
HTML Developer’s Guide for
ADOBE® AIR®

Last updated 9/28/2011

Legal notices

Legal notices
For legal notices, see http://help.adobe.com/en_US/legalnotices/index.html.

http://help.adobe.com/en_US/legalnotices/index.html

iii

Last updated 9/28/2011

Contents

Chapter 1: About the HTML environment

Overview of the HTML environment . 2

AIR and WebKit . 5

Chapter 2: Programming HTML and JavaScript in AIR

Creating an HTML-based AIR application . 20

An example application and security implications . 21

Avoiding security-related JavaScript errors . 22

Accessing AIR API classes from JavaScript . 27

About URLs in AIR . 29

Embedding SWF content in HTML . 29

Using ActionScript libraries within an HTML page . 32

Converting Date and RegExp objects . 34

Cross-scripting content in different security sandboxes . 34

Chapter 3: Handling HTML-related events in AIR

HTMLLoader events . 39

How AIR class-event handling differs from other event handling in the HTML DOM . 40

Adobe AIR event objects . 41

Handling runtime events with JavaScript . 44

Chapter 4: Scripting the AIR HTML Container

Display properties of HTMLLoader objects . 47

Accessing the HTML history list . 50

Setting the user agent used when loading HTML content . 50

Setting the character encoding to use for HTML content . 51

Defining browser-like user interfaces for HTML content . 51

Chapter 5: Working with vectors

Basics of vectors . 64

Creating vectors . 65

Inserting elements into a vector . 66

Retrieving values and removing vector elements . 66

Properties and methods of Vector objects . 67

Example: Using AIR APIs that require vectors . 67

Chapter 6: AIR security

AIR security basics . 69

Installation and updates . 69

HTML security in Adobe AIR . 73

Scripting between content in different domains . 79

Writing to disk . 80

Working securely with untrusted content . 81

ivHTML DEVELOPER’S GUIDE FOR ADOBE AIR

Contents

Last updated 9/28/2011

Best security practices for developers . 82

Code signing . 83

Chapter 7: Working with AIR native windows

Basics of native windows in AIR . 84

Creating windows . 90

Managing windows . 97

Listening for window events . 105

Displaying full-screen windows . 106

Chapter 8: Display screens in AIR

Basics of display screens in AIR . 109

Enumerating the screens . 110

Chapter 9: Working with menus

Menu basics . 113

Creating native menus (AIR) . 118

About context menus in HTML (AIR) . 120

Displaying pop-up native menus (AIR) . 121

Handling menu events . 122

Native menu example: Window and application menu (AIR) . 123

Using the MenuBuilder framework . 126

Chapter 10: Taskbar icons in AIR

About taskbar icons . 140

Dock icons . 141

System Tray icons . 141

Window taskbar icons and buttons . 143

Chapter 11: Working with the file system

Using the AIR file system API . 145

Chapter 12: Drag and drop in AIR

Drag and drop in HTML . 177

Dragging data out of an HTML element . 180

Dragging data into an HTML element . 181

Example: Overriding the default HTML drag-in behavior . 182

Handling file drops in non-application HTML sandboxes . 184

Dropping file promises . 185

Chapter 13: Copy and paste

Basics of copy-and-paste . 195

Reading from and writing to the system clipboard . 196

HTML copy and paste in AIR . 196

Clipboard data formats . 198

Chapter 14: Working with local SQL databases in AIR

About local SQL databases . 204

Creating and modifying a database . 208

vHTML DEVELOPER’S GUIDE FOR ADOBE AIR

Contents

Last updated 9/28/2011

Manipulating SQL database data . 212

Using synchronous and asynchronous database operations . 232

Using encryption with SQL databases . 237

Strategies for working with SQL databases . 253

Chapter 15: Encrypted local storage

Adding data to the encrypted local store . 257

Accessing data in the encrypted local store . 258

Removing data from the encrypted local store . 258

Chapter 16: Working with byte arrays

Reading and writing a ByteArray . 259

ByteArray example: Reading a .zip file . 265

Chapter 17: Adding PDF content in AIR

Detecting PDF Capability . 270

Loading PDF content . 271

Scripting PDF content . 271

Known limitations for PDF content in AIR . 273

Chapter 18: Working with sound

Basics of working with sound . 275

Understanding the sound architecture . 276

Loading external sound files . 276

Working with embedded sounds . 279

Working with streaming sound files . 279

Working with dynamically generated audio . 280

Playing sounds . 281

Working with sound metadata . 285

Accessing raw sound data . 286

Capturing sound input . 289

Chapter 19: Client system environment

Basics of the client system environment . 293

Using the System class . 294

Using the Capabilities class . 294

Chapter 20: AIR application invocation and termination

Application invocation . 296

Capturing command line arguments . 297

Invoking an AIR application on user login . 299

Invoking an AIR application from the browser . 300

Application termination . 302

Chapter 21: Working with AIR runtime and operating system information

Managing file associations . 304

Getting the runtime version and patch level . 305

Detecting AIR capabilities . 305

Tracking user presence . 306

viHTML DEVELOPER’S GUIDE FOR ADOBE AIR

Contents

Last updated 9/28/2011

Chapter 22: Sockets

TCP sockets . 307

UDP sockets (AIR) . 312

IPv6 addresses . 314

Chapter 23: HTTP communications

Loading external data . 316

Web service requests . 323

Opening a URL in another application . 328

Sending a URL to a server . 330

Chapter 24: Communicating with other Flash Player and AIR instances

About the LocalConnection class . 331

Sending messages between two applications . 332

Connecting to content in different domains and to AIR applications . 332

Chapter 25: ActionScript basics for JavaScript developers

Differences between ActionScript and JavaScript: an overview . 335

ActionScript 3.0 data types . 336

ActionScript 3.0 classes, packages, and namespaces . 337

Required parameters and default values in ActionScript 3.0 functions . 339

ActionScript 3.0 event listeners . 339

Chapter 26: SQL support in local databases

Supported SQL syntax . 342

Data type support . 362

Chapter 27: SQL error detail messages, ids, and arguments

1

Last updated 9/28/2011

Chapter 1: About the HTML environment

Adobe AIR 1.0 and later

AIR uses WebKit (www.webkit.org), also used by the Safari web browser, to parse, layout, and render HTML and

JavaScript content. The built-in host classes and objects of AIR provide an API for features traditionally associated

with desktop applications. Such features include reading and writing files and managing windows. Adobe AIR also

inherits APIs from the Adobe® Flash® Player, which include features like sound and binary sockets.

Important: New versions of the Adobe AIR runtime may include updated versions of WebKit. A WebKit update in a

new version of AIR may result in unexpected changes in a deployed AIR application. These changes may affect the

behavior or appearance of HTML content in an application. For example, improvements or corrections in WebKit

rendering may change the layout of elements in an application’s user interface. For this reason, it is highly

recommended that you provide an update mechanism in your application. Should you need to update your application

due to a change in the WebKit version included in AIR, the AIR update mechanism can prompt the user to install the

new version of your application.

The following table lists the version of WebKit used in each release of AIR. The closest corresponding release of the

Safari web browser is also given:

You can always determine the installed version of WebKit by examining the default user agent string returned by a

HTMLLoader object:

air.trace(window.htmlLoader.userAgent);

Keep in mind that the version of WebKit used in AIR is not identical to the open source version. Some features are not

supported in AIR and the AIR version can include security and bug fixes not yet available in the corresponding WebKit

version. See “WebKit features not supported in AIR” on page 16.

Using the AIR APIs in HTML content is entirely optional. You can program an AIR application entirely with HTML

and JavaScript. Most existing HTML applications should run with few changes (assuming they use HTML, CSS, DOM,

and JavaScript features compatible with WebKit).

AIR gives you complete control over the look-and-feel of your application. You can make your application look like a

native desktop application. You can turn off the window chrome provided by the operating system and implement

your own controls for moving, resizing, and closing windows. You can even run without a window.

Because AIR applications run directly on the desktop, with full access to the file system, the security model is more

stringent than the security model of the typical web browser. In AIR, only content loaded from the application

installation directory is placed in the application sandbox. The application sandbox has the highest level of privilege

and allows access to the AIR APIs. AIR places other content into isolated sandboxes based on where that content came

from. Files loaded from the file system go into a local sandbox. Files loaded from the network using the http: or https:

protocols go into a sandbox based on the domain of the remote server. Content in these non-application sandboxes is

prohibited from accessing any AIR API and runs much as it would in a typical web browser.

AIR version WebKit version Safari version

1.0 420 2.04

1.1 523 3.04

1.5 526.9 4.0 Beta

2.0 531.9 4.03

2.5 531.9 4.03

2.6 531.9 4.03

http://www.webkit.org

2HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

HTML content in AIR does not display SWF or PDF content if alpha, scaling, or transparency settings are applied. For

more information, see “Considerations when loading SWF or PDF content in an HTML page” on page 48 and

“Window transparency” on page 87.

More Help topics

Webkit DOM Reference

Safari HTML Reference

Safari CSS Reference

www.webkit.org

Overview of the HTML environment

Adobe AIR 1.0 and later

Adobe AIR provides a complete browser-like JavaScript environment with an HTML renderer, document object

model, and JavaScript interpreter. The JavaScript environment is represented by the AIR HTMLLoader class. In

HTML windows, an HTMLLoader object contains all HTML content, and is, in turn, contained within a

NativeWindow object. The NativeWindow object allows an application to script the properties and behavior of native

operating system window displayed on the user’s desktop.

About the JavaScript environment and its relationship to the AIR host

Adobe AIR 1.0 and later

The following diagram illustrates the relationship between the JavaScript environment and the AIR run-time

environment. Although only a single native window is shown, an AIR application can contain multiple windows. (And

a single window can contain multiple HTMLLoader objects.)

http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/WebKitDOMRef/index.html#//apple_ref/doc/uid/TP40006089
http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/SafariHTMLRef/Introduction.html
http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/SafariCSSRef/Introduction.html
http://www.webkit.org

3HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

The JavaScript environment has its own Document and Window objects. JavaScript code can interact with the AIR run-time environment
through the runtime, nativeWindow, and htmlLoader properties. ActionScript code can interact with the JavaScript environment through the
window property of an HTMLLoader object, which is a reference to the JavaScript Window object. In addition, both ActionScript and JavaScript
objects can listen for events dispatched by both AIR and JavaScript objects.

The runtime property provides access to AIR API classes, allowing you to create new AIR objects as well as access class

(also called static) members. To access an AIR API, you add the name of the class, with package, to the runtime

property. For example, to create a File object, you would use the statement:

 var file = new window.runtime.filesystem.File();

Note: The AIR SDK provides a JavaScript file, AIRAliases.js, that defines more convenient aliases for the most

commonly used AIR classes. When you import this file, you can use the shorter form air.Class instead of

window.runtime.package.Class. For example, you could create the File object with new air.File().

The NativeWindow object provides properties for controlling the desktop window. From within an HTML page, you

can access the containing NativeWindow object with the window.nativeWindow property.

The HTMLLoader object provides properties, methods, and events for controlling how content is loaded and

rendered. From within an HTML page, you can access the parent HTMLLoader object with the window.htmlLoader

property.

AIR Run-time Environment

NativeWindow

HTMLLoader

JavaScript
Environment

window

window

document

body

h1 div

p

table

head

htmlLoader

nativeWindow

runtime

4HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

Important: Only pages installed as part of an application have the htmlLoader, nativeWindow, or runtime properties

and only when loaded as the top-level document. These properties are not added when a document is loaded into a frame

or iframe. (A child document can access these properties on the parent document as long as it is in the same security

sandbox. For example, a document loaded in a frame could access the runtime property of its parent with

parent.runtime.)

About security

Adobe AIR 1.0 and later

AIR executes all code within a security sandbox based on the domain of origin. Application content, which is limited

to content loaded from the application installation directory, is placed into the application sandbox. Access to the run-

time environment and the AIR APIs are only available to HTML and JavaScript running within this sandbox. At the

same time, most dynamic evaluation and execution of JavaScript is blocked in the application sandbox after all

handlers for the page load event have returned.

You can map an application page into a non-application sandbox by loading the page into a frame or iframe and setting

the AIR-specific sandboxRoot and documentRoot attributes of the frame. By setting the sandboxRoot value to an

actual remote domain, you can enable the sandboxed content to cross-script content in that domain. Mapping pages

in this way can be useful when loading and scripting remote content, such as in a mash-up application.

Another way to allow application and non-application content to cross-script each other, and the only way to give non-

application content access to AIR APIs, is to create a sandbox bridge. A parent-to-child bridge allows content in a child

frame, iframe, or window to access designated methods and properties defined in the application sandbox. Conversely,

a child-to-parent bridge allows application content to access designated methods and properties defined in the sandbox

of the child. Sandbox bridges are established by setting the parentSandboxBridge and childSandboxBridge

properties of the window object. For more information, see “HTML security in Adobe AIR” on page 73 and “HTML

frame and iframe elements” on page 12.

About plug-ins and embedded objects

Adobe AIR 1.0 and later

AIR supports the Adobe® Acrobat® plug-in. Users must have Acrobat or Adobe® Reader® 8.1 (or better) to display PDF

content. The HTMLLoader object provides a property for checking whether a user’s system can display PDF. SWF file

content can also be displayed within the HTML environment, but this capability is built in to AIR and does not use an

external plug-in.

No other WebKit plug-ins are supported in AIR.

More Help topics

“HTML security in Adobe AIR” on page 73

“HTML Sandboxes” on page 5

“HTML frame and iframe elements” on page 12

“JavaScript Window object” on page 10

“The XMLHttpRequest object” on page 6

“Adding PDF content in AIR” on page 270

5HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

AIR and WebKit

Adobe AIR 1.0 and later

Adobe AIR uses the open source WebKit engine, also used in the Safari web browser. AIR adds several extensions to

allow access to the runtime classes and objects as well as for security. In addition, WebKit itself adds features not

included in the W3C standards for HTML, CSS, and JavaScript.

Only the AIR additions and the most noteworthy WebKit extensions are covered here; for additional documentation

on non-standard HTML, CSS, and JavaScript, see www.webkit.org and developer.apple.com. For standards

information, see the W3C web site. Mozilla also provides a valuable general referenceon HTML, CSS, and DOM topics

(of course, the WebKit and Mozilla engines are not identical).

JavaScript in AIR

Flash Player 9 and later, Adobe AIR 1.0 and later

AIR makes several changes to the typical behavior of common JavaScript objects. Many of these changes are made to

make it easier to write secure applications in AIR. At the same time, these differences in behavior mean that some

common JavaScript coding patterns, and existing web applications using those patterns, might not always execute as

expected in AIR. For information on correcting these types of issues, see “Avoiding security-related JavaScript errors”

on page 22.

HTML Sandboxes

Adobe AIR 1.0 and later

AIR places content into isolated sandboxes according to the origin of the content. The sandbox rules are consistent

with the same-origin policy implemented by most web browsers, as well as the rules for sandboxes implemented by

the Adobe Flash Player. In addition, AIR provides a new application sandbox type to contain and protect application

content. See Security sandboxes for more information on the types of sandboxes you may encounter when developing

AIR applications.

Access to the run-time environment and AIR APIs are only available to HTML and JavaScript running within the

application sandbox. At the same time, however, dynamic evaluation and execution of JavaScript, in its various forms,

is largely restricted within the application sandbox for security reasons. These restrictions are in place whether or not

your application actually loads information directly from a server. (Even file content, pasted strings, and direct user

input may be untrustworthy.)

The origin of the content in a page determines the sandbox to which it is consigned. Only content loaded from the

application directory (the installation directory referenced by the app: URL scheme) is placed in the application

sandbox. Content loaded from the file system is placed in the local-with-file system or the local-trusted sandbox, which

allows access and interaction with content on the local file system, but not remote content. Content loaded from the

network is placed in a remote sandbox corresponding to its domain of origin.

To allow an application page to interact freely with content in a remote sandbox, the page can be mapped to the same

domain as the remote content. For example, if you write an application that displays map data from an Internet service,

the page of your application that loads and displays content from the service could be mapped to the service domain.

The attributes for mapping pages into a remote sandbox and domain are new attributes added to the frame and iframe

HTML elements.

http://www.webkit.org
http://developer.apple.com/internet/safari/
http://www.w3.org/
http://developer.mozilla.org/en/docs/Main_Page

6HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

To allow content in a non-application sandbox to safely use AIR features, you can set up a parent sandbox bridge. To

allow application content to safely call methods and access properties of content in other sandboxes, you can set up a

child sandbox bridge. Safety here means that remote content cannot accidentally get references to objects, properties,

or methods that are not explicitly exposed. Only simple data types, functions, and anonymous objects can be passed

across the bridge. However, you must still avoid explicitly exposing potentially dangerous functions. If, for example,

you exposed an interface that allowed remote content to read and write files anywhere on a user’s system, then you

might be giving remote content the means to do considerable harm to your users.

JavaScript eval() function

Adobe AIR 1.0 and later

Use of the eval() function is restricted within the application sandbox once a page has finished loading. Some uses

are permitted so that JSON-formatted data can be safely parsed, but any evaluation that results in executable

statements results in an error. “Code restrictions for content in different sandboxes” on page 76 describes the allowed

uses of the eval() function.

Function constructors

Adobe AIR 1.0 and later

In the application sandbox, function constructors can be used before a page has finished loading. After all page load

event handlers have finished, new functions cannot be created.

Loading external scripts

Adobe AIR 1.0 and later

HTML pages in the application sandbox cannot use the script tag to load JavaScript files from outside of the

application directory. For a page in your application to load a script from outside the application directory, the page

must be mapped to a non-application sandbox.

The XMLHttpRequest object

Adobe AIR 1.0 and later

AIR provides an XMLHttpRequest (XHR) object that applications can use to make data requests. The following

example illustrates a simple data request:

 xmlhttp = new XMLHttpRequest();
 xmlhttp.open("GET", "http:/www.example.com/file.data", true);
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {
 //do something with data...
 }
 }
 xmlhttp.send(null);

In contrast to a browser, AIR allows content running in the application sandbox to request data from any domain. The

result of an XHR that contains a JSON string can be evaluated into data objects unless the result also contains

executable code. If executable statements are present in the XHR result, an error is thrown and the evaluation attempt

fails.

To prevent accidental injection of code from remote sources, synchronous XHRs return an empty result if made before

a page has finished loading. Asynchronous XHRs will always return after a page has loaded.

7HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

By default, AIR blocks cross-domain XMLHttpRequests in non-application sandboxes. A parent window in the

application sandbox can choose to allow cross-domain requests in a child frame containing content in a non-

application sandbox by setting allowCrossDomainXHR, an attribute added by AIR, to true in the containing frame or

iframe element:

 <iframe id="mashup"
 src="http://www.example.com/map.html"
 allowCrossDomainXHR="true"
 </iframe>

Note: When convenient, the AIR URLStream class can also be used to download data.

If you dispatch an XMLHttpRequest to a remote server from a frame or iframe containing application content that has

been mapped to a remote sandbox, make sure that the mapping URL does not mask the server address used in the

XHR. For example, consider the following iframe definition, which maps application content into a remote sandbox

for the example.com domain:

<iframe id="mashup"
 src="http://www.example.com/map.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="http://www.example.com/"
 allowCrossDomainXHR="true"
 </iframe>

Because the sandboxRoot attribute remaps the root URL of the www.example.com address, all requests are loaded

from the application directory and not the remote server. Requests are remapped whether they derive from page

navigation or from an XMLHttpRequest.

To avoid accidentally blocking data requests to your remote server, map the sandboxRoot to a subdirectory of the

remote URL rather than the root. The directory does not have to exist. For example, to allow requests to the

www.example.com to load from the remote server rather than the application directory, change the previous iframe to

the following:

<iframe id="mashup"
 src="http://www.example.com/map.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="http://www.example.com/air/"
 allowCrossDomainXHR="true"
 </iframe>

In this case, only content in the air subdirectory is loaded locally.

For more information on sandbox mapping see “HTML frame and iframe elements” on page 12 and “HTML security

in Adobe AIR” on page 73.

Cookies

Adobe AIR 1.0 and later

In AIR applications, only content in remote sandboxes (content loaded from http: and https: sources) can use cookies

(the document.cookie property). In the application sandbox, other means for storing persistent data are available,

including the EncryptedLocalStore, SharedObject, and FileStream classes.

8HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

The Clipboard object

Adobe AIR 1.0 and later

The WebKit Clipboard API is driven with the following events: copy, cut, and paste. The event object passed in these

events provides access to the clipboard through the clipboardData property. Use the following methods of the

clipboardData object to read or write clipboard data:

JavaScript code outside the application sandbox can only access the clipboard through theses events. However, content

in the application sandbox can access the system clipboard directly using the AIR Clipboard class. For example, you

could use the following statement to get text format data on the clipboard:

var clipping = air.Clipboard.generalClipboard.getData("text/plain",
 air.ClipboardTransferMode.ORIGINAL_ONLY);

The valid data MIME types are:

Important: Only content in the application sandbox can access file data present on the clipboard. If non-application

content attempts to access a file object from the clipboard, a security error is thrown.

For more information on using the clipboard, see “Copy and paste” on page 195 and Using the Pasteboard from

JavaScript (Apple Developer Center).

Drag and Drop

Adobe AIR 1.0 and later

Drag-and-drop gestures into and out of HTML produce the following DOM events: dragstart, drag, dragend,

dragenter, dragover, dragleave, and drop. The event object passed in these events provides access to the dragged

data through the dataTransfer property. The dataTransfer property references an object that provides the same

methods as the clipboardData object associated with a clipboard event. For example, you could use the following

function to get text format data from a drop event:

function onDrop(dragEvent){
 return dragEvent.dataTransfer.getData("text/plain",
 air.ClipboardTransferMode.ORIGINAL_ONLY);
 }

The dataTransfer object has the following important members:

Method Description

clearData(mimeType) Clears the clipboard data. Set the mimeType parameter to the MIME type of the data to clear.

getData(mimeType) Get the clipboard data. This method can only be called in a handler for the paste event. Set the mimeType

parameter to the MIME type of the data to return.

setData(mimeType, data) Copy data to the clipboard. Set the mimeType parameter to the MIME type of the data.

MIME type Value

Text "text/plain"

HTML "text/html"

URL "text/uri-list"

Bitmap "image/x-vnd.adobe.air.bitmap"

File list "application/x-vnd.adobe.air.file-list"

http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/CopyAndPaste.html#//apple_ref/doc/uid/30001234
http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/CopyAndPaste.html#//apple_ref/doc/uid/30001234

9HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

For more information on adding support for drag-and-drop to an AIR application see “Drag and drop in AIR” on

page 177 and Using the Drag-and-Drop from JavaScript (Apple Developer Center).

innerHTML and outerHTML properties

Adobe AIR 1.0 and later

AIR places security restrictions on the use of the innerHTML and outerHTML properties for content running in the

application sandbox. Before the page load event, as well as during the execution of any load event handlers, use of the

innerHTML and outerHTML properties is unrestricted. However, once the page has loaded, you can only use

innerHTML or outerHTML properties to add static content to the document. Any statement in the string assigned to

innerHTML or outerHTML that evaluates to executable code is ignored. For example, if you include an event callback

attribute in an element definition, the event listener is not added. Likewise, embedded <script> tags are not

evaluated. For more information, see the “HTML security in Adobe AIR” on page 73.

Document.write() and Document.writeln() methods

Adobe AIR 1.0 and later

Use of the write() and writeln() methods is not restricted in the application sandbox before the load event of the

page. However, once the page has loaded, calling either of these methods does not clear the page or create a new one.

In a non-application sandbox, as in most web browsers, calling document.write() or writeln() after a page has

finished loading clears the current page and opens a new, blank one.

Document.designMode property

Adobe AIR 1.0 and later

Set the document.designMode property to a value of on to make all elements in the document editable. Built-in editor

support includes text editing, copy, paste, and drag-and-drop. Setting designMode to on is equivalent to setting the

contentEditable property of the body element to true. You can use the contentEditable property on most

HTML elements to define which sections of a document are editable. See “HTML contentEditable attribute” on

page 14 for additional information.

Member Description

clearData(mimeType) Clears the data. Set the mimeType parameter to the MIME type of the data representation to clear.

getData(mimeType) Get the dragged data. This method can only be called in a handler for the drop event. Set the mimeType

parameter to the MIME type of the data to get.

setData(mimeType, data) Set the data to be dragged. Set the mimeType parameter to the MIME type of the data.

types An array of strings containing the MIME types of all data representations currently available in the

dataTransfer object.

effectsAllowed Specifies whether the data being dragged can be copied, moved, linked, or some combination thereof. Set the

effectsAllowed property in the handler for the dragstart event.

dropEffect Specifies which of the allowed drop effects are supported by a drag target. Set the dropEffect property in

the handler for the dragEnter event. During the drag, the cursor changes to indicate which effect would

occur if the user released the mouse. If no dropEffect is specified, an effectsAllowed property effect is

chosen. The copy effect has priority over the move effect, which itself has priority over the link effect. The user

can modify the default priority using the keyboard.

http://developer.apple.com/documentation/AppleApplications/Conceptual/SafariJSProgTopics/Tasks/DragAndDrop.html#//apple_ref/doc/uid/30001233

10HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

unload events (for body and frameset objects)

Adobe AIR 1.0 and later

In the top-level frameset or body tag of a window (including the main window of the application), do not use the

unload event to respond to the window (or application) being closed. Instead, use exiting event of the

NativeApplication object (to detect when an application is closing). Or use the closing event of the NativeWindow

object (to detect when a window is closing). For example, the following JavaScript code displays a message

("Goodbye.") when the user closes the application:

var app = air.NativeApplication.nativeApplication;
 app.addEventListener(air.Event.EXITING, closeHandler);
 function closeHandler(event)
 {
 alert("Goodbye.");
 }

However, scripts can successfully respond to the unload event caused by navigation of a frame, iframe, or top-level

window content.

Note: These limitations may be removed in a future version of Adobe AIR.

JavaScript Window object

Adobe AIR 1.0 and later

The Window object remains the global object in the JavaScript execution context. In the application sandbox, AIR

adds new properties to the JavaScript Window object to provide access to the built-in classes of AIR, as well as

important host objects. In addition, some methods and properties behave differently depending on whether they are

within the application sandbox or not.

Window.runtime property The runtime property allows you to instantiate and use the built-in runtime classes from

within the application sandbox. These classes include the AIR and Flash Player APIs (but not, for example, the Flex

framework). For example, the following statement creates an AIR file object:

 var preferencesFile = new window.runtime.flash.filesystem.File();

The AIRAliases.js file, provided in the AIR SDK, contains alias definitions that allow you to shorten such references.

For example, when AIRAliases.js is imported into a page, a File object can be created with the following statement:

var preferencesFile = new air.File();

The window.runtime property is only defined for content within the application sandbox and only for the parent

document of a page with frames or iframes.

See “Using the AIRAliases.js file” on page 28.

Window.nativeWindow property The nativeWindow property provides a reference to the underlying native window

object. With this property, you can script window functions and properties such as screen position, size, and visibility,

and handle window events such as closing, resizing, and moving. For example, the following statement closes the

window:

 window.nativeWindow.close();

Note: The window control features provided by the NativeWindow object overlap the features provided by the JavaScript

Window object. In such cases, you can use whichever method you find most convenient.

The window.nativeWindow property is only defined for content within the application sandbox and only for the

parent document of a page with frames or iframes.

11HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

Window.htmlLoader property The htmlLoader property provides a reference to the AIR HTMLLoader object that

contains the HTML content. With this property, you can script the appearance and behavior of the HTML

environment. For example, you can use the htmlLoader.paintsDefaultBackground property to determine whether

the control paints a default, white background:

 window.htmlLoader.paintsDefaultBackground = false;

Note: The HTMLLoader object itself has a window property, which references the JavaScript Window object of the HTML

content it contains. You can use this property to access the JavaScript environment through a reference to the containing

HTMLLoader.

The window.htmlLoader property is only defined for content within the application sandbox and only for the parent

document of a page with frames or iframes.

Window.parentSandboxBridge and Window.childSandboxBridge properties The parentSandboxBridge and

childSandboxBridge properties allow you to define an interface between a parent and a child frame. For more

information, see “Cross-scripting content in different security sandboxes” on page 34.

Window.setTimeout() and Window.setInterval() functions AIR places security restrictions on use of the

setTimeout() and setInterval() functions within the application sandbox. You cannot define the code to be

executed as a string when calling setTimeout() or setInterval(). You must use a function reference. For more

information, see “setTimeout() and setInterval()” on page 25.

Window.open() function When called by code running in a non-application sandbox, the open() method only opens

a window when called as a result of user interaction (such as a mouse click or keypress). In addition, the window title

is prefixed with the application title (to prevent windows opened by remote content from impersonating windows

opened by the application). For more information, see the “Restrictions on calling the JavaScript window.open()

method” on page 78.

air.NativeApplication object

Adobe AIR 1.0 and later

The NativeApplication object provides information about the application state, dispatches several important

application-level events, and provides useful functions for controlling application behavior. A single instance of the

NativeApplication object is created automatically and can be accessed through the class-defined

NativeApplication.nativeApplication property.

To access the object from JavaScript code you could use:

var app = window.runtime.flash.desktop.NativeApplication.nativeApplication;

Or, if the AIRAliases.js script has been imported, you could use the shorter form:

var app = air.NativeApplication.nativeApplication;

The NativeApplication object can only be accessed from within the application sandbox. For more information about

the NativeApplication object, see “Working with AIR runtime and operating system information” on page 304.

The JavaScript URL scheme

Adobe AIR 1.0 and later

Execution of code defined in a JavaScript URL scheme (as in href="javascript:alert('Test')") is blocked within

the application sandbox. No error is thrown.

12HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

HTML in AIR

Adobe AIR 1.0 and later

AIR and WebKit define a couple of non-standard HTML elements and attributes, including:

“HTML frame and iframe elements” on page 12

“HTML element event handlers” on page 14

HTML frame and iframe elements

Adobe AIR 1.0 and later

AIR adds new attributes to the frame and iframe elements of content in the application sandbox:

sandboxRoot attribute The sandboxRoot attribute specifies an alternate, non-application domain of origin for the file

specified by the frame src attribute. The file is loaded into the non-application sandbox corresponding to the specified

domain. Content in the file and content loaded from the specified domain can cross-script each other.

Important: If you set the value of sandboxRoot to the base URL of the domain, all requests for content from that domain

are loaded from the application directory instead of the remote server (whether that request results from page navigation,

from an XMLHttpRequest, or from any other means of loading content).

documentRoot attribute The documentRoot attribute specifies the local directory from which to load URLs that

resolve to files within the location specified by sandboxRoot.

When resolving URLs, either in the frame src attribute, or in content loaded into the frame, the part of the URL

matching the value specified in sandboxRoot is replaced with the value specified in documentRoot. Thus, in the

following frame tag:

<iframe src="http://www.example.com/air/child.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="http://www.example.com/air/"/>

child.html is loaded from the sandbox subdirectory of the application installation folder. Relative URLs in

child.html are resolved based on sandbox directory. Note that any files on the remote server at

www.example.com/air are not accessible in the frame, since AIR would attempt to load them from the app:/sandbox/

directory.

allowCrossDomainXHR attribute Include allowCrossDomainXHR="allowCrossDomainXHR" in the opening frame

tag to allow content in the frame to make XMLHttpRequests to any remote domain. By default, non-application

content can only make such requests to its own domain of origin. There are serious security implications involved in

allowing cross-domain XHRs. Code in the page is able to exchange data with any domain. If malicious content is

somehow injected into the page, any data accessible to code in the current sandbox can be compromised. Only enable

cross-domain XHRs for pages that you create and control and only when cross-domain data loading is truly necessary.

Also, carefully validate all external data loaded by the page to prevent code injection or other forms of attack.

Important: If the allowCrossDomainXHR attribute is included in a frame or iframe element, cross-domain XHRs are

enabled (unless the value assigned is "0" or starts with the letters "f" or "n"). For example, setting allowCrossDomainXHR

to "deny" would still enable cross-domain XHRs. Leave the attribute out of the element declaration altogether if you do

not want to enable cross-domain requests.

ondominitialize attribute Specifies an event handler for the dominitialize event of a frame. This event is an AIR-

specific event that fires when the window and document objects of the frame have been created, but before any scripts

have been parsed or document elements created.

13HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

The frame dispatches the dominitialize event early enough in the loading sequence that any script in the child page

can reference objects, variables, and functions added to the child document by the dominitialize handler. The

parent page must be in the same sandbox as the child to directly add or access any objects in a child document.

However, a parent in the application sandbox can establish a sandbox bridge to communicate with content in a non-

application sandbox.

The following examples illustrate use of the iframe tag in AIR:

Place child.html in a remote sandbox, without mapping to an actual domain on a remote server:

<iframe src="http://localhost/air/child.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="http://localhost/air/"/>

Place child.html in a remote sandbox, allowing XMLHttpRequests only to www.example.com:

<iframe src="http://www.example.com/air/child.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="http://www.example.com/air/"/>

Place child.html in a remote sandbox, allowing XMLHttpRequests to any remote domain:

<iframe src="http://www.example.com/air/child.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="http://www.example.com/air/"
 allowCrossDomainXHR="allowCrossDomainXHR"/>

Place child.html in a local-with-file-system sandbox:

<iframe src="file:///templates/child.html"
 documentRoot="app:/sandbox/"
 sandboxRoot="app-storage:/templates/"/>

Place child.html in a remote sandbox, using the dominitialize event to establish a sandbox bridge:

<html>
 <head>
 <script>
 var bridgeInterface = {};
 bridgeInterface.testProperty = "Bridge engaged";
 function engageBridge(){
 document.getElementById("sandbox").parentSandboxBridge = bridgeInterface;
 }
 </script>
 </head>
 <body>
 <iframe id="sandbox"
 src="http://www.example.com/air/child.html"
 documentRoot="app:/"
 sandboxRoot="http://www.example.com/air/"
 ondominitialize="engageBridge()"/>
 </body>
 </html>

The following child.html document illustrates how child content can access the parent sandbox bridge:

14HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

<html>
 <head>
 <script>
 document.write(window.parentSandboxBridge.testProperty);
 </script>
 </head>
 <body></body>
 </html>

For more information, see “Cross-scripting content in different security sandboxes” on page 34 and “HTML security

in Adobe AIR” on page 73.

HTML element event handlers

Adobe AIR 1.0 and later

DOM objects in AIR and WebKit dispatch some events not found in the standard DOM event model. The following

table lists the related event attributes you can use to specify handlers for these events:

HTML contentEditable attribute

Adobe AIR 1.0 and later

You can add the contentEditable attribute to any HTML element to allow users to edit the content of the element.

For example, the following example HTML code sets the entire document as editable, except for first p element:

Callback attribute name Description

oncontextmenu Called when a context menu is invoked, such as through a right-click

or command-click on selected text.

oncopy Called when a selection in an element is copied.

oncut Called when a selection in an element is cut.

ondominitialize Called when the DOM of a document loaded in a frame or iframe is

created, but before any DOM elements are created or scripts parsed.

ondrag Called when an element is dragged.

ondragend Called when a drag is released.

ondragenter Called when a drag gesture enters the bounds of an element.

ondragleave Called when a drag gesture leaves the bounds of an element.

ondragover Called continuously while a drag gesture is within the bounds of an

element.

ondragstart Called when a drag gesture begins.

ondrop Called when a drag gesture is released while over an element.

onerror Called when an error occurs while loading an element.

oninput Called when text is entered into a form element.

onpaste Called when an item is pasted into an element.

onscroll Called when the content of a scrollable element is scrolled.

onselectstart Called when a selection begins.

15HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

<html>
 <head/>
 <body contentEditable="true">
 <h1>de Finibus Bonorum et Malorum</h1>
 <p contentEditable="false">Sed ut perspiciatis unde omnis iste natus error.</p>
 <p>At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis.</p>
 </body>
 </html>

Note: If you set the document.designMode property to on, then all elements in the document are editable, regardless of

the setting of contentEditable for an individual element. However, setting designMode to off, does not disable

editing of elements for which contentEditable is true. See “Document.designMode property” on page 9 for additional

information.

Data: URLs

Adobe AIR 2 and later

AIR supports data: URLs for the following elements:

• img

• input type=”image”

• CSS rules allowing images (such as background-image)

Data URLs allow you to insert binary image data directly into a CSS or HTML document as a base64-encoded string.

The following example uses a data: URL as a repeating background:

<html>
<head>
<style>
body {
background-
image:url('
0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAAZQTFRF%2F6cA%2F%2F%2F%2Fgxp3lwAAAAJ0Uk5T%2FwDltzBKAAA
BF0lEQVR42uzZQQ7CMAxE0e%2F7X5oNCyRocWzPiJbMBZ6qpIljE%2BnwklgKG7kwUjc2IkIaxkY0CPdEsCCasws6ShX
BgmBBmEagpXQQLAgWBAuSY2gaKaWPYEGwIEwg0FRmECwIFoQeQjJlhJWUEFazjFDJCkI5WYRWMgjtfEGYyQnCXD4jTCd
m1zmngFpBFznwVNi5RPSbwbWnpYr%2BBHi%2FtCTfgPLEPL7jBctAKBRptXJ8M%2BprIuZKu%2BUKcg4YK1PLz7kx4bS
qHyPaT4d%2B28OCJJiRBo4FCQsSA0bziT3XubMgYUG6fc5fatmGBQkL0hoJ1IaZMiQsSFiQ8vRscTjlQOI2iHZwtpHuf
%2BJAYiOiJSkj8Z%2FIQ4ABANvXGLd3%2BZMrAAAAAElFTkSuQmCC');
background-repeat:repeat;
}
</style>
</head>
<body>
</body>
</html>

When using data: URLS, be aware that extra whitespace is significant. For example, the data string must be entered as

a single, unbroken line. Otherwise, the line breaks are treated as part of the data and the image cannot be decoded.

16HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

CSS in AIR

Adobe AIR 1.0 and later

WebKit supports several extended CSS properties. Many of these extensions use the prefix: -webkit. Note that some

of these extensions are experimental in nature and may be removed from a future version of WebKit. For more

information about the Webkit support for CSS and its extensions to CSS, see Safari CSS Reference.

WebKit features not supported in AIR

Adobe AIR 1.0 and later

AIR does not support the following features available in WebKit or Safari 4:

• Cross-domain messaging via window.postMessage (AIR provides its own cross-domain communication APIs)

• CSS variables

• Web Open Font Format (WOFF) and SVG fonts.

• HTML video and audio tags

• Media device queries

• Offline application cache

• Printing (AIR provides its own PrintJob API)

• Spelling and grammar checkers

• SVG

• WAI-ARIA

• WebSockets (AIR provides its own socket APIs)

• Web workers

• WebKit SQL API (AIR provides its own API)

• WebKit geolocation API (AIR provides its own geolocation API on supported devices)

• WebKit multi-file upload API

• WebKit touch events (AIR provides its own touch events)

• Wireless Markup Language (WML)

The following lists contain specific JavaScript APIs, HTML elements, and CSS properties and values that AIR does not

support:

Unsupported JavaScript Window object members:

• applicationCache()

• console

• openDatabase()

• postMessage()

• document.print()

Unsupported HTML tags:

• audio

http://developer.apple.com/safari/library/documentation/AppleApplications/Reference/SafariCSSRef/Introduction.html

17HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

• video

Unsupported HTML attributes:

• aria-*

• draggable

• formnovalidate

• list

• novalidate

• onbeforeload

• onhashchange

• onorientationchange

• onpagehide

• onpageshow

• onpopstate

• ontouchstart

• ontouchmove

• ontouchend

• ontouchcancel

• onwebkitbeginfullscreen

• onwebkitendfullscreen

• pattern

• required

• sandbox

Unsupported JavaScript events:

• beforeload

• hashchange

• orientationchange

• pagehide

• pageshow

• popstate

• touchstart

• touchmove

• touchend

• touchcancel

• webkitbeginfullscreen

• webkitendfullscreen

18HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

Unsupported CSS properties:

• background-clip

• background-origin (use -webkit-background-origin)

• background-repeat-x

• background-repeat-y

• background-size (use -webkit-background-size)

• border-bottom-left-radius

• border-bottom-right-radius

• border-radius

• border-top-left-radius

• border-top-right-radius

• text-rendering

• -webkit-animation-play-state

• -webkit-background-clip

• -webkit-color-correction

• -webkit-font-smoothing

Unsupported CSS values:

• appearance property values:

• media-volume-slider-container

• media-volume-slider

• media-volume-sliderthumb

• outer-spin-button

• border-box (background-clip and background-origin)

• contain (background-size)

• content-box (background-clip and background-origin)

• cover (background-size)

• list property values:

• afar

• amharic

• amharic-abegede

• cjk-earthly-branch

• cjk-heavenly-stem

• ethiopic

• ethiopic-abegede

• ethiopic-abegede-am-et

• ethiopic-abegede-gez

• ethiopic-abegede-ti-er

19HTML DEVELOPER’S GUIDE FOR ADOBE AIR

About the HTML environment

Last updated 9/28/2011

• ethiopic-abegede-ti-et

• ethiopic-halehame-aa-er

• ethiopic-halehame-aa-et

• ethiopic-halehame-am-et

• ethiopic-halehame-gez

• ethiopic-halehame-om-et

• ethiopic-halehame-sid-et

• ethiopic-halehame-so-et

• ethiopic-halehame-ti-er

• ethiopic-halehame-ti-et

• ethiopic-halehame-tig

• hangul

• hangul-consonant

• lower-norwegian

• oromo

• sidama

• somali

• tigre

• tigrinya-er

• tigrinya-er-abegede

• tigrinya-et

• tigrinya-et-abegede

• upper-greek

• upper-norwegian

• -wap-marquee (display property)

20

Last updated 9/28/2011

Chapter 2: Programming HTML and
JavaScript in AIR

Adobe AIR 1.0 and later

A number of programming topics are unique to developing Adobe® AIR® applications with HTML and JavaScript. The

following information is important whether you are programming an HTML-based AIR application or programming

a SWF-based AIR application that runs HTML and JavaScript using the HTMLLoader class (or mx:HTML Flex™

component).

Creating an HTML-based AIR application

Adobe AIR 1.0 and later

The process of developing an AIR application is much the same as that of developing an HTML-based web application.

Application structure remains page-based, with HTML providing the document structure and JavaScript providing

the application logic. In addition, an AIR application requires an application descriptor file, which contains metadata

about the application and identifies the root file of the application.

If you are using Adobe® Dreamweaver®, you can test and package an AIR application directly from the Dreamweaver

user interface. If you are using the AIR SDK, you can test an AIR application using the command-line ADL utility.

ADL reads the application descriptor and launches the application. You can package the application into an AIR

installation file using the command-line ADT utility.

The basic steps to creating an AIR application are:

1 Create the application descriptor file. The content element identifies the root page of the application, which is

loaded automatically when your application is launched.

2 Create the application pages and code.

3 Test the application using the ADL utility or Dreamweaver.

4 Package the application into an AIR installation file with the ADT utility or Dreamweaver.

21HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

An example application and security implications

Adobe AIR 1.0 and later

 The following HTML code uses uses the filesystem APIs to list the files and directories in the user’s desktop directory.

Here’s the HTML code for the application:

 <html>
 <head>
 <title>Sample application</title>
 <script type="text/javascript" src="AIRAliases.js"></script>
 <script>
 function getDesktopFileList()
 {
 var log = document.getElementById("log");
 var files = air.File.desktopDirectory.getDirectoryListing();
 for (i = 0; i < files.length; i++)
 {
 log.innerHTML += files[i].name + "
";
 }
 }
 </script>
 </head>
 <body onload="getDesktopFileList();" style="padding: 10px">
 <h2>Files and folders on the desktop:</h2>
 <div id="log" style="width: 450px; height: 200px; overflow-y: scroll;" />
 </body>
 </html>

You also must set up an application descriptor file and test the application using the AIR Debug Launcher (ADL)

application.

You could use most of the sample code in a web browser. However, there are a few lines of code that are specific to the

runtime.

The getDesktopFileList() method uses the File class, which is defined in the runtime APIs. The first script tag

in the application loads the AIRAliases.js file (supplied with the AIR SDK), which lets you easily access the AIR APIs.

(For example, the example code accesses the AIR File class using the syntax air.File.) For details, see “Using the

AIRAliases.js file” on page 28.

22HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

The File.desktopDirectory property is a File object (a type of object defined by the runtime). A File object is a

reference to a file or directory on the user’s computer. The File.desktopDirectory property is a reference to the

user’s desktop directory. The getDirectoryListing() method is defined for any File object and returns an array of

File objects. The File.desktopDirectory.getDirectoryListing() method returns an array of File objects

representing files and directories on the user’s desktop.

Each File object has a name property, which is the filename as a string. The for loop in the getDesktopFileList()

method iterates through the files and directories on the user’s desktop directory and appends their names to the

innerHTML property of a div object in the application.

Important security rules when using HTML in AIR applications

Adobe AIR 1.0 and later

The files you install with the AIR application have access to the AIR APIs. For security reasons, content from other

sources do not. For example, this restriction prevents content from a remote domain (such as http://example.com)

from reading the contents the user’s desktop directory (or worse).

Because there are security loopholes that can be exploited through calling the eval() function (and related APIs),

content installed with the application, by default, is restricted from using these methods. However, some Ajax

frameworks use the calling the eval() function and related APIs.

To properly structure content to work in an AIR application, you must take the rules for the security restrictions on

content from different sources into account. Content from different sources is placed in separate security

classifications, called sandboxes (see Security sandboxes). By default, content installed with the application is installed

in a sandbox known as the application sandbox, and this grants it access to the AIR APIs. The application sandbox is

generally the most secure sandbox, with restrictions designed to prevent the execution of untrusted code.

The runtime allows you to load content installed with your application into a sandbox other than the application

sandbox. Content in non-application sandboxes operates in a security environment similar to that of a typical web

browser. For example, code in non-application sandboxes can use eval() and related methods (but at the same time

is not allowed to access the AIR APIs). The runtime includes ways to have content in different sandboxes communicate

securely (without exposing AIR APIs to non-application content, for example). For details, see “Cross-scripting

content in different security sandboxes” on page 34.

If you call code that is restricted from use in a sandbox for security reasons, the runtime dispatches a JavaScript error:

“Adobe AIR runtime security violation for JavaScript code in the application security sandbox.”

To avoid this error, follow the coding practices described in the next section, “Avoiding security-related JavaScript

errors” on page 22.

For more information, see “HTML security in Adobe AIR” on page 73.

Avoiding security-related JavaScript errors

Adobe AIR 1.0 and later

If you call code that is restricted from use in a sandbox due to these security restrictions, the runtime dispatches a

JavaScript error: “Adobe AIR runtime security violation for JavaScript code in the application security sandbox.” To

avoid this error, follow these coding practices.

23HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

Causes of security-related JavaScript errors

Adobe AIR 1.0 and later

Code executing in the application sandbox is restricted from most operations that involve evaluating and executing

strings once the document load event has fired and any load event handlers have exited. Attempting to use the

following types of JavaScript statements that evaluate and execute potentially insecure strings generates JavaScript

errors:

• eval() function

• setTimeout() and setInterval()

• Function constructor

In addition, the following types of JavaScript statements fail without generating an unsafe JavaScript error:

• javascript: URLs

• Event callbacks assigned through onevent attributes in innerHTML and outerHTML statements

• Loading JavaScript files from outside the application installation directory

• document.write() and document.writeln()

• Synchronous XMLHttpRequests before the load event or during a load event handler

• Dynamically created script elements

Note: In some restricted cases, evaluation of strings is permitted. See “Code restrictions for content in different

sandboxes” on page 76for more information.

Adobe maintains a list of Ajax frameworks known to support the application security sandbox, at

http://www.adobe.com/go/airappsandboxframeworks.

The following sections describe how to rewrite scripts to avoid these unsafe JavaScript errors and silent failures for

code running in the application sandbox.

Mapping application content to a different sandbox

Adobe AIR 1.0 and later

In most cases, you can rewrite or restructure an application to avoid security-related JavaScript errors. However, when

rewriting or restructuring is not possible, you can load the application content into a different sandbox using the

technique described in “Loading application content into a non-application sandbox” on page 35. If that content also

must access AIR APIs, you can create a sandbox bridge, as described in “Setting up a sandbox bridge interface” on

page 36.

eval() function

Flash Player 9 and later, Adobe AIR 1.0 and later

In the application sandbox, the eval() function can only be used before the page load event or during a load event

handler. After the page has loaded, calls to eval() will not execute code. However, in the following cases, you can

rewrite your code to avoid the use of eval().

http://www.adobe.com/go/airappsandboxframeworks

24HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

Assigning properties to an object

Adobe AIR 1.0 and later

Instead of parsing a string to build the property accessor:

 eval("obj." + propName + " = " + val);

access properties with bracket notation:

 obj[propName] = val;

Creating a function with variables available in context

Adobe AIR 1.0 and later

Replace statements such as the following:

 function compile(var1, var2){
 eval("var fn = function(){ this."+var1+"(var2) }");
 return fn;
 }

with:

 function compile(var1, var2){
 var self = this;
 return function(){ self[var1](var2) };
 }

Creating an object using the name of the class as a string parameter

Adobe AIR 1.0 and later

Consider a hypothetical JavaScript class defined with the following code:

 var CustomClass =
 {
 Utils:
 {
 Parser: function(){ alert('constructor') }
 },
 Data:
 {

 }
 };
 var constructorClassName = "CustomClass.Utils.Parser";

The simplest way to create a instance would be to use eval():

 var myObj;
 eval('myObj=new ' + constructorClassName +'()')

However, you could avoid the call to eval() by parsing each component of the class name and building the new object

using bracket notation:

25HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

 function getter(str)
 {
 var obj = window;
 var names = str.split('.');
 for(var i=0;i<names.length;i++){
 if(typeof obj[names[i]]=='undefined'){
 var undefstring = names[0];
 for(var j=1;j<=i;j++)
 undefstring+="."+names[j];
 throw new Error(undefstring+" is undefined");
 }
 obj = obj[names[i]];
 }
 return obj;
 }

To create the instance, use:

 try{
 var Parser = getter(constructorClassName);
 var a = new Parser();
 }catch(e){
 alert(e);
 }

setTimeout() and setInterval()

Adobe AIR 1.0 and later

Replace the string passed as the handler function with a function reference or object. For example, replace a statement

such as:

 setTimeout("alert('Timeout')", 100);

with:

 setTimeout(function(){alert('Timeout')}, 100);

Or, when the function requires the this object to be set by the caller, replace a statement such as:

 this.appTimer = setInterval("obj.customFunction();", 100);

with the following:

 var _self = this;
 this.appTimer = setInterval(function(){obj.customFunction.apply(_self);}, 100);

Function constructor

Adobe AIR 1.0 and later

Calls to new Function(param, body) can be replaced with an inline function declaration or used only before the

page load event has been handled.

26HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

javascript: URLs

Adobe AIR 1.0 and later

The code defined in a link using the javascript: URL scheme is ignored in the application sandbox. No unsafe

JavaScript error is generated. You can replace links using javascript: URLs, such as:

 Click Me

with:

 Click Me

Event callbacks assigned through onevent attributes in innerHTML and

outerHTML statements

Adobe AIR 1.0 and later

When you use innerHTML or outerHTML to add elements to the DOM of a document, any event callbacks assigned

within the statement, such as onclick or onmouseover, are ignored. No security error is generated. Instead, you can

assign an id attribute to the new elements and set the event handler callback functions using the

addEventListener() method.

For example, given a target element in a document, such as:

 <div id="container"></div>

Replace statements such as:

 document.getElementById('container').innerHTML =
 'Click Me.';

with:

 document.getElementById('container').innerHTML = 'Click Me.';
 document.getElementById('smith').addEventListener("click", function() { code(); });

Loading JavaScript files from outside the application installation directory

Adobe AIR 1.0 and later

Loading script files from outside the application sandbox is not permitted. No security error is generated. All script

files that run in the application sandbox must be installed in the application directory. To use external scripts in a page,

you must map the page to a different sandbox. See “Loading application content into a non-application sandbox” on

page 35.

document.write() and document.writeln()

Adobe AIR 1.0 and later

Calls to document.write() or document.writeln() are ignored after the page load event has been handled. No

security error is generated. As an alternative, you can load a new file, or replace the body of the document using DOM

manipulation techniques.

27HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

Synchronous XMLHttpRequests before the load event or during a load event

handler

Adobe AIR 1.0 and later

Synchronous XMLHttpRequests initiated before the page load event or during a load event handler do not return any

content. Asynchronous XMLHttpRequests can be initiated, but do not return until after the load event. After the load

event has been handled, synchronous XMLHttpRequests behave normally.

Dynamically created script elements

Adobe AIR 1.0 and later

Dynamically created script elements, such as when created with innerHTML or document.createElement()

method are ignored.

Accessing AIR API classes from JavaScript

Adobe AIR 1.0 and later

In addition to the standard and extended elements of Webkit, HTML and JavaScript code can access the host classes

provided by the runtime. These classes let you access the advanced features that AIR provides, including:

• Access to the file system

• Use of local SQL databases

• Control of application and window menus

• Access to sockets for networking

• Use of user-defined classes and objects

• Sound capabilities

For example, the AIR file API includes a File class, contained in the flash.filesystem package. You can create a File

object in JavaScript as follows:

 var myFile = new window.runtime.flash.filesystem.File();

The runtime object is a special JavaScript object, available to HTML content running in AIR in the application

sandbox. It lets you access runtime classes from JavaScript. The flash property of the runtime object provides

access to the flash package. In turn, the flash.filesystem property of the runtime object provides access to the

flash.filesystem package (and this package includes the File class). Packages are a way of organizing classes used in

ActionScript.

Note: The runtime property is not automatically added to the window objects of pages loaded in a frame or iframe.

However, as long as the child document is in the application sandbox, the child can access the runtime property of the

parent.

Because the package structure of the runtime classes would require developers to type long strings of JavaScript

code strings to access each class (as in window.runtime.flash.desktop.NativeApplication), the AIR SDK

includes an AIRAliases.js file that lets you access runtime classes much more easily (for instance, by simply typing

air.NativeApplication).

28HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

The AIR API classes are discussed throughout this guide. Other classes from the Flash Player API, which may be of

interest to HTML developers, are described in the Adobe AIR API Reference for HTML Developers. ActionScript is

the language used in SWF (Flash Player) content. However, JavaScript and ActionScript syntax are similar. (They

are both based on versions of the ECMAScript language.) All built-in classes are available in both JavaScript (in

HTML content) and ActionScript (in SWF content).

Note: JavaScript code cannot use the Dictionary, XML, and XMLList classes, which are available in ActionScript.

Note: For more information, see “ActionScript 3.0 classes, packages, and namespaces” on page 337 and “ActionScript

basics for JavaScript developers” on page 335.

Using the AIRAliases.js file

Adobe AIR 1.0 and later

The runtime classes are organized in a package structure, as in the following:

• window.runtime.flash.desktop.NativeApplication

• window.runtime.flash.desktop.ClipboardManager

• window.runtime.flash.filesystem.FileStream

• window.runtime.flash.data.SQLDatabase

Included in the AIR SDK is an AIRAliases.js file that provide “alias” definitions that let you access the runtime

classes with less typing. For example, you can access the classes listed above by simply typing the following:

• air.NativeApplication

• air.Clipboard

• air.FileStream

• air.SQLDatabase

This list is just a short subset of the classes in the AIRAliases.js file. The complete list of classes and package-level

functions is provided in the Adobe AIR API Reference for HTML Developers.

In addition to commonly used runtime classes, the AIRAliases.js file includes aliases for commonly used package-

level functions: window.runtime.trace(), window.runtime.flash.net.navigateToURL(), and

window.runtime.flash.net.sendToURL(), which are aliased as air.trace(), air.navigateToURL(), and

air.sendToURL().

To use the AIRAliases.js file, include the following script reference in your HTML page:

 <script src="AIRAliases.js"></script>

Adjust the path in the src reference, as needed.

Important: Except where noted, the JavaScript example code in this documentation assumes that you have included

the AIRAliases.js file in your HTML page.

29HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

About URLs in AIR

Adobe AIR 1.0 and later

In HTML content running in AIR, you can use any of the following URL schemes in defining src attributes for img,

frame, iframe, and script tags, in the href attribute of a link tag, or anywhere else you can provide a URL.

For more information about using URL schemes in AIR, see “URI schemes” on page 318.

Many of AIR APIs, including the File, Loader, URLStream, and Sound classes, use a URLRequest object rather than a

string containing the URL. The URLRequest object itself is initialized with a string, which can use any of the same url

schemes. For example, the following statement creates a URLRequest object that can be used to request the Adobe

home page:

 var urlReq = new air.URLRequest("http://www.adobe.com/");

For information about URLRequest objects see “HTTP communications” on page 316.

Embedding SWF content in HTML

Adobe AIR 1.0 and later

You can embed SWF content in HTML content within an AIR application just as you would in a browser. Embed the

SWF content using an object tag, an embed tag, or both.

Note: A common web development practice is to use both an object tag and an embed tag to display SWF content in an

HTML page. This practice has no benefit in AIR. You can use the W3C-standard object tag by itself in content to be

displayed in AIR. At the same time, you can continue to use the object and embed tags together, if necessary, for HTML

content that is also displayed in a browser.

If you have enabled transparency in the NativeWindow object displaying the HTML and SWF content, then AIR does

not display the SWF content when window mode (wmode) used to embed the content is set to the value: window. To

display SWF content in an HTML page of a transparent window, set the wmode parameter to opaque or transparent.

The window is the default value for wmode, so if you do not specify a value, your content may not be displayed.

URL scheme Description Example

file A path relative to the root of the file system. file:///c:/AIR Test/test.txt

app A path relative to the root directory of the installed

application.

app:/images

app-storage A path relative to the application store directory. For each

installed application, AIR defines a unique application store

directory, which is a useful place to store data specific to that

application.

app-storage:/settings/prefs.xml

http A standard HTTP request. http://www.adobe.com

https A standard HTTPS request. https://secure.example.com

30HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

The following example illustrates the use of the HTML object tag to display a SWF file within HTML content. The

wmode parameter is set to opaque so that the content is displayed, even if the underlying NativeWindow object is

transparent. The SWF file is loaded from the application directory, but you can use any of the URL schemes supported

by AIR. (The location from which the SWF file is loaded determines the security sandbox in which AIR places the

content.)

<object type="application/x-shockwave-flash" width="100%" height="100%">
<param name="movie" value="app:/SWFFile.swf"></param>
<param name="wmode" value="opaque"></param>

</object>

You can also use a script to load content dynamically. The following example creates an object node to display the

SWF file specified in the urlString parameter. The example adds the node as a child of the page element with the ID

specified by the elementID parameter:

<script>
function showSWF(urlString, elementID){

var displayContainer = document.getElementById(elementID);
var flash = createSWFObject(urlString, 'opaque', 650, 650);
displayContainer.appendChild(flash);

}
function createSWFObject(urlString, wmodeString, width, height){

var SWFObject = document.createElement("object");
SWFObject.setAttribute("type","application/x-shockwave-flash");
SWFObject.setAttribute("width","100%");
SWFObject.setAttribute("height","100%");
var movieParam = document.createElement("param");
movieParam.setAttribute("name","movie");
movieParam.setAttribute("value",urlString);
SWFObject.appendChild(movieParam);
var wmodeParam = document.createElement("param");
wmodeParam.setAttribute("name","wmode");
wmodeParam.setAttribute("value",wmodeString);
SWFObject.appendChild(wmodeParam);
return SWFObject;

}
</script>

SWF content is not displayed if the HTMLLoader object is scaled or rotated, or if the alpha property is set to a value

other than 1.0. Prior to AIR 1.5.2, SWF content was not displayed in a transparent window no matter which wmode

value was set.

Note: When an embedded SWF object attempts to load an external asset like a video file, the SWF content may not be

rendered properly if an absolute path to the video file is not provided in the HTML file. However, an embedded SWF

object can load an external image file using a relative path.

The following example depicts how external assets can be loaded through a SWF object embedded in an HTML

content:

31HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

var imageLoader;

function showSWF(urlString, elementID){

var displayContainer = document.getElementById(elementID);
imageLoader = createSWFObject(urlString,650,650);
displayContainer.appendChild(imageLoader);

}

function createSWFObject(urlString, width, height){

var SWFObject = document.createElement("object");
 SWFObject.setAttribute("type","application/x-shockwave-flash");
 SWFObject.setAttribute("width","100%");
 SWFObject.setAttribute("height","100%");

var movieParam = document.createElement("param");
 movieParam.setAttribute("name","movie");
 movieParam.setAttribute("value",urlString);
 SWFObject.appendChild(movieParam);

var flashVars = document.createElement("param");
 flashVars.setAttribute("name","FlashVars");

//Load the asset inside the SWF content.
 flashVars.setAttribute("value","imgPath=air.jpg");
 SWFObject.appendChild(flashVars);

return SWFObject;
}
function loadImage()
{

 showSWF("ImageLoader.swf", "imageSpot");

}

In the following ActionScript example, the image path passed by the HTML file is read and the image is loaded on

stage:

32HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

package
{
 import flash.display.Sprite;
 import flash.display.LoaderInfo;
 import flash.display.StageScaleMode;
 import flash.display.StageAlign;
 import flash.display.Loader;
 import flash.net.URLRequest;

 public class ImageLoader extends Sprite
 {
 public function ImageLoader()
 {

 var flashvars = LoaderInfo(this.loaderInfo).parameters;

 if(flashvars.imgPath){
 var imageLoader = new Loader();
 var image = new URLRequest(flashvars.imgPath);
 imageLoader.load(image);
 addChild(imageLoader);
 imageLoader.x = 0;
 imageLoader.y = 0;
 stage.scaleMode=StageScaleMode.NO_SCALE;
 stage.align=StageAlign.TOP_LEFT;
 }
 }
 }
}

Using ActionScript libraries within an HTML page

Adobe AIR 1.0 and later

AIR extends the HTML script element so that a page can import ActionScript classes in a compiled SWF file. For

example, to import a library named, myClasses.swf, located in the lib subdirectory of the root application folder,

include the following script tag within an HTML file:

 <script src="lib/myClasses.swf" type="application/x-shockwave-flash"></script>

Important: The type attribute must be type="application/x-shockwave-flash" for the library to be properly

loaded.

If the SWF content is compiled as a Flash Player 10 or AIR 1.5 SWF, you must set the XML namespace of the

application descriptor file to the AIR 1.5 namespace.

The lib directory and myClasses.swf file must also be included when the AIR file is packaged.

Access the imported classes through the runtime property of the JavaScript Window object:

 var libraryObject = new window.runtime.LibraryClass();

If the classes in the SWF file are organized in packages, you must include the package name as well. For example, if the

LibraryClass definition was in a package named utilities, you would create an instance of the class with the following

statement:

33HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

 var libraryObject = new window.runtime.utilities.LibraryClass();

Note: To compile an ActionScript SWF library for use as part of an HTML page in AIR, use the acompc compiler. The

acompc utility is part of the Flex SDK and is described in the Flex SDK documentation.

Accessing the HTML DOM and JavaScript objects from an imported

ActionScript file

Adobe AIR 1.0 and later

To access objects in an HTML page from ActionScript in a SWF file imported into the page using the <script> tag,

pass a reference to a JavaScript object, such as window or document, to a function defined in the ActionScript code.

Use the reference within the function to access the JavaScript object (or other objects accessible through the passed-in

reference).

For example, consider the following HTML page:

 <html>
 <script src="ASLibrary.swf" type="application/x-shockwave-flash"></script>
 <script>
 num = 254;
 function getStatus() {
 return "OK.";
 }
 function runASFunction(window){
 var obj = new runtime.ASClass();
 obj.accessDOM(window);
 }
 </script>
 <body onload="runASFunction">
 <p id="p1">Body text.</p>
 </body>
 </html>

This simple HTML page has a JavaScript variable named num and a JavaScript function named getStatus(). Both of

these are properties of the window object of the page. Also, the window.document object includes a named P element

(with the ID p1).

The page loads an ActionScript file, “ASLibrary.swf,” that contains a class, ASClass. ASClass defines a function named

accessDOM() that simply traces the values of these JavaScript objects. The accessDOM() method takes the JavaScript

Window object as an argument. Using this Window reference, it can access other objects in the page including

variables, functions, and DOM elements as illustrated in the following definition:

 public class ASClass{
 public function accessDOM(window:*):void {
 trace(window.num); // 254
 trace(window.document.getElementById("p1").innerHTML); // Body text..
 trace(window.getStatus()); // OK.
 }
 }

You can both get and set properties of the HTML page from an imported ActionScript class. For example, the

following function sets the contents of the p1 element on the page and it sets the value of the foo JavaScript variable

on the page:

34HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

 public function modifyDOM(window:*):void {
 window.document.getElementById("p1").innerHTML = "Bye";
 window.foo = 66;

Converting Date and RegExp objects

Adobe AIR 1.0 and later

The JavaScript and ActionScript languages both define Date and RegExp classes, but objects of these types are not

automatically converted between the two execution contexts. You must convert Date and RegExp objects to the

equivalent type before using them to set properties or function parameters in the alternate execution context.

For example, the following ActionScript code converts a JavaScript Date object named jsDate to an ActionScript

Date object:

 var asDate:Date = new Date(jsDate.getMilliseconds());

The following ActionScript code converts a JavaScript RegExp object named jsRegExp to an ActionScript RegExp

object:

 var flags:String = "";
 if (jsRegExp.dotAll) flags += "s";
 if (jsRegExp.extended) flags += "x";
 if (jsRegExp.global) flags += "g";
 if (jsRegExp.ignoreCase) flags += "i";
 if (jsRegExp.multiline) flags += "m";
 var asRegExp:RegExp = new RegExp(jsRegExp.source, flags);

Cross-scripting content in different security sandboxes

Adobe AIR 1.0 and later

The runtime security model isolates code from different origins. By cross-scripting content in different security

sandboxes, you can allow content in one security sandbox to access selected properties and methods in another

sandbox.

AIR security sandboxes and JavaScript code

Adobe AIR 1.0 and later

AIR enforces a same-origin policy that prevents code in one domain from interacting with content in another. All files

are placed in a sandbox based on their origin. Ordinarily, content in the application sandbox cannot violate the same-

origin principle and cross-script content loaded from outside the application install directory. However, AIR provides

a few techniques that let you cross-script non-application content.

One technique uses frames or iframes to map application content into a different security sandbox. Any pages loaded

from the sandboxed area of the application behave as if they were loaded from the remote domain. For example, by

mapping application content to the example.com domain, that content could cross-script pages loaded from

example.com.

35HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

Since this technique places the application content into a different sandbox, code within that content is also no longer

subject to the restrictions on the execution of code in evaluated strings. You can use this sandbox mapping technique

to ease these restrictions even when you don’t need to cross-script remote content. Mapping content in this way can

be especially useful when working with one of the many JavaScript frameworks or with existing code that relies on

evaluating strings. However, you should consider and guard against the additional risk that untrusted content could

be injected and executed when content is run outside the application sandbox.

At the same time, application content mapped to another sandbox loses its access to the AIR APIs, so the sandbox

mapping technique cannot be used to expose AIR functionality to code executed outside the application sandbox.

Another cross-scripting technique lets you create an interface called a sandbox bridge between content in a non-

application sandbox and its parent document in the application sandbox. The bridge allows the child content to access

properties and methods defined by the parent, the parent to access properties and methods defined by the child, or both.

Finally, you can also perform cross-domain XMLHttpRequests from the application sandbox and, optionally, from

other sandboxes.

For more information, see “HTML frame and iframe elements” on page 12, “HTML security in Adobe AIR” on

page 73, and “The XMLHttpRequest object” on page 6.

Loading application content into a non-application sandbox

Adobe AIR 1.0 and later

To allow application content to safely cross-script content loaded from outside the application install directory, you

can use frame or iframe elements to load application content into the same security sandbox as the external content.

If you do not need to cross-script remote content, but still wish to load a page of your application outside the

application sandbox, you can use the same technique, specifying http://localhost/ or some other innocuous value,

as the domain of origin.

AIR adds the new attributes, sandboxRoot and documentRoot, to the frame element that allow you to specify whether

an application file loaded into the frame should be mapped to a non-application sandbox. Files resolving to a path

underneath the sandboxRoot URL are loaded instead from the documentRoot directory. For security purposes, the

application content loaded in this way is treated as if it was actually loaded from the sandboxRoot URL.

The sandboxRoot property specifies the URL to use for determining the sandbox and domain in which to place the

frame content. The file:, http:, or https: URL schemes must be used. If you specify a relative URL, the content

remains in the application sandbox.

The documentRoot property specifies the directory from which to load the frame content. The file:, app:, or app-

storage: URL schemes must be used.

The following example maps content installed in the sandbox subdirectory of the application to run in the remote

sandbox and the www.example.com domain:

 <iframe
 src="http://www.example.com/local/ui.html"
 sandboxRoot="http://www.example.com/local/"
 documentRoot="app:/sandbox/">
 </iframe>

The ui.html page could load a javascript file from the local, sandbox folder using the following script tag:

<script src="http://www.example.com/local/ui.js"></script>

It could also load content from a directory on the remote server using a script tag such as the following:

36HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

<script src="http://www.example.com/remote/remote.js"></script>

The sandboxRoot URL will mask any content at the same URL on the remote server. In the above example, you would

not be able to access any remote content at www.example.com/local/ (or any of its subdirectories) because AIR

remaps the request to the local application directory. Requests are remapped whether they derive from page

navigation, from an XMLHttpRequest, or from any other means of loading content.

Setting up a sandbox bridge interface

Adobe AIR 1.0 and later

You can use a sandbox bridge when content in the application sandbox must access properties or methods defined by

content in a non-application sandbox, or when non-application content must access properties and methods defined

by content in the application sandbox. Create a bridge with the childSandboxBridge and parentSandboxBridge

properties of the window object of any child document.

Establishing a child sandbox bridge

Adobe AIR 1.0 and later

The childSandboxBridge property allows the child document to expose an interface to content in the parent

document. To expose an interface, you set the childSandbox property to a function or object in the child document.

You can then access the object or function from content in the parent document. The following example shows how a

script running in a child document can expose an object containing a function and a property to its parent:

 var interface = {};
 interface.calculatePrice = function(){
 return ".45 cents";
 }
 interface.storeID = "abc"
 window.childSandboxBridge = interface;

If this child content was loaded into an iframe assigned an id of “child”, you could access the interface from parent

content by reading the childSandboxBridge property of the frame:

 var childInterface = document.getElementById("child").contentWindow.childSandboxBridge;
 air.trace(childInterface.calculatePrice()); //traces ".45 cents"
 air.trace(childInterface.storeID)); //traces "abc"

Establishing a parent sandbox bridge

Adobe AIR 1.0 and later

The parentSandboxBridge property allows the parent document to expose an interface to content in a child

document. To expose an interface, the parent document sets the parentSandbox property of the child document to a

function or object defined in the parent document. You can then access the object or function from content in the

child. The following example shows how a script running in a parent frame can expose an object containing a function

to a child document:

37HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

 var interface = {};
 interface.save = function(text){
 var saveFile = air.File("app-storage:/save.txt");
 //write text to file
 }
 document.getElementById("child").contentWindow.parentSandboxBridge = interface;

Using this interface, content in the child frame could save text to a file named save.txt, but would not have any other

access to the file system. The child content could call the save function as follows:

 var textToSave = "A string.";
 window.parentSandboxBridge.save(textToSave);

Application content should expose the narrowest interface possible to other sandboxes. Non-application content

should be considered inherently untrustworthy since it may be subject to accidental or malicious code injection. You

must put appropriate safeguards in place to prevent misuse of the interface you expose through the parent sandbox

bridge.

Accessing a parent sandbox bridge during page loading

Adobe AIR 1.0 and later

In order for a script in a child document to access a parent sandbox bridge, the bridge must be set up before the script

is run. Window, frame and iframe objects dispatch a dominitialize event when a new page DOM has been created,

but before any scripts have been parsed, or DOM elements added. You can use the dominitialize event to establish

the bridge early enough in the page construction sequence that all scripts in the child document can access it.

The following example illustrates how to create a parent sandbox bridge in response to the dominitialize event

dispatched from the child frame:

 <html>
 <head>
 <script>
 var bridgeInterface = {};
 bridgeInterface.testProperty = "Bridge engaged";
 function engageBridge(){
 document.getElementById("sandbox").contentWindow.parentSandboxBridge = bridgeInterface;
 }
 </script>
 </head>
 <body>
 <iframe id="sandbox"
 src="http://www.example.com/air/child.html"
 documentRoot="app:/"
 sandboxRoot="http://www.example.com/air/"
 ondominitialize="engageBridge()"/>
 </body>
 </html>

The following child.html document illustrates how child content can access the parent sandbox bridge:

38HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Programming HTML and JavaScript in AIR

Last updated 9/28/2011

 <html>
 <head>
 <script>
 document.write(window.parentSandboxBridge.testProperty);
 </script>
 </head>
 <body></body>
 </html>

To listen for the dominitialize event on a child window, rather than a frame, you must add the listener to the new

child window object created by the window.open() function:

 var childWindow = window.open();
 childWindow.addEventListener("dominitialize", engageBridge());
 childWindow.document.location = "http://www.example.com/air/child.html";

In this case, there is no way to map application content into a non-application sandbox. This technique is only useful

when child.html is loaded from outside the application directory. You can still map application content in the

window to a non-application sandbox, but you must first load an intermediate page that itself uses frames to load the

child document and map it to the desired sandbox.

If you use the HTMLLoader class createRootWindow() function to create a window, the new window is not a child

of the document from which createRootWindow() is called. Thus, you cannot create a sandbox bridge from the

calling window to non-application content loaded into the new window. Instead, you must use load an intermediate

page in the new window that itself uses frames to load the child document. You can then establish the bridge from the

parent document of the new window to the child document loaded into the frame.

39

Last updated 9/28/2011

Chapter 3: Handling HTML-related events
in AIR

Adobe AIR 1.0 and later

An event-handling system allows programmers to respond to user input and system events in a convenient way. The

Adobe® AIR® event model is not only convenient, but also standards-compliant. Based on the Document Object Model

(DOM) Level 3 Events Specification, an industry-standard event-handling architecture, the event model provides a

powerful, yet intuitive, event-handling tool for programmers.

HTMLLoader events

Adobe AIR 1.0 and later

An HTMLLoader object dispatches the following Adobe® ActionScript® 3.0 events:

Event Description

htmlDOMInitialize Dispatched when the HTML document is created, but before any scripts are parsed or

DOM nodes are added to the page.

complete Dispatched when the HTML DOM has been created in response to a load operation,

immediately after the onload event in the HTML page.

htmlBoundsChanged Dispatched when one or both of the contentWidth and contentHeight

properties have changed.

locationChange Dispatched when the location property of the HTMLLoader has changed.

locationChanging Dispatched before the location of the HTMLLoader changes because of user

navigation, a JavaScript call, or a redirect. The locationChanging event is not

dispatched when you call the load(), loadString(), reload(), historyGo(),

historyForward(), or historyBack() methods.

Calling the preventDefault() method of the dispatched event object cancels

navigation.

If a link is opened in the system browser, a locationChanging event is not dispatched

since the HTMLLoader does not change location.

scroll Dispatched anytime the HTML engine changes the scroll position. Scroll events can be

because of navigation to anchor links (# links) in the page or because of calls to the

window.scrollTo() method. Entering text in a text input or text area can also

cause a scroll event.

uncaughtScriptException Dispatched when a JavaScript exception occurs in the HTMLLoader and the exception

is not caught in JavaScript code.

40HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Handling HTML-related events in AIR

Last updated 9/28/2011

How AIR class-event handling differs from other event
handling in the HTML DOM

Adobe AIR 1.0 and later

The HTML DOM provides a few different ways to handle events:

• Defining an on event handler within an HTML element opening tag, as in:

 <div id="myDiv" onclick="myHandler()">

• Callback function properties, such as:

 document.getElementById("myDiv").onclick

• Event listeners that you register using the addEventListener() method, as in:

 document.getElementById("myDiv").addEventLister("click", clickHandler)

However, since runtime objects do not appear in the DOM, you can only add event listeners by calling the

addEventListener() method of an AIR object.

As in JavaScript, events dispatched by AIR objects can be associated with default behaviors. (A default behavior is an

action that AIR executes as the normal consequence of certain events.)

The event objects dispatched by runtime objects are an instance of the Event class or one of its subclasses. An event

object not only stores information about a specific event, but also contains methods that facilitate manipulation of the

event object. For example, when AIR detects an I/O error event when reading a file asynchronously, it creates an event

object (an instance of the IOErrorEvent class) to represent that particular I/O error event.

Any time you write event handler code, it follows the same basic structure:

 function eventResponse(eventObject)
 {
 // Actions performed in response to the event go here.
 }

 eventTarget.addEventListener(EventType.EVENT_NAME, eventResponse);

This code does two things. First, it defines a handler function, which is the way to specify the actions to be performed

in response to the event. Next, it calls the addEventListener() method of the source object, in essence subscribing

the function to the specified event so that when the event happens, the handler actions are carried out. When the event

actually happens, the event target checks its list of all the functions and methods that are registered with event listeners.

It then calls each one in turn, passing the event object as a parameter.

Default behaviors

Adobe AIR 1.0 and later

Developers are usually responsible for writing code that responds to events. In some cases, however, a behavior is so

commonly associated with an event that AIR automatically executes the behavior unless the developer adds code to

cancel it. Because AIR automatically exhibits the behavior, such behaviors are called default behaviors.

41HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Handling HTML-related events in AIR

Last updated 9/28/2011

For example, when a user clicks the close box of a window of an application, the expectation that the window will close

is so common that the behavior is built into AIR. If you do not want this default behavior to occur, you can cancel it

using the event-handling system. When a user clicks the close box of a window, the NativeWindow object that

represents the window dispatches a closing event. To prevent the runtime from closing the window, you must call

the preventDefault() method of the dispatched event object.

Not all default behaviors can be prevented. For example, the runtime generates an OutputProgressEvent object as a

FileStream object writes data to a file. The default behavior, which cannot be prevented, is that the content of the file

is updated with the new data.

Many types of event objects do not have associated default behaviors. For example, a Sound object dispatches an id3

event when enough data from an MP3 file is read to provide ID3 information, but there is no default behavior

associated with it. The API documentation for the Event class and its subclasses lists each type of event and describes

any associated default behavior, and whether that behavior can be prevented.

Note: Default behaviors are associated only with event objects dispatched by the runtime directly, and do not exist for

event objects dispatched programmatically through JavaScript. For example, you can use the methods of the

EventDispatcher class to dispatch an event object, but dispatching the event does not trigger the default behavior.

The event flow

Adobe AIR 1.0 and later

SWF file content running in AIR uses the ActionScript 3.0 display list architecture to display visual content. The

ActionScript 3.0 display list provides a parent-child relationship for content, and events (such as mouse-click events)

in SWF file content that propagates between parent and child display objects. The HTML DOM has its own, separate

event flow that traverses only the DOM elements. When writing HTML-based applications for AIR, you primarily use

the HTML DOM instead of the ActionScript 3.0 display list, so you can generally disregard the information on event

phases that appears in the AIR reference documentation.

Adobe AIR event objects

Adobe AIR 1.0 and later

Event objects serve two main purposes in the event-handling system. First, event objects represent actual events by

storing information about specific events in a set of properties. Second, event objects contain a set of methods that

allow you to manipulate event objects and affect the behavior of the event-handling system.

The AIR API defines an Event class that serves as the base class for all event objects dispatched by the AIR API classes.

The Event class defines a fundamental set of properties and methods that are common to all event objects.

To use Event objects, it’s important to first understand the Event class properties and methods and why subclasses of

the Event class exist.

42HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Handling HTML-related events in AIR

Last updated 9/28/2011

Understanding Event class properties

Adobe AIR 1.0 and later

The Event class defines several read-only properties and constants that provide important information about an event.

The following are especially important:

• Event.type describes the type of event that an event object represents.

• Event.cancelable is a Boolean value that reports whether the default behavior associated with the event, if any,

can be canceled.

• Event flow information is contained in the remaining properties, and is only of interest when using ActionScript

3.0 in SWF content in AIR.

Event object types

Adobe AIR 1.0 and later

Every event object has an associated event type. Event types are stored in the Event.type property as string values. It

is useful to know the type of an event object so that your code can distinguish objects of different types from one

another. For example, the following code registers a fileReadHandler() listener function to respond to a complete

event dispatched by myFileStream:

 myFileStream.addEventListener(Event.COMPLETE, fileReadHandler);

The AIR Event class defines many class constants, such as COMPLETE, CLOSING, and ID3, to represent the types of

events dispatched by runtime objects. These constants are listed in the Event class page of the Adobe AIR API

Reference for HTML Developers.

Event constants provide an easy way to refer to specific event types. Using a constant instead of the string value helps

you identify typographical errors more quickly. If you misspell a constant name in your code, the JavaScript parser will

catch the mistake. If you instead misspell an event string, the event handler will be registered for a type of event that

will never be dispatched. Thus, when adding an event listener, it is a better practice to use the following code:

 myFileStream.addEventListener(Event.COMPLETE, htmlRenderHandler);

rather than:

 myFileStream.addEventListener("complete", htmlRenderHandler);

Default behavior information

Adobe AIR 1.0 and later

Your code can check whether the default behavior for any given event object can be prevented by accessing the

cancelable property. The cancelable property holds a Boolean value that indicates whether a default behavior can

be prevented. You can prevent, or cancel, the default behavior associated with a small number of events using the

preventDefault() method. For more information, see “Canceling default event behavior” on page 43.

Understanding Event class methods

Adobe AIR 1.0 and later

There are three categories of Event class methods:

• Utility methods, which can create copies of an event object or convert it to a string.

http://help.adobe.com/en_US/air/reference/html/flash/events/Event.html
http://help.adobe.com/en_US/air/reference/html/flash/events/Event.html

43HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Handling HTML-related events in AIR

Last updated 9/28/2011

• Event flow methods, which remove event objects from the event flow (primarily of use when using ActionScript 3.0

in SWF content for the runtime—see “The event flow” on page 41).

• Default behavior methods, which prevent default behavior or check whether it has been prevented.

Event class utility methods

Adobe AIR 1.0 and later

The Event class has two utility methods. The clone() method allows you to create copies of an event object. The

toString() method allows you to generate a string representation of the properties of an event object along with their

values.

Canceling default event behavior

Adobe AIR 1.0 and later

The two methods that pertain to canceling default behavior are the preventDefault() method and the

isDefaultPrevented() method. Call the preventDefault() method to cancel the default behavior associated with

an event. Check whether preventDefault() has already been called on an event object, with the

isDefaultPrevented() method.

The preventDefault() method works only if the event’s default behavior can be canceled. You can check whether

an event has behavior that can be canceled by referring to the API documentation, or by examining the cancelable

property of the event object.

Canceling the default behavior has no effect on the progress of an event object through the event flow. Use the event

flow methods of the Event class to remove an event object from the event flow.

Subclasses of the Event class

Adobe AIR 1.0 and later

For many events, the common set of properties defined in the Event class is sufficient. Representing other events,

however, requires properties not available in the Event class. For these events, the AIR API defines several subclasses

of the Event class.

Each subclass provides additional properties and event types that are unique to that category of events. For example,

events related to mouse input provide properties describing the mouse location when the event occurred. Likewise, the

InvokeEvent class adds properties containing the file path of the invoking file and any arguments passed as parameters

in the command-line invocation.

An Event subclass frequently defines additional constants to represent the event types that are associated with the

subclass. For example, the FileListEvent class defines constants for the directoryListing and selectMultiple

event types.

44HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Handling HTML-related events in AIR

Last updated 9/28/2011

Handling runtime events with JavaScript

Adobe AIR 1.0 and later

The runtime classes support adding event handlers with the addEventListener() method. To add a handler function

for an event, call the addEventListener() method of the object that dispatches the event, providing the event type

and the handling function. For example, to listen for the closing event dispatched when a user clicks the window close

button on the title bar, use the following statement:

 window.nativeWindow.addEventListener(air.NativeWindow.CLOSING, handleWindowClosing);

The type parameter of the addEventListener() method is a string, but the AIR APIs define constants for all runtime

event types. Using these constants can help pinpoint typographic errors entered in the type parameter more quickly

than using the string version.

Creating an event handler function

Adobe AIR 1.0 and later

The following code creates a simple HTML file that displays information about the position of the main window. A

handler function named moveHandler(), listens for a move event (defined by the NativeWindowBoundsEvent class)

of the main window.

 <html>
 <script src="AIRAliases.js" />
 <script>
 function init() {
 writeValues();
 window.nativeWindow.addEventListener(air.NativeWindowBoundsEvent.MOVE,
 moveHandler);
 }
 function writeValues() {
 document.getElementById("xText").value = window.nativeWindow.x;
 document.getElementById("yText").value = window.nativeWindow.y;
 }
 function moveHandler(event) {
 air.trace(event.type); // move
 writeValues();
 }
 </script>
 <body onload="init()" />
 <table>
 <tr>
 <td>Window X:</td>
 <td><textarea id="xText"></textarea></td>
 </tr>
 <tr>
 <td>Window Y:</td>
 <td><textarea id="yText"></textarea></td>
 </tr>
 </table>
 </body>
 </html>

When a user moves the window, the textarea elements display the updated X and Y positions of the window:

45HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Handling HTML-related events in AIR

Last updated 9/28/2011

Notice that the event object is passed as an argument to the moveHandler() method. The event parameter allows your

handler function to examine the event object. In this example, you use the event object's type property to report that

the event is a move event.

Note: Do not use parentheses when you specify the listener parameter. For example, the moveHandler() function is

specified without parentheses in the following call to the addEventListener() method:

addEventListener(Event.MOVE, moveHandler).

The addEventListener() method has three other parameters, described in the Adobe AIR API Reference for HTML

Developers; these parameters are useCapture, priority, and useWeakReference.

Removing event listeners

Adobe AIR 1.0 and later

You can use the removeEventListener() method to remove an event listener that you no longer need. It is a good

idea to remove any listeners that will no longer be used. Required parameters include the eventName and listener

parameters, which are the same as the required parameters for the addEventListener() method.

Removing event listeners in HTML pages that navigate

Adobe AIR 1.0 and later

When HTML content navigates, or when HTML content is discarded because a window that contains it is closed, the

event listeners that reference objects on the unloaded page are not automatically removed. When an object dispatches

an event to a handler that has already been unloaded, you see the following error message: “The application attempted

to reference a JavaScript object in an HTML page that is no longer loaded.”

To avoid this error, remove JavaScript event listeners in an HTML page before it goes away. In the case of page

navigation (within an HTMLLoader object), remove the event listener during the unload event of the window object.

For example, the following JavaScript code removes an event listener for an uncaughtScriptException event:

 window.onunload = cleanup;
 window.htmlLoader.addEventListener('uncaughtScriptException', uncaughtScriptException);
 function cleanup()
 {
 window.htmlLoader.removeEventListener('uncaughtScriptException',
 uncaughtScriptExceptionHandler);
 }

To prevent the error from occurring when closing windows that contain HTML content, call a cleanup function in

response to the closing event of the NativeWindow object (window.nativeWindow). For example, the following

JavaScript code removes an event listener for an uncaughtScriptException event:

 window.nativeWindow.addEventListener(air.Event.CLOSING, cleanup);
 function cleanup()
 {
 window.htmlLoader.removeEventListener('uncaughtScriptException',
 uncaughtScriptExceptionHandler);
 }

You can also prevent this error from occurring by removing an event listener as soon as it runs (if the event only needs

to be handled once). For example, the following JavaScript code creates an html window by calling the

createRootWindow() method of the HTMLLoader class and adds an event listener for the complete event. When

the complete event handler is called, it removes its own event listener using the removeEventListener() function:

http://help.adobe.com/en_US/air/reference/html/flash/events/EventDispatcher.html#addEventListener%28%29
http://help.adobe.com/en_US/air/reference/html/flash/events/EventDispatcher.html#addEventListener%28%29

46HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Handling HTML-related events in AIR

Last updated 9/28/2011

 var html = runtime.flash.html.HTMLLoader.createRootWindow(true);
 html.addEventListener('complete', htmlCompleteListener);
 function htmlCompleteListener()
 {
 html.removeEventListener(complete, arguments.callee)
 // handler code..
 }
 html.load(new runtime.flash.net.URLRequest("second.html"));

Removing unneeded event listeners also allows the system garbage collector to reclaim any memory associated with

those listeners.

Checking for existing event listeners

Adobe AIR 1.0 and later

The hasEventListener() method lets you check for the existence of an event listener on an object.

Error events without listeners

Adobe AIR 1.0 and later

Exceptions, rather than events, are the primary mechanism for error handling in the runtime classes. However,

exception handling does not work for asynchronous operations such as loading files. If an error occurs during an

asynchronous operation, the runtime dispatches an error event object. If you do not create a listener for the error event,

the AIR Debug Launcher presents a dialog box with information about the error.

Most error events are based on the ErrorEvent class, and have a property named text that is used to store a descriptive

error message. An exception is the StatusEvent class, which has a level property instead of a text property. When

the value of the level property is error, the StatusEvent is considered to be an error event.

An error event does not cause an application to stop executing. It manifests only as a dialog box on the AIR Debug

Launcher. It does not manifest at all in the installed AIR application running in the runtime.

47

Last updated 9/28/2011

Chapter 4: Scripting the AIR HTML
Container

Adobe AIR 1.0 and later

The HTMLLoader class serves as the container for HTML content in Adobe® AIR®. The class provides many properties

and methods for controlling the behavior and appearance of the HTML content. In addition, the class defines

properties and methods for such tasks as loading and interacting with HTML content and managing history.

The HTMLHost class defines a set of default behaviors for an HTMLLoader. When you create an HTMLLoader object,

no HTMLHost implementation is provided. Thus when HTML content triggers one of the default behaviors, such as

changing the window location, or the window title, nothing happens. You can extend the HTMLHost class to define

the behaviors desired for your application.

A default implementation of the HTMLHost is provided for HTML windows created by AIR. You can assign the

default HTMLHost implementation to another HTMLLoader object by setting the htmlHost property of the object

using a new HTMLHost object created with the defaultBehavior parameter set to true.

The HTMLHost class can only be extended using ActionScript. In an HTML-based application, you can import a

compiled SWF file containing an implementation of the HTMLHost class. Assign the host class implementation using

the window.htmlLoader property:

 <script src="HTMLHostLibrary.swf" type="application/x-shockwave-flash"></script>
<script>

window.htmlLoader.htmlHost = new window.runtime.HTMLHostImplementation();
</script>

Display properties of HTMLLoader objects

Adobe AIR 1.0 and later

An HTMLLoader object inherits the display properties of the Adobe® Flash® Player Sprite class. You can resize, move,

hide, and change the background color, for example. Or you can apply advanced effects like filters, masks, scaling, and

rotation. When applying effects, consider the impact on legibility. SWF and PDF content loaded into an HTML page

cannot be displayed when some effects are applied.

HTML windows contain an HTMLLoader object that renders the HTML content. This object is constrained within

the area of the window, so changing the dimensions, position, rotation, or scale factor does not always produce

desirable results.

Basic display properties

Adobe AIR 1.0 and later

The basic display properties of the HTMLLoader allow you to position the control within its parent display object, to

set the size, and to show or hide the control. You should not change these properties for the HTMLLoader object of an

HTML window.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/html/HTMLHost.html

48HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

The basic properties include:

Outside an HTML window, the width and height properties of an HTMLLoader object default to 0. You must set the

width and height before the loaded HTML content can be seen. HTML content is drawn to the HTMLLoader size, laid

out according to the HTML and CSS properties in the content. Changing the HTMLLoader size reflows the content.

When loading content into a new HTMLLoader object (with width still set to 0), it can be tempting to set the display

width and height of the HTMLLoader using the contentWidth and contentHeight properties. This technique

works for pages that have a reasonable minimum width when laid out according the HTML and CSS flow rules.

However, some pages flow into a long and narrow layout in the absence of a reasonable width provided by the

HTMLLoader.

Note: When you change the width and height of an HTMLLoader object, the scaleX and scaleY values do not change, as

would happen with most other types of display objects.

Transparency of HTMLLoader content

Adobe AIR 1.0 and later

The paintsDefaultBackground property of an HTMLLoader object, which is true by default, determines whether

the HTMLLoader object draws an opaque background. When paintsDefaultBackground is false, the background

is clear. The display object container or other display objects below the HTMLLoader object are visible behind the

foreground elements of the HTML content.

If the body element or any other element of the HTML document specifies a background color (using

style="background-color:gray", for example), then the background of that portion of the HTML is opaque and

rendered with the specified background color. If you set the opaqueBackground property of the HTMLLoader object,

and paintsDefaultBackground is false, then the color set for the opaqueBackground is visible.

Note: You can use a transparent, PNG-format graphic to provide an alpha-blended background for an element in an

HTML document. Setting the opacity style of an HTML element is not supported.

Scaling HTMLLoader content

Adobe AIR 1.0 and later

Avoid scaling an HTMLLoader object beyond a scale factor of 1.0. Text in HTMLLoader content is rendered at a

specific resolution and appears pixelated if the HTMLLoader object is scaled up.

Considerations when loading SWF or PDF content in an HTML page

Adobe AIR 1.0 and later

SWF and PDF content loaded into in an HTMLLoader object disappears in the following conditions:

• If you scale the HTMLLoader object to a factor other that 1.0.

Property Notes

x, y Positions the object within its parent container.

width, height Changes the dimensions of the display area.

visible Controls the visibility of the object and any content it contains.

49HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

• If you set the alpha property of the HTMLLoader object to a value other than 1.0.

• If you rotate the HTMLLoader content.

The content reappears if you remove the offending property setting and remove the active filters.

In addition, the runtime cannot display PDF content in transparent windows. The runtime only displays SWF content

embedded in an HTML page when the wmode parameter of the object or embed tag is set to opaque or transparent.

Since the default value of wmode is window, SWF content is not displayed in transparent windows unless you explicitly

set the wmode parameter.

Note: Prior to AIR 1.5.2, SWF embedded in HTML could not be displayed no matter which wmode value was used.

For more information on loading these types of media in an HTMLLoader, see “Embedding SWF content in HTML”

on page 29and “Adding PDF content in AIR” on page 270.

Advanced display properties

Adobe AIR 1.0 and later

The HTMLLoader class inherits several methods that can be used for special effects. In general, these effects have

limitations when used with the HTMLLoader display, but they can be useful for transitions or other temporary effects.

For example, if you display a dialog window to gather user input, you could blur the display of the main window until

the user closes the dialog. Likewise, you could fade the display out when closing a window.

The advanced display properties include:

The following example illustrates how to set the filters array to blur the entire HTML display:

 var blur = new window.runtime.flash.filters.BlurFilter();
 var filters = [blur];
 window.htmlLoader.filters = filters;

Note: Display object classes, such as Sprite and BlurFilter, are not commonly used in HTML-based applications. They are

not listed in the Adobe AIR API Reference for HTML Developers nor aliased in the AIRAliases.js file. For documentation

about these classes, consult the ActionScript 3.0 Reference for the Adobe Flash Platform.

Property Limitations

alpha Can reduce the legibility of HTML content

filters In an HTML Window, exterior effects are clipped by the window edge

graphics Shapes drawn with graphics commands appear below HTML content,

including the default background. The paintsDefaultBackground property

must be false for the drawn shapes to be visible.

opaqueBackground Does not change the color of the default background. The

paintsDefaultBackground property must be false for this color layer to be

visible.

rotation The corners of the rectangular HTMLLoader area can be clipped by the

window edge. SWF and PDF content loaded in the HTML content is not

displayed.

scaleX, scaleY The rendered display can appear pixelated at scale factors greater than 1. SWF

and PDF content loaded in the HTML content is not displayed.

transform Can reduce legibility of HTML content. The HTML display can be clipped by the

window edge. SWF and PDF content loaded in the HTML content is not

displayed if the transform involves rotation, scaling, or skewing.

http://help.adobe.com/en_US/FlashPlatform/reference/html/air_api/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/index.html

50HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

Accessing the HTML history list

Adobe AIR 1.0 and later

As new pages are loaded in an HTMLLoader object, the runtime maintains a history list for the object. The history list

corresponds to the window.history object in the HTML page. The HTMLLoader class includes the following

properties and methods that let you work with the HTML history list:

Items in the history list are stored as objects of type HTMLHistoryItem. The HTMLHistoryItem class has the following

properties:

Setting the user agent used when loading HTML content

Adobe AIR 1.0 and later

The HTMLLoader class has a userAgent property, which lets you set the user agent string used by the HTMLLoader.

Set the userAgent property of the HTMLLoader object before calling the load() method. If you set this property on

the HTMLLoader instance, then the userAgent property of the URLRequest passed to the load() method is not used.

You can set the default user agent string used by all HTMLLoader objects in an application domain by setting the

URLRequestDefaults.userAgent property. The static URLRequestDefaults properties apply as defaults for all

URLRequest objects, not only URLRequests used with the load() method of HTMLLoader objects. Setting the

userAgent property of an HTMLLoader overrides the default URLRequestDefaults.userAgent setting.

Class member Description

historyLength The overall length of the history list, including back and forward entries.

historyPosition The current position in the history list. History items before this position represent “back” navigation, and

items after this position represent “forward” navigation.

getHistoryAt() Returns the URLRequest object corresponding to the history entry at the specified position in the history list.

historyBack() Navigates back in the history list, if possible.

historyForward() Navigates forward in the history list, if possible.

historyGo() Navigates the indicated number of steps in the browser history. Navigates forward if positive, backward if

negative. Navigating to zero reloads the page. Specifying a position beyond the end navigates to the end of

the list.

Property Description

isPost Set to true if the HTML page includes POST data.

originalUrl The original URL of the HTML page, before any redirects.

title The title of the HTML page.

url The URL of the HTML page.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/html/HTMLHistoryItem.html

51HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

If you do not set a user agent value for either the userAgent property of the HTMLLoader object or for

URLRequestDefaults.userAgent, then the default AIR user agent value is used. This default value varies depending

on the runtime operating system (such as Mac OS or Windows), the runtime language, and the runtime version, as in

the following two examples:

• "Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/420+ (KHTML, like Gecko)

AdobeAIR/1.0"

• "Mozilla/5.0 (Windows; U; en) AppleWebKit/420+ (KHTML, like Gecko) AdobeAIR/1.0"

Setting the character encoding to use for HTML content

Adobe AIR 1.0 and later

An HTML page can specify the character encoding it uses by including meta tag, such as the following:

 meta http-equiv="content-type" content="text/html" charset="ISO-8859-1";

Override the page setting to ensure that a specific character encoding is used by setting the textEncodingOverride

property of the HTMLLoader object:

window.htmlLoader.textEncodingOverride = "ISO-8859-1";

Specify the character encoding for the HTMLLoader content to use when an HTML page does not specify a setting

with the textEncodingFallback property of the HTMLLoader object:

 window.htmlLoader.textEncodingFallback = "ISO-8859-1";

The textEncodingOverride property overrides the setting in the HTML page. And the textEncodingOverride

property and the setting in the HTML page override the textEncodingFallback property.

Set the textEncodingOverride property or the textEncodingFallback property before loading the HTML

content.

Defining browser-like user interfaces for HTML content

Adobe AIR 1.0 and later

JavaScript provides several APIs for controlling the window displaying the HTML content. In AIR, these APIs can be

overridden by implementing a custom HTMLHost class.

Important: You can only create a custom implementation of the HTMLHost class using ActionScript. You can import

and use a compiled ActionScript (SWF) file containing a custom implementation in an HTML page. See “Using

ActionScript libraries within an HTML page” on page 32 for more information about importing ActionScript libraries

into HTML.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/html/HTMLHost.html

52HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

About extending the HTMLHost class

Adobe AIR 1.0 and later

The AIR HTMLHost class controls the following JavaScript properties and methods:

• window.status

• window.document.title

• window.location

• window.blur()

• window.close()

• window.focus()

• window.moveBy()

• window.moveTo()

• window.open()

• window.resizeBy()

• window.resizeTo()

When you create an HTMLLoader object using new HTMLLoader(), the listed JavaScript properties or methods are

not enabled. The HTMLHost class provides a default, browser-like implementation of these JavaScript APIs. You can

also extend the HTMLHost class to customize the behavior. To create an HTMLHost object supporting the default

behavior, set the defaultBehaviors parameter to true in the HTMLHost constructor:

var defaultHost = new HTMLHost(true);

When you create an HTML window in AIR with the HTMLLoader class createRootWindow() method, an

HTMLHost instance supporting the default behaviors is assigned automatically. You can change the host object

behavior by assigning a different HTMLHost implementation to the htmlHost property of the HTMLLoader, or you

can assign null to disable the features entirely.

Note: AIR assigns a default HTMLHost object to the initial window created for an HTML-based AIR application and

any windows created by the default implementation of the JavaScript window.open() method.

Example: Extending the HTMLHost class

Adobe AIR 1.0 and later

The following example shows how to customize the way that an HTMLLoader object affects the user interface, by

extending the HTMLHost class:

Flex example:

1 Create a class that extends the HTMLHost class (a subclass).

2 Override methods of the new class to handle changes in the user interface-related settings. For example, the

following class, CustomHost, defines behaviors for calls to window.open() and changes to

window.document.title. Calls to window.open() open the HTML page in a new window, and changes to

window.document.title (including the setting of the <title> element of an HTML page) set the title of that

window.

53HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

 package
 {
 import flash.html.*;
 import flash.display.StageScaleMode;
 import flash.display.NativeWindow;
 import flash.display.NativeWindowInitOptions;

 public class CustomHost extends HTMLHost
 {
 import flash.html.*;
 override public function
 createWindow(windowCreateOptions:HTMLWindowCreateOptions):HTMLLoader
 {
 var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
 var bounds:Rectangle = new Rectangle(windowCreateOptions.x,
 windowCreateOptions.y,
 windowCreateOptions.width,
 windowCreateOptions.height);
 var htmlControl:HTMLLoader = HTMLLoader.createRootWindow(true, initOptions,
 windowCreateOptions.scrollBarsVisible, bounds);
 htmlControl.htmlHost = new HTMLHostImplementation();
 if(windowCreateOptions.fullscreen){
 htmlControl.stage.displayState =
 StageDisplayState.FULL_SCREEN_INTERACTIVE;
 }
 return htmlControl;
 }
 override public function updateTitle(title:String):void
 {
 htmlLoader.stage.nativeWindow.title = title;
 }
 }
 }

3 In the code that contains the HTMLLoader (not the code of the new subclass of HTMLHost), create an object of

the new class. Assign the new object to the htmlHost property of the HTMLLoader. The following Flex code uses

the CustomHost class defined in the previous step:

54HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

 <?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication
 xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical"
 applicationComplete="init()">
 <mx:Script>
 <![CDATA[
 import flash.html.HTMLLoader;
 import CustomHost;
 private function init():void
 {
 var html:HTMLLoader = new HTMLLoader();
 html.width = container.width;
 html.height = container.height;
 var urlReq:URLRequest = new URLRequest("Test.html");
 html.htmlHost = new CustomHost();
 html.load(urlReq);
 container.addChild(html);
 }
]]>
 </mx:Script>
 <mx:UIComponent id="container" width="100%" height="100%"/>
 </mx:WindowedApplication>

To test the code described here, include an HTML file with the following content in the application directory:

 <html>
 <head>
 <title>Test</title>
 </head>
 <script>
 function openWindow()
 {
 window.runtime.trace("in");
 document.title = "foo"
 window.open('Test.html');
 window.runtime.trace("out");
 }
 </script>
 <body>
 window.open('Test.html')
 </body>
 </html>

Flash Professional example:

1 Create a Flash file for AIR. Set its document class to CustomHostExample and then save the file as

CustomHostExample.fla.

2 Create an ActionScript file called CustomHost.as containing a class that extends the HTMLHost class (a subclass).

This class overrides certain methods of the new class to handle changes in the user interface-related settings. For

example, the following class, CustomHost, defines behaviors for calls to window.open() and changes to

window.document.title. Calls to the window.open() method open the HTML page in a new window, and

changes to the window.document.title property (including the setting of the <title> element of an HTML

page) set the title of that window.

55HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

 package
 {
 import flash.display.StageScaleMode;
 import flash.display.NativeWindow;
 import flash.display.NativeWindowInitOptions;
 import flash.events.Event;
 import flash.events.NativeWindowBoundsEvent;
 import flash.geom.Rectangle;
 import flash.html.HTMLLoader;
 import flash.html.HTMLHost;
 import flash.html.HTMLWindowCreateOptions;
 import flash.text.TextField;

 public class CustomHost extends HTMLHost
 {
 public var statusField:TextField;

 public function CustomHost(defaultBehaviors:Boolean=true)
 {
 super(defaultBehaviors);
 }
 override public function windowClose():void
 {
 htmlLoader.stage.nativeWindow.close();
 }
 override public function createWindow(
 windowCreateOptions:HTMLWindowCreateOptions):HTMLLoader
 {
 var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
 var bounds:Rectangle = new Rectangle(windowCreateOptions.x,
 windowCreateOptions.y,
 windowCreateOptions.width,
 windowCreateOptions.height);
 var htmlControl:HTMLLoader = HTMLLoader.createRootWindow(true, initOptions,
 windowCreateOptions.scrollBarsVisible, bounds);
 htmlControl.htmlHost = new HTMLHostImplementation();
 if(windowCreateOptions.fullscreen){
 htmlControl.stage.displayState =
 StageDisplayState.FULL_SCREEN_INTERACTIVE;
 }
 return htmlControl;
 }
 override public function updateLocation(locationURL:String):void
 {
 trace(locationURL);
 }
 override public function set windowRect(value:Rectangle):void
 {
 htmlLoader.stage.nativeWindow.bounds = value;

56HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

 }
 override public function updateStatus(status:String):void
 {
 statusField.text = status;
 trace(status);
 }
 override public function updateTitle(title:String):void
 {
 htmlLoader.stage.nativeWindow.title = title + "- Example Application";
 }
 override public function windowBlur():void
 {
 htmlLoader.alpha = 0.5;
 }
 override public function windowFocus():void
 {
 htmlLoader.alpha = 1;
 }
 }
 }

3 Create another ActionScript file named CustomHostExample.as to contain the document class for the application.

This class creates an HTMLLoader object and sets its host property to an instance of the CustomHost class defined

in the previous step:

57HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

 package
 {
 import flash.display.Sprite;
 import flash.html.HTMLLoader;
 import flash.net.URLRequest;
 import flash.text.TextField;

 public class CustomHostExample extends Sprite
 {
 function CustomHostExample():void
 {
 var html:HTMLLoader = new HTMLLoader();
 html.width = 550;
 html.height = 380;
 var host:CustomHost = new CustomHost();
 html.htmlHost = host;

 var urlReq:URLRequest = new URLRequest("Test.html");
 html.load(urlReq);

 addChild(html);

 var statusTxt:TextField = new TextField();
 statusTxt.y = 380;
 statusTxt.height = 20;
 statusTxt.width = 550;
 statusTxt.background = true;
 statusTxt.backgroundColor = 0xEEEEEEEE;
 addChild(statusTxt);

 host.statusField = statusTxt;
 }
 }
 }

To test the code described here, include an HTML file with the following content in the application directory:

58HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

 <html>
 <head>
 <title>Test</title>
 <script>
 function openWindow()
 {
 document.title = "Test"
 window.open('Test.html');
 }
 </script>
 </head>
 <body bgColor="#EEEEEE">
 window.open('Test.html')

 window.document.location = 'http://www.adobe.com'

moveBy(6, 12)

window.close()

window.blur()

window.focus()

window.status=new
Date().toString()
 </body>
 </html>

1 Create an ActionScript file, such as HTMLHostImplementation.as.

2 In this file, define a class extending the HTMLHost class.

3 Override methods of the new class to handle changes in the user interface-related settings. For example, the

following class, CustomHost, defines behaviors for calls to window.open() and changes to

window.document.title. Calls to window.open() open the HTML page in a new window, and changes to

window.document.title (including the setting of the <title> element of an HTML page) set the title of that

window.

59HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

 package {
 import flash.html.HTMLHost;
 import flash.html.HTMLLoader;
 import flash.html.HTMLWindowCreateOptions;
 import flash.geom.Rectangle;
 import flash.display.NativeWindowInitOptions;
 import flash.display.StageDisplayState;

 public class HTMLHostImplementation extends HTMLHost{
 public function HTMLHostImplementation(defaultBehaviors:Boolean = true):void{
 super(defaultBehaviors);
 }

 override public function updateTitle(title:String):void{
 htmlLoader.stage.nativeWindow.title = title + " - New Host";
 }

 override public function
createWindow(windowCreateOptions:HTMLWindowCreateOptions):HTMLLoader{
 var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
 var bounds:Rectangle = new Rectangle(windowCreateOptions.x,
 windowCreateOptions.y,
 windowCreateOptions.width,
 windowCreateOptions.height);

 var htmlControl:HTMLLoader = HTMLLoader.createRootWindow(true, initOptions,
 windowCreateOptions.scrollBarsVisible, bounds);

 htmlControl.htmlHost = new HTMLHostImplementation();

 if(windowCreateOptions.fullscreen){
 htmlControl.stage.displayState =
 StageDisplayState.FULL_SCREEN_INTERACTIVE;
 }

 return htmlControl;
 }
 }
 }

4 Compile the class into a SWF file using the acompc component compiler.

 acompc -source-path . -include-classes HTMLHostImplementation -output Host.zip

Note: The acompc compiler is included with the Flex SDK (but not the AIR SDK, which is targeted for HTML

developers who do not generally need to compile SWF files.) Instructions for using acompc are provided in the Using

compc, the component compiler.

5 Open the Host.zip file and extract the Library.swf file inside.

6 Rename Library.swf to HTMLHostLibrary.swf. This SWF file is the library to import into the HTML page.

7 Import the library into the HTML page using a <script> tag:

 <script src="HTMLHostLibrary.swf" type="application/x-shockwave-flash"></script>

8 Assign a new instance of the HTMLHost implementation to the HTMLLoader object of the page.

 window.htmlLoader.htmlHost = new window.runtime.HTMLHostImplementation();

http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-7fd2.html
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-7fd2.html

60HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

The following HTML page illustrates how to load and use the HTMLHost implementation. You can test the

updateTitle() and createWindow() implementations by clicking the button to open a new, fullscreen window.

 <html>
 <head>
 <title>HTMLHost Example</title>
 <script src="HTMLHostLibrary.swf" type="application/x-shockwave-flash"></script>
 <script language="javascript">
 window.htmlLoader.htmlHost = new window.runtime.HTMLHostImplementation();

 function test(){
 window.open('child.html', 'Child', 'fullscreen');
 }
 </script>
 </head>
 <body>
 <button onClick="test()">Create Window</button>
 </body>
 </html>

To run this example, provide an HTML file named child.html in the application directory.

Handling changes to the window.location property

Adobe AIR 1.0 and later

Override the locationChange() method to handle changes of the URL of the HTML page. The locationChange()

method is called when JavaScript in a page changes the value of window.location. The following example simply

loads the requested URL:

 override public function updateLocation(locationURL:String):void
 {
 htmlLoader.load(new URLRequest(locationURL));
 }

Note: You can use the htmlLoader property of the HTMLHost object to reference the current HTMLLoader object.

Handling JavaScript calls to window.moveBy(), window.moveTo(),

window.resizeTo(), window.resizeBy()

Adobe AIR 1.0 and later

Override the set windowRect() method to handle changes in the bounds of the HTML content. The set

windowRect() method is called when JavaScript in a page calls window.moveBy(), window.moveTo(),

window.resizeTo(), or window.resizeBy(). The following example simply updates the bounds of the desktop

window:

 override public function set windowRect(value:Rectangle):void
 {
 htmlLoader.stage.nativeWindow.bounds = value;
 }

61HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

Handling JavaScript calls to window.open()

Adobe AIR 1.0 and later

Override the createWindow() method to handle JavaScript calls to window.open(). Implementations of the

createWindow() method are responsible for creating and returning a new HTMLLoader object. Typically, you would

display the HTMLLoader in a new window, but creating a window is not required.

The following example illustrates how to implement the createWindow() function using the

HTMLLoader.createRootWindow() to create both the window and the HTMLLoader object. You can also create a

NativeWindow object separately and add the HTMLLoader to the window stage.

 override public function createWindow(windowCreateOptions:HTMLWindowCreateOptions):HTMLLoader{
 var initOptions:NativeWindowInitOptions = new NativeWindowInitOptions();
 var bounds:Rectangle = new Rectangle(windowCreateOptions.x, windowCreateOptions.y,
 windowCreateOptions.width, windowCreateOptions.height);
 var htmlControl:HTMLLoader = HTMLLoader.createRootWindow(true, initOptions,
 windowCreateOptions.scrollBarsVisible, bounds);
 htmlControl.htmlHost = new HTMLHostImplementation();
 if(windowCreateOptions.fullscreen){
 htmlControl.stage.displayState = StageDisplayState.FULL_SCREEN_INTERACTIVE;
 }
 return htmlControl;
 }

Note: This example assigns the custom HTMLHost implementation to any new windows created with window.open().

You can also use a different implementation or set the htmlHost property to null for new windows, if desired.

The object passed as a parameter to the createWindow() method is an HTMLWindowCreateOptions object. The

HTMLWindowCreateOptions class includes properties that report the values set in the features parameter string in

the call to window.open():

The HTMLLoader class does not implement all the features that can be specified in the feature string. Your application

must provide scroll bars, location bars, menu bars, status bars, and toolbars when appropriate.

HTMLWindowCreateOptions

property

Corresponding setting in the

features string in the JavaScript

call to window.open()

fullscreen fullscreen

height height

locationBarVisible location

menuBarVisible menubar

resizeable resizable

scrollBarsVisible scrollbars

statusBarVisible status

toolBarVisible toolbar

width width

x left or screenX

y top or screenY

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/html/HTMLWindowCreateOptions.html

62HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

The other arguments to the JavaScript window.open() method are handled by the system. A createWindow()

implementation should not load content in the HTMLLoader object, or set the window title.

Handling JavaScript calls to window.close()

Adobe AIR 1.0 and later

Override the windowClose() to handle JavaScript calls to window.close() method. The following example closes the

desktop window when the window.close() method is called:

override public function windowClose():void
{

htmlLoader.stage.nativeWindow.close();
}

JavaScript calls to window.close() do not have to close the containing window. You could, for example, remove the

HTMLLoader from the display list, leaving the window (which may have other content) open, as in the following code:

override public function windowClose():void
{

htmlLoader.parent.removeChild(htmlLoader);
}

Handling changes of the window.status property

Adobe AIR 1.0 and later

Override the updateStatus() method to handle JavaScript changes to the value of window.status. The following

example traces the status value:

 override public function updateStatus(status:String):void
 {
 trace(status);
 }

The requested status is passed as a string to the updateStatus() method.

The HTMLLoader object does not provide a status bar.

Handling changes of the window.document.title property

Adobe AIR 1.0 and later

override the updateTitle() method to handle JavaScript changes to the value of window.document.title. The

following example changes the window title and appends the string, "Sample," to the title:

 override public function updateTitle(title:String):void
 {
 htmlLoader.stage.nativeWindow.title = title + " - Sample";
 }

When document.title is set on an HTML page, the requested title is passed as a string to the updateTitle()

method.

Changes to document.title do not have to change the title of the window containing the HTMLLoader object. You

could, for example, change another interface element, such as a text field.

63HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Scripting the AIR HTML Container

Last updated 9/28/2011

Handling JavaScript calls to window.blur() and window.focus()

Adobe AIR 1.0 and later

Override the windowBlur() and windowFocus() methods to handle JavaScript calls to window.blur() and

window.focus(), as shown in the following example:

 override public function windowBlur():void
 {
 htmlLoader.alpha = 0.5;
 }
 override public function windowFocus():void
 {
 htmlLoader.alpha = 1.0;
 NativeApplication.nativeApplication.activate(htmlLoader.stage.nativeWindow);
 }

Note: AIR does not provide an API for deactivating a window or application.

Creating windows with scrolling HTML content

Adobe AIR 1.0 and later

The HTMLLoader class includes a static method, HTMLLoader.createRootWindow(), which lets you open a new

window (represented by a NativeWindow object) that contains an HTMLLoader object and define some user interface

settings for that window. The method takes four parameters, which let you define the user interface:

For example, the following code uses the HTMLLoader.createRootWindow() method to create a window with

HTMLLoader content that uses scroll bars:

 var initOptions = new air.NativeWindowInitOptions();
 var bounds = new air.Rectangle(10, 10, 600, 400);
 var html2 = air.HTMLLoader.createRootWindow(true, initOptions, true, bounds);
 var urlReq2 = new air.URLRequest("http://www.example.com");
 html2.load(urlReq2);
 html2.stage.nativeWindow.activate();

Note: Windows created by calling createRootWindow() directly in JavaScript remain independent from the opening

HTML window. The JavaScript Window opener and parent properties, for example, are null. However, if you call

createRootWindow() indirectly by overriding the HTMLHost createWindow() method to call

createRootWindow(), then opener and parent do reference the opening HTML window.

Parameter Description

visible A Boolean value that specifies whether the window is initially visible (true) or not (false).

windowInitOptions A NativeWindowInitOptions object. The NativeWindowInitOptions class defines initialization options for a

NativeWindow object, including the following: whether the window is minimizable, maximizable, or resizable,

whether the window has system chrome or custom chrome, whether the window is transparent or not (for

windows that do not use system chrome), and the type of window.

scrollBarsVisible Whether there are scroll bars (true) or not (false).

bounds A Rectangle object defining the position and size of the new window.

64

Last updated 9/28/2011

Chapter 5: Working with vectors

Adobe AIR 1.5 and later

A Vector instance is a typed array, which means that all the elements in a Vector instance always have the same data

type. Some AIR APIs, such as NativeProcess and NetworkInfo, use Vectors as data types for properties or methods.

In JavaScript code running in Adobe AIR, the Vector class is referenced as air.Vector (in the AIRAliases.js file).

Basics of vectors

Adobe AIR 1.5 and later

When you declare a Vector variable or instantiate a Vector object, you explicitly specify the data type of the objects

that the Vector can contain. The specified data type is known as the Vector’s base type. At run time, any code that sets

or retrieves a value of a Vector is checked. If the data type of the object being added or retrieved doesn’t match the

Vector’s base type, an error occurs.

In addition to the data type restriction, the Vector class has other restrictions that distinguish it from the Array class:

• A Vector is a dense array. An Array object may have values in indices 0 and 7 even if it has no values in positions 1

through 6. However, a Vector must have a value (or null) in each index.

• A Vector can optionally be fixed length. This means that the number of elements the Vector contains can’t change.

• Access to a Vector’s elements is bounds-checked. You can never read a value from an index greater than the final

element (length - 1). You can never set a value with an index more than one beyond the current final index. (In

other words, you can only set a value at an existing index or at index [length].)

As a result of its restrictions, a Vector has three primary benefits over an Array instance whose elements are all

instances of a single class:

• Performance: array element access and iteration are much faster when using a Vector instance than when using an

Array instance.

• Type safety: examples of such errors include assigning a value of the incorrect data type to a Vector or expecting

the wrong data type when reading a value from a Vector. At run time, data types are checked when adding data to

or reading data from a Vector object.

• Reliability: run-time range checking (or fixed-length checking) increases reliability significantly over Arrays.

Aside from the additional restrictions and benefits, the Vector class is very much like the Array class. The properties

and methods of a Vector object are similar—usually identical—to the properties and methods of an Array. In most

situations where you would use an Array in which all the elements have the same data type, a Vector instance is

preferable.

Important concepts and terms

The following reference list contains important terms to know when programming array and vector handling routines:

Array access ([]) operator A pair of square brackets surrounding an index or key that uniquely identifies an array

element. This syntax is used after a vector variable name to specify a single element of the vector rather than the entire

vector.

65HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with vectors

Last updated 9/28/2011

Base type The data type of the objects that a Vector instance is allowed to store.

Element A single item in a vector.

Index The numeric “address” used to identify a single element in an indexed array.

T The standard convention that’s used in this documentation to represent the base type of a Vector instance, whatever

that base type happens to be. The T convention is used to represent a class name, as shown in the Type parameter

description. (“T” stands for “type,” as in “data type.”).

Type parameter The syntax that’s used with the Vector class name to specify the Vector’s base type (the data type of

the objects that it stores). The syntax consists of a period (.), then the data type name surrounded by angle brackets

(<>). Put together, it looks like this: Vector.<T>. In this documentation, the class specified in the type parameter is

represented generically as T.

Vector A type of array whose elements are all instances of the same data type.

Creating vectors

AIR 1.5 and later

You create a Vector instance by calling the air.Vector["<T>"]() constructor. When you call this constructor, you

specify the base type of the Vector variable. You specify the Vector’s base type using type parameter syntax. The type

parameter immediately follows the word Vector in the code. It consists of a left bracket, then a string containing the

base class name surrounded by angle brackets (<>), followed by a right bracket. This example shows this syntax:

var v = new air.Vector["<String>"]();

In this example, the variable v is declared as a vector of String objects. In other words, it represents an indexed array

that can only hold String instances.

If you use the air.Vector["<T>"]() constructor without any arguments, it creates an empty Vector instance. You

can test that a Vector is empty by checking its length property. For example, the following code calls the

Vector["<T>"]() constructor with no arguments:

 var names = new air.Vector["<String>"]();
air. trace(names.length); // output: 0

If you know ahead of time how many elements a Vector initially needs, you can pre-define the number of elements in

the Vector. To create a Vector with a certain number of elements, pass the number of elements as the first parameter

(the length parameter). Because Vector elements can’t be empty, the elements are filled with instances of the base

type. If the base type is a reference type that allows null values, the elements all contain null. Otherwise, the elements

all contain the default value for the class. For example, a Number variable can’t be null. Consequently, in the following

code listing the Vector named ages is created with three elements, each containing the default Number value NaN:

var ages = new air.Vector["<Number>"](3);
air.trace(ages); // output: NaN, NaN, NaN

Using the Vector["<T>"]() constructor you can also create a fixed-length Vector by passing true for the second

parameter (the fixed parameter). In that case the Vector is created with the specified number of elements and the

number of elements can’t be changed. Note, however, that you can still change the values of the elements of a fixed-

length Vector.

If you create a Vector of AIR runtime objects (classes defined in the window.runtime object), reference the class’s fully

qualified ActionScript 3.0 name when calling the Vector constructor. For example, the following code creates a Vector

of File objects:

66HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with vectors

Last updated 9/28/2011

var files = new air.Vector["flash.filesystem.File"](3);

Inserting elements into a vector

Adobe AIR 1.5 and later

The most basic way to add an element to vector is to use the array access ([]) operator:

songTitles[5] = "Happy Birthday";

If the Vector doesn’t already have an element at that index, the index is created and the value is stored there.

With a Vector object, you can only assign a value to an existing index or to the next available index. The next available

index corresponds to the Vector object’s length property. The safest way to add a new element to a Vector object is

to use code like this listing:

myVector[myVector.length] = valueToAdd;

As with arrays, three of the Vector class methods—push(), unshift(), and splice()—allow you to insert elements

into a vector.

Note: If a Vector object’s fixed property is true, the total number of elements in the Vector can’t change. If you try to

add a new element to a fixed-length Vector using the push() method or other means, an error occurs.

Retrieving values and removing vector elements

Adobe AIR 1.5 and later

The simplest way to retrieve the value of an element from vector is to use the array access ([]) operator. To retrieve

the value of an vector element, use the vector object name and index number on the right side of an assignment

statement:

var myFavoriteSong = songTitles[3];

It’s possible to attempt to retrieve a value from a vector using an index where no element exists. In that case, a Vector

throws a RangeError exception.

Three methods of the Array and Vector classes—pop(), shift(), and splice()—allow you to remove elements.

var vegetables = new air.Vector["<String>"];
vegetables.push("spinach");
vegetables.push("green pepper");
vegetables.push("cilantro");
vegetables.push("onion");
 var spliced = vegetables.splice(2, 2);
 air.trace(spliced); // output: spinach,green pepper

You can truncate a vector using thelength property.

If you set the length property of a vector to a length that is less than the current length of the vector, the vector is

truncated. Any elements stored at index numbers higher than the new value of length minus 1 are removed.

Note: If a Vector object’s fixed property is true, the total number of elements in the Vector can’t change. If you try to

remove an element from or truncate a fixed-length Vector using the techniques described here, an error occurs.

67HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with vectors

Last updated 9/28/2011

Properties and methods of Vector objects

Adobe AIR 1.5 and later

Many of the same methods and properties of Array objects are available for vector object. For example, you can call

the reverse() method to change the order of elements of a Vector. You can call the sort() method to sort the

elements of a Vector. However, the Vector class does not include a sortOn() method.

For details on supported properties and methods, see the Vector class documentation in the Adobe AIR Language

Reference for HTML Developers.

Example: Using AIR APIs that require vectors

Adobe AIR 1.5 and later

Some Adobe AIR runtime classes use vectors as properties or method return values. For example, the

findInterfaces() method of the NetworkInfo class returns an array of NetworkInterface objects. The arguments

property NativeProcessStartupInfo class is a vector of strings.

Accessing AIR APIs that return vector objects

Adobe AIR 2.0 and later

The findInterfaces() method of the NetworkInfo class returns an array of NetworkInterface objects. For example,

the following code lists the computer’s network interfaces:

var netInfo = air.NetworkInfo;
var interfaces = netInfo.findInterfaces();
for (i = 0; i < interfaces.length; i++)
{

air.trace(interfaces[i].name];
air.trace(" hardware address: ", interface.hardwareAddress);

}

You iterate through the vector of NetworkInfo objects just as you would iterate through an array. You use a for loop

and use square brackets to access indexed elements of the vector.

The interfaces property of the NetworkInterface object is a vector of InterfaceAddress objects. The following code

extends the previous example, adding a function to enumerate interface addresses for each network interface:

68HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with vectors

Last updated 9/28/2011

var netInfo = air.NetworkInfo;
var interfaces = netInfo.findInterfaces();
for (i = 0; i < interfaces.length; i++)
{

air.trace(interfaces[i].name];
air.trace(" hardware address: ", interface.hardwareAddress);
air.trace(" addresses: ", traceAddresses(i);

}

function traceAddresses(i)
{

returnString = new String();
for (j = 0; j < interfaces[i].addresses.length; j++)

returnString += interfaces[i],addresses[j].address + " ";
}

}

Setting AIR APIs that are vectors

Adobe AIR 2.0 and later

The arguments property NativeProcessStartupInfo class is a vector of strings. To set this property, create a vector of

strings using the air.Vector() constructor. You can use the push() method to add strings to the vector:

var arguments = new air.Vector["<String>"]();

 arguments.push("test");
arguments.push("44");

var startupInfo = new air.NativeProcessStartupInfo();
startupInfo.arguments = arguments;
startupInfo.executable = File.applicationDirectory.resolvePath("myApplication.exe");

process = new air.NativeProcess();
process.start(startupInfo);

For more information on using the native process API, see “Communicating with Native Processes” in Networking

and communication.

69

Last updated 9/28/2011

Chapter 6: AIR security

Adobe AIR 1.0 and later

AIR security basics

Adobe AIR 1.0 and later

AIR applications run with the same security restrictions as native applications. In general, AIR applications, like native

applications, have broad access to operating system capabilities such as reading and writing files, starting applications,

drawing to the screen, and communicating with the network. Operating system restrictions that apply to native

applications, such as user-specific privileges, equally apply to AIR applications.

Although the Adobe® AIR® security model is an evolution of the Adobe® Flash® Player security model, the security

contract is different from the security contract applied to content in a browser. This contract offers developers a secure

means of broader functionality for rich experiences with freedoms that would be inappropriate for a browser-based

application.

AIR applications are written using either compiled bytecode (SWF content) or interpreted script (JavaScript, HTML)

so that the runtime provides memory management. This minimizes the chances of AIR applications being affected by

vulnerabilities related to memory management, such as buffer overflows and memory corruption. These are some of

the most common vulnerabilities affecting desktop applications written in native code.

Installation and updates

Adobe AIR 1.0 and later

AIR applications are distributed via AIR installer files which use the air extension or via native installers, which use

the file format and extension of the native platform. For example, the native installer format of Windows is an EXE

file, and for Android the native format is an APK file.

When Adobe AIR is installed and an AIR installer file is opened, the AIR runtime administers the installation process.

When a native installer is used, the operating system administers the installation process.

Note: Developers can specify a version, and application name, and a publisher source, but the initial application

installation workflow itself cannot be modified. This restriction is advantageous for users because all AIR applications

share a secure, streamlined, and consistent installation procedure administered by the runtime. If application

customization is necessary, it can be provided when the application is first executed.

Runtime installation location

Adobe AIR 1.0 and later

AIR applications first require the runtime to be installed on a user's computer, just as SWF files first require the Flash

Player browser plug-in to be installed.

70HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

The runtime is installed to the following location on desktop computers:

• Mac OS: /Library/Frameworks/

• Windows: C:\Program Files\Common Files\Adobe AIR

• Linux: /opt/Adobe AIR/

On Mac OS, to install an updated version of an application, the user must have adequate system privileges to install to

the application directory. On Windows and Linux, a user must have administrative privileges.

Note: On iOS, the AIR runtime is not installed separately; every AIR app is a self-contained application.

The runtime can be installed in two ways: using the seamless install feature (installing directly from a web browser) or

via a manual install.

Seamless install (runtime and application)

Adobe AIR 1.0 and later

The seamless install feature provides developers with a streamlined installation experience for users who do not have

Adobe AIR installed yet. In the seamless install method, the developer creates a SWF file that presents the application

for installation. When a user clicks in the SWF file to install the application, the SWF file attempts to detect the

runtime. If the runtime cannot be detected it is installed, and the runtime is activated immediately with the installation

process for the developer's application.

Manual install

Adobe AIR 1.0 and later

Alternatively, the user can manually download and install the runtime before opening an AIR file. The developer can

then distribute an AIR file by different means (for instance, via e-mail or an HTML link on a website). When the AIR

file is opened, the runtime begins to process the application installation.

Application installation flow

Adobe AIR 1.0 and later

The AIR security model allows users to decide whether to install an AIR application. The AIR install experience

provides several improvements over native application install technologies that make this trust decision easier for

users:

• The runtime provides a consistent installation experience on all operating systems, even when an AIR application

is installed from a link in a web browser. Most native application install experiences depend upon the browser or

other application to provide security information, if it is provided at all.

• The AIR application install experience identifies the source of the application and information about what

privileges are available to the application (if the user allows the installation to proceed).

• The runtime administers the installation process of an AIR application. An AIR application cannot manipulate the

installation process the runtime uses.

In general, users should not install any desktop application that comes from a source that they do not trust, or that

cannot be verified. The burden of proof on security for native applications is equally true for AIR applications as it is

for other installable applications.

71HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

Application destination

Adobe AIR 1.0 and later

The installation directory can be set using one of the following two options:

1 The user customizes the destination during installation. The application installs to wherever the user specifies.

2 If the user does not change the install destination, the application installs to the default path as determined by the

runtime:

• Mac OS: ~/Applications/

• Windows XP and earlier: C:\Program Files\

• Windows Vista: ~/Apps/

• Linux: /opt/

If the developer specifies an installFolder setting in the application descriptor file, the application is installed to

a subpath of this directory.

The AIR file system

Adobe AIR 1.0 and later

The install process for AIR applications copies all files that the developer has included within the AIR installer file onto

the user's local computer. The installed application is composed of:

• Windows: A directory containing all files included in the AIR installer file. The runtime also creates an exe file

during the installation of the AIR application.

• Linux: A directory containing all files included in the AIR installer file. The runtime also creates a bin file during

the installation of the AIR application.

• Mac OS: An app file that contains all of the contents of the AIR installer file. It can be inspected using the "Show

Package Contents" option in Finder. The runtime creates this app file as part of the installation of the AIR

application.

An AIR application is run by:

• Windows: Running the .exe file in the install folder, or a shortcut that corresponds to this file (such as a shortcut

on the Start Menu or desktop).

• Linux: Launching the .bin file in the install folder, choosing the application from the Applications menu, or running

from an alias or desktop shortcut.

• Mac OS: Running the .app file or an alias that points to it.

The application file system also includes subdirectories related to the function of the application. For example,

information written to encrypted local storage is saved to a subdirectory in a directory named after the application

identifier of the application.

72HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

AIR application storage

Adobe AIR 1.0 and later

AIR applications have privileges to write to any location on the user's hard drive; however, developers are encouraged

to use the app-storage:/ path for local storage related to their application. Files written to app-storage:/ from an

application are located in a standard location depending on the user's operating system:

• On Mac OS: the storage directory of an application is <appData>/<appId>/Local Store/ where <appData> is

the user's “preferences folder,” typically: /Users/<user>/Library/Preferences

• On Windows: the storage directory of an application is <appData>\<appId>\Local Store\ where <appData> is the

user's CSIDL_APPDATA “Special Folder,” typically: C:\Documents and Settings\<user>\Application Data

• On Linux: <appData>/<appID>/Local Store/where <appData> is /home/<user>/.appdata

You can access the application storage directory via the air.File.applicationStorageDirectory property. You

can access its contents using the resolvePath() method of the File class. For details, see “Working with the file

system” on page 145.

Updating Adobe AIR

Adobe AIR 1.0 and later

When the user installs an AIR application that requires an updated version of the runtime, the runtime automatically

installs the required runtime update.

To update the runtime, a user must have administrative privileges for the computer.

Updating AIR applications

Adobe AIR 1.0 and later

Development and deployment of software updates are one of the biggest security challenges facing native code

applications. The AIR API provides a mechanism to improve this: the Updater.update() method can be invoked

upon launch to check a remote location for an AIR file. If an update is appropriate, the AIR file is downloaded,

installed, and the application restarts. Developers can use this class not only to provide new functionality but also

respond to potential security vulnerabilities.

The Updater class can only be used to update applications distributed as AIR files. Applications distributed as native

applications must use the update facilities, if any, of the native operating system.

Note: Developers can specify the version of an application by setting the versionNumber property of the application

descriptor file.

Uninstalling an AIR application

Adobe AIR 1.0 and later

Removing an AIR application removes all files in the application directory. However, it does not remove all files that

the application may have written to outside of the application directory. Removing AIR applications does not revert

changes the AIR application has made to files outside of the application directory.

73HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

Windows registry settings for administrators

Adobe AIR 1.0 and later

On Windows, administrators can configure a machine to prevent (or allow) AIR application installation and runtime

updates. These settings are contained in the Windows registry under the following key:

HKLM\Software\Policies\Adobe\AIR. They include the following:

HTML security in Adobe AIR

Adobe AIR 1.0 and later

This topic describes the AIR HTML security architecture and how to use iframes, frames, and the sandbox bridge to

set up HTML-based applications and safely integrate HTML content into SWF-based applications.

The runtime enforces rules and provides mechanisms for overcoming possible security vulnerabilities in HTML and

JavaScript. The same rules are enforced whether your application is primarily written in JavaScript or whether you load

the HTML and JavaScript content into a SWF-based application. Content in the application sandbox and the non-

application security sandbox have different privileges. When loading content into an iframe or frame, the runtime

provides a secure sandbox bridge mechanism that allows content in the frame or iframe to communicate securely with

content in the application security sandbox.

The AIR SDK provides three classes for rendering HTML content.

The HTMLLoader class provides close integration between JavaScript code and the AIR APIs.

The StageWebView class is an HTML rendering class and has very limited integration with the host AIR application.

Content loaded by the StageWebView class is never placed in the application security sandbox and cannot access data

or call functions in the host AIR application. On desktop platforms, the StageWebView class uses the built-in AIR

HTML engine, based on Webkit, which is also used by the HTMLLoader class. On mobile platforms, the

StageWebView class uses the HTML control provided by the operating system. Thus, on mobile platforms the

StageWebView class has the same security considerations and vulnerabilities as the system web browser.

The TextField class can display strings of HTML text. No JavaScript can be executed, but the text can include links and

externally loaded images.

For more information, see “Avoiding security-related JavaScript errors” on page 22.

Registry setting Description

AppInstallDisabled Specifies that AIR application installation and uninstallation are allowed. Set to 0 for “allowed,” set to 1

for “disallowed.”

UntrustedAppInstallDisabled Specifies that installation of untrusted AIR applications (applications that do not includes a trusted

certificate) is allowed. Set to 0 for “allowed,” set to 1 for “disallowed.”

UpdateDisabled Specifies that updating the runtime is allowed, either as a background task or as part of an explicit

installation. Set to 0 for “allowed,” set to 1 for “disallowed.”

74HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

Overview on configuring your HTML-based application

Adobe AIR 1.0 and later

Frames and iframes provide a convenient structure for organizing HTML content in AIR. Frames provide a means

both for maintaining data persistence and for working securely with remote content.

Because HTML in AIR retains its normal, page-based organization, the HTML environment completely refreshes if

the top frame of your HTML content “navigates” to a different page. You can use frames and iframes to maintain data

persistence in AIR, much the same as you would for a web application running in a browser. Define your main

application objects in the top frame and they persist as long as you don’t allow the frame to navigate to a new page. Use

child frames or iframes to load and display the transient parts of the application. (There are a variety of ways to

maintain data persistence that can be used in addition to, or instead of, frames. These include cookies, local shared

objects, local file storage, the encrypted file store, and local database storage.)

Because HTML in AIR retains its normal, blurred line between executable code and data, AIR puts content in the top

frame of the HTML environment into the application sandbox. After the page load event, AIR restricts any

operations, such as eval(), that can convert a string of text into an executable object. This restriction is enforced even

when an application does not load remote content. To allow HTML content to execute these restricted operations, you

must use frames or iframes to place the content into a non-application sandbox. (Running content in a sandboxed

child frame may be necessary when using some JavaScript application frameworks that rely on the eval() function.)

For a complete list of the restrictions on JavaScript in the application sandbox, see “Code restrictions for content in

different sandboxes” on page 76.

Because HTML in AIR retains its ability to load remote, possibly insecure content, AIR enforces a same-origin policy

that prevents content in one domain from interacting with content in another. To allow interaction between

application content and content in another domain, you can set up a bridge to serve as the interface between a parent

and a child frame.

Setting up a parent-child sandbox relationship

Adobe AIR 1.0 and later

AIR adds the sandboxRoot and documentRoot attributes to the HTML frame and iframe elements. These attributes

let you treat application content as if it came from another domain:

The following example maps content installed in the sandbox subdirectory of the application to run in the remote

sandbox and the www.example.com domain:

<iframe
 src="ui.html"
 sandboxRoot="http://www.example.com/local/"
 documentRoot="app:/sandbox/">
 </iframe>

Attribute Description

sandboxRoot The URL to use for determining the sandbox and domain in which to place the

frame content. The file:, http:, or https: URL schemes must be used.

documentRoot The URL from which to load the frame content. The file:, app:, or app-
storage: URL schemes must be used.

75HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

Setting up a bridge between parent and child frames in different sandboxes or domains

Adobe AIR 1.0 and later

AIR adds the childSandboxBridge and parentSandboxBridge properties to the window object of any child frame.

These properties let you define bridges to serve as interfaces between a parent and a child frame. Each bridge goes in

one direction:

childSandboxBridge — The childSandboxBridge property allows the child frame to expose an interface to content

in the parent frame. To expose an interface, you set the childSandbox property to a function or object in the child

frame. You can then access the object or function from content in the parent frame. The following example shows how

a script running in a child frame can expose an object containing a function and a property to its parent:

var interface = {};
 interface.calculatePrice = function(){
 return .45 + 1.20;
 }
 interface.storeID = "abc"
 window.childSandboxBridge = interface;

If this child content is in an iframe assigned an id of "child", you can access the interface from parent content by

reading the childSandboxBridge property of the frame:

var childInterface = document.getElementById("child").childSandboxBridge;
 air.trace(childInterface.calculatePrice()); //traces "1.65"
 air.trace(childInterface.storeID)); //traces "abc"

parentSandboxBridge — The parentSandboxBridge property allows the parent frame to expose an interface to

content in the child frame. To expose an interface, you set the parentSandbox property of the child frame to a function

or object in the parent frame. You can then access the object or function from content in the child frame. The following

example shows how a script running in the parent frame can expose an object containing a save function to a child:

var interface = {};
 interface.save = function(text){
 var saveFile = air.File("app-storage:/save.txt");
 //write text to file
 }
 document.getElementById("child").parentSandboxBridge = interface;

Using this interface, content in the child frame could save text to a file named save.txt. However, it would not have any

other access to the file system. In general, application content should expose the narrowest possible interface to other

sandboxes. The child content could call the save function as follows:

var textToSave = "A string.";
 window.parentSandboxBridge.save(textToSave);

If child content attempts to set a property of the parentSandboxBridge object, the runtime throws a SecurityError

exception. If parent content attempts to set a property of the childSandboxBridge object, the runtime throws a

SecurityError exception.

76HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

Code restrictions for content in different sandboxes

Adobe AIR 1.0 and later

As discussed in the introduction to this topic, “HTML security in Adobe AIR” on page 73, the runtime enforces rules

and provides mechanisms for overcoming possible security vulnerabilities in HTML and JavaScript. This topic lists

those restrictions. If code attempts to call these restricted APIs, the runtime throws an error with the message “Adobe

AIR runtime security violation for JavaScript code in the application security sandbox.”

For more information, see “Avoiding security-related JavaScript errors” on page 22.

Restrictions on using the JavaScript eval() function and similar techniques

Adobe AIR 1.0 and later

For HTML content in the application security sandbox, there are limitations on using APIs that can dynamically

transform strings into executable code after the code is loaded (after the onload event of the body element has been

dispatched and the onload handler function has finished executing). This is to prevent the application from

inadvertently injecting (and executing) code from non-application sources (such as potentially insecure network

domains).

For example, if your application uses string data from a remote source to write to the innerHTML property of a DOM

element, the string could include executable (JavaScript) code that could perform insecure operations. However, while

the content is loading, there is no risk of inserting remote strings into the DOM.

One restriction is in the use of the JavaScript eval() function. Once code in the application sandbox is loaded and

after processing of the onload event handler, you can only use the eval() function in limited ways. The following rules

apply to the use of the eval() function after code is loaded from the application security sandbox:

• Expressions involving literals are allowed. For example:

eval("null");
 eval("3 + .14");
 eval("'foo'");

• Object literals are allowed, as in the following:

{ prop1: val1, prop2: val2 }

• Object literal setter/getters are prohibited, as in the following:

{ get prop1() { ... }, set prop1(v) { ... } }

• Array literals are allowed, as in the following:

[val1, val2, val3]

• Expressions involving property reads are prohibited, as in the following:

a.b.c

• Function invocation is prohibited.

• Function definitions are prohibited.

• Setting any property is prohibited.

• Function literals are prohibited.

However, while the code is loading, before the onload event, and during execution the onload event handler function,

these restrictions do not apply to content in the application security sandbox.

For example, after code is loaded, the following code results in the runtime throwing an exception:

77HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

eval("alert(44)");
 eval("myFunction(44)");
 eval("NativeApplication.applicationID");

Dynamically generated code, such as that which is made when calling the eval() function, would pose a security risk

if allowed within the application sandbox. For example, an application may inadvertently execute a string loaded from

a network domain, and that string may contain malicious code. For example, this could be code to delete or alter files

on the user’s computer. Or it could be code that reports back the contents of a local file to an untrusted network

domain.

Ways to generate dynamic code are the following:

• Calling the eval() function.

• Using innerHTML properties or DOM functions to insert script tags that load a script outside of the application

directory.

• Using innerHTML properties or DOM functions to insert script tags that have inline code (rather than loading a

script via the src attribute).

• Setting the src attribute for a script tags to load a JavaScript file that is outside of the application directory.

• Using the javascript URL scheme (as in href="javascript:alert('Test')").

• Using the setInterval() or setTimout()function where the first parameter (defining the function to run

asynchronously) is a string (to be evaluated) rather than a function name (as in setTimeout('x = 4', 1000)).

• Calling document.write() or document.writeln().

Code in the application security sandbox can only use these methods while content is loading.

These restrictions do not prevent using eval() with JSON object literals. This lets your application content work with

the JSON JavaScript library. However, you are restricted from using overloaded JSON code (with event handlers).

For other Ajax frameworks and JavaScript code libraries, check to see if the code in the framework or library works

within these restrictions on dynamically generated code. If they do not, include any content that uses the framework

or library in a non-application security sandbox. For details, see Restrictions for JavaScript inside AIR and “Scripting

between application and non-application content” on page 81. Adobe maintains a list of Ajax frameworks known to

support the application security sandbox, at http://www.adobe.com/products/air/develop/ajax/features/.

Unlike content in the application security sandbox, JavaScript content in a non-application security sandbox can call

the eval() function to execute dynamically generated code at any time.

Restrictions on access to AIR APIs (for non-application sandboxes)

Adobe AIR 1.0 and later

JavaScript code in a non-application sandbox does not have access to the window.runtime object, and as such this

code cannot execute AIR APIs. If content in a non-application security sandbox calls the following code, the

application throws a TypeError exception:

try {
 window.runtime.flash.system.NativeApplication.nativeApplication.exit();
 }
 catch (e)
 {
 alert(e);
 }

http://www.adobe.com/products/air/develop/ajax/features/

78HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

The exception type is TypeError (undefined value), because content in the non-application sandbox does not

recognize the window.runtime object, so it is seen as an undefined value.

You can expose runtime functionality to content in a non-application sandbox by using a script bridge. For details, see

and “Scripting between application and non-application content” on page 81.

Restrictions on using XMLHttpRequest calls

Adobe AIR 1.0 and later

HTML content in the application security sandbox cannot use synchronous XMLHttpRequest methods to load data

from outside of the application sandbox while the HTML content is loading and during onLoad event.

By default, HTML content in non-application security sandboxes are not allowed to use the JavaScript

XMLHttpRequest object to load data from domains other than the domain calling the request. A frame or iframe tag

can include an allowcrosscomainxhr attribute. Setting this attribute to any non-null value allows the content in the

frame or iframe to use the JavaScript XMLHttpRequest object to load data from domains other than the domain of the

code calling the request:

<iframe id="UI"
 src="http://example.com/ui.html"
 sandboxRoot="http://example.com/"
 allowcrossDomainxhr="true"
 documentRoot="app:/">
 </iframe>

For more information, see “Scripting between content in different domains” on page 79.

Restrictions on loading CSS, frame, iframe, and img elements (for content in non-application
sandboxes)

Adobe AIR 1.0 and later

HTML content in remote (network) security sandboxes can only load CSS, frame, iframe, and img content from

remote sandboxes (from network URLs).

HTML content in local-with-filesystem, local-with-networking, or local-trusted sandboxes can only load CSS, frame,

iframe, and img content from local sandboxes (not from application or remote sandboxes).

Restrictions on calling the JavaScript window.open() method

Adobe AIR 1.0 and later

If a window that is created via a call to the JavaScript window.open() method displays content from a non-application

security sandbox, the window’s title begins with the title of the main (launching) window, followed by a colon

character. You cannot use code to move that portion of the title of the window off screen.

Content in non-application security sandboxes can only successfully call the JavaScript window.open() method in

response to an event triggered by a user mouse or keyboard interaction. This prevents non-application content from

creating windows that might be used deceptively (for example, for phishing attacks). Also, the event handler for the

mouse or keyboard event cannot set the window.open() method to execute after a delay (for example by calling the

setTimeout() function).

Content in remote (network) sandboxes can only use the window.open() method to open content in remote network

sandboxes. It cannot use the window.open() method to open content from the application or local sandboxes.

79HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

Content in the local-with-filesystem, local-with-networking, or local-trusted sandboxes (see Security sandboxes) can

only use the window.open() method to open content in local sandboxes. It cannot use window.open()to open

content from the application or remote sandboxes.

Errors when calling restricted code

Adobe AIR 1.0 and later

If you call code that is restricted from use in a sandbox due to these security restrictions, the runtime dispatches a

JavaScript error: "Adobe AIR runtime security violation for JavaScript code in the application security sandbox."

For more information, see “Avoiding security-related JavaScript errors” on page 22.

Sandbox protection when loading HTML content from a string

Adobe AIR 1.0 and later

The loadString() method of the HTMLLoader class lets you create HTML content at run time. However, data that

you use as the HTML content can be corrupted if the data is loaded from an insecure Internet source. For this reason,

by default, HTML created using the loadString() method is not placed in the application sandbox and it has no

access to AIR APIs. However, you can set the placeLoadStringContentInApplicationSandbox property of an

HTMLLoader object to true to place HTML created using the loadString() method into the application sandbox.

For more information, see Loading HTML content from a string.

Scripting between content in different domains

Adobe AIR 1.0 and later

AIR applications are granted special privileges when they are installed. It is crucial that the same privileges not be

leaked to other content, including remote files and local files that are not part of the application.

About the AIR sandbox bridge

Adobe AIR 1.0 and later

Normally, content from other domains cannot call scripts in other domains.

There are still cases where the main AIR application requires content from a remote domain to have controlled access

to scripts in the main AIR application, or vice versa. To accomplish this, the runtime provides a sandbox bridge

mechanism, which serves as a gateway between the two sandboxes. A sandbox bridge can provide explicit interaction

between remote and application security sandboxes.

The sandbox bridge exposes two objects that both loaded and loading scripts can access:

• The parentSandboxBridge object lets loading content expose properties and functions to scripts in the loaded

content.

• The childSandboxBridge object lets loaded content expose properties and function to scripts in the loading

content.

80HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

Objects exposed via the sandbox bridge are passed by value, not by reference. All data is serialized. This means that the

objects exposed by one side of the bridge cannot be set by the other side, and that objects exposed are all untyped. Also,

you can only expose simple objects and functions; you cannot expose complex objects.

If child content attempts to set a property of the parentSandboxBridge object, the runtime throws a SecurityError

exception. Similarly, if parent content attempts to set a property of the childSandboxBridge object, the runtime throws

a SecurityError exception.

Sandbox bridge example (HTML)

Adobe AIR 1.0 and later

In HTML content, the parentSandboxBridge and childSandboxBridge properties are added to the JavaScript

window object of a child document. For an example of how to set up bridge functions in HTML content, see “Setting

up a sandbox bridge interface” on page 36.

Limiting API exposure

Adobe AIR 1.0 and later

When exposing sandbox bridges, it's important to expose high-level APIs that limit the degree to which they can be

abused. Keep in mind that the content calling your bridge implementation may be compromised (for example, via a

code injection). So, for example, exposing a readFile(path) method (that reads the contents of an arbitrary file) via

a bridge is vulnerable to abuse. It would be better to expose a readApplicationSetting() API that doesn't take a

path and reads a specific file. The more semantic approach limits the damage that an application can do once part of

it is compromised.

More Help topics

“Cross-scripting content in different security sandboxes” on page 34

Writing to disk

Adobe AIR 1.0 and later

Applications running in a web browser have only limited interaction with the user's local file system. Web browsers

implement security policies that ensure that a user's computer cannot be compromised as a result of loading web

content. For example, SWF files running through Flash Player in a browser cannot directly interact with files already

on a user's computer. Shared objects and cookies can be written to a user's computer for the purpose of maintaining

user preferences and other data, but this is the limit of file system interaction. Because AIR applications are natively

installed, they have a different security contract, one which includes the capability to read and write across the local

file system.

This freedom comes with high responsibility for developers. Accidental application insecurities jeopardize not only

the functionality of the application, but also the integrity of the user's computer. For this reason, developers should

read “Best security practices for developers” on page 82.

AIR developers can access and write files to the local file system using several URL scheme conventions:

81HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

Note: AIR applications cannot modify content using the app: URL scheme. Also, the application directory may be read

only because of administrator settings.

Unless there are administrator restrictions to the user's computer, AIR applications are privileged to write to any

location on the user's hard drive. Developers are advised to use the app-storage:/ path for local storage related to

their application. Files written to app-storage:/ from an application are put in a standard location:

• On Mac OS: the storage directory of an application is <appData>/<appId>/Local Store/ where <appData> is

the user's preferences folder. This is typically /Users/<user>/Library/Preferences

• On Windows: the storage directory of an application is <appData>\<appId>\Local Store\ where <appData> is

the user's CSIDL_APPDATA Special Folder. This is typically C:\Documents and

Settings\<userName>\Application Data

• On Linux: <appData>/<appID>/Local Store/where <appData> is /home/<user>/.appdata

If an application is designed to interact with existing files in the user's file system, be sure to read “Best security

practices for developers” on page 82.

Working securely with untrusted content

Adobe AIR 1.0 and later

Content not assigned to the application sandbox can provide additional scripting functionality to your application, but

only if it meets the security criteria of the runtime. This topic explains the AIR security contract with non-application

content.

Scripting between application and non-application content

Adobe AIR 1.0 and later

AIR applications that script between application and non-application content have more complex security

arrangements. Files that are not in the application sandbox are only allowed to access the properties and methods of

files in the application sandbox through the use of a sandbox bridge. A sandbox bridge acts as a gateway between

application content and non-application content, providing explicit interaction between the two files. When used

correctly, sandbox bridges provide an extra layer of security, restricting non-application content from accessing object

references that are part of application content.

The benefit of sandbox bridges is best illustrated through example. Suppose an AIR music store application wants to

provide an API to advertisers who want to create their own SWF files, with which the store application can then

communicate. The store wants to provide advertisers with methods to look up artists and CDs from the store, but also

wants to isolate some methods and properties from the third-party SWF file for security reasons.

URL scheme Description

app:/ An alias to the application directory. Files accessed from this path are assigned the application sandbox and have

the full privileges granted by the runtime.

app-storage:/ An alias to the local storage directory, standardized by the runtime. Files accessed from this path are assigned a

non-application sandbox.

file:/// An alias that represents the root of the user's hard disk. A file accessed from this path is assigned an application

sandbox if the file exists in the application directory, and a non-application sandbox otherwise.

82HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

A sandbox bridge can provide this functionality. By default, content loaded externally into an AIR application at

runtime does not have access to any methods or properties in the main application. With a custom sandbox bridge

implementation, a developer can provide services to the remote content without exposing these methods or properties.

Consider the sandbox bridge as a pathway between trusted and untrusted content, providing communication between

loader and loadee content without exposing object references.

For more information on how to securely use sandbox bridges, see “Scripting between content in different domains”

on page 79.

Best security practices for developers

Adobe AIR 1.0 and later

Although AIR applications are built using web technologies, it is important for developers to note that they are not

working within the browser security sandbox. This means that it is possible to build AIR applications that can do harm

to the local system, either intentionally or unintentionally. AIR attempts to minimize this risk, but there are still ways

where vulnerabilities can be introduced. This topic covers important potential insecurities.

Risk from importing files into the application security sandbox

Adobe AIR 1.0 and later

Files that exist in the application directory are assigned to the application sandbox and have the full privileges of the

runtime. Applications that write to the local file system are advised to write to app-storage:/. This directory exists

separately from the application files on the user's computer, hence the files are not assigned to the application sandbox

and present a reduced security risk. Developers are advised to consider the following:

• Include a file in an AIR file (in the installed application) only if it is necessary.

• Include a scripting file in an AIR file (in the installed application) only if its behavior is fully understood and trusted.

• Do not write to or modify content in the application directory. The runtime prevents applications from writing or

modifying files and directories using the app:/ URL scheme by throwing a SecurityError exception.

• Do not use data from a network source as parameters to methods of the AIR API that may lead to code execution.

This includes use of the Loader.loadBytes() method and the JavaScript eval() function.

Risk from using an external source to determine paths

Adobe AIR 1.0 and later

An AIR application can be compromised when using external data or content. For this reason, take special care when

using data from the network or file system. The onus of trust is ultimately on the developer and the network

connections they make, but loading foreign data is inherently risky, and should not be used for input into sensitive

operations. Developers are advised against the following:

• Using data from a network source to determine a file name

• Using data from a network source to construct a URL that the application uses to send private information

83HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR security

Last updated 9/28/2011

Risk from using, storing, or transmitting insecure credentials

Adobe AIR 1.0 and later

Storing user credentials on the user's local file system inherently introduces the risk that these credentials may be

compromised. Developers are advised to consider the following:

• If credentials must be stored locally, encrypt the credentials when writing to the local file system. The runtime

provides an encrypted storage unique to each installed application, via the EncryptedLocalStore class. For details,

see “Encrypted local storage” on page 256.

• Do not transmit unencrypted user credentials to a network source unless that source is trusted and the transmission

uses the HTTPS: or Transport Layer Security (TLS) protocols.

• Never specify a default password in credential creation — let users create their own. Users who leave the default

unchanged expose their credentials to an attacker who already knows the default password.

Risk from a downgrade attack

Adobe AIR 1.0 and later

During application install, the runtime checks to ensure that a version of the application is not currently installed. If

an application is already installed, the runtime compares the version string against the version that is being installed.

If this string is different, the user can choose to upgrade their installation. The runtime does not guarantee that the

newly installed version is newer than the older version, only that it is different. An attacker can distribute an older

version to the user to circumvent a security weakness. For this reason, the developer is advised to make version checks

when the application is run. It is a good idea to have applications check the network for required updates. That way,

even if an attacker gets the user to run an old version, that old version will recognize that it needs to be updated. Also,

using a clear versioning scheme for your application makes it more difficult to trick users into installing a downgraded

version.

Code signing

Adobe AIR 1.0 and later

All AIR installer files are required to be code signed. Code signing is a cryptographic process of confirming that the

specified origin of software is accurate. AIR applications can be signed using either by a certificate issued by an external

certificate authority (CA) or by a self-signed certificate you create yourself. A commercial certificate from a well-

known CA is strongly recommended and provides assurance to your users that they are installing your application,

not a forgery. However, self-signed certificates can be created using adt from the SDK or using either Flash, Flash

Builder, or another application that uses adt for certificate generation. Self-signed certificates do not provide any

assurance that the application being installed is genuine and should only be used for testing an application prior to

public release.

84

Last updated 9/28/2011

Chapter 7: Working with AIR native
windows

Adobe AIR 1.0 and later

You use the classes provided by the Adobe® AIR® native window API to create and manage desktop windows.

Basics of native windows in AIR

Adobe AIR 1.0 and later

For quick explanations and code examples of working with native windows in AIR, see the following quick start articles

on the Adobe Developer Connection:

• Customizing the look and feel of a window

AIR provides an easy-to-use, cross-platform window API for creating native operating system windows using Flash®,

Flex™, and HTML programming techniques.

With AIR, you have a wide latitude in developing the appearance of your application. The windows you create can look

like a standard desktop application, matching Apple style when run on the Mac, conforming to Microsoft conventions

when run on Windows, and harmonizing with the window manager on Linux—all without including a line of

platform-specific code. Or you can use the skinnable, extensible chrome provided by the Flex framework to establish

your own style no matter where your application is run. You can even draw your own window chrome with vector and

bitmap artwork with full support for transparency and alpha blending against the desktop. Tired of rectangular

windows? Draw a round one.

Windows in AIR

Adobe AIR 1.0 and later

AIR supports three distinct APIs for working with windows:

• The ActionScript-oriented NativeWindow class provides the lowest level window API. Use NativeWindows in

ActionScript and Flash Professional-authored applications. Consider extending the NativeWindow class to

specialize the windows used in your application.

• In the HTML environment, you can use the JavaScript Window class, just as you would in a browser-based web

application. Calls to JavaScript Window methods are forwarded to the underlying native window object.

• The Flex framework mx:WindowedApplication and mx:Window classes provide a Flex “wrapper” for the

NativeWindow class. The WindowedApplication component replaces the Application component when you create

an AIR application with Flex and must always be used as the initial window in your Flex application.

ActionScript windows

When you create windows with the NativeWindow class, use the Flash Player stage and display list directly. To add a

visual object to a NativeWindow, add the object to the display list of the window stage or to another display object

container on the stage.

http://www.adobe.com/go/learn_air_qs_customwindow_html_en

85HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

HTML windows

When you create HTML windows, you use HTML, CSS, and JavaScript to display content. To add a visual object to an

HTML window, you add that content to the HTML DOM. HTML windows are a special category of NativeWindow.

The AIR host defines a nativeWindow property in HTML windows that provides access to the underlying

NativeWindow instance. You can use this property to access the NativeWindow properties, methods, and events

described here.

Note: The JavaScript Window object also has methods for scripting the containing window, such as moveTo() and

close(). Where overlapping methods are available, you can use whichever method that is convenient.

Flex Framework windows

The Flex Framework defines its own window components. These components, mx:WindowedApplication and

mx:Window, cannot be used outside the framework and thus cannot be used in HTML-based AIR applications.

The initial application window

The first window of your application is automatically created for you by AIR. AIR sets the properties and content of

the window using the parameters specified in the initialWindow element of the application descriptor file.

If the root content is a SWF file, AIR creates a NativeWindow instance, loads the SWF file, and adds it to the window

stage. If the root content is an HTML file, AIR creates an HTML window and loads the HTML.

Native window classes

Adobe AIR 1.0 and later

The native window API contains the following classes:

Package Classes

flash.display • NativeWindow

• NativeWindowInitOptions

• NativeWindowDisplayState

• NativeWindowResize

• NativeWindowSystemChrome

• NativeWindowType

flash.events • NativeWindowBoundsEvent

• NativeWindowDisplayStateEvent

86HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

Native window event flow

Adobe AIR 1.0 and later

Native windows dispatch events to notify interested components that an important change is about to occur or has

already occurred. Many window-related events are dispatched in pairs. The first event warns that a change is about to

happen. The second event announces that the change has been made. You can cancel a warning event, but not a

notification event. The following sequence illustrates the flow of events that occurs when a user clicks the maximize

button of a window:

1 The NativeWindow object dispatches a displayStateChanging event.

2 If no registered listeners cancel the event, the window maximizes.

3 The NativeWindow object dispatches a displayStateChange event.

In addition, the NativeWindow object also dispatches events for related changes to the window size and position.

The window does not dispatch warning events for these related changes. The related events are:

a A move event is dispatched if the top, left corner of the window moved because of the maximize operation.

b A resize event is dispatched if the window size changed because of the maximize operation.

A NativeWindow object dispatches a similar sequence of events when minimizing, restoring, closing, moving, and

resizing a window.

The warning events are only dispatched when a change is initiated through window chrome or other operating-

system controlled mechanism. When you call a window method to change the window size, position, or display

state, the window only dispatches an event to announce the change. You can dispatch a warning event, if desired,

using the window dispatchEvent() method, then check to see if your warning event has been canceled before

proceeding with the change.

For detailed information about the window API classes, methods, properties, and events, see the Adobe AIR API

Reference for HTML Developers.

Properties controlling native window style and behavior

Flash Player 9 and later, Adobe AIR 1.0 and later

The following properties control the basic appearance and behavior of a window:

• type

• systemChrome

• transparent

• owner

When you create a window, you set these properties on the NativeWindowInitOptions object passed to the window

constructor. AIR reads the properties for the initial application window from the application descriptor. (Except the

type property, which cannot be set in the application descriptor and is always set to normal.) The properties cannot

be changed after window creation.

Some settings of these properties are mutually incompatible: systemChrome cannot be set to standard when either

transparent is true or type is lightweight.

http://www.adobe.com/go/learn_air_html_jslr
http://www.adobe.com/go/learn_air_html_jslr

87HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

Window types

Adobe AIR 1.0 and later

The AIR window types combine chrome and visibility attributes of the native operating system to create three

functional types of window. Use the constants defined in the NativeWindowType class to reference the type names in

code. AIR provides the following window types:

Window chrome

Adobe AIR 1.0 and later

Window chrome is the set of controls that allow users to manipulate a window in the desktop environment. Chrome

elements include the title bar, title bar buttons, border, and resize grippers.

System chrome

You can set the systemChrome property to standard or none. Choose standard system chrome to give your window

the set of standard controls created and styled by the user’s operating system. Choose none to provide your own

chrome for the window. Use the constants defined in the NativeWindowSystemChrome class to reference the system

chrome settings in code.

System chrome is managed by the system. Your application has no direct access to the controls themselves, but can

react to the events dispatched when the controls are used. When you use standard chrome for a window, the

transparent property must be set to false and the type property must be normal or utility.

Custom chrome

When you create a window with no system chrome, then you must add your own chrome controls to handle the

interactions between a user and the window. You are also free to make transparent, non-rectangular windows.

Window transparency

Adobe AIR 1.0 and later

To allow alpha blending of a window with the desktop or other windows, set the window transparent property to

true. The transparent property must be set before the window is created and cannot be changed.

A transparent window has no default background. Any window area not containing an object drawn by the application

is invisible. If a displayed object has an alpha setting of less than one, then anything below the object shows through,

including other display objects in the same window, other windows, and the desktop.

Transparent windows are useful when you want to create applications with borders that are irregular in shape or that

“fade out” or appear to be invisible. However, rendering large alpha-blended areas can be slow, so the effect should be

used conservatively.

Type Description

Normal A typical window. Normal windows use the full-size style of chrome and appear on the Windows taskbar and

the Mac OS X window menu.

Utility A tool palette. Utility windows use a slimmer version of the system chrome and do not appear on the Windows

taskbar and the Mac OS X window menu.

Lightweight Lightweight windows have no chrome and do not appear on the Windows taskbar or the Mac OS X window

menu. In addition, lightweight windows do not have the System (Alt+Space) menu on Windows. Lightweight

windows are suitable for notification bubbles and controls such as combo-boxes that open a short-lived display

area. When the lightweight type is used, systemChrome must be set to none.

88HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

Important: On Linux, mouse events do not pass through fully transparent pixels. You should avoid creating windows

with large, fully transparent areas since you may invisibly block the user’s access to other windows or items on their

desktop. On Mac OS X and Windows, mouse events do pass through fully transparent pixels.

Transparency cannot be used with windows that have system chrome. In addition, SWF and PDF content in HTML

may not display in transparent windows. For more information, see “Considerations when loading SWF or PDF

content in an HTML page” on page 48.

The static NativeWindow.supportsTransparency property reports whether window transparency is available.

When transparency is not supported, the application is composited against a black background. In these cases, any

transparent areas of the application display as an opaque black. It is a good practice to provide a fallback in case this

property tests false. For example, you could display a warning dialog to the user, or display a rectangular, non-

transparent user interface.

Note that transparency is always supported by the Mac and Windows operating systems. Support on Linux operating

systems requires a compositing window manager, but even when a compositing window manager is active,

transparency can be unavailable because of user display options or hardware configuration.

Transparency in an HTML application window

Adobe AIR 1.0 and later

By default the background of HTML content displayed in HTML windows and HTMLLoader objects is opaque, event

if the containing window is transparent. To turn off the default background displayed for HTML content, set the

paintsDefaultBackground property to false. The following example creates an HTMLLoader and turns off the

default background:

 var htmlView:HTMLLoader = new HTMLLoader();
 htmlView.paintsDefaultBackground = false;

This example uses JavaScript to turn off the default background of an HTML window:

 window.htmlLoader.paintsDefaultBackground = false;

If an element in the HTML document sets a background color, the background of that element is not transparent.

Setting a partial transparency (or opacity) value is not supported. However, you can use a transparent PNG-format

graphic as the background for a page or a page element to achieve a similar visual effect.

Window ownership

One window can own one or more other windows. These owned windows always appear in front of the master

window, are minimized and restored along with the master window, and are closed when the master window is closed.

Window ownership cannot be transfered to another window or removed. A window can only be owned by one master

window, but can own any number of other windows.

You can use window ownership to make it easier to manage windows used for tool palettes and dialogs. For example,

if you displayed a Save dialog in association with a document window, making the document window own the dialog

will keep the dialog in front of the document window automatically.

• NativeWindow.owner

• Christian Cantrell: Owned windows in AIR 2.6

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/NativeWindow.html#owner
http://blogs.adobe.com/cantrell/archives/2011/03/owned-windows-in-air-2-6.html

89HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

A visual window catalog

Adobe AIR 1.0 and later

The following table illustrates the visual effects of different combinations of window property settings on the Mac OS

X, Windows, and Linux operating systems:

Window settings Mac OS X Microsoft Windows Linux*

Type: normal

SystemChrome: standard

Transparent: false

Type: utility

SystemChrome: standard

Transparent: false

90HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

*Ubuntu with Compiz window manager

Note: The following system chrome elements are not supported by AIR: the Mac OS X Toolbar, the Mac OS X Proxy Icon,

Windows title bar icons, and alternate system chrome.

Creating windows

Adobe AIR 1.0 and later

AIR automatically creates the first window for an application, but you can create any additional windows you need.

To create a native window, use the NativeWindow constructor method.

To create an HTML window, either use the HTMLLoader createRootWindow() method or, from an HTML

document, call the JavaScript window.open() method. The window created is a NativeWindow object whose display

list contains an HTMLLoader object. The HTMLLoader object interprets and displays the HTML and JavaScript

content for the window. You can access the properties of the underlying NativeWindow object from JavaScript using

the window.nativeWindow property. (This property is only accessible to code running in the AIR application

sandbox.)

Type: Any

SystemChrome: none

Transparent: false

Type: Any

SystemChrome: none

Transparent: true

mxWindowedApplication or

mx:Window

Type: Any

SystemChrome: none

Transparent: true

Window settings Mac OS X Microsoft Windows Linux*

91HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

When you initialize a window—including the initial application window—you should consider creating the window

in the invisible state, loading content or executing any graphical updates, and then making the window visible. This

sequence prevents any jarring visual changes from being visible to your users. You can specify that the initial window

of your application should be created in the invisible state by specifying the <visible>false</visible> tag in the

application descriptor (or by leaving the tag out altogether since false is the default value). New NativeWindows are

invisible by default. When you create an HTML window with the HTMLLoader createRootWindow() method, you

can set the visible argument to false. Call the NativeWindow activate() method or set the visible property to

true to make a window visible.

Specifying window initialization properties

Adobe AIR 1.0 and later

The initialization properties of a native window cannot be changed after the desktop window is created. These

immutable properties and their default values include:

Set the properties for the initial window created by AIR in the application descriptor file. The main window of an AIR

application is always type, normal. (Additional window properties can be specified in the descriptor file, such as

visible, width, and height, but these properties can be changed at any time.)

Set the properties for other native and HTML windows created by your application using the

NativeWindowInitOptions class. When you create a window, you must pass a NativeWindowInitOptions object

specifying the window properties to either the NativeWindow constructor function or the HTMLLoader

createRootWindow() method.

The following code creates a NativeWindowInitOptions object for a utility window:

 var options = new air.NativeWindowInitOptions();
 options.systemChrome = air.NativeWindowSystemChrome.STANDARD;
 options.type = air.NativeWindowType.UTILITY
 options.transparent = false;
 options.resizable = false;
 options.maximizable = false;

Setting systemChrome to standard when transparent is true or type is lightweight is not supported.

Note: You cannot set the initialization properties for a window created with the JavaScript window.open() function.

You can, however, override how these windows are created by implementing your own HTMLHost class. See “Handling

JavaScript calls to window.open()” on page 61 for more information.

Property Default value

systemChrome standard

type normal

transparent false

owner null

maximizable true

minimizable true

resizable true

92HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

Creating the initial application window

Adobe AIR 1.0 and later

Use a standard HTML page for the initial window of your application. This page is loaded from the application install

directory and placed in the application sandbox. The page serves as the initial entry point for your application.

When your application launches, AIR creates a window, sets up the HTML environment, and loads your HTML page.

Before parsing any scripts or adding any elements to the HTML DOM, AIR adds the runtime, htmlLoader, and

nativeWindow properties to the JavaScript Window object. You can use these properties to access the runtime classes

from JavaScript. The nativeWindow property gives you direct access to the properties and methods of the desktop

window.

The following example illustrates the basic skeleton for the main page of an AIR application built with HTML. The

page waits for the JavaScript window load event and then shows the native window.

 <html>
 <head>
 <script language="javascript" type="text/javascript" src="AIRAliases.js"></script>
 <script language="javascript">
 window.onload=init;

 function init(){
 window.nativeWindow.activate();
 }
 </script>
 </head>
 <body></body>
 </html>

Note: The AIRAliases.js file referenced in this example is a script file that defines convenient alias variables for the

commonly used built-in AIR classes. The file is available inside the frameworks directory of the AIR SDK.

Creating a NativeWindow

Adobe AIR 1.0 and later

To create a NativeWindow, pass a NativeWindowInitOptions object to the NativeWindow constructor:

 var options = new air.NativeWindowInitOptions();
 options.systemChrome = air.NativeWindowSystemChrome.STANDARD;
 options.transparent = false;
 var newWindow = new air.NativeWindow(options);

The window is not shown until you set the visible property to true or call the activate() method.

Once the window is created, you can initialize its properties and load content into the window using the stage property

and Flash display list techniques.

In almost all cases, you should set the stage scaleMode property of a new native window to noScale (use the

StageScaleMode.NO_SCALE constant). The Flash scale modes are designed for situations in which the application

author does not know the aspect ratio of the application display space in advance. The scale modes let the author

choose the least-bad compromise: clip the content, stretch or squash it, or pad it with empty space. Since you control

the display space in AIR (the window frame), you can size the window to the content or the content to the window

without compromise.

The scale mode for HTML windows is set to noScale automatically.

93HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

Note: To determine the maximum and minimum window sizes allowed on the current operating system, use the following

static NativeWindow properties:

 var maxOSSize = air.NativeWindow.systemMaxSize;
 var minOSSize = air.NativeWindow.systemMinSize;

Creating an HTML window

Adobe AIR 1.0 and later

To create an HTML window, you can either call the JavaScript Window.open() method, or you can call the AIR

HTMLLoader class createRootWindow() method.

HTML content in any security sandbox can use the standard JavaScript Window.open() method. If the content is

running outside the application sandbox, the open() method can only be called in response to user interaction, such

as a mouse click or keypress. When open() is called, a window with system chrome is created to display the content

at the specified URL. For example:

 newWindow = window.open("xmpl.html", "logWindow", "height=600, width=400, top=10, left=10");

Note: You can extend the HTMLHost class in ActionScript to customize the window created with the JavaScript

window.open() function. See “About extending the HTMLHost class” on page 52.

Content in the application security sandbox has access to the more powerful method of creating windows,

HTMLLoader.createRootWindow(). With this method, you can specify all the creation options for a new window. For

example, the following JavaScript code creates a lightweight type window without system chrome that is 300x400

pixels in size:

 var options = new air.NativeWindowInitOptions();
 options.systemChrome = "none";
 options.type = "lightweight";

 var windowBounds = new air.Rectangle(200,250,300,400);
 newHTMLLoader = air.HTMLLoader.createRootWindow(true, options, true, windowBounds);
 newHTMLLoader.load(new air.URLRequest("xmpl.html"));

Note: If the content loaded by a new window is outside the application security sandbox, the window object does not have

the AIR properties: runtime, nativeWindow, or htmlLoader.

If you create a transparent window, then SWF content embedded in the HTML loaded into that window is not always

displayed. You must set the wmode parameter of the object or embed tag used to reference the SWF file to either opaque

or transparent. The default value of wmode is window, so, by default, SWF content is not displayed in transparent

windows. PDF content cannot be displayed in transparent windows, no matter which wmode value is set. (Prior to AIR

1.5.2, SWF content could not be displayed in transparent windows, either.)

Windows created with the createRootWindow() method remain independent from the opening window. The

parent and opener properties of the JavaScript Window object are null. The opening window can access the

Window object of the new window using the HTMLLoader reference returned by the createRootWindow() function.

In the context of the previous example, the statement newHTMLLoader.window would reference the JavaScript

Window object of the created window.

Note: The createRootWindow() function can be called from both JavaScript and ActionScript.

94HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

Creating a mx:Window

Adobe AIR 1.0 and later

To create a mx:Window, you can create an MXML file using mx:Window as the root tag, or you can call the Window

class constructor directly.

The following example creates and shows a mx:Window by calling the Window constructor:

 var newWindow:Window = new Window();
 newWindow.systemChrome = NativeWindowSystemChrome.NONE;
 newWindow.transparent = true;
 newWindow.title = "New Window";
 newWindow.width = 200;
 newWindow.height = 200;
 newWindow.open(true);

Adding content to a window

Adobe AIR 1.0 and later

How you add content to an AIR window depends on the type of window. For example, MXML and HTML let you

declaratively define the basic content of the window. You can embed resources in the application SWF files or you can

load them from separate application files. Flex, Flash, and HTML content can all be created on the fly and added to a

window dynamically.

When you load SWF content, or HTML content containing JavaScript, you must take the AIR security model into

consideration. Any content in the application security sandbox, that is, content installed with your application and

loadable with the app: URL scheme, has full privileges to access all the AIR APIs. Any content loaded from outside this

sandbox cannot access the AIR APIs. JavaScript content outside the application sandbox is not able to use the runtime,

nativeWindow, or htmlLoader properties of the JavaScript Window object.

To allow safe cross-scripting, you can use a sandbox bridge to provide a limited interface between application content

and non-application content. In HTML content, you can also map pages of your application into a non-application

sandbox to allow the code on that page to cross-script external content. See “AIR security” on page 69.

Loading HTML content into a NativeWindow

To load HTML content into a NativeWindow, you can either add an HTMLLoader object to the window stage and

load the HTML content into the HTMLLoader, or create a window that already contains an HTMLLoader object by

using the HTMLLoader.createRootWindow()method. The following example displays HTML content within a 300

by 500 pixel display area on the stage of a native window:

 //newWindow is a NativeWindow instance
 var htmlView:HTMLLoader = new HTMLLoader();
 htmlView.width = 300;
 htmlView.height = 500;

 //set the stage so display objects are added to the top-left and not scaled
 newWindow.stage.align = "TL";
 newWindow.stage.scaleMode = "noScale";
 newWindow.stage.addChild(htmlView);

 //urlString is the URL of the HTML page to load
 htmlView.load(new URLRequest(urlString));

95HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

To load an HTML page into a Flex application, you can use the Flex HTML component.

SWF content in an HTML file is not displayed if the window uses transparency (that is the transparent property of

the window is true) unless the wmode parameter of the object or embed tag used to reference the SWF file is set to

either opaque or transparent. Since the default wmode value is window, by default, SWF content is not displayed in

a transparent window. PDF content is not displayed in a transparent window no matter what wmode value is used.

Also, neither SWF nor PDF content is displayed if the HTMLLoader control is scaled, rotated, or if the HTMLLoader

alpha property is set to a value other than 1.0.

Adding SWF content as an overlay on an HTML window

Because HTML windows are contained within a NativeWindow instance, you can add Flash display objects both above

and below the HTML layer in the display list.

To add a display object above the HTML layer, use the addChild() method of the window.nativeWindow.stage

property. The addChild() method adds content layered above any existing content in the window.

To add a display object below the HTML layer, use the addChildAt() method of the window.nativeWindow.stage

property, passing in a value of zero for the index parameter. Placing an object at the zero index moves existing content,

including the HTML display, up one layer and insert the new content at the bottom. For content layered underneath

the HTML page to be visible, you must set the paintsDefaultBackground property of the HTMLlLoader object to

false. In addition, any elements of the page that set a background color, will not be transparent. If, for example, you

set a background color for the body element of the page, none of the page will be transparent.

The following example illustrates how to add a Flash display objects as overlays and underlays to an HTML page. The

example creates two simple shape objects, adds one below the HTML content and one above. The example also updates

the shape position based on the enterFrame event.

 <html>
 <head>
 <title>Bouncers</title>
 <script src="AIRAliases.js" type="text/javascript"></script>
 <script language="JavaScript" type="text/javascript">
 air.Shape = window.runtime.flash.display.Shape;

 function Bouncer(radius, color){
 this.radius = radius;
 this.color = color;

 //velocity
 this.vX = -1.3;
 this.vY = -1;

 //Create a Shape object and draw a circle with its graphics property
 this.shape = new air.Shape();
 this.shape.graphics.lineStyle(1,0);
 this.shape.graphics.beginFill(this.color,.9);
 this.shape.graphics.drawCircle(0,0,this.radius);
 this.shape.graphics.endFill();

 //Set the starting position
 this.shape.x = 100;
 this.shape.y = 100;

 //Moves the sprite by adding (vX,vY) to the current position

96HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

 this.update = function(){
 this.shape.x += this.vX;
 this.shape.y += this.vY;

 //Keep the sprite within the window
 if(this.shape.x - this.radius < 0){
 this.vX = -this.vX;
 }
 if(this.shape.y - this.radius < 0){
 this.vY = -this.vY;
 }
 if(this.shape.x + this.radius > window.nativeWindow.stage.stageWidth){
 this.vX = -this.vX;
 }
 if(this.shape.y + this.radius > window.nativeWindow.stage.stageHeight){
 this.vY = -this.vY;
 }

 };
 }

 function init(){
 //turn off the default HTML background
 window.htmlLoader.paintsDefaultBackground = false;
 var bottom = new Bouncer(60,0xff2233);
 var top = new Bouncer(30,0x2441ff);

 //listen for the enterFrame event
 window.htmlLoader.addEventListener("enterFrame",function(evt){
 bottom.update();
 top.update();
 });

 //add the bouncing shapes to the window stage
 window.nativeWindow.stage.addChildAt(bottom.shape,0);
 window.nativeWindow.stage.addChild(top.shape);
 }
 </script>
 <body onload="init();">
 <h1>de Finibus Bonorum et Malorum</h1>
 <p>Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium
doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis
et quasi architecto beatae vitae dicta sunt explicabo.</p>
 <p style="background-color:#FFFF00; color:#660000;">This paragraph has a background color.</p>
 <p>At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis
praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias
excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui
officia deserunt mollitia animi, id est laborum et dolorum fuga.</p>
 </body>
 </html>

This example provides a rudimentary introduction to some advanced techniques that cross over the boundaries

between JavaScript and ActionScript in AIR. If your are unfamiliar with using ActionScript display objects, refer to

Display programming in the ActionScript 3.0 Developer’s Guide.

97HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

Note: To access the runtime, nativeWindow and htmlLoader properties of the JavaScript Window object, the HTML page

must be loaded from the application directory. This will always be the case for the root page in an HTML-based

application, but may not be true for other content. In addition, documents loaded into frames even within the application

sandbox do not receive these properties, but can access those of the parent document.

Example: Creating a native window

Adobe AIR 1.0 and later

The following example illustrates how to create a native window:

function createNativeWindow() {
 //create the init options
 var options = new air.NativeWindowInitOptions();
 options.transparent = false;
 options.systemChrome = air.NativeWindowSystemChrome.STANDARD;
 options.type = air.NativeWindowType.NORMAL;

 //create the window
 var newWindow = new air.NativeWindow(options);
 newWindow.title = "A title";
 newWindow.width = 600;
 newWindow.height = 400;

 //activate and show the new window
 newWindow.activate();
 }

Managing windows

Adobe AIR 1.0 and later

You use the properties and methods of the NativeWindow class to manage the appearance, behavior, and life cycle of

desktop windows.

Note: When using the Flex framework, it is generally better to manage window behavior using the framework classes.

Most of the NativeWindow properties and methods can be accessed through the mx:WindowedApplication and

mx:Window classes.

Getting a NativeWindow instance

Adobe AIR 1.0 and later

To manipulate a window, you must first get the window instance. You can get a window instance from one of the

following places:

• The native window constructor used to create the window:

var nativeWin = new air.NativeWindow(initOptions);

• The stage property of a display object in the window:

var nativeWin = window.htmlLoader.stage.nativeWindow;

98HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

• The target property of a native window event dispatched by the window:

function onNativeWindowEvent(event)
{

var nativeWin = event.target;
}

• The nativeWindow property of an HTML page displayed in the window:

var nativeWin = window.nativeWindow;

• The activeWindow and openedWindows properties of the NativeApplication object:

var win = NativeApplication.nativeApplication.activeWindow;
var firstWindow = NativeApplication.nativeApplication.openedWindows[0];

NativeApplication.nativeApplication.activeWindow references the active window of an application (but

returns null if the active window is not a window of this AIR application). The

NativeApplication.nativeApplication.openedWindows array contains all of the windows in an AIR

application that have not been closed.

Because the Flex mx:WindowedApplication, and mx:Window objects are display objects, you can easily reference the

application window in an MXML file using the stage property, as follows:

 <?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
applicationComplete="init();">
 <mx:Script>
 <![CDATA[
 import flash.display.NativeWindow;

 public function init():void{
 var appWindow:NativeWindow = this.stage.nativeWindow;
 //set window properties
 appWindow.visible = true;
 }
]]>
 </mx:Script>
 </WindowedApplication

Note: Until the WindowedApplication or Window component is added to the window stage by the Flex framework, the

component's stage property is null. This behavior is consistent with that of the Flex Application component, but does

mean that it is not possible to access the stage or the NativeWindow instance in listeners for events that occur earlier in

the initialization cycle of the WindowedApplication and Window components, such as creationComplete. It is safe to

access the stage and NativeWindow instance when the applicationComplete event is dispatched.

Activating, showing, and hiding windows

Adobe AIR 1.0 and later

To activate a window, call the NativeWindow activate() method. Activating a window brings the window to the

front, gives it keyboard and mouse focus, and, if necessary, makes it visible by restoring the window or setting the

visible property to true. Activating a window does not change the ordering of other windows in the application.

Calling the activate() method causes the window to dispatch an activate event.

To show a hidden window without activating it, set the visible property to true. This brings the window to the front,

but will not assign the focus to the window.

99HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

To hide a window from view, set its visible property to false. Hiding a window suppresses the display of both the

window, any related taskbar icons, and, on Mac OS X, the entry in the Windows menu.

When you change the visibility of a window, the visibility of any windows that window owns is also changed. For

example, if you hide a window, all of its owned windows are also hidden.

Note: On Mac OS X, it is not possible to completely hide a minimized window that has an icon in the window portion of

the dock. If the visible property is set to false on a minimized window, the dock icon for the window is still displayed.

If the user clicks the icon, the window is restored to a visible state and displayed.

Changing the window display order

Adobe AIR 1.0 and later

AIR provides several methods for directly changing the display order of windows. You can move a window to the front

of the display order or to the back; you can move a window above another window or behind it. At the same time, the

user can reorder windows by activating them.

You can keep a window in front of other windows by setting its alwaysInFront property to true. If more than one

window has this setting, then the display order of these windows is sorted among each other, but they are always sorted

above windows which have alwaysInFront set to false.

Windows in the top-most group are also displayed above windows in other applications, even when the AIR

application is not active. Because this behavior can be disruptive to a user, setting alwaysInFront to true should only

be done when necessary and appropriate. Examples of justified uses include:

• Temporary pop-up windows for controls such as tool tips, pop-up lists, custom menus, or combo boxes. Because

these windows should close when they lose focus, the annoyance of blocking a user from viewing another window

can be avoided.

• Extremely urgent error messages and alerts. When an irrevocable change may occur if the user does not respond in

a timely manner, it may be justified to push an alert window to the forefront. However, most errors and alerts can

be handled in the normal window display order.

• Short-lived toast-style windows.

Note: AIR does not enforce proper use of the alwaysInFront property. However, if your application disrupts a user’s

workflow, it is likely to be consigned to that same user’s trash can.

If a window owns other windows, those windows are always ordered in front of it. If you call orderToFront() or set

alwaysInFront to true on a window that owns other windows, then the owned windows are re-ordered along with

the owner window in front of other windows, but the owned windows still display in front of the owner.

Calling the window ordering methods on owned windows works normally among windows owned by the same

window, but can also change the ordering of the entire group of owned windows compared to windows outside that

group. For example, if you call orderToFront() on an owned window, then both that window, its owner, and any

other windows owned by the same owner are moved to the front of the window display order.

The NativeWindow class provides the following properties and methods for setting the display order of a window

relative to other windows:

100HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

Note: If a window is hidden (visible is false) or minimized, then calling the display order methods has no effect.

On the Linux operating system, different window managers enforce different rules regarding the window display

order:

• On some window managers, utility windows are always displayed in front of normal windows.

• On some window managers, a full screen window with alwaysInFront set to true is always displayed in front of

other windows that also have alwaysInFront set to true.

Closing a window

Adobe AIR 1.0 and later

To close a window, use the NativeWindow.close() method.

Closing a window unloads the contents of the window, but if other objects have references to this content, the content

objects will not be destroyed. The NativeWindow.close() method executes asynchronously, the application that is

contained in the window continues to run during the closing process. The close method dispatches a close event when

the close operation is complete. The NativeWindow object is still technically valid, but accessing most properties and

methods on a closed window generates an IllegalOperationError. You cannot reopen a closed window. Check the

closed property of a window to test whether a window has been closed. To simply hide a window from view, set the

NativeWindow.visible property to false.

If the Nativeapplication.autoExit property is true, which is the default, then the application exits when its last

window closes.

Any windows that have an owner are closed when the owner is closed. The owned windows do not dispatch a closing

event and hence cannot prevent closure. A close event is dispatched.

Member Description

alwaysInFront property Specifies whether the window is displayed in the top-most group of windows.

In almost all cases, false is the best setting. Changing the value from false to true brings the window

to the front of all windows (but does not activate it). Changing the value from true to false orders the

window behind windows remaining in the top-most group, but still in front of other windows. Setting the

property to its current value for a window does not change the window display order.

The alwaysInFront setting has no affect on windows owned by another window.

orderToFront() Brings the window to the front.

orderInFrontOf() Brings the window directly in front of a particular window.

orderToBack() Sends the window behind other windows.

orderBehind() Sends the window directly behind a particular window.

activate() Brings the window to the front (along with making the window visible and assigning focus).

101HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

Allowing cancellation of window operations

Adobe AIR 1.0 and later

When a window uses system chrome, user interaction with the window can be canceled by listening for, and canceling

the default behavior of the appropriate events. For example, when a user clicks the system chrome close button, the

closing event is dispatched. If any registered listener calls the preventDefault() method of the event, then the

window does not close.

When a window does not use system chrome, notification events for intended changes are not automatically

dispatched before the change is made. Hence, if you call the methods for closing a window, changing the window state,

or set any of the window bounds properties, the change cannot be canceled. To notify components in your application

before a window change is made, your application logic can dispatch the relevant notification event using the

dispatchEvent() method of the window.

For example, the following logic implements a cancelable event handler for a window close button:

 function onCloseCommand(event){
 var closingEvent = new air.Event(air.Event.CLOSING,true,true);
 dispatchEvent(closingEvent);
 if(!closingEvent.isDefaultPrevented()){
 win.close();
 }
 }

The dispatchEvent() method returns false if the event preventDefault() method is called by a listener.

However, it can also return false for other reasons, so it is better to explicitly use the isDefaultPrevented()

method to test whether the change should be canceled.

Maximizing, minimizing, and restoring a window

Adobe AIR 1.0 and later

To maximize the window, use the NativeWindow maximize() method.

window.nativeWindow.maximize();

To minimize the window, use the NativeWindow minimize() method.

 window.nativeWindow.minimize();

To restore the window (that is, return it to the size that it was before it was either minimized or maximized), use the

NativeWindow restore() method.

 window.nativeWindow.restore();

A window that has an owner is minimized and restored when the owning window is minimized or restored. No events

are dispatched by the owned window when it is minimized because its owner is minimized.

Note: The behavior that results from maximizing an AIR window is different from the Mac OS X standard behavior.

Rather than toggling between an application-defined “standard” size and the last size set by the user, AIR windows toggle

between the size last set by the application or user and the full usable area of the screen.

102HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

On the Linux operating system, different window managers enforce different rules regarding setting the window

display state:

• On some window managers, utility windows cannot be maximized.

• If a maximum size is set for the window, then some windows do not allow a window to be maximized. Some other

window managers set the display state to maximized, but do not resize the window. In either of these cases, no

display state change event is dispatched.

• Some window managers do not honor the window maximizable or minimizable settings.

Note: On Linux, window properties are changed asynchronously. If you change the display state in one line of your

program, and read the value in the next, the value read will still reflect the old setting. On all platforms, the

NativeWindow object dispatches the displayStateChange event when the display state changes. If you need to take

some action based on the new state of the window, always do so in a displayStateChange event handler. See “Listening

for window events” on page 105.

Example: Minimizing, maximizing, restoring and closing a window

Adobe AIR 1.0 and later

The following short HTML page demonstrates the NativeWindow maximize(), minimize(), restore(), and

close() methods:

 <html>
 <head>
 <title>Change Window Display State</title>
 <script src="AIRAliases.js"/>
 <script type="text/javascript">
 function onMaximize(){
 window.nativeWindow.maximize();
 }

 function onMinimize(){
 window.nativeWindow.minimize();
 }

 function onRestore(){
 window.nativeWindow.restore();
 }

 function onClose(){
 window.nativeWindow.close();
 }
 </script>
 </head>

 <body>
 <h1>AIR window display state commands</h1>
 <button onClick="onMaximize()">Maximize</button>
 <button onClick="onMinimize()">Minimize</button>
 <button onClick="onRestore()">Restore</button>
 <button onClick="onClose()">Close</button>
 </body>
 </html>

103HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

Resizing and moving a window

Adobe AIR 1.0 and later

When a window uses system chrome, the chrome provides drag controls for resizing the window and moving around

the desktop. If a window does not use system chrome you must add your own controls to allow the user to resize and

move the window.

Note: To resize or move a window, you must first obtain a reference to the NativeWindow instance. For information

about how to obtain a window reference, see “Getting a NativeWindow instance” on page 97.

Resizing a window

To allow a user to resize a window interactively, use the NativeWindow startResize() method. When this method

is called from a mouseDown event, the resizing operation is driven by the mouse and completes when the operating

system receives a mouseUp event. When calling startResize(), you pass in an argument that specifies the edge or

corner from which to resize the window.

To set the window size programmatically, set the width, height, or bounds properties of the window to the desired

dimensions. When you set the bounds, the window size and position can all be changed at the same time. However,

the order that the changes occur is not guaranteed. Some Linux window managers do not allow windows to extend

outside the bounds of the desktop screen. In these cases, the final window size may be limited because of the order in

which the properties are set, even though the net affect of the changes would otherwise have resulted in a legal window.

For example, if you change both the height and y position of a window near the bottom of the screen, then the full

height change might not occur when the height change is applied before the y position change.

Note: On Linux, window properties are changed asynchronously. If you resize a window in one line of your program, and

read the dimensions in the next, they will still reflect the old settings. On all platforms, the NativeWindow object

dispatches the resize event when the window resizes. If you need to take some action, such as laying out controls in the

window, based on the new size or state of the window, always do so in a resize event handler. See “Listening for window

events” on page 105.

Moving a window

To move a window without resizing it, use the NativeWindow startMove() method. Like the startResize()

method, when the startMove() method is called from a mouseDown event, the move process is mouse-driven and

completes when the operating system receives a mouseUp event.

For more information about the startResize() and startMove() methods, see the Adobe AIR API Reference for

HTML Developers.

To move a window programmatically, set the x, y, or bounds properties of the window to the desired position. When

you set the bounds, the window size and position can both be changed at the same time.

Note: On Linux, window properties are changed asynchronously. If you move a window in one line of your program, and

read the position in the next, the value read will still reflect the old setting. On all platforms, the NativeWindow object

dispatches the move event when the position changes. If you need to take some action based on the new position of the

window, always do so in a move event handler. See “Listening for window events” on page 105.

Example: Resizing and moving windows

Adobe AIR 1.0 and later

The following example shows how to initiate resizing and moving operations on a window:

http://www.adobe.com/go/learn_air_html_jslr
http://www.adobe.com/go/learn_air_html_jslr

104HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <script src="AIRAliases.js"/>
 <script type="text/javascript">
 function onResize(type){
 nativeWindow.startResize(type);
 }

 function onNativeMove(){
 nativeWindow.startMove();
 }
 </script>
 <style type="text/css" media="screen">

 .drag {
 width:200px;
 height:200px;
 margin:0px auto;
 padding:15px;
 border:1px dashed #333;
 background-color:#eee;
 }

 .resize {
 background-color:#FF0000;
 padding:10px;
 }
 .left {
 float:left;
 }
 .right {
 float:right;
 }

 </style>
 <title>Move and Resize the Window</title>
 </head>

 <body>
 <div class="resize left" onmousedown="onResize(air.NativeWindowResize.TOP_LEFT)">Drag to
resize</div>
 <div class="resize right" onmousedown="onResize(air.NativeWindowResize.TOP_RIGHT)">Drag to
resize</div>
 <div class="drag" onmousedown="onNativeMove()">Drag to move</div>
 <div class="resize left" onmousedown="onResize(air.NativeWindowResize.BOTTOM_LEFT)">Drag to
resize</div>
 <div class="resize right" onmousedown="onResize(air.NativeWindowResize.BOTTOM_RIGHT)">Drag to
resize</div>
 </body>
 </html>

105HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

Listening for window events

Adobe AIR 1.0 and later

To listen for the events dispatched by a window, register a listener with the window instance. For example, to listen for

the closing event, register a listener with the window as follows:

 window.nativeWindow.addEventListener(air.Event.CLOSING, onClosingEvent);

When an event is dispatched, the target property references the window sending the event.

Most window events have two related messages. The first message signals that a window change is imminent (and can

be canceled), while the second message signals that the change has occurred. For example, when a user clicks the close

button of a window, the closing event message is dispatched. If no listeners cancel the event, the window closes and

the close event is dispatched to any listeners.

Typically, the warning events, such as closing, are only dispatched when system chrome has been used to trigger an

event. Calling the window close() method, for example, does not automatically dispatch the closing event—only

the close event is dispatched. You can, however, construct a closing event object and dispatch it using the window

dispatchEvent() method.

The window events that dispatch an Event object are:

The window events that dispatch an NativeWindowBoundsEvent object are:

For NativeWindowBoundsEvent events, you can use the beforeBounds and afterBounds properties to determine

the window bounds before and after the impending or completed change.

The window events that dispatch an NativeWindowDisplayStateEvent object are:

Event Description

activate Dispatched when the window receives focus.

deactivate Dispatched when the window loses focus

closing Dispatched when the window is about to close. This only occurs automatically when the system chrome close

button is pressed or, on Mac OS X, when the Quit command is invoked.

close Dispatched when the window has closed.

Event Description

moving Dispatched immediately before the top-left corner of the window changes position, either as a result of moving,

resizing or changing the window display state.

move Dispatched after the top-left corner has changed position.

resizing Dispatched immediately before the window width or height changes either as a result of resizing or a display

state change.

resize Dispatched after the window has changed size.

Event Description

displayStateChanging Dispatched immediately before the window display state changes.

displayStateChange Dispatched after the window display state has changed.

106HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

For NativeWindowDisplayStateEvent events, you can use the beforeDisplayState and afterDisplayState

properties to determine the window display state before and after the impending or completed change.

On some Linux window managers, a display state change event is not dispatched when a window with a maximum

size setting is maximized. (The window is set to the maximized display state, but is not resized.)

Displaying full-screen windows

Adobe AIR 1.0 and later

Setting the displayState property of the Stage to StageDisplayState.FULL_SCREEN_INTERACTIVE places the

window in full-screen mode, and keyboard input is permitted in this mode. (In SWF content running in a browser,

keyboard input is not permitted). To exit full-screen mode, the user presses the Escape key.

Note: Some Linux window managers will not change the window dimensions to fill the screen if a maximum size is set

for the window (but do remove the window system chrome).

For example, the following Flex code defines a simple AIR application that sets up a simple full-screen terminal:

 <?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml"
 layout="vertical"
 applicationComplete="init()" backgroundColor="0x003030" focusRect="false">
 <mx:Script>
 <![CDATA[
 private function init():void
 {
 stage.displayState = StageDisplayState.FULL_SCREEN_INTERACTIVE;
 focusManager.setFocus(terminal);
 terminal.text = "Welcome to the dumb terminal app. Press the ESC key to
exit..\n";
 terminal.selectionBeginIndex = terminal.text.length;
 terminal.selectionEndIndex = terminal.text.length;
 }
]]>
 </mx:Script>
 <mx:TextArea
 id="terminal"
 height="100%" width="100%"
 scroll="false"
 backgroundColor="0x003030"
 color="0xCCFF00"
 fontFamily="Lucida Console"
 fontSize="44"/>
 </mx:WindowedApplication>

The following ActionScript example for Flash simulates a simple full-screen text terminal:

107HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

 import flash.display.Sprite;
 import flash.display.StageDisplayState;
 import flash.text.TextField;
 import flash.text.TextFormat;

 public class FullScreenTerminalExample extends Sprite
 {
 public function FullScreenTerminalExample():void
 {
 var terminal:TextField = new TextField();
 terminal.multiline = true;
 terminal.wordWrap = true;
 terminal.selectable = true;
 terminal.background = true;
 terminal.backgroundColor = 0x00333333;

 this.stage.displayState = StageDisplayState.FULL_SCREEN_INTERACTIVE;

 addChild(terminal);
 terminal.width = 550;
 terminal.height = 400;

 terminal.text = "Welcome to the dumb terminal application. Press the ESC key to
exit.\n_";

 var tf:TextFormat = new TextFormat();
 tf.font = "Courier New";
 tf.color = 0x00CCFF00;
 tf.size = 12;
 terminal.setTextFormat(tf);

 terminal.setSelection(terminal.text.length - 1, terminal.text.length);
 }
 }

The following HTML page simulates a full screen text terminal:

108HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR native windows

Last updated 9/28/2011

 <html>
 <head>
 <title>Fullscreen Mode</title>
 <script language="JavaScript" type="text/javascript">
 function setDisplayState() {
 window.nativeWindow.stage.displayState =
 runtime.flash.display.StageDisplayState.FULL_SCREEN_INTERACTIVE;
 }
 </script>
 <style type="text/css">
 body, .mono {
 font-family: Courier New, Courier, monospace;
 font-size: x-large;
 color:#CCFF00;
 background-color:#003030;
 }
 </style>
 </head>
 <body onload="setDisplayState();">
 <p class="mono">Welcome to the dumb terminal app. Press the ESC key to exit...</p>
 <textarea name="dumb" class="mono" cols="100" rows="40">%</textarea>
 </body>
 </html>

109

Last updated 9/28/2011

Chapter 8: Display screens in AIR

Adobe AIR 1.0 and later

Use the Adobe® AIR® Screen class to access information about the display screens attached to a computer or device.

More Help topics

flash.display.Screen

Basics of display screens in AIR

Adobe AIR 1.0 and later

The screen API contains a single class, Screen, which provides static members for getting system screen information,

and instance members for describing a particular screen.

A computer system can have several monitors or displays attached, which can correspond to several desktop screens

arranged in a virtual space. The AIR Screen class provides information about the screens, their relative arrangement,

and their usable space. If more than one monitor maps to the same screen, only one screen exists. If the size of a screen

is larger than the display area of the monitor, there is no way to determine which portion of the screen is currently

visible.

A screen represents an independent desktop display area. Screens are described as rectangles within the virtual

desktop. The upper-left corner of screen designated as the primary display is the origin of the virtual desktop

coordinate system. All values used to describe a screen are provided in pixels.

In this screen arrangement, two screens exist on the virtual desktop. The coordinates of the upper-left corner of the main screen (#1) are always
(0,0). If the screen arrangement is changed to designate screen #2 as the main screen, then the coordinates of screen #1 become negative.
Menubars, taskbars, and docks are excluded when reporting the usable bounds for a screen.

Screen bounds

Virtual screen

Usable bounds

http://help.adobe.com/en_US/air/reference/html/flash/display/Screen.html

110HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Display screens in AIR

Last updated 9/28/2011

For detailed information about the screen API class, methods, properties, and events, see the Adobe AIR API Reference

for HTML Developers.

Enumerating the screens

Adobe AIR 1.0 and later

You can enumerate the screens of the virtual desktop with the following screen methods and properties:

Do not save the values returned by the Screen class methods and properties. The user or operating system can change

the available screens and their arrangement at any time.

The following example uses the screen API to move a window between multiple screens in response to pressing the

arrow keys. To move the window to the next screen, the example gets the screens array and sorts it either vertically

or horizontally (depending on the arrow key pressed). The code then walks through the sorted array, comparing each

screen to the coordinates of the current screen. To identify the current screen of the window, the example calls

Screen.getScreensForRectangle(), passing in the window bounds.

 <html>
 <head>
 <script src="AIRAliases.js" type="text/javascript"></script>
 <script type="text/javascript">
 function onKey(event){
 if(air.Screen.screens.length > 1){
 switch(event.keyCode){
 case air.Keyboard.LEFT :
 moveLeft();
 break;
 case air.Keyboard.RIGHT :
 moveRight();
 break;
 case air.Keyboard.UP :
 moveUp();
 break;
 case air.Keyboard.DOWN :
 moveDown();
 break;
 }

 }
 }

Method or Property Description

Screen.screens Provides an array of Screen objects describing the available screens. The order of the array is not

significant.

Screen.mainScreen Provides a Screen object for the main screen. On Mac OS X, the main screen is the screen displaying the

menu bar. On Windows, the main screen is the system-designated primary screen.

Screen.getScreensForRectangle() Provides an array of Screen objects describing the screens intersected by the given rectangle. The

rectangle passed to this method is in pixel coordinates on the virtual desktop. If no screens intersect the

rectangle, then the array is empty. You can use this method to find out on which screens a window is

displayed.

http://help.adobe.com/en_US/air/reference/html/flash/display/Screen.html
http://help.adobe.com/en_US/air/reference/html/flash/display/Screen.html

111HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Display screens in AIR

Last updated 9/28/2011

 function moveLeft(){
 var currentScreen = getCurrentScreen();
 var left = air.Screen.screens;
 left.sort(sortHorizontal);
 for(var i = 0; i < left.length - 1; i++){
 if(left[i].bounds.left < window.nativeWindow.bounds.left){
 window.nativeWindow.x += left[i].bounds.left - currentScreen.bounds.left;
 window.nativeWindow.y += left[i].bounds.top - currentScreen.bounds.top;
 }
 }
 }

 function moveRight(){
 var currentScreen = getCurrentScreen();
 var left = air.Screen.screens;
 left.sort(sortHorizontal);
 for(var i = left.length - 1; i > 0; i--){
 if(left[i].bounds.left > window.nativeWindow.bounds.left){
 window.nativeWindow.x += left[i].bounds.left - currentScreen.bounds.left;
 window.nativeWindow.y += left[i].bounds.top - currentScreen.bounds.top;
 }
 }
 }

 function moveUp(){
 var currentScreen = getCurrentScreen();
 var top = air.Screen.screens;
 top.sort(sortVertical);
 for(var i = 0; i < top.length - 1; i++){
 if(top[i].bounds.top < window.nativeWindow.bounds.top){
 window.nativeWindow.x += top[i].bounds.left - currentScreen.bounds.left;
 window.nativeWindow.y += top[i].bounds.top - currentScreen.bounds.top;
 break;
 }
 }
 }

 function moveDown(){
 var currentScreen = getCurrentScreen();

 var top = air.Screen.screens;
 top.sort(sortVertical);
 for(var i = top.length - 1; i > 0; i--){
 if(top[i].bounds.top > window.nativeWindow.bounds.top){
 window.nativeWindow.x += top[i].bounds.left - currentScreen.bounds.left;
 window.nativeWindow.y += top[i].bounds.top - currentScreen.bounds.top;
 break;
 }
 }
 }

 function sortHorizontal(a,b){
 if (a.bounds.left > b.bounds.left){
 return 1;
 } else if (a.bounds.left < b.bounds.left){
 return -1;
 } else {return 0;}

112HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Display screens in AIR

Last updated 9/28/2011

 }

 function sortVertical(a,b){
 if (a.bounds.top > b.bounds.top){
 return 1;
 } else if (a.bounds.top < b.bounds.top){
 return -1;
 } else {return 0;}
 }

 function getCurrentScreen(){
 var current;
 var screens = air.Screen.getScreensForRectangle(window.nativeWindow.bounds);
 (screens.length > 0) ? current = screens[0] : current = air.Screen.mainScreen;
 return current;
 }

 function init(){
 window.nativeWindow.stage.addEventListener("keyDown",onKey);
 }
 </script>
 <title>Screen Hopper</title>
 </head>
 <body onload="init()">
 <p>Use the arrow keys to move the window between monitors.</p>
 </body>
 </html>

113

Last updated 9/28/2011

Chapter 9: Working with menus

Flash Player 9 and later, Adobe AIR 1.0 and later

Use the classes in the native menu API to define application, window, context, and pop-up menus in Adobe® AIR®.

Menu basics

Flash Player 9 and later, Adobe AIR 1.0 and later

For a quick explanation and code examples of creating native menus in AIR applications, see the following quick start

articles on the Adobe Developer Connection:

• Adding native menus to an AIR application

The native menu classes allow you to access the native menu features of the operating system on which your

application is running. NativeMenu objects can be used for application menus (available on Mac OS X), window

menus (available on Windows and Linux), context menus, and pop-up menus.

Outside of AIR, you can use the context menu classes to modify the context menu that Flash Player automatically

displays when a user right-clicks or cmd-clicks on an object in your application. (An automatic context menu is not

displayed for AIR applications.)

Menu classes

Flash Player 9 and later, Adobe AIR 1.0 and later

The menu classes include:

Menu varieties

Flash Player 9 and later, Adobe AIR 1.0 and later

AIR supports the following types of menus:

Context menus Context menus open in response to a right-click or command-click on an interactive object in SWF

content or a document element in HTML content.

In the Flash Player runtime, a context menu is automatically displayed. You can use the ContextMenu and

ContextMenuItem classes to add your own commands to the menu. You can also remove some, but not all, of the

built-in commands.

Package Classes

flash.display • NativeMenu

• NativeMenuItem

flash.events • Event

http://www.adobe.com/devnet/air/ajax/quickstart/adding_menus.html
http://help.adobe.com/en_US/air/reference/html/flash/display/NativeMenu.html
http://help.adobe.com/en_US/air/reference/html/flash/display/NativeMenuItem.html
http://help.adobe.com/en_US/air/reference/html/flash/events/Event.html

114HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

In the AIR runtime, you can create a context menu using either the NativeMenu or the ContextMenu class. In HTML

content in AIR, you can use the Webkit HTML and JavaScript APIs to add context menus to HTML elements.

Application menus (AIR only) An application menu is a global menu that applies to the entire application. Application

menus are supported on Mac OS X, but not on Windows or Linux. On Mac OS X, the operating system automatically

creates an application menu. You can use the AIR menu API to add items and submenus to the standard menus. You

can add listeners for handling the existing menu commands. Or you can remove existing items.

Window menus (AIR only) A window menu is associated with a single window and is displayed below the title bar.

Menus can be added to a window by creating a NativeMenu object and assigning it to the menu property of the

NativeWindow object. Window menus are supported on the Windows and Linux operating systems, but not on Mac

OS X. Native window menus can only be used with windows that have system chrome.

Dock and system tray icon menus (AIR only) These icon menus are similar to context menus and are assigned to an

application icon in the Mac OS X dock or the Windows and Linux notification areas on the taskbar. Dock and system

tray icon menus use the NativeMenu class. On Mac OS X, the items in the menu are added above the standard

operating system items. On Windows or Linux, there is no standard menu.

Pop-up menus (AIR only) An AIR pop-up menu is like a context menu, but is not necessarily associated with a

particular application object or component. Pop-up menus can be displayed anywhere in a window by calling the

display() method of any NativeMenu object.

Custom menus Native menus are drawn entirely by the operating system and, as such, exist outside the Flash and

HTML rendering models. Instead of using native menus, you can always create your own custom, non-native menus

using MXML, ActionScript, or JavaScript (in AIR). Such menus must be fully rendered inside application content.

Default menus (AIR only)

The following default menus are provided by the operating system or a built-in AIR class:

• Application menu on Mac OS X

• Dock icon menu on Mac OS X

• Context menu for selected text and images in HTML content

• Context menu for selected text in a TextField object (or an object that extends TextField)

Native menu structure (AIR)

Adobe AIR 1.0 and later

Native menus are hierarchical in nature. NativeMenu objects contain child NativeMenuItem objects.

NativeMenuItem objects that represent submenus, in turn, can contain NativeMenu objects. The top- or root-level

menu object in the structure represents the menu bar for application and window menus. (Context, icon, and pop-up

menus don’t have a menu bar).

115HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

The following diagram illustrates the structure of a typical menu. The root menu represents the menu bar and contains

two menu items referencing a File submenu and an Edit submenu. The File submenu in this structure contains two

command items and an item that references an Open Recent Menu submenu, which, itself, contains three items. The

Edit submenu contains three commands and a separator.

Defining a submenu requires both a NativeMenu and a NativeMenuItem object. The NativeMenuItem object defines

the label displayed in the parent menu and allows the user to open the submenu. The NativeMenu object serves as a

container for items in the submenu. The NativeMenuItem object references the NativeMenu object through the

NativeMenuItem submenu property.

To view a code example that creates this menu see “Native menu example: Window and application menu (AIR)” on

page 123.

Menu events

Adobe AIR 1.0 and later

NativeMenu and NativeMenuItem objects both dispatch preparing, displaying, and select events:

Preparing: Whenever the object is about to begin a user interaction, the menu and its menu items dispatch a

preparing event to any registered listeners. Interaction includes opening the menu or selecting an item with a

keyboard shortcut.

NativeMenu Root Menu

NativeMenuItem “File”

NativeMenu File Menu

NativeMenuItem “New”

NativeMenuItem “Save”

NativeMenuItem “Open Recent”

NativeMenu Open Recent Menu

NativeMenuItem “GreatGatsby.pdf”

NativeMenuItem “WarAndPeace.pdf”

NativeMenuItem “Iliad.pdf”

NativeMenuItem “Edit”

NativeMenu Edit Menu

NativeMenuItem “Copy”

NativeMenuItem “Paste”

NativeMenuItem Separator

NativeMenuItem “Preferences”

116HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

Note: The preparing event is available only for Adobe AIR 2.6 and later.

Displaying: Immediately before a menu is displayed, the menu and its menu items dispatch a displaying event to

any registered listeners.

The preparing and displaying events give you an opportunity to update the menu contents or item appearance

before it is shown to the user. For example, in the listener for the displaying event of an “Open Recent” menu, you

could change the menu items to reflect the current list of recently viewed documents.

If you remove the menu item whose keyboard shortcut triggered a preparing event, the menu interaction is effectively

canceled and a select event is not dispatched.

The target and currentTarget properties of the event are both the object on which the listener is registered: either

the menu itself, or one of its items.

The preparing event is dispatched before the displaying event. You typically listen for one event or the other, not both.

Select: When a command item is chosen by the user, the item dispatches a select event to any registered listeners.

Submenu and separator items cannot be selected and so never dispatch a select event.

A select event bubbles up from a menu item to its containing menu, on up to the root menu. You can listen for

select events directly on an item and you can listen higher up in the menu structure. When you listen for the select

event on a menu, you can identify the selected item using the event target property. As the event bubbles up through

the menu hierarchy, the currentTarget property of the event object identifies the current menu object.

Note: ContextMenu and ContextMenuItem objects dispatch menuItemSelect and menuSelect events as well as

select, preparing, and displaying events.

Key equivalents for native menu commands (AIR)

Adobe AIR 1.0 and later

You can assign a key equivalent (sometimes called an accelerator) to a menu command. The menu item dispatches a

select event to any registered listeners when the key, or key combination is pressed. The menu containing the item

must be part of the menu of the application or the active window for the command to be invoked.

Key equivalents have two parts, a string representing the primary key and an array of modifier keys that must also be

pressed. To assign the primary key, set the menu item keyEquivalent property to the single character string for that

key. If you use an uppercase letter, the shift key is added to the modifier array automatically.

On Mac OS X, the default modifier is the command key (Keyboard.COMMAND). On Windows and Linux, it is the

control key (Keyboard.CONTROL). These default keys are automatically added to the modifier array. To assign

different modifier keys, assign a new array containing the desired key codes to the keyEquivalentModifiers

property. The default array is overwritten. Whether you use the default modifiers or assign your own modifier array,

the shift key is added if the string you assign to the keyEquivalent property is an uppercase letter. Constants for the

key codes to use for the modifier keys are defined in the Keyboard class.

The assigned key equivalent string is automatically displayed beside the menu item name. The format depends on the

user’s operating system and system preferences.

Note: If you assign the Keyboard.COMMAND value to a key modifier array on the Windows operating system, no key

equivalent is displayed in the menu. However, the control key must be used to activate the menu command.

The following example assigns Ctrl+Shift+G as the key equivalent for a menu item:

 var item = new air.NativeMenuItem("Ungroup");
 item.keyEquivalent = "G";

117HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

This example assigns Ctrl+Shift+G as the key equivalent by setting the modifier array directly:

 var item = new air.NativeMenuItem("Ungroup");
 item.keyEquivalent = "G";
 item.keyEquivalentModifiers = [air.Keyboard.CONTROL];

Note: Key equivalents are only triggered for application and window menus. If you add a key equivalent to a context or

pop-up menu, the key equivalent is displayed in the menu label, but the associated menu command is never invoked.

Mnemonics (AIR)

Adobe AIR 1.0 and later

Mnemonics are part of the operating system keyboard interface to menus. Linux, Mac OS X, and Windows allow users

to open menus and select commands with the keyboard, but there are subtle differences.

On Mac OS X, the user types the first letter or two of the menu or command and then presses the return key. The

mnemonicIndex property is ignored.

On Windows, only a single letter is significant. By default, the significant letter is the first character in the label, but if

you assign a mnemonic to the menu item, then the significant character becomes the designated letter. If two items in

a menu have the same significant character (whether or not a mnemonic has been assigned), then the user’s keyboard

interaction with the menu changes slightly. Instead of pressing a single letter to select the menu or command, the user

must press the letter as many times as necessary to highlight the desired item and then press the enter key to complete

the selection. To maintain a consistent behavior, you should assign a unique mnemonic to each item in a menu for

window menus.

On Linux, no default mnemonic is provided. You must specify a value for the mnemonicIndex property of a menu item

to provide a mnemonic.

Specify the mnemonic character as an index into the label string. The index of the first character in a label is 0. Thus,

to use “r” as the mnemonic for a menu item labeled, “Format,” you would set the mnemonicIndex property equal to 2.

 var item = new air.NativeMenuItem("Format");
 item.mnemonicIndex = 2;

Menu item state

Adobe AIR 1.0 and later

Menu items have the two state properties, checked and enabled:

checked Set to true to display a check mark next to the item label.

 var item = new air.NativeMenuItem("Format");
 item.checked = true;

enabled Toggle the value between true and false to control whether the command is enabled. Disabled items are

visually “grayed-out” and do not dispatch select events.

 var item = new air.NativeMenuItem("Format");
 item.enabled = false;

118HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

Attaching an object to a menu item

Adobe AIR 1.0 and later

The data property of the NativeMenuItem class allows you to reference an arbitrary object in each item. For example,

in an “Open Recent” menu, you could assign the File object for each document to each menu item.

 var file = air.File.applicationStorageDirectory.resolvePath("GreatGatsby.pdf")
 var menuItem = docMenu.addItem(new air.NativeMenuItem(file.name));
 menuItem.data = file;

Creating native menus (AIR)

Adobe AIR 1.0 and later

This topic describes how to create the various types of native menu supported by AIR.

Creating a root menu object

Adobe AIR 1.0 and later

To create a NativeMenu object to serve as the root of the menu, use the NativeMenu constructor:

 var root = new air.NativeMenu();

For application and window menus, the root menu represents the menu bar and should only contain items that open

submenus. Context menu and pop-up menus do not have a menu bar, so the root menu can contain commands and

separator lines as well as submenus.

After the menu is created, you can add menu items. Items appear in the menu in the order in which they are added,

unless you add the items at a specific index using the addItemAt() method of a menu object.

Assign the menu as an application, window, or icon menu, or display it as a pop-up menu, as shown in the following

sections:

Setting the application menu or window menu

It’s important that your code accommodate both application menus (supported on Mac OS) and window menus

(supported on other operating systems)

var root = new air.NativeMenu();
if (air.NativeApplication.supportsMenu)
{

air.NativeApplication.nativeApplication.menu = root;
}
else if (NativeWindow.supportsMenu)
{

nativeWindow.menu = root;
}

Note: Mac OS defines a menu containing standard items for every application. Assigning a new NativeMenu object to

the menu property of the NativeApplication object replaces the standard menu. You can also use the standard menu

instead of replacing it.

119HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

The Adobe Flex provides a FlexNativeMenu class for easily creating menus that work across platforms. If you are using

the Flex Framework, use the FlexNativeMenu classes instead of the NativeMenu class.

Setting a dock icon menu or system tray icon menu

 air.NativeApplication.nativeApplication.icon.menu = root;

Note: Mac OS X defines a standard menu for the application dock icon. When you assign a new NativeMenu to the menu

property of the DockIcon object, the items in that menu are displayed above the standard items. You cannot remove,

access, or modify the standard menu items.

Displaying a menu as a pop-up

 root.display(window.nativeWindow.stage, x, y);

More Help topics

Developing cross-platform AIR applications

Creating a submenu

Adobe AIR 1.0 and later

To create a submenu, you add a NativeMenuItem object to the parent menu and then assign the NativeMenu object

defining the submenu to the item’s submenu property. AIR provides two ways to create submenu items and their

associated menu object:

You can create a menu item and its related menu object in one step with the addSubmenu() method:

 var editMenuItem = root.addSubmenu(new air.NativeMenu(), "Edit");

You can also create the menu item and assign the menu object to its submenu property separately:

 var editMenuItem = root.addItem("Edit", false);
 editMenuItem.submenu = new air.NativeMenu();

Creating a menu command

Adobe AIR 1.0 and later

To create a menu command, add a NativeMenuItem object to a menu and add an event listener referencing the

function implementing the menu command:

 var copy = new air.NativeMenuItem("Copy", false);
 copy.addEventListener(air.Event.SELECT, onCopyCommand);
 editMenu.addItem(copy);

You can listen for the select event on the command item itself (as shown in the example), or you can listen for the

select event on a parent menu object.

Note: Menu items that represent submenus and separator lines do not dispatch select events and so cannot be used as

commands.

http://www.adobe.com/devnet/air/articles/developing_crossplatform.html

120HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

Creating a menu separator line

Adobe AIR 1.0 and later

To create a separator line, create a NativeMenuItem, setting the isSeparator parameter to true in the constructor.

Then add the separator item to the menu in the correct location:

 var separatorA = new air.NativeMenuItem("A", true);
 editMenu.addItem(separatorA);

The label specified for the separator, if any, is not displayed.

About context menus in HTML (AIR)

Adobe AIR 1.0 and later

In HTML content displayed using the HTMLLoader object, the contextmenu event can be used to display a context

menu. By default, a context menu is displayed automatically when the user invokes the context menu event on selected

text (by right-clicking or command-clicking the text). To prevent the default menu from opening, listen for the

contextmenu event and call the event object’s preventDefault() method:

 function showContextMenu(event){
 event.preventDefault();
 }

You can then display a custom context menu using DHTML techniques or by displaying an AIR native context menu.

The following example displays a native context menu by calling the menu display() method in response to the

HTML contextmenu event:

121HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

 <html>
 <head>
 <script src="AIRAliases.js" language="JavaScript" type="text/javascript"></script>
 <script language="javascript" type="text/javascript">

 function showContextMenu(event){
 event.preventDefault();
 contextMenu.display(window.nativeWindow.stage, event.clientX, event.clientY);
 }

 function createContextMenu(){
 var menu = new air.NativeMenu();
 var command = menu.addItem(new air.NativeMenuItem("Custom command"));
 command.addEventListener(air.Event.SELECT, onCommand);
 return menu;
 }

 function onCommand(){
 air.trace("Context command invoked.");
 }

 var contextMenu = createContextMenu();
 </script>
 </head>
 <body>
 <p oncontextmenu="showContextMenu(event)" style="-khtml-user-select:auto;">Custom context
menu.</p>
 </body>
 </html>

Displaying pop-up native menus (AIR)

Adobe AIR 1.0 and later

You can display any NativeMenu object at an arbitrary time and location above a window, by calling the menu

display() method. The method requires a reference to the stage; thus, only content in the application sandbox can

display a menu as a pop-up.

The following method displays the menu defined by a NativeMenu object named popupMenu in response to a mouse

click:

 function onMouseClick(event) {
 popupMenu.display(window.nativeWindow.stage, event.clientX, event.clientY);
 }

Note: The menu does not need to be displayed in direct response to an event. Any method can call the display()

function.

122HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

Handling menu events

Flash Player 9 and later, Adobe AIR 1.0 and later

A menu dispatches events when the user selects the menu or when the user selects a menu item.

Events summary for menu classes

Flash Player 9 and later, Adobe AIR 1.0 and later

Add event listeners to menus or individual items to handle menu events.

Select menu events

Adobe AIR 1.0 and later

To handle a click on a menu item, add an event listener for the select event to the NativeMenuItem object:

 var menuCommandX = new NativeMenuItem("Command X");
 menuCommand.addEventListener(air.Event.SELECT, doCommandX)

Because select events bubble up to the containing menus, you can also listen for select events on a parent menu.

When listening at the menu level, you can use the event object target property to determine which menu command

was selected. The following example traces the label of the selected command:

Object Events dispatched

NativeMenu (AIR) Event.PREPARING (Adobe AIR 2.6 and later)

Event.DISPLAYING

Event.SELECT (propagated from child items and submenus)

NativeMenuItem (AIR) Event.PREPARING (Adobe AIR 2.6 and later)

Event.SELECT

Event.DISPLAYING (propagated from parent menu)

123HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

 var colorMenuItem = new air.NativeMenuItem("Choose a color");
 var colorMenu = new air.NativeMenu();
 colorMenuItem.submenu = colorMenu;

 var red = new air.NativeMenuItem("Red");
 var green = new air.NativeMenuItem("Green");
 var blue = new air.NativeMenuItem("Blue");
 colorMenu.addItem(red);
 colorMenu.addItem(green);
 colorMenu.addItem(blue);

 if(air.NativeApplication.supportsMenu){
 air.NativeApplication.nativeApplication.menu.addItem(colorMenuItem);
 air.NativeApplication.nativeApplication.menu.addEventListener(air.Event.SELECT,
 colorChoice);
 } else if (air.NativeWindow.supportsMenu){
 var windowMenu = new air.NativeMenu();
 window.nativeWindow.menu = windowMenu;
 windowMenu.addItem(colorMenuItem);
 windowMenu.addEventListener(air.Event.SELECT, colorChoice);
 }

 function colorChoice(event) {
 var menuItem = event.target;
 air.trace(menuItem.label + " has been selected");
 }

If you are using the ContextMenuItem class, you can listen for either the select event or the menuItemSelect event.

The menuItemSelect event gives you additional information about the object owning the context menu, but does not

bubble up to the containing menus.

Displaying menu events

Adobe AIR 1.0 and later

To handle the opening of a menu, you can add a listener for the displaying event, which is dispatched before a menu

is displayed. You can use the displaying event to update the menu, for example by adding or removing items, or by

updating the enabled or checked states of individual items. You can also listen for the menuSelect event from a

ContextMenu object.

In AIR 2.6 and later, you can use the preparing event to update a menu in response to either displaying a menu or

selecting an item with a keyboard shortcut.

Native menu example: Window and application menu
(AIR)

Adobe AIR 1.0 and later

The following example creates the menu shown in “Native menu structure (AIR)” on page 114.

124HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

The menu is designed to work both on Windows, for which only window menus are supported, and on Mac OS X, for

which only application menus are supported. To make the distinction, the MenuExample class constructor checks the

static supportsMenu properties of the NativeWindow and NativeApplication classes. If

NativeWindow.supportsMenu is true, then the constructor creates a NativeMenu object for the window and then

creates and adds the File and Edit submenus. If NativeApplication.supportsMenu is true, then the constructor

creates and adds the File and Edit menus to the existing menu provided by the Mac OS X operating system.

The example also illustrates menu event handling. The select event is handled at the item level and also at the menu

level. Each menu in the chain from the menu containing the selected item to the root menu responds to the select

event. The displaying event is used with the “Open Recent” menu. Just before the menu is opened, the items in the

menu are refreshed from the recent Documents array (which doesn’t actually change in this example). Although not

shown in this example, you can also listen for displaying events on individual items.

 <html>
 <head>
 <script src="AIRAliases.js" type="text/javascript"></script>
 <script type="text/javascript">
 var application = air.NativeApplication.nativeApplication;
 var recentDocuments =
 new Array(new air.File("app-storage:/GreatGatsby.pdf"),
 new air.File("app-storage:/WarAndPeace.pdf"),
 new air.File("app-storage:/Iliad.pdf"));

 function MenuExample(){
 var fileMenu;
 var editMenu;

 if (air.NativeWindow.supportsMenu &&
 nativeWindow.systemChrome != air.NativeWindowSystemChrome.NONE) {
 nativeWindow.menu = new air.NativeMenu();
 nativeWindow.menu.addEventListener(air.Event.SELECT, selectCommandMenu);
 fileMenu = nativeWindow.menu.addItem(new air.NativeMenuItem("File"));
 fileMenu.submenu = createFileMenu();

 editMenu = nativeWindow.menu.addItem(new air.NativeMenuItem("Edit"));
 editMenu.submenu = createEditMenu();
 }

 if (air.NativeApplication.supportsMenu) {
 application.menu.addEventListener(air.Event.SELECT, selectCommandMenu);
 fileMenu = application.menu.addItem(new air.NativeMenuItem("File"));
 fileMenu.submenu = createFileMenu();
 editMenu = application.menu.addItem(new air.NativeMenuItem("Edit"));
 editMenu.submenu = createEditMenu();
 }
 }

 function createFileMenu() {
 var fileMenu = new air.NativeMenu();
 fileMenu.addEventListener(air.Event.SELECT,selectCommandMenu);

 var newCommand = fileMenu.addItem(new air.NativeMenuItem("New"));
 newCommand.addEventListener(air.Event.SELECT, selectCommand);
 var saveCommand = fileMenu.addItem(new air.NativeMenuItem("Save"));
 saveCommand.addEventListener(air.Event.SELECT, selectCommand);
 var openFile = fileMenu.addItem(new air.NativeMenuItem("Open Recent"));

125HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

 openFile.submenu = new air.NativeMenu();
 openFile.submenu.addEventListener(air.Event.DISPLAYING, updateRecentDocumentMenu);
 openFile.submenu.addEventListener(air.Event.SELECT, selectCommandMenu);

 return fileMenu;
 }

 function createEditMenu() {
 var editMenu = new air.NativeMenu();
 editMenu.addEventListener(air.Event.SELECT,selectCommandMenu);

 var copyCommand = editMenu.addItem(new air.NativeMenuItem("Copy"));
 copyCommand.addEventListener(air.Event.SELECT,selectCommand);
 copyCommand.keyEquivalent = "c";
 var pasteCommand = editMenu.addItem(new air.NativeMenuItem("Paste"));
 pasteCommand.addEventListener(air.Event.SELECT, selectCommand);
 pasteCommand.keyEquivalent = "v";
 editMenu.addItem(new air.NativeMenuItem("", true));
 var preferencesCommand = editMenu.addItem(new air.NativeMenuItem("Preferences"));
 preferencesCommand.addEventListener(air.Event.SELECT,selectCommand);

 return editMenu;
 }

 function updateRecentDocumentMenu(event) {
 air.trace("Updating recent document menu.");
 var docMenu = air.NativeMenu(event.target);

 for (var i = docMenu.numItems - 1; i >= 0; i--) {
 docMenu.removeItemAt(i);
 }

 for (var file in recentDocuments) {
 var menuItem =
 docMenu.addItem(new air.NativeMenuItem(recentDocuments[file].name));
 menuItem.data = recentDocuments[file];
 menuItem.addEventListener(air.Event.SELECT, selectRecentDocument);
 }
 }

 function selectRecentDocument(event) {
 air.trace("Selected recent document: " + event.target.data.name);
 }

 function selectCommand(event) {
 air.trace("Selected command: " + event.target.label);
 }

 function selectCommandMenu(event) {
 if (event.currentTarget.parent != null) {
 var menuItem = findItemForMenu(event.currentTarget);
 if(menuItem != null){
 air.trace("Select event for \"" + event.target.label +
 "\" command handled by menu: " + menuItem.label);
 }
 } else {
 air.trace("Select event for \"" + event.target.label +

126HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

 "\" command handled by root menu.");
 }
 }

 function findItemForMenu(menu){
 for (var item in menu.parent.items) {
 if (item != null) {
 if (item.submenu == menu) {
 return item;
 }
 }
 }
 return null;
 }
 </script>
 <title>AIR menus</title>
 </head>
 <body onload="MenuExample()"></body>
 </html>

Using the MenuBuilder framework

Adobe AIR 1.0 and later

In addition to the standard menu classes, Adobe AIR includes a menu builder JavaScript framework to make it easier

for developers to create menus. The MenuBuilder framework allows you to define the structure of your menus

declaratively in XML or JSON format. It also provides helper methods for creating any of the menu types available to

an AIR application. For a complete list of the ways a native menu can be used in AIR, see “Menu basics” on page 113.

Creating a menu with the MenuBuilder framework

Adobe AIR 1.0 and later

The MenuBuilder framework allows you to define the structure of a menu using XML or JSON. The framework

includes methods for loading and parsing the file containing the menu structure. Once a menu structure is loaded,

additional methods allow you to designate how the menu is used in the application. The methods allow you to set the

menu as the Mac OS X application menu, as a window menu, or as a context menu.

The MenuBuilder framework is not built in to the runtime. To use the framework, include the AIRMenuBuilder.js file

(included with the Adobe AIR SDK) in your application code, as shown here:

<script type="text/javascript" src="AIRMenuBuilder.js"></script>

The MenuBuilder framework is designed to run in the application sandbox. The framework methods can’t be called

from the classic sandbox.

All the framework methods that are for developer use are defined as class methods on the air.ui.Menu class.

127HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

MenuBuilder basic workflow

Adobe AIR 1.0 and later

In general, regardless of the type of menu you want to create, you follow three steps to create a menu with the

MenuBuilder framework:

1 Define the menu structure: Create a file containing XML or JSON that defines the menu structure. For some menu

types, the top-level menu items are menus (for example in a window or application menu). For other menu types,

the top-level items are individual menu commands (such as in a context menu). For details on the format for

defining menu structure, see “Defining MenuBuilder menu structure” on page 129.

2 Load the menu structure: Call the appropriate Menu class method, either Menu.createFromXML() or

Menu.createFromJSON(), to load the menu structure file and parse it into an actual menu object. Either method

returns a NativeMenu object that can be passed to one of the framework’s menu-setting methods.

3 Assign the menu: Call the appropriate Menu class method according to how the menu is used. The options are:

• Menu.setAsMenu() for a window or application menu

• Menu.setAsContextMenu() to display the menu as a context menu for a DOM element

• Menu.setAsIconMenu() to set the menu as the context menu for a system tray or dock icon

The timing of when the code executes can be important. In particular, a window menu must be assigned before the

actual operating system window is created. Any setAsMenu() call that sets a menu as a window menu must execute

directly in the HTML page rather than in the onload or other event handler. The code to create the menu must run

before the operating system opens the window. At the same time, any setAsContextMenu() call that refers to a DOM

elements must occur after the DOM element is created. The safest approach is to place the <script> block containing

the menu assignment code just inside the closing </body> tag at the end of the HTML page.

Loading menu structure

Adobe AIR 1.0 and later

Regardless of the intended use of your menu, you define the structure of the menu as a separate file containing an XML

or JSON structure. Before you can assign a menu in your application, first use the framework to load and parse the

menu structure file. To load and parse a menu structure file, use one of these two framework methods:

• Menu.createFromXML() to load and parse an XML-formatted menu structure file

• Menu.createFromJSON() to load and parse a JSON-formatted menu structure file

Both methods accept one argument: the file path of the menu structure file. Both methods load the file from that

location. They parse the file contents and return a NativeMenu object with the menu structure defined in the file. For

example, the following code loads a menu structure file named “windowMenu.xml” that’s in the same directory as the

HTML file that’s loading it:

var windowMenu = air.ui.Menu.createFromXML("windowMenu.xml");

In the next example, the code loads a menu structure file named “contextMenu.js” from a directory named “menus”:

var contextMenu = air.ui.Menu.createFromJSON("menus/contextMenu.js");

Note: The generated NativeMenu object can only be used once as an application or window menu. However, a generated

NativeMenu object can be used multiple times in an application as a context or icon menu. Using the MenuBuilder

framework on Mac OS X, if the same NativeMenu is assigned as the application menu and also as another type of menu,

it is only used as the application menu.

128HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

For details of the specific menu structure that the MenuBuilder framework accepts, see “Defining MenuBuilder menu

structure” on page 129.

Creating an application or window menu

Adobe AIR 1.0 and later

When you create an application or window menu using the MenuBuilder framework, the top-level objects or nodes in

the menu data structure correspond to the items that show up in the menu bar. Items nested inside one of those top-

level items define the individual menu commands. Likewise, those menu items can contain other items. In that case

the menu item is a submenu rather than a command. When the user selects the menu item it expands its own menu

of items.

You use the Menu.setAsMenu() method to set a menu as the application menu or window menu for the window in

which the call executes. The setAsMenu() method takes one parameter: the NativeMenu object to use. The following

example loads an XML file and sets the generated menu as the application or window menu:

var windowMenu = air.ui.Menu.createFromXML("windowMenu.xml");
air.ui.Menu.setAsMenu(windowMenu);

On an operating system that supports window menus, the setAsMenu() call sets the menu as the window menu for

the current window (the window that’s represented as window.nativeWindow). On an operating system that supports

an application menu, the menu is used as the application menu.

Mac OS X defines a set of standard menus as the default application menu, with the same set of menu items for every

application. These menus include an application menu whose name matches the application name, an Edit menu, and

a Window menu. When you assign a NativeMenu object as the application menu by calling the Menu.setAsMenu()

method, the items in the NativeMenu are inserted into the standard menu structure between the Edit and Window

menus. The standard menus are not modified or replaced.

You can replace the standard menus rather than supplement them if you prefer. To replace the existing menu, pass a

second argument with the value true to the setAsMenu() call, as in this example:

air.ui.Menu.setAsMenu(windowMenu, true);

Creating a DOM element context menu

Adobe AIR 1.0 and later

Creating a context menu for a DOM element using the MenuBuilder framework involves two steps. First you create

the NativeMenu instance that defines the menu structure using the Menu.createFromXML() or

Menu.createFromJSON() method. You then assign that menu as the context menu for a DOM element by calling the

Menu.setAsContextMenu() method. Because a context menu consists of a single menu, the top-level menu items in

the menu data structure serve as the items in the single menu. Any menu item that contains child menu items defines

a submenu. To assign a NativeMenu as the context menu for a DOM element, call the Menu.setAsContextMenu()

method. This method requires two parameters: the NativeMenu to set as the context menu, and the id (a string) of the

DOM element to which it is assigned:

var treeContextMenu = air.ui.Menu.createFromXML("treeContextMenu.xml");
air.ui.Menu.setAsContextMenu(treeContextMenu, "navTree");

If you omit the DOM element parameter, the method uses the HTML document from which the method is called as

the default value. In other words, the menu is set as the context menu for the HTML document’s entire window. This

technique is convenient for removing the default context menu from an entire HTML window by passing null for the

first parameter, as in this example:

129HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

air.ui.Menu.setAsContextMenu(null);

You can also remove an assigned context menu from any DOM element. Call the setAsContextMenu() method and

pass null and the element id as the two arguments.

Creating an icon context menu

Adobe AIR 1.0 and later

In addition to context menus for DOM elements within an application window, an Adobe AIR application supports

two other special context menus: dock icon menus for operating systems that support a dock, and system tray icon

menus for operating systems that use a system tray. To set either of these menus, you first create a NativeMenu using

the Menu.createFromXML() or Menu.createFromJSON() method. Then you assign the NativeMenu as the dock or

system tray icon menu by calling the Menu.setAsIconMenu() method.

This method accepts two arguments. The first argument, which is required, is the NativeMenu to use as the icon menu.

The second argument is an Array containing strings that are file paths to images to use as the icon, or BitmapData

objects containing image data for the icon. This argument is required unless default icons are specified in the

application.xml file. If default icons are specified in the application.xml file, those icons are used by default for the

system tray icon.

The following example demonstrates loading menu data and assigning the menu as the dock or system tray icon

context menu:

// Assumes that icons are specified in the application.xml file.
// Otherwise the icons would need to be specified using a second
// parameter to the setAsIconMenu() function.
var iconMenu = air.ui.Menu.createFromXML("iconMenu.xml");
air.ui.Menu.setAsIconMenu(iconMenu);

Note: Mac OS X defines a standard context menu for the application dock icon. When you assign a menu as the dock icon

context menu, the items in the menu are displayed above the standard OS menu items. You cannot remove, access, or

modify the standard menu items.

Defining MenuBuilder menu structure

Adobe AIR 1.0 and later

When you create a NativeMenu object using the Menu.createFromXML() or Menu.createFromJSON() method, the

structure of XML elements or objects defines the structure of the resulting menu. Once the menu is created, you can

change its structure or properties at run time. To change a menu item at run time you access the NativeMenuItem

object by navigating through the NativeMenu object’s hierarchy.

The MenuBuilder framework looks for certain XML attributes or object properties as it parses through the menu data

source. The presence and value of those attributes or properties determines the structure of the menu that’s created.

When you use XML for the menu structure, the XML file must contain a root node. The child nodes of the root node are

used as the top-level menu item nodes. The XML nodes can have any name. The names of the XML nodes don’t affect

the menu structure. Only the hierarchical structure of the nodes and their attribute values are used to define the menu.

130HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

Menu item types

Adobe AIR 1.0 and later

Each entry in the menu data source (each XML element or JSON object) can specify an item type and type-specific

information about the menu item it represents. Adobe AIR supports the following menu item types, which can be set

as the values of the type attribute or property in the data source:

A normal menu item is treated as a submenu if it has children. With an XML data source, this means that the menu

item element contains other XML elements. For a JSON data source, give the object representing the menu item a

property named items containing an array of other objects.

Menu data source attributes or properties

Adobe AIR 1.0 and later

Items in the menu data source can specify several XML attributes or object properties that determine how the item is

displayed and behaves. The following table lists the attributes you can specify, their data types, their purposes, and how

the data source must represent them:

Menu item type Description

normal The default type. Selecting an item with the normal type triggers a select event and

calls the function specified in the onSelect field of the data source. Alternatively, if

the item has children, the menu item dispatches a preparing event, then a

displaying event and then opens the submenu.

check Selecting an item with the check type toggles the NativeMenuItem’s checked

property between true and false values, triggers a select event, and calls the

function specified in the onSelect field of the data source. When the menu item is

in the true state, it displays a check mark in the menu next to the item’s label.

separator Items with the separator type provide a simple horizontal line that divides the

items in the menu into different visual groups.

Attribute or property Type Description

altKey Boolean Specifies whether the Alt key is required as

part of the key equivalent for the item.

cmdKey Boolean Specifies whether the Command key is

required as part of the key equivalent for

the item. The

defaultKeyEquivalentModifiers

field also affects this value.

ctrlKey Boolean Specifies whether the Control key is

required as part of the key equivalent for

the item. The

defaultKeyEquivalentModifiers

field also affects this value.

defaultKeyEquivalentModifiers Boolean Specifies whether the operating system

default modifier key (Command for Mac OS

X and Control for Windows) is required as

part of the key equivalent for the item. If

not specified, the MenuBuilder framework

treats the item as if the value was true.

131HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

The MenuBuilder framework ignores all other object properties or XML attributes.

enabled Boolean Specifies whether the user can select the

menu item (true), or not (false). If not

specified, the MenuBuilder framework

treats the item as if the value was true.

items Array (JSON only) specifies that the menu item is

itself a menu. The objects in the array are

the child menu items contained in the

menu.

keyEquivalent String Specifies a keyboard character which, when

pressed, triggers an event as though the

menu item was selected.

If this value is an uppercase character, the

shift key is required as part of the key

equivalent of the item.

label String Specifies the text that appears in the

control. This item is used for all menu item

types except separator.

mnemonicIndex Integer Specifies the index position of the

character in the label that is used as the

mnemonic for the menu item.

Alternatively, you can indicate that a

character in the label is the menu item's

mnemonic by including an underscore

immediately to the left of that character.

onSelect String or Function Specifies the name of a function (a String)

or a reference to the function (a Function

object). The specified function is called as

an event listener when the user selects the

menu item. For more information see

“Handling MenuBuilder menu events” on

page 136.

shiftKey String Specifies whether the Shift key is required

as part of the key equivalent for the item.

Alternatively, the keyEquivalent value

specifies this value as well. If the

keyEquivalent value is an uppercase

letter, the shift key is required as part of the

key equivalent.

toggled Boolean Specifies whether a check item is selected.

If not specified, the MenuBuilder

framework treats the item as if the value

was false and the item is not selected.

type String Specifies the type of menu item.

Meaningful values are separator and

check. The MenuBuilder framework treats

all other values, or elements or objects with

no type entry, as normal menu entries.

Attribute or property Type Description

132HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

Example: An XML MenuBuilder data source

Adobe AIR 1.0 and later

The following example uses the MenuBuilder framework to define a context menu for a region of text. It shows how

to define the menu structure using XML as the data source. For an application that specifies an identical menu

structure using a JSON array, see “Example: A JSON MenuBuilder data source” on page 133.

The application consists of two files.

The first file is the menu data source, in a file named “textContextMenu.xml.” While this example uses menu item

nodes named “menuitem,” the actual name of the XML nodes doesn’t matter. As described previously, only the

structure of the XML and the attribute values affect the structure of the generated menu.

<?xml version="1.0" encoding="utf-8" ?>
<root>

<menuitem label="MenuItem A"/>
<menuitem label="MenuItem B" type="check" toggled="true"/>
<menuitem label="MenuItem C" enabled="false"/>
<menuitem type="separator"/>
<menuitem label="MenuItem D">

<menuitem label="SubMenuItem D-1"/>
<menuitem label="SubMenuItem D-2"/>
<menuitem label="SubMenuItem D-3"/>

</menuitem>
</root>

The second file is the source code for the application user interface (the HTML file specified as the initial window in

the application.xml file:

133HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

<html>
<head>

<title>XML-based menu data source example</title>
<script type="text/javascript" src="AIRAliases.js"></script>
<script type="text/javascript" src="AIRMenuBuilder.js"></script>
<style type="text/css">

#contextEnabledText
{

margin-left: auto;
margin-right: auto;
margin-top: 100px;
width: 50%

}
</style>

</head>
<body>

<div id="contextEnabledText">This block of text is context menu enabled. Right click
or Command-click on the text to view the context menu.</div>

<script type="text/javascript">
// Create a NativeMenu from "textContextMenu.xml" and set it
// as context menu for the "contextEnabledText" DOM element:
var textMenu = air.ui.Menu.createFromXML("textContextMenu.xml");
air.ui.Menu.setAsContextMenu(textMenu, "contextEnabledText");

// Remove the default context menu from the page:
air.ui.Menu.setAsContextMenu(null);

</script>
</body>

</html>

Example: A JSON MenuBuilder data source

Adobe AIR 1.0 and later

The following example uses the MenuBuilder framework to define a context menu for a region of text using a JSON

array as the data source. For an application that specifies an identical menu structure in XML, see “Example: An XML

MenuBuilder data source” on page 132.

The application consists of two files.

The first file is the menu data source, in a file named “textContextMenu.js.”

[
{label: "MenuItem A"},
{label: "MenuItem B", type: "check", toggled: "true"},
{label: "MenuItem C", enabled: "false"},
{type: "separator"},
{label: "MenuItem D", items:

[
{label: "SubMenuItem D-1"},
{label: "SubMenuItem D-2"},
{label: "SubMenuItem D-3"}

]
}

]

134HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

The second file is the source code for the application user interface (the HTML file specified as the initial window in

the application.xml file:

<html>
<head>

<title>JSON-based menu data source example</title>
<script type="text/javascript" src="AIRAliases.js"></script>
<script type="text/javascript" src="AIRMenuBuilder.js"></script>
<style type="text/css">

#contextEnabledText
{

margin-left: auto;
margin-right: auto;
margin-top: 100px;
width: 50%

}
</style>

</head>
<body>

<div id="contextEnabledText">This block of text is context menu enabled. Right click
or Command-click on the text to view the context menu.</div>

<script type="text/javascript">
// Create a NativeMenu from "textContextMenu.js" and set it
// as context menu for the "contextEnabledText" DOM element:
var textMenu = air.ui.Menu.createFromJSON("textContextMenu.js");
air.ui.Menu.setAsContextMenu(textMenu, "contextEnabledText");

// Remove the default context menu from the page:
air.ui.Menu.setAsContextMenu(null);

</script>
</body>

</html>

Adding menu keyboard features with MenuBuilder

Adobe AIR 1.0 and later

Operating system native menus support the use of keyboard shortcuts, and these shortcuts are also available in Adobe

AIR. Two of the types of keyboard shortcuts that can be specified in a menu data source are keyboard equivalents for

menu commands and mnemonics.

Specifying menu keyboard equivalents

Adobe AIR 1.0 and later

You can specify a key equivalent (sometimes called an accelerator) for a window or application menu command.

When the key or key combination is pressed the NativeMenuItem dispatches a select event and any onSelect event

handler specified in the data source is called. The behavior is the same as though the user had selected the menu item.

For complete details about menu keyboard equivalents, see “Key equivalents for native menu commands (AIR)” on

page 116.

Using the MenuBuilder framework, you can specify a keyboard equivalent for a menu item in its corresponding node

in the data source. If the data source has a keyEquivalent field, the MenuBuilder framework uses that value as the

key equivalent character.

135HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

You can also specify modifier keys that are part of the key equivalent combination. To add a modifier, specify true for

the altKey, ctrlKey, cmdKey, or shiftKey field. The specified key or keys become part of the key equivalent

combination. By default the Control key is specified for Windows and the Command key is specified for Mac OS X.

To override this default behavior, include a defaultKeyEquivalentModifiers field set to false.

The following example shows the data structure for an XML-based menu data source that includes keyboard

equivalents, in a file named “keyEquivalentMenu.xml”:

<?xml version="1.0" encoding="utf-8" ?>
<root>

<menuitem label="File">
<menuitem label="New" keyEquivalent="n"/>
<menuitem label="Open" keyEquivalent="o"/>
<menuitem label="Save" keyEquivalent="s"/>
<menuitem label="Save As..." keyEquivalent="s" shiftKey="true"/>
<menuitem label="Close" keyEquivalent="w"/>

</menuitem>
<menuitem label="Edit">

<menuitem label="Cut" keyEquivalent="x"/>
<menuitem label="Copy" keyEquivalent="c"/>
<menuitem label="Paste" keyEquivalent="v"/>

</menuitem>
</root>

The following example application loads the menu structure from “keyEquivalentMenu.xml” and uses it as the

structure for the window or application menu for the application:

<html>
<head>

<title>XML-based menu with key equivalents example</title>
<script type="text/javascript" src="AIRAliases.js"></script>
<script type="text/javascript" src="AIRMenuBuilder.js"></script>

</head>
<body>

<script type="text/javascript">
// Create a NativeMenu from "keyEquivalentMenu.xml" and set it
// as the application/window menu
var keyEquivMenu = air.ui.Menu.createFromXML("keyEquivalentMenu.xml");
air.ui.Menu.setAsMenu(keyEquivMenu);

</script>
</body>

</html>

Specifying menu item mnemonics

Adobe AIR 1.0 and later

A menu item mnemonic is a key associated with a menu item. When the key is pressed while the menu is displayed,

the menu item command is triggered. The behavior is the same as if the user had selected the menu item with the

mouse. Typically the operating system indicates a menu item mnemonic by underlining that character in the name of

the menu item.

For more information about mnemonics, see “Mnemonics (AIR)” on page 117.

136HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

With the MenuBuilder framework, the simplest way to specify a mnemonic for a menu item is to include an

underscore character (“_”) in the menu item’s label field. Place the underscore immediately to the left of the letter

that serves as the mnemonic for that menu item. For example, if the following XML node is used in a data source that’s

loaded using the MenuBuilder framework, the mnemonic for the command is the first character of the second word

(the letter “A”):

<menuitem label="Save _As"/>

When the NativeMenu object is created, the underscore is not included in the label. Instead, the character following

the underscore becomes the mnemonic for the menu item. To include a literal underscore character in a menu item’s

name, use two underscore characters (“__”). This sequence is converted to an underscore in the menu item label.

As an alternative to using an underscore character in the label field, you can provide an integer index position for the

mnemonic character. Specify the index in the mnemonicIndex field in the menu item data source object or XML

element.

Handling MenuBuilder menu events

Adobe AIR 1.0 and later

User interaction with a NativeMenu is event-driven. When the user selects a menu item or opens a menu or submenu,

the NativeMenuItem object dispatches an event. With a NativeMenu object created using the MenuBuilder

framework, you can register event listeners with individual NativeMenuItem objects or with the NativeMenu. You

subscribe and respond to these events the same way as if you had created the NativeMenu and NativeMenuItem objects

manually rather than using the MenuBuilder framework. For more information see “Menu events” on page 115.

The MenuBuilder framework supplements the standard event handling, providing a way to specify a select event

handler function for a menu item within the menu data source. If you specify an onSelect field in the menu item data

source, the specified function is called when the user selects the menu item. For example, suppose the following XML

node is included in a data source that’s loaded using the MenuBuilder framework. When the menu item is selected the

function named doSave() is called:

<menuitem label="Save" onSelect="doSave"/>

The onSelect field is a String when it’s used with an XML data source. With a JSON array, the field can be a String

with the name of the function. In addition, for a JSON array only, the field can also be a variable reference to the

function as an object. However, if the JSON array uses a Function variable reference the menu must be created before

or during the onload event handler or a JavaScript security violation occurs. In all cases, the specified function must

be defined in the global scope.

When the specified function is called, the runtime passes two arguments to it. The first argument is the event object

dispatched by the select event. It is an instance of the Event class. The second argument that’s passed to the function

is an anonymous object containing the data that was used to create the menu item. This object has the following

properties. Each property’s value matches the value in the original data structure or null if the property is not set in

the original data structure:

• altKey

• cmdKey

• ctrlKey

• defaultKeyEquivalentModifiers

• enabled

• keyEquivalent

137HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

• label

• mnemonicIndex

• onSelect

• shiftKey

• toggled

• type

The following example lets you experiment with NativeMenu events. The example includes two menus. The window

and application menu is created using an XML data source. The context menu for the list of items represented by the

 and elements is created using a JSON array data source. A text area on the screen displays information

about each event as the user selects menu items.

The following listing is the source code of the application:

<html>
<head>

<title>Menu event handling example</title>
<script type="text/javascript" src="AIRAliases.js"></script>
<script type="text/javascript" src="AIRMenuBuilder.js"></script>
<script type="text/javascript" src="printObject.js"></script>
<script type="text/javascript">

function fileMenuCommand(event, data) {
print("fileMenuCommand", event, data);

}

function editMenuCommand(event, data) {

print("editMenuCommand", event, data);
}

function moveItemUp(event, data) {

print("moveItemUp", event, data);
}

function moveItemDown(event, data) {

print("moveItemDown", event, data);
}

function print(command, event, data) {

var result = "";
result += "<h1>Command: " + command + '</h1>';
result += "<p>" + printObject(event) + "</p>";
result += "<p>Data:</p>";
result += "";
for (var s in data) {

result += "" + s + ": " + printObject(data[s]) + "";
}
result += "";

var o = document.getElementById("output");
o.innerHTML = result;

}
</script>
<style type="text/css">

#contextList {

138HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

position: absolute; left: 0; top: 25px; bottom: 0; width: 100px;
background: #eeeeee;

}
#output {

position: absolute; left: 125px; top: 25px; right: 0; bottom: 0;
}

</style>
</head>
<body>

<div id="contextList">

List item 1
List item 2
List item 3

</div>
<div id="output">

Choose menu commands. Information about the events displays here.
</div>
<script type="text/javascript">

var mainMenu = air.ui.Menu.createFromXML("mainMenu.xml");
air.ui.Menu.setAsMenu(mainMenu);

var listContextMenu = air.ui.Menu.createFromJSON("listContextMenu.js");
air.ui.Menu.setAsContextMenu(listContextMenu, "contextList")

// clear the default context menu
air.ui.Menu.setAsContextMenu(null);

</script>
</body>|

</html>

The following listing is the data source for the main menu (“mainMenu.xml”):

<?xml version="1.0" encoding="utf-8" ?>
<root>

<menuitem label="File">
<menuitem label="New" keyEquivalent="n" onSelect="fileMenuCommand"/>
<menuitem label="Open" keyEquivalent="o" onSelect="fileMenuCommand"/>
<menuitem label="Save" keyEquivalent="s" onSelect="fileMenuCommand"/>
<menuitem label="Save As..." keyEquivalent="S" onSelect="fileMenuCommand"/>
<menuitem label="Close" keyEquivalent="w" onSelect="fileMenuCommand"/>

</menuitem>
<menuitem label="Edit">

<menuitem label="Cut" keyEquivalent="x" onSelect="editMenuCommand"/>
<menuitem label="Copy" keyEquivalent="c" onSelect="editMenuCommand"/>
<menuitem label="Paste" keyEquivalent="v" onSelect="editMenuCommand"/>

</menuitem>
</root>

The following listing is the data source for the context menu (“listContextMenu.js”);

[
{label: "Move Item Up", onSelect: "moveItemUp"},
{label: "Move Item Down", onSelect: "moveItemDown"}

]

139HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with menus

Last updated 9/28/2011

The following listing contains the code from the printObject.js file. The file includes the printObject() function,

which the application uses but which doesn’t affect the operation of the menus in the example.

function printObject(obj) {
if (!obj) {

if (typeof obj == "undefined") { return "[undefined]"; };
if (typeof obj == "object") { return "[null]"; };
return "[false]";

} else {
if (typeof obj == "boolean") { return "[true]"; };
if (typeof obj == "object") {

if (typeof obj.length == "number") {
var ret = [];
for (var i=0; i<obj.length; i++) {

ret.push(printObject(obj[i]));
}
return ["[", ret.join(", "), "]"].join(" ");

} else {
var ret = [];
var hadChildren = false;
for (var k in obj) {

hadChildren = true;
ret.push ([k, " => ", printObject(obj[k])]);

}
if (hadChildren) {

return ["{\n", ret.join(",\n"), "\n}"].join("");
}

}
}
if (typeof obj == "function") { return "[Function]"; }
return String(obj);

}
}

140

Last updated 9/28/2011

Chapter 10: Taskbar icons in AIR

Adobe AIR 1.0 and later

Many operating systems provide a taskbar, such as the Mac OS X dock, that can contain an icon to represent an

application. Adobe® AIR® provides an interface for interacting with the application task bar icon through the

NativeApplication.nativeApplication.icon property.

More Help topics

flash.desktop.NativeApplication

flash.desktop.DockIcon

flash.desktop.SystemTrayIcon

About taskbar icons

Adobe AIR 1.0 and later

AIR creates the NativeApplication.nativeApplication.icon object automatically. The object type is either

DockIcon or SystemTrayIcon, depending on the operating system. You can determine which of these InteractiveIcon

subclasses that AIR supports on the current operating system using the NativeApplication.supportsDockIcon

and NativeApplication.supportsSystemTrayIcon properties. The InteractiveIcon base class provides the

properties width, height, and bitmaps, which you can use to change the image used for the icon. However, accessing

properties specific to DockIcon or SystemTrayIcon on the wrong operating system generates a runtime error.

To set or change the image used for an icon, create an array containing one or more images and assign it to the

NativeApplication.nativeApplication.icon.bitmaps property. The size of taskbar icons can be different on

different operating systems. To avoid image degradation due to scaling, you can add multiple sizes of images to the

bitmaps array. If you provide more than one image, AIR selects the size closest to the current display size of the taskbar

icon, scaling it only if necessary. The following example sets the image for a taskbar icon using two images:

 air.NativeApplication.nativeApplication.icon.bitmaps =
 [bmp16x16.bitmapData, bmp128x128.bitmapData];

To change the icon image, assign an array containing the new image or images to the bitmaps property. You can

animate the icon by changing the image in response to an enterFrame or timer event.

To remove the icon from the notification area on Windows and Linux, or to restore the default icon appearance on

Mac OS X, set bitmaps to an empty array:

 air.NativeApplication.nativeApplication.icon.bitmaps = [];

http://help.adobe.com/en_US/air/reference/html/flash/desktop/NativeApplication.html
http://help.adobe.com/en_US/air/reference/html/flash/desktop/DockIcon.html
http://help.adobe.com/en_US/air/reference/html/flash/desktop/SystemTrayIcon.html

141HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Taskbar icons in AIR

Last updated 9/28/2011

Dock icons

Adobe AIR 1.0 and later

AIR supports dock icons when NativeApplication.supportsDockIcon is true. The

NativeApplication.nativeApplication.icon property represents the application icon on the dock (not a

window dock icon).

Note: AIR does not support changing window icons on the dock under Mac OS X. Also, changes to the application dock

icon only apply while an application is running — the icon reverts to its normal appearance when the application

terminates.

Dock icon menus

Adobe AIR 1.0 and later

You can add commands to the standard dock menu by creating a NativeMenu object containing the commands and

assigning it to the NativeApplication.nativeApplication.icon.menu property. The items in the menu are

displayed above the standard dock icon menu items.

Bouncing the dock

Adobe AIR 1.0 and later

You can bounce the dock icon by calling the NativeApplication.nativeApplication.icon.bounce() method. If

you set the bounce() priority parameter to informational, then the icon bounces once. If you set it to critical, then

the icon bounces until the user activates the application. Constants for the priority parameter are defined in the

NotificationType class.

Note: The icon does not bounce if the application is already active.

Dock icon events

Adobe AIR 1.0 and later

When the dock icon is clicked, the NativeApplication object dispatches an invoke event. If the application is not

running, the system launches it. Otherwise, the invoke event is delivered to the running application instance.

System Tray icons

Adobe AIR 1.0 and later

AIR supports system tray icons when NativeApplication.supportsSystemTrayIcon is true, which is currently

the case only on Windows and most Linux distributions. On Windows and Linux, system tray icons are displayed in

the notification area of the taskbar. No icon is displayed by default. To show an icon, assign an array containing

BitmapData objects to the icon bitmaps property. To change the icon image, assign an array containing the new

images to bitmaps. To remove the icon, set bitmaps to null.

142HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Taskbar icons in AIR

Last updated 9/28/2011

System tray icon menus

Adobe AIR 1.0 and later

You can add a menu to the system tray icon by creating a NativeMenu object and assigning it to the

NativeApplication.nativeApplication.icon.menu property (no default menu is provided by the operating

system). Access the system tray icon menu by right-clicking the icon.

System tray icon tooltips

Adobe AIR 1.0 and later

Add a tooltip to an icon by setting the tooltip property:

 air.NativeApplication.nativeApplication.icon.tooltip = "Application name";

System tray icon events

Adobe AIR 1.0 and later

The SystemTrayIcon object referenced by the NativeApplication.nativeApplication.icon property dispatches a

ScreenMouseEvent for click, mouseDown, mouseUp, rightClick, rightMouseDown, and rightMouseUp events. You

can use these events, along with an icon menu, to allow users to interact with your application when it has no visible

windows.

Example: Creating an application with no windows

Adobe AIR 1.0 and later

The following example creates an AIR application which has a system tray icon, but no visible windows. (The visible

property of the application must not be set to true in the application descriptor, or the window will be visible when

the application starts up.)

Note: When using the Flex WindowedApplication component, you must set the visible attribute of the

WindowedApplication tag to false. This attribute supercedes the setting in the application descriptor.

143HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Taskbar icons in AIR

Last updated 9/28/2011

 <html>
 <head>
 <script src="AIRAliases.js" language="JavaScript" type="text/javascript"></script>
 <script language="JavaScript" type="text/javascript">
 var iconLoadComplete = function(event)
 {
 air.NativeApplication.nativeApplication.icon.bitmaps =
[event.target.content.bitmapData];
 }

 air.NativeApplication.nativeApplication.autoExit = false;
 var iconLoad = new air.Loader();
 var iconMenu = new air.NativeMenu();
 var exitCommand = iconMenu.addItem(new air.NativeMenuItem("Exit"));
 exitCommand.addEventListener(air.Event.SELECT,function(event){
 air.NativeApplication.nativeApplication.icon.bitmaps = [];
 air.NativeApplication.nativeApplication.exit();
 });

 if (air.NativeApplication.supportsSystemTrayIcon) {
 air.NativeApplication.nativeApplication.autoExit = false;
 iconLoad.contentLoaderInfo.addEventListener(air.Event.COMPLETE,iconLoadComplete);
 iconLoad.load(new air.URLRequest("icons/AIRApp_16.png"));
 air.NativeApplication.nativeApplication.icon.tooltip = "AIR application";
 air.NativeApplication.nativeApplication.icon.menu = iconMenu;
 }

 if (air.NativeApplication.supportsDockIcon) {
 iconLoad.contentLoaderInfo.addEventListener(air.Event.COMPLETE,iconLoadComplete);
 iconLoad.load(new air.URLRequest("icons/AIRApp_128.png"));
 air.NativeApplication.nativeApplication.icon.menu = iconMenu;
 }

 </script>
 </head>
 <body>
 </body>
 </html>

Note: The example assumes that there are image files named AIRApp_16.png and AIRApp_128.png in an icons

subdirectory of the application. (Sample icon files, which you can copy to your project folder, are included in the AIR SDK.)

Window taskbar icons and buttons

Adobe AIR 1.0 and later

Iconified representations of windows are typically displayed in the window area of a taskbar or dock to allow users to

easily access background or minimized windows. The Mac OS X dock displays an icon for your application as well as

an icon for each minimized window. The Microsoft Windows and Linux taskbars display a button containing the

progam icon and title for each normal-type window in your application.

144HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Taskbar icons in AIR

Last updated 9/28/2011

Highlighting the taskbar window button

Adobe AIR 1.0 and later

When a window is in the background, you can notify the user that an event of interest related to the window has

occurred. On Mac OS X, you can notify the user by bouncing the application dock icon (as described in “Bouncing the

dock” on page 141). On Windows and Linux, you can highlight the window taskbar button by calling the

notifyUser() method of the NativeWindow instance. The type parameter passed to the method determines the

urgency of the notification:

• NotificationType.CRITICAL: the window icon flashes until the user brings the window to the foreground.

• NotificationType.INFORMATIONAL: the window icon highlights by changing color.

Note: On Linux, only the informational type of notification is supported. Passing either type value to the

notifyUser() function will create the same effect.

The following statement highlights the taskbar button of a window:

 window.nativeWindow.notifyUser(air.NotificationType.INFORMATIONAL);

Calling the NativeWindow.notifyUser() method on an operating system that does not support window-level

notification has no effect. Use the NativeWindow.supportsNotification property to determine if window

notification is supported.

Creating windows without taskbar buttons or icons

Adobe AIR 1.0 and later

On the Windows operating system, windows created with the types utility or lightweight do not appear on the taskbar.

Invisible windows do not appear on the taskbar, either.

Because the initial window is necessarily of type, normal, in order to create an application without any windows

appearing in the taskbar, you must either close the initial window or leave it invisible. To close all windows in your

application without terminating the application, set the autoExit property of the NativeApplication object to false

before closing the last window. To simply prevent the initial window from ever becoming visible, add

<visible>false</visible> to the <initalWindow> element of the application descriptor file (and do not set the

visible property to true or call the activate() method of the window).

In new windows opened by the application, set the type property of the NativeWindowInitOption object passed to

the window constructor to NativeWindowType.UTILITY or NativeWindowType.LIGHTWEIGHT.

On Mac OS X, windows that are minimized are displayed on the dock taskbar. You can prevent the minimized icon

from being displayed by hiding the window instead of minimizing it. The following example listens for a

nativeWindowDisplayState change event and cancels it if the window is being minimized. Instead the handler sets

the window visible property to false:

 function preventMinimize(event){
 if(event.afterDisplayState == air.NativeWindowDisplayState.MINIMIZED){
 event.preventDefault();
 event.target.visible = false;
 }
 }

If a window is minimized on the Mac OS X dock when you set the visible property to false, the dock icon is not

removed. A user can still click the icon to make the window reappear.

145

Last updated 9/28/2011

Chapter 11: Working with the file system

Flash Player 9 and later, Adobe AIR 1.0 and later

The Adobe® AIR® file system API provides complete access to the file system of the host computer. Using these classes,

you can access and manage directories and files, create directories and files, write data to files, and so on.

More Help topics

flash.filesystem.File

flash.filesystem.FileStream

Using the AIR file system API

Adobe AIR 1.0 and later

The Adobe AIR file system API includes the following classes:

• File

• FileMode

• FileStream

The file system API lets you do the following (and more):

• Copy, create, delete, and move files and directories

• Get information about files and directories

• Read and write files

AIR file basics

Adobe AIR 1.0 and later

For a quick explanation and code examples of working with the file system in AIR, see the following quick start articles

on the Adobe Developer Connection:

• Building a text-file editor

• Building a directory search application

• Reading and writing from an XML preferences file

Adobe AIR provides classes that you can use to access, create, and manage both files and folders. These classes,

contained in the flash.filesystem package, are used as follows:

Adobe AIR provides classes that you can use to access, create, and manage both files and folders. These classes,

contained in the runtime.flash.filesystem package, are used as follows:

http://help.adobe.com/en_US/air/reference/html/flash/filesystem/File.html
http://help.adobe.com/en_US/air/reference/html/flash/filesystem/FileStream.html
http://www.adobe.com/go/learn_air_qs_textedit_html_en
http://www.adobe.com/go/learn_air_qs_search_html_en
http://www.adobe.com/go/learn_air_qs_xmlpref_html_en

146HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

Some methods in the File class have both synchronous and asynchronous versions:

• File.copyTo() and File.copyToAsync()

• File.deleteDirectory() and File.deleteDirectoryAsync()

• File.deleteFile() and File.deleteFileAsync()

• File.getDirectoryListing() and File.getDirectoryListingAsync()

• File.moveTo() and File.moveToAsync()

• File.moveToTrash() and File.moveToTrashAsync()

Also, FileStream operations work synchronously or asynchronously depending on how the FileStream object opens

the file: by calling the open() method or by calling the openAsync() method.

The asynchronous versions let you initiate processes that run in the background and dispatch events when complete

(or when error events occur). Other code can execute while these asynchronous background processes are taking place.

With asynchronous versions of the operations, you must set up event listener functions, using the

addEventListener() method of the File or FileStream object that calls the function.

The synchronous versions let you write simpler code that does not rely on setting up event listeners. However, since

other code cannot execute while a synchronous method is executing, important processes such as display object

rendering and animation can be delayed.

Working with File objects in AIR

Adobe AIR 1.0 and later

A File object is a pointer to a file or directory in the file system.

The File class extends the FileReference class. The FileReference class, which is available in Adobe® Flash® Player as well

as AIR, represents a pointer to a file. The File class adds properties and methods that are not exposed in Flash Player

(in a SWF file running in a browser), due to security considerations.

About the File class

Adobe AIR 1.0 and later

You can use the File class for the following:

• Getting the path to special directories, including the user directory, the user's documents directory, the directory

from which the application was launched, and the application directory

• Coping files and directories

File classes Description

File File object represents a path to a file or directory. You use a file object to create a pointer to a file or

folder, initiating interaction with the file or folder.

FileMode The FileMode class defines string constants used in the fileMode parameter of the open() and

openAsync() methods of the FileStream class. The fileMode parameter of these methods determines

the capabilities available to the FileStream object once the file is opened, which include writing, reading,

appending, and updating.

FileStream FileStream object is used to open files for reading and writing. Once you’ve created a File object that

points to a new or existing file, you pass that pointer to the FileStream object so that you can open it and

read or write data.

http://help.adobe.com/en_US/air/reference/html/flash/filesystem/File.html
http://help.adobe.com/en_US/air/reference/html/flash/filesystem/FileMode.html
http://help.adobe.com/en_US/air/reference/html/flash/filesystem/FileStream.html

147HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

• Moving files and directories

• Deleting files and directories (or moving them to the trash)

• Listing files and directories contained in a directory

• Creating temporary files and folders

Once a File object points to a file path, you can use it to read and write file data, using the FileStream class.

A File object can point to the path of a file or directory that does not yet exist. You can use such a File object in creating

a file or directory.

Paths of File objects

Adobe AIR 1.0 and later

Each File object has two properties that each define its path:

The File class includes static properties for pointing to standard directories on Mac OS, Windows, and Linux. These

properties include:

• File.applicationStorageDirectory—a storage directory unique to each installed AIR application. This

directory is an appropriate place to store dynamic application assets and user preferences. Consider storing large

amounts of data elsewhere.

• File.applicationDirectory—the directory where the application is installed (along with any installed assets).

On some operating systems, the application is stored in a single package file rather than a physical directory. In this

case, the contents may not be accessible using the native path. The application directory is read-only.

• File.desktopDirectory—the user’s desktop directory. If a platform does not define a desktop directory, another

location on the file system is used.

• File.documentsDirectory—the user’s documents directory. If a platform does not define a documents

directory, another location on the file system is used.

• File.userDirectory—the user directory. If a platform does not define a user directory, another location on the

file system is used.

Note: When a platform does not define standard locations for desktop, documents, or user directories,

File.documentsDirectory, File.desktopDirectory, and File.userDirectory can reference the same directory.

These properties have different values on different operating systems. For example, Mac and Windows each have a

different native path to the user’s desktop directory. However, the File.desktopDirectory property points to an

appropriate directory path on every platform. To write applications that work well across platforms, use these

properties as the basis for referencing other directories and files used by the application. Then use the resolvePath()

method to refine the path. For example, this code points to the preferences.xml file in the application storage directory:

Property Description

nativePath Specifies the platform-specific path to a file. For example, on Windows a path might be "c:\Sample

directory\test.txt" whereas on Mac OS it could be "/Sample directory/test.txt". A nativePath

property uses the backslash (\) character as the directory separator character on Windows, and it uses

the forward slash (/) character on Mac OS and Linux.

url This may use the file URL scheme to point to a file. For example, on Windows a path might be

"file:///c:/Sample%20directory/test.txt" whereas on Mac OS it could be

"file:///Sample%20directory/test.txt". The runtime includes other special URL schemes besides file

and are described in “Supported AIR URL schemes” on page 153

148HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

var prefsFile:File = air.File.applicationStorageDirectory;
prefsFile = prefsFile.resolvePath("preferences.xml");

Although the File class lets you point to a specific file path, doing so can lead to applications that do not work across

platforms. For example, the path C:\Documents and Settings\joe\ only works on Windows. For these reasons, it is best

to use the static properties of the File class, such as File.documentsDirectory.

Common directory locations

The actual native paths for these directories vary based on the operating system and computer configuration. The

paths shown in this table are typical examples. You should always use the appropriate static File class properties to refer

to these directories so that your application works correctly on any platform. In an actual AIR application, the values

for applicationID and filename shown in the table are taken from the application descriptor. If you specify a

publisher ID in the application descriptor, then the publisher ID is appended to the application ID in these paths. The

value for userName is the account name of the installing user.

Pointing a File object to a directory

Adobe AIR 1.0 and later

There are different ways to set a File object to point to a directory.

Platform Directory type Typical file system location

Linux Application /opt/filename/share

Application-storage /home/userName/.appdata/applicationID/Local Store

Desktop /home/userName/Desktop

Documents /home/userName/Documents

Temporary /tmp/FlashTmp.randomString

User /home/userName

Mac Application /Applications/filename.app/Contents/Resources

Application-storage /Users/userName/Library/Preferences/applicationID/Local Store

Desktop /Users/userName/Desktop

Documents /Users/userName/Documents

Temporary /private/var/folders/JY/randomString/TemporaryItems/FlashTmp

User /Users/userName

Windows Application C:\Program Files\filename

Application-storage C:\Documents and
settings\userName\ApplicationData\applicationID\Local Store

Desktop C:\Documents and settings\userName\Desktop

Documents C:\Documents and settings\userName\My Documents

Temporary C:\Documents and settings\userName\Local
Settings\Temp\randomString.tmp

User C:\Documents and settings\userName

149HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

Pointing to the user’s home directory

Adobe AIR 1.0 and later

You can point a File object to the user’s home directory. The following code sets a File object to point to an AIR Test

subdirectory of the home directory:

var file = air.File.userDirectory.resolvePath("AIR Test");

Pointing to the user’s documents directory

Adobe AIR 1.0 and later

You can point a File object to the user's documents directory. The following code sets a File object to point to an AIR

Test subdirectory of the documents directory:

 var file = air.File.documentsDirectory.resolvePath("AIR Test");

Pointing to the desktop directory

Adobe AIR 1.0 and later

You can point a File object to the desktop. The following code sets a File object to point to an AIR Test subdirectory

of the desktop:

 var file = air.File.desktopDirectory.resolvePath("AIR Test");

Pointing to the application storage directory

Adobe AIR 1.0 and later

You can point a File object to the application storage directory. For every AIR application, there is a unique associated

path that defines the application storage directory. This directory is unique to each application and user. You can use

this directory to store user-specific, application-specific data (such as user data or preferences files). For example, the

following code points a File object to a preferences file, prefs.xml, contained in the application storage directory:

 var file = air.File.applicationStorageDirectory;
 file = file.resolvePath("prefs.xml");

The application storage directory location is typically based on the user name and the application ID. The following

file system locations are given here to help you debug your application. You should always use the

File.applicationStorage property or app-storage: URI scheme to resolve files in this directory:

• On Mac OS—In:

/Users/user name/Library/Preferences/applicationID/Local Store/

For example:

 /Users/babbage/Library/Preferences/com.example.TestApp/Local Store

• On Windows—In the documents and Settings directory, in:

 C:\Documents and Settings\user name\Application Data\applicationID\Local Store\

For example:

 C:\Documents and Settings\babbage\Application Data\com.example.TestApp\Local Store

• On Linux—In:

/home/user name/.appdata/applicationID/Local Store/

150HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

For example:

 /home/babbage/.appdata/com.example.TestApp/Local Store

Note: If an application has a publisher ID, then the publisher ID is also used as part of the path to the application storage

directory.

The URL (and url property) for a File object created with File.applicationStorageDirectory uses the app-

storage URL scheme (see “Supported AIR URL schemes” on page 153), as in the following:

 var dir = air.File.applicationStorageDirectory;
 dir = dir.resolvePath("prefs.xml");
 air.trace(dir.url); // app-storage:/preferences

Pointing to the application directory

Adobe AIR 1.0 and later

You can point a File object to the directory in which the application was installed, known as the application directory.

You can reference this directory using the File.applicationDirectory property. You can use this directory to

examine the application descriptor file or other resources installed with the application. For example, the following

code points a File object to a directory named images in the application directory:

 var dir = air.File.applicationDirectory;
 dir = dir.resolvePath("images");

The URL (and url property) for a File object created with File.applicationDirectory uses the app URL scheme

(see “Supported AIR URL schemes” on page 153), as in the following:

 var dir = air.File.applicationDirectory;
 dir = dir.resolvePath("images");
 air.trace(dir.url); // app:/images

Pointing to the file system root

Adobe AIR 1.0 and later

The File.getRootDirectories() method lists all root volumes, such as C: and mounted volumes, on a Windows

computer. On Mac OS and Linux, this method always returns the unique root directory for the machine (the "/"

directory). The StorageVolumeInfo.getStorageVolumes() method provides more detailed information on

mounted storage volumes (see “Working with storage volumes” on page 163).

Pointing to an explicit directory

Adobe AIR 1.0 and later

You can point the File object to an explicit directory by setting the nativePath property of the File object, as in the

following example (on Windows):

 var file = new air.File();
 file.nativePath = "C:\\AIR Test";

Important: Pointing to an explicit path this way can lead to code that does not work across platforms. For example,

the previous example only works on Windows. You can use the static properties of the File object, such as

File.applicationStorageDirectory, to locate a directory that works cross-platform. Then use the

resolvePath() method (see the next section) to navigate to a relative path.

151HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

Navigating to relative paths

Adobe AIR 1.0 and later

You can use the resolvePath() method to obtain a path relative to another given path. For example, the following

code sets a File object to point to an "AIR Test" subdirectory of the user's home directory:

 var file = air.File.userDirectory;
 file = file.resolvePath("AIR Test");

You can also use the url property of a File object to point it to a directory based on a URL string, as in the following:

 var urlStr = "file:///C:/AIR Test/";
 var file = new air.File()
 file.url = urlStr;

For more information, see “Modifying File paths” on page 153.

Letting the user browse to select a directory

Adobe AIR 1.0 and later

The File class includes the browseForDirectory() method, which presents a system dialog box in which the user can

select a directory to assign to the object. The browseForDirectory() method is asynchronous. The File object

dispatches a select event if the user selects a directory and clicks the Open button, or it dispatches a cancel event if

the user clicks the Cancel button.

For example, the following code lets the user select a directory and outputs the directory path upon selection:

var file = new air.File();
 file.addEventListener(air.Event.SELECT, dirSelected);
 file.browseForDirectory("Select a directory");
 function dirSelected(event) {
 alert(file.nativePath);
 }

Pointing to the directory from which the application was invoked

Adobe AIR 1.0 and later

You can get the directory location from which an application is invoked, by checking the currentDirectory property

of the InvokeEvent object dispatched when the application is invoked. For details, see “Capturing command line

arguments” on page 297.

Pointing a File object to a file

Adobe AIR 1.0 and later

There are different ways to set the file to which a File object points.

Pointing to an explicit file path

Adobe AIR 1.0 and later

Important: Pointing to an explicit path can lead to code that does not work across platforms. For example, the path

C:/foo.txt only works on Windows. You can use the static properties of the File object, such as

File.applicationStorageDirectory, to locate a directory that works cross-platform. Then use the

resolvePath() method (see “Modifying File paths” on page 153) to navigate to a relative path.

152HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

You can use the url property of a File object to point it to a file or directory based on a URL string, as in the following:

var urlStr = "file:///C:/AIR Test/test.txt";
 var file = new air.File()
 file.url = urlStr;

You can also pass the URL to the File() constructor function, as in the following:

 var urlStr = "file:///C:/AIR Test/test.txt";
 var file = new air.File(urlStr);

The url property always returns the URI-encoded version of the URL (for example, blank spaces are replaced with

"%20):

file.url = "file:///c:/AIR Test";
 alert(file.url); // file:///c:/AIR%20Test

You can also use the nativePath property of a File object to set an explicit path. For example, the following code, when

run on a Windows computer, sets a File object to the test.txt file in the AIR Test subdirectory of the C: drive:

var file = new air.File();
 file.nativePath = "C:/AIR Test/test.txt";

You can also pass this path to the File() constructor function, as in the following:

var file = new air.File("C:/AIR Test/test.txt");

Use the forward slash (/) character as the path delimiter for the nativePath property. On Windows, you can also use

the backslash (\) character, but doing so leads to applications that do not work across platforms.

For more information, see “Modifying File paths” on page 153.

Enumerating files in a directory

Adobe AIR 1.0 and later

You can use the getDirectoryListing() method of a File object to get an array of File objects pointing to files and

subdirectories at the root level of a directory. For more information, see “Enumerating directories” on page 159.

Letting the user browse to select a file

Adobe AIR 1.0 and later

The File class includes the following methods that present a system dialog box in which the user can select a file to

assign to the object:

• browseForOpen()

• browseForSave()

• browseForOpenMultiple()

These methods are each asynchronous. The browseForOpen() and browseForSave() methods dispatch the select

event when the user selects a file (or a target path, in the case of browseForSave()). With the browseForOpen() and

browseForSave() methods, upon selection the target File object points to the selected files. The

browseForOpenMultiple() method dispatches a selectMultiple event when the user selects files. The

selectMultiple event is of type FileListEvent, which has a files property that is an array of File objects (pointing

to the selected files).

For example, the following code presents the user with an “Open” dialog box in which the user can select a file:

153HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

 var fileToOpen = air.File.documentsDirectory;
 selectTextFile(fileToOpen);

 function selectTextFile(root)
 {
 var txtFilter = new air.FileFilter("Text", "*.as;*.css;*.html;*.txt;*.xml");
 root.browseForOpen("Open", new window.runtime.Array(txtFilter));
 root.addEventListener(air.Event.SELECT, fileSelected);
 }

 function fileSelected(event)
 {
 trace(fileToOpen.nativePath);
 }

If the application has another browser dialog box open when you call a browse method, the runtime throws an Error

exception.

Modifying File paths

Adobe AIR 1.0 and later

You can also modify the path of an existing File object by calling the resolvePath() method or by modifying the

nativePath or url property of the object, as in the following examples (on Windows):

file1 = air.File.documentsDirectory;
 file1 = file1.resolvePath("AIR Test");
 alert(file1.nativePath); // C:\Documents and Settings\userName\My Documents\AIR Test
 var file2 = air.File.documentsDirectory;
 file2 = file2.resolvePath("..");
 alert(file2.nativePath); // C:\Documents and Settings\userName
 var file3 = air.File.documentsDirectory;
 file3.nativePath += "/subdirectory";
 alert(file3.nativePath); // C:\Documents and Settings\userName\My Documents\subdirectory
 var file4 = new air.File();
 file4.url = "file:///c:/AIR Test/test.txt";
 alert(file4.nativePath); // C:\AIR Test\test.txt

When using the nativePath property, use the forward slash (/) character as the directory separator character. On

Windows, you can use the backslash (\) character as well, but you should not do so, as it leads to code that does not

work cross-platform.

Supported AIR URL schemes

Adobe AIR 1.0 and later

In AIR, you can use any of the following URL schemes in defining the url property of a File object:

154HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

Finding the relative path between two files

Adobe AIR 1.0 and later

You can use the getRelativePath() method to find the relative path between two files:

var file1 = air.File.documentsDirectory
 file1 = file1.resolvePath("AIR Test");
 var file2 = air.File.documentsDirectory
 file2 = file2.resolvePath("AIR Test/bob/test.txt");

 alert(file1.getRelativePath(file2)); // bob/test.txt

The second parameter of the getRelativePath() method, the useDotDot parameter, allows for .. syntax to be

returned in results, to indicate parent directories:

var file1 = air.File.documentsDirectory;
 file1 = file1.resolvePath("AIR Test");
 var file2 = air.File.documentsDirectory;
 file2 = file2.resolvePath("AIR Test/bob/test.txt");
 var file3 = air.File.documentsDirectory;
 file3 = file3.resolvePath("AIR Test/susan/test.txt");

 alert(file2.getRelativePath(file1, true)); // ../..
 alert(file3.getRelativePath(file2, true)); // ../../bob/test.txt

Obtaining canonical versions of file names

Adobe AIR 1.0 and later

File and path names are not case sensitive on Windows and Mac OS. In the following, two File objects point to the

same file:

 File.documentsDirectory.resolvePath("test.txt");
 File.documentsDirectory.resolvePath("TeSt.TxT");

However, documents and directory names do include capitalization. For example, the following assumes that there is

a folder named AIR Test in the documents directory, as in the following examples:

URL scheme Description

file Use to specify a path relative to the root of the file system. For example:

file:///c:/AIR Test/test.txt

The URL standard specifies that a file URL takes the form file://<host>/<path>. As a special

case,<host> can be the empty string, which is interpreted as "the machine from which the URL is being

interpreted." For this reason, file URLs often have three slashes (///).

app Use to specify a path relative to the root directory of the installed application (the directory that contains

the application.xml file for the installed application). For example, the following path points to an images

subdirectory of the directory of the installed application:

app:/images

app-storage Use to specify a path relative to the application store directory. For each installed application, AIR defines

a unique application store directory, which is a useful place to store data specific to that application. For

example, the following path points to a prefs.xml file in a settings subdirectory of the application store

directory:

app-storage:/settings/prefs.xml

155HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

var file = air.File.documentsDirectory;
 file = file.resolvePath("AIR test");
 trace(file.nativePath); // ... AIR test
 file.canonicalize();
 alert(file.nativePath); // ... AIR Test

The canonicalize() method converts the nativePath object to use the correct capitalization for the file or directory

name. On case sensitive file systems (such as Linux), when multiple files exists with names differing only in case, the

canonicalize() method adjusts the path to match the first file found (in an order determined by the file system).

You can also use the canonicalize() method to convert short file names ("8.3" names) to long file names on

Windows, as in the following examples:

var path = new air.File();
 path.nativePath = "C:\\AIR~1";
 path.canonicalize();
 alert(path.nativePath); // C:\AIR Test

Working with packages and symbolic links

Adobe AIR 1.0 and later

Various operating systems support package files and symbolic link files:

Packages—On Mac OS, directories can be designated as packages and show up in the Mac OS Finder as a single file

rather than as a directory.

Symbolic links—Mac OS, Linux, and Windows Vista support symbolic links. Symbolic links allow a file to point to

another file or directory on disk. Although similar, symbolic links are not the same as aliases. An alias is always

reported as a file (rather than a directory), and reading or writing to an alias or shortcut never affects the original file

or directory that it points to. On the other hand, a symbolic link behaves exactly like the file or directory it points to.

It can be reported as a file or a directory, and reading or writing to a symbolic link affects the file or directory that it

points to, not the symbolic link itself. Additionally, on Windows the isSymbolicLink property for a File object

referencing a junction point (used in the NTFS file system) is set to true.

The File class includes the isPackage and isSymbolicLink properties for checking if a File object references a

package or symbolic link.

The following code iterates through the user’s desktop directory, listing subdirectories that are not packages:

var desktopNodes = air.File.desktopDirectory.getDirectoryListing();
 for (i = 0; i < desktopNodes.length; i++)
 {
 if (desktopNodes[i].isDirectory && !!desktopNodes[i].isPackage)
 {
 air.trace(desktopNodes[i].name);
 }
 }

The following code iterates through the user’s desktop directory, listing files and directories that are not symbolic links:

156HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

var desktopNodes = air.File.desktopDirectory.getDirectoryListing();
 for (i = 0; i < desktopNodes.length; i++)
 {
 if (!desktopNodes[i].isSymbolicLink)
 {
 air.trace(desktopNodes[i].name);
 }
 }

The canonicalize() method changes the path of a symbolic link to point to the file or directory to which the link

refers. The following code iterates through the user’s desktop directory, and reports the paths referenced by files that

are symbolic links:

 var desktopNodes = air.File.desktopDirectory.getDirectoryListing();
 for (i = 0; i < desktopNodes.length; i++)
 {
 if (desktopNodes[i].isSymbolicLink)
 {
 var linkNode = desktopNodes[i];
 linkNode.canonicalize();
 air.trace(desktopNodes[i].name);
 }
 }

Determining space available on a volume

Adobe AIR 1.0 and later

The spaceAvailable property of a File object is the space available for use at the File location, in bytes. For example,

the following code checks the space available in the application storage directory:

air.trace(air.File.applicationStorageDirectory.spaceAvailable);

If the File object references a directory, the spaceAvailable property indicates the space in the directory that files can

use. If the File object references a file, the spaceAvailable property indicates the space into which the file could grow.

If the file location does not exist, the spaceAvailable property is set to 0. If the File object references a symbolic link,

the spaceAvailable property is set to space available at the location the symbolic link points to.

Typically the space available for a directory or file is the same as the space available on the volume containing the

directory or file. However, space available can take into account quotas and per-directory limits.

Adding a file or directory to a volume generally requires more space than the actual size of the file or the size of the

contents of the directory. For example, the operating system may require more space to store index information. Or

the disk sectors required may use additional space. Also, available space changes dynamically. So, you cannot expect

to allocate all of the reported space for file storage. For information on writing to the file system, see “Reading and

writing files” on page 164.

The StorageVolumeInfo.getStorageVolumes() method provides more detailed information on mounted storage

volumes (see “Working with storage volumes” on page 163).

157HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

Opening files with the default system application

Adobe AIR 2 and later

In AIR 2, you can open a file using the application registered by the operating system to open it. For example, an AIR

application can open a DOC file with the application registered to open it. Use the openWithDefaultApplication()

method of a File object to open the file. For example, the following code opens a file named test.doc on the user’s

desktop and opens it with the default application for DOC files:

var file = air.File.deskopDirectory;
file = file.resolvePath("test.doc");
file.openWithDefaultApplication();

Note: On Linux, the file’s MIME type, not the filename extension, determines the default application for a file.

The following code lets the user navigate to an mp3 file and open it in the default application for playing mp3 files:

var file = air.File.documentsDirectory;
var mp3Filter = new air.FileFilter("MP3 Files", "*.mp3");
file.browseForOpen("Open", [mp3Filter]);
file.addEventListener(Event.SELECT, fileSelected);
function fileSelected(event)
{

file.openWithDefaultApplication();
}

You cannot use the openWithDefaultApplication() method with files located in the application directory.

AIR prevents you from using the openWithDefaultApplication() method to open certain files. On Windows, AIR

prevents you from opening files that have certain filetypes, such as EXE or BAT. On Mac OS and Linux, AIR prevents

you from opening files that will launch in certain application. (These include Terminal and AppletLauncher on Mac

OS; and csh, bash, or ruby on Linux.) Attempting to open one of these files using the

openWithDefaultApplication() method results in an exception. For a complete list of prevented filetypes, see the

language reference entry for the File.openWithDefaultApplication() method.

Note: This limitation does not exist for an AIR application installed using a native installer (an extended desktop

application).

Getting file system information

Adobe AIR 1.0 and later

The File class includes the following static properties that provide some useful information about the file system:

The Capabilities class also includes useful system information that can be useful when working with files:

Property Description

File.lineEnding The line-ending character sequence used by the host operating system. On Mac OS and Linux, this is

the line-feed character. On Windows, this is the carriage return character followed by the line-feed

character.

File.separator The host operating system's path component separator character. On Mac OS and Linux, this is the

forward slash (/) character. On Windows, it is the backslash (\) character.

File.systemCharset The default encoding used for files by the host operating system. This pertains to the character set

used by the operating system, corresponding to its language.

158HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

Note: Be careful when using Capabilities.os to determine system characteristics. If a more specific property exists to

determine a system characteristic, use it. Otherwise, you run the risk of writing code that does not work correctly on all

platforms. For example, consider the following code:

var separator:String;
if (Capablities.os.indexOf("Mac") > -1)
{

separator = "/";
}
else
{

separator = "\\";
}

This code leads to problems on Linux. It is better to simply use the File.separator property.

Working with directories

Adobe AIR 1.0 and later

The runtime provides you with capabilities to work with directories on the local file system.

For details on creating File objects that point to directories, see “Pointing a File object to a directory” on page 148.

Creating directories

Adobe AIR 1.0 and later

The File.createDirectory() method lets you create a directory. For example, the following code creates a directory

named AIR Test as a subdirectory of the user's home directory:

 var dir = air.File.userDirectory.resolvePath("AIR Test");
 dir.createDirectory();

If the directory exists, the createDirectory() method does nothing.

Also, in some modes, a FileStream object creates directories when opening files. Missing directories are created when

you instantiate a FileStream instance with the fileMode parameter of the FileStream() constructor set to

FileMode.APPEND or FileMode.WRITE. For more information, see “Workflow for reading and writing files” on

page 164.

Creating a temporary directory

Adobe AIR 1.0 and later

The File class includes a createTempDirectory() method, which creates a directory in the temporary directory

folder for the System, as in the following example:

var temp = air.File.createTempDirectory();

Property Description

Capabilities.hasIME Specifies whether the player is running on a system that does (true) or does not (false) have an

input method editor (IME) installed.

Capabilities.language Specifies the language code of the system on which the player is running.

Capabilities.os Specifies the current operating system.

159HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

The createTempDirectory() method automatically creates a unique temporary directory (saving you the work of

determining a new unique location).

You can use a temporary directory to temporarily store temporary files used for a session of the application. Note that

there is a createTempFile() method for creating new, unique temporary files in the System temporary directory.

You may want to delete the temporary directory before closing the application, as it is not automatically deleted on all

devices.

Enumerating directories

Adobe AIR 1.0 and later

You can use the getDirectoryListing() method or the getDirectoryListingAsync() method of a File object to

get an array of File objects pointing to files and subfolders in a directory.

For example, the following code lists the contents of the user's documents directory (without examining

subdirectories):

 var directory = air.File.documentsDirectory;
 var contents = directory.getDirectoryListing();
 for (i = 0; i < contents.length; i++)
 {
 alert(contents[i].name, contents[i].size);
 }

When using the asynchronous version of the method, the directoryListing event object has a files property that

is the array of File objects pertaining to the directories:

 var directory = air.File.documentsDirectory;
 directory.getDirectoryListingAsync();
 directory.addEventListener(air.FileListEvent.DIRECTORY_LISTING, dirListHandler);

 function dirListHandler(event)
 {
 var contents = event.files;
 for (i = 0; i < contents.length; i++)
 {
 alert(contents[i].name, contents[i].size);
 }
 }

Copying and moving directories

Adobe AIR 1.0 and later

You can copy or move a directory, using the same methods as you would to copy or move a file. For example, the

following code copies a directory synchronously:

 var sourceDir = air.File.documentsDirectory.resolvePath("AIR Test");
 var resultDir = air.File.documentsDirectory.resolvePath("AIR Test Copy");
 sourceDir.copyTo(resultDir);

When you specify true for the overwrite parameter of the copyTo() method, all files and folders in an existing target

directory are deleted and replaced with the files and folders in the source directory (even if the target file does not exist

in the source directory).

160HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

The directory that you specify as the newLocation parameter of the copyTo() method specifies the path to the

resulting directory; it does not specify the parent directory that will contain the resulting directory.

For details, see “Copying and moving files” on page 161.

Deleting directory contents

Adobe AIR 1.0 and later

The File class includes a deleteDirectory() method and a deleteDirectoryAsync() method. These methods

delete directories, the first working synchronously, the second working asynchronously (see “AIR file basics” on

page 145). Both methods include a deleteDirectoryContents parameter (which takes a Boolean value); when this

parameter is set to true (the default value is false) the call to the method deletes non-empty directories; otherwise,

only empty directories are deleted.

For example, the following code synchronously deletes the AIR Test subdirectory of the user's documents directory:

var directory = air.File.documentsDirectory.resolvePath("AIR Test");
 directory.deleteDirectory(true);

The following code asynchronously deletes the AIR Test subdirectory of the user's documents directory:

var directory = air.File.documentsDirectory.resolvePath("AIR Test");
 directory.addEventListener(air.Event.COMPLETE, completeHandler)
 directory.deleteDirectoryAsync(true);

 function completeHandler(event) {
 alert("Deleted.")
 }

Also included are the moveToTrash() and moveToTrashAsync() methods, which you can use to move a directory to

the System trash. For details, see “Moving a file to the trash” on page 162.

Working with files

Adobe AIR 1.0 and later

Using the AIR file API, you can add basic file interaction capabilities to your applications. For example, you can read

and write files, copy and delete files, and so on. Since your applications can access the local file system, refer to “AIR

security” on page 69, if you haven't already done so.

Note: You can associate a file type with an AIR application (so that double-clicking it opens the application). For details,

see “Managing file associations” on page 304.

Getting file information

Adobe AIR 1.0 and later

The File class includes the following properties that provide information about a file or directory to which a File object

points:

161HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

For details on these properties, see the File class entry in the Adobe AIR API Reference for HTML Developers.

Copying and moving files

Adobe AIR 1.0 and later

The File class includes two methods for copying files or directories: copyTo() and copyToAsync(). The File class

includes two methods for moving files or directories: moveTo() and moveToAsync(). The copyTo() and moveTo()

methods work synchronously, and the copyToAsync() and moveToAsync() methods work asynchronously (see “AIR

file basics” on page 145).

To copy or move a file, you set up two File objects. One points to the file to copy or move, and it is the object that calls

the copy or move method; the other points to the destination (result) path.

The following copies a test.txt file from the AIR Test subdirectory of the user's documents directory to a file named

copy.txt in the same directory:

 var original = air.File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var newFile = air.File.documentsDirectory.resolvePath("AIR Test/copy.txt");
 original.copyTo(newFile, true);

In this example, the value of overwrite parameter of the copyTo() method (the second parameter) is set to true. By

setting overwrite to true, an existing target file is overwritten. This parameter is optional. If you set it to false (the

default value), the operation dispatches an IOErrorEvent event if the target file exists (and the file is not copied).

File property Description

creationDate The creation date of the file on the local disk.

creator Obsolete—use the extension property. (This property reports the Macintosh creator type of the file,

which is only used in Mac OS versions prior to Mac OS X.)

downloaded (AIR 2 and later) Indicates whether the referenced file or directory was downloaded (from the internet)

or not. property is only meaningful on operating systems in which files can be flagged as downloaded:

• Windows XP service pack 2 and later, and on Windows Vista

• Mac OS 10.5 and later

exists Whether the referenced file or directory exists.

extension The file extension, which is the part of the name following (and not including) the final dot ("."). If there

is no dot in the filename, the extension is null.

icon An Icon object containing the icons defined for the file.

isDirectory Whether the File object reference is to a directory.

modificationDate The date that the file or directory on the local disk was last modified.

name The name of the file or directory (including the file extension, if there is one) on the local disk.

nativePath The full path in the host operating system representation. See “Paths of File objects” on page 147.

parent The folder that contains the folder or file represented by the File object. This property is null if the File

object references a file or directory in the root of the file system.

size The size of the file on the local disk in bytes.

type Obsolete—use the extension property. (On the Macintosh, this property is the four-character file type,

which is only used in Mac OS versions prior to Mac OS X.)

url The URL for the file or directory. See “Paths of File objects” on page 147.

http://help.adobe.com/en_US/air/reference/html/flash/filesystem/File.html

162HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

The “Async” versions of the copy and move methods work asynchronously. Use the addEventListener() method to

monitor completion of the task or error conditions, as in the following code:

var original = air.File.documentsDirectory;
 original = original.resolvePath("AIR Test/test.txt");

 var destination = air.File.documentsDirectory;
 destination = destination.resolvePath("AIR Test 2/copy.txt");

 original.addEventListener(air.Event.COMPLETE, fileMoveCompleteHandler);
 original.addEventListener(air.IOErrorEvent.IO_ERROR, fileMoveIOErrorEventHandler);
 original.moveToAsync(destination);

 function fileMoveCompleteHandler(event){
 alert(event.target); // [object File]
 }
 function fileMoveIOErrorEventHandler(event) {
 alert("I/O Error.");
 }

The File class also includes the File.moveToTrash() and File.moveToTrashAsync() methods, which move a file

or directory to the system trash.

Deleting a file

Adobe AIR 1.0 and later

The File class includes a deleteFile() method and a deleteFileAsync() method. These methods delete files, the

first working synchronously, the second working asynchronously (see “AIR file basics” on page 145).

For example, the following code synchronously deletes the test.txt file in the user's documents directory:

var file = air.File.documentsDirectory.resolvePath("test.txt");
 file.deleteFile();

The following code asynchronously deletes the test.txt file of the user's documents directory:

 var file = air.File.documentsDirectory.resolvePath("test.txt");
 file.addEventListener(air.Event.COMPLETE, completeHandler)
 file.deleteFileAsync();

 function completeHandler(event) {
 alert("Deleted.")
 }

Also included are the moveToTrash() and moveToTrashAsync methods, which you can use to move a file or directory

to the System trash. For details, see “Moving a file to the trash” on page 162.

Moving a file to the trash

Adobe AIR 1.0 and later

The File class includes a moveToTrash() method and a moveToTrashAsync() method. These methods send a file or

directory to the System trash, the first working synchronously, the second working asynchronously (see “AIR file

basics” on page 145).

For example, the following code synchronously moves the test.txt file in the user's documents directory to the System

trash:

163HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

 var file = air.File.documentsDirectory.resolvePath("test.txt");
 file.moveToTrash();

Note: On operating systems that do not support the concept of a recoverable trash folder, the files are removed

immediately.

Creating a temporary file

Adobe AIR 1.0 and later

The File class includes a createTempFile() method, which creates a file in the temporary directory folder for the

System, as in the following example:

var temp = air.File.createTempFile();

The createTempFile() method automatically creates a unique temporary file (saving you the work of determining a

new unique location).

You can use a temporary file to temporarily store information used in a session of the application. Note that there is

also a createTempDirectory() method, for creating a unique temporary directory in the System temporary

directory.

You may want to delete the temporary file before closing the application, as it is not automatically deleted on all

devices.

Working with storage volumes

Adobe AIR 2 and later

In AIR 2, you can detect when mass storage volumes are mounted or unmounted. The StorageVolumeInfo class

defines a singleton storageVolumeInfo object. The StorageVolumeInfo.storageVolumeInfo object dispatches a

storageVolumeMount event when a storage volume is mounted. And it dispatches a storageVolumeUnmount event

when a volume is unmounted. The StorageVolumeChangeEvent class defines these events.

Note: On modern Linux distributions, the StorageVolumeInfo object only dispatches storageVolumeMount and

storageVolumeUnmount events for physical devices and network drives mounted at particular locations.

The storageVolume property of the StorageVolumeChangeEvent class is a StorageVolume object. The

StorageVolume class defines basic properties of the storage volume:

• drive—The volume drive letter on Windows (null on other operating systems)

• fileSystemType—The type of file system on the storage volume (such as "FAT", "NTFS", "HFS", or "UFS")

• isRemoveable—Whether a volume is removable (true) or not (false)

• isWritable—Whether a volume is writable (true) or not (false)

• name—The name of the volume

• rootDirectory—A File object corresponding to the root directory of the volume

The StorageVolumeChangeEvent class also includes a rootDirectory property. The rootDirectory property is a

File object referencing the root directory of the storage volume that has been mounted or unmounted.

The storageVolume property of the StorageVolumeChangeEvent object is undefined (null) for an unmounted

volume. However you can access the rootDirectory property of the event.

The following code outputs the name and file path of a storage volume when it is mounted:

164HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

air.StorageVolumeInfo.storageVolumeInfo.addEventListener(air.StorageVolumeChangeEvent.STORAG
E_VOLUME_MOUNT, onVolumeMount);
function onVolumeMount(event)
{

air.trace(event.storageVolume.name, event.rootDirectory.nativePath);
}

The following code outputs the file path of a storage volume when it is unmounted:

air.StorageVolumeInfo.storageVolumeInfo.addEventListener(air.StorageVolumeChangeEvent.STORAG
E_VOLUME_UNMOUNT, onVolumeUnmount);
function onVolumeUnmount(event)
{

air.trace(event.rootDirectory.nativePath);
}

The StorageVolumeInfo.storageVolumeInfo object includes a getStorageVolumes() method. This method

returns a vector of StorageVolume objects corresponding to the currently mounted storage volumes. The following

code shows how to list the names and root directories of all mounted storage volumes:

var volumes = air.StorageVolumeInfo.storageVolumeInfo.getStorageVolumes();
for (i = 0; i < volumes.length; i++)
{

air.trace(volumes[i].name, volumes[i].rootDirectory.nativePath);
}

Note: On modern Linux distributions, the getStorageVolumes() method returns objects corresponding to physical

devices and network drives mounted at particular locations.

The File.getRootDirectories() method lists the root directories (see “Pointing to the file system root” on

page 150. However, the StorageVolume objects (enumerated by the StorageVolumeInfo.getStorageVolumes()

method) provides more information about the storage volumes.

You can use the spaceAvailable property of the rootDirectory property of a StorageVolume object to get the space

available on a storage volume. (See “Determining space available on a volume” on page 156.)

More Help topics

StorageVolume

StorageVolumeInfo

Reading and writing files

Adobe AIR 1.0 and later

The FileStream class lets AIR applications read and write to the file system.

Workflow for reading and writing files

Adobe AIR 1.0 and later

The workflow for reading and writing files is as follows.

Initialize a File object that points to the path.

The File object represents the path of the file that you want to work with (or a file that you will later create).

http://help.adobe.com/en_US/air/reference/html/flash/filesystem/StorageVolume.html
http://help.adobe.com/en_US/air/reference/html/flash/filesystem/StorageVolumeInfo.html
http://help.adobe.com/en_US/air/reference/html/flash/filesystem/FileStream.html

165HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

var file = air.File.documentsDirectory;
 file = file.resolvePath("AIR Test/testFile.txt");

This example uses the File.documentsDirectory property and the resolvePath() method of a File object to

initialize the File object. However, there are many other ways to point a File object to a file. For more information, see

“Pointing a File object to a file” on page 151.

Initialize a FileStream object.

Call the open() method or the openAsync() method of the FileStream object.

The method you call depends on whether you want to open the file for synchronous or asynchronous operations. Use

the File object as the file parameter of the open method. For the fileMode parameter, specify a constant from the

FileMode class that specifies the way in which you will use the file.

For example, the following code initializes a FileStream object that is used to create a file and overwrite any existing data:

var fileStream = new air.FileStream();
 fileStream.open(file, air.FileMode.WRITE);

For more information, see “Initializing a FileStream object, and opening and closing files” on page 166 and

“FileStream open modes” on page 166.

If you opened the file asynchronously (using the openAsync() method), add and set up event listeners for the
FileStream object.

These event listener methods respond to events dispatched by the FileStream object in various situations. These

situations include when data is read in from the file, when I/O errors are encountered, or when the complete amount

of data to be written has been written.

For details, see “Asynchronous programming and the events generated by a FileStream object opened asynchronously”

on page 170.

Include code for reading and writing data, as needed.

There are many methods of the FileStream class related to reading and writing. (They each begin with "read" or

"write".) The method you choose to use to read or write data depends on the format of the data in the target file.

For example, if the data in the target file is UTF-encoded text, you may use the readUTFBytes() and

writeUTFBytes() methods. If you want to deal with the data as byte arrays, you may use the readByte(),

readBytes(), writeByte(), and writeBytes() methods. For details, see “Data formats, and choosing the read and

write methods to use” on page 171.

If you opened the file asynchronously, then be sure that enough data is available before calling a read method. For

details, see “The read buffer and the bytesAvailable property of a FileStream object” on page 169.

Before writing to a file, if you want to check the amount of disk space available, you can check the spaceAvailable

property of the File object. For more information, see “Determining space available on a volume” on page 156.

Call the close() method of the FileStream object when you are done working with the file.

Calling the close() method makes the file available to other applications.

For details, see “Initializing a FileStream object, and opening and closing files” on page 166.

To see a sample application that uses the FileStream class to read and write files, see the following articles at the Adobe

AIR Developer Center:

• Building a text-file editor

http://www.adobe.com/go/learn_air_qs_textedit_flash_en

166HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

• Building a text-file editor

• Building a text-file editor

• Reading and writing from an XML preferences file

• Reading and writing from an XML preferences file

Working with FileStream objects

Adobe AIR 1.0 and later

The FileStream class defines methods for opening, reading, and writing files.

FileStream open modes

Adobe AIR 1.0 and later

The open() and openAsync() methods of a FileStream object each include a fileMode parameter, which defines

some properties for a file stream, including the following:

• The ability to read from the file

• The ability to write to the file

• Whether data will always be appended past the end of the file (when writing)

• What to do when the file does not exist (and when its parent directories do not exist)

The following are the various file modes (which you can specify as the fileMode parameter of the open() and

openAsync() methods):

Initializing a FileStream object, and opening and closing files

Adobe AIR 1.0 and later

When you open a FileStream object, you make it available to read and write data to a file. You open a FileStream object

by passing a File object to the open() or openAsync() method of the FileStream object:

var myFile = air.File.documentsDirectory;
 myFile = myFile.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.open(myFile, air.FileMode.READ);

The fileMode parameter (the second parameter of the open() and openAsync() methods), specifies the mode in

which to open the file: for read, write, append, or update. For details, see the previous section, “FileStream open

modes” on page 166.

File mode Description

FileMode.READ Specifies that the file is open for reading only.

FileMode.WRITE Specifies that the file is open for writing. If the file does not exist, it is created when the FileStream object

is opened. If the file does exist, any existing data is deleted.

FileMode.APPEND Specifies that the file is open for appending. The file is created if it does not exist. If the file exists, existing

data is not overwritten, and all writing begins at the end of the file.

FileMode.UPDATE Specifies that the file is open for reading and writing. If the file does not exist, it is created. Specify this

mode for random read/write access to the file. You can read from any position in the file. When writing

to the file, only the bytes written overwrite existing bytes (all other bytes remain unchanged).

http://www.adobe.com/go/learn_air_qs_textedit_flex_en
http://www.adobe.com/go/learn_air_qs_textedit_html_en
http://www.adobe.com/go/learn_air_qs_xmlpref_flex_en
http://www.adobe.com/go/learn_air_qs_xmlpref_html_en

167HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

If you use the openAsync() method to open the file for asynchronous file operations, set up event listeners to handle

the asynchronous events:

var myFile = air.File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.addEventListener(air.Event.COMPLETE, completeHandler);
 myFileStream.addEventListener(air.ProgressEvent.PROGRESS, progressHandler);
 myFileStream.addEventListener(air.IOErrorEvent.IOError, errorHandler);
 myFileStream.open(myFile, air.FileMode.READ);

 function completeHandler(event) {
 // ...
 }

 function progressHandler(event) {
 // ...
 }

 function errorHandler(event) {
 // ...
 }

The file is opened for synchronous or asynchronous operations, depending upon whether you use the open() or

openAsync() method. For details, see “AIR file basics” on page 145.

If you set the fileMode parameter to FileMode.READ or FileMode.UPDATE in the open method of the FileStream

object, data is read into the read buffer as soon as you open the FileStream object. For details, see “The read buffer and

the bytesAvailable property of a FileStream object” on page 169.

You can call the close() method of a FileStream object to close the associated file, making it available for use by other

applications.

The position property of a FileStream object

Adobe AIR 1.0 and later

The position property of a FileStream object determines where data is read or written on the next read or write

method.

Before a read or write operation, set the position property to any valid position in the file.

For example, the following code writes the string "hello" (in UTF encoding) at position 8 in the file:

var myFile = air.File.documentsDirectory;
 myFile = myFile.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.open(myFile, air.FileMode.UPDATE);
 myFileStream.position = 8;
 myFileStream.writeUTFBytes("hello");

When you first open a FileStream object, the position property is set to 0.

Before a read operation, the value of position must be at least 0 and less than the number of bytes in the file (which

are existing positions in the file).

The value of the position property is modified only in the following conditions:

• When you explicitly set the position property.

• When you call a read method.

168HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

• When you call a write method.

When you call a read or write method of a FileStream object, the position property is immediately incremented by

the number of bytes that you read or write. Depending on the read method you use, the position property is either

incremented by the number of bytes you specify to read or by the number of bytes available. When you call a read or

write method subsequently, it reads or writes starting at the new position.

 var myFile = air.File.documentsDirectory;
 myFile = myFile.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.open(myFile, air.FileMode.UPDATE);
 myFileStream.position = 4000;
 alert(myFileStream.position); // 4000
 myFileStream.writeBytes(myByteArray, 0, 200);
 alert(myFileStream.position); // 4200

There is, however, one exception: for a FileStream opened in append mode, the position property is not changed after

a call to a write method. (In append mode, data is always written to the end of the file, independent of the value of the

position property.)

For a file opened for asynchronous operations, the write operation does not complete before the next line of code is

executed. However, you can call multiple asynchronous methods sequentially, and the runtime executes them in order:

var myFile = air.File.documentsDirectory;
 myFile = myFile.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.openAsync(myFile, air.FileMode.WRITE);
 myFileStream.writeUTFBytes("hello");
 myFileStream.writeUTFBytes("world");
 myFileStream.addEventListener(air.Event.CLOSE, closeHandler);
 myFileStream.close();
 air.trace("started.");

 closeHandler(event)
 {
 air.trace("finished.");
 }

The trace output for this code is the following:

 started.
finished.

You can specify the position value immediately after you call a read or write method (or at any time), and the next

read or write operation will take place starting at that position. For example, note that the following code sets the

position property right after a call to the writeBytes() operation, and the position is set to that value (300) even

after the write operation completes:

 var myFile = air.File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.openAsync(myFile, air.FileMode.UPDATE);
 myFileStream.position = 4000;
 air.trace(myFileStream.position); // 4000
 myFileStream.writeBytes(myByteArray, 0, 200);
 myFileStream.position = 300;
 air.trace(myFileStream.position); // 300

169HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

The read buffer and the bytesAvailable property of a FileStream object

Adobe AIR 1.0 and later

When a FileStream object with read capabilities (one in which the fileMode parameter of the open() or openAsync()

method was set to READ or UPDATE) is opened, the runtime stores the data in an internal buffer. The FileStream object

begins reading data into the buffer as soon as you open the file (by calling the open() or openAsync() method of the

FileStream object).

For a file opened for synchronous operations (using the open() method), you can always set the position pointer to

any valid position (within the bounds of the file) and begin reading any amount of data (within the bounds of the file),

as shown in the following code (which assumes that the file contains at least 100 bytes):

 var myFile = air.File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.open(myFile, air.FileMode.READ);
 myFileStream.position = 10;
 myFileStream.readBytes(myByteArray, 0, 20);
 myFileStream.position = 89;
 myFileStream.readBytes(myByteArray, 0, 10);

Whether a file is opened for synchronous or asynchronous operations, the read methods always read from the

"available" bytes, represented by the bytesAvalable property. When reading synchronously, all of the bytes of the file

are available all of the time. When reading asynchronously, the bytes become available starting at the position specified

by the position property, in a series of asynchronous buffer fills signaled by progress events.

For files opened for synchronous operations, the bytesAvailable property is always set to represent the number of

bytes from the position property to the end of the file (all bytes in the file are always available for reading).

For files opened for asynchronous operations, you need to ensure that the read buffer has consumed enough data

before calling a read method. For a file opened asynchronously, as the read operation progresses, the data from the file,

starting at the position specified when the read operation started, is added to the buffer, and the bytesAvailable

property increments with each byte read. The bytesAvailable property indicates the number of bytes available

starting with the byte at the position specified by the position property to the end of the buffer. Periodically, the

FileStream object sends a progress event.

For a file opened asynchronously, as data becomes available in the read buffer, the FileStream object periodically

dispatches the progress event. For example, the following code reads data into a ByteArray object, bytes, as it is read

into the buffer:

var bytes = new air.ByteArray();
 var myFile = new air.File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.addEventListener(air.ProgressEvent.PROGRESS, progressHandler);
 myFileStream.openAsync(myFile, air.FileMode.READ);

 function progressHandler(event)
 {
 myFileStream.readBytes(bytes, myFileStream.position, myFileStream.bytesAvailable);
 }

For a file opened asynchronously, only the data in the read buffer can be read. Furthermore, as you read the data, it is

removed from the read buffer. For read operations, you need to ensure that the data exists in the read buffer before

calling the read operation. For example, the following code reads 8000 bytes of data starting from position 4000 in the

file:

170HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

 var myFile = air.File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.addEventListener(air.ProgressEvent.PROGRESS, progressHandler);
 myFileStream.addEventListener(air.Event.COMPLETE, completed);
 myFileStream.openAsync(myFile, air.FileMode.READ);
 myFileStream.position = 4000;

 var str = "";

 function progressHandler(event)
 {
 if (myFileStream.bytesAvailable > 8000)
 {
 str += myFileStream.readMultiByte(8000, "iso-8859-1");
 }
 }

During a write operation, the FileStream object does not read data into the read buffer. When a write operation

completes (all data in the write buffer is written to the file), the FileStream object starts a new read buffer (assuming

that the associated FileStream object was opened with read capabilities), and starts reading data into the read buffer,

starting from the position specified by the position property. The position property may be the position of the last

byte written, or it may be a different position, if the user specifies a different value for the position object after the

write operation.

Asynchronous programming and the events generated by a FileStream object opened asynchronously

Adobe AIR 1.0 and later

When a file is opened asynchronously (using the openAsync() method), reading and writing files are done

asynchronously. As data is read into the read buffer and as output data is being written, other ActionScript code can

execute.

This means that you need to register for events generated by the FileStream object opened asynchronously.

By registering for the progress event, you can be notified as new data becomes available for reading, as in the

following code:

 var myFile = air.File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.addEventListener(air.ProgressEvent.PROGRESS, progressHandler);
 myFileStream.openAsync(myFile, air.FileMode.READ);
 var str = "";

 function progressHandler(event)
 {
 str += myFileStream.readMultiByte(myFileStream.bytesAvailable, "iso-8859-1");
 }

You can read the entire data by registering for the complete event, as in the following code:

171HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

 var myFile = air.File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.addEventListener(air.Event.COMPLETE, completed);
 myFileStream.openAsync(myFile, air.FileMode.READ);
 var str = "";
 function completeHandler(event)
 {
 str = myFileStream.readMultiByte(myFileStream.bytesAvailable, "iso-8859-1");
 }

In much the same way that input data is buffered to enable asynchronous reading, data that you write on an

asynchronous stream is buffered and written to the file asynchronously. As data is written to a file, the FileStream

object periodically dispatches an OutputProgressEvent object. An OutputProgressEvent object includes a

bytesPending property that is set to the number of bytes remaining to be written. You can register for the

outputProgress event to be notified as this buffer is actually written to the file, perhaps in order to display a progress

dialog. However, in general, it is not necessary to do so. In particular, you may call the close() method without

concern for the unwritten bytes. The FileStream object will continue writing data and the close event will be delivered

after the final byte is written to the file and the underlying file is closed.

Data formats, and choosing the read and write methods to use

Adobe AIR 1.0 and later

Every file is a set of bytes on a disk. In ActionScript, the data from a file can always be represented as a ByteArray. For

example, the following code reads the data from a file into a ByteArray object named bytes:

 var myFile = air.File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.addEventListener(air.Event.COMPLETE, completeHandler);
 myFileStream.openAsync(myFile, air.FileMode.READ);
 var bytes = new air.ByteArray();

 function completeHandler(event)
 {
 myFileStream.readBytes(bytes, 0, myFileStream.bytesAvailable);
 }

Similarly, the following code writes data from a ByteArray named bytes to a file:

var myFile = air.File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.open(myFile, air.FileMode.WRITE);
 myFileStream.writeBytes(bytes, 0, bytes.length);

However, often you do not want to store the data in an ActionScript ByteArray object. And often the data file is in a

specified file format.

For example, the data in the file may be in a text file format, and you may want to represent such data in a String object.

For this reason, the FileStream class includes read and write methods for reading and writing data to and from types

other than ByteArray objects. For example, the readMultiByte() method lets you read data from a file and store it to

a string, as in the following code:

172HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

 var myFile = air.File.documentsDirectory.resolvePath("AIR Test/test.txt");
 var myFileStream = new air.FileStream();
 myFileStream.addEventListener(air.Event.COMPLETE, completed);
 myFileStream.openAsync(myFile, air.FileMode.READ);
 var str = "";

 function completeHandler(event)
 {
 str = myFileStream.readMultiByte(myFileStream.bytesAvailable, "iso-8859-1");
 }

The second parameter of the readMultiByte() method specifies the text format that ActionScript uses to interpret

the data ("iso-8859-1" in the example). Adobe AIR supports common character set encodings (see Supported character

sets).

The FileStream class also includes the readUTFBytes() method, which reads data from the read buffer into a string

using the UTF-8 character set. Since characters in the UTF-8 character set are of variable length, do not use

readUTFBytes() in a method that responds to the progress event, since the data at the end of the read buffer may

represent an incomplete character. (This is also true when using the readMultiByte() method with a variable-length

character encoding.) For this reason, read the entire set of data when the FileStream object dispatches the complete

event.

There are also similar write methods, writeMultiByte() and writeUTFBytes(), for working with String objects and

text files.

The readUTF() and the writeUTF() methods (not to be confused with readUTFBytes() and writeUTFBytes())

also read and write the text data to a file, but they assume that the text data is preceded by data specifying the length of

the text data, which is not a common practice in standard text files.

Some UTF-encoded text files begin with a "UTF-BOM" (byte order mark) character that defines the endianness as well

as the encoding format (such as UTF-16 or UTF-32).

For an example of reading and writing to a text file, see “Example: Reading an XML file into an XML object” on

page 173.

The readObject() and writeObject() are convenient ways to store and retrieve data for complex ActionScript

objects. The data is encoded in AMF (ActionScript Message Format). Adobe AIR, Flash Player, Flash Media Server,

and Flex Data Services include APIs for working with data in this format.

There are some other read and write methods (such as readDouble() and writeDouble()). However, if you use

these, make sure that the file format matches the formats of the data defined by these methods.

File formats are often more complex than simple text formats. For example, an MP3 file includes compressed data that

can only be interpreted with the decompression and decoding algorithms specific to MP3 files. MP3 files also may

include ID3 tags that contain meta tag information about the file (such as the title and artist for a song). There are

multiple versions of the ID3 format, but the simplest (ID3 version 1) is discussed in the “Example: Reading and writing

data with random access” on page 175 section.

Other files formats (for images, databases, application documents, and so on) have different structures, and to work

with their data in ActionScript, you must understand how the data is structured.

173HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

Using the load() and save() methods

Flash Player 10 and later, Adobe AIR 1.5 and later

Flash Player 10 added the load() and save() methods to the FileReference class. These methods are also in AIR 1.5,

and the File class inherits the methods from the FileReference class. These methods were designed to provide a secure

means for users to load and save file data in Flash Player. However, AIR applications can also use these methods as an

easy way to load and save files asynchronously.

For example, the following code saves a string to a text file:

var file = air.File.applicationStorageDirectory.resolvePath("test.txt");
var str = "Hello.";
file.addEventListener(air.Event.COMPLETE, fileSaved);
file.save(str);
function fileSaved(event)
{

air.trace("Done.");
}

The data parameter of the save() method can take a String or ByteArray value. When the argument is a String value,

the method saves the file as a UTF-8–encoded text file.

When this code sample executes, the application displays a dialog box in which the user selects the saved file

destination.

The following code loads a string from a UTF-8–encoded text file:

var file = air.File.applicationStorageDirectory.resolvePath("test.txt");
file.addEventListener(air.Event.COMPLETE, loaded);
file.load();
var str;
function loaded(event)
{

var bytes = file.data;
str = bytes.readUTFBytes(bytes.length);
air.trace(str);

}

The FileStream class provides more functionality than that provided by the load() and save() methods:

• Using the FileStream class, you can read and write data both synchronously and asynchronously.

• Using the FileStream class lets you write incrementally to a file.

• Using the FileStream class lets you open a file for random access (both reading from and writing to any section of

the file).

• The FileStream class lets you specify the type of file access you have to the file, by setting the fileMode parameter

of the open() or openAsync() method.

• The FileStream class lets you save data to files without presenting the user with an Open or Save dialog box.

• You can directly use types other than byte arrays when reading data with the FileStream class.

Example: Reading an XML file into an XML object

Adobe AIR 1.0 and later

The following examples demonstrate how to read and write to a text file that contains XML data.

174HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

To read from the file, initialize the File and FileStream objects, call the readUTFBytes() method of the FileStream and

convert the string to an XML object:

 var file = air.File.documentsDirectory.resolvePath("AIR Test/preferences.xml");
 var fileStream = new air.FileStream();
 fileStream.open(file, air.FileMode.READ);
 var prefsXML = fileStream.readUTFBytes(fileStream.bytesAvailable);
 fileStream.close();

Similarly, writing the data to the file is as easy as setting up appropriate File and FileStream objects, and then calling a

write method of the FileStream object. Pass the string version of the XML data to the write method as in the following

code:

var file = air.File.documentsDirectory.resolvePath("AIR Test/preferences.xml");
 fileStream = new air.FileStream();
 fileStream.open(file, air.FileMode.WRITE);

 var outputString = '<?xml version="1.0" encoding="utf-8"?>\n';
 outputString += '<prefs><autoSave>true</autoSave></prefs>'

 fileStream.writeUTFBytes(outputString);
 fileStream.close();

These examples use the readUTFBytes() and writeUTFBytes() methods, because they assume that the files are in

UTF-8 format. If not, you may need to use a different method (see “Data formats, and choosing the read and write

methods to use” on page 171).

The previous examples use FileStream objects opened for synchronous operation. You can also open files for

asynchronous operations (which rely on event listener functions to respond to events). For example, the following

code shows how to read an XML file asynchronously:

var file = air.File.documentsDirectory.resolvePath("AIR Test/preferences.xml");
 var fileStream= new air.FileStream();
 fileStream.addEventListener(air.Event.COMPLETE, processXMLData);
 fileStream.openAsync(file, air.FileMode.READ);
 var prefsXML;

 function processXMLData(event)
 {
 var xmlString = fileStream.readUTFBytes(fileStream.bytesAvailable);

prefsXML = domParser.parseFromString(xmlString, "text/xml");
 fileStream.close();
 }

The processXMLData() method is invoked when the entire file is read into the read buffer (when the FileStream

object dispatches the complete event). It calls the readUTFBytes() method to get a string version of the read data,

and it creates an XML object, prefsXML, based on that string.

To see a sample application that shows these capabilities, see Reading and writing from an XML preferences file.

To see a sample application that shows these capabilities, see Reading and writing from an XML Preferences File.

http://www.adobe.com/go/learn_air_qs_xmlpref_flex_en
http://www.adobe.com/go/learn_air_qs_xmlpref_html_en

175HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

Example: Reading and writing data with random access

Adobe AIR 1.0 and later

MP3 files can include ID3 tags, which are sections at the beginning or end of the file that contain meta data identifying

the recording. The ID3 tag format itself has different revisions. This example describes how to read and write from an

MP3 file that contains the simplest ID3 format (ID3 version 1.0) using "random access to file data", which means that

it reads from and writes to arbitrary locations in the file.

An MP3 file that contains an ID3 version 1 tag includes the ID3 data at the end of the file, in the final 128 bytes.

When accessing a file for random read/write access, it is important to specify FileMode.UPDATE as the fileMode

parameter for the open() or openAsync() method:

var file = air.File.documentsDirectory.resolvePath("My Music/Sample ID3 v1.mp3");
 var fileStr = new air.FileStream();
 fileStr.open(file, air.FileMode.UPDATE);

This lets you both read and write to the file.

Upon opening the file, you can set the position pointer to the position 128 bytes before the end of the file:

 fileStr.position = file.size - 128;

This code sets the position property to this location in the file because the ID3 v1.0 format specifies that the ID3 tag

data is stored in the last 128 bytes of the file. The specification also says the following:

• The first 3 bytes of the tag contain the string "TAG".

• The next 30 characters contain the title for the MP3 track, as a string.

• The next 30 characters contain the name of the artist, as a string.

• The next 30 characters contain the name of the album, as a string.

• The next 4 characters contain the year, as a string.

• The next 30 characters contain the comment, as a string.

• The next byte contains a code indicating the track's genre.

• All text data is in ISO 8859-1 format.

The id3TagRead() method checks the data after it is read in (upon the complete event):

function id3TagRead()
 {
 if (fileStr.readMultiByte(3, "iso-8859-1").match(/tag/i))
 {
 var id3Title = fileStr.readMultiByte(30, "iso-8859-1");
 var id3Artist = fileStr.readMultiByte(30, "iso-8859-1");
 var id3Album = fileStr.readMultiByte(30, "iso-8859-1");
 var id3Year = fileStr.readMultiByte(4, "iso-8859-1");
 var id3Comment = fileStr.readMultiByte(30, "iso-8859-1");
 var id3GenreCode = fileStr.readByte().toString(10);
 }
 }

176HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with the file system

Last updated 9/28/2011

You can also perform a random-access write to the file. For example, you could parse the id3Title variable to ensure

that it is correctly capitalized (using methods of the String class), and then write a modified string, called newTitle,

to the file, as in the following:

fileStr.position = file.length - 125; // 128 - 3
fileStr.writeMultiByte(newTitle, "iso-8859-1");

To conform with the ID3 version 1 standard, the length of the newTitle string should be 30 characters, padded at the

end with the character code 0 (String.fromCharCode(0)).

177

Last updated 9/28/2011

Chapter 12: Drag and drop in AIR

Adobe AIR 1.0 and later

Use the classes in the Adobe® AIR™ drag-and-drop API to support user-interface drag-and-drop gestures. A gesture in

this sense is an action by the user, mediated by both the operating system and your application, expressing an intent

to copy, move, or link information. A drag-out gesture occurs when the user drags an object out of a component or

application. A drag-in gesture occurs when the user drags in an object from outside a component or application.

With the drag-and-drop API, you can allow a user to drag data between applications and between components within

an application. Supported transfer formats include:

• Bitmaps

• Files

• HTML-formatted text

• Text

• URLs

Drag and drop in HTML

Adobe AIR 1.0 and later

To drag data into and out of an HTML-based application (or into and out of the HTML displayed in an HTMLLoader),

you can use HTML drag and drop events. The HTML drag-and-drop API allows you to drag to and from DOM

elements in the HTML content.

Note: You can also use the AIR NativeDragEvent and NativeDragManager APIs by listening for events on the

HTMLLoader object containing the HTML content. However, the HTML API is better integrated with the HTML DOM

and gives you control of the default behavior. The NativeDragEvent and NativeDragManager APIs are not commonly

used in HTML-based applications and so are not covered in the Adobe AIR API Reference for HTML Developers. For

more information about using these classes, refer to the Adobe ActionScript 3.0 Developer's Guide and the ActionScript

3.0 Reference for the Adobe Flash Platform.

Default drag-and-drop behavior

Adobe AIR 1.0 and later

The HTML environment provides default behavior for drag-and-drop gestures involving text, images, and URLs.

Using the default behavior, you can always drag these types of data out of an element. However, you can only drag text

into an element and only to elements in an editable region of a page. When you drag text between or within editable

regions of a page, the default behavior performs a move action. When you drag text to an editable region from a non-

editable region or from outside the application, then the default behavior performs a copy action.

You can override the default behavior by handling the drag-and-drop events yourself. To cancel the default behavior,

you must call the preventDefault() methods of the objects dispatched for the drag-and-drop events. You can then

insert data into the drop target and remove data from the drag source as necessary to perform the chosen action.

http://help.adobe.com/en_US/air/reference/html/
http://help.adobe.com/en_US/as3/dev/index.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/NativeDragManager.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/NativeDragManager.html

178HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

By default, the user can select and drag any text, and drag images and links. You can use the WebKit CSS property, -

webkit-user-select to control how any HTML element can be selected. For example, if you set -webkit-user-

select to none, then the element contents are not selectable and so cannot be dragged. You can also use the -webkit-

user-drag CSS property to control whether an element as a whole can be dragged. However, the contents of the

element are treated separately. The user could still drag a selected portion of the text. For more information, see “CSS

in AIR” on page 16.

Drag-and-drop events in HTML

Adobe AIR 1.0 and later

The events dispatched by the initiator element from which a drag originates, are:

The events dispatched by a drag target are:

The event object dispatched in response to these events is similar to a mouse event. You can use mouse event properties

such as (clientX, clientY) and (screenX, screenY), to determine the mouse position.

The most important property of a drag event object is dataTransfer, which contains the data being dragged. The

dataTransfer object itself has the following properties and methods:

Event Description

dragstart Dispatched when the user starts the drag gesture. The handler for this event can prevent the drag, if

necessary, by calling the preventDefault() method of the event object. To control whether the dragged data

can be copied, linked, or moved, set the effectAllowed property. Selected text, images, and links are put onto

the clipboard by the default behavior, but you can set different data for the drag gesture using the

dataTransfer property of the event object.

drag Dispatched continuously during the drag gesture.

dragend Dispatched when the user releases the mouse button to end the drag gesture.

Event Description

dragover Dispatched continuously while the drag gesture remains within the element boundaries. The handler for this

event should set the dataTransfer.dropEffect property to indicate whether the drop will result in a copy, move,

or link action if the user releases the mouse.

dragenter Dispatched when the drag gesture enters the boundaries of the element.

If you change any properties of a dataTransfer object in a dragenter event handler, those changes are quickly

overridden by the next dragover event. On the other hand, there is a short delay between a dragenter and the

first dragover event that can cause the cursor to flash if different properties are set. In many cases, you can use

the same event handler for both events.

dragleave Dispatched when the drag gesture leaves the element boundaries.

drop Dispatched when the user drops the data onto the element. The data being dragged can only be accessed

within the handler for this event.

179HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

MIME types for the HTML drag-and-drop

Adobe AIR 1.0 and later

The MIME types to use with the dataTransfer object of an HTML drag-and-drop event include:

You can also use other MIME strings, including application-defined strings. However, other applications may not be

able to recognize or use the transferred data. It is your responsibility to add data to the dataTransfer object in the

expected format.

Important: Only code running in the application sandbox can access dropped files. Attempting to read or set any property

of a File object within a non-application sandbox generates a security error. See “Handling file drops in non-application

HTML sandboxes” on page 184 for more information.

Property or Method Description

effectAllowed The effect allowed by the source of the drag. Typically, the handler for the dragstart event sets this value. See

“Drag effects in HTML” on page 180.

dropEffect The effect chosen by the target or the user. If you set the dropEffect in a dragover or dragenter event

handler, then AIR updates the mouse cursor to indicate the effect that occurs if the user releases the mouse. If

the dropEffect set does not match one of the allowed effects, no drop is allowed and the unavailable cursor

is displayed. If you have not set a dropEffect in response to the latest dragover or dragenter event, then

the user can choose from the allowed effects with the standard operating system modifier keys.

The final effect is reported by the dropEffect property of the object dispatched for dragend. If the user

abandons the drop by releasing the mouse outside an eligible target, then dropEffect is set to none.

types An array containing the MIME type strings for each data format present in the dataTransfer object.

getData(mimeType) Gets the data in the format specified by the mimeType parameter.

The getData() method can only be called in response to the drop event.

setData(mimeType) Adds data to the dataTransfer in the format specified by the mimeType parameter. You can add data in

multiple formats by calling setData() for each MIME type. Any data placed in the dataTransfer object by

the default drag behavior is cleared.

The setData() method can only be called in response to the dragstart event.

clearData(mimeType) Clears any data in the format specified by the mimeType parameter.

setDragImage(image,

offsetX, offsetY)

Sets a custom drag image. The setDragImage() method can only be called in response to the dragstart

event and only when an entire HTML element is dragged by setting its -webkit-user-drag CSS style to

element. The image parameter can be a JavaScript Element or Image object.

Data format MIME type

Text "text/plain"

HTML "text/html"

URL "text/uri-list"

Bitmap "image/x-vnd.adobe.air.bitmap"

File list "application/x-vnd.adobe.air.file-list"

180HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

Drag effects in HTML

Adobe AIR 1.0 and later

The initiator of the drag gesture can limit the allowed drag effects by setting the dataTransfer.effectAllowed

property in the handler for the dragstart event. The following string values can be used:

The target of the drag gesture can set the dataTransfer.dropEffect property to indicate the action that is taken if

the user completes the drop. If the drop effect is one of the allowed actions, then the system displays the appropriate

copy, move, or link cursor. If not, then the system displays the unavailable cursor. If no drop effect is set by the target,

the user can choose from the allowed actions with the modifier keys.

Set the dropEffect value in the handlers for both the dragover and dragenter events:

 function doDragStart(event) {
 event.dataTransfer.setData("text/plain","Text to drag");
 event.dataTransfer.effectAllowed = "copyMove";
 }

 function doDragOver(event) {
 event.dataTransfer.dropEffect = "copy";
 }

 function doDragEnter(event) {
 event.dataTransfer.dropEffect = "copy";
 }

Note: Although you should always set the dropEffect property in the handler for dragenter, be aware that the next

dragover event resets the property to its default value. Set dropEffect in response to both events.

Dragging data out of an HTML element

Adobe AIR 1.0 and later

The default behavior allows most content in an HTML page to be copied by dragging. You can control the content

allowed to be dragged using CSS properties -webkit-user-select and -webkit-user-drag.

Override the default drag-out behavior in the handler for the dragstart event. Call the setData() method of the

dataTransfer property of the event object to put your own data into the drag gesture.

String value Description

"none" No drag operations are allowed.

"copy" The data will be copied to the destination, leaving the original in place.

"link" The data will be shared with the drop destination using a link back to the original.

"move” The data will be copied to the destination and removed from the original location.

"copyLink" The data can be copied or linked.

"copyMove" The data can be copied or moved.

"linkMove" The data can be linked or moved.

"all" The data can be copied, moved, or linked. All is the default effect when you prevent the default behavior.

181HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

To indicate which drag effects a source object supports when you are not relying on the default behavior, set the

dataTransfer.effectAllowed property of the event object dispatched for the dragstart event. You can choose any

combination of effects. For example, if a source element supports both copy and link effects, set the property to

"copyLink".

Setting the dragged data

Flash Player 9 and later, Adobe AIR 1.0 and later

Add the data for the drag gesture in the handler for the dragstart event with the dataTransfer property. Use the

dataTransfer.setData() method to put data onto the clipboard, passing in the MIME type and the data to transfer.

For example, if you had an image element in your application, with the id imageOfGeorge, you could use the following

dragstart event handler. This example adds representations of a picture of George in several data formats, which

increases the likelihood that other applications can use the dragged data.

 function dragStartHandler(event){
 event.dataTransfer.effectAllowed = "copy";

 var dragImage = document.getElementById("imageOfGeorge");
 var dragFile = new air.File(dragImage.src);
 event.dataTransfer.setData("text/plain","A picture of George");
 event.dataTransfer.setData("image/x-vnd.adobe.air.bitmap", dragImage);
 event.dataTransfer.setData("application/x-vnd.adobe.air.file-list",
 new Array(dragFile));
 }

Note: When you call the setData() method of dataTransfer object, no data is added by the default drag-and-drop

behavior.

Dragging data into an HTML element

Adobe AIR 1.0 and later

The default behavior only allows text to be dragged into editable regions of the page. You can specify that an element

and its children can be made editable by including the contenteditable attribute in the opening tag of the element.

You can also make an entire document editable by setting the document object designMode property to "on".

You can support alternate drag-in behavior on a page by handling the dragenter, dragover, and drop events for any

elements that can accept dragged data.

Enabling drag-in

Adobe AIR 1.0 and later

To handle the drag-in gesture, you must first cancel the default behavior. Listen for the dragenter and dragover

events on any HTML elements you want to use as drop targets. In the handlers for these events, call the

preventDefault() method of the dispatched event object. Canceling the default behavior allows non-editable

regions to receive a drop.

182HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

Getting the dropped data

Adobe AIR 1.0 and later

You can access the dropped data in the handler for the ondrop event:

 function doDrop(event){
 droppedText = event.dataTransfer.getData("text/plain");
 }

Use the dataTransfer.getData() method to read the data onto the clipboard, passing in the MIME type of the data

format to read. You can find out which data formats are available using the types property of the dataTransfer

object. The types array contains the MIME type string of each available format.

When you cancel the default behavior in the dragenter or dragover events, you are responsible for inserting any

dropped data into its proper place in the document. No API exists to convert a mouse position into an insertion point

within an element. This limitation can make it difficult to implement insertion-type drag gestures.

Example: Overriding the default HTML drag-in behavior

Adobe AIR 1.0 and later

This example implements a drop target that displays a table showing each data format available in the dropped item.

The default behavior is used to allow text, links, and images to be dragged within the application. The example

overrides the default drag-in behavior for the div element that serves as the drop target. The key step to enabling non-

editable content to accept a drag-in gesture is to call the preventDefault() method of the event object dispatched for

both the dragenter and dragover events. In response to a drop event, the handler converts the transferred data into

an HTML row element and inserts the row into a table for display.

 <html>
 <head>
 <title>Drag-and-drop</title>
 <script language="javascript" type="text/javascript" src="AIRAliases.js"></script>
 <script language="javascript">
 function init(){
 var target = document.getElementById('target');
 target.addEventListener("dragenter", dragEnterOverHandler);
 target.addEventListener("dragover", dragEnterOverHandler);
 target.addEventListener("drop", dropHandler);

 var source = document.getElementById('source');
 source.addEventListener("dragstart", dragStartHandler);
 source.addEventListener("dragend", dragEndHandler);

 emptyRow = document.getElementById("emptyTargetRow");
 }

 function dragStartHandler(event){
 event.dataTransfer.effectAllowed = "copy";
 }

 function dragEndHandler(event){
 air.trace(event.type + ": " + event.dataTransfer.dropEffect);

183HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

 }

 function dragEnterOverHandler(event){
 event.preventDefault();
 }

 var emptyRow;
 function dropHandler(event){
 for(var prop in event){
 air.trace(prop + " = " + event[prop]);
 }
 var row = document.createElement('tr');
 row.innerHTML = "<td>" + event.dataTransfer.getData("text/plain") + "</td>" +
 "<td>" + event.dataTransfer.getData("text/html") + "</td>" +
 "<td>" + event.dataTransfer.getData("text/uri-list") + "</td>" +
 "<td>" + event.dataTransfer.getData("application/x-vnd.adobe.air.file-list") +
 "</td>";

 var imageCell = document.createElement('td');
 if((event.dataTransfer.types.toString()).search("image/x-vnd.adobe.air.bitmap") > -
1){
 imageCell.appendChild(event.dataTransfer.getData("image/x-
vnd.adobe.air.bitmap"));
 }
 row.appendChild(imageCell);
 var parent = emptyRow.parentNode;
 parent.insertBefore(row, emptyRow);
 }
 </script>
 </head>
 <body onLoad="init()" style="padding:5px">
 <div>
 <h1>Source</h1>
 <p>Items to drag:</p>
 <ul id="source">
 Plain text.
 HTML formatted text.
 A URL.

 <li style="-webkit-user-drag:none;">
 Uses "-webkit-user-drag:none" style.

184HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

 <li style="-webkit-user-select:none;">
 Uses "-webkit-user-select:none" style.

 </div>
 <div id="target" style="border-style:dashed;">
 <h1 >Target</h1>
 <p>Drag items from the source list (or elsewhere).</p>
 <table id="displayTable" border="1">
 <tr><th>Plain text</th><th>Html text</th><th>URL</th><th>File list</th><th>Bitmap
Data</th></tr>
 <tr
id="emptyTargetRow"><td> </td><td> </td><td> </td><td> </td><td> </
td></tr>
 </table>
 </div>
 </div>
 </body>
 </html>

Handling file drops in non-application HTML sandboxes

Adobe AIR 1.0 and later

Non-application content cannot access the File objects that result when files are dragged into an AIR application. Nor

is it possible to pass one of these File objects to application content through a sandbox bridge. (The object properties

must be accessed during serialization.) However, you can still drop files in your application by listening for the AIR

nativeDragDrop events on the HTMLLoader object.

Normally, if a user drops a file into a frame that hosts non-application content, the drop event does not propagate from

the child to the parent. However, since the events dispatched by the HTMLLoader (which is the container for all

HTML content in an AIR application) are not part of the HTML event flow, you can still receive the drop event in

application content.

To receive the event for a file drop, the parent document adds an event listener to the HTMLLoader object using the

reference provided by window.htmlLoader:

 window.htmlLoader.addEventListener("nativeDragDrop",function(event){
 var filelist = event.clipboard.getData(air.ClipboardFormats.FILE_LIST_FORMAT);
 air.trace(filelist[0].url);
 });

The NativeDragEvent objects behave like their HTML event counterparts, but the names and data types of some of the

properties and methods are different. For example, the HTML event dataTransfer property serves the same purpose

as the ActionScript event clipboard property. For more information about using these classes, refer to Adobe

ActionScript 3.0 Developer's Guide and the ActionScript 3.0 Reference for the Adobe Flash Platform.

The following example uses a parent document that loads a child page into a remote sandbox (http://localhost/). The

parent listens for the nativeDragDrop event on the HTMLLoader object and traces out the file url.

http://help.adobe.com/en_US/as3/dev/index.html
http://help.adobe.com/en_US/as3/dev/index.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/NativeDragEvent.html

185HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

 <html>
 <head>
 <title>Drag-and-drop in a remote sandbox</title>
 <script language="javascript" type="text/javascript" src="AIRAliases.js"></script>
 <script language="javascript">
 window.htmlLoader.addEventListener("nativeDragDrop",function(event){
 var filelist = event.clipboard.getData(air.ClipboardFormats.FILE_LIST_FORMAT);
 air.trace(filelist[0].url);
 });
 </script>
 </head>
 <body>
 <iframe src="child.html"
 sandboxRoot="http://localhost/"
 documentRoot="app:/"
 frameBorder="0" width="100%" height="100%">
 </iframe>
 </body>
 </html>

The child document must present a valid drop target by calling the Event object preventDefault() method in the

HTML dragenter and dragover event handlers. Otherwise, the drop event can never occur.

 <html>
 <head>
 <title>Drag and drop target</title>
 <script language="javascript" type="text/javascript">
 function preventDefault(event){
 event.preventDefault();
 }
 </script>
 </head>
 <body ondragenter="preventDefault(event)" ondragover="preventDefault(event)">
 <div>
 <h1>Drop Files Here</h1>
 </div>
 </body>
 </html>

Dropping file promises

Adobe AIR 2 and later

A file promise is a drag-and-drop clipboard format that allows a user to drag a file that does not yet exist out of an AIR

application. For example, using file promises, your application could allow a user to drag a proxy icon to a desktop

folder. The proxy icon represents a file or some data known to be available at a URL. After the user drops the icon, the

runtime downloads the data and writes the file to the drop location.

You can use the URLFilePromise class in an AIR application to drag-and-drop files accessible at a URL. The

URLFilePromise implementation is provided in the aircore library as part of the AIR 2 SDK. Use either the aircore.swc

or aircore.swf file found in the SDK frameworks/libs/air directory.

Alternately, you can implement your own file promise logic using the IFilePromise interface (which is defined in the

runtime flash.desktop package).

186HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

File promises are similar in concept to deferred rendering using a data handler function on the clipboard. Use file

promises instead of deferred rendering when dragging and dropping files. The deferred rendering technique can lead

to undesirable pauses in the drag gesture as the data is generated or downloaded. Use deferred rendering for copy and

paste operations (for which file promises are not supported).

Limitations when using file promises

File promises have the following limitations compared to other data formats that you can put in a drag-and-drop

clipboard:

• File promises can only be dragged out of an AIR application; they cannot be dropped into an AIR application.

• File promises are not supported on all operating systems. Use the Clipboard.supportsFilePromise property to

test whether file promises are supported on the host system. On systems that do not support file promises, you

should provide an alternative mechanism for downloading or generating the file data.

• File promises cannot be used with the copy-and-paste clipboard (Clipboard.generalClipboard).

More Help topics

flash.desktop.IFilePromise

air.desktop.URLFilePromise

Dropping remote files

Adobe AIR 2 and later

Use the URLFilePromise class to create file promise objects representing files or data available at a URL. Add one or

more file promise objects to the clipboard using the FILE_PROMISE_LIST clipboard format. In the following example,

a single file, available at http://www.example.com/foo.txt, is downloaded and saved to the drop location as bar.txt. (The

remote and the local file names do not have to match.)

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/IFilePromise.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/air/desktop/URLFilePromise.html

187HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

<html>
<head>
<script src="AIRAliases.js"></script>
<script src="aircore.swf" type="application/x-shockwave-flash"></script>
<script language="javascript">

function init(){
var source = document.getElementById('source');
source.addEventListener("dragstart", dragStartHandler);

}

function dragStartHandler(event){

event.preventDefault();
startDrag();

}
function startDrag()
{

var filePromise = new air.URLFilePromise(); //defined in aircore.swf
filePromise.request = new air.URLRequest("http://example.com/foo.txt");
filePromise.relativePath = "bar.txt";
var fileList = new Array(filePromise);
var clipboard = new air.Clipboard();
clipboard.setData(air.ClipboardFormats.FILE_PROMISE_LIST_FORMAT, fileList);
air.NativeDragManager.doDrag(window.htmlLoader, clipboard);

}
</script>
</head>
<body onLoad="init()">

<p id="source" style="-webkit-user-drag:element; -webkit-user-select:none;">
Drag to file system

</p>
</body>
</html>

You can allow the user to drag more than one file at a time by adding more file promise objects to the array assigned

to the clipboard. You can also specify subdirectories in the relativePath property so that some or all of the files

included in the operation are placed in a subfolder relative to the drop location.

 The following example illustrates how to initiate a drag operation that includes multiple file promises. In this example,

an html page, article.html, is put on the clipboard as a file promise, along with its two linked image files. The images

are copied into an images subfolder so that the relative links are maintained.

188HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

<html>
<head>
<script src="AIRAliases.js"></script>
<script src="aircore.swf" type="application/x-shockwave-flash"></script>
<script language="javascript">

function init(){
var source = document.getElementById('source');
source.addEventListener("dragstart", dragStartHandler);

}

function dragStartHandler(event){

event.preventDefault();
startDrag();

}
function startDrag()
{

var filePromise = new air.URLFilePromise();
filePromise.request = new air.URLRequest("http://example.com/article.html");
filePromise.relativePath = "article.html";

var image1Promise = new air.URLFilePromise();
image1Promise.request = new air.URLRequest("http://example.com/images/img_1.jpg");
image1Promise.relativePath = "images/img_1.html";
var image2Promise = new air.URLFilePromise();
image2Promise.request = new air.URLRequest("http://example.com/images/img_2.jpg");
image2Promise.relativePath = "images/img_2.jpg";

//Put the promise objects onto the clipboard inside an array
var fileList = new Array(filePromise, image1Promise, image2Promise);
var clipboard = new air.Clipboard();
clipboard.setData(air.ClipboardFormats.FILE_PROMISE_LIST_FORMAT, fileList);
air.NativeDragManager.doDrag(window.htmlLoader, clipboard);

}
</script>
</head>
<body onLoad="init()">

<p id="source" style="-webkit-user-drag:element; -webkit-user-select:none;">
Drag to file system

</p>
</body>
</html>

Implementing the IFilePromise interface

Adobe AIR 2 and later

To provide file promises for resources that cannot be accessed using a URLFilePromise object, you can implement the

IFilePromise interface in a custom class. The IFilePromise interface defines the methods and properties used by the

AIR runtime to access the data to be written to a file once the file promise is dropped.

Note: Since the Javascript language does not support the implementation of interfaces, you can only implement your own

file promise logic using ActionScript. You can, of course, import a SWF file containing ActionScript classes into a HTML

page using a <script> tag and access those classes in Javascript code.

189HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

An IFilePromise implementation passes another object to the AIR runtime that provides the data for the file promise.

This object must implement the IDataInput interface, which the AIR runtime uses to read the data. For example, the

URLFilePromise class, which implements IFilePromise, uses a URLStream object as the data provider.

AIR can read the data synchronously or asynchronously. The IFilePromise implementation reports which mode of

access is supported by returning the appropriate value in the isAsync property. If asynchronous data access is

provided, the data provider object must implement the IEventDispatcher interface and dispatch the necessary events,

such as open, progress and complete.

You can use a custom class, or one of the following built-in classes, as a data provider for a file promise:

• ByteArray (synchronous)

• FileStream (synchronous or asynchronous)

• Socket (asynchronous)

• URLStream (asynchronous)

To implement the IFilePromise interface, you must provide code for the following functions and properties:

• open():IDataInput — Returns the data provider object from which the data for the promised file is read. The

object must implement the IDataInput interface. If the data is provided asynchronously, the object must also

implement the IEventDispatcher interface and dispatch the necessary events (see “Using an asynchronous data

provider in a file promise” on page 191).

• get relativePath():String — Provides the path, including file name, for the created file. The path is resolved

relative to the drop location chosen by the user in the drag-and-drop operation. To make sure that the path uses

the proper separator character for the host operating system, use the File.separator constant when specifying

paths containing directories. You can add a setter function or use a constructor parameter to allow the path to be

set at runtime.

• get isAsync():Boolean — Informs the AIR runtime whether the data provider object provides it’s data

asynchronously or synchronously.

• close():void — Called by the runtime when the data is fully read (or an error prevents further reading). You can

use this function to cleanup resources.

• reportError(e:ErrorEvent):void — Called by the runtime when an error reading the data occurs.

All of the IFilePromise methods are called by the runtime during a drag-and-drop operation involving the file promise.

Typically, your application logic should not call any of these methods directly.

Using a synchronous data provider in a file promise

Adobe AIR 2 and later

The simplest way to implement the IFilePromise interface is to use a synchronous data provider object, such as a

ByteArray or a synchronous FileStream. In the following example, a ByteArray object is created, filled with data, and

returned when the open() method is called.

190HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

package
{

import flash.desktop.IFilePromise;
import flash.events.ErrorEvent;
import flash.utils.ByteArray;
import flash.utils.IDataInput;

public class SynchronousFilePromise implements IFilePromise
{

private const fileSize:int = 5000; //size of file data
private var filePath:String = "SynchronousFile.txt";

public function get relativePath():String
{

return filePath;
}

public function get isAsync():Boolean
{

return false;
}

public function open():IDataInput
{

var fileContents:ByteArray = new ByteArray();

//Create some arbitrary data for the file
for(var i:int = 0; i < fileSize; i++)
{

fileContents.writeUTFBytes('S');
}

//Important: the ByteArray is read from the current position
fileContents.position = 0;
return fileContents;

}

public function close():void
{

//Nothing needs to be closed in this case.
}

public function reportError(e:ErrorEvent):void
{

trace("Something went wrong: " + e.errorID + " - " + e.type + ", " + e.text);
}

}
}

In practice, synchronous file promises have limited utility. If the amount of data is small, you could just as easily create

a file in a temporary directory and add a normal file list array to the drag-and-drop clipboard. On the other hand, if

the amount of data is large or generating the data is computationally expensive, a long synchronous process is

necessary. Long synchronous processes can block UI updates for a noticeable amount of time and make your

application seem unresponsive. To avoid this problem, you can create an asynchronous data provider driven by a

timer.

191HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

Using an asynchronous data provider in a file promise

Adobe AIR 2 and later

When you use an asynchronous data provider object, the IFilePromise isAsync property must be true and the object

returned by the open() method must implement the IEventDispatcher interface. The runtime listens for several

alternative events so that different built-in objects can be used as a data provider. For example, progress events are

dispatched by FileStream and URLStream objects, whereas socketData events are dispatched by Socket objects. The

runtime listens for the appropriate events from all of these objects.

The following events drive the process of reading the data from the data provider object:

• Event.OPEN — Informs the runtime that the data source is ready.

• ProgressEvent.PROGRESS — Informs the runtime that data is available. The runtime will read the amount of

available data from the data provider object.

• ProgressEvent.SOCKET_DATA — Informs the runtime that data is available. The socketData event is dispatched

by socket-based objects. For other object types, you should dispatch a progress event. (The runtime listens for

both events to detect when data can be read.)

• Event.COMPLETE — Informs the runtime that the data has all been read.

• Event.CLOSE — Informs the runtime that the data has all been read. (The runtime listens for both close and

complete for this purpose.)

• IOErrorEvent.IOERROR — Informs the runtime that an error reading the data has occurred. The runtime aborts

file creation and calls the IFilePromise close() method.

• SecurityErrorEvent.SECURITY_ERROR — Informs the runtime that a security error has occurred. The runtime

aborts file creation and calls the IFilePromise close() method.

• HTTPStatusEvent.HTTP_STATUS — Used, along with httpResponseStatus, by the runtime to make sure that

the data available represents the desired content, rather than an error message (such as a 404 page). Objects based

on the HTTP protocol should dispatch this event.

• HTTPStatusEvent.HTTP_RESPONSE_STATUS — Used, along with httpStatus, by the runtime to make sure

that the data available represents the desired content. Objects based on the HTTP protocol should dispatch this

event.

 The data provider should dispatch these events in the following sequence:

1 open event

2 progress or socketData events

3 complete or close event

Note: The built-in objects, FileStream, Socket, and URLStream, dispatch the appropriate events automatically.

The following example creates a file promise using a custom, asynchronous data provider. The data provider class

extends ByteArray (for the IDataInput support) and implements the IEventDispatcher interface. At each timer event,

the object generates a chunk of data and dispatches a progress event to inform the runtime that the data is available.

When enough data has been produced, the object dispatches a complete event.

192HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

package
{
import flash.events.Event;
import flash.events.EventDispatcher;
import flash.events.IEventDispatcher;
import flash.events.ProgressEvent;
import flash.events.TimerEvent;
import flash.utils.ByteArray;
import flash.utils.Timer;

[Event(name="open", type="flash.events.Event.OPEN")]
[Event(name="complete", type="flash.events.Event.COMPLETE")]
[Event(name="progress", type="flash.events.ProgressEvent")]
[Event(name="ioError", type="flash.events.IOErrorEvent")]
[Event(name="securityError", type="flash.events.SecurityErrorEvent")]
public class AsyncDataProvider extends ByteArray implements IEventDispatcher
{

private var dispatcher:EventDispatcher = new EventDispatcher();
public var fileSize:int = 0; //The number of characters in the file
private const chunkSize:int = 1000; //Amount of data written per event
private var dispatchDataTimer:Timer = new Timer(100);
private var opened:Boolean = false;

public function AsyncDataProvider()
{

super();
dispatchDataTimer.addEventListener(TimerEvent.TIMER, generateData);

}

public function begin():void{
dispatchDataTimer.start();

}

public function end():void
{

dispatchDataTimer.stop();
}
private function generateData(event:Event):void
{

if(!opened)
{

var open:Event = new Event(Event.OPEN);
dispatchEvent(open);
opened = true;

}
else if(position + chunkSize < fileSize)
{

for(var i:int = 0; i <= chunkSize; i++)
{

writeUTFBytes('A');
}
//Set position back to the start of the new data
this.position -= chunkSize;
var progress:ProgressEvent =

new ProgressEvent(ProgressEvent.PROGRESS, false, false, bytesAvailable,
bytesAvailable + chunkSize);

dispatchEvent(progress)

193HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

}
else
{

var complete:Event = new Event(Event.COMPLETE);
dispatchEvent(complete);

}
}
 //IEventDispatcher implementation
public function addEventListener(type:String, listener:Function,

useCapture:Boolean=false, priority:int=0, useWeakReference:Boolean=false):void
{

dispatcher.addEventListener(type, listener, useCapture, priority, useWeakReference);
}

public function removeEventListener(type:String, listener:Function,

useCapture:Boolean=false):void
{

dispatcher.removeEventListener(type, listener, useCapture);
}

public function dispatchEvent(event:Event):Boolean
{

return dispatcher.dispatchEvent(event);
}

public function hasEventListener(type:String):Boolean
{

return dispatcher.hasEventListener(type);
}

public function willTrigger(type:String):Boolean
{

return dispatcher.willTrigger(type);
}

}
}

Note: Because the AsyncDataProvider class in the example extends ByteArray, it cannot also extend EventDispatcher. To

implement the IEventDispatcher interface, the class uses an internal EventDispatcher object and forwards the

IEventDispatcher method calls to that internal object. You could also extend EventDispatcher and implement IDataInput

(or implement both interfaces).

The asynchronous IFilePromise implementation is almost identical to the synchronous implementation. The main

differences are that isAsync returns true and that the open() method returns an asynchronous data object:

194HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Drag and drop in AIR

Last updated 9/28/2011

package
{

import flash.desktop.IFilePromise;
import flash.events.ErrorEvent;
import flash.events.EventDispatcher;
import flash.utils.IDataInput;

public class AsynchronousFilePromise extends EventDispatcher implements IFilePromise
{

private var fileGenerator:AsyncDataProvider;
private const fileSize:int = 5000; //size of file data
private var filePath:String = "AsynchronousFile.txt";

public function get relativePath():String
{

return filePath;
}

public function get isAsync():Boolean
{

return true;
}

public function open():IDataInput
{

fileGenerator = new AsyncDataProvider();
fileGenerator.fileSize = fileSize;
fileGenerator.begin();
return fileGenerator;

}

public function close():void
{

fileGenerator.end();
}

public function reportError(e:ErrorEvent):void
{

trace("Something went wrong: " + e.errorID + " - " + e.type + ", " + e.text);
}

}
}

195

Last updated 9/28/2011

Chapter 13: Copy and paste

Flash Player 10 and later, Adobe AIR 1.0 and later

Use the classes in the clipboard API to copy information to and from the system clipboard. The data formats that can

be transferred into or out of an application running in Adobe® Flash® Player or Adobe® AIR® include:

• Text

• HTML-formatted text

• Rich Text Format data

• Serialized objects

• Object references (valid only within the originating application)

• Bitmaps (AIR only)

• Files (AIR only)

• URL strings (AIR only)

Basics of copy-and-paste

Flash Player 10 and later, Adobe AIR 1.0 and later

The copy-and-paste API contains the following classes.

The static Clipboard.generalClipboard property represents the operating system clipboard. The Clipboard class

provides methods for reading and writing data to clipboard objects.

The HTMLLoader class (in AIR) and the TextField class implement default behavior for the normal copy and paste

keyboard shortcuts. To implement copy and paste shortcut behavior for custom components, you can listen for these

keystrokes directly. You can also use native menu commands along with key equivalents to respond to the keystrokes

indirectly.

Different representations of the same information can be made available in a single Clipboard object to increase the

ability of other applications to understand and use the data. For example, an image might be included as image data,

a serialized Bitmap object, and as a file. Rendering of the data in a format can be deferred so that the format is not

actually created until the data in that format is read.

Package Classes

flash.desktop • Clipboard

• ClipboardFormats

• ClipboardTransferMode

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/Clipboard.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/ClipboardFormats.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/desktop/ClipboardTransferMode.html

196HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Copy and paste

Last updated 9/28/2011

Reading from and writing to the system clipboard

Flash Player 10 and later, Adobe AIR 1.0 and later

To read the operating system clipboard, call the getData() method of the Clipboard.generalClipboard object,

passing in the name of the format to read:

import flash.desktop.Clipboard;
import flash.desktop.ClipboardFormats;

if(Clipboard.generalClipboard.hasFormat(ClipboardFormats.TEXT_FORMAT)){
 var text:String = Clipboard.generalClipboard.getData(ClipboardFormats.TEXT_FORMAT);
 }

Note: Content running in Flash Player or in a non-application sandbox in AIR can call the getData() method only in

an event handler for a paste event. In other words, only code running in the AIR application sandbox can call the

getData() method outside of a paste event handler.

To write to the clipboard, add the data to the Clipboard.generalClipboard object in one or more formats. Any

existing data in the same format is overwritten automatically. Nevertheless, it is a good practice to also clear the system

clipboard before writing new data to it to make sure that unrelated data in any other formats is also deleted.

import flash.desktop.Clipboard;
import flash.desktop.ClipboardFormats;

 var textToCopy:String = "Copy to clipboard.";
 Clipboard.generalClipboard.clear();
 Clipboard.generalClipboard.setData(ClipboardFormats.TEXT_FORMAT, textToCopy, false);

Note: Content running in Flash Player or in a non-application sandbox in AIR can call the setData() method only in

an event handler for a user event, such as a keyboard or mouse event, or a copy or cut event. In other words, only code

running in the AIR application sandbox can call the setData() method outside of a user event handler.

HTML copy and paste in AIR

Adobe AIR 1.0 and later

The HTML environment in Adobe AIR provides its own set of events and default behavior for copy and paste. Only

code running in the application sandbox can access the system clipboard directly through the AIR

Clipboard.generalClipboard object. JavaScript code in a non-application sandbox can access the clipboard

through the event object dispatched in response to one of the copy or paste events dispatched by an element in an

HTML document.

Copy and paste events include: copy, cut, and paste. The object dispatched for these events provides access to the

clipboard through the clipboardData property.

197HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Copy and paste

Last updated 9/28/2011

Default behavior

Adobe AIR 1.0 and later

By default, AIR copies selected items in response to the copy command, which can be generated either by a keyboard

shortcut or a context menu. Within editable regions, AIR cuts text in response to the cut command or pastes text to

the cursor or selection in response to the paste command.

To prevent the default behavior, your event handler can call the preventDefault() method of the dispatched event

object.

Using the clipboardData property of the event object

Adobe AIR 1.0 and later

The clipboardData property of the event object dispatched as a result of one of the copy or paste events allows you

to read and write clipboard data.

To write to the clipboard when handling a copy or cut event, use the setData() method of the clipboardData object,

passing in the data to copy and the MIME type:

 function customCopy(event){
 event.clipboardData.setData("text/plain", "A copied string.");
 }

To access the data that is being pasted, you can use the getData() method of the clipboardData object, passing in

the MIME type of the data format. The available formats are reported by the types property.

 function customPaste(event){
 var pastedData = event.clipboardData("text/plain");
 }

The getData() method and the types property can only be accessed in the event object dispatched by the paste

event.

The following example illustrates how to override the default copy and paste behavior in an HTML page. The copy

event handler italicizes the copied text and copies it to the clipboard as HTML text. The cut event handler copies the

selected data to the clipboard and removes it from the document. The paste handler inserts the clipboard contents as

HTML and styles the insertion as bold text.

198HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Copy and paste

Last updated 9/28/2011

 <html>
 <head>
 <title>Copy and Paste</title>
 <script language="javascript" type="text/javascript">
 function onCopy(event){
 var selection = window.getSelection();
 event.clipboardData.setData("text/html","<i>" + selection + "</i>");
 event.preventDefault();
 }

 function onCut(event){
 var selection = window.getSelection();
 event.clipboardData.setData("text/html","<i>" + selection + "</i>");
 var range = selection.getRangeAt(0);
 range.extractContents();

 event.preventDefault();
 }

 function onPaste(event){
 var insertion = document.createElement("b");
 insertion.innerHTML = event.clipboardData.getData("text/html");
 var selection = window.getSelection();
 var range = selection.getRangeAt(0);
 range.insertNode(insertion);
 event.preventDefault();
 }
 </script>
 </head>
 <body onCopy="onCopy(event)"
 onPaste="onPaste(event)"
 onCut="onCut(event)">
 <p>Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium
 doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore
 veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam
 voluptatem quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur
 magni dolores eos qui ratione voluptatem sequi nesciunt.</p>
 </body>
 </html>

Clipboard data formats

Flash Player 10 and later, Adobe AIR 1.0 and later

Clipboard formats describe the data placed in a Clipboard object. Flash Player or AIR automatically translates the

standard data formats between ActionScript data types and system clipboard formats. In addition, application objects

can be transferred within and between ActionScript-based applications using application-defined formats.

A Clipboard object can contain representations of the same information in different formats. For example, a Clipboard

object representing a Sprite could include a reference format for use within the same application, a serialized format

for use by another application running in Flash Player or AIR, a bitmap format for use by an image editor, and a file

list format, perhaps with deferred rendering to encode a PNG file, for copying or dragging a representation of the

Sprite to the file system.

199HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Copy and paste

Last updated 9/28/2011

Standard data formats

Flash Player 10 and later, Adobe AIR 1.0 and later

The constants defining the standard format names are provided in the ClipboardFormats class:

When copying and pasting data in response to a copy, cut, or paste event in HTML content hosted in an AIR

application, MIME types must be used instead of the ClipboardFormat strings. The valid data MIME types are:

Note: Rich text format data is not available from the clipboardData property of the event object dispatched as a result

of a paste event within HTML content.

Custom data formats

Flash Player 10 and later, Adobe AIR 1.0 and later

You can use application-defined custom formats to transfer objects as references or as serialized copies. References are

valid only within the same application. Serialized objects can be transferred between applications, but can be used only

with objects that remain valid when serialized and deserialized. Objects can usually be serialized if their properties are

either simple types or serializable objects.

To add a serialized object to a Clipboard object, set the serializable parameter to true when calling the

Clipboard.setData() method. The format name can be one of the standard formats or an arbitrary string defined

by your application.

Transfer modes

Flash Player 10 and later, Adobe AIR 1.0 and later

When an object is written to the clipboard using a custom data format, the object data can be read from the clipboard

either as a reference or as a serialized copy of the original object. There are four transfer modes that determine whether

objects are transferred as references or as serialized copies:

Constant Description

TEXT_FORMAT Text-format data is translated to and from the ActionScript String class.

HTML_FORMAT Text with HTML markup.

RICH_TEXT_FORMAT Rich-text-format data is translated to and from the ActionScript ByteArray class. The RTF markup is not

interpreted or translated in any way.

BITMAP_FORMAT (AIR only) Bitmap-format data is translated to and from the ActionScript BitmapData class.

FILE_LIST_FORMAT (AIR only) File-list-format data is translated to and from an array of ActionScript File objects.

URL_FORMAT (AIR only) URL-format data is translated to and from the ActionScript String class.

MIME type Description

Text "text/plain"

URL "text/uri-list"

Bitmap "image/x-vnd.adobe.air.bitmap"

File list "application/x-vnd.adobe.air.file-list"

200HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Copy and paste

Last updated 9/28/2011

Reading and writing custom data formats

Flash Player 10 and later, Adobe AIR 1.0 and later

When writing an object to the clipboard, you can use any string that does not begin with the reserved prefixes air: or

flash: for the format parameter. Use the same string as the format to read the object. The following examples

illustrate how to read and write objects to the clipboard:

 public function createClipboardObject(object:Object):Clipboard{
 var transfer:Clipboard = Clipboard.generalClipboard;
 transfer.setData("object", object, true);
 }

 function createClipboardObject(object){
 var transfer = new air.Clipboard();
 transfer.setData("object", object, true);
 }

To extract a serialized object from the clipboard object (after a drop or paste operation), use the same format name

and the CLONE_ONLY or CLONE_PREFFERED transfer modes.

 var transfer:Object = clipboard.getData("object", ClipboardTransferMode.CLONE_ONLY);

 var transfer = clipboard.getData("object", air.ClipboardTransferMode.CLONE_ONLY);

A reference is always added to the Clipboard object. To extract the reference from the clipboard object (after a drop or

paste operation), instead of the serialized copy, use the ORIGINAL_ONLY or ORIGINAL_PREFFERED transfer modes:

 var transferredObject:Object =
 clipboard.getData("object", ClipboardTransferMode.ORIGINAL_ONLY);

 var transferredObject =
 clipboard.getData("object", air.ClipboardTransferMode.ORIGINAL_ONLY);

References are valid only if the Clipboard object originates from the current application. Use the

ORIGINAL_PREFFERED transfer mode to access the reference when it is available, and the serialized clone when the

reference is not available.

Deferred rendering

Flash Player 10 and later, Adobe AIR 1.0 and later

If creating a data format is computationally expensive, you can use deferred rendering by supplying a function that

supplies the data on demand. The function is called only if a receiver of the drop or paste operation requests data in

the deferred format.

Transfer mode Description

ClipboardTransferModes.ORIGINAL_ONLY Only a reference is returned. If no reference is available, a null value is returned.

ClipboardTransferModes.ORIGINAL_PREFFERED A reference is returned, if available. Otherwise a serialized copy is returned.

ClipboardTransferModes.CLONE_ONLY Only a serialized copy is returned. If no serialized copy is available, a null value is

returned.

ClipboardTransferModes.CLONE_PREFFERED A serialized copy is returned, if available. Otherwise a reference is returned.

201HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Copy and paste

Last updated 9/28/2011

The rendering function is added to a Clipboard object using the setDataHandler() method. The function must

return the data in the appropriate format. For example, if you called

setDataHandler(ClipboardFormat.TEXT_FORMAT, writeText), then the writeText() function must return a

string.

If a data format of the same type is added to a Clipboard object with the setData() method, that data takes precedence

over the deferred version (the rendering function is never called). The rendering function may or may not be called

again if the same clipboard data is accessed a second time.

Note: On Mac OS X, deferred rendering works only with custom data formats. With standard data formats, the rendering

function is called immediately.

Pasting text using a deferred rendering function

Flash Player 10 and later, Adobe AIR 1.0 and later

The following example illustrates how to implement a deferred rendering function.

When the user presses the Copy button, the application clears the system clipboard to ensure that no data is left over

from previous clipboard operations. The setDataHandler() method then sets the renderData() function as the

clipboard renderer.

When the user selects the Paste command from the context menu of the destination text field, the application accesses

the clipboard and sets the destination text. Since the text data format on the clipboard has been set with a function

rather than a string, the clipboard calls the renderData() function. The renderData() function returns the text in

the source text, which is then assigned to the destination text.

Notice that if you edit the source text before pressing the Paste button, the edit will be reflected in the pasted text, even

when the edit occurs after the copy button was pressed. This is because the rendering function doesn’t copy the source

text until the paste button is pressed. (When using deferred rendering in a real application, you might want to store or

protect the source data in some way to prevent this problem.)

Flash example

 package {
import flash.desktop.Clipboard;
import flash.desktop.ClipboardFormats;
import flash.desktop.ClipboardTransferMode;
import flash.display.Sprite;
import flash.text.TextField;
import flash.text.TextFormat;
import flash.text.TextFieldType;
import flash.events.MouseEvent;
import flash.events.Event;
public class DeferredRenderingExample extends Sprite
{
 private var sourceTextField:TextField;

private var destination:TextField;
private var copyText:TextField;
public function DeferredRenderingExample():void
{

sourceTextField = createTextField(10, 10, 380, 90);
sourceTextField.text = "Neque porro quisquam est qui dolorem "

+ "ipsum quia dolor sit amet, consectetur, adipisci velit.";

copyText = createTextField(10, 110, 35, 20);

202HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Copy and paste

Last updated 9/28/2011

copyText.htmlText = "Copy";
copyText.addEventListener(MouseEvent.CLICK, onCopy);

destination = createTextField(10, 145, 380, 90);
destination.addEventListener(Event.PASTE, onPaste);

}
private function createTextField(x:Number, y:Number, width:Number,

height:Number):TextField
{

var newTxt:TextField = new TextField();
newTxt.x = x;
newTxt.y = y;
newTxt.height = height;
newTxt.width = width;
newTxt.border = true;
newTxt.multiline = true;
newTxt.wordWrap = true;
newTxt.type = TextFieldType.INPUT;
addChild(newTxt);
return newTxt;

}
public function onCopy(event:MouseEvent):void
{

Clipboard.generalClipboard.clear();
Clipboard.generalClipboard.setDataHandler(ClipboardFormats.TEXT_FORMAT,

renderData);
}
public function onPaste(event:Event):void
{

sourceTextField.text =
Clipboard.generalClipboard.getData(ClipboardFormats.TEXT_FORMAT).toString;

}
public function renderData():String
{

trace("Rendering data");
var sourceStr:String = sourceTextField.text;
if (sourceTextField.selectionEndIndex >

 sourceTextField.selectionBeginIndex)
{

return sourceStr.substring(sourceTextField.selectionBeginIndex,
sourceTextField.selectionEndIndex);

}
else
{

return sourceStr;
}

}
}

}

203HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Copy and paste

Last updated 9/28/2011

Flex example

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute" width="326"
height="330" applicationComplete="init()">

<mx:Script>
<![CDATA[
import flash.desktop.Clipboard;
import flash.desktop.ClipboardFormats;

public function init():void
{

destination.addEventListener("paste", doPaste);
}

public function doCopy():void
{

Clipboard.generalClipboard.clear();
Clipboard.generalClipboard.setDataHandler(ClipboardFormats.TEXT_FORMAT, renderData);

}
public function doPaste(event:Event):void
{

destination.text =
Clipboard.generalClipboard.getData(ClipboardFormats.TEXT_FORMAT).toString;

}

public function renderData():String{

trace("Rendering data");
return source.text;

}
]]>
</mx:Script>
<mx:Label x="10" y="10" text="Source"/>
<mx:TextArea id="source" x="10" y="36" width="300" height="100">

<mx:text>Neque porro quisquam est qui dolorem ipsum quia dolor sit amet, consectetur,
adipisci velit.</mx:text>

</mx:TextArea>
<mx:Label x="10" y="181" text="Destination"/>
<mx:TextArea id="destination" x="12" y="207" width="300" height="100"/>
<mx:Button click="doCopy();" x="91" y="156" label="Copy"/>

 </mx:Application>

204

Last updated 9/28/2011

Chapter 14: Working with local SQL
databases in AIR

Adobe AIR 1.0 and later

Adobe® AIR® includes the capability of creating and working with local SQL databases. The runtime includes a SQL

database engine with support for many standard SQL features, using the open source SQLite database system. A local

SQL database can be used for storing local, persistent data. For example, it can be used for application data, application

user settings, documents, or any other type of data that you want your application to save locally.

About local SQL databases

Adobe AIR 1.0 and later

For a quick explanation and code examples of using SQL databases, see the following quick start articles on the Adobe

Developer Connection:

• Working asynchronously with a local SQL database

• Working synchronously with a local SQL database

• Using an encrypted database

Adobe AIR includes a SQL-based relational database engine that runs within the runtime, with data stored locally in

database files on the computer on which the AIR application runs (for example, on the computer’s hard drive). Because

the database runs and data files are stored locally, a database can be used by an AIR application regardless of whether

a network connection is available. Thus, the runtime’s local SQL database engine provides a convenient mechanism

for storing persistent, local application data, particularly if you have experience with SQL and relational databases.

Uses for local SQL databases

Adobe AIR 1.0 and later

The AIR local SQL database functionality can be used for any purpose for which you might want to store application

data on a user’s local computer. Adobe AIR includes several mechanisms for storing data locally, each of which has

different advantages. The following are some possible uses for a local SQL database in your AIR application:

• For a data-oriented application (for example an address book), a database can be used to store the main application data.

• For a document-oriented application, where users create documents to save and possibly share, each document

could be saved as a database file, in a user-designated location. (Note, however, that unless the database is encrypted

any AIR application would be able to open the database file. Encryption is recommended for potentially sensitive

documents.)

• For a network-aware application, a database can be used to store a local cache of application data, or to store data

temporarily when a network connection isn’t available. You could create a mechanism for synchronizing the local

database with the network data store.

http://www.adobe.com/go/learn_air_qs_SQLasynch_html_en
http://www.adobe.com/go/learn_air_qs_SQLsynch_html_en
http://www.adobe.com/go/learn_air_qs_encrypteddb_html_en

205HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

• For any application, a database can be used to store individual users’ application settings, such as user options or

application information like window size and position.

More Help topics

Christophe Coenraets: Employee Directory on AIR for Android

Raymond Camden: jQuery and AIR - Moving from web page to application

About AIR databases and database files

Adobe AIR 1.0 and later

An individual Adobe AIR local SQL database is stored as a single file in the computer’s file system. The runtime

includes the SQL database engine that manages creation and structuring of database files and manipulation and

retrieval of data from a database file. The runtime does not specify how or where database data is stored on the file

system; rather, each database is stored completely within a single file. You specify the location in the file system where

the database file is stored. A single AIR application can access one or many separate databases (that is, separate

database files). Because the runtime stores each database as a single file on the file system, you can locate your database

as needed by the design of your application and file access constraints of the operating system. Each user can have a

separate database file for their specific data, or a database file can be accessed by all application users on a single

computer for shared data. Because the data is local to a single computer, data is not automatically shared among users

on different computers. The local SQL database engine doesn’t provide any capability to execute SQL statements

against a remote or server-based database.

About relational databases

Adobe AIR 1.0 and later

A relational database is a mechanism for storing (and retrieving) data on a computer. Data is organized into tables:

rows represent records or items, and columns (sometimes called “fields”) divide each record into individual values.

For example, an address book application could contain a “friends” table. Each row in the table would represent a

single friend stored in the database. The table’s columns would represent data such as first name, last name, birth date,

and so forth. For each friend row in the table, the database stores a separate value for each column.

Relational databases are designed to store complex data, where one item is associated with or related to items of

another type. In a relational database, any data that has a one-to-many relationship—where a single record can be

related to multiple records of a different type—should be divided among different tables. For example, suppose you

want your address book application to store multiple phone numbers for each friend; this is a one-to-many

relationship. The “friends” table would contain all the personal information for each friend. A separate “phone

numbers” table would contain all the phone numbers for all the friends.

In addition to storing the data about friends and phone numbers, each table would need a piece of data to keep track

of the relationship between the two tables—to match individual friend records with their phone numbers. This data is

known as a primary key—a unique identifier that distinguishes each row in a table from other rows in that table. The

primary key can be a “natural key,” meaning it’s one of the items of data that naturally distinguishes each record in a

table. In the “friends” table, if you knew that none of your friends share a birth date, you could use the birth date

column as the primary key (a natural key) of the “friends” table. If there isn’t a natural key, you would create a separate

primary key column such as a “friend id” —an artificial value that the application uses to distinguish between rows.

http://coenraets.org/blog/air-for-android-samples/employee-directory-for-android/
http://insideria.com/2009/09/jquery-and-air---moving-from-w-1.html

206HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Using a primary key, you can set up relationships between multiple tables. For example, suppose the “friends” table

has a column “friend id” that contains a unique number for each row (each friend). The related “phone numbers” table

can be structured with two columns: one with the “friend id” of the friend to whom the phone number belongs, and

one with the actual phone number. That way, no matter how many phone numbers a single friend has, they can all be

stored in the “phone numbers” table and can be linked to the related friend using the “friend id” primary key. When a

primary key from one table is used in a related table to specify the connection between the records, the value in the

related table is known as a foreign key. Unlike many databases, the AIR local database engine does not allow you to

create foreign key constraints, which are constraints that automatically check that an inserted or updated foreign key

value has a corresponding row in the primary key table. Nevertheless, foreign key relationships are an important part

of the structure of a relational database, and foreign keys should be used when creating relationships between tables in

your database.

About SQL

Adobe AIR 1.0 and later

Structured Query Language (SQL) is used with relational databases to manipulate and retrieve data. SQL is a descriptive

language rather than a procedural language. Instead of giving the computer instructions on how it should retrieve data,

a SQL statement describes the set of data you want. The database engine determines how to retrieve that data.

The SQL language has been standardized by the American National Standards Institute (ANSI). The Adobe AIR local

SQL database supports most of the SQL-92 standard.

For specific descriptions of the SQL language supported in Adobe AIR, see “SQL support in local databases” on

page 341.

About SQL database classes

Adobe AIR 1.0 and later

To work with local SQL databases in JavaScript, you use instances of the following classes. (Note that you need to load

the file AIRAliases.js in your HTML document in order to use the air.* aliases for these classes):

To obtain schema information describing the structure of a database, you use these classes:

Class Description

air.SQLConnection Provides the means to create and open databases (database files), as well as methods for performing

database-level operations and for controlling database transactions.

air.SQLStatement Represents a single SQL statement (a single query or command) that is executed on a database, including

defining the statement text and setting parameter values.

air.SQLResult Provides a way to get information about or results from executing a statement, such as the result rows from

a SELECT statement, the number of rows affected by an UPDATE or DELETE statement, and so forth.

Class Description

air.SQLSchemaResult Serves as a container for database schema results generated by calling the

SQLConnection.loadSchema() method.

air.SQLTableSchema Provides information describing a single table in a database.

207HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

The following classes provide constants that are used with the SQLConnection class:

In addition, the following classes represent the events (and supporting constants) that you use:

Finally, the following classes provide information about database operation errors:

About synchronous and asynchronous execution modes

Adobe AIR 1.0 and later

When you’re writing code to work with a local SQL database, you specify that database operations execution in one of

two execution modes: asynchronous or synchronous execution mode. In general, the code examples show how to

perform each operation in both ways, so that you can use the example that’s most appropriate for your needs.

air.SQLViewSchema Provides information describing a single view in a database.

air.SQLIndexSchema Provides information describing a single column of a table or view in a database.

air.SQLTriggerSchema Provides information describing a single trigger in a database.

Class Description

air.SQLMode Defines a set of constants representing the possible values for the openMode parameter of the

SQLConnection.open() and SQLConnection.openAsync() methods.

air.SQLColumnNameStyle Defines a set of constants representing the possible values for the SQLConnection.columnNameStyle

property.

air.SQLTransactionLockType Defines a set of constants representing the possible values for the option parameter of the

SQLConnection.begin() method.

air.SQLCollationType Defines a set of constants representing the possible values for the

SQLColumnSchema.defaultCollationType property and the defaultCollationType parameter

of the SQLColumnSchema() constructor.

Class Description

air.SQLEvent Defines the events that a SQLConnection or SQLStatement instance dispatches when any of its operations

execute successfully. Each operation has an associated event type constant defined in the SQLEvent class.

air.SQLErrorEvent Defines the event that a SQLConnection or SQLStatement instance dispatches when any of its operations

results in an error.

air.SQLUpdateEvent Defines the event that a SQLConnection instances dispatches when table data in one of its connected

databases changes as a result of an INSERT, UPDATE, or DELETE SQL statement being executed.

Class Description

air.SQLError Provides information about a database operation error, including the operation that was being attempted

and the cause of the failure.

air.SQLErrorOperation Defines a set of constants representing the possible values for the SQLError class’s operation property,

which indicates the database operation that resulted in an error.

Class Description

208HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

In asynchronous execution mode, you give the runtime an instruction and the runtime dispatches an event when your

requested operation completes or fails. First you tell the database engine to perform an operation. The database engine

does its work in the background while the application continues running. Finally, when the operation is completed (or

when it fails) the database engine dispatches an event. Your code, triggered by the event, carries out subsequent

operations. This approach has a significant benefit: the runtime performs the database operations in the background

while the main application code continues executing. If the database operation takes a notable amount of time, the

application continues to run. Most importantly, the user can continue to interact with it without the screen freezing.

Nevertheless, asynchronous operation code can be more complex to write than other code. This complexity is usually

in cases where multiple dependent operations must be divided up among various event listener methods.

Conceptually, it is simpler to code operations as a single sequence of steps—a set of synchronous operations—rather

than a set of operations split into several event listener methods. In addition to asynchronous database operations,

Adobe AIR also allows you to execute database operations synchronously. In synchronous execution mode, operations

don’t run in the background. Instead they run in the same execution sequence as all other application code. You tell

the database engine to perform an operation. The code then pauses at that point while the database engine does its

work. When the operation completes, execution continues with the next line of your code.

Whether operations execute asynchronously or synchronously is set at the SQLConnection level. Using a single

database connection, you can’t execute some operations or statements synchronously and others asynchronously. You

specify whether a SQLConnection operates in synchronous or asynchronous execution mode by calling a

SQLConnection method to open the database. If you call SQLConnection.open() the connection operates in

synchronous execution mode, and if you call SQLConnection.openAsync() the connection operates in

asynchronous execution mode. Once a SQLConnection instance is connected to a database using open() or

openAsync(), it is fixed to synchronous or asynchronous execution mode unless you close and reopen the connection

to the database.

Each execution mode has benefits. While most aspects of each mode are similar, there are some differences you’ll want

to keep in mind when working in each mode. For more information on these topics, and suggestions for working in

each mode, see “Using synchronous and asynchronous database operations” on page 232.

Creating and modifying a database

Adobe AIR 1.0 and later

Before your application can add or retrieve data, there must be a database with tables defined in it that your application

can access. Described here are the tasks of creating a database and creating the data structure within a database. While

these tasks are less frequently used than data insertion and retrieval, they are necessary for most applications.

More Help topics

Mind the Flex: Updating an existing AIR database

http://www.mindtheflex.com/?p=83

209HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Creating a database

Adobe AIR 1.0 and later

To create a database file, you first create a SQLConnection instance. You call its open() method to open it in

synchronous execution mode, or its openAsync() method to open it in asynchronous execution mode. The open()

and openAsync() methods are used to open a connection to a database. If you pass a File instance that refers to a non-

existent file location for the reference parameter (the first parameter), the open() or openAsync() method creates

a database file at that file location and open a connection to the newly created database.

Whether you call the open() method or the openAsync() method to create a database, the database file’s name can

be any valid filename, with any filename extension. If you call the open() or openAsync() method with null for the

reference parameter, a new in-memory database is created rather than a database file on disk.

The following code listing shows the process of creating a database file (a new database) using asynchronous execution

mode. In this case, the database file is saved in the “Pointing to the application storage directory” on page 149, with the

filename “DBSample.db”:

// Include AIRAliases.js to use air.* shortcuts

var conn = new air.SQLConnection();

conn.addEventListener(air.SQLEvent.OPEN, openHandler);
conn.addEventListener(air.SQLErrorEvent.ERROR, errorHandler);

// The database file is in the application storage directory
var folder = air.File.applicationStorageDirectory;
var dbFile = folder.resolvePath("DBSample.db");

conn.openAsync(dbFile);

function openHandler(event)
{

air.trace("the database was created successfully");
}

function errorHandler(event)
{

air.trace("Error message:", event.error.message);
air.trace("Details:", event.error.details);

}

Note: Although the File class lets you point to a specific native file path, doing so can lead to applications that will not

work across platforms. For example, the path C:\Documents and Settings\joe\test.db only works on Windows. For these

reasons, it is best to use the static properties of the File class such as File.applicationStorageDirectory, as well as

the resolvePath() method (as shown in the previous example). For more information, see “Paths of File objects” on

page 147.

To execute operations synchronously, when you open a database connection with the SQLConnection instance, call

the open() method. The following example shows how to create and open a SQLConnection instance that executes its

operations synchronously:

210HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

// Include AIRAliases.js to use air.* shortcuts

var conn = new air.SQLConnection();

// The database file is in the application storage directory
var folder = air.File.applicationStorageDirectory;
var dbFile = folder.resolvePath("DBSample.db");

try
{

conn.open(dbFile);
air.trace("the database was created successfully");

}
catch (error)
{

air.trace("Error message:", error.message);
air.trace("Details:", error.details);

}

Creating database tables

Adobe AIR 1.0 and later

Creating a table in a database involves executing a SQL statement on that database, using the same process that you

use to execute a SQL statement such as SELECT, INSERT, and so forth. To create a table, you use a CREATE TABLE

statement, which includes definitions of columns and constraints for the new table. For more information about

executing SQL statements, see “Working with SQL statements” on page 214.

The following example demonstrates creating a table named “employees” in an existing database file, using

asynchronous execution mode. Note that this code assumes there is a SQLConnection instance named conn that is

already instantiated and is already connected to a database.

211HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

// Include AIRAliases.js to use air.* shortcuts

// ... create and open the SQLConnection instance named conn ...

var createStmt = new air.SQLStatement();
createStmt.sqlConnection = conn;

var sql =

"CREATE TABLE IF NOT EXISTS employees (" +
" empId INTEGER PRIMARY KEY AUTOINCREMENT, " +
" firstName TEXT, " +
" lastName TEXT, " +
" salary NUMERIC CHECK (salary > 0)" +
")";

createStmt.text = sql;

createStmt.addEventListener(air.SQLEvent.RESULT, createResult);
createStmt.addEventListener(air.SQLErrorEvent.ERROR, createError);

createStmt.execute();

function createResult(event)
{

air.trace("Table created");
}

function createError(event)
{

air.trace("Error message:", event.error.message);
air.trace("Details:", event.error.details);

}

The following example demonstrates how to create a table named “employees” in an existing database file, using

synchronous execution mode. Note that this code assumes there is a SQLConnection instance named conn that is

already instantiated and is already connected to a database.

212HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

// Include AIRAliases.js to use air.* shortcuts

// ... create and open the SQLConnection instance named conn ...

var createStmt = new air.SQLStatement();
createStmt.sqlConnection = conn;

var sql =

"CREATE TABLE IF NOT EXISTS employees (" +
" empId INTEGER PRIMARY KEY AUTOINCREMENT, " +
" firstName TEXT, " +
" lastName TEXT, " +
" salary NUMERIC CHECK (salary > 0)" +
")";

createStmt.text = sql;

try
{

createStmt.execute();
air.trace("Table created");

}
catch (error)
{

air.trace("Error message:", error.message);
air.trace("Details:", error.details);

}

Manipulating SQL database data

Adobe AIR 1.0 and later

There are some common tasks that you perform when you’re working with local SQL databases. These tasks include

connecting to a database, adding data to tables, and retrieving data from tables in a database. There are also several

issues you’ll want to keep in mind while performing these tasks, such as working with data types and handling errors.

Note that there are also several database tasks that are things you’ll deal with less frequently, but will often need to do

before you can perform these more common tasks. For example, before you can connect to a database and retrieve data

from a table, you’ll need to create the database and create the table structure in the database. Those less-frequent initial

setup tasks are discussed in “Creating and modifying a database” on page 208.

You can choose to perform database operations asynchronously, meaning the database engine runs in the background

and notifies you when the operation succeeds or fails by dispatching an event. You can also perform these operations

synchronously. In that case the database operations are performed one after another and the entire application

(including updates to the screen) waits for the operations to complete before executing other code. For more

information on working in asynchronous or synchronous execution mode, see “Using synchronous and asynchronous

database operations” on page 232.

213HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Connecting to a database

Adobe AIR 1.0 and later

Before you can perform any database operations, first open a connection to the database file. A SQLConnection

instance is used to represent a connection to one or more databases. The first database that is connected using a

SQLConnection instance is known as the “main” database. This database is connected using the open() method (for

synchronous execution mode) or the openAsync() method (for asynchronous execution mode).

If you open a database using the asynchronous openAsync() operation, register for the SQLConnection instance’s

open event in order to know when the openAsync() operation completes. Register for the SQLConnection instance’s

error event to determine if the operation fails.

The following example shows how to open an existing database file for asynchronous execution. The database file is

named “DBSample.db” and is located in the user’s “Pointing to the application storage directory” on page 149.

// Include AIRAliases.js to use air.* shortcuts

var conn = new air.SQLConnection();

conn.addEventListener(air.SQLEvent.OPEN, openHandler);
conn.addEventListener(air.SQLErrorEvent.ERROR, errorHandler);

// The database file is in the application storage directory
var folder = air.File.applicationStorageDirectory;
var dbFile = folder.resolvePath("DBSample.db");

conn.openAsync(dbFile, air.SQLMode.UPDATE);

function openHandler(event)
{

air.trace("the database opened successfully");
}

function errorHandler(event)
{

air.trace("Error message:", event.error.message);
air.trace("Details:", event.error.details);

}

The following example shows how to open an existing database file for synchronous execution. The database file is

named “DBSample.db” and is located in the user’s “Pointing to the application storage directory” on page 149.

214HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

// Include AIRAliases.js to use air.* shortcuts

var conn = new air.SQLConnection();

// The database file is in the application storage directory
var folder = air.File.applicationStorageDirectory;
var dbFile = folder.resolvePath("DBSample.db");

try
{

conn.open(dbFile, air.SQLMode.UPDATE);
air.trace("the database opened successfully");

}
catch (error)
{

air.trace("Error message:", error.message);
air.trace("Details:", error.details);

}

Notice that in the openAsync() method call in the asynchronous example, and the open() method call in the

synchronous example, the second argument is the constant SQLMode.UPDATE. Specifying SQLMode.UPDATE for the

second parameter (openMode) causes the runtime to dispatch an error if the specified file doesn’t exist. If you pass

SQLMode.CREATE for the openMode parameter (or if you leave the openMode parameter off), the runtime attempts to

create a database file if the specified file doesn’t exist. However, if the file exists it is opened, which is the same as if you

use SQLMode.Update. You can also specify SQLMode.READ for the openMode parameter to open an existing database

in a read-only mode. In that case data can be retrieved from the database but no data can be added, deleted, or changed.

Working with SQL statements

Adobe AIR 1.0 and later

An individual SQL statement (a query or command) is represented in the runtime as a SQLStatement object. Follow

these steps to create and execute a SQL statement:

Create a SQLStatement instance.

The SQLStatement object represents the SQL statement in your application.

var selectData = new air.SQLStatement();

Specify which database the query runs against.

To do this, set the SQLStatement object’s sqlConnection property to the SQLConnection instance that’s connected

with the desired database.

// A SQLConnection named "conn" has been created previously
selectData.sqlConnection = conn;

Specify the actual SQL statement.

Create the statement text as a String and assign it to the SQLStatement instance’s text property.

selectData.text = "SELECT col1, col2 FROM my_table WHERE col1 = :param1";

Define functions to handle the result of the execute operation (asynchronous execution mode only).

Use the addEventListener() method to register functions as listeners for the SQLStatement instance’s result and

error events.

215HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

// using listener methods and addEventListener()

selectData.addEventListener(air.SQLEvent.RESULT, resultHandler);
selectData.addEventListener(air.SQLErrorEvent.ERROR, errorHandler);

function resultHandler(event)
{

// do something after the statement execution succeeds
}

function errorHandler(event)
{

// do something after the statement execution fails
}

Alternatively, you can specify listener methods using a Responder object. In that case you create the Responder

instance and link the listener methods to it.

// using a Responder

var selectResponder = new air.Responder(onResult, onError);

function onResult(result)
{

// do something after the statement execution succeeds
}

function onError(error)
{

// do something after the statement execution fails
}

If the statement text includes parameter definitions, assign values for those parameters.

To assign parameter values, use the SQLStatement instance’s parameters associative array property.

selectData.parameters[":param1"] = 25;

Execute the SQL statement.

Call the SQLStatement instance’s execute() method.

// using synchronous execution mode
// or listener methods in asynchronous execution mode
selectData.execute();

Additionally, if you’re using a Responder instead of event listeners in asynchronous execution mode, pass the

Responder instance to the execute() method.

// using a Responder in asynchronous execution mode
selectData.execute(-1, selectResponder);

For specific examples that demonstrate these steps, see the following topics:

“Retrieving data from a database” on page 218

“Inserting data” on page 225

“Changing or deleting data” on page 228

216HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Using parameters in statements

Adobe AIR 1.0 and later

Using SQL statement parameters allows you to create a reusable SQL statement. When you use statement parameters,

values within the statement can change (such as values being added in an INSERT statement) but the basic statement

text remains unchanged. Consequently, using parameters provides performance benefits and makes it easier to code

an application.

Understanding statement parameters

Adobe AIR 1.0 and later

Frequently an application uses a single SQL statement multiple times in an application, with slight variation. For

example, consider an inventory-tracking application where a user can add new inventory items to the database. The

application code that adds an inventory item to the database executes a SQL INSERT statement that actually adds the

data to the database. However, each time the statement is executed there is a slight variation. Specifically, the actual

values that are inserted in the table are different because they are specific to the inventory item being added.

In cases where you have a SQL statement that’s used multiple times with different values in the statement, the best

approach is to use a SQL statement that includes parameters rather than literal values in the SQL text. A parameter is

a placeholder in the statement text that is replaced with an actual value each time the statement is executed. To use

parameters in a SQL statement, you create the SQLStatement instance as usual. For the actual SQL statement assigned

to the text property, use parameter placeholders rather than literal values. You then define the value for each

parameter by setting the value of an element in the SQLStatement instance’s parameters property. The parameters

property is an associative array, so you set a particular value using the following syntax:

statement.parameters[parameter_identifier] = value;

The parameter_identifier is a string if you’re using a named parameter, or an integer index if you’re using an unnamed

parameter.

Using named parameters

Adobe AIR 1.0 and later

A parameter can be a named parameter. A named parameter has a specific name that the database uses to match the

parameter value to its placeholder location in the statement text. A parameter name consists of the “:” or “@” character

followed by a name, as in the following examples:

:itemName
@firstName

The following code listing demonstrates the use of named parameters:

217HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

var sql =
"INSERT INTO inventoryItems (name, productCode)" +
"VALUES (:name, :productCode)";

var addItemStmt = new air.SQLStatement();
addItemStmt.sqlConnection = conn;
addItemStmt.text = sql;

// set parameter values
addItemStmt.parameters[":name"] = "Item name";
addItemStmt.parameters[":productCode"] = "12345";

addItemStmt.execute();

Using unnamed parameters

Adobe AIR 1.0 and later

As an alternative to using named parameters, you can also use unnamed parameters. To use an unnamed parameter

you denote a parameter in a SQL statement using a “?” character. Each parameter is assigned a numeric index,

according to the order of the parameters in the statement, starting with index 0 for the first parameter. The following

example demonstrates a version of the previous example, using unnamed parameters:

var sql =
"INSERT INTO inventoryItems (name, productCode)" +
"VALUES (?, ?)";

var addItemStmt = new air.SQLStatement();
addItemStmt.sqlConnection = conn;
addItemStmt.text = sql;

// set parameter values
addItemStmt.parameters[0] = "Item name";
addItemStmt.parameters[1] = "12345";

addItemStmt.execute();

Benefits of using parameters

Adobe AIR 1.0 and later

Using parameters in a SQL statement provides several benefits:

Better performance A SQLStatement instance that uses parameters can execute more efficiently compared to one that

dynamically creates the SQL text each time it executes. The performance improvement is because the statement is

prepared a single time and can then be executed multiple times using different parameter values, without needing to

recompile the SQL statement.

Explicit data typing Parameters are used to allow for typed substitution of values that are unknown at the time the SQL

statement is constructed. The use of parameters is the only way to guarantee the storage class for a value passed in to

the database. When parameters are not used, the runtime attempts to convert all values from their text representation

to a storage class based on the associated column's type affinity.

For more information on storage classes and column affinity, see “Data type support” on page 362.

Greater security The use of parameters helps prevent a malicious technique known as a SQL injection attack. In a SQL

injection attack, a user enters SQL code in a user-accessible location (for example, a data entry field). If application

218HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

code constructs a SQL statement by directly concatenating user input into the SQL text, the user-entered SQL code is

executed against the database. The following listing shows an example of concatenating user input into SQL text. Do

not use this technique:

// assume the variables "username" and "password"
// contain user-entered data

var sql =

"SELECT userId " +
"FROM users " +
"WHERE username = '" + username + "' " +
" AND password = '" + password + "'";

var statement = new air.SQLStatement();
statement.text = sql;

Using statement parameters instead of concatenating user-entered values into a statement's text prevents a SQL

injection attack. SQL injection can’t happen because the parameter values are treated explicitly as substituted values,

rather than becoming part of the literal statement text. The following is the recommended alternative to the previous

listing:

// assume the variables "username" and "password"
// contain user-entered data

var sql =

"SELECT userId " +
"FROM users " +
"WHERE username = :username " +
" AND password = :password";

var statement = new air.SQLStatement();
statement.text = sql;

// set parameter values
statement.parameters[":username"] = username;
statement.parameters[":password"] = password;

Retrieving data from a database

Adobe AIR 1.0 and later

Retrieving data from a database involves two steps. First, you execute a SQL SELECT statement, describing the set of

data you want from the database. Next, you access the retrieved data and display or manipulate it as needed by your

application.

Executing a SELECT statement

Adobe AIR 1.0 and later

To retrieve existing data from a database, you use a SQLStatement instance. Assign the appropriate SQL SELECT

statement to the instance’s text property, then call its execute() method.

For details on the syntax of the SELECT statement, see “SQL support in local databases” on page 341.

The following example demonstrates executing a SELECT statement to retrieve data from a table named “products,”

using asynchronous execution mode:

219HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

// Include AIRAliases.js to use air.* shortcuts

var selectStmt = new air.SQLStatement();

// A SQLConnection named "conn" has been created previously
selectStmt.sqlConnection = conn;

selectStmt.text = "SELECT itemId, itemName, price FROM products";

selectStmt.addEventListener(air.SQLEvent.RESULT, resultHandler);
selectStmt.addEventListener(air.SQLErrorEvent.ERROR, errorHandler);

selectStmt.execute();

function resultHandler(event)
{

var result = selectStmt.getResult();

var numResults = result.data.length;
for (i = 0; i < numResults; i++)
{

var row = result.data[i];
var output = "itemId: " + row.itemId;
output += "; itemName: " + row.itemName;
output += "; price: " + row.price;
air.trace(output);

}
}

function errorHandler(event)
{

// Information about the error is available in the
// event.error property, which is an instance of
// the SQLError class.

}

The following example demonstrates executing a SELECT statement to retrieve data from a table named “products,”

using synchronous execution mode:

220HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

// Include AIRAliases.js to use air.* shortcuts

var selectStmt = new air.SQLStatement();

// A SQLConnection named "conn" has been created previously
selectStmt.sqlConnection = conn;

selectStmt.text = "SELECT itemId, itemName, price FROM products";

try
{

selectStmt.execute();

var result = selectStmt.getResult();

var numResults = result.data.length;
for (i = 0; i < numResults; i++)
{

var row = result.data[i];
var output = "itemId: " + row.itemId;
output += "; itemName: " + row.itemName;
output += "; price: " + row.price;
air.trace(output);

}
}
catch (error)
{

// Information about the error is available in the
// error variable, which is an instance of
// the SQLError class.

}

In asynchronous execution mode, when the statement finishes executing, the SQLStatement instance dispatches a

result event (SQLEvent.RESULT) indicating that the statement was run successfully. Alternatively, if a Responder

object is passed as an argument to the execute() method, the Responder object’s result handler function is called. In

synchronous execution mode, execution pauses until the execute() operation completes, then continues on the next

line of code.

Accessing SELECT statement result data

Adobe AIR 1.0 and later

Once the SELECT statement has finished executing, the next step is to access the data that was retrieved. You retrieve

the result data from executing a SELECT statement by calling the SQLStatement object’s getResult() method:

var result = selectStatement.getResult();

The getResult() method returns a SQLResult object. The SQLResult object’s data property is an Array containing

the results of the SELECT statement:

var numResults = result.data.length;
for (var i = 0; i < numResults; i++)
{

// row is an Object representing one row of result data
var row = result.data[i];

}

221HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Each row of data in the SELECT result set becomes an Object instance contained in the data Array. That object has

properties whose names match the result set’s column names. The properties contain the values from the result set’s

columns. For example, suppose a SELECT statement specifies a result set with three columns named “itemId,”

“itemName,” and “price.” For each row in the result set, an Object instance is created with properties named itemId,

itemName, and price. Those properties contain the values from their respective columns.

The following code listing defines a SQLStatement instance whose text is a SELECT statement. The statement retrieves

rows containing the firstName and lastName column values of all the rows of a table named employees. This

example uses asynchronous execution mode. When the execution completes, the selectResult() method is called,

and the resulting rows of data are accessed using SQLStatement.getResult() and displayed using the trace()

method. Note that this listing assumes there is a SQLConnection instance named conn that has already been

instantiated and is already connected to the database. It also assumes that the “employees” table has already been

created and populated with data.

// Include AIRAliases.js to use air.* shortcuts

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var selectStmt = new air.SQLStatement();
selectStmt.sqlConnection = conn;

// define the SQL text
var sql =

"SELECT firstName, lastName " +
"FROM employees";

selectStmt.text = sql;

// register listeners for the result and error events
selectStmt.addEventListener(air.SQLEvent.RESULT, selectResult);
selectStmt.addEventListener(air.SQLErrorEvent.ERROR, selectError);

// execute the statement
selectStmt.execute();

function selectResult(event)
{

222HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

// access the result data
var result = selectStmt.getResult();

var numRows = result.data.length;
for (i = 0; i < numRows; i++)
{

var output = "";
for (columnName in result.data[i])
{

output += columnName + ": " + result.data[i][columnName] + "; ";
}
air.trace("row[" + i.toString() + "]\t", output);

}
}

function selectError(event)
{

air.trace("Error message:", event.error.message);
air.trace("Details:", event.error.details);

}

The following code listing demonstrates the same techniques as the preceding one, but uses synchronous execution

mode. The example defines a SQLStatement instance whose text is a SELECT statement. The statement retrieves rows

containing the firstName and lastName column values of all the rows of a table named employees. The resulting

rows of data are accessed using SQLStatement.getResult() and displayed using the trace() method. Note that this

listing assumes there is a SQLConnection instance named conn that has already been instantiated and is already

connected to the database. It also assumes that the “employees” table has already been created and populated with data.

223HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

// Include AIRAliases.js to use air.* shortcuts

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var selectStmt = new air.SQLStatement();
selectStmt.sqlConnection = conn;

// define the SQL text
var sql =

"SELECT firstName, lastName " +
"FROM employees";

selectStmt.text = sql;

try
{

// execute the statement
selectStmt.execute();

// access the result data
var result = selectStmt.getResult();

var numRows = result.data.length;
for (i = 0; i < numRows; i++)
{

var output = "";
for (columnName in result.data[i])
{

output += columnName + ": " + result.data[i][columnName] + "; ";
}
air.trace("row[" + i.toString() + "]\t", output);

}
}
catch (error)
{

air.trace("Error message:", error.message);
air.trace("Details:", error.details);

}

Defining the data type of SELECT result data

Adobe AIR 1.0 and later

By default, each row returned by a SELECT statement is created as an Object instance with properties named for the

result set's column names and with the value of each column as the value of its associated property. However, before

executing a SQL SELECT statement, you can set the itemClass property of the SQLStatement instance to a class. By

setting the itemClass property, each row returned by the SELECT statement is created as an instance of the designated

class. The runtime assigns result column values to property values by matching the column names in the SELECT result

set to the names of the properties in the itemClass class.

Any class assigned as an itemClass property value must have a constructor that does not require any parameters. In

addition, the class must have a single property for each column returned by the SELECT statement. It is considered an

error if a column in the SELECT list does not have a matching property name in the itemClass class.

224HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Retrieving SELECT results in parts

Adobe AIR 1.0 and later

By default, a SELECT statement execution retrieves all the rows of the result set at one time. Once the statement

completes, you usually process the retrieved data in some way, such as creating objects or displaying the data on the

screen. If the statement returns a large number of rows, processing all the data at once can be demanding for the

computer, which in turn will cause the user interface to not redraw itself.

You can improve the perceived performance of your application by instructing the runtime to return a specific number

of result rows at a time. Doing so causes the initial result data to return more quickly. It also allows you to divide the

result rows into sets, so that the user interface is updated after each set of rows is processed. Note that it’s only practical

to use this technique in asynchronous execution mode.

To retrieve SELECT results in parts, specify a value for the SQLStatement.execute() method’s first parameter (the

prefetch parameter). The prefetch parameter indicates the number of rows to retrieve the first time the statement

executes. When you call a SQLStatement instance’s execute() method, specify a prefetch parameter value and only

that many rows are retrieved:

// Include AIRAliases.js to use air.* shortcuts
var stmt = new air.SQLStatement();
stmt.sqlConnection = conn;

stmt.text = "SELECT ...";

stmt.addEventListener(air.SQLEvent.RESULT, selectResult);

stmt.execute(20); // only the first 20 rows (or fewer) are returned

The statement dispatches the result event, indicating that the first set of result rows is available. The resulting

SQLResult instance’s data property contains the rows of data, and its complete property indicates whether there are

additional result rows to retrieve. To retrieve additional result rows, call the SQLStatement instance’s next() method.

Like the execute() method, the next() method’s first parameter is used to indicate how many rows to retrieve the

next time the result event is dispatched.

function selectResult(event)
{

var result = stmt.getResult();
if (result.data != null)
{

// ... loop through the rows or perform other processing ...

if (!result.complete)
{

stmt.next(20); // retrieve the next 20 rows
}
else
{

stmt.removeEventListener(air.SQLEvent.RESULT, selectResult);
}

}
}

The SQLStatement dispatches a result event each time the next() method returns a subsequent set of result rows.

Consequently, the same listener function can be used to continue processing results (from next() calls) until all the

rows are retrieved.

225HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

For more information, see the descriptions for the SQLStatement.execute() method (the prefetch parameter

description) and the SQLStatement.next() method.

Inserting data

Adobe AIR 1.0 and later

Adding data to a database involves executing a SQL INSERT statement. Once the statement has finished executing, you

can access the primary key for the newly inserted row if the key was generated by the database.

Executing an INSERT statement

Adobe AIR 1.0 and later

To add data to a table in a database, you create and execute a SQLStatement instance whose text is a SQL INSERT

statement.

The following example uses a SQLStatement instance to add a row of data to the already-existing employees table. This

example demonstrates inserting data using asynchronous execution mode. Note that this listing assumes that there is

a SQLConnection instance named conn that has already been instantiated and is already connected to a database. It

also assumes that the “employees” table has already been created.

// Include AIRAliases.js to use air.* shortcuts

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var insertStmt = new air.SQLStatement();
insertStmt.sqlConnection = conn;

// define the SQL text
var sql =

"INSERT INTO employees (firstName, lastName, salary) " +
"VALUES ('Bob', 'Smith', 8000)";

insertStmt.text = sql;

// register listeners for the result and failure (status) events
insertStmt.addEventListener(air.SQLEvent.RESULT, insertResult);
insertStmt.addEventListener(air.SQLErrorEvent.ERROR, insertError);

// execute the statement
insertStmt.execute();

function insertResult(event)
{

air.trace("INSERT statement succeeded");
}

function insertError(event)
{

air.trace("Error message:", event.error.message);
air.trace("Details:", event.error.details);

}

226HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

The following example adds a row of data to the already-existing employees table, using synchronous execution mode.

Note that this listing assumes that there is a SQLConnection instance named conn that has already been instantiated

and is already connected to a database. It also assumes that the “employees” table has already been created.

// Include AIRAliases.js to use air.* shortcuts

// ... create and open the SQLConnection instance named conn ...

// create the SQL statement
var insertStmt = new air.SQLStatement();
insertStmt.sqlConnection = conn;

// define the SQL text
var sql =

"INSERT INTO employees (firstName, lastName, salary) " +
"VALUES ('Bob', 'Smith', 8000)";

insertStmt.text = sql;

try
{

// execute the statement
insertStmt.execute();

air.trace("INSERT statement succeeded");

}
catch (error)
{

air.trace("Error message:", error.message);
air.trace("Details:", error.details);

}

Retrieving a database-generated primary key of an inserted row

Adobe AIR 1.0 and later

Often after inserting a row of data into a table, your code needs to know a database-generated primary key or row

identifier value for the newly inserted row. For example, once you insert a row in one table, you might want to add

rows in a related table. In that case you would want to insert the primary key value as a foreign key in the related table.

The primary key of a newly inserted row can be retrieved using the SQLResult object associated with the statement

execution. This is the same object that’s used to access result data after a SELECT statement is executed. As with any

SQL statement, when the execution of an INSERT statement completes the runtime creates a SQLResult instance. You

access the SQLResult instance by calling the SQLStatement object’s getResult() method if you’re using an event

listener or if you’re using synchronous execution mode. Alternatively, if you’re using asynchronous execution mode

and you pass a Responder instance to the execute() call, the SQLResult instance is passed as an argument to the result

handler function. In any case, the SQLResult instance has a property, lastInsertRowID, that contains the row

identifier of the most-recently inserted row if the executed SQL statement is an INSERT statement.

The following example demonstrates accessing the primary key of an inserted row in asynchronous execution mode:

227HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

insertStmt.text = "INSERT INTO ...";

insertStmt.addEventListener(air.SQLEvent.RESULT, resultHandler);

insertStmt.execute();

function resultHandler(event)
{

// get the primary key
var result = insertStmt.getResult();

var primaryKey = result.lastInsertRowID;
// do something with the primary key

}

The following example demonstrates accessing the primary key of an inserted row in synchronous execution mode:

insertStmt.text = "INSERT INTO ...";

try
{

insertStmt.execute();

// get the primary key
var result = insertStmt.getResult();

var primaryKey = result.lastInsertRowID;
// do something with the primary key

}
catch (error)
{

// respond to the error
}

Note that the row identifier may or may not be the value of the column that is designated as the primary key column

in the table definition, according to the following rules:

• If the table is defined with a primary key column whose affinity (column data type) is INTEGER, the

lastInsertRowID property contains the value that was inserted into that row (or the value generated by the

runtime if it’s an AUTOINCREMENT column).

• If the table is defined with multiple primary key columns (a composite key) or with a single primary key column

whose affinity is not INTEGER, behind the scenes the database generates an integer row identifier value for the row.

That generated value is the value of the lastInsertRowID property.

• The value is always the row identifier of the most-recently inserted row. If an INSERT statement causes a trigger to

fire which in turn inserts a row, the lastInsertRowID property contains the row identifier of the last row inserted

by the trigger rather than the row created by the INSERT statement.

As a consequence of these rules, if you want to have an explicitly defined primary key column whose value is available

after an INSERT command through the SQLResult.lastInsertRowID property, the column must be defined as an

INTEGER PRIMARY KEY column. Even if your table does not include an explicit INTEGER PRIMARY KEY column, it is

equally acceptable to use the database-generated row identifier as a primary key for your table in the sense of defining

relationships with related tables. The row identifier column value is available in any SQL statement by using one of the

special column names ROWID, _ROWID_, or OID. You can create a foreign key column in a related table and use the row

228HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

identifier value as the foreign key column value just as you would with an explicitly declared INTEGER PRIMARY KEY

column. In that sense, if you are using an arbitrary primary key rather than a natural key, and as long as you don’t mind

the runtime generating the primary key value for you, it makes little difference whether you use an INTEGER PRIMARY

KEY column or the system-generated row identifier as a table’s primary key for defining a foreign key relationship with

between two tables.

For more information about primary keys and generated row identifiers, see “SQL support in local databases” on

page 341.

Changing or deleting data

Adobe AIR 1.0 and later

The process for executing other data manipulation operations is identical to the process used to execute a SQL SELECT

or INSERT statement, as described in “Working with SQL statements” on page 214. Simply substitute a different SQL

statement in the SQLStatement instance’s text property:

• To change existing data in a table, use an UPDATE statement.

• To delete one or more rows of data from a table, use a DELETE statement.

For descriptions of these statements, see “SQL support in local databases” on page 341.

Working with multiple databases

Adobe AIR 1.0 and later

Use the SQLConnection.attach() method to open a connection to an additional database on a SQLConnection

instance that already has an open database. You give the attached database a name using the name parameter in the

attach() method call. When writing statements to manipulate that database, you can then use that name in a prefix

(using the form database-name.table-name) to qualify any table names in your SQL statements, indicating to the

runtime that the table can be found in the named database.

You can execute a single SQL statement that includes tables from multiple databases that are connected to the same

SQLConnection instance. If a transaction is created on the SQLConnection instance, that transaction applies to all SQL

statements that are executed using the SQLConnection instance. This is true regardless of which attached database the

statement runs on.

Alternatively, you can also create multiple SQLConnection instances in an application, each of which is connected to

one or multiple databases. However, if you do use multiple connections to the same database keep in mind that a

database transaction isn’t shared across SQLConnection instances. Consequently, if you connect to the same database

file using multiple SQLConnection instances, you can’t rely on both connections’ data changes being applied in the

expected manner. For example, if two UPDATE or DELETE statements are run against the same database through

different SQLConnection instances, and an application error occurs after one operation takes place, the database data

could be left in an intermediate state that would not be reversible and might affect the integrity of the database (and

consequently the application).

229HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Handling database errors

Adobe AIR 1.0 and later

In general, database error handling is like other runtime error handling. You should write code that is prepared for

errors that may occur, and respond to the errors rather than leave it up to the runtime to do so. In a general sense, the

possible database errors can be divided into three categories: connection errors, SQL syntax errors, and constraint

errors.

Connection errors

Adobe AIR 1.0 and later

Most database errors are connection errors, and they can occur during any operation. Although there are strategies for

preventing connection errors, there is rarely a simple way to gracefully recover from a connection error if the database

is a critical part of your application.

Most connection errors have to do with how the runtime interacts with the operating system, the file system, and the

database file. For example, a connection error occurs if the user doesn’t have permission to create a database file in a

particular location on the file system. The following strategies help to prevent connection errors:

Use user-specific database files Rather than using a single database file for all users who use the application on a single

computer, give each user their own database file. The file should be located in a directory that’s associated with the

user’s account. For example, it could be in the application’s storage directory, the user’s documents folder, the user’s

desktop, and so forth.

Consider different user types Test your application with different types of user accounts, on different operating

systems. Don’t assume that the user has administrator permission on the computer. Also, don’t assume that the

individual who installed the application is the user who’s running the application.

Consider various file locations If you allow a user to specify where to save a database file or select a file to open,

consider the possible file locations that the users might use. In addition, consider defining limits on where users can

store (or from where they can open) database files. For example, you might only allow users to open files that are within

their user account’s storage location.

If a connection error occurs, it most likely happens on the first attempt to create or open the database. This means that

the user is unable to do any database-related operations in the application. For certain types of errors, such as read-

only or permission errors, one possible recovery technique is to copy the database file to a different location. The

application can copy the database file to a different location where the user does have permission to create and write

to files, and use that location instead.

Syntax errors

Adobe AIR 1.0 and later

A syntax error occurs when a SQL statement is incorrectly formed, and the application attempts to execute the

statement. Because local database SQL statements are created as strings, compile-time SQL syntax checking is not

possible. All SQL statements must be executed to check their syntax. Use the following strategies to prevent SQL syntax

errors:

Test all SQL statements thoroughly If possible, while developing your application test your SQL statements separately

before encoding them as statement text in the application code. In addition, use a code-testing approach such as unit

testing to create a set of tests that exercise every possible option and variation in the code.

230HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Use statement parameters and avoid concatenating (dynamically generating) SQL Using parameters, and avoiding

dynamically built SQL statements, means that the same SQL statement text is used each time a statement is executed.

Consequently, it’s much easier to test your statements and limit the possible variation. If you must dynamically

generate a SQL statement, keep the dynamic parts of the statement to a minimum. Also, carefully validate any user

input to make sure it won’t cause syntax errors.

To recover from a syntax error, an application would need complex logic to be able to examine a SQL statement and

correct its syntax. By following the previous guidelines for preventing syntax errors, your code can identify any

potential run-time sources of SQL syntax errors (such as user input used in a statement). To recover from a syntax

error, provide guidance to the user. Indicate what to correct to make the statement execute properly.

Constraint errors

Adobe AIR 1.0 and later

Constraint errors occur when an INSERT or UPDATE statement attempts to add data to a column. The error happens if

the new data violates one of the defined constraints for the table or column. The set of possible constraints includes:

Unique constraint Indicates that across all the rows in a table, there cannot be duplicate values in one column.

Alternatively, when multiple columns are combined in a unique constraint, the combination of values in those

columns must not be duplicated. In other words, in terms of the specified unique column or columns, each row must

be distinct.

Primary key constraint In terms of the data that a constraint allows and doesn’t allow, a primary key constraint is

identical to a unique constraint.

Not null constraint Specifies that a single column cannot store a NULL value and consequently that in every row, that

column must have a value.

Check constraint Allows you to specify an arbitrary constraint on one or more tables. A common check constraint is

a rule that define that a column’s value must be within certain bounds (for example, that a numeric column’s value

must be larger than 0). Another common type of check constraint specifies relationships between column values (for

example, that a column’s value must be different from the value of another column in the same row).

Data type (column affinity) constraint The runtime enforces the data type of columns’ values, and an error occurs if

an attempt is made to store a value of the incorrect type in a column. However, in many conditions values are

converted to match the column’s declared data type. See “Working with database data types” on page 231 for more

information.

The runtime does not enforce constraints on foreign key values. In other words, foreign key values aren’t required to

match an existing primary key value.

In addition to the predefined constraint types, the runtime SQL engine supports the use of triggers. A trigger is like an

event handler. It is a predefined set of instructions that are carried out when a certain action happens. For example, a

trigger could be defined that runs when data is inserted into or deleted from a particular table. One possible use of a

trigger is to examine data changes and cause an error to occur if specified conditions aren’t met. Consequently, a

trigger can serve the same purpose as a constraint, and the strategies for preventing and recovering from constraint

errors also apply to trigger-generated errors. However, the error id for trigger-generated errors is different from the

error id for constraint errors.

The set of constraints that apply to a particular table is determined while you’re designing an application. Consciously

designing constraints makes it easier to design your application to prevent and recover from constraint errors.

However, constraint errors are difficult to systematically predict and prevent. Prediction is difficult because constraint

errors don’t appear until application data is added. Constraint errors occur with data that is added to a database after

231HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

it’s created. These errors are often a result of the relationship between new data and data that already exists in the

database. The following strategies can help you avoid many constraint errors:

Carefully plan database structure and constraints The purpose of constraints is to enforce application rules and help

protect the integrity of the database’s data. When you’re planning your application, consider how to structure your

database to support your application. As part of that process, identify rules for your data, such as whether certain

values are required, whether a value has a default, whether duplicate values are allowed, and so forth. Those rules guide

you in defining database constraints.

Explicitly specify column names An INSERT statement can be written without explicitly specifying the columns into

which values are to be inserted, but doing so is an unnecessary risk. By explicitly naming the columns into which values

are to be inserted, you can allow for automatically generated values, columns with default values, and columns that

allow NULL values. In addition, by doing so you can ensure that all NOT NULL columns have an explicit value inserted.

Use default values Whenever you specify a NOT NULL constraint for a column, if at all possible specify a default value

in the column definition. Application code can also provide default values. For example, your code can check if a String

variable is null and assign it a value before using it to set a statement parameter value.

Validate user-entered data Check user-entered data ahead of time to make sure that it obeys limits specified by

constraints, especially in the case of NOT NULL and CHECK constraints. Naturally, a UNIQUE constraint is more difficult

to check for because doing so would require executing a SELECT query to determine whether the data is unique.

Use triggers You can write a trigger that validates (and possibly replaces) inserted data or takes other actions to correct

invalid data. This validation and correction can prevent a constraint error from occurring.

In many ways constraint errors are more difficult to prevent than other types of errors. Fortunately, there are several

strategies to recover from constraint errors in ways that don’t make the application unstable or unusable:

Use conflict algorithms When you define a constraint on a column, and when you create an INSERT or UPDATE

statement, you have the option of specifying a conflict algorithm. A conflict algorithm defines the action the database

takes when a constraint violation occurs. There are several possible actions the database engine can take. The database

engine can end a single statement or a whole transaction. It can ignore the error. It can even remove old data and

replace it with the data that the code is attempting to store.

For more information see the section “ON CONFLICT (conflict algorithms)” in the “SQL support in local databases”

on page 341.

Provide corrective feedback The set of constraints that can affect a particular SQL command can be identified ahead

of time. Consequently, you can anticipate constraint errors that a statement could cause. With that knowledge, you

can build application logic to respond to a constraint error. For example, suppose an application includes a data entry

form for entering new products. If the product name column in the database is defined with a UNIQUE constraint, the

action of inserting a new product row in the database could cause a constraint error. Consequently, the application is

designed to anticipate a constraint error. When the error happens, the application alerts the user, indicating that the

specified product name is already in use and asking the user to choose a different name. Another possible response is

to allow the user to view information about the other product with the same name.

Working with database data types

Adobe AIR 1.0 and later

When a table is created in a database, the SQL statement for creating the table defines the affinity, or data type, for each

column in the table. Although affinity declarations can be omitted, it’s a good idea to explicitly declare column affinity

in your CREATE TABLE SQL statements.

232HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

As a general rule, any object that you store in a database using an INSERT statement is returned as an instance of the

same data type when you execute a SELECT statement. However, the data type of the retrieved value can be different

depending on the affinity of the database column in which the value is stored. When a value is stored in a column, if

its data type doesn’t match the column’s affinity, the database attempts to convert the value to match the column’s

affinity. For example, if a database column is declared with NUMERIC affinity, the database attempts to convert inserted

data into a numeric storage class (INTEGER or REAL) before storing the data. The database throws an error if the data

can’t be converted. According to this rule, if the String “12345” is inserted into a NUMERIC column, the database

automatically converts it to the integer value 12345 before storing it in the database. When it’s retrieved with a SELECT

statement, the value is returned as an instance of a numeric data type (such as Number) rather than as a String instance.

The best way to avoid undesirable data type conversion is to follow two rules. First, define each column with the affinity

that matches the type of data that it is intended to store. Next, only insert values whose data type matches the defined

affinity. Following these rules provides two benefits. When you insert the data it isn’t converted unexpectedly (possibly

losing its intended meaning as a result). In addition, when you retrieve the data it is returned with its original data type.

For more information about the available column affinity types and using data types in SQL statements, see the “Data

type support” on page 362.

Using synchronous and asynchronous database
operations

Adobe AIR 1.0 and later

Previous sections have described common database operations such as retrieving, inserting, updating, and deleting

data, as well as creating a database file and tables and other objects within a database. The examples have demonstrated

how to perform these operations both asynchronously and synchronously.

As a reminder, in asynchronous execution mode, you instruct the database engine to perform an operation. The

database engine then works in the background while the application keeps running. When the operation finishes the

database engine dispatches an event to alert you to that fact. The key benefit of asynchronous execution is that the

runtime performs the database operations in the background while the main application code continues executing.

This is especially valuable when the operation takes a notable amount of time to run.

On the other hand, in synchronous execution mode operations don’t run in the background. You tell the database

engine to perform an operation. The code pauses at that point while the database engine does its work. When the

operation completes, execution continues with the next line of your code.

A single database connection can’t execute some operations or statements synchronously and others asynchronously.

You specify whether a SQLConnection operates in synchronous or asynchronous when you open the connection to

the database. If you call SQLConnection.open() the connection operates in synchronous execution mode, and if you

call SQLConnection.openAsync() the connection operates in asynchronous execution mode. Once a

SQLConnection instance is connected to a database using open() or openAsync(), it is fixed to synchronous or

asynchronous execution.

233HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Using synchronous database operations

Adobe AIR 1.0 and later

There is little difference in the actual code that you use to execute and respond to operations when using synchronous

execution, compared to the code for asynchronous execution mode. The key differences between the two approaches

fall into two areas. The first is executing an operation that depends on another operation (such as SELECT result rows

or the primary key of the row added by an INSERT statement). The second area of difference is in handling errors.

Writing code for synchronous operations

Adobe AIR 1.0 and later

The key difference between synchronous and asynchronous execution is that in synchronous mode you write the code

as a single series of steps. In contrast, in asynchronous code you register event listeners and often divide operations

among listener methods. When a database is connected in synchronous execution mode, you can execute a series of

database operations in succession within a single code block. The following example demonstrates this technique:

// Include AIRAliases.js to use air.* shortcuts

var conn = new air.SQLConnection();

// The database file is in the application storage directory
var folder = File.applicationStorageDirectory;
var dbFile = folder.resolvePath("DBSample.db");

// open the database
conn.open(dbFile, air.OpenMode.UPDATE);

// start a transaction
conn.begin();

// add the customer record to the database
var insertCustomer = new air.SQLStatement();
insertCustomer.sqlConnection = conn;
insertCustomer.text =

"INSERT INTO customers (firstName, lastName) " +
"VALUES ('Bob', 'Jones')";

insertCustomer.execute();

var customerId = insertCustomer.getResult().lastInsertRowID;

// add a related phone number record for the customer
var insertPhoneNumber = new air.SQLStatement();
insertPhoneNumber.sqlConnection = conn;
insertPhoneNumber.text =

"INSERT INTO customerPhoneNumbers (customerId, number) " +
"VALUES (:customerId, '800-555-1234')";

insertPhoneNumber.parameters[":customerId"] = customerId;
insertPhoneNumber.execute();

// commit the transaction
conn.commit();

234HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

As you can see, you call the same methods to perform database operations whether you’re using synchronous or

asynchronous execution. The key differences between the two approaches are executing an operation that depends on

another operation and handling errors.

Executing an operation that depends on another operation

Adobe AIR 1.0 and later

When you’re using synchronous execution mode, you don’t need to write code that listens for an event to determine

when an operation completes. Instead, you can assume that if an operation in one line of code completes successfully,

execution continues with the next line of code. Consequently, to perform an operation that depends on the success of

another operation, simply write the dependent code immediately following the operation on which it depends. For

instance, to code an application to begin a transaction, execute an INSERT statement, retrieve the primary key of the

inserted row, insert that primary key into another row of a different table, and finally commit the transaction, the code

can all be written as a series of statements. The following example demonstrates these operations:

// Include AIRAliases.js to use air.* shortcuts

var conn = new air.SQLConnection();

// The database file is in the application storage directory
var folder = File.applicationStorageDirectory;
var dbFile = folder.resolvePath("DBSample.db");

// open the database
conn.open(dbFile, air.OpenMode.UPDATE);

// start a transaction
conn.begin();

// add the customer record to the database
var insertCustomer = new air.SQLStatement();
insertCustomer.sqlConnection = conn;
insertCustomer.text =

"INSERT INTO customers (firstName, lastName) " +
"VALUES ('Bob', 'Jones')";

insertCustomer.execute();

var customerId = insertCustomer.getResult().lastInsertRowID;

// add a related phone number record for the customer
var insertPhoneNumber = new air.SQLStatement();
insertPhoneNumber.sqlConnection = conn;
insertPhoneNumber.text =

"INSERT INTO customerPhoneNumbers (customerId, number) " +
"VALUES (:customerId, '800-555-1234')";

insertPhoneNumber.parameters[":customerId"] = customerId;
insertPhoneNumber.execute();

// commit the transaction
conn.commit();

235HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Handling errors with synchronous execution

Adobe AIR 1.0 and later

In synchronous execution mode, you don’t listen for an error event to determine that an operation has failed. Instead,

you surround any code that could trigger errors in a set of try..catch..finally code blocks. You wrap the error-

throwing code in the try block. Write the actions to perform in response to each type of error in separate catch blocks.

Place any code that you want to always execute regardless of success or failure (for example, closing a database

connection that’s no longer needed) in a finally block. The following example demonstrates using

try..catch..finally blocks for error handling. It builds on the previous example by adding error handling code:

// Include AIRAliases.js to use air.* shortcuts

var conn = new air.SQLConnection();

// The database file is in the application storage directory
var folder = File.applicationStorageDirectory;
var dbFile = folder.resolvePath("DBSample.db");

// open the database
conn.open(dbFile, air.SQLMode.UPDATE);

// start a transaction
conn.begin();

try
{

// add the customer record to the database
var insertCustomer = new air.SQLStatement();
insertCustomer.sqlConnection = conn;
insertCustomer.text =

"INSERT INTO customers (firstName, lastName)" +
"VALUES ('Bob', 'Jones')";

insertCustomer.execute();

var customerId = insertCustomer.getResult().lastInsertRowID;

// add a related phone number record for the customer
var insertPhoneNumber = new air.SQLStatement();
insertPhoneNumber.sqlConnection = conn;
insertPhoneNumber.text =

"INSERT INTO customerPhoneNumbers (customerId, number)" +
"VALUES (:customerId, '800-555-1234')";

insertPhoneNumber.parameters[":customerId"] = customerId;

insertPhoneNumber.execute();

// if we've gotten to this point without errors, commit the transaction
conn.commit();

}
catch (error)
{

// rollback the transaction
conn.rollback();

}

236HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Understanding the asynchronous execution model

Adobe AIR 1.0 and later

One common concern about using asynchronous execution mode is the assumption that you can’t start executing a

SQLStatement instance if another SQLStatement is currently executing against the same database connection. In fact,

this assumption isn’t correct. While a SQLStatement instance is executing you can’t change the text property of the

statement. However, if you use a separate SQLStatement instance for each different SQL statement that you want to

execute, you can call the execute() method of a SQLStatement while another SQLStatement instance is still

executing, without causing an error.

Internally, when you’re executing database operations using asynchronous execution mode, each database connection

(each SQLConnection instance) has its own queue or list of operations that it is instructed to perform. The runtime

executes each operation in sequence, in the order they are added to the queue. When you create a SQLStatement

instance and call its execute() method, that statement execution operation is added to the queue for the connection.

If no operation is currently executing on that SQLConnection instance, the statement begins executing in the

background. Suppose that within the same block of code you create another SQLStatement instance and also call that

method’s execute() method. That second statement execution operation is added to the queue behind the first

statement. As soon as the first statement finishes executing, the runtime moves to the next operation in the queue. The

processing of subsequent operations in the queue happens in the background, even while the result event for the first

operation is being dispatched in the main application code. The following code demonstrates this technique:

// Using asynchronous execution mode
var stmt1 = new air.SQLStatement();
stmt1.sqlConnection = conn;

// ... Set statement text and parameters, and register event listeners ...

stmt1.execute();

// At this point stmt1's execute() operation is added to conn's execution queue.

var stmt2 = new air.SQLStatement();
stmt2.sqlConnection = conn;

// ... Set statement text and parameters, and register event listeners ...

stmt2.execute();

// At this point stmt2's execute() operation is added to conn's execution queue.
// When stmt1 finishes executing, stmt2 will immediately begin executing
// in the background.

There is an important side effect of the database automatically executing subsequent queued statements. If a statement

depends on the outcome of another operation, you can’t add the statement to the queue (in other words, you can’t call

its execute() method) until the first operation completes. This is because once you’ve called the second statement’s

execute() method, you can’t change the statement’s text or parameters properties. In that case you must wait for

the event indicating that the first operation completes before starting the next operation. For example, if you want to

execute a statement in the context of a transaction, the statement execution depends on the operation of opening the

transaction. After calling the SQLConnection.begin() method to open the transaction, you need to wait for the

SQLConnection instance to dispatch its begin event. Only then can you call the SQLStatement instance’s execute()

method. In this example the simplest way to organize the application to ensure that the operations are executed

properly is to create a method that’s registered as a listener for the begin event. The code to call the

SQLStatement.execute() method is placed within that listener method.

237HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Using encryption with SQL databases

Adobe AIR 1.5 and later

All Adobe AIR applications share the same local database engine. Consequently, any AIR application can connect to,

read from, and write to an unencrypted database file. Starting with Adobe AIR 1.5, AIR includes the capability of

creating and connecting to encrypted database files. When you use an encrypted database, in order to connect to the

database an application must provide the correct encryption key. If the incorrect encryption key (or no key) is

provided, the application is not able to connect to the database. Consequently, the application can’t read data from the

database or write to or change data in the database.

To use an encrypted database, you must create the database as an encrypted database. With an existing encrypted

database, you can open a connection to the database. You can also change the encryption key of an encrypted database.

Other than creating and connecting to encrypted databases, the techniques for working with an encrypted database

are the same as for working with an unencrypted one. In particular, executing SQL statements is the same regardless

of whether a database is encrypted or not.

Uses for an encrypted database

Adobe AIR 1.5 and later

Encryption is useful any time you want to restrict access to the information stored in a database. The database

encryption functionality of Adobe AIR can be used for several purposes. The following are some examples of cases

where you would want to use an encrypted database:

• A read-only cache of private application data downloaded from a server

• A local application store for private data that is synchronized with a server (data is sent to and loaded from the

server)

• Encrypted files used as the file format for documents created and edited by the application. The files could be

private to one user, or could be designed to be shared among all users of the application.

• Any other use of a local data store, such as the ones described in “Uses for local SQL databases” on page 204, where

the data must be kept private from people who have access to the machine or the database files.

Understanding the reason why you want to use an encrypted database helps you decide how to architect your

application. In particular, it can affect how your application creates, obtains, and stores the encryption key for the

database. For more information about these considerations, see “Considerations for using encryption with a database”

on page 240.

Other than an encrypted database, an alternative mechanism for keeping sensitive data private is the encrypted local

store. With the encrypted local store, you store a single ByteArray value using a String key. Only the AIR application

that stores the value can access it, and only on the computer on which it is stored. With the encrypted local store, it

isn’t necessary to create your own encryption key. For these reasons, the encrypted local store is most suitable for easily

storing a single value or set of values that can easily be encoded in a ByteArray. An encrypted database is most suitable

for larger data sets where structured data storage and querying are desirable. For more information about using the

encrypted local store, see “Encrypted local storage” on page 256.

238HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Creating an encrypted database

Adobe AIR 1.5 and later

To use an encrypted database, the database file must be encrypted when it is created. Once a database is created as

unencrypted, it can’t be encrypted later. Likewise, an encrypted database can’t be unencrypted later. If needed you can

change the encryption key of an encrypted database. For details, see “Changing the encryption key of a database” on

page 240. If you have an existing database that’s not encrypted and you want to use database encryption, you can create

a new encrypted database and copy the existing table structure and data to the new database.

Creating an encrypted database is nearly identical to creating an unencrypted database, as described in “Creating a

database” on page 209. You first create a SQLConnection instance that represents the connection to the database. You

create the database by calling the SQLConnection object’s open() method or openAsync() method, specifying for the

database location a file that doesn’t exist yet. The only difference when creating an encrypted database is that you

provide a value for the encryptionKey parameter (the open() method’s fifth parameter and the openAsync()

method’s sixth parameter).

A valid encryptionKey parameter value is a ByteArray object containing exactly 16 bytes.

The following examples demonstrate creating an encrypted database. For simplicity, in these examples the encryption

key is hard-coded in the application code. However, this technique is strongly discouraged because it is not secure.

var conn = new air.SQLConnection();

var encryptionKey = new air.ByteArray();
encryptionKey.writeUTFBytes("Some16ByteString"); // This technique is not secure!

// Create an encrypted database in asynchronous mode
conn.openAsync(dbFile, air.SQLMode.CREATE, null, false, 1024, encryptionKey);

// Create an encrypted database in synchronous mode
conn.open(dbFile, air.SQLMode.CREATE, false, 1024, encryptionKey);

For an example demonstrating a recommended way to generate an encryption key, see “Example: Generating and

using an encryption key” on page 242.

Connecting to an encrypted database

Adobe AIR 1.5 and later

Like creating an encrypted database, the procedure for opening a connection to an encrypted database is like

connecting to an unencrypted database. That procedure is described in greater detail in “Connecting to a database” on

page 213. You use the open() method to open a connection in synchronous execution mode, or the openAsync()

method to open a connection in asynchronous execution mode. The only difference is that to open an encrypted

database, you specify the correct value for the encryptionKey parameter (the open() method’s fifth parameter and

the openAsync() method’s sixth parameter).

If the encryption key that’s provided is not correct, an error occurs. For the open() method, a SQLError exception is

thrown. For the openAsync() method, the SQLConnection object dispatches a SQLErrorEvent, whose error

property contains a SQLError object. In either case, the SQLError object generated by the exception has the errorID

property value 3138. That error ID corresponds to the error message “File opened is not a database file.”

The following example demonstrates opening an encrypted database in asynchronous execution mode. For simplicity,

in this example the encryption key is hard-coded in the application code. However, this technique is strongly

discouraged because it is not secure.

239HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

// Include AIRAliases.js to use air.* shortcuts
var conn = new air.SQLConnection();
conn.addEventListener(air.SQLEvent.OPEN, openHandler);
conn.addEventListener(air.SQLErrorEvent.ERROR, errorHandler);
var dbFile = air.File.applicationStorageDirectory.resolvePath("DBSample.db");

var encryptionKey = new air.ByteArray();
encryptionKey.writeUTFBytes("Some16ByteString"); // This technique is not secure!

conn.openAsync(dbFile, air.SQLMode.UPDATE, null, false, 1024, encryptionKey);

function openHandler(event)
{

air.trace("the database opened successfully");
}

function errorHandler(event)
{

if (event.error.errorID == 3138)
{

air.trace("Incorrect encryption key");
}
else
{

air.trace("Error message:", event.error.message);
air.trace("Details:", event.error.details);

}
}

The following example demonstrates opening an encrypted database in synchronous execution mode. For simplicity,

in this example the encryption key is hard-coded in the application code. However, this technique is strongly

discouraged because it is not secure.

// Include AIRAliases.js to use air.* shortcuts
var conn = new air.SQLConnection();
var dbFile = air.File.applicationStorageDirectory.resolvePath("DBSample.db");

var encryptionKey = new air.ByteArray();
encryptionKey.writeUTFBytes("Some16ByteString"); // This technique is not secure!

try
{

conn.open(dbFile, air.SQLMode.UPDATE, false, 1024, encryptionKey);
air.trace("the database was created successfully");

}
catch (error)
{

if (error.errorID == 3138)
{

air.trace("Incorrect encryption key");
}
else
{

air.trace("Error message:", error.message);
air.trace("Details:", error.details);

}
}

240HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

For an example demonstrating a recommended way to generate an encryption key, see “Example: Generating and

using an encryption key” on page 242.

Changing the encryption key of a database

Adobe AIR 1.5 and later

When a database is encrypted, you can change the encryption key for the database at a later time. To change a

database’s encryption key, first open a connection to the database by creating a SQLConnection instance and calling

its open() or openAsync() method. Once the database is connected, call the reencrypt() method, passing the new

encryption key as an argument.

Like most database operations, the reencrypt() method’s behavior varies depending on whether the database

connection uses synchronous or asynchronous execution mode. If you use the open() method to connect to the

database, the reencrypt() operation runs synchronously. When the operation finishes, execution continues with the

next line of code:

var newKey = new air.ByteArray();
// ... generate the new key and store it in newKey
conn.reencrypt(newKey);

On the other hand, if the database connection is opened using the openAsync() method, the reencrypt() operation

is asynchronous. Calling reencrypt() begins the reencryption process. When the operation completes, the

SQLConnection object dispatches a reencrypt event. You use an event listener to determine when the reencryption

finishes:

var newKey = new air.ByteArray();
// ... generate the new key and store it in newKey

conn.addEventListener(air.SQLEvent.REENCRYPT, reencryptHandler);

conn.reencrypt(newKey);

function reencryptHandler(event)
{

// save the fact that the key changed
}

The reencrypt() operation runs in its own transaction. If the operation is interrupted or fails (for example, if the

application is closed before the operation finishes) the transaction is rolled back. In that case, the original encryption

key is still the encryption key for the database.

The reencrypt() method can’t be used to remove encryption from a database. Passing a null value or encryption

key that’s not a 16-byte ByteArray to the reencrypt() method results in an error.

Considerations for using encryption with a database

Adobe AIR 1.5 and later

The section “Uses for an encrypted database” on page 237 presents several cases in which you would want to use an

encrypted database. It’s obvious that the usage scenarios of different applications (including these and other scenarios)

have different privacy requirements. The way you architect the use of encryption in your application plays an

important part in controlling how private a database’s data is. For example, if you are using an encrypted database to

keep personal data private, even from other users of the same machine, then each user’s database needs its own

241HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

encryption key. For the greatest security, your application can generate the key from a user-entered password. Basing

the encryption key on a password ensures that even if another person is able to impersonate the user’s account on the

machine, the data still can’t be accessed. On the other end of the privacy spectrum, suppose you want a database file to

be readable by any user of your application but not to other applications. In that case every installed copy of the

application needs access to a shared encryption key.

You can design your application, and in particular the technique used to generate the encryption key, according to the

level of privacy that you want for your application data. The following list provides design suggestions for various levels

of data privacy:

• To make a database accessible to any user who has access to the application on any machine, use a single key that’s

available to all instances of the application. For example, the first time an application runs it can download the

shared encryption key from a server using a secure protocol such as SSL. It can then save the key in the encrypted

local store for future use. As an alternative, encrypt the data per-user on the machine, and synchronize the data with

a remote data store such as a server to make the data portable.

• To make a database accessible to a single user on any machine, generate the encryption key from a user secret (such

as a password). In particular, do not use any value that’s tied to a particular computer (such as a value stored in the

encrypted local store) to generate the key. As an alternative, encrypt the data per-user on the machine, and

synchronize the data with a remote data store such as a server to make the data portable.

• To make a database accessible only to a single individual on a single machine, generate the key from a password

and a generated salt. For an example of this technique, see “Example: Generating and using an encryption key” on

page 242.

The following are additional security considerations that are important to keep in mind when designing an application

to use an encrypted database:

• A system is only as secure as its weakest link. If you are using a user-entered password to generate an encryption

key, consider imposing minimum length and complexity restrictions on passwords. A short password that uses

only basic characters can be guessed quickly.

• The source code of an AIR application is stored on a user’s machine in plain text (for HTML content) or an easily

decompilable binary format (for SWF content). Because the source code is accessible, two points to remember are:

• Never hard-code an encryption key in your source code

• Always assume that the technique used to generate an encryption key (such as random character generator or a

particular hashing algorithm) can be easily worked out by an attacker

• AIR database encryption uses the Advanced Encryption Standard (AES) with Counter with CBC-MAC (CCM)

mode. This encryption cipher requires a user-entered key to be combined with a salt value to be secure. For an

example of this, see “Example: Generating and using an encryption key” on page 242.

• When you elect to encrypt a database, all disk files used by the database engine in conjunction with that database

are encrypted. However, the database engine holds some data temporarily in an in-memory cache to improve read-

and write-time performance in transactions. Any memory-resident data is unencrypted. If an attacker is able to

access the memory used by an AIR application, for example by using a debugger, the data in a database that is

currently open and unencrypted would be available.

242HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Example: Generating and using an encryption key

Adobe AIR 1.5 and later

This example application demonstrates one technique for generating an encryption key. This application is designed

to provide the highest level of privacy and security for users’ data. One important aspect of securing private data is to

require the user to enter a password each time the application connects to the database. Consequently, as shown in this

example, an application that requires this level of privacy should never directly store the database encryption key.

The application consists of two parts: an ActionScript class that generates an encryption key (the

EncryptionKeyGenerator class), and a basic user interface that demonstrates how to use that class. For the complete

source code, see “Complete example code for generating and using an encryption key” on page 244.

Using the EncryptionKeyGenerator class to obtain a secure encryption key

Adobe AIR 1.5 and later

It isn’t necessary to understand the details of how the EncryptionKeyGenerator class works to use it in your

application. If you are interested in the details of how the class generates an encryption key for a database, see

“Understanding the EncryptionKeyGenerator class” on page 251.

Follow these steps to use the EncryptionKeyGenerator class in your application:

1 Download the EncryptionKeyGenerator library. The EncryptionKeyGenerator class is included in the open-source

ActionScript 3.0 core library (as3corelib) project. You can download the as3corelib package including source code

and documentation. You can also download the SWC or source code files from the project page.

2 Extract the SWF file from the SWC. To extract the SWF file, rename the SWC file with the “.zip” filename extension

and open the ZIP file. Extract the SWF file from the ZIP file and place it in a location where your application source

code can find it. For example, you could place it in the folder containing your application’s main HTML file. You

can rename the SWF file if you desire. In this example, the SWF file is named “EncryptionKeyGenerator.swf.”

3 In your application source code, import the SWF code library by adding a <script> block linking to the SWF file.

This technique is explained in “Using ActionScript libraries within an HTML page” on page 32. The following code

makes the SWF file available as a code library:

<script type="application/x-shockwave-flash" src="EncryptionKeyGenerator.swf"/>

By default the class is available using the code window.runtime followed by the full package and class name. For

the EncryptionKeyGenerator, the full name is:

window.runtime.com.adobe.air.crypto.EncryptionKeyGenerator

You can create an alias for the class to avoid having to type the full name. The following code creates the alias

ekg.EncryptionKeyGenerator to represent the EncryptionKeyGenerator class:

var ekg;
if (window.runtime)
{

if (!ekg) ekg = {};
ekg.EncryptionKeyGenerator = window.runtime.com.adobe.air.crypto.EncryptionKeyGenerator;

}

4 Before the point where the code creates the database or opens a connection to it, add code to create an

EncryptionKeyGenerator instance by calling the EncryptionKeyGenerator() constructor.

var keyGenerator = new ekg.EncryptionKeyGenerator();

5 Obtain a password from the user:

http://www.adobe.com/go/learn_air_opensource_encryptionkey
http://www.adobe.com/go/learn_air_opensource_encryptionkey

243HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

var password = passwordInput.value;

if (!keyGenerator.validateStrongPassword(password))
{

// display an error message
return;

}

The EncryptionKeyGenerator instance uses this password as the basis for the encryption key (shown in the next

step). The EncryptionKeyGenerator instance tests the password against certain strong password validation

requirements. If the validation fails, an error occurs. As the example code shows, you can check the password ahead

of time by calling the EncryptionKeyGenerator object’s validateStrongPassword() method. That way you can

determine whether the password meets the minimum requirements for a strong password and avoid an error.

6 Generate the encryption key from the password:

var encryptionKey = keyGenerator.getEncryptionKey(password);

The getEncryptionKey() method generates and returns the encryption key (a 16-byte ByteArray). You can then

use the encryption key to create your new encrypted database or open your existing one.

The getEncryptionKey() method has one required parameter, which is the password obtained in step 5.

Note: To maintain the highest level of security and privacy for data, an application must require the user to enter a

password each time the application connects to the database. Do not store the user’s password or the database

encryption key directly. Doing so exposes security risks. Instead, as demonstrated in this example, an application

should use the same technique to derive the encryption key from the password both when creating the encrypted

database and when connecting to it later.

The getEncryptionKey() method also accepts a second (optional) parameter, the overrideSaltELSKey

parameter. The EncryptionKeyGenerator creates a random value (known as a salt) that is used as part of the

encryption key. In order to be able to re-create the encryption key, the salt value is stored in the Encrypted Local

Store (ELS) of your AIR application. By default, the EncryptionKeyGenerator class uses a particular String as the

ELS key. Although unlikely, it’s possible that the key can conflict with another key your application uses. Instead of

using the default key, you might want to specify your own ELS key. In that case, specify a custom key by passing it

as the second getEncryptionKey() parameter, as shown here:

var customKey = "My custom ELS salt key";
var encryptionKey = keyGenerator.getEncryptionKey(password, customKey);

7 Create or open the database

With an encryption key returned by the getEncryptionKey() method, your code can create a new encrypted

database or attempt to open the existing encrypted database. In either case you use the SQLConnection class’s

open() or openAsync() method, as described in “Creating an encrypted database” on page 238 and “Connecting

to an encrypted database” on page 238.

In this example, the application is designed to open the database in asynchronous execution mode. The code sets

up the appropriate event listeners and calls the openAsync() method, passing the encryption key as the final

argument:

conn.addEventListener(air.SQLEvent.OPEN, openHandler);
conn.addEventListener(air.SQLErrorEvent.ERROR, openError);

conn.openAsync(dbFile, air.SQLMode.CREATE, null, false, 1024, encryptionKey);

244HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

In the listener methods, the code removes the event listener registrations. It then displays a status message

indicating whether the database was created, opened, or whether an error occurred. The most noteworthy part of

these event handlers is in the openError() method. In that method an if statement checks if the database exists

(meaning that the code is attempting to connect to an existing database) and if the error ID matches the constant

EncryptionKeyGenerator.ENCRYPTED_DB_PASSWORD_ERROR_ID. If both of these conditions are true, it probably

means that the password the user entered is incorrect. (It could also mean that the specified file isn’t a database file

at all.) The following is the code that checks the error ID:

if (!createNewDB && event.error.errorID ==
ekg.EncryptionKeyGenerator.ENCRYPTED_DB_PASSWORD_ERROR_ID)
{

statusMsg.innerHTML = "<p class='error'>Incorrect password!</p>";
}
else
{

statusMsg.innerHTML = "<p class='error'>Error creating or opening database.</p>";
}

For the complete code for the example event listeners, see “Complete example code for generating and using an

encryption key” on page 244.

Complete example code for generating and using an encryption key

Adobe AIR 1.5 and later

The following is the complete code for the example application “Generating and using an encryption key.” The code

consists of two parts.

The example uses the EncryptionKeyGenerator class to create an encryption key from a password. The

EncryptionKeyGenerator class is included in the open-source ActionScript 3.0 core library (as3corelib) project. You

can download the as3corelib package including source code and documentation. You can also download the SWC or

source code files from the project page.

Flex example

The application MXML file contains the source code for a simple application that creates or opens a connection to an

encrypted database:

http://www.adobe.com/go/learn_air_opensource_encryptionkey

245HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

<?xml version="1.0" encoding="utf-8"?>
<mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical"
creationComplete="init();">

<mx:Script>
<![CDATA[

import com.adobe.air.crypto.EncryptionKeyGenerator;

private const dbFileName:String = "encryptedDatabase.db";

private var dbFile:File;
private var createNewDB:Boolean = true;
private var conn:SQLConnection;

// ------- Event handling -------

private function init():void
{

conn = new SQLConnection();
dbFile = File.applicationStorageDirectory.resolvePath(dbFileName);
if (dbFile.exists)
{

createNewDB = false;
instructions.text = "Enter your database password to open the encrypted

database.";
openButton.label = "Open Database";

}
}

private function openConnection():void
{

var password:String = passwordInput.text;

var keyGenerator:EncryptionKeyGenerator = new EncryptionKeyGenerator();

if (password == null || password.length <= 0)
{

statusMsg.text = "Please specify a password.";
return;

}

if (!keyGenerator.validateStrongPassword(password))
{

statusMsg.text = "The password must be 8-32 characters long. It must
contain at least one lowercase letter, at least one uppercase letter, and at least one number
or symbol.";

return;
}

passwordInput.text = "";
passwordInput.enabled = false;
openButton.enabled = false;

var encryptionKey:ByteArray = keyGenerator.getEncryptionKey(password);

conn.addEventListener(SQLEvent.OPEN, openHandler);
conn.addEventListener(SQLErrorEvent.ERROR, openError);

246HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

conn.openAsync(dbFile, SQLMode.CREATE, null, false, 1024, encryptionKey);
}

private function openHandler(event:SQLEvent):void
{

conn.removeEventListener(SQLEvent.OPEN, openHandler);
conn.removeEventListener(SQLErrorEvent.ERROR, openError);

statusMsg.setStyle("color", 0x009900);
if (createNewDB)
{

statusMsg.text = "The encrypted database was created successfully.";
}
else
{

statusMsg.text = "The encrypted database was opened successfully.";
}

}

private function openError(event:SQLErrorEvent):void
{

conn.removeEventListener(SQLEvent.OPEN, openHandler);
conn.removeEventListener(SQLErrorEvent.ERROR, openError);

if (!createNewDB && event.error.errorID ==

EncryptionKeyGenerator.ENCRYPTED_DB_PASSWORD_ERROR_ID)
{

statusMsg.text = "Incorrect password!";
}
else
{

statusMsg.text = "Error creating or opening database.";
}

}
]]>

</mx:Script>
<mx:Text id="instructions" text="Enter a password to create an encrypted database. The next

time you open the application, you will need to re-enter the password to open the database
again." width="75%" height="65"/>

<mx:HBox>
<mx:TextInput id="passwordInput" displayAsPassword="true"/>
<mx:Button id="openButton" label="Create Database" click="openConnection();"/>

</mx:HBox>
<mx:Text id="statusMsg" color="#990000" width="75%"/>

</mx:WindowedApplication>

Flash Professional example

The application FLA file contains the source code for a simple application that creates or opens a connection to an

encrypted database. The FLA file has four components placed on the stage:

247HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

The code for the application is defined on a keyframe on frame 1 of the main timeline. The following is the code for

the application:

import com.adobe.air.crypto.EncryptionKeyGenerator;

const dbFileName:String = "encryptedDatabase.db";

var dbFile:File;
var createNewDB:Boolean = true;
var conn:SQLConnection;

init();

// ------- Event handling -------

function init():void
{

passwordInput.displayAsPassword = true;
openButton.addEventListener(MouseEvent.CLICK, openConnection);
statusMsg.setStyle("textFormat", new TextFormat(null, null, 0x990000));

conn = new SQLConnection();
dbFile = File.applicationStorageDirectory.resolvePath(dbFileName);

if (dbFile.exists)
{

createNewDB = false;
instructions.text = "Enter your database password to open the encrypted database.";
openButton.label = "Open Database";

}
else
{

instructions.text = "Enter a password to create an encrypted database. The next time
you open the application, you will need to re-enter the password to open the database again.";

openButton.label = "Create Database";
}

}

function openConnection(event:MouseEvent):void
{

var keyGenerator:EncryptionKeyGenerator = new EncryptionKeyGenerator();

var password:String = passwordInput.text;

if (password == null || password.length <= 0)
{

statusMsg.text = "Please specify a password.";
return;

Instance name Component type Description

instructions Label Contains the instructions given to the user

passwordInput TextInput Input field where the user enters the password

openButton Button Button the user clicks after entering the password

statusMsg Label Displays status (success or failure) messages

248HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

}

if (!keyGenerator.validateStrongPassword(password))
{

statusMsg.text = "The password must be 8-32 characters long. It must contain at least
one lowercase letter, at least one uppercase letter, and at least one number or symbol.";

return;
}

passwordInput.text = "";
passwordInput.enabled = false;
openButton.enabled = false;

var encryptionKey:ByteArray = keyGenerator.getEncryptionKey(password);

conn.addEventListener(SQLEvent.OPEN, openHandler);
conn.addEventListener(SQLErrorEvent.ERROR, openError);

conn.openAsync(dbFile, SQLMode.CREATE, null, false, 1024, encryptionKey);

}

function openHandler(event:SQLEvent):void
{

conn.removeEventListener(SQLEvent.OPEN, openHandler);
conn.removeEventListener(SQLErrorEvent.ERROR, openError);

statusMsg.setStyle("textFormat", new TextFormat(null, null, 0x009900));
if (createNewDB)
{

statusMsg.text = "The encrypted database was created successfully.";
}
else
{

statusMsg.text = "The encrypted database was opened successfully.";
}

}

function openError(event:SQLErrorEvent):void
{

conn.removeEventListener(SQLEvent.OPEN, openHandler);
conn.removeEventListener(SQLErrorEvent.ERROR, openError);

if (!createNewDB && event.error.errorID ==

EncryptionKeyGenerator.ENCRYPTED_DB_PASSWORD_ERROR_ID)
{

statusMsg.text = "Incorrect password!";
}
else
{

statusMsg.text = "Error creating or opening database.";
}

}

The application HTML file contains the source code for a simple application that creates or opens a connection to an

encrypted database:

249HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

<html>
<head>

<title>Encrypted Database Example (HTML)</title>
<style type="text/css">

body
{

padding-top: 25px;
font-family: Verdana, Arial;
font-size: 14px;

}
div
{

width: 85%;
margin-left: auto;
margin-right: auto;

}
.error {color: #990000}
.success {color: #009900}

</style>

<script type="text/javascript" src="AIRAliases.js"></script>
<script type="application/x-shockwave-flash" src="EncryptionKeyGenerator.swf"/>
<script type="text/javascript">

// set up the class shortcut
var ekg;
if (window.runtime)
{

if (!ekg) ekg = {};
ekg.EncryptionKeyGenerator =

window.runtime.com.adobe.air.crypto.EncryptionKeyGenerator;
}

// app globals
var dbFileName = "encryptedDatabase.db";
var dbFile;
var createNewDB = true;
var conn;

// UI elements
var instructions;
var passwordInput;
var openButton;
var statusMsg;

function init()
{

// UI elements
instructions = document.getElementById("instructions");
passwordInput = document.getElementById("passwordInput");
openButton = document.getElementById("openButton");
statusMsg = document.getElementById("statusMsg");

conn = new air.SQLConnection();
dbFile = air.File.applicationStorageDirectory.resolvePath(dbFileName);
if (dbFile.exists)
{

createNewDB = false;

250HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

instructions.innerHTML = "<p>Enter your database password to open the
encrypted database.</p>";

openButton.value = "Open Database";
}

}

function openConnection()
{

var keyGenerator = new ekg.EncryptionKeyGenerator();

var password = passwordInput.value;

if (password == null || password.length <= 0)
{

statusMsg.innerHTML = "<p class='error'>Please specify a password.</p>";
return;

}

if (!keyGenerator.validateStrongPassword(password))
{

statusMsg.innerHTML = "<p class='error'>The password must be 8-32
characters long. It must contain at least one lowercase letter, at least one uppercase letter,
and at least one number or symbol.</p>";

return;
}

passwordInput.value = "";
passwordInput.disabled = true;
openButton.disabled = true;
statusMsg.innerHTML = "";

var encryptionKey = keyGenerator.getEncryptionKey(password);

conn.addEventListener(air.SQLEvent.OPEN, openHandler);
conn.addEventListener(air.SQLErrorEvent.ERROR, openError);

conn.openAsync(dbFile, air.SQLMode.CREATE, null, false, 1024, encryptionKey);

}

function openHandler(event)
{

conn.removeEventListener(air.SQLEvent.OPEN, openHandler);
conn.removeEventListener(air.SQLErrorEvent.ERROR, openError);

if (createNewDB)
{

statusMsg.innerHTML = "<p class='success'>The encrypted database was
created successfully.</p>";

}
else
{

statusMsg.innerHTML = "<p class='success'>The encrypted database was
opened successfully.</p>";

}
}

function openError(event)

251HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

{
conn.removeEventListener(air.SQLEvent.OPEN, openHandler);
conn.removeEventListener(air.SQLErrorEvent.ERROR, openError);

if (!createNewDB && event.error.errorID ==

ekg.EncryptionKeyGenerator.ENCRYPTED_DB_PASSWORD_ERROR_ID)
{

statusMsg.innerHTML = "<p class='error'>Incorrect password!</p>";
}
else
{

statusMsg.innerHTML = "<p class='error'>Error creating or opening
database.</p>";

}
}

</script>
</head>

<body onload="init();">

<div id="instructions"><p>Enter a password to create an encrypted database. The next
time you open the application, you will need to re-enter the password to open the database
again.</p></div>

<div><input id="passwordInput" type="password"/><input id="openButton" type="button"
value="Create Database" onclick="openConnection();"/></div>

<div id="statusMsg"></div>
</body>

</html>

Understanding the EncryptionKeyGenerator class

Adobe AIR 1.5 and later

It isn’t necessary to understand the inner workings of the EncryptionKeyGenerator class to use it to create a secure

encryption key for your application database. The process for using the class is explained in “Using the

EncryptionKeyGenerator class to obtain a secure encryption key” on page 242. However, you might find it valuable to

understand the techniques that the class uses. For example, you might want to adapt the class or incorporate some of

its techniques for situations where a different level of data privacy is desired.

The EncryptionKeyGenerator class is included in the open-source ActionScript 3.0 core library (as3corelib) project.

You can download the as3corelib package including source code and documentation.You can also view the source

code on the project site or download it to follow along with the explanations.

When code creates an EncryptionKeyGenerator instance and calls its getEncryptionKey() method, several steps are

taken to ensure that only the rightful user can access the data. The process is the same to generate an encryption key

from a user-entered password before the database is created as well as to re-create the encryption key to open the

database.

http://www.adobe.com/go/learn_air_opensource_encryptionkey

252HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Obtain and validate a strong password

Adobe AIR 1.5 and later

When code calls the getEncryptionKey() method, it passes in a password as a parameter. The password is used as

the basis for the encryption key. By using a piece of information that only the user knows, this design ensures that only

the user who knows the password can access the data in the database. Even if an attacker accesses the user’s account

on the computer, the attacker can’t get into the database without knowing the password. For maximum security, the

application never stores the password.

An application’s code creates an EncryptionKeyGenerator instance and calls its getEncryptionKey() method,

passing a user-entered password as an argument (the variable password in this example):

var keyGenerator = new ekg.EncryptionKeyGenerator();
var encryptionKey = keyGenerator.getEncryptionKey(password);

The first step the EncryptionKeyGenerator class takes when the getEncryptionKey() method is called is to check the

user-entered password to ensure that it meets the password strength requirements. The EncryptionKeyGenerator class

requires a password to be 8 - 32 characters long. The password must contain a mix of uppercase and lowercase letters

and at least one number or symbol character.

Internally the getEncryptionKey() method calls the EncryptionKeyGenerator class’s validateStrongPassword()

method and, if the password isn’t valid, throws an exception. The validateStrongPassword() method is a public

method so that application code can check a password without calling the getEncryptionKey() method to avoid

causing an error.

Expand the password to 256 bits

Adobe AIR 1.5 and later

Later in the process, the password is required to be 256 bits long. Rather than require each user to enter a password

that’s exactly 256 bits (32 characters) long, the code creates a longer password by repeating the password characters.

The following is the code for the concatenatePassword() method:

If the password is less than 256 bits, the code concatenates the password with itself to make it 256 bits. If the length

doesn’t work out exactly, the last repetition is shortened to get exactly 256 bits.

Generate or retrieve a 256-bit salt value

Adobe AIR 1.5 and later

The next step is to get a 256-bit salt value that in a later step is combined with the password. A salt is a random value

that is added to or combined with a user-entered value to form a password. Using a salt with a password ensures that

even if a user chooses a real word or common term as a password, the password-plus-salt combination that the system

uses is a random value. This randomness helps guard against a dictionary attack, where an attacker uses a list of words

to attempt to guess a password. In addition, by generating the salt value and storing it in the encrypted local store, it is

tied to the user’s account on the machine on which the database file is located.

If the application is calling the getEncryptionKey() method for the first time, the code creates a random 256-bit salt

value. Otherwise, the code loads the salt value from the encrypted local store.

253HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Combine the 256-bit password and salt using the XOR operator

Adobe AIR 1.5 and later

The code now has a 256-bit password and a 256-bit salt value. It next uses a bitwise XOR operation to combine the salt

and the concatenated password into a single value. In effect, this technique creates a 256-bit password consisting of

characters from the entire range of possible characters. This principle is true even though most likely the actual

password input consists of primarily alphanumeric characters. This increased randomness provides the benefit of

making the set of possible passwords large without requiring the user to enter a long complex password.

Hash the key

Adobe AIR 1.5 and later

Once the concatenated password and the salt have been combined, the next step is to further secure this value by

hashing it using the SHA-256 hashing algorithm. Hashing the value makes it more difficult for an attacker to reverse-

engineer it.

Extract the encryption key from the hash

Adobe AIR 1.5 and later

The encryption key must be a ByteArray that is exactly 16 bytes (128 bits) long. The result of the SHA-256 hashing

algorithm is always 256 bits long. Consequently, the final step is to select 128 bits from the hashed result to use as the

actual encryption key.

It isn’t necessary to use the first 128 bits as the encryption key. You could select a range of bits starting at some arbitrary

point, you could select every other bit, or use some other way of selecting bits. The important thing is that the code

selects 128 distinct bits, and that the same 128 bits are used each time.

Strategies for working with SQL databases

Adobe AIR 1.0 and later

There are various ways that an application can access and work with a local SQL database. The application design can

vary in terms of how the application code is organized, the sequence and timing of how operations are performed, and

so on. The techniques you choose can have an impact on how easy it is to develop your application. They can affect

how easy it is to modify the application in future updates. They can also affect how well the application performs from

the users’ perspective.

Distributing a pre-populated database

Adobe AIR 1.0 and later

When you use an AIR local SQL database in your application, the application expects a database with a certain

structure of tables, columns, and so forth. Some applications also expect certain data to be pre-populated in the

database file. One way to ensure that the database has the proper structure is to create the database within the

application code. When the application loads it checks for the existence of its database file in a particular location. If

the file doesn’t exist, the application executes a set of commands to create the database file, create the database

structure, and populate the tables with the initial data.

254HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

The code that creates the database and its tables is frequently complex. It is often only used once in the installed lifetime

of the application, but still adds to the size and complexity of the application. As an alternative to creating the database,

structure, and data programmatically, you can distribute a pre-populated database with your application. To distribute

a predefined database, include the database file in the application’s AIR package.

Like all files that are included in an AIR package, a bundled database file is installed in the application directory (the

directory represented by the File.applicationDirectory property). However, files in that directory are read only.

Use the file from the AIR package as a “template” database. The first time a user runs the application, copy the original

database file into the user’s “Pointing to the application storage directory” on page 149 (or another location), and use

that database within the application.

Best practices for working with local SQL databases

Adobe AIR 1.0 and later

The following list is a set of suggested techniques you can use to improve the performance, security, and ease of

maintenance of your applications when working with local SQL databases.

Pre-create database connections

Adobe AIR 1.0 and later

Even if your application doesn’t execute any statements when it first loads, instantiate a SQLConnection object and

call its open() or openAsync() method ahead of time (such as after the initial application startup) to avoid delays

when running statements. See “Connecting to a database” on page 213.

Reuse database connections

Adobe AIR 1.0 and later

If you access a certain database throughout the execution time of your application, keep a reference to the

SQLConnection instance, and reuse it throughout the application, rather than closing and reopening the connection.

See “Connecting to a database” on page 213.

Favor asynchronous execution mode

Adobe AIR 1.0 and later

When writing data-access code, it can be tempting to execute operations synchronously rather than asynchronously,

because using synchronous operations frequently requires shorter and less complex code. However, as described in

“Using synchronous and asynchronous database operations” on page 232, synchronous operations can have a

performance impact that is obvious to users and detrimental to their experience with an application. The amount of

time a single operation takes varies according to the operation and particularly the amount of data it involves. For

instance, a SQL INSERT statement that only adds a single row to the database takes less time than a SELECT statement

that retrieves thousands of rows of data. However, when you’re using synchronous execution to perform multiple

operations, the operations are usually strung together. Even if the time each single operation takes is very short, the

application is frozen until all the synchronous operations finish. As a result, the cumulative time of multiple operations

strung together may be enough to stall your application.

255HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with local SQL databases in AIR

Last updated 9/28/2011

Use asynchronous operations as a standard approach, especially with operations that involve large numbers of rows.

There is a technique for dividing up the processing of large sets of SELECT statement results, described in “Retrieving

SELECT results in parts” on page 224. However, this technique can only be used in asynchronous execution mode.

Only use synchronous operations when you can’t achieve certain functionality using asynchronous programming,

when you’ve considered the performance trade-off that your application’s users will face, and when you’ve tested your

application so that you know how your application’s performance is affected. Using asynchronous execution can

involve more complex coding. However, remember that you only have to write the code once, but the application’s

users have to use it repeatedly, fast or slow.

In many cases, by using a separate SQLStatement instance for each SQL statement to be executed, multiple SQL

operations can be queued up at one time, which makes asynchronous code like synchronous code in terms of how the

code is written. For more information, see “Understanding the asynchronous execution model” on page 236.

Use separate SQL statements and don’t change the SQLStatement’s text property

Adobe AIR 1.0 and later

For any SQL statement that is executed more than once in an application, create a separate SQLStatement instance for

each SQL statement. Use that SQLStatement instance each time that SQL command executes. For example, suppose

you are building an application that includes four different SQL operations that are performed multiple times. In that

case, create four separate SQLStatement instances and call each statement’s execute() method to run it. Avoid the

alternative of using a single SQLStatement instance for all SQL statements, redefining its text property each time

before executing the statement.

Use statement parameters

Adobe AIR 1.0 and later

Use SQLStatement parameters—never concatenate user input into statement text. Using parameters makes your

application more secure because it prevents the possibility of SQL injection attacks. It makes it possible to use objects

in queries (rather than only SQL literal values). It also makes statements run more efficiently because they can be

reused without needing to be recompiled each time they’re executed. See “Using parameters in statements” on

page 216 for more information.

256

Last updated 9/28/2011

Chapter 15: Encrypted local storage

The Adobe® AIR® runtime provides a persistent encrypted local store (ELS) for each AIR application installed on a

user's computer. This lets you save and retrieve data that is stored on the user’s local hard drive in an encrypted format

that cannot easily be deciphered by other users. A separate encrypted local store is used for each AIR application, and

each AIR application uses a separate encrypted local store for each user.

Note: In addition to the encrypted local store, AIR also provides encryption for content stored in SQL databases. For

details, see “Using encryption with SQL databases” on page 237.

You may want to use the encrypted local store to cache information that must be secured, such as login credentials for

web services. The ELS is appropriate for storing information that must be kept private from other users. It does not,

however, protect the data from other processes run under the same user account. It is thus not appropriate for

protecting secret application data, such as DRM or encryption keys.

On desktop platforms, AIR uses DPAPI on Windows, KeyChain on Mac OS and iOS, and KeyRing or KWallet on

Linux to associate the encrypted local store to each application and user. The encrypted local store uses AES-CBC 128-

bit encryption.

On Android, the data stored by the EncryptedLocalStorage class are not encrypted. Instead the data is protected by the

user-level security provided by the operating system. The Android operating system assigns every application a

separate user ID. Applications can only access their own files and files created in public locations (such as the

removable storage card). Note that on “rooted” Android devices, applications running with root privileges CAN access

the files of other applications. Thus on a rooted device, the encrypted local store does not provide as high a level of data

protection as it does on on a non-rooted device.

Information in the encrypted local store is only available to AIR application content in the application security

sandbox.

If you update an AIR application, the updated version retains access to any existing data in the encrypted local store

unless:

• The items were added with the stronglyBound parameter set to true

• The existing and update versions are both published prior to AIR 1.5.3 and the update is signed with a migration

signature.

Limitations of the encrypted local store

The data in the encrypted local store is protected by the user’s operating system account credentials. Other entities

cannot access the data in the store unless they can login as that user. However, the data is not secure against access by

other applications run by an authenticated user.

Because the user must be authenticated for these attacks to work, the user’s private data is still protected (unless the

user account itself is compromised). However, data that your application may want to keep secret from users, such as

keys used for licensing or digital rights management, is not secure. Thus the ELS is not an appropriate location for

storing such information. It is only an appropriate place for storing a user’s private data, such as passwords.

Data in the ELS can be lost for a variety of reasons. For example, the user could uninstall the application and delete the

encrypted file. Or, the publisher ID could be changed as a result of an update. Thus the ELS should be treated as a

private cache, not a permanent data storage.

257HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Encrypted local storage

Last updated 9/28/2011

The stronglyBound parameter is deprecated and should not be set to true. Setting the parameter to true does not

provide any additional protection for data. At the same time, access to the data is lost whenever the application is

updated — even if the publisher ID stays the same.

The encrypted local store may perform more slowly if the stored data exceeds 10MB.

When you uninstall an AIR application, the uninstaller does not delete data stored in the encrypted local store.

The best practices for using the ELS include:

• Use the ELS to store sensitive user data such as passwords (setting stronglyBound to false)

• Do not use the ELS to store applications secrets such as DRM keys or licensing tokens.

• Provide a way for your application to recreate the data stored in the ELS if the ELS data is lost. For example, by

prompting the user to re-enter their account credentials when necessary.

• Do not use the stronglyBound parameter.

• If you do set stronglyBound to true, do not migrate stored items during an update. Recreate the data after the

update instead.

• Only store relatively small amounts of data. For larger amounts of data, use an AIR SQL database with encryption.

More Help topics

flash.data.EncryptedLocalStore

Adding data to the encrypted local store

Use the setItem() static method of the EncryptedLocalStore class to store data in the local store. The data is stored

in a hash table, using strings as keys, with the data stored as byte arrays.

For example, the following code stores a string in the encrypted local store:

 var str = "Bob";
 var bytes = new air.ByteArray();
 bytes.writeUTFBytes(str);
 air.EncryptedLocalStore.setItem("firstName", bytes);

The third parameter of the setItem() method, the stronglyBound parameter, is optional. When this parameter is

set to true, the encrypted local store binds the stored item to the storing AIR application’s digital signature and bits:

var str = "Bob";
 var bytes = new air.ByteArray();
 bytes.writeUTFBytes(str);
 air.EncryptedLocalStore.setItem("firstName", bytes, false);

For an item that is stored with stronglyBound set to true, subsequent calls to getItem() only succeed if the calling

AIR application is identical to the storing application (if no data in files in the application directory have changed). If

the calling AIR application is different from the storing application, the application throws an Error exception when

you call getItem() for a strongly bound item. If you update your application, it will not be able to read strongly bound

data previously written to the encrypted local store. Setting stronglyBound to true on mobile devices is ignored; the

parameter is always treated as false.

http://help.adobe.com/en_US/air/reference/html/flash/data/EncryptedLocalStore.html

258HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Encrypted local storage

Last updated 9/28/2011

If the stronglyBound parameter is set to false (the default), only the publisher ID needs to stay the same for the

application to read the data. The bits of the application may change (and they need to be signed by the same publisher),

but they do not need to be the exact same bits as were in application that stored the data. Updated applications with

the same publisher ID as the original can continue to access the data.

Note: In practice, setting stronglyBound to true does not add any additional data protection. A “malicious” user could

still alter an application to gain access to items stored in the ELS. Furthermore, data is protected from external, non-user

threats just as strongly whether stronglyBound is set to true or false. For these reasons, setting stronglyBound to

true is discouraged.

Accessing data in the encrypted local store

Adobe AIR 1.0 and later

You can retrieve a value from the encrypted local store by using the EncryptedLocalStore.getItem() method, as

in the following example:

 var storedValue = air.EncryptedLocalStore.getItem("firstName");
 air.trace(storedValue.readUTFBytes(storedValue.length)); // "foo"

Removing data from the encrypted local store

Adobe AIR 1.0 and later

You can delete a value from the encrypted local store by using the EncryptedLocalStore.removeItem() method,

as in the following example:

air.EncryptedLocalStore.removeItem("firstName");

You can clear all data from the encrypted local store by calling the EncryptedLocalStore.reset() method, as in the

following example:

air.EncryptedLocalStore.reset();

259

Last updated 9/28/2011

Chapter 16: Working with byte arrays

Flash Player 9 and later, Adobe AIR 1.0 and later

The ByteArray class allows you to read from and write to a binary stream of data, which is essentially an array of bytes.

This class provides a way to access data at the most elemental level. Because computer data consists of bytes, or groups

of 8 bits, the ability to read data in bytes means that you can access data for which classes and access methods do not

exist. The ByteArray class allows you to parse any stream of data, from a bitmap to a stream of data traveling over the

network, at the byte level.

The writeObject() method allows you to write an object in serialized Action Message Format (AMF) to a ByteArray,

while the readObject() method allows you to read a serialized object from a ByteArray to a variable of the original

data type. You can serialize any object except for display objects, which are those objects that can be placed on the

display list. You can also assign serialized objects back to custom class instances if the custom class is available to the

runtime. After converting an object to AMF, you can efficiently transfer it over a network connection or save it to a file.

The sample Adobe® AIR® application described here reads a .zip file as an example of processing a byte stream,

extracting a list of the files that the .zip file contains and writing them to the desktop.

More Help topics

flash.utils.ByteArray

flash.utils.IExternalizable

Action Message Format specification

Reading and writing a ByteArray

Flash Player 9 and later, Adobe AIR 1.0 and later

The ByteArray class is part of the flash.utils package; you can also use the alias air.ByteArray to refer to the

ByteArray class if your code includes the AIRAliases.js file. To create a ByteArray, invoke the ByteArray constructor

as shown in the following example:

 var stream = new air.ByteArray();

ByteArray methods

Flash Player 9 and later, Adobe AIR 1.0 and later

Any meaningful data stream is organized into a format that you can analyze to find the information that you want. A

record in a simple employee file, for example, would probably include an ID number, a name, an address, a phone

number, and so on. An MP3 audio file contains an ID3 tag that identifies the title, author, album, publishing date, and

genre of the file that’s being downloaded. The format allows you to know the order in which to expect the data on the

data stream. It allows you to read the byte stream intelligently.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/utils/ByteArray.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/utils/IExternalizable.html
http://opensource.adobe.com/wiki/download/attachments/1114283/amf3_spec_05_05_08.pdf

260HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with byte arrays

Last updated 9/28/2011

The ByteArray class includes several methods that make it easier to read from and write to a data stream. Some of these

methods include readBytes() and writeBytes(), readInt() and writeInt(), readFloat() and writeFloat(),

readObject() and writeObject(), and readUTFBytes() and writeUTFBytes(). These methods enable you to

read data from the data stream into variables of specific data types and write from specific data types directly to the

binary data stream.

For example, the following code reads a simple array of strings and floating-point numbers and writes each element

to a ByteArray. The organization of the array allows the code to call the appropriate ByteArray methods

(writeUTFBytes() and writeFloat()) to write the data. The repeating data pattern makes it possible to read the

array with a loop.

 // The following example reads a simple Array (groceries), made up of strings
 // and floating-point numbers, and writes it to a ByteArray.

 // define the grocery list Array
 var groceries = ["milk", 4.50, "soup", 1.79, "eggs", 3.19, "bread" , 2.35]
 // define the ByteArray
 var bytes = new air.ByteArray();
 // for each item in the array
 for (i = 0; i < groceries.length; i++) {
 bytes.writeUTFBytes(groceries[i++]); //write the string and position to the next item
 bytes.writeFloat(groceries[i]);// write the float
 air.trace("bytes.position is: " + bytes.position); //display the position in ByteArray
 }
 air.trace("bytes length is: " + bytes.length);// display the length

The position property

Flash Player 9 and later, Adobe AIR 1.0 and later

The position property stores the current position of the pointer that indexes the ByteArray during reading or writing.

The initial value of the position property is 0 (zero) as shown in the following code:

var bytes = new air.ByteArray();
 air.trace("bytes.position is initially: " + bytes.position); // 0

When you read from or write to a ByteArray, the method that you use updates the position property to point to the

location immediately following the last byte that was read or written. For example, the following code writes a string

to a ByteArray and afterward the position property points to the byte immediately following the string in the

ByteArray:

 var bytes = new air.ByteArray();
 air.trace("bytes.position is initially: " + bytes.position); // 0
 bytes.writeUTFBytes("Hello World!");
 air.trace("bytes.position is now: " + bytes.position);// 12

Likewise, a read operation increments the position property by the number of bytes read.

 var bytes = new air.ByteArray();

 air.trace("bytes.position is initially: " + bytes.position); // 0
 bytes.writeUTFBytes("Hello World!");
 air.trace("bytes.position is now: " + bytes.position);// 12
 bytes.position = 0;
 air.trace("The first 6 bytes are: " + (bytes.readUTFBytes(6)));//Hello
 air.trace("And the next 6 bytes are: " + (bytes.readUTFBytes(6)));// World!

261HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with byte arrays

Last updated 9/28/2011

Notice that you can set the position property to a specific location in the ByteArray to read or write at that offset.

The bytesAvailable and length properties

Flash Player 9 and later, Adobe AIR 1.0 and later

The length and bytesAvailable properties tell you how long a ByteArray is and how many bytes remain in it from

the current position to the end. The following example illustrates how you can use these properties. The example writes

a String of text to the ByteArray and then reads the ByteArray one byte at a time until it encounters either the character

“a” or the end (bytesAvailable <= 0).

var bytes = new air.ByteArray();
 var text = "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Vivamus etc.";

 bytes.writeUTFBytes(text); // write the text to the ByteArray
 air.trace("The length of the ByteArray is: " + bytes.length);// 70
 bytes.position = 0; // reset position
 while (bytes.bytesAvailable > 0 && (bytes.readUTFBytes(1) != 'a')) {
 //read to letter a or end of bytes
 }
 if (bytes.position < bytes.bytesAvailable) {
 air.trace("Found the letter a; position is: " + bytes.position); // 23
 air.trace("and the number of bytes available is: " + bytes.bytesAvailable);// 47
 }

The endian property

Flash Player 9 and later, Adobe AIR 1.0 and later

Computers can differ in how they store multibyte numbers, that is, numbers that require more than 1 byte of memory

to store them. An integer, for example, can take 4 bytes, or 32 bits, of memory. Some computers store the most

significant byte of the number first, in the lowest memory address, and others store the least significant byte first. This

attribute of a computer, or of byte ordering, is referred to as being either big endian (most significant byte first) or little

endian (least significant byte first). For example, the number 0x31323334 would be stored as follows for big endian and

little endian byte ordering, where a0 represents the lowest memory address of the 4 bytes and a3 represents the highest:

The endian property of the ByteArray class allows you to denote this byte order for multibyte numbers that you are

processing. The acceptable values for this property are either "bigEndian" or "littleEndian" and the Endian class

defines the constants BIG_ENDIAN and LITTLE_ENDIAN for setting the endian property with these strings.

Big

Endian

Big

Endian

Big

Endian

Big

Endian

a0 a1 a2 a3

31 32 33 34

Little

Endian

Little

Endian

Little

Endian

Little

Endian

a0 a1 a2 a3

34 33 32 31

262HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with byte arrays

Last updated 9/28/2011

The compress() and uncompress() methods

Flash Player 9 and later, Adobe AIR 1.0 and later

The compress() method allows you to compress a ByteArray in accordance with a compression algorithm that you

specify as a parameter. The uncompress() method allows you to uncompress a compressed ByteArray in accordance

with a compression algorithm. After calling compress() and uncompress(), the length of the byte array is set to the

new length and the position property is set to the end.

The CompressionAlgorithm class (AIR) defines constants that you can use to specify the compression algorithm. The

ByteArray class supports both the deflate (AIR-only) and zlib algorithms. The deflate compression algorithm is used

in several compression formats, such as zlib, gzip, and some zip implementations. The zlib compressed data format is

described at http://www.ietf.org/rfc/rfc1950.txt and the deflate compression algorithm is described at

http://www.ietf.org/rfc/rfc1951.txt.

The following example compresses a ByteArray called bytes using the deflate algorithm:

 bytes.compress(air.CompressionAlgorithm.DEFLATE);

The following example uncompresses a compressed ByteArray using the deflate algorithm:

 bytes.uncompress(CompressionAlgorithm.DEFLATE);

Reading and writing objects

Flash Player 9 and later, Adobe AIR 1.0 and later

The readObject() and writeObject() methods read an object from and write an object to a ByteArray, encoded in

serialized Action Message Format (AMF). AMF is a proprietary message protocol created by Adobe and used by

various ActionScript 3.0 classes, including Netstream, NetConnection, NetStream, LocalConnection, and Shared

Objects.

A one-byte type marker describes the type of the encoded data that follows. AMF uses the following 13 data types:

 value-type = undefined-marker | null-marker | false-marker | true-marker | integer-type |
 double-type | string-type | xml-doc-type | date-type | array-type | object-type |
 xml-type | byte-array-type

The encoded data follows the type marker unless the marker represents a single possible value, such as null or true or

false, in which case nothing else is encoded.

There are two versions of AMF: AMF0 and AMF3. AMF 0 supports sending complex objects by reference and allows

endpoints to restore object relationships. AMF 3 improves AMF 0 by sending object traits and strings by reference, in

addition to object references, and by supporting new data types that were introduced in ActionScript 3.0. The

ByteArray.objectEcoding property specifies the version of AMF that is used to encode the object data. The

flash.net.ObjectEncoding class defines constants for specifying the AMF version: ObjectEncoding.AMF0 and

ObjectEncoding.AMF3.

The following example calls writeObject() to write an XML object to a ByteArray, which it then writes to the order

file on the desktop. The example displays the message “Wrote order file to desktop!” in the AIR window when it is

finished.

http://www.ietf.org/rfc/rfc1950.txt
http://www.ietf.org/rfc/rfc1951.txt

263HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with byte arrays

Last updated 9/28/2011

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html
xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <style type="text/css">
 #taFiles
 {
 border: 1px solid black;
 font-family: Courier, monospace;
 white-space: pre;
 width: 95%;
 height: 95%;
 overflow-y: scroll;
 }
 </style>
 <script type="text/javascript" src="AIRAliases.js" ></script>
 <script type="text/javascript">

 //define ByteArray
 var inBytes = new air.ByteArray();
 //add objectEncoding value and file heading to output text
 var output = "Object encoding is: " + inBytes.objectEncoding + "\n\n" + "order file: \n\n";

 function init() {

 readFile("order", inBytes);
 inBytes.position = 0;//reset position to beginning
 // read XML from ByteArray
 var orderXML = inBytes.readObject();
 // convert to XML Document object
 var myXML = (new DOMParser()).parseFromString(orderXML, "text/xml");
 document.write(myXML.getElementsByTagName("menuName")[0].childNodes[0].nodeValue + ": ");
 document.write(myXML.getElementsByTagName("price")[0].childNodes[0].nodeValue +
"
"); // burger: 3.95
 document.write(myXML.getElementsByTagName("menuName")[1].childNodes[0].nodeValue + ":
");
 document.write(myXML.getElementsByTagName("price")[1].childNodes[0].nodeValue +
"
"); // fries: 1.45
 } // end of init()

 // read specified file into byte array
 function readFile(fileName, data) {
 var inFile = air.File.desktopDirectory; // source folder is desktop
 inFile = inFile.resolvePath(fileName); // name of file to read
 var inStream = new air.FileStream();
 inStream.open(inFile, air.FileMode.READ);
 inStream.readBytes(data, 0, data.length);
 inStream.close();
 }
 </script>
 </head>

 <body onload = "init();">
 <div id="taFiles"></div>
 </body>
 </html>

264HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with byte arrays

Last updated 9/28/2011

The readObject() method reads an object in serialized AMF from a ByteArray and stores it in an object of the

specified type. The following example reads the order file from the desktop into a ByteArray (inBytes) and calls

readObject() to store it in orderXML, which it then converts to an XML object document, myXML, and displays the

values of two item and price elements. The example also displays the value of the objectEncoding property along with

a header for the contents of the order file.

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <style type="text/css">
 #taFiles
 {
 border: 1px solid black;
 font-family: Courier, monospace;
 white-space: pre;
 width: 95%;
 height: 95%;
 overflow-y: scroll;
 }
 </style>
 <script type="text/javascript" src="AIRAliases.js" ></script>
 <script type="text/javascript">

 //define ByteArray
 var inBytes = new air.ByteArray();
 //add objectEncoding value and file heading to output text
 var output = "Object encoding is: " + inBytes.objectEncoding + "

" + "order file
items:" + "

";

 function init() {

 readFile("order", inBytes);
 inBytes.position = 0;//reset position to beginning
 // read XML from ByteArray
 var orderXML = inBytes.readObject();
 // convert to XML Document object
 var myXML = (new DOMParser()).parseFromString(orderXML, "text/xml");
 document.write(output);
 document.write(myXML.getElementsByTagName("menuName")[0].childNodes[0].nodeValue + ": ");
 document.write(myXML.getElementsByTagName("price")[0].childNodes[0].nodeValue +
"
"); // burger: 3.95
 document.write(myXML.getElementsByTagName("menuName")[1].childNodes[0].nodeValue + ":
");
 document.write(myXML.getElementsByTagName("price")[1].childNodes[0].nodeValue +

265HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with byte arrays

Last updated 9/28/2011

"
"); // fries: 1.45
 } // end of init()

 // read specified file into byte array
 function readFile(fileName, data) {
 var inFile = air.File.desktopDirectory; // source folder is desktop
 inFile = inFile.resolvePath(fileName); // name of file to read
 var inStream = new air.FileStream();
 inStream.open(inFile, air.FileMode.READ);
 inStream.readBytes(data, 0, data.length);
 inStream.close();
 }
 </script>
 </head>

 <body onload = "init();">
 <div id="taFiles"></div>
 </body>
 </html>

ByteArray example: Reading a .zip file

Adobe AIR 1.0 and later

This example demonstrates how to read a simple .zip file containing several files of different types. It does so by

extracting relevant data from the metadata for each file, uncompressing each file into a ByteArray and writing the file

to the desktop.

The general structure of a .zip file is based on the specification by PKWARE Inc., which is maintained at

http://www.pkware.com/documents/casestudies/APPNOTE.TXT. First is a file header and file data for the first file in

the .zip archive, followed by a file header and file data pair for each additional file. (The structure of the file header is

described later.) Next, the .zip file optionally includes a data descriptor record (usually when the output zip file was

created in memory rather than saved to a disk). Next are several additional optional elements: archive decryption

header, archive extra data record, central directory structure, Zip64 end of central directory record, Zip64 end of

central directory locator, and end of central directory record.

The code in this example is written to only parse zip files that do not contain folders and it does not expect data

descriptor records. It ignores all information following the last file data.

The format of the file header for each file is as follows:

file header signature 4 bytes

required version 2 bytes

general-purpose bit flag 2 bytes

compression method 2 bytes (8=DEFLATE; 0=UNCOMPRESSED)

last modified file time 2 bytes

last modified file date 2 bytes

crc-32 4 bytes

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

266HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with byte arrays

Last updated 9/28/2011

Following the file header is the actual file data, which can be either compressed or uncompressed, depending on the

compression method flag. The flag is 0 (zero) if the file data is uncompressed, 8 if the data is compressed using the

DEFLATE algorithm, or another value for other compression algorithms.

The user interface for this example consists of a label and a text area (taFiles). The application writes the following

information to the text area for each file it encounters in the .zip file: the file name, the compressed size, and the

uncompressed size. The following MXML document defines the user interface for the Flex version of the application:

<?xml version="1.0" encoding="utf-8"?>
 <mx:WindowedApplication xmlns:mx="http://www.adobe.com/2006/mxml" layout="vertical"
creationComplete="init();">
 <mx:Script>
 <![CDATA[
 // The application code goes here
]]>
 </mx:Script>
 <mx:Form>
 <mx:FormItem label="Output">
 <mx:TextArea id="taFiles" width="320" height="150"/>
 </mx:FormItem>
 </mx:Form>
 </mx:WindowedApplication>

The user interface for this example consists of a label and a text area (taFiles). The application writes the following

information to the text area for each file it encounters in the .zip file: the file name, the compressed size, and the

uncompressed size. The following HTML page defines the user interface for the application:

compressed size 4 bytes

uncompressed size 4 bytes

file name length 2 bytes

extra field length 2 bytes

file name variable

extra field variable

267HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with byte arrays

Last updated 9/28/2011

 <html>
 <head>
 <style type="text/css">
 #taFiles
 {
 border: 1px solid black;
 font-family: Courier, monospace;
 white-space: pre;
 width: 95%;
 height: 95%;
 overflow-y: scroll;
 }
 </style>
 <script type="text/javascript" src="AIRAliases.js"></script>
 <script type="text/javascript">
 // The application code goes here
 </script>
 </head>
 <body onload="init();">
 <div id="taFiles"></div>
 </body>
 </html>

The beginning of the program performs the following tasks:

• Defines the bytes ByteArray

 var bytes = new air.ByteArray();

• Defines variables to store metadata from the file header

 // variables for reading fixed portion of file header
 var fileName = new String();
 var flNameLength;
 var xfldLength;
 var offset;
 var compSize;
 var uncompSize;
 var compMethod;
 var signature;

 var output;

• Defines File (zfile) and FileStream (zStream) objects to represent the .zip file, and specifies the location of the

.zip file from which the files are extracted—a file named “HelloAIR.zip” in the desktop directory.

// File variables for accessing .zip file
 var zfile = air.File.desktopDirectory.resolvePath("HelloAIR.zip");
 var zStream = new air.FileStream();

In Flex, the program code starts in the init() method, which is called as the creationComplete handler for the root

mx:WindowedApplication tag.

The program code starts in the init() method, which is called as the onload event handler for the body tag.

 function init()
 {

The program begins by opening the .zip file in READ mode.

zStream.open(zfile, air.FileMode.READ);

268HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with byte arrays

Last updated 9/28/2011

It then sets the endian property of bytes to LITTLE_ENDIAN to indicate that the byte order of numeric fields has the

least significant byte first.

 bytes.endian = air.Endian.LITTLE_ENDIAN;

Next, a while() statement begins a loop that continues until the current position in the file stream is greater than or

equal to the size of the file.

 while (zStream.position < zfile.size)
 {

The first statement inside the loop reads the first 30 bytes of the file stream into the ByteArray bytes. The first 30 bytes

make up the fixed-size part of the first file header.

 // read fixed metadata portion of local file header
 zStream.readBytes(bytes, 0, 30);

Next, the code reads an integer (signature) from the first bytes of the 30-byte header. The ZIP format definition

specifies that the signature for every file header is the hexadecimal value 0x04034b50; if the signature is different it

means that the code has moved beyond the file portion of the .zip file and there are no more files to extract. In that case

the code exits the while loop immediately rather than waiting for the end of the byte array.

 bytes.position = 0;
 signature = bytes.readInt();
 // if no longer reading data files, quit
 if (signature != 0x04034b50)
 {
 break;
 }

The next part of the code reads the header byte at offset position 8 and stores the value in the variable compMethod.

This byte contains a value indicating the compression method that was used to compress this file. Several compression

methods are allowed, but in practice nearly all .zip files use the DEFLATE compression algorithm. If the current file is

compressed with DEFLATE compression, compMethod is 8; if the file is uncompressed, compMethod is 0.

 bytes.position = 8;
 compMethod = bytes.readByte(); // store compression method (8 == Deflate)

Following the first 30 bytes is a variable-length portion of the header that contains the file name and, possibly, an extra

field. The variable offset stores the size of this portion. The size is calculated by adding the file name length and extra

field length, read from the header at offsets 26 and 28.

 offset = 0;// stores length of variable portion of metadata
 bytes.position = 26; // offset to file name length
 flNameLength = bytes.readShort();// store file name
 offset += flNameLength; // add length of file name
 bytes.position = 28;// offset to extra field length
 xfldLength = bytes.readShort();
 offset += xfldLength;// add length of extra field

Next the program reads the variable-length portion of the file header for the number of bytes stored in the offset

variable.

 // read variable length bytes between fixed-length header and compressed file data
 zStream.readBytes(bytes, 30, offset);

The program reads the file name from the variable length portion of the header and displays it in the text area along

with the compressed (zipped) and uncompressed (original) sizes of the file.

269HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with byte arrays

Last updated 9/28/2011

 bytes.position = 30;
 fileName = bytes.readUTFBytes(flNameLength); // read file name
 output += fileName + "
"; // write file name to text area
 bytes.position = 18;
 compSize = bytes.readUnsignedInt(); // store size of compressed portion
 output += "\tCompressed size is: " + compSize + '
';
 bytes.position = 22; // offset to uncompressed size
 uncompSize = bytes.readUnsignedInt(); // store uncompressed size
 output += "\tUncompressed size is: " + uncompSize + '
';

The example reads the rest of the file from the file stream into bytes for the length specified by the compressed size,

overwriting the file header in the first 30 bytes. The compressed size is accurate even if the file is not compressed

because in that case the compressed size is equal to the uncompressed size of the file.

 // read compressed file to offset 0 of bytes; for uncompressed files
 // the compressed and uncompressed size is the same

if (compSize == 0) continue;
 zStream.readBytes(bytes, 0, compSize);

Next, the example uncompresses the compressed file and calls the outfile() function to write it to the output file

stream. It passes outfile() the file name and the byte array containing the file data.

 if (compMethod == 8) // if file is compressed, uncompress
 {
 bytes.uncompress(air.CompressionAlgorithm.DEFLATE);
 }
 outFile(fileName, bytes); // call outFile() to write out the file

The closing braces indicate the end of the while loop and of the init() method and the application code, except for

the outFile() method. Execution loops back to the beginning of the while loop and continues processing the next

bytes in the .zip file—either extracting another file or ending processing of the .zip file if the last file has been processed.

When all the files have been processed, the example writes the contents of the output variable to the div element

taFiles to display the file information on the screen.

 } // end of while loop

 document.getElementById("taFiles").innerHTML = output;
 } // end of init() method

The outfile() function opens an output file in WRITE mode on the desktop, giving it the name supplied by the

filename parameter. It then writes the file data from the data parameter to the output file stream (outStream) and

closes the file.

function outFile(fileName, data)
 {
 var outFile = air.File.desktopDirectory; // dest folder is desktop
 outFile = outFile.resolvePath(fileName); // name of file to write
 var outStream = new air.FileStream();
 // open output file stream in WRITE mode
 outStream.open(outFile, air.FileMode.WRITE);
 // write out the file
 outStream.writeBytes(data, 0, data.length);
 // close it
 outStream.close();
 }

270

Last updated 9/28/2011

Chapter 17: Adding PDF content in AIR

Adobe AIR 1.0 and later

Applications running in Adobe® AIR® can render not only SWF and HTML content, but also PDF content. AIR

applications render PDF content using the HTMLLoader class, the WebKit engine, and the Adobe® Reader® browser

plug-in. In an AIR application, PDF content can either stretch across the full height and width of your application or

alternatively as a portion of the interface. The Adobe Reader browser plug-in controls display of PDF files in an AIR

application. modifications to the Reader toolbar interface (such as controls for position, anchoring, and visibility)

persist in subsequent viewing of PDF files in both AIR applications and the browser.

Important: To render PDF content in AIR, the user must have Adobe Reader or Adobe® Acrobat® version 8.1 or higher

installed.

Detecting PDF Capability

Adobe AIR 1.0 and later

If the user does not have Adobe Reader or Adobe Acrobat 8.1 or higher, PDF content is not displayed in an AIR

application. To detect if a user can render PDF content, first check the HTMLLoader.pdfCapability property. This

property is set to one of the following constants of the HTMLPDFCapability class:

On Windows, if Adobe Acrobat or Adobe Reader version 7.x or above is running on the user's system, that version is

used even if a later version that supports loading PDF is installed. In this case, if the value of the pdfCapability

property is HTMLPDFCapability.STATUS_OK, when an AIR application attempts to load PDF content, the older

version of Acrobat or Reader displays an alert (and no exception is thrown in the AIR application). If this is a possible

situation for your end users, consider providing them with instructions to close Acrobat while running your

application. You may want to display these instructions if the PDF content does not load within an acceptable time

frame.

On Linux, AIR looks for Adobe Reader in the PATH exported by the user (if it contains the acroread command) and

in the /opt/Adobe/Reader directory.

The following code detects whether a user can display PDF content in an AIR application. If the user cannot display

PDF, the code traces the error code that corresponds to the HTMLPDFCapability error object:

Constant Description

HTMLPDFCapability.STATUS_OK A sufficient version (8.1 or greater) of Adobe Reader is detected and

PDF content can be loaded into an HTMLLoader object.

HTMLPDFCapability.ERROR_INSTALLED_READER_NOT_FOUND No version of Adobe Reader is detected. An HTMLLoader object

cannot display PDF content.

HTMLPDFCapability.ERROR_INSTALLED_READER_TOO_OLD Adobe Reader has been detected, but the version is too old. An

HTMLLoader object cannot display PDF content.

HTMLPDFCapability.ERROR_PREFERRED_READER_TOO_OLD A sufficient version (8.1 or later) of Adobe Reader is detected, but the

version of Adobe Reader that is set up to handle PDF content is older

than Reader 8.1. An HTMLLoader object cannot display PDF content.

271HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Adding PDF content in AIR

Last updated 9/28/2011

 if(air.HTMLLoader.pdfCapability == air.HTMLPDFCapability.STATUS_OK)
 {
 air.trace("PDF content can be displayed");
 }
 else
 {
 air.trace("PDF cannot be displayed. Error code:", HTMLLoader.pdfCapability);
 }

Loading PDF content

Adobe AIR 1.0 and later

You can add a PDF to an AIR application by creating an HTMLLoader instance, setting its dimensions, and loading

the path of a PDF.

You can add a PDF to an AIR application just as you would in a browser. For example, you can load PDF into the top-

level HTML content of a window, into an object tag, in a frame, or in an iframe.

The following example loads a PDF from an external site. Replace the value of the src property of the iframe with the

path to an available external PDF.

 <html>
 <body>
 <h1>PDF test</h1>
 <iframe id="pdfFrame"
 width="100%"
 height="100%"
 src="http://www.example.com/test.pdf"/>
 </body>
 </html>

You can also load content from file URLs and AIR-specific URL schemes, such as app and app-storage. For example,

the following code loads the test.pdf file in the PDFs subdirectory of the application directory:

app:/js_api_reference.pdf

For more information on AIR URL schemes, see “URI schemes” on page 318.

Scripting PDF content

Adobe AIR 1.0 and later

You can use JavaScript to control PDF content just as you can in a web page in the browser.

JavaScript extensions to Acrobat provide the following features, among others:

• Controlling page navigation and magnification

• Processing forms within the document

• Controlling multimedia events

272HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Adding PDF content in AIR

Last updated 9/28/2011

Full details on JavaScript extensions for Adobe Acrobat are provided at the Adobe Acrobat Developer Connection at

http://www.adobe.com/devnet/acrobat/javascript.html.

HTML-PDF communication basics

Adobe AIR 1.0 and later

JavaScript in an HTML page can send a message to JavaScript in PDF content by calling the postMessage() method

of the DOM object representing the PDF content. For example, consider the following embedded PDF content:

<object id="PDFObj" data="test.pdf" type="application/pdf" width="100%" height="100%"/>

The following JavaScript code in the containing HTML content sends a message to the JavaScript in the PDF file:

pdfObject = document.getElementById("PDFObj");
 pdfObject.postMessage(["testMsg", "hello"]);

The PDF file can include JavaScript for receiving this message. You can add JavaScript code to PDF files in some

contexts, including the document-, folder-, page-, field-, and batch-level contexts. Only the document-level context,

which defines scripts that are evaluated when the PDF document opens, is discussed here.

A PDF file can add a messageHandler property to the hostContainer object. The messageHandler property is an

object that defines handler functions to respond to messages. For example, the following code defines the function to

handle messages received by the PDF file from the host container (which is the HTML content embedding the PDF

file):

 this.hostContainer.messageHandler = {onMessage: myOnMessage};

 function myOnMessage(aMessage)
 {
 if(aMessage[0] == "testMsg")
 {
 app.alert("Test message: " + aMessage[1]);
 }
 else
 {
 app.alert("Error");
 }
 }

JavaScript code in the HTML page can call the postMessage() method of the PDF object contained in the page.

Calling this method sends a message ("Hello from HTML") to the document-level JavaScript in the PDF file:

http://www.adobe.com/devnet/acrobat/javascript.html

273HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Adding PDF content in AIR

Last updated 9/28/2011

 <html>
 <head>
 <title>PDF Test</title>
 <script>
 function init()
 {
 pdfObject = document.getElementById("PDFObj");
 try {
 pdfObject.postMessage(["alert", "Hello from HTML"]);
 }
 catch (e)
 {
 alert("Error: \n name = " + e.name + "\n message = " + e.message);
 }
 }
 </script>
 </head>
 <body onload='init()'>
 <object
 id="PDFObj"
 data="test.pdf"
 type="application/pdf"
 width="100%" height="100%"/>
 </body>
 </html>

For a more advanced example, and for information on using Acrobat 8 to add JavaScript to a PDF file, see Cross-

scripting PDF content in Adobe AIR.

Known limitations for PDF content in AIR

Adobe AIR 1.0 and later

PDF content in Adobe AIR has the following limitations:

• PDF content does not display in a window (a NativeWindow object) that is transparent (where the transparent

property is set to true).

• The display order of a PDF file operates differently than other display objects in an AIR application. Although PDF

content clips correctly according to HTML display order, it will always sit on top of content in the AIR application's

display order.

• If certain visual properties of an HTMLLoader object that contains a PDF document are changed, the PDF

document will become invisible. These properties include the filters, alpha, rotation, and scaling properties.

Changing these properties renders the PDF content invisible until the properties are reset. The PDF content is also

invisible if you change these properties of display object containers that contain the HTMLLoader object.

• PDF content is visible only when the scaleMode property of the Stage object of the NativeWindow object

containing the PDF content (the window.nativeWindow.stage property) is set to

air.StageScaleMode.NO_SCALE. When it is set to any other value, the PDF content is not visible.

http://www.adobe.com/go/learn_air_qs_pdf_script_html_en
http://www.adobe.com/go/learn_air_qs_pdf_script_html_en

274HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Adding PDF content in AIR

Last updated 9/28/2011

• Clicking links to content within the PDF file update the scroll position of the PDF content. Clicking links to content

outside the PDF file redirect the HTMLLoader object that contains the PDF (even if the target of a link is a new

window).

• PDF commenting workflows do not function in AIR.

275

Last updated 9/28/2011

Chapter 18: Working with sound

The Adobe® AIR® classes include many capabilities not available to HTML content running in the browser, including

capabilities for loading and playing sound content.

More Help topics

flash.media.Sound

flash.media.Microphone

flash.events.SampleDataEvent

Basics of working with sound

Before you can control a sound, you need to load the sound into the Adobe AIR application. There are five ways you

can get audio data into AIR:

• You can load an external sound file such as an mp3 file into the application.

• You can embed the sound information into a SWF file, load it (using <script src="[swfFile].swf"

type="application/x-shockwave-flash"/>) and play it.

• You can get audio input using a microphone attached to a user’s computer.

• You can access sound data that’s streamed from a server.

• You can dynamically generate sound data.

When you load sound data from an external sound file, you can begin playing back the start of the sound file while the

rest of the sound data is still loading.

Although there are various sound file formats used to encode digital audio, AIR supports sound files that are stored in

the mp3 format. It cannot directly load or play sound files in other formats like WAV or AIFF.

While you’re working with sound in AIR, you’ll likely work with several classes from the runtime.flash.media package.

The Sound class is the class you use to get access to audio information by loading a sound file or assigning a function

to an event that samples sound data and then starting playback. Once you start playing a sound, AIR gives you access

to a SoundChannel object. An audio file that you’ve loaded can only be one of several sounds that an application plays

simultaneously. Each individual sound that’s playing uses its own SoundChannel object; the combined output of all

the SoundChannel objects mixed together is what actually plays over the speakers. You use this SoundChannel

instance to control properties of the sound and to stop its playback. Finally, if you want to control the combined audio,

the SoundMixer class gives you control over the mixed output.

You can also use several other runtime classes to perform more specific tasks when you’re working with sound in AIR.

For more information on all the sound-related classes, see “Understanding the sound architecture” on page 276.

The Adobe AIR developer’s center provides a sample application: Using Sound in an HTML-based Application

(http://www.adobe.com/go/learn_air_qs_sound_html_en).

http://help.adobe.com/en_US/air/reference/html/flash/media/Sound.html
http://help.adobe.com/en_US/air/reference/html/flash/media/Microphone.html
http://help.adobe.com/en_US/air/reference/html/flash/events/SampleDataEvent.html
http://www.adobe.com/go/learn_air_qs_sound_html_en

276HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

Understanding the sound architecture

Your applications can load sound data from five main sources:

• External sound files loaded at run time

• Sound resources embedded within a SWF file

• Sound data from a microphone attached to the user’s system

• Sound data streamed from a remote media server, such as Flash Media Server

• Sound data being generated dynamically by using the sampleData event handler

Sound data can be fully loaded before it is played back, or it can be streamed, meaning that it is played back while it is

still loading.

Adobe AIR supports sound files that are stored in the mp3 format. They cannot directly load or play sound files in

other formats like WAV or AIFF. (However, AIR can also load and play AAC audio files using the NetStream class.)

The AIR sound architecture includes the following classes:

Each sound that is loaded and played needs its own instance of the Sound class and the SoundChannel class. During

playback, the SoundMixer class mixes the output from multiple SoundChannel instances.

The Sound, SoundChannel, and SoundMixer classes are not used for sound data obtained from a microphone or from

a streaming media server like Flash Media Server.

Loading external sound files

Each instance of the Sound class exists to load and trigger the playback of a specific sound resource. An application

can’t reuse a Sound object to load more than one sound. To load a new sound resource, the application needs to create

another Sound object.

Class Description

Sound The Sound class handles the loading of sound, manages basic sound properties, and starts a sound playing.

SoundChannel When an application plays a Sound object, a new SoundChannel object is created to control the playback. The

SoundChannel object controls the volume of both the left and right playback channels of the sound. Each

sound that plays has its own SoundChannel object.

SoundLoaderContext The SoundLoaderContext class specifies how many seconds of buffering to use when loading a sound, and

whether the runtime looks for a cross-domain policy file from the server when loading a file. A

SoundLoaderContext object is used as a parameter to the Sound.load() method.

SoundMixer The SoundMixer class controls playback and security properties that pertain to all sounds in an application. In

effect, multiple sound channels are mixed through a common SoundMixer object. Property values in the

SoundMixer object affect all SoundChannel objects that are currently playing.

SoundTransform The SoundTransform class contains values that control sound volume and panning. A SoundTransform object

can be applied to an individual SoundChannel object, to the global SoundMixer object, or to a Microphone

object, among others.

ID3Info An ID3Info object contains properties that represent ID3 metadata information that is often stored in MP3

sound files.

Microphone The Microphone class represents a microphone or other sound input device attached to the user’s computer.

Audio input from a microphone can be routed to local speakers or sent to a remote server. The Microphone

object controls the gain, sampling rate, and other characteristics of its own sound stream.

277HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

Creating a sound object

If you are loading a small sound file, such as a click sound to be attached to a button, your application can create a

Sound and have it automatically load the sound file, as the following example shows:

 var req = new air.URLRequest("click.mp3");
 var s = new air.Sound(req);

The Sound() constructor accepts a URLRequest object as its first parameter. When a value for the URLRequest

parameter is supplied, the new Sound object starts loading the specified sound resource automatically.

In all but the simplest cases, your application should pay attention to the sound’s loading progress and watch for errors

during loading. For example, if the click sound is fairly large, the application may not completely load it by the time

the user clicks the button that triggers the sound. Trying to play an unloaded sound could cause a run-time error. It’s

safer to wait for the sound to load completely before letting users take actions that can start sounds playing.

About sound events

A Sound object dispatches a number of different events during the sound loading process. Your application can listen

for these events to track loading progress and make sure that the sound loads completely before playing. The following

table lists the events that the Sound object is able to dispatch:

The following code illustrates how to play a sound after it has finished loading:

 var s = new air.Sound();
 s.addEventListener(air.Event.COMPLETE, onSoundLoaded);
 var req = new air.URLRequest("bigSound.mp3");
 s.load(req);

 function onSoundLoaded(event)
 {
 var localSound = event.target;
 localSound.play();
 }

First, the code sample creates a new Sound object without giving it an initial value for the URLRequest parameter. Then,

it listens for the complete event from the Sound object, which causes the onSoundLoaded() method to execute when

all the sound data is loaded. Next, it calls the Sound.load() method with a new URLRequest value for the sound file.

Event Description

open

(air.Event.OPEN)

Dispatched right before the sound loading operation begins.

progress

(air.ProgressEvent.PROGRESS)

Dispatched periodically during the sound loading process when data is received from the file or stream.

id3

(air.Event.ID3)

Dispatched when ID3 data is available for an mp3 sound.

complete

(air.Event.COMPLETE)

Dispatched when all of the sound resource’s data has been loaded.

ioError

(air.IOErrorEvent.IO_ERROR)

Dispatched when a sound file cannot be located or when the loading process is interrupted before all

sound data can be received.

278HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

The onSoundLoaded() method executes when the sound loading is complete. The target property of the Event

object is a reference to the Sound object. Calling the play() method of the Sound object then starts the sound

playback.

Monitoring the sound loading process

Sound files can be large and take a long time to load, especially if they are loaded from the Internet. An application can

play sounds before they are fully loaded. You might want to give the user an indication of how much of the sound data

has been loaded and how much of the sound has already been played.

The Sound class dispatches two events that make it relatively easy to display the loading progress of a sound: progress

and complete. The following example shows how to use these events to display progress information about the sound

being loaded:

 var s = new Sound();
 s.addEventListener(air.ProgressEvent.PROGRESS,
 onLoadProgress);
 s.addEventListener(air.Event.COMPLETE,
 onLoadComplete);
 s.addEventListener(air.IOErrorEvent.IO_ERROR,
 onIOError);

 var req = new air.URLRequest("bigSound.mp3");
 s.load(req);

 function onLoadProgress(event)
 {
 var loadedPct = Math.round(100 * (event.bytesLoaded / event.bytesTotal));
 air.trace("The sound is " + loadedPct + "% loaded.");
 }

 function onLoadComplete(event)
 {
 var localSound = event.target;
 localSound.play();
 }
 function onIOError(event)
 {
 air.trace("The sound could not be loaded: " + event.text);
 }

This code first creates a Sound object and then adds listeners to that object for the progress and complete events.

After the Sound.load() method has been called and the first data is received from the sound file, a progress event

occurs, and triggers the onSoundLoadProgress() method.

The fraction of the sound data that has been loaded is equal to the value of the bytesLoaded property of the

ProgressEvent object divided by the value of the bytesTotal property. The same bytesLoaded and bytesTotal

properties are available on the Sound object as well.

This example also shows how an application can recognize and respond to an error when loading sound files. For

example, if a sound file with the given filename cannot be located, the Sound object dispatches an ioError event. In

the previous code, the onIOError() method executes and displays a brief error message when an error occurs.

279HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

Working with embedded sounds

In AIR, you can use JavaScript to access sounds embedded in SWF files. You can load these SWF files into the

application using any of the following means:

• By loading the SWF file with a <script> tag in the HTML page

• By loading a SWF file using the runtime.flash.display.Loader class

The exact method of embedding a sound file into your application’s SWF file varies according to your SWF content

development environment. For information on embedding media in SWF files, see the documentation for your

SWF content development environment

To use the embedded sound, you reference the class name for that sound in ActionScript. For example, the

following code starts by creating an instance of the automatically generated DrumSound class:

 var drum = new DrumSound();
 var channel = drum.play();

DrumSound is a subclass of the flash.media.Sound class, so it inherits the methods and properties of the Sound

class. The play() method included, as the preceding example shows.

Working with streaming sound files

When a sound file or video file is playing back while its data is still being loaded, it is said to be streaming. Sound files

loaded from a remote server are often streamed so that the user doesn’t have to wait for all the sound data to load before

listening to the sound.

The SoundMixer.bufferTime property represents the number of milliseconds of sound data that an application

gathers before letting the sound play. In other words, if the bufferTime property is set to 5000, the application loads

at least 5000 milliseconds worth of data from the sound file before the sound begins to play. The default

SoundMixer.bufferTime value is 1000.

Your application can override the global SoundMixer.bufferTime value for an individual sound by explicitly

specifying a new bufferTime value when loading the sound. To override the default buffer time, first create an

instance of the SoundLoaderContext class, set its bufferTime property, and then pass it as a parameter to the

Sound.load() method. The following example shows this:

 var s = new air.Sound();
 var url = "http://www.example.com/sounds/bigSound.mp3";
 var req = new air.URLRequest(url);
 var context = new air.SoundLoaderContext(8000, true);
 s.load(req, context);
 s.play();

As playback continues, AIR tries to keep the sound buffer at the same size or greater. If the sound data loads faster than

the playback speed, playback continues without interruption. However, if the data loading rate slows down because of

network limitations, the playhead could reach the end of the sound buffer. If this happens, playback is suspended,

though it automatically resumes once more sound data has been loaded.

To find out if playback is suspended because AIR is waiting for data to load, use the Sound.isBuffering property.

280HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

Working with dynamically generated audio

Instead of loading or streaming an existing sound, you can generate audio data dynamically. You can generate audio

data when you assign an event listener for the sampleData event of a Sound object. (The sampleData event is defined

in the SampleDataEvent class.) In this environment, the Sound object doesn’t load sound data from a file. Instead, it

acts as a socket for sound data that is being streamed to it by using the function you assign to this event.

When you add a sampleData event listener to a Sound object, the object periodically requests data to add to the sound

buffer. This buffer contains data for the Sound object to play. When you call the play() method of the Sound object,

it dispatches the sampleData event when requesting new sound data. (This is true only when the Sound object has not

loaded mp3 data from a file.)

The SampleDataEvent object includes a data property. In your event listener, you write ByteArray objects to this data

object. The byte arrays you write to this object add to buffered sound data that the Sound object plays. The byte array

in the buffer is a stream of floating-point values from -1 to 1. Each floating-point value represents the amplitude of one

channel (left or right) of a sound sample. Sound is sampled at 44,100 samples per second. Each sample contains a left

and right channel, interleaved as floating-point data in the byte array.

In your handler function, you use the ByteArray.writeFloat() method to write to the data property of the

sampleData event. For example, the following code generates a sine wave:

var mySound = new air.Sound();
mySound.addEventListener(air.SampleDataEvent.SAMPLE_DATA, sineWaveGenerator);
mySound.play();
function sineWaveGenerator(event)
{

for (i = 0; i < 8192; i++)
{

var n = Math.sin((i + event.position) / Math.PI / 4);
event.data.writeFloat(n);
event.data.writeFloat(n);

}
}

When you call Sound.play(), the application starts calling your event handler, requesting sound sample data. The

application continues to send events as the sound plays back until you stop providing data, or until you call

SoundChannel.stop().

The latency of the event varies from platform to platform, and could change in future versions of AIR. Do not depend

on a specific latency; calculate it instead. To calculate the latency, use the following formula:

(SampleDataEvent.position / 44.1) - SoundChannelObject.position

Provide from 2048 through 8192 samples to the data property of the SampleDataEvent object (for each call to the

event listener). For best performance, provide as many samples as possible (up to 8192). The fewer samples you

provide, the more likely it is that clicks and pops occur during playback. This behavior can differ on various platforms

and can occur in various situations—for example, when resizing the browser. Code that works on one platform when

you provide only 2048 sample might not work as well when run on a different platform. If you require the lowest

latency possible, consider making the amount of data user-selectable.

If you provide fewer than 2048 samples (per call to the sampleData event listener), the application stops after playing

the remaining samples. It then dispatches a SoundComplete event.

281HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

Modifying sound from mp3 data

You use the Sound.extract() method to extract data from a Sound object. You can use (and modify) that data to

write to the dynamic stream of another Sound object for playback. For example, the following code uses the bytes of a

loaded mp3 file and passes them through a filter function, upOctave():

var mySound = new air.Sound();
var sourceSnd = new air.Sound();
var urlReq = new air.URLRequest("test.mp3");
sourceSnd.load(urlReq);
sourceSnd.addEventListener(air.Event.COMPLETE, loaded);
function loaded(event)
{

mySound.addEventListener(SampleDataEvent.SAMPLE_DATA, processSound);
mySound.play();

}
function processSound(event)
{

var bytes = new air.ByteArray();
sourceSnd.extract(bytes, 8192);

 event.data.writeBytes(upOctave(bytes));
}
function upOctave(bytes)
{

var returnBytes = new air.ByteArray();
bytes.position = 0;
while(bytes.bytesAvailable > 0)
{

returnBytes.writeFloat(bytes.readFloat());
returnBytes.writeFloat(bytes.readFloat());
if (bytes.bytesAvailable > 0)
{

bytes.position += 8;
}

}
return returnBytes;

}

Limitations on generated sounds

When you use a sampleData event listener with a Sound object, the only other Sound methods that are enabled are

Sound.extract() and Sound.play(). Calling any other methods or properties results in an exception. All methods

and properties of the SoundChannel object are still enabled.

Playing sounds

Playing a loaded sound can be as simple as calling the Sound.play() method for a Sound object, as follows:

 var req = new air.URLRequest("smallSound.mp3");
 var snd = new air.Sound(req);
 snd.play();

282HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

Sound playback operations

When playing back sounds, you can perform the following operations:

• Play a sound from a specific starting position

• Pause a sound and resume playback from the same position later

• Know exactly when a sound finishes playing

• Track the playback progress of a sound

• Change volume or panning while a sound plays

To perform these operations during playback, use the SoundChannel, SoundMixer, and SoundTransform classes.

The SoundChannel class controls the playback of a single sound. The SoundChannel.position property can be

thought of as a playhead, indicating the current point in the sound data that’s being played.

When an application calls the Sound.play() method, a new instance of the SoundChannel class is created to control

the playback.

Your application can play a sound from a specific starting position by passing that position, in terms of milliseconds,

as the startTime parameter of the Sound.play() method. It can also specify a fixed number of times to repeat the

sound in rapid succession by passing a numeric value in the loops parameter of the Sound.play() method.

When the Sound.play() method is called with both a startTime parameter and a loops parameter, the sound is

played back repeatedly from the same starting point each time. The following code shows this:

 var req = new air.URLRequest("repeatingSound.mp3");
 var snd = new air.Sound();
 snd.play(1000, 3);

In this example, the sound is played from a point one second after the start of the sound, three times in succession.

Pausing and resuming a sound

If your application plays long sounds, like songs or podcasts, you probably want to let users pause and resume the

playback of those sounds. A sound cannot literally be paused during playback; it can only be stopped. However, a

sound can be played starting from any point. You can record the position of the sound at the time it was stopped, and

then replay the sound starting at that position later.

For example, let’s say your code loads and plays a sound file like this:

 var req = new air.URLRequest("bigSound.mp3");
 var snd = new air.Sound(req);
 var channel = snd.play();

While the sound plays, the position property of the channel object indicates the point in the sound file that is

currently being played. Your application can store the position value before stopping the sound from playing, as

follows:

 var pausePosition = channel.position;
 channel.stop();

To resume playing the sound, pass the previously stored position value to restart the sound from the same point it

stopped at before.

 channel = snd.play(pausePosition);

283HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

Monitoring playback

Your application might want to know when a sound stops playing. Then it can start playing another sound or clean up

some resources used during the previous playback. The SoundChannel class dispatches a soundComplete event when

its sound finishes playing. Your application can listen for this event and take appropriate action, as the following

example shows:

 var snd = new air.Sound("smallSound.mp3");
 var channel = snd.play();
 s.addEventListener(air.Event.SOUND_COMPLETE, onPlaybackComplete);

 public function onPlaybackComplete(event)
 {
 air.trace("The sound has finished playing.");
 }

The SoundChannel class does not dispatch progress events during playback. To report on playback progress, your

application can set up its own timing mechanism and track the position of the sound playhead.

To calculate what percentage of a sound has been played, you can divide the value of the SoundChannel.position

property by the length of the sound data that’s being played:

 var playbackPercent = 100 * (channel.position / snd.length);

However, this code only reports accurate playback percentages if the sound data was fully loaded before playback

began. The Sound.length property shows the size of the sound data that is currently loaded, not the eventual size of

the entire sound file. To track the playback progress of a streaming sound that is still loading, your application should

estimate the eventual size of the full sound file and use that value in its calculations. You can estimate the eventual

length of the sound data using the bytesLoaded and bytesTotal properties of the Sound object, as follows:

 var estimatedLength = Math.ceil(snd.length / (snd.bytesLoaded / snd.bytesTotal));
 var playbackPercent = 100 * (channel.position / estimatedLength);

The following code loads a larger sound file and uses the setInterval() function as its timing mechanism for

showing playback progress. It periodically reports on the playback percentage, which is the current position value

divided by the total length of the sound data:

 var snd = new air.Sound();
 var url = "http://www.example.com/sounds/test.mp3";
 var req = new air.URLRequest(url);
 snd.load(req);

 var channel = snd.play();
 var timer = setInterval(monitorProgress, 100);
 snd.addEventListener(air.Event.SOUND_COMPLETE, onPlaybackComplete);

 function monitorProgress(event)
 {
 var estimatedLength = Math.ceil(snd.length / (snd.bytesLoaded / snd.bytesTotal));
 var playbackPercent = Math.round(100 * (channel.position / estimatedLength));
 air.trace("Sound playback is " + playbackPercent + "% complete.");
 }

 function onPlaybackComplete(event)
 {
 air.trace("The sound has finished playing.");
 clearInterval(timer);
 }

284HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

After the sound data starts loading, this code calls the snd.play() method and stores the resulting SoundChannel

object in the channel variable. Then it adds a monitorProgress() method, which the setInterval() function calls

repeatedly. The code uses an event listener to the SoundChannel object for the soundComplete event that occurs when

playback is complete.

The monitorProgress() method estimates the total length of the sound file based on the amount of data that has

already been loaded. It then calculates and displays the current playback percentage.

When the entire sound has been played, the onPlaybackComplete() function executes. This function removes the

callback method for the setInterval() function, so that the application doesn’t display progress updates after

playback is done.

Stopping streaming sounds

There is a quirk in the playback process for sounds that are streaming—that is, for sounds that are still loading while

they are being played. When you call the stop() method on a SoundChannel instance that is playing back a streaming

sound, the sound playback stops and then it restarts from the beginning of the sound. This occurs because the sound

loading process is still underway. To stop both the loading and the playback of a streaming sound, call the

Sound.close() method.

Controlling sound volume and panning

An individual SoundChannel object controls both the left and the right stereo channels for a sound. If an mp3 sound

is a monaural sound, the left and right stereo channels of the SoundChannel object contain identical waveforms.

You can find out the amplitude of each stereo channel of the sound being played using the leftPeak and rightPeak

properties of the SoundChannel object. These properties show the peak amplitude of the sound waveform itself. They

do not represent the actual playback volume. The actual playback volume is a function of the amplitude of the sound

wave and the volume values set in the SoundChannel object and the SoundMixer class.

The pan property of a SoundChannel object can be used to specify a different volume level for each of the left and right

channels during playback. The pan property can have a value ranging from -1 to 1. A value of -1 means the left channel

plays at top volume while the right channel is silent. A value of 1 means the right channel plays at top volume while

the left channel is silent. Values in between -1 and 1 set proportional values for the left and right channel values. A

value of 0 means that both channels play at a balanced, mid-volume level.

The following code example creates a SoundTransform object with a volume value of 0.6 and a pan value of -1 (upper-

left channel volume and no right channel volume). It passes the SoundTransform object as a parameter to the play()

method. The play() method applies that SoundTransform object to the new SoundChannel object that is created to

control the playback.

 var req = new air.URLRequest("bigSound.mp3");
 var snd = new air.Sound(req);
 var trans = new air.SoundTransform(0.6, -1);
 var channel = snd.play(0, 1, trans);

You can alter the volume and panning while a sound plays. Set the pan or volume properties of a SoundTransform

object and then apply that object as the soundTransform property of a SoundChannel object.

You can also set global volume and pan values for all sounds at once, using the soundTransform property of the

SoundMixer class. The following example shows this:

 SoundMixer.soundTransform = new air.SoundTransform(1, -1);

You can also use a SoundTransform object to set volume and pan values for a Microphone object (see “Capturing

sound input” on page 289).

285HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

The following example alternates the panning of the sound from the left channel to the right channel and back while

the sound plays:

 var snd = new air.Sound();
 var req = new air.URLRequest("bigSound.mp3");
 snd.load(req);

 var panCounter = 0;

 var trans = new air.SoundTransform(1, 0);
 var channel = snd.play(0, 1, trans);
 channel.addEventListener(air.Event.SOUND_COMPLETE,
 onPlaybackComplete);

 var timer = setInterval(panner, 100);

 function panner()
 {
 trans.pan = Math.sin(panCounter);
 channel.soundTransform = trans; // or SoundMixer.soundTransform = trans;
 panCounter += 0.05;
 }

 function onPlaybackComplete(event)
 {
 clearInterval(timer);
 }

The code starts by loading a sound file and then creating a SoundTransform object with volume set to 1 (full volume)

and pan set to 0 (evenly balanced between left and right). Then it calls the snd.play() method, passing the

SoundTransform object as a parameter.

While the sound plays, the panner() method executes repeatedly. The panner() method uses the Math.sin()

function to generate a value between -1 and 1. This range corresponds to the acceptable values of the

SoundTransform.pan property. The SoundTransform object’s pan property is set to the new value, and then the

channel’s soundTransform property is set to use the altered SoundTransform object.

To run this example, replace the filename bigSound.mp3 with the name of a local mp3 file. Then run the example. You

should hear the left channel volume getting louder while the right channel volume gets softer, and vice versa.

In this example, the same effect could be achieved by setting the soundTransform property of the SoundMixer class.

However, that would affect the panning of all sounds currently playing, not just the single sound this SoundChannel

object plays.

Working with sound metadata

Sound files that use the mp3 format can contain additional data about the sound in the form of ID3 tags.

Not every mp3 file contains ID3 metadata. When a Sound object loads an mp3 sound file, it dispatches an Event.ID3

event if the sound file contains ID3 metadata. To prevent run-time errors, your application should wait to receive the

Event.ID3 event before accessing the Sound.id3 property for a loaded sound.

The following code shows how to recognize when the ID3 metadata for a sound file has been loaded:

286HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

 var s = new air.Sound();
 s.addEventListener(air.Event.ID3, onID3InfoReceived);
 var urlReq = new air.URLRequest("mySound.mp3");
 s.load(urlReq);

 function onID3InfoReceived(event)
 {
 var id3 = event.target.id3;

 air.trace("Received ID3 Info:");
 for (propName in id3)
 {
 air.trace(propName + " = " + id3[propName]);
 }
 }

This code starts by creating a Sound object and telling it to listen for the id3 event. When the sound file’s ID3 metadata

is loaded, the onID3InfoReceived() method is called. The target of the Event object that is passed to the

onID3InfoReceived() method is the original Sound object. The method then gets the Sound object’s id3 property

and iterates through its named properties to trace their values.

Accessing raw sound data

The SoundMixer.computeSpectrum() method lets an application read the raw sound data for the waveform that is

currently being played. If more than one SoundChannel object is currently playing, the

SoundMixer.computeSpectrum() method shows the combined sound data of every SoundChannel object mixed

together.

How sound data is returned

The sound data is returned as a ByteArray object containing 512 four-byte sets of data, each of which represents a

floating point value between -1 and 1. These values represent the amplitude of the points in the sound waveform being

played. The values are delivered in two groups of 256, the first group for the left stereo channel and the second group

for the right stereo channel.

The SoundMixer.computeSpectrum() method returns frequency spectrum data rather than waveform data if the

FFTMode parameter is set to true. The frequency spectrum shows amplitude arranged by sound frequency, from

lowest frequency to highest. A Fast Fourier Transform (FFT) is used to convert the waveform data into frequency

spectrum data. The resulting frequency spectrum values range from 0 to roughly 1.414 (the square root of 2).

287HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

The following diagram compares the data returned from the computeSpectrum() method when the FFTMode

parameter is set to true and when it is set to false. The sound used for this diagram contains a loud bass sound in

the left channel and a drum hit sound in the right channel.

The computeSpectrum() method can also return data that has been resampled at a lower bit rate. Generally, this

results in smoother waveform data or frequency data at the expense of detail. The stretchFactor parameter controls

the rate at which the computeSpectrum() method data is sampled. When the stretchFactor parameter is set to 0,

the default, the sound data is sampled at a rate of 44.1 kHz. The rate is halved at each successive value of the

stretchFactor parameter. So a value of 1 specifies a rate of 22.05 kHz, a value of 2 specifies a rate of 11.025 kHz, and

so on. The computeSpectrum() method still returns 256 floating point values per stereo channel when a higher

stretchFactor value is used.

Building a simple sound visualizer

The following example uses the SoundMixer.computeSpectrum() method to show a chart of the sound waveform

that animates periodically:

288HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

 <html>
 <title>Sound Spectrum</title>
 <script src="AIRAliases.js" />
 <script>
 const PLOT_WIDTH = 600;
 const CHANNEL_LENGTH = 256;

 var snd = new air.Sound();
 var req = new air.URLRequest("test.mp3");
 var bytes = new air.ByteArray();
 var divStyles = new Array;

 /**
 * Initializes the application. It draws 256 DIV elements to the document body,
 * and sets up a divStyles array that contains references to the style objects of
 * each DIV element. It then calls the playSound() function.
 */
 function init()
 {
 var div;
 for (i = 0; i < CHANNEL_LENGTH; i++)
 {
 div = document.createElement("div");
 div.style.height = "1px";
 div.style.width = "0px";
 div.style.backgroundColor = "blue";
 document.body.appendChild(div);
 divStyles[i] = div.style;
 }
 playSound();
 }
 /**
 * Plays a sound, and calls setInterval() to call the setMeter() function
 * periodically, to display the sound spectrum data.
 */
 function playSound()
 {
 if (snd.url != null)
 {
 snd.close();
 }
 snd.load(req);
 var channel = snd.play();
 timer = setInterval(setMeter, 100);
 snd.addEventListener(air.Event.SOUND_COMPLETE, onPlaybackComplete);
 }

 /**
 * Computes the width of each of the 256 colored DIV tags in the document,
 * based on data returned by the call to SoundMixer.computeSpectrum(). The
 * first 256 floating point numbers in the byte array represent the data from
 * the left channel, and then next 256 floating point numbers represent the
 * data from the right channel.
 */
 function setMeter()
 {
 air.SoundMixer.computeSpectrum(bytes, false, 0);

289HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

 var n;
 for (var i = 0; i < CHANNEL_LENGTH; i++)
 {
 bytes.position = i * 4;
 n = Math.abs(bytes.readFloat());
 bytes.position = 256*4 + i * 4;
 n += Math.abs(bytes.readFloat());
 divStyles[i].width = n * PLOT_WIDTH;
 }
 }
 /**
 * When the sound is done playing, remove the intermediate process
 * started by setInterval().
 */
 function onPlaybackComplete(event)
 {
 clearInterval(interval);
 }
 </script>
 <body onload="init()">
 </body>
 </html>

This example first loads and plays a sound file and then uses the setInterval() function to monitor the

SoundMixer.computeSpectrum() method, which stores the sound wave data in the bytes ByteArray object.

The sound waveform is plotted by setting the width of div elements representing a bar graph.

Capturing sound input

The Microphone class lets your application connect to a microphone or other sound input device on the user’s system.

An application can broadcast the input audio to that system’s speakers or send the audio data to a remote server, such

as the Flash Media Server. You cannot access raw audio data from the microphone; you can only send audio to the

system’s speakers or send compressed audio data to a remote server. You can use either Speex or Nellymoser codec for

data sent to a remote server. (The Speex codec is available in AIR 1.5.)

Accessing a microphone

The Microphone class does not have a constructor method. Instead, you use the static

Microphone.getMicrophone() method to obtain a new Microphone instance, as the following example shows:

 var mic = air.Microphone.getMicrophone();

Calling the Microphone.getMicrophone() method without a parameter returns the first sound input device

discovered on the user’s system.

A system can have more than one sound input device attached to it. Your application can use the Microphone.names

property to get an array of the names of all available sound input devices. Then it can call the

Microphone.getMicrophone() method with an index parameter that matches the index value of a device’s name in

the array.

290HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

A system might not have a microphone or other sound input device attached to it. You can use the Microphone.names

property or the Microphone.getMicrophone() method to check whether the user has a sound input device installed.

If the user doesn’t have a sound input device installed, the names array has a length of zero, and the getMicrophone()

method returns a value of null.

Routing microphone audio to local speakers

Audio input from a microphone can be routed to the local system speakers by calling the

Microphone.setLoopback() method with a parameter value of true.

When sound from a local microphone is routed to local speakers, there is a risk of creating an audio feedback loop.

This can cause loud squealing sounds and can potentially damage sound hardware. Calling the

Microphone.setUseEchoSuppression() method with a parameter value of true reduces, but does not completely

eliminate, the risk that audio feedback will occur. Adobe recommends that you always call

Microphone.setUseEchoSuppression(true) before calling Microphone.setLoopback(true), unless you are

certain that the user is playing back the sound using headphones or something other than speakers.

The following code shows how to route the audio from a local microphone to the local system speakers:

 var mic = air.Microphone.getMicrophone();
 mic.setUseEchoSuppression(true);
 mic.setLoopBack(true);

Altering microphone audio

Your application can alter the audio data that comes from a microphone in two ways. First, it can change the gain of

the input sound, which effectively multiplies the input values by a specified amount. This creates a louder or quieter

sound. The Microphone.gain property accepts numeric values from 0 through 100. A value of 50 acts like a multiplier

of one and specifies normal volume. A value of zero acts like a multiplier of zero and effectively silences the input

audio. Values above 50 specify higher than normal volume.

Your application can also change the sample rate of the input audio. Higher sample rates increase sound quality, but

they also create denser data streams that use more resources for transmission and storage. The Microphone.rate

property represents the audio sample rate measured in kilohertz (kHz). The default sample rate is 8 kHz. You can set

the Microphone.rate property to a value higher than 8 kHz if your microphone supports the higher rate. For

example, setting the Microphone.rate property to 11 sets the sample rate to 11 kHz; setting it to 22 sets the sample

rate to 22 kHz, and so on. The sample rates available depend on the selected codec. When you use the Nellymoser

codec, you can specify 5, 8, 11, 16, 22 and 44 kHz as the sample rate. When you use Speex codec (available in AIR 1.5),

you can only use 16 kHz.

Detecting microphone activity

To conserve bandwidth and processing resources, the runtime tries to detect when a microphone transmits no sound.

When the microphone’s activity level stays below the silence level threshold for a period of time, the runtime stops

transmitting the audio input and dispatches an activity event. If you use the Speex codec (available in AIR 1.5), set

the silence level to 0, to ensure that the application continuously transmits audio data. Speex voice activity detection

automatically reduces bandwidth.

Three properties of the Microphone class monitor and control the detection of activity:

• The read-only activityLevel property indicates the amount of sound the microphone is detecting, on a scale

from 0 to 100.

291HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

• The silenceLevel property specifies the amount of sound needed to activate the microphone and dispatch an

activity event. The silenceLevel property also uses a scale from 0 to 100, and the default value is 10.

• The silenceTimeout property describes the number of milliseconds that the activity level must stay below the

silence level before an activity event is dispatched. The default silenceTimeout value is 2000.

Both the Microphone.silenceLevel property and the Microphone.silenceTimeout property are read only, but

their values can be changed by using the Microphone.setSilenceLevel() method.

In some cases, the process of activating the microphone when new activity is detected can cause a short delay. Keeping

the microphone active at all times can remove such activation delays. Your application can call the

Microphone.setSilenceLevel() method with the silenceLevel parameter set to zero. This keeps the microphone

active and gathering audio data, even when no sound is detected. Conversely, setting the silenceLevel parameter to

100 prevents the microphone from being activated at all.

The following example displays information about the microphone and reports on activity events and status

events dispatched by a Microphone object:

 var deviceArray = air.Microphone.names;
 air.trace("Available sound input devices:");
 for (i = 0; i < deviceArray.length; i++)
 {
 air.trace(" " + deviceArray[i]);
 }

 var mic = air.Microphone.getMicrophone();
 mic.gain = 60;
 mic.rate = 11;
 mic.setUseEchoSuppression(true);
 mic.setLoopBack(true);
 mic.setSilenceLevel(5, 1000);

 mic.addEventListener(air.ActivityEvent.ACTIVITY, this.onMicActivity);

 var micDetails = "Sound input device name: " + mic.name + '\n';
 micDetails += "Gain: " + mic.gain + '\n';
 micDetails += "Rate: " + mic.rate + " kHz" + '\n';
 micDetails += "Muted: " + mic.muted + '\n';
 micDetails += "Silence level: " + mic.silenceLevel + '\n';
 micDetails += "Silence timeout: " + mic.silenceTimeout + '\n';
 micDetails += "Echo suppression: " + mic.useEchoSuppression + '\n';
 air.trace(micDetails);

 function onMicActivity(event)
 {
 air.trace("activating=" + event.activating + ", activityLevel=" +
 mic.activityLevel);
 }

When you run the preceding example, speak or make noises into your system microphone and watch the resulting

trace statements appear in the console.

Sending audio to and from a media server

Additional audio capabilities are available when using a streaming media server such as Flash Media Server.

292HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with sound

Last updated 9/28/2011

In particular, your application can attach a Microphone object to a runtime.flash.net.NetStream object and transmit

data directly from the user’s microphone to the server. Audio data can also be streamed from the server to an AIR

application.

AIR 1.5 introduces support for the Speex codec. To set the codec used for compressed audio sent to the media server,

set the codec property of the Microphone object. This property can have two values, which are enumerated in the

SoundCodec class. Setting the codec property to SoundCodec.SPEEX selects the Speex codec for compressing audio.

Setting the property to SoundCodec.NELLYMOSER (the default) selects the Nellymoser codec for compressing audio.

For more information, see the Flash Media Server documentation online at

http://www.adobe.com/support/documentation.

http://www.adobe.com/support/documentation

293

Last updated 9/28/2011

Chapter 19: Client system environment

Flash Player 9 and later, Adobe AIR 1.0 and later

This discussion explains how to interact with the user’s system. It shows you how to determine what features are

supported and how to build multilingual applications using the user’s installed input method editor (IME) if available.

It also shows typical uses for application domains.

More Help topics

flash.system.System

flash.system.Capabilities

Basics of the client system environment

Flash Player 9 and later, Adobe AIR 1.0 and later

As you build more advanced applications, you may find a need to know details about—and access functions of—your

users’ operating systems. The flash.system package contains a collection of classes that allow you to access system-level

functionality such as the following:

• Determining which application and security domain code is executing in

• Determining the capabilities of the user’s Flash runtime (such as Flash® Player or Adobe® AIR™) instance, such as

the screen size (resolution) and whether certain functionality is available, such as mp3 audio

• Building multilingual sites using the IME

• Interacting with the Flash runtime’s container (which could be an HTML page or a container application).

• Saving information to the user’s clipboard

The flash.system package also includes the IMEConversionMode and SecurityPanel classes. These classes contain

static constants that you use with the IME and Security classes, respectively.

Important concepts and terms

The following reference list contains important terms:

Operating system The main program that runs on a computer, within which all other applications run—such as

Microsoft Windows, Mac OS X, or Linux®.

Clipboard The operating system’s container for holding text or items that are copied or cut, and from which items are

pasted into applications.

Application domain A mechanism for separating classes used in different SWF files, so that if the SWF files include

different classes with the same name, the classes don’t overwrite each other.

IME (input method editor) A program (or operating system tool) that is used to enter complex characters or symbols

using a standard keyboard.

http://help.adobe.com/en_US/air/reference/html/flash/system/System.html
http://help.adobe.com/en_US/air/reference/html/flash/system/Capabilities.html

294HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Client system environment

Last updated 9/28/2011

Client system In programming terms, a client is the part of an application (or whole application) that runs on an

individual’s computer and is used by a single user. The client system is the underlying operating system on the user’s

computer.

Using the System class

Flash Player 9 and later, Adobe AIR 1.0 and later

The System class contains methods and properties that allow you to interact with the user’s operating system and

retrieve the current memory usage of the runtime. The methods and properties of the System class also allow you to

listen for imeComposition events, instruct the runtime to load external text files using the user’s current code page or

to load them as Unicode, or set the contents of the user’s clipboard.

Getting data about the user’s system at run time

Flash Player 9 and later, Adobe AIR 1.0 and later

By checking the System.totalMemory property, you can determine the amount of memory (in bytes) that the

runtime is currently using. This property allows you to monitor memory usage and optimize your applications based

on how the memory level changes. For example, if a particular visual effect causes a large increase in memory usage,

you may want to consider modifying the effect or eliminating it altogether.

The System.ime property is a reference to the currently installed Input Method Editor (IME). This property allows

you to listen for imeComposition events (flash.events.IMEEvent.IME_COMPOSITION) by using the

addEventListener() method.

The third property in the System class is useCodePage. When useCodePage is set to true, the runtime uses the

traditional code page of the operating system to load external text files. If you set this property to false, you tell the

runtime to interpret the external file as Unicode.

If you set System.useCodePage to true, remember that the traditional code page of the operating system must

include the characters used in your external text file in order for the text to display. For example, if you load an external

text file that contains Chinese characters, those characters cannot display on a system that uses the English Windows

code page because that code page does not include Chinese characters.

To ensure that users on all platforms can view the external text files that are used in your application, you should

encode all external text files as Unicode and leave System.useCodePage set to false by default. This way, the runtime

interprets the text as Unicode.

Using the Capabilities class

Flash Player 9 and later, Adobe AIR 1.0 and later

The Capabilities class allows developers to determine the environment in which an application is being run. Using

various properties of the Capabilities class, you can find out the resolution of the user’s system, whether the user’s

system supports accessibility software, and the language of the user’s operating system, as well as the currently installed

version of the Flash runtime.

295HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Client system environment

Last updated 9/28/2011

By checking the properties in the Capabilities class, you can customize your application to work best with the specific

user’s environment. For example, by checking the Capabilities.screenResolutionX and

Capabilities.screenResolutionY properties, you can determine the display resolution the user’s system is using

and decide which video size may be most appropriate. Or you can check the Capabilities.hasMP3 property to see

if the user’s system supports mp3 playback before attempting to load an external mp3 file.

The following code uses a regular expression to parse the Flash runtime version that the client is using:

 var versionString = air.Capabilities.version;
 var pattern = /^(\w*) (\d*),(\d*),(\d*),(\d*)$/;
 var result = pattern.exec(versionString);
 if (result != null)
 {
 air.trace("input: " + result.input);
 air.trace("platform: " + result[1]);
 air.trace("majorVersion: " + result[2]);
 air.trace("minorVersion: " + result[3]);
 air.trace("buildNumber: " + result[4]);
 air.trace("internalBuildNumber: " + result[5]);
 }
 else
 {
 air.trace("Unable to match RegExp.");
 }

296

Last updated 9/28/2011

Chapter 20: AIR application invocation
and termination

Adobe AIR 1.0 and later

This section discusses the ways in which an installed Adobe® AIR® application can be invoked, as well as options and

considerations for closing a running application.

Note: The NativeApplication, InvokeEvent, and BrowserInvokeEvent objects are only available to SWF content running

in the AIR application sandbox. SWF content running in the Flash Player runtime, within the browser or the standalone

player (projector), or in an AIR application outside the application sandbox, cannot access these classes.

For a quick explanation and code examples of invoking and terminating AIR applications, see the following quick start

articles on the Adobe Developer Connection:

• Startup Options

• Startup Options

More Help topics

air.NativeApplication

flash.events.InvokeEvent

flash.events.BrowserInvokeEvent

Application invocation

Adobe AIR 1.0 and later

An AIR application is invoked when the user (or the operating system):

• Launches the application from the desktop shell.

• Uses the application as a command on a command line shell.

• Opens a type of file for which the application is the default opening application.

• (Mac OS X) clicks the application icon in the dock taskbar (whether or not the application is currently running).

• Chooses to launch the application from the installer (either at the end of a new installation process, or after double-

clicking the AIR file for an already installed application).

• Begins an update of an AIR application when the installed version has signaled that it is handling application

updates itself (by including a <customUpdateUI>true</customUpdateUI> declaration in the application

descriptor file).

• Visits a web page hosting a Flash badge or application that calls com.adobe.air.AIR launchApplication()

method specifying the identifying information for the AIR application. (The application descriptor must also

include a <allowBrowserInvocation>true</allowBrowserInvocation> declaration for browser invocation to

succeed.)

http://www.adobe.com/go/learn_air_qs_startup_options_flex_en
http://www.adobe.com/go/learn_air_qs_startup_options_html_en
http://help.adobe.com/en_US/air/reference/html/flash/desktop/NativeApplication.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/InvokeEvent.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/events/BrowserInvokeEvent.html

297HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR application invocation and termination

Last updated 9/28/2011

Whenever an AIR application is invoked, AIR dispatches an InvokeEvent object of type invoke through the singleton

NativeApplication object. To allow an application time to initialize itself and register an event listener, invoke events

are queued instead of discarded. As soon as a listener is registered, all the queued events are delivered.

Note: When an application is invoked using the browser invocation feature, the NativeApplication object only dispatches

an invoke event if the application is not already running.

To receive invoke events, call the addEventListener() method of the NativeApplication object

(NativeApplication.nativeApplication). When an event listener registers for an invoke event, it also receives

all invoke events that occurred before the registration. Queued invoke events are dispatched one at a time on a short

interval after the call to addEventListener() returns. If a new invoke event occurs during this process, it may be

dispatched before one or more of the queued events. This event queuing allows you to handle any invoke events that

have occurred before your initialization code executes. Keep in mind that if you add an event listener later in execution

(after application initialization), it will still receive all invoke events that have occurred since the application started.

Only one instance of an AIR application is started. When an already running application is invoked again, AIR

dispatches a new invoke event to the running instance. It is the responsibility of an AIR application to respond to an

invoke event and take the appropriate action (such as opening a new document window).

An InvokeEvent object contains any arguments passed to the application, as well as the directory from which the

application has been invoked. If the application was invoked because of a file-type association, then the full path to the

file is included in the command line arguments. Likewise, if the application was invoked because of an application

update, the full path to the update AIR file is provided.

When multiple files are opened in one operation a single InvokeEvent object is dispatched on Mac OS X. Each file is

included in the arguments array. On Windows and Linux, a separate InvokeEvent object is dispatched for each file.

Your application can handle invoke events by registering a listener with its NativeApplication object:

 air.NativeApplication.nativeApplication.addEventListener(air.InvokeEvent.INVOKE,
onInvokeEvent);

And defining an event listener:

var arguments;
 var currentDir;
 function onInvokeEvent(invocation) {
 arguments = invocation.arguments;
 currentDir = invocation.currentDirectory;
 }

Capturing command line arguments

Adobe AIR 1.0 and later

The command line arguments associated with the invocation of an AIR application are delivered in the InvokeEvent

object dispatched by the NativeApplication object. The InvokeEvent arguments property contains an array of the

arguments passed by the operating system when an AIR application is invoked. If the arguments contain relative file

paths, you can typically resolve the paths using the currentDirectory property.

The arguments passed to an AIR program are treated as white-space delimited strings, unless enclosed in double

quotes:

298HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR application invocation and termination

Last updated 9/28/2011

The currentDirectory property of an InvokeEvent object contains a File object representing the directory from

which the application was launched.

When an application is invoked because a file of a type registered by the application is opened, the native path to the

file is included in the command line arguments as a string. (Your application is responsible for opening or performing

the intended operation on the file.) Likewise, when an application is programmed to update itself (rather than relying

on the standard AIR update user interface), the native path to the AIR file is included when a user double-clicks an

AIR file containing an application with a matching application ID.

You can access the file using the resolve() method of the currentDirectory File object:

 if((invokeEvent.currentDirectory != null)&&(invokeEvent.arguments.length > 0)){
 dir = invokeEvent.currentDirectory;
 fileToOpen = dir.resolvePath(invokeEvent.arguments[0]);
 }

You should also validate that an argument is indeed a path to a file.

Example: Invocation event log

Adobe AIR 1.0 and later

The following example demonstrates how to register listeners for and handle the invoke event. The example logs all

the invocation events received and displays the current directory and command line arguments.

Note: This example uses the AIRAliases.js file, which you can find in the frameworks folder of the SDK.

 <html>
 <head>
 <title>Invocation Event Log</title>
 <script src="AIRAliases.js" />
 <script type="text/javascript">
 function appLoad() {
 air.trace("Invocation Event Log.");
 air.NativeApplication.nativeApplication.addEventListener(
 air.InvokeEvent.INVOKE, onInvoke);
 }

 function onInvoke(invokeEvent) {
 logEvent("Invoke event received.");
 if (invokeEvent.currentDirectory) {
 logEvent("Current directory=" + invokeEvent.currentDirectory.nativePath);
 } else {
 logEvent("--no directory information available--");
 }

 if (invokeEvent.arguments.length > 0) {
 logEvent("Arguments: " + invokeEvent.arguments.toString());

Arguments Array

tick tock {tick,tock}

tick "tick tock" {tick,tick tock}

"tick" “tock” {tick,tock}

\"tick\" \"tock\" {"tick","tock"}

299HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR application invocation and termination

Last updated 9/28/2011

 } else {
 logEvent("--no arguments--");
 }
 }

 function logEvent(message) {
 var logger = document.getElementById('log');
 var line = document.createElement('p');
 line.innerHTML = message;
 logger.appendChild(line);
 air.trace(message);
 }

 window.unload = function() {
 air.NativeApplication.nativeApplication.removeEventListener(
 air.InvokeEvent.INVOKE, onInvoke);
 }
 </script>
 </head>

 <body onLoad="appLoad();">
 <div id="log"/>
 </body>
 </html>

Invoking an AIR application on user login

Adobe AIR 1.0 and later

An AIR application can be set to launch automatically when the current user logs in by setting the NativeApplication

startAtLogin property to true. Once set, the application automatically starts whenever the user logs in. It continues

to launch at login until the setting is changed to false, the user manually changes the setting through the operating

system, or the application is uninstalled. Launching at login is a run-time setting. The setting only applies to the

current user. The application must be installed to successfully set the startAtLogin property to true. An error is

thrown if the property is set when an application is not installed (such as when it is launched with ADL).

Note: The application does not launch when the computer system starts. It launches when the user logs in.

To determine whether an application has launched automatically or as a result of a user action, you can examine the

reason property of the InvokeEvent object. If the property is equal to InvokeEventReason.LOGIN, then the

application started automatically. For any other invocation path, the reason property equals

InvokeEventReason.STANDARD. To access the reason property, your application must target AIR 1.5.1 (by setting

the correct namespace value in the application descriptor file).

The following, simplified application uses the InvokeEvent reason property to decide how to behave when an invoke

event occurs. If the reason property is "login", then the application remains in the background. Otherwise, it makes the

main application visible. An application using this pattern typically starts at login so that it can carry out background

processing or event monitoring and opens a window in response to a user-triggered invoke event.

300HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR application invocation and termination

Last updated 9/28/2011

<html>
<head>
<script src="AIRAliases.js"></script>
<script language="javascript">
try
{

air.NativeApplication.nativeApplication.startAtLogin = true;
}
catch (e)
{

air.trace("Cannot set startAtLogin: " + e.message);
}

air.NativeApplication.nativeApplication.addEventListener(air.InvokeEvent.INVOKE, onInvoke);

function onInvoke(event)
{

if(event.reason == air.InvokeEventReason.LOGIN)
{

//do background processing...
air.trace("Running in background...");

}
else
{

window.nativeWindow.activate();
}

}
</script>
</head>
<body>
</body>
</html>

Note: To see the difference in behavior, package and install the application. The startAtLogin property can only be set

for installed applications.

Invoking an AIR application from the browser

Adobe AIR 1.0 and later

Using the browser invocation feature, a web site can launch an installed AIR application to be launched from the

browser. Browser invocation is only permitted if the application descriptor file sets allowBrowserInvocation to true:

 <allowBrowserInvocation>true</allowBrowserInvocation>

When the application is invoked via the browser, the application’s NativeApplication object dispatches a

BrowserInvokeEvent object.

301HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR application invocation and termination

Last updated 9/28/2011

To receive BrowserInvokeEvent events, call the addEventListener() method of the NativeApplication object

(NativeApplication.nativeApplication) in the AIR application. When an event listener registers for a

BrowserInvokeEvent event, it also receives all BrowserInvokeEvent events that occurred before the registration. These

events are dispatched after the call to addEventListener() returns, but not necessarily before other

BrowserInvokeEvent events that might be received after registration. This allows you to handle BrowserInvokeEvent

events that have occurred before your initialization code executes (such as when the application was initially invoked

from the browser). Keep in mind that if you add an event listener later in execution (after application initialization) it

still receives all BrowserInvokeEvent events that have occurred since the application started.

The BrowserInvokeEvent object includes the following properties:

If you use the browser invocation feature, be sure to consider security implications. When a web site launches an AIR

application, it can send data via the arguments property of the BrowserInvokeEvent object. Be careful using this data

in any sensitive operations, such as file or code loading APIs. The level of risk depends on what the application is doing

with the data. If you expect only a specific web site to invoke the application, the application should check the

securityDomain property of the BrowserInvokeEvent object. You can also require the web site invoking the

application to use HTTPs, which you can verify by checking the isHTTPS property of the BrowserInvokeEvent object.

The application should validate the data passed in. For example, if an application expects to be passed URLs to a

specific domain, it should validate that the URLs really do point to that domain. This can prevent an attacker from

tricking the application into sending it sensitive data.

No application should use BrowserInvokeEvent arguments that might point to local resources. For example, an

application should not create File objects based on a path passed from the browser. If remote paths are expected to be

passed from the browser, the application should ensure that the paths do not use the file:// protocol instead of a

remote protocol.

Property Description

arguments An array of arguments (strings) to pass to the application.

isHTTPS Whether the content in the browser uses the https URL scheme (true) or not (false).

isUserEvent Whether the browser invocation resulted in a user event (such as a mouse click). In AIR 1.0, this is always set to

true; AIR requires a user event to the browser invocation feature.

sandboxType The sandbox type for the content in the browser. Valid values are defined the same as those that can be used

in the Security.sandboxType property, and can be one of the following:

• Security.APPLICATION — The content is in the application security sandbox.

• Security.LOCAL_TRUSTED — The content is in the local-with-filesystem security sandbox.

• Security.LOCAL_WITH_FILE — The content is in the local-with-filesystem security sandbox.

• Security.LOCAL_WITH_NETWORK — The content is in the local-with-networking security sandbox.

• Security.REMOTE — The content is in a remote (network) domain.

securityDomain The security domain for the content in the browser, such as "www.adobe.com" or "www.example.org".

This property is only set for content in the remote security sandbox (for content from a network domain). It is

not set for content in a local or application security sandbox.

302HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR application invocation and termination

Last updated 9/28/2011

Application termination

Adobe AIR 1.0 and later

The quickest way to terminate an application is to call the NativeApplication exit() method. This works fine when your

application has no data to save or external resources to clean up. Calling exit() closes all windows and then

terminates the application. However, to allow windows or other components of your application to interrupt the

termination process, perhaps to save vital data, dispatch the proper warning events before calling exit().

Another consideration in gracefully shutting down an application is providing a single execution path, no matter how

the shut-down process starts. The user (or operating system) can trigger application termination in the following ways:

• By closing the last application window when NativeApplication.nativeApplication.autoExit is true.

• By selecting the application exit command from the operating system; for example, when the user chooses the exit

application command from the default menu. (This only happens on Mac OS; Windows and Linux do not provide

an application exit command through system chrome.)

• By shutting down the computer.

When an exit command is mediated through the operating system by one of these routes, the NativeApplication

dispatches an exiting event. If no listeners cancel the exiting event, any open windows are closed. Each window

dispatches a closing and then a close event. If any of the windows cancel the closing event, the shut-down process

stops.

If the order of window closure is an issue for your application, listen for the exiting event from the NativeApplication

and close the windows in the proper order yourself. You might need to do this, for example, if you have a document

window with tool palettes. It could be inconvenient, or worse, if the system closed the palettes, but the user decided to

cancel the exit command to save some data. On Windows, the only time you will get the exiting event is after closing

the last window (when the autoExit property of the NativeApplication object is set to true).

To provide consistent behavior on all platforms, whether the exit sequence is initiated via operating system chrome,

menu commands, or application logic, observe the following good practices for exiting the application:

1 Always dispatch an exiting event through the NativeApplication object before calling exit() in application code

and check that another component of your application doesn’t cancel the event.

 function applicationExit(){
 var exitingEvent = new air.Event(air.Event.EXITING, false, true);
 air.NativeApplication.nativeApplication.dispatchEvent(exitingEvent);
 if (!exitingEvent.isDefaultPrevented()) {
 air.NativeApplication.nativeApplication.exit();
 }
 }

2 Listen for the application exiting event from the NativeApplication.nativeApplication object and, in the

handler, close any windows (dispatching a closing event first). Perform any needed clean-up tasks, such as saving

application data or deleting temporary files, after all windows have been closed. Only use synchronous methods

during cleanup to ensure that they finish before the application quits.

If the order in which your windows are closed doesn’t matter, then you can loop through the

NativeApplication.nativeApplication.openedWindows array and close each window in turn. If order does

matter, provide a means of closing the windows in the correct sequence.

303HTML DEVELOPER’S GUIDE FOR ADOBE AIR

AIR application invocation and termination

Last updated 9/28/2011

 function onExiting(exitingEvent) {
 var winClosingEvent;
 for (var i = 0; i < air.NativeApplication.nativeApplication.openedWindows.length; i++) {
 var win = air.NativeApplication.nativeApplication.openedWindows[i];
 winClosingEvent = new air.Event(air.Event.CLOSING,false,true);
 win.dispatchEvent(winClosingEvent);
 if (!winClosingEvent.isDefaultPrevented()) {
 win.close();
 } else {
 exitingEvent.preventDefault();
 }
 }

 if (!exitingEvent.isDefaultPrevented()) {
 //perform cleanup
 }
 }

3 Windows should always handle their own clean up by listening for their own closing events.

4 Only use one exiting listener in your application since handlers called earlier cannot know whether subsequent

handlers will cancel the exiting event (and it would be unwise to rely on the order of execution).

304

Last updated 9/28/2011

Chapter 21: Working with AIR runtime
and operating system information

Adobe AIR 1.0 and later

This section discusses ways that an AIR application can manage operating system file associations, detect user activity,

and get information about the Adobe® AIR® runtime.

More Help topics

flash.desktop.NativeApplication

Managing file associations

Adobe AIR 1.0 and later

Associations between your application and a file type must be declared in the application descriptor. During the

installation process, the AIR application installer associates the AIR application as the default opening application for

each of the declared file types, unless another application is already the default. The AIR application install process

does not override an existing file type association. To take over the association from another application, call the

NativeApplication.setAsDefaultApplication() method at run time.

It is a good practice to verify that the expected file associations are in place when your application starts up. This is

because the AIR application installer does not override existing file associations, and because file associations on a

user’s system can change at any time. When another application has the current file association, it is also a polite

practice to ask the user before taking over an existing association.

The following methods of the NativeApplication class let an application manage file associations. Each of the methods

takes the file type extension as a parameter:

AIR can only manage associations for the file types originally declared in the application descriptor. You cannot get

information about the associations of a non-declared file type, even if a user has manually created the association

between that file type and your application. Calling any of the file association management methods with the extension

for a file type not declared in the application descriptor causes the application to throw a runtime exception.

Method Description

isSetAsDefaultApplication() Returns true if the AIR application is currently associated with the specified file type.

setAsDefaultApplication() Creates the association between the AIR application and the open action of the file type.

removeAsDefaultApplication() Removes the association between the AIR application and the file type.

getDefaultApplication() Reports the path of the application that is currently associated with the file type.

http://help.adobe.com/en_US/air/reference/html/flash/desktop/NativeApplication.html

305HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR runtime and operating system information

Last updated 9/28/2011

Getting the runtime version and patch level

Adobe AIR 1.0 and later

The NativeApplication object has a runtimeVersion property, which is the version of the runtime in which the

application is running (a string, such as "1.0.5"). The NativeApplication object also has a runtimePatchLevel

property, which is the patch level of the runtime (a number, such as 2960). The following code uses these properties:

 air.trace(air.NativeApplication.nativeApplication.runtimeVersion);
 air.trace(air.NativeApplication.nativeApplication.runtimePatchLevel);

Detecting AIR capabilities

Adobe AIR 1.0 and later

For a file that is bundled with the Adobe AIR application, the Security.sandboxType property is set to the value

defined by the Security.APPLICATION constant. You can load content (which may or may not contain APIs specific

to AIR) based on whether a file is in the Adobe AIR security sandbox, as illustrated in the following code:

if (window.runtime)
 {
 if (air.Security.sandboxType == air.Security.APPLICATION)
 {
 alert("In AIR application security sandbox.");
 }
 else
 {
 alert("Not in AIR application security sandbox.")
 }
 }
 else
 {
 alert("Not in the Adobe AIR runtime.")
 }

All resources that are not installed with the AIR application are put in security sandboxes based on their domains of

origin. For example, content served from www.example.com is put in a security sandbox for that domain.

You can check if the window.runtime property is set toto see if content is executing in the runtime.

For more information, see “AIR security” on page 69.

306HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Working with AIR runtime and operating system information

Last updated 9/28/2011

Tracking user presence

Adobe AIR 1.0 and later

The NativeApplication object dispatches two events that help you detect when a user is actively using a computer. If

no mouse or keyboard activity is detected in the interval determined by the NativeApplication.idleThreshold

property, the NativeApplication dispatches a userIdle event. When the next keyboard or mouse input occurs, the

NativeApplication object dispatches a userPresent event. The idleThreshold interval is measured in seconds and

has a default value of 300 (5 minutes). You can also get the number of seconds since the last user input from the

NativeApplication.nativeApplication.lastUserInput property.

The following lines of code set the idle threshold to 2 minutes and listen for both the userIdle and userPresent

events:

air.NativeApplication.nativeApplication.idleThreshold = 120;
 air.NativeApplication.nativeApplication.addEventListener(air.Event.USER_IDLE, function(event) {
 air.trace("Idle");
 });
 air.NativeApplication.nativeApplication.addEventListener(air.Event.USER_PRESENT,
function(event) {
 air.trace("Present");
 });

Note: Only a single userIdle event is dispatched between any two userPresent events.

307

Last updated 9/28/2011

Chapter 22: Sockets

Flash Player 9 and later, Adobe AIR 1.0 and later

A socket is a type of network connection established between two computer processes. Typically, the processes are

running on two different computers attached to the same Internet Protocol (IP) network. However, the connected

processes can be running on the same computer using the special “local host” IP address.

Adobe Flash Player supports client-side Transport Control Protocol (TCP) sockets. A Flash Player application can

connect to another process acting as a socket server, but cannot accept incoming connection requests from other

processes. In other words, a Flash Player application can connect to a TCP server, but cannot serve as one.

The Flash Player API also includes the XMLSocket class. The XMLSocket class uses a Flash Player-specific protocol

that allows you to exchange XML messages with a server that understands that protocol. The XMLSocket class was

introduced in ActionScript 1 and is still supported to provide backward compatibility. In general, the Socket class

should be used for new applications unless you are connecting to a server specifically created to communicate with

Flash XMLSockets.

Adobe AIR adds several additional classes for socket-based network programming. AIR applications can act as TCP

socket servers with the ServerSocket class and can connect to socket servers requiring SSL or TLS security with the

SecureSocket class. AIR applications can also send and receive Universal Datagram Protocol (UDP) messages with the

DatagramSocket class.

TCP sockets

Flash Player 9 and later, Adobe AIR 1.0 and later

The Transmission Control Protocol (TCP) provides a way to exchange messages over a persistent network connection.

TCP guarantees that any messages sent arrive in the correct order (barring major network problems). TCP

connections require a “client” and a “server.” Flash Player can create client sockets. Adobe AIR can, additionally, create

server sockets.

The following ActionScript APIs provide TCP connections:

• Socket — allows a client application to connect to a server. The Socket class cannot listen for incoming connections.

• SecureSocket (AIR) — allows a client application to connect to a trusted server and engage in encrypted

communications.

• ServerSocket (AIR) — allows an application to listen for incoming connections and act as a server.

• XMLSocket — allows a client application to connect to an XMLSocket server.

Binary client sockets

Flash Player 9 and later, Adobe AIR 1.0 and later

A binary socket connection is similar to an XML socket except that the client and server are not limited to exchanging

XML messages. Instead, the connection can transfer data as binary information. Thus, you can connect to a wider

range of services, including mail servers (POP3, SMTP, and IMAP), and news servers (NNTP).

308HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Sockets

Last updated 9/28/2011

Socket class

Flash Player 9 and later, Adobe AIR 1.0 and later

The Socket class enables you to make socket connections and to read and write raw binary data. The Socket class is

useful for interoperating with servers that use binary protocols. By using binary socket connections, you can write code

that interacts with several different Internet protocols, such as POP3, SMTP, IMAP, and NNTP. This interaction, in

turn, enables your applications to connect to mail and news servers.

Flash Player can interface with a server by using the binary protocol of that server directly. Some servers use the big-

endian byte order, and some use the little-endian byte order. Most servers on the Internet use the big-endian byte order

because “network byte order” is big-endian. The little-endian byte order is popular because the Intel® x86 architecture

uses it. You should use the endian byte order that matches the byte order of the server that is sending or receiving data.

All operations that are performed by the IDataInput and IDataOutput interfaces, and the classes that implement those

interfaces (ByteArray, Socket, and URLStream), are encoded by default in big-endian format; that is, with the most

significant byte first. This default byte order was chosen to match Java and the official network byte order. To change

whether big-endian or little-endian byte order is used, you can set the endian property to Endian.BIG_ENDIAN or

Endian.LITTLE_ENDIAN.

The Socket class inherits all the methods defined by the IDataInput and IDataOutput interfaces (located in the

flash.utils package). Those methods must be used to write to and read from the Socket.

For more information, see:

• Socket

• IDataInput

• IDataOutput

• socketData event

Secure client sockets (AIR)

Adobe AIR 2 and later

You can use the SecureSocket class to connect to socket servers that use Secure Sockets Layer version 4 (SSLv4) or

Transport Layer Security version 1 (TLSv1). A secure socket provides three benefits: server authentication, data

integrity, and message confidentiality. The runtime authenticates a server using the server certificate and its

relationship to the root or intermediate certificate authority certificates in the user’s trust store. The runtime relies on

the cryptography algorithms used by the SSL and TLS protocol implementations to provide data integrity and message

confidentiality.

When you connect to a server using the SecureSocket object, the runtime validates the server certificate using the

certificate trust store. On Windows and Mac, the operating system provides the trust store. On Linux, the runtime

provides its own trust store.

If the server certificate is not valid or not trusted, the runtime dispatches an ioError event. You can check the

serverCertificateStatus property of the SecureSocket object to determine why validation failed. No provision is

provided for communicating with a server that does not have a valid and trusted certificate.

The CertificateStatus class defines string constants that represent the possible validation results:

• Expired—the certificate expiration date has passed.

• Invalid—there are a number of reasons that a certificate can be invalid. For example, the certificate could have been

altered, corrupted, or it could be the wrong type of certificate.

309HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Sockets

Last updated 9/28/2011

• Invalid chain—one or more of the certificates in the server’s chain of certificates are invalid.

• Principal mismatch—the host name of the server and the certificate common name do not match. In other words,

the server is using the wrong certificate.

• Revoked—the issuing certificate authority has revoked the certificate.

• Trusted—the certificate is valid and trusted. A SecureSocket object can only connect to a server that uses a valid,

trusted certificate.

• Unknown—the SecureSocket object has not validated the certificate yet. The serverCertificateStatus

property has this status value before you call connect() and before either a connect or an ioError event is

dispatched.

• Untrusted signers—the certificate does not “chain” to a trusted root certificate in the trust store of the client

computer.

Communicating with a SecureSocket object requires a server that uses a secure protocol and has a valid, trusted

certificate. In other respects, using a SecureSocket object is the same as using a Socket object.

The SecureSocket object is not supported on all platforms. Use the SecureSocket class isSupported property to test

whether the runtime supports use of the SecureSocket object on the current client computer.

For more information, see:

• SecureSocket

• CertificateStatus

• IDataInput

• IDataOutput

• socketData event

XML sockets

Flash Player 9 and later, Adobe AIR 1.0 and later

 An XML socket lets you create a connection to a remote server that remains open until explicitly closed. You can

exchange string data, such as XML, between the server and client. A benefit of using an XML socket server is that the

client does not need to explicitly request data. The server can send data without waiting for a request and can send data

to every connected client connected.

In Flash Player, and in Adobe AIR content outside the application sandbox, XML socket connections require the

presence of a socket policy file on the target server. For more information, see Website controls (policy files) and

Connecting to sockets.

The XMLSocket class cannot tunnel through firewalls automatically because, unlike the Real-Time Messaging

Protocol (RTMP), XMLSocket has no HTTP tunneling capability. If you need to use HTTP tunneling, consider using

Flash Remoting or Flash Media Server (which supports RTMP) instead.

310HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Sockets

Last updated 9/28/2011

The following restrictions apply to how and where content in Flash Player or in an AIR application outside of the

application security sandbox can use an XMLSocket object to connect to the server:

• For content outside of the application security sandbox, the XMLSocket.connect() method can connect only to

TCP port numbers greater than or equal to 1024. One consequence of this restriction is that the server daemons

that communicate with the XMLSocket object must also be assigned to port numbers greater than or equal to 1024.

Port numbers below 1024 are often used by system services such as FTP (21), Telnet (23), SMTP (25), HTTP (80),

and POP3 (110), so XMLSocket objects are barred from these ports for security reasons. The port number

restriction limits the possibility that these resources will be inappropriately accessed and abused.

• For content outside of the application security sandbox, the XMLSocket.connect() method can connect only to

computers in the same domain where the content resides. (This restriction is identical to the security rules for

URLLoader.load().) To connect to a server daemon running in a domain other than the one where the content

resides, you can create a cross-domain policy file on the server that allows access from specific domains. For details

on cross-domain policy files, see “AIR security” on page 69.

Note: Setting up a server to communicate with the XMLSocket object can be challenging. If your application does not

require real-time interactivity, use the URLLoader class instead of the XMLSocket class.

You can use the XMLSocket.connect() and XMLSocket.send() methods of the XMLSocket class to transfer XML to

and from a server over a socket connection. The XMLSocket.connect() method establishes a socket connection with

a web server port. The XMLSocket.send() method passes an XML object to the server specified in the socket

connection.

When you invoke the XMLSocket.connect() method, the application opens a TCP/IP connection to the server and

keeps that connection open until one of the following occurs:

• The XMLSocket.close() method of the XMLSocket class is called.

• No more references to the XMLSocket object exist.

• The connection is broken (for example, the modem disconnects).

Connecting to a server with the XMLSocket class

Flash Player 9 and later, Adobe AIR 1.0 and later

To create a socket connection, you must create a server-side application to wait for the socket connection request and

send a response to the Flash Player or AIR application. This type of server-side application can be written in AIR or in

another programming language such as Java, Python, or Perl. To use the XMLSocket class, the server computer must

run a daemon that understands the simple protocol used by the XMLSocket class:

• XML messages are sent over a full-duplex TCP/IP stream socket connection.

• Each XML message is a complete XML document, terminated by a zero (0) byte.

• An unlimited number of XML messages can be sent and received over a single XMLSocket connection.

Server sockets

Adobe AIR 2 and later

Use the ServerSocket class to allow other processes to connect to your application using a Transport Control Protocol

(TCP) socket. The connecting process can be running on the local computer or on another network-connected

computer. When a ServerSocket object receives a connection request, it dispatches a connect event. The

ServerSocketConnectEvent object dispatched with the event contains a Socket object. You can use this Socket object

for subsequent communication with the other process.

311HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Sockets

Last updated 9/28/2011

To listen for incoming socket connections:

1 Create a ServerSocket object and bind it to a local port

2 Add event listeners for the connect event

3 Call the listen() method

4 Respond to the connect event, which provides a Socket object for each incoming connection

The ServerSocket object continues to listen for new connections until you call the close() method.

The following code example illustrates how to create a socket server application. The example listens for incoming

connections on port 8087. When a connection is received, the example sends a message (the string “Connected.”) to

the client socket. Thereafter, the server echoes any messages received back to the client.

<html>
<head>
<script src="AIRAliases.js"></script>
<script language="javascript">

var serverSocket;
var clientSockets = new Array();
function startServer()
{

try
{

// Create the server socket
serverSocket = new air.ServerSocket();

// Add the event listener
serverSocket.addEventListener(air.Event.CONNECT, connectHandler);
serverSocket.addEventListener(air.Event.CLOSE, onClose);

// Bind to local port 8087
serverSocket.bind(8087, "127.0.0.1");

// Listen for connections
serverSocket.listen();
air.trace("Listening on " + serverSocket.localPort);

}
catch(e)
{

air.trace(e);
}

}
function connectHandler(event)
{

//The socket is provided by the event object
var socket = event.socket;
clientSockets.push(socket);

socket.addEventListener(air.ProgressEvent.SOCKET_DATA, socketDataHandler);
socket.addEventListener(air.Event.CLOSE, onClientClose);
socket.addEventListener(air.IOErrorEvent.IO_ERROR, onIOError);

//Send a connect message
socket.writeUTFBytes("Connected.");
socket.flush();

312HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Sockets

Last updated 9/28/2011

air.trace("Sending connect message");
}

function socketDataHandler(event)
{

var socket = event.target

//Read the message from the socket
var message = socket.readUTFBytes(socket.bytesAvailable);
air.trace("Received: " + message);
// Echo the received message back to the sender
message = "Echo -- " + message;
socket.writeUTFBytes(message);
socket.flush();
air.trace("Sending: " + message);

}

function onClientClose(event)
{

air.trace("Connection to client closed.");
//Should also remove from clientSockets array...

}
function onIOError(errorEvent)
{

air.trace("IOError: " + errorEvent.text);
}
function onClose(event)
{

air.trace("Server socket closed by OS.");
}

</script>
</head>
<body onload="startServer()">
</body>
</html>

For more information, see:

• ServerSocket

• ServerSocketConnectEvent

• Socket

UDP sockets (AIR)

Adobe AIR 2 and later

The Universal Datagram Protocol (UDP) provides a way to exchange messages over a stateless network connection.

UDP provides no guarantees that messages are delivered in order or even that messages are delivered at all. With UDP,

the operating system’s network code usually spends less time marshaling, tracking, and acknowledging messages.

Thus, UDP messages typically arrive at the destination application with a shorter delay than do TCP messages.

313HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Sockets

Last updated 9/28/2011

UDP socket communication is helpful when you must send real-time information such as position updates in a game,

or sound packets in an audio chat application. In such applications, some data loss is acceptable, and low transmission

latency is more important than guaranteed arrival. For almost all other purposes, TCP sockets are a better choice.

Your AIR application can send and receive UDP messages with the DatagramSocket and DatagramSocketDataEvent

classes. To send or receive a UDP message:

1 Create a DatagramSocket object

2 Add an event listener for the data event

3 Bind the socket to a local IP address and port using the bind() method

4 Send messages by calling the send() method, passing in the IP address and port of the target computer

5 Receive messages by responding to the data event. The DatagramSocketDataEvent object dispatched for this event

contains a ByteArray object containing the message data.

The following code example illustrates how an application can send and receive UDP messages. The example sends a

single message containing the string, “Hello.”, to the target computer. It also traces the contents of any messages

received.

<html>
<head>
<script src="AIRAliases.js"></script>
<script language="javascript">

var datagramSocket;

//The IP and port for this computer
var localIP = "192.168.0.1";
var localPort = 55555;

//The IP and port for the target computer
var targetIP = "192.168.0.2";
var targetPort = 55555;

function createDatagramSocket()
{

//Create the socket
datagramSocket = new air.DatagramSocket();
datagramSocket.addEventListener(air.DatagramSocketDataEvent.DATA, dataReceived);

//Bind the socket to the local network interface and port
datagramSocket.bind(localPort, localIP);

//Listen for incoming datagrams
datagramSocket.receive();

314HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Sockets

Last updated 9/28/2011

//Create a message in a ByteArray
var data = new air.ByteArray();
data.writeUTFBytes("Hello.");

//Send the datagram message
datagramSocket.send(data, 0, 0, targetIP, targetPort);

}

function dataReceived(event)
{

//Read the data from the datagram
air.trace("Received from " + event.srcAddress + ":" + event.srcPort + "> " +

event.data.readUTFBytes(event.data.bytesAvailable));
}

</script>
</head>
<body onload="createDatagramSocket()">
</body>
</html>

Keep in mind the following considerations when using UDP sockets:

• A single packet of data cannot be larger than the smallest maximum transmission unit (MTU) of the network

interface or any network nodes between the sender and the recipient. All of the data in the ByteArray object passed

to the send() method is sent as a single packet. (In TCP, large messages are broken up into separate packets.)

• There is no handshaking between the sender and the target. Messages are discarded without error if the target does

not exist or does not have an active listener at the specified port.

• When you use the connect() method, messages sent from other sources are ignored. A UDP connection provides

convenient packet filtering only. It does not mean that there is necessarily a valid, listening process at the target

address and port.

• UDP traffic can swamp a network. Network administrators might need to implement quality-of-service controls if

network congestion occurs. (TCP has built-in traffic control to reduce the impact of network congestion.)

For more information, see:

• DatagramSocket

• DatagramSocketDataEvent

• ByteArray

IPv6 addresses

Flash Player 9 and later, Adobe AIR 1.0 and later

Flash Player 9.0.115.0 and later support IPv6 (Internet Protocol version 6). IPv6 is a version of Internet Protocol that

supports 128-bit addresses (an improvement on the earlier IPv4 protocol that supports 32-bit addresses). You might

need to activate IPv6 on your networking interfaces. For more information, see the Help for the operating system

hosting the data.

If IPv6 is supported on the hosting system, you can specify numeric IPv6 literal addresses in URLs enclosed in brackets

([]), as in the following:

315HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Sockets

Last updated 9/28/2011

[2001:db8:ccc3:ffff:0:444d:555e:666f]

Flash Player returns literal IPv6 values, according to the following rules:

• Flash Player returns the long form of the string for IPv6 addresses.

• The IP value has no double-colon abbreviations.

• Hexadecimal digits are lowercase only.

• IPv6 addresses are enclosed in square brackets ([]).

• Each address quartet is output as 0 to 4 hexadecimal digits, with the leading zeros omitted.

• An address quartet of all zeros is output as a single zero (not a double colon) except as noted in the following list of

exceptions.

The IPv6 values that Flash Player returns have the following exceptions:

• An unspecified IPv6 address (all zeros) is output as [::].

• The loopback or localhost IPv6 address is output as [::1].

• IPv4 mapped (converted to IPv6) addresses are output as [::ffff:a.b.c.d], where a.b.c.d is a typical IPv4 dotted-

decimal value.

• IPv4 compatible addresses are output as [::a.b.c.d], where a.b.c.d is a typical IPv4 dotted-decimal value.

316

Last updated 9/28/2011

Chapter 23: HTTP communications

Flash Player 9 and later, Adobe AIR 1.0 and later

Adobe® AIR® and Adobe® Flash® Player applications can communicate with HTTP-based servers to load data, images,

video and to exchange messages.

This topic describes the AIR networking and communication API—functionality uniquely provided to applications

running in the runtime. It does not describe all networking and communications functionality inherent to HTML and

JavaScript that would function in a web browser (such as the details of using the XMLHttpRequest class).

More Help topics

flash.net.URLLoader

flash.net.URLStream

flash.net.URLRequest

flash.net.URLRequestDefaults

flash.net.URLRequestHeader

flash.net.URLRequestMethod

flash.net.URLVariables

Loading external data

Flash Player 9 and later, Adobe AIR 1.0 and later

The AIR runtime includes mechanisms for loading data from external sources. Those sources can provide static

content such as text files, or dynamic content, such as content generated by a web script. The data can be formatted in

various ways, and the runtime provides functionality for decoding and accessing the data. You can also send data to

the external server as part of the process of retrieving data.

Using the URLRequest class

Flash Player 9 and later, Adobe AIR 1.0 and later

Many APIs that load external data use the URLRequest class to define the properties of necessary network request.

URLRequest properties

Flash Player 9 and later, Adobe AIR 1.0 and later

You can set the following properties of a URLRequest object in any security sandbox:

http://help.adobe.com/en_US/air/reference/html/flash/net/URLLoader.html
http://help.adobe.com/en_US/air/reference/html/flash/net/URLStream.html
http://help.adobe.com/en_US/air/reference/html/flash/net/URLRequest.html
http://help.adobe.com/en_US/air/reference/html/flash/net/URLRequestDefaults.html
http://help.adobe.com/en_US/air/reference/html/flash/net/URLRequestHeader.html
http://help.adobe.com/en_US/air/reference/html/flash/net/URLRequestMethod.html
http://help.adobe.com/en_US/air/reference/html/flash/net/URLVariables.html

317HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

The URLRequest class includes the following properties which are available to content only in the AIR application

security sandbox:

Setting URLRequest defaults (AIR only)

Adobe AIR 1.0 and later

The URLRequestDefaults class lets you define application-specific default settings for URLRequest objects. For

example, the following code sets the default values for the manageCookies and useCache properties. All new

URLRequest objects will use the specified values for these properties instead of the normal defaults:

 air.URLRequestDefaults.manageCookies = false;
 air.URLRequestDefaults.useCache = false;

Note: The URLRequestDefaults class is defined for content running in Adobe AIR only. It is not supported in Flash Player.

The URLRequestDefaults class includes a setLoginCredentialsForHost() method that lets you specify a default

user name and password to use for a specific host. The host, which is defined in the hostname parameter of the method,

can be a domain, such as "www.example.com", or a domain and a port number, such as "www.example.com:80".

Note that "example.com", "www.example.com", and "sales.example.com" are each considered unique hosts.

Property Description

contentType The MIME content type of any data sent with the URL request. If no contentType is set, values are sent as

application/x-www-form-urlencoded.

data An object containing data to be transmitted with the URL request.

digest A string that uniquely identifies the signed Adobe platform component to be stored to (or retrieved from) the

Adobe® Flash® Player cache.

method The HTTP request method, such as a GET or POST. (Content running in the AIR application security domain can

specify strings other than "GET" or "POST" as the method property. Any HTTP verb is allowed and "GET" is

the default method. See “AIR security” on page 69.)

requestHeaders The array of HTTP request headers to be appended to the HTTP request. Note that permission to set some

headers is restricted in Flash Player as well as in AIR content running outside the application security sandbox.

url Specifies the URL to be requested.

Property Description

followRedirects Specifies whether redirects are to be followed (true, the default value) or not (false). This is only supported

in the AIR application sandbox.

manageCookies Specifies whether the HTTP protocol stack should manage cookies (true, the default value) or not (false) for

this request. Setting this property is only supported in the AIR application sandbox.

authenticate Specifies whether authentication requests should be handled (true) for this request. Setting this property is

only supported in the AIR application sandbox. The default is to authenticate requests—which may cause an

authentication dialog box to be displayed if the server requires credentials. You can also set the user name and

password using the URLRequestDefaults class—see “Setting URLRequest defaults (AIR only)” on page 317.

cacheResponse Specifies whether response data should be cached for this request. Setting this property is only supported in

the AIR application sandbox. The default is to cache the response (true).

useCache Specifies whether the local cache should be consulted before this URLRequest fetches data. Setting this

property is only supported in the AIR application sandbox. The default (true) is to use the local cached

version, if available.

userAgent Specifies the user-agent string to be used in the HTTP request.

318HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

These credentials are only used if the server requires them. If the user has already authenticated (for example, by using

the authentication dialog box), then calling the setLoginCredentialsForHost() method does not change the

authenticated user.

The following code sets the default user name and password to use for requests sent to www.example.com:

 air.URLRequestDefaults.setLoginCredentialsForHost("www.example.com", "Ada", "love1816$X");

The URLRequestDefaults settings only apply to the current application domain, with one exception. The credentials

passed to the setLoginCredentialsForHost() method are used for requests made in any application domain within

the AIR application.

For more information, see the URLRequestDefaults class in the Adobe AIR API Reference for HTML Developers.

URI schemes

Flash Player 9 and later, Adobe AIR 1.0 and later

The standard URI schemes, such as the following, can be used in requests made from any security sandbox:

http: and https:

Use these for standard Internet URLs (in the same way that they are used in a web browser).

file:

Use file: to specify the URL of a file located on the local file system. For example:

 file:///c:/AIR Test/test.txt

In AIR, you can also use the following schemes when defining a URL for content running in the application security

sandbox:

app:

Use app: to specify a path relative to the root directory of the installed application. For example, the following path

points to a resources subdirectory of the directory of the installed application:

 app:/resources

When an AIR application is launched using the AIR Debug Launcher (ADL), the application directory is the directory

that contains the application descriptor file.

The URL (and url property) for a File object created with File.applicationDirectory uses the app URI scheme,

as in the following:

 var dir = air.File.applicationDirectory;
 dir = dir.resolvePath("assets");
 air.trace(dir.url); // app:/assets

app-storage:

Use app-storage: to specify a path relative to the data storage directory of the application. For each installed

application (and user), AIR creates a unique application storage directory, which is a useful place to store data specific

to that application. For example, the following path points to a prefs.xml file in a settings subdirectory of the

application store directory:

 app-storage:/settings/prefs.xml

The URL (and url property) for a File object created with File.applicationStorageDirectory uses the app-

storage URI scheme, as in the following:

http://help.adobe.com/en_US/air/reference/html/flash/net/URLRequestDefaults.html

319HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

 var prefsFile = air.File.applicationStorageDirectory;
 prefsFile = prefsFile.resolvePath("prefs.xml");
 air.trace(prefsFile.url); // app-storage:/prefs.xml

mailto:

You can use the mailto scheme in URLRequest objects passed to the navigateToURL() function. See “Opening a URL

in another application” on page 328.

You can use a URLRequest object that uses any of these URI schemes to define the URL request for a number of

different objects, such as a FileStream or a Sound object. You can also use these schemes in HTML content running in

AIR; for example, you can use them in the src attribute of an img tag.

However, you can only use these AIR-specific URI schemes (app: and app-storage:) in content in the application

security sandbox. For more information, see “AIR security” on page 69.

Setting URL variables

While you can add variables to the URL string directly, it can be easier to use the URLVariables class to define any

variables needed for a request.

There are three ways in which you can add parameters to a URLVariables object:

• Within the URLVariables constructor

• With the URLVariables.decode() method

• As dynamic properties of the URLVariables object itself

The following example illustrates all three methods and also how to assign the variables to a URLRequest object:

var urlVar = new air.URLVariables("one=1&two=2");
urlVar.decode("amp=" + air.encodeURIComponent("&"));
urlVar.three = 3;
urlVar.amp2 = "&&";
air.trace(urlVar.toString()); //amp=%26&2=%26%26&one=1&two=2&three=3

var urlRequest = new air.URLRequest("http://www.example.com/test.cfm");
urlRequest.data = urlVar;

When you define variables within the URLVariables constructor or within the URLVariables.decode() method,

make sure that you URL-encode the characters that have a special meaning in a URI string. For example, when you

use an ampersand in a parameter name or value, you must encode the ampersand by changing it from & to %26 because

the ampersand acts as a delimiter for parameters. The top-level encodeURIComponent() function can be used for this

purpose.

Using the URLLoader class

Flash Player 9 and later, Adobe AIR 1.0 and later

The URLLoader class let you send a request to a server and access the information returned. You can also use the

URLLoader class to access files on the local file system in contexts where local file access is permitted (such as the Flash

Player local-with-filesystem sandbox and the AIR application sandbox). The URLLoader class downloads data from a

URL as text, binary data, or URL-encoded variables. The URLLoader class dispatches events such as complete,

httpStatus, ioError, open, progress, and securityError.

The URLLoader class provides an alternative to the XMLHttpRequest class. You can use either class to download data

via an HTTP request.

320HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

Downloaded data is not available until the download has completed. You can monitor the progress of the download

(bytes loaded and bytes total) by listening for the progress event to be dispatched. However, if a file loads quickly

enough a progress event might not be dispatched. When a file has successfully downloaded, the complete event is

dispatched. By setting the URLLoader dataFormat property, you can receive the data as text, raw binary data, or as a

URLVariables object.

The URLLoader.load() method (and optionally the URLLoader class’s constructor) takes a single parameter,

request, which is a URLRequest object. A URLRequest object contains all of the information for a single HTTP

request, such as the target URL, request method (GET or POST), additional header information, and the MIME type.

For example, to upload an XML packet to a server-side script, you could use the following code:

 var secondsUTC = new Date().time;
 var dataXML = (new DOMParser()).parseFromString("<time>" + secondsUTC + "</time>",
"application/xml");
 var request = new air.URLRequest("http://www.example.com/time.cfm");
 request.contentType = "text/xml";
 request.data = dataXML;
 request.method = air.URLRequestMethod.POST;
 var loader = new air.URLLoader();
 loader.load(request);

The previous snippet creates an XML document named dataXML that contains the XML packet to be sent to the server.

The example sets the URLRequest contentType property to "text/xml" and assigns the XML document to the

URLRequest data property. Finally, the example creates a URLLoader object and sends the request to the remote

script by using the load() method.

Using the URLStream class

Flash Player 9 and later, Adobe AIR 1.0 and later

The URLStream class provides access to the downloading data as the data arrives. The URLStream class also lets you

close a stream before it finishes downloading. The downloaded data is available as raw binary data.

When reading data from a URLStream object, use the bytesAvailable property to determine whether sufficient data

is available before reading it. An EOFError exception is thrown if you attempt to read more data than is available.

The httpResponseStatus event (AIR)

The URLStream class dispatches an httpResponseStatus event before any response data is delivered. The

httpResponseStatus event (represented by the HTTPStatusEvent class) includes a responseURL property, which is

the URL that the response was returned from, and a responseHeaders property, which is an array of

URLRequestHeader objects representing the response headers that the response returned.

Loading data from external documents

Flash Player 9 and later, Adobe AIR 1.0 and later

When you build dynamic applications, it can be useful to load data from external files or from server-side scripts. This

lets you build dynamic applications without having to edit or recompile your application. For example, if you build a

“tip of the day” application, you can write a server-side script that retrieves a random tip from a database and saves it

to a text file once a day. Then your application can load the contents of a static text file instead of querying the database

each time.

321HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

The following snippet creates a URLRequest and URLLoader object, which loads the contents of an external text file,

params.txt:

 var request = new air.URLRequest("params.txt");
 var loader = new air.URLLoader();
 loader.load(request);

By default, if you do not define a request method, Flash Player and Adobe AIR load the content using the HTTP GET

method. To send the request using the POST method, set the request.method property to POST using the static

constant URLRequestMethod.POST, as the following code shows:

var request = new air.URLRequest("http://www.example.com/sendfeedback.cfm");
 request.method = air.URLRequestMethod.POST;

The external document, params.txt, that is loaded at run time contains the following data:

 monthNames=January,February,March,April,May,June,July,August,September,October,November,Dece
mber&dayNames=Sunday,Monday,Tuesday,Wednesday,Thursday,Friday,Saturday

The file contains two parameters, monthNames and dayNames. Each parameter contains a comma-separated list that

is parsed as strings. You can split this list into an array using the String.split() method.

Avoid using reserved words or language constructs as variable names in external data files, because doing so makes

reading and debugging your code more difficult.

Once the data has loaded, the complete event is dispatched, and the contents of the external document are available

to use in the URLLoader’s data property, as the following code shows:

function completeHandler(event)
 {
 var loader2 = URLLoader(event.target);
 air.trace(loader2.data);
 }

If the remote document contains name-value pairs, you can parse the data using the URLVariables class by passing in

the contents of the loaded file, as follows:

function completeHandler(event)
 {
 var loader2 = event.target;
 var variables = new air.URLVariables(loader2.data);
 air.trace(variables.dayNames);
 }

Each name-value pair from the external file is created as a property in the URLVariables object. Each property within

the variables object in the previous code sample is treated as a string. If the value of the name-value pair is a list of items,

you can convert the string into an array by calling the String.split() method, as follows:

 var dayNameArray = variables.dayNames.split(",");

 If you are loading numeric data from external text files, convert the values into numeric values by using a top-level

function, such as parseInt(), parseFloat(), and Number().

Instead of loading the contents of the remote file as a string and creating a new URLVariables object, you could instead

set the URLLoader.dataFormat property to one of the static properties found in the URLLoaderDataFormat class.

The three possible values for the URLLoader.dataFormat property are as follows:

• URLLoaderDataFormat.BINARY—The URLLoader.data property will contain binary data stored in a ByteArray

object.

• URLLoaderDataFormat.TEXT—The URLLoader.data property will contain text in a String object.

322HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

• URLLoaderDataFormat.VARIABLES—The URLLoader.data property will contain URL-encoded variables stored

in a URLVariables object.

The following code demonstrates how setting the URLLoader.dataFormat property to

URLLoaderDataFormat.VARIABLES allows you to automatically parse loaded data into a URLVariables object:

 var request = new air.URLRequest("http://www.example.com/params.txt");
 var variables = new air.URLLoader();
 variables.dataFormat = air.URLLoaderDataFormat.VARIABLES;
 variables.addEventListener(air.Event.COMPLETE, completeHandler);
 try
 {
 variables.load(request);
 }
 catch (error)
 {
 air.trace("Unable to load URL: " + error);
 }

 function completeHandler(event)
 {
 var loader = event.target;
 air.trace(loader.data.dayNames);
 }

Note: The default value for URLLoader.dataFormat is URLLoaderDataFormat.TEXT.

As the following example shows, loading XML from an external file is the same as loading URLVariables. You can

create a URLRequest instance and a URLLoader instance and use them to download a remote XML document. When

the file has completely downloaded, the complete event is dispatched and the trace() function outputs the contents

of the file to the command line.

 var request = new air.URLRequest("http://www.example.com/data.xml");
 var loader = new air.URLLoader();
 loader.addEventListener(air.Event.COMPLETE, completeHandler);
 loader.load(request);

 function completeHandler(event)
 {
 var dataXML = event.target.data;
 air.trace(dataXML);
 }

Communicating with external scripts

Flash Player 9 and later, Adobe AIR 1.0 and later

In addition to loading external data files, you can also use the URLVariables class to send variables to a server-side

script and process the server’s response. This is useful, for example, if you are programming a game and want to send

the user’s score to a server to calculate whether it should be added to the high scores list, or even send a user’s login

information to a server for validation. A server-side script can process the user name and password, validate it against

a database, and return confirmation of whether the user-supplied credentials are valid.

323HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

The following snippet creates a URLVariables object named variables, which creates a new variable called name.

Next, a URLRequest object is created that specifies the URL of the server-side script to send the variables to. Then you

set the method property of the URLRequest object to send the variables as an HTTP POST request. To add the

URLVariables object to the URL request, you set the data property of the URLRequest object to the URLVariables

object created earlier. Finally, the URLLoader instance is created and the URLLoader.load() method is invoked,

which initiates the request.

 var variables = new air.URLVariables("name=Franklin");
 var request = new air.URLRequest();
 request.url = "http://www.[yourdomain].com/greeting.cfm";
 request.method = air.URLRequestMethod.POST;
 request.data = variables;
 var loader = new air.URLLoader();
 loader.dataFormat = URLLoaderDataFormat.VARIABLES;
 loader.addEventListener(Event.COMPLETE, completeHandler);
 try
 {
 loader.load(request);
 }
 catch (error)
 {
 air.trace("Unable to load URL");
 }

 function completeHandler(event)
 {
 air.trace(event.target.data.welcomeMessage);
 }

The following code contains the contents of the Adobe ColdFusion® greeting.cfm document used in the previous

example:

 <cfif NOT IsDefined("Form.name") OR Len(Trim(Form.Name)) EQ 0>
 <cfset Form.Name = "Stranger" />
 </cfif>
 <cfoutput>welcomeMessage=#UrlEncodedFormat("Welcome, " & Form.name)#
 </cfoutput>

Web service requests

Flash Player 9 and later, Adobe AIR 1.0 and later

There are a variety of HTTP-based web services. The main types include:

• REST

• XML-RPC

• SOAP

To use a web service in ActionScript 3, you create a URLRequest object, construct the web service call using either URL

variables or an XML document, and send the call to the service using a URLLoader object. The Flex framework

contains several classes that make it easier to use web services—especially useful when accessing complex SOAP

services. Starting with Flash Professional CS3, you can use the Flex classes in applications developed with Flash

Professional as well as in applications developed in Flash Builder.

324HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

In HTML-based AIR applications, you can use either the URLRequest and URLLoader classes or the JavaScript

XMLHttpRequest class. If desired, you can also create a SWF library that exposes the web service components of the

Flex framework to your JavaScript code.

When your application runs in a browser, you can only use web services in the same Internet domain as the calling

SWF unless the server hosting the web service also hosts a cross-domain policy file that permits access from other

domains. A technique that is often used when a cross-domain policy file is not available is to proxy the requests

through your own server. Adobe Blaze DS and Adobe LiveCycle support web service proxying.

In AIR applications, a cross-domain policy file is not required when the web service call originates from the application

security sandbox. AIR application content is never served from a remote domain, so it cannot participate in the types

of attacks that cross-domain policies prevent. In HTML-based AIR applications, content in the application security

sandbox can make cross-domain XMLHttpRequests. You can allow content in other security sandboxes to make cross-

domain XMLHttpRequests as long as that content is loaded into an iframe.

More Help topics

Adobe BlazeDS

Adobe LiveCycle ES2

REST architecture

XML-RPC

SOAP protocol

REST-style web service requests

Flash Player 9 and later, Adobe AIR 1.0 and later

REST-style web services use HTTP method verbs to designate the basic action and URL variables to specify the action

details. For example, a request to get data for an item could use the GET verb and URL variables to specify a method

name and item ID. The resulting URL string might look like:

http://service.example.com/?method=getItem&id=d3452

To access a REST-style web service with ActionScript, you can use the URLRequest, URLVariables, and URLLoader

classes. In JavaScript code within an AIR application, you can also use an XMLHttpRequest.

Programming a REST-style web service call in ActionScript, typically involves the following steps:

1 Create a URLRequest object.

2 Set the service URL and HTTP method verb on the request object.

3 Create a URLVariables object.

4 Set the service call parameters as dynamic properties of the variables object.

5 Assign the variables object to the data property of the request object.

6 Send the call to the service with a URLLoader object.

7 Handle the complete event dispatched by the URLLoader that indicates that the service call is complete. It is also

wise to listen for the various error events that can be dispatched by a URLLoader object.

For example, consider a web service that exposes a test method that echoes the call parameters back to the requestor.

The following ActionScript code could be used to call the service:

http://opensource.adobe.com/wiki/display/blazeds/BlazeDS
http://www.adobe.com/devnet/livecycle/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://en.wikipedia.org/wiki/XML-RPC
http://www.w3.org/TR/soap/

325HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

function restServiceCall()
{

//Create the HTTP request object
var request = new air.URLRequest("http://service.example.com/");
request.method = air.URLRequestMethod.GET;

//Add the URL variables
var variables = new air.URLVariables();
variables.method = "test.echo";
variables.api_key = "123456ABC";
variables.message = "Able was I, ere I saw Elba.";
request.data = variables;

//Initiate the transaction
window.requestor = new air.URLLoader();
requestor.addEventListener(air.Event.COMPLETE, httpRequestComplete);
requestor.addEventListener(air.IOErrorEvent.IOERROR, httpRequestError);
requestor.addEventListener(air.SecurityErrorEvent.SECURITY_ERROR, httpRequestError);
requestor.load(request);

}
function httpRequestComplete(event)
{

air.trace(event.target.data);
}

function httpRequestError(error){

air.trace("An error occured: " + error.message);
}

In JavaScript within an AIR application, you can make the same request using the XMLHttpRequest object:

<html>
<head><title>RESTful web service request</title>
<script type="text/javascript">

function makeRequest()
{

var requestDisplay = document.getElementById("request");
var resultDisplay = document.getElementById("result");

//Create a conveninece object to hold the call properties
var request = {};
request.URL = "http://service.example.com/";
request.method = "test.echo";
request.HTTPmethod = "GET";
request.parameters = {};
request.parameters.api_key = "ABCDEF123";
request.parameters.message = "Able was I ere I saw Elba.";
var requestURL = makeURL(request);
xmlhttp = new XMLHttpRequest();
xmlhttp.open(request.HTTPmethod, requestURL, true);
xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {
 resultDisplay.innerHTML = xmlhttp.responseText;
 }
}
xmlhttp.send(null);

326HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

requestDisplay.innerHTML = requestURL;

}
//Convert the request object into a properly formatted URL
function makeURL(request)
{

var url = request.URL + "?method=" + escape(request.method);
for(var property in request.parameters)
{

url += "&" + property + "=" + escape(request.parameters[property]);
}

return url;

}
</script>
</head>
<body onload="makeRequest()">
<h1>Request:</h1>
<div id="request"></div>
<h1>Result:</h1>
<div id="result"></div>
</body>
</html>

XML-RPC web service requests

Flash Player 9 and later, Adobe AIR 1.0 and later

An XML-RPC web service takes its call parameters as an XML document rather than as a set of URL variables. To

conduct a transaction with an XML-RPC web service, create a properly formatted XML message and send it to the web

service using the HTTP POST method. In addition, you should set the Content-Type header for the request so that the

server treats the request data as XML.

The following example uses DOM methods to create an XML-RPC message and an XMLHttpRequest to conduct the

web service transaction:

<html>
<head>
<title>XML-RPC web service request</title>
<script type="text/javascript">

function makeRequest()
{

var requestDisplay = document.getElementById("request");
var resultDisplay = document.getElementById("result");

var request = {};
request.URL = "http://services.example.com/xmlrpc/";
request.method = "test.echo";
request.HTTPmethod = "POST";
request.parameters = {};
request.parameters.api_key = "123456ABC";
request.parameters.message = "Able was I ere I saw Elba.";
var requestMessage = formatXMLRPC(request);

xmlhttp = new XMLHttpRequest();

327HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

xmlhttp.open(request.HTTPmethod, request.URL, true);
xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState == 4) {

resultDisplay.innerText = xmlhttp.responseText;
 }
}
xmlhttp.send(requestMessage);

requestDisplay.innerText = xmlToString(requestMessage.documentElement);

}

//Formats a request as XML-RPC document
function formatXMLRPC(request)
{

var xmldoc = document.implementation.createDocument("", "", null);
var root = xmldoc.createElement("methodCall");
xmldoc.appendChild(root);
var methodName = xmldoc.createElement("methodName");
var methodString = xmldoc.createTextNode(request.method);
methodName.appendChild(methodString);

root.appendChild(methodName);

var params = xmldoc.createElement("params");
root.appendChild(params);

var param = xmldoc.createElement("param");
params.appendChild(param);
var value = xmldoc.createElement("value");
param.appendChild(value);
var struct = xmldoc.createElement("struct");
value.appendChild(struct);

for(var property in request.parameters)
{

var member = xmldoc.createElement("member");
struct.appendChild(member);

var name = xmldoc.createElement("name");
var paramName = xmldoc.createTextNode(property);
name.appendChild(paramName)
member.appendChild(name);

var value = xmldoc.createElement("value");
var type = xmldoc.createElement("string");
value.appendChild(type);
var paramValue = xmldoc.createTextNode(request.parameters[property]);
type.appendChild(paramValue)
member.appendChild(value);

}
return xmldoc;

}

//Returns a string representation of an XML node
function xmlToString(rootNode, indent)
{

if(indent == null) indent = "";

328HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

var result = indent + "<" + rootNode.tagName + ">\n";
for(var i = 0; i < rootNode.childNodes.length; i++)
{

if(rootNode.childNodes.item(i).nodeType == Node.TEXT_NODE)
{

result += indent + " " + rootNode.childNodes.item(i).textContent + "\n";
}

}
if(rootNode.childElementCount > 0)
{

result += xmlToString(rootNode.firstElementChild, indent + " ");
}
if(rootNode.nextElementSibling)
{

result += indent + "</" + rootNode.tagName + ">\n";
result += xmlToString(rootNode.nextElementSibling, indent);

}
else
{

result += indent +"</" + rootNode.tagName + ">\n";
}
return result;

}

</script>
</head>
<body onload="makeRequest()">
<h1>Request:</h1>
<pre id="request"></pre>
<h1>Result:</h1>
<pre id="result"></pre>
</body>
</html>

Opening a URL in another application

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the navigateToURL() function to open a URL in the default system web browser.

For the URLRequest object you pass as the request parameter of this function, only the url property is used.

The first parameter of the navigateToURL() function, the navigate parameter, is a URLRequest object (see “Using

the URLRequest class” on page 316). The second is an optional window parameter, in which you can specify the

window name. For example, the following code opens the www.adobe.com web page:

 var url = "http://www.adobe.com";
 var urlReq = new air.URLRequest(url);
 air.navigateToURL(urlReq);

Note: When using the navigateToURL() function, the runtime treats a URLRequest object that uses the POST method

(one that has its method property set to URLRequestMethod.POST) as using the GET method.

When using the navigateToURL() function, URI schemes are permitted based on the security sandbox of the code

calling the navigateToURL() function.

329HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

Some APIs allow you to launch content in a web browser. For security reasons, some URI schemes are prohibited when

using these APIs in AIR. The list of prohibited schemes depends on the security sandbox of the code using the API.

(For details on security sandboxes, see “AIR security” on page 69.)

Application sandbox (AIR only)

Any URI scheme can be used in URL launched by content running in the AIR application sandbox. An application

must be registered to handle the URI scheme or the request does nothing. The following schemes are supported on

many computers and devices:

• http:

• https:

• file:

• mailto: — AIR directs these requests to the registered system mail application

• sms: — AIR directs sms: requests to the default text message app. The URL format must conform to the system

conventions under which the app is running. For example, on Android, the URI scheme must be lowercase.

navigateToURL(new URLRequest("sms:+15555550101"));

• tel: — AIR directs tel: requests to the default telephone dialing app. The URL format must conform to the

system conventions under which the app is running. For example, on Android, the URI scheme must be lowercase.

navigateToURL(new URLRequest("tel:5555555555"));

• market: — AIR directs market: requests to the Market app typically supported on Android devices.

navigateToURL(new URLRequest("market://search?q=Adobe Flash"));
navigateToURL(new URLRequest("market://search?q=pname:com.adobe.flashplayer"));

Where allowed by the operating system, applications can define and register custom URI schemes. You can create a

URL using the scheme to launch the application from AIR.

Remote sandboxes

The following schemes are allowed. Use these schemes as you would use them in a web browser.

• http:

• https:

• mailto: — AIR directs these requests to the registered system mail application

All other URI schemes are prohibited.

Local-with-file sandbox

The following schemes are allowed. Use these schemes as you would use them in a web browser.

• file:

• mailto: — AIR directs these requests to the registered system mail application

All other URI schemes are prohibited.

Local-with-networking sandbox

The following schemes are allowed. Use these schemes as you would use them in a web browser.

• http:

• https:

330HTML DEVELOPER’S GUIDE FOR ADOBE AIR

HTTP communications

Last updated 9/28/2011

• mailto: — AIR directs these requests to the registered system mail application

All other URI schemes are prohibited.

Local-trusted sandbox

The following schemes are allowed. Use these schemes as you would use them in a web browser.

• file:

• http:

• https:

• mailto: — AIR directs these requests to the registered system mail application

All other URI schemes are prohibited.

Sending a URL to a server

Flash Player 9 and later, Adobe AIR 1.0 and later

You can use the sendToURL() function to send a URL request to a server. This function ignores any server response.

The sendToURL() function takes one argument, request, which is a URLRequest object (see “Using the URLRequest

class” on page 316). Here is an example:

 var url = "http://www.example.com/application.jsp";
 var variables = new air.URLVariables();
 variables.sessionId = new Date().getTime();
 variables.userLabel = "Your Name";
 var request = new air.URLRequest(url);
 request.data = variables;
 air.sendToURL(request);

This example uses the URLVariables class to include variable data in the URLRequest object. For more information,

see “Using the URLLoader class” on page 319.

331

Last updated 9/28/2011

Chapter 24: Communicating with other
Flash Player and AIR instances

Flash Player 9 and later, Adobe AIR 1.0 and later

The LocalConnection class enables communications between Adobe® AIR® applications, as well as between SWF

content running in the browser. You can also use the LocalConnection class to communicate between an AIR

application and SWF content running in the browser. The LocalConnection class allows you to build versatile

applications that can share data between Flash Player and AIR instances.

About the LocalConnection class

Flash Player 9 and later, Adobe AIR 1.0 and later

LocalConnection objects can communicate only among AIR applications and SWF files that are running on the same

client computer. However, the applications can run in different applications. For example, two AIR applications can

communicate using the LocalConnection class, as can an AIR application and a SWF file running in a browser.

The simplest way to use a LocalConnection object is to allow communication only between LocalConnection objects

located in the same domain or the same AIR application. That way, you do not have to worry about security issues.

However, if you need to allow communication between domains, you have several ways to implement security

measures. For more information, see the discussion of the connectionName parameter of the send() method and the

allowDomain() and domain entries in the LocalConnection class listing in the ActionScript 3.0 Reference for the

Adobe Flash Platform.

To add callback methods to your LocalConnection objects, set the LocalConnection.client property to an object

that has member methods, as the following code shows:

 var lc = new air.LocalConnection();
 var clientObject = new Object();
 clientObject.doMethod1 = function() {
 air.trace("doMethod1 called.");
 }
 clientObject.doMethod2 = function(param1) {
 air.trace("doMethod2 called with one parameter: " + param1);
 air.trace("The square of the parameter is: " + param1 * param1);
 }
 lc.client = clientObject;

The LocalConnection.client property includes all callback methods that can be invoked.

isPerUser property

The isPerUser property was added to Flash Player (10.0.32) and AIR (1.5.2) to resolve a conflict that occurs when

more than one user is logged into a Mac computer. On other operating systems, the property is ignored since the local

connection has always been scoped to individual users. The isPerUser property should be set to true in new code.

However, the default value is currently false for backward compatibility. The default may be changed in future

versions of the runtimes.

http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/LocalConnection.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/net/LocalConnection.html

332HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Communicating with other Flash Player and AIR instances

Last updated 9/28/2011

Sending messages between two applications

Flash Player 9 and later, Adobe AIR 1.0 and later

You use the LocalConnection class to communicate between different AIR applications and between different Adobe®

Flash® Player (SWF) applications running in a browser. You can also use the LocalConnection class to communicate

between an AIR application and a SWF application running in a browser.

The following code defines a LocalConnection object that acts as a server and accepts incoming LocalConnection calls

from other applications:

var lc = new air.LocalConnection();
 lc.connect("connectionName");
 var clientObject = new Object();
 clientObject.echoMsg = function(msg) {
 air.trace("This message was received: " + msg);
 }
 lc.client = clientObject;

This code first creates a LocalConnection object named lc and sets the client property to an object, clientObject.

When another application calls a method in this LocalConnection instance, the runtime looks for that method in the

clientObject object.

If you already have a connection with the specified name, an Argument Error exception is thrown, indicating that the

connection attempt failed because the object is already connected.

The following snippet demonstrates how to create a LocalConnection with the name conn1:

 connection.connect("conn1");

Connecting to the primary application from a secondary application requires that you first create a LocalConnection

object in the sending LocalConnection object; then call the LocalConnection.send() method with the name of the

connection and the name of the method to execute. For example, to send the doQuit method to the LocalConnection

object that you created earlier, use the following code:

 sendingConnection.send("conn1", "doQuit");

This code connects to an existing LocalConnection object with the connection name conn1 and invokes the

doMessage() method in the remote application. If you want to send parameters to the remote application, you specify

additional arguments after the method name in the send() method, as the following snippet shows:

sendingConnection.send("conn1", "doMessage", "Hello world");

Connecting to content in different domains and to AIR
applications

Flash Player 9 and later, Adobe AIR 1.0 and later

To allow communications only from specific domains, you call the allowDomain() or allowInsecureDomain()

method of the LocalConnection class and pass a list of one or more domains that are allowed to access this

LocalConnection object, passing one or more names of domains to be allowed.

333HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Communicating with other Flash Player and AIR instances

Last updated 9/28/2011

There are two special values that you can pass to the LocalConnection.allowDomain() and

LocalConnection.allowInsecureDomain() methods: * and localhost. The asterisk value (*) allows access from

all domains. The string localhost allows calls to the application from content locally installed, but outside of the

application resource directory.

If the LocalConnection.send() method attempts to communicate with an application from a security sandbox to

which the calling code does not have access, a securityError event(SecurityErrorEvent.SECURITY_ERROR) is

dispatched. To work around this error, you can specify the caller's domain in the receiver's

LocalConnection.allowDomain() method.

If you implement communication only between content in the same domain, you can specify a connectionName

parameter that does not begin with an underscore (_) and does not specify a domain name (for example,

myDomain:connectionName). Use the same string in the LocalConnection.connect(connectionName)

command.

If you implement communication between content in different domains, you specify a connectionName parameter

that begins with an underscore. Specifying the underscore makes the content with the receiving LocalConnection

object more portable between domains. Here are the two possible cases:

• If the string for connectionName does not begin with an underscore, the runtime adds a prefix with the

superdomain name and a colon (for example, myDomain:connectionName). Although this ensures that your

connection does not conflict with connections of the same name from other domains, any sending

LocalConnection objects must specify this superdomain (for example, myDomain:connectionName). If you move

the HTML or SWF file with the receiving LocalConnection object to another domain, the runtime changes the

prefix to reflect the new superdomain (for example, anotherDomain:connectionName). All sending

LocalConnection objects have to be manually edited to point to the new superdomain.

• If the string for connectionName begins with an underscore (for example, _connectionName), the runtime does

not add a prefix to the string. This means the receiving and sending LocalConnection objects use identical strings

for connectionName. If the receiving object uses LocalConnection.allowDomain() to specify that connections

from any domain will be accepted, you can move the HTML or SWF file with the receiving LocalConnection object

to another domain without altering any sending LocalConnection objects.

A downside to using underscore names in connectionName is the potential for collisions, such as when two

applications both try to connect using the same connectionName. A second, related downside is security-related.

Connection names that use underscore syntax do not identify the domain of the listening application. For these

reasons, domain-qualified names are preferred.

Adobe AIR

To communicate with content running in the AIR application security sandbox (content installed with the AIR

application), you must prefix the connection name with a superdomain identifying the AIR application. The

superdomain string starts with app# followed by the application ID followed by a dot (.) character, followed by the

publisher ID (if defined). For example, the proper superdomain to use in the connectionName parameter for an

application with the application ID, com.example.air.MyApp, and no publisher ID is:

"app#com.example.air.MyApp". Thus, if the base connection name is “appConnection,” then the entire string to use

in the connectionName parameter is: "app#com.example.air.MyApp:appConnection". If the application has the

publisher ID, then the that ID must also be included in the superdomain string:

"app#com.example.air.MyApp.B146A943FBD637B68C334022D304CEA226D129B4.1".

334HTML DEVELOPER’S GUIDE FOR ADOBE AIR

Communicating with other Flash Player and AIR instances

Last updated 9/28/2011

When you allow another AIR application to communicate with your application through the local connection, you

must call the allowDomain() of the LocalConnection object, passing in the local connection domain name. For an

AIR application, this domain name is formed from the application and publisher IDs in the same fashion as the

connection string. For example, if the sending AIR application has an application ID of

com.example.air.FriendlyApp and a publisher ID of 214649436BD677B62C33D02233043EA236D13934.1, then

the domain string that you would use to allow this application to connect is:

app#com.example.air.FriendlyApp.214649436BD677B62C33D02233043EA236D13934.1. (As of AIR 1.5.3, not

all AIR applications have publisher IDs.)

335

Last updated 9/28/2011

Chapter 25: ActionScript basics for
JavaScript developers

Adobe® ActionScript® 3.0 is a programming language like JavaScript—both are based on ECMAScript. ActionScript

3.0 was released with Adobe® Flash® Player 9 and you can therefore develop rich Internet applications with it in Adobe®

Flash® CS3 Professional, Adobe® Flash® CS4 Professional, and Adobe® Flex™ 3.

The current version of ActionScript 3.0 was available only when developing SWF content for Flash Player 9 in the

browser. It is now also available for developing SWF content running in Adobe® AIR®.

The Adobe AIR API Reference for HTML Developers includes documentation for those classes that are useful in

JavaScript code in an HTML-based application. It’s a subset of the entire set of classes in the runtime. Other classes in

the runtime are useful in developing SWF-based applications (the DisplayObject class for example, which defines the

structure of visual content). If you need to use these classes in JavaScript, refer to the following ActionScript

documentation:

• The Adobe ActionScript 3.0 Developer's Guide

• The Adobe ActionScript 3.0 Reference for the Adobe Flash Platform. (Only the top-level classes and functions in the

flash package are available to HTML content running in AIR. The classes in the mx package are available only in

Flex-based SWF applications.)

Differences between ActionScript and JavaScript: an
overview

ActionScript, like JavaScript, is based on the ECMAScript language specification; therefore, the two languages have a

common core syntax. For example, the following code works the same in JavaScript and in ActionScript:

 var str1 = "hello";
 var str2 = " world.";
 var str = reverseString(str1 + str2);

 function reverseString(s) {
 var newString = "";
 var i;
 for (i = s.length - 1; i >= 0; i--) {
 newString += s.charAt(i);
 }
 return newString;
 }

However, there are differences in the syntax and workings of the two languages. For example, the preceding code

example can be written as the following in ActionScript 3.0 (in a SWF file):

http://www.adobe.com/go/learn_air_html_jslr
http://help.adobe.com/en_US/as3/dev/index.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/

336HTML DEVELOPER’S GUIDE FOR ADOBE AIR

ActionScript basics for JavaScript developers

Last updated 9/28/2011

 function reverseString(s:String):String {
 var newString:String = "";
 for (var i:int = s.length - 1; i >= 0; i--) {
 newString += s.charAt(i);
 }
 return newString;
 }

The version of JavaScript supported in HTML content in Adobe AIR is JavaScript 1.7. The differences between

JavaScript 1.7 and ActionScript 3.0 are described throughout this topic.

The runtime includes some built-in classes that provide advanced capabilities. At runtime, JavaScript in an HTML

page can access those classes. The same runtime classes are available both to ActionScript (in a SWF file) and JavaScript

(in an HTML file running in a browser). However, the current API documentation for these classes (which are not

included in the Adobe AIR API Reference for HTML Developers) describes them using ActionScript syntax. In other

words, for some of the advanced capabilities of the runtime, refer to The Adobe ActionScript 3.0 Reference for the Adobe

Flash Platform. Understanding the basics of ActionScript helps you understand how to use these runtime classes in

JavaScript.

For example, the following JavaScript code plays sound from an MP3 file:

 var file = air.File.userDirectory.resolve("My Music/test.mp3");
 var sound = air.Sound(file);
 sound.play();

Each of these lines of code calls runtime functionality from JavaScript.

In a SWF file, ActionScript code can access these runtime capabilities as in the following code:

 var file:File = File.userDirectory.resolve("My Music/test.mp3");
 var sound = new Sound(file);
 sound.play();

ActionScript 3.0 data types

ActionScript 3.0 is a strongly typed language. That means that you can assign a data type to a variable. For example, the

first line of the previous example could be written as the following:

 var str1:String = "hello";

Here, the str1 variable is declared to be of type String. All subsequent assignments to the str1 variable assign String

values to the variable.

You can assign types to variables, parameters of functions, and return types of functions. Therefore, the function

declaration in the previous example looks like the following in ActionScript:

 function reverseString(s:String):String {
 var newString:String = "";
 for (var i:int = s.length - 1; i >= 0; i--) {
 newString += s.charAt(i);
 }
 return newString;
 }

Note: The s parameter and the return value of the function are both assigned the type String.

http://help.adobe.com/en_US/air/reference/html/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/

337HTML DEVELOPER’S GUIDE FOR ADOBE AIR

ActionScript basics for JavaScript developers

Last updated 9/28/2011

Although assigning types is optional in ActionScript, there are advantages to declaring types for objects:

• Typed objects allow for type checking of data not only at run-time, but also at compile time if you use strict mode.

Type checking at compile time helps identify errors. (Strict mode is a compiler option.)

• Using typed objects creates applications that are more efficient.

For this reason, the examples in the ActionScript documentation use data types. Often, you can convert sample

ActionScript code to JavaScript by simply removing the type declarations (such as ":String").

Data types corresponding to custom classes

An ActionScript 3.0 object can have a data type that corresponds to the top-level classes, such as String, Number, or

Date.

In ActionScript 3.0, you can define custom classes. Each custom class also defines a data type. This means that an

ActionScript variable, function parameter, or function return can have a type annotation defined by that class. For

more information, see “Custom ActionScript 3.0 classes” on page 338.

The void data type

The void data type is used as the return value for a function that, in fact, returns no value. (A function that does not

include a return statement returns no value.)

The * data type

Use of the asterisk character (*) as a data type is the same as not assigning a data type. For example, the following

function includes a parameter, n, and a return value that are both not given a data type:

 function exampleFunction(n:*):* {
 trace("hi, " + n);
 }

Use of the * as a data type is not defining a data type at all. You use the asterisk in ActionScript 3.0 code to be explicit

that no data type is defined.

ActionScript 3.0 classes, packages, and namespaces

ActionScript 3.0 includes capabilities related to classes that are not found in JavaScript 1.7.

Runtime classes

The runtime includes built-in classes, many of which are also included in standard JavaScript, such as the Array, Date,

Math, and String classes (and others). However, the runtime also includes classes that are not found in standard

JavaScript. These additional classes have various uses, from playing rich media (such as sounds) to interacting with

sockets.

Most runtime classes are in the flash package, or one of the packages contained by the flash package. Packages are a

means to organize ActionScript 3.0 classes (see “ActionScript 3.0 packages” on page 338.

338HTML DEVELOPER’S GUIDE FOR ADOBE AIR

ActionScript basics for JavaScript developers

Last updated 9/28/2011

Custom ActionScript 3.0 classes

ActionScript 3.0 allows developers to create their own custom classes. For example, the following code defines a

custom class named ExampleClass:

 public class ExampleClass {
 public var x:Number;
 public function ExampleClass(input:Number):void {
 x = input;
 }
 public function greet():void {
 trace("The value of x is: ", x);
 }
 }

This class has the following members:

• A constructor method, ExampleClass(), which lets you instantiate new objects of the ExampleClass type.

• A public property, x (of type Number), which you can get and set for objects of type ExampleClass.

• A public method, greet(), which you can call on objects of type ExampleClass.

In this example, the x property and the greet() method are in the public namespace. The public namespace

makes methods and properties accessible from objects and classes outside the class.

ActionScript 3.0 packages

Packages provide the means to arrange ActionScript 3.0 classes. For example, many classes related to working with

files and directories on the computer are included in the flash.filesystem package. In this case, flash is one package that

contains another package, filesystem. And that package may contain other classes or packages. In fact, the

flash.filesystem package contains the following classes: File, FileMode, and FileStream. To reference the File class in

ActionScript, you can write the following:

 flash.filesystem.File

Both built-in and custom classes can be arranged in packages.

When referencing an ActionScript package from JavaScript, use the special runtime object. For example, the following

code instantiates a new ActionScript File object in JavaScript:

 var myFile = new air.flash.filesystem.File();

Here, the File() method is the constructor function corresponding to the class of the same name (File).

ActionScript 3.0 namespaces

In ActionScript 3.0, namespaces define the scope for which properties and functions in classes can be accessed.

Only those properties and methods in the public namespace are available in JavaScript.

For example, the File class (in the flash.filesystem package) includes public properties and methods, such as

userDirectory and resolve(). Both are available as properties of a JavaScript variable that instantiates a File object

(via the runtime.flash.filesystem.File() constructor method).

There are four predefined namespaces:

339HTML DEVELOPER’S GUIDE FOR ADOBE AIR

ActionScript basics for JavaScript developers

Last updated 9/28/2011

Additionally, custom classes can use other namespaces that are not available to JavaScript code.

Required parameters and default values in ActionScript
3.0 functions

In both ActionScript 3.0 and JavaScript, functions can include parameters. In ActionScript 3.0, parameters can be

required or optional; whereas in JavaScript, parameters are always optional.

The following ActionScript 3.0 code defines a function for which the one parameter, n, is required:

 function cube(n:Number):Number {
 return n*n*n;
 }

The following ActionScript 3.0 code defines a function for which the n parameter is required. It also includes the p

parameter, which is optional, with a default value of 1:

 function root(n:Number, p:Number = 1):Number {
 return Math.pow(n, 1/p);
 }

An ActionScript 3.0 function can also receive any number of arguments, represented by ...rest syntax at the end of

a list of parameters, as in the following:

 function average(... args) : Number{
 var sum:Number = 0;
 for (var i:int = 0; i < args.length; i++) {
 sum += args[i];
 }
 return (sum / args.length);
 }

ActionScript 3.0 event listeners

In ActionScript 3.0 programming, all events are handled using event listeners. An event listener is a function. When an

object dispatches an event, the event listener responds to the event. The event, which is an ActionScript object, is

passed to the event listener as a parameter of the function. This use of event object differs from the DOM event model

used in JavaScript.

Namespace Description

public Any code that instantiates an object of a certain type can access the public properties and methods in the class

that defines that type. Also, any code can access the public static properties and methods of a public class.

private Properties and methods designated as private are only available to code within the class. They cannot be

accessed as properties or methods of an object defined by that class. Properties and methods in the private

namespace are not available in JavaScript.

protected Properties and methods designated as protected are only available to code in the class definition and to

classes that inherit that class. Properties and methods in the protected namespace are not available in

JavaScript.

internal Properties and methods designated as internal are available to any caller within the same package. Classes,

properties, and methods belong to the internal namespace by default.

340HTML DEVELOPER’S GUIDE FOR ADOBE AIR

ActionScript basics for JavaScript developers

Last updated 9/28/2011

For example, when you call the load() method of a Sound object (to load an mp3 file), the Sound object attempts to

load the sound. Then the Sound object dispatches any of the following events:

Any class that can dispatch events either extends the EventDispatcher class or implements the IEventDispatcher

interface. (An ActionScript 3.0 interface is a data type used to define a set of methods that a class can implement.) In

each class listing for these classes in the ActionScript Language Reference, there is a list of events that the class can

dispatch.

You can register an event listener function to handle any of these events, using the addEventListener() method of

the object that dispatches the event. For example, in the case of a Sound object, you can register for the progress and

complete events, as shown in the following ActionScript code:

 var sound:Sound = new Sound();
 var urlReq:URLRequest = new URLRequest("test.mp3");
 sound.load(urlReq);
 sound.addEventListener(ProgressEvent.PROGRESS, progressHandler);
 sound.addEventListener(Event.COMPLETE, completeHandler);

 function progressHandler(progressEvent):void {
 trace("Progress " + progressEvent.bytesTotal + " bytes out of " + progressEvent.bytesTotal);
 }

 function completeHandler(completeEvent):void {
 trace("Sound loaded.");
 }

In HTML content running in AIR, you can register a JavaScript function as the event listener. The following code

illustrates this. (This code assumes that the HTML document includes a TextArea object named progressTextArea.)

 var sound = new runtime.flash.media.Sound();
 var urlReq = new runtime.flash.net.URLRequest("test.mp3");
 sound.load(urlReq);
 sound.addEventListener(runtime.flash.events.ProgressEvent.PROGRESS, progressHandler);
 sound.addEventListener(runtime.flash.events.Event.COMPLETE, completeHandler);

 function progressHandler(progressEvent) {
 document.progressTextArea.value += "Progress " + progressEvent.bytesTotal + " bytes out
of " + progressEvent.bytesTotal;
 }

 function completeHandler(completeEvent) {
 document.progressTextArea.value += "Sound loaded.";

Event Description

complete When the data has loaded successfully.

id3 When mp3 ID3 data is available.

ioError When an input/output error occurs that causes a load operation to fail.

open When the load operation starts.

progress When data is received as a load operation progresses.

341

Last updated 9/28/2011

Chapter 26: SQL support in local databases

Adobe AIR includes a SQL database engine with support for local SQL databases with many standard SQL features,

using the open source SQLite database system. The runtime does not specify how or where database data is stored on

the file system. Each database is stored completely within a single file. A developer can specify the location in the file

system where the database file is stored, and a single AIR application can access one or many separate databases (i.e.

separate database files).This document outlines the SQL syntax and data type support for Adobe AIR local SQL

databases. This document is not intended to serve as a comprehensive SQL reference. Rather, it describes specific

details of the SQL dialect that Adobe AIR supports. The runtime supports most of the SQL-92 standard SQL dialect.

Because there are numerous references, web sites, books, and training materials for learning SQL, this document is not

intended to be a comprehensive SQL reference or tutorial. Instead, this document particularly focuses on the AIR-

supported SQL syntax, and the differences between SQL-92 and the supported SQL dialect.

SQL statement definition conventions

Within statement definitions in this document, the following conventions are used:

• Text case

• UPPER CASE - literal SQL keywords are written in all upper case.

• lower case - placeholder terms or clause names are written in all lower case.

• Definition characters

• ::= Indicates a clause or statement definition.

• Grouping and alternating characters

• | The pipe character is used between alternative options, and can be read as "or".

• [] Items in square brackets are optional items; the brackets can contain a single item or a set of alternative items.

• () Parentheses surrounding a set of alternatives (a set of items separated by pipe characters), designates a

required group of items, that is, a set of items that are the possible values for a single required item.

• Quantifiers

• + A plus character following an item in parentheses indicates that the preceding item can occur 1 or more times.

• * An asterisk character following an item in square brackets indicates that the preceding (bracketed) item can

occur 0 or more times

• Literal characters

• * An asterisk character used in a column name or between the parentheses following a function name signifies

a literal asterisk character rather than the "0 or more" quantifier.

• . A period character represents a literal period.

• , A comma character represents a literal comma.

• () A pair of parentheses surrounding a single clause or item indicates that the parentheses are required, literal

parentheses characters.

• Other characters, unless otherwise indicated, represent those literal characters.

http://www.sqlite.org

342HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

Supported SQL syntax

The following SQL syntax listings are supported by the Adobe AIR SQL database engine. The listings are divided into

explanations of different statement and clause types, expressions, built-in functions, and operators. The following

topics are covered:

• General SQL syntax

• Data manipulation statements (SELECT, INSERT, UPDATE, and DELETE)

• Data definition statements (CREATE, ALTER, and DROP statements for tables, indices, views, and triggers)

• Special statements and clauses

• Built-in functions (Aggregate, scalar, and date/time formatting functions)

• Operators

• Parameters

• Unsupported SQL features

• Additional SQL features

General SQL syntax

In addition to the specific syntax for various statements and expressions, the following are general rules of SQL syntax:

Case sensitivity SQL statements, including object names, are not case sensitive. Nevertheless, SQL statements are

frequently written with SQL keywords written in uppercase, and this document uses that convention. While SQL

syntax is not case sensitive, literal text values in SQL are case sensitive, and comparison and sorting operations can be

case sensitive, as specified by the collation sequence defined for a column or operation. For more information see

COLLATE.

White space A white-space character (such as space, tab, new line, and so forth) must be used to separate individual

words in an SQL statement. However, white space is optional between words and symbols. The type and quantity of

white-space characters in a SQL statement is not significant. You can use white space, such as indenting and line

breaks, to format your SQL statements for easy readability, without affecting the meaning of the statement.

Data manipulation statements

Data manipulation statements are the most commonly used SQL statements. These statements are used to retrieve,

add, modify, and remove data from database tables. The following data manipulation statements are supported:

SELECT, INSERT, UPDATE, and DELETE.

SELECT

The SELECT statement is used to query the database. The result of a SELECT is zero or more rows of data where each

row has a fixed number of columns. The number of columns in the result is specified by the result column name or

expression list between the SELECT and optional FROM keywords.

343HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

sql-statement ::= SELECT [ALL | DISTINCT] result
 [FROM table-list]
 [WHERE expr]
 [GROUP BY expr-list]
 [HAVING expr]
 [compound-op select-statement]*
 [ORDER BY sort-expr-list]
 [LIMIT integer [(OFFSET | ,) integer]]
result ::= result-column [, result-column]*
result-column ::= * | table-name . * | expr [[AS] string]
table-list ::= table [join-op table join-args]*
table ::= table-name [AS alias] |
 (select) [AS alias]
join-op ::= , | [NATURAL] [LEFT | RIGHT | FULL] [OUTER | INNER | CROSS] JOIN
join-args ::= [ON expr] [USING (id-list)]
compound-op ::= UNION | UNION ALL | INTERSECT | EXCEPT
sort-expr-list ::= expr [sort-order] [, expr [sort-order]]*
sort-order ::= [COLLATE collation-name] [ASC | DESC]
collation-name ::= BINARY | NOCASE

Any arbitrary expression can be used as a result. If a result expression is * then all columns of all tables are substituted

for that one expression. If the expression is the name of a table followed by .* then the result is all columns in that one

table.

The DISTINCT keyword causes a subset of result rows to be returned, in which each result row is different. NULL

values are not treated as distinct from each other. The default behavior is that all result rows are returned, which can

be made explicit with the keyword ALL.

The query is executed against one or more tables specified after the FROM keyword. If multiple table names are

separated by commas, then the query uses the cross join of the various tables. The JOIN syntax can also be used to

specify how tables are joined. The only type of outer join that is supported is LEFT OUTER JOIN. The ON clause

expression in join-args must resolve to a boolean value. A subquery in parentheses may be used as a table in the FROM

clause. The entire FROM clause may be omitted, in which case the result is a single row consisting of the values of the

result expression list.

The WHERE clause is used to limit the number of rows the query retrieves. WHERE clause expressions must resolve

to a boolean value. WHERE clause filtering is performed before any grouping, so WHERE clause expressions may not

include aggregate functions.

The GROUP BY clause causes one or more rows of the result to be combined into a single row of output. A GROUP

BY clause is especially useful when the result contains aggregate functions. The expressions in the GROUP BY clause

do not have to be expressions that appear in the SELECT expression list.

The HAVING clause is like WHERE in that it limits the rows returned by the statement. However, the HAVING clause

applies after any grouping specified by a GROUP BY clause has occurred. Consequently, the HAVING expression may

refer to values that include aggregate functions. A HAVING clause expression is not required to appear in the SELECT

list. Like a WHERE expression, a HAVING expression must resolve to a boolean value.

The ORDER BY clause causes the output rows to be sorted. The sort-expr-list argument to the ORDER BY clause is a

list of expressions that are used as the key for the sort. The expressions do not have to be part of the result for a simple

SELECT, but in a compound SELECT (a SELECT using one of the compound-op operators) each sort expression must

exactly match one of the result columns. Each sort expression may be optionally followed by a sort-order clause

consisting of the COLLATE keyword and the name of a collation function used for ordering text and/or the keyword

ASC or DESC to specify the sort order (ascending or descending). The sort-order can be omitted and the default

(ascending order) is used. For a definition of the COLLATE clause and collation functions, see COLLATE.

344HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

The LIMIT clause places an upper bound on the number of rows returned in the result. A negative LIMIT indicates

no upper bound. The optional OFFSET following LIMIT specifies how many rows to skip at the beginning of the result

set. In a compound SELECT query, the LIMIT clause may only appear after the final SELECT statement, and the limit

is applied to the entire query. Note that if the OFFSET keyword is used in the LIMIT clause, then the limit is the first

integer and the offset is the second integer. If a comma is used instead of the OFFSET keyword, then the offset is the

first number and the limit is the second number. This seeming contradiction is intentional — it maximizes

compatibility with legacy SQL database systems.

A compound SELECT is formed from two or more simple SELECT statements connected by one of the operators

UNION, UNION ALL, INTERSECT, or EXCEPT. In a compound SELECT, all the constituent SELECT statements

must specify the same number of result columns. There can only be a single ORDER BY clause after the final SELECT

statement (and before the single LIMIT clause, if one is specified). The UNION and UNION ALL operators combine

the results of the preceding and following SELECT statements into a single table. The difference is that in UNION, all

result rows are distinct, but in UNION ALL, there may be duplicates. The INTERSECT operator takes the intersection

of the results of the preceding and following SELECT statements. EXCEPT takes the result of preceding SELECT after

removing the results of the following SELECT. When three or more SELECT statements are connected into a

compound, they group from first to last.

For a definition of permitted expressions, see Expressions.

Starting with AIR 2.5, the SQL CAST operator is supported when reading to convert BLOB data to ActionScript

ByteArray objects. For example, the following code reads raw data that is not stored in the AMF format and stores it

in a ByteArray object:

stmt.text = "SELECT CAST(data AS ByteArray) AS data FROM pictures;";
stmt.execute();
var result:SQLResult = stmt.getResult();
var bytes:ByteArray = result.data[0].data;

INSERT

The INSERT statement comes in two basic forms and is used to populate tables with data.

sql-statement ::= INSERT [OR conflict-algorithm] INTO [database-name.] table-name [(column-
list)] VALUES (value-list) |
 INSERT [OR conflict-algorithm] INTO [database-name.] table-name [(column-
list)] select-statement
 REPLACE INTO [database-name.] table-name [(column-list)] VALUES (value-list) |
 REPLACE INTO [database-name.] table-name [(column-list)] select-statement

The first form (with the VALUES keyword) creates a single new row in an existing table. If no column-list is specified

then the number of values must be the same as the number of columns in the table. If a column-list is specified, then

the number of values must match the number of specified columns. Columns of the table that do not appear in the

column list are filled with the default value defined when the table is created, or with NULL if no default value is

defined.

The second form of the INSERT statement takes its data from a SELECT statement. The number of columns in the

result of the SELECT must exactly match the number of columns in the table if column-list is not specified, or it must

match the number of columns named in the column-list. A new entry is made in the table for every row of the SELECT

result. The SELECT may be simple or compound. For a definition of allowable SELECT statements, see SELECT.

The optional conflict-algorithm allows the specification of an alternative constraint conflict resolution algorithm to

use during this one command. For an explanation and definition of conflict algorithms, see “Special statements and

clauses” on page 351.

345HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

The two REPLACE INTO forms of the statement are equivalent to using the standard INSERT [OR conflict-

algorithm] form with the REPLACE conflict algorithm (i.e. the INSERT OR REPLACE... form).

The two REPLACE INTO forms of the statement are equivalent to using the standard INSERT [OR conflict-

algorithm] form with the REPLACE conflict algorithm (i.e. the INSERT OR REPLACE... form).

UPDATE

The update command changes the existing records in a table.

sql-statement ::= UPDATE [database-name.] table-name SET column1=value1, column2=value2,...
[WHERE expr]

The command consists of the UPDATE keyword followed by the name of the table in which you want to update the

records. After the SET keyword, provide the name of the column and the value to which the column to be changed as

a comma-separated list. The WHERE clause expression provides the row or rows in which the records are updated.

DELETE

The delete command is used to remove records from a table.

sql-statement ::= DELETE FROM [database-name.] table-name [WHERE expr]

The command consists of the DELETE FROM keywords followed by the name of the table from which records are to

be removed.

Without a WHERE clause, all rows of the table are removed. If a WHERE clause is supplied, then only those rows that

match the expression are removed. The WHERE clause expression must resolve to a boolean value. For a definition of

permitted expressions, see Expressions.

Data definition statements

Data definition statements are used to create, modify, and remove database objects such as tables, views, indices, and

triggers. The following data definition statements are supported:

• Tables:

• CREATE TABLE

• ALTER TABLE

• DROP TABLE

• Indices:

• CREATE INDEX

• DROP INDEX

• Views:

• CREATE VIEWS

• DROP VIEWS

• Triggers:

• CREATE TRIGGERS

• DROP TRIGGERS

346HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

CREATE TABLE

A CREATE TABLE statement consists of the keywords CREATE TABLE followed by the name of the new table, then

(in parentheses) a list of column definitions and constraints. The table name can be either an identifier or a string.

sql-statement ::= CREATE [TEMP | TEMPORARY] TABLE [IF NOT EXISTS] [database-name.] table-
name
 (column-def [, column-def]* [, constraint]*)
sql-statement ::= CREATE [TEMP | TEMPORARY] TABLE [database-name.] table-name AS select-
statement
column-def ::= name [type] [[CONSTRAINT name] column-constraint]*
type ::= typename | typename (number) | typename (number , number)
column-constraint ::= NOT NULL [conflict-clause] |
 PRIMARY KEY [sort-order] [conflict-clause] [AUTOINCREMENT] |
 UNIQUE [conflict-clause] |
 CHECK (expr) |
 DEFAULT default-value |
 COLLATE collation-name
constraint ::= PRIMARY KEY (column-list) [conflict-clause] |
 UNIQUE (column-list) [conflict-clause] |
 CHECK (expr)
conflict-clause ::= ON CONFLICT conflict-algorithm
conflict-algorithm ::= ROLLBACK | ABORT | FAIL | IGNORE | REPLACE
default-value ::= NULL | string | number | CURRENT_TIME | CURRENT_DATE | CURRENT_TIMESTAMP
sort-order ::= ASC | DESC
collation-name ::= BINARY | NOCASE
column-list ::= column-name [, column-name]*

Each column definition is the name of the column followed by the data type for that column, then one or more optional

column constraints. The data type for the column restricts what data may be stored in that column. If an attempt is

made to store a value in a column with a different data type, the runtime converts the value to the appropriate type if

possible, or raises an error. See the Data type support section for additional information.

The NOT NULL column constraint indicates that the column cannot contain NULL values.

A UNIQUE constraint causes an index to be created on the specified column or columns. This index must contain

unique keys—no two rows may contain duplicate values or combinations of values for the specified column or

columns. A CREATE TABLE statement can have multiple UNIQUE constraints, including multiple columns with a

UNIQUE constraint in the column's definition and/or multiple table-level UNIQUE constraints.

A CHECK constraint defines an expression that is evaluated and must be true in order for a row's data to be inserted

or updated. The CHECK expression must resolve to a boolean value.

A COLLATE clause in a column definition specifies what text collation function to use when comparing text entries

for the column. The BINARY collating function is used by default. For details on the COLLATE clause and collation

functions, see COLLATE.

The DEFAULT constraint specifies a default value to use when doing an INSERT. The value may be NULL, a string

constant, or a number. The default value may also be one of the special case-independent keywords CURRENT_TIME,

CURRENT_DATE or CURRENT_TIMESTAMP. If the value is NULL, a string constant, or a number, it is literally

inserted into the column whenever an INSERT statement does not specify a value for the column. If the value is

CURRENT_TIME, CURRENT_DATE or CURRENT_TIMESTAMP, then the current UTC date and/or time is

inserted into the column. For CURRENT_TIME, the format is HH:MM:SS. For CURRENT_DATE, the format is

YYYY-MM-DD. The format for CURRENT_TIMESTAMP is YYYY-MM-DD HH:MM:SS.

347HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

Specifying a PRIMARY KEY normally just creates a UNIQUE index on the corresponding column or columns.

However, if the PRIMARY KEY constraint is on a single column that has the data type INTEGER (or one of its

synonyms such as int) then that column is used by the database as the actual primary key for the table. This means that

the column may only hold unique integer values. (Note that in many SQLite implementations, only the column type

INTEGER causes the column to serve as the internal primary key, but in Adobe AIR synonyms for INTEGER such as

int also specify that behavior.)

If a table does not have an INTEGER PRIMARY KEY column, an integer key is automatically generated when a row

is inserted. The primary key for a row can always be accessed using one of the special names ROWID, OID, or

ROWID. These names can be used regardless of whether it is an explicitly declared INTEGER PRIMARY KEY or

an internal generated value. However, if the table has an explicit INTEGER PRIMARY KEY, the name of the column

in the result data is the actual column name rather than the special name.

An INTEGER PRIMARY KEY column can also include the keyword AUTOINCREMENT. When the

AUTOINCREMENT keyword is used, the database automatically generates and inserts a sequentially incremented

integer key in the INTEGER PRIMARY KEY column when it executes an INSERT statement that doesn't specify an

explicit value for the column.

There can only be one PRIMARY KEY constraint in a CREATE TABLE statement. It can either be part of one column's

definition or one single table-level PRIMARY KEY constraint. A primary key column is implicitly NOT NULL.

The optional conflict-clause following many constraints allows the specification of an alternative default constraint

conflict resolution algorithm for that constraint. The default is ABORT. Different constraints within the same table

may have different default conflict resolution algorithms. If an INSERT or UPDATE statement specifies a different

conflict resolution algorithm, that algorithm is used in place of the algorithm specified in the CREATE TABLE

statement. See the ON CONFLICT section of “Special statements and clauses” on page 351 for additional information.

Additional constraints, such as FOREIGN KEY constraints, do not result in an error but the runtime ignores them.

If the TEMP or TEMPORARY keyword occurs between CREATE and TABLE then the table that is created is only

visible within the same database connection (SQLConnection instance). It is automatically deleted when the database

connection is closed. Any indices created on a temporary table are also temporary. Temporary tables and indices are

stored in a separate file distinct from the main database file.

If the optional database-name prefix is specified, then the table is created in a named database (a database that was

connected to the SQLConnection instance by calling the attach() method with the specified database name). It is an

error to specify both a database-name prefix and the TEMP keyword, unless the database-name prefix is temp. If no

database name is specified, and the TEMP keyword is not present, the table is created in the main database (the

database that was connected to the SQLConnection instance using the open() or openAsync()method).

There are no arbitrary limits on the number of columns or on the number of constraints in a table. There is also no

arbitrary limit on the amount of data in a row.

The CREATE TABLE AS form defines the table as the result set of a query. The names of the table columns are the

names of the columns in the result.

If the optional IF NOT EXISTS clause is present and another table with the same name already exists, then the database

ignores the CREATE TABLE command.

A table can be removed using the DROP TABLE statement, and limited changes can be made using the ALTER TABLE

statement.

 ALTER TABLE

The ALTER TABLE command allows the user to rename or add a new column to an existing table. It is not possible

to remove a column from a table.

348HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

sql-statement ::= ALTER TABLE [database-name.] table-name alteration
alteration ::= RENAME TO new-table-name
alteration ::= ADD [COLUMN] column-def

The RENAME TO syntax is used to rename the table identified by [database-name.] table-name to new-table-name.

This command cannot be used to move a table between attached databases, only to rename a table within the same

database.

If the table being renamed has triggers or indices, then they remain attached to the table after it has been renamed.

However, if there are any view definitions or statements executed by triggers that refer to the table being renamed, they

are not automatically modified to use the new table name. If a renamed table has associated views or triggers, you must

manually drop and recreate the triggers or view definitions using the new table name.

The ADD [COLUMN] syntax is used to add a new column to an existing table. The new column is always appended

to the end of the list of existing columns. The column-def clause may take any of the forms permissible in a CREATE

TABLE statement, with the following restrictions:

• The column may not have a PRIMARY KEY or UNIQUE constraint.

• The column may not have a default value of CURRENT_TIME, CURRENT_DATE or CURRENT_TIMESTAMP.

• If a NOT NULL constraint is specified, the column must have a default value other than NULL.

The execution time of the ALTER TABLE statement is not affected by the amount of data in the table.

DROP TABLE

The DROP TABLE statement removes a table added with a CREATE TABLE statement. The table with the specified

table-name is the table that's dropped. It is completely removed from the database and the disk file. The table cannot

be recovered. All indices associated with the table are also deleted.

sql-statement ::= DROP TABLE [IF EXISTS] [database-name.] table-name

By default the DROP TABLE statement does not reduce the size of the database file. Empty space in the database is

retained and used in subsequent INSERT operations. To remove free space in the database use the

SQLConnection.clean() method. If the autoClean parameter is set to true when the database is initially created, the

space is freed automatically.

The optional IF EXISTS clause suppresses the error that would normally result if the table does not exist.

CREATE INDEX

The CREATE INDEX command consists of the keywords CREATE INDEX followed by the name of the new index,

the keyword ON, the name of a previously created table that is to be indexed, and a parenthesized list of names of

columns in the table whose values are used for the index key.

sql-statement ::= CREATE [UNIQUE] INDEX [IF NOT EXISTS] [database-name.] index-name
 ON table-name (column-name [, column-name]*)
column-name ::= name [COLLATE collation-name] [ASC | DESC]

Each column name can be followed by ASC or DESC keywords to indicate sort order, but the sort order designation

is ignored by the runtime. Sorting is always done in ascending order.

The COLLATE clause following each column name defines a collating sequence used for text values in that column.

The default collation sequence is the collation sequence defined for that column in the CREATE TABLE statement. If

no collation sequence is specified, the BINARY collation sequence is used. For a definition of the COLLATE clause

and collation functions see COLLATE.

There are no arbitrary limits on the number of indices that can be attached to a single table. There are also no limits

on the number of columns in an index.

349HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

DROP INDEX

The drop index statement removes an index added with the CREATE INDEX statement. The specified index is

completely removed from the database file. The only way to recover the index is to reenter the appropriate CREATE

INDEX command.

sql-statement ::= DROP INDEX [IF EXISTS] [database-name.] index-name

By default the DROP INDEX statement does not reduce the size of the database file. Empty space in the database is

retained and used in subsequent INSERT operations. To remove free space in the database use the

SQLConnection.clean() method. If the autoClean parameter is set to true when the database is initially created, the

space is freed automatically.

CREATE VIEW

The CREATE VIEW command assigns a name to a pre-defined SELECT statement. This new name can then be used

in a FROM clause of another SELECT statement in place of a table name. Views are commonly used to simplify queries

by combining a complex (and frequently used) set of data into a structure that can be used in other operations.

sql-statement ::= CREATE [TEMP | TEMPORARY] VIEW [IF NOT EXISTS] [database-name.] view-name AS
select-statement

If the TEMP or TEMPORARY keyword occurs in between CREATE and VIEW then the view that is created is only

visible to the SQLConnection instance that opened the database and is automatically deleted when the database is

closed.

If a [database-name] is specified the view is created in the named database (a database that was connected to the

SQLConnection instance using the attach() method, with the specified name argument. It is an error to specify both a

[database-name] and the TEMP keyword unless the [database-name] is temp. If no database name is specified, and the

TEMP keyword is not present, the view is created in the main database (the database that was connected to the

SQLConnection instance using the open() or openAsync() method).

Views are read only. A DELETE, INSERT, or UPDATE statement cannot be used on a view, unless at least one trigger

of the associated type (INSTEAD OF DELETE, INSTEAD OF INSERT, INSTEAD OF UPDATE) is defined. For

information on creating a trigger for a view, see CREATE TRIGGER.

A view is removed from a database using the DROP VIEW statement.

DROP VIEW

The DROP VIEW statement removes a view created by a CREATE VIEW statement.

sql-statement ::= DROP VIEW [IF EXISTS] view-name

The specified view-name is the name of the view to drop. It is removed from the database, but no data in the underlying

tables is modified.

CREATE TRIGGER

The create trigger statement is used to add triggers to the database schema. A trigger is a database operation (the

trigger-action) that is automatically performed when a specified database event (the database-event) occurs.

350HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

sql-statement ::= CREATE [TEMP | TEMPORARY] TRIGGER [IF NOT EXISTS] [database-name.] trigger-
name
 [BEFORE | AFTER] database-event
 ON table-name
 trigger-action
sql-statement ::= CREATE [TEMP | TEMPORARY] TRIGGER [IF NOT EXISTS] [database-name.] trigger-
name
 INSTEAD OF database-event
 ON view-name
 trigger-action
database-event ::= DELETE |
 INSERT |
 UPDATE |
 UPDATE OF column-list
trigger-action ::= [FOR EACH ROW] [WHEN expr]
 BEGIN
 trigger-step ;
 [trigger-step ;]*
 END
trigger-step ::= update-statement |
 insert-statement |
 delete-statement |
 select-statement
column-list ::= column-name [, column-name]*

A trigger is specified to fire whenever a DELETE, INSERT, or UPDATE of a particular database table occurs, or

whenever an UPDATE of one or more specified columns of a table are updated. Triggers are permanent unless the

TEMP or TEMPORARY keyword is used. In that case the trigger is removed when the SQLConnection instance's main

database connection is closed. If no timing is specified (BEFORE or AFTER) the trigger defaults to BEFORE.

Only FOR EACH ROW triggers are supported, so the FOR EACH ROW text is optional. With a FOR EACH ROW

trigger, the trigger-step statements are executed for each database row being inserted, updated or deleted by the

statement causing the trigger to fire, if the WHEN clause expression evaluates to true.

If a WHEN clause is supplied, the SQL statements specified as trigger-steps are only executed for rows for which the

WHEN clause is true. If no WHEN clause is supplied, the SQL statements are executed for all rows.

Within the body of a trigger, (the trigger-action clause) the pre-change and post-change values of the affected table are

available using the special table names OLD and NEW. The structure of the OLD and NEW tables matches the

structure of the table on which the trigger is created. The OLD table contains any rows that are modified or deleted by

the triggering statement, in their state before the triggering statement's operations. The NEW table contains any rows

that are modified or created by the triggering statement, in their state after the triggering statement's operations. Both

the WHEN clause and the trigger-step statements can access values from the row being inserted, deleted or updated

using references of the form NEW.column-name and OLD.column-name, where column-name is the name of a

column from the table with which the trigger is associated. The availability of the OLD and NEW table references

depends on the type of database-event the trigger handles:

• INSERT – NEW references are valid

• UPDATE – NEW and OLD references are valid

• DELETE – OLD references are valid

The specified timing (BEFORE, AFTER, or INSTEAD OF) determines when the trigger-step statements are executed

relative to the insertion, modification or removal of the associated row. An ON CONFLICT clause may be specified as

part of an UPDATE or INSERT statement in a trigger-step. However, if an ON CONFLICT clause is specified as part

of the statement causing the trigger to fire, then that conflict handling policy is used instead.

351HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

In addition to table triggers, an INSTEAD OF trigger can be created on a view. If one or more INSTEAD OF INSERT,

INSTEAD OF DELETE, or INSTEAD OF UPDATE triggers are defined on a view, it is not considered an error to

execute the associated type of statement (INSERT, DELETE, or UPDATE) on the view. In that case, executing an

INSERT, DELETE or UPDATE on the view causes the associated triggers to fire. Because the trigger is an INSTEAD

OF trigger, the tables underlying the view are not modified by the statement that causes the trigger to fire. However,

the triggers can be used to perform modifying operations on the underlying tables.

There is an important issue to keep in mind when creating a trigger on a table with an INTEGER PRIMARY KEY

column. If a BEFORE trigger modifies the INTEGER PRIMARY KEY column of a row that is to be updated by the

statement that causes the trigger to fire, the update doesn't occur. A workaround is to create the table with a PRIMARY

KEY column instead of an INTEGER PRIMARY KEY column.

A trigger can be removed using the DROP TRIGGER statement. When a table or view is dropped, all triggers

associated with that table or view are automatically dropped as well.

RAISE () function

A special SQL function RAISE() can be used in a trigger-step statement of a trigger. This function has the following

syntax:

raise-function ::= RAISE (ABORT, error-message) |
 RAISE (FAIL, error-message) |
 RAISE (ROLLBACK, error-message) |
 RAISE (IGNORE)

When one of the first three forms is called during trigger execution, the specified ON CONFLICT processing action

(ABORT, FAIL, or ROLLBACK) is performed and the current statement's execution ends. The ROLLBACK is

considered a statement execution failure, so the SQLStatement instance whose execute() method was being carried out

dispatches an error (SQLErrorEvent.ERROR) event. The SQLError object in the dispatched event object's error

property has its details property set to the error-message specified in the RAISE() function.

When RAISE(IGNORE) is called, the remainder of the current trigger, the statement that caused the trigger to execute,

and any subsequent triggers that would have been executed are abandoned. No database changes are rolled back. If the

statement that caused the trigger to execute is itself part of a trigger, that trigger program resumes execution at the

beginning of the next step. For more information about the conflict resolution algorithms, see the section ON

CONFLICT (conflict algorithms).

DROP TRIGGER

The DROP TRIGGER statement removes a trigger created by the CREATE TRIGGER statement.

sql-statement ::= DROP TRIGGER [IF EXISTS] [database-name.] trigger-name

The trigger is deleted from the database. Note that triggers are automatically dropped when their associated table is

dropped.

Special statements and clauses

This section describes several clauses that are extensions to SQL provided by the runtime, as well as two language

elements that can be used in many statements, comments and expressions.

COLLATE

The COLLATE clause is used in SELECT, CREATE TABLE, and CREATE INDEX statements to specify the

comparison algorithm that is used when comparing or sorting values.

352HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

sql-statement ::= COLLATE collation-name
collation-name ::= BINARY | NOCASE

The default collation type for columns is BINARY. When BINARY collation is used with values of the TEXT storage

class, binary collation is performed by comparing the bytes in memory that represent the value regardless of the text

encoding.

The NOCASE collation sequence is only applied for values of the TEXT storage class. When used, the NOCASE

collation performs a case-insensitive comparison.

No collation sequence is used for storage classes of type NULL, BLOB, INTEGER, or REAL.

To use a collation type other than BINARY with a column, a COLLATE clause must be specified as part of the column

definition in the CREATE TABLE statement. Whenever two TEXT values are compared, a collation sequence is used

to determine the results of the comparison according to the following rules:

• For binary comparison operators, if either operand is a column, then the default collation type of the column

determines the collation sequence that is used for the comparison. If both operands are columns, then the collation

type for the left operand determines the collation sequence used. If neither operand is a column, then the BINARY

collation sequence is used.

• The BETWEEN...AND operator is equivalent to using two expressions with the >= and <= operators. For example,

the expression x BETWEEN y AND z is equivalent to x >= y AND x <= z. Consequently, the BETWEEN...AND

operator follows the preceding rule to determine the collation sequence.

• The IN operator behaves like the =operator for the purposes of determining the collation sequence to use. For

example, the collation sequence used for the expressionx IN (y, z) is the default collation type of x if x is a column.

Otherwise, BINARY collation is used.

• An ORDER BY clause that is part of a SELECT statement may be explicitly assigned a collation sequence to be used

for the sort operation. In that case the explicit collation sequence is always used. Otherwise, if the expression sorted

by an ORDER BYclause is a column, the default collation type of the column is used to determine sort order. If the

expression is not a column, the BINARY collation sequence is used.

EXPLAIN

The EXPLAIN command modifier is a non-standard extension to SQL.

sql-statement ::= EXPLAIN sql-statement

If the EXPLAIN keyword appears before any other SQL statement, then instead of actually executing the command,

the result reports the sequence of virtual machine instructions it would have used to execute the command, had the

EXPLAIN keyword not been present. The EXPLAIN feature is an advanced feature and allows developers to change

SQL statement text in an attempt to optimize performance or debug a statement that doesn't appear to be working

properly.

ON CONFLICT (conflict algorithms)

The ON CONFLICT clause is not a separate SQL command. It is a non-standard clause that can appear in many other

SQL commands.

conflict-clause ::= ON CONFLICT conflict-algorithm
conflict-clause ::= OR conflict-algorithm
conflict-algorithm ::= ROLLBACK |
 ABORT |
 FAIL |
 IGNORE |
 REPLACE

353HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

The first form of the ON CONFLICT clause, using the keywords ON CONFLICT, is used in a CREATE TABLE

statement. For an INSERT or UPDATE statement, the second form is used, with ON CONFLICT replaced by OR to

make the syntax seem more natural. For example, instead of INSERT ON CONFLICT IGNORE, the statement becomes

INSERT OR IGNORE. Although the keywords are different, the meaning of the clause is the same in either form.

The ON CONFLICT clause specifies the algorithm that is used to resolve constraint conflicts. The five algorithms are

ROLLBACK, ABORT, FAIL, IGNORE, and REPLACE. The default algorithm is ABORT. The following is an

explanation of the five conflict algorithms:

ROLLBACK When a constraint violation occurs, an immediate ROLLBACK occurs, ending the current transaction.

The command aborts and the SQLStatement instance dispatches an error event. If no transaction is active (other than

the implied transaction that is created on every command) then this algorithm works the same as ABORT.

ABORT When a constraint violation occurs, the command backs out any prior changes it might have made and the

SQLStatement instance dispatches an error event. No ROLLBACK is executed, so changes from prior commands

within a transaction are preserved. ABORT is the default behavior.

FAIL When a constraint violation occurs, the command aborts and the SQLStatement dispatches an error event.

However, any changes to the database that the statement made before encountering the constraint violation are

preserved and are not backed out. For example, if an UPDATE statement encounters a constraint violation on the

100th row that it attempts to update, then the first 99 row changes are preserved but changes to rows 100 and beyond

don’t occur.

IGNORE When a constraint violation occurs, the one row that contains the constraint violation is not inserted or

changed. Aside from this row being ignored, the command continues executing normally. Other rows before and after

the row that contained the constraint violation continue to be inserted or updated normally. No error is returned.

REPLACE When a UNIQUE constraint violation occurs, the pre-existing rows that are causing the constraint violation

are removed before inserting or updating the current row. Consequently, the insert or update always occurs, and the

command continues executing normally. No error is returned. If a NOT NULL constraint violation occurs, the NULL

value is replaced by the default value for that column. If the column has no default value, then the ABORT algorithm

is used. If a CHECK constraint violation occurs then the IGNORE algorithm is used. When this conflict resolution

strategy deletes rows in order to satisfy a constraint, it does not invoke delete triggers on those rows.

The algorithm specified in the OR clause of an INSERT or UPDATE statement overrides any algorithm specified in a

CREATE TABLE statement. If no algorithm is specified in the CREATE TABLE statement or the executing INSERT

or UPDATE statement, the ABORT algorithm is used.

REINDEX

The REINDEX command is used to delete and re-create one or more indices. This command is useful when the

definition of a collation sequence has changed.

sql-statement ::= REINDEX collation-name
sql-statement ::= REINDEX [database-name .] (table-name | index-name)

In the first form, all indices in all attached databases that use the named collation sequence are recreated. In the second

form, when a table-name is specified, all indices associated with the table are rebuilt. If an index-name is given, only

the specified index is deleted and recreated.

COMMENTS

Comments aren't SQL commands, but they can occur in SQL queries. They are treated as white space by the runtime.

They can begin anywhere white space can be found, including inside expressions that span multiple lines.

354HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

comment ::= single-line-comment |
 block-comment
single-line-comment ::= -- single-line
block-comment ::= /* multiple-lines or block [*/]

A single-line comment is indicated by two dashes. A single line comment only extends to the end of the current line.

Block comments can span any number of lines, or be embedded within a single line. If there is no terminating

delimiter, a block comment extends to the end of the input. This situation is not treated as an error. A new SQL

statement can begin on a line after a block comment ends. Block comments can be embedded anywhere white space

can occur, including inside expressions, and in the middle of other SQL statements. Block comments do not nest.

Single-line comments inside a block comment are ignored.

EXPRESSIONS

Expressions are subcommands within other SQL blocks. The following describes the valid syntax for an expression

within a SQL statement:

expr ::= expr binary-op expr |
 expr [NOT] like-op expr [ESCAPE expr] |
 unary-op expr |
 (expr) |
 column-name |
 table-name.column-name |
 database-name.table-name.column-name |
 literal-value |
 parameter |
 function-name(expr-list | *) |
 expr ISNULL |
 expr NOTNULL |
 expr [NOT] BETWEEN expr AND expr |
 expr [NOT] IN (value-list) |
 expr [NOT] IN (select-statement) |
 expr [NOT] IN [database-name.] table-name |
 [EXISTS] (select-statement) |
 CASE [expr] (WHEN expr THEN expr)+ [ELSE expr] END |
 CAST (expr AS type) |
 expr COLLATE collation-name
like-op ::= LIKE | GLOB
binary-op ::= see Operators
unary-op ::= see Operators
parameter ::= :param-name | @param-name | ?
value-list ::= literal-value [, literal-value]*
literal-value ::= literal-string | literal-number | literal-boolean | literal-blob |
literal-null
literal-string ::= 'string value'
literal-number ::= integer | number
literal-boolean ::= true | false
literal-blob ::= X'string of hexadecimal data'
literal-null ::= NULL

An expression is any combination of values and operators that can be resolved to a single value. Expressions can be

divided into two general types, according to whether they resolve to a boolean (true or false) value or whether they

resolve to a non-boolean value.

355HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

In several common situations, including in a WHERE clause, a HAVING clause, the ON expression in a JOIN clause,

and a CHECK expression, the expression must resolve to a boolean value. The following types of expressions meet this

condition:

• ISNULL

• NOTNULL

• IN () �

• EXISTS ()

• LIKE

• GLOB

• Certain functions

• Certain operators (specifically comparison operators)

Literal values

A literal numeric value is written as an integer number or a floating point number. Scientific notation is supported.

The . (period) character is always used as the decimal point.

A string literal is indicated by enclosing the string in single quotes '. To include a single quote within a string, put two

single quotes in a row like this example: ''.

A boolean literal is indicated by the value true or false. Literal boolean values are used with the Boolean column data type.

A BLOB literal is a string literal containing hexadecimal data and proceeded by a single x or X character, such as

X'53514697465'.

A literal value can also be the token NULL.

Column name

A column name can be any of the names defined in the CREATE TABLE statement or one of the following special

identifiers: ROWID, OID, or _ROWID_. These special identifiers all describe the unique random integer key (the "row

key") associated with every row of every table. The special identifiers only refer to the row key if the CREATE TABLE

statement does not define a real column with the same name. Row keys behave as read-only columns. A row key can

be used anywhere a regular column can be used, except that you cannot change the value of a row key in an UPDATE

or INSERT statement. The SELECT * FROM table statement does not include the row key in its result set.

SELECT statement

A SELECT statement can appear in an expression as either the right-hand operand of the IN operator, as a scalar

quantity (a single result value), or as the operand of an EXISTS operator. When used as a scalar quantity or the operand

of an IN operator, the SELECT can only have a single column in its result. A compound SELECT statement (connected

with keywords like UNION or EXCEPT) is allowed. With the EXISTS operator, the columns in the result set of the

SELECT are ignored and the expression returns TRUE if one or more rows exist and FALSE if the result set is empty.

If no terms in the SELECT expression refer to the value in the containing query, then the expression is evaluated once

before any other processing and the result is reused as necessary. If the SELECT expression does contain variables from

the outer query, known as a correlated subquery, then the SELECT is re-evaluated every time it is needed.

When a SELECT is the right operand of the IN operator, the IN operator returns TRUE if the result of the left operand

is equal to any of the values in the SELECT statement's result set. The IN operator may be preceded by the NOT

keyword to invert the sense of the test.

356HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

When a SELECT appears within an expression but is not the right operand of an IN operator, then the first row of the

result of the SELECT becomes the value used in the expression. If the SELECT yields more than one result row, all rows

after the first are ignored. If the SELECT yields no rows, then the value of the SELECT is NULL.

CAST expression

A CAST expression changes the data type of the value specified to the one given. The type specified can be any non-

empty type name that is valid for the type in a column definition of a CREATE TABLE statement. See Data type

support for details.

Additional expression elements

The following SQL elements can also be used in expressions:

• Built-in functions: Aggregate functions, Scalar functions, and Date and time formatting functions

• Operators

• Parameters

Built-in functions

The built-in functions fall into three main categories:

• Aggregate functions

• Scalar functions

• Date and time functions

In addition to these functions, there is a special function RAISE() that is used to provide notification of an error in the

execution of a trigger. This function can only be used within the body of a CREATE TRIGGER statement. For

information on the RAISE() function, see CREATE TRIGGER > RAISE().

Like all keywords in SQL, function names are not case sensitive.

Aggregate functions

Aggregate functions perform operations on values from multiple rows. These functions are primarily used in SELECT

statements in conjunction with the GROUP BY clause.

In any of the preceding aggregate functions that take a single argument, that argument can be preceded by the keyword

DISTINCT. In that case, duplicate elements are filtered before being passed into the aggregate function. For example,

the function call COUNT(DISTINCT x) returns the number of distinct values of column X instead of the total number

of non-NULL values in column x.

AVG(X) Returns the average value of all non-NULL X within a group. String and BLOB values that do not

look like numbers are interpreted as 0. The result of AVG() is always a floating point value even

if all inputs are integers.

COUNT(X)

COUNT(*)

The first form returns a count of the number of times that X is not NULL in a group. The second

form (with the * argument) returns the total number of rows in the group.

MAX(X) Returns the maximum value of all values in the group. The usual sort order is used to determine

the maximum.

MIN(X) Returns the minimum non-NULL value of all values in the group. The usual sort order is used

to determine the minimum. If all values in the group are NULL, NULL is returned.

SUM(X)

TOTAL(X)

Returns the numeric sum of all non-NULL values in the group. If all of the values are NULL then

SUM() returns NULL, and TOTAL() returns 0.0. The result of TOTAL() is always a floating point

value. The result of SUM() is an integer value if all non-NULL inputs are integers. If any input to

SUM() is not an integer and not NULL then SUM() returns a floating point value. This value

might be an approximation to the true sum.

357HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

Scalar functions

Scalar functions operate on values one row at a time.

Date and time formatting functions

The date and time formatting functions are a group of scalar functions that are used to create formatted date and time

data. Note that these functions operate on and return string and number values. These functions are not intended to

be used with the DATE data type. If you use these functions on data in a column whose declared data type is DATE,

they do not behave as expected.

ABS(X) Returns the absolute value of argument X.

COALESCE(X, Y, ...) Returns a copy of the first non-NULL argument. If all arguments are NULL then NULL is

returned. There must be at least two arguments.

GLOB(X, Y) This function is used to implement the X GLOB Y syntax.

IFNULL(X, Y) Returns a copy of the first non-NULL argument. If both arguments are NULL then NULL is

returned. This function behaves the same as COALESCE().

HEX(X) The argument is interpreted as a value of the BLOB storage type. The result is a hexadecimal

rendering of the content of that value.

LAST_INSERT_ROWID(

)

Returns the row identifier (generated primary key) of the last row inserted to the database

through the current SQLConnection. This value is the same as the value returned by the

SQLConnection.lastInsertRowID property.

LENGTH(X) Returns the string length of X in characters.

LIKE(X, Y [, Z]) This function is used to implement the X LIKE Y [ESCAPE Z] syntax of SQL. If the optional

ESCAPE clause is present, then the function is invoked with three arguments. Otherwise, it is

invoked with two arguments only.

LOWER(X) Returns a copy of string X with all characters converted to lower case.

LTRIM(X) LTRIM(X, Y) Returns a string formed by removing spaces from the left side of X. If a Y argument is specified,

the function removes any of the characters in Y from the left side of X.

MAX(X, Y, ...) Returns the argument with the maximum value. Arguments may be strings in addition to

numbers. The maximum value is determined by the defined sort order. Note that MAX() is a

simple function when it has 2 or more arguments but is an aggregate function when it has a

single argument.

MIN(X, Y, ...) Returns the argument with the minimum value. Arguments may be strings in addition to

numbers. The minimum value is determined by the defined sort order. Note that MIN() is a

simple function when it has 2 or more arguments but is an aggregate function when it has a

single argument.

NULLIF(X, Y) Returns the first argument if the arguments are different, otherwise returns NULL.

QUOTE(X) This routine returns a string which is the value of its argument suitable for inclusion into

another SQL statement. Strings are surrounded by single-quotes with escapes on interior

quotes as needed. BLOB storage classes are encoded as hexadecimal literals. The function is

useful when writing triggers to implement undo/redo functionality.

RANDOM(*) Returns a pseudo-random integer between -9223372036854775808 and

9223372036854775807. This random value is not crypto-strong.

RANDOMBLOB(N) Returns an N-byte BLOB containing pseudo-random bytes. N should be a positive integer. This

random value is not crypto-strong. If the value of N is negative a single byte is returned.

ROUND(X) ROUND(X,

Y)

Rounds off the number X to Y digits to the right of the decimal point. If the Y argument is

omitted, 0 is used.

RTRIM(X) RTRIM(X, Y) Returns a string formed by removing spaces from the right side of X. If a Y argument is

specified, the function removes any of the characters in Y from the right side of X.

SUBSTR(X, Y, Z) Returns a substring of input string X that begins with the Y-th character and which is Z

characters long. The left-most character of X is index position 1. If Y is negative the first

character of the substring is found by counting from the right rather than the left.

TRIM(X) TRIM(X, Y) Returns a string formed by removing spaces from the right side of X. If a Y argument is

specified, the function removes any of the characters in Y from the right side of X.

TYPEOF(X) Returns the type of the expression X. The possible return values are 'null', 'integer', 'real', 'text',

and 'blob'. For more information on data types see Data type support.

UPPER(X) Returns a copy of input string X converted to all upper-case letters.

ZEROBLOB(N) Returns a BLOB containing N bytes of 0x00.

http://help.adobe.com/en_US/air/reference/html/flash/data/SQLConnection.html#lastInsertRowID

358HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

Time formats

A time string can be in any of the following formats:

The character T in these formats is a literal character "T" separating the date and the time. Formats that only include

a time assume the date 2001-01-01.

DATE(T, ...) The DATE() function returns a string containing the date in this format: YYYY-MM-DD. The first

parameter (T) specifies a time string of the format found under Time formats. Any number of

modifiers can be specified after the time string. The modifiers can be found under Modifiers.

TIME(T, ...) The TIME() function returns a string containing the time as HH:MM:SS. The first parameter (T)

specifies a time string of the format found under Time formats. Any number of modifiers can

be specified after the time string. The modifiers can be found under Modifiers.

DATETIME(T, ...) The DATETIME() function returns a string containing the date and time in YYYY-MM-DD

HH:MM:SS format. The first parameter (T) specifies a time string of the format found under

Time formats. Any number of modifiers can be specified after the time string. The modifiers

can be found under Modifiers.

JULIANDAY(T, ...) The JULIANDAY() function returns a number indicating the number of days since noon in

Greenwich on November 24, 4714 B.C. and the provided date. The first parameter (T) specifies

a time string of the format found under Time formats. Any number of modifiers can be

specified after the time string. The modifiers can be found under Modifiers.

STRFTIME(F, T, ...) The STRFTIME() routine returns the date formatted according to the format string specified as

the first argument F. The format string supports the following substitutions:

%d - day of month

%f - fractional seconds SS.SSS

%H - hour 00-24

%j - day of year 001-366

%J - Julian day number

%m -month 01-12

%M - minute 00-59

%s - seconds since 1970-01-01

%S - seconds 00-59

%w - day of week 0-6 (sunday = 0)

%W - week of year 00-53

%Y - year 0000-9999

%% - %

The second parameter (T) specifies a time string of the format found under Time formats. Any

number of modifiers can be specified after the time string. The modifiers can be found under

Modifiers.

YYYY-MM-DD 2007-06-15

YYYY-MM-DD HH:MM 2007-06-15 07:30

YYYY-MM-DD HH:MM:SS 2007-06-15 07:30:59

YYYY-MM-DD HH:MM:SS.SSS 2007-06-15 07:30:59.152

YYYY-MM-DDTHH:MM 2007-06-15T07:30

YYYY-MM-DDTHH:MM:SS 2007-06-15T07:30:59

YYYY-MM-DDTHH:MM:SS.SSS 2007-06-15T07:30:59.152

HH:MM 07:30 (date is 2000-01-01)

HH:MM:SS 07:30:59 (date is 2000-01-01)

HH:MM:SS.SSS 07:30:59:152 (date is 2000-01-01)

now Current date and time in Universal Coordinated Time.

DDDD.DDDD Julian day number as a floating-point number.

359HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

Modifiers

The time string can be followed by zero or more modifiers that alter the date or alter the interpretation of the date. The

available modifiers are as follows:

Operators

SQL supports a large selection of operators, including common operators that exist in most programming languages,

as well as several operators that are unique to SQL.

Common operators

The following binary operators are allowed in a SQL block and are listed in order from highest to lowest precedence:

* / %
+ -
<< >> & |
< >= > >=
= == != <> IN
AND
OR

Supported unary prefix operators are:

 ! ~ NOT

The COLLATE operator can be thought of as a unary postfix operator. The COLLATE operator has the highest

precedence. It always binds more tightly than any prefix unary operator or any binary operator.

Note that there are two variations of the equals and not equals operators. Equals can be either = or ==. The not-equals

operator can be either != or <>.

The || operator is the string concatenation operator—it joins together the two strings of its operands.

The operator % outputs the remainder of its left operand modulo its right operand.

The result of any binary operator is a numeric value, except for the || concatenation operator which gives a string result.

SQL operators

LIKE

The LIKE operator does a pattern matching comparison.

expr ::= (column-name | expr) LIKE pattern
pattern ::= '[string | % | _]'

NNN days Number of days to add to the time.

NNN hours Number of hours to add to the time.

NNN minutes Number of minutes to add to the time.

NNN.NNNN seconds Number of seconds and milliseconds to add to the time.

NNN months Number of months to add to the time.

NNN years Number of years to add to the time.

start of month Shift time backwards to the start of the month.

start of year Shift time backwards to the start of the year.

start of day Shift time backwards to the start of the day.

weekday N Forwards the time to the specified weekday. (0 = Sunday, 1 =

Monday, and so forth).

localtime Converts the date to local time.

utc Converts the date to Universal Coordinated Time.

360HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

The operand to the right of the LIKE operator contains the pattern, and the left-hand operand contains the string to

match against the pattern. A percent symbol (%) in the pattern is a wildcard character—it matches any sequence of

zero or more characters in the string. An underscore (_) in the pattern matches any single character in the string. Any

other character matches itself or its lower/upper case equivalent, that is, matches are performed in a case-insensitive

manner. (Note: the database engine only understands upper/lower case for 7-bit Latin characters. Consequently, the

LIKE operator is case sensitive for 8-bit iso8859 characters or UTF-8 characters. For example, the expression 'a' LIKE

'A' is TRUE but 'æ' LIKE 'Æ' is FALSE). Case sensitivity for Latin characters can be changed using the

SQLConnection.caseSensitiveLike property.

If the optional ESCAPE clause is present, then the expression following the ESCAPE keyword must evaluate to a string

consisting of a single character. This character may be used in the LIKE pattern to match literal percent or underscore

characters. The escape character followed by a percent symbol, underscore or itself matches a literal percent symbol,

underscore or escape character in the string, respectively.

GLOB

The GLOB operator is similar to LIKE but uses the Unix file globbing syntax for its wildcards. Unlike LIKE, GLOB is

case sensitive.

IN

The IN operator calculates whether its left operand is equal to one of the values in its right operand (a set of values in

parentheses).

in-expr ::= expr [NOT] IN (value-list) |
 expr [NOT] IN (select-statement) |
 expr [NOT] IN [database-name.] table-name
value-list ::= literal-value [, literal-value]*

The right operand can be a set of comma-separated literal values, or it can be the result of a SELECT statement. See

SELECT statements in expressions for an explanation and limitations on using a SELECT statement as the right-hand

operand of the IN operator.

BETWEEN...AND

The BETWEEN...AND operator is equivalent to using two expressions with the >= and <= operators. For example, the

expression x BETWEEN y AND z is equivalent to x >= y AND x <= z.

NOT

The NOT operator is a negation operator. The GLOB, LIKE, and IN operators may be preceded by the NOT keyword

to invert the sense of the test (in other words, to check that a value does not match the indicated pattern).

Parameters

A parameter specifies a placeholder in the expression for a literal value that is filled in at runtime by assigning a value

to the SQLStatement.parameters associative array. Parameters can take three forms:

� A question mark indicates an indexed parameter. Parameters are assigned numerical (zero-

based) index values according to their order in the statement.

:AAAA A colon followed by an identifier name holds a spot for a named parameter with the name

AAAA. Named parameters are also numbered according to their order in the SQL statement.

To avoid confusion, it is best to avoid mixing named and numbered parameters.

@AAAA An "at sign" is equivalent to a colon.

361HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

Unsupported SQL features

The following is a list of the standard SQL elements that are not supported in Adobe AIR:

FOREIGN KEY constraints FOREIGN KEY constraints are parsed but are not enforced.

Triggers FOR EACH STATEMENT triggers are not supported (all triggers must be FOR EACH ROW). INSTEAD

OF triggers are not supported on tables (INSTEAD OF triggers are only allowed on views). Recursive triggers—

triggers that trigger themselves—are not supported.

ALTER TABLE Only the RENAME TABLE and ADD COLUMN variants of the ALTER TABLE command are

supported. Other kinds of ALTER TABLE operations such as DROP COLUMN, ALTER COLUMN, ADD

CONSTRAINT, and so forth are ignored.

Nested transactions Only a single active transaction is allowed.

RIGHT and FULL OUTER JOIN RIGHT OUTER JOIN or FULL OUTER JOIN are not supported.

Updateable VIEW A view is read only. You may not execute a DELETE, INSERT, or UPDATE statement on a view.

An INSTEAD OF trigger that fires on an attempt to DELETE, INSERT, or UPDATE a view is supported and can be

used to update supporting tables in the body of the trigger.

GRANT and REVOKE A database is an ordinary disk file; the only access permissions that can be applied are the normal

file access permissions of the underlying operating system. The GRANT and REVOKE commands commonly found

on client/server RDBMSes are not implemented.

The following SQL elements and SQLite features are supported in some SQLite implementations, but are not

supported in Adobe AIR. Most of this functionality is available through methods of the SQLConnection class:

Transaction-related SQL elements (BEGIN, END, COMMIT, ROLLBACK) This functionality is available through the

transaction-related methods of the SQLConnection class: SQLConnection.begin(), SQLConnection.commit(), and

SQLConnection.rollback().

ANALYZE This functionality is available through the SQLConnection.analyze() method.

ATTACH This functionality is available through the SQLConnection.attach() method.

COPY This statement is not supported.

CREATE VIRTUAL TABLE This statement is not supported.

DETACH This functionality is available through the SQLConnection.detach() method.

PRAGMA This statement is not supported.

VACUUM This functionality is available through the SQLConnection.compact() method.

System table access is not available The system tables including sqlite_master and other tables with the "sqlite_"

prefix are not available in SQL statements. The runtime includes a schema API that provides an object-oriented way

to access schema data. For more information see the SQLConnection.loadSchema() method.

Regular-expression functions (MATCH() and REGEX()) These functions are not available in SQL statements.

The following functionality differs between many SQLite implementations and Adobe AIR:

Indexed statement parameters In many implementations indexed statement parameters are one-based. However, in

Adobe AIR indexed statement parameters are zero-based (that is, the first parameter is given the index 0, the second

parameter is given the index 1, and so forth.

INTEGER PRIMARY KEY column definitions In many implementations, only columns that are defined exactly as

INTEGER PRIMARY KEY are used as the actual primary key column for a table. In those implementations, using

another data type that is usually a synonym for INTEGER (such as int) does not cause the column to be used as the

362HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

internal primary key. However, in Adobe AIR, the int data type (and other INTEGER synonyms) are considered

exactly equivalent to INTEGER. Consequently, a column defined as int PRIMARY KEY is used as the internal primary

key for a table. For more information, see the sections CREATE TABLE and Column affinity.

Additional SQL features

The following column affinity types are not supported by default in SQLite, but are supported in Adobe AIR (Note

that, like all keywords in SQL, these data type names are not case-sensitive):

Boolean corresponding to the Boolean class.

Date corresponding to the Date class.

int corresponding to the int class (equivalent to the INTEGER column affinity).

Number corresponding to the Number class (equivalent to the REAL column affinity).

Object corresponding to the Object class or any subclass that can be serialized and deserialized using AMF3. (This

includes most classes including custom classes, but excludes some classes including display objects and objects that

include display objects as properties.)

String corresponding to the String class (equivalent to the TEXT column affinity).

XML corresponding to the ActionScript (E4X) XML class.

XMLList corresponding to the ActionScript (E4X) XMLList class.

The following literal values are not supported by default in SQLite, but are supported in Adobe AIR:

true used to represent the literal boolean value true, for working with BOOLEAN columns.

false used to represent the literal boolean value false, for working with BOOLEAN columns.

Data type support

Unlike most SQL databases, the Adobe AIR SQL database engine does not require or enforce that table columns

contain values of a certain type. Instead, the runtime uses two concepts, storage classes and column affinity, to control

data types. This section describes storage classes and column affinity, as well as how data type differences are resolved

under various conditions:

• “Storage classes” on page 363

• “Column affinity” on page 363

• “Data types and comparison operators” on page 366

• “Data types and mathematical operators” on page 366

• “Data types and sorting” on page 366

• “Data types and grouping” on page 366

• “Data types and compound SELECT statements” on page 367

363HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

Storage classes

Storage classes represent the actual data types that are used to store values in a database. The following storage classes

are used by the database:

NULL The value is a NULL value.

INTEGER The value is a signed integer.

REAL The value is a floating-point number value.

TEXT The value is a text string (limited to 256 MB).

BLOB The value is a Binary Large Object (BLOB); in other words, raw binary data (limited to 256 MB).

All values supplied to the database as literals embedded in a SQL statement or values bound using parameters to a

prepared SQL statement are assigned a storage class before the SQL statement is executed.

Literals that are part of a SQL statement are assigned storage class TEXT if they are enclosed by single or double quotes,

INTEGER if the literal is specified as an unquoted number with no decimal point or exponent, REAL if the literal is an

unquoted number with a decimal point or exponent and NULL if the value is a NULL. Literals with storage class BLOB

are specified using the X'ABCD' notation. For more information, see Literal values in expressions.

Values supplied as parameters using the SQLStatement.parameters associative array are assigned the storage class that

most closely matches the native data type bound. For example, int values are bound as INTEGER storage class,

Number values are given the REAL storage class, String values are given the TEXT storage class, and ByteArray objects

are given the BLOB storage class.

Column affinity

The affinity of a column is the recommended type for data stored in that column. When a value is stored in a column

(through an INSERT or UPDATE statement), the runtime attempts to convert that value from its data type to the

specified affinity. For example, if a Date value (an ActionScript or JavaScript Date instance) is inserted into a column

whose affinity is TEXT, the Date value is converted to the String representation (equivalent to calling the object's

toString() method) before being stored in the database. If the value cannot be converted to the specified affinity an

error occurs and the operation is not performed. When a value is retrieved from the database using a SELECT

statement, it is returned as an instance of the class corresponding to the affinity, regardless of whether it was converted

from a different data type when it was stored.

If a column accepts NULL values, the ActionScript or JavaScript value null can be used as a parameter value to store

NULL in the column. When a NULL storage class value is retrieved in a SELECT statement, it is always returned as

the ActionScript or JavaScript value null, regardless of the column's affinity. If a column accepts NULL values, always

check values retrieved from that column to determine if they're null before attempting to cast the values to a non-

nullable type (such as Number or Boolean).

Each column in the database is assigned one of the following type affinities:

• TEXT (or String)

• NUMERIC

• INTEGER (or int)

• REAL (or Number)

• Boolean

• Date

• XML

364HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

• XMLLIST

• Object

• NONE

TEXT (or String)

A column with TEXT or String affinity stores all data using storage classes NULL, TEXT, or BLOB. If numerical data

is inserted into a column with TEXT affinity it is converted to text form before being stored.

NUMERIC

A column with NUMERIC affinity contains values using storage classes NULL, REAL, or INTEGER. When text data

is inserted into a NUMERIC column, an attempt is made to convert it to an integer or real number before it is stored.

If the conversion is successful, then the value is stored using the INTEGER or REAL storage class (for example, a value

of '10.05' is converted to REAL storage class before being stored). If the conversion cannot be performed an error

occurs. No attempt is made to convert a NULL value. A value that's retrieved from a NUMERIC column is returned

as an instance of the most specific numeric type into which the value fits. In other words, if the value is a positive

integer or 0, it's returned as a uint instance. If it’s a negative integer, it’s returned as an int instance. Finally, if it has a

floating-point component (it's not an integer) it's returned as a Number instance.

INTEGER (or int)

A column that uses INTEGER affinity behaves in the same way as a column with NUMERIC affinity, with one

exception. If the value to be stored is a real value (such as a Number instance) with no floating point component or if

the value is a text value that can be converted to a real value with no floating point component, it is converted to an

integer and stored using the INTEGER storage class. If an attempt is made to store a real value with a floating point

component an error occurs.

REAL (or Number)

A column with REAL or NUMBER affinity behaves like a column with NUMERIC affinity except that it forces integer

values into floating point representation. A value in a REAL column is always returned from the database as a Number

instance.

Boolean

A column with Boolean affinity stores true or false values. A Boolean column accepts a value that is an ActionScript

or JavaScript Boolean instance. If code attempts to store a String value, a String with a length greater than zero is

considered true, and an empty String is false. If code attempts to store numeric data, any non-zero value is stored as

true and 0 is stored as false. When a Boolean value is retrieved using a SELECT statement, it is returned as a Boolean

instance. Non-NULL values are stored using the INTEGER storage class (0 for false and 1 for true) and are converted

to Boolean objects when data is retrieved.

Date

A column with Date affinity stores date and time values. A Date column is designed to accept values that are

ActionScript or JavaScript Date instances. If an attempt is made to store a String value in a Date column, the runtime

attempts to convert it to a Julian date. If the conversion fails an error occurs. If code attempts to store a Number, int, or

uint value, no attempt is made to validate the data and it is assumed to be a valid Julian date value. A Date value that's

retrieved using a SELECT statement is automatically converted to a Date instance. Date values are stored as Julian date

values using the REAL storage class, so sorting and comparing operations work as you would expect them to.

XML or XMLList

365HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

A column that uses XML or XMLList affinity stores XML structures. When code attempts to store data in an XML

column using a SQLStatement parameter the runtime attempts to convert and validate the value using the

ActionScript XML() or XMLList() function. If the value cannot be converted to valid XML an error occurs. If the

attempt to store the data uses a literal SQL text value (for example INSERT INTO (col1) VALUES ('Invalid XML (no

closing tag)'), the value is not parsed or validated — it is assumed to be well-formed. If an invalid value is stored, when

it is retrieved it is returned as an empty XML object. XML and XMLList Data is stored using the TEXT storage class or

the NULL storage class.

Object

A column with Object affinity stores ActionScript or JavaScript complex objects, including Object class instances as

well as instances of Object subclasses such as Array instances and even custom class instances. Object column data is

serialized in AMF3 format and stored using the BLOB storage class. When a value is retrieved, it is deserialized from

AMF3 and returned as an instance of the class as it was stored. Note that some ActionScript classes, notably display

objects, cannot be deserialized as instances of their original data type. Before storing a custom class instance, you must

register an alias for the class using the flash.net.registerClassAlias() method (or in Flex by adding [RemoteObject]

metadata to the class declaration). Also, before retrieving that data you must register the same alias for the class. Any

data that can't be deserialized properly, either because the class inherently can't be deserialized or because of a missing

or mismatched class alias, is returned as an anonymous object (an Object class instance) with properties and values

corresponding to the original instance as stored.

NONE

A column with affinity NONE does not prefer one storage class over another. It makes no attempt to convert data

before it is inserted.

Determining affinity

The type affinity of a column is determined by the declared type of the column in the CREATE TABLE statement.

When determining the type the following rules (not case-sensitive) are applied:

• If the data type of the column contains any of the strings "CHAR", "CLOB", "STRI", or "TEXT" then that column

has TEXT/String affinity. Notice that the type VARCHAR contains the string "CHAR" and is thus assigned TEXT

affinity.

• If the data type for the column contains the string "BLOB" or if no data type is specified then the column has affinity

NONE.

• If the data type for column contains the string "XMLL" then the column has XMLList affinity.

• If the data type is the string "XML" then the column has XML affinity.

• If the data type contains the string "OBJE" then the column has Object affinity.

• If the data type contains the string "BOOL" then the column has Boolean affinity.

• If the data type contains the string "DATE" then the column has Date affinity.

• If the data type contains the string "INT" (including "UINT") then it is assigned INTEGER/int affinity.

• If the data type for a column contains any of the strings "REAL", "NUMB", "FLOA", or "DOUB" then the column

has REAL/Number affinity.

• Otherwise, the affinity is NUMERIC.

• If a table is created using a CREATE TABLE t AS SELECT... statement then all columns have no data type specified

and they are given the affinity NONE.

366HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

Data types and comparison operators

The following binary comparison operators =, <, <=, >= and != are supported, along with an operation to test for set

membership, IN, and the ternary comparison operator BETWEEN. For details about these operators see Operators.

The results of a comparison depend on the storage classes of the two values being compared. When comparing two

values the following rules are applied:

• A value with storage class NULL is considered less than any other value (including another value with storage class

NULL).

• An INTEGER or REAL value is less than any TEXT or BLOB value. When an INTEGER or REAL is compared to

another INTEGER or REAL, a numerical comparison is performed.

• A TEXT value is less than a BLOB value. When two TEXT values are compared, a binary comparison is performed.

• When two BLOB values are compared, the result is always determined using a binary comparison.

The ternary operator BETWEEN is always recast as the equivalent binary expression. For example, a BETWEEN b

AND c is recast to a >= b AND a <= c, even if this means that different affinities are applied to a in each of the

comparisons required to evaluate the expression.

Expressions of the type a IN (SELECT b) are handled by the three rules enumerated previously for binary

comparisons, that is, in a similar manner to a = b. For example, if b is a column value and a is an expression, then the

affinity of b is applied to a before any comparisons take place. The expression a IN (x, y, z) is recast as a = +x OR a =

+y OR a = +z. The values to the right of the IN operator (the x, y, and z values in this example) are considered to be

expressions, even if they happen to be column values. If the value of the left of the IN operator is a column, then the

affinity of that column is used. If the value is an expression then no conversions occur.

How comparisons are performed can also be affected by the use of a COLLATE clause. For more information, see

COLLATE.

Data types and mathematical operators

For each of the supported mathematical operators, *, /, %, +, and -, numeric affinity is applied to each operand before

evaluating the expression. If any operand cannot be converted to the NUMERIC storage class successfully the

expression evaluates to NULL.

When the concatenation operator || is used each operand is converted to the TEXT storage class before the expression

is evaluated. If any operand cannot be converted to the TEXT storage class then the result of the expression is NULL.

This inability to convert the value can happen in two situations, if the value of the operand is NULL, or if it's a BLOB

containing a non-TEXT storage class.

Data types and sorting

When values are sorted by an ORDER BY clause, values with storage class NULL come first. These are followed by

INTEGER and REAL values interspersed in numeric order, followed by TEXT values in binary order or based on the

specified collation (BINARY or NOCASE). Finally come BLOB values in binary order. No storage class conversions

occur before the sort.�

Data types and grouping

When grouping values with the GROUP BY clause, values with different storage classes are considered distinct. An

exception is INTEGER and REAL values which are considered equal if they are numerically equivalent. No affinities

are applied to any values as the result of a GROUP BY clause.

367HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL support in local databases

Last updated 9/28/2011

Data types and compound SELECT statements

The compound SELECT operators UNION, INTERSECT, and EXCEPT perform implicit comparisons between

values. Before these comparisons are performed an affinity may be applied to each value. The same affinity, if any, is

applied to all values that may be returned in a single column of the compound SELECT result set. The affinity that is

applied is the affinity of the column returned by the first component SELECT statement that has a column value (and

not some other kind of expression) in that position. If for a given compound SELECT column none of the component

SELECT statements return a column value, no affinity is applied to the values from that column before they are

compared.

368

Last updated 9/28/2011

Chapter 27: SQL error detail messages, ids,
and arguments

The SQLError class represents various errors that can occur while working with an Adobe AIR local SQL database. For

any given exception, the SQLError instance has a details property containing an English error message. In addition,

each error message has an associated unique identifier that is available in the SQLError object’s detailID property.

Using the detailID property, an application can identify the specific details error message. The application can

provide alternate text for the end user in the language of his or her locale. The argument values in the

detailArguments array can be substituted in the appropriate position in the error message string. This is useful for

applications that display the details property error message for an error directly to end users in a specific locale.

The following table contains a list of the detailID values and the associated English error message text. Placeholder

text in the messages indicates where detailArguments values are substituted in by the runtime. This list can be used

as a source for localizing the error messages that can occur in SQL database operations.

SQLError detailID English error detail message and parameters

1001 Connection closed.

1102 Database must be open to perform this operation.

1003 %s [,|and %s] parameter name(s) found in parameters property but not in the SQL

specified.

1004 Mismatch in parameter count. Found %d in SQL specified and %d value(s) set in

parameters property. Expecting values for %s [,|and %s].

1005 Auto compact could not be turned on.

1006 The pageSize value could not be set.

1007 The schema object with name '%s' of type '%s' in database '%s' was not found.

1008 The schema object with name '%s' in database '%s' was not found.

1009 No schema objects with type '%s' in database '%s' were found.

1010 No schema objects in database '%s' were found.

2001 Parser stack overflow.

2002 Too many arguments on function '%s'

2003 near '%s': syntax error

2004 there is already another table or index with this name: '%s'

2005 PRAGMA is not allowed in SQL.

2006 Not a writable directory.

2007 Unknown or unsupported join type: '%s %s %s'

2008 RIGHT and FULL OUTER JOINs are not currently supported.

2009 A NATURAL join may not have an ON or USING clause.

2010 Cannot have both ON and USING clauses in the same join.

2011 Cannot join using column '%s' - column not present in both tables.

2012 Only a single result allowed for a SELECT that is part of an expression.

2013 No such table: '[%s.]%s'

2014 No tables specified.

2015 Too many columns in result set|too many columns on '%s'.

2016 %s ORDER|GROUP BY term out of range - should be between 1 and %d

2017 Too many terms in ORDER BY clause.

2018 %s ORDER BY term out of range - should be between 1 and %d.

2019 %r ORDER BY term does not match any column in the result set.

2020 ORDER BY clause should come after '%s' not before.

2021 LIMIT clause should come after '%s' not before.

2022 SELECTs to the left and right of '%s' do not have the same number of result columns.

2023 A GROUP BY clause is required before HAVING.

2024 Aggregate functions are not allowed in the GROUP BY clause.

2025 DISTINCT in aggregate must be followed by an expression.

369HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL error detail messages, ids, and arguments

Last updated 9/28/2011

2026 Too many terms in compound SELECT.

2027 Too many terms in ORDER|GROUP BY clause

2028 Temporary trigger may not have qualified name

2030 Trigger '%s' already exists

2032 Cannot create BEFORE|AFTER trigger on view: '%s'.

2033 Cannot create INSTEAD OF trigger on table: '%s'.

2034 No such trigger: '%s'

2035 Recursive triggers not supported ('%s').

2036 No such column: %s[.%s[.%s]]

2037 VACUUM is not allowed from SQL.

2043 Table '%s': indexing function returned an invalid plan.

2044 At most %d tables in a join.

2046 Cannot add a PRIMARY KEY column.

2047 Cannot add a UNIQUE column.

2048 Cannot add a NOT NULL column with default value NULL.

2049 Cannot add a column with non-constant default.

2050 Cannot add a column to a view.

2051 ANALYZE is not allowed in SQL.

2052 Invalid name: '%s'

2053 ATTACH is not allowed from SQL.

2054 %s '%s' cannot reference objects in database '%s'

2055 Access to '[%s.]%s.%s' is prohibited.

2056 Not authorized.

2058 No such view: '[%s.]%s'

2060 Temporary table name must be unqualified.

2061 Table '%s' already exists.

2062 There is already an index named: '%s'

2064 Duplicate column name: '%s'

2065 Table '%s' has more than one primary key.

2066 AUTOINCREMENT is only allowed on an INTEGER PRIMARY KEY

2067 No such collation sequence: '%s'

2068 Parameters are not allowed in views.

2069 View '%s' is circularly defined.

2070 Table '%s' may not be dropped.

2071 Use DROP VIEW to delete view '%s'

2072 Use DROP TABLE to delete table '%s'

2073 Foreign key on '%s' should reference only one column of table '%s'

2074 Number of columns in foreign key does not match the number of columns in the

referenced table.

2075 Unknown column '%s' in foreign key definition.

2076 Table '%s' may not be indexed.

2077 Views may not be indexed.

2080 Conflicting ON CONFLICT clauses specified.

2081 No such index: '%s'

2082 Index associated with UNIQUE or PRIMARY KEY constraint cannot be dropped.

2083 BEGIN is not allowed in SQL.

2084 COMMIT is not allowed in SQL.

2085 ROLLBACK is not allowed in SQL.

2086 Unable to open a temporary database file for storing temporary tables.

2087 Unable to identify the object to be reindexed.

2088 Table '%s' may not be modified.

2089 Cannot modify '%s' because it is a view.

2090 Variable number must be between ?0 and ?%d<

2092 Misuse of aliased aggregate '%s'

2093 Ambiguous column name: '[%s.[%s.]]%s'

2094 No such function: '%s'

2095 Wrong number of arguments to function '%s'

2096 Subqueries prohibited in CHECK constraints.

2097 Parameters prohibited in CHECK constraints.

370HTML DEVELOPER’S GUIDE FOR ADOBE AIR

SQL error detail messages, ids, and arguments

Last updated 9/28/2011

2098 Expression tree is too large (maximum depth %d)

2099 RAISE() may only be used within a trigger-program

2100 Table '%s' has %d columns but %d values were supplied

2101 Database schema is locked: '%s'

2102 Statement too long.

2103 Unable to delete/modify collation sequence due to active statements

2104 Too many attached databases - max %d

2105 Cannot ATTACH database within transaction.

2106 Database '%s' is already in use.

2108 Attached databases must use the same text encoding as main database.

2200 Out of memory.

2201 Unable to open database.

2202 Cannot DETACH database within transaction.

2203 Cannot detach database: '%s'

2204 Database '%s' is locked.

2205 Unable to acquire a read lock on the database.

2206 [column|columns] '%s'[,'%s'] are not [unique|is] not unique.

2207 Malformed database schema.

2208 Unsupported file format.

2209 Unrecognized token: '%s'

2300 Could not convert text value to numeric value.

2301 Could not convert string value to date.

2302 Could not convert floating point value to integer without loss of data.

2303 Cannot rollback transaction - SQL statements in progress.

2304 Cannot commit transaction - SQL statements in progress.

2305 Database table is locked: '%s'

2306 Read-only table.

2307 String or blob too big.

2309 Cannot open indexed column for writing.

2400 Cannot open value of type %s.

2401 No such rowid: %s<

2402 Object name reserved for internal use: '%s'

2403 View '%s' may not be altered.

2404 Default value of column '%s' is not constant.

2405 Not authorized to use function '%s'

2406 Misuse of aggregate function '%s'

2407 Misuse of aggregate: '%s'

2408 No such database: '%s'

2409 Table '%s' has no column named '%s'

2501 No such module: '%s'

2508 No such savepoint: '%s'

2510 Cannot rollback - no transaction is active.

2511 Cannot commit - no transaction is active.

	Legal notices
	Contents
	Chapter 1: About the HTML environment
	Overview of the HTML environment
	About the JavaScript environment and its relationship to the AIR host
	About security
	About plug-ins and embedded objects

	AIR and WebKit
	JavaScript in AIR
	HTML Sandboxes
	JavaScript eval() function
	Function constructors
	Loading external scripts
	The XMLHttpRequest object
	Cookies
	The Clipboard object
	Drag and Drop
	innerHTML and outerHTML properties
	Document.write() and Document.writeln() methods
	Document.designMode property
	unload events (for body and frameset objects)
	JavaScript Window object
	air.NativeApplication object
	The JavaScript URL scheme

	HTML in AIR
	HTML frame and iframe elements
	HTML element event handlers
	HTML contentEditable attribute
	Data: URLs

	CSS in AIR
	WebKit features not supported in AIR

	Chapter 2: Programming HTML and JavaScript in AIR
	Creating an HTML-based AIR application
	An example application and security implications
	Important security rules when using HTML in AIR applications

	Avoiding security-related JavaScript errors
	Causes of security-related JavaScript errors
	Mapping application content to a different sandbox
	eval() function
	Assigning properties to an object
	Creating a function with variables available in context
	Creating an object using the name of the class as a string parameter
	setTimeout() and setInterval()
	Function constructor
	javascript: URLs
	Event callbacks assigned through onevent attributes in innerHTML and outerHTML statements
	Loading JavaScript files from outside the application installation directory
	document.write() and document.writeln()
	Synchronous XMLHttpRequests before the load event or during a load event handler
	Dynamically created script elements

	Accessing AIR API classes from JavaScript
	Using the AIRAliases.js file

	About URLs in AIR
	Embedding SWF content in HTML
	Using ActionScript libraries within an HTML page
	Accessing the HTML DOM and JavaScript objects from an imported ActionScript file

	Converting Date and RegExp objects
	Cross-scripting content in different security sandboxes
	AIR security sandboxes and JavaScript code
	Loading application content into a non-application sandbox
	Setting up a sandbox bridge interface
	Establishing a child sandbox bridge
	Establishing a parent sandbox bridge
	Accessing a parent sandbox bridge during page loading

	Chapter 3: Handling HTML-related events in AIR
	HTMLLoader events
	How AIR class-event handling differs from other event handling in the HTML DOM
	Default behaviors
	The event flow

	Adobe AIR event objects
	Understanding Event class properties
	Event object types
	Default behavior information

	Understanding Event class methods
	Event class utility methods
	Canceling default event behavior

	Subclasses of the Event class

	Handling runtime events with JavaScript
	Creating an event handler function
	Removing event listeners
	Removing event listeners in HTML pages that navigate
	Checking for existing event listeners

	Error events without listeners

	Chapter 4: Scripting the AIR HTML Container
	Display properties of HTMLLoader objects
	Basic display properties
	Transparency of HTMLLoader content
	Scaling HTMLLoader content
	Considerations when loading SWF or PDF content in an HTML page
	Advanced display properties

	Accessing the HTML history list
	Setting the user agent used when loading HTML content
	Setting the character encoding to use for HTML content
	Defining browser-like user interfaces for HTML content
	About extending the HTMLHost class
	Example: Extending the HTMLHost class
	Handling changes to the window.location property
	Handling JavaScript calls to window.moveBy(), window.moveTo(), window.resizeTo(), window.resizeBy()
	Handling JavaScript calls to window.open()
	Handling JavaScript calls to window.close()
	Handling changes of the window.status property
	Handling changes of the window.document.title property
	Handling JavaScript calls to window.blur() and window.focus()
	Creating windows with scrolling HTML content

	Chapter 5: Working with vectors
	Basics of vectors
	Creating vectors
	Inserting elements into a vector
	Retrieving values and removing vector elements
	Properties and methods of Vector objects
	Example: Using AIR APIs that require vectors
	Accessing AIR APIs that return vector objects
	Setting AIR APIs that are vectors

	Chapter 6: AIR security
	AIR security basics
	Installation and updates
	Runtime installation location
	Seamless install (runtime and application)
	Manual install
	Application installation flow
	Application destination
	The AIR file system
	AIR application storage
	Updating Adobe AIR
	Updating AIR applications
	Uninstalling an AIR application
	Windows registry settings for administrators

	HTML security in Adobe AIR
	Overview on configuring your HTML-based application
	Setting up a parent-child sandbox relationship
	Setting up a bridge between parent and child frames in different sandboxes or domains

	Code restrictions for content in different sandboxes
	Restrictions on using the JavaScript eval() function and similar techniques
	Restrictions on access to AIR APIs (for non-application sandboxes)
	Restrictions on using XMLHttpRequest calls
	Restrictions on loading CSS, frame, iframe, and img elements (for content in non-application sandboxes)
	Restrictions on calling the JavaScript window.open() method
	Errors when calling restricted code

	Sandbox protection when loading HTML content from a string

	Scripting between content in different domains
	About the AIR sandbox bridge
	Sandbox bridge example (HTML)
	Limiting API exposure

	Writing to disk
	Working securely with untrusted content
	Scripting between application and non-application content

	Best security practices for developers
	Risk from importing files into the application security sandbox
	Risk from using an external source to determine paths
	Risk from using, storing, or transmitting insecure credentials
	Risk from a downgrade attack

	Code signing

	Chapter 7: Working with AIR native windows
	Basics of native windows in AIR
	Windows in AIR
	Native window classes
	Native window event flow
	Properties controlling native window style and behavior
	Window types
	Window chrome
	Window transparency
	Transparency in an HTML application window
	Window ownership

	A visual window catalog

	Creating windows
	Specifying window initialization properties
	Creating the initial application window
	Creating a NativeWindow
	Creating an HTML window
	Creating a mx:Window
	Adding content to a window
	Example: Creating a native window

	Managing windows
	Getting a NativeWindow instance
	Activating, showing, and hiding windows
	Changing the window display order
	Closing a window
	Allowing cancellation of window operations
	Maximizing, minimizing, and restoring a window
	Example: Minimizing, maximizing, restoring and closing a window
	Resizing and moving a window
	Example: Resizing and moving windows

	Listening for window events
	Displaying full-screen windows

	Chapter 8: Display screens in AIR
	Basics of display screens in AIR
	Enumerating the screens

	Chapter 9: Working with menus
	Menu basics
	Menu classes
	Menu varieties
	Native menu structure (AIR)
	Menu events
	Key equivalents for native menu commands (AIR)
	Mnemonics (AIR)
	Menu item state
	Attaching an object to a menu item

	Creating native menus (AIR)
	Creating a root menu object
	Creating a submenu
	Creating a menu command
	Creating a menu separator line

	About context menus in HTML (AIR)
	Displaying pop-up native menus (AIR)
	Handling menu events
	Events summary for menu classes
	Select menu events
	Displaying menu events

	Native menu example: Window and application menu (AIR)
	Using the MenuBuilder framework
	Creating a menu with the MenuBuilder framework
	MenuBuilder basic workflow
	Loading menu structure
	Creating an application or window menu
	Creating a DOM element context menu
	Creating an icon context menu

	Defining MenuBuilder menu structure
	Menu item types
	Menu data source attributes or properties
	Example: An XML MenuBuilder data source
	Example: A JSON MenuBuilder data source

	Adding menu keyboard features with MenuBuilder
	Specifying menu keyboard equivalents
	Specifying menu item mnemonics

	Handling MenuBuilder menu events

	Chapter 10: Taskbar icons in AIR
	About taskbar icons
	Dock icons
	Dock icon menus
	Bouncing the dock
	Dock icon events

	System Tray icons
	System tray icon menus
	System tray icon tooltips
	System tray icon events
	Example: Creating an application with no windows

	Window taskbar icons and buttons
	Highlighting the taskbar window button
	Creating windows without taskbar buttons or icons

	Chapter 11: Working with the file system
	Using the AIR file system API
	AIR file basics
	Working with File objects in AIR
	About the File class
	Paths of File objects
	Common directory locations
	Pointing a File object to a directory
	Pointing a File object to a file
	Modifying File paths
	Supported AIR URL schemes
	Finding the relative path between two files
	Obtaining canonical versions of file names
	Working with packages and symbolic links
	Determining space available on a volume
	Opening files with the default system application

	Getting file system information
	Working with directories
	Creating directories
	Creating a temporary directory
	Enumerating directories
	Copying and moving directories
	Deleting directory contents

	Working with files
	Getting file information
	Copying and moving files
	Deleting a file
	Moving a file to the trash
	Creating a temporary file

	Working with storage volumes
	Reading and writing files
	Workflow for reading and writing files
	Working with FileStream objects
	Using the load() and save() methods
	Example: Reading an XML file into an XML object
	Example: Reading and writing data with random access

	Chapter 12: Drag and drop in AIR
	Drag and drop in HTML
	Default drag-and-drop behavior
	Drag-and-drop events in HTML
	MIME types for the HTML drag-and-drop
	Drag effects in HTML

	Dragging data out of an HTML element
	Setting the dragged data

	Dragging data into an HTML element
	Enabling drag-in
	Getting the dropped data

	Example: Overriding the default HTML drag-in behavior
	Handling file drops in non-application HTML sandboxes
	Dropping file promises
	Dropping remote files
	Implementing the IFilePromise interface
	Using a synchronous data provider in a file promise
	Using an asynchronous data provider in a file promise

	Chapter 13: Copy and paste
	Basics of copy-and-paste
	Reading from and writing to the system clipboard
	HTML copy and paste in AIR
	Default behavior
	Using the clipboardData property of the event object

	Clipboard data formats
	Standard data formats
	Custom data formats
	Transfer modes
	Reading and writing custom data formats

	Deferred rendering
	Pasting text using a deferred rendering function

	Chapter 14: Working with local SQL databases in AIR
	About local SQL databases
	Uses for local SQL databases
	About AIR databases and database files
	About relational databases
	About SQL
	About SQL database classes
	About synchronous and asynchronous execution modes

	Creating and modifying a database
	Creating a database
	Creating database tables

	Manipulating SQL database data
	Connecting to a database
	Working with SQL statements
	Using parameters in statements
	Understanding statement parameters
	Using named parameters
	Using unnamed parameters
	Benefits of using parameters

	Retrieving data from a database
	Executing a SELECT statement
	Accessing SELECT statement result data
	Defining the data type of SELECT result data
	Retrieving SELECT results in parts

	Inserting data
	Executing an INSERT statement
	Retrieving a database-generated primary key of an inserted row

	Changing or deleting data
	Working with multiple databases
	Handling database errors
	Connection errors
	Syntax errors
	Constraint errors

	Working with database data types

	Using synchronous and asynchronous database operations
	Using synchronous database operations
	Writing code for synchronous operations
	Executing an operation that depends on another operation
	Handling errors with synchronous execution

	Understanding the asynchronous execution model

	Using encryption with SQL databases
	Uses for an encrypted database
	Creating an encrypted database
	Connecting to an encrypted database
	Changing the encryption key of a database
	Considerations for using encryption with a database
	Example: Generating and using an encryption key
	Using the EncryptionKeyGenerator class to obtain a secure encryption key
	Complete example code for generating and using an encryption key
	Understanding the EncryptionKeyGenerator class

	Strategies for working with SQL databases
	Distributing a pre-populated database
	Best practices for working with local SQL databases
	Pre-create database connections
	Reuse database connections
	Favor asynchronous execution mode
	Use separate SQL statements and don’t change the SQLStatement’s text property
	Use statement parameters

	Chapter 15: Encrypted local storage
	Adding data to the encrypted local store
	Accessing data in the encrypted local store
	Removing data from the encrypted local store

	Chapter 16: Working with byte arrays
	Reading and writing a ByteArray
	ByteArray methods
	The position property
	The bytesAvailable and length properties
	The endian property
	The compress() and uncompress() methods
	Reading and writing objects

	ByteArray example: Reading a .zip file

	Chapter 17: Adding PDF content in AIR
	Detecting PDF Capability
	Loading PDF content
	Scripting PDF content
	HTML-PDF communication basics

	Known limitations for PDF content in AIR

	Chapter 18: Working with sound
	Basics of working with sound
	Understanding the sound architecture
	Loading external sound files
	Creating a sound object
	About sound events
	Monitoring the sound loading process

	Working with embedded sounds
	Working with streaming sound files
	Working with dynamically generated audio
	Modifying sound from mp3 data
	Limitations on generated sounds

	Playing sounds
	Sound playback operations
	Pausing and resuming a sound
	Monitoring playback
	Stopping streaming sounds
	Controlling sound volume and panning

	Working with sound metadata
	Accessing raw sound data
	How sound data is returned
	Building a simple sound visualizer

	Capturing sound input
	Accessing a microphone
	Routing microphone audio to local speakers
	Altering microphone audio
	Detecting microphone activity
	Sending audio to and from a media server

	Chapter 19: Client system environment
	Basics of the client system environment
	Using the System class
	Getting data about the user’s system at run time

	Using the Capabilities class

	Chapter 20: AIR application invocation and termination
	Application invocation
	Capturing command line arguments
	Example: Invocation event log

	Invoking an AIR application on user login
	Invoking an AIR application from the browser
	Application termination

	Chapter 21: Working with AIR runtime and operating system information
	Managing file associations
	Getting the runtime version and patch level
	Detecting AIR capabilities
	Tracking user presence

	Chapter 22: Sockets
	TCP sockets
	Binary client sockets
	Socket class
	Secure client sockets (AIR)

	XML sockets
	Connecting to a server with the XMLSocket class

	Server sockets

	UDP sockets (AIR)
	IPv6 addresses

	Chapter 23: HTTP communications
	Loading external data
	Using the URLRequest class
	URLRequest properties
	Setting URLRequest defaults (AIR only)
	URI schemes
	Setting URL variables

	Using the URLLoader class
	Using the URLStream class
	Loading data from external documents
	Communicating with external scripts

	Web service requests
	REST-style web service requests
	XML-RPC web service requests

	Opening a URL in another application
	Sending a URL to a server

	Chapter 24: Communicating with other Flash Player and AIR instances
	About the LocalConnection class
	Sending messages between two applications
	Connecting to content in different domains and to AIR applications

	Chapter 25: ActionScript basics for JavaScript developers
	Differences between ActionScript and JavaScript: an overview
	ActionScript 3.0 data types
	Data types corresponding to custom classes
	The void data type
	The * data type

	ActionScript 3.0 classes, packages, and namespaces
	Runtime classes
	Custom ActionScript 3.0 classes
	ActionScript 3.0 packages
	ActionScript 3.0 namespaces

	Required parameters and default values in ActionScript 3.0 functions
	ActionScript 3.0 event listeners

	Chapter 26: SQL support in local databases
	Supported SQL syntax
	General SQL syntax
	Data manipulation statements
	Data definition statements
	Special statements and clauses
	Built-in functions
	Operators
	Parameters
	Unsupported SQL features
	Additional SQL features

	Data type support
	Storage classes
	Column affinity
	Data types and comparison operators
	Data types and mathematical operators
	Data types and sorting
	Data types and grouping
	Data types and compound SELECT statements

	Chapter 27: SQL error detail messages, ids, and arguments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (ColorMatch RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000630072006500610074006500200049006e0073007400720075006300740069006f006e0061006c00200043006f006d006d0075006e00690063006100740069006f006e002700730020005000720069006e0074002d006f006e002d00440065006d0061006e0064002000500044004600200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e000d005b007500700064006100740065006400200033002d007300650070002d0032003000300034005d>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

