Adobe FrameMaker

0N

Adobe

Contents

Chapter 1: Introduction

WY USE MIF T ottt e e et e e e e e e et e 1
Using this manual ... o e 1
SYIE CONVENEIONS .ttt ettt 2
Overview of MIF statementsoouiiiuiiiii i 2
MIF statement Syntax ooin i e 4

Chapter 2: Using MIF Statements

Working With MIF files ..o e 9
Creating a simple MIF file for FrameMakerooiiiiiiii i i i eeieenes 11
Creating and applying character formatsottt 24
Creating and formatting tables oot s 25
Specifying Page [ayoUt ..o e 32
Creating MarKErS oottt ettt e e e e e 37
Creating CroSS-TefErBNCES ...ttt et ettt e et e ettt e ettt 37
Creating Variables ... e 39
Creating conditional teXtottt s 41
Creating filters ..o e 44
Including template files oooiii i s 45
Setting View Only document Options iuuii it 47
Applications Of MIF L. . e e e e e e e e 48
Debugging MIF files ..ot e e 51
Other application t00lsot e e 52
Whereto go from here ... e 52

Chapter 3: MIF Document Statements

MIF file layout ... 53
MIFFile statement ... oo e 55
Macro statements 56
Track edited teXt .. .ooi e 57
Conditional tEXt oot e 57
BOOIEaN EXPIESSIONS ottt it e e 59
Filter By Attribute .. e 60
Paragraph formatsooe e 61
Character formMats ...t e e e e 66
(0] o) =Tt dE 47 [PP 71
LN NUMDEIS e e 74
L1 1= 74
L6010 o 84
Vil o e 87
CrOSSTEfEIENCES ettt ettt et ettt e e 88

Global document Properties iiin i e 88

PGS 109

MINETOC e e e e e 110
Graphic objects and graphic framesot 111
TEXE oW S et e e 130
Text insets (text imported by reference)coiiiiii i 138

Chapter 4: MIF Book File Statements

MIF booK file OVEIVIEW L. e e e e et 145
MIF book file identification lineot i e 146
BOOK StatemMENtS ..o e 146

Chapter 5: MIF Statements for Structured Documents and Books

Structural element definitions 157
Attribute definitions oo 160
FOrmMat FULES e e e e 162
Format change lists ... e i e e e 168
ElOmMENtS e 174
Banner teXt . 177
Filter By Attribute ..o e 177
XML data for structured documents —oiiiuiiiniiiii i 178
Preference settings for structured documentsooiiiiiiii it 179
Textin structured documents ... oot e 182
Structured book statements i 182
MIF M ESSaGES ettt tt ettt et ettt e ettt 186

Chapter 6: MIF Equation Statements

MathML statement ... e 188
Document statement 189
Math statement ... o e 193
MathFullForm statement ... i 194

Chapter 7: MIF Asian Text Processing Statements

Asian Character EnCoding ...o.oiiiii i e e 213
Combined FONTS ... 214
KumihanTables e 217
RUDDI EOXE .t e 227
Chapter 8: Examples

Xt EXAMIPIE oottt e 231
Bar chart example oo e 232
Pie chart eXxample ..o e 235
Customdashed ines ... oot e e 236
TablEe EXAMIPIES ettt e 238
Database publishing ... e 241

Chapter 9: MIF Messages
General form for MIF MeSSages . .v.untiet ettt it e e e iaeaeens 248

List Of MIF MeSSages vttt ettt e e e et 248

Chapter 10: MIF Compatibility

Changes between version 12.0 and 2015 releasecoveriiieiniineineinenennennenns 251
Changes between version 11.0and 12.0 ...ttt i i 253
Changes between version 9.0 and 10.0 iuiii ittt i i e 254
MIF syntax changesin FrameMaker 8 ittt 254
Changes between version 6.0 and 7.0 ...ttt e 255
Changes between version 5.5 and 6.0 ...ttt e 256
Changes between version 5and 5.5 ..ottt e 257
Changes between versions 4 and 5 ...ttt i 259
Changes between versions 3and 4 ..ottt e 262

Chapter 11: Facet Formats for Graphics

Facets forimported graphics ouiiniiiii e 267
Basicfacetformat ..o 268
Graphicinsets (UNIX VEISIONS) .. uu ittt ettt it ieneans 269
General rules for reading and writing facets ... e 274

Chapter 12: EPSI Facet Format
Specification of an EPSIfacet oouiiiiit e 275
Example of an EPSIfacetooiiii e e 275

Chapter 13: Framelmage Facet Format

Specification of a Framelmage facetooiiiiiiiiiii e 277
Specification of Framelmage data ...t e 277
Differences between monochromeand color ...t 280
Sample unencoded Framelmage facetcooiiuiiiiiiiiii i i 281
Sample encoded Framelmage facet oiiiiiiiiiii e 282

Chapter 14: FrameVector Facet Format

Specification of a FrameVector facetcoouiiiiiiiin i i 284
Specification of FrameVectordatac.iiiiiiiii i e 284
Sample FrameVector faceto i 300

Chapter 15: Legal notices

Chapter 1: Introduction

MIF (Maker Interchange Format) is a group of ASCII statements that create an easily parsed, readable text file of all
the text, graphics, formatting, and layout constructs that Adobe® FrameMaker® understands. Because MIF is an alter-
native representation of a FrameMaker document, it allows FrameMaker and other applications to exchange infor-
mation while preserving graphics, document content, and format.

Why use MIF?

You can use MIF files to allow FrameMaker and other applications to exchange information. For example, you can
write programs to convert graphics and text MIF and then import the MIF file into FrameMaker with the graphics
and text intact. You can also save a FrameMaker document or book file as a MIF file and then write a program to
convert the MIF file to another format. These conversion programs are called filters; filters allow you to convert
FrameMaker document files into foreign files (files in another word processing or desktop publishing format), and
foreign files into FrameMaker document files.

You can use MIF files with database publishing applications, which allow you to capture changing data from
databases and format the data into high-quality documents containing both text and graphics information. You use
the database to enter, manipulate, sort, and select data. You use FrameMaker to format the resulting data. You use
MIF files as the data interchange format between the database and FrameMaker.

You can also use MIF files to do the following:

+ Share documents with earlier versions of FrameMaker
« Perform custom document processing

« Set options for online documents in View Only format

These tasks are described in “Applications of MIF” on page 48. You can use other FrameMaker to perform some of
these tasks. See “Other application tools” on page 52.

Using this manual

This manual:

+ Describes the layout of MIF files.

+ Provides a complete description of each MIF statement and its syntax.
« Provides examples of how to use MIF statements.

« Includes MIF statements for FrameMaker .

To get the most from this manual you should be familiar with FrameMaker. For information about FrameMaker and
its features, see the documentation for your product. In addition, if you are using MIF as an interchange format
between FrameMaker and another application, you should be familiar with the tools needed to create and manip-
ulate the other application, such as a programming language or database query language.

This chapter provides basic information about working with MIF files, including opening and saving MIF files in
FrameMaker. It goes on to provide detailed information about the MIF language and its syntax.

ADOBE FRAMEMAKER
MIF Reference

For an introduction to writing MIF files, read , “Using MIF Statements.” You can then use the statement index,
subject index, and table of contents to locate more specific information about a particular MIF statement.

For a description of a MIF statement, use the table of contents or statement index to locate the statement.

For a description of the differences between the MIF statements for this version of FrameMaker and earlier versions,
see , “MIF Compatibility.”

Style conventions

This manual uses different fonts to represent different types of information.

« What you type is shown in

text like this.

+ MIF statement names, pathnames, and filenames are also shown in
text like this.

« Placeholders (such as MIF data) are shown in

text like this.

+ For example, the statement description for PgfTag is shown as:
<PgfTag tagstrings

+ You replace tagstring with the tag of a paragraph format.

This manual also uses the term FrameMaker, (as in FrameMaker document, or FrameMaker session) to refer to
FrameMaker and to refer to structured or unstructured documents.

Overview of MIF statements

When you are learning about MIF statements, you may find it useful to understand how FrameMaker represents
documents.

How MIF statements represent documents

FrameMaker represents document components as objects. Different types of objects represent different components
in a FrameMaker document. For example, a paragraph is considered an object; a paragraph format is considered a
formatting object. The graphic objects that you create by using the Tools palette are yet another type of object.

Each object has properties that represent its characteristics. For example, a paragraph has properties that represent
its left indent, the space above it, and its default font. A rectangle has properties that represent its width, height, and
position on the page.

When FrameMaker creates a MIF file, it writes an ASCII statement for each object in the document or book. The
statement includes substatements for the object’s properties.

For example, suppose a document (with no text frame) contains a rectangle that is 2 inches wide and 1 inch high.
The rectangle is located 3 inches from the left side of the page and 1.5 inches from the top. MIF represents this
rectangle with the following statement:
<Rectangle # Type of graphic object

Position and size: left offset, top offset,

width, and height
<ShapeRect 3.0" 1.5" 2.0" 1.0">

ADOBE FRAMEMAKER
MIF Reference

FrameMaker also treats each document as an object and stores document preferences as properties of the document.
For example, a document’s page size and page numbering style are document properties.

FrameMaker documents have default objects

A FrameMaker document always has a certain set of default objects, formats, and preferences, even when you create
a new document. When you create a MIF file, you usually provide the objects and properties that your document
needs. However, if you don’t provide all the objects and properties required in a FrameMaker document, the MIF
interpreter fills in a set of default objects and document formats.

The MIF interpreter normally provides the following default objects:

« Predefined paragraph formats for body text, headers, and table cells

+ Predefined character formats

« A right master page for single-sided documents and left and right master pages for double-sided documents

« Areference page

« Predefined table formats

+ Predefined cross-reference formats

+ Default pen and fill values and dash patterns for graphics

+ Default colors

+ Default document preferences, such as ruler settings

+ Default condition tags

Although you can rely on the MIF interpreter to provide defaults, the exact properties and objects provided may vary
depending on your FrameMaker configuration. The MIF interpreter uses default objects and properties that are
specified in setup files and in templates. In UNIX® versions, these templates are ASCIITemplate and NewTemplate.

You can modify these default objects and document formats by creating your own version of ASCIITemplate or
NewTemplate or by modifying your setup files.

For more information about modifying the default templates and setup files, see the online manual Customizing
FrameMaker for UNIX versions of FrameMaker. For the and Windows® version, see the chapter on templates in your
user manual.

Current state and inheritance

FrameMaker has a MIF interpreter that reads and parses MIF files. When you open or import a MIF file, the inter-
preter reads the MIF statements and creates a FrameMaker document that contains the objects described in the MIF
file.

When the interpreter reads a MIF file, it keeps track of the current state of certain objects. If the interpreter reads an
object with properties that are not fully specified, it applies the current state to that object. When an object acquires
the current state, it inherits the properties stored in that state.

For example, if the line width is set to 1 point for a graphic object, the interpreter continues to use a 1-point line width
for graphic objects until a new value is specified in the MIF file. Similarly, if the MIF file specifies a format for a
paragraph, the interpreter uses the same format until a new format is specified in the file.

The MIF interpreter keeps track of the following document objects and properties:
* Units

« Condition tag properties

« Paragraph format properties

+ Character format properties

3

ADOBE FRAMEMAKER | 4
MIF Reference

+ Page properties

+ Graphic frame properties

« Text frame properties

« Fill pattern

» Pen pattern

+ Line width

» Linecap

+ Line style (dash or solid)

« Color

« Text line alignment and character format

Because the interpreter also provides default objects for a document, the current state of an object may be deter-
mined by a default object. For example, if a document does not provide any paragraph formats, the interpreter

applies a set of default paragraph properties to the first paragraph. Subsequent paragraphs use the same properties
unless otherwise specified.

How FrameMaker identifies MIF files

A MIF file must be identified by a MIFFile or Book statement at the beginning of the file; otherwise FrameMaker
simply reads the file as a text file. All other statements are optional; that is, a valid MIF file can contain only the
MIFFile statement. Other document objects can be added as needed; FrameMaker provides a set of default objects
if a MIF file does not supply them.

MIF statement syntax

The statement descriptions in this manual use the following conventions to describe syntax:

<token data>

token data where token represents one of the MIF statement names (such as pgf) listed in the MIF statement
descriptions later in this manual, and data represents one or more numbers, a string, a token, or nested statements.
Markup statements are always delimited by angle brackets (<>); macro statements are not. For the syntax of macro
statements, see “Macro statements” on page 56.

A token is an indivisible group of characters that identify a reserved word in a MIF statement. Tokens in MIF are
case-sensitive. A token cannot contain white space characters, such as spaces, tabs, or newlines. For example, the
following MIF statement is invalid because the token contains white space characters: <un its Uins

When the MIF interpreter finds white space characters that aren’t part of the text of the document (as in the example
MIF statement, < Units Uin >), it interprets the white space as token delimiters. When parsing the example
statement, the MIF interpreter ignores the white space characters between the left angle bracket (<) and the first
character of the token, Units. After reading the token, the MIF interpreter checks its validity. If the token is valid,
the interpreter reads and parses the data portion of the statement. If the token is not valid, the interpreter ignores all
text up to the corresponding right angle bracket (>), including any nested substatements. The interpreter then scans
the file for the next left angle bracket that marks the beginning of the next MIF statement.

All statements, as well as all data portions of a statement, are optional. If you do not provide a data portion, the MIF
interpreter assigns a default value to the statement.

ADOBE FRAMEMAKER

Statement hierarchy

MIF Reference

Some MIF statements can contain other statements. The contained statements are called substatements. In this

manual, substatements are usually shown indented within the containing statements as follows:

<Document
<DStartPage 1>
>

The indentation is not required in a MIF file, although it may make the file easier for you to read.

A MIF main statement appears at the top level of a file. A main statement cannot be nested within other statements.
Some substatements can only appear within certain main statements.

The statement descriptions in this manual indicate the valid locations for a substatement by including it in all of the
valid main statements. Main statements are identified in the statement description; for the correct order of main

statements, see “MIF file layout” on page 53.

MIF data items

There are several general types of data items in a MIF statement. This manual uses the following terms and symbols

to identify data items.

This term or symbol

Means

string Left quotation mark ("), zero or more standard ASCII characters (you can also include UTF-8 char-
acters), and a straight quotation mark (').
Example: ~ab cdef ghij'

tagstring A string that names a format tag, such as a paragraph format tag. A tagstzringvalue must be
unique; case is significant. A statement that refers to a tagstring must exactly match the
tagstringvalue. A tagstringvalue can include any character from the FrameMaker char-
acter set.

pathname A string specifying a pathname (see “Device-independent pathnames” on page 7).

boolean A value of either Yes or No. Case is significant.

integer Integer whose range depends on the associated statement name.

ID Integer that specifies a unique ID. An ID can be any positive integer between 1 and 65535, inclu-
sive. A statement that refers to an ID must exactly match the ID.

dimension Decimal number signifying a dimension. You can specify the units,suchas 1.11", 72 pt,and
8.3 cm. If no units are specified, the default unit is used.

degrees A decimal number signifying an angle value in degrees. You cannot specify units; any number is
interpreted as a degree value.

percentage A decimal number signifying a percentage value. You cannot specify units; any number is inter-
preted as a percentage value.

metric A dimension specified in units that represent points, where one point is 1/72 inch (see “Math
values” on page 6). Only used in MathFullFormstatements.

W H Pair of dimensions representing width and height. You can specify the units.

XY Coordinates of a point. Coordinates originate at the upper-left corner of the page or graphic frame.
You can specify the units.

L TRB Coordinates representing left, top, right, and bottom indents. You can specify the units.

L TWH Coordinates representing the left and top indents plus the dimensions representing the width and

height of an object. You can specify the units.

5

ADOBE FRAMEMAKER
MIF Reference

This term or symbol Means

XYWH Coordinates of a point on the physical screen represented by Xand Y plus dimensions describing
the width and height. Used only by the DWindowRect and DViewRect statements within the
Document statement and the BWindowRect statement within the Book statement. The
values are in pixels; you cannot specify the units.

keyword A token value. The allowed token values are listed for each statement; you can provide only one
value.

<token..> Ellipsis points in a statement indicate required substatements or arguments. The entire expanded
statement occurs at this point.

Unit values

You can specify the unit of measurement for most dimension data items. The following table lists the units of

measurement that FrameMaker supports and their notation in MIE

Measurement unit Notation in MIF Relationship to other units
point pt or point 1/72inch

inch "orin 72 points

millimeter mmormillimeter Tinchis 25.4 mm
centimeter cm or centimeter linchis 2.54cm

pica pc or pica 12 points

didot dd or didot 0.01483 inches

cicero cc or cicero 12 didots

pixel px 0625 pica

Dimension data types can mix different units of measurement. For example, the statement <CellMargins L T R
B> can be written as either of the following:

<CellMargins 6 pt 18 pt 6 pt 24 pt>
<CellMargins 6 pt .25" .5 pica 2 picas

Math values

The MathFullForm statement uses metric values in formatting codes. A metric unit represents one point (1/72
inch). The metrictype is a 32-bit fixed-point number. The 16 most significant bits of a metric value represent the
digits before the decimal; the 16 least significant bits represent the digits after the decimal. Therefore, 1 point is
expressed as hexadecimal 0x10000 or decimal 65536. The following table shows how to convert metric values into
equivalent measurement units.

To get this unit Divide the metric value by this number
point 65536

inch 4718592

millimeter 185771

centimeter 1857713

pica 786432

didot 6997

6

ADOBE FRAMEMAKER
MIF Reference

To get this unit Divide the metric value by this number
cicero 839724
pixel 49152

Character set in strings

MIF string data uses the FrameMaker character set (see the Quick Reference for your FrameMaker product). MIF
strings must begin with a left quotation mark (ASCII character code 0x60) and end with a straight quotation mark
(ASCII character code 0x27). Within a string, you can include any character in the FrameMaker character set.
However, because a MIF file can contain only standard ASCII characters and because of MIF parsing requirements,
you must represent certain characters with backslash (\) sequences.

Character Representation
Tab \t
> \ >
1 \q
\Q
\ \\
nonstandard ASCII \xnn

Note: The \xnn character is supported only for legacy MIF files.

All FrameMaker characters with values above the standard ASCII range (greater than \x7£) are represented in a
string by using \xnn notation, where nn represents the hexadecimal code for the character. The hexadecimal digits
must be followed by a space.

When using special characters in a variable definition, you can also use a hexadecimal notation or Unicode notation.
In the previous example, the hexadecimal notation for the paragraph symbol () is \xa6. Alternatively, you can use
the \u00B6 Unicode notation to represent the same character.

The following example shows a FrameMaker document line and its representation in a MIF string.

In a FrameMaker document In MIF

Some ‘symbols'": > \@;! “Some \Qsymbols\qg: \> \\@;!"'

You can also use the Char statement to include certain predefined special characters in a ParaLine statement (see
“Char statement” on page 134).

Device-independent pathnames

Several MIF statements require pathnames as values. You should supply a device-independent pathname so that files
can easily be transported across different system types. Because of MIF parsing requirements, you must use the
following syntax to supply a pathname:

“<code\ >name<code \ >sname<code\ >name..."

7

ADOBE FRAMEMAKER | 8
MIF Reference

where name is the name of a component in the file’s path and code identifies the role of the component in the path.
The following table lists codes and their meanings.

Code Meaning

r Root of UNIX file tree (UNIX only)
v Volume or drive (Windows)

h Host (Apollo only)

c Component

u Up one level in the file tree

When you specify a device-independent pathname in a MIF string, you must precede any right angle brackets (>)
with backslashes (1), as shown in the syntax above.

Absolute pathnames

An absolute pathname shows the location of a file beginning with the root directory, volume, or drive. The following
table specifies device-independent, absolute pathnames for the different versions of FrameMaker.

In this version The pathname appears as this MIF string
UNIX “<r\><c\>MyDirectory<c\>MySubdirectory<c\>Filename'
Windows “<v\>c:<c\>mydir<c\>subdir<c\>filename'

Relative pathnames

A relative pathname shows the location of a file relative to the current directory. In all FrameMaker versions, the
device-independent, relative pathname for the same file is:

“<c\>Filename'

Chapter 2: Using MIF Statements

MIF statements can completely describe any Adobe® FrameMaker® document, no matter how complex. As a result,
you often need many MIF statements to describe a document. To learn how to use MIF statements, it helps to begin
with some simple examples.

This chapter introduces you to MIE beginning with a simple MIF example file with only a few lines of text.
Additional examples show how to add common document objects, such as paragraph formats, a table, and a custom
page layout, to this simple MIF file.

The examples in this chapter are also provided in online sample files. You can open these examples in FrameMaker
and experiment with them by adding additional MIF statements. Look for the sample files in the following location:

In this version Look here

UNIX $FMHOME/fminit/language/Samples/MIF,where languageisthelanguageinuse,suchas
usenglish

Windows The MIF directory under the samples directory

Working with MIF files

A MIF file is an alternate representation of a FrameMaker document in ASCII format. MIF files are usually generated
by FrameMaker or by an application that writes out MIF statements. You can, however, create MIF files by using a
text editor or by using FrameMaker as a text editor. This section provides some general information about working
with MIF files regardless of the method you use to create them.

Opening and saving MIF files

When you save a FrameMaker document, you usually save it in Normal format, FrameMaker’s binary format for
document files. To save a document as a MIF file, choose Save As from the File menu. In the Save Document dialog
box, choose Interchange (MIF) from the Format pop-up menu. You should give the saved file the suffix .mif to
distinguish it from a file saved in binary format.

When you open or import a MIF file, FrameMaker reads the file directly, translating it into a FrameMaker document
or book. When you save the document in Normal format, FrameMaker creates a binary document file. To prevent
overwriting the original MIF file, remove the .mif file suffix and replace it with a different suffix (or no suffix).

If you use FrameMaker to edit a MIF file, you must prevent it from interpreting MIF statements when you open the
file by holding down a modifier key and clicking Open in the Open dialog box.

In this version Use this modifier key
UNIX Shift
Windows Control or Shift

Save the edited MIF file as a text file by using the Save As command and choosing Text Only from the Format pop-
up menu. Give the saved file the suffix .mif. When you save a document as Text Only, FrameMaker asks you where
to place carriage returns. For a MIF file, choose the Only between Paragraphs option.

ADOBE FRAMEMAKER
MIF Reference

In UNIX versions, FrameMaker saves a document in text format in the ISO Latin-1 character encoding. You can
change the character encoding to ASCII by changing the value of an X resource. See the description of character
encoding in the online manual Customizing FrameMaker. In the Windows version, press Esc F t ¢ to toggle between
FrameMaker’s character encoding and ANSI for Windows.

Importing MIF files

You can use the File menu’s Import>File command to import MIF files into an existing document, but you must
make sure that the imported statements are valid at the location where you are importing them. A MIF file can
describe both text and graphics; make sure that you have selected either a place in the text flow (if you are importing
text or graphics) or an anchored frame (if you are importing graphics).

For example, to import a MIF file that describes a graphic, first create an anchored frame in a document, select the
frame, and then import the MIF file (see “Bar chart example” on page 232).
When you import or include MIF files, make sure that object IDs are unique in the final document and that refer-

ences to object IDs are correct (see “Generic object statements” on page 112). The object IDs must be unique for all
objects (TextRect, Tblld, Group, and AFrame use the ID for identification) in the document.

Editing MIF files

You normally use a text editor to edit a MIF file. If you use FrameMaker to enter text into a MIF file, be sure to open
the MIF file as a text file and turn off Smart Quotes. If you leave Smart Quotes on, you must use a key sequence to
type the quotation marks that enclose a MIF string (). To enter a left quotation mark, type Control-". To enter a
straight quotation mark, type Control-'.

Although MIF statements are usually generated by a program, while you learn MIF or test and debug an application
that generates MIF, you may need to manually generate MIF statements. In either case, you can minimize the
number of MIF statements that your application needs to generate or that you need to type in.

The following suggestions may be helpful when you are working with MIF statements:

« Edit a MIF file generated by FrameMaker.

+ You can edit a MIF file generated by FrameMaker or copy a group of statements from a MIF file into your file
and then edit the statements. An easy way to use FrameMaker to generate a MIF file is to create an empty
document by using the New command and then saving it as a MIF file.

+ Test one object at a time.

« While testing an object in a document or learning about the MIF statements that describe an object, work with
just that object. For example, if you work with a document that contains both tables and anchored frames, start
by creating the MIF statements that describe tables. Then add the statements that describe anchored frames.

+ Use the default properties provided by FrameMaker.

« If you are not concerned with testing certain document components, let FrameMaker provide a set of default
document objects and formats.

MIF file layout

FrameMaker writes the objects in a MIF document file in the following order:
This section Contains these objects
File ID MIF file identification line (MIFFile statement)

Units Default units (Units statement)

10

ADOBE FRAMEMAKER |11
MIF Reference

This section Contains these objects
Catalogs Color
Condition

Paragraph Format
Element

Font or Character Format
Ruling

Table Format

Views

Formats Variable

Cross-reference

Objects Document
Dictionary
Anchored frames
Tables

Pages

Text flows

FrameMaker provides all of these objects, even if the object is empty. To avoid unpredictable results in a document,
you must follow this order when you create a MIF file.

Creating a simple MIF file for FrameMaker

Note: The rest of this chapter explains how to create some simple MIF files for FrameMaker by hand. These instructions
do not apply to structured documents, which require that you create elements first.

The most accurate source of information about MIF files is a MIF file generated by FrameMaker. MIF files generated
by FrameMaker can be very lengthy because FrameMaker repeats information and provides default objects and
formats for all documents. You may find it difficult to determine the minimum number of statements that are
necessary to define your document by looking at a FrameMaker-generated MIF file.

To better understand how FrameMaker reads MIF files, study the following example. This MIF file uses only four
statements to describe a document that contains one line of text:

<MIFFile 2015> # The only required statement
<Para # Begin a paragraph
<ParaLine # Begin a line within the paragraph
<String "Hello World's># The actual text of this document
> # end of Paraline #End of Paraline statement
> # end of Para #End of Para statement

The MIFFile statement is required in each MIF file. It identifies the FrameMaker version and must appear on the
first line of the file. All other statements are optional; that is, FrameMaker provides a set of default objects if you
specify none.

Comments in a MIF file are preceded by a number sign (#). By convention, the substatements in a MIF statement
are indented to show their nesting level and to make the file easier to read. The MIF interpreter ignores spaces at the
beginning of a line.

ADOBE FRAMEMAKER |12
MIF Reference

This example is in the sample file he1lo.mif. To see how FrameMaker provides defaults for a document, open this
file in FrameMaker. Even though the MIF file does not specify any formatting, FrameMaker provides a default
Paragraph Catalog and Character Catalog. In addition, it provides a right master page, as well as many other default
properties.

Save this document as a MIF file and open the FrameMaker-generated MIF file in a text editor or in FrameMaker as
a text file. (For information on how to save and open MIF files, see “Opening and saving MIF files” on page 9.)

You’ll see that the MIF interpreter has taken the original 6-line file and generated over 1,000 lines of MIF statements
that describe all the default objects and their properties. To see the actual text of the document, go to the end of the
file.

This example demonstrates an important point about MIF files. Your MIF file can be very sparse; the MIF interpreter
supplies missing information. Most documents are not this simple, however, and require some formatting. The
following sections describe how to add additional document components, such as paragraph and character formats,
a table, and custom page layouts, to this minimal MIF file.

Creating and applying paragraph formats

In a FrameMaker document, paragraphs have formatting properties that specify the appearance of the paragraph’s
text. A paragraph format includes the font family and size, indents, tab stops, the space between lines in a paragraph,
the space before and after a paragraph, and the direction of the text. The text direction can be either left to right for
languages like English and German, or right to left for languages like Arabic and Hebrew. In a FrameMaker
document, the end of a paragraph is denoted by a single carriage return. You control the amount of space above and
below the paragraph by modifying the paragraph’s format, not by adding extra carriage returns.

In a FrameMaker document, you store paragraph formats in a Paragraph Catalog and assign a tag (name) to the
format. You can then apply the same format to many paragraphs by assigning the format tag to the paragraphs. You
can also format a paragraph individually, without storing the format in the Paragraph Catalog. Or, you can assign a
format from the Paragraph Catalog and then override some of the properties within a particular paragraph. Formats
that are not stored in the Paragraph Catalog are called local formats.

Creating a paragraph
In a MIF file, paragraphs are defined by a Para statement. A Para statement contains one or more ParaLine state-
ments that contain the lines in a paragraph; the actual text of the line is enclosed in one or more String statements:

<Para # Begin a paragraph
<Paraline # Begin a line within the paragraph
<String “Hello World's# The actual text of this document
> # End of ParaLine statement
> # End of Para statement

The Para, ParaLine, and String statements are the only required statements to import text. You could use this

example to import a simple document into FrameMaker by placing each paragraph in a Para statement. Break the
paragraph text into a series of string statements contained in one ParaLine statement. It doesn’t matter how you
break up text lines within a Para statement; the MIF interpreter automatically wraps lines when it reads the MIF file.

Some characters must be represented by backslash sequences in a MIF string. For more information, see “Character
set in strings” on page 7.

Creating a paragraph format

Within a FrameMaker document, you define a paragraph format by using the Paragraph Designer to specify the
paragraph’s properties. In a MIF file, you define a paragraph format by using the pgf statement.

ADOBE FRAMEMAKER |13
MIF Reference

The pgf statement contains a group of substatements that describe all of a paragraph’s properties. It has the following
syntax:
<Pgf

<property value>

<property value>

>

A pgf statement is quite long, so learning how to relate its substatements to the paragraph’s properties may take some
practice. Usually a MIF statement name is similar to the name of the setting within a dialog box. The following
examples show the property dialog boxes from the Paragraph Designer with the related pgf substatements.

Suppose you have created a paragraph format for a numbered list item with Basic properties defined as follows in

the Paragraph Designer.
Paragraph Designer =
Style: |Numbered e |

Fonit Pagination Mumbering

Advanced Asian Table Cell Direction
Indent

First: Left: Right:
0.0 | 025" | o0 |
Spacing
Above Paragraph: Below Paragraph:
00pt v| [00pt v]
Others
Alignment: Tab Stops:

Left AW New Tab Stop

0.25" L

Line Space:

14.0pt ~ |] Fied

["] Next Paragraph Tag:

v | Edit...

v | Rename Update Style Apply

Basic properties

The following table shows the corresponding MIF statements:

In MIF file In Paragraph Designer

<PgfTag “Numbered's> Paragraph Tag
<PgfFIndent 0.0"> First Indent
<PgfLIndent 0.25"> Left Indent
<PgfRIndent 0.0"> Right Indent
<PgfAlignment Left > Alignment
<PgfSpBefore 0.0 pt> Space Above 1

ADOBE FRAMEMAKER | 14
MIF Reference

In MIF file

In Paragraph Designer

<PgfSpAfter

0.0 pt> Space Below 1

<PgflLeading 2.0 pt>

Line Spacing (leading is added to font size)

<PgflLineSpacing Fixed>

Line Spacing (fixed)

<PgfNumTabs 1>

Number of tab stops

<TabStop Begin definition of tab
<TSX 0.25"> Tab position
<TSType Left > Tab type
<TSLeaderStr ~'s> Tab leader (none)

> # end of TabStop

<PgfUseNextTag No >

Turn off Next 9 Tag feature

<PgfNextTag

"> Next 9 Tag name (none)

The Default Font properties are defined as follows in the Paragraph Designer.

Paragraph Designer

Style: |Numbered

> |

Basic Fonit Pagination Mumbering

Advanced Asian Table Cell Direction
Famity: Size:
|T|mes MNew Roman V| 12.0pt b
Color: Background:

M Biack ~ None w
Weight: Angle: Wariation:

Regular ~ | Regular ~ | Regular w
[/ Undedine | []Ovedine [] Strkethrough
Letter Spacing: Stretch: Language:

[0.0% | [100.0% | |Engish (US) ~
| Superscript ~| [Small Caps w
Pair Kem []Change Bar [] Teume

Font properties

The following table shows the corresponding MIF statements:

In MIF file

In Paragraph Designer

<PgfFont

<FFamily “Times'> Family

ADOBE FRAMEMAKER | 15
MIF Reference

In MIF file In Paragraph Designer
<FSize 12.0 pt> Size
<FEncoding>

<FAngle “Regular's> Angle
<FWeight “Regular's> Weight
<FLanguage> Language
<FVar “Regular's> Variation
<FColor "Black's> Color
<FDW 0.0 pt> Spread
<FStretch 100%> Stretch
<FUnderlining NoUnderlining > Underline
<FOverline No > Overline

<FStrike No >

Strikethrough

<FChangeBar No >

Change Bar

<FPosition FNormal >

Superscript/Subscript

<FCase FAsTyped >

Capitalization

<FPairKern Yes >

Pair Kern

<FTsume No>

Tsume (Asian systems only)

> # end of PgfFont

The Pagination properties are defined as follows in the Paragraph Designer.

Paragraph Designer

Keep With: [Previous Paragraph [

Format :

() Defauit

(®) In Column

() Run-n Head

() Side Head

() Across All Columns

(") Across All Columns and Side Heads

Style: |Numbered R |
Basic Font Pagination Mumbering
Advanced Asian Table Cell Direction
Start: | Amywhere e

Widow/Ormphan Lines:

| [Rename Update Style Apply

Next Paragraph

First Baseline

Pagination properties

The following table shows the corresponding MIF statements:

ADOBE FRAMEMAKER | 16
MIF Reference

In MIF file

In Paragraph Designer

<PgfPlacement Anywhere >

Start

<PgfWithNext No >

Keep With Next Pgf

<PgfWithPrev No >

Keep With Previous Pgf

<PgfBlockSize 1>

Widow/Orphan Lines

<PgfPlacementStyle Normal >

Format (paragraph placement)

<PgfRunInDefaultPunct ">

Run-in Head Default Punctuation (a period followed by an em space)

The Numbering properties are defined as follows in the Paragraph Designer.

Paragraph Designer

Style: |Numbered

> |

Basic Font
Advanced Asian

Format:

Pagination
Table Cell

Autonumber Paragraphs:

Mumbering
Direction

|<n+>.\t

Building Blocks:

| [Rename

Posttion: | Start of Paragraph

Character Format: | Default T Font

Update Style

Apply

Numbering properties

The following table shows the corresponding MIF statements:

ADOBE FRAMEMAKER |17
MIF Reference

In MIF file

In Paragraph Designer

<PgfAutoNum Yes >

Turn on Autonumber

<PgfNumFormat ~<n+\>.\\t' >

Autonumber Format (a number followed by a period and a tab)

<PgfNumberFont '

>

Character Format (Default 9 Format)

<PgfNumAtEnd No >

Position (Start of Paragraph)

The Advanced properties are defined as follows in the Paragraph Designer.

Paragraph Designer

Style: |Numbered

ks

Basic Font Pagination Mumbering

Asian TableCell | Direction

Automatic Hyphenation

Hyphenate

Ma. Adjacent Hyphens: Shortest Word Length:

2 |[7 |

Shortest Prefic Shortest Suffoc

5 | [5 |

Word Spacing (% of Standard Space)

] Mllow Automatic Letter Spacing

Minimum: Madmum: Optimum:

|75% | [125% | |

Standard Space = 0.25 em

Frame Above Paf: Frame Below Paf: Paf. Box:

None ~ | |None ~ | | None w
| [Rename Update Style Apply
Advanced properties

The following table shows the corresponding MIF statements:

ADOBE FRAMEMAKER | 18
MIF Reference

In MIF file

In Paragraph Designer

<PgfHyphenate Yes >

Automatic Hyphenation (on)

<HyphenMaxLines 2>

Max. # Adjacent

<HyphenMinWord 5> Shortest Word
<HyphenMinPrefix 3> Shortest Prefix
<HyphenMinSuffix 3> Shortest Suffix

<PgfMinWordSpace 90>

Minimum Word Spacing

<PgfOptWordSpace 100>

Optimum Word Spacing

<PgfMaxWordSpace 110>

Maximum Word Spacing

<PgfLetterSpace Yes >

Allow Automatic Letter Spacing

">

<PgfTopSeparator

Frame Above 1

<PgfBotSeparator ~'>

Frame Below 1

The Asian properties are defined as follows in the Paragraph Designer.

Paragraph Designer

Style: |Numbered

Basic Font Pagination Mumbering
Advanced Asian Table Cell Direction
Westem / Asian Spacing (% OF Font Size)
Minimum: Madmum: Optimum:
0.0% | [50.0% | [25.0% |
Asian Character Spacing (% OF Font Size)
Minimum: Madmum: Optimum:
0.0% | [10.0% | 0.0 |
Squeere Punctuation:
Squeeze as Necessary w
[]Use Asian Composer
(Recommended for Chinese, Japanese, Korean and similar
languages)
| [Rename Update Style Apply

Asian properties

The following table shows the corresponding MIF statements:

ADOBE FRAMEMAKER | 19
MIF Reference

In MIF file

In Paragraph Designer

<PgfMinJRomanLetterSpace percentage>

Minimum (Western/Asian Spacing)

<PgfOptJRomanLetterSpace percentage>

Optimum (Western/Asian Spacing)

<PgfMaxJRomanLetterSpace percentage>

Maximum (Western/Asian Spacing)

<PgfMinJLetterSpace percentage>

Minimum (Asian Character Spacing)

<PgfOptJLetterSpace percentage>

Optimum (Asian Character Spacing)

<PgfMaxJLetterSpace percentage>

Maximum (Asian Character Spacing)

<PgfYakumonoType strings

Asian Punctuation

The Table Cell properties are defined as follows in the Paragraph Designer.

Paragraph Designer

Style: |Numbered R |
Basic Font Pagination Mumbering
Advanced Asian Table Cell Direction
Cell Vertical Alignment:
Top w
Cell Margins:
Top: | From Table Format, Plus:
Bottom: | From Table Format, Plus:
Left: | From Table Format, Plus:
Right: | From Table: Format, Plus:
| [Rename Update Style Apply
Table cell properties

The following table shows the corresponding MIF statements:

ADOBE FRAMEMAKER | 20
MIF Reference

In MIF file

In Paragraph Designer

<PgfCellAlignment Top >

Cell Vertical Alignment

<PgfCellMargins 0.0 pt 0.0 pt 0.0 pt 0.0 pt> [CellMargins
<PgfCellTMarginFixed No > Top
<PgfCellBMarginFixed No > Bottom
<PgfCelllMarginFixed No > Left

<PgfCellRMarginFixed No >

Right

ADOBE FRAMEMAKER | 21
MIF Reference

The Direction properties are defined as follows in the Paragraph Designer.

Paragraph Designer

&ﬁeﬂNumbaﬁd vl
Basic Fonit Pagination Mumbering
Advanced Asian Table Cell Direction
Direction:
Inheit ~

Az s
Left+o-Right
Right to-Left |

v | Rename Update Style Fpply

Direction properties

The following table shows the corresponding MIF statements:

In MIF file In Paragraph Designer

<PgfDir LTR> Direction of the paragraph text

> # end of Pgf

Adding a Paragraph Catalog

In a MIF file, you define a Paragraph Catalog by using a PgfCcatalogstatement. The Paragraph Catalog contains one
or more paragraph formats, which are defined by pgf statements. A PgfCatalog statement looks like this:

<PgfCatalog
<Pgf..> # A paragraph format description
<Pgf..> # More paragraph formats

> # end of PgfCatalog

The pgf statement describes a complete paragraph format. For example, the sample file pgfcat .mif stores the
paragraph format 1Heading in the Paragraph Catalog:

<MIFFile 2015> # Hand generated
<PgfCatalog
<Pgf
<PgfTag “1Heading's>
<PgfUseNextTag Yes >
<PgfNextTag ~“Body'>
<PgfAlignment Left >

ADOBE FRAMEMAKER |22
MIF Reference

<PgfFIndent 0.0">
<PgfLIndent 0.0">
<PgfRIndent 0.0">

<PgfBoxColor NoColor>

<PgfAsianComposer No>

<PgfDir LTR>

> # end of Pgf

> # end of PgfCatalog
If you open pgfcat .mif in FrameMaker, you'll see that the Paragraph Catalog contains a single paragraph format
called 1Heading. If you supply a Paragraph Catalog, the paragraph formats in your catalog replace those in the
default catalog; they do not supplement the default formats.

If you do not supply a Paragraph Catalog in a MIF file, the MIF interpreter provides a default Paragraph Catalog with
predefined paragraph formats.

If a Pg£ statement provides only the name of a paragraph format, the MIF interpreter supplies default values for the
rest of the paragraph properties when it reads in the MIF file.

Applying a paragraph format

To apply a format from the Paragraph Catalog to a paragraph, use the PgfTag statement to include the format tag
name within the Para statement. For example, to apply the previously defined format 1Heading to a paragraph, use
the following statements:

<Para
<PgfTag ~1lHeading'>
<Paraline
<String "This line has the format called 1lHeading.'>
> # end of ParaLine
> # end of Para

To apply a format from the Paragraph Catalog and then locally override some properties, use a partial Pgf statement
within the Para statement. The following MIF example applies the paragraph format 1Heading, then changes the
alignment:

<Para
<PgfTag ~1lHeading's>
<Pgf
<PgfAlignment Centers>
> # end of Pgf
<ParalLine
<String "This line is centered.'s>
> # end of ParalLine
> # end of Para

To locally define a paragraph format, include a complete pgf statement within the pPara statement:

<Para
<Pgf
<PgfTag ~2Heading'>
<PgfUseNextTag Yes >
<PgfNextTag ~Body'>
<PgfAlignment Left >
<PgfFIndent 0.0">
<PgfLIndent 0.0">
> # end of Pgf
<ParalLine
<String A locally formatted heading's>
> # end of ParaLine

> # end of Para

ADOBE FRAMEMAKER
MIF Reference

For a complete description of Pgf property statements, see page 62.

How paragraphs inherit properties

Paragraphs can inherit properties from other paragraphs in a MIF file. If a pgf statement does not provide values for
each paragraph property, it acquires any property values explicitly defined in a previous pgf statement. Because the
MIF interpreter sequentially reads MIF files, it uses the most recently defined pgf statement that occurs before the
current statement in the file.

For example, the following MIF code applies the default format named Body to the first paragraph in a document
and locally overrides the paragraph font:

<Para
<Pgf
<PgfTag “Body's>
<PgfFont
<FWeight "Bold's>
> # end of PgfFont
> # end of Pgf
<Paraline
<String "First paragraph in document.'s>
> # end of ParalLine
> # end of Para
<Para
<ParaLine
<String ~Second paragraph in document.'s>
> # end of ParaLine
> # end of Para

The previous example is in the sample file pgffmt .mi£. If you open this file in FrameMaker, you’ll find that the
second paragraph also has the new font property.

A paragraph property remains in effect until the property value is changed by a subsequent MIF statement. To
change a paragraph property to another state, supply a Pgf statement containing the paragraph property statement
set to the new state.

Thus, in the previous example, you could change the font from Bold to Regular in a Pgf statement in the second Para

statement:
<Para
<Pgf
<PgfFont
<FWeight “Regular's>
> # end of PgfFont
> # end of Pgf
<ParalLine
<String “Second paragraph in document.'s>
> # end of ParaLine
> # end of Para

To summarize, paragraphs inherit formats as follows:
« Formats in the Paragraph Catalog inherit properties from the formats above them.
+ Locally defined paragraph formats inherit properties from previously specified formats.

+ Textlines in anchored frames inherit font properties from previously specified formats, including the last format
in the Paragraph Catalog and previous text lines.

Tips

The following hints may help you minimize the MIF statements for paragraph formats:

23

ADOBE FRAMEMAKER | 24
MIF Reference

« Ifpossible, use the formats in the default Paragraph Catalog (don’t supply a PgfCatalog statement). If you know
the names of the default paragraph formats, you can tag paragraphs with the pgfTag statement.

+ If you know that a document will use a particular template when it is imported into a FrameMaker document,
you can just tag the paragraphs in the text flow. Don’t create a new Paragraph Catalog in MIF; it’s easier to create
catalogs in FrameMaker document templates.

« If you need to provide a full Paragraph Catalog in a MIF file, you can still use FrameMaker to ease the task of
creating a catalog. Create a template in FrameMaker, save the template as a MIF file, and include the Paragraph
Catalog in your document. For instructions, see “Including template files” on page 45.

Creating and applying character formats

You can define character formats locally or store them in the Character Catalog and apply the formats to text selec-
tions. Creating and applying character formats is very similar to creating and applying paragraph formats as
described in the previous section. Because the two methods are similar, this section just summarizes how to create
and apply character formats.

In a MIF file, the Character Catalog is contained in a FontCatalog statement. The FontCatalog statement contains
named character formats in a list of Font statements. A FontCatalog statement looks like this:

<FontCatalog
<Font...> # Describes a character format
<Font...> # Describes a character format
> # end of FontCatalog

A Font statement specifies the properties of a character format; these are the same properties specified in the
Character Designer. The Font statement is just like the PgfFont statement that you use to define the default font in
a paragraph format. See “PgfFont and Font statements” on page 67 for a complete description of a Font statement.

To apply a predefined character format to text, use the FTag statement:

<MIFFile 2015> # Hand generated
<FontCatalog
<Font
<FTag “Emphasis'>
<FAngle “Italic's>

> # end of Font
> # end of FontCatalog
<Para
<PgfTag “Body's>
<ParaLine
<String “You can format characters within a paragraph by '>
<Font
<FTag “Emphasis'>
> # end of Font
<String “applying's>
<Font
<FTag "~ '>
> # end of Font
<String - a character format from the character catalog.'s>
> # end of ParaLine
> # end of Para

Remember to include a second Font statement to end the scope of the applied character format.
To locally define a character format, use a complete Font statement:

<Para
<PgfTag “Body's>

>

ADOBE FRAMEMAKER
MIF Reference

<ParaLine
<String “You can also format characters by '>
<Font
<FTag “Emphasis'>
..character property statements..

> # end of Font
<String Tapplying's>
<Font
<FTag ~'>
> # end of Font
<String ~ a locally defined character format.'s>
> # end of ParaLine

end of Para

Like paragraph formats, character formats inherit properties from previously defined character formats. Unlike

paragraph formats, however, a character format ends at the close of a Para statement.

See the sample file charfmt .mif for examples of using character formats.

Creating and formatting tables

You can create tables in FrameMaker documents, edit them, and apply table formats to them. Tables can have
heading rows, body rows, and footing rows. Each row consists of table cells that contain the actual contents of the

table.
Table 1: Coffee Inventory Title
Coffee Bags Status Price per bag - Heading row
Brazil Santos 50 Prompt $455.00
Celebes Kalossi 29 In Stock $924.00 | Body rows
Colombian 25 In Stock $474.35
$1,853.35 —— Footing row

Tables are like paragraphs in that they have a format. A table format controls the appearance of a table, including the

number and width of columns, the types of ruling or shading in rows and columns, and the table’s position in a text
column. Table formats can be named, stored in a Table Catalog, and applied to many tables. A table format can also
be defined locally.

In a FrameMaker document, tables appear where they have been placed in the text flow. A table behaves like an

anchored frame, so a table flows with the surrounding text unless you give it a specific location. In a MIF file, the
document’s tables are collected in one place and a placeholder for each table indicates the table’s position in the text

flow.

You create a table in a MIF file as follows:

Specify the contents of the table by using a Tb1 statement. An individual table is called a table instance. All table
instances are stored in one Tb1s statement. Assign each table instance a unique ID number.

Indicate the position of the table in the text flow by using an ATb1 statement. The ATb1 statement is the place-
holder, or anchor, for the table instance. It refers to the table instance’s unique ID.

25

ADOBE FRAMEMAKER | 26
MIF Reference

« Specify the table format by using a Tb1Format statement. Formats can be named and stored in the Table Catalog,
which is defined by a Tb1catalog statement, or locally defined within a table.

Creating a table instance

All table instances in a document are contained in a Tb1s statement. The Tb1ls statement contains a list of Tb1 state-
ments, one for each table instance. A document can have only one Tb1s statement, which must occur before any of
the table anchors in the text flow.

The Tb1 statement contains the actual contents of the table cells in a list of MIF substatements. Like other MIF state-
ments, this list can be quite long. The following is a template for a Tb1 statement:

<Tbl
<TblID...> # A unique ID for the table
<TblFormat...> # The table format
<TblNumColumns...> # Number of columns in this table--required
<TblColumnWidth...> # Column width, one for each column
<TblH # The heading; omit if no heading
<Row # One Row statement for each row
<Cell..> # One statement for each cell in the row
> # end of Row
<TblBody # The body of the table
<Row...> # One for each row in body
> # end of TblBody
<TblF # The footer; omit if no footer
<Row...> # One for each row in footer
> # end of TblF
> # end of Tbl

The Tb11ID statement assigns a unique ID to the table instance. The Tb1Format statement provides the table format.
You can use the Tb1Format statement to apply a table format from the Table Catalog, apply a format from the catalog
and override some of its properties, or completely specify the table format locally. Because the tables in a document
often share similar characteristics, you usually store table formats in the Table Catalog. Table instances can always
override the applied format.

The Th1NumColumns statement specifies the number of columns in the table instance. It is required in every table.

The Tb1H, Tb1Body, and Tb1F statements contain the table heading, body, and footer rows. If a table does not have
a heading or footing, omit the statements.

Here’s an example of a simple table that uses a default format from the Table Catalog. The table has one heading row,
one body row, and no footing rows:

Coffee Price per Bag

Brazil Santos $455.00

You can use the following MIF statements to create this simple table:

<MIFFile 2015>
<Tbls
<Tbl

<TblID 1> # ID for this table
<TblTag “Format A's> # Applies format from Table Catalog
<TblNumColumns 2> # Number of columns in this table
<TblColumnWidth 2.0"> # Width of first column
<TblColumnWidth 1.5"> # Width of second column
<TblH # Begin table heading

<Row # Begin row

ADOBE FRAMEMAKER |27
MIF Reference

<Cell # First cell in row
<CellContent
<Para # Cells can contain paragraphs
<PgfTag ~“CellHeading'># Applies format from Paragraph Catalog
<ParalLine

<String “Coffee's># Text in this cell

end of Para
end of CellContent
end of Cell
Second cell in row

>
<Cell
<CellContent
<Para
<PgfTag ~“CellHeading'>
<ParaLine
<String "Price per Bag's>

H*+ HF F FH

end of Para

end of CellContent
end of Cell

end of Row

end of TblH

Table body

Begin row

First cell in row

>
<TblBody
<Row

Y
H* H HF FH H H HF F

<Cell
<CellContent
<Para
<PgfTag “CellBody'>
<ParalLine
<String "Brazil Santos's>

end of Para
end of CellContent
end of Cell
Second cell in row

>
<Cell
<CellContent
<Para
<PgfTag ~“CellBody'>
<ParalLine
<String ~$455.00'>

H*+ HF F FH

end of Para

end of CellContent
end of Cell

end of Row

end of TblBody

> end of Tbl

> # end of Tbls

H* HF F H H HF

A table cell is a text column that contains an untagged text flow not connected to any other flows. You can put any
kind of text or graphics in a table cell. The cell automatically grows vertically to accommodate the inserted text or
graphic; however, the width of the column remains fixed.

Adding a table anchor

To indicate the position of a table in the text flow, you must add an ATb1 statement. The ATb1 statement refers to the
unique ID specified by the Tb11D statement in the table instance. For example, to insert the table defined in the
previous example, you would add the following statements to the minimal MIF file:

<Para

ADOBE FRAMEMAKER
MIF Reference

<ParalLine
<String “Coffee prices for January's>
<ATbl 1> # Matches table ID in Tbl statement
> # end of Paraline
> # end of Para

This example is in the sample file table.mif. If you open this file in FrameMaker, you'll see that the anchor symbol
for the table appears at the end of the sentence. To place the table anchor between two words in the sentence, use the

following statements:

<Para
<ParaLine
<String “Coffee prices '>
<ATbl 1>
<String “for January's>
> # end of Paraline
> # end of Para

Note that the ATb1 statement appears outside the String statement. A ParaLine statement usually consists of
String statements that contain text interspersed with statements for table anchors, frame anchors, markers, and

cross-references.

About ID numbers

The table ID used by the ATb1 statement must exactly match the ID given by the Tb11D statement. If it does not, the
MIF interpreter ignores the ATb1 statement and the table instance does not appear in the document. You cannot use
multiple ATb1 statements that refer to the same table ID.

AnID can be any positive integer from 1 to 65535, inclusive. The only other statements that require an ID are AFrame
statements, linked TextRect statements, and Group statements. For more information about these statements, see

“Graphic objects and graphic frames” on page 111.

Rotated cells
A table can have rotated cells and straddle cells. The following table includes rotated cells in the heading row:

Coffee
Price

Brazil Santos $455.00

In a MIF file, a cell that is rotated simply includes a cel1angle statement that specifies the angle of rotation:

<Cell
<CellAngle 270>

<CellContent..>
> # end of Cell

Cells can only be rotated by 90, 180, or 270 degrees. Cells are rotated clockwise.

28

ADOBE FRAMEMAKER
MIF Reference

Straddle cells

The contents of a straddle cell cross cell borders as if there were a single cell. You can straddle cells horizontally or
vertically. The following table includes a heading row that straddles two columns:

Brazilian Coffee

Coffee Price per Bag

Brazil Santos $455.00

The MIF code for the straddle cell includes a ce11columns statement that specifies the number of columns that the
cell crosses. The contents of the straddle cell appear in the first of the straddle columns; the subsequent cel1 state-
ments for the row must appear even if they are empty.

<Row
<Cell
<CellColumns 2> # Number of straddle columns.
<CellContent # Content is in the first cell.
<Para
<PgfTag “CellHeading'>
<Paraline
<String “Brazilian Coffee's>
>
> # end of Para
> # end of CellContent
> # end of Cell
<Cell # Second cell appears, even though
<CellContent # it is empty.
<Para
<PgfTag “CellHeading'>
<ParalLine>
> # end of Para
> # end of CellContent
> # end of Cell
> # end of Row

If the cell straddles rows, the substatement is Cel1Rows.

Creating a table format
A table format includes the following properties:
« The properties specified by the Table Designer

+ These include the row and column ruling and shading styles, the position of text within cell margins, the table’s
placement within the text column, and the table title position.

+ The number and widths of columns
« The paragraph format of the first paragraph in the title (if there is one)
+ The paragraph format of the topmost paragraph in the heading, body, and footing cell of each column

For example, you could change the format of the previous table to include shaded rows and a different ruling style:

Coffee Price per Bag

Brazil Santos $455.00

Celebes Kalossi $924.00

29

ADOBE FRAMEMAKER | 30
MIF Reference

Coffee Price per Bag ‘

Colombian

$474.35 ‘

The following MIF statements define this table format:

<TblFormat
<TblTag ~“Coffee Table's>
Every table must have at least one TblColumn
statement.

<TblColumn
<TblColumnNum 0> # Columns are numbered from 0.
<TblColumnWidth 2.0"> # Width of first column.
> # end of TblColumn
<TblColumn
<TblColumnNum 1> # Second column.
<TblColumnWidth 1.5"> # Width of second column.
> # end of TblColumn
<TblCellMargins 6.0 pt 6.0 pt 6.0 pt 4.0 pt>
<TblLIndent 0.0"> # These are exactly like paragraph
<TblRIndent 0.0"> # format properties.

<TblAlignment Center >
<TblPlacement Anywhere >
<TblSpBefore 12.0 pt>
<TblSpAfter 12.0 pt>
<TblBlockSize 1>

<TblHFFill 15> # No fill for heading row.
<TblHFColor “Black's>
<TblBodyFill 5> # Use 10% gray fill for main body rows.

<TblBodyColor “Black's>

<TblShadeByColumn No > # Shade by row, not by column.

<TblShadePeriod 1> # Shade every other row.

<TblXFill 15> # No fill for alternate rows.

<TblXColor “Black's # Color for alternate rows.

<TblAltShadePeriod 1>

<TblLRuling “Thin's> # Use thin left outside rule.

<TblBRuling “Thin's> # Use thin bottom outside rule.

<TblRRuling “Thin'> # Use thin right outside rule.

<TblTRuling “Medium'> # Use medium top outside rule.

<TblColumnRuling ~Thin's> # Use thin rules between columns.

<TblXColumnRuling “Thin's>

<TblBodyRowRuling “Thin'> # Use thin rules between rows.

<TblXRowRuling “Thin'>

<TblHFRowRuling ~'> # No rules between heading rows.

<TblSeparatorRuling “Medium's> # Use medium rule after heading row.

<TblXColumnNum 1>

<TblRulingPeriod 4>

<TblLastBRuling No >

<TblTitlePlacement InHeader> # Place title above table.

<TblTitlePgfl # Paragraph format for first
<PgfTag “TableTitle's> # paragraph in title.

> # end of TblTitlePgfl

<TblTitleGap 6.0 pt> # Gap between title and table.

<TblInitNumColumns 2> # Initial number of rows and

<TblInitNumHRows 1> # columns for new tables with

<TblInitNumBodyRows 4> # this format.

<TblInitNumFRows 0>
<TblNumByColumn No >

end of TblFormat

ADOBE FRAMEMAKER | 31
MIF Reference

The Tb1Column statement numbers each column and sets its width. A table can have more columns than Tb1column
statements; if a column does not have a specified format, the MIF interpreter uses the format of the most recently
defined column.

Note: A table instance must have at least one Tb1Column statement. A table can use a format from the Table Catalog

that includes a To1Column statement or it can include a local To1Format statement that supplies the TolColumn
statement.

Adding a Table Catalog

You can store table formats in a Table Catalog by using a Tb1Catalog statement. A document can have only one
TblCatalog statement, which must occur before the Tbls statement.

The Tblcatalog statement contains one ThlFormat statement for each format, as shown in the following template:

<TblCatalog

<TblFormat...>
<TblFormat..>
> # end of TblCatalog

As with the Paragraph Catalog, if your MIF file does not provide a Table Catalog, the MIF interpreter supplies a
default catalog and formats. If you do provide a Table Catalog, your defined table formats supersede those in the
default Table Catalog.

You can add a minimal table format to the catalog by simply supplying a table format tag name. The MIF interpreter
supplies a set of default values to the table’s properties when it reads in the MIF file.

The ruling styles in a table format are defined in a separate catalog called the Ruling Catalog. You can define your
own Ruling Catalog with the RulingCatalog statement. Whether you use the default ruling styles or create your
own, substatements that refer to ruling styles, such as the Tb1LRuling statement, must use the name of a ruling
style from the Ruling Catalog. See “RulingCatalog statement” on page 83.

Applying a table format
You can apply a table format from the Table Catalog or you can define a table format locally.

To apply a table format from the Table Catalog, use the Tb1Tag statement within the Tb1 statement:

<Tbls
<Tbl
<TblID 1>
<TblTag “Format A's> # Tag of format in Table Catalog
<TblNumColumns 1>
<TblBody
> # end of TblBody
> # end of Tbl
> # end of Tbls

To locally define a table format, use a complete TolFormat statement:

<Tbls
<Tbl
<TblID 1>
<TblFormat
<TblTag

'>
Every table must have one TblColumn statement.
<Tb1lColumn
<TblColumnNum 0>
<TblColumnWidth 1.0">
> # end of TblColumn
..table property statements..

ADOBE FRAMEMAKER | 32
MIF Reference

> # end of TblFormat
> # end of Tbl
> # end of Tbls

Creating default paragraph formats for new tables

You can use the Tb1Format and Tb1Column statements to define default paragraph formats for the columns in new
tables. These default formats do not affect tables that are defined within the MIF file; they only affect tables that the
user inserts after the MIF file has been opened in FrameMaker. Your filter or application should provide these
defaults only for documents that might be edited later.

For example, the following MIF code assigns a paragraph format named Description to body cells in new tables that
are given the format called Coffee Table:

<TblFormat
<TblTag ~Coffee Table'>
<TblColumn

<TblColumnNum 0>
<TblColumnWidth 1.0">

<TblColumnBody
<PgfTag “Description's>
> # end of TblColumnBody
> # end of TblColumn
> # end of TblFormat

Tables inherit properties differently

Tables inherit formatting properties somewhat differently than other document components. A table without an
applied table format does not inherit one from a previously defined table. Instead, it gets a set of default properties
from the MIF interpreter. Thus, if you apply a named format to a table, a following table will not inherit that format.

Paragraphs in table cells still inherit properties from previously defined paragraph formats. If you give a table cell a
certain paragraph style, all subsequent cells inherit the same property unless it is explicitly reset. Table cells can
inherit paragraph properties from any previously specified paragraph format, including other tables, paragraphs, or
even the Paragraph Format catalog.

Tips
To avoid problems when creating tables:
+ Give each table a unique ID number.

« Make sure that each Tb1 statement has only one corresponding ATb1 statement, and that each ATb1 statement
has a corresponding Tb1 statement.

+ Make sure that each ATb1 statement matches the ID of its corresponding table instance.

Specifying page layout

FrameMaker documents have two kinds of pages that determine the position and appearance of text in the
document: body pages and master pages.

ADOBE FRAMEMAKER
MIF Reference

Body pages contain the text and graphics that form the content of the document. Master pages control the layout of
body pages. Each body page is associated with one master page, which specifies the number, size, and placement of
the page’s text frames and the page background, such as headers, footers, and graphics.

Untagged
background text
frame

N

— | — On body pages, you type in a
Tagged template — column of a tagged text frame.
text frame E—

+]

Master page Body page

Untagged
background text
frame

Text frames define the layout of the document’s text on a page. A text frame can arrange text in one or more columns.
In MIF, a text frame is represented by a TextRect statement. The dimensions of the text frame and the number of
columns in the text frame are specified by substatements under the TextRect statement.

A text flow describes the text contained in one or more text frames. In MIE a text flow is represented by a TextFlow
statement. The actual text of the document is specified by substatements under the TextFlow statement.

If the text flow has the autoconnect property (if the text flow uses the MIF statement <TFAutoConnect Yess), the
text flow runs through a series of text frames; when you fill up one text frame, text continues into the next text frame.
Most documents have only one text flow, although you can create many separate flows.

FrameMaker provides a default right master page for single-sided documents and default right and left master pages
for double-sided documents. A MIF file can either use the default page layout or provide a custom layout.

Using the default layout

If you don’t need to control the page layout of a document, you can use the default page layout by putting all of the
document’s text into a Text Flow statement. When reading the file, the MIF interpreter creates default master pages
and body pages. The MIF file creates a single-column text frame for the body pages to contain the document’s text.
The MIF interpreter associates the text flow with this text frame.

The following example is in the sample file defpage . mif:

<MIFFile 2015> # Hand generated
<TextFlow # All document text is in this text flow.
<TFTag "A'> # Make this a tagged text flow.
<TFAutoConnect Yes> # Automatically connect text frames.
<Para
<ParaLine

<String "This paragraph appears on a body page within a's>
<String - text flow tagged A.'s>

end of ParalLine

end of Para

end of TextFlow

End of MIFFile

\%
*+ HF HF

A text flow must be tagged, and it must include <TFAutoConnect Yess; otherwise, when the user adds text to the
document, FrameMaker won’t create additional pages and text frames to hold the added text.

33

ADOBE FRAMEMAKER
MIF Reference

Creating a simple page layout

If you want some control of the page layout but do not want to create master pages, you can use the Document
substatements DPageSize, DMargins, and DColumns to specify the page size, margins, and number of columns in
the text frame in the document. The MIF interpreter uses this information to create master pages and body pages.
These statements correspond to the Normal Page Layout options.

The following example is in the sample file columlay.mif:

<MIFFile 2015> # Hand generated
<Document

<DPageSize 7.5" 9.0"> # Set the page size.
<DMargins 2" 1" .5" .5"> # Set the margins.
<DColumns 1> # Set the number of columns in the default
text frame.
<DTwoSides No> # Set document to single-sided.
> # end of Document
<TextFlow # Document text is in this text flow.
<TFTag "A'> # Make this a tagged text flow.
<TFAutoConnect Yes> # Automatically connect text frames.
<Para
<ParaLine

<String "This paragraph appears on a body page within a's>
<String ~ text flow tagged A.'>

end of ParalLine

end of Para

end of TextFlow

End of MIFFile

H*+ F H H*

Creating a single-sided custom layout

If the document that you’re importing needs a custom master page, you must specify a custom page layout. For
example, a document might need a master page for background graphics.

To create a custom layout for a single-sided document, you do the following:

+ Create a right master page.

« Create a single, empty body page.

« Create an empty, tagged text flow that is linked to the master page.

+ Create a tagged text flow that is linked to the body page and contains all the document’s text.

The MIF code shown in this section is also in the sample file snglpage.mif.

To create the master page

To create a master page layout, use the Page statement to create the page and use the TextRect statement to create
the text frame.

To specify the number of text columns in the text frame, use the TRNumColumns statement. By default, if the text
frame’s specification does not include this statement, the text frame has only one column.

This example sets up a right master page with a text frame containing one text column:

<MIFFile 2015> # Hand generated
<Document

<DPageSize 7.5" 9.0">
<DTwoSides No>

Set the document page size.

Make this a single-sided document.
end of Document

Create a right master page.

>

H*+ HF HF FHF

<Page
<PageType RightMasterPages>
<PageTag “Right's>

34

ADOBE FRAMEMAKER
MIF Reference

<TextRect Set up a text frame.
<ID 1> Give the text frame a unique ID.
<Pen 15> Set the pen style.
<Fill 15> Set the fill pattern (none).

<ShapeRect 2" 1" 5" 7.5">
<TRNumColumns 1>
<TRColumnGap 0.0">

Specify the text frame size.
Specify number of text columns.
Specify gap between text columns.
end of TextRect

end of Page

H* HF F FH H H HF FHF

>

=

>

The 1D statement assigns a unique ID number to this text frame. You must give text frames a unique ID in a MIF file;
other objects that require unique IDs are anchored graphic frames and table instances.

To create an empty body page

To create the body page, use the Page statement. Then use the TextRect statement to create a text frame with dimen-
sions that are exactly the same as the text frame on the master page. Give the text frame a unique ID:

<Page
<PageType BodyPage>
<PageBackground “Default's
<TextRect
<ID 2> # This text frame has a unique ID.
The body page dimensions match those of the
master page.

=

<ShapeRect 2" 1" 5" 7.5">

<TRNumColumns 1> # The column layout must also match.
<TRColumnGap 0.0">

> # end TextRect

> # end Page

If the dimensions (specified by the shapeRect statement) and column layout (specified by the TRNumColumns and
TRColumnGap Statements) of the master page and body page do not match, the body page will not use the page layout
from the master page. Instead, the body page will use the page layout defined for the body page.

To create the text flow for the master page

The text flow for the master page is not contained in the Page statement; instead, it is contained in a TextFlow
statement that is linked to the text frame on the master page. The Page statements must come before any TextFlow
statements.

Link the text flow to the master page’s text frame by using the TextRect ID statement to refer to the text frame’s

unique ID:
<TextFlow
<TFTag "A'> # The text flow must be tagged.
<TFAutoConnect Yes> # Autoconnect must be turned on.
<Para
<ParalLine
<TextRectID 1> # Refers to text frame ID on master page.
> # end of Paraline
> # end of Para
> # end of TextFlow

The text flow for the master page must be empty. Be sure to give the text flow the same flow tag that you give the text
flow for the body page and to turn on the autoconnect feature.

35

ADOBE FRAMEMAKER
MIF Reference

To create the text flow for the body page

The text flow for the body page is contained in a separate Text Flow statement that is linked to the body page’s text
frame. The text flow contains the actual text of the document in one or more Para statements. If text overflows the
first text frame, the MIF interpreter creates another body page with a layout that matches the right master page and
pours text into the body page’s text frame.

<TextFlow
<TFTag "A's>
<TFAutoConnect Yes>
<Para
<TextRectID 2>
<PgfTag “Body'>
<ParalLine
<String "This appears on a body page within a text flow'>

<String tagged A.'>
> # end of Paraline
> # end of Para
> # end of TextFlow
Why one body page?

The method you use to create body pages is different from the method that FrameMaker uses when it writes a MIF

file. When FrameMaker writes a file, it knows where each page break occurs in the file, so it creates a series of page

statements that each contain the text and graphics located on that page. When you are importing a document, you

do not know where page breaks will fall, so you cannot break the document into a series of Page statements. Instead,
you simply create one text flow for the entire document and link it to a single, empty body page. When the MIF inter-
preter reads the file, it creates as many pages as the document requires and gives each page the background specified
by the master page.

Creating a double-sided custom layout

If you import a two-sided document, you might need to specify different page layouts for right and left pages. For
example, a document might have a wider inside margin to allow extra room for binding. You can do this in a MIF
file by creating and linking a second master page and a second body page. As with a single-sided layout, all the
document’s text is in one text flow. When the MIF interpreter reads the file, it adds alternate left and right body pages
to the document. You can control whether the document starts with a right page or a left page by using the brarity
statement.

For an example of a document with left and right master pages, see the sample file dblpage .mif.

Creating a first master page

In addition to left and right master pages, you can create custom master page layouts that you can apply to body
pages. For example, some books have a special layout for the first page in a chapter.

In a MIF file, you can create as many master pages as you need, but you cannot apply all of them to the appropriate
body pages. You can only apply a left page, a right page, and one additional custom master page to the body pages.
Furthermore, you can only link the custom master page to the first page in a document.

When you are importing a document into FrameMaker, you do not know how much text the MIF interpreter will
put on a page; you can only determine where the first page begins. When the interpreter reads the MIF file, it applies
the custom master page layout to the first page in the document. For each subsequent page, it uses the Drarity and
DTwoSides statements to determine when to add a left page and when to add a

right page.

36

ADOBE FRAMEMAKER | 37
MIF Reference

Other master page layouts that you've defined are not lost when the interpreter reads a MIF file. The user can still
apply these page layouts to individual body pages.

For an example of a MIF file with a first page layout, see the sample file frstpage.mif.

Adding headers and footers

Headers and footers are defined in untagged text flows on the master pages of a document. When FrameMaker
creates default master pages, it automatically provides untagged text flows for headers and footers.

If you are importing a document that has headers and footers, you define additional text frames on the master pages.
Link an untagged text flow to each additional text frame on the master page. The untagged text flow contains the
text of the header or footer.

For an example of a MIF file with a footer, see the sample file footers.mif. Note that the footer text flow contains
a variable; you can place variables only in untagged text flows on a master page, not in tagged flows.

Creating markers

A FrameMaker document can contain markers that hold hidden text and mark locations. For example, you use
markers to add index entries, cross-references, and hypertext commands to a document. FrameMaker provides both
predefined marker types and markers that you can define as needed. (For more information about markers and
marker types, see page 136.)

Within a FrameMaker document, you insert a marker by choosing the Marker command from the Special menu. In
a MIF file you insert a marker by using a Marker statement. The Marker statement specifies the marker type and the
marker text.

The following example inserts an index marker:

<Para
<ParalLine
<Marker
<MType 2> # Index marker
<MText “Hello world's# Index entry
> # end of Marker
<String "Hello world's>
> # end of Paraline
> # end of Para

The MText statement contains the complete index entry.

When FrameMaker writes a Marker statement, the statement includes an MCurrpage substatement with the page
number on which the marker appears. You do not need to provide an MCurrPage statement when you generate a
MIF file; this statement is ignored when the MIF interpreter reads a MIF file.

Creating cross-references

In a FrameMaker document, you can create cross-references that are automatically updated. A cross-reference can
refer to an entire paragraph or to a particular word or phrase in a paragraph. The text to which a cross-reference
points is called the reference source; the actual location of the cross-reference is the reference point.

ADOBE FRAMEMAKER
MIF Reference

The format of a cross-reference determines its appearance and the wording. Cross-reference formats include building
blocks, instructions to FrameMaker about what information to extract from the reference source. A common
building block is <$pagenums>, which FrameMaker replaces with the page number of the reference source. Another
common building block is <$paratext>, which FrameMaker replaces with the text content of the paragraph,
excluding autonumbering and special characters such as tabs and forced line breaks.

Within a FrameMaker document, you insert and format cross-references by choosing Cross-Reference from the
Special menu. In a MIF file, you create a cross-reference as follows:

+ Create the format of cross-references by using XRefFormats and XRefFormat statements.

+ Insert a marker at the reference source by using a Marker statement.

+ Insert the reference point by using an XRef statement.

Creating cross-reference formats

The cross-reference formats for a document are defined in one XRefFormats statement. A document can have only
one XRefFormats statement.

The XRefFormats statement contains one or more XRefFormat statements that define the cross-reference formats.
A cross-reference format consists of a name and a definition.
<XRefFormats
<XRefFormat
<XRefName “Page'>
<XRefDef “page\xll <Spagenum\>'>
> # end of XRefFormat
> # end of XRefFormats

The name can be any string allowed in a MIF file (see “Character set in strings” on page 7). In this example, a
nonbreaking space (\x11) appears between the word “page” and the page number. Each cross-reference format must
have a unique name; names are case-sensitive. The cross-reference definition contains text and cross-reference
building blocks. See your user’s manual or the online Help system for a list of building blocks.

Inserting the reference source marker

To mark the location of the reference source, insert a Marker statement at the beginning of the reference source. The
following example creates a cross-reference to a heading:

<Para
<PgfTag “Heading'>
<ParalLine
<Marker
<MType 9> # Identifies this as a cross-reference
<MText °~34126: Heading: My Heading'>
Cross-reference source
> # end of Marker
<String "My Heading's>
> # end of Paraline
> # end of Para

The <MType 9> statement identifies this as a cross-reference marker; it is required. The MText statement contains
the cross-reference source text, which must be unique. When FrameMaker writes a cross-reference, it adds a unique
number and the paragraph tag to the MText statement, as shown in the previous example. While the number is not
required, it guarantees that the cross-reference points to a unique source when the number is present. In the previous
example, the number in <MText > is not mandatory. However, the number in the example ensures that the new cross-
reference points to the ‘My heading’ heading.

38

ADOBE FRAMEMAKER
MIF Reference

Inserting the reference point

The final step in creating a cross-reference is to insert an XRef statement at the position in text where the cross-
reference should appear. The XRef statement provides the name of the cross-reference format (defined in
XRefFormat), the source text, and the pathname of the file containing the source:

<Para
<PgfTag “Body'>
<ParalLine
<String “This is a cross-reference to '>
<XRef
<XRefName “Page'> # Cross-reference format
<XRefSrcText “34126: Heading: My Heading'>
Source text
<XRefSrcFile ~'> # File containing source
> # end of XRef
<XRefEnd>
<String ~.'>
> # end of ParalLine
> # end of Para

The format name must exactly match the name of a format defined in XxRefFormats. The source text must be unique
and must match the string in the MText statement in the corresponding reference point marker. The xRefSrcFile
statement is only required if the reference source is in a different file from the reference point. It must be a valid MIF
filename (see “Device-independent pathnames” on page 7).

You must also supply an XxRefEnd statement after the XRef statement.

How FrameMaker writes cross-references

When FrameMaker writes a cross-reference, it provides the actual text that will appear at the reference point. This
information is not required in a MIF input file. The previous example would be written as follows:

<XRef
<XRefName “Page'>
<XRefSrcText ~34126: Heading: My Heading's>
<XRefSrcFile ~'>

> # end of XRef
<String “page'> # The text that appears in the document;
<Char HardSpace > # in this case, a page number followed a
<String “1's> # hard space and the number 1
<XRefEnd> # End of cross-reference text

If you do include the text of the cross-reference, make sure that the xrRefEnd statement follows the text. FrameMaker
considers everything between the xrRef statement and the xRefEnd statement to be part of the cross-reference.

Creating variables

In a FrameMaker document, variables act as placeholders for text that might change. For example, many documents
use a variable for the current date. A variable consists of a name, which is how you choose a variable, and a definition,
which contains the text and formatting that appear where a variable is inserted.

FrameMaker provides two kinds of variables: system variables that are predefined by FrameMaker, and user variables
that are defined by the user. System variables contain building blocks that allow FrameMaker to extract certain infor-
mation from the document or the system, such as the current date or the current page number, and place it in text.

Headers and footers frequently use system variables. You can modify a system variable’s definition but you cannot

create new system variables. User variables contain only text and formatting information.

39

ADOBE FRAMEMAKER
MIF Reference

Within a FrameMaker document, you insert and define variables by choosing Variable from the Special menu. The
variable appears in the document text where it is inserted.

In a MIF file, you define and insert variables as follows:
+ Define and name the document variables by using variableFormats and VariableFormat statements.

+ Insert the variable in text by using the variable statement.

Defining user variables

All variable definitions for a document are contained in a single VariableFormats statement. The variable-
Formats statement contains a VariableFormat statement for each document variable. The VariableFormat
statement provides the variable name and definition.
<VariableFormats

<VariableFormat

<VariableName ~Product Number's>

<VariableDef “Al15-24'>

> # end of VariableFormat
> # end of VariableFormats

The variable name must be unique; case and spaces are significant. For a user variable, the variable definition can
contain only text and character formats; you can provide any character format defined in the Character Catalog. The
following example applies the default character format Emphasis to a variable:
<VariableFormat

<VariableName ~Product Number's

<VariableDef ~<Emphasis\>Al15-24<Default § Font\>'>
> # end of VariableFormat

You can specify character formats as building blocks; that is, the character format name must be enclosed in angle
brackets. Because of MIF parsing requirements, you must use a backslash sequence for the closing angle bracket.

Using system variables

Whenever you open or import a MIF file, the MIF interpreter provides the default system variables. You can redefine
a system variable but you cannot provide new system variables.

System variables are defined by a variableFormat statement. For example, the following statement shows the
default definition for the system variable Page Count:
<VariableFormat

<VariableName ~Page Count'>

<VariableDef ~<$lastpagenum\>'>
> # end of VariableFormat
System variables contain building blocks that provide certain information to FrameMaker. These building blocks are
preceded by a dollar sign ($) and can only appear in system variables. Some system variables have restrictions on
which building blocks they can contain. These restrictions are discussed in your user’s manual and in the online Help
system. You can add any text and character formatting to any system variable.

Inserting variables

To insert a user variable or a system variable in text, use the Variable statement. The following example inserts the
system variable Page Count into a paragraph:

<Para
<ParaLine
<String “This document has '>
<Variable

<VariableName ~Page Count's>

40

ADOBE FRAMEMAKER | 41
MIF Reference

> # end of Variable
<String “pages.'>
> # end of ParalLine
> # end of Para

The variableName string must match the name of a variable format defined in the variableFormats statement.
Variables are subject to the following restrictions:
+ You cannot place any variable in a tagged text flow on a master page.

+ The system variable current Page # and the system variables for running headers and footers can only appear
in untagged text flows on a master page.

+ The system variables Table Continuation and Table Sheet can only appear in tables.

Creating conditional text

You can produce several slightly different versions of a document from a single conditional document. In a condi-

tional document, you use condition tags to differentiate conditional text (text that is specific to one version of the

document) from unconditional text (text that is common to all versions of the document).

In a MIF file, you create a conditional document as follows:

+ Create the condition tags to be used in the document and specify their format via conditionCatalog and
Condition statements.

+ Apply one or more condition tags to the appropriate sections of the document via conditional and Uncondi-
tional statements.

+ Show or hide conditional text by using the cstate statement.

Creating and applying condition tags

In MIEF, all condition tags are defined in a conditionCatalog statement, which contains one or more Condition
statements. A Condition statement specifies the condition tag name, the condition indicators (how conditional text
appears in the document window), a color, and a state (either hidden or shown).

For example, the following statements create a Condition Catalog with two conditional tags named Summer and
Winter:

<ConditionCatalog
<Condition

<CTag ~Summer's> # Condition tag name
<CState CHidden > # Condition state (now hidden)
<CStyle COverline > # Condition indicator
<CColor "Blue's> # Condition indicator

> # end of Condition

<Condition
<CTag “Winter's>
<CState CShown > # This condition is shown
<CStyle CUnderline >
<CColor "Red's>

> # end of Condition

> # end of ConditionCatalog

To mark conditional and unconditional passages within document text, use Conditional and UnConditional
statements as shown in the following example:
<Para

<ParaLine
<String “Our company makes a full line of '>

ADOBE FRAMEMAKER |42
MIF Reference

Unconditional text
Begin conditional text
Specifies condition tag
end of Conditional

<Conditional
<InCondition “Winter's

H*+ H HF F

>

<String “warm and soft sweaters's

Conditional text

Begin conditional text
<InCondition ~Summer's> Specifies condition tag

> # end of Conditional

<String “cool and comfortable tank tops's>

<Unconditional >

<Conditional

H*+ HF F

<String ~ for those '> # Unconditional text
> # end of Paraline
<ParalLine

<Conditional

<InCondition “Winter's

> # end of Conditional

<String “chilly winter's

<Conditional

<InCondition ~Summer's>
> # end of Conditional
<String "hot summer's>
<Unconditional >
<String ~ days.'s>
> # end of Paraline
> # end of Para

You can apply multiple condition tags to text by using multiple InCondition statements:

<Conditional
<InCondition “Winter's
<InCondition ~Summer's>

> # end of Conditional

Showing and hiding conditional text using Boolean expressions

You can also use Boolean expressions to show or hide conditional text. Boolean condition expressions are identified
using the BoolCondTag. You can create these expressions by linking condition tags with boolean operators and
describe them in the BoolCondExpr statement. If the value of Boolcondstate of a Boolean condition expression is
set to ‘Active’ the show/hide state of the text in that document is governed by that Boolean condition expression. All
text for which the expression evaluates to “True’ is shown, while the rest are hidden.

Consider a scenario where you have created Conditions summary, detail, comment, and a boolean expression
“comment"OR"summary"OR"detail”. If the value of BoolCondstate is ‘Active, FrameMaker uses this expression to
determine the Show/Hide state of conditional text.

The BoolcCond statement appears in the BoolCondcCatalog as shown below :

<BoolCond

<BoolCondTag ~Conditional Expression's
<BoolCondExpr ~"comment"OR"summary"OR"detail"'s>
<BoolCondState “Active's>

> # end of BoolCond

When you save a FrameMaker 8 document as MIF, the following system tags are displayed in the MIF:
« FMS8_SYSTEM_HIDEELEMENT

- FM8_TRACK_CHANGES_ADDED

+ FM8_TRACK_CHANGES_DELETED

Note: These tags are used by the system and are reserved for internal use only.

ADOBE FRAMEMAKER
MIF Reference

How FrameMaker writes a conditional document

If you are converting a MIF file that was generated by FrameMaker, you need to understand how FrameMaker writes
a file that contains hidden conditional text.

When FrameMaker writes a MIF file, it places all hidden conditional text in a text flow with the tag name HIDDEN.
Within the document text flow, a conditional text marker, <Marker <MType 10>>, indicates where hidden condi-
tional text would appear if shown.

The marker text contains a plus sign (+) followed by a unique five-digit integer. The corresponding block of hidden
text is in the hidden text flow. It begins with a conditional text marker containing a minus sign (-) and a matching
integer and ends with a marker containing an equal sign (=) and the same integer. One or more Para statements
appear between the markers. If the hidden conditional text doesn’t span paragraphs, all the text appears in one Para
statement. If the hidden text spans paragraphs, each end of paragraph in the conditional text forces a new para
statement in the hidden text flow.

The following example shows how FrameMaker writes the sentence used in the previous example:

This text flow contains the sentence as it appears in
the document body.
<TextFlow
<TFTag "A'>
<TFAutoConnect Yes >

<Para
<ParalLine
<String “Our company makes a full line of '>
This marker indicates that hidden text appears in the
hidden text flow.
<Marker
<MType 10>
<MText ~+88793'>
<MCurrPage 0>
> # end of Marker
<Conditional
<InCondition ~Summer's>
> # end of Conditional
<String “cool and comfortable tank tops'>
<Unconditional >
> # end of Para
> # end of TextFlow
This text flow contains the hidden conditional text.
<TextFlow
<TFTag “HIDDEN'>
<Para
<PgfEndCond Yes >
<ParaLine

<Marker
<MType 10>
This marker shows the beginning of hidden text.
Its ID matches the marker ID in the body text flow.
<MText ~-88793'>
<MCurrPage 0>

> # end of Marker
<Conditional

<InCondition “Winter's
> # end of Conditional

Here's the hidden text.
<String “chilly winter's
<Marker
<MType 10>

43

ADOBE FRAMEMAKER | 44
MIF Reference

This marker shows the end of hidden text. It must
match the marker that begins with a minus sign (-).

<MText "=88793'>
<MCurrPage 0>
> # end of Marker
>
> # end of Para
> # end of TextFlow

Creating filters

Structured FrameMaker allows specific components in a structured document to be processed differently to generate
different output formats. Consider a case where you want some text in a document to be included in the Print output,
but not in the HTML Help output. You can create a filter based on the values of the attributes of elements, and process
only those elements in the document that match the filter, and include such elements in the Print output.

In a MIF file, you create a filter required for generating the output of a structured document using the befattrval-
uesCatalog, DefAttrValues, AttrCondExprCatalog, and AttrCondExpr statements.

All MIF 8 documents contain a catalog of predefined filters. The catalog is empty if a filter is not defined in a struc-
tured document. A filter comprises a tag called At trcondExprTag, the expression tag AttrCondExprstr, and the

state of the filter which is stored in the At trcondstate tag. The state of the filter indicates whether the filter is active
in the document. Although the catalog can have several filters, only one filter must be active at any time.

To create filters, use the At trCcondExprcCatalog statement as illustrated in the following example where two filters
are created:

<AttrCondExprCatalog
<AttrCondExpr
<AttrCondExprTag ~NewExprl's>
<AttrCondExprStr ~(A="vall" OR A="valll") AND (B="val2" OR B="val22")'>
<AttrCondState ~Inactive's
> # end of AttrCondExpr
<AttrCondExpr
<AttrCondExprTag ~NewExpr2's>
<AttrCondExprStr ~ (A="vald4" OR A="val44") OR (B="val3" OR B="val33")'s>
<AttrCondState “Active's>
> # end of AttrCondExpr
> # end of AttrCondExprCatalog

The following statements create an empty filter catalog:

<AttrCondExprCatalog
> # end of AttrCondExprCatalog

All MIF 8 documents contain attribute-value pairs.

To create a catalog of attributes with values, use the DefAt t rvaluesCatalog statement as illustrated in the following
example:

<DefAttrValuesCatalog
<DefAttrValues
<AttributeTag "A'>
<Attributevalue “vall's
<Attributevalue “val2's
> # end of DefAttrValues
<DefAttrValues
<AttributeTag “B'>
<Attributevalue “val3's>

ADOBE FRAMEMAKER
MIF Reference

<AttributevValue “val4's>
> # end of DefAttrValues
> # end of DefAttrValuesCatalog

The following statements create a catalog of attributes without values:
<DefAttrValuesCatalog
> # end of DefAttrValuesCatalog

Including template files

When you write an application, such as a filter or a database publishing application, to generate a MIF file, you have
two ways to include all formatting information in the file:

+ Generate all paragraph formats and other formatting information directly from the application.

+ Create a template document in FrameMaker, save it as a MIF file, and include the template file in your generated
MIF file.

It’s usually easier to create a template in FrameMaker than it is to generate the formatting information directly.
To create the template as a MIF file, do the following:

1 Create the template in FrameMaker and save it as a MIF file.

2 Edit the MIF file to preserve the formatting catalogs and the page definitions and delete the text flow.

3 Generate the text flow for your document and use the include statement to read the formatting information
from the template.

Creating the template

Create the template document in FrameMaker. Define the paragraph and character formats, table formats, variable
and cross-reference formats, master pages, and any other formatting and page layout information that your
document needs. Generally, a template contains some sample lines that illustrate each format in the document. Save
the completed template as a MIF file. For more information about creating templates, see your user’s manual.

Editing the MIF file

You need to edit the resulting MIF file to extract just the formatting and page layout information.
1 Delete the MIFFile statement.

2 Search for the first body page and locate its TextRect statement.

To find the first body page, search for the first occurrence of <PageType BodyPage>. Suppose the first body page
in your MIF file looks like this:

<Page

<Unique 45155>

<PageType BodyPage >
<PageNum ~1'>

<PageSize 8.5" 11.0">
<PageOrientation Portrait >
<PageAngle 0.0>
<PageBackground “Default's
<TextRect

<ID 7>

<Unique 45158>

<Pen 15>

<Fill 15>

45

ADOBE FRAMEMAKER
MIF Reference

<PenWidth 1.0 pt>
<ObColor “Black's>
<DashedPattern
<DashedStyle Solids>
> # end of DashedPattern
<ShapeRect 1.0"™ 1.0" 6.5" 9.0">
<TRNext 0>
> # end of TextRect
> # end of Page
The ID for the TextRect on this body page is 7. Remember this ID number. If there is more than one TextRect

on the body page, remember the ID of the first one.

3 Locate the text flow associated with the TextRect statement on the first body page and delete it.

Suppose you are working with the previous example. You would search for the statement <TextRectID 7> to
locate the text flow. It might look similar to the following:

<TextFlow
<Notes> # end of Notes
<Para
<Unique 45157>
<PgfTag “MyFormat's>
<ParalLine
<TextRectID 7>
<String "A single line of text.'s>

> # end of Para
> # end of TextFlow
Delete the entire text flow.

4 From your application, generate a MIF file that includes the edited template file.

Suppose the edited MIF file is called mytemplate.mif. Your application would generate the following two lines
at the top of any new MIF file:
<MIFFile 2015> # Generated by my application

include (mytemplate.mif)
The include statement is similar to a C #include directive. It causes the MIF interpreter to read the contents of

the file named mytemplate.mif. For more information about filenames in MIF, see “Device-independent
pathnames” on page 7.

5 From your application, generate a text flow that contains the entire document contents.

The text flow should use the ID and tag name of the text flow you deleted from the template file; this associates
the new text flow with the first body page in the template.

The entire generated MIF file would look something like this:

<MIFFile 2015> # Generated by my application
include (mytemplate.mif)
<TextFlow

<TFTag "A'>

<TFAutoConnect Yes>

<TextRectID 7>

<Para
<Paraline
<String "This is the content of the generated document.'s>
>
> # end of Para
> # end of TextFlow

A user can open the generated MIF file to get a fully formatted FrameMaker document.

46

ADOBE FRAMEMAKER |47
MIF Reference

Setting View Only document options

You can use MIF statements to control the display of View Only documents. A View Only document is a locked
FrameMaker hypertext document that a user can open, read, and print but not edit. You can use MIF statements to
control the appearance and behavior of the document window and to control the behavior of cross-references in
locked documents.

The MIF statements for View Only documents are intended for hypertext authors who want more control over
hypertext documents. They do not have corresponding commands in the user interface.

The View Only MIF statements described in this section must appear in a Document statement. These statements
have no effect in an unlocked document. Make sure that the bocument statement also includes the following
substatement:

<DViewOnly Yes>

Changing the document window
You can use MIF statements to change the appearance and behavior of the document window in the following ways:

« To suppress the document window menu bar, use the following statement:

<DViewOnlyWinMenubar No>

This statement has no effect in the Windows version of FrameMaker because those versions have an application
menu bar rather than a document window menu bar.

+ To suppress the display of scroll bars and border buttons in the document window, use the following statement:
<DViewOnlyWinBorders No>

« To suppress selection in the document window, include the following statement:

<DViewOnlySelect No>

You can normally select text and objects in a locked document by Control-dragging in UNIX and Windows versions.
Specifying <DvViewonlySelect No> prevents all selection in a locked document.

« To suppress the appearance of a document region pop-up menu, use the statement:

<DViewOnlyWinPopup No>

A document region pop-up menu is a menu activated by the right mouse button. For example, in UNIX versions of
FrameMaker, the Maker menu can be accessed by pressing the right mouse button. If the bviewonlyWinPopup
statement has a value of No, the background menu does not appear when the right mouse button is pressed. This
statement has no effect in the Windows version of FrameMaker.

« To make a window behave as a palette window, use the following statement:

<DViewOnlyWinPalette Yes>

A palette window is a command window, such as the Equations palette, that exhibits special platform-dependent
behavior. In UNIX versions of FrameMaker, a palette window can only be dismissed; it cannot be closed to an icon.
In Windows versions, a palette floats outside the main application window and cannot be unlocked. To edit the
palette, you need to reset the DviewonlyWinpPalette statement to No in the MIF file before opening it in
FrameMaker.

Using active cross-references

A locked document automatically has active cross-references. An active cross-reference behaves like a hypertext
gotolink command; when the user clicks on a cross-reference, FrameMaker displays the link’s destination page. By
default, the destination page is shown in the same document window as the link’s source.

ADOBE FRAMEMAKER
MIF Reference

You can use MIF statements to turn off active cross-references and to change the type of hypertext link that the cross-
reference emulates. (By default, cross-references emulate the gotolink behavior.)

+ To make cross-references emulate the openlink command, which displays the destination page in a new
document window, use the following statement:

<DViewOnlyXRef OpenBehaviors

Use this setting to allow users to see both the source page and the destination page.

+ To turn off active cross-references, use the following statement:

<DViewOnlyXRef NotActives

Use this setting to emulate the behavior in earlier FrameMaker versions.

You can use the DviewoOnlySelect statement to control whether active cross-references highlight the marker

associated with destination text.

+ When cross-references are active and <DvViewOnlySelect Yess is specified, clicking a cross-reference in the
document highlights the marker associated with the destination text.

« When cross-references are active and <DviewOnlySelect UserOnly> is specified, clicking a cross-reference
does not highlight the marker. However, the user can select text in the locked document.

« When cross-references are active and <DViewOnlySelect Nos is specified, clicking a cross-reference does not

highlight the marker. The user cannot select text in the locked document.

By default, clicking a cross-reference does not highlight the marker associated with the destination text but the user
can select text in the locked document.

Disabling commands

You can disable specific commands in a View Only document. For example, a hypertext author might disable copy
and print commands for sensitive documents.

To disable a command, you must supply the hex code, called an fcode, that internally represents that command in
FrameMaker. For example, you can disable printing, copying, and unlocking the document by supplying the
following statements:

<DViewOnlyNoOp 0x313># Disable printing
<DViewOnlyNoOp 0x322># Disable copying
<DViewOnlyNoOp 0xF00># Disable unlocking the document

The following table lists the files where you can find fcodes for commands:

For this version Look here

UNIX SFMHOME/fminit/Ianguage/configui/Commands, where Ianguageisthe languagein
use, such asusenglish

Windows install_dir/fninit/configui/cmds.cfg, where install_dir is the directory where
FrameMaker is installed

See the online manual Customizing FrameMaker for more information about the commands file in UNIX versions.

Applications of MIF

You can use MIF files any time you need access to FrameMaker’s formatting capabilities. This section provides some
examples of how MIF can be used and some tips on minimizing MIF statements.

You can use MIF to:

48

ADOBE FRAMEMAKER | 49
MIF Reference

Share files with earlier versions of FrameMaker
+ Perform custom document processing
« Write import and export filters for FrameMaker documents

« Perform database publishing

Sharing files with earlier versions
FrameMaker automatically opens documents created with an earlier version of FrameMaker (2.0 or higher).

To use an earlier version of FrameMaker (such as 5.5) to edit a document created with a later version of FrameMaker
(such as 7.0):

1 Use the newer FrameMaker product version to save the document in MIE.
2 Open the MIF file with the earlier version of FrameMaker.

Note: Earlier versions of FrameMaker do not support all MIF statements in the current version. For example, when you
use version 5.5.6 or earlier of FrameMaker to open a document created in version 6.0 or later, MIF statements specifying
optimized PDF size are skipped. You can ignore the related error messages. However, to regain the optimized PDF size
you will need to use the Optimize Pdf Size command. For a description of the differences between MIF 7.0 and previous
versions, see , “MIF Compatibility.”

Modifying documents

You can use MIF to perform custom document processing. For example, you can create a program or write a series
of text editor macros to search for and change paragraph tags in a MIF file. You can also edit a MIF book file to easily
add or change document names in a book.

For an example of using MIF to easily update the values in a table, see “Updating several values in a table” on
page 240.

Writing filters

MIF allows you to write filters to convert data from other formats to FrameMaker format and to convert a MIF file
to another document format. While FrameMaker will change in future versions, MIF will always remain compatible
with earlier versions, so your filters can continue to write MIF files.

Import filters

MIF statements can completely describe a FrameMaker document or book file. Because documents created with
most word processors and text editors have fewer features than a FrameMaker document, your import filters
normally use only a subset of MIF statements.

To write an import filter, first determine which MIF statements describe the format of the input file. Then write a
program to translate the file from its original file format to MIE If the imported document doesn’t use sophisticated
formatting and layout features, don’t include the corresponding MIF statements in your filter.

For example, if the file was created by a word processor, your filter should convert document text to a single
TextFlow statement. Ignore line and page breaks (except forced breaks) in your source document, because the text
will be repaginated by the MIF interpreter. If the document uses style sheets, convert paragraph styles to paragraph
formats in a PgfCatalog statement, and convert table styles to table formats in a Tb1Catalog statement.

ADOBE FRAMEMAKER
MIF Reference

Output filters

You can write output filters that convert a MIF file to any format you want. While you should be familiar with all
MIF statements to determine which ones you need to translate a FrameMaker document, your output filter doesn’t
need to convert all the possible MIF statements.

In most cases, a MIF description of a FrameMaker document contains more information than you need. Because
MIF appears as a series of nested statements, your output filter must be able to scan a MIF file for the information it
needs and skip over statements that it will not use.

Installing a filter

In UNIX versions, you can set up FrameMaker to automatically start a script that runs a filter based on the filename
suffix. The filter can convert a file to a MIF file. FrameMaker then interprets the MIF file, storing the results in a
FrameMaker document. For more information about installing your filter, see the online manual Customizing
FrameMaker.

Minimizing MIF statements
The following tips may help you minimize the number of MIF statements that your filter needs to generate:

+ Ifyou are not concerned about controlling the format of a document, use the default formats that FrameMaker
provides for new documents. The user can always change formats as needed within the FrameMaker document.

+ Ifyouare filtering a document from another application into FrameMaker and then back to the application, you
may want to import the filter’s MIF file into a FrameMaker document, save the document as a MIF file, and then
convert the file back to the original format from the MIF file generated by FrameMaker. This technique takes
advantage of FrameMaker’s syntactically complete MIF statements, but allows your filter to write a shorter MIF

file.

« Ifyour filter needs to generate fully-formatted MIF files, you can minimize the number of formatting statements
by creating a template in FrameMaker, saving the template as a MIF file, and then including the MIF template
file in your filter’s generated document. You must edit the saved MIF template (see “Including template files” on
page 45). An advantage of this technique is that you can use the same template for more than one document.

+ Define macros to ease the process of generating statements. For an example of using macros, see “Text example”
on page 231.

Database publishing

You can use MIF files to import information from an external application, such as a database, into a FrameMaker
document. This type of information transfer is often called database publishing. For example, you can writea C
program or a database script to retrieve information from a database and store that information as a MIF file. A user
can then open or import the MIF file to get a fully formatted FrameMaker document that contains up-to-date infor-
mation from the database.

There are four key elements to a typical database publishing solution:
+ The database provides a system to enter, manipulate, select, and sort data. You can use any database that can
create text-based output files.

+ MIF provides the data interchange format between the database and FrameMaker. MIF can completely describe
a document in ASCII format, including information such as text and graphics, page layout, and indexes and
cross-references.

+ FrameMaker provides the text formatting. FrameMaker reads MIF files and dynamically manages line breaks,
page breaks, headers and footers, and graphics. The user can view, print, save, or even navigate through an online
document using hypertext commands.

50

ADOBE FRAMEMAKER
MIF Reference

« Optional control programs allow you to tightly integrate the database and FrameMaker. Some database
publishing applications are controlled entirely from the database system or through hypertext commands
embedded in a FrameMaker document. More complicated applications may require an external control
program, such as a C program that issues queries and selects a FrameMaker document template.

—
S — Text
R Final Document
R ——
—_— CAD or Other [
|| Illustration _
Packages -
MIF (ASCII text) —
: Database

For an example of a database publishing application, see “Database publishing” on page 241.

Debugging MIF files

When FrameMaker reads a MIF file, it might detect errors such as unexpected character sequences. In UNIX and
Windows versions, FrameMaker displays messages in a console window. In the Windows version, you must turn on
Show File Translation Errors in the Preferences dialog box to display messages in a window. If FrameMaker finds an
error, it continues to process the MIF file and reads as much of the document as possible.

When you are debugging MIF files, you should examine the error messages for clues. The MIF interpreter reports
line numbers for most errors. For a description of MIF error messages, see , “MIF Messages.”

In some cases, the MIF interpreter reports an “invalid opcode” message for a statement. If the statement seems
correct to you, check the statements above it. A missing right angle bracket can cause the interpreter to parse a
statement incorrectly.

If the MIF interpreter brings up an empty document when it reads your file, it has stopped trying to interpret your
file and opened an empty custom document instead. Close the document and check your MIF file for errors. Try
adding a Verbose statement to your file to get more complete messages.

If your MIF statements are syntactically correct but cause unexpected results in the document, check for mismatched
ID numbers and check the placement of statements. Many MIF statements are position-dependent and can cause
errors if they appear in the wrong place in a file. For example, an ATb1 statement that comes before its corresponding
Tb1 statement causes an error.

51

ADOBE FRAMEMAKER
MIF Reference

Here are some additional tips for debugging MIF files:

+ Use the verbose statement to generate comments. To debug a specific section of a MIF file, you can precede the
section with the <verbose Yes> statement and end the section with the <verbose No> statement.

+ Make sure angle brackets are balanced.

« Make sure that MIF statement names are capitalized correctly. MIF statement names and keyword values are
case-sensitive.

+ Make sure that string arguments are enclosed in straight single quotation marks. (See “MIF data items” on page 5
for an example.)

« Make sure ID numbers are unique.

+ Make sure that every table anchor has a corresponding table instance, and that every table instance has an anchor
in the text flow.

+ Make sure that tag names with spaces are enclosed in straight single quotation marks.
+ Make sure paired statements are balanced. For example, XxRef and XRefEnd statements must be paired.
« Make sure that right angle bracket (>) and backslash (\) characters in text are preceded by a backslash.

« Make sure that hexadecimal characters, for example \xe6, have a space after them.

Other application tools

The Frame Developer’s Kit (FDK) provides tools that you can use to write filters and to perform custom document
processing. The FDK includes the Application Program Interface (API), which you can use to create a C application
that can create and save documents, modify documents, and interact with the user. The FDK also includes the Frame
Development Environment (FDE), which allows you to make your FDK clients portable to the platforms that
FrameMaker supports.

MIF files can be used by C applications, text processing utilities, or UNIX shell scripts. You might want to work
directly with MIF files if you are filtering large numbers of files in batch mode. You also might want to work with
MIF files if you are doing simple document processing, such as changing a few tag names, or if you are setting options
for View Only documents.

You can use the FDK and MIF files together; for example, a database publishing application can extract values from
a database and write out the information as a table in a MIF file. An FDK client can then automatically open the MIF
file as a FrameMaker document.

Where to go from here

This chapter has given you a start at working with MIF files. You can use the information in this chapter as guidelines
for working with similar MIF statements. Once you have experimented with basic MIF files, you can learn about
other MIF statements by creating small FrameMaker documents that contain a specific feature and saving these
documents as MIF files. Because FrameMaker writes complete and precise MIF code, it is your ultimate source for
learning about MIF statements.

For more information about document components not described in this chapter, see the MIF statement descrip-
tions in , “MIF Document Statements”, , “MIF Book File Statements”, and , “MIF Statements for Structured
Documents and Books”.

52

‘53

Chapter 3: MIF Document Statements

This chapter describes the structure of MIF document files and the MIF statements they can contain. Most MIF
statements are listed in the order that they appear in a MIF file, as described in the following section. If you are
looking for information about a particular statement, use this manual’s statement index to locate it. If you are looking
for information about a type of object, such as a table or paragraph, use the table of contents to locate the MIF state-
ments that describe the object.

MIF file layout

The following table lists the main statements in a MIF document file in the order that Adobe® FrameMaker® writes
them. You must follow the same order that FrameMaker uses, with the exception of the macro statements and control
statements, which can appear anywhere at the top level of a file. Each statement, except the MIFFile statement, is
optional. Most main statements use substatements to describe objects and their properties.

Statement Description

MIFFile Labels the file as a MIF document file. The MIFFile statement is required and must be
the first statement in the file.

Control statements Establish the default units in a Uni t s statement, the debugging setting in a Verbose
statement, and comments in a Comment statement. These statements can appear
anywhere at the top level as well as in some substatements.

Macro statements Define macros with a def ine statement and read in files with an include statement.
These statements can appear anywhere at the top level.

ColorCatalog Describes document colors. The ColorCatalog statement contains Colox state-
ments that define each color and tag.

ConditionCatalog Describes condition tags. The ConditionCatalog statement contains Condition
statements that define each condition tag and its properties.

BoolCondCatalog Describes Boolean Condition Expressions. The Bool CondCatalog statement contains
BoolCond statements that define each Boolean condition expression with its
show/hide properties.

CombinedFontCatalog Describes combined fonts. The CombinedFontCatalog statement contains
CombinedFontDefn statements that define each combined font and its component
fonts.

PgfCatalog Describes paragraph formats. The Pgf Catalog statement contains Pgf statements

that define the properties and tag for each paragraph format.

ElementDefCatalog Defines the contents of the Element Catalog for a structured document. For more infor-
mation, see, “MIF Statements for Structured Documents and Books.”

FmtChangeListCatalog Defines the contents of the Format Change List Catalog for a structured document. For
more information, see , “MIF Statements for Structured Documents and Books.”

DefAttrValuesCatalog Defines the DefAttrValuesCatalog for a structured document. For more information, see
, "MIF Statements for Structured Documents and Books.”

AttrCondExprCatalog Defines the AttrCondExprCatalog for a structured document. For more information, see
, "MIF Statements for Structured Documents and Books.”

ADOBE FRAMEMAKER

Statement

Description

FontCatalog

Describes character formats. The Font Catalog statement contains Font statements
that define the properties and tag for each character format.

RulingCatalog

Describes ruling styles for tables. The Rul ingCatalog statement contains Ruling
statements that define the properties for each ruling style.

TblCatalog

Describes table formats. The Tb1Catalog statement contains Tb1Format state-
ments that define the properties and tag for each table format.

StyleCatalog

Describes object styles. The StyleCatalog statement contains Style statements
that define the properties and tags for each object style.

KumihanCatalog

Contains the Kumihan tables that specify line composition rules for Japanese text.

Views

Describes color views for the document. The Views statement contains View state-
ments that define which colors are visible in each color view.

VariableFormats

Defines variables.The VariableFormats statement contains VariableFormat
statements that define each variable.

MarkerTypeCatalog

Defines a catalog of user-defined markers for the current document. The MarkerType -
Catalog statement contains MarkerTypeCatalog statements that specify each
user-defined marker.

XRefFormats

Defines cross-reference formats. The XRef Format s statement contains XRe f -
Format statements that define each cross-reference format.

Document

Controls document features such as page size, margins, and column layout. Because the
MIF interpreter assumes the same page defaults as the New command, this section is
necessary only if you want to override those default settings.

BookComponent

Provides the setup information for files generated from the document. BookCompo-
nent statements describe the filename, filename suffix, file type, and paragraph tags or
marker types to include.

InitialAutoNums

Provides a starting value for the autonumber series in a document.

Dictionary

Lists allowed words in the document.

AFrames

Describes all anchored frames in the document. The AFrames statement contains
Frame statements that define the contents ID number of each anchored frame. Later in
the MIF file, where the document contents are described, the MIF file must include an
AFrame statement that corresponds to each Frame statement. The AF rame statement
identifies where a specific anchored frame appears in a text flow; it need only supply the
frame's ID number.

Tbls

Describes all tables in the document. The Tb1s statement contains Tb1 statements that
define the contents of each table and its ID number. Later in the MIF file, where the docu-
ment contents are described, the MIF file must include a short ATb1 statement that corre-
sponds to each Tb1 statement.The ATb1 statement identifies where a specific table
appears in a text flow; it need only supply the table’s ID number.

Page

Describes the layout of each page in the document. The description includes the layout of
each page, the dimensions of the text frames, and the objects and other graphic frames
on that page. A MIF file created by FrameMaker includes a Page statement for each page
in the document, including the master pages. When you write an import filter, you can
omit Page statements; the MIF interpreter repaginates the document as needed.

InlineComponentsInfo

Describes the mini table of contents (mini TOC) in the document. The InlineCompo-
nentsInfo statementcontains InlineComponent Info statement that define
the properties of the mini TOC.

MIF Reference

54

ADOBE FRAMEMAKER

Statement

Description

TextFlow

Represents the actual text in the document. Within Text F1ow statements, the text is
expressed in paragraphs which in turn contain paragraph lines. Line endings of
ParaLine statements are not significant because the MIF interpreter wraps the
contents of ParaLine statements into paragraphs.

MIFFile statement

The MIFFile statement identifies the file as a MIF file. The MIFFile statement is required and must be the first line

of the file with no leading white space.

Syntax

<MIFFile version> #comment (Required) Identifies a MIF file

MIF Reference

The versionargument indicates the version number of the MIF language used in the file, and comment shows the
name and version number of the program that generated the file. For example, a MIF file saved in FrameMaker (2015
release) begins with the following line:

<MIFFile 2015> # Generated by FrameMaker 12.0.2.366

MIF is compatible across versions, so a MIF interpreter can parse any MIF file. The results may sometimes differ
from your intentions if a MIF file describes features that are not included in FrameMaker that reads the MIF file. For
more information, see , “MIF Compatibility.”

Comment statement

The comment statement identifies an optional comment.

Syntax

<Comment comment-texts>

Identifies a comment

Usage

Comments can appear within comment statements, or they can follow a number sign (#). When it encounters a

number sign, the MIF interpreter ignores all text until the end of the line, including angle brackets.

Because Comment statements can be nested within one another, the MIF interpreter examines all characters following
an angle bracket until it finds the corresponding angle bracket that ends the comment.

<Comment - The following statements define the paragraph formatss
<Comment <These statements have been removed: <Font <FBold> <FItalic>>>>

The MIF interpreter processes number signs within Comment statements as normal comments, ignoring the

remainder of the line.

<Comment - When a number sign appears within a <Comments> statement,
the MIF interpreter ignores the rest of the characters in that

line--including angle brackets < >.>

End of <Comment> Statement.

55

ADOBE FRAMEMAKER | 56
MIF Reference

Macro statements

MIF has two statements that allow you to define macros and include information from other files. Although these
statements usually appear near the beginning of a MIF file, you need not put them in that position. However, the
MIF interpreter does not interpret a macro that occurs before its definition.

define statement

The define statement creates a macro. When the MIF interpreter reads a MIF file, it replaces the macro name with
its replacement text. A define statement can appear anywhere in a MIF file; however, the macro definition must
appear before any occurrences of the macro name.

Syntax

define (name, replacement) Creates a macro

Usage

Once a macro has been defined, you can use the macro name anywhere that the replacement text is valid. For
example, suppose you define the following macro:

define (Bold, <Font <FWeight “Bold's>>)

When you use the macro in MIF statements, write <Bold>. The interpreter replaces <Bold> with <Font <FWeight

“Bold'>>. Note that it retains the outer angle brackets in the replacement text.

Note that when you use a macro in a MIF file, you must enclose macro names in brackets to comply with the MIF
syntax (for example, write <Bold> instead of Bold). The MIF parser requires these brackets to interpret the macro
correctly.

include statement

The include statement reads information from other files. It is similar to an #include statement in a C program.
When the MIF interpreter reads a MIF file, it replaces the include statement with the contents of the included file.
An include statement can appear anywhere in a MIF file. However, make sure that the contents of the included file
appear in a valid location when they are read into the MIF file.

Syntax

include (pathname) Reads in a file

Usage

The pathname argument specifies a UNIX-style pathname, which uses a slash (/) to separate directory names (for
example, /usr/doc/template.mif). For the Windows version of FrameMaker, use the following guideline for
specifying absolute pathnames:

« For Windows versions, start an absolute pathname with the drive name. For example, to include the file
myfile.doc from the directory mydir on the c: drive, specify the pathname c: /mydir/myfile.doc. Don’t
start an absolute path with a slash (/).

If you specity a relative pathname, the MIF interpreter searches for the file to include in the directory or folder that
contains the file being interpreted. In UNIX versions of FrameMaker, the MIF interpreter also searches the
$FMHOME/fminit and the SFMHOME/fminit/filters directories for a file with a relative pathname.

ADOBE FRAMEMAKER
MIF Reference

In general, you would use an include statement to read a header file containing define statements that a filter
needs to translate a file. Isolate the data in a header file to simplify the process of changing important mappings. You
can also use an include statement to read in a template file containing formatting information. Your application can
then simply generate a document’s text. For more information, see “Including template files” on page 45.

Track edited text

Reviewers can edit FrameMaker documents sent for review with the Track Text Edit feature enabled. In a MIF file,
you can enable the Track Text Edit feature using the DTrackChangesOn statement. FrameMaker retains the
Windows/Unix login name of the reviewer and a timestamp indicating the time of the edit in each of the edits. Before
you accept all text edits, you can preview the final document with all the text edits or the text edits by a specific
reviewer incorporated in the document. Alternatively, you can preview the original document without the text edits
incorporated in the document. To preview how a document will appear if you accept all text edits or reject all text

edits, use the DTrackChangesPreviewState Statement.

Syntax

<DTrackChangesOn boolean>

Preserves the On/Off state of the Track Text Edit feature

<DTrackChangesPreviewState integers>

Preserves the preview state of the Track Text Edit feature
The preview state can have one of the following values:

Preview Off: DTrackChangesPreviewState set with the
value No

Preview On Final: DTrackChangesPreviewState setwiththe
valueAll

Preview On Original: DTrackChangesPreviewState set with
thevalue Yes

<DTrackChangesReviewerName strings>

The windows/unix login name of the reviewer whose edits are visible
in the document

The Show Reviewer Name popup menu lets you select the name of the
reviewer whose changes you want to display in the document. The
reviewer’'s name selected in the Show Reviewer Name popup menu
appears in this tag. When you select All Users, this tag is empty.

<ReviewerName strings

The windows/unix login name of the reviewer who made a particular
change

<ReviewTimeInfo strings>

The time when an edit was made

The number of seconds past after 00:00 hours, Jan 1, 1970 UTC

Conditional text

FrameMaker documents can contain conditional text. In a MIF file, the condition tags are defined by a condition
statement, which specifies whether the condition tag is hidden or shown. The condition tags for a document are

stored in a ConditionCatalog statement.

Within the text flow, conditional and Unconditional statements show where conditional text begins and ends.

57

ADOBE FRAMEMAKER

ConditionCatalog statement

The conditionCatalog statement defines the contents of the Condition Catalog. A MIF file can have only one
ConditionCatalog statement, which must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax

<ConditionCatalog

<Condition..>

Defines a condition tag (see “Condition statement,” next)

‘Amlbgregml- <

Additional statements as needed

End of ConditionCatalog statement

Condition statement

The condition statement defines the state of a condition tag and its condition indicators, which control how condi-
tional text is displayed in the document window. The statement must appear in a ConditionCatalog statement. The

property statements can appear in any order.

Syntax

<Condition

<CTag string>

Condition tag string

<CState keyword>

Whether text with this tag is shown or hidden

keywoxrd can be one of:
CHidden
CShown

<CStyle keyword>

Format of text with this condition

keyword can be one of:
CAsIs

CUnderline
CDhoubleUnderline
CStrike
COverline
CChangeBar

<CColor tagstring>

Color for condition tag (see “ColorCatalog statement” on page 84)

<CSeparation integers>

Color for condition tag; no longer used, but written out by FrameMaker for backward-
compatibility (see “Color statements” on page 263)

<CBackgroundColor tag-
string>

Background color of the conditional tag's text

End of Condition statement

Conditional and Unconditional statements

The conditional statement marks the beginning of conditional text and the Unconditional statement marks the

end. These statements must appear in a Row or ParaLine statement.

58

ADOBE FRAMEMAKER
MIF Reference

Syntax
<Conditional Begin conditional text
<InCondition tagstring-> Specifies condition tag from Condition Catalog
<InCondition tagstring> Additional statements as needed
> End of Conditional statement
<Unconditionals> Returns to unconditional state

System generated colors

FrameMaker will automatically generate new colors when multiple tags are applied on text. The ColorTag tag that
is generated is named with the "fm_gen_" prefix and appended with a system-generated integer.

Boolean expressions

A Boolean expression is defined in a BoolCond statement.

BoolCondCatalog statement

You can create Boolean expressions by linking different conditional tags using Boolean operators. In a MIF file,
Boolean condition expressions are defined using a Boolcond statement. The Boolean expressions for a document
are stored in a BoolCondCatalog statement.

The Boolcondcatalog statement defines the contents of Boolean Expression Catalog for conditional text. A MIF
file can have only one BoolcondCatalog statement, after Condition Catalog.

Syntax
<BoolCondCatalog
<BoolCond......... > Defines a Boolean expression
<BoolCond......... >
> # End of BoolCondCatalog

BoolCond statement

The BoolCond statement defines a new boolean expression, which is used to evaluate the show/hide state of condi-
tional text. Statement must appear in BoolCondCatalog statement. The property statement can appear in any order.

Syntax

<BoolCond

<BoolCondTag string> Tag name used for Boolean expressions.

59

ADOBE FRAMEMAKER

<BoolCondExpr string>

Boolean expression used for show/hide evaluation of conditional
text. (OR, NOT, and AND are the operators and condition tags are
operands within a quoted string) For example, “Comment” OR

“Tagl”.

<BoolCondState strings>

Indicates whether the evaluation of showing or hiding conditional
text is based on this expression.

The string must contain one of the following values:
e 'Active'

e 'Inactive’

MIF Reference

> # End of BoolCond

Filter By Attribute

Elements in a structured document can have one or more attributes associated with them. Using FrameMaker, you

can filter a structured document based on the value of these attributes.

All MIF 8 documents contain a catalog of predefined attribute values. If no values are defined, the catalog remains
empty. Each definition in a catalog includes an attribute tag (AttributeTag) and the corresponding list of values

(Attributevalue).

DefAttrValuesCatalog statement

The DefAttrvValuesCatalog statement is used to define the contents of the Defined Attribute Values catalog. A

MIF file can contain one DefAttrValuesCatalog statement only.

Syntax

<DefAttrValuesCatalog

<DefAttrValues......... > Defines an attribute and its corresponding values
<DefAttrValues......... > Additional statements, as required.
> # End of DefAttrValuesCatalog

All MIF 8 documents contain a catalog of predefined filters.

DefAttrValues statement

The DefAttrvValues statement is used to define a set of attributes with relevant values.

Syntax
<DefAttrValues
<AttributeTag string> Attribute Name
<AttributeValue string> Attribute Value
<AttributeValue strings Additional attribute values, as required.
> # End of DefAttrValues

60

ADOBE FRAMEMAKER | 61
MIF Reference

AttrCondExprCatalog statement
The AttrcondExprcatalog statement is used to define the contents of the Attribute Expression catalog. A MIF file
can contain one AttrCondExprCatalog statement only.

Syntax
<AttrCondExprCatalog
<AttrCondEXpr......... > Defines a filter
<AttrCondExpr......... > Additional filters, as required.
> # End of AttrCondExprCatalog

AttrCondExpr statement

The AttrCondExpr statement is used to define a set of attributes with values.

Syntax
<AttrCondExpr
<AttrCondExprTag strings Expression Tag string
<AttrCondExprStr strings> Expression string
<AttrCondState strings> Indicates whether the At t rCondExpr is applied to the document.
The string must have one of the following values:
'Active’
'Inactive’
> # End of AttrCondExpr

Paragraph formats

A paragraph format is defined in a Pgf statement. Paragraph formats can be defined locally or stored in the
Paragraph Catalog, which is defined by a Pgfcatalog statement.

PgfCatalog statement

The pgfcatalog statement defines the contents of the Paragraph Catalog. A MIF file can have only one pgfcatalog
statement, which must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax
<PgfCatalog
<Pgf..> Defines a paragraph format (see “Pgf statement” on page 62)
<Pgf..> Additional statements as needed

> End of Pgf Catalog statement

ADOBE FRAMEMAKER
MIF Reference

Usage

If you don’t include a Pgfcatalog statement, the MIF interpreter uses the paragraph formats defined in NewTem-
plate. (For information on defaults specified in templates, see page 3.) If you include Pgfcatalog, paragraph
formats in the MIF file replace default formats. The MIF interpreter does not add your paragraph format to the
default Paragraph Catalog, although it provides default values for unspecified properties in a paragraph format (see
“Creating and applying paragraph formats” on page 12).

Pgf statement

The pgf statement defines a paragraph format. Pg£ statements can appear in many statements; the statement
descriptions show where Pgf can be used.

The pgf statement contains substatements that set the properties of a paragraph format. Most of these properties
correspond to those in the Paragraph Designer. Properties can appear in any order within a Pgf statement, with the
following exception: the PgfNumTabs statement must appear before any Tabstop statements.

Syntax

Basic properties

<Pgf Begin paragraph format
<PgfTag tagstring- Paragraph tag name
<PgfUseNextTag boolean> Turns on following paragraph tag feature
<PgfNextTag tagstring> Tag name of following paragraph
<PgfFIndent dimension> First line left margin, measured from left side of current text column
<PgfFIndentRelative boolean> Used for structured documents only
<PgfFIndentOffset dimension> Used for structured documents only
<PgfLIndent dimension> Left margin, measured from left side of current text column
<PgfRIndent dimensions> Right margin, measured from right side of current text column
<PgfAlignment keyword> Alignment within the text column
keyword can be one of:
LeftRight
Left
Center
Right
<PgfDir keyword> Direction of the paragraph.

keyword can be one of:
LTR - Thedirection of the paragraph is set to left to right
RTL - Thedirection of the paragraph is set to right to left.

INHERITLTR - Derive the direction from the parent object. If it
resolves to left to right, then INHERITLTR is assigned to PgfDir.

INHERITRTL - Derive the direction from the parent object. If it
resolves to right to left, then INHERITRTL is assigned to PgfDir.

<PgfSpBefore dimensions Space above paragraph

<PgfSpAfter dimensions> Space below paragraph

62

ADOBE FRAMEMAKER

<PgflLineSpacing keyword>

Amount of space between lines in paragraph measured from baseline
to baseline

keywoxrd can be one of:
Fixed (default font size)
Proportional (largestfontin line)

<Pgfleading dimension>

Space below each line in a paragraph

<PgfNumTabs integers>

Number of tabs in a paragraph

The statement is not required for input files; the MIF interpreter calcu-
lates the number of tabs. If it does appear, it must appear before any
TabStop statements; otherwise, the MIF interpreter ignores the tab
settings.

<TabStop

Begin definition of tab stop; the following property statements can
appear in any order, but must appear within a TabStop statement

<TSX dimension>

Horizontal position of tab stop

<TSType keyword>

Tab stop alignment

keywoxrd can be one of:
Left

Center

Right

Decimal

<TSLeaderStr string>

Tab stop leader string (for example, *.")

<TSDecimalChar integers

Align decimal tab around a character by ASCII value; in UNIX versions,
typeman asciiinaUNIX window for a list of characters and their
corresponding ASCll values

>

End of TabStop statement

<TabStop...>

Additional statements as needed

Default font properties

<PgfFont..>

Default font (see page 67)

Pagination properties

<PgfPlacement keyword>

Vertical placement of paragraph in text column

keywoxrd can be one of:
Anywhere
ColumnTop
PageTop

LPageTop
RPageTop

<PgfPlacementStyle keyword>

Placement of side heads, run-in heads, and paragraphs that straddle
text columns

keyword can be one of:
Normal

RunIn

SideheadTop
SideheadFirstBaseline
SideheadLastBaseline
Straddle
StraddleNormalOnly

See page 66

MIF Reference

63

ADOBE FRAMEMAKER

<PgfRunInDefaultPunct strings

Default punctuation for run-in heads

<PgfWithPrev boolean>

Yes keeps paragraph with previous paragraph

<PgfWithNext boolean>

Yes keeps paragraph with next paragraph

<PgfBlockSize integer>

Widow/orphan lines

Numbering properties

<PgfAutoNum boolean>

Yes turns on autonumbering

<PgfNumFormat strings

Autonumber formatting string

<PgfNumberFont tagstring>

Tag from Character Catalog

<PgfNumAtEnd boolean>

Yes places number at end of line, instead of beginning

Advanced properties

<PgfHyphenate boolean>

Yes turns on automatic hyphenation

<HyphenMaxLines integers>

Maximum number of consecutive lines that can end in a hyphen

<HyphenMinPrefix integers>

Minimum number of letters that must precede hyphen

<HyphenMinSuffix integer->

Minimum number of letters that must follow a hyphen

<HyphenMinWord integers>

Minimum length of a hyphenated word

<PgfletterSpace boolean>

Spread characters to fill line

<PgfMinWordSpace integers>

Minimum word spacing (as a percentage of a standard space in the
paragraph’s default font)

<PgfOptWordSpace integers

Optimum word spacing (as a percentage of a standard space in the
paragraph’s default font)

<PgfMaxWordSpace integers>

Maximum word spacing (as a percentage of a standard space in the
paragraph’s default font)

MIF Reference

64

ADOBE FRAMEMAKER

<PgflLanguage keyword>

Language to use for spelling and hyphenation. Note that FrameMaker
writes this statement so MIF files can be opened in older versions of
FrameMaker. However, the language for a paragraph format or char-
acter format is now properly specified in the Pgf Font and Font
statements (see page 67)

keyword can be one of:
NoLanguage
USEnglish
UKEnglish

German
SwissGerman
AustriaGerman
Germanl996
SwissGermanl996
French
CanadianFrench
Spanish

Catalan

Italian
Portuguese
Brazilian

Danish

Dutch

Norwegian
Nynorsk

Finnish

Swedish

Japanese
TraditionalChinese
SimplifiedChinese
Korean

Arabic

Hebrew

<PgfTopSeparator strings

Name of reference frame (from reference page) to put above paragraph

<PgfTopSepAtIndent boolean>

Used for structured documents only

<PgfTopSepOffset dimensions>

Used for structured documents only

<PgfBoxColor string>

The background color for the entire box that surrounds a paragraph.

<PgfBotSeparator string-

Name of reference frame (from reference page) to put below paragraph

<PgfBotSepAtIndent boolean>

Used for structured documents only

<PgfBotSepOffset dimension>

Used for structured documents only

Table cell properties

<PgfCellAlignment keyword>

Vertical alignment for first paragraph in a cell

keyword can be one of:
Top

Middle

Bottom

<PgfCellMargins L T R B>

Cell margins for first paragraph in a cell

<PgfCelllMarginFixed boolean>

Yes means left cell margin is added to Tb1Cel1Margins; No
means left cell margin overrides To1CellMargins

<PgfCellTMarginFixed boolean>

Yes means top cell margin is added to Tb1CellMargins; No
means top cell margin overrides Tb1CellMargins

MIF Reference

65

ADOBE FRAMEMAKER
MIF Reference

<PgfCellRMarginFixed boolean> Yes means right cell margin is added to To1CellMargins; No
means right cell margin overrides Tb1Cel1Margins

<PgfCellBMarginFixed boolean> Yes means bottom cell margin is added to Tb1CellMargins; No
means width of bottom cell margin overrides To1Cel1lMargins

Miscellaneous properties

<PgfLocked boolean> Yes means the paragraph is part of a text inset that obtains its format-
ting properties from the source document. See page 66

<PgfAcrobatLevel integer> Level at which the paragraph is shown in an outline of Acrobat Book-
marks; 0 indicates that the paragraph does not appear as a bookmark

Usage
Within a Pgfcatalog statement, the PgfTag statement assigns a tag to a paragraph format. To apply a paragraph
format from the Paragraph Catalog to the current paragraph, use the PgfTag statement in a ParaLine statement.

If the PgfTag statement within a text flow does not match a format in the Paragraph Catalog, then the Pgf statement
makes changes to the current paragraph format. That is, a Pgf statement after Pg£Tag specifies how the paragraph
differs from the format in the catalog.

If a document has side heads, indents and tabs are measured from the text column, not the side head. In a table cell,
tab and indent settings are measured from the cell margins, not the cell edges.

Usage of some aspects of the pgf statement is described in the following sections.

Paragraph placement across text columns and side heads

The PgfPlacementStyle statement specifies the placement of a paragraph across text columns and side heads in a
text frame:

« Ifa paragraph spans across all columns and side heads, the PgfPlacementstyle statement is set to Straddle.

+ Ifa paragraph spans across all columns, but not across the side heads in a text frame, the PgfPlacementStyle
statement is set to StraddleNormal.

Locked paragraphs and text insets
The PgfLocked statement does not correspond to any setting in the Paragraph Designer. The statement is used for

text insets that retain formatting information from the source document.

If the <PgfLocked Yes> statement appears in a specific paragraph, that paragraph is part of a text inset that retains
formatting information from the source document. The paragraph is not affected by global formatting performed
on the document.

If the <PgfLocked No> statement appears in a specific paragraph, that paragraph is not part of a text inset, or is part
of a text inset that reads formatting information from the current document. The paragraph is affected by global
formatting performed on the document.

For more information about text insets, see “Text insets (text imported by reference)” on page 138.

Character formats

A character format is defined by a PgfFont or a Font statement. Character formats can be defined locally or they
can be stored in the Character Catalog, which is defined by a Fontcatalog statement.

66

ADOBE FRAMEMAKER | 67
MIF Reference

FontCatalog statement

The Fontcatalog statement defines the contents of the Character Catalog. A document can have only one
FontCatalog statement, which must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax
<FontCatalog
<Font...> Defines a character format (see “PgfFont and Font statements,” next)
<Font..> Additional statements as needed
> End of Font Catalog statement

PgfFont and Font statements

The PgfFont and Font statements both define character formats. The PgfFont statement must appear in a pgf
statement. The Font statement must appear in a FontCatalog, Para, Or TextLine statement.

New statements have been added to the PgfFont and Font statements to express combined fonts in FrameMaker
documents. For more information, see “Combined Fonts” on page 214.

Syntax

<PgfFont | Font
<FTag tagstring> Character format tag name

Font name
<FFamily string> Name of font family
<FAngle string> Name of angle, such as Oblique
<FWeight string> Name of weight, such as Bold
<FVar string> Name of variation, such as Narrow
<FPostScriptName string> Name of font when sent to PostScript printer (see “Font name” on page 70)
<FPlatformName string> Platform-specific font name, only read by the Windows version (see page 71)

ADOBE FRAMEMAKER

Font language

<FLanguage keyword>

Language to use for spelling and hyphenation

keyword can be one of:
NoLanguage
USEnglish
UKEnglish

German
SwissGerman
French
CanadianFrench
Spanish

Catalan

Italian
Portuguese
Brazilian

Danish

Dutch

Norwegian
Nynorsk

Finnish

Swedish

Japanese
TraditionalChinese
SimplifiedChinese
Korean

Arabic

Hebrew

Font encoding

<FEncoding keyword>

Specifies the encoding for this font. This is to specify the encoding for a
double-byte font. If not present, the default is Roman.

keyword can be one of these:
FrameRoman
JISX0208.ShiftJIs
BIGS

GB2312-80.EUC
KSC5601-1992

Font size, color, and width

<FSize dimension>

Size, in points only (orin Q on a Japanese system)

<FColor tagstring>

Font color (see “ColorCatalog statement” on page 84)

<FSeparation integers

Font color; no longer used, but written out by FrameMaker for backward-
compatibility (see “Color statements” on page 263)

<FStretch percents>

The amount to stretch or compress the font, where 100% means no change

<FBackgroundColor tagstrings

Background color of the paragraph text.

Font style

<FUnderlining keyword>

Turns on underlining and specifies underlining style

keyword can be one of:
FNoUnderlining
FSingle

FDouble

FNumeric

MIF Reference

68

ADOBE FRAMEMAKER

<FOverline boolean>

Turns on overline style

<FStrike boolean>

Turns on strikethrough style

<FChangeBar boolean>

Turns on the change bar

<FPosition keyword>

Specifies subscript and superscript characters; font size and position relative
to baseline determined by Document substatements (see page 94)

keyword can be one of:
FNormal
FSuperscript
FSubscript

<FOutline boolean>

Turns on outline style

<FShadow boolean>

Turns on shadow style

<FPairKern boolean>

Turns on pair kerning

<FCase keyword>

Applies capitalization style to string

keyword can be one of:
FAsTyped
FSmallCaps
FLowercase
FUppercase

Kerning information

<FDX percent>

Horizontal kern value for manual kerning expressed as percentage of an em;
positive value moves characters right and negative value moves characters
left

<FDY percent>

Vertical kern value for manual kerning expressed as percentage of an em; posi-
tive value moves characters down and negative value moves characters up

<FDW percent>

Spread value for space between characters expressed as percentage of an em;
positive value increases the space and negative value decreases the space

<FTsume boolean>

Yes turns on Tsume (variable width rendering) for Asian characters

Filter statements

Valid when text properties are applied to a file imported into FrameMaker

<FPlain boolean>

Used only by filters

<FBold boolean>

Used only by filters

<FItalic boolean>

Used only by filters

Miscellaneous information

<FLocked boolean>

Yes means the font is part of a text inset that obtains its formatting properties
from the source document

End of PgfFont or Font statement

Usage

MIF Reference

Use pgfFont within a Pgf statement to override the default font for the paragraph. Use Font within a Fontcatalog

statement to define a font or in a Para statement to override the default character format. Substatements in the Font

and PgfFont statements are optional. Like the pgf substatements, Font substatements reset the current font.

69

ADOBE FRAMEMAKER
MIF Reference

When the MIF interpreter reads a Font statement, it continues using the character format properties until it either
reads another Font statement or reads the end of the Para statement. You can set the character format back to its
previous state by providing an empty FTag statement. A Font statement that does not supply all property substate-
ments inherits the current font state for those properties not supplied.

For more information about creating and applying character formats in a MIF file, see “Creating and applying
character formats” on page 24. For more information about character formats in general, see your user’s manual.

Usage of some aspects of the PgfFont and Font statements is described in the following sections.

Locked fonts and text insets
The FLocked statement does not correspond to any setting in the Character Designer. The statement is used for text

insets that retain formatting information from the source document.

If the <FLocked Yes> statement appears in a specific character format, that character format is part of a text inset
that retains formatting information from the source document. The character format is not affected by global
formatting performed on the document.

If the <FLocked No> statement appears in a specific character format, either that character format is not part of a
text inset, or that character format is part of a text inset that reads formatting information from the current
document. The character format is affected by global formatting performed on the document.

For more information about text insets, see “Text insets (text imported by reference)” on page 138.

Font name

When a PgfFont or Font statement includes all of the family, angle, weight, and variation properties, FrameMaker

identifies the font in one or more of the following ways:

+ The statement FPlat formName specifies a font name that uniquely identifies the font on a specific platform.

+ The statements FFamily, FAngle, FWeight, and Fvar specify how FrameMaker stores font information inter-
nally.

+ Thestatement FPostScriptName specifies the name given to a font when it is sent to a PostScript printer (specif-
ically, the name that would be passed to the PostScript FindFont operator before any font coordination opera-
tions). The PostScript name is unique for all PostScript fonts, but may not be available for fonts that have no
PostScript version.

For complete font specifications, FrameMaker always writes the FFamily, FAngle, FWeight, FVar, and Fpost -
ScriptName statements. In addition, the Windows version of FrameMaker also writes the FPlat formName
statement. A UNIX version of FrameMaker ignores FPlat formName.

When FrameMaker reads a MIF file that includes more than one way of identifying a font, it checks the font name
in the following order:

1 Platform name

2 Combination of family, angle, weight, and variation properties

3 PostScript name

If you are writing filters to generate MIF, you do not need to use all three methods. You should always specify the
PostScript name, if it is available. You should use the platform name only if your filter will be run on a specific

platform. A filter running on a specific platform can easily find and write out the platform name, but the name
cannot be used on other platforms.

Font encoding

The <FEncoding> statement specifies which encoding to use for a font. The default is Roman, or standard 7-bit
encoding. If this statement is not included for a font, 7-bit encoding is assumed.

70

ADOBE FRAMEMAKER
MIF Reference

This statement takes precedence over all other font attributes. For example, if the document includes a font with
:DClambgle °HGQV. 0.6, QfgdrHGA%<, but that font family is not available on the user’s system, then the text will
appear in some other font on the system that uses Japanese encoding. If there is no Japanese encoded font on the
system, the text appears in Roman encoding and the user will see garbled characters.

FPlatformName statement

The <FPlatformName string> statement provides a platform-specific ASCII string name that uniquely identifies
a font for a particular platform. The string value consists of several fields separated by a period.

Windows: The Windows platform name has the following syntax:

<FPlatformName W.FaceName.ItalicFlag.Weight.Variations>

W Platform designator
FaceName Windows face name (for more information, see your Windows documentation)
ItalicFlag Whether font is italic; use one of the following flags:
T (Italic)
R (Regular)
Weight Weight classification, for example 400 (regular) or 700 (bold)
Variation Optional variation, for example Narrow

The following statements are valid representations of the Windows font Helvetica Narrow Bold Oblique:

<FPlatformName W.Helvetica-Narrow.I.700>
<FPlatformName W.Helvetica.I.700.Narrows>

Object styles

An object style is defined by a style statement. Object styles can be defined locally or they can be stored in the
Object Style catalog, which is defined by a Stylecatalog statement.

StyleCatalog statement

The stylecatalog statement defines the object styles. A document can have only one stylecatalog statement,
which must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax
<StyleCatalog
<Style Defines a character format (see “PgfFont and Font statements,” next)
> End of StyleCatalog statement
Style statement

The style statement defines the object style properties. A document can have only one stylecatalog statement,
which must appear at the top level in the order given in “MIF file layout” on page 53.

71

ADOBE FRAMEMAKER |72
MIF Reference

Syntax
<Style

<StyleTag strings The name of the object style.

<Pen integers> Pen pattern for lines and edges (see “Values for Pen and Fill statements” on
page 107)

<PenWidth dimension> Line and edge thickness

<ObTint percentage> Applies a tint to the object color; 100% is equivalent to the pure object color and 0%
is equivalent to no color at all

<DashedPattern

<DashedStyle keyword> Specifies whether object is drawn with a dashed or a solid line

keywordcan be one of:
Solid
Dashed

<HeadCap keyword> Type of head cap for lines and arcs

keywordcan be one of:
ArrowHead

Butt

Round

Square

<TailCap keyword> Type of tail cap for lines and arcs

keywordcan be one of:
ArrowHead

Butt

Round

Square

<ArrowStyle ...> See “ArrowStyle statement”on page 116.

<RunaroundGap dimension> Space between the object and the textflowing around the object; must be a value
between 0.0 and 432.0 points.

<Angle integers> Angle of rotation in degrees: 0, 90, 180, 270
<OffsetTop dimension> Offset from top

<OffsetLeft dimension> Offset from left

<SizeWidth dimension> Width of text

<SizeHeight dimension> Height of text

<AFrameDir keyword> Controls the direction of the anchored frame.

keywordcan be one of:
LTR - Set the direction for the anchored frame to left to right.
RTL - Set the direction for the anchored frame to right to left.

INHERITLTR - Derive the direction from the parent object. If it resolves to left to
right then INHERITLTR is assigned to AFrameDir.

INHERITRTL - Derive the direction from the parent object. If it resolves to right
to left then INHERITRTL is assigned to AFrameDir.

<TFrameNumColumns inte- Number of columns in the text frame (1-10)
gers

ADOBE FRAMEMAKER |73

<TFrameColumnGap inte-

gers

Space between columns in the text frame (0"-50")

<TFrameShRoom boolean>

Yes gives room for side heads

<TFrameShWidth
dimensions>

Side head width

<TFrameShGap dimensions>

Gap between side head and body text areas

<TFrameAutoconnect
boolean>

Yes adds text frames as needed to extend flows

<TFramePostscript
boolean>

Yes identifies text in the flow as printer code

<TFrameColumnBalance
boolean>

Yes means columns in the text frame are automatically adjusted to the same height

<TFrameDir keyword>

Controls the direction of the text frame and its child objects.

keywordcan be one of:

LTR - Setthe direction of the text flow object to left to right. The text flow propa-
gates its direction to all child objects that derive their direction from the text flow
object.

RTL - Set the direction of the text flow object to right to left. The text flow propa-
gates its direction to all child objects that derive their direction from the text flow
object.

INHERITLTR - Derive the direction from the parent object. If it resolves to left to
right, then INHERITLTR is assigned to TFrameDir.

INHERITRTL - Derive the direction from the parent object. If it resolves to right
to left, then INHERITRTL is assigned to TFrameDir.

<TLineDir keyword>

Controls the direction in which the text line is drawn.

keywordcan be one of:
LTR - Set the direction for the text line object to left to right.
RTL - Set the direction for the text line object to right to left.

INHERITLTR - Derive the direction from the parent object. If it resolves to left to
right then INHERITLTR is assigned to TLineDir.

INHERITRTL - Derive the direction from the parent object. If it resolves to right
to left then INHERITRTL is assigned to TLineDir.

<ATheta dimension> Startangle
<ADTheta dimension> Arcangle length
<InsetScaling Scaling of the inset
dimensions>

<InsetOpacity integers>

Opacity value defined for an object.

<EquationBreak Set line-width after which the equation breaks to the next line
dimension>

<MathMLStyleDpi Scaling value using which bitmap file is imported
integers>

<MathMLStyleComposeDpi
integers>

Scaling value using which bitmap file is created

MIF Reference

ADOBE FRAMEMAKER |74
MIF Reference

<MathMLStyleFontSize Font size of the MathML to which the style is applied
dimensions>

<MathMLStyleInline bool- Yes placesthe equation inline withthe paragraph text
ean>

Line numbers

FrameMaker documents can have the line numbers displayed for assisting in the reviewing process. Multiple
contributors to the document can refer to the content using the Page number and then line number. The following
are the statements relevant to line numbers:

Syntax
<DLineNumGap dimensions> The width of the line number field.
<DLineNumRestart boolean> Setting this property to Yes restarts the line numbering to 1 for each page of a
document.
<DLineNumShow boolean> Setting this property to Yes displays the line numbers.
<DLineNumFontFam strings Name of the font family for the line numbers.
<DLineNumSize dimensions Size of the line number text, in points.
<DLineNumColor tagstring> Color of the line number text.

Tables

Table formats are defined by a Tb1Format statement. Table formats can be locally defined or they can be stored in a
Table Catalog, which is defined by a Tb1catalog statement. The ruling styles used in a table are defined in a
RulingCatalog statement.

In a MIF file, all document tables are contained in one Tb1s statement. Each table instance is contained in a Tb1
statement. The ATb1 statement specifies where each table instance appears in the text flow.

TbiCatalog statement

The Th1lcatalog statement defines the Table Catalog. A document can have only one Th1catalog statement, which
must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax

<TblCatalog

<TblFormat..> Defines a table format (see “TblFormat statement,” next)

<TblFormat..> Additional statements as needed

ADOBE FRAMEMAKER | 75
MIF Reference

> End of TblCatalog statement

TbIFormat statement

The Tb1Format statement defines the format of a table. A Tb1Format statement must appear in a Tb1Catalog or in
a Tbl statement. A Tb1Format statement contains property substatements that define a table’s properties. Table
property statements can appear in any order.

Syntax
Basic properties
<TblFormat
<TblTag tagstring> Table format tag name
<TblLIndent dimension> Left indent for the table relative to the table’s containing text column; has no
effect on right-aligned tables
<TblRIndent dimension> Right indent for the table relative to the table’s containing text column; has no
effect on left-aligned tables
<TblSpBefore dimension> Space above table
<TblSpAfter dimensions> Space below table
<TblAlignment keywords> Horizontal alignment within text column or text frame
keyword can be one of:
Left
Center
Right
Inside
Outside
See page 78
<TblPlacement keyword> Vertical placement of table within text column
keyword can be one of:
Anywhere
Float
ColumnTop
PageTop
LPageTop
RPageTop
<TblBlockSize integerx Widow/orphan rows for body rows
<TblCellMargins L T R B> Left, top, right, bottom default cell margins
<TblTitlePlacement keyword> Table title placement
keyword can be one of:
InHeader
InFooter
None
<TblTitlePgfl Paragraph format of title for a new table created with the table format
<PgfTag tagstring> Applies format from Paragraph Catalog
<Pgf..> Overrides Paragraph Catalog format as needed (see page 62)

ADOBE FRAMEMAKER | 76
MIF Reference

>

End of Tb1Tit1lePgf1l statement

<TblTitleGap dimension>

Gap between title and top or bottom row

<Tb1lNumByColumn boolean>

Autonumber paragraphs in cells; Yes numbers down each column and No
numbers across each row

<TblDir keyword>

Direction of the table.

keywozrd can be one of:
LTR - Thedirection of the table is set to left to right.
RTL - The direction of the table is set to right to left.

INHERITLTR - Derive the direction from the parent object. If it resolves to
left to right, then INHERITLTR is assigned to Tb1Dir.

INHERITRTL - Derive the direction from the parent object. If it resolves to
right to left, then INHERITRTL is assigned to To1Dir.

Ruling properties

<TblColumnRuling tagstrings>

Ruling style for most columns; value must match a ruling style name specified
inthe RulingCatalog statement

<TblXColumnNum integers>

Number of column with a right side that uses the Tb1XColumnRuling
statement

<TblXColumnRuling tagstring>

Ruling style for the right side of column Tb1XColumnNum

<TblBodyRowRuling tagstrings

Default ruling style for most body rows

<TblXRowRuling tagstring->

Exception ruling style for every nth body row

<TblRulingPeriod integer>

Number of body rows after which To1XRowRuling should appear

<TblHFRowRuling tagstring->

Ruling style between rows in the heading and footing

<TblSeparatorRuling tagstrings

Ruling style for rule between the last heading row and first body row, and also
between the last body row and the first footing row

<TblLRuling tagstrings

Left outside table ruling style

<TblBRuling tagstring>

Bottom outside table ruling style

<TblRRuling tagstrings

Right outside table ruling style

<TblTRuling tagstring-

Top outside table ruling style

<TblLastBRuling boolean>

Yes means draw bottom rule on the last sheet only; No means draw rule on the
bottom of every sheet

Shading properties

<TblHFFill integers>

Default fill pattern for table heading and footing (see page 113)

<TblHFColor tagstrings>

Default color for table heading and footing (see page 85)

<TblHFSeparation integers

Default color for table heading and footing; no longer used, but written out by
FrameMaker for backward-compatibility (see “Color statements” on page 263)

<TblBodyFill integers>

Default fill pattern for body cells (see page 113)

<TblBodyColor tagstrings

Default color for body cells (see page 85)

<TblBodySeparation integer>

Default color for body cells; no longer used, but written out by FrameMaker for
backward-compatibility (see “Color statements” on page 263)

ADOBE FRAMEMAKER |77
MIF Reference

<TblShadeByColumn boolean>

Yes specifies column shading; No specifies body row shading

<TblShadePeriod integers

Number of consecutive columns/rows that use To1BodyFill

<TblXFill integers>

Exception fill pattern for columns or body rows (see page 113)

<TblXColor tagstrings>

Exception color for columns or body rows (see page 85)

<TblXSeparation integers

Exception color for columns or body rows; no longer used, but written out by
FrameMaker for backward-compatibility (see “Color statements” on page 263)

<TblAltShadePeriod integers>

Number of consecutive columns/rows that use Tb1XF1i11; exception
columns/rows alternate with default body columns/rows to form a repeating
pattern

Column properties

<TblwWidth dimension>

Not generated by FrameMaker, but can be used by filters to determine table
width

<TblColumn

Each table must have at least one Tb1Column statement; a column without a
statement uses the format of the rightmost column

<TblColumnNum integers>

Column number; columns are numbered from left to right starting at 0

<TblColumnWidth dimension>

Width of column. See page 82

<TblColumnWidthP integers>

Not generated by FrameMaker, but a temporary column width when filtering
proportionally-spaced tables from another application; converted to a fixed
width when read in (see page 82)

<TblColumnWidthA W w>

Not generated by FrameMaker, but a width based on a cell width, for filters only;
converted into a fixed width when read in. First value is minimum width; second
value is maximum width. Values limit the range of a computed column width,
and are usually set to a wide range (see page 82).

<TblColumnH Default paragraph format for the column’s heading cells in new tables
<TableColumn If the table column is conditionalized, the conditional properties are specifiedin
the TableColumn property.
<Conditional Specifies that the column is conditional.

<InCondition tagstrings>

Applies the specified conditional tag to the column.

<~

End of Conditional statement.

End of end of TableColumn statement.

<PgfTag tagstring>

Applies format from Paragraph Catalog

<Pgf...> Overrides Paragraph Catalog format as needed (see page 62)
> End of Tb1ColumnH statement
<TblColumnBody Default paragraph format for the column’s body cells in new tables

<PgfTag tagstring>

Applies format from Paragraph Catalog

<Pgf...> Overrides Paragraph Catalog format as needed (see page 62)
> End of Tb1ColumnBody statement
<TblColumnF Default paragraph format for the column'’s footing cells in new tables

ADOBE FRAMEMAKER | 78
MIF Reference

<PgfTag tagstring>

Applies format from Paragraph Catalog

<Pgf...>

Overrides Paragraph Catalog format as needed (see page 62)

End of TblColumnF statement

>

End of Tb1Column statement

<TblColumn..>

More Tb1Column statements as needed, one per column

New table properties

<TblInitNumColumns Integers>

Number of columns for new table

<TblInitNumHRows integer>

Number of heading rows for new table

<TblInitNumBodyRows integer>

Number of body rows for new tables

<TblInitNumFRows integer>

Number of footing rows for new tables

Miscellaneous properties

<TblLocked boolean>

Yes meansthe table is part of a text inset that obtains its formatting properties
from the source document

End of Tb1Format statement

Usage

The basic properties, ruling properties, and shading properties correspond to settings in the Table Designer. The
tagstring value specified in any ruling substatement (such as Tb1columnruling) must match a ruling tag defined
in the RulingCatalog statement (see page 83). The tagstring value specified in any color substatement (such as
Tb1lBodyColor) must match a color tag defined in the colorcatalog statement (see page 84).

Usage of some of the aspects of the Tb1Format statement is described in the following sections.

Alignment of tables

The horizontal alignment of a table within a text column or text frame is specified by the Tb1Alignment statement:

« If the table is aligned with the left, center, or right side of a text column or text frame, the To1alignment

statement is set to Left, Center, or Right, respectively.

« Ifthe tableis aligned with the closer edge or farther edge of a text frame (closer or farther relative to the binding
of the book), the Tb1alignment statement is set to Inside or Outside, respectively.

Locked tables and text insets

The TblLocked statement does not correspond to any setting in the Table Designer. The statement is for text insets
that retain formatting information from the source document.

If the <TblLocked Yess statement appears in a specific table, that table is part of a text inset that retains formatting

information from the source document. The table is not affected by global formatting performed on the document.

If the <TblLocked Nos statement appears in a specific table, that table is not part of a text inset or is part of a text
inset that reads formatting information from the current document. The table is affected by global formatting

performed on the document.

For details about text insets, see “Text insets (text imported by reference)” on page 138.

Tbls statement

ADOBE FRAMEMAKER | 79
MIF Reference

The Tb1s statement lists the contents of each table in the document. A document can have only one Tb1s statement,
which must appear at the top level in the order given in “MIF file layout” on page 53.

Syntax
<Tbls Beginning of tables list
‘RYj-< Defines a table instance (see “Thl statement,” next)
<Tbl..> Additional statements as needed

End of Tb1s statement

Tbl statement

The Tb1 statement contains the contents of a table instance. It must appear in a Tb1s statement.

Each Tb1 statement is tied to a location in a text flow by the ID number in a Tb11D statement. Each Tb1 statement
has an associated ATb1 statement within a ParaLine statement that inserts the table in the flow. The Tb1 statement
must appear before the ATb1 statement that refers to it. Each Tb1 statement can have only one associated ATb1
statement, and vice versa. For more information about the ATb1 statement, see “ParaLine statement” on page 133.

Syntax

<Tbl

<TblID ID»>

Table ID number

<TblTag tagstring>

Applies format from Table Catalog

<TblFormat...>

Overrides Table Catalog format as needed (see page 75)

Table columns

<TblNumColumns integers

Number of columns in the table

<TblColumnWidth dimension>

Width of first column

<TblColumnWidth dimension>

Width of second column

Width of remaining columns as needed

<EqualizeWidths

Makes specified columns the same width as the widest column (for filters only, see
page 82)

<TblColumnNum integers>

First column

<TblColumnNum integers>

More columns as needed

>

End of EqualizeWidths statement

Table title
<TblTitle Begin definition of table title
<TblTitleContent Table title’s content, represented in one or more Para statements
<Notes...> Footnotes for table title (see page 131)

ADOBE FRAMEMAKER

MIF Reference

<Para..> Title text (see page 132)
<Para..> Additional statements as needed
> End of Tb1TitleContent statement

> End of Tb1Tit1le statement

Table rows

<TblH Table heading rows; omit if no table headings
<Row...> See “Row statement,” next
<Row...> Additional statements as needed

> End of Tb1H statement

<Tb1lBody Table body rows
<Row...> See “Row statement,” next
<Row...> Additional statements as needed

> End of Tb1Body statement

<TblF Table footing rows; omit if no table footing
Pmu-< See “Row statement,” next
<Row...> Additional statements as needed

> End of Tb1F statement

> End of Tb1 statement
Usage

The table column statements specify the actual width of the table instance columns. They override the column
widths specified in the Tb1Format statement.

Row statement

A Row statement contains a list of cells. It also includes row properties as needed. The statement must appear in a Tb1

statement.

Syntax

<Row

<Conditional..>

Specifies conditional row (row is unconditional if the statement is omitted)

<RowWithNext booleans>

Keep with next body row

80

ADOBE FRAMEMAKER | 81
MIF Reference

<RowWithPrev boolean> Keep with previous body row
<RowMinHeight dimension> Minimum row height
<RowMaxHeight dimension> Maximum row height
<RowHeight dimension> Row height
<RowPlacement keyword> Row placement

keyword can be one of:
Anywhere
ColumnTop
LPageTop
RPageTop

PageTop

<Cell..> Each Row statement contains one Ce11 statement for each column (see “Cell state-
ment,” next)

<Cell..> Additional statements as needed

> End of Row statement

Usage

Each row statement contains a ce11 statement for each column in the table, even if a straddle hides a cell. Extra cell
statements are ignored; too few cel1 statements result in empty cells in the rightmost columns of the row.

When you rotate a cell to a vertical orientation, the width of unwrapped text affects the height of the row. You can

use RowMaxHeight and RowMinHeight to protect a row’s height from extremes caused by rotating cells containing
multiline paragraphs, or to enforce a uniform height for the rows.

FrameMaker writes out the RowHeight statement for use by other programs. It is not used by the MIF interpreter.

Even if the statement is present, the MIF interpreter recalculates the height of each row based on the row contents

and the RowMinHeight and RowMaxHeight statements.

Cell statement

A cell statement specifies a cell’s contents. It also includes format, straddle, and rotation information as needed. The
statement must appear in a Row statement.

Syntax
<Cell
<CellFill integers> Fill pattern for cell, 0-15 (see page 113)
<CellColor tagstrings> Color for cell (see “ColorCatalog statement” on page 84)
<CellSeparation integer> Color for cell; no longer used, but written out by FrameMaker for back-
ward-compatibility (see “Color statements” on page 263)
<CellLRuling tagstring- Left edge ruling style (from Ruling Catalog)
<CellBRuling tagstring> Bottom edge ruling style
<CellRRuling tagstring> Right edge ruling style
<CellTRuling tagstrings Top edge ruling style

ADOBE FRAMEMAKER
MIF Reference

<CellColumns integers>

Number of columns in a straddle cell

<CellRows integers>

Number of rows in a straddle cell

<CellAaffectsColumnWidthA boolean>

Yes restricts column width to cell width

<CellAngle degrees>

Angle of rotation in degrees: 0, 90,180, 0r 270

<CellContent Cell’s content
<Notes...> Footnotes for cell (see page 131)
<Para...> Cell’s content, represented in one or more Para statements (see

page 132)

<Para...> Additional statements as needed

> End of Cel1lContent statement

> End of Cel1l statement
Usage

You can use the Rotate command on the Graphics menu to change the ce11angle, but it does not affect the location

of cell margins. cel1angle affects only the orientation and alignment of the text flow. When cel1angle is 90 or 270

degrees, use PgfCellAlignment to move vertically oriented text closer to or farther from a column edge. For infor-
mation about aligning text in a cell, see PgfCellAlignment on page 65.

MIF uses CellAffectsColumnWidtha only with the Tb1Columnwidtha statement. The MIF default for computing

a cell’s width is Tb1columnwidtha. However, if any cells in the column have <Cel1affectsColumnWidthA Yess,

then only those cells affect the computed column width.

Usage of MIF statements to calculate the width of a column is described in the following sections.

Determining table width

When FrameMaker writes MIF files, it uses Tb1Columnwidth in the Tbl statement to specify column width.
However, filters that generate MIF files can use other statements to determine the table width.

This method Uses these statements To do this

Fixed width TblColumnWidth Give a fixed value for column’s width (see page 77)

Shrink-wrap TblColumnWidtha Fit a column within minimum and maximum values (see page 77)

Restricted TblColumnWidtha and CellAf- Use particular cells to determine column width (see page 82)
fectsColumnWidthA

Proportional TblColumnWidthP Create a temporary value for a column width when filtering propor-

tional-width columns from another application; the MIF interpreter
converts the value to a fixed width (see page 77 and “Calculating propor-
tional-width columns,” next)

Equalized

EqualizeWidths and
TblColumnNum

Apply the width of the widest column to specified columns in the same
table (see page 79)

The table example in “Creating an entire table” on page 238 shows several ways to determine column width.

82

ADOBE FRAMEMAKER | 83
MIF Reference

Calculating proportional-width columns

MIF uses this formula to calculate the width of proportional-width columns:

n .
PTotal x PWidth

The arguments have the following values:

n Value of Tb1ColumnWidthP
PTotal Sum of the values for all Tb1ColumnWidthP statements in the table
PWidth Available space for all proportional columns (Tb1Width - the sum of fixed-width columns)

For example, suppose you want a four-column table to be 7 inches wide, but only the last three columns to have
proportional width.

+ The columns have the following widths:
Column 1 has a fixed-width value of 1": <Tb1ColumnWidth 1">
Column 2 has a proportional value of 2: <Tbl1ColumnWidthP 2>
Column 3 has a proportional value of 1: <Tb1ColumnWidthP 1>
Column 4 has a proportional value of 1: <TblColumnWidthP 1>
+ Available width for proportional columns (Pwidth) is 7" - 1" or 6".
+ Sum of all proportional values (pPTotal)is2+ 1+ 1 or 4.
« Width for Column 2 is (2/PTotal) x Pwidth = (2/4) x 6" or 3".
« Width for Column 3 or Column 4 is (1/PTotal) x Pwidth = (1/4) x 6" or 1.5".

RulingCatalog statement

The RulingCatalog statement defines the contents of the Ruling Catalog, which describes ruling styles for tables.
A document can have only one RulingCatalog statement, which must appear at the top level in the order given in
“MIF file layout” on page 53.

Syntax
<RulingCatalog
<Ruling..> Defines ruling style (see “Ruling statement” on page 83)
<Ruling..> Additional statements as needed
> End of RulingCatalog statement

Ruling statement

The Ruling statement defines the ruling styles used in table formats. It must appear within the RulingCatalog
statement.

ADOBE FRAMEMAKER
MIF Reference

Syntax

<Ruling
<RulingTag tagstring> Ruling style name; an empty string indicates no ruling style
<RulingPenWidth dimension> Ruling line thickness
<RulingGap dimension> Gap between double ruling lines
<RulingColor tagstrings> Color of ruling line (see “ColorCatalog statement” on page 84)
<RulingSeparation integers Color of ruling line; no longer used, but written out by FrameMaker for back-

ward-compatibility (see “Color statements” on page 263)

<RulingPen integer> Pen pattern 0 through 7, or 15 (see page 113)
<RulinglLines integers> 0 (none), 1 (single), or 2 (double) ruling lines

> End of Rul ing statement

Color

You can assign colors to text and objects in a FrameMaker document. A FrameMaker document has a set of default
colors; you can also define your own colors and store them in the document’s Color Catalog. A FrameMaker
document has three color models you can use to create colors: CMYK, RGB, and HLS. You can also choose inks from
installed color libraries such as PANTONE .

In a MIF file, colors are defined by a color statement within a colorCatalog statement. Regardless of the color
model used to define a new color, colors are stored in a MIF file in CMYK.

You can define a color as a tint of an existing color. Tints are colors that are mixed with white. A tint is expressed by
the percentage of the base color that is printed or displayed. A tint of 100% is equivalent to the pure base color, and
a tint of 0% is equivalent to no color at all.

You can specify overprinting for a color. However, if overprinting is set for a graphic object, the object’s setting takes
precedence. When a graphic object has no overprint statement, the overprint setting for the color is assumed.

You can set up color views to specify which colors are visible in a document. The color views for a document are
specified in the views statement. The current view for the document is identified in a DCurrentView statement.

The color of a FrameMaker document object is expressed in a property statement for that object. In this manual, the
syntax description of a FrameMaker document object that can have a color property includes the appropriate color
property substatement.

ColorCatalog statement
The colorcatalog statement defines the contents of the Color Catalog. A document can have only one color-

Catalog statement, which must appear at the top level in the order given in “MIF file layout” on page 53.

FrameMaker automatically generates new colors while specific operations are performed. For example, FrameMaker
generates new colors when multiple conditional tags are applied to text. These colors are identified by their

»

ColorTag, which con