Developing Mobile Applications with
ADOBE FLEX 4.6 and
ADOBE FLASH BUILDER 4.6

Legal notices
For legal notices, see http://help.adobe.com/en US/legalnotices/index.html.

Last updated 11/21/2011

http://help.adobe.com/en_US/legalnotices/index.html

Contents

Chapter 1: Getting started
Getting started with mobile apPliCatioNsottt e e 1

Differences in mobile, desktop, and browser application developmentooiiiiiiii i i 4

Chapter 2: Development environment

Create an Android application in Flash BUilder oo e e e e 8
Create an iOS application in Flash Builder e e et 10
Create a BlackBerry Tablet OS application in Flash Buildero i i 10
Create an ACtionScript MODIIE PrOJECt ...ttt e e e e e e e e 11
USE NAtiVe EXTENSIONS .. et it 1
Set MODIlE PrOJECt PrEfEIENCES ..ttt ettt ettt et et e e e e e e 13
Connect Google ANdroid deVICES ... it e 16
Apple iOS development process using Flash Buildert e e e 18

Chapter 3: User interface and layout

Lay out @a mobile appliCationttt e e e e 23
Handle user inputin a mobile appliCationo e 29
Define a mobile application and a splash SCreen oot e e e 31
Define views in @ mobile appliCationottt e e e 36
Define tabs in @ Mobile appliCation ... oot e e e 45
Create multiple panesin a mobile appliCation ... oottt e e e 47
Define navigation, title, and action controls in a mobile applicationot e 56
Use scroll bars in a mobile applicationot e e e 61
Define menus in @amobile application it e 67
Display the busy indicator for long-running activity in a mobile application t 71
Add a toggle switch to a mobile application e 73
Add a callout container to a mobile applicationo i e 75
Define transitions in @a mobile application oo i e e 88
Select dates and times in a mobile appPlication ottt e 93
Use a spinner listin a mobile application e 104

Chapter 4: Application design and workflow

Enable persistence in a mobile application ottt 118
Support multiple screen sizes and DPI values in a mobile application i 122
Chapter 5: Text

Use text in @a mobile application e e 136
User interactions with text in a mobile application ..ot i e e e 145
Use the soft keyboard in @ mobile applicationot e e e e 146
Embed fonts in @ mobile application ... oot e 158

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6

Contents

Chapter 6: Skinning

Basics of Mobile sSKiNNINGo e 160
Create skins for a mobile applicationottt e et e et e 164
Apply @ custom MObIile SKIN e 172

Chapter 7: Test and debug

Manage launch CONfIgUIAtIONSttt et et e ettt e e e et e e e e et 174
Test and debug a mobile application on the desktop . ..ottt e e e e 174
Test and debug a mobile application 0N @ deVICettt e e 175

Chapter 8: Install on devices
Install an application on a Google ANdroid deViCe enii ittt ettt 179
Install an application on an APPle i0S deVICE ...ttt e e e e et e e e e e 179

Chapter 9: Package and export

Package and export a mobile application to an online StOre cuuiuiiii it e 181
Export Android APK packages for rElEASEttt ettt e e e e e e e 181
Export Apple iOS packages for relEasei. ittt e e e 182
Create, test, and deploy using the command line i e e 183

Last updated 11/21/2011

Chapter 1: Getting started

Getting started with mobile applications

Adobe Flex brings Flex and Adobe Flash Builder to smartphones and tablets. Leveraging Adobe AIR, you can now
develop mobile applications in Flex with the same ease and quality as on desktop platforms.

Many existing Flex components have been extended to work on mobile devices, including the addition of support for
touch-based scrolling. Flex also contains a set of new components designed to make it easy to build applications that
follow standard design patterns for phones and tablets.

Flash Builder has also been updated to add new features to support application development for mobile devices. With
Flash Builder, you can develop, test, and debug applications on the desktop, or directly on your mobile device.

Adobe Evangelist Mark Doherty posted a video about building applications for the desktop, mobile phones, and
tablets.
& Adobe Evangelist James Ward posted a video about Building Mobile Apps with Flex.

Adobe Community Professional Joseph Labrecque blogged about a Mobile Flex Demonstration.

Flash developer Fabio Biondi created an AIR-based YouTube Player for Android devices using Flash Builder.

Design a mobile application

Because of the smaller screen sizes available on mobile devices, mobile applications typically follow different design
patterns from browser-based applications. When developing for mobile applications, you typically divide the content
into a series of views for display on a mobile device.

Each view contains components that are focused on a single task or that contain a single set of information. The user
typically “drills down”, or changes, from one view to another by tapping components in the view. The user can then
use the device’s back button to return to a previous view, or build navigation into the application.

In the following example, the initial view of the application shows a list of products:

Last updated 11/21/2011

http://goo.gl/19EIC
http://goo.gl/19EIC
http://goo.gl/j8rOG
http://goo.gl/sTQI7
http://goo.gl/1FJXW
http://www.fabiobiondi.com/blog/2011/04/create-a-youtube-player-for-android-using-flash-builder-45/

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
Getting started

D owl B 12:04

t ¥ 0D wl @ 12205

Adobe Product List

ﬂ Adobe AIR

Adobe Product Details

Adobe Flex
’1 Adobe BlazeDs Price: Free
ﬂ Adobe ColdFusion
Adobe Flash Player
A
m Adobe Flex
@)
LC Adobe LiveCycleDs
LC Adobe LiveCycle ES2
O Open Source Media Framework Click for more information
—
B

A. Select a list item to change views in the application. B. Use the device’s back button to return to the previous view.

The user selects a product in the list to obtain more information. The selection changes view to a detailed description
of the product.

If you are designing an application for mobile, web, and desktop platforms, you typically design separate user
interfaces for each platform. However, the applications can share any underlying model and data access code across
all platforms.

Build applications for phones and tablets

For a tablet application, you are not as concerned with screen size limits as you are with phones. You do not have to
structure a tablet application around small views. Instead, you can build your application using the standard Spark
Application container with the supported mobile components and skins.

Note: You can create an application for a mobile phone based on the Spark Application container. However, you typically
use the ViewNavigatorApplication and TabbedViewNavigatorApplication containers instead.

Create a mobile project in Flash Builder for tablets just as you do for phones. Tablet and phone applications require
the same mobile theme to benefit from the components and skins optimized for mobile applications.

Author mobile applications in Flash Builder

Flash Builder brings a productive design, build, and debug workflow to mobile development. The goal of the mobile
features in Flash Builder is to make it as easy to develop an ActionScript- or Flex-based mobile application as it is to
develop a desktop or web application.

Flash Builder offers two options for testing and debugging. You can launch and debug the application on the desktop
using the AIR Debug Launcher (ADL). For greater control, launch and debug the application directly on a mobile
device. In either case, you can use the Flash Builder debugging capabilities, including setting breakpoints and
examining the application's state using the Variables and Expressions panels.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
Getting started

When your application ready for deployment, use the Export Release Build process, just as you would to prepare
desktop and web applications. The main difference is that when you export a release build of a mobile project, Flash
Builder packages the build as a native installer, not as an .air file. For example, on Android, Flash Builder produces an
.apk file that looks the same as a native Android application package. The native installer enables AIR-based
applications to be distributed the same way as native applications on each platform.

Deploy mobile applications in AIR

Deploy mobile applications built in Flex using Adobe AIR for mobile devices. Any device on which you want to deploy
a mobile application must support AIR.

Your applications can take full advantage of the integration of AIR with the mobile platform. For example, a mobile
application can handle a hardware back and menu button, and access local storage. You can also take advantage of all
features that AIR offers for mobile devices. These features include geolocation, accelerometer, and camera integration.

On a mobile device, it is not necessary to install AIR before you run an application built in Flex. The first time a user
runs an application built in Flex, the user is prompted to download AIR.

To familiarize yourself with AIR, and for more information on the capabilities of AIR, see the following:
+ About Adobe AIR

+ AIR application invocation and termination

« Working with AIR runtime and operating system information

« Working with AIR native windows

+ Working with local SQL databases in AIR

When developing mobile applications, you cannot use the following Flex components for AIR: WindowedApplication
and Window. Instead, use the ViewNavigatorApplication and TabbedViewNavigatorApplication containers. When
developing mobile applications for tablets, you can also use the Spark Application container.

For more information, see Using the Flex AIR components and “Define a mobile application and a splash screen” on
page 31.

Use the Mobile theme in your application

A theme defines the look and feel of an application’s visual components. A theme can define something as simple as
the color scheme or common font for an application, or it can define a complete reskinning of all the components used
by the application.

You can set CSS styles on Flex components only if the current theme includes those styles. To determine if the current
theme supports the CSS style, view the style’s entry in ActionScript 3.0 Reference for the Adobe Flash Platform.

Flex supports three primary themes: Mobile, Spark, and Halo. The Mobile theme defines the default appearance of Flex
components when you create a mobile application. To make some Flex components compatible with the Mobile
theme, Adobe created new skins for the components. Therefore, some components have skins specific to a theme.

Applications built with Flex can target different mobile devices, each with different screen sizes and resolutions. Flex
simplifies the process of producing resolution-independent applications by providing DPI-independent skins for
mobile components. For more information on mobile skins, see “Basics of mobile skinning” on page 160.

For more information about styles and themes, see Styles and themes and “Mobile styles” on page 160.

Last updated 11/21/2011

http://www.adobe.com/go/learn_intro_adobe_air_en
http://www.adobe.com/go/learn_air_invoc_en
http://www.adobe.com/go/learn_air_runtime_os_en
http://www.adobe.com/go/learn_air_native_win_en
http://www.adobe.com/go/learn_air_local_db_en
http://www.adobe.com/go/learn_flex4_apiref_en

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
Getting started

Community resources

Read about the new features in Flex and Flash Builder in:

+ Introducing Adobe Flex SDK by Adobe Product Manager, Deepa Subramaniam

+ Mobile development using Adobe Flex SDK and Flash Builder by Adobe Product Designer, Narciso Jaramillo.

« What's new in Flex 4.6 SDK by Adobe Product Manager Jacob Surber and What's New in Flash Builder 4.6 by
Adobe Product Manager Adam Lehman.

The Flex Developer Center contains many resources that can help you start building mobile applications using Flex:
« Getting Started articles, links, and tutorials

+ Samples of real applications built in Flex

+ The Flex Cookbook, which contains answers to common coding problems

+ Links to the Flex community and to other sites devoted to Flex

Another resource is Adobe TV, which contains videos by Adobe engineers, product evangelists, and customers about
application development in Flex. One of the videos available is Build your first mobile application in Flash Builder.

Differences in mobile, desktop, and browser application
development

Use Flex to develop applications for the following deployment environments:

Browser Deploy the application as a SWF file for use in Flash Player running in a browser.

Desktop Deploy a standalone AIR application for a desktop computer, such as a Windows computer or Macintosh.
Mobile Deploy a standalone AIR application for a mobile device, such as a phone or a tablet.

The Flash Player and AIR runtimes are similar. You can perform most of the same operations in either runtime.
Besides allowing you to deploy standalone applications outside a browser, AIR provides close integration with the host
platform. This integration enables such features as access to the file system of the device, the ability to create and work
with local SQL databases, and more.

Considerations in designing and developing mobile applications

Applications for mobile touchscreen devices differ from desktop and browser applications in several ways:

« To allow for easy manipulation by touch input, mobile components generally have larger hit areas than they do in
desktop or browser applications.

« The interaction patterns for actions like scrolling are different on touchscreen devices.

+ Because of the limited screen area, mobile applications are typically designed with only a small amount of the user
interface visible on the screen at one time.

+ User interface designs must take into account differences in screen resolution across devices.
+ CPU and GPU performance is more limited on phones and tablets than on desktop devices.
+ Owing to the limited memory available on mobile devices, applications must be careful to conserve memory.

+ Mobile applications can be quit and restarted at any time, such as when the device receives a call or text message.

Last updated 11/21/2011

http://www.adobe.com/devnet/flex/articles/introducing-flex45sdk.html
http://goo.gl/64mBj
http://www.adobe.com/go/learn_flex_whatsnew46_en
http://www.adobe.com/go/learn_flashbuilder_whatsnew46_en
http://www.adobe.com/go/learn_flex_devnet_en
http://cookbooks.adobe.com/flex
http://www.adobe.com/go/learn_adobe_tv_flex_en
http://www.adobe.com/go/learn_flex45_build_mobile_app_en

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
Getting started

Therefore, building an application for a mobile device is not just a matter of scaling down a desktop application to a
different screen size. Flex lets you create separate user interfaces appropriate for each form factor, while sharing
underlying model and data access code among mobile, browser, and desktop projects.

Restrictions on using Spark and MX components in a mobile application

Use the Spark component set when creating mobile applications in Flex. The Spark components are defined in the
spark.components.* packages. However, for performance reasons or because not all Spark components have skins for
the Mobile theme, mobile applications do not support the entire Spark component set.

Except for the MX charting controls and the MX Spacer control, mobile applications do not support the MX
component set defined in the mx.* packages.

The following table lists the components that you can use, that you cannot use, or that require care to use in a mobile

application:
Component Component Usein Notes
mobile?
Spark ActionBar Spark TabbedViewNavigator Yes These new components support mobile
. applications.
Spark BusyIndicator Spark
TabbedViewNavigatorApplicati
Spark Callout on
Spark CalloutButton Spark ToggleSwitch
Spark DateSpinner Spark View
Spark SpinnerList Spark ViewMenu
Spark SpinnerListContainer Spark ViewNavigator
Spark ViewNavigatorApplication
Spark Button Spark List Yes Most of these components have skins for
the Mobile theme. Label, Image, and
Spark CheckBox Spa.rk . Bitmaplmage can be used even though
Spark DataGroup RadioButton/RadioButtonGroup they do not have a mobile skin.
Spark SkinnableContainer .
Spark Group/HGroup/VGroup/TileGroup P Some Spark layout containers, such as
Spark Scroller Group and its subclasses, do not have
Spark Image/Bitmaplmage skins. Therefore, you can use themin a
Spark TextArea i icati
Spark Label p mobile application.
Spark TextInput
Other Spark skinnable components Discouraged | Skinnable Spark components other than
the ones listed above are discouraged
because they do not have a skin for the
Mobile theme. If the component does not
have a skin for the Mobile theme, you can
create one for your application.
Spark DataGrid Spark RichEditableText Discouraged | These components are discouraged for
. performance reasons. While you can use
Spark RichText them in a mobile application, doing so
can affect performance.
For the DataGrid control, performance is
based on the amount of data that you
render. For the RichEditableText and
RichText controls, performance is based
on the amount of text, and the number of
controls in the application.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
Getting started

Component Component Usein Notes

mobile?
MX components other than Spacer and No Mobile applications do not support MX
charts components, such as the MX Button,

CheckBox, List, or DataGrid. These
components correspond to the Flex 3
components in the mx.controls.* and
mx.containers.* packages.

MX Spacer Yes Spacer does not use a skin, so it can be
used in a mobile application.

MX chart components Yes, but with | You can use the MX chart controls, such as
performance | the AreaChart and BarChart, in a mobile
implications | application. The MX chart controls are in
the mx.charts.* packages.

However, performance on a mobile
device can be less than optimal
depending on the size and type of
charting data.

By default, Flash Builder does not include
the MX components in the library path of
mobile projects. To use the MX charting
components in an application, add the
mx.swc and charts.swc to your library
path.

The following Flex features are not supported in mobile applications:
+ No support for drag-and-drop operations

+ No support for the ToolTip control

+ No support for RSLs

Performance considerations with mobile applications

Owing to the performance constraints of mobile devices, some aspects of mobile application development differ from
development for browser and desktop applications. Some performance considerations include the following:

+ Write item renderers in ActionScript

For mobile applications, you want list scrolling to have the highest performance possible. Write item renderers in
ActionScript to achieve the highest performance. While you can write item renderers in MXML, your application
performance can suffer.

Flex provides two item renderers that are optimized for use in a mobile application:
spark.components.LabelltemRenderer and spark.components.IconltemRenderer. For more information on these
item renderers, see Using a mobile item renderer with a Spark list-based control.

For more information on creating custom item renderers in ActionScript, see Custom Spark item renderers. For
more information on the differences between mobile and desktop item renderers, see Differences between mobile
and desktop item renderers.

« Use ActionScript and compiled FXG graphics or bitmaps to develop custom skins

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
Getting started

The mobile skins shipped with Flex are written in ActionScript with compiled FXG graphics to provide the highest
performance. You can write skins in MXML, but your application performance can suffer depending on the
number of components that use MXML skins. For the highest performance, write skins in ActionScript and use
compiled FXG graphics. For more information, see Spark Skinning and FXG and MXML graphics.

« Use text input components that use StageText

When adding text input components such as TextInput and TextArea, use the defaults. These controls use
StageText as the underlying mechanism for text input, which hooks into the native text input classes. This gives you
better performance and access to native features such as auto-correction, auto-capitalization, text restriction, and
custom soft keyboards.

There are some drawbacks to using StageText including not being able to scroll the view that the controls are in. In
addition, you can’t use embedded fonts or use custom sizing for the StageText-based controls. If these are necessary,
you can use text input controls based on the TextField class.

For more information, see “Use text in a mobile application” on page 136.

+ Take care when using MX chart components in a mobile application

You can use the MX chart controls, such as the AreaChart and BarChart controls, in a mobile application. However,
they can affect performance depending on the size and type of charting data.

Blogger Nahuel Foronda created a series of articles on Mobile ItemRenderer in ActionScript.

Blogger Rich Tretola created a cookbook entry on Creating a List with an ItemRenderer for a mobile application.

Last updated 11/21/2011

http://www.asfusion.com/blog/entry/mobile-itemrenderer-in-actionscript-part-5
http://cookbooks.adobe.com/post_Creating_a_List_with_an_ItemRenderer-18852.html

Chapter 2: Development environment

Create an Android application in Flash Builder

Here is a general workflow for creating a Flex mobile application for the Google Android platform. This workflow
assumes that you have already designed your mobile application. See “Design a mobile application” on page 1for more
information.

Adobe evangelist Mike Jones shares some lessons learned while developing a multi-platform game Mode by
] offering 10 tips when developing for multiple devices.

AIR requirements

Flex mobile projects and ActionScript mobile projects require AIR 2.6 or a higher version. You can run mobile projects
on physical devices that support AIR 2.6 or a higher version of AIR.

You can install AIR 2.6 or a higher version only on supported Android devices that run Android 2.2 or a higher
version. For the complete list of supported Android devices, see Certified Devices. Also, review the minimum system
requirements to run Adobe AIR on Android devices at Mobile System Requirements.

Note: If you do not have a device that supports AIR 2.6 or a higher version of AIR, you can use Flash Builder to launch
and debug mobile applications on the desktop.

Each version of the Flex SDK includes the required Adobe AIR version. If you have installed mobile applications on a
device from an earlier version of the Flex SDK, uninstall AIR from the device. Flash Builder installs the correct version
of AIR when you run or debug a mobile application on a device.

Create an application
1 In Flash Builder, select File > New > Flex Mobile Project.

A Flex Mobile Project is a special type of AIR project. Follow the prompts in the new project wizard as you would
for any other AIR project in Flash Builder. For more information, see Flex mobile projects.

To set Android-specific mobile preferences, see “Set mobile project preferences” on page 13.
When you create a Flex Mobile Project, Flash Builder generates the following files for the project:

e ProjectName.mxml
The default application file for the project.

By default, Flash Builder names this file with the same name as the project. If the project name contains illegal
ActionScript characters, Flash Builder names this file Main.mxml. This MXML file contains the base Spark
application tag for the project. The base Spark application tag can be ViewNavigatorApplication or
TabbedViewNavigatorApplication.

Typically, you do not add content to the default application file directly, other than ActionBar content that is
displayed in all views. To add content to the ActionBar, set the navigatorContent, titleContent, or
actionContent properties.

* ProjectNameHomeView.mxml

Last updated 11/21/2011

http://blog.flashgen.com/2011/07/16/my-10-tips-when-developing-for-multiple-devices/
http://www.adobe.com/flashplatform/certified_devices/
http://www.adobe.com/products/air/systemreqs/#mobile

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
Development environment

The file representing the initial view for the project. Flash Builder places the file in a views package. The
firstviewattribute of the ViewNavigatorApplication tag in ProjectName . mxml specifies this file as the default
opening view of the application.

For more information on defining views, see “Define views in a mobile application” on page 36.
You can also create an ActionScript-only mobile project. See “Create an ActionScript mobile project” on page 11.
2 (Optional) Add content to the ActionBar of the main application file.

The ActionBar displays content and functionality that apply to the application or to the current view of the
application. Here, add content that you want to display in all views of the application. See “Define navigation, title,
and action controls in a mobile application” on page 56.

3 Lay out the content of the initial view of your application.
Use Flash Builder in Design mode or Source mode to add components to a view.

Only use components that Flex supports for mobile development. In both Design mode and Source mode, Flash
Builder guides you to use supported components. See “User interface and layout” on page 23.

Within the view, add content to the ActionBar that is visible only in that view.

4 (Optional) Add any other views that you want to include in your application.

In the Flash Builder Package Explorer, from the context menu for the views package in your project, select New
MXML Component. The New MXML Component wizard guides you as you create the view.

For more information on views, see “Define views in a mobile application” on page 36.

5 (Optional) Add mobile-optimized item renderers for List components.

Adobe provides IconltemRenderer, an ActionScript-based item renderer for use with mobile applications. See
Using a mobile item renderer with a Spark list-based control.

6 Configure launch configurations to run and debug the application.

You can run or debug the application on the desktop or on a device.

A launch configuration is required to run or debug an application from Flash Builder. The first time you run or
debug a mobile application, Flash Builder prompts you to configure a launch configuration.

When running or debugging a mobile application on a device, Flash Builder installs the application on the device.
See “Test and debug” on page 174.

7 Export the application as an installer package.

Use Export Release Build to create packages that can be installed on mobile devices. Flash Builder creates packages
for platform you select for export. See “Export Android APK packages for release” on page 181.

Adobe Certified Expert in Flex, Brent Arnold, created the following video tutorials that can help you:

+Create a Flex mobile application with multiple views

+ Create a Flex mobile application using a Spark-based List control

Last updated 11/21/2011

http://www.youtube.com/user/iBrent#p/c/8/1Y7KknM4ZTg
http://www.youtube.com/user/iBrent#p/c/9/_VFe5ASJsRk

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 10
Development environment

Create an iOS application in Flash Builder

Here is a general workflow for creating a mobile application for the Apple iOS platform.

1 Before youbegin creating the application, ensure that you follow the steps at “Apple i0OS development process using
Flash Builder” on page 18.

2 In Flash Builder, select File > New > Flex Mobile Project.

Select the target platform as Apple iOS, and set the mobile project settings.

Follow the prompts in the new-project wizard as you would for any other project-building wizard in Flash Builder.
For more information, see “Create an application” on page 8.

You can also create an ActionScript-only mobile project. For more information, see Create ActionScript mobile
projects.

3 Configure launch configurations to run and debug the application. You can run or debug the application on the
desktop or on a connected device.

For more information, see “Debug an application on an Apple iOS device” on page 178.
4 Export the application to the Apple App Store or deploy the iOS package application (IPA) on a device.

For more information, see “Export Apple iOS packages for release” on page 182 and “Install an application on an
Apple iOS device” on page 179.

More Help topics
Beginning a Mobile Application (video)

Create a BlackBerry Tablet OS application in Flash
Builder

Flash Builder includes a plug-in from Research In Motion (RIM) that lets you create and package both Flex and
ActionScript applications for the BlackBerry® Tablet OS.

Create an application
Here is a general workflow to create applications for the BlackBerry Tablet OS.

1 Before you begin creating the mobile application, install the BlackBerry Tablet OS SDK for AIR from the
BlackBerry Tablet OS Application Development site.

The BlackBerry Tablet OS SDK for AIR provides APIs that let you create AIR-based Flex and ActionScript
applications.

For more information on installing the BlackBerry Tablet OS SDK, see the BlackBerry Tablet OS Getting Started
Guide.

2 To create a Flex-based AIR application, in Flash Builder, select File > New > Flex Mobile Project.

Follow the prompts in the new project wizard as you would for any other AIR project in Flash Builder. Ensure that
you select BlackBerry Tablet OS as the target platform.

For more information, see Flex mobile projects

Last updated 11/21/2011

http://tv.adobe.com/watch/adc-presents/flex-mobile-part-1-beginning-a-mobile-application/
http://us.blackberry.com/developers/tablet/adobe.jsp
http://us.blackberry.com/developers/tablet/adobe.jsp
http://us.blackberry.com/developers/tablet/adobe.jsp

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
Development environment

3 Tocreate an ActionScript-based AIR application, in Flash Builder, select File > New > ActionScript Mobile Project.

Follow the prompts in the new project wizard as you would for any other AIR project in Flash Builder. Ensure that
you select BlackBerry Tablet OS as the target platform.

For more information, see Create ActionScript mobile projects.

Sign, package, and deploy an application

For information on signing, packaging, and deploying the application, see the BlackBerry Tablet OS SDK for Adobe
AIR Development Guide by RIM.

You can find several additional resources for BlackBerry Tablet OS development from both Adobe and RIM at Adobe
Developer Connection.

Create an ActionScript mobile project

Use Flash Builder to create an ActionScript mobile application. The application that you create is based on the Adobe
AIR APIL

1 Select File > New > ActionScript Mobile Project.

2 Enter a project name and location. The default location is the current workspace.

3 Use the default Flex 4.6 SDK that supports mobile application development.
Click Next.

4 Select the target platforms for your application, and specify mobile project settings for each platform.
For more information on mobile project settings, see “Set mobile project preferences” on page 13.

5 Click Finish, or click Next to specify additional configuration options and build paths.

For more information on the project configuration options and build paths, see Build paths, native extensions, and
other project configuration options.

Use native extensions

Native extensions let you include native platform capabilities into your mobile application.

A native extension contains ActionScript classes and native code. Native code implementation lets you access device-
specific features, which cannot be accessed using pure ActionScript classes. For example, accessing the device's
vibration functionality.

Native code implementation can be defined as the code that executes outside the AIR runtime. You define platform-
specific ActionScript classes and native code implementation in the extension. The ActionScript extension classes
access and exchange data with the native code using the ActionScript class ExtensionContext.

Extensions are specific to a device's hardware platform. You can create platform-specific extensions or you can create
a single extension that targets multiple platforms. For example, you can create a native extension that targets both
Android and iOS platforms. Native extensions are supported by the following mobile devices:

+ Android devices running Android 2.2 or a later version

+ iOS devices running iOS 4.0 or a later version

Last updated 11/21/2011

http://docs.blackberry.com/en/developers/deliverables/23959/
http://docs.blackberry.com/en/developers/deliverables/23959/
http://www.adobe.com/devnet/devices/blackberry.html
http://www.adobe.com/devnet/devices/blackberry.html

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
Development environment

For detailed information on creating cross-platform native extensions, see Developing Native Extensions for Adobe AIR.

For a collection of native extension samples, contributed by Adobe and the community, see Native extensions for
Adobe AIR.

Package native extensions

To provide your native extension to application developers, you package all the necessary files into an ActionScript
Native Extension (ANE) file by following these steps:

1 Build the extension’s ActionScript library into a SWC file.

2 Build the extension’s native libraries. If the extension has to support multiple platforms, build one library for each
target platform.

3 Create a signed certificate for your extension. If the extension is not signed, Flash Builder displays a warning when
you add the extension to your project.

4 Create an extension descriptor file.
5 Include any external resources for the extension, such as images.
6 Create the extension package using the Air Developer Tool. For more information, see the AIR documentation.

For detailed information on packaging ActionScript extensions, see Developing Native Extensions for Adobe AIR.

Add native extensions to a project

You include an ActionScript Native Extension (ANE) file in the project’s build path the same way as you would include
a SWCfile.

1 InFlash Builder, when you create a Flex mobile project, select the Native Extensions tab in the Build Paths settings
page.

You can also add extensions from the Project Properties dialog box by selecting Flex Build Path.

2 Browse to the ANE file or the folder containing the ANE files to add to the project. When you add an ANE file, the
extension ID is added to the project’s application descriptor file (project name-app.xml) by default.

Flash Builder displays an error symbol for the added extension in the following scenarios:
+ The AIR runtime version of the extension is later than the application’s runtime version.
+ The extension does not include all the selected platforms that the application is targeting.

Note: You can create an ActionScript native extension that targets multiple platforms. To test an application that
includes this ANE file on your development computer using the AIR Simulator, ensure that the ANE file supports the
computer’s platform. For example, to test the application using the AIR Simulator on Windows, ensure that the ANE file
supports Windows.

Include ActionScript native extensions in an application package

When you use the Export Release Build feature to export the mobile application, the extensions used in the project are
included within the application package by default.

To change the default selection, follow these steps:

1 In the Export Release Build dialog box, select the Native Extensions tab under Package Settings.

2 The ActionScript native extension files referenced in your project are listed, indicating if the ANE file is used in the
project or not.

Last updated 11/21/2011

http://help.adobe.com/en_US/air/extensions/index.html
http://www.adobe.com/devnet/air/native-extensions-for-air.html
http://www.adobe.com/devnet/air/native-extensions-for-air.html
http://help.adobe.com/en_US/air/build/WS5b3ccc516d4fbf351e63e3d118666ade46-7fd9.html
http://help.adobe.com/en_US/air/extensions/index.html

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 13
Development environment

If the ANE file is used in the project, it is selected by default in the application package.

If the ANE file is included in the project but not used, the compiler does not recognize the ANE file. It is then not
included in the application package. To include the ANE file in the application package, do the following:

a In the Project Properties dialog box, select Flex Build Packaging and the required platform.

b Select the extensions that you want to include in the application package.

Support for iOS5 native extensions

To package native extensions that use iOS5 SDK features, the AIR Developer Tool (ADT) requires the location of the
iOS5 SDK.

On Mac OS, Flash Builder lets you select the location of the iOS5 SDK using the Package Settings dialog. After you
select the location of the i0S SDK, the selected location is passed through the -platformsdk ADT command.

Note: This functionality is currently not supported on Windows.

For more information, see Developing Native Extensions for Adobe AIR.

Set mobile project preferences

Set device configurations

Flash Builder uses device configurations to display device screen size previews in Design View or to launch
applications on the desktop using the AIR Debug Launcher (ADL). See “Configure device information for desktop
preview” on page 175.

To set device configurations, open Preferences and select Flash Builder > Device Configurations.

Flash Builder provides several default device configurations. You can add, edit, or remove additional device
configurations. You cannot modify the default configurations that Flash Builder provides.

Clicking the Restore Defaults button restores default device configurations but does not remove any configurations
that you have added. Also, if you added a device configuration with a name that matches one of the defaults, Flash
Builder overrides the added configuration with the default settings.

Device configurations contain the following properties:

Property Description

Device Name A unique name for the device.

Platform Device platform. Select a platform from the list of supported platforms.

Full Screen Size Width and height of the device’s screen.

Usable Screen Size The standard size of an application on the device. This size is the expected size of an application launched in
non-full screen mode, accounting for system chrome, such as the status bar.

Pixels per Inch Pixels per inch on the device's screen.

Choose target platforms
Flash Builder supports target platforms based on the application type.

Last updated 11/21/2011

http://help.adobe.com/en_US/air/extensions/index.html

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 14
Development environment

To select a platform, open Preferences and select Flash Builder > Target Platforms.

For all third-party plug-ins, see the associated documentation.

Choose an application template

When you create a mobile application, you can select from the following application templates:
Blank Uses the Spark Application tag as the base application element.
Use this option if you want to create a custom application without using the standard view navigation.

View-Based Application Uses the Spark ViewNavigatorApplication tag as the base application element to create an
application with a single view.

You can specify the name of the initial view.

Tabbed Application Uses the Spark TabbedViewNavigatorApplication tag as the base application element to create a
tab-based application.

To add a tab, enter a name for the tab, and click Add. You can change the order of the tabs by clicking Up and Down.
To remove a tab from the application, select a tab and click Remove.

The name of the view is the tab name with "View" appended. For example, if you name a tab as FirstTab, Flash Builder
generates a view named FirstTabView.

For each tab that you create, a new MXML file is generated in the "views" package.
Note: The package name is not configurable through the Flex Mobile Project wizard.
The MXML files are generated according to the following rules:

+ If the tab name is a valid ActionScript class name, Flash Builder generates the MXML file using the tab name with
"View" appended.

« If the tab name is not a valid class name, Flash Builder modifies the tab name by removing invalid characters and
inserting valid starting characters. If the modified name is unacceptable, Flash Builder changes the MXML filename
to "ViewN", where N is the position of the view, starting with N=1.

Adobe Certified Expert in Flex, Brent Arnold, created a video tutorial about using the Tabbed Application
] template.

Choose mobile application permissions

When you create a mobile application, you can specify or change the default permissions for a target platform. The
permissions are specified at the time of compiling, and they cannot be changed at runtime.

First select the target platform, and then set the permissions for each platform, as required. You can edit the
permissions later in the application descriptor XML file.

Third-party plug-ins provide additional platform support for both Flex and ActionScript projects. For platform-
specific permissions, see the device's associated documentation.

Permissions for the Google Android platform
For the Google Android platform, you can set the following permissions:

INTERNET Allows network requests and remote debugging

The INTERNET permission is selected by default. If you deselect this permission, you cannot debug your application
on a device.

Last updated 11/21/2011

http://www.youtube.com/iBrent#p/c/18/TpJIrkgvqzI
http://www.youtube.com/iBrent#p/c/18/TpJIrkgvqzI

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 15
Development environment

WRITE_EXTERNAL_STORAGE Allows writing to an external device
Select this permission to let the application write to an external memory card on the device.
READ_PHONE_STATE Mutes the audio during an incoming call

Select this permission to let the application mute the audio during phone calls. For example, you can select this
permission if your application plays audio in the background.

ACCESS_FINE_LOCATION Allows access to a GPS location

Select this permission to let the application access GPS data using the Geolocation class.
DISABLE_KEYGUARD and WAKE_LOCK Disallows sleep mode on the device

Select this permission to prevent the device from going to sleep using the SystemIdleMode class settings.
CAMERA Allows access to a camera

Select this permission to let the application access a camera.

RECORD_AUDIO Allows access to a microphone

Select this permission to let the application access a microphone.

ACCESS_NETWORK_STATE and ACCESS_WIFI_STATE Allows access to information about network interfaces
associated with the device

Select this permission to let the application access network information using the NetworkInfo class.

For more information about setting mobile application properties, see the Adobe AIR documentation.

Permissions for the Apple iOS platform

The Apple iOS platform uses runtime validation for permissions instead of predefined permissions. That is, if an
application wants to access a specific feature of the Apple iOS platform that requires user permission, a pop-up appears
requesting permission.

Choose platform settings

Platform settings let you select a target device family. Depending on the platform that you select, you can select the
target device or a target device family. You can select a specific device or all the devices that the platform supports.

Third-party plug-ins provide additional platform support for both Flex and ActionScript projects. For platform-
specific settings, see the device's associated documentation.

Platform settings for the Google Android platform
There are no platform-specific settings for the Google Android platform.

Platform settings for the Apple iOS platform
For a Flex mobile project or an ActionScript mobile project, you can specify the following target devices for the Apple
iOS platform:

iPhone/iPod Touch Applications using this target family are listed as compatible with only iPhone and iPod Touch
devices in the Apple App store.

iPad Applications using this target family are listed as compatible only with iPad devices in the Apple App store.

All Applications using this target family are listed as compatible with both iPhone or iPod Touch, and iPad devices in
the Apple App store. This option is the default.

Last updated 11/21/2011

http://www.adobe.com/go/learn_fbmobileproperties_en
http://www.adobe.com/go/learn_fbmobileproperties_en

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
Development environment

Choose application settings

Automatically Reorient Rotates the application when the user rotates the device. When this setting is not enabled, your
application always appears in a fixed orientation.

Full Screen Displays your application in fullscreen mode on the device. When this setting is enabled, the device’s status
bar does not appear above your application. Your application fills the entire screen.

If you want to target your application across multiple device types with varying screen densities, select Automatically
Scale Application For Different Screen Densities. Selecting this option automatically scales the application and handles
density changes, as required, for the device. See “Set application scaling” on page 16.

Set application scaling

You use mobile application scaling to build a single mobile application that is compatible with devices with different
screen sizes and densities.

Mobile device screens have varying screen densities, or DPI (dots per inch). You can specify the DPI value as 160, 240,
or 320, depending on the screen density of the target device. When you enable automatic scaling, Flex optimizes the
way it displays the application for the screen density of each device.

For example, suppose that you specify the target DPI value as 160 and enable automatic scaling. When you run the
application on a device with a DPI value of 320, Flex automatically scales the application by a factor of 2. That is, Flex
magnifies everything by 200%.

To specify the target DPI value, set it as the applicationDPI property of the <s:ViewNavigatorApplication> tag

or <s:TabbedViewNavigatorApplications tagin the main application file:

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
firstView="views.HomeView"
applicationDPI="160">

If you choose to not auto-scale your application, you must handle the density changes for your layout manually, as
required. However, Flex adapts the skins to the density of each device.

For more information about creating density-independent mobile applications, see “Support multiple screen sizes and
DPI values in a mobile application” on page 122.

Connect Google Android devices

You can connect a Google Android device to your development computer to preview or debug the application on the
Android device.

Supported Android devices

Flex mobile projects and ActionScript mobile projects require AIR 2.6 or a higher version of AIR. You can run or
debug mobile projects only on physical devices that support AIR 2.6 or a higher version.

You can install AIR 2.6 on supported Android devices running Android 2.2 or a higher version. For a list of supported
devices, see http://www.adobe.com/flashplatform/certified_devices/. Also, review the minimum system requirements
to run Adobe AIR on Android devices at Mobile System Requirements.

Last updated 11/21/2011

http://www.adobe.com/flashplatform/certified_devices/
http://www.adobe.com/products/air/systemreqs/#mobile

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 17
Development environment

Configure Android devices
To run and debug Flex mobile applications from an Android device, enable USB debugging as indicated below:
1 On the device, follow these steps to ensure that USB debugging is enabled:
a Tap the Home button to display the home screen.
b Go to Settings, and select Applications > Development.
¢ Enable USB debugging.
2 Connect the device to your computer with a USB cable.
3 Pull down the notification area at the top of the screen. You see either USB Connected or USB Connection.
a Tap USB Connected or USB Connection.
b If a set of options appears that includes Charge Only mode, select Charge Only and tap OK.
¢ Ifyou see a button for turning off mass storage mode, click the button to turn off mass storage.

4 (Windows only) Install the appropriate USB driver for your device. See “Install USB device drivers for Android
devices (Windows)” on page 17.

5 Pull down the notification area at the top of the screen.

If USB Debugging does not appear as an entry, check the USB mode as described in step 3 above. Make sure that
the USB mode is not set to PC Mode.

Note: Additional configuration is needed when debugging. See “Test and debug a mobile application on a device” on
page 175.

Install USB device drivers for Android devices (Windows)

Device drivers and configurations
Windows platforms require installation of a USB driver to connect an Android device to your development computer.
Flash Builder provides a device driver and configuration for several Android devices.

These device driver configurations are listed in the android_winusb. inf. Windows Device Manager accesses this file
when installing the device driver. Flash Builder installs android winusb.inf at the following location:

<Adobe Flash Builder 4.6 Home>\utilities\drivers\android\android winusb.inf

For the complete list of supported devices, see Certified devices. For Android devices that are not listed, you can update
android_winusb.inf with USB drivers. See “Add Android USB device driver configurations” on page 18.

Install USB device driver
1 Connect your Android device to your computer’s USB port.

2 Go to the following location:
<Flash Builders/utilities/drivers/android/
Install the USB driver using either the Windows Found New Hardware wizard or the Windows Device Manager.

Important: If Windows is still unable to recognize your device, you need to install the appropriate USB driver from your
device manufacturer. See OEM USB drivers for links to the websites of several device manufacturers from where you can
download the appropriate USB driver for your device.

Last updated 11/21/2011

http://www.adobe.com/flashplatform/certified_devices/
http://developer.android.com/sdk/oem-usb.html

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
Development environment

Add Android USB device driver configurations

If you have a supported Android device not listed in “Install USB device drivers for Android devices (Windows)” on

page 17, update the android_winusb. inf file to include the device.

1

2
3
4

Plug the device into a USB port of your computer. Windows informs you that it cannot find the driver.
Using the Windows Device Manager, open the Details tab of the device properties.

Select the Hardware IDs property to view the hardware ID.

Open android_winusb. inf in a text editor. Find android_winusb.inf at the following location:
<Adobe Flash Builder 4.6 Home>\utilities\drivers\android\android winusb.inf

Note the listings in the file that apply to your architecture, either [Google .NTx86] or [Google.NTamdé64]. The
listings contain a descriptive comment and one or more lines with the hardware ID, as shown here:

[Google.NTx86]
; HTC Dream
$CompositeAdbInterface$ = USB_Install, USB\VID 0BB4&PID 0C02&MI 01

Copy and paste a comment and hardware listing. For the device driver you want to add, edit the listing as follows:
a For the comment, specify the name of the device.
b Replace the hardware ID with the hardware ID identified in Step 3 above.

For example:

[Google .NTx86]
; NEW ANDROID DEVICE
%$CompositeAdbInterface% = USB_Install, NEW HARDWARE ID

Use the Windows Device Manager to install the device, as described in “Install USB device drivers for Android
devices (Windows)” on page 17 above.

During the installation, Windows displays a warning that the driver is from an unknown publisher. However, the
driver allows Flash Builder to access your device.

Apple iOS development process using Flash Builder

Before developing an iOS application using Flash Builder, it is important to understand the iOS development process

and how to obtain the required certificates from Apple.

Overview of the iOS development and deployment process

This table provides a quick list of steps in the iOS development process, how to obtain the required certificates, and
prerequisites to each step.

For detailed information on each of these steps, see “Prepare to build, debug, or deploy an iOS application” on page 19.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
Development environment

Step no. Step Location Prerequisites
1. Join the Apple developer program. Apple Developer site None
2. Register the Unique Device Identifier | iOS Provisioning Portal Apple developer ID (step 1)
(UDID) of your iOS device.
3. Generate a Certificate Signing Request | « On Mac OS, use the Keychain None
(CSR) file (*.certSigningRequest). Access program
* On Windows, use OpenSSL
4. Generate an iOS iOS Provisioning Portal « Apple developer ID (step 1)
developer/distribution certificate
(*.cer). ¢ CSRfile (step 3)
5. Convert the iOS * On Mac OS, use the Keychain » Apple developer ID (step 1)
developer/distribution certificate into Access program
P12 format. iOS developer/distribution certificate
¢ On Windows, use OpenSSL (step 4)
6. Generate the Application ID. iOS Provisioning Portal Apple developer ID (step 1)
7. Generate a provisioning profile iOS Provisioning Portal « Apple developer ID (step 1)
(*.mobileprovision)
* UDID of your iOS device (step 2)
* Application ID (step 6)
8. Build the application. Flash Builder « Apple developer ID (step 1)
* P12developer/distribution certificate
(step 5)
* Application ID (step 6)
9. Deploy the application. iTunes .

Provisioning profile (step 7)

* Application package (step 8)

Prepare to build, debug, or deploy an iOS application

Before you build an iOS application using Flash Builder and deploy the application on an iOS device or submit to the

Apple App store, follow these steps:

1 Join the Apple iOS Developer Program.

You can log in using your existing Apple ID or create an Apple ID. The Apple Developer Registration guides you

through the necessary steps.

2 Register the Unique Device Identifier (UDID) of the device.

This step is applicable only if you are deploying your application to an iOS device and not the Apple App Store. If

you want to deploy your application on several iOS devices, register the UDID of each device.

Obtain the UDID of your iOS device

a Connect the iOS device to your development computer and launch iTunes. The connected iOS device appears

under the Devices section in iTunes.

b Click the device name to display a summary of the iOS device.

¢ In the Summary tab, click Serial Number to display the 40-character UDID of the iOS device.

Last updated 11/21/2011

19

http://developer.apple.com/programs/register/
http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios
http://developer.apple.com/programs/register/

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 20
Development environment

You can copy the UDID from iTunes using the keyboard shortcut Ctrl+C (Windows) or Cmd+C (Mac).

Register the UDID of your device
Log in to the iOS Provisioning Portal using your Apple ID and register the device’s UDID.

3 Generate a Certificate Signing Request (CSR) file (*.certSigningRequest).

You generate a CSR to obtain a iOS developer/distribution certificate. You can generate a CSR by using Keychain
Access on Mac or OpenSSL on Windows. When you generate a CSR you only provide your user name and email
address; you don’t provide any information about your application or device.

Generating a CSR creates a public key and a private key as well as a *.certSigningRequest file. The public key is
included in the CSR, and the private key is used to sign the request.

For more information on generating a CSR, see Generating a certificate signing request.
4 Generate an iOS developer certificate or an iOS distribution certificate (*.cer), as required.

Note: To deploy an application to a device, you need a developer certificate. To deploy the application to the Apple
App Store, you need a distribution certificate.

Generate an iOS developer certificate
a Login to the iOS Provisioning Portal using your Apple ID, and select the Development tab.
b Click Request Certificate and browse to the CSR file that you generated and saved on your computer (step 3).
¢ Select the CSR file and click Submit.
d On the Certificates page, click Download.
e Save the downloaded file (*.developer_identity.cer).
Generate an iOS distribution certificate
f Login to the iOS Provisioning Portal using your Apple ID, and select the Distribution tab
g Click Request Certificate and browse to the CSR file that you generated and saved on your computer (step 3).
h Select the CSR file and click Submit.
i On the Certificates page, click Download.
j Save the downloaded file (*.distribution_identity.cer).
5 Convert the iOS developer certificate or the iOS distribution certificate to a P12 file format (*.p12).

You convert the iOS developer or iOS distribution certificate to a P12 format so that Flash Builder can digitally sign
your iOS application. Converting to a P12 format combines your iOS developer/distribution certificate and the
associated private key into a single file.

Note: If you are testing the application on the desktop using the AIR Debug Launcher (ADL), you don’t have to convert
the iOS developer/distribution certificate into a P12 format.

Use Keychain Access on Mac or OpenSSL on Windows to generate a Personal Information Exchange (*.p12) file.
For more information, see Convert a developer certificate into a P12 file.

6 Generate the Application ID by following these steps:
a Login to the iOS Provisioning Portal using your Apple ID.
b Go to the App IDs page, and click New App ID.

Last updated 11/21/2011

http://developer.apple.com/devcenter/ios
http://www.adobe.com/go/learn_ioscsr_en
http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios
http://www.adobe.com/go/learn_iosdevcertificatep12_en
http://developer.apple.com/devcenter/ios

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
Development environment

C

In the Manage tab, enter a description for your application, generate a new Bundle Seed ID, and enter a Bundle
Identifier.

Every application has a unique Application ID, which you specify in the application descriptor XML file. An
Application ID consists of a ten-character "Bundle Seed ID" that Apple provides and a "Bundle Identifier" suffix
that you specify. The Bundle Identifier you specify must match the application ID in the application descriptor
file. For example, if your Application ID is com.myDomain.*, the ID in the application descriptor file must start
with com.myDomain.

Important: Wildcard Bundle Identifiers are good for developing and testing iOS applications but can't be used to
deploy applications to the Apple App Store.

7 Generate a Developer Provisioning Profile file or a Distribution Provisioning Profile File (*.mobileprovision).

Note: To deploy an application to a device, you need a Developer Provisioning Profile. To deploy the application to
the Apple App Store, you need a Distribution Provisioning Profile. You use a Distribution Provisioning Profile to sign
your application.

Generate a Developer Provisioning Profile

a
b

C

d

e

Log in to the iOS Provisioning Portal using your Apple ID.
Go to Certificate > Provisioning, and click New Profile.

Enter a profile name, select the iOS developer certificate, the App ID, and the UDIDs on which you want to
install the application.

Click Submit.

Download the generated Developer Provisioning Profile file (*.mobileprovision)and save it on your computer.

Generate a Distribution Provisioning Profile

f

Log in to the iOS Provisioning Portal using your Apple ID.

g Go to Certificate > Provisioning, and click New Profile.

h Enter a profile name, select the iOS distribution certificate and the App ID. If you want to test the application

before deployment, specify the UDIDs of the devices on which you want to test.
Click Submit.

Download the generated Provisioning Profile file (*.mobileprovision)and save it on your computer.

More Help topics

“Create an iOS application in Flash Builder” on page 10

Files to select when you test, debug, or install an iOS application

To run, debug, or install an application for testing on an i0S device, you select the following files in the Run/Debug
Configurations dialog box:

+ i0S developer certificate in P12 format (step 5)

+ Application descriptor XML file that contains the Application ID (step 6)

« Developer Provisioning Profile (step 7)

For more information, see “Debug an application on an Apple iOS device” on page 178 and “Install an application on
an Apple iOS device” on page 179.

Last updated 11/21/2011

21

http://developer.apple.com/devcenter/ios
http://developer.apple.com/devcenter/ios

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 22
Development environment

Files to select when you deploy an application to the Apple App Store

To deploy an application to the Apple App Store, select the Package Type in the Export Release Build dialog box as
Final Release Package For Apple App Store, and select the following files:

+ iOS distribution certificate in P12 format (step 5)
Application descriptor XML file that contains the Application ID (step 6).
Note: You can’t use a wildcard Application ID while submitting an application to the Apple App Store.
Distribution Provisioning Profile (step 7)

For more information, see “Export Apple iOS packages for release” on page 182.

Last updated 11/21/2011

23

Chapter 3: User interface and layout

Lay out a mobile application

Use views and sections to lay out a mobile application

A mobile application is made up of one or more screens, or views. For example, mobile application could have three
views:

1 A home view that lets you add contact information
2 A contacts view containing a list of existing contacts
3 A search view to search your list of contacts

A simple mobile application

The following image shows the main screen of a simple mobile application built in Flex:

4\ Employees A

belect an employee name

Bill
Dave
Mary

Debbie

A. ActionBar control B. Content area

This figure shows the main areas of a mobile application:

ActionBar control The ActionBar control lets you display contextual information about the current state of the
application. This information includes a title area, an area for controls to navigate the application, and an area for
controls to perform an action. You can add global content in the ActionBar control that applies to the entire
application, and you can add items specific to an individual view.

Contentarea The content area displays the individual screens, or views, that make up the application. Users navigate
the views of the application by using the components built in to the application and the input controls of the mobile
device.

A mobile application with sections

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

A more complex application could define several areas, or sections, of the application. For example, the application
could have a contacts section, an e-mail section, a favorites section, and other sections. Each section of the application
contains one or more views. Individual views can be shared across sections so that you do not have to define the same
view multiple times.

The following figure shows a mobile application that includes a tab bar at the bottom of the application window:

4\ Employees A
Select an employee name
Bill
Dave
Mary
Debbie
—B
Home Email Favorites C

A. ActionBar control B. Content area C. Tab bar
Flex uses the ButtonBarBase control to implement the tab bar. Each button of the tab bar corresponds to a different
section. Select a button in the tab bar to change the current section.

Each section of the application defines its own ActionBar. Therefore, the tab bar is global to the entire application, and
the ActionBar is specific to each section.

Lay out a simple mobile application

The following figure shows the architecture of a simple mobile application:

Main application (ViewNavigatorApplication)

(ViewNavigator)
Home (View)
Contacts (View)

Search (View)

The figure shows an application made up of four files. A mobile application contains a main application file, and one
file for each view. There is no separate file for the ViewNavigator; the ViewNavigatorApplication container creates it.

Note: While this diagram shows the application architecture, it does not represent the application at runtime. At runtime,
only one view is active and resident in memory. For more information, see “Navigate the views of a mobile application”
on page 27.

Classes used in a mobile application

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

Use the following classes to define a mobile application:

Class Description

ViewNavigatorApplication Defines the main application file. The ViewNavigatorApplication container does not take any children.

ViewNavigator Controls navigation among the views of an application. The ViewNavigator also creates the ActionBar
control.

The ViewNavigatorApplication container automatically creates a single ViewNavigator container for the
entire application. Use methods of the ViewNavigator container to switch between the different views.

View Defines the views of the application, where each view is defined in a separate MXML or ActionScript file.
An instance of the View container represents each view of the application. Define each view in a separate
MXML or ActionScript file.

Use the ViewNavigatorApplication container to define the main application file, as the following example shows:

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\SparkSingleSectionSimple.mxml -->

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.HomeView" >

</s:ViewNavigatorApplication>

The ViewNavigatorApplication container automatically creates a single ViewNavigator object that defines the
ActionBar. You use the ViewNavigator to navigate the views of the application.

Add a View container to a mobile application

Every mobile application has at least one view. While the main application file creates the ViewNavigator, it does not
define any of the views used in the application.

Each view in an application corresponds to a View container defined in an ActionScript or MXML file. Each View
contains a data property that specifies the data associated with that view. Views can use the data property to pass
information to each other as the user navigates the application.

Use the ViewNavigatorApplication. firstView property to specify the file that defines the first view in the
application. In the previous application, the firstview property specifies views .HomeView. The following example
shows the HomeView.mxml file that defines that view:

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\views\HomeView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Home" >
<s:layout>
<s:VerticallLayout paddingTop="10"/>
</s:layout>
<s:Label text="The home screen"/>
</s:Views>

Blogger David Hassoun blogged about ViewNavigator basics.

Last updated 11/21/2011

http://www.realeyes.com/blog/2011/05/15/mobile-flex-viewnavigator-basics/

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 26
User interface and layout

Lay out a mobile application with multiple sections

A mobile application can collect related views in different sections of the application. For example, the following figure
shows the organization of a mobile application with three sections.

Main application (TabbedViewNavigatorApplication)

(TabbedViewNavigator)
Contacts (ViewNavigator) Email (ViewNavigator) Favorites (ViewNavigator)
Contacts Home (View) Email Home (View) Favorites Home (View)
Edit Contacts (View) Edit Contacts (View) Search (View)
Search (View) Search (View)

Any section can use any View. That is, a view does not belong to a specific section. The section just defines a way to
arrange and navigate a collection of views. In the figure, the Search view is part of every section of the application.

Atruntime, only one view is active and resident in memory. For more information, see “Navigate the views of a mobile
application” on page 27.

Classes used in a mobile application with multiple sections

The following table lists the classes that you use to create a mobile application with multiple sections:

Class Description

TabbedViewNavigatorApplication | Defines the main application file. The only allowable child of the TabbedViewNavigatorApplication
container is ViewNavigator. Define one ViewNavigator for each section of the application.

TabbedViewNavigator Controls navigation among the sections that make up the application.

The TabbedViewNavigatorApplication container automatically creates a single
TabbedViewNavigator container for the entire application. The TabbedViewNavigator container
creates the tab bar that you use to navigate among the sections.

ViewNavigator Define one ViewNavigator container for each section. The ViewNavigator controls navigation
among the views that make up the section. It also creates the ActionBar control for the section.

View Defines the views of the application. An instance of the View container represents each view of the
application. Define each view in a separate MXML or ActionScript file.

A sectioned mobile application contains a main application file, and a file that defines each view. Use the
TabbedViewNavigatorApplication container to define the main application file, as the following example shows:

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 27
User interface and layout

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\SparkMultipleSectionsSimple.mxml -->
<s:TabbedViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark">
<s:ViewNavigator label="Contacts" firstView="views.ContactsHome"/>
<s:ViewNavigator label="Email" firstView="views.EmailHome"/>
<s:ViewNavigator label="Favorites" firstView="views.FavoritesHome"/>
</s:TabbedViewNavigatorApplications>

Use the ViewNavigator in an application with multiple sections

The only allowable child component of the TabbedViewNavigatorApplication container is ViewNavigator. Each
section of the application corresponds to a different ViewNavigator container.

Use the ViewNavigator container to navigate the views of each section, and to define the ActionBar control for the
section. Use the viewNavigator. firstView property to specify the file that defines the first view in the section.

Use the TabbedViewNavigator in an application with multiple sections

The TabbedViewNavigatorApplication container automatically creates a single container of type
TabbedViewNavigator. The TabbedViewNavigator container then creates a tab bar at the bottom of the application.
You do not have to add logic to the application to navigate among the sections.

Navigate the views of a mobile application

A stack of View objects controls navigation in a mobile application. The top View object on the stack defines the
currently visible view.

The ViewNavigator container maintains the stack. To change views, push a new View object onto the stack, or pop the
current View object off the stack. Popping the currently visible View object off the stack destroys the View object and
returns the user to the previous view on the stack.

In an application with sections, use the tab bar to navigate the sections. Because a different ViewNavigator defines each
section, changing sections corresponds to changing the current ViewNavigator and stack. The View object at the top
of the stack of the new ViewNavigator becomes the current view.

To conserve memory, by default the ViewNavigator ensures that only one view is in memory at a time. However, it
maintains the data for previous views on the stack. Therefore, when the user navigates back to the previous view, the
view can be reinstantiated with the appropriate data.

Note: The View container defines the destructionPolicy property. If set to auto, the default, the ViewNavigator
destroys the view when it is not active. If set to none, the view is cached in memory.

& Blogger Mark Lochrie blogged about ViewNavigator.
ViewNavigator navigation methods

Use the following methods of the ViewNavigator class to control navigation:

pushView() Push a View object onto the stack. The View passed as an argument to the pushview () method becomes
the current view.

popView() Pop the current View object off the navigation stack and destroy the View object. The previous View object
on the stack becomes the current view.

popToFirstView() Pop all View objects off the stack and destroy them, except for the first View object on the stack. The
first View object on the stack becomes the current view.

popAll() Empty the stack of the ViewNavigator, and destroy all View objects. Your application displays a blank view.

Last updated 11/21/2011

http://www.uimobile.co.uk/flash-builder-viewnavigator/

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

The following figure shows two views. To change the current view, use the ViewNavigator.pushview () method to
push a View object that represents the new view onto the stack. The pushview () method causes the ViewNavigator
to switch the display to the new View object.

1. R P R 1229w

Favorites pushView (DetallsView) | Detaita
Brian [| Lauren Fisher

Charles
Dad Lfisher@emall.com
| 415-555-5555
Diana
1
| Jin popView()
Lauren

Mom

Push and pop View objects to change views.

Use the viewNavigator.popView () method to remove the current View object from the stack. The ViewNavigator
returns display to the previous View object on the stack.

Note: The mobile device itself controls much of the navigation in a mobile application. For example, mobile applications
built in Flex automatically handle the back button on mobile devices. Therefore, you do not have to add support for the
back button to the application. When the user presses the back button on the mobile device, Flex automatically calls the
popView () method to restore the previous view.

& Blogger David Hassoun blogged about managing data in a view.
Create navigation for an application with multiple sections

In the following figure, the Views are arranged in multiple sections. A different ViewNavigator container defines each
section. Within each section are one or more views:

ﬁ‘ Employees A
elect an employee name
Bill
Dave
Mary
Debbie
—B
Home Email Favorites C

A. ActionBar B. Content area C. Tab bar

To change the view in the current section, which corresponds to the current ViewNavigator, use the pushview () and
popView () methods.

Last updated 11/21/2011

http://www.realeyes.com/blog/2011/05/16/mobile-flex-view-data/

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 29
User interface and layout

To change the current section, use the tab bar. When you switch sections, you switch to the ViewNavigator container
of the new section. The display changes to show the View object currently at the top of the stack for the new
ViewNavigator.

You can also change sections programmatically by using the TabbedViewNavigator.selectedIndex property. This
property contains the 0-based index of the selected view navigator.

Handle user input in a mobile application

User input requires different handling in a mobile application compared to a desktop or browser application. In a
desktop application built for AIR, or in a browser application built for Flash Player, the primary input devices are a
mouse and a keyboard. For mobile devices, the primary input device is a touch screen. A mobile device often has some
type of keyboard, and some devices also include a five-way directional input method (left, right, up, down, and select).

The mx.core.UIComponent class defines the interactionMode style property that you use to configure components
for the type of input used in the application. For the Halo and Spark themes, the default value is mouse to indicate that
the mouse is the primary input device. For the Mobile theme, the default value is touch to indicate that the primary
input device is the touch screen.

Hardware key support in a mobile application

Applications defined by the ViewNavigatorApplication or TabbedViewNavigatorApplication containers respond to
the back and menu hardware keys of a device. When the user presses the back key, the application navigates to the
previous view. If there is no previous view, the application exits and displays the home screen of the device.

When the user presses the back button, the active view of the application receives a backKeyPressed event. You can
cancel the action of the back key by calling preventDefault () in the event handler for the backkeyPressed event.

When the user presses the menu button, the current view’s ViewMenu container appears, if defined. The ViewMenu
container defines a menu at the bottom of a View container. Each View container defines its own menu specific to that
view.

The current View container dispatches a menuKeyPressed event when the user presses the menu key. To cancel the
action of the menu button, and prevent the ViewMenu from appearing, call the preventDefault () method in the
event handler for the menuKeyPressed event.

For more information, see “Define menus in a mobile application” on page 67.

Handle hardware keyboard events in a mobile application

In a mobile application built in Flex, you can detect when the user presses a hardware key on a mobile device. For
example, on an Android device you can detect when the user presses the Home button, Back button, or Menu button.

To detect when the user presses a hardware key, create an event handlers for the KEY_UP or KEY_DOWN event. Typically,
you attach the event handlers to the application object as defined by the Application, ViewNavigatorApplication, or
TabbedViewNavigatorApplication containers.

The Stage object defines the drawing area of an application. Each application has one Stage object. Therefore, an
application container is actually a child container of the Stage object.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 30
User interface and layout

The stage. focus property specifies the component that currently has keyboard focus, or contains nu11 if no
component has focus. The component with keyboard focus is the one that receives event notification when the user
interacts with the keyboard. Therefore, if Stage. focus is set to the application object, the application object’s event
handlers are invoked.

On a mobile device, your application can be interrupted by another application. For example, the mobile device can

receive a phone call while your application is running, or the user can switch to a different application. When the user
switches back to your application, the stage . focus property is set to null. Therefore, event handlers assigned to the
application object do not respond to the keyboard.

Because the stage. focus property can be null on a mobile application, listen for keyboard events on the Stage object
itself to guarantee that your application recognizes the event. The following example assigns keyboard event handlers
to the Stage object:

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\SparkHWEventHandler.mxml -->

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
firstvView="views.SparkHWEventhandlerHomeView"
applicationComplete="appCompleteHandler (event) ;">

<fx:Script>
<! [CDATA[
import mx.events.FlexEvent;

// Add the hardware key event handlers to the stage.

protected function appCompleteHandler (event:FlexEvent) :void {
stage.addEventListener ("keyDown", handleButtons, false,1);
stage.addEventListener ("keyUp", handleButtons, false, 1);

// Event handler to handle hardware keyboard keys.
protected function handleButtons (event:KeyboardEvent) :void

{

if (event.keyCode == Keyboard.HOME) ({
// Handle Home button.

}

else if (event.keyCode == Keyboard.BACK) {
// Hanlde back button.

11>
</fx:Script>
</s:ViewNavigatorApplication>

Handle mouse and touch events in a mobile application

AIR generates different events to indicate different types of inputs. These events include the following:

Mouse events Events generated by user interaction generated by a mouse or touch screen. Mouse events include

mouseOver, mouseDown, and mouseUp.

Touch events Events generated on devices that detect user contact with the device, such as a finger on a touch screen.
Touch events include touchTap, touchOver, and touchMove. When a user interacts with a device with a touch screen,
the user typically touches the screen with a finger or a pointing device.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 31
User interface and layout

Gesture events Events generated by multi-touch interactions, such as pressing two fingers on a touch screen at the
same time. Gesture events include gesturePan, gestureRotate, and gesturezoom. For example, on some devices
you can use a pinch gesture to zoom out from an image.

Built in support for mouse events

The Flex framework and the Flex component set have built-in support for mouse events, but not for touch or gesture
events. For example, the user interacts with Flex components in a mobile application by using the touch screen. The
components respond to mouse events, such as mouseDown and mouseOver, but not to touch or gesture events.

For example, the user presses the touch screen to select the Flex Button control. The Button control uses the mouseUp
and mouseDown events to signal that the user has interacted with the control. The Scroller control uses the mouseMove
and mouseUp events to indicate that the user is scrolling the display.

Adobe Developer Evangelist Paul Trani explains handling touch and gesture events in Touch Events and Gesture
(L on Mobile.

Control events generated by AIR

The flash.ui.Multitouch.inputMode property controls the events generated by AIR and Flash Player. The
flash.ui.Multitouch.inputMode property can have one of the following values:

+ MultitouchInputMode.NONE AIR dispatches mouse events, but not touch or gesture events.

+ MultitouchInputMode.TOUCH_POINT AIR dispatches mouse and touch events, but not gesture events. In this
mode, the Flex framework receives the same mouse events as it does for MultitouchInputMode . NONE.

+ MultitouchInputMode.GESTURE AIR dispatches mouse and gesture events, but not touch events. In this mode,
the Flex framework receives the same mouse events as it does for MultitouchInputMode . NONE.

As the list shows, regardless of the setting of the f£1ash.ui.Multitouch. inputMode property, AIR always dispatches
mouse events. Therefore, Flex components can always respond to user interactions made by using a touch screen.

Flex lets you use any value of £1ash.ui.Multitouch.inputMode property in your application. Therefore, while the
Flex components do not respond to touch and gesture events, you can add functionality to your application to respond
to any event. For example, you can add an event handler to the Button control to handle touch events, such as the
touchTap, touchOver, and touchMove events.

The ActionScript 3.0 Developer’s Guide provides an overview of handling user input on different devices, and on
working with touch, multitouch, and gesture input. For more information, see:

+ Basics of user interaction

+ Touch, multitouch and gesture input

Define a mobile application and a splash screen

Create a mobile application container

The first tag in a mobile application is typically one of the following:

+ The <s:ViewNavigatorApplications> tag defines a mobile application with a single section.

+ The <s:TabbedViewNavigatorApplications> tag defines a mobile application with multiple sections.

When you develop applications for a tablet, screen size limits are not as important as they are with phones. Therefore,
for a tablet, you do not have to structure your application around small views. Instead, you can build your application
using the standard Spark Application container with the supported mobile components and skins.

Last updated 11/21/2011

http://www.paultrani.com/blog/index.php/2011/02/touch-events-and-gestures-on-mobile/
http://www.paultrani.com/blog/index.php/2011/02/touch-events-and-gestures-on-mobile/
http://www.adobe.com/go/learn_air_user_interact_en
http://www.adobe.com/go/learn_air_touch_en

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 32
User interface and layout

Note: When developing any mobile application, you can use the Spark Application container, even for phones. However,
the Spark Application container does not include support for view navigation, data persistence, and the device’s back and
menu buttons. For more information, see “Differences between the mobile application containers and the Spark
Application container” on page 32About the Application container.

The mobile application containers have the following default characteristics:

Characteristic Spark ViewNavigatorApplication and TabbedViewNavigatorApplication containers

Default size 100% high and 100% wide to take up all available screen space.

Child layout Defined by the individual View containers that make up the views of the application.

Default padding 0 pixels.

Scroll bars None. If you add scroll bars to the application container’s skin, users can scroll the entire application. That
includes the ActionBar and tab bar area of the application. You typically do not want those areas of the
view to scroll. Therefore, add scroll bars to the individual View containers of the application, rather than
to the application container’s skin.

Differences between the mobile application containers and the Spark
Application container

The Spark mobile application containers have much of the same functionality as the Spark Application container. For
example, you apply styles to the mobile application containers in the same way that you apply them to the Spark
Application container.

The Spark mobile application containers have several characteristics that differ from the Spark Application container:

+ Support for persistence

Supports data storage to and loading from a disk. Persistence lets users interrupt a mobile application, for example
to answer a phone call, and then restore the state of the application when the call ends.

+ Support for view navigation

The ViewNavigatorApplication container automatically creates a single ViewNavigator container to control
navigation among views.

The TabbedViewNavigatorApplication container automatically creates a single Tabbed ViewNavigator container
to control navigation among sections.

« Support for the device’s back and menu buttons

When the user presses the back button, the application navigates back to the previous view on the stack. When the
user presses the menu button, the current view’s ViewMenu container appears, if defined.

For more information on the Spark application container, see About the Application container.

Handle application-level events

The NativeApplication class represents an AIR application. It provides application information and application-wide
functions, and it dispatches application-level events. You can access the instance of the NativeApplication class that
corresponds to your mobile application by using the static property NativeApplication.nativeApplication.

For example, the NativeApplication class defines the invoke and exiting events that you can handle in your mobile
application. The following example references the NativeApplication class to define an event handler for the exiting
event:

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\SparkNativeApplicationEvent.mxml -->

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.EmployeeMainView"
creationComplete="creationCompleteHandler (event) ;">

<fx:Script>
<! [CDATA[
import mx.events.FlexEvent;
protected function creationCompleteHandler (event:FlexEvent) :void
// Reference NativeApplication to assign the event handler.
NativeApplication.nativeApplication.addEventListener (Event.EXITING, myExiting) ;

}

protected function myExiting(event:Event) :void {
// Handle exiting event.

11>
</fx:Scripts>

</s:ViewNavigatorApplications>

Notice that you access the ViewNavigator by using the viewNavigatorApplication.navigator property.

Add a splash screen to an application

The Spark Application container is a base class for the ViewNavigatorApplication and
TabbedViewNavigatorApplication containers. When used with the Spark theme, the Spark Application container
supports an application preloader to show the download and initialization progress of an application SWF file.

When used with the Mobile theme, you can display a splash screen instead. The splash screen appears during
application startup.

Note: To use the splash screen in a desktop application, set the Application.preloader property to
spark.preloaders.SplashScreen. Also add the frameworks\libs\mobile\mobilecomponents.swc to the library path of the
application.

Blogger Joseph Labrecque blogged about AIR for Android Splash Screen with Flex.

Blogger Brent Arnold created a video about adding a splash screen to an Android application.

a

Add a splash screen from an image file

You can load a splash screen directly from an image file. To configure the splash screen, you use the
splashScreenImage,splashScreenScaleMode,andsplashScreenMinimumDisplayTimeproperdesofthe
application class.

For example, the following example loads a splash screen from a JPG file using the letterbox format:

Last updated 11/21/2011

33

http://inflagrantedelicto.memoryspiral.com/2011/04/air-for-android-splash-screen-with-flex-4-5/
http://www.youtube.com/user/iBrent#p/c/14/Cp25EShGlP4

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\SparkMobileSplashScreen.mxml -->

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
firstView="views.EmployeeMainView"
splashScreenImage="@Embed ('assets/logo.jpg')"
splashScreenScaleMode="1letterbox">

</s:ViewNavigatorApplications>

Add a splash screen from a custom component

The example in the previous section used a JPG file to define the splash screen. The disadvantage of that mechanism
is that the application uses the same image regardless of the capabilities of the mobile device on which the application
runs.

Mobile devices have different screen resolutions and sizes. Rather than using a single image as the splash screen, you
can instead define a custom component. The component determines the capabilities of the mobile device and uses the
appropriate image for the splash screen.

Use the SplashScreenImage class to define the custom component, as the following example shows:

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\myComponents\MySplashScreen.mxml -->

<s:SplashScreenImage xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark">

<!-- Default splashscreen image. -->
<s:SplashScreenImageSource
source="@Embed ('../assets/logoDefault.jpg')"/>

<s:SplashScreenImageSource
source="@Embed ('../assets/logo240Portrait.jpg"')"
dpi="240"
aspectRatio="portrait"/>

<s:SplashScreenImageSource
source="@Embed ('../assets/logo240Landscape.jpg"')"
dpi="240"
aspectRatio="landscape"/>

<s:SplashScreenImageSource
source="@Embed ('../assets/logol60.jpg')"
dpi="160"
aspectRatio="portrait"
minResolution="960"/>
</s:SplashScreenImage>

Within the definition of the component, use the SplashScreenImageSource class to define each of the splash screen
images. The splashScreenImageSource.source property specifies the image file. The SplashScreenImageSource
dpi, aspectRatio, and minResolution properties define the capabilities of a mobile device that are required to
display the image.

For example, the first SplashScreenImageSource definition specifies only the source property for the image. Because
there are no settings for the dpi, aspectRatio, and minResolution properties, this image can be used on any device.
Therefore, it defines the default image displayed when no other image matches the capabilities of the device.

Last updated 11/21/2011

34

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 35
User interface and layout

The second and third SplashScreenImageSource definitions specify an image for a 240 DPI device in either portrait or
landscape modes.

The final SplashScreenImageSource definition specifies an image for a 160 DPI device in portrait mode with a
minimum resolution of 960 pixels. The value of the minResolution property is compared against the larger of the
values of the stage . stagewidth and Stage . stageHeight properties. The larger of the two values must be equal to
or greater than the minResolution property.

The following mobile application uses this component:

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\SparkMobileSplashComp.mxml -->

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
firstView="views.EmployeeMainView"
splashScreenImage="myComponents.MySplashScreen">

</s:ViewNavigatorApplications>

The SplashScreenImage class automatically determines the image that best matches the capabilities of the device. This
matching is based on the dpi, aspectRatio and minResolution properties of each SplashScreenImageSource
definition.

The procedure for determining the best match is as follows:

1 Determine all of the SplashScreenImageSource definitions that match the settings of the mobile device. A match
occurs when:

a The SplashScreenImageSource definition does not have that setting explicitly defined. For example, no setting
for the dpi property matches any device’s DPL.

b For the dpi or aspectRatio property, the property must exactly match the corresponding setting of the mobile
device.

¢ For the minResolution property, the property matches a setting on the device when the larger of the
Stage.stageWidth and Stage.stageHeight properties is equal to or greater than minResolution.

2 If there's more than one SplashScreenImageSource definition that matches the device then:

a Choose the one with largest number of explicit settings. For example, a SplashScreenImageSource definition
that specifies both the dpi and aspectRatio properties is a better match than one that only species the dpi
property.

b If there is still more than one match, choose the one with highest minResolution value.

c If there is still more than one match, choose the first one defined in the component.

Explicitly select the splash screen image

The splashScreenImage.getImageClass () method determines the SplashScreenImageSource definition that best
matches the capabilities of a mobile device. You can override this method to add your own custom logic, as the
following example shows.

In this example, you add a SplashScreenImageSource definition for an iOS splash screen. In the body of the override
of the get ImageClass () method, you first determine of the application is running on iOS. If so, you display the image
specific for iOS.

If the application is not running on i0S, then call the super . get ImageClass () method. This method uses the default
implementation to determine the SplashScreenImageSource instance to display:

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\myComponents\MyIOSSplashScreen.mxml -->
<s:SplashScreenImage xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark">
<fx:Script>
<! [CDATA [
// Override getImageClass() to return an image for iOS.
override public function getImageClass (aspectRatio:String, dpi:Number,
resolution:Number) :Class {
// Is the application running on 10S?
if (Capabilities.version.indexOf ("IOS") == 0)
return iosImage.source;

return super.getImageClass (aspectRatio, dpi, resolution);

11>
</fx:Script>
<!-- Default splashscreen image. -->
<s:SplashScreenImageSource

source="@Embed ('../assets/logoDefault.jpg')"/>

<s:SplashScreenImageSource
source="@Embed ('../assets/logo240Portrait.jpg"')"
dpi="240"
aspectRatio="portrait"/>

<s:SplashScreenImageSource
source="@Embed ('../assets/logo240Landscape.jpg"')"
dpi="240"
aspectRatio="landscape"/>

<s:SplashScreenImageSource
source="@Embed ('../assets/logol60.jpg')"
dpi="160"
aspectRatio="portrait"
minResolution="960"/>
<!-- i0S splashscreen image. -->
<s:SplashScreenImageSource id="iosImage"
source="@Embed ('../assets/logoIO0S.jpg')"/>
</s:SplashScreenImage>

Define views in a mobile application

A mobile application typically defines multiple screens, or views. As users navigate through the application, they
switch to and from different views.

Make navigation intuitive to the user of your application. That is, when the user moves from one view to another, they
expect to be able to navigate back to the previous view. The application can define a Home button, or other top-level
navigation aids that let the user move to locations in the application from any other location.

To define the views of a mobile application, use the View container. To control the navigation among the views of a
mobile application, use the ViewNavigator container.

Last updated 11/21/2011

36

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 37
User interface and layout

Use pushView() to change views

Use the viewNavigator.pushview () method to push a new view onto the stack. Access the ViewNavigator by using
the viewNavigatorApplication.navigator property. Pushing a view changes the display of the application to the
new view.

The pushview () method has the following syntax:

pushView (viewClass:Class,
data:0Object = null,
context:0bject = null,
transition:spark.transitions:ViewTransitionBase = null) :void

where:

+ viewClass specifies the class name of the view. This class typically corresponds to the MXML file that defines the view.
+ data specifies any data passed to the view. This object is written to the view.data property of the new view.

+ context specifies an arbitrary object written to the viewNavigator.context property. When the new view is
created, it can reference this property and perform an action based on this value. For example, the view could
display data in different ways based on the value of context.

+ transition specifies the transition to play when the view changes to the new view. For information on view
transitions, see “Define transitions in a mobile application” on page 88.

Use the data argument to pass a single Object

Use the data argument to pass a single Object containing any data required by the new view. The view can then access
the object by using the view.data property, as the following example shows:

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\views\EmployeeView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
title="Employee View">
<s:layout>
<s:Verticallayout paddingTop="10"/>
</s:layout>

<s:VGroup>
<s:Label text="{data.firstName}"/>
<s:Label text="{data.lastName}"/>
<s:Label text="{data.companyID}"/>
</s:VGroup>
</s:View>

In this example, the EmployeeView is defined in the EmployeeView.mxml file. This view uses the data property to
access the first and last names of an employee, and to access the employee’s ID from the Object that is passed to it.

The view.data property is guaranteed to be valid at the time of the add event for the View object. For more
information on the life cycle of a View container, see “The life cycle of the Spark ViewNavigator and View containers”
on page 44.

Pass data to the first view in an application

The viewNavigatorApplication. firstView property and the viewNavigator. firstView property define the
first view in an application. To pass data to the first view, use the ViewNavigatorApplication.firstViewData
property, or the ViewNavigator.firstViewData property.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 38
User interface and layout

Pass data to a view

In the following example, you define a mobile application by using the ViewNavigatorApplication container. The
ViewNavigatorApplication container automatically creates a single instance of the ViewNavigator class that you use
to navigate the Views defined by the application.

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\SparkSingleSection.mxml -->
<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.EmployeeMainView" >

<fx:Scripts>
<! [CDATA [
protected function buttonl clickHandler (event:MouseEvent) :void {
// Switch to the first view in the section.
navigator.popToFirstView () ;

11>
</fx:Scripts>

<s:navigationContent>
<s:Button icon="@Embed (source='assets/Home.png')"
click="buttonl_ clickHandler (event)"/>
</s:navigationContent>
</s:ViewNavigatorApplication>

This example defines a Home button in the navigation area of the ActionBar control. Selecting the Home button pops
all views off the stack back to the first view. The following figure shows this application:

b & P F 0D wl ® 1148

/ﬁ‘ Employees

Belect an employee name

Bill
Dave
Mary

Debbie

The EmployeeMainView.mxml file defines the first view of the application, as shown in the following example:

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\views\EmployeeMainView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Employees">
<s:layout>
<s:Verticallayout paddingTop="10"/>
</s:layout>

<fx:Script>
<! [CDATA [
import spark.events.IndexChangeEvent;
protected function myList changeHandler (event:IndexChangeEvent) :void {
navigator.pushView (views.EmployeeView, myList.selectedItem) ;

11>
</fx:Script>

<s:Label text="Select an employee name"/>
<s:List id="myList"
width="100%" height="100%"
labelField="firstName"
change="myList changeHandler (event) ">
<s:ArrayCollection>
<fx:0bject firstName="Bill" lastName="Smith" companyID="11233"/>
<fx:0bject firstName="Dave" lastName="Jones" companyID="13455"/>
<fx:0bject firstName="Mary" lastName="Davis" companyID="11543"/>
<fx:0bject firstName="Debbie" lastName="Cooper" companyID="14266"/>
</s:ArrayCollection>
</s:List>
</s:View>

This view defines a List control that lets the user select an employee name. Selecting a name causes the event handler
for the change event to push an instance of a different view onto the stack, named EmployeeView. Pushing an instance
of EmployeeView causes the application to change to the EmployeeView view.

The pushview () method in this example takes two arguments: the new view and an Object that defines the data to
pass to the new view. In this example, you pass the data object corresponding to the currently selected item in the List
control.

The following example shows the definition of EmployeeView:

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\views\EmployeeView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Employee View"s>
<s:layout>
<s:Verticallayout paddingTop="10"/>
</s:layout>

<s:VGroup>
<s:Label text="{data.firstName}"/>
<s:Label text="{data.lastName}"/>
<s:Label text="{data.companyID}"/>
</s:VGroup>
</s:View>

Last updated 11/21/2011

39

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

The EmployeeView displays the three fields from the data provider of the List control. EmployeeView accesses the data
passed to it by using the view.data property.

Blogger Steve Mathews created a cookbook entry on Passing data between Views.

Return data from a view

The viewNavigator.popView () method returns control from the current view back to the previous view on the
stack. When the popview () method executes, the current view is destroyed and the previous View on the stack is
restored. Restoring the previous View includes resetting its data property from the stack,

For a complete description of the life cycle of a view, including events dispatched during creation, see “The life cycle
of the Spark ViewNavigator and View containers” on page 44.

The new view is restored with the original data object at the time it was deactivated. Therefore, you do not typically
use the original data object to pass data back from the old view to the new view. Instead, you override the
createReturnObject () method of the old view. The createReturnobject () method returns a single Object.

Return object type

The Object returned by the createrReturnobject () method is written to the
ViewNavigator.poppedViewReturnedObject,propeﬂy;The(kﬁatypeofthepoppedViewReturnedObject
property is ViewReturnObject.

ViewReturnObject defines two properties, context and object. The object property contains the Object returned
by the createReturnobject () method. The context property contains the value of the context argument that was
passed to the view when the view was pushed onto the navigation stack using pushview ().

The poppedviewReturnedObject property is guaranteed to be set in the new view before the view receives the add
event. If the poppedviewReturnedobject .object property is null, no data was returned.

Example: Passing data to a view

The following example, SelectFont.mxml, shows a view that lets you set a font size. The override of the
createReturnObject () method returns the value as a Number. The fontsize field of the data property passed in
from the previous view sets the initial value of the TextInput control:

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\views\SelectFont.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
title="Select Font Size"
add="addHandler (event) ; ">
<s:layout>
<s:VerticallLayout paddingTop="10"
paddingLeft="10" paddingRight="10"/>
</s:layout>

<fx:Script>
<! [CDATA[
import mx.events.FlexEvent;
// Define return Number object.
protected var fontSize:Number;

// Initialize the return object with the passed in font size.
// 1f you do not set a value,

// return this value for the font size.

protected function addHandler (event:FlexEvent) :void {

Last updated 11/21/2011

http://cookbooks.adobe.com/post_Passing_data_between_Views-18854.html

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 41
User interface and layout

fontSize = data.fontSize;

// Save the value of the specified font.

protected function changeHandler (event:Event) :void
fontSize=Number (ns.text) ;
navigator.popView () ;

// Override createReturnObject() to return the new font size.
override public function createReturnObject () :0bject
return fontSize;

11>
</fx:Scripts>

<s:Label text="Select Font Size"/>
<!-- Set the initlial wvalue of the TextInput to the passed fontSize -->
<s:TextInput id="ns"
text="{data.fontSize}"/>
<s:Button label="Save" click="changeHandler (event) ;"/>
</s:Views>

The following figure shows the view defined by SelectFont.mxml:

' @ {90 ul & 1008

Select Font Size

Select Font Size

The view in the following example, MainFontView.mxml, uses the view defined in SetFont.mxml. The
MainFontView.mxml view defines the following:

« A Button control in the ActionBar to change to the view defined by SetFont.mxml.

« Anevent handler for the add event that first determines if the view. data property is null. If null, the event handler
adds the data. fontSize field to the view.data property.

If the data property is not null, the event handler sets the font size to the value in the data. fontsize field.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\views\MainFontView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
title="Font Size"
add="addHandler (event) ; ">
<s:layout>
<s:VerticallLayout paddingTop="10"/>
</s:layout>

<fx:Script>
<! [CDATA [
import mx.events.FlexEvent;

// Change to the SelectFont view, and pass the current data property.
// The data property contains the fontSize field with the current font size.
protected function clickHandler (event:MouseEvent) :void ({
navigator.pushView (views.SelectFont, data) ;
}
// Set the font size in the event handler for the add event.
protected function addHandler (event:FlexEvent) :void {
// If the data property is null,
// initialize it and create the data.fontSize field.
if (data == null) {
data = new Object () ;
data.fontSize = getStyle('fontSize');
return;

// Otherwise, set data.fontSize to the retured value,

// and set the font size.

data.fontSize = navigator.poppedViewReturnedObject.object;
setStyle('fontSize', data.fontSize);

11>
</fx:Scripts>

<s:actionContent>
<s:Button label="Set Fonté>"
click="clickHandler (event) ;"/>
</s:actionContent>

<s:Label text="Text to size."/>

</s:View>

Configure an application for portrait and landscape orientation

A mobile device sets the orientation of an application automatically when the device orientation changes. To configure
your application for different orientations, Flex defines two view states that correspond to the portrait and landscape
orientations: portrait and landscape. Use these view states to set characteristics of your application based on the

orientation.

The following example uses view state to control the 1ayout property of a Group container based on the current

orientation:

Last updated 11/21/2011

42

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\views\SearchViewStates.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
title="Search">
<s:layout>
<s:Verticallayout paddingTop="10"/>
</s:layout>

<s:states>
<s:State name="portrait"/>
<s:State name="landscape"/>
</s:states>

<s:Group>
<s:layout>
<s:Verticallayout/>
</s:layout>
<s:layout.landscape>
<s:HorizontalLayout/>
</s:layout.landscape>
<s:TextInput text="Enter search text" textAlpha="0.5"/>
<s:Button label="Search"/>
</s:Group>
<s:TextArea text="search results" textAlpha="0.5"/>
</s:View>

This example defines a search view. The Group container controls the layout of the input search text and search button.
In portrait mode, the Group container uses vertical layout. Changing the layout to landscape mode causes the Group
container to use horizontal layout.

Define a custom skin to support layout modes

You can define a custom skin class for a mobile application. If the skin supports portrait and landscape layout, your
skin must handle the portrait and 1andscape view states.

You can configure an application so that it does not change the layout orientation as the user rotates the device. To do
s0, edit the application’s XML file, the one ending in -app.xml, to set the following properties:

« To disable the application from changing the layout orientation, set the <autooOrients> property to false.

+ To set the orientation, set the <aspectRatio> property to portrait or landscape.

Set the overlay mode of a Spark ViewNavigator container

By default, the tab bar and ActionBar control of a mobile application define an area that cannot be used by the views
of the application. That means your content cannot use the full screen size of the mobile device.

However, you can use the ViewNavigator.overlayControls property to change the default layout of these
components. When you set the overlayControls property to true, the content area of the application spans the
entire width and height of the screen. The ActionBar control and the tab bar hover over the content area with an alpha
value that makes them appear partly transparent.

The skin class for the ViewNavigator container, spark.skins.mobile.ViewNavigatorSkin, defines view states to handle
the different values of the overlayControls property. When the overlayControls property is true, "AndOverlay"
is appended to the current state’s name. For example, ViewNavigator's skin is in the "portrait” state by default. When
the overlayControls property is true, the navigator's skin's state is changed to "portraitAndOverlay".

Last updated 11/21/2011

43

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 44
User interface and layout

The life cycle of the Spark ViewNavigator and View containers

Flex performs a series of operations when you switch from one view to another view in a mobile application. At various
points during the process of switching views, Flex dispatches events. You can monitor these events to perform actions
during the process. For example, you can use the removing event to cancel the switch from one view to another view.

The following chart describes the process of switching from the current view, View A, to another view, View B:

View A dispatches REMOVING

v

Cancel operation =~ <«———— Cancel REMOVING event?

Disable mouse interaction on ViewNavigator

v

Create instance of view B, if necessary

v

Initialize data and navigator properties for view
Add view B to display list

ViewNavigator dispatches ELEMENT_ADD event

v

View B dispatches ADD event

v

View B dispatches CREATION_COMPLETE event

v

View A dispatches VIEW_DEACTIVATE event

v

If there is a transition, call ViewTransition.prepare()

v

Update ActionBar, if necessary

v

If there is a transition, call ViewTransition.play()

v

Remove view A from the display list

v

ViewNavigator dispatches ELEMENT_REMOVE event

v

View A dispatches REMOVE event

v

ViewNavigator enables mouse input

v

View B dispatches VIEW_ACTIVATE event

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

Define tabs in a mobile application

Define the sections of an application

Use the TabbedViewNavigatorApplication container to define a mobile application with multiple sections. The
TabbedViewNavigatorApplication container automatically creates a TabbedViewNavigator container. The
TabbedViewNavigator container creates a tab bar to support navigation among the sections of the application.

Each ViewNavigator container defines a different section of the application. Use the navigators property of the
TabbedViewNavigatorApplication container to specify ViewNavigator containers.

In the following example, you define three sections corresponding to the three ViewNavigator tags. Each
ViewNavigator defines the first view that appears when you switch to the section:

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\SparkMultipleSections.mxml -->

<s:TabbedViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark">

<s:navigatorss>
<s:ViewNavigator label="Employees" firstView="views.EmployeeMainView"/>
<s:ViewNavigator label="Contacts" firstView="views.ContactsMainView"/>
<s:ViewNavigator label="Search" firstView="views.SearchView"/>
</s:navigators>

</s:TabbedViewNavigatorApplications>

Note: You do not have to specify the navigators child tag in MXML because it is the default property of
TabbedViewNavigator.

Each ViewNavigator maintains a separate navigation stack. Therefore, the ViewNavigator methods, such as

pushview () and popview (), are relative to the currently active section. The back button on the mobile device returns
control to the previous view on the stack of the current ViewNavigator. The change of view does not alter the current

section.

You do not have to add any specific logic to the application for section navigation. The TabbedViewNavigator
container automatically creates a tab bar at the bottom of the application to control the navigation of the sections.

While it is not required, you can add programmatic control of the current section. To change sections
programmatically, set the TabbedviewNavigator.selectedIndex property to the index of the desired section.
Section indexes are 0-based: the first section in the application is at index 0, the second is at index 1, and so on.

@

o Development - Passing Data Between Tabs.

Adobe Evangelist Holly Schinsky describes ways to pass data between tabs in a mobile application in Flex Mobile

See a video about the TabbedViewNavigator container from video2brain at Creating a Tabbed View Navigator

] Application.

Handle section change events

When the section changes, the TabbedViewNavigator container dispatches the following events:

+ The changing event is dispatched just before the section changes. To prevent the section change, call the
preventDefault () method in the event handler for the changing event.

Last updated 11/21/2011

Adobe Certified Expert in Flex, Brent Arnold, created a video about using the ViewNavigator navigation stack.

45

http://www.youtube.com/iBrent#p/c/18/TpJIrkgvqzI
http://devgirl.org/2011/08/09/flex-mobile-development-passing-data-between-tabs-part-1-includes-source/
http://devgirl.org/2011/08/09/flex-mobile-development-passing-data-between-tabs-part-1-includes-source/
http://www.video2brain.com/en/videos-5839.htm
http://www.video2brain.com/en/videos-5839.htm

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 46
User interface and layout

+ The change event is dispatched just after the section changes.

Configure the ActionBar with multiple sections

An ActionBar control is associated with a ViewNavigator. Therefore, you can configure the ActionBar for each section
when you define the section’s ViewNavigator. In the following example, you configure the ActionBar separately for
each ViewNavigator container that defines the three different sections of the application:

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\SparkMultipleSectionsAB.mxml -->

<s:TabbedViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark">

<fx:Script>
<! [CDATA [
protected function buttonl clickHandler (event:MouseEvent) :void {
// Switch to the first section in the application.
tabbedNavigator.selectedIndex = 0;
// Switch to the first view in the section.
ViewNavigator (tabbedNavigator.selectedNavigator) .popToFirstView() ;

11>
</fx:Scripts>

<s:navigatorss>
<s:ViewNavigator label="Employees" firstView="views.EmployeeMainView">
<s:navigationContents>
<s:Button icon="@Embed (source='assets/Home.png')"
click="buttonl clickHandler (event)"/>
</s:navigationContent>
</s:ViewNavigators>
<s:ViewNavigator label="Contacts" firstView="views.ContactsMainView">
<s:navigationContents>
<s:Button icon="@Embed (source='assets/Home.png')"
click="buttonl clickHandler (event)"/>
</s:navigationContent>
</s:ViewNavigators>
<s:ViewNavigator label="Search" firstView="views.SearchView">
<s:navigationContents>
<s:Button icon="@Embed (source='assets/Home.png')"
click="buttonl clickHandler (event)"/>
</s:navigationContent>
</s:ViewNavigators>
</s:navigators>

</s:TabbedViewNavigatorApplications>

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

The following figure shows this application with the Contacts tab selected in the tab bar:

P& tF 0wl @ 17

/ﬁ‘ Contacts View Main

Select a contact name for more information

Dave
Sally
Jim

Mary

Employees Contacts Search

Alternatively, you can define the ActionBar in each view of the application. In that way, each view uses the same
ActionBar content no matter where you use it in the application.

Control the tab bar

Hide the tab bar control in a view
Any view can hide the tab bar by setting the View. tabBarVisible property to false. By default, the tabBarvisible
property is true to show the tab bar.

You can also use the TabbedviewNavigator.hideTabBar () and TabbedViewNavigator.showTabBar () methods
to control the visibility.

ﬂ?ﬂ Adobe Certified Expert in Flex, Brent Arnold, created a video about hiding the tab bar.

Apply an effect to the tab bar of the TabbedViewNavigator container
By default, the tab bar uses a slide effect for its show and hide effects. The tab bar does not use any effect when you
change the currently selected tab.

You can change the default effect of the tab bar for a show or a hide effect by overriding the
TabbedViewNavigator.createTabBarHideEffect () and TabbedViewNavigator.createTabBarShowEffect ()
methods. After you hide the tab bar, remember to set the visible and includeInLayout properties of the tab bar to

false.

Create multiple panes in a mobile application

SplitViewNavigator is a skinnable container that displays two or more child view navigators in the same screen of a
mobile device. Each view navigator appears in a separate pane managed by the SplitViewNavigator container.

The children of the SplitViewNavigator container can be any component that extends ViewNavigatorBase. Therefore,
you can use the ViewNavigator and TabbedViewNavigator containers as its children.

Last updated 11/21/2011

http://www.youtube.com/iBrent#p/c/1/WWEOlmRfznM

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

Note: Because of the screen space required to display multiple panes simultaneously, Adobe recommends that you only
use the SplitViewNavigator on a tablet.

By default, SplitViewNavigator lays out the panes, corresponding to its children, horizontally. You can specify to use
a vertical layout, or define a custom layout instead.

Create a SplitViewNavigator container

A common interface pattern for tablet devices is the master/detail pattern. This pattern divides the screen into two
main content areas: the master pane and the detail pane. Typically, the user interacts with the master pane to control
the display of content in the detail pane.

Each pane corresponds to a child of the SplitViewNavigator, where the children are either ViewNavigator or
TabbedViewNavigator containers. Because its children are view navigators, the view navigator for each pane contains
its own view stack and action bar.

The following image shows the SplitViewNavigator container in an application with a master and a detail pane:

atatr $ 0

Master Detail

E Adobe AR
ﬂ Adabe Cold...

Adobe Flash,., | Adobe Flex

Price: Free

|
E Adobe Flex |

a
LC Adaobe LiveC...

Click for more information

In this example, the master pane on the left contains a Spark List control that displays a set of Adobe products. The
detail pane on the right displays additional information about the currently selected product in the master pane.

Shown below is the main application file for this example:

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\SparkSplitVNSimple.mxml -->
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:SplitViewNavigator width="100%" height="100%">
<s:ViewNavigator width="256" height="100%"
firstView="views.MasterCategory"/>
<s:ViewNavigator width="100%" height="100%"
firstView="views.DetailView"/>
</s:SplitViewNavigators>
</s:Application>

A SplitViewNavigator can be the child of the Application or TabbedViewNavigatorApplication containers. In this
example, the SplitViewNavigator is the only child of the Application container. Notice that the SplitViewNavigator
specifies a height and width of 100% to occupy the full area of the device's screen.

In this example, the children of the SplitViewNavigator are ViewNavigator containers. The first ViewNavigator define
the master pane, and the second defines the detail pane.

Note: A SplitViewNavigator can have more than two children. Therefore, you could create a SplitViewNavigator with
three, four, or more panes.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 49
User interface and layout

Access the panes and views of a SplitViewNavigator container

The SplitViewNavigator container defines methods and properties that you use to access its children. For example, use
the splitviewNavigator.numviewNavigators property to determine the number of child view navigators of the
SplitViewNavigator.

Use the SplitviewNavigator.getViewNavigatorat () method to access the children of the SplitViewNavigator
based on the child’s index. In the example above, the ViewNavigator of the master pane is at index 0, and the
ViewNavigator of the detail pane is at index 1.

Note: The SplitViewNavigator container inherits the getElementAt() and getElementIndex() methods. Do not use those
methods with SplitViewNavigator. Instead, use getViewNavigatorAt().

From a reference to the ViewNavigator for an individual pane, the SplitViewNavigator can access the individual views
of the pane.

Access the SplitViewNavigator container from a child by using the parentNavigator property of the child. For
example, ViewNavigator.parentNavigator contains a reference to the parent SplitViewNavigator container.

A View container accesses its parent view navigator by using the view.navigator property. Therefore, a view can
access the SplitViewNavigator by using View.navigator.parentNavigator.

In the example above, the ViewNavigator for the master pane specifies as its first view MasterCategory. That view is
defined in the MasterCategory.mxml file, as shown below:

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\views\MasterCategory.mxml -->

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
title="Master">

<fx:Script>
<! [CDATA[
import spark.components.SplitViewNavigator;
import spark.components.ViewNavigator;
import spark.events.IndexChangeEvent;

protected function myList changeHandler (event:IndexChangeEvent) :void {

// Create a reference to the SplitViewNavigator.

var splitNavigator:SplitViewNavigator = navigator.parentNavigator as
SplitViewNavigator;

// Create a reference to the ViewNavigator for the Detail frame.

var detailNavigator:ViewNavigator = splitNavigator.getViewNavigatorAt (1) as
ViewNavigator;

// Change the view of the Detail frame based on the selected List item.

detailNavigator.pushView (DetailView, myList.selectedItem) ;

11>
</fx:Scripts>

<s:List width="100%" height="100%" id="myList"
change="myList_ changeHandler (event) ;">
<s:dataProviders>
<s:ArrayCollection>
<fx:0bject Product="Adobe AIR" Price="11.99"
Image="@Embed (source="'../assets/air icon_sm.jpg')"
Description="Try AIR." Link="air"/>
<fx:0bject Product="Adobe ColdFusion" Price="11.99"

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

Image="@Embed (source="'../assets/coldfusion icon sm.jpg')"
Description="Try ColdFusion." Link="coldfusion"/>
<fx:0bject Product="Adobe Flash Player" Price="11.99"
Image="@Embed (source="'../assets/flashplayer icon_sm.jpg')"
Description="Try Flash." Link="flashplayer"/>
<fx:0bject Product="Adobe Flex" Price="Free"
Image="@Embed (source="'../assets/flex icon sm.jpg')"
Description="Try Flex." Link="flex.html"/>
<fx:0bject Product="Adobe LiveCycleDS" Price="11.99"
Image="@Embed (source="'../assets/livecycleds icon_sm.jpg')"
Description="Try LiveCycle DS." Link="livcycle"/>
<fx:0bject Product="Adobe LiveCycle ES2" Price="11.99"
Image="@Embed (source="'../assets/livecyclees_icon_sm.jpg')"
Description="Try LiveCycle ES." Link="livcycle"/>
</s:ArrayCollection>
</s:dataProviders>
<s:itemRenderers>
<fx:Component >
<s:IconltemRenderer
labelField="Product"
iconField="Image"/>
</fx:Component >
</s:itemRenderers>
</s:List>
</s:View>

MasterCategory.mxml defines a single List control that contains information about Adobe products. The List control

uses a custom item renderer to display a label and an icon for each product. For more information about defining item
renderers, see Using a mobile item renderer with a Spark list-based control.

The List control in the master pane uses the change event to update the detail pane in response to a user action. The
event handler first obtains a reference to the SplitViewNavigator container. From that reference, it obtains a reference
to the ViewNavigator of the detail frame.

Finally, the event handler calls the push () method on the ViewNavigator of the detail frame. The push () method takes
two arguments, the view pushed onto the stack of the ViewNavigator, and an object containing information about the
selected List item.

Update the detail pane of a SplitViewNavigator container

The detail pane of the example above displays information about the selected item in the List control of the master
pane. The detail pane is named DetailView, and is defined in the DetailView.mxml file, as shown below:

Last updated 11/21/2011

50

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\views\DetailView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
title="Detail">
<s:layout>
<s:Verticallayout paddingTop="10" paddingLeft="10" paddingRight="10"/>
</s:layout>

<fx:Script>
<! [CDATA [

// Use navigateToURL() to open a link to the product page.

protected function labell clickHandler (event:MouseEvent) :void {
var destinationURL:String = "http://www.adobe.com/products/" + data.Link;
navigateToURL (new URLRequest (destinationURL)) ;

11>
</fx:Scripts>

<s:VGroup width="461" height="670">
<s:Image source="{data.Image}"
height="176" width="169"
horizontalCenter="0" top="0"/>
<s:Label text="{data.Product}"
fontSize="24" fontWeight="bold"
top="100" left="0"/>
<s:Label text="Price: {data.Price}"
top="125" left="0"/>
<s:TextArea y="174"
width="100%" height="20%"
contentBackgroundColor="0xCC6600"
text="{data.Description}"/>
<s:Label text="Click for more information"
color="#0000FF"
click="1labell clickHandler (event)"/>
</s:VGroup>
</s:View>

The master pane passes an object to the DetailView.mxml file corresponding to the selected item in the List control.
The detail pane accesses that data by using the view. data property. The detail pane then displays the product’s image,
information about the product, and creates a hyperlink to a page with more information about the product.

For more information about passing data to a View container, see “Pass data to a view” on page 38.

Display panes based on device orientation

When developing an application for a tablet, you can use a different layout based on the orientation of the tablet. For
example, in landscape mode, the tablet has a wide screen area that can easily display multiple panes. In portrait layout,
where the screen is narrow, you can choose to hide a pane because of the reduced width of the screen.

The SplitViewNavigator container defines the autoHideFirstViewNavigator property that you use to control the
visibility of the first pane for different orientations. By default, autoHideFirstViewNavigator is false so that the
container shows the first pane regardless of orientation.

Last updated 11/21/2011

51

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

When you set autoHideFirstViewNavigator to true, the container displays the first pane in landscape mode, and
hides the first pane in portrait mode. The SplitViewNavigator container hides the first pane by setting the visible
property of the associated view navigator to false.

In portrait mode with the first pane hidden, use the SplitviewNavigator.showFirstViewNavigatorInPopUp ()
method to open it. When called, this method opens the first pane in a Callout container. A callout container is a pop-
up container that appears on top of your application, as the following figure shows:

ATaT T 0 D =@ = 1103

Detail Show Navigator

Master

ﬂ Adobe AIR
ﬂ Adobe Cold...
Adobe Flash...
m Adobe Flex

5]
LC Adobe LiveC...

Adobe Flex
Price: Free

Click for more inform

LC Adobe Livec...

This example adds a button labeled Show Navigator to the action bar of the detail pane of the SplitViewNavigator.
When the first pane of the container is hidden, the user selects this button to open the master pane.

Note: Create a custom skin for the SplitViewNavigator to open the first pane in a SkinnablePop UpContainer, or in a
subclass of SkinnablePop UpContainer.

The showFirstViewNavigatorInPopUp () method is ignored when the Callout is already open. When the device is
reoriented to landscape mode, the callout automatically closes and the first pane reappears.

Clicking outside the Callout container closes it. You can also close it by calling the
SplitViewNavigator.hideViewNavigatorPopUp () method.

For more information on the Callout container, see “Add a callout container to a mobile application” on page 75.

Add an action bar to a pane displayed in a Callout container

Shown below is the main application file that sets the autoHideFirstviewNavigator property of the
SplitViewNavigator to true. This example uses view states to add a button to the action bar of the detail pane when
the device is in portrait mode:

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\SparkSVNOrient .mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
resize="resizeHandler (event) ; ">

<fx:Script>
<! [CDATA[
import mx.events.ResizeEvent;

// Update the state based on the orientation of the device.
protected function resizeHandler (event:ResizeEvent) :void
currentState = aspectRatio;

11>
</fx:Script>

<s:states>
<s:State name="portrait"/>
<s:State name="landscape"/>
</s:states>

<s:SplitViewNavigator id="splitNavigator"
width="100%" height="100%"
autoHideFirstViewNavigator="true">

<s:ViewNavigator width="256" height="100%"
firstView="views.MasterCategoryOrient"/>
<s:ViewNavigator width="100%" height="100%"
firstvView="views.DetailView">
<s:actionContent.portraits>
<s:Button id="navigatorButton"
label="Show Navigator"
click="splitNavigator.showFirstViewNavigatorInPopUp (navigatorButton);"/>
</s:actionContent.portraits>
</s:ViewNavigators>
</s:SplitViewNavigators>
</s:Application>

The application adds an event handler for the resize event on the Application container. Flex dispatches the resize
event when the orientation of the tablet changes. In the event handler for the resize event, you set the view state of the
application based on the current orientation. For more information on view states, see View states.

The view navigator for the detail pane uses the current state to control the appearance of a Button control in the action
bar. In landscape mode, the button is hidden because the master pan is visible.

In portrait mode, when the master pane is hidden, the Button control is visible in the action bar of the detail pane. The
user then selects the Button control to open the Callout containing the master pane.

Pass a reference to the Button control as the argument to the showFirstViewNavigatorInPopUp () method. This
argument specifies the host of the Callout container, meaning that the Callout is positioned relative to the Button
control.

Close the SplitViewNavigator callout in response to a user action

Clicking outside the Callout container closes it. By default however, clicking within the Callout container does not
close it.

Last updated 11/21/2011

53

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

This example closes the Callout when the user selects a List item by calling the
SplitViewnavigator.hideViewNavigatorPopUp () method. You call this method in the event handler of the
change event of the List control, as the following example shows:

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\views\MasterCategoryOrient .mxml -->

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Master">

<fx:Scripts>
<! [CDATA [
import mx.events.FlexEvent;
import spark.components.SplitViewNavigator;
import spark.components.ViewNavigator;
import spark.events.IndexChangeEvent;

protected function myList changeHandler (event:IndexChangeEvent) :void {

// Create a reference to the SplitViewNavigator.

var splitNavigator:SplitViewNavigator = navigator.parentNavigator as
SplitViewNavigator;

// Create a reference to the ViewNavigator for the Detail frame.

var detailNavigator:ViewNavigator = splitNavigator.getViewNavigatorAt (1)
ViewNavigator;

// Change the view of the Detail frame based on the selected List item.

detailNavigator.pushView (DetailView, myList.selectedItem) ;

// If the Master is open in a callout, close it.
// Otherwise, this method does nothing.
splitNavigator.hideViewNavigatorPopUp () ;

11>
</fx:Script>

<s:List width="100%" height="100%" id="myList"
change="myList changeHandler (event) ;">
<s:dataProvider>
<s:ArrayCollection>
<fx:0bject Product="Adobe AIR" Price="11.99"
Image="@Embed (source="'../assets/air icon_sm.jpg')"
Description="Try AIR." Link="air"/>
<fx:0bject Product="Adobe ColdFusion" Price="11.99"
Image="@Embed (source="'../assets/coldfusion_icon_sm.jpg')"
Description="Try ColdFusion." Link="coldfusion"/>
<fx:0bject Product="Adobe Flash Player" Price="11.99"
Image="@Embed (source="'../assets/flashplayer icon_sm.jpg')"
Description="Try Flash." Link="flashplayer"/>

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<fx:0bject Product="Adobe Flex" Price="Free"
Image="@Embed (source="'../assets/flex_icon_sm.jpg')"
Description="Try Flex." Link="flex.html"/>
<fx:0bject Product="Adobe LiveCycleDS" Price="11.99"
Image="@Embed (source="'../assets/livecycleds icon sm.jpg')"
Description="Try LiveCycle DS." Link="livcycle"/>
<fx:0bject Product="Adobe LiveCycle ES2" Price="11.99"
Image="@Embed (source="'../assets/livecyclees icon_sm.jpg')"
Description="Try LiveCycle ES." Link="livcycle"/>
</s:ArrayCollection>
</s:dataProviders>
<s:itemRenderer>
<fx:Component >
<s:IconltemRenderer
labelField="Product"
iconField="Image"/>
</fx:Component >
</s:itemRenderers>
</s:List>
</s:View>

Implementing persistence for the SplitViewNavigator container

An application for a mobile device is often interrupted by other actions, such as a text message, a phone call, or other
mobile applications. Typically, when an interrupted application is relaunched, the user expects the previous state of
the application to be restored. The persistence mechanism allows the device to restore the application to its previous
state. For more information, see “Enable persistence in a mobile application” on page 118.

SplitViewNavigator implement the loadviewData () and saveviewData () methods that it inherits from the
ViewNavigatorBase base class. Therefore, the SplitViewNavigator can serialize and deserialize the navigation stack and
view data for each of its child navigators.

However, you must manually call these methods when your application is interrupted, as the following example show:

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\SparkSplitVNPersist.mxml -->

<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
initialize="initializeHandler (event) ;">

<fx:Script>
<! [CDATA [
import mx.events.FlexEvent;
import spark.managers.PersistenceManager;

// Create an instance of the PersistenceManager.
public var persistenceManager:PersistenceManager;

// Event handler to initialize SplitViewNavigator.
protected function initializeHandler (event:FlexEvent) :void {

// Register the event handler for the deactivate event.
NativeApplication.nativeApplication.addEventListener (Event .DEACTIVATE,

onDeactivate) ;

persistenceManager = new PersistenceManager () ;
persistenceManager.load() ;

Last updated 11/21/2011

55

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

var data:0Object = persistenceManager.getProperty("navigatorState") ;
if (data)
splitNavigator.loadViewData (data) ;

// Event handler to save SplitViewNavigator on application deactivate event.

protected function onDeactivate (event:Event) :void

persistenceManager.setProperty ("navigatorState", splitNavigator.saveViewData()) ;
persistenceManager.save () ;

11>
</fx:Scripts>

<s:SplitViewNavigator id="splitNavigator" width="100%" height="100%">
<s:ViewNavigator width="256" height="100%"
firstView="views.MasterCategory"/>
<s:ViewNavigator width="100%" height="100%"
firstView="views.DetailView"/>
</s:SplitViewNavigators>
</s:Application>

Define navigation, title, and action controls in a mobile
application

Configure the ActionBar control

The ViewNavigator container defines the ActionBar control. The ActionBar control provides a standard area for a
title, and for navigation and action controls. It lets you define global controls that users can access from anywhere in
the application, or in a specific view. For example, you can use the ActionBar control to add a home button, a search
button, or other options.

For a mobile application with a single section, meaning a single ViewNavigator container, all views share the same
action bar. For a mobile application with multiple sections, meaning one with multiple ViewNavigator containers,
each section defines its own action bar.

Use the ActionBar control to define the action bar area. The ActionBar control defines three distinct areas, as the
following figure shows:

A B C

4Back Details + Add

A. Navigation area B. Title area C. Action area

Areas of the ActionBar

» Navigation area

Contains components that let the user navigate the section. For example, you can define a home button in the
navigation area.

Use the navigationContent property to define the components that appear in the navigation area. Use the
navigationLayout property to define the layout of the navigation area.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

« Title area

Contains either a String containing title text, or components. If you specify components, you cannot specify a title
String.

Use the title property to specify the String to appear in the title area. Use the titleContent property to define
the components that appear in the title area. Use the titleLayout property to define the layout of the title area. If
you specify a value for the titleContent property, the ActionBar skin ignores the title property.

« Action area

Contains components that define actions the user can take in a view. For example, you can define a search or refresh
button as part of the action area.

Use the actionContent property to define the components that appear in the action area. Use the act ionLayout
property to define the layout of the action area.

While Adobe recommends that you use the navigation, title, and action areas as described, there are no restrictions on
the components you place in these areas.

Set ActionBar properties in the ViewNavigatorApplication, ViewNavigator, or View container

You can set the properties that define the contents of the ActionBar control in the ViewNavigatorApplication
container, in the ViewNavigator container, or in individual View containers. The View container has the highest
priority, followed by the ViewNavigator, then the ViewNavigatorApplication container. Therefore, the properties that
you set in the ViewNavigatorApplication container apply to the entire application, but you can override them in the
ViewNavigator or View container.

Note: An ActionBar control is associated with a ViewNavigator, so it is specific to a single section of a mobile application.
Therefore, you cannot configure an ActionBar from the TabbedViewNavigatorApplication and TabbedViewNavigator
containers.

Example: Customize a Spark ActionBar control at the application level

The following example shows main application file of a mobile application:

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\SparkActionBarSimple.mxml -->

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
firstView="views.MobileViewHome" >

<fx:Script>
<! [CDATA [
protected function buttonl clickHandler (event:MouseEvent) :void {
// Perform a refresh
}
11>
</fx:Script>

<s:navigationContent>
<s:Button label="Home" click="navigator.popToFirstView();"/>
</s:navigationContent>

<s:actionContent>
<s:Button label="Refresh" click="buttonl clickHandler (event);"/>
</s:actionContent>
</s:ViewNavigatorApplications>

Last updated 11/21/2011

57

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

This example defines a Home button in the navigation content area of the ActionBar control, and a Refresh button in
the action content area.

The following example defines the MobileViewHome View container that defines the first view of the application. The
View container defines a title string, “Home View”, but does not override either the navigation content or action
content areas of the ActionBar control:

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\views\MobileViewHome.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
title="Home View">
<s:layout>
<s:Verticallayout paddingTop="10"/>
</s:layout>

<s:Label text="Home View"/>
<s:Button label="Submit"/>
</s:View>

Example: Customize an ActionBar control in a View container

This example uses a main application file with a single section that defines a Home button in the navigation area of the
ViewNavigatorApplication container. It also defines a Search button in the action area:

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\SparkActionBarOverride.mxml -->

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
firstView="views.MobileViewHomeOverride" >

<fx:Script>
<! [CDATA [
protected function buttonl clickHandler (event:MouseEvent) :void {
navigator.popToFirstView () ;
}
protected function button2 clickHandler (event:MouseEvent) :void {
// Handle search

11>
</fx:Script>

<s:navigationContents>
<s:Button icon="@Embed (source='assets/Home.png')"
click="buttonl clickHandler (event);"/>
</s:navigationContent>

<s:actionContent>
<s:Button icon="@Embed (source='assets/Search.png')"
click="button2 clickHandler (event) ;"/>
</s:actionContents>
</s:ViewNavigatorApplication>

The first view of this application is the MobileViewHomeOverride view. The MobileViewHomeOverride view defines
a Button control to navigate to a second View container that defines a Search page:

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 59
User interface and layout

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\views\MobileViewHomeOverride.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

title="Home View">

<s:layout>

<s:Verticallayout paddingTop="10"/>
</s:layout>

<fx:Script>
<! [CDATA [

// Navigate to the Search view.
protected function buttonl clickHandler (event:MouseEvent) :void {
navigator.pushView (SearchViewOverride) ;

11>
</fx:Scripts>

<s:Label text="Home View"/>
<s:Button label="Search" click="buttonl clickHandler (event)"/>
</s:View>

The View container that defines the Search page overrides the title area and action area of the ActionBar control, as
shown below:

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\views\SearchViewOverride.mxml -->

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark">
<s:layout>

<s:Verticallayout paddingTop="10"
paddingLeft="10" paddingRight="10"/>

</s:layout>

<fx:Script>
<! [CDATA [
protected function buttonl clickHandler (event:MouseEvent) :void {
// Perform a search.

11>
</fx:Script>

<!-- Override the title to insert a TextInput control. -->
<s:titleContent>
<s:TextInput text="Enter search text ..." textAlpha="0.5"
width="250"/>
</s:titleContent>

<!-- Override the action area to insert a Search button. -->
<s:actionContents>
<s:Button label="Search" click="buttonl clickHandler (event);"/>

</s:actionContents>

<s:Label text="Search View"/>
<s:TextArea text="Search results appear here ..."
height="75%"/>
</s:View>

The following figure shows the ActionBar control for this view:

¥ 0 owl @ 12:07

LR 4
/ﬁ‘ Enter search text ... Search

Search View

Search results appear here ...

Because the Search view does not override the navigation area of the ActionBar control, the navigation area still
displays the Home button.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 61
User interface and layout

Hide the ActionBar control

You can hide the ActionBar control in any view by setting the View.actionBarVisible property to false. By
default, the actionBarvisible property is true to show the ActionBar control.

Use the ViewNavigator.hideActionBar () method to hide the ActionBar control for all views controlled by the
ViewNavigator, as the following example shows:

<?xml version="1.0" encoding="utf-8"?>

<!-- containers\mobile\SparkSingleSectionNoAB.mxml -->

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
firstView="views.HomeView"
creationComplete="creationCompleteHandler (event) ;">

<fx:Script>
<! [CDATA [
import mx.events.FlexEvent;
protected function creationCompleteHandler (event:FlexEvent) :void
// Access the ViewNavigator using the ViewNavigatorApplication.navigator property.
navigator.hideActionBar () ;

11>
</fx:Scripts>

</s:ViewNavigatorApplications>

You can define a custom effect for the ActionBar when the ActionBar is hidden, or when it is made visible. By default,
the ActionBar uses the Animate effect on a show or hide. Change the default effect by overriding the
ViewNavigator.createActionBarHideEffect () and ViewNavigator.createActionBarShowEffect ()
methods. After playing an effect that hides the ActionBar, set its visible and includeInLayout properties to false
so that it is no longer included in the layout of the view.

Use scroll bars in a mobile application

Considerations when using scroll bars in a mobile application

Typically, if content takes up more than the visible area of the screen, the application displays scroll bars. Use the
Scroller control to add scroll bars to your application. Some components, such as the Spark List control, support
scrolling without the need of using the Scroller component. For more information, see Scrolling Spark containers.

The hit area of a scroll bar is the area of the screen in which you position the mouse to perform a scroll. In a desktop
or browser-based application, the hit area is the visible area of the scroll bar. In a mobile application, scroll bars are
hidden even when the content is larger than the visible area of the screen. Hiding the scroll bars enables the application
to use the full width and height of the screen.

A mobile application must differentiate between when the user interacts with a control, such as by selecting a Button
control, from when the user wants to scroll. One consideration with scroll bars in a mobile application is that Flex
components often change their appearance in response to a user interaction.

For example, when the user presses a Button control, the button changes its appearance to indicate that it is selected.
When the user releases the button, the button changes its appearance back to the deselected state. However, when
scrolling, if the user touches the screen over the Button, you do not want the button to change its appearance.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 62
User interface and layout

Adobe engineer Steven Shongrunden shows an example of working with scroll bars in Saving scroll position
o between views in a mobile Flex Application.

Scrolling terms

The following terms are used to describe scrolling in a mobile application:

Content For a scrollable component, such as a Group container or List control, the entire area of the component.
Depending on the screen size and application layout, only a subset of the content might be visible.

Viewport The subset of the content area of a component that is currently visible.

Drag A touch gesture that occurs when the user touches a scrollable area and then moves their finger so that the
content moves along with the gesture.

Velocity The rate and direction of movement of a drag gesture. Measured in pixels-per-millisecond along the X and
Y axis.

Throw A drag gesture where the user lifts their finger once the drag gesture has reached a certain velocity, and the
scrollable content continues to move.

Bounce A drag or throw gesture can move the viewport of a scrollable component outside the component’s content.
The viewport then displays an empty area. When you release your finger, or the velocity of a throw reaches zero, the
viewport bounces back to its resting point with the viewport filled with content. The movement slows as the viewport
reaches the resting point so that it comes to a smooth stop.

Scrolling modes in a mobile application

Scrollable components, such as List and Scroller, support different types of scrolling based on the setting of the
pageScrollingEnabled and scrollsnappingMode properties of the component. These properties are only valid
when the interactionMode style is set to touch.

The following table describes the scrolling modes:

pageScrollingEnabled scroliSnappingMode Mode

false (default) none (default) By default, scrolling is pixel-based. The final scroll position is any pixel location
based on the drag or throw gesture. For example, you scroll a List control.
Scrolling ends when you lift your finger even if a partial List item is visible.

Last updated 11/21/2011

http://flexponential.com/2010/12/05/saving-scroll-position-between-views-in-a-mobile-flex-application/
http://flexponential.com/2010/12/05/saving-scroll-position-between-views-in-a-mobile-flex-application/

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

pageScrollingEnabled scrollSnappingMode Mode

false leadingEdge, center, Scrolling is pixel-based, but the content snaps to a final position based on the
trailingEdge value of scrollSnappingMode.

For example, you scroll a List vertically with scrol1SnappingMode setto a
value of 1leadingEdge. The List control snaps to a final scroll position where
the top list element is aligned to the top of the list.

true none Scrolling is page-based. The size of the viewport of the scrollable component
determines the size of the page. You can only scroll a single page at a time,
regardless of the gesture.

Scroll at least 50% of the visible area of the component to cause the page to
scroll to the next page. If you scroll less than 50%, the component remains on
the current page. Alternatively, if the velocity of the scroll is high enough, the
next page displays. If the velocity is not high enough, the component remains
on the current page.

When content size is not an exact multiple of the viewport size, additional
padding is added to the last page to make it fit completely in the viewport.

true leadingEdge, center, Scrolling is page-based, but the component snaps to a final position based on
trailingEdge the value of scrollSnappingMode. To guarantee that the snapping mode is
respected, the scrolling distance is not always exactly equal to the size of the
page.

Scrolling examples in a mobile application

In the following example, you use a Scroller component to wrap a Group container in a mobile application. The Group
container has as its child an Image control containing a large image. By wrapping the Group container in the Scroller,
you can scroll the image:

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\views\SparkMobilePixelScrollerHomeView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark" title="HomeView">
<s:Scroller width="200" height="200">
<s:Group>
<s:Image width="300" height="400"
source="@Embed (source="'../assets/logo.jpg')"/>
</s:Group>
</s:Scrollers>
</s:View>

Notice that in this example, you omit any settings for of the pageScrollingEnabled and scrollSnappingMode
properties. Therefore, this example uses the default pixel scrolling mode, and you can scroll to any pixel location in the
image.

The next example shows a List control that sets the pagescrollingEnabled and scrollSnappingMode properties:

Last updated 11/21/2011

63

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\views\SparkMobilePageScrollHomeView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Adobe Product List">
<s:layout>
<s:Verticallayout paddingTop="10" paddingLeft="10" paddingRight="10"/>
</s:layout>

<fx:Script>
<! [CDATA [
import spark.events.IndexChangeEvent;

protected function myList changeHandler (event:IndexChangeEvent) :void {
navigator.pushView (views.ProductPricelView, myList.selectedItem) ;

11>
</fx:Scripts>

<s:List id="myList" labelField="Product"

height="200" width="100%"

borderVisible="true"

scrollSnappingMode="1leadingEdge"

pageScrollingEnabled="true"

change="myList changeHandler (event) ;">

<s:dataProviders>

<s:ArrayCollection>
<fx:0bject Product="Adobe AIR" Price="11.99"/>
<fx:0bject Product="Adobe BlazeDS" Price="11.99"/>
<fx:0bject Product="Adobe ColdFusion" Price="11.99"/>
<fx:0bject Product="Adobe Flash Player" Price="11.99"/>
<fx:0bject Product="Adobe Flex" Price="Free"/>
<fx:0bject Product="Adobe LiveCycleDS" Price="11.99"/>
<fx:0bject Product="Adobe LiveCycle ES2" Price="11.99"/>
<fx:0bject Product="Open Source Media Framework"/>
<fx:0bject Product="Adobe Photoshop" Price="11.99"/>
<fx:0bject Product="Adobe Illustrator" Price="11.99"/>
<fx:0bject Product="Adobe Reader" Price="11.99"/>
<fx:0bject Product="Adobe Acrobat" Price="11.99"/>
<fx:0bject Product="Adobe InDesign" Price="Free"/>
<fx:0bject Product="Adobe Connect" Price="11.99"/>
<fx:0bject Product="Adobe Dreamweaver" Price="11.99"/>
<fx:0bject Product="Open Framemaker"/>
</s:ArrayCollection>
</s:dataProviders>
</s:List>
</s:Views>

This example uses page scrolling with a snap setting of 1eadingEdge. Therefore, as you scroll the List, the List can
scroll a single page at a time. On a change of page, the control snaps to a final scroll position where the top list element
is aligned to the top of the list.

Last updated 11/21/2011

64

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 65
User interface and layout

Scrolling considerations with StageText

StageText lets you use native text inputs in a mobile application, rather than using the standard text field controls.
However, a scrollable container cannot hold a text input control, such as the TextInput or Text Area control, that uses
StageText. Therefore, to use a text input control in a scrollable container, reskin the control so it does not use
StageText.

Flex ships with skins for the TextInput and TextArea controls that do not rely on StageText. Use the following skins
with these controls in a scrollable container:

« spark.skins.mobile.TextInputSkin Skin for TextInput that does not use StageText.
« spark.skins.mobile.TextAreaSkin Skin for TextArea that does not use StageText.
The following example shows a View container that uses a TextInput and TextArea control in a scrollable container:

<?xml version="1.0" encoding="utf-8"?>
<!-- containers\mobile\SparkMobileStageTextScrollHomeView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

title="HomeView">

<s:layout>

<s:VerticalLayout/>
</s:layout>

<!-- Create CSS class selectors that reference the skins
that do not rely on StageText. -->
<fx:Style>

@namespace s "library://ns.adobe.com/flex/spark";

.myTextInputStyle {

skinClass: ClassReference ("spark.skins.mobile.TextInputSkin") ;
}
.myTextAreaStyle {

skinClass: ClassReference ("spark.skins.mobile.TextAreaSkin") ;

}

</fx:Style>

<!-- Apply the class selectors to the TextInput and TextArea controls. -->
<s:Scroller width="100%" height="100%">
<s:VGroup height="250" width="100%"
paddingTop="10" paddingLeft="5" paddingRight="10">
<s:HGroup verticalAlign="middle">
<s:Label text="Text Input 1: "
fontWeight="bold"/>
<s:TextInput width="225"
styleName="myTextInputStyle"/>
</s:HGroup>
<s:HGroup verticalAlign="middle">
<s:Label text="Text Input 2: "
fontWeight="bold"/>
<s:TextInput width="225"
styleName="myTextInputStyle"/>
</s:HGroup>
<s:HGroup verticalAlign="middle">

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<s:Label text="Text Input 3: "
fontWeight="bold"/>
<s:TextInput width="225"
styleName="myTextInputStyle"/>
</s:HGroup>
<s:HGroup verticalAlign="middle">
<s:Label text="Text Input 4: "
fontWeight="bold"/>
<s:TextInput width="225"
styleName="myTextInputStyle"/>
</s:HGroup>
<s:HGroup verticalAlign="middle">
<s:Label text="TextArea 1: "
fontWeight="bold"/>
<s:TextArea width="225" height="100"
styleName="myTextAreaStyle "/>
</s:HGroup>
</s:VGroup>
</s:Scrollers>
</s:View>

Events and scroll bars
Flex components rely on events to indicate that a user interaction has occurred. In response to the user interaction, the

component can then change its appearance, or perform some other action.

Application developers rely on events to handle user interaction. For example, you typically use the Button control’s
click event to run an event handler in response to the user selecting the button. Use the List control’s change event
to run an event handler when the user selects an item in the List.

The Flex scrolling mechanism relies on the mouseDown event. That means the scrolling mechanism listens for
mouseDown events to determine if a scroll operation is to be initiated.

Interpret a user gesture as a scroll operation
An application consists of multiple Button controls in a scrollable container:
1 Use your finger to press a Button control. The button dispatches a mouseDown event.

2 Flex delays responding to the user interaction for a predefined time period. The delay period ensures that the user
is selecting the button and not attempting to scroll the screen.

If, during the delay period, you move your finger more than a predefined amount, Flex interprets that gesture as a
scroll action. The distance that you have to move your finger for the gesture to be interpreted as a scroll is
approximately 0.08 inches. This distance corresponds to about 20 pixels on a 252 DPI device.

Because you moved your finger before the delay period expires, the Button control never recognizes the interaction.
The button never dispatches an event or changes its appearance.

3 After the delay period expires, the Button control recognizes the user interaction. The button changes its
appearance to indicate that it has been selected.

Use the touchbelay property of the control to configure the duration of the delay. The default value is 100 ms. If
you set the touchDelay property to 0, there is no delay and scrolling is initiated immediately.

4 After the delay period expires and Flex has dispatched the mouse events, you then move your finger more than 20
pixels. The Button control returns to the normal state, and the scroll action is initiated.

Last updated 11/21/2011

66

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

In this case, the button changed its appearance because the delay period expired. However, once you move your
finger more than 20 pixels, even after the delay period expires, Flex interprets the gesture as a scroll action.

Note: Flex components support many different types of events besides mouse events. When working with components, you
decide how your application reacts to these events. At the time of the mouseDown event, the intended behavior of the user
is ambiguous. The user could intend to interact with the component or they could scroll. Because of this ambiguity, Adobe
recommends listening for c1ick or mouseUp events instead of the mouseDown event.

Handle scroll events in a mobile application

To signal the beginning of a scroll operation, the component that dispatches the mouseDown event dispatches a
bubbling touchInteractionStarting event. If that event is not canceled, the component dispatches a bubbling
touchInteractionStart event.

When a component detects a touchInteractionStart event, it must not attempt to respond to the user gesture. For
example, when a Button control detects a touchInteractionStart event, it turns off any visual indicators that it set
based on the initial mouseDown event.

If a component does not want to allow the scroll to start, the component can call the preventDefault () method in
the event handler for the touchInteractionStarting event.

When the scroll operation completes, the component that dispatches the mouseDown event dispatches a bubbling

touchInteractionEnd event.

Scroll behavior based on the initial touch point

The following table describes the way scrolling is handled based on the location of the initial touch point:

Selected item Behavior

Empty space, No component recognizes the gesture. The Scroller waits for the user to move the touch point more

i than 20 pixels before initiating scrolling.
noneditable text,

unselectable text

Item in a List control After the delay period, the item renderer for the selected item changes the display to the selected
state. However, if at any time the user moves more than 20 pixels, then the item changes its
appearance to the normal state and scrolling is initiated.

Button, After the delay period expires, show its mouseDown state. However, if the user moves the touch point
more than 20 pixels, then the control changes its appearance to the normal state and initiates
CheckBox, scrolling

RadioButton,

DropDownlList

Button component inside a List | The item renderer never highlights. The Button or the Scroller handles the gesture, the same as the
item renderer normal Button case.

Define menus in a mobile application

The ViewMenu container defines a menu at the bottom of a View container in a mobile application. Each View
container defines its own menu specific to that view.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

The following figure shows the ViewMenu container in an application:

Select a menu item
Open Menu
Close Menu
Add Cancel
Delete Edit Search

The ViewMenu container defines a menu with a single hierarchy of menu buttons. That is, you cannot create menus
with submenus.

The children of the ViewMenu container are defined as ViewMenultem controls. Each ViewMenultem control
represents a single button in the menu.

User interaction with the ViewMenu container

Open the menu by using the hardware menu key on the mobile device. You can also open it programmatically.

Selecting a menu button closes the entire menu. The ViewMenultem control dispatches a c1ick event when the user
selects a menu button.

While the menu is open, press the device’s back or menu button to close the menu. The menu also closes if you press
the screen anywhere outside the menu.

The caret is the menu button that currently has focus. Use the device’s five-way control or arrow keys to change the
caret. Press the device’s Enter key or the five-way control to select the caret item and close the menu.

Create a menu in a mobile application

Use the View.viewMenuItems property to define the menu for a view. The View.viewMenuItems property takes a
Vector of ViewMenultem controls, as the following example shows:

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>

<!-- components\mobile\views\ViewMenuHome.mxml -->

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Home" >

<fx:Script>
<! [CDATA[
// The event listener for the click event.
private function itemClickInfo (event:MouseEvent) :void {
switch (event.currentTarget.label) {
case "Ad4d"
myTA.text = "Add selected";
break;
case "Cancel" :
myTA.text = "Cancel selected";
break;
case "Delete" :
myTA.text = "Delete selected";

break;

case "Edit"
myTA.text = "Edit selected";
break;

case "Search"

myTA.text = "Search selected";
break;

default
myTA.text = "Error";

11>
</fx:Scripts>

<s:viewMenultems>
<s:ViewMenultem label="Add" click="itemClickInfo (event);"/>

<s:ViewMenuItem label="Cancel" click="itemClickInfo (event);"/>
<s:ViewMenulItem label="Delete" click="itemClickInfo (event);"/>
<s:ViewMenultem label="Edit" click="itemClickInfo (event);"/>

<s:ViewMenultem label="Search" click="itemClickInfo (event);"/>

</s:viewMenultems>

<s:VGroup paddingTop="10" paddingLeft="10">
<s:TextArea id="myTA" text="Select a menu item"/>
<s:Button label="Open Menu"
click="mx.core.FlexGlobals.topLevelApplication.viewMenuOpen=true;"/>
<s:Button label="Close Menu"
click="mx.core.FlexGlobals.topLevelApplication.viewMenuOpen=false;"/>
</s:VGroup>
</s:View>

In this example, you use the View.viewMenuItems property to add five menu items, where each menu items
represented by a ViewMenultem control. Each ViewMenultem control uses the 1abel property to specify the text that
appears in the menu for that item.

Notice that you do not explicitly define the ViewMenu container. The View container automatically creates an
instance of the ViewMenu container to hold the ViewMenultem controls.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 70
User interface and layout

Use the ViewMenultem control’s icon style

The ViewMenultem control defines the icon style property that you can use to include an image. You can use the icon
style with or without the 1abel property.

Handle the ViewMenultem control’s c1ick event

Each ViewMenultem control also defines an event handler for the c1ick event. The ViewMenultem control
dispatches the c1ick event when the user selects the item. In this example, all menu items use the same event handler.
However, you can choose to define a separate event handler for each click event.

Open the ViewMenultem control programmatically

You open the menu by using the hardware menu key on your device. This application also defines two Button controls
to open and close the menu programmatically.

To open the menu programmatically, set the viewMenuOpen property of the application container to true. To close
the menu, set the property to false. The viewMenuOpen property is defined in the ViewNavigatorApplicationBase
class, the base class of the ViewNavigatorApplication and TabbedViewNavigatorApplication containers.

Apply a skin to the ViewMenu and ViewMenultem components

Use skins to control the appearance of the ViewMenu and ViewMenultem components. The default ViewMenu skin
class is spark.skins.mobile.ViewMenuSkin. The default ViewMenultem skin class is
spark.skins.mobile.ViewMenultemSkin.

Blogger Daniel Demmel shows how to skin the ViewMenu control to look like Gingerbread black.

The skin classes use skin states, such as normal, closed, and disabled, to control the appearance of the skin. The
skins also define transitions to control the appearance of the menu as it changes view state.

For more information, see “Basics of mobile skinning” on page 160.

Set the layout of a ViewMenu container

The ViewMenuLayout class defines the layout of the view menu. The menu can have multiple rows depending on the
number of menu items.

ViewMenultem layout rules

The requestedMaxColumnCount property of the ViewMenuLayout class defines the maximum number of menu
items in a row. By default, the requestedMaxColumnCount property is set to three.

The following rules define how the ViewMenuLayout class performs the layout:

+ Ifyou define three or fewer menu items, where the requestedMaxColumnCount property contains the default value
of three, the menu items are displayed in a single row. Each menu item has the same size.

If you define four or more menu items, meaning more menu items than specified by the
requestedMaxColumnCount property, the ViewMenu container creates multiple rows.

+ If the number of menu items is evenly divisible by the requestedMaxColumnCount property, each row contains
the same number of menu items. Each menu item is the same size.

For example, the requestedMaxColumnCount property is set to the default value of three, and you define six menu
items. The menu displays two rows, each containing three menu items.

+ Ifthe number of menu items is not evenly divisible by the requestedMaxColumnCount property, rows can contain
a different number of menu items. The size of the menu items depends on the number of menu items in the row.

Last updated 11/21/2011

http://daaain.posterous.com/reskinning-the-android-contextual-menu-viewme

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

For example, the requestedMaxColumnCount property is set to the default value of three, and you define eight
menu items. The menu displays three rows. The first row contains two menu items. The second and third rows each
contain three items.

Create a custom ViewMenultem layout

The ViewMenuLayout class contains properties to let you modify the gaps between menu items and the default
number of menu items in each row. You can also create your own custom layout for the menu by creating your own
layout class.

By default, the spark.skins.mobile.ViewMenuSkin class defines the skin for the ViewMenu container. To apply a
customized ViewMenuLayout class to the ViewMenu container, define a new skin class for the ViewMenu container.

The default ViewMenuSkin class includes a definition for a Group container named contentGroup, as the following
example shows:

<s:Group id="contentGroup" left="0" right="0" top="3" bottom="2"
minWidth="0" minHeight="0">
<s:layout>
<s:ViewMenuLayout horizontalGap="2" verticalGap="2" id="contentGroupLayout"
requestedMaxColumnCount="3"
requestedMaxColumnCount . landscapeGroup="6"/>
</s:layout>
</s:Group>

Your skin class must also define a container named contentGroup. That container uses the 1ayout property to specify
your customized layout class.

You can then apply your custom skin class in the application, as the following example shows:

<?xml version="1.0" encoding="utf-8"?>
<!-- components\mobile\ViewMenuSkin.mxml -->
<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
firstView="views.ViewMenuHome" >
<fx:Style>
@namespace s "library://ns.adobe.com/flex/spark";
s|ViewMenu {
skinClass: ClassReference ("skins.MyVMSkin") ;
1
</fx:Style>
</s:ViewNavigatorApplications>

Display the busy indicator for long-running activity in a
mobile application

The Spark BusylIndicator control displays a rotating spinner with 12 spokes. You use the BusyIndicator control to
provide a visual indication that a long-running operation is in progress.

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 72
User interface and layout

The following figure shows the BusyIndicator control in the control bar area of a Spark Panel container, next to the
Submit button:

HomeView

Busy Indicator Example

Click the Busy button to see the
BusylIndicator.

Busy

Submit

Make the BusylIndicator control visible while a long-running operation is in progress. When the operation is complete,
hide the control.

For example, you can create an instance of the BusyIndicator control in an event handler, possibly the event handler
that starts the long-running process. In the event handler, call the addElement () method to add the control to a
container. When the process is complete, call removeElement () to remove the BusyIndicator control from the
container.

Another option is to use the visible property of the control to show and hide it. In the following example, you add
the BusylIndicator control to the control bar area of a Spark Panel container in a View container:

<?xml version="1.0" encoding="utf-8"?>
<!-- components\mobile\views\SimpleBusyIndicatorHomeView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="HomeView">

<s:Panel id="panel" title="Busy Indicator Example"
width="100%" height="100%">
<s:controlBarContent>
<s:Button label="Submit" />
<s:BusyIndicator id="bi"
visible="false"
symbolColor="red"/>
</s:controlBarContent>

<s:VGroup left="10" right="10" top="10" bottom="10">
<s:Label width="100%" color="blue"
text="Click the Busy button to see the BusyIndicator."/>
<s:Button label="Busy"
click="{bi.visible = !bi.visible}" />
</s:VGroup>
</s:Panel>
</s:View>

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 73
User interface and layout

In this example, the visible property of the BusyIndicator control is initially set to false to hide it. Click the Busy
button to set the visible property to true to show the control.

The BusylIndicator control only spins when it is visible. Therefore, when you set the visible property to false, the
control does not require any processing cycles.

Note: Setting the visible property to false hides the control, but the control is still included in the layout of its parent
container. To exclude the control from layout, set the visible and includeInLayout properties to false.

The Spark BusyIndicator control does not support skinning. However, you can use styles to set the color and rotation
interval of the spinner. In the previous example, you set the color of the indicator by using the symbolcolor property.

Add a toggle switch to a mobile application

The Spark ToggleSwitch control defines a simple binary switch. The control consists of thumb and a track along which
you slide the thumb.

The ToggleSwitch control is similar to the ToggleButton and CheckBox controls. All of these controls let you choose
between a selected and an unselected value.

The following image shows the ToggleSwitch control in an application:

AT&T B]

HomeView

Toggle Label: OFF

Toggle Position: 0

The ToggleSwitch control has two positions: selected and unselected. The control is in the unselected position when
the thumb is to the left. The selected position is when the thumb is to the right. In the figure, the switch is in the
unselected position.

Clicking anywhere in the control toggles its position. You can also slide the thumb along the track to change position.
When you release the thumb, it moves to the position, selected or unselected, that is closest to the thumb location.

By default, the label OFF corresponds to the unselected position and ON corresponds to the selected position.

Create a ToggleSwitch control

Shown below is the View container that defines the ToggleSwitch control shown in the previous figure:

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>
<!-- components\mobile\views\ToggleSwitchSimpleHomeView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
title="HomeView">
<s:layout>
<s:VerticallLayout
paddingTop="10" paddingLeft="5"/>
</s:layout>
<s:ToggleSwitch id="ts"
slideDuration="1000"/>
<s:Form>
<s:FormItem label="Toggle Label: ">
<s:Label text="{ts.selected ? 'ON' : 'OFF'}"/>
</s:FormItem>
<s:FormItem label="Toggle Position: ">
<s:Label text="{ts.thumbPosition}"/>
</s:FormItem>
</s:Form>
</s:View>

In this example, you display ON or OFF in the first Label control based on the thumb position. The second label
control displays the current thumb position as a value between 0.0 (unselected0 and 1.0 (selected).

This example also sets the s1ideDuration style to 1000. This style determines the duration, in milliseconds, for an
animation of the thumb as it slides between the selected and unselected positions.

Shown below is the main application file:

<?xml version="1.0" encoding="utf-8"?>

<!-- components\mobile\ToggleSwitchSimple.mxml -->

<s:ViewNavigatorApplication xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="1library://ns.adobe.com/flex/spark"
firstvView="views.ToggleSwitchSimpleHomeView">

</s:ViewNavigatorApplication>

Change the default callout of a ToggleSwitch control

In the previous example, the ToggleSwitch control uses the default values for the unselected and selected labels: OFF

(unselected) and ON (selected). To customize the labels or other visual characteristics of the control, define a skin class

as a subclass of spark.skins.mobile. ToggleSwitchSkin or create your own skin class.

The following skin class changes the labels to Yes and No:

Last updated 11/21/2011

74

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

package skins

// components\mobile\skins\MyToggleSwitchSkin.as

{

}

import spark.skins.mobile.ToggleSwitchSkin;

public class MyToggleSwitchSkin extends ToggleSwitchSkin

{

public function MyToggleSwitchSkin ()

{

super () ;

// Set properties to define the labels

// for the selected and unselected positions.

selectedLabel="Yesg";

unselectedLabel="No";

The following View container uses this skin class:

<?xml version="1.0" encoding="utf-8"?>

<!-- components\mobile\views\ToggleSwitchSkinHomeView.mxml -->

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="1library://ns.adobe.com/flex/spark"
title="HomeView">
<s:layout>
<s:VerticalLayout
paddingTop="10" paddingLeft="5"/>
</s:layout>

<s:ToggleSwitch id="ts"
slideDuration="1000"
skinClass="skins.MyToggleSwitchSkin"/>

<s:Form>
<s:FormItem label="Toggle Label: ">
<s:Label text="{ts.selected ? 'Yes'
</s:FormItems>
<s:FormItem label="Toggle Position: ">

<s:Label text="{ts.thumbPosition}"/>

</s:FormItem>
</s:Form>

</s:View>

'NO'}"/>

Add a callout container to a mobile application

In a mobile application, a callout is a container that pops up on top of the application. The container can hold one or
more components, and supports different types of layouts.

A callout container can be modal or nonmodal. A modal container takes all keyboard and mouse input until it is
closed. A nonmodal container allows other components in the application to accept input while the container is open.

Flex provides two components that you can use to add callout containers to a mobile application: CalloutButton and

Callout.

Last updated 11/21/2011

75

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 76
User interface and layout

Use the CalloutButton control to create a callout container

The CalloutButton control provides a simple way to create a callout container. The component lets you define the
components that appear in the callout and to set the container layout.

When you select the CalloutButton control in a mobile application, the control opens the callout container. Flex
automatically draws an arrow from the callout container back to the CalloutButton control, as the following figure
shows:

AT&T B BT 0O

HomeView

Select the button to open the callout

i

Open callout

OK | Cancel

The following example shows the mobile application that creates the CalloutButton shown in the previous figure:

<?xml version="1.0" encoding="utf-8"?>
<!-- components\mobile\views\CalloutButtonSimpleHomeView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

title="HomeView">

<s:layout>

<s:VerticalLayout
paddingLeft="10" paddingTop="10"/>
</s:layout>

<s:Label text="Select the button to open the callout"/>

<s:CalloutButton id="myCB"
horizontalPosition="end"
verticalPosition="after"
label="Open callout"s>
<s:calloutLayout>
<s:HorizontalLayout/>
</s:calloutLayouts>

<!-- Define buttons that appear in the callout. -->
<s:Button label="OK"
click="myCB.closeDropDown () ;"/>

<s:Button label="Cancel"
click="myCB.closeDropDown () ;"/>
</s:CalloutButtons>
</s:Views>

The CalloutButton control defines two Button controls that appear inside the callout container. The CalloutButton
control also specifies to use HorizontalLayout as the layout of the callout container. By default, the container uses
BasicLayout.

Open and close a callout container with the CalloutButton control

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 77
User interface and layout

The callout container opens when the user selects the CalloutButton control, or when you call the
CalloutButton.openDropDown () method. The horizontalPosition and verticalPosition properties
determine the position of the callout container relative to the CalloutButton control. For an example, see “Size and
position a callout container” on page 86.

The callout container opened by the CalloutButton is always nonmodal. That means other components in the
application can receive input while the callout is open. Use the Callout container to create a modal callout.

The callout container stays open until you click outside the callout container, or you call the
CalloutButton.closeDropDown () method. In this example, you call the closeDropDown () method in the event
handler for the c1ick event for the two Button controls in the callout container.

Use the Callout container to create a callout

The CalloutButton control encapsulates in a single control the callout container and all of the logic necessary to open
and close the callout. The CalloutButton control is then said to be the host of the callout container.

You can also use the Callout container in a mobile application. The advantage of a Callout container is that it is not
associated with a single host, and is therefore reusable anywhere in the application.

Use the callout.open () and callout.close () methods to open a Callout container, typically in response to an
event. When you call the open () method, you can pass an optional argument to specify that the callout container is
modal. By default, the callout container is nonmodal.

The position of the callout container is relative to the host component. The horizontalPosition and
verticalPosition properties determine the container’s location relative to the host. For an example, see “Size and
position a callout container” on page 86.

Because it is a pop-up, you do not create a Callout container as part of the normal MXML layout code of your
application. Instead, you define the Callout container as a custom MXML component in an MXML file.

In the following example, define a Callout container in the file MyCallout.mxml in the comps directory of your
application:

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>

<!-- components\mobile\comps\MyCallout.mxml -->

<s:Callout xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
horizontalPosition="start"
verticalPosition="after">

<s:VGroup
paddingTop="10" paddingLeft="5" paddingRight="10">

<s:HGroup verticalAlign="middle">
<s:Label text="First Name: "
fontWeight="bold"/>
<s:TextInput width="225"/>
</s:HGroup>

<s:HGroup verticalAlign="middle">
<s:Label text="Last Name: "
fontWeight="bold"/>
<s:TextInput width="225"/>
</s:HGroup>

<s:HGroup>
<s:Button label="OK" click="close();"/>
<s:Button label="Cancel" click="close();"/>
</s:HGroup>
</s:VGroup>
</s:Callout>

MyCallout.mxml defines a simple pop-up to let a user enter a first and last name. Notice that the buttons call the
close () method to close the callout in response to a click event.

The following example shows a View container that opens MyCallout.mxml in response to a click event:

Last updated 11/21/2011

78

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 79
User interface and layout

<?xml version="1.0" encoding="utf-8"?>
<!-- components\mobile\views\CalloutSimpleHomeView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

title="HomeView">

<s:layout>

<s:VerticallLayout
paddingLeft="10" paddingTop="10"/>
</s:layout>

<fx:Script>
<! [CDATA [
import comps.MyCallout;

// Event handler to open the Callout component.

protected function buttonl clickHandler (event:MouseEvent) :void {
var myCallout:MyCallout = new MyCallout () ;
// Open as a modal callout.
myCallout.open(calloutB, true);

11>
</fx:Script>

<s:Label text="Select the button to open the callout"/>
<s:Button id="calloutB"
label="Open Callout container"
click="buttonl clickHandler (event);"/>
</s:View>

First, import the MyCallout.mxml component into the application. In response to a c1ick event, the button named

calloutB creates an instance of MyCallout.mxml, and then calls the open () method.

The open () method species two arguments. The first argument specifies that calloutB is the host component of the
callout. Therefore, the callout positions itself in the application relative to the location of calloutB. The second
argument is true to create a modal callout.

Define an inline Callout container

You do not have to define the Callout container in a separate file. The following example uses the <fx:Declaration>
tag to define it as an inline component of a View container:

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>
<!-- components\mobile\views\CalloutInlineHomeView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

title="HomeView">

<s:layout>

<s:VerticallLayout
paddingLeft="10" paddingTop="10"/>
</s:layout>

<fx:Script>
<! [CDATA [
// Event handler to open the Callout component.
protected function buttonl clickHandler (event:MouseEvent) :void {
var myCallout:MyCallout = new MyCallout () ;
// Open as a modal callout.
myCallout.open(calloutB, true);

11>
</fx:Scripts>

<fx:Declarations>
<fx:Component className="MyCallout"s>
<s:Callout
horizontalPosition="end"
verticalPosition="after">
<s:VGroup
paddingTop="10" paddingLeft="5" paddingRight="10">
<s:HGroup verticalAlign="middle">
<s:Label text="First Name: "
fontWeight="bold"/>
<s:TextInput width="225"/>
</s:HGroup>
<s:HGroup verticalAlign="middle">
<s:Label text="Last Name: "
fontWeight="bold"/>
<s:TextInput width="225"/>
</s:HGroup>
<s:HGroup>
<s:Button label="OK" click="close();"/>
<s:Button label="Cancel" click="close();"/>
</s:HGroup>
</s:VGroup>
</s:Callout>
</fx:Component >
</fx:Declarations>

<s:Label text="Select the button to open the callout"/>
<s:Button id="calloutB"
label="Open Callout container"
click="buttonl clickHandler (event);"/>
</s:View>

Pass data back from the Callout container

Use the close () method of the Callout container to pass data back to the main application. The close () method has
the following signature:

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 81
User interface and layout

public function close(commit:Boolean = false, data:*):void

where:

+ commit contains true if the application should commit the returned data.
« data specifies the returned data.

Calling the close () method dispatches a close event. The event object associated with the close event is an object
of type spark.events.PopUpEvent. The PopUpEvent class defines two properties, commit and data, that contain the
values of the corresponding arguments to the close () method. Use these properties in the event handler of the close
event to inspect any data returned from the callout.

The callout container is a subclass of the SkinnablePopUpContainer class, which uses the same mechanism to pass data
back to the main application. For an example of passing data back from the SkinnablePopUpContainer container, see
Passing data back from the Spark SkinnablePopUpContainer container.

The following example modifies the Callout component shown above to return the first and last name values:

<?xml version="1.0" encoding="utf-8"?>

<!-- components\mobile\comps\MyCalloutPassBack.mxml -->

<s:Callout xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
horizontalPosition="start"
verticalPosition="after">

<fx:Script>
<! [CDATA[
import spark.events.IndexChangeEvent;

public var retData:String = new String();

// Event handler for the click event of the OK button.
protected function clickHandler (event:MouseEvent) :void {
//Create the return data.
retData = firstName.text + " " + lastName.text;
// Close the Callout.
// Set the commit argument to true to indicate that the
// data argument contains a valid value.
close (true, retData);

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

</s:

In this example, you create a String to return the first and last names in response to the user selecting the OK button.

</fx:Scripts>

<s:VGroup

paddingTop="10" paddingLeft="5" paddingRights=
<s:HGroup verticalAlign="middle">
<s:Label text="First Name: "
fontWeight="bold"/>
<s:TextInput id="firstName" width="225"/>
</s:HGroup>
<s:HGroup verticalAlign="middle">
<s:Label text="Last Name: "
fontWeight="bold"/>
<s:TextInput id="lastName" width="225"/>
</s:HGroup>
<s:HGroup>
<s:Button label="OK" click="clickHandler (
<s:Button label="Cancel" click="close() ;"
</s:HGroup>

</s:VGroup>
Callout>

LTS

event) ;" />

/>

The View container then uses the close event on the Callout to display the returned data:

<?xml version="1.0" encoding="utf-8"?>

<!-- components\mobile\views\CalloutPassBackDataHomeView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"
title="HomeView">

<s:layout>

<s:VerticalLayout
paddingLeft="10" paddingTop="10"/>

</s:layout>

<fx:Script>

<! [CDATA [
import comps.MyCalloutPassBack;
import spark.events.PopUpEvent;

public var myCallout:MyCalloutPassBack =

new MyCalloutPassBack() ;

// Event handler to open the Callout component.

protected function clickHandler (event:MouseEvent) :void {
// Add an event handler for the close event to check for

// any returned data.

myCallout.addEventListener('close', closeHandler) ;

// Open as a modal callout.
myCallout.open(calloutB, true);

// Handle the close event from the Callout.
protected function closeHandler (event:PopUpEvent) :void {

Last updated 11/21/2011

82

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 83
User interface and layout

// If commit is false, no data is returned.
if (levent.commit)
return;

// Write the returned Data to the TextArea control.
myTA.text = String(event.data);

// Remove the event handler.
myCallout.removeEventListener ('close', closeHandler) ;

11>
</fx:Scripts>

<s:Label text="Select the button to open the callout"/>
<s:Button id="calloutB"
label="Open Callout container"
click="clickHandler (event) ;" />
<s:TextArea id="myTA"/>
</s:View>

Add a ViewNavigator to a Callout

You can use a ViewNavigator in a Callout container. The ViewNavigator lets you add an action bar and multiple views
to the callout.

For example, the following View opens a Callout container defined in the file MyCalloutPassBackVN:

<?xml version="1.0" encoding="utf-8"?>
<!-- components\mobile\views\CalloutPassBackDataHomeView.mxml -->
<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"

xmlns:s="library://ns.adobe.com/flex/spark"

title="HomeView">

<s:layout>

<s:VerticalLayout
paddingLeft="10" paddingTop="10"/>
</s:layout>

<fx:Scripts>
<! [CDATA[
import comps.MyCalloutPassBackVN;
import spark.events.PopUpEvent;

public var myCallout:MyCalloutPassBackVN = new MyCalloutPassBackVN() ;
// Event handler to open the Callout component.
protected function clickHandler (event:MouseEvent) :void {

myCallout.addEventListener ('close', closeHandler) ;
myCallout.open(calloutB, true);

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 84
User interface and layout

// Handle the close event from the Callout.
protected function closeHandler (event:PopUpEvent) :void {
if (l!event.commit)
return;

myTA.text = String(event.data) ;
myCallout.removeEventListener ('close', closeHandler) ;

11>
</fx:Scripts>

<s:Label text="Select the Open button to open the callout"/>
<s:TextArea id="myTA"/>
<s:actionContent>
<s:Button id="calloutB" label="Open"
click="clickHandler (event) ;" />
</s:actionContent>
</s:View>

The MyCalloutPassBackVN.mxml file defines the Callout container that holds a ViewNavigator container:

Last updated 11/21/2011

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

<?xml version="1.0" encoding="utf-8"?>

<!-- components\mobile\comps\MyCalloutVN.mxml -->

<s:Callout xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
contentBackgroundAppearance="none"
horizontalPosition="start"
verticalPosition="after">

<fx:Script>
<! [CDATA[
import mx.events.FlexMouseEvent;
import views.SettingsView;

protected function done clickHandler (event:MouseEvent) :void {
// Create an instance of SettingsView, and
// initialize it as a copy of the current View of the ViewNavigator.
var settings:SettingsView = (viewNav.activeView as SettingsView) ;

// Create the String to represent the returned data.

var retData:String = new String() ;

// Initialze the String from the current View.

retData = settings.firstName.text + " " + settings.lastName.text;
// Close the Callout and return thhe data.

this.close(true, retData) ;

11>
</fx:Scripts>

<s:ViewNavigator id="viewNav" width="100%" height="100%" firstView="views.SettingsView"s>

<s:navigationContent >
<s:Button label="Cancel" click="close (false)"/>
</s:navigationContent>
<s:actionContent>
<s:Button id="done" label="OK" emphasized="true" click="done_ clickHandler (event);"/>

</s:actionContent>

</s:ViewNavigators>

</s:Callout>

In MyCalloutPassBackVN.mxml, you specify that the first view of the ViewNavigator is SettingsView. SettingsView
defines TextInput controls for a users first and last name. When the user selects the OK button, you close the Callout
and pass back any returned data to MyCalloutPassBackVN.

Note: When a ViewNavigator appears in a Callout container, the ActionBar has a transparent background color. In this
example, you set the contentBackgroundAppearance to none on the Callout container. This setting prevents the
default white contentBackgroundColor of the Callout from appearing in the area of the transparent ActionBar.

Last updated 11/21/2011

85

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6
User interface and layout

The following figure shows the application with the Callout open:

AT&T B © H

HomeView

Select the Open button to open the callout

Settings Tox

First Name: |

Last Name:

Shown below is SettingsView.mxml:

<?xml version="1.0" encoding="utf-8"?>

<!-- components\mobile\views\SettingsView.mxml -->

<s:View xmlns:fx="http://ns.adobe.com/mxml/2009"
xmlns:s="library://ns.adobe.com/flex/spark"
title="Settings">

<s:VGroup
paddingTop="10" paddingLeft="5" paddingRight="10">
<s:HGroup verticalAlign="middle">
<s:Label text="First Name: "
fontWeight="bold"/>
<s:TextInput id="firstName" width="225"/>
</s:HGroup>
<s:HGroup verticalAlign="middle">
<s:Label text="Last Name: "
fontWeight="bold"/>
<s:TextInput id="lastName" width="225"/>
</s:HGroup>
</s:VGroup>
</s:View>

Note: The ActionBar defined by a ViewNavigator in a Callout container has a transparent background. By default, a
transition from one View to another View appears correctly in the Callout. However, if you specify a nondefault
transition, such as a CrossFadeViewTransition or a ZoomViewTransition, the ActionBar area of the two views can
overlap. To work around this issue, create a custom skin class for the ActionBar and the Callout that uses a
nontransparent background.

Size and position a callout container

The CalloutButton control and Callout container use two properties to specify the location of the callout container

relative to its host: horizontalPosition and verticalPosition. These properties can have the following values:

"on "o

"beforeu"startx"middle, end, aftefﬂand"auto"(ddﬁuh)

For example, you set these properties as shown below:

horizontalPosition="before"
verticalPosition="after"

The callout container opens to the left, and below the host component. If you set them as below:

Last updated 11/21/2011

86

DEVELOPING MOBILE APPLICATIONS WITH FLEX AND FLASH BUILDER 4.6 87
User interface and layout

horizontalPosition="middle"
verticalPosition="middle"

The callout container opens on top of the host component with the center of the callout aligned to the center of the
host component.

Draw an arrow from the callout to the host

For all but five combinations of the horizontalPosition and verticalPosition properties, the callout draws an
arrow pointing to the host. The positions where no arrow appears are when the callout is centered over the middle of
the host, and when it is in a corner. The following combinations show no arrow:

// Centered
horizontalPosition="middle"
verticalPosition="middle"

// Upper-left corner
horizontalPosition="before"
verticalPosition="before"

// Lower-left corner
horizontalPosition="before"
verticalPosition="after"

// Upper-right corner
horizontalPosition="after"
verticalPosition="before"

// Lower-right corner
horizontalPosition="after"
verticalPosition="after"

For the Callout container, the horizontalPosition and verticalPosition properties also determine the value of
the read-only callout .arrowDirection property. The position of the callout container relative to the host
determines the value of the arrowbDirection property. Possible values are "up", "left", and others.

The callout .arrowskin part uses the value of the arrowDirection property to draw the arrow based on the position
of the callout.

Manage memory for a callout container

One consideration when using a callout container is how to manage the memory used by the callout. For example, if
you want to reduce the memory used of the application, create an instance of the callout each time it opens. The callout
is then destroyed when it closes. However, make sure to remove all references to the callout, especially event handlers,
or else the callout is not destroyed.

Alternatively, if the callout container is relatively small, you can reuse the same callout multiple times in the
application. In this configuration, the application creates a single instance of the callout. It then reuses that instance
and the callout stays in m