parserCallbackObj should be a shared library that is defined using the C-Level
Extensibility interface. Performance is also improved if parserCallbackObj defines only the callback functions that
it needs.

Returns

A Boolean value: true if the operation completed successfully; false otherwise.

Example

The following sequence of steps provide an example of how to use the dreamweaver. scansourcestring () function:
1 Create an implementation for one or more of the seven callback functions.
2 Write a script that calls the dreamweaver.scanSourceString () function.

3 The dreamweaver.scanSourceString () function passes a string that contains HTML and pointers to the
callback functions that you wrote. For example, the string of HTML is "<font size=2>hello</font>".

4 Dreamweaver analyzes the string and determines that the string contains a font tag. Dreamweaver calls the callback
functions in the following sequence:

+ The openTagBegin () function

« The attribute () function (for the size attribute)
+ The openTagEnd () function

+ The text () function (for the "hello" string)

+ The closeTagBegin () and closeTagEnd () functions

Translation functions

Translation functions deal either directly with translators or with translation results. These functions get information
about or run a translator, edit content in a locked region, and specify that the translated source should be used when
getting and setting selection offsets.

dom.runTranslator()

Availability
Dreamweaver 3.

Description

This function runs the specified translator on the document. This function is valid only for the active document.

Arguments
translatorName

+ The translatorName argument is the name of a translator as it appears in the Translation preferences.

275



DREAMWEAVER CS4 API REFERENCE | 276
Document

Returns
Nothing.

dreamweaver.editLockedRegions()

Availability
Dreamweaver 2.

Description

Depending on the value of the argument, this function makes locked regions editable or non-editable. By default,
locked regions are non-editable; if you try to edit a locked region before specifically making it editable with this
function, Dreamweaver beeps and does not allow the change.

Note: Editing locked regions can have unintended consequences for library items and templates. You should not use this
function outside the context of data translators.
Arguments

bAllowEdits

+ The bAllowEdits argument is a Boolean value: t rue indicates that edits are allowed; false otherwise. Dreamweaver
automatically restores locked regions to their default (non-editable) state when the script that calls this function
finishes executing.

Returns
Nothing.

dreamweaver.getTranslatorList()

Availability
Dreamweaver 3.

Description
This function gets a list of the installed translators.

Arguments
None.

Returns

An array of strings where each string represents the name of a translator as it appears in the Translation preferences.

dreamweaver.useTranslatedSource()

Availability
Dreamweaver 2.



DREAMWEAVER CS4 API REFERENCE | 277
Document

Description

This function specifies that the values that dom.nodeTooffsets () and dom.getSelection () return. These are used
by dom.offsetsToNode () and dom.setSelection () and should be offsets into the translated source (the HTML
that is contained in the DOM after a translator runs), not the untranslated source.

Note: This function is relevant only in Property inspector files.

Arguments
bUseTranslatedSource

+ The bUseTranslatedSource argument is a Boolean value: t rue if the function uses offsets into the translated source;
false if the function uses the untranslated source.

The default value of the argument is false. Dreamweaver automatically uses the untranslated source for
subsequent calls to dw. getSelection(), dw.setSelection(), dw.nodeToOffsets (), and
dw.offsetsToNode () when the script that calls dw.useTranslatedSource () finishes executing, if
dw.useTranslatedSource () is not explicitly called with an argument of £alse before then.

Returns
Nothing.

XSLT functions

XSLT functions deal with XML files. These functions get information about XML documents, including the schema
tree or the reference to an XML document, and prompt the user to specify the XML document associated with the
current XSLT document.

MMXSLT.getXML()

Availability
Dreamweaver CS3.

Description
Gets an XML source string for an XML file.

Arguments
xmlSourceURI

« A string representing a URI to an XML file. It can be absolute (http or https), site relative, or doc relative.

Returns
A string containing the contents of the XML file.

Example
var xmlSource = MMXSLT.getXML(this.fileDataSetURL) ;



DREAMWEAVER CS4 API REFERENCE
Document

MMXSLT.getXMLSchema()

Availability
Dreamweaver 8.

Description
This function returns the schema tree for the specified XML file.

Arguments
schemaURI, {bRefresh}

+ The schemaURI argument, which is required, is a string that is a reference to a local or remote XML file.

« The bRefresh argument, which is optional, is a Boolean value: true forces refreshing of the schema; false returns
the copy of the schema from the XML schema cache. The default value is false.

Returns
A string that contains the XML schema tree.

Example
The following example gets the schema tree from the XML schema cache for menus.xml:

var theSchema = MMXSLT.getXMLSchema ("file:///c:/Program Files/Adobe/-
Adobe Dreamweaver CS4/Configuration/Menus/menus.xml"");

MMXSLT.getXMLSourceURI()

Availability
Dreamweaver 8.

Description
This function gets a reference to the XML source document associated with the current XSLT document.

Arguments
xsltfileURI, {bUseTempForRemote}

« The xsltfileURI argument is a string that is the local file URI that points to the location of the XSL file.

+ The bUseTempForRemote argument, which is optional, is a Boolean value: true returns a reference to the
temporary XML file (for example, file:///C: /Documents and Settings/username/Local
Settings/Temporary Internet Files/Content.IE5/GTSLQ9KZ/rss[1] .xml) thatis downloaded when the
original XML file is remote (for example, http://myHost/rssfeed.xml); false returns an absolute reference.

Returns
A string that contains the reference to the XML source document associated with the current XSLT document. If the

XML source reference is a remote reference, the function returns the downloaded filepath to the temporary location.

Example

The following example gets the reference to the XML source document associated with c:\myxslt\myxsltdocument.xsl:

278



DREAMWEAVER CS4 API REFERENCE | 279
Document

var theXMLSource = MMXSLT.getXMLSourceURI ("file:///c:/myxslt/myxsltdocument.xsl") ;

MMXSLT.launchXMLSourceDialog()

Availability
Dreamweaver 8.

Description
This function prompts the user to specify the XML source document that is associated with the current XSLT
document. The user can choose either a local or remote reference to an XML document.

Arguments
{xsltfileURI}, {bUseTempForRemote}, {bAddSchemaReference}

« The xsltfileURI argument is optional. It is a string that is the local file URI that points to the location of the XSL file.
If this argument is omitted, it defaults to the current open document.

+ The bUseTempForRemote argument, which is optional, is a Boolean value: true returns a reference to the
temporary XML file (for example, file:///C:/Documents and Settings/username/Local
Settings/Temporary Internet Files/Content.IE5/GTSLQ9KZ/rss[1].xml) thatis downloaded when the
original XML file is remote (for example, http://myHost /rssfeed.xml); false returns an absolute reference.

+ The bAddSchemaReference argument is optional. It adds a reference in the current document that points to the
XML source URI that is specified in the XML source dialog box. If this argument is omitted, it defaults to the
current open document.

Returns
A string that contains the reference to the XML source document associated with the current XSLT document. If the
XML source reference is a remote reference, the function returns the downloaded filepath to the temporary location.

Example
The following example launches the XML Source Document dialog box without specifying any values:

MMXSLT.launchXMLSourceDialog ()



Chapter 15: Page content

The Adobe®” Dreamweaver® page content functions perform operations that affect the content of a web page. The
operations include the following:

Manipulating assets in the Assets panel
Adding behaviors
+ Cutting and pasting elements from the Clipboard
+ Applying a template
+ Inserting a code snippet
+ Creating Spry XML data sets
Enhanced editing of Spry and other widgets
Inserting widgets

« Creating page layouts that work well across multiple browsers using The browser compatibility check functions

Assets panel functions

Assets panel functions, which are programmed into the API as an asset panel, let you manage and use the elements in
the Assets panel (templates, libraries, images, Adobe Shockwave and Adobe Flash content, URLSs, colors, and scripts).

dreamweaver.assetPalette.addToFavoritesFrom Document()

Availability
Dreamweaver 4.

Description
Adds the element that is selected in the Document window to the Favorites list. This function handles only images,

Shockwave files, Flash files, text font colors, and URLs.

Arguments
None.

Returns
Nothing.

dreamweaver.assetPalette.addToFavoritesFromSiteAssets()

Availability
Dreamweaver 4.

280



DREAMWEAVER CS4 API REFERENCE
Page content

Description
Adds elements that are selected in the Site list to the Favorites list and gives each item a nickname in the Favorites list.
This function does not remove the element from the Site list.

Arguments
None.

Returns
Nothing.

dreamweaver.assetPalette.addToFavoritesFromSiteWindow()

Availability
Dreamweaver 4.

Description
Adds the elements that are selected in the Site panel to the Favorites list. This function handles only images, movies,
scripts, Shockwave files, and FLA files. If other folders or files are selected, they are ignored.

Arguments
None.

Returns
Nothing.

dreamweaver.assetPalette.copyToSite()

Availability
Dreamweaver 4.

Description
Copies selected elements to another site and puts them in that site’s Favorites list. If the elements are files (other than
colors or URLs), the actual file is copied into that site.

Arguments
targetSite

The targetSite argument is the name of the target site, which the site.getSites () call returns.

Returns
Nothing.

dreamweaver.assetPalette.edit()

Availability
Dreamweaver 4.

281



DREAMWEAVER CS4 API REFERENCE | 282
Page content

Description

Edits selected elements with primary external editor or Custom Edit control. For colors, the color picker appears. For
URLSs, a dialog box appears and prompts the user for a URL and a nickname. This function is not available for the Site
list of colors and URLs.

Arguments
None.

Returns
Nothing.

Enabler
See “dreamweaver.assetPalette.canEdit()” on page 460.

dreamweaver.assetPalette.getSelectedCategory()

Availability
Dreamweaver 4.

Description
Returns the currently selected category.

Arguments
None.

Returns

The currently selected category, which can be one of the following: "templates", "library", "images", "movies",

"shockwave", "flash", "scripts", "colors", Or "urls".

dreamweaver.assetPalette.getSelectedltems()

Availability
Dreamweaver 4.

Description
Returns an array of the selected items in the Assets panel, either in the Site or Favorites list.

Arguments
None.

Returns
An array of the following three strings for each selected item:

+ The name string, which is the name/filename or nickname that appears in the Assets panel.

+ The value string, which is the full path, full URL, or color value, depending on the selected item.



DREAMWEAVER CS4 API REFERENCE | 283
Page content

+ The type string, which is either "folder" or one of the following categories: "templates”, "library", "images",

"movies", "shockwave", "flash", "scripts", "colors", Or "urls".

Note: If nothing is selected in the Assets panel, this function returns an array that contains one empty string.

Example
If URLs is the category, and a folder MyFolderName and a URL MyFavoriteURL are both selected in the Favorites list,
the function returns the following list:

items [0] = "MyFolderName"

items[1] = "//path/FolderName"

items[2] = "folder"

items[3] = "MyFavoriteURL"

items[4] = "http://www.MyFavoriteURL.com"
items [5] = "urls"

dreamweaver.assetPalette.getSelectedView()

Availability
Dreamweaver 4.

Description

Indicates which list is currently shown in the Assets panel.

Arguments
None.

Returns

Returns a string that has a value of either "site" or "favorites".

dreamweaver.assetPalette.insertOrApply()

Availability
Dreamweaver 4.

Description

Inserts selected elements or applies the element to the current selection. It applies templates, colors, and URLs to the
selection; it also inserts URLs and other elements at the insertion point. If a document isn’t open, the function is not
available.

Arguments
None.

Returns
Nothing.

Enabler
See “dreamweaver.assetPalette.canInsertOrApply()” on page 461.



DREAMWEAVER CS4 API REFERENCE | 284
Page content

dreamweaver.assetPalette.locatelnSite()

Availability
Dreamweaver 4.

Description

Selects files that are associated with the selected elements in the local side of the Site panel. This function does not work
for colors or URLs. It is available in the Site list and the Favorites list. If a folder is selected in the Favorites list, the
folder is ignored.

Arguments
None.

Returns
Nothing.

dreamweaver.assetPalette.newAsset()

Availability
Dreamweaver 4.

Description

Creates a new element for the current category in the Favorites list. For library and templates, this is a new blank library
or template file that the user can name immediately. For colors, the color picker appears. For URLs, a dialog box
appears and prompts the user for a URL and a nickname. This function is not available for images, Shockwave files,
Flash files, or scripts.

Arguments
None.

Returns
Nothing.

dreamweaver.assetPalette.newFolder()

Availability
Dreamweaver 4.

Description
Creates a new folder in the current category with the default name (untitled) and puts a text box around the default
name. It is available only in the Favorites list.

Arguments
None.



DREAMWEAVER CS4 API REFERENCE
Page content

Returns
Nothing.

dreamweaver.assetPalette.recreateLibraryFrom Document()

Availability
Dreamweaver 4.

Description

Replaces the deprecated 1ibraryPalette function, recreateLibraryFromDocument (). It creates a Library item
(LBI) file for the selected instance of a library item in the current document. This function is equivalent to clicking
Recreate in the Property inspector.

Arguments
None.

Returns
Nothing.

dreamweaver.assetPalette.refreshSiteAssets()

Availability
Dreamweaver 4.

Description
Scans the site, switches to the Site list, and populates the list.

Arguments
None.

Returns
Nothing.

dreamweaver.assetPalette.removeFromFavorites()

Availability
Dreamweaver 4.

Description

Removes the selected elements from the Favorites list. This function does not delete the actual file on disk, except in
the case of a library or template where the user is prompted before the file is deleted. It works only in the Favorites list
or if the category is Library or Templates.

Arguments
None.

285



DREAMWEAVER CS4 API REFERENCE | 286
Page content

Returns
Nothing.

dreamweaver.assetPalette.renameNickname()

Availability
Dreamweaver 4.

Description
Edits the folder name or the file’s nickname by displaying a text box around the existing nickname. It is available only
in the Favorites list or in the Library or Template category.

Arguments
None.

Returns
Nothing.

dreamweaver.assetPalette.setSelectedCategory()

Availability
Dreamweaver 4.

Description

Switches to show a different category.

Arguments
categoryType

+ The categoryType argument can be one of the following categories: "templates", "library", "images",

"movies", "shockwave", "flash", "scripts", "colors", Or "urls".

Returns
Nothing.

dreamweaver.assetPalette.setSelectedView()

Availability
Dreamweaver 4.

Description
Switches the display to show either the Site list or the Favorites list.



Arguments
viewType

+ The viewType argument is a string that can be "site" or "favorites".

Returns
Nothing.

dreamweaver.referencePalette.getFontSize()

Availability
Dreamweaver 4.

Description
Returns the current font size of the Reference panel display region.

Arguments

None.

Returns
The relative font size as small, medium, or large.

dreamweaver.referencePalette.setFontSize()

Availability
Dreamweaver 4.

Description
Changes the font size that appears in the Reference panel.

Arguments
fontSize

DREAMWEAVER CS4 API REFERENCE
Page content

« The fontSize argument is one of the following relative sizes: small, medium, or large.

Returns
Nothing.

Behavior functions

Behavior functions let you add behaviors to, and remove them from, an object, find out which behaviors are attached
to an object, get information about the object to which a behavior is attached, and so on. Methods of the
dreamweaver .behaviorInspector object either control or act on only the selection in the Behaviors panel, not the

selection in the current document.

287



DREAMWEAVER CS4 API REFERENCE
Page content

dom.addBehavior()

Availability
Dreamweaver 3.

Description
Adds a new event/action pair to the selected element. This function is valid only for the active document.

Arguments

event, action, {eventBasedIndex}

+ The event argument is the JavaScript event handler that should attach the behavior to the element (for example,

onClick, onMouseOver, Or onLoad) .

+ The action argument is the function call that applyBehavior () returns if the action is added using the Behaviors
panel (for example, "MM_popupMsg ('Hello World')").

+ The eventBasedIndex argument, which is optional, is the position at which this action should be added. The
eventBasedIndex argument is a zero-based index; if two actions already are associated with the specified event, and
you specify eventBasedIndex as 1, this action executes between the other two. If you omit this argument, the action
is added after all existing actions for the specified event.

Returns
Nothing.

dom.getBehavior()

Availability
Dreamweaver 3.

Description
Gets the action at the specified position within the specified event. This function acts on the current selection and is
valid only for the active document.

Arguments
event, {eventBasedIndex}

+ The event argument is the JavaScript event handler through which the action is attached to the element (for
example, onClick, onMouseOver, Or onLoad).

+ The eventBasedIndex argument, which is optional, is the position of the action to get. For example, if two actions
are associated with the specified event, 0 is first and 1 is second. If you omit this argument, the function returns all
the actions for the specified event.

Returns

A string that represents the function call (for example,

"MM_swapImage ('document .Imagel', 'document.Imagel', 'foo.gif', '#933292969950')") or an array of
strings if eventBasedIndex is omitted.

288



DREAMWEAVER CS4 API REFERENCE
Page content

dom.reapplyBehaviors()

Availability
Dreamweaver 3.

Description
Checks to make sure that the functions that are associated with any behavior calls on the specified node are in the HEAD
section of the document and inserts them if they are missing.

Arguments

elementNode

+ The elementNode argument is an element node within the current document. If you omit the argument,
Dreamweaver checks all element nodes in the document for orphaned behavior calls.

Returns
Nothing.

dom.removeBehavior()

Availability
Dreamweaver 3.

Description
Removes the action at the specified position within the specified event. This function acts on the current selection and
is valid only for the active document.

Arguments
event, {eventBasedIndex}

+ The event argument is the event handler through which the action is attached to the element (for example, onclick,

onMouseOver, Or onLoad). If you omit this argument, all actions are removed from the element.

+ The eventBasedIndex argument, which is optional, is the position of the action to be removed. For example, if two
actions are associated with the specified event, 0 is first and 1 is second. If you omit this argument, all the actions
for the specified event are removed.

Returns
Nothing.

dreamweaver.getBehaviorElement()

Availability
Dreamweaver 2, and updated in CS4.

Description
Gets the DOM object that corresponds to the tag to which the behavior is being applied. This function is applicable
only in Behavior action files.

289



DREAMWEAVER CS4 API REFERENCE | 290
Page content

Arguments
None.

Returns

A DOM object or a nul1 value. This function returns a null value under the following circumstances:

«  When the current script is not executing within the context of the Behaviors panel

« When dreamweaver.popupAction () starts the currently executing script

«  When the Behaviors panel is attaching an event to a link wrapper and the link wrapper does not yet exist

+  When this function appears outside an action file

Example

The dreamweaver.getBehaviorElement () function can be used in the same way as
“dreamweaver.getBehaviorTag()” on page 290 to determine whether the selected action is appropriate for the selected
HTML tag. The difference is that it gives you access to more information about the tag and its attributes. If you write
an action that can be applied only to a hypertext link (a HREF) that does not target another frame or window, you can
use the getBehaviorElement () function. You can use the getBehaviorElement() function as part of the function that
initializes the user interface for the Parameters dialog box. It is shown in the following example:

function initializeUI () {
var theTag = dreamweaver.getBehaviorElement () ;

var CANBEAPPLIED = (theTag.tagName == "A" && -
theTag.getAttribute ("HREF") != null && -
theTag.getAttribute ("TARGET") == null);

if (CANBEAPPLIED) {
// display the action user interface
} elsef
// display a helpful message that tells the user
// that this action can only be applied to a
// link without an explicit target]

dreamweaver.getBehaviorTag()

Availability
Dreamweaver 1.2.

Description
Gets the source of the tag to which the behavior is being applied. This function is applicable only in action files.

Arguments
None.

Returns

A string that represents the source of the tag. This is the same string that passes as an argument (HTMLelement) to the
canAcceptBehavior () function. If this function appears outside an action file, the return value is an empty string.



DREAMWEAVER CS4 API REFERENCE
Page content

Example
If you write an action that can be applied only to a hypertext link (A HREF), you can use the getBehaviorTag ()
function, as the following example shows, in the function that initializes the user interface for the Parameters dialog box:

function initializeUI () {
var theTag = dreamweaver.getBehaviorTag() .toUpperCase() ;
var CANBEAPPLIED = (theTag.indexOf ('HREF') != -1));
if (CANBEAPPLIED) (
// display the action UI
} elsef
// display a helpful message that tells the user
// that this action can only be applied to a
// hyperlink

dreamweaver.popupAction()

Availability
Dreamweaver 2, and updated in CS4.

Description

Starts a Parameters dialog box for the specified behavior action. To the user, the effect is the same as selecting the action
from the Actions pop-up menu in the Behaviors panel. This function lets extension files other than actions attach
behaviors to objects in the document of the user. It blocks other edits until the user dismisses the dialog box.

Note: This function can be called within the objectTag () function or in any script in a command file or in the Property
inspector file.

Arguments

actionName, {funcCall}

+ The actionName argument is a string that contains the name of a file in the Configuration/Behaviors/Actions
folder. The file contains a JavaScript behavior action (for example, "Swap Image.htm").

+ The funccall argument, which is optional, is a string that contains a function call for the action that is specified
in actionName; for example, "MM_SwapImage (. ..)". The applyBehavior () function in the action file supplies
this argument, if specified.

Returns

The function call for the behavior action. When the user clicks OK in the Parameters dialog box, the behavior is added
to the current document. The appropriate functions are added to the HEAD section of the document. HTML is added
to the top of the BoDY section, and other edits can be made to the document. The function call (for example,
"MM_SwapImage(...)")is not added to document, but becomes the return value of this function.

dreamweaver.behaviorlnspector.getBehaviorAt()

Availability
Dreamweaver 3.

291



DREAMWEAVER CS4 API REFERENCE | 292
Page content

Description

Gets the event/action pair at the specified position in the Behaviors panel.

Arguments
positionIndex

« The positionIndex argument is the position of the action in the Behaviors panel. The first action in the list is at
position 0.

Returns

An array of two items:
+ An event handler

+ A function call or JavaScript statement

Example
Because positionIndex is a zero-based index, if the Behaviors panel displays the list, a call to the
dreamweaver.behaviorInspector.getBehaviorat (2) function returns an array that contains two strings:

"onMouseOver" and "MM_changeProp ('document .moon', 'document .moon', 'src', 'sun.gif', 'MG') ".

dreamweaver.behaviorinspector.getBehaviorCount()

Availability
Dreamweaver 3.

Description

Counts the number of actions that are attached to the currently selected element through event handlers.

Arguments
None.

Returns

An integer that represents the number of actions that are attached to the element. This number is equivalent to the
number of actions that are visible in the Behaviors panel and includes Dreamweaver behavior actions and custom
JavaScript.

Example

A call to dreamweaver.behaviorInspector.getBehaviorCount () for the selected link <a
HREF="javascript:setCookie ()" onClick="MM_popupMsg('A cookie has been
set.') ;parent.rightframe.location.href='aftercookie.html'"> returns 2.

dreamweaver.behaviorinspector.getSelectedBehavior()

Availability
Dreamweaver 3.



DREAMWEAVER CS4 API REFERENCE | 293
Page content

Description
Gets the position of the selected action in the Behaviors panel.

Arguments
None.

Returns
An integer that represents the position of the selected action in the Behaviors panel, or -1 if no action is selected.

Example
If the first action in the Behaviors panel is selected, a call to the

dreamweaver .behaviorInspector.getSelectedBehavior () function returns 0.

dreamweaver.behaviorlnspector.moveBehaviorDown()

Availability
Dreamweaver 3.

Description
Moves a behavior action lower in sequence by changing its execution order within the scope of an event.

Arguments
positionIndex

+ The positionIndex argument is the position of the action in the Behaviors panel. The first action in the list is at
position 0.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 294
Page content

Example

Calling the dreamweaver.behaviorInspector.moveBehaviorDown (2) function swaps the positions of the Preload
Images and the Change Property actions on the onMouseDown event. Calling the

dreamweaver .behaviorInspector.moveBehaviorDown () function for any other position has no effect because the
onClick and onFocus events each have only one associated behavior, and the behavior at position 3 is already at the
bottom of the onMouseDown event group.

TAG INSPECTOR =

Attributes | Behaviors | Tag <body>

onFocus ySound
onMouseDown ChangeProperty

Seealso

“dreamweaver.behaviorInspector.getSelectedBehavior()” on page 292

dreamweaver.behaviorinspector.moveBehaviorUp()

Availability
Dreamweaver 3.

Description
Moves a behavior higher in sequence by changing its execution order within the scope of an event.

Arguments

positionIndex

+ The positionIndex argument is the position of the action in the Behaviors panel. The first action in the list is at
position 0.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 295
Page content

Example

Calling the dreamweaver.behaviorInspector.moveBehaviorUp (3) function swaps the positions of the Preload
Images and the Change Property actions on the onMouseover event. Calling the

dreamweaver .behaviorInspector.moveBehaviorUp () function for any other position has no effect because the
onClick and onFocus events each have only one associated behavior, and the behavior at position 2 is already at the
top of the onMouseDown event group.

TAG INSPECTOR =

Attributes | Behaviors | Tag <body>

onFocus ySound
onMouseDown ChangeProperty

Seealso
“dreamweaver.behaviorInspector.getSelectedBehavior()” on page 292

dreamweaver.behaviorinspector.setSelectedBehavior()

Availability
Dreamweaver 3.

Description
Selects the action at the specified position in the Behaviors panel.

Arguments
positionIndex

+ The positionIndex argument is the position of the action in the Behaviors panel. The first action in the list is at
position 0. To deselect all actions, specify a positionIndex of -1. Specifying a position for which no action exists is

equivalent to specifying -1.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 296
Page content

Example
Calling the dreamweaver.behaviorInspector.setSelection (2) function selects the Change Property action that
is associated with the onMouseDown event:

TAG INSPECTOR ~=

Attributes | Behaviors | Tag <body >

ornMouseDown hangeProperty

See also

“dreamweaver.behaviorInspector.getSelectedBehavior()” on page 292

Clipboard functions

Clipboard functions are related to cutting, copying, and pasting. On the Macintosh, some Clipboard functions can also
apply to text fields in dialog boxes and floating panels. Functions that can operate in text fields are implemented as
methods of the dreamweaver object and as methods of the DOM object. The dreamweaver version of the function
operates on the selection in the active window: the current Document window, the Code inspector, or the Site panel.
On the Macintosh, the function can also operate on the selection in a text box if it is the current field. The DOM version
of the function always operates on the selection in the specified document.

dom.clipCopy()

Availability
Dreamweaver 3.

Description
Copies the selection, including any HTML markup that defines the selection, to the Clipboard.

Arguments
None.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 297
Page content

dom.clipCopyText()

Availability
Dreamweaver 3.

Description
Copies the selected text to the Clipboard, ignoring any HTML markup.

Arguments

None.

Returns
Nothing.

Enabler
See “dom.canClipCopyText()” on page 451.

dom.clipCut()

Availability
Dreamweaver 3.

Description
Removes the selection, including any HTML markup that defines the selection, to the Clipboard.

Arguments

None.

Returns
Nothing.

dom.clipPaste()

Availability
Dreamweaver 3.

Description
Pastes the contents of the Clipboard into the current document at the current insertion point or in place of the current
selection. If the Clipboard contains HTML, it is interpreted as such.

Arguments
None.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 298
Page content

Enabler
See “dom.canClipPaste()” on page 451.

Example
If the Clipboard contains ABC Widgets, a call to dw.getDocumentDOM () .clipPaste () results in the following figure:

1 <!DOCTYPE HTML PUELIC "-//W3C//DTD HTML 4.01 Transitional//EN"

2 "htrp: /A wi . org/TR/htnl 4/ loose. dod™s

3 <html>

4 <head-

5 <titlexUntitled Document</title>

G <meta http-emquis=""Content-Type” content="text/html; charset=iso-8559-1">
7 </heads

g
9

<body>
10 ABC Uidgetsl<,-’hody>
11 </htul>
1z

<

ABC Widgetd|

dreamweaver.clipCopy()

Availability
Dreamweaver 3.

Description
Copies the current selection from the active Document window, dialog box, floating panel, or Site panel to the

Clipboard.

Arguments
None.

Returns
Nothing.

Enabler
See “dreamweaver.canClipCopy()” on page 461.

dreamweaver.clipCut()

Availability
Dreamweaver 3.

Description
Removes the selection from the active Document window, dialog box, floating panel, or Site panel to the Clipboard.

Arguments
None.



DREAMWEAVER CS4 API REFERENCE | 299
Page content

Returns
Nothing.

Enabler

See “dreamweaver.canClipCut()” on page 461.

dreamweaver.clipPaste()

Availability
Dreamweaver 3. Added the strPasteOption argument in Dreamweaver 8.

Description

Pastes the contents of the Clipboard into the current document, dialog box, floating panel, or Site panel.

Arguments
{strPasteOption}

+ The strPasteOption argument, which is optional, specifies the type of paste to perform. Values include: "text",

"structured","basicFormat",and"fullFormatW

Returns
Nothing.

Enabler
See “dreamweaver.canClipPaste()” on page 462.

Example
The following example pasts the contents of the Clipboard as text:

dw.clipPaste ("text") ;

dreamweaver.getClipboardText()

Availability
Dreamweaver 3.

Description
Gets all the text that is stored on the Clipboard.

Arguments
{bAsText}

+ The bAsText Boolean value, which is optional, specifies whether the Clipboard content is retrieved as text. If
bAsText is a value of true, the Clipboard content is retrieved as text. If bAsText is a value of false, the content
retains formatting. This argument defaults to false.



DREAMWEAVER CS4 API REFERENCE
Page content

Returns

A string that contains the contents of the Clipboard, if the Clipboard contains text (which can be HTML); otherwise,
it returns nothing.

Example
If dreamweaver.getClipboardText () returns "text <bs>bold</b> text",
dreamweaver.getClipboardText (true) returns "text bold text".

Library and template functions

Library and template functions handle operations that are related to library items and templates, such as creating,
updating, and breaking links between a document and a template or library item. Methods of the
dreamweaver.libraryPalette object either control or act on the selection in the Assets panel library items, not in
the current document. Likewise, methods of the dreamweaver. templatePalette object control or act on the
selection in the Assets panel template objects.

dom.applyTemplate()

Availability
Dreamweaver 3.

Description

Applies a template to the current document. If no argument is supplied, the Select Template dialog box appears. This
function is valid only for the document that has focus.

Arguments

{templateURL}, bMaintainLink

« The templateURL argument is the path to a template in the current site, which is expressed as a file:// URL.

 The bMaintainLink argument is a Boolean value that indicates whether to maintain the link to the original template
(true) or not (false).

Returns
Nothing.

Enabler
See “dom.canApplyTemplate()” on page 450.

dom.detachFromLibrary()

Availability
Dreamweaver 3.

300



DREAMWEAVER CS4 API REFERENCE | 301
Page content

Description
Detaches the selected library item instance from its associated LBI file by removing the locking tags from around the
selection. This function is equivalent to clicking Detach from Original in the Property inspector.

Arguments
None.

Returns
Nothing.

dom.detachFromTemplate()

Availability
Dreamweaver 3.

Description

Detaches the current document from its associated template.

Arguments
None.

Returns
Nothing.

dom.getAttachedTemplate()

Availability
Dreamweaver 3.

Description
Gets the path of the template that is associated with the document.

Arguments

None.

Returns
A string that contains the path of the template, which is expressed as a file:// URL.

dom.getEditableRegionList()

Availability
Dreamweaver 3.

Description
Gets a list of all the editable regions in the body of the document.



Arguments
None.

Returns

An array of element nodes.

Example
“dom.getSelectedEditableRegion()” on page 302.

dom.getisLibraryDocument()

Availability
Dreamweaver 3.

Description

Determines whether the document is a library item.

Arguments
None.

Returns
A Boolean value that indicates whether the document is an LBI file.

dom.getlsTemplateDocument()

Availability
Dreamweaver 3.

Description
Determines whether the document is a template.

Arguments

None.

Returns

A Boolean value that indicates whether the document is a DWT file.

dom.getSelectedEditableRegion()

Availability
Dreamweaver 3.

Description

DREAMWEAVER CS4 API REFERENCE
Page content

If the selection or insertion point is inside an editable region, this function gets the position of the editable region

among all others in the body of the document.

302



DREAMWEAVER CS4 API REFERENCE | 303
Page content

Arguments
None.

Returns
An index into the array that the dom.getEditbableRegionList () function returns. For more information, see
“dom.getEditableRegionList()” on page 301.

Example

The following code shows a dialog box with the contents of the selected editable region:

var theDOM = dw.getDocumentDOM () ;

var edRegs = theDOM.getEditableRegionList () ;
var selReg = theDOM.getSelectedEditableRegion() ;
alert (edRegs [selReg] . innerHTML) ;

dom.insertLibraryltem()

Availability
Dreamweaver 3.

Description
Inserts an instance of a library item into the document.

Arguments
libraryItem URL

« The libraryltemURL argument is the path to an LBI file, which is expressed as a file:// URL.

Returns
Nothing.

dom.markSelectionAsEditable()

Availability
Dreamweaver 3.

Description
Displays the New Editable Region dialog box. When the user clicks New Region, Dreamweaver marks the selection as
editable and doesn’t change any text.

Arguments
None.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 304
Page content

Enabler
See “dom.canMarkSelectionAsEditable()” on page 456.

dom.newEditableRegion()

Availability
Dreamweaver 3.

Description
Displays the New Editable Region dialog box. When the user clicks New Region, Dreamweaver inserts the name of the

region, surrounded by curly braces ({}), into the document at the insertion point location.

Arguments
None.

Returns
Nothing.

Enabler
See “dom.canMakeNewEditableRegion()” on page 456.

dom.removeEditableRegion()

Availability
Dreamweaver 3.

Description
Removes an editable region from the document. If the editable region contains any content, the content is preserved;

only the editable region markers are removed.

Arguments
None.

Returns
Nothing.

Enabler
See “dom.canRemoveEditableRegion()” on page 457.

dom.updateCurrentPage()

Availability
Dreamweaver 3.



DREAMWEAVER CS4 API REFERENCE | 305
Page content

Description

Updates the document’s library items, templates, or both. This function is valid only for the active document.

Arguments
{typeOfUpdate}

« The optional typeOfUpdate argument must be "library", "template", or "both". If you omit the argument, the
default is "both".

Returns
Nothing.

dreamweaver.updatePages()

Availability
Dreamweaver 3.

Description
Opens the Update Pages dialog box and selects the specified options.

Arguments
{typeOfUpdate}

+ The optional typeOfUpdate argument must be "library", "template", or "both", if you specify it. If the
argument is omitted, it defaults to "both".

Returns
Nothing.

Snippets panel functions

Using Dreamweaver, web developers can edit and save reusable blocks of code in the Snippets panel and retrieve them
as needed.

The Snippets panel stores each code snippet in a CSN file within the Configuration/Snippets folder. Snippets that come
with Dreamweaver are stored in the following folders:

+ Accessible

« Comments

« Content_tables
+ Filelist.txt

« Footers

+ Form_elements
+ Headers

+ Javascript



+ Meta
+ Navigation

o Text

DREAMWEAVER CS4 APl REFERENCE

Page content

Snippet files are XML documents, so you can specify the encoding in the XML directive, as shown in the following

example:

<?XML version="1.0" encoding="utf-8">

The following sample shows a snippet file:

<snippet name="Detect Flash" description="VBscript to check for Flash ActiveX control"

preview="code" factory="true" type="wrap" >

<insertText location="beforeSelection">

<! [CDATA[ ---

</insertText>

---- code --------- 11>

<insertText location="afterSelection">

<! [CDATA[ ---

</insertText>
</snippet>

---- code --------- 11>

Snippet tags in CSN files have the following attributes:

Attribute Description

name Name of snippet

description Snippet description

preview Type of preview: "code" to display the snippet in preview area or "design" to
display the snippet rendered in HTML in the Preview area.

type If the snippet is used to wrap a user selection, "wrap"; if the snippet should be
inserted before the selection, "block".

You can use the following methods to add Snippets panel functions to your extensions.

dreamweaver.snippetPalette.getCurrentSnippetPath()

Availability
Dreamweaver MX 2004.

Description

Returns the path to the snippet that is currently selected in the Snippets panel.

Arguments

None.

Returns

The path, relative to the Snippets folder, to the snippet selected in the Snippets panel. Returns an empty string if no

snippet is selected.

306



DREAMWEAVER CS4 APl REFERENCE

dreamweaver.snippetPalette.newFolder()

Availability
Dreamweaver MX.

Description

Creates a new folder with the default name untitled and puts a text box around the default name.

Arguments

None.

Returns
Nothing.

dreamweaver.snippetPalette.newSnippet()

Availability
Dreamweaver MX.

Description
Opens the Add Snippet dialog box and gives it focus.

Arguments
None.

Returns
Nothing.

dreamweaver.snippetPalette.editSnippet()

Availability
Dreamweaver MX.

Description
Opens the Edit Snippet dialog box and gives it focus, enabling editing for the selected element.

Arguments
None.

Returns
Nothing.

Enabler
See “dreamweaver.snippetpalette.canEditSnippet()” on page 477.

Page content

307



DREAMWEAVER CS4 API REFERENCE
Page content

dreamweaver.snippetPalette.insert()

Availability
Dreamweaver MX.

Description
Applies the selected snippet from the Snippets panel to the current selection.

Arguments

None.

Returns
Nothing.

Enabler
See “dreamweaver.snippetpalette.canInsert()” on page 478.

dreamweaver.snippetPalette.insertSnippet()

Availability
Dreamweaver MX.

Description
Inserts the indicated snippet into the current selection.

Arguments

path

+ A string that specifies the path to the snippet relative to the Snippets folder.

Returns
A Boolean value.

Enabler
See “dreamweaver.snippetpalette.canInsert()” on page 478.

Example
The following call to the dw. snippetPalette.insertSnippet () function inserts the code snippet at the location
specified by the argument into the current document at the insertion point:

dw.snippetPalette.insertSnippet (' Text\\Different Link Color.csn');

dreamweaver.snippetPalette.rename()

Availability
Dreamweaver MX.

308



DREAMWEAVER CS4 API REFERENCE
Page content

Description
Activates a text box around the selected folder name or file nickname and lets you edit the selected element.

Arguments
None.

Returns
Nothing.

dreamweaver.snippetPalette.remove()

Availability
Dreamweaver MX.

Description
Deletes the selected element or folder from the Snippets panel and deletes the file from the disk.

Returns
Nothing.

Spry widget editing functions

Dreamweaver CS4 provides enhanced editing functions for Spry and other dynamic widgets.

element.getTranslatedAttribute()

Availability
Dreamweaver CS3.

Description
This function is the same as the W3C getAttribute () function, but acts on translated attributes. The
element .getTranslatedAttribute () function retrieves an attribute value by name.

Arguments
name

+ The name argument is a DOMString that is the name of the attribute to retrieve.

Returns
Returns the name of the attribute as a DOMString. If the attribute does not have a specified or default value, this
function returns an empty string.

309



DREAMWEAVER CS4 API REFERENCE | 310
Page content

element.removeTranslatedAttribute()

Availability
Dreamweaver CS3.

Description

This function is the same as the W3C removeattribute () function, but acts on translated attributes. The

element . removeTranslatedAttribute () function removes an attribute by name. If the attribute has a default value,
an attribute appears containing the default value and the corresponding namespace URI, local name, and prefix, if
applicable.

Arguments
name

+ The name argument is a DOMString that is the name of the attribute to remove.

Returns
Nothing.

element.setTranslatedAttribute()

Availability
Dreamweaver CS3.

Description

This function is the same as the W3C setattribute () function, but acts on translated attributes. The

element . setTranslatedAttribute () function adds a new attribute with the value specified. If an attribute with the
specified name already exists in the element, its value is changed to that specified in the value argument.

The value is a simple string; it is not parsed as it is being set. Therefore, any syntax included in the string is treated as
simple text, and must be appropriately escaped by the implementation when it is written out.

To assign an attribute value that contains syntax intended to be recognized as an entity reference, you must create an
attr node plus any Text and EntityReference nodes, build the appropriate subtree, and use setAttributeNode to
assign it as the value of an attribute.

Arguments
name, value

+ The name argument is a DOMString that is the name of the attribute to create or change.

« The value argument is a DOMString that is the value to set for the attribute.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE | 311
Page content

element.translatedClassName

Availability
Dreamweaver CS3.

Description
This function is the same as the element . ClassName () function, but acts on the translated className attribute.

element.translatedStyle

Availability
Dreamweaver CS3.

Description
This function is the same as the element . style () function, but acts on the translated style attribute.

Example
var divl = dom.getElementById("divl");
divl.translatedStyle.display = "none";

Inserting Spry widgets functions

Dreamweaver provides the following functions to facilitate inserting Spry widgets.

dom.addJavaScript()

Availability
Dreamweaver CS3.

Description

This function tells Dreamweaver to insert a JavaScript block either in the head or in the body. If the location is inside
the body, the JavaScript block is inserted immediately before the </body> tag. If the document already has a JavaScript
block there, Dreamweaver does not insert a new <script> tag, but appends "code" to the content of the <scripts.

Arguments
code, insideHead

+ The code argument is a string containing the JavaScript code to be inserted into the page

+ The insideHead argument is a Boolean value that indicates whether to insert the JavaScript block in the head or
in the body. The default is t rue, which inserts the code in the head. If £alse, the code is inserted in the body
immediately before the </body> tag. This argument is optional.

Returns
Nothing.



DREAMWEAVER CS4 API REFERENCE
Page content

Example

function objectTag()

{

var dom = dw.getDocumentDOM() ;

var id = dwscripts.getUniqueId("accordion") ;

var code = "new Accordion('" + id + "',250,{duration:200,step:20})";
dom.addJavaScript (code, false);

return retVal;

dom.copyAssets()

Availability

Dreamweaver CS3, and updated in CS4.

Description

An extension author can use this API to copy external dependent files to the site of the user. The author can also add
the necessary file references into the head of the page.

Arguments

assetArray

An array of JavaScript objects. Each JavaScript object has srcURL, destURL, referenceType, useDefaultFolder,
and documentRelativefields.

The srcURL argument is a path to the asset, expressed asa file://URL.

The destURL argument is a relative path specifying the location to copy the asset to. What destURL is relative to
depends on the value of useDefaultFolder. If useDefaultFolderis true, the path is relative to the default Asset
folder. If useDefaultFolder is false, the path is relative to the site root. If the site is not defined, the path is
relative to the document. See the useDefaultFolder description.

The referenceType argument is necessary for the extension author to insert a file reference into the head. The
valid values for referenceType are as follows:

+ link toinserta LINK tag for an external CSS file

+ import toinserta STYLE tag with @import

+ javascript toinserta SCRIPT tag with type=text/javascript
« vbscript toinserta SCRIPT tag with type=text/vbscript

« nnonot to insert a reference in the head

The useDefaultFolder argument is a Boolean value that indicates whether the path specified in destURLis
relative to the default Assets folder. When the value is false, meaning that this property is not set, destURL is
assumed to be relative to the site root. If the site is not defined, destURL is assumed to be relative to the document.
The default value of this argument is false.

The documentRelative argument isa Boolean value. The default value is £alse. When this parameter is false,
the assets are copied to the folder specified in destURL relative to the site root, when the file is saved in a site. If the
value is true, then the assets are copied to the path specified in destURL relative to the document.

312



DREAMWEAVER CS4 API REFERENCE | 313
Page content

Returns

An array of strings that are expressed as file://URLs. Each string represents a file that was included in the head of the
document through a script or a link tag.

Example

function objectTag()

{

var dom = dw.getDocumentDOM () ;

var assetList = new Array();

var assetInfo = new AssetInfo("Objects/Ajax/Accordion.css",
"Objects/Ajax/Accordion.css",
"Accordion.css", "link");

assetList.push(assetInfo);

assetInfo = new AssetInfo("Objects/Ajax/Accordion.js", "Accordion.js",

"javascript") ;

assetList.push(assetInfo) ;

assetInfo = new AssetInfo("Objects/Ajax/Images", "Images", "");

assetList.push(assetInfo);

dom.copyAssets (assetList) ;

return retVal;

dom.getDefaultAssetFolder()

Availability
Dreamweaver CS3.

Description
Gets the default asset folder of the document.

Arguments
None.

Returns
A string that is the default asset folder name.

Example

function objectTag()

{

var defaultAssetFolder = dom.getDefaultAssetFolder() ;

return retVal;

}



DREAMWEAVER CS4 API REFERENCE
Page content

Browser compatibility check functions

The following functions facilitate locating combinations of HTML and CSS that can trigger browser rendering bugs
(for more information, refer to "The Browser Compatibility Check Issues API" chapter in Extending Dreamweaver),
but they can also be used in other types of extensions (such as Commands).

Note: The values that these functions return represent the styles currently in effect in Design view. When the functions
are used in Issue files as part of a browser compatibility check, Dreamweaver automatically filters the styles based on how
the target browsers would read them (for example, styles defined using Star HTML are taken into account if the target
browser is Internet Explorer 6 or earlier), but this filtering is not done when you use the functions outside the scope of a
browser compatibility check.

elem.getComputedStyleProp()

Availability
Dreamweaver CS3.

Description

Gets the value of the specified CSS property that is used to render the specified element, regardless of where the
property is specified in the cascade. Lengths are reported in pixels (although, unlike the browsers, “px” is not specified
with the value).

Arguments
propName, pseudoElt

« The propName argument is the name of a CSS property (use intercaps in place of hyphens; for example, " font -
size" would become "fontSize").

+ The pseudoElt argument is the CSS pseudoelement, or nul1l if there is none.

Returns
A string containing the computed value for the property.

Note: Numerical values are also returned as strings; to use these values in calculations, convert them to numbers with
parselnt () or parseFloat ().

Example

var dom = dw.getDocumentDOM () ;
var myDiv = dom.getElementsByTagName ('myDiv') ;
var float = myDiv.getComputedStyleProp ("float") ;
if (float == "left™")

alert ("This div is floated left.");

window.getDeclaredStyle()

Availability
Dreamweaver CS3.

314



DREAMWEAVER CS4 API REFERENCE | 315
Page content

Description

Gets the CSS styles that are declared for the specified element. Differs from the get Computedstyle () function in that
styles that are not specifically declared are undefined, and it gives actual length values as declared in the style sheet (e.g.,
20%, .8em) rather than computed pixel values. If bGet Inherited is false (default case), getDeclaredstyle () also
gets only the styles that directly apply to the element; it does not include styles that are inherited from a parent.

Arguments
elt, pseudoElt, psuedoClassList, bGetInherited

+ elt - anode in the document whose style information is desired
« pseudoElt - the CSS pseudoelement, or null if there is none
« psuedoClassList - an optional string consisting of a space-separated list of pseudoclasses

« bGetInherited - an optional Boolean value indicating whether to include styles inherited from ancestors (defaults
to false).

Returns
A read-only object containing style properties that can be accessed by name.

Example

var dom = dw.getDocumentDOM () ;

var myDiv = dom.getElementById('myDiv') ;

var props = window.getDeclaredStyle (myDiv) ;
var marleft = "";

var units = "";

if (typeof (props.marginLeft) != "undefined") {

marleft = props.marginlLeft;
units = marleft.replace(/\d+/,""); // remove digits, leaving units
alert (units); // should show %, px, pt, em, etc.

1

else

alert ("no margin-left property has been set for myDiv.");

dom.getMinDisplayWidth()

Availability
Dreamweaver CS3.

Description
Gets the minimum width required for a block-level container to display its entire contents.

Note: The actual width of the container could be smaller if a value less than the value that the dom. minDisplayWidth ()
function returns is specified by using CSS.

Arguments
container

« container is the containing element for which a minimum width is required.



Returns

DREAMWEAVER CS4 API REFERENCE | 316

Page content

An integer representing the minimum display width of the specified container, in pixels, or -1 if the element is not a

container or its minimum width cannot be determined

Example

var dom =
var myDiv
var props
var minW
var setW
if (minw

>

dw.getDocumentDOM () ;
= dom.getElementById('myDiv') ;
= window.getComputedStyle (myDiv) ;
dom.getMinDisplayWidth (myDiv) ;
props.width;

setW)

alert ("Depending on the browser, your content will either be \n" +

"clipped, or the container will expand beyond its set width.");

dom.getBlockElements() elem.getBlockElements()

Availability
Dreamweaver CS3.

Description

Scans the document (or element) for descendants with an inherent or specified display value of 'block'.

Arguments

None

Returns

An array of element nodes.



DREAMWEAVER CS4 API REFERENCE
Page content

Example
[...]
var blocks = DOM.getBlockElements () ;
var dProps = null, children = null;
for (var i1=0; i < blocks.length; i++){
// get the declared styles so we can see whether width
// or height have been specified explicitly
dProps = window.getDeclaredStyle (blocks[i]) ;
// if the block has children, border-left, and padding-bottom
// but no width or height
if (blocks[i] .hasChildNodes () && |
issueUtils.hasBorder (blocks[i] ,null, "left") &&
(parseFloat (blocks[i] .getComputedStyleProp ("padding-bottom")) > 0) &&
typeof (dProps.width) == "undefined" && typeof (dProps.height) == "undefined") {
children = blocks[i] .getBlockElements () ;
var hasLayout = false;
// loop through the block-level children to see if
// any have width or height defined. width or height on any
// of the children of the outer block will prevent the bug.
for (var j=0; j < children.length; j++){
dProps = window.getDeclaredStyle (childrenl[j]) ;
if (typeof (dProps.width) != "undefined" || typeof (dProps.height) !=
"undefined") {
hasLayout = true;
break;

dom.getinlineElements() elem.getinlineElements()

Availability
Dreamweaver CS3.

Description

Scans the document (or element) for descendents with an inherent or specified display value of 'inline’.

Arguments
None.

Returns

An array of element nodes.

317



Example

[...]

var DOM = dw.getDocumentDOM () ;

var inEls = DOM.body.getInlineElements() ;
var next = null, prev = null, parent = null;
var props = null;

// look through all inline elements for replaced elements.

// if no replaced elements are found, don't bother going forward.

for (var i=0; i < inEls.length; i++){

if (inEls[i].tagName == 'IMG' ||
inEls[i] .tagName == 'INPUT' ||
inEls[i] .tagName == 'TEXTAREA' ||
inEls[i] .tagName == 'SELECT' ||
inEls[i] .tagName == 'OBJECT') {

// do something

dom.getHeaderElements() elem.getHeaderElements()

Availability
Dreamweaver CS3.

Description
Scans the document (or element) for header tags (H1 to H6).

Arguments
None.

Returns

An array of element nodes.

Example
var DOM = dw.getDocumentDOM () ;
var headers = DOM.getHeaderElements () ;

for (var i1=0; i < headers.length; i++){
alert (headers[i] .tagName) ;
dom.getListElements() elem.getListElements()

Availability
Dreamweaver CS3.

Description
Scans the document (or element) for ordered, unordered, and definition lists.

DREAMWEAVER CS4 API REFERENCE
Page content

318



DREAMWEAVER CS4 API REFERENCE
Page content

Arguments
None.

Returns
An array of element nodes.

Example
[...]
var DOM = dw.getDocumentDOM() ;
// get all the UL, OL, and DL elements in the document.
var lists = DOM.getListElements() ;
var props = null;
for (var i=0; i < lists.length; i++){
props = window.getDeclaredStyle(lists[i]);
if ((props.cssFloat == "left" || props.cssFloat == "right") && props.overflow == "auto") {
// do something

elem.isBlockElement()

Availability
Dreamweaver CS3.

Description
Checks whether the element has an inherent or specified display value of 'block'.

Arguments
None.

Returns
A Boolean value indicating whether the object is a block-level element.

Example
[...]
var DOM = dw.getDocumentDOM /() ;
var blocks = DOM.body.getBlockElements () ;
var next = null;
for (var i=0; i < blocks.length; i++){
// next is the node right after blocks[i]
next = blocks[i] .nextSibling;
// if next isn't null AND next is an element node AND next is a block element,
// we've met the "second of two consecutive block elements" test.
if (next && (next.nodeType == 1) && next.isBlockElement ()) {
// do something

319



elem.isinlineElement()

Availability
Dreamweaver CS3.

Description

DREAMWEAVER CS4 API REFERENCE
Page content

Checks whether the element has an inherent or specified display value of 'inline'.

Arguments

None.

Returns

A Boolean value indicating whether the object is an inline element.

Example

[...]
var DOM = dw.getDocumentDOM () ;

var floats = issueUtils.getFloats (DOM.body) ;

var next = null;

for (var i=0; i < floats.length; i++){

next = floats[i] .nextSibling;

// if nextSibling of float
if (next && (next.nodeType
(next .nodeType == Node.

is a text node or an inline element
== Node.TEXT NODE | |
ELEMENT_NODE && next.isInlineElement()))){

// do something

}

elem.isHeaderElement()

Availability
Dreamweaver CS3.

Description
Checks whether the element is one of the following tags: h1, h2, h3, h4, h5, hé.

Arguments
None.

Returns

A Boolean value indicating whether the object is a header element.

320



Example

[...]

var DOM = dw.getDocumentDOM () ;

var floats = issueUtils.getFloats (DOM.body) ;
var prev = null;

// first float in the document isn't affected,

// at 1.
for (var i=1; i < floats.length; i++){
prev = floats[i] .previousSibling;

// 1f the element before the float is a header

if (prev && prev.isHeaderElement ()) {
// do something

}

elem.isListElement()

Availability
Dreamweaver CS3.

Description

Checks whether the element is one of the following tags: ul, ol, dl.

Arguments
None.

Returns

A Boolean value indicating whether the object is a list element.

Example
[...]
var DOM = dw.getDocumentDOM () ;
var floats = issueUtils.getFloats (DOM.body) ;
var prev = null, children = null;
for (var 1=0; i < floats.length; i++){
children = floats[i] .childNodes;
for (var k=0; k < children.length; k++){
if (children[k].isListElement ()) {
// do something

DREAMWEAVER CS4 API REFERENCE
Page content

321



322

Chapter 16: Dynamic documents

The dynamic documents functions in Adobe® Dreamweaver® perform operations that are related to web server pages.
The operations include the following:

Returning a property for the selected node in the Components panel
Getting a list of all data sources in the user document

« Displaying dynamic content in Design view

+ Applying a server behavior to a document

+ Getting the names of all currently defined server models

Server components functions

Server components functions let you access the currently selected node of the Server Components tree control that
appears in the Components panel. Using these functions, you can also refresh the view of the Components tree.

dreamweaver.serverComponents.getSelectedNode()

Availability
Dreamweaver MX.

Description
Returns the currently selected ComponentRec property in the Server Components tree control.

Arguments
None.

Returns
The componentRec property.

dreamweaver.serverComponents.refresh()

Availability
Dreamweaver MX.

Description

Refreshes the view of the Components tree.

Arguments
None.



DREAMWEAVER CS4 API REFERENCE | 323
Dynamic documents

Returns
Nothing.

Data source functions

Data source files are stored in the Configuration/DataSources folder. Each server model has its own folder:
ASP.Net/C#, ASP.Net/VisualBasic, ASP/JavaScript, ASP/VBScript, ColdFusion, JSP, and PHP/MySQL. Each server
model subfolder contains HTML and EDML files that are associated with the data sources for that server model.

For more information about using data sources in Dreamweaver, see “Data Sources” in Extending Dreamweaver.

dreamweaver.dbi.getDataSources

Availability
Dreamweaver UltraDev 4.

Description

Calls the findDynamicSources () function for each file in the Configuration/DataSources folder. You can use this
function to generate a list of all the data sources in the user’s document. This function iterates through all the files in
the Configuration/DataSources folder, calls the £indDynamicSources () function in each file, concatenates all the
returned arrays, and returns the concatenated array of data sources.

Arguments
None.

Returns
An array that contains a concatenated list of all the data sources in the user’s document. Each element in the array is
an object, and each object has the following properties:

+ The title property is thelabel string that appears to the right of the icon for each parent node. The tit1e property
is always defined.

+ The imageFile property is the path of a file that contains the icon (a GIF image) that represents the parent node
in Dynamic Data or the Dynamic Text dialog box or in the Bindings panel. The imageFile property is always

defined.

+ The allowbelete property is optional. If this property is set to a value of £alse, when the user clicks on this node
in the Bindings panel, the Minus (-) button is disabled. If it is set to a value of t rue, the Minus (-) button is enabled.
If the property is not defined, the Minus (-) button is enabled when the user clicks on the item (as if the property is
set to a value of true).

+ The datasource property is the simple name of the file in which the findbynamicSources () function is defined.
For example, the findDynamicSources () function in the Session.htm file, which is located in the
Configuration/DataSources/ASP_Js folder, sets the dataSource property to session.htm. This property is always
defined.

+ The name property is the name of the server behavior associated with the data source, datasource, if one exists.
The name property is always defined but can be an empty string (" ) if no server behavior is associated with the data
source (such as a session variable).



DREAMWEAVER CS4 API REFERENCE | 324
Dynamic documents

dw.dbi.setExpanded()

Availability
Dreamweaver CS3.

Description
Sets the node to be expanded or collapsed.

Arguments
data-source-node-name, expanded

« data-source-node-name is a string indicating the name of the data source to be expanded or collapsed.

+ expanded is a Boolean value indicating whether to expand or collapse the data set node.

Returns
Nothing.

Example

dw.dbi.setExpanded (dsName, true); //expand the data source node

Extension Data Manager functions

The APIs in this section comprise the Extension Data Manager (EDM). You can programmatically access and
manipulate the data that is contained in the group and participant files by calling these functions. The EDM performs
in the following manner:

+ The EDM performs all EDML file input/output for group and participant files.

+ The EDM acts as a server model filter by performing all data requests for the current server model.

dreamweaver.getExtDataValue()

Availability
Dreamweaver UltraDev 4.

Description
This function retrieves the field values from an EDML file for the specified nodes.

Arguments
qualifier(s)

+ The qualifier(s) argument is a variable-length list (depending on the level of information you need) of comma-
separated node qualifiers that includes group or participant name, subblock (if any), and field name.

Returns
Dreamweaver expects a field value. If a value is not specified, Dreamweaver uses the default value.



DREAMWEAVER CS4 API REFERENCE | 325
Dynamic documents

Example
The following example retrieves the location attribute value for the insertText tag of the recordset_main participant:

dw.getExtDataValue ("recordset main", "insertText", "location");

dreamweaver.getExtDataArray()

Availability
Dreamweaver UltraDev 4.

Description
This function retrieves an array of values from an EDML file for the specified nodes.

Arguments
qualifier(s)

« The qualifier(s) argument is a variable-length list of comma-separated node qualifiers, including group or
participant name, subblock (if any), and field name.

Returns

Dreamweaver expects an array of child-node names.

dreamweaver.getExtParticipants()

Availability
Dreamweaver UltraDev 4.

Description

This function retrieves the list of participants from an EDML group file or participant files.

Arguments
value, qualifier(s)

+ The value argument is a property value, or it is blank and is ignored. For example

dreamweaver.getExtParticipants ("", "participant");

+ The qualifier(s) argument is a variable-length list of comma-separated node qualifiers of the required property.
Returns

Dreamweaver expects an array of participant names that have the specified property, if it is given, and the property
matches the specified value, if it is given.

dreamweaver.getExtGroups()

Availability
Dreamweaver UltraDev 4.



DREAMWEAVER CS4 APl REFERENCE
Dynamic documents

Description
Retrieves the name of the group, which is the equivalent to the server behavior’s name, from an EDML group file.

Arguments
value, qualifier(s)

+ The value argument is a property value or is blank to ignore.

« The qualifier(s) argument is a variable length list of comma-separated node qualifiers of the required property.

Returns
Dreamweaver expects an array of group names that have the specified property, if it is given, and the property matches
the specified value, if it is given.

dreamweaver.refreshExtData()

Availability
Dreamweaver UltraDev 4.

Description
Reloads all extension data files.

You can make a useful command from this function, letting edits to server-behavior EDML files be reloaded without
restarting Dreamweaver.

Arguments
None.

Returns
Dreamweaver expects reloaded data.

Live data functions

You can use the following live data functions to mimic menu functionality:

+ The showLiveDataDialog () function is used for the View > Live Data Settings menu item.

+ The setLiveDataMode () function is used for the View > Live Data and View > Refresh Live Data menu items.
« The getLiveDataMode () function determines whether Live Data mode is active.

You can use the remaining live data functions when you implement the translator API 1iveDataTranslateMarkup ()
function.

dreamweaver.getLiveDatalnitTags()

Availability
Dreamweaver UltraDev 1.

326



DREAMWEAVER CS4 APl REFERENCE
Dynamic documents

Description

Returns the initialization tags for the currently active document. The initialization tags are the HTML tags that the user
supplies in the Live Data Settings dialog box. This function is typically called from a translator’s
liveDataTranslateMarkup () function, so that the translator can pass the tags to the l1iveDataTranslate ()
function.

Arguments
None.

Returns

A string that contains the initialization tags.

dreamweaver.getLiveDataMode()

Availability
Dreamweaver UltraDev 1.

Description
Determines whether the Live Data window is currently visible.

Arguments
None.

Returns
A Boolean value: true if the Live Data window is visible; false otherwise.

dreamweaver.getLiveDataParameters ()

Availability
Dreamweaver MX.

Description
Obtains the URL parameters that are specified as Live Data settings.

Live Data mode lets you view a web page in the design stage (as if it has been translated by the application server and
returned). Generating dynamic content to display in Design view lets you view your page layout with live data and
adjust it, if necessary.

Before you view live data, you must enter Live Data settings for any URL parameters that you reference in your
document. This prevents the web server from returning errors for parameters that are otherwise undefined in the
simulation.

You enter the URL parameters in name-value pairs. For example, if you reference the URL variables 1D and Name in
server scripts in your document, you must set these URL parameters before you view live data.

You can enter Live Data settings through Dreamweaver in the following ways:

+ Through the Live Data Settings dialog box, which you can activate from the View menu.



DREAMWEAVER CS4 API REFERENCE | 328
Dynamic documents

« Inthe URL text field that appears at the top of the document when you click the Live Data View button on the
toolbar.

For the ID and Name parameters, you can enter the following pairs:

ID 22
Name Samuel

In the URL, these parameters would appear as shown in the following example:
http://someURL?ID=22&Name=Samuel

This function lets you obtain these live data settings through JavaScript.

Arguments
None.

Returns

An array that contains the URL parameters for the current document. The array contains an even number of
parameter strings. Each two elements form a URL parameter name-value pair. The even element is the parameter
name and the odd element is the value. For example, getLiveDataParameters () returns the following array for the
1D and Name parameters in the preceding example: ['ID, '22', 'Name', 'Samuel'].

Example

The following example returns the parameters that are specified as Live Data settings and stores them in the

paramsArray.

var paramsArray = dreamweaver.getLiveDataParameters () ;

dreamweaver.liveDataTranslate()

Availability
Dreamweaver UltraDev 1.

Description

Sends an entire HTML document to an application server, asks the server to execute the scripts in the document, and
returns the resulting HTML document. This function can be called only from a translator’s
liveDataTranslateMarkup () function; if you try to call it at another time, an error occurs. The
dreamweaver.liveDataTranslate () function performs the following operations:

+ Makes the animated image (that appears near the right edge of the Live Data window) play.
« Listens for user input. If the Stop icon is clicked, the function returns immediately.

+ Accepts a single string argument from the caller. (This string is typically the entire source code of the user’s
document. It is the same string that is used in the next operation.)

+ Saves the HTML string from the user’s document as a temporary file on the live data server.

+ Sends an HTTP request to the live-data server, using the parameters specified in the Live Data Settings dialog box.
+ Receives the HTML response from the live data server.

+ Removes the temporary file from the live data server.

+ Makes the animated image stop playing.



DREAMWEAVER CS4 APl REFERENCE
Dynamic documents

+ Returns the HTML response to the caller.

Arguments

string

« A ssingle string, which typically is the entire source code of the user’s current document.

Returns

An httpReply object. This object is the same as the value that the MMHt tp.getText () function returns. If the user
clicks the Stop icon, the return value’s ht tpReply. statusCode value is equal to 200 (Status OK) and its
httpReply.data value is equal to the empty string. For more information on the ht tpReply object, see “The HTTP
API” on page 15.

dreamweaver.setLiveDataError()

Availability
Dreamweaver UltraDev 1.

Description

Specifies the error message that appears if an error occurs while the 1iveDataTranslateMarkup () function executes
in a translator. If the document that Dreamweaver passed to 1iveDataTranslate () contains errors, the server passes
back an error message that is formatted using HTML. If the translator (the code that called 1iveDataTranslate())
determines that the server returned an error message, it calls setLiveDataError () to display the error message in
Dreamweaver. This message appears after the l1iveDataTranslateMarkup () function finishes executing;
Dreamweaver displays the description in an error dialog box. The setLivebataError () function should be called
only from the liveDataTranslateMarkup () function.

Arguments
source

+ The source argument is a string that contains source code, which is parsed and rendered in the error dialog box.

Returns
Nothing.

dreamweaver.setLiveDataMode()

Availability
Dreamweaver UltraDev 1.

Description
Toggles the visibility of the Live Data window.

329



DREAMWEAVER CS4 APl REFERENCE
Dynamic documents

Arguments
bisVisible

+ The blsVisible argument is a Boolean value that in