
Optimizing Performance for the

ADOBE® FLASH® PLATFORM

Last updated 8/21/2012

Legal notices

Legal notices
For legal notices, see http://help.adobe.com/en_US/legalnotices/index.html.

http://help.adobe.com/en_US/legalnotices/index.html

iii

Last updated 8/21/2012

Contents

Chapter 1: Introduction

Runtime code execution fundamentals . 1

Perceived performance versus actual performance . 2

Target your optimizations . 3

Chapter 2: Conserving memory

Display objects . 4

Primitive types . 4

Reusing objects . 6

Freeing memory . 11

Using bitmaps . 12

Filters and dynamic bitmap unloading . 18

Direct mipmapping . 19

Using 3D effects . 20

Text objects and memory . 21

Event model versus callbacks . 22

Chapter 3: Minimizing CPU usage

Flash Player 10.1 enhancements for CPU usage . 23

Sleep mode . 25

Freezing and unfreezing objects . 26

Activate and deactivate events . 29

Mouse interactions . 30

Timers versus ENTER_FRAME events . 31

Tweening syndrome . 33

Chapter 4: ActionScript 3.0 performance

Vector class versus Array class . 34

Drawing API . 35

Event capture and bubbling . 36

Working with pixels . 38

Regular expressions . 39

Miscellaneous optimizations . 40

Chapter 5: Rendering performance

Redraw regions . 45

Off-stage content . 46

Movie quality . 47

Alpha blending . 49

Application frame rate . 50

Bitmap caching . 51

Manual bitmap caching . 58

Rendering text objects . 64

GPU . 68

ivOPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Contents

Last updated 8/21/2012

Asynchronous operations . 71

Transparent windows . 72

Vector shape smoothing . 73

Chapter 6: Optimizing network interaction

Enhancements for network interaction . 75

External content . 76

Input output errors . 79

Flash Remoting . 80

Unnecessary network operations . 82

Chapter 7: Working with media

Video . 83

StageVideo . 83

Audio . 83

Chapter 8: SQL database performance

Application design for database performance . 85

Database file optimization . 88

Unnecessary database run-time processing . 88

Efficient SQL syntax . 89

SQL statement performance . 90

Chapter 9: Benchmarking and deploying

Benchmarking . 91

Deploying . 92

1

Last updated 8/21/2012

Chapter 1: Introduction

Adobe® AIR® and Adobe® Flash® Player applications run on many platforms, including desktops, mobile devices,

tablets, and television devices. Through code examples and use cases, this document outlines best practices for

developers deploying these applications. Topics include:

• Conserving memory

• Minimizing CPU usage

• Improving ActionScript 3.0 performance

• Increasing rendering speed

• Optimizing network interaction

• Working with audio and video

• Optimizing SQL database performance

• Benchmarking and deploying applications

Most of these optimizations apply to applications on all devices, on both the AIR runtime and Flash Player runtime.

Additions and exceptions for specific devices are also discussed.

Some of these optimizations focus on capabilities introduced in Flash Player 10.1 and AIR 2.5. However, many of these

optimizations apply to earlier AIR and Flash Player releases, too.

Runtime code execution fundamentals

One key to understanding how to improve application performance is to understand how the Flash Platform runtime

executes code. The runtime operates in a loop with certain actions occurring each “frame.” A frame in this case is

simply a block of time determined by the frame rate specified for the application. The amount of time allotted to each

frame directly corresponds to the frame rate. For example, if you specify a frame rate of 30 frames per second, the

runtime attempts to make each frame last one-thirtieth of a second.

You specify the initial frame rate for your application at authoring time. You can set the frame rate using settings in

Adobe® Flash® Builder™ or Flash Professional. You can also specify the initial frame rate in code. Set the frame rate in

an ActionScript-only application by applying the [SWF(frameRate="24")] metadata tag to your root document class.

In MXML, set the frameRate attribute in the Application or WindowedApplication tag.

Each frame loop consists of two phases, divided into three parts: events, the enterFrame event, and rendering.

The first phase includes two parts (events and the enterFrame event), both of which potentially result in your code

being called. In the first part of the first phase, runtime events arrive and are dispatched. These events can represent

completion or progress of asynchronous operations, such as a response from loading data over a network. They also

include events from user input. As events are dispatched, the runtime executes your code in listeners you’ve registered.

If no events occur, the runtime waits to complete this execution phase without performing any action. The runtime

never speeds up the frame rate due to lack of activity. If events occur during other parts of the execution cycle, the

runtime queues up those events and dispatches them in the next frame.

The second part of the first phase is the enterFrame event. This event is distinct from the others because it is always

dispatched once per frame.

2OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Introduction

Last updated 8/21/2012

Once all the events are dispatched, the rendering phase of the frame loop begins. At that point the runtime calculates

the state of all visible elements on the screen and draws them to the screen. Then the process repeats itself, like a runner

going around a racetrack.

Note: For events that include an updateAfterEvent property, rendering can be forced to occur immediately instead of

waiting for the rendering phase. However, avoid using updateAfterEvent if it frequently leads to performance

problems.

It's easiest to imagine that the two phases in the frame loop take equal amounts of time. In that case, during half of each

frame loop event handlers and application code are running, and during the other half, rendering occurs. However,

the reality is often different. Sometimes application code takes more than half the available time in the frame,

stretching its time allotment, and reducing the allotment available for rendering. In other cases, especially with

complex visual content such as filters and blend modes, the rendering requires more than half the frame time. Because

the actual time taken by the phases is flexible, the frame loop is commonly known as the “elastic racetrack.”

If the combined operations of the frame loop (code execution and rendering) take too long, the runtime isn’t able to

maintain the frame rate. The frame expands, taking longer than its allotted time, so there is a delay before the next

frame is triggered. For example, if a frame loop takes longer than one-thirtieth of a second, the runtime is not able to

update the screen at 30 frames per second. When the frame rate slows, the experience degrades. At best animation

becomes choppy. In worse cases, the application freezes and the window goes blank.

For more details about the Flash Platform runtime code execution and rendering model, see the following resources:

• Flash Player Mental Model - The Elastic Racetrack (article by Ted Patrick)

• Asynchronous ActionScript Execution (article by Trevor McCauley)

• Optimizing Adobe AIR for code execution, memory & rendering at

http://www.adobe.com/go/learn_fp_air_perf_tv_en (Video of MAX conference presentation by Sean Christmann)

Perceived performance versus actual performance

The ultimate judges of whether your application performs well are the application’s users. Developers can measure

application performance in terms of how much time certain operations take to run, or how many instances of objects

are created. However, those metrics aren’t important to end users. Sometimes users measure performance by different

criteria. For example, does the application operate quickly and smoothly, and respond quickly to input? Does it have

a negative affect on the performance of the system? Ask yourself the following questions, which are tests of perceived

performance:

• Are animations smooth or choppy?

• Does video content look smooth or choppy?

• Do audio clips play continuously, or do they pause and resume?

• Does the window flicker or turn blank during long operations?

• When you type, does the text input keep up or lag behind?

• If you click, does something happen immediately, or is there a delay?

• Does the CPU fan get louder when the application runs?

• On a laptop computer or mobile device, does the battery deplete quickly while running the application?

• Do other applications respond poorly when the application is running?

http://tedpatrick.com/2005/07/19/flash-player-mental-model-the-elastic-racetrack/
http://www.senocular.com/flash/tutorials/asyncoperations/
http://www.adobe.com/go/learn_fp_air_perf_tv_en

3OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Introduction

Last updated 8/21/2012

The distinction between perceived performance and actual performance is important. The way to achieve the best

perceived performance isn’t always the same as the way to get the absolute fastest performance. Make sure that your

application never executes so much code that the runtime isn’t able to frequently update the screen and gather user

input. In some cases, achieving this balance involves dividing up a program task into parts so that, between parts, the

runtime updates the screen. (See “Rendering performance” on page 45 for specific guidance.)

The tips and techniques described here target improvements in both actual code execution performance and in how

users perceive performance.

Target your optimizations

Some performance improvements do not create a noticeable improvement for users. It’s important to concentrate

your performance optimizations on areas that are problems for your specific application. Some performance

optimizations are general good practices and can always be followed. For other optimizations, whether they are useful

depends on your application’s needs and its anticipated user base. For example, applications always perform better if

you don’t use any animation, video, or graphic filters and effects. However, one of the reasons for using the Flash

Platform to build applications is because of the media and graphics capabilities that allow rich expressive applications.

Consider whether your desired level of richness is a good match for the performance characteristics of the machines

and devices on which your application runs.

One common piece of advice is to “avoid optimizing too early.” Some performance optimizations require writing code

in a way that is harder to read or less flexible. Such code, once optimized, is more difficult to maintain. For these

optimizations, it is often better to wait and determine whether a particular section of code performs poorly before

choosing to optimize the code.

Improving performance sometimes involves making trade-offs. Ideally, reducing the amount of memory consumed

by an application also increases the speed at which the application performs a task. However, that type of ideal

improvement isn’t always possible. For example, if an application freezes during an operation, the solution often

involves dividing up work to run over multiple frames. Because the work is being divided up, it is likely to take longer

overall to accomplish the process. However, it is possible for the user to not notice the additional time, if the

application continues to respond to input and doesn’t freeze.

One key to knowing what to optimize, and whether optimizations are helpful, is to conduct performance tests. Several

techniques and tips for testing performance are described in “Benchmarking and deploying” on page 91.

For more information about determining parts of an application that are good candidates for optimization, see the

following resources:

• Performance-tuning apps for AIR at http://www.adobe.com/go/learn_fp_goldman_tv_en (Video of MAX

conference presentation by Oliver Goldman)

• Performance-tuning Adobe AIR applications at http://www.adobe.com/go/learn_fp_air_perf_devnet_en (Adobe

Developer Connection article by Oliver Goldman, based on the presentation)

http://www.adobe.com/go/learn_fp_goldman_tv_en
http://www.adobe.com/go/learn_fp_air_perf_devnet_en

4

Last updated 8/21/2012

Chapter 2: Conserving memory

Conserving memory is always important in application development, even for desktop applications. Mobile devices,

however, place a premium on memory consumption, and it is worthwhile to limit the amount of memory your

application consumes.

Display objects

Choose an appropriate display object.

ActionScript 3.0 includes a large set of display objects. One of the most simple optimization tips to limit memory usage

is to use the appropriate type of display object. For simple shapes that are not interactive, use Shape objects. For

interactive objects that don’t need a timeline, use Sprite objects. For animation that uses a timeline, use MovieClip

objects. Always choose the most efficient type of object for your application.

The following code shows memory usage for different display objects:

 trace(getSize(new Shape()));
 // output: 236

 trace(getSize(new Sprite()));
 // output: 412

 trace(getSize(new MovieClip()));
 // output: 440

The getSize() method shows how many bytes an object consumes in memory. You can see that using multiple

MovieClip objects instead of simple Shape objects can waste memory if the capabilities of a MovieClip object are not

needed.

Primitive types

Use the getSize() method to benchmark code and determine the most efficient object for the task.

All primitive types except String use 4 – 8 bytes in memory. There is no way to optimize memory by using a specific

type for a primitive:

5OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

 // Primitive types
 var a:Number;
 trace(getSize(a));
 // output: 8

 var b:int;
 trace(getSize(b));
 // output: 4

 var c:uint;
 trace(getSize(c));
 // output: 4

 var d:Boolean;
 trace(getSize(d));
 // output: 4

 var e:String;
 trace(getSize(e));
 // output: 4

A Number, which represents a 64-bit value, is allocated 8 bytes by the ActionScript Virtual Machine (AVM), if it is not

assigned a value. All other primitive types are stored in 4 bytes.

 // Primitive types
 var a:Number = 8;
 trace(getSize(a));
 // output: 4

 a = Number.MAX_VALUE;
 trace(getSize(a));
 // output: 8

The behavior differs for the String type. The amount of storage allocated is based on the length of the String:

 var name:String;
 trace(getSize(name));
 // output: 4

 name = "";
 trace(getSize(name));
 // output: 24

 name = "Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum
has been the industry's standard dummy text ever since the 1500s, when an unknown printer took
a galley of type and scrambled it to make a type specimen book. It has survived not only five
centuries, but also the leap into electronic typesetting, remaining essentially unchanged. It
was popularized in the 1960s with the release of Letraset sheets containing Lorem Ipsum
passages, and more recently with desktop publishing software like Aldus PageMaker including
versions of Lorem Ipsum.";
 trace(getSize(name));
 // output: 1172

Use the getSize() method to benchmark code and determine the most efficient object for the task.

6OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

Reusing objects

Reuse objects, when possible, instead of recreating them.

Another simple way to optimize memory is to reuse objects and avoid recreating them whenever possible. For

example, in a loop, do not use the following code:

 const MAX_NUM:int = 18;
 const COLOR:uint = 0xCCCCCC;

 var area:Rectangle;

 for (var:int = 0; i < MAX_NUM; i++)
 {
 // Do not use the following code
 area = new Rectangle(i,0,1,10);
 myBitmapData.fillRect(area,COLOR);
 }

Recreating the Rectangle object in each loop iteration uses more memory and is slower because a new object is created

in each iteration. Use the following approach:

 const MAX_NUM:int = 18;
 const COLOR:uint = 0xCCCCCC;

 // Create the rectangle outside the loop
 var area:Rectangle = new Rectangle(0,0,1,10);

 for (var:int = 0; i < MAX_NUM; i++)
 {
 area.x = i;
 myBitmapData.fillRect(area,COLOR);
 }

The previous example used an object with a relatively small memory impact. The next example demonstrates larger

memory savings by reusing a BitmapData object. The following code to create a tiling effect wastes memory:

var myImage:BitmapData;
var myContainer:Bitmap;
const MAX_NUM:int = 300;

for (var i:int = 0; i< MAX_NUM; i++)
{

// Create a 20 x 20 pixel bitmap, non-transparent
myImage = new BitmapData(20,20,false,0xF0D062);

// Create a container for each BitmapData instance
myContainer = new Bitmap(myImage);

// Add it to the display list
addChild(myContainer);

// Place each container
myContainer.x = (myContainer.width + 8) * Math.round(i % 20);
myContainer.y = (myContainer.height + 8) * int(i / 20);

}

7OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

Note: When using positive values, casting the rounded value to int is much faster than using the Math.floor() method.

The following image shows the result of the bitmap tiling:

Result of bitmap tiling

An optimized version creates a single BitmapData instance referenced by multiple Bitmap instances and produces the

same result:

 // Create a single 20 x 20 pixel bitmap, non-transparent
var myImage:BitmapData = new BitmapData(20,20,false,0xF0D062);
var myContainer:Bitmap;
const MAX_NUM:int = 300;

for (var i:int = 0; i< MAX_NUM; i++)
{

// Create a container referencing the BitmapData instance
myContainer = new Bitmap(myImage);

// Add it to the display list
addChild(myContainer);

// Place each container
myContainer.x = (myContainer.width + 8) * Math.round(i % 20);
myContainer.y = (myContainer.height + 8) * int(i / 20);

}

This approach saves about 700 KB in memory, which is a significant savings on a traditional mobile device. Each

bitmap container can be manipulated without altering the original BitmapData instance by using the Bitmap

properties:

8OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

 // Create a single 20 x 20 pixel bitmap, non-transparent
var myImage:BitmapData = new BitmapData(20,20,false,0xF0D062);
var myContainer:Bitmap;
const MAX_NUM:int = 300;

for (var i:int = 0; i< MAX_NUM; i++)
{

// Create a container referencing the BitmapData instance
myContainer = new Bitmap(myImage);

// Add it to the DisplayList
addChild(myContainer);

// Place each container
myContainer.x = (myContainer.width + 8) * Math.round(i % 20);
myContainer.y = (myContainer.height + 8) * int(i / 20);

// Set a specific rotation, alpha, and depth
myContainer.rotation = Math.random()*360;
myContainer.alpha = Math.random();
myContainer.scaleX = myContainer.scaleY = Math.random();

}

The following image shows the result of the bitmap transformations:

Result of bitmap transformations

More Help topics

“Bitmap caching” on page 51

9OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

Object pooling

Use object pooling, when possible.

Another important optimization is called object pooling, which involves reusing objects over time. You create a

defined number of objects during the initialization of your application and store them inside a pool, such as an Array

or Vector object. Once you are done with an object, you deactivate it so that it does not consume CPU resources, and

you remove all mutual references. However, you do not set the references to null, which would make it eligible for

garbage collection. You just put the object back into the pool, and retrieve it when you need a new object.

Reusing objects reduces the need to instantiate objects, which can be expensive. It also reduces the chances of the

garbage collector running, which can slow down your application. The following code illustrates the object pooling

technique:

package
{

import flash.display.Sprite;

public final class SpritePool
{

private static var MAX_VALUE:uint;
private static var GROWTH_VALUE:uint;
private static var counter:uint;
private static var pool:Vector.<Sprite>;
private static var currentSprite:Sprite;

public static function initialize(maxPoolSize:uint, growthValue:uint):void
{

MAX_VALUE = maxPoolSize;
GROWTH_VALUE = growthValue;
counter = maxPoolSize;

var i:uint = maxPoolSize;

pool = new Vector.<Sprite>(MAX_VALUE);
while(--i > -1)

pool[i] = new Sprite();
}

10OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

public static function getSprite():Sprite
{

if (counter > 0)
return currentSprite = pool[--counter];

var i:uint = GROWTH_VALUE;
while(--i > -1)

pool.unshift (new Sprite());
counter = GROWTH_VALUE;
return getSprite();

}

public static function disposeSprite(disposedSprite:Sprite):void
{

pool[counter++] = disposedSprite;
}

}
}

The SpritePool class creates a pool of new objects at the initialization of the application. The getSprite() method

returns instances of these objects, and the disposeSprite() method releases them. The code allows the pool to grow

when it has been consumed completely. It’s also possible to create a fixed-size pool where new objects would not be

allocated when the pool is exhausted. Try to avoid creating new objects in loops, if possible. For more information, see

“Freeing memory” on page 11. The following code uses the SpritePool class to retrieve new instances:

const MAX_SPRITES:uint = 100;
const GROWTH_VALUE:uint = MAX_SPRITES >> 1;
const MAX_NUM:uint = 10;

SpritePool.initialize (MAX_SPRITES, GROWTH_VALUE);

var currentSprite:Sprite;
var container:Sprite = SpritePool.getSprite();

addChild (container);

for (var i:int = 0; i< MAX_NUM; i++)
{

for (var j:int = 0; j< MAX_NUM; j++)
{

currentSprite = SpritePool.getSprite();
currentSprite.graphics.beginFill (0x990000);
currentSprite.graphics.drawCircle (10, 10, 10);
currentSprite.x = j * (currentSprite.width + 5);
currentSprite.y = i * (currentSprite.width + 5);
container.addChild (currentSprite);

}
}

The following code removes all the display objects from the display list when the mouse is clicked, and reuses them

later for another task:

11OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

stage.addEventListener (MouseEvent.CLICK, removeDots);

function removeDots (e:MouseEvent):void
{

while (container.numChildren > 0)
SpritePool.disposeSprite (container.removeChildAt(0) as Sprite);

}

Note: The pool vector always references the Sprite objects. If you want to remove the object from memory completely, you

would need a dispose() method on the SpritePool class, which would remove all remaining references.

Freeing memory

Delete all references to objects to make sure that garbage collection is triggered.

You cannot launch the garbage collector directly in the release version of Flash Player. To make sure that an object is

garbage collected, delete all references to the object. Keep in mind that the old delete operator used in ActionScript

1.0 and 2.0 behaves differently in ActionScript 3.0. It can only be used to delete dynamic properties on a dynamic

object.

Note: You can call the garbage collector directly in Adobe® AIR® and in the debug version of Flash Player.

For example, the following code sets a Sprite reference to null:

 var mySprite:Sprite = new Sprite();

 // Set the reference to null, so that the garbage collector removes
 // it from memory
 mySprite = null;

Remember that when an object is set to null, it is not necessarily removed from memory. Sometimes the garbage

collector does not run, if available memory is not considered low enough. Garbage collection is not predictable.

Memory allocation, rather than object deletion, triggers garbage collection. When the garbage collector runs, it finds

graphs of objects that haven't been collected yet. It detects inactive objects in the graphs by finding objects that

reference each other, but that the application no longer uses. Inactive objects detected this way are deleted.

In large applications, this process can be CPU-intensive and can affect performance and generate a noticeable

slowdown in the application. Try to limit garbage collection passes by reusing objects as much as possible. Also, set

references to null, when possible, so that the garbage collector spends less processing time finding the objects. Think

of garbage collection as insurance, and always manage object lifetimes explicitly, when possible.

Note: Setting a reference to a display object to null does not ensure that the object is frozen. The object continues consume

CPU cycles until it is garbage collected. Make sure that you properly deactivate your object before setting its reference to null.

The garbage collector can be launched using the System.gc() method, available in Adobe AIR and in the debug

version of Flash Player. The profiler bundled with Adobe® Flash® Builder™ allows you to start the garbage collector

manually. Running the garbage collector allows you to see how your application responds and whether objects are

correctly deleted from memory.

Note: If an object was used as an event listener, another object can reference it. If so, remove event listeners using the

removeEventListener()method before setting the references to null.

12OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

Fortunately, the amount of memory used by bitmaps can be instantly reduced. For example, the BitmapData class

includes a dispose() method. The next example creates a BitmapData instance of 1.8 MB. The current memory in

use grows to 1.8 MB, and the System.totalMemory property returns a smaller value:

 trace(System.totalMemory / 1024);
 // output: 43100

 // Create a BitmapData instance
 var image:BitmapData = new BitmapData(800, 600);

 trace(System.totalMemory / 1024);
 // output: 44964

Next, the BitmapData is manually removed (disposed) from memory and the memory use is once again checked:

 trace(System.totalMemory / 1024);
 // output: 43100

 // Create a BitmapData instance
 var image:BitmapData = new BitmapData(800, 600);

 trace(System.totalMemory / 1024);
 // output: 44964

 image.dispose();
 image = null;

 trace(System.totalMemory / 1024);
 // output: 43084

Although the dispose()method removes the pixels from memory, the reference must still be set to null to release it

completely. Always call the dispose() method and set the reference to null when you no longer need a BitmapData

object, so that memory is freed immediately.

Note: Flash Player 10.1 and AIR 1.5.2 introduce a new method called disposeXML() on the System class. This method

allows you to make an XML object immediately available for garbage collection, by passing the XML tree as a parameter.

More Help topics

“Freezing and unfreezing objects” on page 26

Using bitmaps

Using vectors instead of bitmaps is good way to save memory. However, using vectors, especially in large numbers,

dramatically increases the need for CPU or GPU resources. Using bitmaps is a good way to optimize rendering,

because the runtime needs fewer processing resources to draw pixels on the screen than to render vector content.

More Help topics

“Manual bitmap caching” on page 58

13OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

Bitmap downsampling

To make better use of memory, 32-bit opaque images are reduced to 16-bit images when Flash Player detects a 16-bit

screen. This downsampling consumes half the memory resources, and images render more quickly. This feature is

available only in Flash Player 10.1 for Windows Mobile.

Note: Before Flash Player 10.1, all pixels created in memory were stored in 32 bits (4 bytes). A simple logo of 300 x 300

pixels consumed 350 KB of memory (300*300*4/1024). With this new behavior, the same opaque logo consumes only 175

KB. If the logo is transparent, it is not downsampled to 16 bits, and it keeps the same size in memory. This feature applies

only to embedded bitmaps or runtime-loaded images (PNG, GIF, JPG).

On mobile devices, it can be hard to tell the difference between an image rendered in 16 bits and the same image

rendered in 32 bits. For a simple image containing just a few colors, there is no detectable difference. Even for a more

complex image, it is difficult to detect the differences. However, there can be some color degradation when zooming

in on the image, and a 16-bit gradient can look less smooth than the 32-bit version.

BitmapData single reference

It is important to optimize the use of the BitmapData class by reusing instances as much as possible. Flash Player 10.1

and AIR 2.5 introduce a new feature for all platforms called BitmapData single reference. When creating BitmapData

instances from an embedded image, a single version of the bitmap is used for all BitmapData instances. If a bitmap is

modified later, it is given its own unique bitmap in memory. The embedded image can be from the library or an

[Embed] tag.

Note: Existing content also benefits from this new feature, because Flash Player 10.1 and AIR 2.5 automatically reuse

bitmaps.

When instantiating an embedded image, an associated bitmap is created in memory. Before Flash Player 10.1 and AIR

2.5, each instance was given a separate bitmap in memory, as shown in the following diagram:

Bitmaps in memory before Flash Player 10.1 and AIR 2.5

In Flash Player 10.1 and AIR 2.5, when multiple instances of the same image are created, a single version of the bitmap

is used for all BitmapData instances. The following diagram illustrates this concept:

Memory Displayed

Logo Instance

Logo Instance

Bitmap Source

Bitmap Source

14OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

Bitmaps in memory in Flash Player 10.1 and AIR 2.5

This approach dramatically reduces the amount of memory used by an application with many bitmaps. The following

code creates multiple instances of a Star symbol:

 const MAX_NUM:int = 18;

 var star:BitmapData;
 var bitmap:Bitmap;

 for (var i:int = 0; i<MAX_NUM; i++)
 {
 for (var j:int = 0; j<MAX_NUM; j++)
 {
 star = new Star(0,0);
 bitmap = new Bitmap(star);
 bitmap.x = j * star.width;
 bitmap.y = i * star.height;
 addChild(bitmap)
 }
 }

The following image shows the result of the code:

Memory Displayed

Logo Instance

Logo Instance

Bitmap Source

15OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

Result of code to create multiple instances of symbol

With Flash Player 10, for example, the animation above uses about 1008 KB of memory. With Flash Player 10.1, on the

desktop and on a mobile device, the animation uses only 4 KB.

The following code modifies one BitmapData instance:

 const MAX_NUM:int = 18;

 var star:BitmapData;
 var bitmap:Bitmap;

 for (var i:int = 0; i<MAX_NUM; i++)
 {
 for (var j:int = 0; j<MAX_NUM; j++)
 {
 star = new Star(0,0);
 bitmap = new Bitmap(star);
 bitmap.x = j * star.width;
 bitmap.y = i * star.height;
 addChild(bitmap)
 }
 }

 var ref:Bitmap = getChildAt(0) as Bitmap;

 ref.bitmapData.pixelDissolve(ref.bitmapData, ref.bitmapData.rect, new
Point(0,0),Math.random()*200,Math.random()*200, 0x990000);

The following image shows the result of modifying one Star instance:

16OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

Result of modifying one instance

Internally, the runtime automatically assigns and creates a bitmap in memory to handle the pixel modifications. When

a method of the BitmapData class is called, leading to pixel modifications, a new instance is created in memory, and

no other instances are updated. The following figure illustrates the concept:

Result in memory of modifying one bitmap

If one star is modified, a new copy is created in memory. The resulting animation uses about 8 KB in memory on Flash

Player 10.1 and AIR 2.5.

Memory Displayed

Logo Instance

Logo Instance

Logo Instance

setPixel()

Bitmap Source

Bitmap Source

17OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

In the previous example, each bitmap is available individually for transformation. To create only the tiling effect, the

beginBitmapFill() method is the most appropriate method:

 var container:Sprite = new Sprite();

 var source:BitmapData = new Star(0,0);

 // Fill the surface with the source BitmapData
 container.graphics.beginBitmapFill(source);
 container.graphics.drawRect(0,0,stage.stageWidth,stage.stageHeight);

 addChild(container);

This approach produces the same result with only a single BitmapData instance created. To rotate the stars

continuously, instead of accessing each Star instance, use a Matrix object that is rotated on each frame. Pass this Matrix

object to the beginBitmapFill() method:

 var container:Sprite = new Sprite();

 container.addEventListener(Event.ENTER_FRAME, rotate);

 var source:BitmapData = new Star(0,0);
var matrix:Matrix = new Matrix();

 addChild(container);

 var angle:Number = .01;

 function rotate(e:Event):void
 {
 // Rotate the stars
 matrix.rotate(angle);

// Clear the content
 container.graphics.clear();

 // Fill the surface with the source BitmapData
 container.graphics.beginBitmapFill(source,matrix,true,true);
 container.graphics.drawRect(0,0,stage.stageWidth,stage.stageHeight);
 }

Using this technique, no ActionScript loop is required to create the effect. The runtime does everything internally. The

following image shows the result of transforming the stars:

18OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

Result of rotating stars

With this approach, updating the original source BitmapData object automatically updates its use elsewhere on the

stage, which can be a powerful technique. This approach would not, however, allow each star to be scaled individually,

as in the previous example.

Note: When using multiple instances of the same image, drawing depends on whether a class is associated with the

original bitmap in memory. If no class is associated with the bitmap, images are drawn as Shape objects with bitmap fills.

Filters and dynamic bitmap unloading

Avoid filters, including filters processed through Pixel Bender.

Try to minimize the use of effects like filters, including filters processed in mobile devices through Pixel Bender. When

a filter is applied to a display object, the runtime creates two bitmaps in memory. The first is created as a rasterized

version of the display object, which in turn is used to produce a second bitmap with the filter applied:

19OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

Two bitmaps in memory when filter is applied

Modifying one of the properties of a filter involves some CPU processing and can use a significant amount of memory.

Flash Player 10.1 and AIR 2.5 introduce a new filtering behavior on all platforms. If the filter is not modified within 30

seconds, or if it is hidden or offscreen, the memory used by the non-filtered bitmap is freed.

This feature saves half the memory used by a filter on all platforms. For example, consider a text object with a blur filter

applied. The text in this case is used for simple decoration and is not modified. After 30 seconds, the non-filtered

bitmap in memory is freed. The same result occurs if the text is hidden for 30 seconds or is offscreen. When one of the

filter properties is modified, the non-filtered bitmap in memory is recreated. This feature is called dynamic bitmap

unloading. Even with these optimizations, be cautious with filters; they still require extensive CPU or GPU processing

when being modified.

As a best practice, use bitmaps created through an authoring tool, such as Adobe® Photoshop®, to emulate filters when

possible. Avoid using dynamic bitmaps created at runtime in ActionScript. Using externally authored bitmaps helps

the runtime to reduce the CPU or GPU load, especially when the filter properties do not change over time. If possible,

create any effects that you need on a bitmap in an authoring tool. You can then display the bitmap in the runtime

without performing any processing on it, which can be much faster.

Direct mipmapping

Use mipmapping to scale large images, if needed.

Another new feature available in Flash Player 10.1 and AIR 2.5 on all platforms is related to mipmapping. Flash Player

9 and AIR 1.0 introduced a mipmapping feature that improved the quality and performance of downscaled bitmaps.

Note: The mipmapping feature applies only to dynamically loaded images or embedded bitmaps. Mipmapping does not

apply to display objects that have been filtered or cached. Mipmapping can be processed only if the bitmap has a width

and height that are even numbers. When a width or height that is an odd number is encountered, mipmapping stops. For

example, a 250 x 250 image can be mipmapped down to 125 x 125, but it cannot be mipmapped further. In this case, at

least one of the dimensions is an odd number. Bitmaps with dimensions that are powers of two achieve the best results,

for example: 256 x 256, 512 x 512, 1024 x 1024, and so on.

Memory Displayed

Result

Bitmap version non-filtered

Bitmap version filtered

20OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

As an example, imagine that a 1024 x 1024 image is loaded, and a developer wants to scale the image to create a

thumbnail in a gallery. The mipmapping feature renders the image properly when scaled by using the intermediate

downsampled versions of the bitmap as textures. Previous versions of the runtime created intermediate downscaled

versions of the bitmap in memory. If a 1024 x 1024 image was loaded and displayed at 64 x 64, older versions of the

runtime would create every half-sized bitmap. For example, in this case 512 x 512, 256 x 256, 128 x 128, and 64 x 64

bitmaps would be created.

Flash Player 10.1 and AIR 2.5 now support mipmapping directly from the original source to the destination size

required. In the previous example, only the 4 MB (1024 x 1024) original bitmap and the 16 KB (64 x 64) mipmapped

bitmap would be created.

The mipmapping logic also works with the dynamic bitmap unloading feature. If only the 64 x 64 bitmap is used, the

4-MB original bitmap is freed from memory. If the mipmap must be recreated, then the original is reloaded. Also, if

other mipmapped bitmaps of various sizes are required, the mipmap chain of bitmaps is used to create the bitmap. For

example, if a 1:8 bitmap must be created, the 1:4 and 1:2 and 1:1 bitmaps are examined to determine which is loaded

into memory first. If no other versions are found, the 1:1 original bitmap is loaded from the resource and used.

The JPEG decompressor can perform mipmapping within its own format. This direct mipmapping allows a large

bitmap to be decompressed directly to a mipmap format without loading the entire uncompressed image. Generating

the mipmap is substantially faster, and memory used by large bitmaps is not allocated and then freed. The JPEG image

quality is comparable to the general mipmapping technique.

Note: Use mipmapping sparingly. Although it improves the quality of downscaled bitmaps, it has an impact on

bandwidth, memory, and speed. In some cases, a better option can be to use a pre-scaled version of the bitmap from an

external tool and import it into your application. Don’t start with large bitmaps if you only intend to scale them down.

Using 3D effects

Consider creating 3D effects manually.

Flash Player 10 and AIR 1.5 introduced a 3D engine, which allows you to apply perspective transformation on display

objects. You can apply these transformations using the rotationX and rotationY properties or with the

drawTriangles() method of the Graphics class. You can also apply depth with the z property. Keep in mind that each

perspective-transformed display object is rasterized as a bitmap and therefore requires more memory.

The following figure illustrates the anti-aliasing produced by the rasterization when using perspective transformation:

21OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

Anti-aliasing resulting from perspective transformation

The anti-aliasing is a result of vector content being dynamically rasterized as a bitmap. This anti-aliasing happens

when you use 3D effects in the desktop version of AIR and Flash Player, and in AIR 2.0.1 and AIR 2.5 for mobile.

However, anti-aliasing is not applied on Flash Player for mobile devices.

If you can create your 3D effect manually without relying on the native API, that can reduce memory usage. However,

the new 3D features introduced in Flash Player 10 and AIR 1.5 make texture mapping easier, because of methods like

drawTriangles(), which handles texture mapping natively.

As a developer, decide whether the 3D effect you want to create provides better performance if it is processed through

the native API or manually. Consider ActionScript execution and rendering performance, as well as memory usage.

In AIR 2.0.1 and AIR 2.5 mobile applications in which you set the renderMode application property to GPU, the GPU

does the 3D transformations. However, if the renderMode is CPU, the CPU, not the GPU, performs the 3D

transformations. In Flash Player 10.1 applications, the CPU performs the 3D transformations.

When the CPU does the 3D transformations, consider that applying any 3D transformation to a display object requires

two bitmaps in memory. One bitmap is for the source bitmap, and a second one is for the perspective-transformed

version. In this way, 3D transformations work in a similar way to filters. As a result, use the 3D properties sparingly

when the CPU does the 3D transformations.

Text objects and memory

Use the Adobe® Flash® Text Engine for read-only text; use TextField objects for input text.

Flash Player 10 and AIR 1.5 introduced a powerful new text engine, the Adobe Flash Text Engine (FTE), that conserves

system memory. However, the FTE is a low-level API that requires an additional ActionScript 3.0 layer on top of it,

provided in the flash.text.engine package.

For read-only text, it’s best to use the Flash Text Engine, which offers low memory usage and better rendering. For

input text, TextField objects are a better choice, because less ActionScript code is required to create typical behaviors,

such as input handling and word-wrap.

22OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Conserving memory

Last updated 8/21/2012

More Help topics

“Rendering text objects” on page 64

Event model versus callbacks

Consider using simple callbacks, instead of the event model.

The ActionScript 3.0 event model is based on the concept of object dispatching. The event model is object-oriented

and optimized for code reuse. The dispatchEvent() method loops through the list of listeners and calls the event

handler method on each registered object. However, one of the drawbacks of the event model is that you are likely to

create many objects over the lifetime of your application.

Imagine that you must dispatch an event from the timeline, indicating the end of an animation sequence. To

accomplish the notification, you can dispatch an event from a specific frame in the timeline, as the following code

illustrates:

dispatchEvent(new Event (Event.COMPLETE));

The Document class can listen for this event with the following line of code:

addEventListener(Event.COMPLETE, onAnimationComplete);

Although this approach is correct, using the native event model can be slower and consume more memory than using

a traditional callback function. Event objects must be created and allocated in memory, which creates a performance

slowdown. For example, when listening to the Event.ENTER_FRAME event, a new event object is created on each

frame for the event handler. Performance can be especially slow for display objects, due to the capture and bubbling

phases, which can be expensive if the display list is complex.

23

Last updated 8/21/2012

Chapter 3: Minimizing CPU usage

Another important area of focus for optimization is CPU usage. Optimizing CPU processing improves performance,

and as a result, battery life on mobile devices.

Flash Player 10.1 enhancements for CPU usage

Flash Player 10.1 introduces two new features that help save CPU processing. The features involve pausing and

resuming SWF content when it goes offscreen, and limiting the number of Flash Player instances on a page.

Pause, throttle, and resume

Note: The pause, throttle, and resume feature does not apply to Adobe® AIR® applications.

To optimize CPU and battery usage, Flash Player 10.1 introduces a new feature on related to inactive instances. This

feature allows you to limit CPU usage by pausing and resuming the SWF file when content goes off and on the screen.

With this feature, Flash Player releases as much memory as possible by removing any objects that can be recreated

when the playing of content is resumed. Content is considered offscreen when the entire content is offscreen.

Two scenarios cause the SWF content to be offscreen:

• The user scrolls the page and causes the SWF content to move offscreen.

In this case, if there is any audio or video playback, content continues to play, but rendering is stopped. If there is

no audio or video playing, to ensure that the playback or ActionScript execution is not paused, set the hasPriority

HTML parameter to true. However, keep in mind that SWF content rendering is paused when content is offscreen

or hidden, regardless of the value of the hasPriority HTML parameter.

• A tab is opened in the browser, which causes the SWF content to move to the background.

In this case, regardless of the value of the hasPriority HTML tag, the SWF content is slowed down, or throttled,

to between 2 and 8 fps. Audio and video playback is stopped and no content rendering is processed unless the SWF

content becomes visible again.

For Flash Player 11.2 and later running on Windows and Mac desktop browsers, you can use the ThrottleEvent in your

application. Flash Player dispatches a ThrottleEvent when Flash Player pauses, throttles, or resumes play.

The ThrottleEvent is a broadcast event, which means that it is dispatched by all EventDispatcher objects with a listener

registered for this event. For more information about broadcast events, see the DisplayObject class.

Instance management

Note: The instance management feature does not apply to Adobe® AIR® applications.

Use the hasPriority HTML parameter to delay loading of offscreen SWF files.

Flash Player 10.1 introduces a new HTML parameter called hasPriority:

 <param name="hasPriority" value="true" />

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/DisplayObject.html

24OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Minimizing CPU usage

Last updated 8/21/2012

This feature limits the number of Flash Player instances that are started on a page. Limiting the number of instances

helps conserve CPU and battery resources. The idea is to assign a specific priority to SWF content, giving some content

priority over other content on a page. Consider a simple example: a user is browsing a website and the index page hosts

three different SWF files. One of them is visible, another one is partially visible onscreen, and the last one is offscreen,

requiring scrolling. The first two animations are started normally, but the last one is deferred until it becomes visible.

This scenario is the default behavior when the hasPriority parameter is not present or set to false. To ensure that

a SWF file is started, even if it is offscreen, set the hasPriority parameter to true. However, regardless of the value

of the hasPriority parameter, a SWF file that is not visible to the user always has its rendering paused.

Note: If available CPU resources become low, Flash Player instances are no longer started automatically, even if the

hasPriority parameter is set to true. If new instances are created through JavaScript after the page has been loaded,

those instances will ignore the hasPriority flag. Any 1x1 pixel or 0x0 pixel content is started, preventing helper SWF

files from being deferred if the webmaster fails to include the hasPriority flag. SWF files can still be started when

clicked, however. This behavior is called “click to play.”

The following diagrams show the effects of setting the hasPriority parameter to different values:

Effects of different values for the hasPriority parameter

visible area on user’s device

SWF

hasPriority set to
false or not present

SWF movie started

SWF movie not started

SWF

hasPriority set to false
or not present

SWF

hasPriority
set to false

or not present

25OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Minimizing CPU usage

Last updated 8/21/2012

Effects of different values for the hasPriority parameter

Sleep mode

Flash Player 10.1 and AIR 2.5 introduce a new feature on mobile devices that helps save CPU processing, and as a

result, battery life. This feature involves the backlight found on many mobile devices. For example, if a user running a

mobile application is interrupted and stops using the device, the runtime detects when the backlight goes into sleep

mode. It then drops the frame rate to 4 frames per second (fps), and pauses rendering. For AIR applications, sleep

mode also begins when the application moves to the background.

ActionScript code continues to execute in sleep mode, similar to setting the Stage.frameRate property to 4 fps. But

the rendering step is skipped, so the user cannot see that the player is running at 4 fps. A frame rate of 4 fps was chosen,

rather than zero, because it allows all the connections to remain open (NetStream, Socket, and NetConnection).

Switching to zero would break open connections. A 250 ms refresh rate was chosen (4 fps) because many device

manufacturers use this frame rate as their refresh rate. Using this value keeps the frame rate of the runtime in the same

ballpark as the device itself.

Note: When the runtime is in sleep mode, the Stage.frameRate property returns the frame rate of the original SWF file,

rather than 4 fps.

When the backlight goes back into on mode, rendering is resumed. The frame rate returns to its original value.

Consider a media player application in which a user is playing music. If the screen goes into sleep mode, the runtime

responds based on the type of content being played. Here is a list of situations with the corresponding runtime

behavior:

• The backlight goes into sleep mode and non-A/V content is playing: The rendering is paused and the frame rate is

set to 4 fps.

visible area on user’s device

SWF

hasPriority set to
false or not present

SWF

hasPriority set to true

SWF movie started

SWF movie not started

SWF

hasPriority
set to false

or not present

26OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Minimizing CPU usage

Last updated 8/21/2012

• The backlight goes into sleep mode and A/V content is playing: the runtime forces the backlight to be always on,

continuing the user experience.

• The backlight goes from sleep mode to on mode: the runtime sets the frame rate to the original SWF file frame rate

setting and resumes rendering.

• Flash Player is paused while A/V content is played: Flash Player resets the backlight state to the default system

behavior because A/V is no longer playing.

• Mobile device receives a phone call while A/V content is played: The rendering is paused and the frame rate is set

to 4 fps.

• The backlight sleep mode is disabled on a mobile device: the runtime behaves normally.

When the backlight goes into sleep mode, rendering pauses and the frame rate slows down. This feature saves CPU

processing, but it cannot be relied upon on to create a real pause, as in a game application.

Note: No ActionScript event is dispatched when the runtime enters or leaves sleep mode.

Freezing and unfreezing objects

Freeze and unfreeze objects properly by using the REMOVED_FROM_STAGE and ADDED_TO_STAGE events.

To optimize your code, always freeze and unfreeze your objects. Freezing and unfreezing are important for all objects,

but are especially important for display objects. Even if display objects are no longer in the display list and are waiting

to be garbage collected, they could still be using CPU-intensive code. For example, they can still be using

Event.ENTER_FRAME. As a result, it is critical to freeze and unfreeze objects properly with the

Event.REMOVED_FROM_STAGE and Event.ADDED_TO_STAGE events. The following example shows a movie clip

playing on stage that interacts with the keyboard:

// Listen to keyboard events
stage.addEventListener(KeyboardEvent.KEY_DOWN, keyIsDown);
stage.addEventListener(KeyboardEvent.KEY_UP, keyIsUp);

// Create object to store key states
var keys:Dictionary = new Dictionary(true);

function keyIsDown(e:KeyboardEvent):void
{

// Remember that the key was pressed
keys[e.keyCode] = true;

if (e.keyCode==Keyboard.LEFT || e.keyCode==Keyboard.RIGHT)
{

runningBoy.play();
}

}

function keyIsUp(e:KeyboardEvent):void
{

// Remember that the key was released
keys[e.keyCode] = false;

for each (var value:Boolean in keys)

 if (value) return;

27OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Minimizing CPU usage

Last updated 8/21/2012

runningBoy.stop();
}

runningBoy.addEventListener(Event.ENTER_FRAME, handleMovement);
runningBoy.stop();

var currentState:Number = runningBoy.scaleX;
var speed:Number = 15;

function handleMovement(e:Event):void
{

if (keys[Keyboard.RIGHT])
{

e.currentTarget.x += speed;
e.currentTarget.scaleX = currentState;

} else if (keys[Keyboard.LEFT])
{

e.currentTarget.x -= speed;
e.currentTarget.scaleX = -currentState;

}
}

Movie clip that interacts with keyboard

When the Remove button is clicked, the movie clip is removed from the display list:

28OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Minimizing CPU usage

Last updated 8/21/2012

 // Show or remove running boy
 showBtn.addEventListener (MouseEvent.CLICK,showIt);
 removeBtn.addEventListener (MouseEvent.CLICK,removeIt);

 function showIt (e:MouseEvent):void
 {
 addChild (runningBoy);
 }

 function removeIt(e:MouseEvent):void
 {
 if (contains(runningBoy)) removeChild(runningBoy);
 }

Even when removed from the display list, the movie clip still dispatches the Event.ENTER_FRAME event. The movie

clip still runs, but it is not rendered. To handle this situation correctly, listen to the proper events and remove event

listeners, to prevent CPU-intensive code from being executed:

 // Listen to Event.ADDED_TO_STAGE and Event.REMOVED_FROM_STAGE
 runningBoy.addEventListener(Event.ADDED_TO_STAGE,activate);
 runningBoy.addEventListener(Event.REMOVED_FROM_STAGE,deactivate);

 function activate(e:Event):void
 {
 // Restart everything
 e.currentTarget.addEventListener(Event.ENTER_FRAME,handleMovement);
 }

 function deactivate(e:Event):void
 {
 // Freeze the running boy - consumes fewer CPU resources when not shown
 e.currentTarget.removeEventListener(Event.ENTER_FRAME,handleMovement);
 e.currentTarget.stop();
 }

When the Show button is pressed, the movie clip is restarted, it listens to Event.ENTER_FRAME events again, and the

keyboard correctly controls the movie clip.

Note: If a display object is removed from the display list, setting its reference to null after removing it does not ensure

that the object is frozen. If the garbage collector doesn’t run, the object continues to consume memory and CPU processing,

even though the object is no longer displayed. To make sure that the object consumes the least CPU processing possible,

make sure that you completely freeze it when removing it from the display list.

Starting with Flash Player 10 and AIR 1.5, the following behavior also occurs. If the playhead encounters an empty

frame, the display object is automatically frozen even if you did not implement any freezing behavior.

The concept of freezing is also important when loading remote content with the Loader class. When using the Loader

class with Flash Player 9 and AIR 1.0, it was necessary to manually freeze content by listening to the Event.UNLOAD

event dispatched by the LoaderInfo object. Every object had to be manually frozen, which was a non-trivial task. Flash

Player 10 and AIR 1.5 introduced an important new method on the Loader class called unloadAndStop(). This

method allows you to unload a SWF file, automatically freeze every object in the loaded SWF file, and force the garbage

collector to run.

In the following code, the SWF file is loaded and then unloaded using the unload() method, which requires more

processing and manual freezing:

29OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Minimizing CPU usage

Last updated 8/21/2012

 var loader:Loader = new Loader();

 loader.load (new URLRequest ("content.swf"));

 addChild (loader);

 stage.addEventListener (MouseEvent.CLICK, unloadSWF);

 function unloadSWF (e:MouseEvent):void
 {
 // Unload the SWF file with no automatic object deactivation
 // All deactivation must be processed manually
 loader.unload();
 }

A best practice is to use the unloadAndStop() method, which handles the freezing natively and forces the garbage

collecting process to run:

 var loader:Loader = new Loader();

 loader.load (new URLRequest ("content.swf"));

 addChild (loader);

 stage.addEventListener (MouseEvent.CLICK, unloadSWF);

 function unloadSWF (e:MouseEvent):void
 {
 // Unload the SWF file with automatic object deactivation
 // All deactivation is handled automatically
 loader.unloadAndStop();
 }

The following actions occur when the unloadAndStop() method is called:

• Sounds are stopped.

• Listeners registered to the SWF file’s main timeline are removed.

• Timer objects are stopped.

• Hardware peripheral devices (such as camera and microphone) are released.

• Every movie clip is stopped.

• Dispatching of Event.ENTER_FRAME, Event.FRAME_CONSTRUCTED, Event.EXIT_FRAME, Event.ACTIVATE and

Event.DEACTIVATE is stopped.

Activate and deactivate events

Use Event.ACTIVATE and Event.DEACTIVATE events to detect background inactivity and optimize your

application appropriately.

30OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Minimizing CPU usage

Last updated 8/21/2012

Two events (Event.ACTIVATE and Event.DEACTIVATE) can assist you in fine-tuning your application so that it uses

the fewest CPU cycles possible. These events allow you to detect when the runtime gains or loses focus. As a result,

code can be optimized to react to context changes. The following code listens to both events and dynamically changes

the frame rate to zero when the application loses its focus. For example, the animation can lose focus when the user

switches to another tab or puts the application into the background:

var originalFrameRate:uint = stage.frameRate;
var standbyFrameRate:uint = 0;

stage.addEventListener (Event.ACTIVATE, onActivate);
stage.addEventListener (Event.DEACTIVATE, onDeactivate);

function onActivate (e:Event):void
{

// restore original frame rate
stage.frameRate = originalFrameRate;

}

function onDeactivate (e:Event):void
{

// set frame rate to 0
stage.frameRate = standbyFrameRate;

}

When the application gains focus again, the frame rate is reset to its original value. Instead of changing the frame rate

dynamically, you could also consider making other optimizations, such as freezing and unfreezing objects.

The activate and deactivate events allow you to implement a similar mechanism to the "Pause and Resume" feature

sometimes found on mobile devices and Netbooks.

More Help topics

“Application frame rate” on page 50

“Freezing and unfreezing objects” on page 26

Mouse interactions

Consider disabling mouse interactions, when possible.

When using an interactive object, such as a MovieClip or Sprite object, the runtime executes native code to detect and

handle mouse interactions. Detecting mouse interaction can be CPU-intensive when many interactive objects are

shown onscreen, especially if they overlap. An easy way to avoid this processing is to disable mouse interactions on

objects that do not require any mouse interaction. The following code illustrates the use of the mouseEnabled and

mouseChildren properties:

31OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Minimizing CPU usage

Last updated 8/21/2012

// Disable any mouse interaction with this InteractiveObject
myInteractiveObject.mouseEnabled = false;
const MAX_NUM:int = 10;

// Create a container for the InteractiveObjects
var container:Sprite = new Sprite();

for (var i:int = 0; i< MAX_NUM; i++)
{

// Add InteractiveObject to the container
container.addChild(new Sprite());

}

// Disable any mouse interaction on all the children
container.mouseChildren = false;

When possible, consider disabling mouse interaction, which helps your application to use less CPU processing, and as

a result, reduce battery usage on mobile devices.

Timers versus ENTER_FRAME events

Choose either timers or ENTER_FRAME events, depending on whether content is animated.

Timers are preferred over Event.ENTER_FRAME events for non-animated content that executes for a long time.

In ActionScript 3.0, there are two ways of calling a function at specific intervals. The first approach is to use the

Event.ENTER_FRAME event dispatched by display objects (DisplayObject). The second approach is to use a timer.

ActionScript developers frequently use the ENTER_FRAME event approach. The ENTER_FRAME event is dispatched on

every frame. As a result, the interval at which the function is called is related to the current frame rate. The frame rate

is accessible through the Stage.frameRate property. However, in some cases, using a timer can be a better choice

than using the ENTER_FRAME event. For example, if you don’t use animation, but would like your code called at specific

intervals, using a timer can be a better choice.

A timer can behave in a similar way to an ENTER_FRAME event, but an event can be dispatched without being tied to

the frame rate. This behavior can offer some significant optimization. Consider a video player application as an

example. In this case, you do not need to use a high frame rate, because only the application controls are moving.

Note: The frame rate does not affect the video, because the video is not embedded in the timeline. Instead, the video is

loaded dynamically through progressive downloading or streaming.

In this example, the frame rate is set to a low value of 10 fps. The timer updates the controls at a rate of one update per

second. The higher update rate is made possible by the updateAfterEvent() method, which is available on the

TimerEvent object. This method forces the screen to be updated each time the timer dispatches an event, if needed.

The following code illustrates the idea:

32OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Minimizing CPU usage

Last updated 8/21/2012

// Use a low frame rate for the application
stage.frameRate = 10;

// Choose one update per second
var updateInterval:int = 1000;
var myTimer:Timer = new Timer(updateInterval,0);

myTimer.start();
myTimer.addEventListener(TimerEvent.TIMER, updateControls);

function updateControls(e:TimerEvent):void
{

// Update controls here
// Force the controls to be updated on screen
e.updateAfterEvent();

}

Calling the updateAfterEvent() method does not modify the frame rate. It just forces the runtime to update the

content onscreen that has changed. The timeline still runs at 10 fps. Remember that timers and ENTER_FRAME events

are not perfectly accurate on low performance devices, or if event handler functions contain code that requires heavy

processing. Just like the SWF file frame rate, the update frame rate of the timer can vary in some situations.

Minimize the number of Timer objects and registered enterFrame handlers in your application.

Each frame, the runtime dispatches an enterFrame event to each display object in its display list. Although you can

register listeners for the enterFrame event with multiple display objects, doing so means that more code is executed

each frame. Instead, consider using a single centralized enterFrame handler that executes all the code that is to run

each frame. By centralizing this code, it is easier to manage all the code that is running frequently.

Likewise, if you’re using Timer objects, there is overhead associated with creating and dispatching events from

multiple Timer objects. If you must trigger different operations at different intervals, here are some suggested

alternatives:

• Use a minimal number of Timer objects and group operations according to how frequently they happen.

For example, use one Timer for frequent operations, set to trigger every 100 milliseconds. Use another Timer for

less-frequent or background operations, set to trigger every 2000 milliseconds.

• Use a single Timer object, and have operations triggered at multiples of the Timer object’s delay property interval.

For example, suppose you have some operations that are expected to happen every 100 milliseconds, and others

that you want to happen every 200 milliseconds. In that case, use a single Timer object with a delay value of 100

milliseconds. In the timer event handler, add a conditional statement that only runs the 200-millisecond

operations every other time. The following example demonstrates this technique:

33OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Minimizing CPU usage

Last updated 8/21/2012

var timer:Timer = new Timer(100);
timer.addEventListener(TimerEvent.Timer, timerHandler);
timer.start();

var offCycle:Boolean = true;

function timerHandler(event:TimerEvent):void
{

// Do things that happen every 100 ms

if (!offCycle)
{

// Do things that happen every 200 ms
}

offCycle = !offCycle;

}

Stop Timer objects when not in use.

If a Timer object’s timer event handler only performs operations under certain conditions, call the Timer object’s

stop() method when none of the conditions are true.

In enterFrame event or Timer handlers, minimize the number of changes to the appearance of display objects that

cause the screen to be redrawn.

Each frame, the rendering phase redraws the portion of the stage that has changed during that frame. If the redraw

region is large, or if it’s small but contain a large quantity or complex display objects, the runtime needs more time for

rendering. To test the amount of redrawing required, use the “show redraw regions” feature in the debug Flash Player

or AIR.

For more information about improving performance for repeated actions, see the following article:

• Writing well-behaved, efficient, AIR applications (article and sample application by Arno Gourdol)

More Help topics

“Isolating behaviors” on page 61

Tweening syndrome

To save CPU power, limit the use of tweening, which saves CPU processing, memory, and battery life.

Designers and developers producing content for Flash on the desktop tend to use many motion tweens in their

applications. When producing content for mobile devices with low performance, try to minimize the use of motion

tweens. Limiting their use helps content run faster on low-tier devices.

http://arno.org/arnotify/2009/05/writing-well-behaved-efficient-air-applications/

34

Last updated 8/21/2012

Chapter 4: ActionScript 3.0 performance

Vector class versus Array class

Use the Vector class instead of the Array class, when possible.

The Vector class allows faster read and write access than the Array class.

A simple benchmark shows the benefits of the Vector class over the Array class. The following code shows a

benchmark for the Array class:

var coordinates:Array = new Array();
var started:Number = getTimer();

for (var i:int = 0; i< 300000; i++)
{

coordinates[i] = Math.random()*1024;
}

trace(getTimer() - started);
// output: 107

The following code shows a benchmark for the Vector class:

 var coordinates:Vector.<Number> = new Vector.<Number>();
var started:Number = getTimer();

for (var i:int = 0; i< 300000; i++)
{

coordinates[i] = Math.random()*1024;
}

trace(getTimer() - started);
// output: 72

The example can be further optimized by assigning a specific length to the vector and setting its length to fixed:

// Specify a fixed length and initialize its length
var coordinates:Vector.<Number> = new Vector.<Number>(300000, true);

var started:Number = getTimer();

for (var i:int = 0; i< 300000; i++)
{

coordinates[i] = Math.random()*1024;
}

trace(getTimer() - started);
// output: 48

35OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

ActionScript 3.0 performance

Last updated 8/21/2012

If the size of the vector is not specified ahead of time, the size increases when the vector runs out of space. Each time

the size of the vector increases, a new block of memory is allocated. The current content of the vector is copied into the

new block of memory. This extra allocation and copying of data hurts performance. The above code is optimized for

performance by specifying the initial size of the vector. However, the code is not optimized for maintainability. To also

improve maintainability, store the reused value in a constant:

 // Store the reused value to maintain code easily
const MAX_NUM:int = 300000;

var coordinates:Vector.<Number> = new Vector.<Number>(MAX_NUM, true);
var started:Number = getTimer();

for (var i:int = 0; i< MAX_NUM; i++)
{

coordinates[i] = Math.random()*1024;
}

trace(getTimer() - started);
// output: 47

Try to use the Vector object APIs, when possible, as they are likely to run faster.

Drawing API

Use the drawing API for faster code execution.

Flash Player 10 and AIR 1.5 provided a new drawing API, which allows you to get better code execution performance.

This new API does not provide rendering performance improvement, but it can dramatically reduce the number of

lines of code you have to write. Fewer lines of code can provide better ActionScript execution performance.

The new drawing API includes the following methods:

• drawPath()

• drawGraphicsData()

• drawTriangles()

Note: This discussion does not focus on the drawTriangles() method, which is related to 3D. However, this method can

improve ActionScript performance, because it handles native texture mapping.

The following code explicitly calls the appropriate method for each line being drawn:

 var container:Shape = new Shape();
 container.graphics.beginFill(0x442299);

 var coords:Vector.<Number> = Vector.<Number>([132, 20, 46, 254, 244, 100, 20, 98, 218, 254]);

 container.graphics.moveTo (coords[0], coords[1]);
 container.graphics.lineTo (coords[2], coords[3]);
 container.graphics.lineTo (coords[4], coords[5]);
 container.graphics.lineTo (coords[6], coords[7]);
 container.graphics.lineTo (coords[8], coords[9]);

 addChild(container);

36OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

ActionScript 3.0 performance

Last updated 8/21/2012

The following code runs faster than the previous example, because it executes fewer lines of code. The more complex

the path, the greater the performance gain from using the drawPath() method:

 var container:Shape = new Shape();
 container.graphics.beginFill(0x442299);

 var commands:Vector.<int> = Vector.<int>([1,2,2,2,2]);
 var coords:Vector.<Number> = Vector.<Number>([132, 20, 46, 254, 244, 100, 20, 98, 218, 254]);

 container.graphics.drawPath(commands, coords);

 addChild(container);

The drawGraphicsData() method provides similar performance improvements.

Event capture and bubbling

Use event capture and bubbling to minimize event handlers.

The event model in ActionScript 3.0 introduced the concepts of event capture and event bubbling. Taking advantage

of the bubbling of an event can help you to optimize ActionScript code execution time. You can register an event

handler on one object, instead of multiple objects, to improve performance.

As an example, imagine creating a game in which the user must click apples as fast as possible to destroy them. The

game removes each apple from the screen when it is clicked and adds points to the user’s score. To listen to the

MouseEvent.CLICK event dispatched by each apple, you could be tempted to write the following code:

const MAX_NUM:int = 10;
var sceneWidth:int = stage.stageWidth;
var sceneHeight:int = stage.stageHeight;
var currentApple:InteractiveObject;
var currentAppleClicked:InteractiveObject;

for (var i:int = 0; i< MAX_NUM; i++)
{

currentApple = new Apple();
currentApple.x = Math.random()*sceneWidth;
currentApple.y = Math.random()*sceneHeight;
addChild (currentApple);

// Listen to the MouseEvent.CLICK event
currentApple.addEventListener (MouseEvent.CLICK, onAppleClick);

}

function onAppleClick (e:MouseEvent):void
{

currentAppleClicked = e.currentTarget as InteractiveObject;
currentAppleClicked.removeEventListener(MouseEvent.CLICK, onAppleClick);
removeChild (currentAppleClicked);

}

37OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

ActionScript 3.0 performance

Last updated 8/21/2012

The code calls the addEventListener() method on each Apple instance. It also removes each listener when an apple

is clicked, using the removeEventListener() method. However, the event model in ActionScript 3.0 provides a

capture and bubbling phase for some events, allowing you to listen to them from a parent InteractiveObject. As a result,

it is possible to optimize the code above and minimize the number of calls to the addEventListener() and

removeEventListener() methods. The following code uses the capture phase to listen to the events from the parent

object:

const MAX_NUM:int = 10;
var sceneWidth:int = stage.stageWidth;
var sceneHeight:int = stage.stageHeight;
var currentApple:InteractiveObject;
var currentAppleClicked:InteractiveObject;
var container:Sprite = new Sprite();

addChild (container);

// Listen to the MouseEvent.CLICK on the apple's parent
// Passing true as third parameter catches the event during its capture phase
container.addEventListener (MouseEvent.CLICK, onAppleClick, true);

for (var i:int = 0; i< MAX_NUM; i++)
{

currentApple = new Apple();
currentApple.x = Math.random()*sceneWidth;
currentApple.y = Math.random()*sceneHeight;
container.addChild (currentApple);

}

function onAppleClick (e:MouseEvent):void
{

currentAppleClicked = e.target as InteractiveObject;
container.removeChild (currentAppleClicked);

}

The code is simplified and much more optimized, with only one call to the addEventListener() method on the

parent container. Listeners are no longer registered to the Apple instances, so there is no need to remove them when

an apple is clicked. The onAppleClick() handler can be optimized further, by stopping the propagation of the event,

which prevents it from going further:

function onAppleClick (e:MouseEvent):void
{

e.stopPropagation();
currentAppleClicked = e.target as InteractiveObject;
container.removeChild (currentAppleClicked);

}

The bubbling phase can also be used to catch the event, by passing false as the third parameter to the

addEventListener() method:

// Listen to the MouseEvent.CLICK on apple's parent
// Passing false as third parameter catches the event during its bubbling phase
container.addEventListener (MouseEvent.CLICK, onAppleClick, false);

The default value for the capture phase parameter is false, so you can omit it:

container.addEventListener (MouseEvent.CLICK, onAppleClick);

38OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

ActionScript 3.0 performance

Last updated 8/21/2012

Working with pixels

Paint pixels using the setVector() method.

When painting pixels, some simple optimizations can be made just by using the appropriate methods of the

BitmapData class. A fast way to paint pixels is to use the setVector() method:

// Image dimensions
var wdth:int = 200;
var hght:int = 200;
var total:int = wdth*hght;

// Pixel colors Vector
var pixels:Vector.<uint> = new Vector.<uint>(total, true);

for (var i:int = 0; i< total; i++)
{

// Store the color of each pixel
pixels[i] = Math.random()*0xFFFFFF;

}

// Create a non-transparent BitmapData object
var myImage:BitmapData = new BitmapData (wdth, hght, false);
var imageContainer:Bitmap = new Bitmap (myImage);

// Paint the pixels
myImage.setVector (myImage.rect, pixels);
addChild (imageContainer);

When using slow methods, such as setPixel() or setPixel32(), use the lock() and unlock() methods to make

things run faster. In the following code, the lock() and unlock() methods are used to improve performance:

var buffer:BitmapData = new BitmapData(200,200,true,0xFFFFFFFF);
var bitmapContainer:Bitmap = new Bitmap(buffer);
var positionX:int;
var positionY:int;

// Lock update
buffer.lock();
var starting:Number=getTimer();

for (var i:int = 0; i<2000000; i++)
{

// Random positions
positionX = Math.random()*200;
positionY = Math.random()*200;
// 40% transparent pixels
buffer.setPixel32(positionX, positionY, 0x66990000);

}

// Unlock update
buffer.unlock();
addChild(bitmapContainer);

trace(getTimer () - starting);
// output : 670

39OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

ActionScript 3.0 performance

Last updated 8/21/2012

The lock() method of the BitmapData class locks an image and prevents objects that reference it from being updated

when the BitmapData object changes. For example, if a Bitmap object references a BitmapData object, you can lock

the BitmapData object, change it, and then unlock it. The Bitmap object is not changed until the BitmapData object is

unlocked. To improve performance, use this method along with the unlock() method before and after numerous calls

to the setPixel() or setPixel32() method. Calling lock() and unlock() prevents the screen from being updated

unnecessarily.

Note: When processing pixels on a bitmap not on the display list (double-buffering), sometimes this technique does not

improve performance. If a bitmap object does not reference the bitmap buffer, using lock()and unlock() does not

improve performance. Flash Player detects that the buffer is not referenced, and the bitmap is not rendered onscreen.

Methods that iterate over pixels, such as getPixel(), getPixel32(), setPixel(), and setPixel32(), are likely to

be slow, especially on mobile devices. If possible, use methods that retrieve all the pixels in one call. For reading pixels,

use the getVector() method, which is faster than the getPixels() method. Also, remember to use APIs that rely on

Vector objects, when possible, as they are likely to run faster.

Regular expressions

Use String class methods such as indexOf(), substr(), or substring() instead of regular expressions for basic

string finding and extraction.

Certain operations that can be performed using a regular expression can also be accomplished using methods of the

String class. For example, to find whether a string contains another string, you can either use the String.indexOf()

method or use a regular expression. However, when a String class method is available, it runs faster than the equivalent

regular expression and does not require the creation of another object.

Use a non-capturing group (“(?:xxxx)”) instead of a group (“(xxxx)”) in a regular expression to group elements

without isolating the contents of the group in the result.

Frequently in regular expressions of moderate complexity, you group parts of the expression. For example, in the

following regular expression pattern the parentheses create a group around the text “ab.” Consequently, the “+”

quantifier applies to the group rather than to a single character:

/(ab)+/

By default, the contents of each group are “captured.” You can get the contents of each group in your pattern as part

of the result of executing the regular expression. Capturing these group results takes longer and requires more memory

because objects are created to contain the group results. As an alternative, you can use the non-capturing group syntax

by including a question mark and colon after the opening parenthesis. This syntax specifies that the characters behave

as a group but are not captured for the result:

/(?:ab)+/

Using the non-capturing group syntax is faster and uses less memory than using the standard group syntax.

Consider using an alternative regular expression pattern if a regular expression performs poorly.

Sometimes more than one regular expression pattern can be used to test for or identify the same text pattern. For

various reasons, certain patterns execute faster than other alternatives. If you determine that a regular expression is

causing your code to run slower than necessary, consider alternative regular expression patterns that achieve the same

result. Test these alternative patterns to determine which is the fastest.

40OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

ActionScript 3.0 performance

Last updated 8/21/2012

Miscellaneous optimizations

For a TextField object, use the appendText() method instead of the += operator.

When working with the text property of the TextField class, use the appendText() method instead of the +=

operator. Using the appendText() method provides performance improvements.

As an example, the following code uses the += operator, and the loop takes 1120 ms to complete:

addChild (myTextField);

myTextField.autoSize = TextFieldAutoSize.LEFT;
var started:Number = getTimer();

for (var i:int = 0; i< 1500; i++)
{

myTextField.text += "ActionScript 3";
}

trace(getTimer() - started);
// output : 1120

 In the following example, the += operator is replaced with the appendText() method:

var myTextField:TextField = new TextField();
addChild (myTextField);
myTextField.autoSize = TextFieldAutoSize.LEFT;

var started:Number = getTimer();

for (var i:int = 0; i< 1500; i++)
{

myTextField.appendText ("ActionScript 3");
}

trace(getTimer() - started);
// output : 847

The code now takes 847 ms to complete.

Update text fields outside loops, when possible.

This code can be optimized even further by using a simple technique. Updating the text field in each loop uses much

internal processing. By simply concatenating a string and assigning it to the text field outside the loop, the time to run

the code drops substantially. The code now takes 2 ms to complete:

41OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

ActionScript 3.0 performance

Last updated 8/21/2012

var myTextField:TextField = new TextField();
addChild (myTextField);
myTextField.autoSize = TextFieldAutoSize.LEFT;

var started:Number = getTimer();
var content:String = myTextField.text;

for (var i:int = 0; i< 1500; i++)
{

content += "ActionScript 3";
}

myTextField.text = content;

trace(getTimer() - started);
// output : 2

When working with HTML text, the former approach is so slow that it can throw a Timeout exception in Flash Player,

in some cases. For example, an exception can be thrown if the underlying hardware is too slow.

Note: Adobe® AIR® does not throw this exception.

var myTextField:TextField = new TextField();
addChild (myTextField);
myTextField.autoSize = TextFieldAutoSize.LEFT;

var started:Number = getTimer();

for (var i:int = 0; i< 1500; i++)
{

myTextField.htmlText += "ActionScript 2";
}

trace(getTimer() - started);

By assigning the value to a string outside the loop, the code requires only 29 ms to complete:

var myTextField:TextField = new TextField();
addChild (myTextField);
myTextField.autoSize = TextFieldAutoSize.LEFT;

var started:Number = getTimer();
var content:String = myTextField.htmlText;

for (var i:int = 0; i< 1500; i++)
{

content += "ActionScript 3";
}

myTextField.htmlText = content;

trace (getTimer() - started);
// output : 29

Note: In Flash Player 10.1 and AIR 2.5, the String class has been improved so that strings use less memory.

Avoid using the square bracket operator, when possible.

42OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

ActionScript 3.0 performance

Last updated 8/21/2012

Using the square bracket operator can slow down performance. You can avoid using it by storing your reference in a

local variable. The following code example demonstrates inefficient use of the square bracket operator:

 var lng:int = 5000;
var arraySprite:Vector.<Sprite> = new Vector.<Sprite>(lng, true);
var i:int;

for (i = 0; i< lng; i++)
{

arraySprite[i] = new Sprite();
}

var started:Number = getTimer();

for (i = 0; i< lng; i++)
{

arraySprite[i].x = Math.random()*stage.stageWidth;
arraySprite[i].y = Math.random()*stage.stageHeight;
arraySprite[i].alpha = Math.random();
arraySprite[i].rotation = Math.random()*360;

}

trace(getTimer() - started);
// output : 16

The following optimized version reduces the use of the square bracket operator:

 var lng:int = 5000;
var arraySprite:Vector.<Sprite> = new Vector.<Sprite>(lng, true);
var i:int;

for (i = 0; i< lng; i++)
{

arraySprite[i] = new Sprite();
}

var started:Number = getTimer();
var currentSprite:Sprite;

for (i = 0; i< lng; i++)
{

currentSprite = arraySprite[i];
 currentSprite.x = Math.random()*stage.stageWidth;
 currentSprite.y = Math.random()*stage.stageHeight;
 currentSprite.alpha = Math.random();
 currentSprite.rotation = Math.random()*360;
}

trace(getTimer() - started);
// output : 9

Inline code, when possible, to reduce the number of function calls in your code.

Calling functions can be expensive. Try to reduce the number of function calls by moving code inline. Moving code

inline is a good way to optimize for pure performance. However, keep in mind that inline code can make your code

harder to reuse and can increase the size of your SWF file. Some function calls, such the Math class methods, are easily

to move inline. The following code uses the Math.abs() method to calculate absolute values:

43OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

ActionScript 3.0 performance

Last updated 8/21/2012

const MAX_NUM:int = 500000;
var arrayValues:Vector.<Number>=new Vector.<Number>(MAX_NUM,true);
var i:int;

for (i = 0; i< MAX_NUM; i++)
{

arrayValues[i] = Math.random()-Math.random();
}

var started:Number = getTimer();
var currentValue:Number;

for (i = 0; i< MAX_NUM; i++)
{

currentValue = arrayValues[i];
arrayValues[i] = Math.abs (currentValue);

}

trace(getTimer() - started);
// output : 70

The calculation performed by Math.abs() can be done manually and moved inline:

const MAX_NUM:int = 500000;
var arrayValues:Vector.<Number>=new Vector.<Number>(MAX_NUM,true);
var i:int;

for (i = 0; i< MAX_NUM; i++)
{

arrayValues[i] = Math.random()-Math.random();
}

var started:Number = getTimer();
var currentValue:Number;

for (i = 0; i< MAX_NUM; i++)
{

currentValue = arrayValues[i];
arrayValues[i] = currentValue > 0 ? currentValue : -currentValue;

}

trace(getTimer() - started);
// output : 15

Moving the function call inline results in code that is more than four times faster. This approach is useful in many

situations, but be aware of the effect it can have on reusability and maintainability.

Note: Code size has a large impact on overall player execution. If the application includes large amounts of ActionScript

code, then the virtual machine spends significant amounts of time verifying code and JIT compiling. Property lookups can

be slower, because of deeper inheritance hierarchies and because internal caches tend to thrash more. To reduce code size,

avoid using the Adobe® Flex® framework, the TLF framework library, or any large third-party ActionScript libraries.

Avoid evaluating statements in loops.

Another optimization can be achieved by not evaluating a statement inside a loop. The following code iterates over an

array, but is not optimized because the array length is evaluated for each iteration:

44OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

ActionScript 3.0 performance

Last updated 8/21/2012

 for (var i:int = 0; i< myArray.length; i++)
 {
 }

It is better to store the value and reuse it:

 var lng:int = myArray.length;

 for (var i:int = 0; i< lng; i++)
 {
 }

Use reverse order for while loops.

A while loop in reverse order is faster than a forward loop:

 var i:int = myArray.length;

 while (--i > -1)
 {
 }

These tips provide a few ways to optimize ActionScript, showing how a single line of code can affect performance and

memory. Many other ActionScript optimizations are possible. For more information, see the following link:

http://www.rozengain.com/blog/2007/05/01/some-actionscript-30-optimizations/.

http://www.rozengain.com/blog/2007/05/01/some-actionscript-30-optimizations/

45

Last updated 8/21/2012

Chapter 5: Rendering performance

Redraw regions

Always use the redraw regions option when building your project.

To improve rendering, it’s important to use the redraw regions option when building your project. Using this option

allows you to see the regions that Flash Player is rendering and processing. You can enable this option by selecting

Show Redraw Regions in the context menu of the debug version of Flash Player.

Note: The Show Redraw Regions option is not available in Adobe AIR or in the release version of Flash Player. (In Adobe

AIR, the context menu is available only in desktop applications, but it has no built-in or standard items such as Show

Redraw Regions.)

The image below illustrates the option enabled with a simple animated MovieClip on the timeline:

Redraw regions option enabled

You can also enable this option programmatically, by using the flash.profiler.showRedrawRegions() method:

// Enable Show Redraw Regions
// Blue color is used to show redrawn regions
flash.profiler.showRedrawRegions (true, 0x0000FF);

In Adobe AIR applications, this method is the only way to enable the redraw regions option.

Use redraw regions to identify opportunities for optimization. Remember that although some display objects are not

shown, they still consume CPU cycles because they are still being rendered. The following image illustrates this idea.

A black vector shape covers the animated running character. The image shows that the display object has not been

removed from the display list and is still being rendered. This wastes CPU cycles:

46OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

Redrawn regions

To improve performance, set the visible property of the hidden running character to false or remove it from the

display list altogether. You should also stop its timeline. These steps ensure that the display object is frozen and uses

minimal CPU power.

Remember to use the redraw regions option during the whole development cycle. Using this option prevents you from

being surprised at the end of the project by unnecessary redraw regions and optimization areas that have been missed.

More Help topics

“Freezing and unfreezing objects” on page 26

Off-stage content

Avoid placing content off-stage. Instead, just place objects on the display list when needed.

If possible, try not to place graphical content off-stage. Designers and developers commonly place elements off-stage

to reuse assets during the lifetime of the application. The following figure illustrates this common technique:

47OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

Off-stage content

Even if the off-stage elements are not shown onscreen and are not rendered, they still exist on the display list. The

runtime continues to run internal tests on these elements to make sure that they are still off-stage and the user is not

interacting with them. As a result, as much as possible, avoid placing objects off-stage and remove them from the

display list instead.

Movie quality

Use the appropriate Stage quality setting to improve rendering.

48OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

When developing content for mobile devices with small screens, such as phones, image quality is less important than

when developing desktop applications. Setting the Stage quality to the appropriate setting can improve rendering

performance.

The following settings are available for Stage quality:

• StageQuality.LOW: Favors playback speed over appearance and does not use anti-aliasing. This setting is not

supported in Adobe AIR for desktop or TV.

• StageQuality.MEDIUM: Applies some anti-aliasing but does not smooth scaled bitmaps. This setting is the default

value for AIR on mobile devices, but is not supported in AIR for desktop or TV.

• StageQuality.HIGH: (Default on the desktop) Favors appearance over playback speed and always uses anti-

aliasing. If the SWF file does not contain animation, scaled bitmaps are smoothed; if the SWF file contains

animation, bitmaps are not smoothed.

• StageQuality.BEST: Provides the best display quality and does not consider playback speed. All output is anti-

aliased and scaled bitmaps are always smoothed.

Using StageQuality.MEDIUM often provides enough quality for applications on mobile devices, and in some cases

using StageQuality.LOW can provide enough quality. Since Flash Player 8, anti-aliased text can be rendered

accurately, even with Stage quality set to LOW.

Note: On some mobile devices, even though the quality is set to HIGH, MEDIUM is used for better performance in Flash

Player applications. However, setting the quality to HIGH often does not make a noticeable difference, because mobile

screens usually have a higher dpi. (The dpi can vary depending on the device.)

In the following figure, the movie quality is set to MEDIUM and the text rendering is set to Anti-Alias for Animation:

Medium Stage quality and text rendering set to Anti-Alias for Animation

The Stage quality setting affects the text quality, because the appropriate text rendering setting is not being used.

The runtime allows you to set text rendering to Anti-Alias for Readability. This setting maintains perfect quality of

your (anti-aliased) text regardless of which Stage quality setting you use:

49OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

Low Stage quality and text rendering set to Anti-Alias for Readability

The same rendering quality can be obtained by setting text rendering to Bitmap Text (No anti-alias):

Low Stage quality and text rendering set to Bitmap Text (No anti-alias)

The last two examples show that you can get high-quality text, no matter which Stage quality setting you use. This

feature has been available since Flash Player 8 and can be used on mobile devices. Keep in mind that Flash Player 10.1

automatically switches to StageQuality.MEDIUM on some devices to increase performance.

Alpha blending

Avoid using the alpha property, when possible.

Avoid using effects that require alpha blending when using the alpha property, such as fading effects. When a display

object uses alpha blending, the runtime must combine the color values of every stacked display object and the

background color to determine the final color. Thus, alpha blending can be more processor-intensive than drawing an

opaque color. This extra computation can hurt performance on slow devices. Avoid using the alpha property, when

possible.

More Help topics

“Bitmap caching” on page 51

“Rendering text objects” on page 64

50OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

Application frame rate

In general, use the lowest possible frame rate for better performance.

An application’s frame rate determines how much time is available for each “application code and rendering” cycle, as

described in “Runtime code execution fundamentals” on page 1. A higher frame rate creates smoother animation.

However, when animation or other visual changes aren’t happening, there is often no reason to have a high frame rate.

A higher frame rate expends more CPU cycles and energy from the battery than a lower rate.

The following are some general guidelines for an appropriate default frame rate for your application:

• If you are using the Flex framework, leave the starting frame rate at the default value.

• If your application includes animation, an adequate frame rate is at least 20 frames per second. Anything more than

30 frames per second is often unnecessary.

• If your application doesn’t include animation, a frame rate of 12 frames per second is probably sufficient.

The “lowest possible frame rate” can vary depending on the current activity of the application. See the next tip

“Dynamically change the frame rate of your application” for more information.

Use a low frame rate when video is the only dynamic content in your application.

The runtime plays loaded video content at its native frame rate, regardless of the frame rate of the application. If your

application has no animation or other rapidly changing visual content, using a low frame rate does not degrade the

experience of the user interface.

Dynamically change the frame rate of your application.

You define the application’s initial frame rate in project or compiler settings, but the frame rate is not fixed at that

value. You can change the frame rate by setting the Stage.frameRate property (or the

WindowedApplication.frameRate property in Flex).

Change the frame rate according to the current needs of your application. For example, during a time when your

application isn’t performing any animation, lower the frame rate. When an animated transition is about to start, raise

the frame rate. Similarly, if your application is running in the background (after having lost focus), you can usually

lower the frame rate even further. The user is likely to be focused on another application or task.

The following are some general guidelines to use as a starting point in determining the appropriate frame rate for

different types of activities:

• If you are using the Flex framework, leave the starting frame rate at the default value.

• When animation is playing, set the frame rate to at least 20 frames per second. Anything more than 30 frames per

second is often unnecessary.

• When no animation is playing, a frame rate of 12 frames per second is probably sufficient.

• Loaded video plays at its native frame rate regardless of the application frame rate. If video is the only moving

content in your application, a frame rate of 12 frames per second is probably sufficient.

• When the application doesn’t have input focus, a frame rate of 5 frames per second is probably sufficient.

• When an AIR application is not visible, a frame rate of 2 frames per second or less is probably appropriate. For

example, this guideline applies if an application is minimized. It also applies on desktop devices if the native

window’s visible property is false.

51OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

For applications built in Flex, the spark.components.WindowedApplication class has built-in support for dynamically

changing the application’s frame rate. The backgroundFrameRate property defines the application’s frame rate when

the application isn’t active. The default value is 1, which changes the frame rate of an application built with the Spark

framework to 1 frame per second. You can change the background frame rate by setting the backgroundFrameRate

property. You can set the property to another value, or set it to -1 to turn off automatic frame rate throttling.

For more information on dynamically changing an application’s frame rate, see the following articles:

• Reducing CPU usage in Adobe AIR (Adobe Developer Center article and sample code by Jonnie Hallman)

• Writing well-behaved, efficient, AIR applications (article and sample application by Arno Gourdol)

Grant Skinner has created a frame rate throttler class. You can use this class in your applications to automatically

decrease the frame rate when your application is in the background. For more information and to download the source

code for the FramerateThrottler class, see Grant’s article Idle CPU Usage in Adobe AIR and Flash Player at

http://gskinner.com/blog/archives/2009/05/idle_cpu_usage.html.

Adaptive frame rate

When compiling a SWF file, you set a specific frame rate for the movie. In a restricted environment with a low CPU

rate, the frame rate sometimes drops down during playback. To preserve an acceptable frame rate for the user, the

runtime skips the rendering of some frames. Skipping the rendering of some frames keeps the frame rate from falling

below an acceptable value.

Note: In this case, the runtime does not skip frames, it only skips the rendering of content on frames. Code is still executed

and the display list is updated, but the updates don’t show onscreen. There is no way to specify a threshold fps value

indicating how many frames to skip if the runtime can’t keep the frame rate stable.

Bitmap caching

Use the bitmap caching feature for complex vector content, when appropriate.

A good optimization can be made by using the bitmap caching feature. This feature caches a vector object, renders it

as a bitmap internally, and uses that bitmap for rendering. The result can be a huge performance boost for rendering,

but it can require a significant amount of memory. Use the bitmap caching feature for complex vector content, like

complex gradients or text.

Turning on bitmap caching for an animated object that contains complex vector graphics (such as text or gradients)

improves performance. However, if bitmap caching is enabled on a display object such as a movie clip that has its

timeline playing, you get the opposite result. On each frame, the runtime must update the cached bitmap and then

redraw it onscreen, which requires many CPU cycles. The bitmap caching feature is an advantage only when the

cached bitmap can be generated once and then used without the need to update it.

If you turn on bitmap caching for a Sprite object, the object can be moved without causing the runtime to regenerate

the cached bitmap. Changing the x and y properties of the object does not cause regeneration. However, any attempt

to rotate it, scale it, or change its alpha value causes the runtime to regenerate the cached bitmap, and as a result, hurts

performance.

Note: The DisplayObject.cacheAsBitmapMatrix property available in AIR and the Packager for iPhone does not

have this limitation. By using the cacheAsBitmapMatrix property, you can rotate, scale, skew, and change the alpha

value of a display object without triggering bitmap regeneration.

http://www.adobe.com/devnet/air/flex/articles/framerate_throttling.html
http://arno.org/arnotify/2009/05/writing-well-behaved-efficient-air-applications/
http://gskinner.com/blog/archives/2009/05/idle_cpu_usage.html

52OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

A cached bitmap can use more memory than a regular movie clip instance. For example, if the movie clip on the Stage

is 250 x 250 pixels, when cached it uses about 250 KB, instead of 1 KB uncached.

The following example involves a Sprite object that contains an image of an apple. The following class is attached to

the apple symbol:

 package org.bytearray.bitmap
 {
 import flash.display.Sprite;
 import flash.events.Event;

 public class Apple extends Sprite
 {
 private var destinationX:Number;
 private var destinationY:Number;

 public function Apple ()
 {
 addEventListener(Event.ADDED_TO_STAGE,activation);
 addEventListener(Event.REMOVED_FROM_STAGE,deactivation);
 }

 private function activation(e:Event):void
 {
 initPos();
 addEventListener (Event.ENTER_FRAME,handleMovement);
 }

 private function deactivation(e:Event):void
 {
 removeEventListener(Event.ENTER_FRAME,handleMovement);
 }

 private function initPos():void
 {
 destinationX = Math.random()*(stage.stageWidth - (width>>1));
 destinationY = Math.random()*(stage.stageHeight - (height>>1));
 }

 private function handleMovement(e:Event):void
 {
 x -= (x - destinationX)*.5;
 y -= (y - destinationY)*.5;

 if (Math.abs(x - destinationX) < 1 && Math.abs(y - destinationY) < 1)
 initPos();
 }
 }
 }

The code uses the Sprite class instead of the MovieClip class, because a timeline is not needed for each apple. For best

performance, use the most lightweight object possible. Next, the class is instantiated with the following code:

53OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

 import org.bytearray.bitmap.Apple;

 stage.addEventListener(MouseEvent.CLICK,createApples);
 stage.addEventListener(KeyboardEvent.KEY_DOWN,cacheApples);

 const MAX_NUM:int = 100;
 var apple:Apple;
 var holder:Sprite = new Sprite();

 addChild(holder);

 function createApples(e:MouseEvent):void
 {
 for (var i:int = 0; i< MAX_NUM; i++)
 {
 apple = new Apple();

 holder.addChild(apple);
 }
 }

 function cacheApples(e:KeyboardEvent):void
 {
 if (e.keyCode == 67)
 {
 var lng:int = holder.numChildren;

 for (var i:int = 0; i < lng; i++)
 {
 apple = holder.getChildAt (i) as Apple;

 apple.cacheAsBitmap = Boolean(!apple.cacheAsBitmap);
 }
 }
 }

When the user clicks the mouse, the apples are created without caching. When the user presses the C key (keycode 67),

the apple vectors are cached as bitmaps and shown onscreen. This technique greatly improves rendering performance,

both on the desktop and on mobile devices, when the CPU is slow.

However, although using the bitmap caching feature improves rendering performance, it can quickly consume large

amounts of memory. As soon as an object is cached, its surface is captured as a transparent bitmap and stored in

memory, as shown in the following diagram:

54OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

Object and its surface bitmap stored in memory

Flash Player 10.1 and AIR 2.5 optimize the use of memory by taking the same approach as described in the “Filters and

dynamic bitmap unloading” on page 18. If a cached display object is hidden or offscreen, its bitmap in memory is freed

when unused for a while.

Note: If the display object’s opaqueBackground property is set to a specific color, the runtime considers the display object

to be opaque. When used with the cacheAsBitmap property, the runtime creates a non-transparent 32-bit bitmap in

memory. The alpha channel is set to 0xFF, which improves performance, because no transparency is required to draw the

bitmap onscreen. Avoiding alpha blending makes rendering even faster. If the current screen depth is limited to 16 bits,

then the bitmap in memory is stored as a 16-bit image. Using the opaqueBackground property does not implicitly

activate bitmap caching.

To save memory, use the cacheAsBitmap property and activate it on each display object rather than on the container.

Activating bitmap caching on the container makes the final bitmap much larger in memory, creating a transparent

bitmap with dimensions of 211 x 279 pixels. The image uses around 229 KB of memory:

Activating bitmap caching on container

In addition, by caching the container, you risk having the whole bitmap updated in memory, if any apple starts to move

on a frame. Activating the bitmap caching on the individual instances results in caching six 7-KB surfaces in memory,

which uses only 42 KB of memory:

Memory

Bitmap version cacheAsBitmap = true

Displayed

211 pixels

279 pixels

55OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

Activating bitmap caching on instances

Accessing each apple instance through the display list and calling the getChildAt() method stores references in a

Vector object for easier access:

56OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

 import org.bytearray.bitmap.Apple;

 stage.addEventListener(KeyboardEvent.KEY_DOWN, cacheApples);

 const MAX_NUM:int = 200;
 var apple:Apple;
 var holder:Sprite = new Sprite();

 addChild(holder);

 var holderVector:Vector.<Apple> = new Vector.<Apple>(MAX_NUM, true);

 for (var i:int = 0; i< MAX_NUM; i++)
 {
 apple = new Apple();

 holder.addChild(apple);

 holderVector[i] = apple;
 }

 function cacheApples(e:KeyboardEvent):void
 {
 if (e.keyCode == 67)
 {
 var lng:int = holderVector.length

 for (var i:int = 0; i < lng; i++)
 {
 apple = holderVector[i];

 apple.cacheAsBitmap = Boolean(!apple.cacheAsBitmap);
 }
 }
 }

Keep in mind that bitmap caching improves rendering if the cached content is not rotated, scaled, or changed on each

frame. However, for any transformation other than translation on the x- and y-axes, rendering is not improved. In

these cases, Flash Player updates the cached bitmap copy for every transformation occurring on the display object.

Updating the cached copy can result in high CPU usage, slow performance, and high battery usage. Again, the

cacheAsBitmapMatrix property in AIR or the Packager for iPhone does not have this limitation.

The following code changes the alpha value in the movement method, which changes the opacity of the apple on every

frame:

 private function handleMovement(e:Event):void
 {
 alpha = Math.random();
 x -= (x - destinationX)*.5;
 y -= (y - destinationY)*.5;

 if (Math.abs(x - destinationX) < 1 && Math.abs(y - destinationY) < 1)
 initPos();
 }

Using bitmap caching causes a performance slowdown. Changing the alpha value forces the runtime to update the

cached bitmap in memory whenever the alpha value is modified.

57OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

Filters rely on bitmaps that are updated whenever the playhead of a cached movie clip moves. So, using a filter

automatically sets the cacheAsBitmap property to true. The following figure illustrates an animated movie clip:

Animated movie clip

Avoid using filters on animated content, because it can cause performance problems. In the following figure, the

designer adds a drop shadow filter:

Animated movie clip with drop shadow filter

As a result, if the timeline inside the movie clip is playing, the bitmap must be regenerated. The bitmap must also be

regenerated if the content is modified in any way other than a simple x or y transformation. Each frame forces the

runtime to redraw the bitmap, which requires more CPU resources, causes poor performance, and consumes more

battery life.

Paul Trani provides examples of using Flash Professional and ActionScript to optimize graphics using bitmaps in the

following training videos:

• Optimizing Graphics

• Optimizing Graphics with ActionScript

Cached bitmap transform matrixes in AIR

Set the cacheAsBitmapMatrix property when using cached bitmaps in mobile AIR apps.

In the AIR mobile profile, you can assign a Matrix object to the cacheAsBitmapMatrix property of a display object.

When you set this property, you can apply any two-dimensional transformation to the object without regenerating the

cached bitmap. You can also change the alpha property without regenerating the cached bitmap. The cacheAsBitmap

property must also be set to true and the object must not have any 3D properties set.

http://www.adobe.com/go/learn_video_optimizing_graphics_en
http://www.adobe.com/go/learn_video_optimizing_graphics_with_ActionScript_en

58OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

Setting the cacheAsBitmapMatrix property generates the cached bitmap even if the display object is off screen,

hidden from view, or has its visible property set to false. Resetting the cacheAsBitmapMatrix property using a

matrix object that contains a different transform also regenerates the cached bitmap.

The matrix transformation you apply to the cacheAsBitmapMatrix property is applied to the display object as it is

rendered into the bitmap cache. Thus, if the transform contains a 2x scale, the bitmap rendering is twice the size of the

vector rendering. The renderer applies the inverse transformation to the cached bitmap so that the final display looks

the same. You can scale the cached bitmap to a smaller size to reduce memory usage, possibly at the expense of

rendering fidelity. You can also scale the bitmap to a larger size to increase rendering quality in some cases, at the

expense of increased memory usage. In general, though, use an identity matrix, which is a matrix that applies no

transformation, to avoid changes in appearance, as shown in the following example:

displayObject.cacheAsBitMap = true;
displayObject.cacheAsBitmapMatrix = new Matrix();

Once the cacheAsBitmapMatrix property is set, you can scale, skew, rotate, and translate the object without

triggering bitmap regeneration.

You can also change the alpha value within the range of 0 and 1. If you change the alpha value through the

transform.colorTransform property with a color transform, the alpha used in the transform object must be within

0 and 255. Changing the color transformation in any other way regenerates the cached bitmap.

Always set the cacheAsBitmapMatrix property whenever you set cacheAsBitmap to true in content created for

mobile devices. However, consider the following potential drawback. After an object is rotated, scaled or skewed, the

final rendering can exhibit bitmap scaling or aliasing artifacts compared to a normal vector rendering.

Manual bitmap caching

Use the BitmapData class to create custom bitmap caching behavior.

The following example reuses a single rasterized bitmap version of a display object and references the same

BitmapData object. When scaling each display object, the original BitmapData object in memory is not updated and

is not redrawn. This approach saves CPU resources and makes applications run faster. When scaling the display object,

the contained bitmap is stretched.

Here is the updated BitmapApple class:

59OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

 package org.bytearray.bitmap
 {
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.events.Event;

 public class BitmapApple extends Bitmap
 {
 private var destinationX:Number;
 private var destinationY:Number;

 public function BitmapApple(buffer:BitmapData)
 {
 super(buffer);

 addEventListener(Event.ADDED_TO_STAGE,activation);
 addEventListener(Event.REMOVED_FROM_STAGE,deactivation);
 }

 private function activation(e:Event):void
 {
 initPos();
 addEventListener(Event.ENTER_FRAME,handleMovement);
 }

 private function deactivation(e:Event):void
 {
 removeEventListener(Event.ENTER_FRAME,handleMovement);
 }

 private function initPos():void
 {
 destinationX = Math.random()*(stage.stageWidth - (width>>1));
 destinationY = Math.random()*(stage.stageHeight - (height>>1));
 }

 private function handleMovement(e:Event):void
 {
 alpha = Math.random();

 x -= (x - destinationX)*.5;
 y -= (y - destinationY)*.5;

 if (Math.abs(x - destinationX) < 1 && Math.abs(y - destinationY) < 1)
 initPos();
 }
 }
 }

The alpha value is still modified on each frame. The following code passes the original source buffer to each

BitmapApple instance:

60OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

 import org.bytearray.bitmap.BitmapApple;

 const MAX_NUM:int = 100;
 var holder:Sprite = new Sprite();

 addChild(holder);

 var holderVector:Vector.<BitmapApple> = new Vector.<BitmapApple>(MAX_NUM, true);
 var source:AppleSource = new AppleSource();
 var bounds:Object = source.getBounds(source);

 var mat:Matrix = new Matrix();
 mat.translate(-bounds.x,-bounds.y);

 var buffer:BitmapData = new BitmapData(source.width+1, source.height+1, true, 0);
 buffer.draw(source,mat);

 var bitmapApple:BitmapApple;

 for (var i:int = 0; i< MAX_NUM; i++)
 {
 bitmapApple = new BitmapApple(buffer);

 holderVector[i] = bitmapApple;

 holder.addChild(bitmapApple);
 }

This technique uses only a small amount of memory, because only a single cached bitmap is used in memory and

shared by all the BitmapApple instances. In addition, despite any modifications that are made to the BitmapApple

instances, such as alpha, rotation, or scaling, the original source bitmap is never updated. Using this technique

prevents a performance slowdown.

For a smooth final bitmap, set the smoothing property to true:

public function BitmapApple(buffer:BitmapData)
{

super (buffer);

smoothing = true;

addEventListener(Event.ADDED_TO_STAGE, activation);
 addEventListener(Event.REMOVED_FROM_STAGE, deactivation);
}

Adjusting the Stage quality can also improve performance. Set the Stage quality to HIGH before rasterization, then

switch to LOW afterwards:

61OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

import org.bytearray.bitmap.BitmapApple;

const MAX_NUM:int = 100;
var holder:Sprite = new Sprite();

addChild (holder);

var holderVector:Vector.<BitmapApple> = new Vector.<BitmapApple>(MAX_NUM, true);
var source:AppleSource = new AppleSource();
var bounds:Object = source.getBounds (source);

var mat:Matrix = new Matrix();
mat.translate (-bounds.x, -bounds.y);

var buffer:BitmapData = new BitmapData (source.width+1, source.height+1, true, 0);

stage.quality = StageQuality.HIGH;

buffer.draw (source, mat);

stage.quality = StageQuality.LOW;

var bitmapApple:BitmapApple;

for (var i:int = 0; i< MAX_NUM; i++)
{

bitmapApple = new BitmapApple(buffer);

holderVector[i] = bitmapApple;

holder.addChild (bitmapApple);

}

Toggling Stage quality before and after drawing the vector to a bitmap can be a powerful technique to get anti-aliased

content onscreen. This technique can be effective regardless of the final stage quality. For example, you can get an anti-

aliased bitmap with anti-aliased text, even with the Stage quality set to LOW. This technique is not possible with the

cacheAsBitmap property. In that case, setting the Stage quality to LOW updates the vector quality, which updates the

bitmap surfaces in memory, and updates the final quality.

Isolating behaviors

Isolate events such as the Event.ENTER_FRAME event in a single handler, when possible.

The code can be further optimized by isolating the Event.ENTER_FRAME event in the Apple class in a single handler.

This technique saves CPU resources. The following example shows this different approach, where the BitmapApple

class no longer handles the movement behavior:

62OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

 package org.bytearray.bitmap
 {
 import flash.display.Bitmap;
 import flash.display.BitmapData;

 public class BitmapApple extends Bitmap
 {
 private var destinationX:Number;
 private var destinationY:Number;

 public function BitmapApple(buffer:BitmapData)
 {
 super (buffer);

 smoothing = true;
 }
 }

The following code instantiates the apples and handles their movement in a single handler:

 import org.bytearray.bitmap.BitmapApple;

 const MAX_NUM:int = 100;
 var holder:Sprite = new Sprite();

 addChild(holder);

 var holderVector:Vector.<BitmapApple> = new Vector.<BitmapApple>(MAX_NUM, true);
 var source:AppleSource = new AppleSource();
 var bounds:Object = source.getBounds(source);

 var mat:Matrix = new Matrix();
 mat.translate(-bounds.x,-bounds.y);

 stage.quality = StageQuality.BEST;

 var buffer:BitmapData = new BitmapData(source.width+1,source.height+1, true,0);
 buffer.draw(source,mat);

 stage.quality = StageQuality.LOW;

 var bitmapApple:BitmapApple;

 for (var i:int = 0; i< MAX_NUM; i++)
 {
 bitmapApple = new BitmapApple(buffer);

 bitmapApple.destinationX = Math.random()*stage.stageWidth;
 bitmapApple.destinationY = Math.random()*stage.stageHeight;

 holderVector[i] = bitmapApple;

 holder.addChild(bitmapApple);
 }

 stage.addEventListener(Event.ENTER_FRAME,onFrame);

63OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

 var lng:int = holderVector.length

 function onFrame(e:Event):void
 {
 for (var i:int = 0; i < lng; i++)
 {
 bitmapApple = holderVector[i];
 bitmapApple.alpha = Math.random();

 bitmapApple.x -= (bitmapApple.x - bitmapApple.destinationX) *.5;
 bitmapApple.y -= (bitmapApple.y - bitmapApple.destinationY) *.5;

 if (Math.abs(bitmapApple.x - bitmapApple.destinationX) < 1 &&

Math.abs(bitmapApple.y - bitmapApple.destinationY) < 1)
 {
 bitmapApple.destinationX = Math.random()*stage.stageWidth;
 bitmapApple.destinationY = Math.random()*stage.stageHeight;
 }
 }
 }

The result is a single Event.ENTER_FRAME event handling the movement, instead of 200 handlers moving each apple.

The whole animation can be paused easily, which can be useful in a game.

For example, a simple game can use the following handler:

stage.addEventListener(Event.ENTER_FRAME, updateGame);
function updateGame (e:Event):void
{

gameEngine.update();
}

The next step is to make the apples interact with the mouse or keyboard, which requires modifications to the

BitmapApple class.

 package org.bytearray.bitmap
 {
 import flash.display.Bitmap;
 import flash.display.BitmapData;
 import flash.display.Sprite;

 public class BitmapApple extends Sprite
 {
 public var destinationX:Number;
 public var destinationY:Number;
 private var container:Sprite;
 private var containerBitmap:Bitmap;

 public function BitmapApple(buffer:BitmapData)
 {
 container = new Sprite();
 containerBitmap = new Bitmap(buffer);
 containerBitmap.smoothing = true;
 container.addChild(containerBitmap);
 addChild(container);
 }
 }

64OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

The result is BitmapApple instances that are interactive, like traditional Sprite objects. However, the instances are

linked to a single bitmap, which is not resampled when the display objects are transformed.

Rendering text objects

Use the bitmap caching feature and the opaqueBackground property to improve text rendering performance.

The Flash Text Engine provides some great optimizations. However, numerous classes are required to show a single

line of text. For this reason, creating an editable text field with the TextLine class requires a great deal of memory and

many lines of ActionScript code. The TextLine class is best used for static and non-editable text, for which it renders

faster and requires less memory.

The bitmap caching feature allows you to cache vector content as bitmaps to improve rendering performance. This

feature is helpful for complex vector content and also when used with text content that requires processing to be

rendered.

The following example shows how the bitmap caching feature and the opaqueBackground property can be used to

improve rendering performance. The following figure illustrates a typical Welcome screen that can be displayed when

a user is waiting for something to load:

Welcome screen

The following figure illustrates the easing that is applied to the TextField object programmatically. The text eases

slowly from the top of the scene to the center of the scene:

65OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

Easing of text

The following code creates the easing. The preloader variable stores the current target object to minimize property

lookups, which can hurt performance:

wait_mc.addEventListener(Event.ENTER_FRAME, movePosition);

var destX:Number=stage.stageWidth/2;
var destY:Number=stage.stageHeight/2;
var preloader:DisplayObject;

function movePosition(e:Event):void
{

preloader = e.currentTarget as DisplayObject;

preloader.x -= (preloader.x - destX) * .1;
preloader.y -= (preloader.y - destY) * .1;

if (Math.abs(preloader.y-destY)<1)

preloader.removeEventListener(Event.ENTER_FRAME, movePosition);
}

66OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

The Math.abs() function could be moved inline here to reduce the number of function calls and get more

performance improvements. A best practice is to use the int type for the destX and destY properties, so that you have

fixed-point values. Using the int type allows you to get perfect pixel snapping without having to round values manually

through slow methods like Math.ceil() or Math.round(). This code doesn’t round the coordinates to int, because

by rounding the values constantly, the object does not move smoothly. The object can have jittery movements, because

the coordinates are snapped to the nearest rounded integers on every frame. However, this technique can be useful

when setting a final position for a display object. Don’t use the following code:

 // Do not use this code
 var destX:Number = Math.round (stage.stageWidth / 2);
 var destY:Number = Math.round (stage.stageHeight / 2);

The following code is much faster:

 var destX:int = stage.stageWidth / 2;
 var destY:int = stage.stageHeight / 2;

The previous code can be optimized even further, by using bitwise-shifting operators to divide the values:

 var destX:int = stage.stageWidth >> 1;
 var destY:int = stage.stageHeight >> 1;

The bitmap caching feature makes it easier for the runtime to render objects by using dynamic bitmaps. In the current

example, the movie clip containing the TextField object is cached:

 wait_mc.cacheAsBitmap = true;

One additional way to improve performance is by removing alpha transparency. Alpha transparency places an

additional burden on the runtime when drawing transparent bitmap images, as in the previous code. You can use the

opaqueBackground property to bypass that, by specifying a color as a background.

When using the opaqueBackground property, the bitmap surface created in memory still uses 32 bits. However, the

alpha offset is set to 255 and no transparency is used. As a result, the opaqueBackground property does not reduce

memory usage, but it improves rendering performance when using the bitmap caching feature. The following code

contains all of the optimizations:

wait_mc.addEventListener(Event.ENTER_FRAME, movePosition);
wait_mc.cacheAsBitmap = true;

// Set the background to the color of the scene background
wait_mc.opaqueBackground = 0x8AD6FD;
var destX:int = stage.stageWidth >> 1;
var destY:int = stage.stageHeight >> 1;
var preloader:DisplayObject;

function movePosition (e:Event):void
{

preloader = e.currentTarget as DisplayObject;

preloader.x -= (preloader.x - destX) * .1;
preloader.y -= (preloader.y - destY) * .1;

if (Math.abs (preloader.y - destY) < 1)

e.currentTarget.removeEventListener (Event.ENTER_FRAME, movePosition);
}

The animation is now optimized, and the bitmap caching has been optimized by removing transparency. On mobile

devices, consider switching the Stage quality to LOW and HIGH during the different states of the animation while using

the bitmap caching feature:

67OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

wait_mc.addEventListener(Event.ENTER_FRAME, movePosition);
wait_mc.cacheAsBitmap = true;
wait_mc.opaqueBackground = 0x8AD6FD;

// Switch to low quality
stage.quality = StageQuality.LOW;
var destX:int = stage.stageWidth>>1;
var destY:int = stage.stageHeight>>1;
var preloader:DisplayObject;

function movePosition(e:Event):void
{

preloader = e.currentTarget as DisplayObject;

preloader.x -= (preloader.x - destX) * .1;
preloader.y -= (preloader.y - destY) * .1;

if (Math.abs(e.currentTarget.y-destY)<1)
{

// Switch back to high quality
stage.quality = StageQuality.HIGH;
preloader.removeEventListener(Event.ENTER_FRAME, movePosition);

}
}

However, in this case, changing the Stage quality forces the runtime to regenerate the bitmap surface of the TextField

object to match the current Stage quality. For this reason, it is best to not change the Stage quality when using the

bitmap caching feature.

A manual bitmap caching approach could have been used here. To simulate the opaqueBackground property, the

movie clip can be drawn to a non-transparent BitmapData object, which does not force the runtime to regenerate the

bitmap surface.

This technique works well for content that doesn’t change over time. However, if the content of the text field can

change, consider using a different strategy. For example, imagine a text field that is continuously updated with a

percentage representing how much of the application has loaded. If the text field, or its containing display object, has

been cached as a bitmap, its surface must be generated each time the content changes. You cannot use manual bitmap

caching here, because the display object content is constantly changing. This constant change would force you to

manually call the BitmapData.draw() method to update the cached bitmap.

Remember that since Flash Player 8 (and AIR 1.0), regardless of the Stage quality value, a text field with rendering set

to Anti-Alias for Readability remains perfectly anti-aliased. This approach consumes less memory, but it requires more

CPU processing and it renders a little more slowly than the bitmap caching feature.

The following code uses this approach:

68OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

wait_mc.addEventListener(Event.ENTER_FRAME, movePosition);

// Switch to low quality
stage.quality = StageQuality.LOW;
var destX:int = stage.stageWidth >> 1;
var destY:int = stage.stageHeight >> 1;
var preloader:DisplayObject;
function movePosition (e:Event):void
{

preloader = e.currentTarget as DisplayObject;

preloader.x -= (preloader.x - destX) * .1;
preloader.y -= (preloader.y - destY) * .1;

if (Math.abs (preloader.y - destY) < 1)
{

// Switch back to high quality
stage.quality = StageQuality.HIGH;
preloader.removeEventListener (Event.ENTER_FRAME, movePosition);

}
}

Using this option (Anti-Alias for Readability) for text in motion is not recommended. When scaling the text, this

option causes the text tries to stay aligned, which produces a shifting effect. However, if the display object’s content is

constantly changing and you need scaled text, you can improve performance in mobile applications by setting the

quality to LOW. When the motion finishes, switch the quality back to HIGH.

GPU

GPU rendering in Flash Player applications

An important new feature of Flash Player 10.1 is that it can use the GPU to render graphical content on mobile devices.

In the past, graphics were rendered through the CPU only. Using the GPU optimizes the rendering of filters, bitmaps,

video, and text. Keep in mind that GPU rendering is not always as accurate as software rendering. Content can look

slightly chunky when using the hardware renderer. In addition, Flash Player 10.1 has a limitation that can prevent

onscreen Pixel Bender effects from rendering. These effects can render as a black square when using hardware

acceleration.

Although Flash Player 10 had a GPU acceleration feature, the GPU was not used to calculate the graphics. It was only

used to send all the graphics to the screen. In Flash Player 10.1, the GPU is also used to calculate the graphics, which

can improve rendering speed significantly. It also reduces the CPU workload, which is helpful on devices with limited

resources, such as mobile devices.

GPU mode is set automatically when running content on mobile devices, for the best possible performance. Although

wmode no longer must be set to gpu to get GPU rendering, setting wmode to opaque or transparent disables GPU

acceleration.

Note: Flash Player on the desktop still uses the CPU to do software rendering. Software rendering is used because drivers

vary widely on the desktop, and drivers can accentuate rendering differences. There can also be rendering differences

between the desktop and some mobile devices.

69OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

GPU rendering in mobile AIR applications

Enable hardware graphics acceleration in an AIR application by including <renderMode>gpu</renderMode> in the

application descriptor (or use <renderMode>direct</renderMode> to leverage Stage3D). You cannot change render

modes at runtime. On desktop computers, using <renderMode>gpu</renderMode> will fallback to

<renderMode>direct</renderMode>.

Note: In order to leverage GPU acceleration of Flash content with AIR for mobile platforms, Adobe recommends that you

use renderMode="direct" (that is, Stage3D) rather than renderMode="gpu". Adobe officially supports and recommends

the following Stage3D based frameworks: Starling (2D) and Away3D (3D). For more details on Stage3D and

Starling/Away3D, see http://gaming.adobe.com/getstarted/.

GPU rendering mode limitations
The following limitations exist when using GPU rendering mode in AIR 2.5 and above:

• If the GPU cannot render an object, it is not displayed at all. There is no fallback to CPU rendering.

• The following blend modes are not supported: layer, alpha, erase, overlay, hardlight, lighten, and darken.

• Filters are not supported.

• PixelBender is not supported.

• Many GPU units have a maximum texture size of 1024x1024. In ActionScript, this translates to the maximum final

rendered size of a display object after all transformations.

• Adobe does not recommend the use of GPU rendering mode in AIR applications that play video.

• In GPU rendering mode, text fields are not always moved to a visible location when the virtual keyboard opens. To

ensure that your text field is visible while the user enters text, do one of the following. Place the text field in the top

half of the screen or move it to the top half of the screen when it receives focus.

• GPU rendering mode is disabled for some devices on which the mode does not work reliably. See the AIR developer

release notes for the latest information.

GPU rendering mode best practices
The following guidelines can make GPU rendering faster:

• Limit the numbers of items visible on stage. Each item takes some time to render and composite with the other

items around it. When you no longer want to display a display object, set its visible property to false. Do not

simply move it off stage, hide it behind another object, or set its alpha property to 0. If the display object is no

longer needed at all, remove it from the stage with removeChild().

• Reuse objects rather than creating and destroying them.

• Make bitmaps in sizes that are close to, but less than, 2n by 2m bits. The dimensions do not have to be exact powers

of 2, but they should be close to a power of 2, without being larger. For example, a 31-by-15-pixel image renders

faster than a 33-by-17-pixel image. (31 and 15 are just less than powers of 2: 32 and 16.)

• If possible, set the repeat parameter to false when calling the Graphic.beginBitmapFill() method.

• Don't overdraw. Use the background color as a background. Don't layer large shapes on top of each other. There is

a cost for every pixel that must be drawn.

• Avoid shapes with long thin spikes, self -intersecting edges, or lots of fine detail along the edges. These shapes take

longer to render than display objects with smooth edges.

• Limit the size of display objects.

• Enable cacheAsBitMap and cacheAsBitmapMatrix for display objects whose graphics aren’t updated frequently.

http://gaming.adobe.com/getstarted/

70OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

• Avoid using the ActionScript drawing API (the Graphics class) to create graphics. When possible, create those

objects statically at authoring time instead.

• Scale bitmap assets to the final size before importing them.

GPU rendering mode in mobile AIR 2.0.3 and above
GPU rendering is more restrictive in mobile AIR apps created with the Packager for iPhone. The GPU is only effective

for bitmaps, solid shapes, and display objects that have the cacheAsBitmap property set. Also, for objects that have

cacheAsBitmap and cacheAsBitmapMatrix set, the GPU can effectively render objects that rotate or scale. The GPU

is used in tandem for other display objects and this generally results in poor rendering performance.

Tips for optimizing GPU rendering performance

Although GPU rendering can greatly improve performance of SWF content, the content's design plays an important

role. Remember that settings that have historically worked well in software rendering sometimes do not work well with

GPU rendering. The following tips can help you achieve good performance with GPU rendering without incurring any

performance penalty in software rendering.

Note: In order to leverage GPU acceleration of Flash content with AIR for mobile platforms, Adobe recommends that you

use renderMode="direct" (that is, Stage3D) rather than renderMode="gpu". Adobe officially supports and recommends

the following Stage3D based frameworks: Starling (2D) and Away3D (3D). For more details on Stage3D and

Starling/Away3D, see http://gaming.adobe.com/getstarted/.

• Avoid using wmode=transparent or wmode=opaque in HTML embed parameters. These modes can result in

decreased performance. They can also result in a small loss in audio-video synchronization in both software and

hardware rendering. Furthermore, many platforms do not support GPU rendering when these modes are in effect,

significantly impairing performance.

• Use only the normal and alpha blend modes. Avoid using other blend modes, especially the layer blend mode. Not

all blend modes can be reproduced faithfully when rendered with the GPU.

• When a GPU renders vector graphics, it breaks them up into meshes made of small triangles before drawing them.

This process is called tessellating. Tessellating incurs a small performance cost, which increases as the complexity

of the shape increases. To minimize performance impact, avoid morph shapes, which GPU rendering tessellates on

every frame.

• Avoid self-intersecting curves, very thin curved regions (such as a thin crescent moon), and intricate details along

the edges of a shape. These shapes are complex for the GPU to tessellate into triangle meshes. To understand why,

consider two vectors: a 500 × 500 square and a 100 × 10 crescent moon. A GPU can easily render the large square

because it's just two triangles. However, it takes many triangles to describe the curve of the crescent moon.

Therefore, rendering the shape is more complicated even though it involves fewer pixels.

• Avoid large changes in scale, because such changes can also cause the GPU to again tessellate the graphics.

• Avoid overdrawing whenever possible. Overdrawing is layering multiple graphical elements so that they obscure

each other. Using the software renderer, each pixel is drawn only once. Therefore, for software rendering, the

application incurs no performance penalty regardless how many graphical elements are covering each other at that

pixel location. By contrast, the hardware renderer draws each pixel for each element whether other elements

obscure that region or not. If two rectangles overlap each other, the hardware renderer draws the overlapped region

twice while the software renderer draws the region only once.

Therefore, on the desktop, which use the software renderer, you typically do not notice a performance impact of

overdraw. However, many overlapping shapes can adversely affect performance on devices using GPU rendering.

A best practice is to remove objects from the display list rather than hiding them.

• Avoid using a large filled rectangle as a background. Set the background color of the Stage instead.

http://gaming.adobe.com/getstarted/

71OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

• Avoid the default bitmap fill mode of bitmap repeat whenever possible. Use bitmap clamp mode instead to achieve

better performance.

Asynchronous operations

Favor using asynchronous versions of operations rather than synchronous ones, where available.

Synchronous operations run as soon as your code tells them to, and your code waits for them to complete before

moving on. Consequently, they run in the application code phase of the frame loop. If a synchronous operation takes

too long, it stretches the size of the frame loop, potentially causing the display to appear to freeze or stutter.

When your code executes an asynchronous operation, it doesn’t necessarily run immediately. Your code and other

application code in the current execution thread continues executing. The runtime then performs the operation as

soon as possible, while attempting to prevent rendering issues. In some cases, the execution happens in the background

and doesn’t run as part of the runtime frame loop at all. Finally, when the operation completes the runtime dispatches

an event, and your code can listen for that event to perform further work.

Asynchronous operations are scheduled and divided to avoid rendering issues. Consequently, it is much easier to have

a responsive application using asynchronous versions of operations. See “Perceived performance versus actual

performance” on page 2 for more information.

However, there is some overhead involved in running operations asynchronously. The actual execution time can be

longer for asynchronous operations, especially for operations that take a short time to complete.

In the runtime, many operations are inherently synchronous or asynchronous and you can’t choose how to execute

them. However, in Adobe AIR, there are three types of operations that you can choose to perform synchronously or

asynchronously:

• File and FileStream class operations

Many operations of the File class can be performed synchronously or asynchronously. For example, the methods

for copying or deleting a file or directory and listing the contents of a directory all have asynchronous versions.

These methods have the suffix “Async” added to the name of the asynchronous version. For example, to delete a

file asynchronously, call the File.deleteFileAsync() method instead of the File.deleteFile() method.

When using a FileStream object to read from or write to a file, the way you open the FileStream object determines

whether the operations execute asynchronously. Use the FileStream.openAsync() method for asynchronous

operations. Data writing is performed asynchronously. Data reading is done in chunks, so the data is available one

portion at a time. In contrast, in synchronous mode the FileStream object reads the entire file before continuing

with code execution.

• Local SQL database operations

When working with a local SQL database, all the operations executed through a SQLConnection object execute in

either synchronous or asynchronous mode. To specify that operations execute asynchronously, open the

connection to the database using the SQLConnection.openAsync() method instead of the

SQLConnection.open() method. When database operations run asynchronously, they execute in the background.

The database engine does not run in the runtime frame loop at all, so the database operations are much less likely

to cause rendering issues.

For additional strategies for improving performance with the local SQL database, see “SQL database performance”

on page 85.

• Pixel Bender standalone shaders

72OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

The ShaderJob class allows you to run an image or set of data through a Pixel Bender shader and access the raw

result data. By default, when you call the ShaderJob.start() method the shader executes asynchronously. The

execution happens in the background, not using the runtime frame loop. To force the ShaderJob object to execute

synchronously (which is not recommended), pass the value true to the first parameter of the start() method.

In addition to these built-in mechanisms for running code asynchronously, you can also structure your own code to

run asynchronously instead of synchronously. If you are writing code to perform a potentially long-running task, you

can structure your code so that it executes in parts. Breaking your code into parts allows the runtime to perform its

rendering operations in between your code execution blocks, making rendering problems less likely.

Several techniques for dividing up your code are listed next. The main idea behind all these techniques is that your

code is written to only perform part of its work at any one time. You track what the code does and where it stops

working. You use a mechanism such as a Timer object to repeatedly check whether work remains and perform

additional work in chunks until the work is complete.

There are a few established patterns for structuring code to divide up work in this way. The following articles and code

libraries describe these patterns and provide code to help you implement them in your applications:

• Asynchronous ActionScript Execution (article by Trevor McCauley with more background details as well as several

implementation examples)

• Parsing & Rendering Lots of Data in Flash Player (article by Jesse Warden with background details and examples

of two approaches, the “builder pattern” and “green threads”)

• Green Threads (article by Drew Cummins describing the “green threads” technique with example source code)

• greenthreads (open-source code library by Charlie Hubbard, for implementing “green threads” in ActionScript. See

the greenthreads Quick Start for more information.)

• Threads in ActionScript 3 at http://www.adobe.com/go/learn_fp_as3_threads_en (article by Alex Harui, including

an example implementation of the “pseudo threading” technique)

Transparent windows

In AIR desktop applications, consider using an opaque rectangular application window instead of a transparent

window.

To use an opaque window for the initial window of an AIR desktop application, set the following value in the

application descriptor XML file:

<initialWindow>
<transparent>false</transparent>

</initialWindow>

For windows created by application code, create a NativeWindowInitOptions object with the transparent property

set to false (the default). Pass it to the NativeWindow constructor while creating the NativeWindow object:

// NativeWindow: flash.display.NativeWindow class

var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
initOptions.transparent = false;
var win:NativeWindow = new NativeWindow(initOptions);

For a Flex Window component, make sure the component’s transparent property is set to false, the default, before

calling the Window object’s open() method.

http://www.senocular.com/flash/tutorials/asyncoperations/
http://jessewarden.com/2009/02/parsing-rendering-lots-of-data-in-flash-player.html
http://blog.generalrelativity.org/actionscript-30/green-threads/
http://code.google.com/p/greenthreads/
http://code.google.com/p/greenthreads/wiki/QuickStart
http://www.adobe.com/go/learn_fp_as3_threads_en

73OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

// Flex window component: spark.components.Window class

var win:Window = new Window();
win.transparent = false;
win.open();

A transparent window potentially shows part of the user’s desktop or other application windows behind the

application window. Consequently, the runtime uses more resources to render a transparent window. A rectangular

non-transparent window, whether it uses operating system chrome or custom chrome, does not have the same

rendering burden.

Only use a transparent window when it is important to have a non-rectangular display or to have background content

display through your application window.

Vector shape smoothing

Smooth shapes to improve rendering performance.

Unlike bitmaps, rendering vector content requires many calculations, especially for gradients and complex paths that

contain many control points. As a designer or developer, make sure that shapes are optimized enough. The following

figure illustrates non-simplified paths with many control points:

Non-optimized paths

By using the Smooth tool in Flash Professional, you can remove extra control points. An equivalent tool is available in

Adobe® Illustrator®, and the total number of points and paths can be seen in the Document Info panel.

Smoothing removes extra control points, reducing the final size of the SWF file and improving rendering performance.

The next figure illustrates the same paths after smoothing:

74OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Rendering performance

Last updated 8/21/2012

Optimized paths

As long as you do not oversimplify paths, this optimization does not change anything visually. However, the average

frame rate of your final application can be greatly improved by simplifying complex paths.

75

Last updated 8/21/2012

Chapter 6: Optimizing network
interaction

Enhancements for network interaction

Flash Player 10.1 and AIR 2.5 introduce a set of new features for network optimization on all platforms, including

circular buffering and smart seeking.

Circular buffering

When loading media content on mobile devices, you can encounter problems that you would almost never expect on

a desktop computer. For example, you are more likely to run out of disk space or memory. When loading video, the

desktop versions of Flash Player 10.1 and AIR 2.5 download and cache the entire FLV file (or MP4 file) onto the hard

drive. The runtime then plays back the video from that cache file. It is unusual for the disk space to run out. If such a

situation occurs, the desktop runtime stops the playback of the video.

A mobile device can run out of disk space more easily. If the device runs out of disk space, the runtime does not stop

the playback, as on the desktop runtime. Instead, the runtime starts to reuse the cache file by writing to it again from

the beginning of the file. The user can continue watching the video. The user cannot seek in the area of the video that

has been rewritten to, except to the beginning of the file. Circular buffering is not started by default. It can be started

during playback, and also at the beginning of playback if the movie is bigger than the disk space or RAM. The runtime

requires at least 4 MB of RAM or 20 MB of disk space to be able to use circular buffering.

Note: If the device has enough disk space, the mobile version of the runtime behaves the same as on the desktop. Keep in

mind that a buffer in RAM is used as a fallback if the device does not have a disk or the disk is full. A limit for the size of

the cache file and the RAM buffer can be set at compile time. Some MP4 files have a structure that requires the whole file

is downloaded before the playback can start. The runtime detects those files and prevents the download, if there is not

enough disk space, and the MP4 file cannot be played back. It can be best not to request the download of those files at all.

As a developer, remember that seeking only works within the boundary of the cached stream. NetStream.seek()

sometimes fails if the offset is out of range, and in this case, a NetStream.Seek.InvalidTime event is dispatched.

Smart seeking

Note: The smart seeking feature requires Adobe® Flash® Media Server 3.5.3.

Flash Player 10.1and AIR 2.5 introduce a new behavior, called smart seeking, which improves the user’s experience

when playing streaming video. If the user seeks a destination inside the buffer bounds, the runtime reuses the buffer

to offer instant seeking. In previous versions of the runtime, the buffer was not reused. For example, if a user was

playing a video from a streaming server and the buffer time was set to 20 seconds (NetStream.bufferTime), and the

user tried to seek 10 seconds ahead, the runtime would throw away all the buffer data instead of reusing the 10 seconds

already loaded. This behavior forced the runtime to request new data from the server much more frequently and cause

poor playback performance on slow connections.

The figure below illustrates how the buffer behaved in the previous releases of the runtime. The bufferTime property

specifies the number of seconds to preload ahead so that if connection drops the buffer can be used without stopping

the video:

76OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Optimizing network interaction

Last updated 8/21/2012

Buffer behavior before the smart seeking feature

With the smart seeking feature, the runtime now uses the buffer to provide instant backward or forward seeking when

the user scrubs the video. The following figure illustrates the new behavior:

Forward seeking with the smart seeking feature

Backward seeking with the smart seeking feature

Smart seeking reuses the buffer when the user seeks forward or backward, so that playback experience is faster and

smoother. One of the benefits of this new behavior is bandwidth savings for video publishers. However, if the seeking

is outside the buffer limits, standard behavior occurs, and the runtime requests new data from the server.

Note: This behavior does not apply to progressive video download.

To use smart seeking, set NetStream.inBufferSeek to true.

External content

Divide your application into multiple SWF files.

Mobile devices can have limited access to the network. To load your content quickly, divide your application into

multiple SWF files. Try to reuse code logic and assets through the entire application. For example, consider an

application that has been divided into multiple SWF files, as shown in the following diagram:

Buffer

Playhead

Buffer

Playhead

Buffer

Playhead

77OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Optimizing network interaction

Last updated 8/21/2012

Application divided into multiple SWF files

In this example, each SWF file contains its own copy of the same bitmap. This duplication can be avoided by using a

runtime shared library, as the following diagram illustrates:

Using a runtime shared library

Using this technique, a runtime shared library is loaded to make the bitmap available to the other SWF files. The

ApplicationDomain class stores all class definitions that have been loaded, and makes them available at runtime

through the getDefinition() method.

A runtime shared library can also contain all the code logic. The entire application can be updated at runtime without

recompiling. The following code loads a runtime shared library and extracts the definition contained in the SWF file

at runtime. This technique can be used with fonts, bitmaps, sounds, or any ActionScript class:

portfolio.swf

10KB 10KB

infos.swf

10KB

main.swf

Total size 40KB

preload.swf

10KB

contact.swf

portfolio.swf infos.swf

main.swf

Total size 10KB

preload.swf

10KB

library.swf

contact.swf

78OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Optimizing network interaction

Last updated 8/21/2012

// Create a Loader object
var loader:Loader = new Loader();

// Listen to the Event.COMPLETE event
loader.contentLoaderInfo.addEventListener(Event.COMPLETE, loadingComplete);

// Load the SWF file
loader.load(new URLRequest("library.swf"));
var classDefinition:String = "Logo";

function loadingComplete(e:Event):void
{

var objectLoaderInfo:LoaderInfo = LoaderInfo (e.target);

// Get a reference to the loaded SWF file application domain
var appDomain:ApplicationDomain = objectLoaderInfo.applicationDomain;

// Check whether the definition is available
if (appDomain.hasDefinition(classDefinition))
{

// Extract definition
var importLogo:Class = Class (appDomain.getDefinition(classDefinition));

// Instantiate logo
var instanceLogo:BitmapData = new importLogo(0,0);

// Add it to the display list
addChild (new Bitmap (instanceLogo));

} else trace ("The class definition " + classDefinition + " is not available.");
}

Getting the definition can be made easier by loading the class definitions in the loading SWF file’s application domain:

79OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Optimizing network interaction

Last updated 8/21/2012

// Create a Loader object
var loader:Loader = new Loader();

// Listen to the Event.COMPLETE event
loader.contentLoaderInfo.addEventListener (Event.COMPLETE, loadingComplete);

// Load the SWF file
loader.load (new URLRequest ("rsl.swf"), new LoaderContext (false,
ApplicationDomain.currentDomain));
var classDefinition:String = "Logo";

function loadingComplete (e:Event):void
{

var objectLoaderInfo:LoaderInfo = LoaderInfo (e.target);

// Get a reference to the current SWF file application domain
var appDomain:ApplicationDomain = ApplicationDomain.currentDomain;

// Check whether the definition is available
if (appDomain.hasDefinition(classDefinition))
{

// Extract definition
var importLogo:Class = Class (appDomain.getDefinition(classDefinition));

// Instantiate it
var instanceLogo:BitmapData = new importLogo(0,0);

// Add it to the display list
addChild (new Bitmap (instanceLogo));

} else trace ("The class definition " + classDefinition + " is not available.");
}

Now the classes available in the loaded SWF file can be used by calling the getDefinition() method on the current

application domain. You can also access the classes by calling the getDefinitionByName() method. This technique

saves bandwidth by loading fonts and large assets only once. Assets are never exported in any other SWF files. The only

limitation is that the application has to be tested and run through the loader.swf file. This file loads the assets first, and

then loads the different SWF files that compose the application.

Input output errors

Provide event handlers and error messages for IO errors.

On a mobile device, the network can be less reliable as on a desktop computer connected to high-speed Internet.

Accessing external content on mobile devices has two constraints: availability and speed. Therefore, make sure that

assets are lightweight and add handlers for every IO_ERROR event to provide feedback to the user.

For example, imagine a user is browsing your website on a mobile device and suddenly loses the network connection

between two metro stations. A dynamic asset was being loaded when the connection is lost. On the desktop, you can

use an empty event listener to prevent a runtime error from showing, because this scenario would almost never

happen. However, on a mobile device you must handle the situation with more than just a simple empty listener.

The following code does not respond to an IO error. Do not use it as it is shown:

80OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Optimizing network interaction

Last updated 8/21/2012

 var loader:Loader = new Loader();
loader.contentLoaderInfo.addEventListener(Event.COMPLETE, onComplete);
addChild(loader);
loader.load(new URLRequest ("asset.swf"));

function onComplete(e:Event):void
{

var loader:Loader = e.currentTarget.loader;
loader.x = (stage.stageWidth - e.currentTarget.width) >> 1;
loader.y = (stage.stageHeight - e.currentTarget.height) >> 1;

}

A better practice is to handle such a failure and provide an error message for the user. The following code handles it

properly:

 var loader:Loader = new Loader();
 loader.contentLoaderInfo.addEventListener (Event.COMPLETE, onComplete);
 loader.contentLoaderInfo.addEventListener (IOErrorEvent.IO_ERROR, onIOError);
 addChild (loader);
 loader.load (new URLRequest ("asset.swf"));

 function onComplete (e:Event):void
 {
 var loader:Loader = e.currentTarget.loader;
 loader.x = (stage.stageWidth - e.currentTarget.width) >> 1;
 loader.y = (stage.stageHeight - e.currentTarget.height) >> 1;
 }

 function onIOError (e:IOErrorEvent):void
 {
 // Show a message explaining the situation and try to reload the asset.
 // If it fails again, ask the user to retry when the connection will be restored
 }

As a best practice, remember to offer a way for the user to load the content again. This behavior can be implemented

in the onIOError() handler.

Flash Remoting

Use Flash Remoting and AMF for optimized client-server data communication.

You can use XML to load remote content into SWF files. However, XML is plain text that the runtime loads and parses.

XML works best for applications that load a limited amount of content. If you are developing an application that loads

a large amount of content, consider using the Flash Remoting technology and Action Message Format (AMF).

81OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Optimizing network interaction

Last updated 8/21/2012

AMF is a binary format used to share data between a server and the runtime. Using AMF reduces the size of the data

and improves the speed of transmission. Because AMF is a native format for the runtime, sending AMF data to the

runtime avoids memory-intensive serialization and deserialization on the client side. The remoting gateway handles

these tasks. When sending an ActionScript data type to a server, the remoting gateway handles the serialization for you

on the server side. The gateway also sends you the corresponding data type. This data type is a class created on the

server that exposes a set of methods that can be called from the runtime. Flash Remoting gateways include ZendAMF,

FluorineFX, WebORB, and BlazeDS, an official open-source Java Flash Remoting gateway from Adobe.

The following figure illustrates the concept of Flash Remoting:

Flash Remoting

The following example uses the NetConnection class to connect to a Flash Remoting gateway:

// Create the NetConnection object
var connection:NetConnection = new NetConnection ();

// Connect to a Flash Remoting gateway
connection.connect ("http://www.yourserver.com/remotingservice/gateway.php");

// Asynchronous handlers for incoming data and errors
function success (incomingData:*):void
{

trace(incomingData);
}

function error (error:*):void
{

trace("Error occured");
}

// Create an object that handles the mapping to success and error handlers
var serverResult:Responder = new Responder (success, error);

// Call the remote method
connection.call ("org.yourserver.HelloWorld.sayHello", serverResult, "Hello there ?");

Connecting to a remoting gateway is straightforward. However, using Flash Remoting can be made even easier by

using the RemoteObject class included in the Adobe® Flex® SDK.

Note: External SWC files, such as the ones from the Flex framework, can be used inside an Adobe® Flash® Professional

project. Using SWC files allows you to use the RemoteObject class and its dependencies without using the rest of the Flex

SDK. Advanced developers can even communicate with a remoting gateway directly through the raw Socket class, if

necessary.

HTTP

ZendAMF

Web ORB

RubyAMF

FluorineFX

BlazeDS

Service
(PHP Class,
Java, C# ...)

AMF

82OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Optimizing network interaction

Last updated 8/21/2012

Unnecessary network operations

Cache assets locally after loading them, instead of loading them from the network each time they’re needed.

If your application loads assets such as media or data, cache the assets by saving them to the local device. For assets

that change infrequently, consider updating the cache at intervals. For example, your application could check for a new

version of an image file once per day, or check for fresh data once every two hours.

You can cache assets in several ways, depending on the type and nature of the asset:

• Media assets such as images and video: save the files to the file system using the File and FileStream classes

• Individual data values or small sets of data: save the values as local shared objects using the SharedObject class

• Larger sets of data: save the data in a local database, or serialize the data and save it to a file

For caching data values, the open-source AS3CoreLib project includes a ResourceCache class that does the loading and

caching work for you.

https://github.com/mikechambers/as3corelib

83

Last updated 8/21/2012

Chapter 7: Working with media

Video

For information about optimizing the performance of video on mobile devices, see Optimize web content for mobile

delivery on the Adobe Developer Connection web site.

In particular, see the sections called:

• Playing video on mobile devices

• Code samples

These sections contain information for developing video players for mobile devices, such as:

• Video encoding guidelines

• Best practices

• How to profile the video player’s performance

• A reference video player implementation

StageVideo

Use the StageVideo class to take advantage of hardware acceleration to present video.

For information about using the StageVideo object, see Using the StageVideo class for hardware accelerated

presentation in the ActionScript 3.0 Developer's Guide.

Audio

Starting with Flash Player 9.0.115.0 and AIR 1.0, the runtime can play AAC files (AAC Main, AAC LC, and SBR). A

simple optimization can be made by using AAC files instead of mp3 files. The AAC format offers better quality and

smaller file size than the mp3 format at an equivalent bitrate. Reducing file size saves bandwidth, which is an important

factor on mobile devices that don’t offer high-speed Internet connections.

Hardware Audio Decoding

Similar to video decoding, audio decoding requires high CPU cycles and can be optimized by leveraging available

hardware on the device. Flash Player 10.1 and AIR 2.5 can detect and use hardware audio drivers to improve

performance when decoding AAC files (LC, HE/SBR profiles) or mp3 files (PCM is not supported). CPU usage is

reduced dramatically, which results in less battery usage and makes the CPU available for other operations.

Note: When using the AAC format, the AAC Main profile is not supported on devices due to the lack of hardware support

on most devices.

http://www.adobe.com/go/fpmobiletools
http://www.adobe.com/go/fpmobiletools
http://www.adobe.com/go/learn_as3_stageVideo_en
http://www.adobe.com/go/learn_as3_stageVideo_en
http://www.adobe.com/go/learn_cs5_as3devguide_en

84OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Working with media

Last updated 8/21/2012

Hardware audio decoding is transparent to the user and developer. When the runtime starts playing audio streams, it

checks the hardware first, as it does with video. If a hardware driver is available and the audio format is supported,

hardware audio decoding takes place. However, even if the incoming AAC or mp3 stream decoding can be handled

through the hardware, sometimes the hardware cannot process all effects. For example, sometimes the hardware does

not process audio mixing and resampling, depending on hardware limitations.

85

Last updated 8/21/2012

Chapter 8: SQL database performance

Application design for database performance

Don’t change a SQLStatement object’s text property after executing it. Instead, use one SQLStatement instance for

each SQL statement and use statement parameters to provide different values.

Before any SQL statement is executed, the runtime prepares (compiles) it to determine the steps that are performed

internally to carry out the statement. When you call SQLStatement.execute() on a SQLStatement instance that

hasn’t executed previously, the statement is automatically prepared before it is executed. On subsequent calls to the

execute() method, as long as the SQLStatement.text property hasn’t changed the statement is still prepared.

Consequently, it executes faster.

To gain the maximum benefit from reusing statements, if values change between statement executions, use statement

parameters to customize your statement. (Statement parameters are specified using the SQLStatement.parameters

associative array property.) Unlike changing the SQLStatement instance’s text property, if you change the values of

statement parameters the runtime isn’t required to prepare the statement again.

When you’re reusing a SQLStatement instance, your application must store a reference to the SQLStatement instance

once it has been prepared. To keep a reference to the instance, declare the variable as a class-scope variable rather than

a function-scope variable. One good way to make the SQLStatement a class-scope variable is to structure your

application so that a SQL statement is wrapped in a single class. A group of statements that are executed in

combination can also be wrapped in a single class. (This technique is known as using the Command design pattern.)

By defining the instances as member variables of the class, they persist as long as the instance of the wrapper class exists

in the application. At a minimum, you can simply define a variable containing the SQLStatement instance outside a

function so that the instance persists in memory. For example, declare the SQLStatement instance as a member

variable in an ActionScript class or as a non-function variable in a JavaScript file. You can then set the statement’s

parameter values and call its execute() method when you want to actually run the query.

Use database indexes to improve execution speed for data comparing and sorting.

When you create an index for a column, the database stores a copy of that column’s data. The copy is kept sorted in

numeric or alphabetical order. The sorting allows the database to quickly match values (such as when using the

equality operator) and sort result data using the ORDER BY clause.

Database indexes are kept continuously up-to-date, which causes data change operations (INSERT or UPDATE) on

that table to be slightly slower. However, the increase in data retrieval speed can be significant. Because of this

performance tradeoff, don’t simply index every column of every table. Instead, use a strategy for defining your indexes.

Use the following guidelines to plan your indexing strategy:

• Index columns that are used in joining tables, in WHERE clauses, or ORDER BY clauses

• If columns are frequently used together, index them together in a single index

• For a column that contains text data that you retrieve sorted alphabetically, specify COLLATE NOCASE collation

for the index

Consider pre-compiling SQL statements during application idle times.

86OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

SQL database performance

Last updated 8/21/2012

The first time a SQL statement executes, it is slower because the SQL text is prepared (compiled) by the database

engine. Because preparing and executing a statement can be demanding, one strategy is to preload initial data and then

execute other statements in the background:

1 Load the data that the application needs first.

2 When the initial startup operations of your application have completed, or at another “idle” time in the application,

execute other statements.

For example, suppose your application doesn’t access the database at all to display its initial screen. In that case, wait

until that screen displays before opening the database connection. Finally, create the SQLStatement instances and

execute any that you can.

Alternatively, suppose that when your application starts up it immediately displays some data, such as the result of a

particular query. In that case, go ahead and execute the SQLStatement instance for that query. After the initial data is

loaded and displayed, create SQLStatement instances for other database operations and if possible execute other

statements that are needed later.

In practice, if you are reusing SQLStatement instances, the additional time required to prepare the statement is only a

one-time cost. It probably doesn’t have a large impact on overall performance.

Group multiple SQL data change operations in a transaction.

Suppose you’re executing many SQL statements that involve adding or changing data (INSERT or UPDATE statements).

You can get a significant increase in performance by executing all the statements within an explicit transaction. If you

don’t explicitly begin a transaction, each of the statements runs in its own automatically created transaction. After each

transaction (each statement) finishes executing, the runtime writes the resulting data to the database file on the disk.

On the other hand, consider what happens if you explicitly create a transaction and execute the statements in the

context of that transaction. The runtime makes all the changes in memory, then writes all the changes to the database

file at one time when the transaction is committed. Writing the data to disk is usually the most time-intensive part of

the operation. Consequently, writing to the disk one time rather than once per SQL statement can improve

performance significantly.

Process large SELECT query results in parts using the SQLStatement class’s execute() method (with prefetch

parameter) and next() method.

Suppose you execute a SQL statement that retrieves a large result set. The application then processes each row of data

in a loop. For example, it formats the data or creates objects from it. Processing that data can take a large amount of

time, which could cause rendering problems such as a frozen or non-responsive screen. As described in

“Asynchronous operations” on page 71, one solution is to divide up the work into chunks. The SQL database API

makes dividing up data processing easy to do.

The SQLStatement class’s execute() method has an optional prefetch parameter (the first parameter). If you

provide a value, it specifies the maximum number of result rows that the database returns when the execution

completes:

dbStatement.addEventListener(SQLEvent.RESULT, resultHandler);
dbStatement.execute(100); // 100 rows maximum returned in the first set

Once the first set of result data returns, you can call the next() method to continue executing the statement and

retrieve another set of result rows. Like the execute() method, the next() method accepts a prefetch parameter to

specify a maximum number of rows to return:

87OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

SQL database performance

Last updated 8/21/2012

// This method is called when the execute() or next() method completes
function resultHandler(event:SQLEvent):void
{

var result:SQLResult = dbStatement.getResult();
if (result != null)
{

var numRows:int = result.data.length;
for (var i:int = 0; i < numRows; i++)
{

// Process the result data
}

if (!result.complete)
{

dbStatement.next(100);
}

}
}

You can continue calling the next() method until all the data loads. As shown in the previous listing, you can

determine when the data has all loaded. Check the complete property of the SQLResult object that’s created each time

the execute() or next() method finishes.

Note: Use the prefetch parameter and the next() method to divide up the processing of result data. Don’t use this

parameter and method to limit a query’s results to a portion of its result set. If you only want to retrieve a subset of rows

in a statement’s result set, use the LIMIT clause of the SELECT statement. If the result set is large, you can still use the

prefetch parameter and next() method to divide up the processing of the results.

Consider using multiple asynchronous SQLConnection objects with a single database to execute multiple statements

simultaneously.

When a SQLConnection object is connected to a database using the openAsync() method, it runs in the background

rather than the main runtime execution thread. In addition, each SQLConnection runs in its own background thread.

By using multiple SQLConnection objects, you can effectively run multiple SQL statements simultaneously.

There are also potential downsides to this approach. Most importantly, each additional SQLStatement object requires

additional memory. In addition, simultaneous executions also cause more work for the processor, especially on

machines that only have one CPU or CPU core. Because of these concerns, this approach is not recommended for use

on mobile devices.

An additional concern is that the potential benefit from reusing SQLStatement objects can be lost because a

SQLStatement object is linked to a single SQLConnection object. Consequently, the SQLStatement object can’t be

reused if its associated SQLConnection object is already in use.

If you choose to use multiple SQLConnection objects connected to a single database, keep in mind that each one

executes its statements in its own transaction. Be sure to account for these separate transactions in any code that

changes data, such as adding, modifying, or deleting data.

Paul Robertson has created an open-source code library that helps you incorporate the benefits of using multiple

SQLConnection objects while minimizing the potential downsides. The library uses a pool of SQLConnection objects

and manages the associated SQLStatement objects. In this way it ensures that SQLStatement objects are reused, and

multiple SQLConnection objects are available to execute multiple statements simultaneously. For more information

and to download the library, visit http://probertson.com/projects/air-sqlite/.

http://probertson.com/projects/air-sqlite/

88OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

SQL database performance

Last updated 8/21/2012

Database file optimization

Avoid database schema changes.

If possible, avoid changing the schema (table structure) of a database once you’ve added data into the database’s tables.

Normally a database file is structured with the table definitions at the start of the file. When you open a connection to

a database, the runtime loads those definitions. When you add data to database tables, that data is added to the file after

the table definition data. However, if you make schema changes, the new table definition data is mixed in with the table

data in the database file. For example, adding a column to a table or adding a new table can result in the mixing of types

of data. If the table definition data is not all located at the beginning of the database file, it takes longer to open a

connection to the database. The connection is slower to open because it takes the runtime longer to read the table

definition data from different parts of the file.

Use the SQLConnection.compact() method to optimize a database after schema changes.

If you must make schema changes, you can call the SQLConnection.compact() method after completing the changes.

This operation restructures the database file so that the table definition data is located together at the start of the file.

However, the compact() operation can be time-intensive, especially as a database file grows larger.

Unnecessary database run-time processing

Use a fully qualified table name (including database name) in your SQL statement.

Always explicitly specify the database name along with each table name in a statement. (Use “main” if it’s the main

database). For example, the following code includes an explicit database name main:

SELECT employeeId
FROM main.employees

Explicitly specifying the database name prevents the runtime from having to check each connected database to find

the matching table. It also prevents the possibility of having the runtime choose the wrong database. Follow this rule

even if a SQLConnection is only connected to a single database. Behind the scenes, the SQLConnection is also

connected to a temporary database that is accessible through SQL statements.

Use explicit column names in SQL INSERT and SELECT statements.

The following examples show the use of explicit column names:

INSERT INTO main.employees (firstName, lastName, salary)
VALUES ("Bob", "Jones", 2000)

SELECT employeeId, lastName, firstName, salary
FROM main.employees

Compare the preceding examples to the following ones. Avoid this style of code:

89OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

SQL database performance

Last updated 8/21/2012

-- bad because column names aren't specified
INSERT INTO main.employees
VALUES ("Bob", "Jones", 2000)

-- bad because it uses a wildcard
SELECT *
FROM main.employees

Without explicit column names, the runtime has to do extra work to figure out the column names. If a SELECT

statement uses a wildcard rather than explicit columns, it causes the runtime to retrieve extra data. This extra data

requires extra processing and creates extra object instances that aren’t needed.

Avoid joining the same table multiple times in a statement, unless you are comparing the table to itself.

As SQL statements grow large, you can unintentionally join a database table to the query multiple times. Often, the

same result could be achieved by using the table only once. Joining the same table multiple times is likely to happen if

you are using one or more views in a query. For example, you could be joining a table to the query, and also a view that

includes the data from that table. The two operations would cause more than one join.

Efficient SQL syntax

Use JOIN (in the FROM clause) to include a table in a query instead of a subquery in the WHERE clause. This tip applies

even if you only need a table’s data for filtering, not for the result set.

Joining multiple tables in the FROM clause performs better than using a subquery in a WHERE clause.

Avoid SQL statements that can’t take advantage of indexes. These statements include the use of aggregate functions

in a subquery, a UNION statement in a subquery, or an ORDER BY clause with a UNION statement.

An index can greatly increase the speed of processing a SELECT query. However, certain SQL syntax prevents the

database from using indexes, forcing it to use the actual data for searching or sorting operations.

Consider avoiding the LIKE operator, especially with a leading wildcard character as in LIKE('%XXXX%').

Because the LIKE operation supports the use of wildcard searches, it performs slower than using exact-match

comparisons. In particular, if you start the search string with a wildcard character, the database can’t use indexes at all

in the search. Instead, the database must search the full text of each row of the table.

Consider avoiding the IN operator. If the possible values are known beforehand, the IN operation can be written using

AND or OR for faster execution.

The second of the following two statements executes faster. It is faster because it uses simple equality expressions

combined with OR instead of using the IN() or NOT IN() statements:

-- Slower
SELECT lastName, firstName, salary
FROM main.employees
WHERE salary IN (2000, 2500)

-- Faster
SELECT lastName, firstName, salary
FROM main.employees
WHERE salary = 2000

OR salary = 2500

90OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

SQL database performance

Last updated 8/21/2012

Consider alternative forms of a SQL statement to improve performance.

As demonstrated by previous examples, the way a SQL statement is written can also affect database performance.

There are often multiple ways to write a SQL SELECT statement to retrieve a particular result set. In some cases, one

approach runs notably faster than another one. In addition to the preceding suggestions, you can learn more about

different SQL statements and their performance from dedicated resources on the SQL language.

SQL statement performance

Directly compare alternate SQL statements to determine which is faster.

The best way to compare the performance of multiple versions of a SQL statement is to test them directly with your

database and data.

The following development tools provide execution times when running SQL statements. Use them to compare the

speed of alternative versions of statements:

• Run! (AIR SQL query authoring and testing tool, by Paul Robertson)

• Lita (SQLite Administration Tool, by David Deraedt)

http://probertson.com/projects/run-air-sqlite-query-testing-tool/
http://www.dehats.com/drupal/?q=node/58

91

Last updated 8/21/2012

Chapter 9: Benchmarking and deploying

Benchmarking

There are a number of tools available for benchmarking applications. You can use the Stats class and the

PerformanceTest class, developed by Flash community members. You can also use the profiler in Adobe® Flash®

Builder™, and the FlexPMD tool.

The Stats class

To profile your code at runtime using the release version of the runtime, without an external tool, you can use the Stats

class developed by mr. doob from the Flash community. You can download the Stats class at the following address:

https://github.com/mrdoob/Hi-ReS-Stats.

The Stats class allows you to track the following things:

• Frames rendered per second (the higher the number, the better).

• Milliseconds used to render a frame (the lower number, the better).

• The amount of memory the code is using. If it increases on each frame, it is possible that your application has a

memory leak. It is important to investigate the possible memory leak.

• The maximum amount of memory the application used.

Once downloaded, the Stats class can be used with the following compact code:

import net.hires.debug.*;
addChild(new Stats());

By using conditional compilation in Adobe® Flash® Professional or Flash Builder, you can enable the Stats object:

CONFIG::DEBUG
{

import net.hires.debug.*;
addChild(new Stats());

}

By switching the value of the DEBUG constant, you can enable or disable the compilation of the Stats object. The same

approach can be used to replace any code logic that you do not want to be compiled in your application.

The PerformanceTest class

To profile ActionScript code execution, Grant Skinner has developed a tool that can be integrated into a unit testing

workflow. You pass a custom class to the PerformanceTest class, which performs a series of tests on your code. The

PerformanceTest class allows you to benchmark different approaches easily. The PerformanceTest class can be

downloaded at the following address: http://www.gskinner.com/blog/archives/2009/04/as3_performance.html.

Flash Builder profiler

Flash Builder is shipped with a profiler that allows you to benchmark your code with a high level of detail.

Note: Use the debugger version of Flash Player to access the profiler, or you’ll get an error message.

https://github.com/mrdoob/Hi-ReS-Stats
http://www.gskinner.com/blog/archives/2009/04/as3_performance.html

92OPTIMIZING PERFORMANCE FOR THE FLASH PLATFORM

Benchmarking and deploying

Last updated 8/21/2012

The profiler can also be used with content produced in Adobe Flash Professional. To do that, load the compiled SWF

file from an ActionScript or Flex project into Flash Builder, and you can run the profiler on it. For more information

on the profiler, see “Profiling Flex applications” in Using Flash Builder 4.

FlexPMD

Adobe Technical Services has released a tool called FlexPMD, which allows you to audit the quality of ActionScript 3.0

code. FlexPMD is an ActionScript tool, which is similar to JavaPMD. FlexPMD improves code quality by auditing an

ActionScript 3.0 or Flex source directory. It detects poor coding practices, such as unused code, overly complex code,

overly lengthy code, and incorrect use of the Flex component life cycle.

FlexPMD is an Adobe open-source project available at the following address:

http://opensource.adobe.com/wiki/display/flexpmd/FlexPMD. An Eclipse plug-in is also available at the following

address: http://opensource.adobe.com/wiki/display/flexpmd/FlexPMD+Eclipse+plugin.

FlexPMD makes it easier to audit code and to make sure that your code is clean and optimized. The real power of

FlexPMD lies in its extensibility. As a developer, you can create your own sets of rules to audit any code. For example,

you can create a set of rules that detect heavy use of filters, or any other poor coding practice that you want to catch.

Deploying

When exporting the final version of your application in Flash Builder, it is important to make sure that you export the

release version of it. Exporting a release version removes the debugging information contained in the SWF file.

Removing the debugging information makes the SWF file size smaller and helps the application to run faster.

To export the release version of your project, use the Project panel in Flash Builder and the Export Release Build

option.

Note: When compiling your project in Flash Professional, you do not have the option of choosing between release and

debugging version. The compiled SWF file is a release version by default.

http://www.adobe.com/go/learn_flex4_usingflashbuilder_en
http://opensource.adobe.com/wiki/display/flexpmd/FlexPMD
http://opensource.adobe.com/wiki/display/flexpmd/FlexPMD+Eclipse+plugin

	Legal notices
	Contents
	Chapter 1: Introduction
	Runtime code execution fundamentals
	Perceived performance versus actual performance
	Target your optimizations

	Chapter 2: Conserving memory
	Display objects
	Primitive types
	Reusing objects
	Object pooling

	Freeing memory
	Using bitmaps
	Bitmap downsampling
	BitmapData single reference

	Filters and dynamic bitmap unloading
	Direct mipmapping
	Using 3D effects
	Text objects and memory
	Event model versus callbacks

	Chapter 3: Minimizing CPU usage
	Flash Player 10.1 enhancements for CPU usage
	Pause, throttle, and resume
	Instance management

	Sleep mode
	Freezing and unfreezing objects
	Activate and deactivate events
	Mouse interactions
	Timers versus ENTER_FRAME events
	Tweening syndrome

	Chapter 4: ActionScript 3.0 performance
	Vector class versus Array class
	Drawing API
	Event capture and bubbling
	Working with pixels
	Regular expressions
	Miscellaneous optimizations

	Chapter 5: Rendering performance
	Redraw regions
	Off-stage content
	Movie quality
	Alpha blending
	Application frame rate
	Adaptive frame rate

	Bitmap caching
	Cached bitmap transform matrixes in AIR

	Manual bitmap caching
	Isolating behaviors

	Rendering text objects
	GPU
	GPU rendering in Flash Player applications
	GPU rendering in mobile AIR applications
	Tips for optimizing GPU rendering performance

	Asynchronous operations
	Transparent windows
	Vector shape smoothing

	Chapter 6: Optimizing network interaction
	Enhancements for network interaction
	Circular buffering
	Smart seeking

	External content
	Input output errors
	Flash Remoting
	Unnecessary network operations

	Chapter 7: Working with media
	Video
	StageVideo
	Audio
	Hardware Audio Decoding

	Chapter 8: SQL database performance
	Application design for database performance
	Database file optimization
	Unnecessary database run-time processing
	Efficient SQL syntax
	SQL statement performance

	Chapter 9: Benchmarking and deploying
	Benchmarking
	The Stats class
	The PerformanceTest class
	Flash Builder profiler
	FlexPMD

	Deploying

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000630072006500610074006500200049006e0073007400720075006300740069006f006e0061006c00200043006f006d006d0075006e00690063006100740069006f006e002700730020005000720069006e0074002d006f006e002d00440065006d0061006e0064002000500044004600200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e000d005b007500700064006100740065006400200033002d007300650070002d0032003000300034005d>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

