ADOBE DIRECTOR
Scripting Dictionary

Al

Adobe

© 2009 Adobe Systems Incorporated. All rights reserved.

Adobe® Director” 11.5 Scripting Dictionary

If this guide is distributed with software that includes an end user agreement, this guide, as well as the software described in it, is furnished under license and
may be used or copied only in accordance with the terms of such license. Except as permitted by any such license, no part of this guide may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of Adobe
Systems Incorporated. Please note that the content in this guide is protected under copyright law even if it is not distributed with software that includes an end
user license agreement.

The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by Adobe
Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational
content contained in this guide.

Please remember that existing artwork or images that you may want to include in your project may be protected under copyright law. The unauthorized
incorporation of such material into your new work could be a violation of the rights of the copyright owner. Please be sure to obtain any permission required
from the copyright owner.

Any references to company names in sample templates are for demonstration purposes only and are not intended to refer to any actual organization.
This work is licensed under the Creative Commons Attribution Non-Commercial 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

Adobe, the Adobe logo, Director, Flash, and Shockwave, are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries.

Microsoft and Windows are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. All other trademarks
are the property of their respective owners.

Bitstream is a trademark or a registered trademark of Bitstream Inc.
This product contains either BSAFE and/or TIPEM software by RSA Security, Inc.
This product includes software developed by the Apache Software Foundation (http://www.apache.org).

Adobe Flash 9 video compression and decompression is powered by On2 TrueMotion video technology. © 1992-2005 On2 Technologies, Inc. All Rights
Reserved. http://www.on2.com.

Portions of this product contain code that is licensed from Gilles Vollant.

Portions of this product contain code that is licensed from Nellymoser, Inc. (www.nellymoser.com)

Sorenson
Spark.

Sorenson Spark™ video compression and decompression technology licensed from Sorenson Media, Inc.
Copyright © 1995-2002 Opera Software ASA and its supplier. All rights reserved.

MPEG Layer-3 audio coding technology licensed from Fraunhofer IIS and Thomson. mp3 Surround audio coding technology licensed from Fraunhofer IIS,
Agere Systems and Thomson. mp3PRO audio coding technologies licensed from Coding Technologies, Fraunhofer IIS and Thomson Multimedia.

PhysX is a trademark or registered trademark of NVIDIA Corporation in the United States and/or other countries.
Adobe Systems Incorporated, 345 Park Avenue, San Jose, California 95110, USA.

Notice to U.S. Government End Users. The Software and Documentation are “Commercial Items,” as that term is defined at 48 C.F.R. §2.101, consisting of
“Commercial Computer Software” and “Commercial Computer Software Documentation,” as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R. §227.7202,
as applicable. Consistent with 48 C.F.R. §12.212 or 48 C.F.R. §§227.7202-1 through 227.7202-4, as applicable, the Commercial Computer Software and
Commercial Computer Software Documentation are being licensed to U.S. Government end users (a) only as Commercial Items and (b) with only those rights
as are granted to all other end users pursuant to the terms and conditions herein. Unpublished-rights reserved under the copyright laws of the United States.
Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA 95110-2704, USA. For U.S. Government End Users, Adobe agrees to comply with all applicable
equal opportunity laws including, if appropriate, the provisions of Executive Order 11246, as amended, Section 402 of the Vietnam Era Veterans Readjustment
Assistance Act of 1974 (38 USC 4212), and Section 503 of the Rehabilitation Act of 1973, as amended, and the regulations at 41 CFR Parts 60-1 through 60-60,
60-250, and 60-741. The affirmative action clause and regulations contained in the preceding sentence shall be incorporated by reference.

Last updated 9/28/2011

http://creativecommons.org/licenses/by-nc-sa/3.0/us
http://www.apache.org
http://www.on2.com
http://www.nellymoser.com

Contents

Chapter 1: Introduction

Intended QUAIENCE ..o e 1
What's NEeW With Dir@CtOr SCHPTING .. u ettt ettt ettt e ettt e e e e et ettt e e e e e e e e e e n e e e eeaanns 1
What's new in this doCUMENTationttt et et et 3
Finding information about scripting in DIr@CLOr ... c.iu ittt et e et e 3

Chapter 2: Director Scripting Essentials

LY <13 LTl o P 4
Y] o3 aTaTe R =14 0T o1 [o T |V 5
Y] 11 T 1R3-S 7
[1 10 oL 10
Literal ValUues o e 12
R 1A= o) 3 14
(O] 01T - (o T3P 18
(@00 Ta Yo [To] g = el 0) { ¥ P 21
Events, messages, and handlers o e 26
Linear lists @and Property lIStSttt ettt ettt e et e e e e e e e e e e 31
BN N Yol g o A VoY = D=1 1 - VP 38

Chapter 3: Writing Scripts in Director

Choosing between Lingo and JAaVaSCript SYNTAX .. v.eutene ittt ettt e e et e e e et e e e e e e a e a e eenes 42
SCripting iN ot SYNTAX fOrMat ... ittt ettt et ettt e e et e e e e 43
a1 dgoTe I8 el Ve I d a =l D) T4 Yt CoTae) o) =T e 3 44
Object MOdel diagrams ...ttt ettt e e e e e e e e e e 45
Top-level fUNCLIONS AN PrOPEITIES ...ttt ettt ettt ettt et e e e et e et e e e e e e e eie e 46
Introduction to object-oriented programming in DireCtor ... ittt e 47
Object-oriented programming With LINgO SYNtaX ... ooeinitn ittt et e 48
Object-oriented programming With JavaScript SYNtaXo.iuuti ettt ettt 57
Writing scripts in the SCript WINAOW ... e e e e e e et 64

Chapter 4: Debugging Scripts in Director

FaY oo 1U e 1< oTUTe o 11 o Yol T R 77
(€T Yoo Yl T o34 oo Tl o F-1 o1 77
Basic debUGGING oo et 78
Debugging in the SCript WINAOW ..ottt et e ettt ettt e e e e e e e e et te e ie e eeenne 80
Debugging in the Message WINAOW ...ttt ettt e ettt e et et e e e e e e e e n e eeieanns 81
(D2 00T To T TaTe I 1o TRd oI @] o) =T ot f 13 1 o <el (o 84
Debugging in the Debugger Window i e e e e et 87
Debugging projectors and ShOCKWaVve MOVIESottt e ettt et 91
FaYe AV T Vel =T e 1=T o TH T T 13T R 92

Chapter 5: Director Core Objects
(G T 3 I8 o) - Y P 94
Lo o - 95

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5

Contents

10 96
1= 0] =T 97
YLD 98
10T P 929
OV e e e e 100
Lo =T 102
LY 10T 104
SOUNA CRaNNEl L e e 106
5] o1 (N 107
1Y 41 (I @ 3= T V=] 109
321 €=T 12 P 110
LT3 Ve o 111

Chapter 6: Media Types

2 T4 = =T 114
15100 o 115
UL ON i e 115
123V 2 £ - /P 116
(0o [gl o 1 1= 116
LT) 17
5 118
=1 o 119
{15 0 T8 oo o P 120
[1 T @) 'Y Yo =] 1 121
FIasSh MOVIE .ttt et ettt e e s 121
oMt e 123
LT =T 1T YT 123
MPAMEIA/FLY e 124
L0 1T el T 2= 125
RS 1T - 126
SNOCKWAVE 3D Lttt e 127
SROCKWAVE AUIO .ttt ettt ettt et e e et e e e et e e et e et e e e e e e 128
LYo T T 129
=2 S 129
LTSt (o T Y- Yo = 130
WINAOWS MBI oottt ettt ettt et e e ettt et e e e e e e e e e 131

Chapter 7: Scripting Objects

W oo 11 =T 133
153V (= LN - /P 147
01 o 152
L0 G 153
AN =3 T Ve o PP 154
B 01Tl 2)1 - 155
L - T 155
D1 0 - T 156

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5

Contents

Chapter 8: 3D Objects

oY oo 1U 1] o 1= e 157
(60T 4 1= - P 157
[T (o T PN 158
[P 159
1= 0] =T 160
1o T 1= 162
1T o [I 1= YoYU el P 163
170} 1 o o PP 163
L30T g 1o = Y =T VTl 164
1) 7= T [T 164
L] o €1 L= P 168
B 12000 1 <P 169
Chapter 9: Constants

B3 19T) P 170
5] 2 1 = 170
o I 171
ENTER ottt ettt ettt ettt e e e e e e e e 171
Y) 172
P 173
1010 1 173
L2120 Cale Y g 1 =T o 174
3] 174
L2 > 2 P 175
L2103 176
10 1 176

Chapter 10: Events and Messages

Lo AT et 1Y 1 =YY o) o) or=1 [) o 178
ON ACHIVATEWINAOW ettt e et e e 179
ON DG NS DI it 179
ON ClOSEWINAOW oot et e ettt et et e 180
Lo T I U 1= o 1YY N 181
0N dEactiVate AP PIICAtION .. i e e 182
on deactivateWIiNdOW ..o e 183
0N DVDeVentNOtIfiCatioN ...ttt e 184
Lo T T =12 Vo Y o1 £ 1 /= 187
[=1 01 =T =T 1= 188
Lo AT V- 5T o | 189
O BXIT R M L e 191
ON GEtBENAVIOIDESCIIPtION ..ttt ettt ettt ettt et ettt e e e e e e e e e e e e 192
ON GEEBENAVIOITOOIID .ttt e e et e e e 193
on getPropertyDescriptionList 193
ON YPErINKCICKEA .ottt e e e e e e e e e 195
O IAlE e e e e e 196
ON ISOKT O A AT oot 197

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

onkeyDowncoieiien..n.
onkeyUp .oviiiiiiiiiiiii
on mouseDown (event handler) ...
onmouseEnterl
onmouseleave
on mouseUp (event handler)
on mouseUpOutside
on mouseWithin
on moveWindow
onopenWindow
on prepareFrame
on prepareMovie

onresizeWindow

on rightMouseDown (event handler)

on rightMouseUp (event handler) ..
on runPropertyDialog
onsavedlocal
onsendXML ..o,
onstartMovie ...l
onstepFramel
onstopMovieiiiiiiii,
onstreamStatus ...l
ontimeOutcooeiinn.n.
traylconMouseDoubleClick
traylconMouseDown
traylconRightMouseDown
onzoomWindow

Chapter 11: Keywords

\ (continuation)
CASE tettee e
char..of
enNd e
eNdCase .iiiiiiiiiiiiia

eXIt

field ...

INF

line.of

Last updated 9/28/2011

vi

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

NEXE ottt
nextrepeateeiiiiiiiiiiiiin..
o] o T
otherwise ...l
ProPerty .o..veiiiiiiiiiii i
put.after ...
put..before ...
put.into ...
repeatwhile,
repeatwith ...,
repeat with..downto
repeat with...inlist,
return (keyword) ...
set..tO, Set= ..t
sprite..intersects ol
sprite..withinl
A= 7T o

word..of ...

Chapter 12: Methods

_system.gc() ...ieiiiiii
abort ...
abs()
activateAtloc()oiiiiiiiiinne
activateButton() ...
add
add 3D texture)iiiiiiiiiiiin.n.
addAt ...
addBackdropiiiiiii,
addCamera iiiiiiiiiiii
addChild ...
addModifier ...
addOverlay cooiiiiiiii
addProp ...
addToWorld ...t
addVertex()cooiiiiiiiiiiiiin
alert) ..o
Alert() oo
append .
applyFilter()ovviii
appMinimize() ...l
atan() ..o
beep() .o
beginRecording()coiiiiiiiint
bitAnd() ...
bitNOt() ..evnveiii

Last updated 9/28/2011

vii

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

bitOr() ..o
bitXor() ...
breakLoop()iiiiiiiiiii
breakLoop (Sound Object)
browserName()ciiill
ByteArray ...
ByteArray(str) ...l
build) ...
bumpMapToNormalMap()
cacheDocVerify()coovviiiiiiiiiin...
cacheSize() ...o.viiiiiiiii i
call
callAncestoroiiiiiiiiiiie
callFrame()ooiiiiiiiiiii
cameral) .oiiiei
cameraCount()oeiiiiiiiiiiiin.n.
cancelldleLoad()oiiiiill
castlib()iiiii
channel() (Toplevel)
channel() (Sound)l
chapterCount()ccovviiiiininn.,
charPosToLoc() ...c.vvvnveiiniinninnnn
chars() oo
charToNum()cooiiiiiiiiiian...
clearAsObjects()covvviniiinn.n.
clearCacheccoiiiiiiiiiiiiit
clearError() ...
clearFrame()ooeiiiiiiiiiii
clearGlobals()oocoiiiiiiiit
cdone
cloneDeep ..ot
cloneModelFromCastmember
cloneMotionFromCastmember
cose() i
closeFile() ...veviiiiii
closeXlib ...
Color() i
COMPIess() vovervrnininii i
constrainH() c.ooiiiiiiiiiii
constrainV() ..o.venieii
copyPixels() ..o
copyToClipBoard() ccvvvnenn.n.
COS() e
COUNt() veven e
createFile() ...l

createMask() ...

Last updated 9/28/2011

viii

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

CreateMatte() oot e 307
Lol =T=1 (21T T [g [0 o) =T ot 308
(o) o I (130T T =) I 309
[0 o I (3114041 e) I 310
[01 310
Ll o T1 o T L1 et | N 31
L0570 312
Lo Y (=T (o) {44 1 £ 315
Lo F 10T B3 V2 £=]) 317
To 1] - 318
Lo =111 TN 319
deletel) (FIlelO) oottt et et e e e e e 319
deleteFilel) e e 320
Lo =TI L N 320
Lo 1= 1] (T =T 0 T=T - P 321
Lo 1= =1 1= o 0 T 322
o 1= =] =11 o T o T 323
To 1] =11 T | o 323
deleteMoOdel . e 324
AeleteMOdEIRESOUICE ...ttt ettt ettt e et e e ettt e e e e e e e 324
AeleteMOtiON L. e 325
Lo =1 1=1 =TT 325
o 1] =11 o 326
Lo 1= =1 £ =T 1= 327
Lo 1= =1 4o T e [o =Y 327
Lo LTI o =3 U< 328
Lo LT 1= oY= o (= | N 329
Lo 11 o] VL@ o =T T 329
Lo 11 o] VAT V=T 330
o o 330
o Lo T g Y= 2 1211 Vo T 331
o o} (| 331
AOtPrOdUCE() oottt 332
To Lo 301V 01 oo 1N =1 I o1V 333
Lo 1N 334
o 18] 0] o= 14T {49 T= T 1= 335
[o 1870) o= €Y {11 4 11T ot e o) I 335
Lo TW o] [Ters 1LY O I (1L 1=T '] o =1 336
o TUT o] [Ter 1 LT 1T o' =T 337
[T g =Y o] 1=] T Y o o P 338
enableSoundTrack(trackNUmM) ... o e 338
1= 0o 0Tl o] [13T) 339
1= 2= =T 340
1= o T 341
eXtErNAlEVENT() ..o e 342
LU Te =1 5 N 343

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5

Contents

externalParamNamME() ...t e 344
externalParamValUue() ... 346
10 Lot 7AYo 3 -) 347
L2 1] L T 348
FAdEOUL() ettt e 348
L5 1 LS 1o 349
LLE= V= T4 T=T 350
L1107 o T3 T 350
L LEEIST V7= 351
L 352
LT € 353
LT 1= oY= [354
LT 1 =04 aT'o 4§ 354
LT 1 - 355
LT 1o 1 T T 356
L8101 e | 1=T oY e | 357
L] T Ie 3 = o =T 357
Lo L 358
Lo 1 359
LT T g1 a4 V7T 2) 360
L0101 AT e oV) 360
L0 € T3 NI4T 10 361
FrAMESTOHMS) ettt ettt et e e e e e 362
frameREAdY () (MOVIE) ..ttt ettt ettt ettt e e e e et et e e e e e et e 363
L0 TS 1=T o 364
FrEEBlOCK() oot e 364
LEET=] 23V 365
GENEratENOIMAlS() ottt e e e e 365
[0 =3 |) o J 366
Lo 1= 2 367
o <] (@ 3= Y= 368
GEEITOr() (Flash, SV A) e e e et e e e e e e e 369
Lo 1= = o T 02/ 371
Lo =4 =1 T3 1 e T P 372
Lo 1= 1T Ve =T o1 o) 373
Fo 1= o =T o o] o= g /) 374
Lo T ol 10 0 =TI o T [374
Lo 1= =10 T 1T o | 375
[= (o Y oo} 4 =Tt) P 376
GetINStalledCNarSetS . 376
(7= LT3/ o] o] I N 377
Lo =34 13 (P 378
Lo T = (=7 § A= |5 PN 378
Lo 1= 4 =T o Vo 1 o P 379
Lo 11N =1 €5 VA (= N4 - /P 380
Lo =8N =] 0 1= 380

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

Lo 1= () 4 1 4= 381
GEtNLhFIIENAMEINFOIAEI() o .ottt ettt e e e e e e e e e e e e e et ie e e eeens 382
Lo =0 1= P 383
Lo 1@ Y =T o V| 384
Lo 1= o031 385
GOEPIXEIS) ettt e e e e e e 386
Lo 1= o0 2 388
Lo 1= 4 o1 389
QTP OSITION() .ttt et e e 390
Lo 1= o0 391
GETPIE () (Play) oottt ettt e e 391
Lo 1= 4 o o | P 392
Lo 1= 4 o L « 393
GEtPropRef() (JAaVaS TPt ONIY) oottt ettt e e e e e e e e e e e 393
GOIRENAEIEISEIVICES() .ttt ettt e ettt e e e e e e e 394
[=T AT 183 e (@] o) =Tt) 395
Lo =TT o]0 o [o 1= e I - 396
GOESIrEAMSTATUS() ottt ettt ettt ettt e e e e e e 397
Lo =LA} £ =] [=T =1 P 397
Lo 1= 07 398
Lo 1= A 398
Lo TSR =T o)L 399
LT AL/ T L 1= 4 X 401
(7S] 17T To [0 1007 o o X1 P 402
Lo 1L AL 04 o I 1= 0 1 o T4 o 0T 403
o o P 404
oo o T o | NP 405
o o NN L= P 406
GOPTEVIOUS() ettt ettt ettt e e e e e e e 406
[T8 o 2 - 03 T P 407
[T (o A\ =1 a1 o T PN 408
[L] (o N\ =Y - Vo 1= PN 408
Lo T 1U o 409
T 410
=T e |11) R 410
T LT | T) 411
hilite (COMMANA) ..o et 411
0T =T 412
L 1Y) (e =T g 1= 413
7o) Lo | 414
IMPOMBYTRAITAYINTO() ..ottt et et e e e ettt e 415
1o 1= 0 1/ 416
[1e [T IoT- Yo | .o o 1= R 416
1o T LT Y1 =Y o - T P 417
1L 418
113051 420

Last updated 9/28/2011

xi

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

4= 1= 421
10T oL 111 3 o T 422
11 L2 < 424
NS BACKANOD ot e 424
NSO T rAMIE) ottt e e 425
L0 T=T (0 17T - 426
10T [427
0TS 111 =T o 427
L0 =T =1 (A 428
L0 =T =T ¢ P 429
10 LT - Lol | 429
L0 =1 o Y] - 1 =T 430
(101 =14 o] = 1= o | 430
L0 =T Y=Yt) P 431
L0177 1= P 432
101775 o P 432
L5151 13 433
L@ P TS o 1 11T 434
[T 1A o T e 1§ P 434
(1] 2 TS (@ T=] 2o Y1 0§ P 435
12T 0103 e 1 =T 436
SV (=7T=T | 437
5T o= 439
2T 439
5T {0 e () 440
T 42T o 440
12T 0o 1 o 441
1T |01 442
oY= T o 3 442
78T o 3 o e o V| 443
170 7§ 443
S 444
11 445
1T o 1 =T 445
1o Yo 1) ey o111 446
0Tl o T =1 4o T P 448
LoV e g 1= =0T | 449
1T T 449
00T I 450
LY G a1 o] =Te K o) {1 =T) 451
MNAKESUDLIST() ettt ettt ettt e e e e e e e e e e e e e e e e 452
L0 T T P 452
[0 (15 P 453
MaAPMEMDEITOSTAGE() .+ttt ettt ettt ettt ettt e e e e 454
MAPSTAGETOMEMDEI() . ettt ettt ettt et e e e e e e e e e et et et e e e e e e e 454
00T T8 T) 455

Last updated 9/28/2011

xii

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

MAtFIXAAItION() ..o s 456
MATIXMURIDIY () e ettt e et e e e e e e e e 456
MAtHXMURIPIYSCAlAN) .ottt e et e et e e e e 457
L D 10 1 oo 11 458
0= () 458
MAXIMIZE() ottt ettt e ettt 459
00 T 460
00T 00T o= (P 460
MErgeDispPlayTEMPIate() ...ttt e e e e e e 461
LT o TS o7 o] P 462
L0 Y=Y T (o o o<1 V) 462
MeEShDEfOrmM (MOIfIEr) ..ttt et e ettt et e et e e et 464
00T 465
MINIMIZE() oottt e ettt e ettt e 465
LR aT e 1= I (5]) 466
LR aTe e 1= =TT o TN 467
MOelSUNAEILOC ..o e s 467
TaaTeTe 1= E 1 g o =T 3 Y 469
MOAEIUNGEILOC ..ottt 470
00T 1o o) 471
0 T0 Y=) 472
L0010 = I 472
MOVETOBACK() ottt ettt et e et e ettt ettt e e et e e e e e 473
LR RTO 1Y o] e |) 474
MOVEVEITEX() vttt ittt ettt et ettt e 474
moveVertexHaNAIE() ..o .t 475
L0 T T V7 476
LR RTU LN (113G 476
LR TV <l Yo T g To @ o) =Tl 477
LR TT1o] Yoo 477
0TS T « R 478
N BY O AITAY RO UL et 479
NEEDONE() o e 479
LT =1 o T 480
NETLASTMOADATE() ettt ettt et ettt ettt e et e e e e e e e e e 482
NEUMIMIE) Lttt ettt e e e e e e e e e e e e 483
T 5] 7= 484
NEETEXERESUIT() oottt ettt ettt et ettt e et e e e e e e e e et 485
LT 486
LTSN @ o =1 - 489
NEWCOIOTRATIO L.t 489
NEWECUIVE() oottt ettt et ettt e et 490
LTS3 TL o TU ' AP 491
L2277 IR T | o 491
NEWMATIX() oottt e e 492
LT =T o =T 492

Last updated 9/28/2011

Xiii

DIRECTOR SCRIPTING DICTIONARY 11.5

Contents

LT =] o 493
NEWIMO el o e 495
NEWIMOAEIRESOUICE ..ttt ettt e ettt e e e e e e e et e e et e e e e 495
NEWMOTION() .ttt ettt ettt et ettt e ettt e e e e e e e e e e e e 496
LTS o} =T 497
NEWPTOXYCAllbDACK() ottt et e e e e e e 498
LT A T 1= 499
LTS 1= ¢ LT = 500
NOIMAlIZE oo s 501
LT} 01 T3 Ve T 502
LT e o =T 503
NUMCOIUMINS) ottt ettt et e et et e ettt e e et et et e e e e e e e 504
NUMBOWS() oottt et ettt e et ettt 505
NUMTOCRAN) ettt ettt e ettt e et e e e e ettt e 506
[o) =Tt = P 507
OffSEt() (STNG FUNCHION) .ottt ettt et et e et e e e e e e e e e et et e et e et e e e e e eeaens 507
offset() (rectangle FUNCLION)o e e e e e e et ettt e e ie e 509
ToT o =T 10 I (24 =3 V7= o 509
[o= 0T I (7T e o 510
[07=T o =1 1§ 511
() 0= 0)4 11 o T 512
[1= 03 512
[0 1= 0310 YU 0 | P 513
PAISEBY O A AY ot e 514
PaAISESEIING) ottt e e e 514
PArseSTrNG (XML Xtra) ..ottt ettt et ettt e e e e e e e e e e e 515
[0 161U P 515
PArSEURL (XML XEra) ettt ettt ettt e et et et e e et et e e e et et e e et e e e e ettt 518
0= 17 PP 518
PAStECHPBOAIAINTO() o .ttt ettt ettt e e e e e e e e e e e e e e e 519
PAUSE() (DY D) ettt e e e e e e 520
[0 LU ET= I (1131 P 521
PAUSE (MPAMEIa/FLY) ottt et e et et e ettt e e e e e e 521
[10 L= I 15 5) 522
pause() (RealMedia, SWA, WINAOWS MEIA)iueneit ittt ettt e e e e et e e e et e e e e e eeens 523
PaUSE() (SOUN Channel) ...t et e et e e e et e e e 523
o Ul (Yo T g o @] o) =Tt o 524
T =14 0N e T 7T 524
T <14 o 1= g e el 1= e Y 526
0] et 0T =] = P 527
PlaY() (D) oottt e 527
PlAaY() (DV D) ittt ettt e e e e 529
T YN T 530
play() (MPAMEdIa/FLV) .o e e 531
play() (RealMedia, SWA, WINdOWS MeAia)euninittt ittt ettt e e e e e e ie e ie e 531
PIAY() (SOUN Channel) oot e et ettt 532

Last updated 9/28/2011

xiv

DIRECTOR SCRIPTING DICTIONARY 11.5

Contents

PIAY (SOUN OB ECt) ottt et e e e ettt e et e e e e e e 533
07 1 =T 534
PIAYNEXt() (SOUNA Channel) ..ottt ettt et ettt et e ettt e e e et e e e e et e e 535
PIAYNEXE() (3D) oottt ettt e e e e e e e e 535
PlayerParentallevel() ..o e e 536
0T 0§ 537
00121 A 538
POINTINHYPEITINK() oo et ettt et ettt e et e e e e e e 539
[0 ToT1 01 oL@ o - T { 539
o701 oY =T o' T 540
0T 01 oI 0 1= P 541
POINTTOPArAgrap() oottt e 542
o711l o). o ¢ |) 543
POSEN O BY O AN Y .ttt e e e e 544
0 1 1 A= o < P 545
00T) 546
PreLoad() (MEMDET) L.ttt e ettt e e et e e e 547
PreLoad() (MOVIE) .ttt ettt e e e e e e et e e e e e e e e e 548
T 74T Mo Vo 131U 5 =T 549
PreLoadMembEr() ..ot e 550
[0 1T o= Yo 11, 1o Y7 =T 551
T 7= Lo T=To |\ T=T i I oY1 Ve T 551
0T 1Y 0] 4o 2 552
0 (<] 20 = (AP 553
[0S o= 1§ 554
Tl I = 10 T P =T 555
1410) 556
PIINTASBITMAP() ottt ittt ettt ettt e et 557
01101 €0 0 V(AP 557
[0 o) P 558
[0)14 YA =T V7= P 559
1 o] 0] iYoo) 1 5 560
[0 10T o] o= 4 o= 1=] 4§ 561
[TUT o7 o= Y o 1 {1 562
[0 1UT o7 o =1 0 =T 4 T'o o P 563
[0 10T o] o =1 0 I =T o 111 4o T 564
01U AP 566
GEREGISTEIACCESSKOY() .ttt ettt ettt e e e e 567
GEUNREGISTEIACCESSKOY () ettt ettt et e et ettt e e e e e e e 567
Lo 18 =T U 1= 567
Lo T LU =T 5 10 N 569
L0 ¥ el [T4 7= =TT TN 570
Lo 10T P 570
L 0N T=T=Te =T 571
10T T 03 572
[TaTe L0 01 =Ter o} | 573

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

[TaTe T 031 =T ot o 574
FAWN W) ottt e e 574
=T Te 130 o] 1=T- Yo L 575
L= 12T = Y4) 575
readByteArray (FIlElO XEra) ...ttt ettt ettt e e ettt e e e ettt e e e e e 576
=T Lo [3T 576
=T Lo 01 L) R 577
== T | o= 7 578
FEAAFIOATOA ... it 578
=T Lo [579
=T Te 11 < R 579
L= T |02 7 579
L= Lo T 580
LYo | Ty T Vo 581
[T o 1) {13 P 581
L= T 1) =T o T 582
FEAAWOIA() oottt et e 582
L1 V=T 1 YZ=Y YU e T 583
realPlayerPromptTolnstall() e e 584
FEAIPIAY IV EISION() .ottt e e e e e e e 585
LE=Tele] (e | 1o 3 586
=L 587
registerByteAITAYCallDack ... ot e 589
registerCuePointCallback i 591
registerENdOfSPOoOoICallbDack() ... ene ettt e 592
FEGISTEIFOTEVENT() ..ottt et e e 593
[T 1 =T el 4o) P 595
FEMOVEBACKAIOD . e e 596
remOVEFrOMWOIIA oo e 597
FEMOVELAST() .ttt e 597
FEMOVEMOAI IO Lttt e e 598
L]0 <T@ Y= - 598
LY aa Yo N e Yl] o4 Te 1Y 1 1§ 599
L= 0T LT e = (U 599
=Y o) Tl Y =T 5 Y o =T 600
LT (1 0T C<] o 601
FES N Ol L e 601
LT Y= 602
=TT Y] R 602
L33 1 € 603
L1253 (o] =T) 603
FOSUIE ottt et 604
TS0 0 =T 605
L1000 o 1 =T) 605
revertTOWOrldDefaults ... oo e 606
rewind() (MPAMEdIia/FLV) ..ottt e ettt e e e 606

Last updated 9/28/2011

Xvi

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

rewind() (Sound Channel) ... e 607
rewind() (WIndows Media)iunt ittt ettt e ettt e e e 607
rewind() (Animated GIF, FIash) ...ttt e et e et e e 608
1701 77T 608
FOOTMIBNIU() ottt ettt et e e e 610
[0 611
L 612
L0717 o T [612
SAVE (MlIXEE) ottt e 613
R 1Y Yo TV e] 1= e 614
L Y=o 1 4] o 614
£ 10721 1YoV =T 615
SCale (COMMANA) oottt ettt e et 616
ET 1o P 617
ET 0] 112377 T o YT P 618
L1123 - Ve T 618
LSS 619
5€ek(MSEC) (MPAMEIA/FLY) ...ttt ettt e et et e e et et e et et e eas 620
SEEK (SOUNA O OCE) .ttt e e 621
£1=] =Tt 72 4 e T 621
SElECIBULION() L.t e 622
SeleCtBULIONREIAtIVE() oottt e 622
SEleCtiON() (FUNCEION) oottt ettt ettt ettt et et ettt e e e e 623
£1CT g T N Y o) €1 Z=T 624
SENAE Nt L e 625
£1=T 0o 1Y o) 14) 625
£ 7Y o] o= 626
LT =) o T N 627
7= 7 628
SEECAIIDACK() oottt e e 629
E1=] (@ T =1 N 630
SEtCOllISIONCAIIDACK() ..ttt e e e e e e 631
SEtFIEEIMAsK() ..ot e 631
SEtRINAEIIN O) .ot e 632
£ 4 o T o1 oo T=T 1 4V 633
SEENEWLINECONVEISION() . ettt ettt ettt ettt ettt e e e et ettt et e e e e et e 633
SO IOl) oo e 634
L= D]) N 635
L= 4 V] 637
£ 4o oL 14T T 638
L= =) 638
LT a1 (o = V7] 640
LT o o T N 641
£y el o {3 P 641
LT T 2 o T [642
SEtTraCkENADIEA() ...ttt 643

Last updated 9/28/2011

Xvii

DIRECTOR SCRIPTING DICTIONARY 11.5

Contents

L7 0) 643
L= A 1A= o] =T 644
SNOWLOCAIS() oottt e e e e 646
£ 3T 11T o o 11 646
ShOWGIODAIS() ..ttt e 647
L TV T 648
SII) tteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeea 648
LT £ 649
L70 T T [649
£ 0 1 (=T) 650
SPItESPACETOWOIIASPACE oottt ettt ettt et e e e e e e e e 651
£7 |) 651
STAGE B Ot OM . e 652
£ 2= T 1 = 653
STAGERIGNT e 653
£ To 1=l o] o = T o) 654
51 To T e o 655
STANESAVE (MIXEE) oottt e 656
STArtSaVe (SOUND ObJCt) ittt et e ettt e e 656
£ = 1 (0 657
L300 o (51) PN 657
£ o) o0 I (=11 2 658
£ 0] o1 (N 1Y/ D1 =T P 659
STOP() (MPAMEAIA/FLY) ettt ettt et ettt et e et e e e e e e e et e e e 660
stop() (RealMedia, SWA, WINdOWS MEAIA) o .o uiii ittt ettt ettt ettt e e et e a e 660
STOP() (SOUN CRaNNEl) oot et e e e e e e e e e 661
£ o X Yo TUTa o 0o 1Y e 661
L300 AP 662
L5300 o] =Y Z=T o PN 662
£ 0 o T 1Y (11 =T P 663
STOPSAVE (SOUNT ObJECE) oottt ittt ettt et ettt e e ettt e et e e e e e e e e e e e e 664
£ =TT o T 664
£33 Vo T 666
£ Ve | P 666
L] 4 et {0 TN Y7 o T=T) 667
L] o 4 (= oo o | 668
E5307 T2 T T 668
£330 oo 1 669
£ 7700 o T 1 670
L 0T 670
TEllSTrE@MSTAtUS() .. et ettt ettt et e 671
L] LI 1 1= 4 672
LR T80 TT 03725 (=] ') 673
L8 0 T=To U1 674
THEMENU) oo e 675
BOH X NG ettt 675

Last updated 9/28/2011

xviii

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

TOPCaAP i
topRadius ...
Trace() oo
transform (command)
translate oo
UNCOMPress() vouvvireininei e
UNION() e
unLoad() (Member)l
unLoad() (Movie)ccovvvviiinnn
unLoadMember() ool
unLoadMovie() ...l
unmute (Mixer) ...
unmute (Sound Object)
unregisterAllEvents
unregisterByteArrayCallback
unregisterCuePointCallback
unregisterEndOfSpoolCallback()
update ...
updateFrame() ...,
updateStage()iiiiiiiiiiiiiin
URLEncodecooviiiiiiiiiiiinnn
value() oiii
VeCtOr() e
version() ...iiiiiiiii
voiceCount()covvvviiiiiiiiintn
voiceGet()iiiiiiiiiiii
voiceGetAll() ...ooiiii
voiceGetPitch()ooiiiil
voiceGetRate()oii
voiceGetVolume()cc.oiiiiiill
voicelnitialize()oiiiiial
voicePause() ...,
voiceResume()coiiiiiiiii,
voiceSet() ...
voiceSetPitch() c.oiiiiiiiiiiiin
voiceSetRate()oiiiiiiiin
voiceSetVolume()oiiiiiiiiint
voiceSpeak()iiiiiiiiiii
voiceState() i.iiiiiiiii i
VOICESTOP() vvvvvviiiieeeeee e
voiceWordPos() oeiiiiiiiiint
VOIdP() e
WIindow() ..o.iii
WindowOperation

windowPresent()oiiial,

Last updated 9/28/2011

Xix

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

(VoY Lo Ry o - Tl Ko 1Y o] £ (IY o1 Vel 707
LG LC=] = o] =T T 708
(LS 23 VA=)V N 708
WILEBYLEAITay (FIlelO XIra) . .oneet ettt ettt et ettt et e e e et et e e 709
LT C=T o T) 709
LG C=] a1 o -1 4 7 710
LT =] o o= 711
AT L] ¢ PN 711
AT (1 1 711
LT =] 1 72 712
T4 1Y Ay T e 712
LT €T30 (U 1 o 713
W ESEIING) oottt ettt et e et e e e e e 714
L] e TaTe T (o) LI 14 - 714
DL 715
(o 7o) 1 012 o G P 716
Chapter 13: Operators

053101 oo) 717
B (e 1] Ao o =1 7=) 718
(00110 10 719
B (01001 04T 01 P 720
L (el g Ter- 14T - Yu oY g o] oT=] = o)) I 720
LI (oo Y g Yer= 1 (=] o F= 14T) W) 0 1=Y - 1 o)) 721
() (PANENENESES) ottt e e e e e e e 722
Sl (22 TUTL4T'o] [Tef=1 4 o o) 723
B o o 14T o) P 724
B G [e 11T) I) 724
Sl (2011 TU) N 575) 725
Sl (2 aTUTL4T'o] Tef=1 4 o s X (.) 725
/A (< 1177151 1o 2) 725
(e 1Yo 1) I 5) 726
B (=533 42T) 726
<= (1€5S Than OF EQUAIT0) ottt ettt e et e et e et e e e e e e e e e 727
K> (MOt EQUAD) et e e e 727
g (=Te [T 1 728
D (< T (=T 01 0 -) 728
S=(greater than Or @QUAIT0) oo i ittt e ettt e e e 728
o) = el S - Yol - 729
13 729
(G (o =14 1T =12 1 7<) 731
0 o 732
[<0o 4 1 - 10 - N 733
007 T 734
0 736
[P 737

Last updated 9/28/2011

XX

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

[T T o) 4 1Y elal T @ 0T - o 737
] 1 738
] 42T T P 738
Chapter 14: Properties
| Lo o - 740
KOy e 740
L0 10 U P 741
00T T 742
B o] =37 742
L7010 3T 743
3 251 (<12 744
ADOULINTO L e 744
ACHIONSENADIEd ..o e 745
T AT e 11T g Vo 1= =Y 746
ACtIVECaStLID oo e 746
ACHVEWINAOW Lttt e e et 747
GO LISt o e 748
AlErtHOOK e 749
= e 0 T2 T=T o 750
AllOWECUSTOMECAChING .ot 751
E o7 =T o] T e 1Y 1 T 751
AllOW S VL OCAl .. e 752
AllOWTTaNSPOrTCONTIOl ..ottt ettt ettt e ettt e e e et e e e e e e 752
AlloWVOoIUMECONTIOL oottt e 753
E 1|0 T1Y072o e 1o T X 753
AlPhaS Ot (Shader) o e e 754
E= 11 =Y I 01251 Vo1 [754
100 o)1= o N 754
100 o 1= o1 (@) [N 755
5 a2 (o 756
ANGIE (3D et 757
ANGIE (DY D) ottt e e e e e e e e e e 757
LT | 1T T3 758
ANIMAtIONENGDIEd .. e 758
ANTI AL S o e 759
ANt ALASINGENAD O e 760
E LY T a1 T e = 760
AN ANASINGSUPPOIEA ..ottt ettt e e e e e 761
antiAllasThreshold o e 761
E LY L 13 Y7 762
APPEAIANCEOPTIONS .ttt ettt ettt ettt et e e e e e e e e e e e 763
APPHCATIONNAME L e 764
APPHCATIONP At o e e 765
2T 1= 4 - 1 o R P 765
AT ENUATION L e 766

Last updated 9/28/2011

xxi

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

attributeName ...l
attributeValue ...l
audio(DVD) .evviiiiiiiii i
audio (MP4Media/FLV)
audio (RealMedia)ll
audio (Windows Media)
audioChannelCount
audioExtension ...l
audioFormat ...l
audioSampleRate ...l
audioStream iiiiiiiiiiii
audioStreamCount
AULO oot
autoblend ...
autoCameraPosition
autoMask ...
autoTab ...l
axisAngle ...
back ...
backColoroiiiiii
backdrop ...
backgroundColor olll
beepOn ..o
bevelDepth ...
bevelTypecoviiviiiiiiiii it
bgColor (Window)cvvvniane.
bgColor (Sprite, 3D Member)
bias o
bitDepth (Mixer)c.ccoviiiiinn..
bitDepth (Sound Object)
bitmapSizes ...
bitRate ...
bitsPerSample,
blend(3D)ciiiiiiiii
blend (Sprite) ...
blendConstant c.coiiaat
blendConstantList
blendFactorc..ooiiiiiiat
blendFunctionooiill
blendFunctionList
blendLevelooiil
blendRange ...l
blendSourcet
blendSourcelistcoooiall
blendTime ...t
bone ...

Last updated 9/28/2011

xxii

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

bonesPlayer (MOdifier) .. e e 795
T 1= 797
T 1 e o' N 797
Lo To] o) 3 3 T (55) 798
o)1 o 43T o 798
DOTEOMRATIUS ettt e et e 799
T)30 Y o - T 15 Vo T 799
oo T e F- 1 800
DOUNAING S PNErE et et 800
Lo T0) {1 o) o 15) 1 - e o1V 801
oo)1)Y/ o1 801
74T |1 0 1= 802
070 o [er- 1 d 2 Y L3 802
DUI I IZE oo e 803
LT3 £ o] 4= (13T 804
U1 @0 U o | 805
buttonsENabled e 805
U1 177/ < 806
[TU o o1 5V = 806
VA=Y L £ 807
By e REMaAINING o e 807
V(T A 1T 1= 808
DY LESSTIEAMEA (3D) oottt ittt ettt e e e e e e e e e 809
[>T 4T = 809
CAMEIAPOSITION L. e 810
CAMETAROTATION oottt 810
o= 134] N 811
CaSt LI DN UM L e 811
CaSTMEMDEILISt o e 812
(=] (=] 813
[oC= L= 2= | o] 1o) N 813
(o= L=] =T T PN 814
Lol =T g e 1=y A T 815
TRl e 815
ChannElCoUNT (MIXEI) oottt ettt e e ettt e et e et e et e ettt ettt e e 816
channelCount (Sound Channel)o ettt e et e et e 817
channelCount (SOUN ODJECE) ..ttt ettt et e e e e e et e e e e et e e e ie e et ie e e eie e eeens 817
ol Y- o =] 818
Tl =T o (=T (@ T U3 Y 818
Lol =T Lot (=T 0T <] 819
Tl =T Y o - Lol 3 T 819
CRECKMIAIK e e 820
ol a1 T 510 821
Lol a1 o 801 822
CRUNKSIZE o e 822
Ll 1= T A 4 21=T o eI N 823

Last updated 9/28/2011

xxiii

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

clearValue ...
clickloc ..o
clickMode ...l
clickOn ..o
closed ...l
closedCaptionsoo....
collision (modifier)
collisionData c...coeente.
collisionNormal
color() iiiiii
color(fog)ooviiiiiiiiiiiin.,
color (light)oiiiat
colorBufferDepth
colorDepth cooiiiiiiiintt
colorList c.oiiiiiiiiiint
colorRangeoill
colors ...
colorSteps ...
commandDown
COMMENTS .eveeneiieennnnnns
compressed iiiiiiiiiiiiiii...
connectionStatus (MP4Media/FLV)

connectionStatus (Sound Object) .
constraint ...l
controlDown ...
controller ...l
copyrightinfo (Movie)
copyrightinfo (SWA)
COUNE it
count(3D) ...
count (castLib) ...l
cpuHogTicks cooiii.t.
creaseAngle ...l
CrEASES 'vvtreireeinneeieennennn
creationDatel
ol (o] o R
cuePointNames
cuePointTimes
currentLoopState
currentSpriteNum
currentTime (3D) ovvvvnnn....
currentTime (DVD)
currentTime (QuickTime, AVI)
currentTime (MP4Media/FLV)
currentTime (RealMedia)
(

currentTime (Sound Object)

Last updated 9/28/2011

XXiv

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

currentTime (Sprite) cooviiiininn.
CUISOE ettt ettt et eenaee
CUISOISIZE .iviviiiii i
CUIVE ettt et e
debug ..o
debugPlaybackEnabled
decayModeiiiiiiiiii
defaultRectcciiiiiiiiiiiiin.
defaultRectModeoooll
density ..o
depth(3D) ..vvviiii i
depth (Bitmap)ccoviiiiiiiin..
depthBufferDepth
deskTopRectListccoevviiiinenn...
diffuse ..o
diffuseColorc.ooeiiiiiiiiiii
diffuseLightMap coooiiiintn.
digitalVideoTimeScale
digitalVideoType ...t
direction ...
directionalColorccooiiiit
directionalPresetcooill
directToStagecovviiiiiiininnnn.
directToStage (MP4Media/FLV)
disablelmagingTransformation
displayFaceciiiiiiiiiiiiin,
displayMode ...l
displayReallogoc.oiialln
displayTemplateooaee.
distribution ...
dither ...
dockingEnabledooll
domain ...
doubleClickcooooiiiiiiiiiit
Arag e
drawRectcoiiiiiiiiiiiii
dropShadow ...,
duration(3D)eiiiiiiiiiiiiiin
duration (DVD) ...c.ovvvniiiiiinainnn
duration (Member)
duration (MP4Media/FLV)
duration (RealMedia, SWA)
editable ...
editShortCutsEnabled
elapsedTimecoviiiiiiiiiiinn,

elapsedTime (Mixer)cccovvenen.

Last updated 9/28/2011

XXV

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

elapsedTime (SOUN OBJECE) ...ttt ettt et et e et e e et e e et e e e e e e e ie e 891
L0137 V7= 892
L= 0010 =T 893
emMUlateMUIIDUTIONMOUSE ..ot ettt ettt e e e et et e 894
1= 0= o] =T 894
enabled (COMlISION) ...t e 895
1= T o] U=t T T N 895
1= 01 o] [T I (e Yo) 896
ENAbled (SAS) oot e 896
ENADIEF S IGO0 ot 897
1= 0 e 1Y o T 1 897
1= 0 e [0 o T 898
BNAFTAME e e 899
1=T T LT o N 899
endTime (Sound Channel)o e et 900
endTime (SOUN ObJECE) .. e ittt ettt e ettt e e e et e e e et et e et e e 900
L1017 o) 0 0 T=T N o CeT o X £y PN 901
L= 902
VNP MO i e 903
124 o < 904
externalParamOCOUNT ... e 905
L5 1< 906
L2 1< 907
L= T o') 907
IO W o e 908
fIElAOTVIEW (BD) oottt ittt ettt e et e e e e 908
L= TT0Y = 909
L= T4 4T (@ 1 o 909
fileName (Member) ..o e 910
fileName (MPAMEdIa/FLV) ..t et e e e et e e et 911
filENAME (WINAOW) ettt e ettt e e ettt et e e et e e e 912
LTS 913
L LEE3 71T o 913
L1 o Lo 914
L1 e =TS 915
L1)<Yot 4o o 915
L1 916
L1 = 917
L1 2571 917
L] ST 1 918
L€ 919
LT S (0T 919
LT I 01U T3 T I o =T e 920
L1 3T 1=T 920
L0 | T T2 o - T 921
L2 |- < 921

Last updated 9/28/2011

XXVi

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

L2 e 1= -4 922
S ROt o e 923
LAt e e 924
H ot 924
Y et 925
oAt P ECISION .t 925
o R 927
][=] 927
L0 929
FONE S ZE oot e 929
L0 01 55) 8 [930
LT 0o Lo 932
L= 00 932
FrAMECOUNT oot 933
framELabel o e 933
L L0 T=] =1 =1 (R 934
frAMERAIE .o e 935
frameERAE (DVD) oottt et 936
frameRate (MPAMEIA/FLY) ...ttt ettt ettt ettt et e et et e et e 937
L8 Tl £ ' 937
frAMESOUNA T e 938
frAME S OUNG L L e 938
L8 TS IC=T 01 o T J 939
L L0071 o o 939
Lo 940
FrONMtIWINAOW e et 940
LTS 2= o 941
o T4 3 1= |15 PN 941
o [0] o - | 3 942
1o L0111V - o T 942
Lo T 1771/ N 943
Fo =T 1T a1 177 944
[01U 944
YT 2 945
YT 55) 946
height (MPAMEdIa/FLV) ..ottt ettt e et e et e e et et e e e e et et 946
YT Te] Y =T L= 947
LaTTe a1 1T o1 =T Cel=Y o =Y [947
a1 Te o 1T | o Ty A= oo 1 o T 948
L1 =P 949
01124 949
0T 0 T 950
T Y o T 950
hotSPOtENterCallback e 951
NOTSPOTEXITCAIIDACK ..ottt e e et e e e e e e 952
L 952

Last updated 9/28/2011

Xxvii

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

03 01 0113 S 953
YR N RANGE o 954
Y PEIIINKS ottt e 954
03 0TS 131 - (= 955
idleHandlerPeriod i s 956
HA1EL0AAMOTE ..ottt 957
Lo][0T Yo | T To T R 957
1 | 1T o Y- To [- P 958
IdIeREadChUNKSIZE ... e e 959
IMAGE (IMAGE) ettt ettt e e e e 959
IMAgE (REAIMEAIA) .ottt ittt e e ettt e et et et e e e e e e 960
IMAgE (RENAEI tO TEXIUIE) ottt ettt ettt ettt e ettt e e e e e e e e et e e e ettt e e e e e e enenens 960
IMAge (MPAMEIa/FLY) ottt e e et e e e e e e e e et e ettt e et e e e 961
10 o Tl 1T e o 961
[0 a =T 1T @e Ty g o ¢T3 [o P 962
IMAgEENAD Ed . e 963
L0 Vo =T TU Y11 964
MOVl e 965
10 965
10T ST (23T T 1111 R 966
inlinelmeEnabled e 967
L= A7 968
LR VZT 17 T R 969
isPlayable (MPAMedIa/FLV) ... o e s 969
[T NV gL T (LG 970
1SSAVING (SOUNT ObJECE) oottt ettt ettt et et e e e e et e e e et e e et e e e et ie e 970
ISV RO I e 971
L]0 01 1T 4L =T 972
ST 0T 0 973
ST 0T LT LI T3 2] o 973
KBY et 974
1S3V Yo T T e | o ol T Y o T (= 975
YL oo [976
LSV 0117 1Yol o 977
KeyframePlayer (MOGIfiEr) ... o e et et et ettt e e e e e 978
L3V o1] 979
5T =] 980
TS (0 T T3 =Y 980
1 (R 981
T 41 e 981
TS Y= | 982
TS =V = 983
5T 41 983
5T 4 | 984
1 984
12T]) 985

Last updated 9/28/2011

xxviii

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

123 g T 1= 0 985
1T e e Tl (o) I 11 -1 V) 986
12 g o 1 a5 986
12T g T 14 Y=Y o el T 987
1537 987
T30 = 988
IO et e 988
G tINCIUSIONLISt .ttt e ettt e ettt e e e e e e 989
1T a3 el U1 o o X 989
T T=T o] o 990
g TSI 0T o 991
T QY=< o T3 991
oY T o 3 992
g T=T 5 =1 992
NSz o e 993
170 =T 993
10T T 1= 994
10C (backdrop and OVEIIAY) ... ittt et e e e e e 995
JOCH e e 995
Lo Tel I 10 1 =€ T 996
10T ey 996
1o T2 997
L T I (' oY 11T 998
0o o1 1515) P 999
0o o J (102114 (=] o 999
£ Yo7 o 31 (14 1=T /0T o =T I PO 1000
100D (MPAMEAIa/FLY) ..ottt et ettt e e e et e e et et e e 1000
0o o J (2 =T) I P 1000
100D (WINOWS MEAIA) ..ottt ettt et e ettt e et et e ettt e e e e et e ettt a e eaananas 1001
£ To7 o] 270 T8 [T L3 P 1002
o o 1@ TU T 2 ¥ P 1003
[[0Yo] o J@{o U] Y Yo T I g Yo 0. o)=Yt 1 P 1004
loopENdTime (Sound Channel) ... e e e e ettt ettt e e ettt 1004
100PENATIME (SOUNA ODJECL) oottt ettt e e e e e e e e e e e e et e e et e e e e eanes 1005
Yo7 o33 2{<Y o =11 a1 13T P 1006
loopsRemaining (SoUNd ObJeCt) ..ot e e e e e e 1006
[0 o) 0 15] - 118 112 2 V=3 1007
100PStartTime (SOUN ObJECE) oottt ettt ettt ettt e e e e e e e e e e e e e e et e e e e e e eanes 1007
00T T 10T [P 1008
L0 o o TP 1008
AR OISt oo e 1009
00T 1009
LS DL (T = 1010
[T Y 7= P 1011
00 T=T T T 1011
L0012 T | P 1012

Last updated 9/28/2011

XXiX

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

mediaStatus (DVD) ccovviininnnn.
mediaStatus (MP4Media/FLV)

mediaStatus (RealMedia, Windows Media)

mediaXtraList ...l
member ...
member (Cast) iiiiiiiiiiiii
member (Movie)cooiiiiiiii.t
member (Sound Channel)
member (Sound Object)
member (Sprite)oiiiiiiiiiii
memorySize ...
meshDeform (modifier)
milliseconds ...
minSpeed ...
missingFonts l
MIXEN e
mode (emitter) ...
mode (collision)coiiiiiia
model ...
modelA .
modelB ...
modelResource ...l
modified ...
modifiedByoiiii
modifiedDate ...
modifier ...
modifierl] ...
modifiers ...
mostRecentCuePoint
mostRecentCuePoint (Sound Object)
motion ...
motionQuality ...l
mouseCharcooviiiiiiiiiiiin
mouseDown ...
mouseDownScript ...,
mouseH ...
mouseltem ...l
mouseLevel ...
mouseline
mouseLoc ...
mouseMember ...
mouseOverButtonoooall
mouseUp ...
mouseUpScript ...l
MOUSEY ...
mouseWord ...l

Last updated 9/28/2011

XXX

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

(L0 N =T o] L= o) = 1046
L0 T0 Y= 1047
L0 ALY o T U] T R 1047
L= 0T 1048
NAME (3D Lttt s 1048
[10 L=l (4 T=T o TV o o =1 o 7 PP 1049
NAME (MENU BN PrOPEITY) oottt ettt ettt e et e e ettt et e e ettt et e e e e ettt e et e e eenns 1049
LT LT (1Dt P 1050
L T4 a1 Yo T o] 1= 4 P 1050
[L0 0TI] o 1 (=) P 1051
NAME (SPITE CRaNNEl) .ottt et ettt et e e e e e e e e e e 1052
LT T2 T G T 0 T=T o T P 1052
NAME (XMIL) o e 1053
LT T () P 1053
NEANF O NG oo e e e 1054
LT 4o 11= o 1055
NEtThIOTHIETICKS ..o et et 1055
T T I 1056
nodeEnterCallback ... e 1056
NOAEEXITCallDaCK ..ot 1057
[T e 1= Y/ o P 1058
LT T4 ' T Y T 1058
L0774 ' T R 1059
LT 00T o =] (=T o P 1060
LaTU 03] o =T o (el - Y - et =T 1060
LR T 03] o =T o (14T 0 - 1061
LT 03] o =T o ([T =T R 1061
T80T o= (1 =T 5 Y o< P 1062
AT 03] o= o (4 T=T o U I N 1063
oL 0 g o= o (44 T=T U I =Y o T 1064
NUMDDET (SPIte CRanNel) ottt et ettt et e e e e e e et e e e e e 1064
T80T o= V2 (=] ') P 1065
AT 03 o= o (1o o N 1065
NUMDET Of MEMDEIS ..ot ettt e et et ettt e e 1066
FaTU 03] o= o] it - T 1066
NUMBUTEISTOPIEIOAT ...ttt ettt et et et e e e e ettt 1066
NUMCNANNELS oo ettt et 1067
LT 03] o T« e < 1068
(T84 Y=Te 5 0 =T PP 1068
o] 0T YA el o] {1 o] =T o P 1069
[0 01410 a1 o1V o PP 1069
[0 (o = 1 T74= 1 To] 11\ =T o 4 1= 1070
Lo T T 113 =11 2o T3 ¥ 1071
£ 1 11 1 PP 1072
Lo 4T 11811 Lo T [P 1073
[4o a0 | 1074

Last updated 9/28/2011

XXXi

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

[0 4o 101
Lo T a7) =TT o | P
Lo L= -V
[0 Lo =] 1= e | Y P
0 =] (= P
[0 11T 0= 1Y = o7 o1 Ve P
02111 =Y 2T P
072 P
[0 LA (@ AV A o) o =1 o)
panMatrix, toChannels, and USEMatrixX (IMIXEF) ...ttt ettt ettt e e e e e e eanes
panMatrix, toChannels, and useMatrix (SOUN ObJECT) ..o ettt e e e e e e aeanes
[0 1= T [o] o
0T T =T
[3o o P
Path MOV ot e e e e e e
[1o 15 5) PP
PathiName (Flash MemIber) oo et e ettt et ettt e e e et e et aaaas
[14 1 € (=T Ve 14 o T P
0T 14 4=1 o
pausedAtStart (Flash, Digital VIE0)ot e e e e e e
PaUSedATSTart (MPAMEdIa/FLY) ..ottt e e e e e e ettt ettt e e
pausedAtStart (RealMedia, WINdOWs MEdia)ottt ittt ettt
[T =] 014 U =T o P
=T =] 1 o = 7= P
{022 el =T g Y] =T Y0 V=T 515)
PercentStreamed (MEMDEE) ..ottt et e e e e e e e e
percentStreamed (MPAMEdIa/FLY) ..ttt et ettt e e e e e
percentStreamed (SOUNd ObJeC) ...ttt e e e e e
071 (1o e
[0 1T 553 =] 0
o1 {0 T £ (17 1=T 'Y o =T P
2Lt (0T (T s e (o
0] =14 1o 1 oo T
PIaYBACKIMOTE ittt ettt e e e e e e e e e e e
1177 T T P
15177 LYo N) P
1177 L] P
PIAYRATE (3D) .ttt tt ettt e e e e e e e e e
5T)
QUICKTIME, AV, MPA4, FLV) e e et e e e e e e e et et ettt
PIaYRate (SOUN ObJECE) ..ttt ettt ettt et e et ettt e e ettt e e et et et e

(
playRate (
playRate (
(
playRate (WINAOWS MEAI) .. vuit ittt ettt et e e e e e e e e e e e e e e e e e
[ooT 10172 (@ T=T o -« o o T PP
[Te 1Y (@ {@(o 3 - ot
JoTe T 1 TeT g N (o) LI 11 - V) PO
[Te X1 oY o I (=T 0 1] o 4 ') P

Last updated 9/28/2011

Xxxii

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

[0 1 1 o] 1 2= =1 P 1106
{011 =T - o 1= 1106
[T (=T Yo I T | 2=T o Vo 1T P 1107
[T o= Yo I (2]) P 1108
Preload (MEmMDEr) oottt et e e e e e 1108
PreLoadEVENtADO T ot e e e e 1109
74T Mo - o 11 o T I P 1109
PrELOadR A e e e 1110
[T oY= T I I 14T P 1111
L0141 YZ= 1112
7o T 0T T o' =P 1112
02 o 18Tt 4= 1T o T P 1113
1) =T o o T 1113
[LU T 1= o o 4 1 V2P 1114
o U T 1115
Lo U= 11 1115
Lo U= 11187] 5) P 1116
Lo LU 117
[T Te (o] 4 157=T= T 1118
[=TeloT e 10T o P 1118
[(=TeL 0 (or=T o 0 =T =) 1119
(2oL (130T T 1<) PP 1120
=T 1/ 1=T 'Y o= o R 1121
[(Tet Q1 o] £ 1 (=) P 1121
FECE (WINAOW) oottt e ettt ettt e e 1122
=1 1122
=3 1Tt T T]/ ' H P 1123
=] LT {12 P 1124
L= 1o o 1124
[T |2 12 PP 1125
[T | 101 15) PP 1126
L0 oY 1010 4=T o (<) G P 1126
=T 0T L= =T 1127
FENAErerDEVICELIST oottt e e e 1127
=TT [T oY {4 | 1128
L0 Te 1= 05317 [P 1129
FESIZAlE e 1129
FESOIULION (D) oottt ittt ettt e e ettt e e e e e e 1130
FESOIUTION (DVD) ettt ettt ettt ettt et ettt et e e e ettt e e e e 1130
LTT) P 1131
FESOUNCE ottt ettt ittt ettt ettt et ettt e e ettt e et ettt et e e e e e 1131
T 0 P 1132
4T L4015 5) P 1132
[Te 114 4T 11 oY PP 1133
FIGNEMOUSEDOWN oottt ettt ettt et ettt e e e e e e e e e e e e 1133
FIGNEMOUSEUD ettt ettt ettt et e et et e e e e e e e e e e e e e 1134

Last updated 9/28/2011

xxxiii

DIRECTOR SCRIPTING DICTIONARY 11.5

Contents

[0 1TV T J 1134
FOOTLOCK e e 1135
0T {1\ o T [P 1135
L 17=11 4 o o 1136
rotation (backdrop and OVErlay)e. ittt 1137
FOtAtioN (ENGraVEr ShAdEr) ..ottt e e e e e e e e e e 1138
oY 1o TN =T 017 o) 0 o) IR 1138
L= 0] g 2= 1139
21 1139
F5 11 o0 I P 1140
sampleCount (SOUNd Channel) ... ettt e e e e et e 1141
SaMPleCount (SOUN ObJECE) ...ttt ettt et et e e e ettt e e e 1142
£= Va0 o] 1= 2 L (1Y D=) 1142
sampleRate (SOUNd Channel)o e e et e e e e 1143
sampleRate (SOUNA ObJeCt) ...ttt e e e e e 1143
SAMIPIE S I ZE e e e e 1144
L7 V=T T N 1145
E V=L 4 1145
SCAIE (D) ittt 1146
scale (backdrop and OVErlay)t e 1146
scaleX (backdrop and OVErlay)ttt e e e 1147
scaleY (backdrop and OVErIaY) ...t 1147
SCAlE (MMET) ettt e 1147
SCAlE (ErANS O M) oottt ettt ettt ettt e e e e e e e 1149
SCAlEMIOTE . e 1149
1o < 1150
E e 1T @) [R 1151
F 0T ISY=] =Tt T o 1151
Tl o PP 1152
FT o (=T P 1153
£t o] (1T QA= Iy PP 1154
ETal g o1 1 1] = 1 L= I PP 1154
£l o) o] PP 1155
£T e o111 [0 oo 1155
E o = - 1 o1 [1156
LTt o1 0 = 1156
FT el o) =0 PP 1157
ET e o o 577 1= 1157
LTl | e o T 1158
Fe £ (03T T 11T PR 1159
searChCUITENTROIAEr ..o e 1160
SEAICRPAtNLIST ..ttt e 1161
£1=] [Tt (=T |04 o o TR 1162
F1=] =Tt €= =) P 1162
L7=] < o X 1163
selection (text/field cast member Property) c..ounii e 1164

Last updated 9/28/2011

XXXiV

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

L7=1 1 =0T 1164
E7=] 53 - T 1165
SEIAINUM DT e e e e 1166
£ Lo =T 1166
SNAAEILISt o 1167
[g e fo TN =T T P 1168
£ 0 e (oL A 4 =T e o 1169
£ o=l 7 o= 1169
SN I DOWN e e 1170
£ T T T3 1170
£ 1T U< {3 1171
SIZ i e e 1171
SIZE R AN o e e 1172
L1743 = (= 1172
1253 1173
£ 0T} 43T 1= 1174
L7 T0T o I (1= a1 o =T 1175
[18 g Lo I (24 =1 7T P 1175
SOUNACNANNE] (SWW A) e e e e e 1176
soundChannel (RealMedia)o.iniit ettt e e et 1177
SOUNADEVICE oottt et ettt e e e 1178
SOUNADEVICELIST .. ettt ettt ettt ettt ettt ettt e e et ettt ettt 1178
SOUNAENGDIEd e e 1179
[0 e | C=T=T o] B 1L T 1179
SOUNALEVEl o e 1180
SOUNAMIXMEAIA .ottt e ettt et et ettt et e et e e 1181
£ 18T (@] o) =Tt X1 1182
10 U = 1182
SOUNCERIIENGME o e 1183
SOUNCER T oottt 1183
£ 01T 1= (1T | 1 1184
£ o) Tal U] - 1] T Vo =T 1184
£ o) Tel U] - (@] o T 1185
SPECUIAI LGN ettt e e e e e e e 1185
£o Lo 1A o T = 1186
SPOE DAY e e 1187
£ o741 (N (1Y 1o Y7 =) PP 1187
SPIItE (SPITE CRaNNel) ottt et e e e e e e e e e 1188
£ 1114 10 PP 1188
L5362 T =P 1189
stage (FIash SPrite PrOPEITY) oo.it ittt ettt e e e ettt e e ettt e e e e e 1190
£ = T2V Ve | = P 1190
51 1 =0 T 1191
startTime (SoUNd Channel) .. . e e ettt e e e e 1192
StartTime (SOUNA ObJECt) ...ttt et e e e e e e e e e e e e et e e e e e 1192
SEAMT T LISt o s 1193

Last updated 9/28/2011

XXXV

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

STATE (3] it s 1194
State (FIash, SV A) oot 1195
State (REAIMEAIA) ..ttt ettt et ettt e e 1196
£ L 1197
[= e LU T 11 /P 1198
] 1199
£ = L 1 1199
£ 1 (UL (Yo 1013 o @ o) =T 1200
SHI DOWN e 1201
£53 00 o1 1 4T P 1201
£53 0o o 114 T= 10 PP 1202
E == 0 011 T 1203
SITAMIN M o s 1204
L= 1204
STrEAMSIZE (BD) ottt ittt e 1205
E TS o] o P 1205
SETOKEWIAt e 1206
ST o e e e e e e 1206
SUDAIVISION e 1207
L1 & Tt ¥ P 1208
LU o] g Tt (U= e T U 1208
F0] 07=T e [oo £ =F P 1208
E T2 el 1o [T4 =Y o o T 1209
SY S M T Y CON it 1210
[T =10 T)V o T 4o P 1211
L= oo T T | 1211
L= o1 1212
L= T 1212
TArgetFramME At .o e 1213
LE=T 1 o o 1213
03 S 1214
L0 QU = 1215
teXtUreCoOrdiNAtELiSt ittt e 1216
LS a AU <T@ e o T [T ¥ =T 1216
LES) QL =] =) =T PP 1217
BOXEUNE LISt oo e e 1217
BEXEUNEM MO Er oo e 1218
BEXEUNEMOAE ettt e e 1218
TEXEUNEMOAELIST .ttt ettt et ettt e ettt et e e e e 1219
LS = =T T =T ol o] g 1220
L) (1<) 2= o T<T- | PP 1221
BEXTUIER DAt LISt .ttt e 1222
LS R0 L= I 10 T o) o' 1223
TEXTUNETIANSTOIMLIST oottt ettt ettt e ettt e e e et e e e e e e et e e 1225
LCE) 0 L= 5 o T 1226
UMD Il e 1227

Last updated 9/28/2011

XXXVi

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

N 1228
L8100 L=l (] =To T o] o =T e o 1228
MEOUTHANAI O ettt ettt e e e e e 1229
BMIEOUTLIST oottt e e 1230
BN Sl i e 1230
LL L= (0) 1231
L L= LT3 T Lo 1231
LELE LT o = 10 o 4 o o T3 1232
L1 L= 0T 1233
L0]G =T 1233
L0 0 I (g oY 11T o 1234
L0 o 1235
00 0 o L 13T 1235
L Lel = o T- T 1236
L= Tt e | 1237
L= Lol Yol o) PP 1237
trackCount (MEMDEN) ...t e et 1238
LU Tl @ o T U Y o 1 =) 1238
TraCKEN@DlEd . e 1239
L Lol {01 o 1239
L0 T G LG 0= VI = 1240
LR T L Y- 10 Yo 1= T 2T 1241
L8 T o €1V T TU 0 VA T2 T 1241
TrackPrevioUSSamMPIETIME e e 1242
trackStartTime (Member) ... o e 1242
LR T =T T g T (o T4 =) 1243
LU Tl o e o I T g T (Y =T 2o o 1243
LYol S oY o) T 0 =l Y o] 1 (=) I 1244
L Lel Q1= S 1244
LR T I =N (/1T o o =T P 1245
LR T I o <) o 11 1245
L0 1 1246
LU 101 o T4 0 (o0 o<1 1 4) 1247
L= 1 L1 o o I3/ o= 1248
BrANSI I ONXETALISt o e 1248
LU= 01 14T o 1249
L0101 o T= 1 (=] 0 | P 1250
LEq T T [T @ | o - T P 1251
LR T80 1 AT T =Y o - Vel < 1252
TUNNE DB P N e e e 1253
LRTZ=T=1 0 =T 1253
LR TZ=T=T 0 1o T T 1254
18770 <X {1 T |0 1254
L8770 TN V1= 4T o =T 1255
L8770 Sl (3T e 1= I =TT o T U] =) 1256
1877 < T3 (42T} 4T o) 1257

Last updated 9/28/2011

XXXVii

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

type (shader) ...t
type (sprite) ...l
type (texture) ...l
type (Window)c..oiinant.
updateLock ...,
updateMovieEnabled
updateRTImageOnRender
URL e
useAlpha ...
useDiffuseWithTexture
useFastQuadsllll
useHypertextStyles
useLineOffsetcoool
userData ...l
userNameoill
userName (RealMedia)
useTargetFrameRate
VEMEX veiiiiin i
vertexListo
vertexList (mesh generator)
vertexList (mesh deform)
vertices ...
video (QuickTime, AVI)
video (MP4Media/FLV)

video (RealMedia, Windows Media)

videoFormatl
videoForWindowsPresent
viewH o
viewPoint ...l
viewScale ...
viewV o
visible ...
visible (sprite) ...,
visibility ...
volume (DVD)cevivennnnn..
volume (Member)
volume (Mixer)c..oooune
volume (MP4Media/FLV)
volume (Sound Channel)
volume (Sound Object)
volume (Sprite)coiiiinn.
volume (Windows Media)
warpMode ...
width ...
width (3D) ooiiiiiii
width (MP4Media/FLV)

Last updated 9/28/2011

XXXVii

DIRECTOR SCRIPTING DICTIONARY 11.5
Contents

WIENVEITICES ottt e et
LT3
LT3 T Lo R
WINAOWBENING L. et
WINAOWINFIONT L.ttt ettt ettt ettt ettt
WINAOWLIST ettt et et et ettt ettt e e
LT e L - T
Lo Lo 1o X114 e P
WOITATIANSTOIM ottt e e
LT T LI = 2T () o
LT T LI = LT3 {0 4 X
D (= e
XAXIS ot e
A1 T
D 1T (1T T
D 1 I A (o = =T
DV V2L
2 1T
7722 T
21 V=T o o

42013

Chapter 15: Physics Engine

PhySics WOrld Propertiesttt ettt et e ettt et e e e e e
Physics WOorld methodsttt e e e e e e e e e e e e e
Rigid Body Mmanagement MEthOOSttt ettt e et e et e et e e e e e e e e e
[R0Te T 270 e) VAT o] ¢ 07=T o =T3P
Rigid Body Methods ... oo e
CoNStraiNt METNOAS ..ottt ettt
(@0 0 15 4= T o o =T o 1 =T
] 11T o] o o 1= « =3P
Collision and Collision Callback Mmethodsot e e e e
Terrain MEtNOTS ..t e e
B =T = T 0] 07T T PP
6 DOF JOINt METNOAS .ttt e ettt e e e e e
(110 o] o7 o= g T
Character Controller Methods ... oo e
Character Controller Callback Methodst e e
Character Controller ProPeItiES ...ttt ettt ettt et e e e e e
Cloth MethOds ..o e e
(@1 o) 4 o o) o o<1 ¢« =13
RaYCasting MEthOOS L.ttt ettt et et e e e e e
g o o T [P

Last updated 9/28/2011

XXXiX

Chapter 1: Introduction

This reference provides conceptual and how-to information about scripting in Adobe® Director® 11, and also provides
reference descriptions and examples for the scripting application programming interfaces (APIs) that you use to write
scripts.

The scripting APIs are the means by which you access the functionality of Director through script to add interactivity
to a movie. By using these APIs, you can create interactive functionality that is identical to that provided by the
prewritten behaviors that are shipped with Director, in addition to functionality that is more powerful and more varied
than that provided by the prewritten behaviors.

The prewritten behaviors enable you to add basic interactive functionality to a movie, such as moving the playhead to
a frame number or marker, or zooming in when a user clicks a sprite. They also enable non-interactive functionality
such as sprite animation, media loading, and frame navigation. The scripting APIs enable you to extend and customize
these types of functionality.

Intended audience

This reference is intended for you if you want to do any of the following:

+ Extend the existing functionality of prewritten behaviors by using script.

+ Add functionality to a movie by using script instead of prewritten behaviors.

+ Add more powerful, varied, and custom functionality to a movie than that provided by prewritten behaviors.

This reference is intended to provide all the information, from basic to advanced, you need to add interactivity to your
movies by using script. Therefore, you do not need to have any prior scripting experience to write effective scripts in
Director.

Regardless of your experience level with Director, Lingo, or JavaScript™ syntax, take a few moments to browse
“Director Scripting Essentials” on page 4 and “Writing Scripts in Director” on page 42 before you begin writing scripts.
Like any product, Director has its own unique set of scripting conventions, types of data, and so on. You will need to
be comfortable with these unique characteristics of Director before you can write effective scripts.

What's new with Director scripting

If you have written scripts in previous versions of Director, you should note some new and important changes about
scripting in this latest release.

Parallax mapping Parallax mapping is an enhancement of Normal/Bump Mapping technique. This technique
provides more apparent depth and greater realism with less impact on the performance. For more information, see
Parallax Mapping.

Cube mapping Cube mapping is a method of using a six-sided cube as the shape of the map. The model is projected
onto the six faces of a cube and stored as six square textures, or unfolded into six regions of a single texture. For more
information, see Cube Mapping.

Normal mapping Normal mapping is a technique used for showing finer details like lighting of bumps and dents
without using additional polygons. For more information, see Normal Mapping.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Introduction

Render to texture Render Textures are textures that are created and updated at runtime. For more information, see
Render Texture.

Character Controller capabilities Make your games with a finer control of characters and rigid bodies and make all of
them interact with each other. For more information, see Character Controller methods.

Cloth simulation capabilities Start using the cloth simulation techniques to incorporate flags and banners in your
game. For more information, see Cloth methods.

Enriched audio capabilities Make your games sound as real as they look with 5.1-channel surround sound, real-time
mixing, audio effects, and DSP filters. For more information, see Sound, Mixer, and Audio filters.

Enhanced video capabilities Enhance your user’s multimedia experience using H.264-video integration that provides
full-screen, high-definition video in multimedia applications and games. For more information, see “MP4Media/FLV”
on page 124.

New data type Access and manipulate binary data using the ByteArray data type. For more information, see
“ByteArray” on page 147.

Enhanced physics engine Support for dynamic concave rigid bodies. For more information, see “Rigid Body
methods” on page 1329.

Cross domain policy For more information, see loadPolicyFile().

Enhancements to the text engine +Open Type Font (OTF) embedding support on Macintosh OS.

+ Class-based kerning support.

+ Hinting support at a member level. See hinting.

Enhancements to platform and browser support -Macintosh OSX 10.5 (authoring and runtime) support.
+ Firefox 3.0 support.

For more information, see the Read Me file.

Limitations of Unicode support in Director
Adobe Director supports scripting in Unicode.
« Languages written right-to-left are not supported.

« File I/O Xtra functions such as readchar(), getLength(), and getPosition() work only with a one-byte character
input. To read two- or three-byte Unicode characters, read the entire file into a string object using the readFile()
method. Then, use the char...of method to read the Unicode character.

« Components of Director Physics do not support Unicode.
+ Unicode names for HTTP paths are not supported.

« You cannot name a scripting Xtra as a Unicode string using the 'kMoaMmDictType_MessageTable' registry key.
Also, you cannot expose Lingo functions named in Unicode using the scripting Xtras.

« Scripting Xtras expose Lingo functions. These function names exposed through the Xtras are not supported in
Unicode.

+ 3D model names are not supported in Unicode.

The Script window has an Explorer panel in addition to the Script Editor. By default, the Explorer panel appears to
the left of the Script Editor. You can view the Explorer panel in the Dictionary view or the Script Browser view.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Introduction

What’s new in this documentation

If you learned how to script in previous versions of Director, you should know about some changes in the scripting
documentation for this release. The Director Scripting Reference takes the place of the Lingo Dictionary that was
shipped with previous versions of Director. This reference is organized differently than the Lingo Dictionary.

In the Lingo Dictionary, information about the scripting model was organized by feature. For example, if you wanted
to learn how to work with sprites in script, you looked up that information in one of the sections under the Sprites
heading, such as Dragging Sprites, Sprite Dimensions, and so on. In addition, all of the scripting APIs were listed in a
single alphabetical list, which meant that all functions, properties, events, and so on were mixed together
alphabetically.

In the Director Scripting Reference, information about the scripting model is organized by object. This organization
closely reflects the organization of the actual scripting objects that you use in your scripts. For example, if you want to
find out how to work with sprites in script, you should look for the Sprite section in the chapter, Director Core Objects.

The scripting APIs are still listed in alphabetical order, but they are categorized by API type. For example, all methods
are listed alphabetically under the Methods heading, all properties are listed alphabetically under the Properties
heading, and so on.

Finding information about scripting in Director

With its new organization, the Director Scripting Reference contains the following topics:

Director Scripting Essentials Provides information about the basic scripting concepts and components you will use
when scripting in Director.

Writing Scripts in Director ~ Provides information about the Director scripting environment in addition to advanced
scripting concepts and techniques.

Debugging Scripts in Director ~ Provides information about how to find problems in your scripts when they are not
performing as expected.

Director Core Objects Provides a list of the objects and APIs that you use to access the core functionality and features
in Director, such as the Director player engine, movie windows, sprites, sounds, and so on.

Media Types Provides a list of the media types and APIs that you use to access the functionality of the various media
types in Director, such as RealMedia, DVD, Animated GIF, and so on, that are added to movies as cast members.

Scripting Objects Provides a list of the scripting objects, also known as Xtra extensions, and APIs that you use to
extend core Director functionality. Xtra extensions provide capabilities such as importing filters and connecting to the
Internet.

3D Objects Provides a list of the objects you use to add 3D functionality to a movie.
Constants Provides a list of the constants that are available in Director.

Events and Messages Provides a list of the events that are available in Director.
Keywords Provides a list of the keywords that are available in Director.

Methods Provides a list of the methods that are available in Director.

Operators Provides a list of the operators that are available in Director.

Properties Provides a list of the properties that are available in Director.

Last updated 9/28/2011

Chapter 2: Director Scripting Essentials

If you are new to scripting in Director®, you may want to take some time to learn the basic scripting concepts that are
essential to understanding how to script in Director before you begin. Some of these essentials include definitions of
important terms, syntax rules, available data types, and information about the basic elements of scripting in Director—
for example, variables, arrays, operators, and so on.

Types of scripts

A Director movie can contain four types of scripts: behaviors, movie scripts, parent scripts, and scripts attached to cast
members. Behaviors, movie scripts, and parent scripts all appear as independent cast members in the Cast window. A
script attached to a cast member is associated with that cast member in the Cast window and does not appear
independently.

Behaviors are scripts that are attached to sprites or frames in the Score, and are referred to as sprite behaviors or
frame behaviors. The Cast window thumbnail for each behavior contains a behavior icon in the lower-right corner.

When used in the Director Scripting Reference, the term behavior refers to any script that you attach to a sprite or a
frame. This differs from the behaviors that come in the Director Library Palette. For more information on these
behaviors, which are built into Director, see the Using Director topics in the Director Help Panel.

All behaviors that have been added to a cast library appear in the Behavior inspector’s Behavior pop-up menu.
Other types of scripts do not appear there.

You can attach the same behavior to more than one location in the Score. When you edit a behavior, the edited
version is applied everywhere the behavior is attached in the Score.

Movie scripts contain handlers that are available globally, or on a movie level. Event handlers in a movie script can
be called from other scripts in the movie as the movie plays.

A movie script icon appears in the lower-right corner of the movie script’s Cast window thumbnail.

Movie scripts are available to the entire movie, regardless of which frame the movie is in or which sprites the user
is interacting with. When a movie plays in a window or as a linked movie, a movie script is available only to its own
movie.

Parent scripts are special scripts that contain Lingo that is used to create child objects. You can use parent scripts
to generate script objects that behave and respond similarly yet can still operate independently of each other. A
parent script icon appears in the lower-right corner of the Cast window thumbnail.

For information on using parent scripts and child objects, see “Object-oriented programming with Lingo syntax”
on page 48.

JavaScript syntax does not use parent scripts or child objects; it uses regular JavaScript syntax-style object-oriented
programming techniques. For information on object-oriented programming in JavaScript syntax, see “Object-
oriented programming with JavaScript syntax” on page 57

Flash® member components placed on the stage (Flash sprites) that are invisible can be accessed only by using the
Member object. Using a Sprite object for a Flash sprite with an invisible property will result in an error.

Scripts attached to cast members are attached directly to a cast member, independent of the Score. Whenever the
cast member is assigned to a sprite, the cast member’s script is available.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 5
Director Scripting Essentials

Unlike behaviors, movie scripts, and parent scripts, cast member scripts do not appear in the Cast window.
However, if Show Cast Member Script Icons is selected in the Cast Window Preferences dialog box, cast members
that have a script attached display a small script icon in the lower-left corner of their thumbnails in the Cast
window.

[« Fml
ersion="1.0"
;\}odlng= A

watalog

Scripting terminology

Both Lingo and JavaScript syntax use some terms that are specific to each language, in addition to some terms that are
shared between each language.

Important scripting terms are listed here in alphabetical order. These terms are used throughout the Director Scripting
Reference, so it will help to understand these terms before moving forward.

Constants are elements whose values do not change. For example, in Lingo, constants such as TAB, EMPTY, and
RETURN always have the same values and cannot be modified. In JavaScript syntax, constants such as Math. PI and
Number .MAX_VALUE always have the same values and cannot be modified. You can also create your own custom
constants in JavaScript syntax by using the keyword const.

For more information on constants, see “Constants” on page 13.

Events are actions that occur while a movie is playing. Events occur when a movie stops, a sprite starts, the playhead
enters a frame, the user types at the keyboard, and so on. All events in Director are predefined, and always have the
same meaning.

For more information on events, see “Events” on page 26.
Expressions are any part of a statement that produces a value. For example, 2 + 2 is an expression.
Functions refer to either top-level functions or specific types of JavaScript syntax code.

A top-level function instructs a movie to do something while the movie is playing or returns a value, but it is not
called from any specific object. For example, you would call the top-level 1ist () function by using the syntax
list (). Like a function, a method also instructs a movie to do something while the movie is playing or returns a
value, but it is always called from an object.

A function is used in JavaScript syntax to represent an event handler, a custom object, a custom method, and so on.
The use of JavaScript functions in these cases is described in the applicable topics later in this reference.

Handlers, or event handlers, are sets of statements within a script that run in response to a specific event and
subsequent message. When an event occurs, Director generates and sends a corresponding message to scripts, and
a corresponding handler runs in response to the message. The names of handlers are always the same as the events
and messages they respond to.

Note: Although in JavaScript syntax an event is actually handled by a function, the term handler is used generically
throughout this reference to refer to both Lingo handlers and JavaScript syntax functions that handle events.

For more information on handlers, see “Handlers” on page 28.

Keywords are reserved words that have a special meaning. For example, in Lingo, the keyword end indicates the
end of a handler. In JavaScript syntax, the keyword var indicates that the term following it is a variable.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 6
Director Scripting Essentials

« Lists (Lingo) or Arrays (JavaScript syntax) are ordered sets of values used to track and update an array of data, such
as a series of names or the values assigned to a set of variables. A simple example is a list of numbers such as [1,
4, 2].

For more information on using lists in both Lingo and JavaScript syntax, see “Linear lists and property lists” on
page 31.

For more information on using JavaScript syntax arrays, see “JavaScript syntax arrays” on page 38.

+ Messages are notices that Director sends to scripts when specific events occur in a movie. For example, when the
playhead enters a specific frame, the enterFrame event occurs and Director sends an enterFrame message. If a
script contains an enterFrame handler, the statements within that handler will run, because the handler received
the enterFrame message. If no scripts contain a handler for a message, the message is ignored in script.

For more information on messages, see “Messages” on page 27

« Methods are terms that either instruct a movie to do something while the movie is playing or return a value, and
are called from an object. For example, you would call the insertFrame () method from the Movie object, using
the syntax _movie.insertFrame (). Although similar in functionality to top-level functions, methods are always
called from an object, and top-level functions are not.

+ Operators are terms that calculate a new value from one or more values. For example, the addition (+) operator
adds two or more values together to produce a new value.

For more information on operators, see “Operators” on page 18.

« Parameters are placeholders that let you pass values to scripts. Parameters only apply to methods and event
handlers, and not to properties. They are required by some methods and are optional for others.

For example, the Movie object’s go () method sends the playhead to a specific frame, and optionally specifies the
name of the movie that frame is in. To perform this task, the go () method requires at least one parameter, and
allows for a second parameter. The first required parameter specifies what frame to send the playhead to, and the
second optional parameter specifies what movie the frame is in. Because the first parameter is required, a script
error will result if it is not present when the go () method is called. Because the second parameter is optional, the
method will perform its task even if the parameter is not present.

« Properties are attributes that define an object. For example, a sprite in a movie has specific attributes, such as how
wide it is, how tall it s, its background color, and so on. To access the values of these three specific attributes, you
would use the Sprite object’s width, height, and backColor properties.

For more information on assigning properties to variables, see “Storing and updating values in variables” on
page 15.

« Statements are valid instructions that Director can execute. All scripts are made up of sets of statements. The
following Lingo is a single complete statement.:

_movie.go ("Author")

For more information on writing script statements, see “Scripting in dot syntax format” on page 43.

+ Variables are elements used to store and update values. Variables must start with a letter, an underscore (_), or the
dollar sign (%). Subsequent characters in a variable name can also be digits (0-9). To assign values to variables or
change the values of many properties, you use the equals (=) operator.

For more information on using variables, see “Variables” on page 14.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

Scripting syntax

The following are general syntax rules that apply to Lingo and JavaScript syntax:

« Comment markers vary between Lingo and JavaScript syntax.

All Lingo comments are preceded by double hyphens (- -). Each line of a comment that covers multiple lines must
be preceded by double hyphens.

-- This is a single-line Lingo comment

-- This is a
-- multiple-line Lingo comment

JavaScript syntax comments on a single line are preceded by a double-slash (//). Comments that cover multiple
lines are preceded with a /* and followed by a */.

// This is a single-line JavaScript syntax comment

/* This is a
multiple-line JavaScript syntax comment */

You can place a comment on its own line or after any statement. Any text following the comment markers on the
same line are ignored.

Comments can consist of anything you want, such as notes about a particular script or handler or notes about a
statement whose purpose might not be obvious. Comments make it easier for you or someone else to understand
a procedure after you’ve been away from it for a while.

Adding large numbers of comments does not increase the size of your movie file when it is saved as a compressed
DCR or DXR file. Comments are removed from the file during the compression process.

Comment markers can also be used to ignore sections of code you want to deactivate for testing or debugging
purposes. By adding comment markers rather than removing the code, you can temporarily turn a section into
comments. Select the code you want to turn on or off, and then use the Comment or Uncomment buttons in the
Script window to quickly add or remove comment markers.

« Parentheses are required after all method and function names. For example, when calling the Sound object’s
beep () method, you must include the parentheses after the word beep. Otherwise, a script error will occur.
// JavaScript syntax

_sound.beep(); // this statement will work properly
_sound.beep; // this statement will result in a script error

When you call a method, function, or handler from within another method, function, or handler, you must include
parentheses in the calling statement. In the following example, the modifysprite () method contains a call to a
spriteClicked handler. The call to the spriteclicked handler must include parentheses; otherwise, a script
error occurs:

// JavaScript syntax

function modifySprite() {
spriteClicked(); // this call to the handler will work properly
spriteClicked; // this call to the handler results in a script error
}
function spriteClicked() {

// handler code here

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

You can also use parentheses to override the order of precedence in math operations, or to make your statements
easier to read. For example, the first math expression below yields a result of 13, while the second expression yields
aresult of 5:

5 % 3 - 2 -- yields 13
5 * (3 - 2) -- yields 5

« Event handler syntax varies between Lingo and JavaScript syntax. In Lingo, handlers use the syntax on
handlerName. In JavaScript syntax, handlers are implemented as functions and use the syntax function
handlerName () . For example, the following statements make up a handler that plays a beep when the mouse button
is clicked:

-- Lingo syntax

on mouseDown
_sound.beep ()

end

// JavaScript syntax

function mouseDown () {
_sound.beep () ;

}

 Event handler parameter syntax can vary between Lingo and JavaScript syntax. Both Lingo and JavaScript syntax
support enclosing parameters passed to a handler within parentheses. If more than one parameter is passed, each
parameter is separated by a comma. In Lingo, you can also pass parameters that are not enclosed by parentheses.
For example, the following addThem handler receives the two parameters a and b:

-- Lingo syntax

on addThem a, b -- without parentheses
c=a+b

end

on addThem(a, b) -- with parentheses
c=a+b

end

// JavaScript syntax
function addThem(a, b) {
c =a + b;

}

+ The const keyword can be used in JavaScript syntax to specify a constant whose value does not change. Lingo has
its own predefined set of constants (TAB, EMPTY, and so on); therefore, the keyword const does not apply to Lingo.

For example, the following statement specifies a constant named intAuthors and sets its value to 12. This value
will always be 12, and cannot be changed through script:

// JavaScript syntax
const intAuthors = 12;

+ The var keyword in JavaScript syntax can be placed in front of a term to specify that the term is a variable. The
following statement creates a variable named startvalue:

// JavaScript syntax
var startValue = 0;

Note: Although using var in JavaScript syntax is optional, it is recommended that you always declare local JavaScript
syntax variables, or those inside a function, using var. For more information on using variables, see “Variables” on
page 14.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 9
Director Scripting Essentials

+ The line continuation symbol (\) in Lingo indicates that a long line of sample code has been broken into two or
more lines. Lines of Lingo that are broken in this way are not separate lines of code. For example, the following code
would still run:

-- Lingo syntax
tTexture = member ("3D") .model ("box") \
.shader.texture

JavaScript syntax does not include a line continuation symbol. To break multiple lines of JavaScript syntax code,
add a carriage return at the end of a line, and then continue the code on the following line.

+ Semicolons can be used to specify the end of a statement of JavaScript syntax code. Semicolons do not apply to
Lingo.

Using a semicolon is optional. If used, it is placed at the end of a complete statement. For example, both of the
following statements create a variable named startvalue:

// JavaScript syntax
var startValue = 0
var startValue = 0;

A semicolon does not necessarily specify the end of a line of JavaScript syntax code, and multiple statements can be
placed on one line. However, placing separate statements on separate lines is recommended in order to improve
readability. For example, the following three statements occupy only one line of code and function properly, but it
is difficult to read the code:

// JavaScript syntax
_movie.go("Author"); var startValue = 0; _sound.beep();

« Character spaces within expressions and statements are ignored in both Lingo and JavaScript syntax. In strings of
characters surrounded by quotation marks, spaces are treated as characters. If you want spaces in a string, you must
insert them explicitly. For example, the first statement below ignores the spaces between the list items, and the
second statement includes the spaces.

-- Lingo syntax
myListl = ["1", g, W3] -- yields ["1", "2", "3n]
myList2 = [* 1 ", * 2 v, v 3] -- yields [* 1 ", " 2 ", v 3]

« Case-sensitivity can vary between Lingo and JavaScript syntax.

Lingo is not case-sensitive in any circumstance—you can use uppercase and lowercase letters however you want.
For example, the following four statements are equivalent:

-- Lingo syntax

member ("Cat") .hilite = true

member ("cat") .hiLite = True

MEMBER ("CAT") .HILITE = TRUE
()

Member ("Cat") .Hilite = true

Although Lingo is not case-sensitive, it’s a good habit to choose a case convention and use it consistently
throughout your scripts. This makes it easier to identify names of handlers, variables, cast members, and so on.

JavaScript syntax is case-sensitive when referring to objects, the top-level properties or methods that refer to
objects, or when referring to user-defined variables. For example, the top-level sprite () method returns a
reference to a specific Sprite object, and is implemented in Director with all lowercase letters. The first statement
below refers to the name of the first sprite in a movie, while the second and third statements result in a script error.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

// JavaScript syntax

sprite(l) .name // This statement functions normally
Sprite(1l) .name // This statement results in a script error
SPRITE (1) .name // This statement results in a script error

Literal strings are always case-sensitive in both Lingo and JavaScript syntax.

For more information on using strings, see “Strings” on page 12.

Data types

A data type is a set of data with values that have similar, predefined characteristics. Every variable and property value
in Director is of a specific data type, and values returned by methods are of a specific data type.

For example, consider the following two statements. In the first statement, variable intx is assigned a whole number
value of 14, which is an integer. So, the data type of variable intx is Integer. In the second statement, variable st ringx
is assigned a sequence of character values, which is a string. So, the data type of variable stringx is String.

-- Lingo syntax
intX = 14
stringX = "News Headlines"

// JavaScript syntax
var intX = 14;
var stringX = "News Headlines";

The values that are returned by methods or functions are also of an inherent data type. For example, the Player object’s
windowPresent () method returns a value that specifies whether a window is present. The returned value is TRUE (1)
or FALSE (0).

Some data types are shared between Lingo and JavaScript syntax, and some data types are specific to one language or
another. The set of data types that Director supports is fixed and cannot be modified, meaning that new data types
cannot be added and existing data types cannot be removed. Director supports the following data types.

Data type Description
(symbol) A self-contained unit that can be used to represent a condition or flag. For example, #1ist or #word.
Array (JavaScript syntax only) Although not literally a data type, an Array object can be used to work with linear lists of

values. The functionality of an Array object is similar to that of the List data type in Lingo.

Boolean A value that is TRUE (1) or FALSE (0). In Lingo, all TRUE or FALSE values are simple integer constants, 1 for TRUE, 0
for FALSE. In JavaScript syntax, all true or false values are by default the actual Boolean true or false values,
but are converted to simple integer constants automatically when required in Director.

In Lingo, TRUE and FALSE can be either lowercase or uppercase. In JavaScript syntax, t rue and £alse must always
be lowercase.

Color Represents an object’s color.
Constant A piece of data whose value does not change.
Date Although not literally a data type, in JavaScript syntax a Date object can be used to work with dates. In Lingo, use

the date() method to create a Date object and work with dates.

Float (Lingo only) A floating-point number. For example, 2.345 or 45.43.
Function (JavaScript syntax only) Although not literally a data type, a Function object can be used to specify a string of code
to run.

Last updated 9/28/2011

10

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

Data type Description

Integer (Lingo only) A whole number. For example, 5 or 298.

List A linear or property list made up of values or property names and values, respectively.

Math (JavaScript syntax only) Although not literally a data type, a Math object can be used to perform mathematical
functions.

null (JavaScript syntax only) Denotes a variable whose value behaves as 0 in numeric contexts and as £alse in Boolean
contexts.

Number (JavaScript syntax only) Although not literally a data type, a Number object can be used to represent numerical

constants, such as a maximum value, not-a-number (NaN), and infinity.

Object Although not literally a data type, an Object object can be used to create a custom named container that contains
data and methods that act on that data.

Point A point in the coordinate space that has both a horizontal and vertical coordinate.

Rect A rectangle in the coordinate space.

RegExp (JavaScript only) A regular expression pattern that is used to match character combinations in strings.
String A contiguous sequence of keyboard symbols or character values. For example, "Director" or "$5.00".
undefined (JavaScript syntax only) Denotes a variable that does not have a value.

Vector A pointin 3D space.

VOID (Lingo only) Denotes an empty value.

Note: Many of the data types and objects that are specific to JavaScript syntax contain their own set of methods and
properties that can be used to further manipulate those types. While the Director Scripting Reference may refer to some
of these methods and properties, it does not include complete reference information about them. For more detailed
information on these data types and objects, and their methods and properties, see one of the many third-party resources
on the subject.

The built-in properties in Director, such as the Cast object’s name property, can only be assigned values that are the
same data type as that of the property’s inherent data type. For example, the Cast object’s name property’s inherent data
type is a string, so the value must be a string such as News Headlines. If you try to assign a value of a different data
type to this property, such as the integer 20, a script error occurs.

If you create your own custom properties, their values can be of any data type, regardless of the data type of the initial
value.

Both Lingo and JavaScript syntax are dynamically typed. This means that you do not have to specify the data type of a
variable when you declare it, and data types are automatically converted as needed while a script runs.

For example, the following JavaScript syntax initially sets the variable myMovie to an integer, and later in the script it
is set to a string. When the script runs, the date type of myMovie is converted automatically:

-- Lingo syntax
myMovie = 15 -- myMovie is initially set to an integer

myMovie = "Animations" -- myMovie is later set to a string

// JavaScript syntax
var myMovie = 15; // myMovie is initially set to an integer

myMovie = "Animations"; // myMovie is later set to a string

Last updated 9/28/2011

11

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

Literal values

A literal value is any part of a statement or expression that is to be used exactly as it is, rather than as a variable or a
script element. Literal values that you encounter in script are character strings, integers, decimal numbers, cast
member names and numbers, frame and movie names and numbers, symbols, and constants.

Each type of literal value has its own rules.

Strings

Strings are words or groups of characters that script treats as regular words instead of as variables. Strings must be
enclosed in double quotation marks. For example, you might use strings to give messages to the user of your movie or
to name cast members. In the following statement, Hello and Greet ing are both strings. Hel1lo is the literal text being
put into the text cast member; Greet ing is the name of the cast member:

-- Lingo syntax
member ("Greeting") .text = "Hello"

Similarly, if you test a string, double quotation marks must surround each string, as in the following example:

-- Lingo syntax
if "Hello Mr. Jones" contains "Hello" then soundHandler

Both Lingo and JavaScript syntax treat spaces at the beginning or end of a string as a literal part of the string. The
following expression includes a space after the word fo:

// JavaScript syntax
trace ("My thoughts amount to ") ;

Although Lingo does not distinguish between uppercase and lowercase when referring to cast members, variables, and
so on, literal strings are case-sensitive. For example, the following two statements place different text into the specified
cast member, because Hello and HELLO are literal strings:

-- Lingo syntax
"Hello"
"HELLO"

member ("Greeting") .text

member ("Greeting") .text

In Lingo, the string () function can convert a numerical value into a string. In JavaScript syntax, the tostring ()
method can convert a numerical value into a string.

Note: Attempting to use the tostring () method in JavaScript syntax on a null or undefined value results in a script
error. This is in contrast with Lingo, in which the string () function works on all values, including those that are VoID.

Numbers

In Lingo, there are two types of numbers: integers and decimals.

An integer is a whole number, without any fractions or decimal places, in the range of -2,147,483,648 and
+2,147,483,647. Enter integers without using commas. Use a minus (-) sign for negative numbers.

A decimal number, also called a floatingpoint number-, or float, is any number that includes a decimal point. In Lingo,
the floatPrecision property controls the number of decimal places used to display these numbers. Director always
uses the complete number, up to 15 significant digits, in calculations; Director rounds any number with more than 15
significant digits in calculations.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 13
Director Scripting Essentials

JavaScript syntax does not distinguish between integers and floating-point numbers, and merely uses numbers. For
example, the following statements illustrate that the number 1 is an integer in Lingo and a number in JavaScript syntax,
and that the decimal number 1.05 is a float in Lingo and a number in JavaScript syntax:

-- Lingo syntax
put (i1k (1)) -- #integer
put (1i1k(1.05)) -- #float

// JavaScript syntax
trace (typeof (1)) // number
trace (typeof (1.05)) // number

In Lingo, you can convert a decimal to an integer by using the integer () function. You can also convert an integer
to a decimal by performing a mathematical operation on the integer, for example, by multiplying an integer by a
decimal. In JavaScript syntax, you can convert a string or a decimal number to a whole number by using the
parseInt () function. As opposed to Lingo’s integer () function, parseInt () rounds down. For example, the
following statement rounds off the decimal number 3.9 and converts it to the integer 4 (Lingo) and the number 3
(JavaScript syntax):

-- Lingo syntax

theNumber = integer(3.9) -- results in a value of 4

// JavaScript syntax
var theNumber = parseInt(3.9); // results in a value of 3

In Lingo, the value () function can convert a string into a numerical value.
You can also use exponential notation with decimal numbers: for example, -1.1234e-100 or 123.4e+9.

In Lingo, you can convert an integer or string to a decimal number by using the £1oat () function. In JavaScript
syntax, you can convert a string to a decimal number by using the parseFloat () function. For example, the following
statement stores the value 3.0000 (Lingo) and 3 (JavaScript syntax) in the variable theNumber:

-- Lingo syntax

theNumber = float(3) -- results in a value of 3.0000

// JavaScript syntax
var theNumber = parseFloat(3) // results in a value of 3

Constants
A constant is a named value whose content never changes.
In Lingo, the predefined terms TRUE, FALSE, VOID, and EMPTY are constants because their values are always the same.

The predefined terms BACKSPACE, ENTER, QUOTE, RETURN, SPACE, and TAB are constants that refer to keyboard
characters. For example, to test whether the last key pressed was the Space bar, use the following statement:

-- Lingo syntax
if _key.keyPressed() = SPACE then beep()

In JavaScript syntax, you can access predefined constants using some of the data types that are unique to JavaScript
syntax. For example, the Number object contains constants such as Number . MAX_VALUE and Number . NaN, the Math
object contains constants such as Math.PI and Math.E, and so on.

Note: This reference does not provide in-depth information about the predefined constants in JavaScript syntax. For more
information on these constants, see one of the many third-party resources on the subject.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 14
Director Scripting Essentials

In JavaScript syntax, you can also define your own custom constants by using the const keyword. For example, the
following statement creates a constant named items, and assigns it a value of 20. This value cannot be changed after
it has been created:

// JavaScript syntax
const items = 20;

For more information on constants, see “Constants” on page 170.

Symbols

A symbol is a string or other value in Lingo that begins with the pound (#) sign.

Symbols are user-defined constants. Comparisons using symbols can usually be performed very quickly, providing
more efficient code.

Note: In Lingo, the uppercase for the symbol is mapped to the lowercase. If you try to convert a string (for example, Sonia)
into a symbol by using the symbol function, the output will be sonia.

For example, the first statement below runs more quickly than the second statement:

-- Lingo syntax
userLevel = #novice
userLevel = "novice"

Symbols cannot contain spaces or punctuation.
In both Lingo and JavaScript syntax, convert a string to a symbol by using the symbol () method.
-- Lingo syntax

x = symbol ("novice") -- results in #novice

// JavaScript syntax
var x = symbol ("novice"); // results in #novice

Convert a symbol back to a string by using the string () function (Lingo) or the tostring () method (JavaScript
syntax).

-- Lingo syntax
x = string(#novice) -- results in "novice"

// JavaScript syntax
var x = symbol ("novice") .toString(); // results in "novice"

In JavaScript syntax, you cannot compare symbols of the same name to determine whether they refer to the same
symbol. To compare symbols of the same name, you must first convert them to strings by using the tostring ()
method, and then perform the comparison.

Variables

Director uses variables to store and update values. As the name implies, a variable contains a value that can be changed
or updated as a movie plays. By changing the value of a variable as the movie plays, Director can do things such as store
a URL, track the number of times a user takes part in an online chat session, record whether a network operation is
complete, and many more options.

It is a good idea always to assign a variable a known value the first time you declare the variable. This is known as
initializing a variable. Initializing variables makes it easier to track and compare the variable’s value as the movie plays.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

Variables can be global or local. A local variable exists only as long as the handler in which it is defined is running. A
global variable can exist and retain its value as long as Director is running, including when a movie branches to another
movie. A variable can be global within an individual handler, a specific script, or an entire movie; the scope depends
on how the global variable is initialized.

If you want a variable to be available throughout a movie, it is good practice to declare it in an on prepareMovie
(Lingo) or a function prepareMovie () (JavaScript syntax) handler. This ensures that the variable is available from
the very start of the movie.

For more information on using both global and local variables, see “Using global variables” on page 16 and “Using
local variables” on page 18.

Storing and updating values in variables

Variables can hold data for any of the data types found in Director, such as integers, strings, TRUE or FALSE values,
symbols, lists, or the result of a calculation. Use the equals (=) operator to store the values of properties and variables.

As mentioned in the Data types section of this reference, variables in both Lingo and JavaScript syntax are dynamically
typed, which means that they can contain different types of data at different times. (The ability to change a variable’s
type distinguishes Lingo from other languages such as Java™ and C++, in which a variable’s type cannot be changed.)

For example, the statement x = 1 creates the variable x, which is an integer variable because you assigned the variable
an integer. If you subsequently use the statement x = "one", the variable x becomes a string variable, because the
variable now contains a string.

You can convert a string to a number by using the value () function (Lingo) or the parseInt () method (JavaScript
syntax), or a number to a string by using the string () function (Lingo) or the tostring () method (JavaScript
syntax).

The values of some properties can be both set (the value is assigned) and returned (the value is retrieved), and some
property values can only be returned. Properties whose values can be both set and returned are called read/write, and
those that can only be returned are called read-only.

Often these are properties that describe some condition that exists outside the control of Director. For example, you
cannot set the numChannels cast member property, which indicates the number of channels within a movie that
contain Adobe® Shockwave® content. However, you can return the number of channels by referring to the
numChannels property of a cast member.

Assign a value to a variable
% Use the equals (=) operator.

For example, the following statement assigns a URL to the variable placesToGo:

// JavaScript syntax
var placesToGo = "http://www.adobe.com";

Variables can also hold the results of mathematical operations. For example, the following statement adds the result of
an addition operation to the variable mySum:

-- Lingo syntax
mySum = 5 + 5 -- this sets mySum equal to 10

As another example, the following statement returns the cast member assigned to sprite 2 by retrieving the value of the
sprite’s member property and places it into the variable textMember:

-- Lingo syntax
textMember = sprite(2) .member

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 16
Director Scripting Essentials

It is good practice to use variable names that indicate what the variable is used for. This makes your scripts easier to
read. For example, the variable mysum indicates that the variable contains a sum of numbers.

Test the values of properties or variables
% Use the put () or the trace () functions in the Message window or check the values in the Watcher window;
(put () and trace () provide identical functionality and are available to both Lingo and JavaScript syntax).

For example, the following statement displays the value assigned to the variable myNumber in the Message window:

-- Lingo syntax
myNumber = 20 * 7
put (myNumber) -- displays 140 in the Message window

// JavaScript syntax
var myNumber = 20 * 7;
trace (myNumber) // displays 140 in the Message window

Using global variables
Global variables can be shared among handlers, scripts, or movies. A global variable exists and retains its value as long

as Director is running or until you call the clearGlobals () method.

In Adobe Shockwave Player, global variables persist among movies displayed by the goToNetMovie () method, but not
among those displayed by the goToNetPage () method.

Every handler that declares a variable as global can use the variable’s current value. If the handler changes the variable’s
value, the new value is available to every other handler that treats the variable as global.

It is good practice to start the names of all global variables with a lowercase g. This helps identify which variables are
global when you examine your code.

Director provides a way to display all current global variables and their current values and to clear the values of all
global variables.

Display all current global variables and their current values
% Use the Global object’s showGlobals () method in the Message window.

For more information on the Message window, see “Debugging in the Message window” on page 81.

Clear all current global variables
% Use the Global object’s clearGlobals () method in the Message window to set the value of all global variables to
vo1D (Lingo) or undefined (JavaScript syntax).

To monitor the values of global variables during movie playback, use the Object inspector. For more information on
the Object inspector, see “Debugging in the Object inspector” on page 84.

Global variables in Lingo

In Lingo, variables are considered local by default, and you do not need to precede the variable name with any keyword.
To declare a global variable, you must precede the variable with the keyword global.

If you declare a global variable at the top of a script and before any handlers, the variable is available to all handlers in
that specific script. If you declare a global variable within a handler, the variable is available only to that handler;
however, if you declare a global variable with the same name within two separate handlers, an update to the variable’s
value in one handler will also be reflected in the variable in the other handler.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

The following example illustrates working with two global variables: gScript, which is available to all handlers in the
script, and gHandler, which is available within its defining handler and any other handlers that declare it on the first
line of the handler:

-- Lingo syntax
global gScript -- gScript is available to all handlers

on mouseDown
global gHandler
gScript = 25
gHandler = 30
end

on mouseUp

global gHandler

trace (gHandler) -- displays 30
end

In Lingo, when you use the term global to define global variables, the variables automatically have vo1D as their initial
value.

Global variables in JavaScript syntax

In JavaScript syntax, variables are considered global by default. The scope of a global variable can be determined by
how and where it is declared.

« Ifyoudeclare a variable within a JavaScript syntax function without preceding the variable name with the keyword
var, the variable is available to all functions within its containing script.

+ If you declare a variable outside a JavaScript syntax function, with or without the keyword var, the variable is
available to all functions within its containing script.

« Ifyou declare a variable inside or outside a JavaScript syntax function by using the syntax _global.varName, the
variable is available to all scripts within a movie.

The following example uses the syntax _global.gMovie in one script to declare the variable gMovie as global. This
variable is available to all scripts within the movie:

// JavaScript syntax
_global.gMovie = 1; // Declare gMovie in one script

// Create a function in a separate script that operates on gMovie
function mouseDown () {

_global.gMovie++;

return(_global.gMovie) ;

}

The following example declares the global variable gscript in one script. This variable is available only to functions
within that script:

// JavaScript syntax
var gScript = 1; // Declare gScript in a script

// gScript is available only to functions in the script that defines it
function mouseDown () {

gScript++;

return (gScript) ;

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 18
Director Scripting Essentials

In JavaScript syntax, when you define variables before any handlers, the variables automatically have undefined as
their initial value.

Using local variables

A local variable exists only as long as the handler in which it is defined is running. However, after a local variable is
created, you can use the variable in other expressions or change its value while a script is still within the handler that
defined the variable.

Treating variables as local is a good idea when you want to use a variable only temporarily in one handler. This helps
you avoid unintentionally changing the value in another handler that uses the same variable name.

Create a local variable

+ In Lingo, assign the variable a value using the equals (=) operator.

« InJavaScript syntax, inside a function precede the variable name with the keyword var, and then assign the variable
a value using the equals operator.

Note: Because JavaScript syntax variables are global by default, if you attempt to declare a local variable inside a
function without using the keyword var, your script could produce unexpected behavior. Therefore, although using
var is optional, it is strongly recommended that you declare all local JavaScript syntax variables using var to avoid
any unexpected behavior.

Display all current local variables in the handler

+ In Lingo only, use the showLocals () function.

In Lingo, you can use this method in the Message window or in handlers to help with debugging. The result appears
in the Message window. The showLocals () method does not apply to JavaScript syntax.

To monitor the values of local variables during movie playback, use the Object inspector. For more information on the
Object inspector, see “Debugging in the Object inspector” on page 84.

Operators

Operators are elements that tell Lingo and JavaScript syntax scripts how to combine, compare, or modify the values of
an expression. Many of the operators in Director are shared between Lingo and JavaScript syntax, and some are unique
to each language.

Some types of operators include the following:

+ Arithmetic operators (such as +, -, /, and *)

« Comparison operators (such as <, >, and >=), which compare two arguments

+ Logical operators (not, and, or), which combine simple conditions into compound ones
« String operators (such as &, &&, and +), which join, or concatenate, strings of characters

Note: There are many more types of operators in JavaScript syntax than there are in Lingo, and not all of them are covered
in this reference. For more information on additional operators in JavaScript 1.5, see one of the many third-party
resources on the subject.

The items that operators act upon are called operands. In Lingo, there are only binary operators. In JavaScript syntax,
there are both binary and unary operators. A binary operator requires two operands, one before the operator and one
after the operator. A unary operator requires a single operand, either before or after the operator.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

In the following example, the first statement illustrates a binary operator, where the variables x and y are operands and
the plus (+) sign is the operator. The second statement illustrates a unary operator, where the variable 1 is the operand
and ++ is the operator.

// JavaScript syntax
X + y; // binary operator
i++; // unary operator

For reference information on operators, see “Operators” on page 717.

Understanding operator precedence

When two or more operators are used in the same statement, some operators take precedence over others in a precise
hierarchy to determine which operators to execute first. This is called the operators’ precedence order. For example,
multiplication is always performed before addition. However, items in parentheses take precedence over
multiplication. In the following example, without parentheses the multiplication in this statement occurs first:

-- Lingo syntax
total = 2 + 4 * 3 -- results in a value of 14

When parentheses surround the addition operation, addition occurs first:

-- Lingo syntax
total = (2 + 4) * 3 -- results in a value of 18

Descriptions of the types of operators and their precedence order follow. Operators with higher precedence are
performed first. For example, an operator whose precedence order is 5 is performed before an operator whose
precedence order is 4. Operations that have the same order of precedence are performed left to right.

Arithmetic operators

Arithmetic operators add, subtract, multiply, divide, and perform other arithmetic operations. Parentheses and the
minus sign are also arithmetic operators.

Operator Effect Precedence
() Groups operations to control precedence order. 5
- When placed before a number, reverses the sign of a number. 5
* Performs multiplication. 4
mod (Lingo only) Performs modulo operation. 4
/ Performs division. 4
% (JavaScript syntax only) Returns the integer remainder of dividing two operands. 4
++ (JavaScript syntax only) Adds one to its operand. If used as a prefix operator (++x), returns the value | 4

of its operand after adding one. If used as a postfix operator (x++), returns the value of its operand
before adding one.

- (JavaScript syntax only) Subtracts one from its operand. The return value is analogous to that of the | 4
increment operator.

+ When placed between two numbers, performs addition. 3

- When placed between two numbers, performs subtraction. 3

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 20
Director Scripting Essentials

Note: In Lingo, when only integers are used in an operation, the result is an integer. Using integers and floating-point
numbers in the same calculation results in a floating-point number. In JavaScript syntax, all calculations essentially
result in floating-point numbers.

When dividing one integer by another does not result in a whole number, Lingo rounds the result down to the nearest
integer. For example, the result of 4/3 is 1. In JavaScript syntax, the actual floating-point value, 1.333, is returned.

To force Lingo to calculate a value without rounding the result, use £1oat () on one or more values in an expression.
For example, the result of 4/£1ocat (3) is 1.333.

Comparison operators

Comparison operators compare two values and determine whether the comparison is true or false.

Operator Meaning Precedence

== (JavaScript syntax only) Two operands are equal. If the operands are not of the same data type, 1
JavaScript syntax attempts to convert the operands to an appropriate data type for the comparison.

=== (JavaScript syntax only) Two operands are equal and of the same data type. 1

= (JavaScript syntax only) Two operands are not equal. If the operands are not of the same data type, | 1
JavaScript syntax attempts to convert the operands to an appropriate data type for the comparison.

== (JavaScript syntax only) Two operands are not equal and/or not of the same type. 1
<> (Lingo only) Two operands are not equal. 1
< The left operand is less than the right operand. 1
<= The left operand is less than or equal to the right operand. 1
> The left operand is greater than the right operand. 1
>= The left operand is great than or equal to the right operand. 1
= (Lingo only) Two operands are equal. 1
Assignment operators

An assignment operator assigns a value to its left operand based on the value of its right operand. With the exception
of the basic assignment operator equal (=), all of the following shortcut assignment operators apply only to JavaScript

syntax.
Operator Meaning Precedence
= Equal 1
X += Y (JavaScript syntax only) x=x+y 1
X -= Yy (JavaScript syntax only) x=x-y 1
X *= y (JavaScript syntax only) x =x *y 1
x /=y (JavaScript syntax only) x=x/y 1
X %=y (JavaScript syntax only) x=x %y 1

Logical operators

Logical operators test whether two logical expressions are true or false.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

Use care when using logical operators and string operators in Lingo and JavaScript syntax. For example, in JavaScript
syntax, && is a logical operator that determines whether two expressions are true, but in Lingo, && is a string operator
that concatenates two strings and inserts a space between the two expressions.

Operator Effect Precedence
and (Lingo only) Determines whether both expressions are true 4
&& (JavaScript syntax only) Determines whether both expressions are true 4
or (Lingo only) Determines whether either or both expressions are true 4
I (JavaScript syntax only) Determines whether either or both expressions are true 4
not (Lingo only) Negates an expression 5
! (JavaScript syntax only) Negates an expression 5

The not (Lingo) or ! (JavaScript syntax) operator is useful for toggling a TRUE or FALSE value to its opposite. For
example, the following statement turns on the sound if it’s currently off and turns off the sound if it’s currently on:

-- Lingo syntax
_sound.soundEnabled = not (_sound.soundEnabled)

// JavaScript syntax
_sound. soundEnabled = ! (_sound.soundEnabled) ;

String operators
String operators combine and define strings.
Use care when using logical operators and string operators in Lingo and JavaScript syntax. For example, in JavaScript

syntax, && is a logical operator that determines whether two expressions are true, but in Lingo, && is a string operator
that concatenates two strings and inserts a space between the two expressions.

Operator Effect Precedence
& (Lingo only) Concatenates two strings 2
+ (JavaScript syntax only) Concatenates two string values and returns a third string that is the union | 2

of the two operands

+= (JavaScript syntax only) Concatenates one string variable and one string value, and assigns the 2
returned value to the string variable

&& (Lingo only) Concatenates two strings and inserts a space between the two 2

" Marks the beginning or end of a string 1

Conditional constructs

By default, Director always executes script statements starting with the first statement and continuing in order until it
reaches the final statement or a statement that instructs a script to go somewhere else.

The order in which statements are executed affects the order in which you should place statements. For example, if you
write a statement that requires some calculated value, you need to put the statement that calculates the value first.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 22
Director Scripting Essentials

The first statement in the following example adds two numbers, and the second statement assigns a string
representation of the sum to a field cast member named Answer, which appears on the Stage. The second statement
could not be placed before the first statement because the variable x has not yet been defined.

-- Lingo syntax

X =2+ 2

member ("Answer") .text = string(x)

// JavaScript syntax
var X = 2 + 2;

member ("Answer") .text = x.toString();

Both Lingo and JavaScript syntax provide conventions for altering the default execution order or script statements, and

for performing actions depending on specific conditions. For example, you may want to do the following in your

scripts:

« Execute a set of statements if a logical condition is true, or execute alternate statements if the logical condition is
false.

+ Evaluate an expression and attempt to match the expression’s value to a specific condition.

+ Execute a set of statements repeatedly until a specific condition is met.

Testing for logical conditions

To execute a statement or set of statements if a specified condition is true or false, you use the if. . .then. . .else
(Lingo) or if. . .else (JavaScript syntax) structures. For example, you can create an if. . .then...else or
if...then structure that tests whether text has finished downloading from the Internet and, if it has, then attempts
to format the text. These structures use the following pattern to test for logical conditions:

+ Inboth Lingo and JavaScript syntax, statements that check whether a condition is true or false begin with the term i £ .

« In Lingo, if the condition exists, the statements following the term then are executed. In JavaScript syntax, curly
brackets ({ }) take the place of the Lingo term then, and must surround each individual if, else, or else if
statement.

« Inboth Lingo and JavaScript syntax, if the condition does not exist, scripts skip to the next statement in the handler
using the term else or else if.

+ InLingo, the term end if specifies the end of the if test. In JavaScript syntax, the if test ends automatically, so
there is no term that explicitly ends the test.

To optimize your script’s performance, test for the most likely conditions first.

The following statements test several conditions. The term else if specifies alternative tests to perform if previous
conditions are false:

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

-- Lingo syntax

if mouse.mouseMember = member (1) then
_movie.go("Cairo")

else if _mouse.mouseMember = member (2) then
_movie.go("Nairobi™)

else
_player.alert("You're lost.")

end if

// JavaScript syntax
if (_mouse.mouseMember = member (1)) {
_movie.go("Cairo") ;

}

else if (_mouse.mouseMember = member (2)) {
_movie.go("Nairobi") ;

}

else {
_player.alert ("You're lost.");

}

When writing i £ . . . then structures in Lingo, you can place the statement or statements following then in the same
line as then, or you can place them on their own line by inserting a carriage return after then. If you insert a carriage
return, you must also include an end if statement at the end of the if. . .then structure.

When writing i f structures in JavaScript syntax, you can place the statement or statements following if in the same
line as if, or you can place them on their own line by inserting a carriage return after if.

For example, the following statements are equivalent:

-- Lingo syntax
if mouse.mouseMember = member (1) then movie.go("Cairo")

if mouse.mouseMember = member (1) then
_movie.go("Cairo")
end if

// JavaScript syntax
if (_mouse.mouseMember = member(l)) { movie.go("Cairo"); }

if (_mouse.mouseMember = member (1)) {
_movie.go("Cairo") ;

}

For reference information on using the if...then...elseand if. . .else structures, see if.

Evaluating and matching expressions

The case (Lingo) or switch. . .case (JavaScript syntax) structures are shorthand alternatives to using
if...then...elseor if...then structures when setting up multiple branching structures. The case and
switch. ..case structures are often more efficient and easier to read than many if. . .then...elseor if...then
structures.

In Lingo, the condition to test for follows the term case in the first line of the case structure. The comparison goes
through each line in order until Lingo encounters an expression that matches the test condition. When a matching
expression is found, Director executes the Lingo that follows the matching expression.

Last updated 9/28/2011

23

DIRECTOR SCRIPTING DICTIONARY 11.5 24
Director Scripting Essentials

In JavaScript syntax, the condition to test for follows the term switch in the first line of the structure. Each comparison
in the test follows the term case for each line that contains a test. Each case comparison can be ended by using the
optional term break. Including the term break breaks the program out of the switch structure and executes any
statements following the structure. If break is omitted, the following case comparison is executed.

A case or switch. . .case structure can use comparisons as the test condition.

For example, the following case and switch. . .case structures test which key the user pressed most recently and
respond accordingly:

+ If the user pressed A, the movie goes to the frame labeled Apple.
« Ifthe user pressed B or C, the movie performs the specified transition and then goes to the frame labeled Oranges.

« If the user pressed any other letter key, the computer beeps.

-- Lingo syntax
case (_key.key) of

"a" : movie.go("Apple")

"o", "c":
_movie.puppetTransition(99)
_movie.go ("Oranges")

otherwise: sound.beep()

end case

// JavaScript syntax
switch (_key.key) {
case "a"
_movie.go ("Apple") ;

break;
case "b":
case "c":

_movie.puppetTransition(99) ;
_movie.go ("Oranges") ;

break;

default: _sound.beep()

}
Note: In JavaScript syntax, only one comparison can be made per case statement.

For reference information on using case structures, see case.

Repeating actions

In both Lingo and JavaScript syntax, you can repeat an action a specified number of times or while a specific condition
exists.

In Lingo, to repeat an action a specified number of times, you use a repeat with structure. Specify the number of
times to repeat as a range following repeat with.

In JavaScript syntax, to repeat an action a specified number of times, you use the for structure. The for structure takes
three parameters: the first parameter typically initializes a counter variable, the second parameter specifies a condition
to evaluate each time through the loop, and the third parameter is typically used to update or increment the counter
variable.

The repeat withand for structures are useful for performing the same operation on a series of objects. For example,
the following loop makes Background Transparent the ink for sprites 2 through 10:

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

-- Lingo syntax

repeat with n = 2 to 10
sprite(n) .ink = 36

end repeat

// JavaScript syntax
for (var n=2; n<=10; n++) {
sprite(n) .ink = 36;

}
The following example performs a similar action, but with decreasing numbers:

-- Lingo syntax

repeat with n = 10 down to 2
sprite(n).ink = 36

end repeat

// JavaScript syntax
for (var n=10; n>=2; n--) {
sprite(n) .ink = 36;

}

In Lingo, to repeat a set of instructions as long as a specific condition exists, use the repeat while structure.
In JavaScript syntax, to repeat a set of instructions as long as a specific condition exists, use the while structure.

For example, the following statements instruct a movie to beep continuously whenever the mouse button is being
pressed:

-- Lingo syntax

repeat while _mouse.mouseDown
_sound.beep ()

end repeat

// JavaScript syntax
while (_mouse.mouseDown) {
_sound.beep () ;

}

Both Lingo and JavaScript syntax scripts continue to loop through the statements inside the loop until the condition
is no longer true, or until one of the statements sends the script outside the loop. In the previous example, the script
exits the loop when the mouse button is released because the mouseDown condition is no longer true.

In Lingo, to exit a loop, use the exit repeat statement.

In JavaScript syntax, to exit a loop you can use the term break. A loop also automatically exits when a condition is no
longer true.

For example, the following statements make a movie beep while the mouse button is pressed, unless the mouse pointer
is over sprite 1. If the pointer is over sprite 1, the script exits the loop and stops beeping. The rollover () method
indicates whether the pointer is over the specified sprite.

Last updated 9/28/2011

25

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

-- Lingo syntax
repeat while _mouse.stillDown
_sound.beep ()
if _movie.rollOver (1) then exit repeat
end repeat

// JavaScript syntax
while (mouse.stillDown) {
_sound.beep () ;
if (_movie.rollOver (1)) {
break;

}

For reference information on the repeat while and while structures, see repeat while.

Events, messages, and handlers

A key component to creating powerful, useful scripts is an understanding of the concepts and functionality of events,
messages, and handlers. Understanding the order in which events and messages are sent and received will help you
determine exactly when specific scripts or parts of scripts should run. It will also help you debug scripts when specific
actions are not occurring when you expect them to occur.

When a movie plays, the following occur:

« Events occur in response to either a system or user-defined action.

+ Messages that correspond to these events are sent to the scripts in a movie.

+ Handlers within scripts contain the instructions that run when a specific message is received.

The name of an event corresponds to the name of the message it generates, and the handler that handles the event
corresponds to both the event and the message. For example, when the event named mouseDown occurs, Director
generates and sends to scripts a message named mouseDown, which would in turn be handled by a handler named

mouseDown.

Events

There are two categories of events that occur when a movie plays:

+ System events occur without a user interacting with the movie and are predefined and named in Director—for
example, when the playhead enters a frame, when a sprite is clicked, and so on.

« User-defined events occur in response to actions that you define. For example, you could create an event that occurs
when the background color of a sprite changes from red to blue, when a sound has played five times, and so on.

Many system events, such as prepareFrame, beginSprite, and so on, occur automatically and in a predefined
order while a movie is playing. Other system events, particularly mouse events such as mouseDown, mouseUp, and
so on, do not necessarily occur automatically while a movie is playing, but rather when a user triggers them.

For example, when a movie first starts, the prepareMovie event always occurs first, the prepareFrame event
always occurs second, and so on. However, the mouseDown and mouseUp events may never occur in a movie unless
a user triggers them by clicking the movie.

The following lists illustrate the system events that always occur during a movie, and the order in which they occur.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 27
Director Scripting Essentials

Many system events, such as prepareFrame, beginSprite, and so on, occur automatically and in a predefined order
while a movie is playing. Other system events, particularly mouse events such as mouseDown, mouseUp, and so on, do
not necessarily occur automatically while a movie is playing, but rather when a user triggers them.

For example, when a movie first starts, the prepareMovie event always occurs first, the prepareFrame event always
occurs second, and so on. However, the mouseDown and mouseUp events may never occur in a movie unless a user
triggers them by clicking the movie.

The following lists illustrate the system events that always occur during a movie, and the order in which they occur.

When the movie first starts, events occur in the following order:

1 prepareMovie

2 prepareFrame Immediately after the prepareFrame event, Director plays sounds, draws sprites, and performs
any transitions or palette effects. This event occurs before the enterFrame event. A prepareFrame handler is a
good location for script that you want to run before the frame draws.

3 beginsprite Thisevent occurs when the playhead enters a sprite span.

4 startMovie This event occurs in the first frame that plays.

When the movie encounters a frame, events occur in the following order:

1 beginsprite This event occurs only if new sprites begin in the frame.
2 stepFrame

3 enterFrame After enterFrame and before exitFrame, Director handles any time delays required by the tempo
setting, idle events, and keyboard and mouse events.

4 exitFrame

5 endsprite This event occurs only if the playhead exits a sprite in the frame.

When a movie stops, events occur in the following order:

1 endsprite Thisevent occurs only if sprites currently exist in the movie.

2 stopMovie

Messages

To run the appropriate set of script statements at the right time, Director must determine what is occurring in the
movie and which statements to run in response to certain events.

Director sends messages to indicate when specific events occur in a movie, such as when sprites are clicked, keyboard
keys are pressed, a movie starts, the playhead enters or exits a frame, or a script returns a certain result.

The general order in which messages are sent to objects is as follows:

1 Messages are sent first to behaviors attached to a sprite involved in the event. If a sprite has more than one behavior
attached to it, behaviors respond to the message in the order in which they are attached to the sprite.

2 Messages are sent next to a script attached to the cast member assigned to the sprite.
3 Messages are then sent to behaviors attached to the current frame.
4 Messages are sent last to movie scripts.

Although you can define your own message names, most common events that occur in a movie have built-in message
names.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 28
Director Scripting Essentials

For reference information on the built-in messages in Director, see “Events and Messages” on page 178.

Defining custom messages

In addition to using built-in message names, you can define your own messages and corresponding handler names. A
custom message can call another script, another handler, or the statement’s own handler. When the called handler
stops executing, the handler that called it resumes.

Custom message and handler names must meet the following criteria:

+ They must start with a letter.

+ They must include alphanumeric characters only (no special characters or punctuation).

+ They must consist of one word or of several words connected by an underscore—no spaces are allowed.
« They must be different from the name of any predefined Lingo or JavaScript syntax element.

Using predefined Lingo or JavaScript keywords for message and handler names can create confusion. Although it is
possible to explicitly replace or extend the functionality of a Lingo or JavaScript element by using it as a message or
handler name, this should be done only in certain advanced situations.

When you have multiple handlers with similar functions, it is useful to give them names that have similar beginnings
so they appear together in an alphabetical listing, such as the listing that can be displayed by the Edit > Find > Handler
command.

Handlers

A handler is a set of statements within a script that runs in response to a specific event and subsequent message.
Although Director contains built-in events and messages, you must create your own custom handlers for each
event/message pair that you want to handle.

Deciding where to place handlers

You can place handlers in any type of script, and a script can contain multiple handlers. It’s a good idea to group related
handlers in a single place, though, for easier maintenance.

The following are some useful guidelines for many common situations:

+ To associate a handler with a specific sprite, or to have a handler run in response to an action on a specific sprite,
put the handler in a behavior attached to the sprite.

+ To set up a handler that should be available any time the movie is in a specific frame, put the handler in a behavior
attached to the frame.

For example, to have a handler respond to a mouse click while the playhead is in a frame, regardless of where the
click occurs, place a mouseDown or mouseUp handler in the frame behavior rather than in a sprite behavior.

+ To set up a handler that runs in response to messages about events anywhere in the movie, put the handler in a
movie script.

+ To set up a handler that runs in response to an event that affects a cast member, regardless of which sprites use the
cast member, put the handler in a cast member script.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

Determining when handlers receive a message

After sending a message to scripts, Director checks for handlers in a definite order.

1 Director first checks whether a handler exists in the object from which the message was sent. If a handler is found,
the message is intercepted, and the script in the handler runs.

2 Ifno handler is found, Director then checks cast members, in ascending order, for any associated movie scripts that
might contain a handler for the message. If a handler is found, the message is intercepted, and the script in the
handler runs.

3 Ifno handler is found, Director then checks whether a frame script contains a handler for the message. If a handler
is found, the message is intercepted, and the script in the handler runs.

4 If no handler is found, Director then checks sprites, in ascending order, for any scripts associated with the sprites
that might contain a handler for the message. If a handler is found, the message is intercepted, and the script in the
handler runs.

After a handler intercepts a message, the message does not automatically pass on to the remaining locations. However,
in Lingo you can use the pass () method to override this default rule and pass the message to other objects.

If no matching handler is found after the message passes to all possible locations, Director ignores the message.

The exact order of objects to which Director sends a message depends on the message. For information on the
sequence of objects to which Director sends specific messages, see the entry for each message in “Events and Messages”
on page 178.

Using parameters to pass values to a handler

By using parameters for values, you can give the handler exactly the values that it needs to use at a specific time,
regardless of where or when you call the handler in the movie. Parameters can be optional or required, depending on
the situation.

+ In Lingo, put the parameters after the handler name.
« InJavaScript syntax, put the parameters within parentheses, and then put them after the handler name.
Use commas to separate multiple parameters.

When you call a handler, you must provide specific values for the parameters that the handler uses. You can use any
type of value, such as a number, a variable that has a value assigned, or a string of characters. Values in the calling
statement must be in the order that they follow in the handler’s parameters, and they must be surrounded by
parentheses.

In the following example, the variable assignment mysum calls the method addThem, which is passed the two values 2
and 4. The addThem handler replaces the parameter placeholders a and b with the two values passed to it, stores the
result in the local variable c, and then uses the keyword return to send the result back to the original method, which
is then assigned to mySum.

Because 2 is first in the list of parameters, it is substituted for a in the handler. Likewise, because 4 is second in the list
of parameters, it is substituted for b in the handler.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 30
Director Scripting Essentials

-- Lingo syntax
mySum = addThem (2, 4) -- calling statement

on addThem a, b -- handler

c=a+b

return ¢ -- returns the result to the calling statement
end

// JavaScript syntax
var mySum = addThem(2, 4); // calling statement

function addThem(a, b) { // handler
c =a + b;
return c; // returns the result to the calling statement

}

In Lingo, when you call a custom method from an object, a reference to the Script object in memory is always passed
as an implied first parameter to the handler for that method. This means that you must account for the Script object
reference in your handler.

For example, consider that you wrote a custom sprite method named jump () that takes a single integer as a parameter,
and you placed the method in a behavior. When you call jump () from a Sprite object reference, the handler must also
include a parameter that represents the Script object reference, and not just the single integer. In this case, the implied
parameter is represented by the keyword me, but any term will work.

-- Lingo syntax
myHeight = sprite(2).jump(5)

on jump (me, a)
return a + 15 -- this handler works correctly, and returns 20
end

on jump (a)
return a + 15 -- this handler does not work correctly, and returns 0
end

You can also use expressions as values. For example, the following statement substitutes 3+6 for a and 8>2 (or 1,
representing TRUE) for b, and would return 10:

-- Lingo syntax
mySum = addThem(3+6, 8>2)

In Lingo, each handler begins with the word on followed by the message that the handler should respond to. The last
line of the handler is the word end. You can repeat the handler’s name after end, but this is optional.

In JavaScript syntax, each handler begins with the word function followed by the message that the handler should
respond to. The statements that make up the handler are surrounded by opening and closing brackets, as are all
JavaScript syntax functions.

Returning results from handlers

Often, you want a handler to report some condition or the result of some action.

% Use the keyword return to have a handler report a condition or the result of an action. For example, the following
findColor handler returns the current color of sprite 1:

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

-- Lingo syntax
on findColor

return sprite(1l).foreColor
end

// JavaScript syntax
function findColor () {
return (sprite(1l) .foreColor) ;

}

You can also use the keyword return by itself to exit from the current handler and return no value. For example,
the following jump handler returns nothing if the aval parameter equals 5; otherwise, it returns a value:

-- Lingo syntax
on jump (aval)
if aval = 5 then return

aval = aval + 10
return avVal
end
// JavaScript syntax
function jump(aval) {
if (aval == 5) ({
return;

1

else {
aval = aval + 10;
return (aval) ;

}

When you define a handler that returns a result, you must use parentheses after the handler when you call it from
another handler. For example, the statement put (findColor ()) calls the on findColor handler and then displays
the result in the Message window.

Linear lists and property lists

In your scripts, you may want to track and update lists of data, such as a series of names or the values assigned to a set
of variables. Both Lingo and JavaScript syntax have access to linear lists and property lists. In a linear list, each element
in the list is a single value. In a property list, each element in the list contains two values; the first value is a property
name, and the second value is the value associated with that property.

Because both Lingo and JavaScript syntax have access to linear and property lists, it is recommended that you use linear
lists and property lists if values in your code are shared between Lingo and JavaScript syntax scripts.

If values in your code are used only in JavaScript syntax scripts, it is recommended that you use JavaScript Array
objects to work with lists of data. For more information on using arrays, see “JavaScript syntax arrays” on page 38.

Creating linear lists

You create a linear list in one of the following ways:

+ InLingo, use either the top-level 1ist () function or the list operator ([1), using commas to separate items in the list.

+ InJavaScript syntax, use the top-level 1ist () function, using commas to separate items in the list.

Last updated 9/28/2011

31

DIRECTOR SCRIPTING DICTIONARY 11.5 32
Director Scripting Essentials

The index into a linear list always starts with 1.

When you use the top-level 1ist () function, you specify the list’s elements as parameters of the function. This
function is useful when you use a keyboard that does not provide square brackets.

All of the following statements create a linear list of three names and assign it to a variable:

-- Lingo syntax
workerList = ["Bruno", "Heather", "Carlos"] -- using the Lingo list operator
workerList = list ("Bruno", "Heather", "Carlos") -- using list()

// JavaScript syntax
var workerList = list("Bruno", "Heather", "Carlos"); // using list()

You can also create empty linear lists. The following statements create empty linear lists:

-- Lingo syntax

workerList = [] -- using the Lingo list operator
workerList = list() -- using list() with no parameters

// JavaScript syntax
var workerList = list(); // using list() with no parameters

Creating property lists

You create a property list in one of the following ways:

« In Lingo, use either the top-level propList () function or the list operator ([:1). When using the list operator to
create a property list, you can use either a colon to designate name/value elements and commas to separate elements
in the list, or commas to both designate name/value elements and to separate elements in the list.

« In JavaScript syntax, use the top-level propList () function and insert commas to both designate name/value
elements and to separate elements in the list.

When you use the top-level propList () function, you specify the property list’s elements as parameters of the
function. This function is useful when you use a keyboard that does not provide square brackets.

Properties can appear more than once in a given property list.

All of the following statements create a property list with four property names—1left, top, right, and bot tom—and
their corresponding values:

-- Lingo syntax

spritellLoc = [#left:100, #top:150, #right:300, #bottom:350]

spritelLoc ["left",400, "top",550, "right",500, "bottom", 750]
spritelloc = propList("left",400, "top",550, "right",500, "bottom",750)

// JavaScript syntax
var spritelloc = propList("left",400, "top",550, "right",500, "bottom",750) ;

You can also create empty property lists. The following statements create empty property lists:

-- Lingo syntax
spritelloc = [:] -- using the Lingo property list operator
spritelloc = propList() -- using propList() with no parameters

// JavaScript syntax

var spritelloc = propList(); // using propList() with no parameters

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

Setting and retrieving items in lists

You can set and retrieve individual items in a list. The syntax differs for linear and property lists.

Set a value in a linear list

Do one of the following:
+ Use the equals (=) operator.
+ Use the setat () method.

The following statements illustrate defining the linear list workerList that contains one value, Heather, and then
adds carlos as the second value in the list:

-- Lingo syntax

workerList = ["Heather"] -- define a linear list
workerList [2] = "Carlos" -- set the second value using the equal operator
workerList.setAt (2, "Carlos") -- set the second value using setAt()

// JavaScript syntax

var workerList = list ("Heather"); // define a linear list
workerList [2] = "Carlos"; // set the second value using the equal operator
workerList.setAt (2, "Carlos"); // set the second value using setAt ()

Retrieve a value in a linear list

1 Use the list variable followed by the number that indicates the value’s position in the list. Place square brackets
around the number.

2 Use the getat () method.

The following statements create the linear list workerList, and then assign the second value in the list to the variable

name2:

-- Lingo syntax

workerList = ["Bruno", "Heather", "Carlos"] -- define a linear list
name2 = workerList[2] -- use bracketed access to retrieve "Heather"
name2 = workerList.getAt(2) -- use getAt() to retrieve "Heather"

// JavaScript syntax

var workerList = list ("Bruno", "Heather", "Carlos");

var name2 = workerList[2] // use bracketed access to retrieve "Heather"
var name2 = workerList.getAt(2) // use getAt() to retrieve "Heather"

Set a value in a property list

Do one of the following:

+ Use the equals (=) operator.

+ In Lingo only, use the setaProp () method.
+ Use dot syntax.

The following Lingo statement uses the equals operator to make sushi the new value associated with the property

Bruno:

-- Lingo syntax
foodList = [:] -- define an empty property list
foodList [#Bruno] = "sushi" -- associate sushi with Bruno

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

The following Lingo statement uses setaprop () to make sushi the new value associated with the property Bruno:

-- Lingo syntax
foodList = [:] -- define an empty property list
foodList.setaProp (#Bruno, "sushi") -- use setaProp()

// JavaScript syntax
foodList = propList() -- define an empty property list
foodList.setaProp ("Bruno", "sushi") -- use setaProp()

The following statements use dot syntax to set the value associated with Bruno from sushi to teriyaki:

-- Lingo syntax

foodList = [#Bruno:"sushi"] -- define a property list

trace (foodList) -- displays [#Bruno: "sushi"]

foodList.Bruno = "teriyaki" -- use dot syntax to set the value of Bruno
trace (foodList) -- displays [#Bruno: "teriyaki"]

// JavaScript syntax

var foodList = propList ("Bruno", "sushi"); // define a property list
trace (foodList); // displays ["Bruno": "sushi"]

foodList.Bruno = "teriyaki" // use dot syntax to set the value of Bruno
trace (foodList) -- displays [#Bruno: "teriyaki"]

Retrieve a value in a property list
Do one of the following:

+ Use the list variable followed by the name of the property associated with the value. Place square brackets around
the property.

+ Use the getaProp () or getPropat () methods.
+ Use dot syntax.

The following statements use bracketed access to retrieve the values associated with the properties breakfast and

lunch:

-- Lingo syntax
-- define a property list

foodList = [#breakfast:"Waffles", #lunch:"Tofu Burger"]
trace (foodList [#breakfast]) -- displays "Waffles"
trace (foodList [#lunch]) -- displays "Tofu Burger"

// JavaScript syntax
// define a property list

var foodList = propList ("breakfast", "Waffles", "lunch", "Tofu Burger");
trace (foodList ["breakfast"]); // displays Waffles
trace (foodList ["lunch"]); // displays Tofu Burger

The following statements use getaProp () to retrieve the value associated with the property breakfast, and
getPropAt () to retrieve the property at the second index position in the list:

Last updated 9/28/2011

34

DIRECTOR SCRIPTING DICTIONARY 11.5 35
Director Scripting Essentials

-- Lingo syntax
-- define a property list

foodList = [#breakfast:"Waffles", #lunch:"Tofu Burger"]
trace (foodList.getaProp (#breakfast)) -- displays "Waffles"
trace (foodList.getPropAt(2)) -- displays #lunch

// JavaScript syntax

// define a property list

var foodList = propList ("breakfast", "Waffles", "lunch", "Tofu Burger");
trace (foodList.getaProp ("breakfast")) // displays Waffles

trace (foodList.getPropAt(2)) // displays lunch

The following statements use dot syntax to access the values associated with properties in a property list:

-- Lingo syntax

-- define a property list

foodList = [#breakfast:"Waffles", #lunch:"Tofu Burger"]
trace (foodList.breakfast) -- displays "Waffles"

// JavaScript syntax

// define a property list

var foodList = propList ("breakfast", "Waffles", "lunch", "Tofu Burger");
trace (foodList.lunch); // displays Tofu Burger

Checking items in lists

You can determine the characteristics of a list and the number of items the list contains by using the following
methods:

« To display the contents of a list, use the put () or trace () functions, passing the variable that contains the list as a
parameter.

+ To determine the number of items in a list, use the count () method (Lingo only) or the count property.
« To determine a list’s type, use the 11k () method.

+ To determine the maximum value in a list, use the max () method.

« To determine the minimum value in a list, use the min () function.

+ To determine the position of a specific property, use the findPos, findPosNear, or getOne command.
The following statements use count () and count to display the number of items in a list:

-- Lingo syntax

workerList = ["Bruno", "Heather", "Carlos"] -- define a linear list
trace (workerList.count ()) -- displays 3
trace (workerList.count) -- displays 3

// JavaScript syntax
var workerList = list ("Bruno", "Heather", "Carlos"); // define a linear list
trace (workerList.count); // displays 3

The following statements use i1k () to determine a list’s type:

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

-- Lingo syntax
X = [||l|l, ||2||, ||3||]
trace(x.ilk()) // returns #list

// JavaScript syntax
var X = 1iSt("1", ||2||, ||3||),.
trace(x.ilk()) // returns #list

The following statements use max () and min () to determine the maximum and minimum values in a list:

-- Lingo syntax

workerList = ["Bruno", "Heather", "Carlos"] -- define a linear list
trace (workerList.max()) -- displays "Heather"
trace (workerList.min()) -- displays "Bruno"

// JavaScript syntax

var workerList = list ("Bruno", "Heather", "Carlos"); // define a linear list
trace (workerList.max()); // displays Heather
trace (workerList.min()); // displays Bruno

The following statements use £indPos to get the index position of a specified property in a property list:

-- Lingo syntax

-- define a property list

foodList = [#breakfast:"Waffles", #lunch:"Tofu Burger"]
trace (foodList.findPos (#lunch)) -- displays 2

// JavaScript syntax

// define a property list

var foodList = propList ("breakfast", "Waffles", "lunch", "Tofu Burger");
trace (foodList.findPos ("breakfast")); // displays 1

Adding and deleting items in lists

You can add or delete items in a list by using the following methods:

+ Toadd an item at the end of a list, use the append () method.

+ Toadd an item at its proper position in a sorted list, use the add () or addProp () methods.

+ To add an item at a specific place in a linear list, use the addat () method.

+ To add an item at a specific position in a property list, use the addprop () method.

« To delete an item from a list, use the deleteAt (), deleteOne (), or deleteProp () methods.
« To replace an item in a list, use the setAt () or setaProp () methods.

The following statements use append () to add an item to the end of a list:

-- Lingo syntax

workerList = ["Bruno", "Heather", "Carlos"] -- define a linear list
workerList.append ("David")

trace (workerList) -- displays ["Bruno", "Heather", "Carlos", "David"]

// JavaScript syntax

var workerList = list ("Bruno", "Heather", "Carlos"); // define a linear list
workerList.append ("David") ;

trace (workerList); // displays ["Bruno", "Heather", "Carlos", "David"]

The following statements use addProp () to add a property and an associated value to a property list:

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

-- Lingo syntax

-- define a property list

foodList = [#breakfast:"Waffles", #lunch:"Tofu Burger"]
foodList.addProp (#dinner, "Spaghetti") -- adds [#dinner: "Spaghetti"]

// JavaScript syntax

// define a property list

var foodList = propList ("breakfast", "Waffles", "lunch", "Tofu Burger");
foodList.addProp ("dinner", "Spaghetti"); // adds ["dinner": "Spaghetti"]

You do not have to explicitly remove lists. Lists are automatically removed when they are no longer referred to by any
variable. Other types of objects must be removed explicitly, by setting variables that refer to them to voID (Lingo) or
null (JavaScript syntax).

Copying lists

Assigning a list to a variable and then assigning that variable to a second variable does not make a separate copy of the
list. For example, the first statement below creates a list that contains the names of two continents, and assigns the list
to the variable 1andrist. The second statement assigns the same list to a new variable continentList. In the third
statement, adding Australia to landList also automatically adds Australia to the list continentList. This
happens because both variable names point to the same List object in memory. The same behavior occurs by using an
array in JavaScript syntax.

-- Lingo syntax

landList = ["Asia", "Africa"]
continentList = landList
landList.add ("Australia") -- this also adds "Australia" to continentList

Create a copy of a list that is independent of another list
< Use the duplicate () method.

For example, the following statements create a list and then make an independent copy of the list:

-- Lingo syntax
oldList = ["a", "b", "c"]
newlList = oldList.duplicate() -- makes an independent copy of oldList

// JavaScript syntax
var oldList = list("a", "b", "c");
var newList = oldList.duplicate(); // makes an independent copy of oldList

After newList is created, editing either o1dList or newList has no effect on the other.

Sorting lists

Lists are sorted in alphanumeric order, with numbers being sorted before strings. Strings are sorted according to their
initial letters, regardless of how many characters they contain. Sorted lists perform slightly faster than unsorted lists.

A linear list is sorted according to the values in the list. A property list is sorted according to the property names in the
list or array.

After the values in a linear or property list are sorted, they will remain sorted, even as values are added to or removed
from the lists.

Sort a list
< Use the sort () method.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

For example, the following statements sort a nonsorted alphabetical list:

-- Lingo syntax
oldList = ["d", "a", "c", "b"]
oldList.sort() -- results in ["a", "b", "c", "d"]

// JavaScript syntax
var oldList = list("d", "a", "c", "b");
oldList.sort(); // results in ["a", "b", "c", "d"]

Creating multidimensional lists

You can also create multidimensional lists that enable you to work with the values of more than one list at a time.

In the following example, the first two statements create the separate linear lists 1ist1 and 1ist2. The third statement
creates a multidimensional list and assigns it to mdList. To access the values in a multidimensional list, the fourth and
fifth statements use brackets to access the values in the list; the first bracket provides access to a specified list, and the
second bracket provides access to the value at a specified index position in the list.

-- Lingo syntax

listl = list(5,10)

list2 = list(15,20)

mdList = list(listl, 1list2)

trace (mdList [1] [2]) -- displays 10
trace (mdList [2] [1]) -- displays 15

// JavaScript syntax

var listl = 1list(5,10);

var list2 = list(15,20);

var mdList = list(listl, list2);
trace (mdList [1] [2]); // displays 10
trace (mdList [2] [1]); // displays 15

JavaScript syntax arrays

JavaScript syntax arrays are similar to Lingo-style linear lists in that each element in an array is a single value. One of
the main differences between JavaScript syntax arrays and Lingo-style linear lists is that the index into an array always
starts with 0.

You create a JavaScript syntax array by using the Array object. You can use either square brackets ([1) or the Array
constructor to create an array. The following two statements create an array with two values:

// JavaScript syntax
var myArray = [10, 15]; // using square brackets
var myArray = new Array (10, 15); // using the Array constructor

You can also create empty arrays. The following two statements create an empty array:

// JavaScript syntax
var myArray = [];
var myArray = new Array();

Note: The Director Scripting Reference does not include a complete reference for JavaScript syntax Array objects. For
more complete information on using Array objects, see one of the many third-party resources on the subject.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 39
Director Scripting Essentials

Checking items in arrays

You can determine the characteristics of an array and the number of items the array contains by using the following
methods:

« To display the contents of a list, use the put () or trace () function, passing the variable that contains the list as a
parameter.

+ To determine the number of items in an array, use the Array object’s length property.
+ To determine an array’s type, use the constructor property.

The following example illustrates determining the number of items in an array by using the 1ength property, and then
returning the type of object by using the constructor property:

// JavaScript syntax

var X = ["l", non, ||3||];

trace(x.length) // displays 3
trace(x.constructor == Array) // displays true

Adding and deleting items in arrays

You can add or delete items in an array by using the following methods:

+ Toadd an item at the end of an array, use the Array object’s push () method.

+ To add an item at its proper position in a sorted array, use the Array object’s splice () method.
+ To add an item at a specific position in an array, use the Array object’s splice () method.

+ To delete an item from an array, use the Array object’s splice () method.

« To replace an item in an array, use the Array object’s splice () method.

The following example illustrates using the Array object’s splice () method to add items to, delete items from, and
replace items in an array:

// JavaScript syntax
var myArray = new Array("1", "2");
trace (myArray); displays 1,2

myArray.push("5"); // adds the value "5" to the end of myArray
trace (myArray); // displays 1,2,5

myArray.splice(3, 0, "4"); // adds the value "4" after the value "5"
trace (myArray); // displays 1,2,5,4

myArray.sort(); // sort myArray
trace (myArray); // displays 1,2,4,5

myArray.splice(2, 0, "3");
trace (myArray); // displays 1,2,3,4,5

myArray.splice(3, 2); // delete two values at index positions 3 and 4
trace (myArray); // displays 1,2,3

myArray.splice(2, 1, "7"); // replaces one value at index position 2 with "7"
trace (myArray); displays 1,2,7

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 40
Director Scripting Essentials

Copying arrays
Assigning an array to a variable and then assigning that variable to a second variable does not make a separate copy of

the array.

For example, the first statement below creates an array that contains the names of two continents, and assigns the array
to the variable 1andList. The second statement assigns the same list to a new variable continentList. In the third
statement, adding Australia to landList also automatically adds Australia to the array continentList. This
happens because both variable names point to the same Array object in memory.

// JavaScript syntax

var landArray = new Array("Asia", "Africa");

var continentArray = landArray;

landArray.push ("Australia"); // this also adds "Australia" to continentList

Create a copy of an array that is independent of another array
% Use the Array object’s slice () method.

For example, the following statements create an array and then use s1ice () to make an independent copy of the array:

// JavaScript syntax
var oldArray = ["a", "b", "c"];
var newArray = oldArray.slice(); // makes an independent copy of oldArray

After newArray is created, editing either oldarray or newArray has no effect on the other.

Sorting arrays

Arrays are sorted in alphanumeric order, with numbers being sorted before strings. Strings are sorted according to
their initial letters, regardless of how many characters they contain.

Sort an array
% Use the Array object’s sort () method.

The following statements sort a non-sorted alphabetical array:

// JavaScript syntax
var oldArray = [udu’ ||a||’ "C", ||b||],.
oldArray.sort(); // results in a, b, ¢, d

The following statements sort a non-sorted alphanumeric array:

// JavaScript syntax
var oldArray = [6, "f", 3, "b"];
oldArray.sort(); // results in 3, 6, b, £

Sorting an array results in a new sorted array.

Creating multidimensional arrays

You can also create multidimensional arrays that enable you to work with the values of more than one array at a time.
In the following example, the first two statements create the separate arrays array1 and array2. The third statement
creates a multidimensional array and assigns it to mdarray. To access the values in a multidimensional array, the

fourth and fifth statements use brackets to access the values in the array; the first bracket provides access to a specified
array, and the second bracket provides access to value at a specified index position in the array.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Scripting Essentials

// JavaScript syntax
var arrayl = new Array(5,10);

var array2 = [15,20];

var mdArray = new Array(arrayl, array2);
trace (mdArray[0] [1]); // displays 10
trace (mdArray[1] [0]); // displays 15

Last updated 9/28/2011

41

Chapter 3: Writing Scripts in Director

Scripts in Director® 11 support all kinds of functionality in movies that would not be possible otherwise. As you write
scripts, you may find the need for increasingly advanced scripts to support complex interactivity in your Director
movies. Intermediate and advanced scripting concepts and techniques are presented here, including information
about object-oriented scripting in Director.

If you are new to scripting in Director, make sure to read “Director Scripting Essentials” on page 4 in addition to the
topics here.

Choosing between Lingo and JavaScript syntax

Both Lingo and JavaScript syntax provide access to the same objects, events, and scripting APIs. Therefore, it does not
necessarily matter which language you choose to write your scripts. Your choice might be as simple as deciding which
language you have the most knowledge of and are most comfortable with.

To understand how scripting languages typically work with a given object and event model in Director, consider the
following:

« In general, a given scripting language, such as Lingo or JavaScripts syntax, is wrapped around a given object and
event model in order to provide access to those objects and events.

+ JavaScript is an implementation of the ECMAScript standard that is wrapped around a web browser’s object and
event model to provide access to the browser’s objects and events.

+ ActionScript is an implementation of the ECMAScript standard that is wrapped around the Adobe® Flash® object
and event model to provide access to Flash objects and events.

+ The Director implementation of JavaScript syntax is an implementation of ECMAScript that is wrapped around
the Director object and event model to provide access to Director objects and events.

« Lingo is a custom syntax that is wrapped around the Director object and event model to provide access to Director
objects and events.

Lingo and JavaScript syntax are the two languages you can use to access the same Director object and event model.
Scripts written in one language have the same capabilities as scripts written in the other language.

Therefore, after you know how to access the scripting APIs in one language, you essentially know how to access them
in the other language. For example, JavaScript syntax code can access Lingo data types such as symbols, linear lists,
property lists, and so on, create and invoke Lingo parent scripts and behaviors, create and invoke Xtra extensions, and
use Lingo string chunk expressions. Also, both JavaScript syntax and Lingo scripts can be used within a single movie;
however, a single script cast member can contain only one syntax or the other.

There are two main differences between Lingo and JavaScript syntax:

« Each language contains some terminology and syntax conventions that are unique to each language. For example,
the syntax for an event handler is different in Lingo than it is in JavaScript syntax:

Last updated 9/28/2011

‘42

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

-- Lingo syntax
on mouseDown

end

// JavaScript syntax
function mouseDown () {

}

For more information on the terminology and syntax conventions used for each language, see “Scripting
terminology” on page 5 and “Scripting syntax” on page 7.

+ Some of the scripting APIs are accessed slightly differently in each language. For example, you would use different
constructs to access the second word in the first paragraph of a text cast member:

-- Lingo syntax
member ("News Items") .paragraph[1l] .word[2]

// JavaScript syntax
member ("News Items") .getPropRef ("paragraph", 1).getProp ("word", 2);

Scripting in dot syntax format

Whether you write scripts in Lingo or JavaScript syntax, you write them by using the dot syntax format. You use dot
syntax to access the properties or methods related to an object. A dot syntax statement begins with a reference to an
object, followed by a period (dot), and then the name of the property, method, or text chunk that you want to specify.
Each dot in a statement essentially represents a move from a higher, more general level in the object hierarchy to a
lower, more specific level in the object hierarchy.

For example, the following statement first creates a reference to the cast library named "News Stories", and then uses
dot syntax to access the number of cast members in that cast library.

To identify chunks of text, include terms after the dot to refer to more specific items within text. For example, the first
statement below refers to the first paragraph of the text cast member named "News Items". The second statement below
refers to the second word in the first paragraph.

-- Lingo syntax

member ("News Items") .paragraph[1l]

member ("News Items") .paragraph[l] .word[2]

// JavaScript syntax
member ("News Items") .getPropRef ("paragraph", 1);
member ("News Items") .getPropRef ("paragraph", 1).getProp ("word", 2);

For certain objects that handle cascading property access to either data or a specific cast member type, as illustrated in
the previous two statements, access to the properties is not supported by using normal JavaScript syntax. Therefore,
you must use the get PropRef () and getProp () methods to access cascading properties in JavaScript syntax.

There are a few things to note about this JavaScript syntax exception:

+ This technique must be applied to 3D objects, text cast members, field cast members, and XML Parser Xtra
extensions accessed by using JavaScript syntax.

* You must use the get PropRef () method to store a reference to one of the previously mentioned objects or its
properties by using JavaScript syntax.

Last updated 9/28/2011

43

DIRECTOR SCRIPTING DICTIONARY 11.5 44
Writing Scripts in Director

+ You must use the get Prop () method to retrieve a property value of one of the previously mentioned objects or its
properties by using JavaScript syntax.

+ 3D objects and properties must be accessed by using their fully qualified names in JavaScript syntax. For example,
in Lingo, the property shader can be used as a shortcut for the property shaderList [1]. However, in JavaScript
syntax, the property shaderList [1] must be used at all times.

Introducing the Director objects

In basic terms, objects are logical groupings of named data that also can contain methods that act on that data. In this
release of Director, the scripting APIs have been grouped into objects and are accessed through these objects. Each
object provides access to a specific set of named data and type of functionality. For example, the Sprite object provides
access to the data and functionality of a sprite, the Movie object provides access to the data and functionality of a
movie, and so on.

The objects used in Director fall into four categories—core objects, media types, scripting objects, and 3D objects.
Depending on the type of functionality you want to add and the part of a movie you are adding functionality to, you
will use the objects from one or more of these categories.

Core objects

This category of objects provides access to the core functionality and features available in Director, such as the Director
player engine, movie windows, sprites, sounds, and so on. They represent the base layer through which all APIs and
other object categories are accessed.

There are also a group of top-level methods and properties that enable you to access all of the core objects directly,
instead of having to traverse the object hierarchy to access a specific core object.

For a reference of the available core objects and their APIs, see “Director Core Objects” on page 94.

Media types

This category of objects provides access to the functionality of the various media types, such as RealMedia, DVD,
Animated GIF, and so on, which are added to movies as cast members.

Literally, media types are not actually objects, but rather cast members that are of a specific type of media. When a
media type is added to a movie as a cast member, it not only inherits the functionality of the core Member object, it
also extends the Member object by providing additional functionality that is available only to the specified media type.
For example, a RealMedia cast member has access to the Member object’s methods and properties, but it also has
additional methods and properties that are specific to RealMedia. All other media types also exhibit this behavior.

For a reference of the available media types and their APIs, see “Media Types” on page 114.

Scripting objects

This category of objects, also known as Xtra extensions, provides access to the functionality of the software
components, such as XML Parser, Fileio, SpeechXtra, and so on, that are installed with Director and extend core
Director functionality. The preexisting Xtra extensions provide capabilities such as importing filters and connecting
to the Internet. If you know the C programming language, you can create your own custom Xtra extensions.

For a reference of the available scripting objects and their APIs, see “Scripting Objects” on page 133.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 45
Writing Scripts in Director

3D objects

This category of objects provides access to the functionality of the cast members and text that are used to create 3D
movies.

For more information about 3D movies, see the Using Director topics in the Director Help Panel.

For a reference of the available 3D objects and their APIs, see “3D Objects” on page 157.

Object model diagrams

The following diagrams illustrate the basic high-level relationships between the object groups and their hierarchies
within Director. For information on object creation, properties and methods, and other APIs, see the relevant API
reference topics.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

~

DIRECTOR

Cast LIbrary

Core Objects \ / Cast Member Media Types
[Animated GIF Font
[Payer | Bitmap Linked Movie
Button QuickTime

Color Palette

Real Media

\
\

|

|

|

|

|
|
|
|
|
| Shockwave Audio] i
|
|
|
I

|
|
]
|
|
DVD |
]
|
|
J

CastMember | _|| | Cursor Shockwave 30 |
]
Sprite Channel | Field Sound
Fim o
Global | Flash Movie Vector Shape
Key | Flash Component Windows Media

Sound

o
-

3D Objects

i

Sound Channel

y 1 3D Cast Member |---~--=--==-==--—-=-—---

Scripting Objects \ - [Gow]|
------- | Collision

| Fileio] | SpeechXtra] Light | _______
[Netlingo | [xmLParser | [Model }-[Keyframe Piayer |

Model Resource }{:-:{ Level of Detai (-00) |
------- | Mesh Def
—{W‘ as elorm
—{ Shader | | (SDS)

....... Toon
3D Sprite

_ N)

Object groups and their hierarchies

Top-level functions and properties

There are a number of top-level functions and properties that provide direct access to the core objects and functionality
in Director. You will likely make extensive use of many of these functions and properties as you create references to
core objects, new images, lists, and so on. For example, the top-level movie property refers directly to the core Movie
object, and the top-level 1ist () function creates a linear list.

The following tables list the top-level functions and properties.

Last updated 9/28/2011

46

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

Top-level functions

castLib() randomVector()
channel() (Top level) rect()

color() script()
date() (formats), date() (System) showLocals()
image() sound()
isBusy() sprite()

list() symbol()
member() timeout()
point() trace()
proplList() vector()

put() window()
random() xtra()
Top-level properties

_global _player
_key _sound
_mouse _system
_movie

Introduction to object-oriented programming in
Director

By using either Lingo or JavaScript syntax, you can apply object-oriented programming principles to your scripts.
Applying object-oriented principles typically makes programming easier by letting you write less code and letting you
use simpler logic to accomplish tasks, in addition to increasing the reusability and modularity of your code.

Depending on the scripting language you are using, you apply these principles using two different paradigms:

« In Lingo, you use parent scripts, ancestor scripts, and child objects to simulate object-oriented programming.

« InJavaScript syntax, you use standard JavaScript-style object-oriented programming techniques to create classes
and subclasses.

Each paradigm enables you to apply the advantages of object-oriented programming to your scripts, so it does not
really matter which scripting language you are using. You merely apply the principles in different ways.

Because each scripting language uses a different paradigm to apply object-oriented principles, the techniques
described for one language won’t work in the other language. Therefore, you only need to read the content that applies
to the scripting language you are using:

« For more information on simulating object-oriented programming in Lingo, see “Object-oriented programming
with Lingo syntax” on page 48.

Last updated 9/28/2011

47

DIRECTOR SCRIPTING DICTIONARY 11.5 48
Writing Scripts in Director

« For more information on object-oriented programming in JavaScript syntax, see “Object-oriented programming
with JavaScript syntax” on page 57.

Object-oriented programming with Lingo syntax

In Lingo, parent scripts provide the advantages of object-oriented programming. You can use parent scripts to
generate script objects that behave and respond similarly yet can still operate independently of each other.

You can create multiple copies (or instances) of a parent script by using Lingo. Each instance of a parent script is called
a child object. You can create child objects on demand as the movie plays. Director does not limit the number of child
objects that can be created from the same parent script. You can create as many child objects as the computer’s
memory can support.

Director can create multiple child objects from the same parent script, just as Director can create multiple instances of
a behavior for different sprites. You can think of a parent script as a template, and child objects as implementations of
the parent template.

The discussion about Lingo parent scripts and child objects describes the basics of how to write parent scripts and
create and use child objects, and also provides script examples. It does not teach fundamental object-oriented
programming concepts; however, to use parent scripts and child objects successfully, you must understand object-
oriented programming principles. For an introduction to the basics of object-oriented programming, see one of the
many third-party resources on that subject.

Similarity to other object-oriented languages

If you are familiar with an object-oriented programming language such as Java or C++, you may already understand
the concepts that underlie parent scripting but know them by different names.

Terms that Director uses to describe parent scripts and child objects correspond to the following common object-
oriented programming terms:

Parent scripts in Director correspond to classes in object-oriented programming.

Child objects in Director correspond to instances in object-oriented programming.

Property variables in Director correspond to instance variables or member variables in object-oriented programming.
Handlers in Director correspond to methods in object-oriented programming.

Ancestor scripts in Director correspond to the Super class or base class in object-oriented programming.

Parent script and child object basics

In Lingo, a parent script is a set of handlers and properties that define a child object; it is not a child object itself. A child
object is a self-contained, independent instance of a parent script. Children of the same parent have identical handlers
and properties, so child objects in the same group can have similar responses to events and messages.

Typically, parent scripts are used to build child objects that make it easier to organize movie logic. These child objects
are especially useful when a movie requires the same logic to be run several times concurrently with different
parameters. You can also add a child object to a Sprite object’s script InstanceList or the Movie object’s actorList
as a way to control animation.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

Because all the child objects of the same parent script have identical handlers, those child objects respond to events in
similar ways. However, because each child object maintains independent values for the properties defined in the parent
script, each child object can behave differently than its sibling objects—even though they are instances of the same
parent script.

For example, you can create a parent script that defines child objects that are editable text fields, each with its own
property settings, text, and color, regardless of the other text fields’ settings. By changing the values of properties in
specific child objects, you can change any of these characteristics as the movie plays without affecting the other child
objects based on the same parent script.

Similarly, a child object can have a property set to either TRUE or FALSE regardless of that property’s setting in sibling
child objects.

A parent script refers to the name of a script cast member that contains the property variables and handlers. A child
object created from a parent script is essentially a new instance of the script cast member.

Differences between child objects and behaviors

While child objects and behaviors are similar in that they both can have multiple instances, they have some important
differences as well. The main difference between child objects and behaviors is that behaviors are associated with
locations in the Score because they are attached to sprites. Behavior objects are automatically created from initializers
stored in the Score as the playhead moves from frame to frame and encounters sprites with attached behaviors. In
contrast, child objects from parent scripts must be created explicitly by a handler.

Behaviors and child objects differ in how they become associated with sprites. Director automatically associates a
behavior with the sprite that the behavior is attached to, but you must explicitly associate a child object with a sprite.
Child objects do not require sprite references and exist only in memory.

Ancestor basics

Parent scripts can declare ancestors, which are additional scripts whose handlers and properties a child object can call
on and use.

Ancestor scripting lets you create a set of handlers and properties that you can use and reuse for multiple parent scripts.

A parent script makes another parent script its ancestor by assigning the script to its ancestor property. For example,
the following statement makes the script What_Everyone_Does an ancestor to the parent script in which the statement
occurs:

-- Lingo syntax
ancestor = new(script "What Everyone Does")

When handlers and properties are not defined in a child object, Director searches for the handler or property in the
child’s ancestors, starting with the child’s parent script. If a handler is called or a property is tested and the parent script
contains no definition for it, Director searches for a definition in the ancestor script. If a definition exists in the
ancestor script, that definition is used.

A child object can have only one ancestor at a time, but that ancestor script can have its own ancestor, which can also
have an ancestor, and so on. This lets you create a series of parent scripts whose handlers are available to a child object.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

Writing a parent script

A parent script contains the code needed to create child objects and define their possible actions and properties. First,
you must decide how you want the child objects to behave. Then, you can write a parent script that does the following:

+ Optionally declares any appropriate property variables; these variables represent properties for which each child
object can contain a value independent of other child objects.

+ Sets up the initial values of the child objects’ properties and variables in the on new handler.

« Contains additional handlers that control the child objects’ actions.

Declaring property variables

Each child object created from the same parent script initially contains the same values for its property variables. A
property variable’s value belongs only to the child object it’s associated with. Each property variable and its value
persists as long as the child object exists. The initial value for the property variable is typically set in the on newhandler;
if it’s not set, the initial value is voID.

Declare a property variable
% Use the property keyword at the beginning of the parent script.

Set and test property variables from outside the child object
% Set and test property variables in the same way you would any other property in your scripts, by using the syntax
objectRef.propertyName.

For example, the following statement sets the speed property of an object cari:

carl.speed = 55

Creating the new handler

Each parent script typically uses an on new handler. This handler creates the new child object when another script
issuesanew (script parentScriptName) command, which tells the specified parent script to create a child object from
itself. The on new handler in the parent script can also set the child object’s initial property values, if you want.

The on new handler always starts with the phrase on new, followed by the me variable and any parameters being
passed to the new child object.

The following on new handler creates a new child object from the parent script and initializes the child’s spriteNum
property with the value passed to it in the aspriteNum parameter. The return me statement returns the child object
to the handler that originally called the on new handler.

-- Lingo syntax
property spriteNum

on new me, aSpriteNum
spriteNum = aSpriteNum
return me

end

For more information on calling the on new handlers, see “Creating a child object” on page 51.
Adding other handlers

You determine a child object’s behavior by including in the parent script the handlers that produce the desired
behavior. For example, you could add a handler to make a sprite change color.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

The following parent script defines a value for the property spriteNum, and contains a second handler that changes
the forecolor property of the sprite:

-- Lingo syntax
property spriteNum

on new me, aSpriteNum
spriteNum = aSpriteNum
return me

end

on changeColor me
spriteNum. foreColor = random(255)
end

Referring to the current object

Typically, one parent script creates many child objects, and each child object contains more than one handler. The
special parameter variable me tell the handlers in a child object that they are to operate on the properties of that object
and not on the properties of any other child object. This way, when a handler within a child object refers to properties,
the handler uses its own child object’s values for those properties.

The term me must always be the first parameter variable stated in every handler definition in a parent script. It is always
important to define me as the first parameter for parent scripts and to pass the same parameter if you need to call other
handlers in the same parent script, since these will be the handlers in each of the script’s child objects.

When referring to properties defined in ancestor scripts, you must use the me parameter as the source of the reference.
This is because the property, while defined in the ancestor script, is nevertheless a property of the child object. For
example, the following statement uses me to refer to an object and access properties defined in an ancestor of the object:

-- Lingo syntax
X = me.y -- access ancestor property y

Because the variable me is present in each handler of a child object, it indicates that all the handlers control that same
child object.

Creating a child object

Child objects exist entirely in memory; they are not saved with a movie. Only parent and ancestor scripts exist on disk.

To create a new child object, you use the new () method and assign the child object a variable name or position in a list
so you can identify and work with it later.

To create a child object and assign it to a variable, use the following syntax:

-- Lingo syntax
variableName = new(script "scriptName", parameterl, parameter2, ...)

The scriptName parameter is the name of the parent script, and parameterl, parameter2, ... are any parameters you are
passing to the child object’s on new handler. The new () method creates a child object whose ancestor is scriptName.
It then calls the on new handler in the child object with the specified parameters.

You can issue a new () statement from anywhere in a movie. You can customize the child object’s initial settings by
changing the values of the parameters passed with the new () statement.

Each child object requires only enough memory to record the current values of its properties and variables and a
reference to the parent script. Because of this, in most cases, you can create and maintain as many child objects as you
require.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

You can produce additional child objects from the same parent script by issuing additional new () statements.

You can create child objects without immediately initializing their property variables by using the rawNew () method.
The rawNew () method does this by creating the child object without calling the parent script’s on new handler. In
situations where large numbers of child objects are needed, rawNew () allows you to create the objects ahead of time
and defer the assignment of property values until each object is needed.

The following statement creates a child object from the parent script Car without initializing its property variables and
assigns it to the variable car1:

-- Lingo syntax
carl = script("Car") .rawNew ()

To initialize the properties of one of these child objects, call its on new handler:

carl.new

Checking child object properties

You can check the values of specific property variables in individual child objects by using a simple
objectName.propertyName syntax. For example, the following statement assigns the variable x the value of the
carSpeed property of the child object in the variable cari:

-- Lingo syntax
x = carl.carSpeed

Querying object properties from outside the objects themselves can be useful for getting information about groups of
objects, such as the average speed of all the Car objects in a racing game. You might also use the properties of one object
to help determine the behavior of other objects that are dependent on it.

In addition to checking the properties that you assign, you can check whether a child object contains a specific handler
or find out which parent script an object came from. This is useful when you have objects that come from parent scripts
that are similar but that have subtle differences.

For example, you may want to create a scenario in which one of several parent scripts is used to create a child object.
You can then determine which parent script a particular child object came from by using the script () function,
which returns the name of an object’s parent script.

The following statements check whether the object car1 was created from the parent script named car:

-- Lingo syntax

if carl.script = script("Car") then
_sound.beep ()
end if

You can also get a list of the handlers in a child object by using the handlers () method, or check whether a particular
handler exists in a child object by using the handler () method.

The following statement places a list of the handlers in the child object car1 into the variable myHandlerList:

-- Lingo syntax
myHandlerList = carl.handlers()

The resulting list would look something like this:
[#start, #accelerate, #stop]

The following statements use the handler () method to check whether the handler on accelerate exists in the child
object cari:

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 53
Writing Scripts in Director

-- Lingo syntax
if carl.handler (#accelerate) then

put ("The child object carl contains the handler named on accelerate.")
end if

Removing a child object

You can remove a child object from a movie by setting all variables that contain a reference to the child object to
another value. If the child object has been assigned to a list, such as actorList, you must also remove the child object
from the list.

Remove a child object and the variables that refer to it

< Set each variable to voIDp.

Director deletes the child object when there are no more references to it. In the following example, bal1l1 contains the
only reference to a specific child object, and it is set to vo1ID to delete the object from memory:

-- Lingo syntax
balll = VOID

Remove an object from actorList
< Use the delete () method to delete the item from the list.

Using scriptinstanceList

You can use the scriptInstanceList property to dynamically add new behaviors to a sprite. Normally,
scriptInstancelList is the list of behavior instances created from the behavior initializers defined in the Score. If
you add child objects created from parent scripts to this list, the child objects receive the messages sent to other
behaviors.

For example, the following statement adds a child object to the scriptInstanceList property of sprite 10:

-- Lingo syntax
add (sprite(10) .scriptInstancelList, new(script "rotation", 10))

The following is a possible parent script that the previous statement refers to:
-- Lingo syntax parent script "rotation"

property spriteNum

on new me, aSpriteNum
spriteNum = aSpriteNum
return me

end

on prepareFrame me
sprite(spriteNum) .rotation = sprite(spriteNum) .rotation + 1
end

When a child object is added to script InstanceList, you must initialize the child object’s spriteNum property.
Typically, you do this from a parameter passed in to the on new handler.

Note: The beginsprite message is not sent to dynamically added child objects.

For reference information on scriptInstanceList, see scriptInstanceList.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

Using actorList

You can set up a special list of child objects (or any other objects) that receives its own message each time the playhead
enters a frame or the updatestage () method updates the Stage.

The special list is actorList, which contains only objects that have been explicitly added to the list.

The message is the stepFrame message that is sent only when the playhead enters a frame or the updatestage ()
command is used.

Objects in actorList receive a stepFrame message instead of an enterFrame message at each frame. If the objects
have an on stepFrame handler available, the script in the handler runs each time the playhead enters a new frame or
the updatestage () method updates the Stage.

Some possible uses of actorList and stepFrame are to animate child objects that are used as sprites or to update a
counter that tracks the number of times the playhead enters a frame.

Anon enterFrame handler could achieve the same results, but the actorList property and stepFrame handler are
optimized for performance in Director. Objects in actorList respond more efficiently to stepFrame messages than
to enterFrame messages or custom messages sent after an updateStage () method.

Add an object to the actorList
% Use the actorList property as follows, where childObject is a reference to the child object to add:

-- Lingo syntax
_movie.actorList.add(childObject)

The object’s stepFrame handler in its parent or ancestor script then runs automatically each time the playhead
advances. The object is passed as the first parameter, me, to the on stepFrame handler.

Director does not clear the contents of actorList when branching to another movie, which can cause unpredictable
behavior in the new movie. If you do not want child objects in the current movie to be carried over into the new movie,
insert a statement that clears actorList in the on prepareMovie handler of the new movie.

Clear child objects from actorList

% Set actorList to [1, which is an empty list.

For reference information on actorList, see actorList.

Creating Timeout objects

A Timeout object is a script object that acts like a timer and sends a message when the timer expires. This is useful for
scenarios that require specific things to happen at regular time intervals or after a particular amount of time has
elapsed.

Timeout objects can send messages that call handlers inside child objects or in movie scripts. You create a Timeout
object by using the new () keyword. You must specify a name for the object, a handler to be called, and the frequency
with which you want the handler to be called. After a Timeout object is created, Director keeps a list of currently active
Timeout objects, called t imeoutList.

The syntax described below is necessary for all new movies authored in Adobe Director 11, or for older movies playing
in Adobe Director 11 whose scriptExecutionStyle property has been set to a value of 10. Movies authored in
Director MX and earlier have a scriptExecutionStyle property set to a value of 9, which allows you to use the syntax
found in Director MX and earlier.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

Create Timeout objects

-- Lingo syntax when scriptExecutionStyle is set to 9
variableName = timeout () .new(timeoutName, timeoutPeriod, #timeoutHandler, {, targetObject})

-- Lingo syntax when scriptExecutionStyle is set to 10
variableName = timeout () .new(timeoutName, timeoutPeriod, timeoutHandler, targetObject)
variableName = new timeout (timeoutName, timeoutPeriod, timeoutHandler, targetObject)

// JavaScript syntax

variableName = new timeout (timeoutName, timeoutPeriod, timeoutFunction, targetObject)
This statement uses the following elements:

« variableName is the variable you are placing the Timeout object into.

+ timeout indicates which type of Lingo object you are creating.

« timeoutName is the name you give to the Timeout object. This name appears in the timeoutList. It is the #name
property of the object.

+ new creates a new object.

« intMilliseconds indicates the frequency with which the Timeout object should call the handler you specify. This is
the #period property of the object. For example, a value of 2000 calls the specified handler every 2 seconds.

« #handlerName is the name of the handler you want the object to call. This is the #t imeOutHandler property of the
object. You represent it as a symbol by preceding the name with the # sign. For example, a handler called on
accelerate would be specified as #accelerate.

« targetObject indicates which child object’s handler should be called. This is the #target property of the object. It
allows specificity when many child objects contain the same handlers. If you omit this parameter, Director looks
for the specified handler in the movie script.

The following statement creates a Timeout object named timer1 that calls an on accelerate handler in the child
object car1 every 2 seconds:

-- Lingo syntax
myTimer = timeOut ("timerl") .new (2000, #accelerate, carl)

To determine when the next timeout message will be sent from a particular Timeout object, check its #t ime property.
The value returned is the point in time, in milliseconds, when the next timeout message will be sent. For example, the
following statement determines the time when the next timeout message will be sent from the Timeout object t imer1
and displays it in the Message window:

-- Lingo syntax

put (timeout ("timerl") .time)

Using timeOutList

When you begin creating Timeout objects, you can use timeoutList to check the number of Timeout objects that are
active at a particular moment.

The following statement sets the variable x to the number of objects in timeoutList by using the count property:

-- Lingo syntax
x = movie.timeoutList.count

You can also refer to an individual Timeout object by its number in the list.

The following statement deletes the second Timeout object in timeoutList by using the forget () method:

Last updated 9/28/2011

55

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

-- Lingo syntax
timeout (2) . forget ()

Relaying system events with Timeout objects

When you create Timeout objects that target specific child objects, you enable those child objects to receive system
events. Timeout objects relay these events to their target child objects. The system events that can be received by child
objects include prepareMovie, startMovie, stopMovie, prepareFrame, and exitFrame. By including handlers for
these events in child objects, you can make the child objects respond to them for whatever purposes you see fit. System
events received by child objects are also received by movie scripts, frame scripts, and other scripts designed to respond
to them.

The following parent script contains a handler for the system event exitFrame and a custom handler s1owbown:

-- Lingo syntax
property velocity

on new me
velocity = random(55)
end

on exitFrame
velocity = velocity + 5
end

on slowDown mph
velocity = velocity - mph
end

Associating custom properties with Timeout objects

If you want to associate custom properties with a Timeout object, you may want to create a Timeout object that uses
as a target anything other than a reference to a script instance object. When you use this technique, the target data
becomes data that is associated with the Timeout object, and can be used in your timeout handler.

The following example illustrates using this technique:

-- Lingo syntax

-- initialize a timeout object and pass it a data property list (tData)
-- instead of a reference to a script instance object

tData = [#beta: 0]

tTO = timeout ("betaData") .new (50, #targetHandler, tData)

-- within a movie script, create the targetHandler handler
on targetHandler (aData)

-- increment and display the beta property

tData.beta = tData.beta + 1

put (tData.beta)
end targetHandler

In the previous example, the beta property keeps incrementing. This means that you can initialize several Timeout
objects that all call the same movie script handler, and each Timeout object can have its own data list associated with it.

In general, keep the following in mind:

+ When using a reference to a script instance as a target, the target handler in that particular script instance is called.
This technique does not allow the use of custom properties.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 57
Writing Scripts in Director

« When using a reference to anything other than a script instance (such as a property list) as a target, the target
handler in a movie script is called. This technique allows the use of custom properties.

Object-oriented programming with JavaScript syntax

Object-oriented programming in JavaScript syntax is somewhat different than it is in other object-oriented languages
such as Java and C++—while some object-oriented languages are class-based, JavaScript syntax is prototype-based.

The following two bullet points compare and contrast, at a high level, class-based languages with prototype-based
languages such as JavaScript syntax:

+ Inclass-based languages, you create class definitions that define the initial properties and methods that characterize
all instances created from those classes. A class definition contains special methods, called constructor methods, that
are used to create the instances of that class. When an instance is created by using the new operator in association
with a particular constructor method, that instance inherits all the properties of its parent class. That instance can
also perform other processing specific to that instance depending on the constructor that was called.

In a class definition, you perform inheritance by creating a subclass that inherits all the properties of its parent class,
in addition to defining new properties and optionally modifying inherited ones. The parent class from which a
subclass is created is also known as a superclass.

« In prototype-based languages, such as JavaScript syntax, there is no distinction between classes, instances,
subclasses, and so on—they are all known as objects. Instead of using class definitions, in JavaScript syntax you use
prototype objects as the template from which new objects are created. Similar to class-based languages, in JavaScript
syntax, you create a new object by using the new operator in association with a constructor function.

Instead of using superclasses and subclasses, in JavaScript syntax, you associate prototype objects with constructor
functions to perform inheritance. This process is very similar to using superclasses and subclasses, only with
different terminology.

Also, as opposed to class-based languages, in JavaScript syntax you can add and remove properties from an object
or set of objects at runtime. For example, if you add a property to a prototype object at runtime, any instance objects
for which it is a prototype also get that property.

Object-oriented terminology

Because all types in JavaScript syntax are known as objects, class-based terms such as superclass, subclass, class,
instance, and so on do not have literal technical meanings in JavaScript syntax. However, all of these terms essentially
map to objects in JavaScript syntax and are convenient to use generically when referring to the different types of
JavaScript syntax objects. Therefore, these class-based terms are used interchangeably with object throughout the
discussion about object-oriented programming in JavaScript syntax to mean the following:

superclass Any class from which subclasses (objects) are created; a parent class.
subclass Any class that has been created from a superclass (object); a child class.
class A generic term for a superclass or subclass; a parent or child class.

instance or object instance A single object that has been created from a superclass.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 58
Writing Scripts in Director

Custom classes

One of the major advantages of object-oriented programming is the ability to create your own custom classes that
enable you to add custom functionality to your scripts. The predefined classes provided by JavaScript syntax, such as
Object, String, Math, and so on are useful in some cases, but they may not provide the functionality you require to
accomplish your task. For example, suppose you want some objects in your movie to represent types of transportation,
such as cars, boats, planes, and so on, and that you want each category to exhibit unique characteristics and
functionality. Neither the predefined JavaScript syntax classes nor the predefined Director objects may directly
provide the functionality that you need. Therefore, you may want to create a new class for each type of transportation
so you can define unique characteristics for each type.

Keep in mind that when you create custom JavaScript syntax classes, you still have access to all the features and
functionality of the predefined Director objects. This means that although the predefined Director objects may not
directly provide the functionality that you need, you can still use them in your custom classes to access their values and
predefined functionality.

Constructor functions

In JavaScript syntax, a constructor function represents the class that contains the template from which new object
instances are created. Constructor functions create and initialize (set the default state of) properties in the new objects.

Constructor functions are essentially identical in format to regular JavaScript syntax method functions. The difference
between a constructor function and a method function is that a constructor function uses the special this keyword to
represent a reference to the new object that is being initialized. A method function typically only performs some action
on a given set of an object’s data.

The following example illustrates one way to create a Rectangle constructor function that could be used to initialize
the height and width of new Rectangle objects:

function Rectangle(w, h) {
this.width = w;
this.height = h;

}
You can also create a constructor function by using function literal syntax. Function literal syntax provides the same
functionality as the syntax used previously and is merely an alternative way to write the constructor. The following
example illustrates using function literal syntax to create a Rectangle constructor function similar to the one illustrated
previously:
Rectangle = function(w, h)

this.width = w;

this.height = h;
}
Note: When defining constructor functions that apply to a movie, be sure to place them in a movie script so they are
available globally.

It is considered good scripting practice to give constructor functions names that map to their functionality, and to use
initial capitalization in their names, such as Rectangle or Circle.

Constructor functions are typically used only to initialize new objects but can also return the object if desired. If you
do return the initialized object, the returned object becomes the value of the new expression.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 59
Writing Scripts in Director

Object instances

The most common way to create a new object instance is to use the new operator followed by the name of a constructor
function. The following examples create new object instances:

var objRandom = new Object(); // assigns a reference to an Object object
var objString = new String(); // assigns a reference to a String object

A constructor function can optionally define parameters that a new object instance passes to it to initialize the state of
the object instance. If a constructor function does define parameters used during initialization of new object instances,
the property values are initialized as follows:

« If you pass values to the constructor function during initialization, the properties that received values are set to
those values.

+ Ifyou do not pass values to the constructor function during initialization, the properties that did not receive values
are set to undefined.

When you create new object instances, the keyword this is used in the body of the associated constructor function to
refer to the new object instance. Therefore, a new object instance is initialized with all of the properties defined by using
the this.propertyName syntax.

In the following example, a circle constructor function uses the keyword this to specify the names of three
properties that will be associated with new object instances. The statement following the constructor initializes a new
object instance by passing values to the constructor. These values are used as the initial values of the properties
specified by the keyword this.

// Circle constructor function

function Circle(x, y, r) {
this.xCoord = Xx;
this.yCoord = y;
this.radius = r;

// xCoord = 10, yCoord = 15, radius = 5
var objCircle = new Circle(10, 15, 5);

Now that objcircle has been initialized, you can access its properties. Using the objcircle instance created
previously, you could set some variables equal to the values of its properties.

var theXCoord = objCircle.xCoord; // assigns the value 10 to theXCoord
var theYCoord = objCircle.yCoord; // assigns the value 15 to theYCoord
var theRadius = objCircle.radius; // assigns the value 5 to theRadius

Note: For more information on using dot syntax to access properties and methods of an object, see “Scripting in dot syntax
format” on page 43.

It is considered good scripting practice to give new objects names that map to their functionality, and to name them
by using lowercase letters, such as objRectangle or objCircle.

You can also create an object instance by using object literal syntax, which eliminates the need for the new operator and
a constructor function. You typically only use this technique when you need only one instance of an object that has
not been defined in a constructor function. The following example creates an object instance withx = 1,y = 2,and

radius = 2:

var objSmallCircle = { x:1, y:2, radius:2 };

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 60
Writing Scripts in Director

Object inheritance

In addition to being able to create your own custom classes, another major advantage of object-oriented programming
is the ability of subclasses to inherit the properties and methods of the superclasses from which they were created.
Inheritance enables you to easily create objects that already have built-in properties and functionality.

In JavaScript syntax, there is one superclass that acts as the base class from which all other subclasses are created—the
Object superclass. The Object superclass contains a few basic properties and methods. The subclasses that are created
by using Object as a template always inherit these basic properties and methods, and likely define their own properties
and methods. Subclasses of these classes inherit from Object, from their superclasses, and so on. All additional objects
that you create would continue this chain of inheritance.

For example, Object contains the constructor property and the tostring () method. If you create a new class named
SubOb1j1, it is a subclass of Object, and therefore automatically inherits the constructor property and the
tostring () method of Object. If you then create another class named subob3j2 using subobj1 as a superclass,
SubObj2 would also inherit the constructor property and the tostring () method of Object, in addition to any
custom properties and methods you defined in subobj1.

Two of the important properties that your custom constructor functions inherit from the Object superclass are
prototype and constructor. The prototype property represents the prototype object of a class, which enables you
to add variables (properties) and methods to object instances, and is the means by which inheritance is typically
implemented in JavaScript syntax. The constructor property represents the constructor function itself. The use of
these properties is explained in the following sections.

Prototype objects

As previously stated, when you create a subclass, it automatically inherits the properties and methods of the superclass
on which it is based. In JavaScript syntax, inheritance is typically implemented by using prototype objects. A subclass
actually inherits its properties and methods from the prototype object of its superclass, and not from the superclass
itself. This important point offers a distinct advantage: all properties and methods do not literally have to be copied
from a class to an object instance of that class, which can dramatically decrease the amount of memory required by
new object instances.

Every class in JavaScript syntax, including the predefined Object class, contains only one prototype object. Every object
instance created from a class has access to the properties and methods in the prototype object of that class. Therefore,
the prototype object of a class is typically the only object that actually stores the properties and methods for that class;
an object instance only contains the properties required to initialize that instance.

In your code, it appears that each object instance actually contains those properties and methods because you can
access them directly from each object instance, but the instance is actually using the prototype object to access them.
The prototype object of a class is created automatically when you create the class. You access the prototype object by
using the prototype property of the class.

Because a prototype object of a class stores properties that are shared by all object instances, they are ideally suited to
define properties and methods whose values will be shared across all object instances. By sharing properties and
methods across object instances, you can easily create instances that exhibit a defined default behavior and can also
customize any instances that deviate from the default behavior.

Prototype objects typically are not suited to define properties and methods whose values may vary across object
instances. In cases where values may vary across object instances, you typically define those properties and methods
within the class itself.

To specify the scope of a custom property or method, you define it as an instance variable, instance method, class
variable, or a class method.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 61
Writing Scripts in Director

Instance variables

Instance variables are any variables (properties) that are defined in a constructor function and are copied into each
object instance of that constructor. All object instances have their own copies of instance variables. This means that if
there are five object instances of a circle class, there are five copies of each instance variable defined in the class.
Because each object instance has its own copy of an instance variable, each object instance can assign a unique value
to an instance variable without modifying the values of other copies of the instance variable. You access instance
variables directly from their containing object instances.

The following example defines four instance variables—make, model, color, and speed—in a constructor function.
These four instance variables are available directly from all object instances of the car constructor:

function Car (make, model, color) { // define a Car class
this.make = make;
this.model = model;
this.color = color;
this.speed = 0;

}

The following object instance objcCar contains all four instance variables. Although a value for the instance variable
speed is not passed to the car constructor, objCar still has a speed property whose initial value is 0 because the speed
variable is defined in the car constructor.

// objCar.make="Subaru", objCar.model="Forester",
// objCar.color="silver", objCar.speed = 0
var objCar = new Car("Subaru", "Forester", "silver");

Instance methods

Instance methods are any methods that are accessible through an object instance. Object instances do not have their
own copies of instance methods. Instead, instance methods are first defined as functions, and then properties of the
constructor function’s prototype object are set to the function values. Instance methods use the keyword this in the
body of the defining constructor function to refer to the object instance they are operating on. Although a given object
instance does not have a copy of an instance method, you still access instance methods directly from their associated
object instances.

The following example defines a function named car_increasespeed (). The function name is then assigned to the
increaseSpeed property of the car class’s prototype object:

// increase the speed of a Car
function Car_ increaseSpeed(x) {
this.speed += x;
return this.speed;

}

Car.prototype.increaseSpeed = Car_increaseSpeed;

An object instance of car could then access the increasespeed () method and assign its value to a variable by using
the following syntax:

var objCar = new Car ("Subaru", "Forester", "silver");
var newSpeed = objCar.increaseSpeed(30) ;

You can also create an instance method by using function literal syntax. Using function literal syntax eliminates the
need to define a function and the need to assign a property name to the function name.

The following example uses function literal syntax to define an increasespeed () method that contains the same
functionality as the increasespeed () function defined previously:

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

// increase the speed of a Car
Car.prototype.increaseSpeed = function(x) ({
this.speed += x;
return this.speed;

Class variables

Also known as static variables, these are any variables (properties) that are associated with a class, and not an object
instance. There is always only one copy of a class variable, regardless of the number of object instances that are created
from that class. Class variables do not use the prototype object to implement inheritance. You access a class variable
directly through the class, and not through an object instance; you must define a class in a constructor function before
you can define class variables.

The following example defines two class variables—MaX SPEED and MIN_SPEED:

function Car() { // define a Car class

Car.MAX SPEED 165;
Car.MIN_SPEED = 45;

You would access the MAX_SPEED and MIN_SPEED class variables directly from the car class.

var carMaxSpeed = Car.MAX SPEED; // carMaxSpeed = 165
var carMinSpeed = Car.MIN_ SPEED; // carMinSpeed 45

Class methods

Also known as static methods, these are any methods that are associated with a class, and not an object instance. There
is always only one copy of a class method, regardless of the number of object instances that are created from that class.
Class methods do not use the prototype object to implement inheritance. You access a class method directly through
the class, and not through an object instance; you must define a class in a constructor function before you can define
class methods.

The following example defines a function named setInitialSpeed () that can change the default speed of new car
instances. The function name is assigned to the setInitialSpeed property of the car class:

function Car (make, model, color) { // define a Car class
this.make = make;
this.model = model;
this.color = color;
this.speed = Car.defaultSpeed;

}

Car.defaultSpeed = 10; // initial speed for new Car instances
// increase the speed of a Car
function Car setInitialSpeed(x) {

Car.defaultSpeed = x;

}

Car.setInitialSpeed = Car_ setInitialSpeed;
You access the setInitialSpeed () class method directly from the car class.
var newSpeed = Car.setInitialSpeed(30) ;

You can also create a class method by using function literal syntax. The following example uses function literal syntax
to define a setInitialSpeed () method that contains the same functionality as the setInitialspeed () function
defined previously:

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 63
Writing Scripts in Director

// increase the speed of a Car
Car.setInitialSpeed = function(x) {
Car.defaultSpeed = x;

Recommended steps for defining a class

The following list describes the recommended steps to follow when defining a class:

1 Define a constructor function that is used as the template from which all object instances are initialized. You may
additionally define any instance variables in the constructor function by using the keyword this to refer to an
object instance.

2 Define any instance methods, and possibly additional instance variables, that are stored in the prototype object of
a class. These instance methods and variables are available to all object instances and are accessible through the
prototype object of the class.

3 Define any class methods, class variables, and constants that are stored in the class itself. These class methods and
variables are accessible only through the class itself.

In your code, when you access a property of an object instance, JavaScript syntax searches the object instance itself for
that property. If the instance does not contain the property, JavaScript syntax then searches the prototype object of the
superclass from which the instance was created. Because an object instance is searched before the prototype object of
the class from which it was created, object instance properties essentially hide properties from the prototype object of
their superclasses. This means that both an object instance and its superclass could realistically define a property with
the same name but different values.

Deleting variables

You can delete a class variable or an instance variable by using the delete operator. The following example illustrates
this process.

function Car () { // define a Car constructor function

}

Car.color = "blue"; // define a color property for the Car class
Car.prototype.engine = "V8"; // define an engine property for the prototype

var objCar = new Car();

trace(Car.color); // displays "blue"
trace (objCar.engine); // displays "v8"

delete Car.color;
delete Car.prototype.engine;

trace(Car.color); // displays undefined
trace (objCar.engine); // displays undefined

Accessing the constructor property of a prototype object

When you define a class by creating a constructor function, JavaScript syntax creates a prototype object for that class.
When the prototype object is created, it initially includes a constructor property that refers to the constructor
function itself. You can use the constructor property of a prototype object to determine the type of any given object.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 64
Writing Scripts in Director

In the following example, the constructor property contains a reference to the constructor function used to create
the object instance. The value of the constructor property is actually a reference to the constructor itself and not a
string that contains the constructor’s name:

function Car() { // define a Car class
// initialization code here

}

var myCar = new Car(); // myCar.constructor == function Car() {}

Creating properties dynamically

Another advantage of using prototype objects to implement inheritance is that properties and methods that are added
to a prototype object are automatically available to object instances. This is true even if an object instance was created
before the properties or methods were added.

In the following example, the color property is added to the prototype object of a car class after an object instance of
Car has already been created:

function Car (make, model) { // define a Car class
this.make = make;
this.model = model;

var myCar = new Car ("Subaru", "Forester"); // create an object instance

trace (myCar.color); // returns undefined

// add the color property to the Car class after myCar was initialized
Car.prototype.color = "blue";

trace (myCar.color); // returns "blue"

You can also add properties to object instances after the instances have been created. When you add a property to a
specific object instance, that property is available only to that specific object instance. Using the mycar object instance
created previously, the following statements add the color property to mycar after it has already been created:

trace (myCar.color); // returns undefined

myCar.color = "blue"; // add the color property to the myCar instance

trace (myCar.color); // returns "blue"

var secondCar = new Car ("Honda", "Accord"); // create a second object instance

trace (secondCar.color); // returns undefined

Writing scripts in the Script window

When you write scripts for a movie, the quantity and variety of scripts can be very large. Deciding which methods or
properties to use, how to structure scripts effectively, and where scripts should be placed requires careful planning and
testing, especially as the complexity of your movie grows.

Before you begin writing scripts, formulate your goal and understand what you want to achieve. This is as important—
and typically as time-consuming—as developing storyboards for your work.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

When you have an overall plan for the movie, you are ready to start writing and testing scripts. Expect this to take time.
Getting scripts to work the way you want often takes more than one cycle of writing, testing, and debugging.

The best approach is to start simple and test your work frequently. When you get one part of a script working, start
writing the next part. This approach helps you identify bugs efficiently and ensures that your scripts are solid as they
become more complex.

The Script window provides a number of features that help you create and modify your scripts.

The Script window in Director allows you to add advanced, scripting-based interactivity to movies. In the Script
window, you can code using either Lingo or JavaScript syntax. Lingo is the traditional scripting language of Director.
JavaScript syntax was recently introduced to support multimedia developers who prefer working with JavaScript.

By scripting in the Script window, you can accomplish many of the same tasks that you can in the graphical interface
of Director — such as moving sprites on the Stage or playing sounds. But much of the usefulness of scripting is in the
flexibility that it brings to a movie. Instead of playing a series of frames exactly as the Score dictates, a movie can have
scripts that control frame play in response to specific conditions and events.

Note: In addition to the Script window, where you can create your own scripts, Director includes a set of prepackaged
instructions (called behaviors) that you can simply drag to sprites and frames. Behaviors let you add script-based
interactivity without writing scripts. For more information on behaviors, see the Behaviors topics in the Director Help
Panel.

The Script window has an Explorer panel and a Script Editor. By default, the Explorer panel appears to the left of the
Script Editor. You can view the Explorer panel in the Dictionary view or the Script Browser view. To set the default
position of the Explorer panel, use the Script Window Preferences dialog box (Edit > Preferences > Script).

Dictionary view

The Dictionary view displays a list of built-in Lingo script/JavaScript functions arranged in a tree structure. The
functions are classified based on their category, and alphabetically as an index.

Use the Dictionary view to do the following:

+ Browse built-in functions for Lingo scripts and JavaScripts.

+ Use the built-in functions to create scripts.

Score, Stage (100%) Script: Movie Script 371 g %
Script 3™ 1 MK
tawaseript | w | | | eni ¥ ATT BMMEWEDR o @@L | 4 =22 O
Daclionary : + [al o > Inibernal v
= iﬂ Mowie -~ .
% (&) 20 on exit Crameme()
+ a Euttan e:‘:-z"-‘ to "pauserings’|
+ (Al Cast
+ (Al Debug
+ (A Display Template
= (i) Fiela
@ zelEnd
@) selstart
+ (@] Fach object w
(A Tdle ~H< Y
¥ Cast:Internal =

Browse functions and create scripts using the Dictionary view
1 Select Window > Script. The Script window appears.

2 Click the Dictionary tab.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 66
Writing Scripts in Director

3 Select Lingo or JavaScript from the pop-up menu. The corresponding built-in functions are displayed in the panel
below.

Lingo: Displays functions for Lingo scripts, 3D Lingo Scripts, and scripting Xtras used in the current movie. The
functions are organized as categories (Global, Movie, Player, and so on.)

JavaScript: Displays functions for JavaScripts, 3D JavaScripts, and scripting Xtras used in the current movie. The
functions are organized as categories (Global, Movie, Player, and so on.)

4 Expand each category to display its associated functions by clicking the plus sign (+) next to it. To view functions
in an alphabetical order, expand the index category.

5 To add a function to the Script Editor for creating scripts, double-click the function.
6 Save the script.
7 Click the Recompile All Modified Scripts icon.

Script Browser view

The Script Browser view displays the scripts and associated handlers that have been used in the movie. You can create
new scripts and handlers in this view.

Use the Script Browser view to do the following:

« Browse scripts and handlers in the current movie as a tree or a list.
« Sort scripts based on their Script name, Cast name, Cast number, or Script type in the list view.
+ Locate a handler in the Script Editor.

« Create scripts under each script type or script cast.

Browse and create scripts using the Script Browser view
1 Select Window > Script to open the Script window.

2 Click the Script Browser tab. The scripts are displayed in a tree structure in the panel below. To display the scripts
as a list, click the Script Browser View button.

Tree view: Scripts are categorized on the basis of the Script type (such as Behavior Scripts, Movie Scripts, Parent
Scripts, and the Cast Library) that they are created in. Cast Member Scripts are also listed here. To open a script in
the Script Editor, double-click the script. Handlers belonging to a script appear as a tree under the relevant script
node.

3 To view a list of compiled handlers in the script, expand the script <name> node. Uncompiled handlers are not
displayed.

4 To locate a handler in the Script Editor, double-click the handler. The handler is highlighted in the Script Editor.
Alternatively, click the Go to Handler icon in the scripting bar. For more information, see “Finding handlers and
text in scripts” on page 71.

5 To add or remove a comment in the script, click the Comment Or Uncomment icon in the scripting bar.

6 To toggle abreakpoint, click the Toggle Breakpoint icon in the scripting bar. Alternatively, press F9 or click the blue
bar next to the piece of code.

7 Listview: Scripts are organized in a column in a list on the basis of Script name, Cast name, Cast number, and Type.
To sort a list in a column, click the desired column header.

8 To create a new script in the tree view, right-click a script type, and select Add New <script type> from the pop-up
menu. When you enter a name for the script in the Script Editor, the name of the script is displayed in the list.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

9 Save the script.
10 Click the Recompile All Modified Scripts icon.

Cast Member Scripts are listed in the Cast Member Scripts folder in the tree view and as Script Names in the list view.
Because these scripts are attached to a specific cast member and are not actual cast members, they are removed from
the Script Browser only when you delete the associated cast member.

Scare, Stage (100%) Script: Movie Script 1 o X
Script 1 x
Lingo | [global] Y| E T B E e | @ @ ? ’ = al= @
Script Browsar + |E‘ o 1 Irternal -
= on startMovie ~
member | J.cext =
end
Script Name # Cast Type Syntax
1 1 Internal Movie Lingo
v
< >

For information on alternative ways to create and open scripts, see “Performing common tasks” on page 72.

Note: To close a Script tab, click the X button on the tab, or right-click the tab area and then select the Close <script
type:script name>option.

Opening and closing multiple scripts

Multiple scripts can be opened as different tabs in the Script window. Because the Script window can accommodate
only a fixed number of tabs, some of the tabs might be hidden. To navigate to the hidden tabs, use the '>'and '<' Browse
Script tab icons.

Open multiple Script windows
% Do one of the following:

+ From the Script window, select Windows > New Script Window.
+ Press Alt+w+n.

You can use the Alt+w+n shortcut key to open additional instances of any active window. For example, if you have
opened the Vector window, use the Alt+w-+n shortcut key to open additional Vector windows.

Close a Script tab
1 Click the tab of the Script window that you want to close.

2 Do one of the following:
+ Click the tab to close (if not already the active tab) and then click the X button.

« Right-click the tab or the area next to the tab and select Close <script type:script name>.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

Setting Script window preferences

You can change the font of text in the Script window and define different colors for various code components. To
change the default font of text in the Script window and the color of various code elements, you use Script window
preferences. Director automatically colors different types of code elements unless you turn off Auto Coloring.

To display the Explorer panel in the other windows, click the arrow icon in the splitter bar located between the Script
Editor and the Explorer panel.

Set Script window preferences
1 Select Edit > Preferences > Script.

2 To choose the default font, click the Font button and select settings from the Font dialog box.

3 To choose the default color of text in the Script window, select a color from the Color menu.

4 To choose the background color for the Script window, select a color from the Background color menu.
5

To make new Script windows automatically color certain code elements, select Auto Coloring. This option is on by
default. With Auto Coloring off, all text appears in the default color.

6 To make new Script windows automatically format your scripts with proper indenting, select Auto Format. This
option is on by default.

Note: The auto coloring and auto formatting features do not apply to JavaScript syntax code. Therefore, if you are
authoring scripts using JavaScript syntax, the Auto Coloring and Auto Format buttons in the Script window are
disabled, and terms such as function, var, and this will appear in the default text color.

7 To make new Script windows display line numbers for your scripts, select Line Numbering. This option is on by
default.

8 If Auto Coloring is on, select colors for the following code elements from the corresponding color menus:
« Keywords
+ Comments
- Literals
+ Custom (terms you define in your own code)
9 To change the line number column background color, click the Line Numbers color menu and choose a new color.

10 To change the location of the Call Stack, Variable, and Watcher panes in the Debugger window, select Left, Top,
Right, or Bottom from the Debugger Panes menu.

11 Select Lingo or Javascript in the Default Script Type pop-up menu. Director uses the selected option as the default
when opening the Explorer panel.

Note: This is an application-level change that is retained after you close and re-open Director.

12 To move the Explorer panel to a different location adjacent to the Script Editor in the Script window, select Left,
Top, Right, or Bottom in the Explorer Panel pop-up menu. By default, the Explorer panel appears to the left of the
Script Editor.

Note: When debugging the script, a separate instance of the Script Editor opens along with the Debugger panel. This
document window can be reordered in the application by shuffling it with the other open windows.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 69
Writing Scripts in Director

Deleting scripts
You can delete scripts using the Explorer panel.
% Do one of the following:
« In the Script Browser, right-click a script entry and select Delete.
+ In the list view of the Script Explorer, select a script and press Delete.

Note: When you delete a script that is open, the tab corresponding to the script is also removed from the Script window.
If the open script you deleted was the only script in your movie, the Script window is disabled, and the tab in which the
script appeared displays the text Script. To enable the text editor, click the plus sign (+) in the Script Editor panel.

Inserting common scripting terms

The Script window provides pop-up menus of common scripting terms that you can use to insert statements in a script.
The same menus also appear in the Message window.

Score, Stage (100%) Script: Movie Script 1 5 X
Seript 1 X

Lingo | || [global] - I 2T pCE W e B o@.; j, =2

A L3
1 hd
O oo B
backgroundColar -~ 25
BACKSPACE
beep
beepOn .
time

before b timeRightNow)
beginRecording teeChars (timeRightHow)
bgColor

bitAnd
bitmapSizes jening, the time is:™

Seript Brawser

Script Name F Cast Type Syntax
61 1 Internal Movie Lingo

bithot fternoon, the time is:™
bitOr
bitRate : grringlut &5 timedEDay
bitsPersample
bitxor |
blend P
border thars in stringln
bottom wrs - 2) to nChars of stringln
TU bottomspacing
boxDropShadow
WXYZ »| boxType ringIn

q nthars break thars in stringIn

timeWi breakloop t 1 to (nChars - 2) of stringIn

returr, broadcastProps I

endl browseriame

bufferSize
buttonsEnabled
buttenstyle
buttonType
bytesStreamed

=
v v YT T T TTTTYTTYTTYTYTYTYTYTYYY

Insert common scripting terms

In both the Script window and the Message window, you can select which scripting syntax you want to use for a
particular script.

Select the scripting syntax

< From the Script Syntax pop-up menu, select either Lingo or JavaScript.

After you select a scripting syntax, you enter code in the syntax you have chosen. If you try to compile a script in a
syntax other than the one you chose, a script error occurs.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

When entering scripts in the Script window, you can comment out or uncomment either single or multiple lines of
code by using the Comment or Uncomment buttons. Depending on which scripting syntax you have chosen, the
Comment and Uncomment buttons display the correct comment markers for that syntax; Lingo uses double hyphens
(--), and JavaScript syntax uses double slashes (//).

Comment code

% Highlight the line or lines of code you want to comment out, and click Comment.

Note: When using the Comment button to comment out multiple lines of JavaScript syntax code, Director inserts double
slashes before each line. You can also comment out multiple lines of code by inserting /* before the first line of commented
code and inserting */ after the last line of commented code, but you must do this manually.

Uncomment code

< Highlight the line or lines of code that you want to remove comments from, and click Uncomment.

Both the Script window and the Message window contain the following menus:

+ The Alphabetical Lingo menu lists every element in alphabetical order, except 3D Lingo.

« The Categorized Lingo menu lists categories of elements according to the features they are often used for. It does
not include 3D Lingo.

+ The Alphabetical 3D Lingo menu lists all 3D Lingo elements in alphabetical order.
+ The Categorized 3D Lingo menu lists categories of all 3D Lingo elements according to the features they are used for.

« The Scripting Xtras pop-up menu includes the methods and properties of all scripting Xtra extensions found,
regardless of whether they are Adobe or third-party Xtra extensions.

Note: The scripting Xtra extensions listed in the Scripting Xtras pop-up menu are only those that support the
Interface () method and whose names actually appear in the pop-up menu. Although some cast member media types
such as 3D and DVD also support the Interface () method, they do not appear in the Scripting Xtras pop-up menu
because they are not implemented in Director as scripting Xtra extensions.

When you select an element from the pop-up menus, Director inserts the element at the insertion point in the Script
window.

When an element requires additional parameters, placeholder names are included that indicate the additional required
information. When more than one argument or parameter is required, the first one is highlighted for you, so all you
must do is type to replace it. You must select and change the other parameters yourself.

Some cast member types and scripting Xtra extensions provide scripting terms that do not appear in the pop-up
menus. These member types and Xtra extensions often have their own documentation, and you can find some
information from within Director.

Display a list of available Xtra extensions

% Issue either put (_player.xtraList) or trace (_player.xtraList) in the Message window.

Display a list of available scripting Xtra extensions

% Issue either put (_player.scriptingXtraList) Or trace (_player.scriptingXtraList) in the Message
window.

Display a list of methods and properties for an Xtra extension

% From the Scripting Xtras pop-up menu, point to an Xtra extension, and on the submenu, click Put Interface. The
methods and properties for that Xtra extension appear in the Message window.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 A
Writing Scripts in Director

Entering and editing text

Entering and editing text in a Script window is similar to entering and editing text in any other field.

The following are common editing tasks that you perform in the Script window:

To select a word, double-click the word.
To select an entire script, choose Select All from the Edit menu.
To start a new line, enter a carriage return.

In Lingo, to wrap a long line of code with a continuation symbol, press Alt+Enter (Windows®) or Option+Return
(Mac®) where you want to insert a soft line break. The continuation symbol (\) that appears indicates that the
statement continues on the next line.

In JavaScript syntax, to wrap a long line of code, insert a regular line break by pressing Enter (Windows) or Return
(Mac). The Lingo continuation symbol causes a script error in JavaScript syntax scripts.

To locate a handler in the current script, select the handler’s name from the Go to Handler pop-up menu in the
Script window.

To compile any modified scripts, click the Script window’s Recompile All Modified Scripts button or close the
Script window. When you modify a Script, an asterisk appears in the Script window title bar, indicating that the
script needs to be recompiled.

To compile all scripts in a movie, select Recompile All Scripts from the Control menu.
To reformat a script with proper indentation, press Tab in the Script window.

Director automatically indents statements when the syntax is correct. If a line does not indent properly, there is a
problem in the syntax on that line.

To open a second Script window, Alt-click (Windows) or Option-click (Mac) the New Cast Member button in the
Script window. This can be helpful for editing two different sections of a long script simultaneously.

To toggle Line Numbering, click the Line Numbering button.

To toggle Auto Coloring, click the Auto Coloring button. Auto Coloring displays each type of Lingo element
(properties, commands, and so on) in a different color.

To toggle Auto Formatting, click the Auto Format button. Auto Formatting adds the correct indenting to your
scripts each time you add a carriage return or press Tab.

Note: The Auto Coloring and Auto Formatting features do not apply to JavaScript syntax code. Therefore, if you are
authoring scripts using JavaScript syntax, the Auto Coloring and Auto Format buttons in the Script window are
disabled, and terms such as function, var, and this will appear in the default text color.

Finding handlers and text in scripts

The Find command in the Edit menu is useful for finding handlers and for finding and editing text and handlers.

Find handlers in scripts

1

Select Edit > Find > Handler.
The Find Handler dialog box appears.

The leftmost column in the Find Handler dialog box displays the name of each handler in the movie. The middle
column displays the number of the cast member associated with the handler’s script, along with the name of that
cast member. The rightmost column lists the cast library that contains the cast member.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

2 Select the handler that you want to find.
3 Click Find.

The handler appears in the Script window.

The title bar at the top of the Script window indicates the script’s type.

Find text in scripts

1 Make the Script window active.
2 Select Edit > Find > Text.
The Find Text dialog box appears.
3 Enter text that you want to find in the Find field, and then click Find.

By default, find is not case-sensitive: ThisHandler, thisHandler, and THISHANDLER are all the same for search
purposes. Click the Case Sensitive check box to make the find case-sensitive.

Specify which cast members to search
% Select the appropriate option under Search: Scripts.

Start the search over from the beginning after the search reaches the end
% Select the Wrap-Around option.

Search only for whole words and not fragments of other words that match the word
% Select the Whole Words Only option.

Find the next occurrence of the text specified in the Find field
% Select Edit > Find Again.

Find occurrences of selected text
1 Select the text.

2 Select Edit > Find > Selection.

Performing common tasks

The following are ways to perform common tasks for creating, attaching, and opening scripts.

Create a frame behavior (script attached to a frame)

% Double-click the behavior channel in the frame to which you want to attach the behavior.

Last updated 9/28/2011

72

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

£ ¥ hiScore i
g 3 W mki 7 mk2
=| m n

Member b

I
| A

bmpl——— 1
JS Classes —————]

§ <_ 3

€ | > |42

Behavior channels

When you create a new behavior, the behavior receives the cast library number of the first available location in the
current Cast window.

When you create a new frame behavior, the Script window opens and already contains the Lingo on exitFrame
handler. The first line contains on exitFrame, followed by a line with a blinking insertion point, and then a line with
the word end. This makes it easy for you to quickly attach a common Lingo behavior to the frame. To make this
handler work with JavaScript syntax, replace on exitFrame with function exitFrame () {,and replace end with }.

Score, Skage (100%) Script: Movie Script 1 *1

g X

Script 141 R
Lings ¥ | |[glabal] VAT | mEGRER 0@ L | 4|22 @

Script Browser + @] [) 1 ITnternal v
iz on Exit Frame me A

N EI]dJ

Script Name # Cast Type Syntax
(=251 1 Internal Movie Lingo

One of the most common frame behaviors is one that keeps the playhead looping in a single frame. This can be useful

when you want your movie to keep playing in a single frame while waiting for the user to click a button or for a digital
video or sound to finish playing.

Keep the playhead in a single frame

% In a frame behavior, type the following statement on the line after the on exitFrame (Lingo) or function
exitFrame () (JavaScript syntax) statement:

-- Lingo syntax

_movie.go(_movie.frame)

// JavaScript syntax
_movie.go(_movie.frame) ;

The Movie object’s £rame property refers to the frame currently occupied by the playhead. This statement essentially
tells the playhead to "go back to the frame you are currently in."

Create a sprite behavior (script attached to a sprite)

% In the Score or on the Stage, select the sprite that you're attaching the behavior to. Then select Window > Behavior
Inspector and select New Behavior from the Behavior pop-up menu.

Last updated 9/28/2011

73

DIRECTOR SCRIPTING DICTIONARY 11.5 74
Writing Scripts in Director

When you create a new sprite behavior, the Script window opens and already contains the Lingo on mouseUp handler.
The first line contains the line on mouseUp, followed by a line with a blinking insertion point, and then a line with the
word end. This makes it easy for you to quickly attach a common behavior to the sprite. To make this handler work
with JavaScript syntax, replace on mouseUp with function mouseUp () {,and replace end with }.

Open a behavior for editing
1 Double-click the behavior in the Cast window.

The Behavior inspector opens.
2 Click the Script Window icon in the Behavior inspector.

The Script window displays the behavior.

Alternatively, you can open the Script window and cycle through the scripts until you reach the behavior.

Remove a behavior from a Score location
% Select the location and then delete the script from the list displayed in the Property inspector (Behavior tab).

Attach existing behaviors to sprites or frames

% Do one of the following:
+ Drag a behavior from a cast to a sprite or frame in the Score or (for sprites) to a sprite on the Stage.

« In the Score, select the sprites or frames that you’re attaching the behavior to. Then select Window > Behavior
Inspector and select the existing behavior from the Behavior pop-up menu.

Create a movie script (script attached to a movie)

Do one of the following:

« To create a movie script using Script Explorer in the tree view:
1 Select a movie node under the cast in which you want to add the movie script.
2 Right-click and select Add New Movie Script.

« If the current script in the Script window is a movie script, click the New Script button in the Script window.
(Clicking the New Script button always creates a script of the same type as the current script.)

« Ifthe current script in the Script window is not a movie script, click the New Script button and then change the new
script’s type with the Script Type pop-up menu in the Script tab of the Property inspector.

« If no sprites or scripts are selected in the cast, Score, or Stage, then open a new Script window; this creates a new
movie script by default.

Open a movie script or parent script for editing
% After opening the script using the Script Explorer, double-click the script in the Cast window.

Change a script’s type

1 Select the script in the Cast window or open it in the Script window.

2 Click the Script tab of the Property inspector and select a script type from the Script Type pop-up menu.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 75
Writing Scripts in Director

Cycle through the scripts in the Script window
% Use the Previous Cast Member and Next Cast Member arrows at the top of the Script window to advance or back
up to a script.

Duplicate a script

% Select the script in the Cast window and select Duplicate from the Edit menu.

To create a script that is attached automatically to every sprite made from a specific cast member, attach the script to
the cast member itself.

Create a script attached to a cast member or open an existing one
< Do one of the following:

+ Right-click (Windows) or Control-click (Mac) a cast member in the Cast window and select Cast Member Script
from the context menu.

+ Select a cast member in the Cast window and then click the Cast Member Script button in the Cast window.

Using linked scripts

In addition to scripts stored as internal cast members, you can choose to keep scripts in external text files and link them
to your Director movie. These linked scripts are similar to linked image or digital video files that you can import into
Director movies.

Advantages of using linked scripts include the following:
+ One person can work on the Director file while another works on the script.
« You can easily exchange scripts with others.

+ You can control the scripts separately from the Director file in a source code control application such as Microsoft®
Visual SourceSafe® or Perforce® by Perforce Software. Applications such as these prevent multiple programmers
working on the same Director project from overwriting each other’s work.

Linked scripts are used by Director only during authoring. At runtime, Director projectors and Adobe® Shockwave®
Player use a special internal copy of the script data stored in the movie. This way, your linked scripts need not be
distributed with your movies and cannot be copied by end users.

Import a script as a linked text file
1 Select File > Import.

2 Select Script as the type of file to import.
3 Select the script file(s) you want to import.

You can import files with the file extensions .txt, .Is, or .js. The .Is extension is the Director linked script extension.

To create a list of files you want to import, you can use the Add and Add All buttons. This is especially useful if you
want to import scripts from multiple locations.

4 Select Link to External File from the Media pop-up menu.
5 Click Import.

You can edit linked scripts normally in the Director Script window. Changes you make are written to the external files
each time you save your Director movie. (If you imported the linked script from a UNIX® server, UNIX line endings
are preserved.) If you import a script whose text file is locked, you won’t be able to edit the script in Director.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Writing Scripts in Director

You cannot apply custom text colors to linked scripts in the Script window. Script Auto Coloring, however, is enabled
for linked scripts.

Turn an internal script cast member into an external, linked script cast member

1
2
3
4

Select the internal cast member and click the Script tab of the Property inspector.
Click Link Script As.
Enter a name for the script file in the Save As dialog box.

Click Save.

Reload a linked script after it is edited
% Use the Member object’s unload () method.

If alinked script is edited outside of Director, you can reload it by using the unload () method in the Message window.
The following statement causes the script member myScript to be unloaded and then reloaded:

-- Lingo syntax

member ("myScript") .unload ()

// JavaScript syntax

member ("myScript") .unload() ;

Last updated 9/28/2011

‘ 77
Chapter 4: Debugging Scripts in Director

About debugging scripts

Scripts do not always do what you want the first time. The script often has an error in its syntax: possibly a word is
misspelled or a small part of the script is missing. Other times, the script might work but does not produce the expected
result. Mistakes or bugs almost always occur when you write scripts, so you should allow enough time for debugging
when you develop multimedia titles.

As your skill with scripting increases, youll probably encounter different types of problems as you master one area but
start learning others. However, the basic troubleshooting techniques described here are useful for novice and advanced
users alike.

The best way to correct a bug in your scripts varies from situation to situation. There are not one or two standard
procedures that resolve the problem. You must use a variety of tools and techniques, such as the following:

+ An overview and understanding of how scripts in the movie interact with each other
« Familiarity and practice with common debugging methods
The following tools help you identify problems in scripts:

+ The Message window, when tracing is on, displays a record of the frames that play and the handlers that run in the
movie.

+ The Debugger window displays the values of global variables, properties of the script that is currently running, the
sequence of handlers that ran to get to the current point, and the value of variables and expressions that you select.

+ The Script window lets you enter comments, insert stopping points in the script, and select variables whose value
is displayed in the Object inspector.

+ The Object inspector lets you view and set the values of objects and properties you select.

Good scripting habits

Good scripting habits can help you avoid many scripting problems in the first place.

« Try to write your scripts in small sets of statements and test each one as you write it. This isolates potential problems
where they are easier to identify.

+ Insert comments that explain what the script statements are intended to do and what the values in the script are for.
This makes it easier to understand the script if you return to it later or if someone else works on it. For example, the
comment in the following statements make the purpose of the if . . . then structure and repeat loop clear:

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Debugging Scripts in Director

-- Lingo syntax

-- Loop until the "s" key is pressed

repeat while not (_key.keyPressed("s"))
_sound.beep ()

end repeat

// JavaScript syntax

// Loop until the "s" key is pressed

while (! key.keyPressed("s")) {
_sound.beep () ;

}

+ Make sure that the script’s syntax is correct. Use the Script window’s pop-up menus to insert preformatted versions
of scripting elements. Rely on the API topics of this reference to check that statements are set up correctly.

+ Use variable names that indicate the variables’ purpose. For example, a variable that contains a number should be
called something like newNumber instead of ABC.

Basic debugging

Debugging involves strategy and analysis, not a standard step-by-step procedure. This section describes the basic
debugging approaches that programmers successfully use to debug any code, not just Lingo or JavaScript syntax.

Before you modify a movie significantly, always make a backup copy. It may help to name the copies incrementally,
for example, fileName_01.dir, fileName_02.dir, fileName_03.dir, and so on to keep track of the various stages of a
movie.

Identifying the problem

It might seem obvious, but the first thing to do when debugging is to identify the problem. Is a button doing the wrong
thing? Is the movie going to the wrong frame? Is a field not editable when it should be?

You may also want to determine what you expect a particular script to do, and then compare your expectation with what

the script actually does. This process helps you clearly define your goal and see what parts of the goal are not being met.

If you copied a script or a portion of a script from another movie or from a written example, check whether the script
was designed for some specific conditions. Perhaps it requires that a sprite channel is already scripted. Maybe cast
member names must follow a specific style convention.

Locating the problem

Do the following to start locating a problem:

+ Think backwards through the chain to identify where the unexpected started to happen.

+ Use the Message window to trace which frames the movie goes through and the handlers that your scripts run.

+ Determine what the scripts should be doing and consider what in the statements relates to the problem. For
example, if a text cast member is not editable when you expect it to be, where in the movie does (or does not) your
script set the cast member’s editable property?

« Ifasprite does not change as intended on the Stage, is the updatestage () method needed somewhere?

+ Does the problem occur only on certain computers and not others? Does it happen only when the display is set to
millions of colors? Maybe something in the computer is interfering with the application.

Last updated 9/28/2011

78

DIRECTOR SCRIPTING DICTIONARY 11.5 79
Debugging Scripts in Director

You can focus on specific lines of script by inserting a breakpoint—a point where the script pauses its execution and
invokes the Debugger window—in a line. This gives you a chance to analyze conditions at that point before the script
proceeds. For information on how to insert breakpoints in a script, see “Debugging in the Debugger window” on
page 87.

Solving simple problems
When finding a bug, it’s a good idea to check for simple problems first.

The first debugging test occurs when you compile your script. You can compile your script by doing one of the
following:

+ In the Script window, click Recompile All Modified Scripts.

+ From the Control menu, click Recompile All Scripts.

+ Press Shift+F8.

+ Close the Script window.

It is typically more convenient to compile scripts by using one of the first three options. The fourth option requires

that you close the Script window each time you want to compile a script.

When you compile your script, Director® gives you an error message if the script contains incorrect syntax. The
message usually includes the line in which the problem was first detected. A question mark appears at the spot in the
line where Director first found the problem.

For example, the first line in the previous error message tells you that the script error in question is a syntax error and
tells you what the syntax error is. The second line in the error message displays the actual line of code that contains the
syntax error.

Looking for syntax errors
Syntax errors are probably the most common bug encountered while scripting. When a script fails, it is a good idea to
first make sure that:

+ Terms are spelled correctly, spaces are in the correct places, and necessary punctuation is used. Director cannot
interpret incorrect syntax.

+ Quotation marks surround the names of cast members, labels, and strings within a statement.

+ All necessary parameters are present. The specific parameters depend on the individual element. See the API topic
entries in this reference to determine any additional parameters that an element requires.

Looking for other simple bugs

If your script compiles without an error message, it might contain a bug. If your script is not doing what you want,
check the following:

+ Values for parameters are correct. For example, using an incorrect value for the number of beeps that you want the
beep () method to generate gives you the wrong number of beeps.

+ Values that change—such as variables and the content of text cast members—have the values you want. You can
display their values in the Object inspector by selecting the name of the object and clicking Inspect Object in the
Script window, or in the Message window by using the put () or trace () functions.

+ The scripting elements do what you think they do. You can check their behavior by referring to the API topic entries
in this reference.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 80
Debugging Scripts in Director

Capitalization is correct (ff the script is written in JavaScript syntax). JavaScript syntax is case-sensitive, which
means that all methods, functions, properties, and variables must be referred to by using the correct capitalization.

If you attempt to call a method or function by using incorrect capitalization, you will receive a script error.

If you attempt to access a variable or property by using incorrect capitalization, you may not receive a script error,
but your script may not behave as expected. For example, the following mouseUp handler contains a statement that
attempts to access the itemLabel property by using incorrect capitalization. This script does not produce a script
error, but instead dynamically creates a new variable with the incorrect capitalization. The value of the newly
created variable is undefined.

// JavaScript syntax
function beginSprite() {
this.itemLabel = "Blue prints";

}

function mouseUp() ({
trace (this.itemlabel) // creates the itemlabel property

}

Debugging in the Script window

The Script window contains several features that can help you debug scripts.

Open the Script window
% Select Window > Script.

Make the current line of code a comment

< Click Comment.

Remove commenting from the current line of code

< Click Uncomment.

Turn breakpoints in the current line of code on and off
% Click Toggle Breakpoint.

Turn off all breakpoints
% Click Ignore Breakpoints.

Add the selected expression or variable to the Object inspector
% Click Inspect Object.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 81
Debugging Scripts in Director

Debugging in the Message window

The Message window provides a way for you to test scripting commands and to monitor what is happening in your
scripts while a movie plays.

Open the Message window

% Select Window > Message.

Managing the Message window

The Message window has an Input pane and an Output pane. The Input pane is editable. The Output pane is read-
only. The only way to display text in the Output pane is by calling the put () or trace () functions.

You can adjust the sizes of the Input and Output panes by dragging the horizontal divider that separates them.

Resize the Output pane

% Drag the horizontal divider to a new position.

Hide the Output pane completely
% Click the Collapse/Expand button in the center of the horizontal divider.

When the Output pane is hidden, output from scripts that execute is displayed in the Input pane.

Display the Output pane if it is hidden
% Click the Collapse/Expand button again.

Clear the contents of the Message window
< Click the Clear button.

If the Output pane is visible, its contents are deleted.

If the Output pane is not visible, the contents of the Input pane are deleted.

Delete a portion of the contents of the Output pane
1 Select the text to be deleted.

2 Press the Backspace or Delete key.

Copy text in the Input or Output pane
1 Select the text.

2 Select Edit > Copy.

Testing scripts in the Message window

You can test Lingo and JavaScript syntax statements to see how they work by entering them in the Message window
and observing the results. When you enter a command in the Message window, Director executes the command
immediately, regardless of whether a movie is playing.

Before entering the statements you want to test, you must first select which scripting syntax, Lingo or JavaScript syntax,
you are going to test.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 82
Debugging Scripts in Director

Select the scripting syntax

% From the Script Syntax pop-up menu, select either Lingo or JavaScript.

Test a one-line statement
1 Type the statement directly in the Message window.

2 Press Enter (Windows®) or Return (Mac®). Director executes the statement.

If the statement is valid, the Message window displays the result of the statement in the Output pane at the bottom of
the window. If the script is invalid, an alert appears.

For example, if you type the following statement into the Message window:

-- Lingo syntax
put (50+50)

// JavaScript syntax
trace (50+50) ;

and press Enter (Windows) or Return (Mac), the result appears in the Output pane:

-- Lingo syntax
-- 100

// JavaScript syntax
// 100

If you type the following statement into the Message window:

-- Lingo syntax

1]
N
ul
ul

_movie.stage.bgColor

// JavaScript syntax
_movie.stage.bgColor = 255;

and press Enter (Windows®) or Return (Mac®), the Stage becomes black.

You can test multiple lines of code all at once by copying and pasting statements into the Message window or by
pressing Shift+Return after each line of code.

Execute multiple lines of code by copying and pasting
1 Copy the lines of code to the clipboard.

Enter a blank line in the Message window.
Paste the code into the Input pane of the Message window.

Place the insertion point at the end of the last line of code.

u A W N

Press Control+Enter (Windows) or Control+Return (Mac). Director finds the first blank line above the insertion
point and executes each line of code after the blank line in succession.

Enter multiple lines of code manually

1 Enter a blank line in the Message window.
2 Enter the first line of code.
3 Press Shift+Return at the end of the line.

4 Repeat steps 2 and 3 until you have entered the last line of code.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Debugging Scripts in Director

5 Press Control+Enter (Windows) or Control+Return (Mac). Director finds the first blank line above the insertion
point and executes each line of code after the blank line in succession.

You can test a handler without running the movie by writing the handler in a Movie Script or Behavior Script window,
and then calling it from the Message window.

Test a handler

1 Copy and paste or manually enter a multiline handler into the Message window as described in the previous two
procedures.

2 Place the insertion point at the end of the last line of code.
3 Press Enter (Windows) or Return (Mac). The handler executes.

Any output from put () or trace () statements in the handler appears in the Message window.

Like the Script window, the Message window contains pop-up menus of scripting commands. When you select a
command from one of the pop-up menus, the command appears in the Message window with the first argument that
you must provide selected. Several menus are provided to give you easy access to the whole catalog of scripting terms.

The pop-up menus include the following:

« Alphabetical Lingo includes all commands except 3D Lingo, presented in an alphabetical list.
« Categorized Lingo includes all commands except 3D Lingo, presented in a categorized list.

+ Alphabetical 3D Lingo includes all 3D Lingo, presented in an alphabetical list.

+ Categorized 3D Lingo includes all 3D Lingo, presented in a categorized list.

« Scripting Xtras includes the methods and properties of all scripting Xtra extensions found, regardless of whether
they are Adobe® or third-party Xtra extensions.

Note: The scripting Xtra extensions listed in the Scripting Xtras pop-up menu are only those that support the
Interface () method and whose names actually appear in the pop-up menu. Although some cast member media types
such as 3D and DVD also support the Interface () method, they do not appear in the Scripting Xtras pop-up menu
because they are not implemented in Director as scripting Xtra extensions.

Monitoring scripts in the Message window

You can set the Output pane of the Message window to display a record of the statements that a movie executes as it
plays. This is useful for tracking the flow of your code and seeing the result of specific statements. You can do this in
one of two ways.

+ On the Message window, click Trace.

+ Set the Movie object’s traceScript property to TRUE.

i v Message

Javascript W L. =3 UL- ‘;':v E‘: =, ;—ﬂ [_—___J @

-- Welcome to Director —- ~
w

--» function mouseBEnter() { L

== Frame: 19 Script: (memkber 1 of castlik 1) Handler:

oo s eDow

--» function mouseDowni) |

== Frames: 20 Script: (memker 1 of castlik 1) Handler:
oo s el

--» function mouselpi)] §

== var myCarl - new Car("Subaru", "Forester",

"silver") v

< 4

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 84
Debugging Scripts in Director

Entries after a double equal sign (==) indicate what has occurred in the movie—such as which frame the movie has
just entered, which script is running, or the result of a method or setting a value.

For example, the following line indicates several things:

== Frame: 39 Script: 1 Handler: mouseUp

+ The movie entered frame 39.

+ The movie ran script 1, the first script attached to the frame.

+ The movie ran the mouseUp handler in script 1 after the movie entered the frame.

Entries after an arrow made up of a double hyphen and right angle bracket (- ->) indicate lines of your code that have
run. For example, the following Lingo lines:

--> _sound.fadeOut (1, 5*60)
--> if leftSide < 10 then

--> if leftSide < 200 then
--> movie.go("Game Start")

indicate that these Lingo statements have run. Suppose you were trying to determine why the playhead did not go to
the frame labeled "Game Start." If the line --> _movie.go("Game Start") never appeared in the Message window,
maybe the condition in the previous statement was not what you expected.

The Message window Output pane can fill with large amounts of text when the Trace button is on. To delete the
contents of the Output pane, click the Clear button. If the Output pane is not visible, the contents of the Input pane
are deleted.

You can keep track of the value of variables and other objects by selecting the name of the object in the Message
window and clicking the Inspect Object button. The object is added to the Object inspector, where its value is displayed
and updated as the movie plays. For more information on the Object inspector, see “Debugging in the Object
inspector” on page 84.

When you are in debugging mode, you can follow how a variable changes by selecting it in the Message window and
then clicking the Watch Expression button. Director then adds the variable to the Watcher pane in the Debugger
window, where its value is displayed and updated as you work in the Debugger window. For more information on the
Watcher pane, see “Debugging in the Debugger window” on page 87.

Debugging in the Object inspector

With the Object inspector, you can view and set properties of many kinds of objects that are not displayed in the
Property inspector. These include Scripting objects such as global variables, lists, child objects from parent scripts, all
3D cast member properties, sprite properties, script expressions, and so on. In addition, the Object inspector displays
changes to object properties that occur while a movie plays, such as changes due to scripts or changes to sprite Score
properties. These kinds of runtime changes are not displayed in the Property inspector during movie playback.

To display values of JavaScript variables in the object inspector, you must declare them without the var preceding them.

Open the Object inspector
% Select Window > Object Inspector.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Debugging Scripts in Director

i ¥ Code:0bject Inspector =
| Object Inspector
M ame Yalue "~
B sprite(1)
spritehlum 1
member [member 1 of castLib 1)
startFrame 1
endFrame 20
editable 0
wisible 1
& color color| 265)
& bgCalor color(0]
blend 100 w
il n —

Object inspector

Understanding object structure

The Object inspector can be very useful for understanding the structure of complex objects. For example, 3D cast
members have many layers of properties. Because the Object inspector shows you a visual representation of the nested
structure of those properties, it makes it much easier to become familiar with them and their relationships to each
other. Understanding the property structure of objects in Director is important when writing scripts.

The ability to watch the values of properties change while a movie plays is helpful for understanding what is happening
in the movie. It is especially helpful when testing and debugging scripts because you can watch as the values change
based on scripts you've written.

The Director Debugger window displays this information also, but it is only available when you are in debugging
mode. For more information on debugging, see “Advanced debugging” on page 92.

Viewable objects

The following are some of the objects you can enter into the Object inspector:
 Sprites, such as sprite (3)

+ Cast members, such as member ("3d")

« Global variables, such as gMyList

+ Child objects, such as gMychild

+ Adobe® Flash® objects, such as gMyFlashobject; for more information about using Flash objects in Director, see
the Using Director topics in the Director Help Panel.

+ Script expressions, such as sprite (7) .blend

Viewing objects

There are three ways to view an object in the Object inspector. You can drag items directly into the Object inspector,
enter the name of an item into the Object inspector manually, or use the Inspect Object button in the Message and
Script windows.

Drag an item to the Object inspector
% Do one of the following:

« Select a sprite in the Score window and drag it to the Object inspector.
« Select a cast member in the Cast window and drag it to the Object inspector.

+ Select the name of an object in the Script, Message, or Text window and drag it to the Object inspector.

Last updated 9/28/2011

85

DIRECTOR SCRIPTING DICTIONARY 11.5 86
Debugging Scripts in Director

Enter an object manually in the Object inspector
1 Double-click in the first empty cell in the Object column of the Object inspector.

2 Type the name of the object into the cell. Use the same name you would use to refer to the object in your scripts.
3 Press Enter (Windows) or Return (Mac). If the object has subproperties, a plus sign (+) appears to the left of it.

4 Click the plus sign. The properties of the object appear below it. Properties with subproperties appear with a plus
sign to their left. Click each plus sign to display the subproperties.

View an object using the Inspect Object button
1 In the Script window, highlight the part of a statement that refers to an object.

2 In the Script window, click Inspect Object. If the object has subproperties, a plus sign (+) appears to the left of it.

3 Click the plus sign. The properties of the object appear below it. Properties with subproperties appear with a plus
sign to their left. Click each plus sign to display the subproperties.

Note: Inspecting large numbers of objects or large individual objects in the Object inspector can cause noticeable
performance issues during authoring, particularly when Autopoll is enabled. For example, inspecting a list that contains
10,000 entries can make Director appear to hang while the display is updating.

Navigating objects
You can also navigate the contents of the Object inspector with the arrow keys on your keyboard.

Move up or down in the list of items
% Use the Up and Down arrow keys.

View an item’s subproperties
% Select the item and press the Right arrow key.

Hide an item’s subproperties
% Select the item and press the Left arrow key.

Using Autopoll

System properties, such as milliseconds and colorDepth, are updated in the Object inspector only when the
Autopoll option is turned on. Using Autopoll increases the processor workload, which can slow your movie’s
performance when you add more than a few system properties to the Object inspector.

Turn on Autopoll

1 Right-click (Windows) or Control-click (Mac) in the Object inspector. The Object inspector context menu appears.

2 Select Autopoll from the context menu. When Autopoll is on, a check mark appears next to the Autopoll item in
the context menu.

Turn off Autopoll

% Select Autopoll from the context menu again.

Modifying object or property values
You can set the value of an object or property in the Object inspector by entering a new value in the box to the right of
the object or property name.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 87
Debugging Scripts in Director

Set an object or property value
1 Double-click the value to the right of the item name.

2 Enter the new value for the item.
3 Press Enter (Windows) or Return (Mac). The new value is set and reflected in your movie immediately.

You can enter a script expression as the value for an item. For example, you might set the value of sprite (3) .locH
to the expression sprite(8) .1locH + 20.

Removing objects

You can also remove items from the Object inspector.

Remove a single item from the Object inspector
% Select the item and press the Backspace (Windows) or Delete (Mac) key.

Clear the entire contents of the Object inspector
% Right-click (Windows) or Control-click (Mac) inside the Object inspector and select Clear All from the context menu.

When you open a separate movie from the one you are working on, the objects you entered in the Object inspector
remain. This makes it easy to compare different versions of the same movie. When you exit Director, the items in the
Object inspector are lost.

Debugging in the Debugger window

The Debugger window is a special mode of the Script window. It provides several tools for finding the causes of
problems in your scripts. By using the Debugger window, you can quickly locate the parts of your code that are causing
problems. The Debugger window allows you to run scripts one line at a time, skip over nested handlers, edit the text
of scripts, and view the values of variables and other objects as they change. Learning to use the tools in the Debugger
window can help you become a more efficient programmer.

The Debugger window can help you locate and correct errors in your scripts. It includes several tools that let you do
the following:

+ See the part of the script that includes the current line of code.

« Track the sequence of handlers that were called before getting to the current handler.
+ Run selected parts of the current handler.

+ Run selected parts of nested handlers called from the current handler.

« Display the value of any local variable, global variable, or property related to the code that you’re investigating.

Entering debugging mode

In order to access the Debugger window, a break must occur in a script. A break occurs when Director encounters a
script error or a breakpoint in a script.

When a script error occurs, the Script Error dialog box appears. The dialog box displays information about the type of
error that occurred and asks you whether you want to debug the script, edit the script in the Script window, or cancel.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 88
Debugging Scripts in Director

Enter debugging mode

% Do one of the following:
+ Click Debug in the Script Error dialog box.
+ Place a breakpoint in a script.

When Director runs and encounters a breakpoint, the script stops executing and the Script window changes to
debugging mode. The movie is still playing, but the execution of your scripts is stopped until you use the Debugger
window to tell Director how to proceed. If you have multiple Script windows open, Director searches for one
containing the script where the breakpoint occurred and changes that window to debugging mode.

Press Ctrl+F11 to bring the debugger window to the front.

Note: You must exit the maximized tab mode to go back to the debugger window after you start playing the movie. You
cannot use Control+TAB to perform this operation.

Add a breakpoint that will open the Debugger window
1 In the Script window, open the script that should contain the breakpoint.
2 Click in the left margin of the Script window next to the line of code where you want the breakpoint to appear, or

place the insertion point on the line of code and click Toggle Breakpoint. Your code will stop executing at the
beginning of this line, and the Script window will enter debugging mode.

If the Script window is open when Director encounters a script error or a breakpoint, the Debugger window replaces
the Script window.

= Movie Script 1 * - Debugger [Break]
PP X e@HL HE O

startMovie ot startMovie A
| member("Display™).text = " 7
= cnd

on FhowTine
timeRightNow = the long time

AMorPM = GetlLastTwoChars|timeRightHow)
timeOfDay = StriplastThreeChars(tineRight]

case AMorPM of
o I AN

stringlut = "Good Morning, the tine i
Marme Yalue TR)
stringlut = "Good Afternoon, the time
end case

wember ("Display™).text = stringlut &6 tim

end
or GetLastTwoCharzs stringIn
nChars = the numher of chars in stringTn

Wiateh 1 | | lastTwoChars = char (nChars - 2) to nChar:
return lastTwoChars

Marmne Yalue
et
on StriplastThreeChars stringIn
nChars = the nunber of chars in stringIn
timelWithoutdMorPM = char 1 to (nChars - 2
return timeWithoutAMorPd
end
v
< >
Debugger window
Stop debugging

% Do one of the following:

+ Click the Run Script button in the Debugger window. This resumes normal script execution.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Debugging Scripts in Director

Click the Stop Debugging button in the Debugger window. This stops both the debugging session and the movie.

The Script window reappears in place of the Debugger window.

When the Debugger window opens, it shows the current line of code and offers several choices for what to run next.

See which is the current line of code

% Look for the green arrow next to a line of code in the Script pane.

The green arrow points to the current line. You cannot select a different line of code by clicking it in the Script pane.

Viewing the call stack in the Debugger window

The Call Stack pane displays the sequence of nested handlers that ran before the current line of code. This sequence is
called the call stack. Use the call stack to keep track of the structure of your code while you are debugging. You can
view the variables associated with a specific handler by clicking the handler name in the Call Stack pane. The variables
are displayed in the Variable pane.

Viewing variables in the Debugger window

The Variable pane of the Debugger window displays the variables associated with the current handler. The current
handler is the handler displayed in the Script pane and the last handler displayed in the Call Stack pane. You can also
display the variables associated with previous handlers in the call stack. As you step through a script, changes to the
values of any of the variables are displayed in red. For more information on stepping through scripts, see “Stepping
through scripts in the Debugger window” on page 90.

Display the variables associated with a handler in the call stack
% Click the name of the handler in the Call Stack pane. The variables appear in the Variable pane.

The Variable pane includes four tabs for viewing variables:

The All tab displays both global and local variables associated with the current handler.
The Local tab displays only the local variables associated with the selected handler.
The Property tab displays the properties declared by the current script.

The Global tab displays only the global variables associated with the selected handler.

Sort the variables in the Variable pane

+ To sort the variables by name, click the word Name that appears above the variable names.
+ To sort the variables in reverse-alphabetical order, click the word Name a second time.

You can change the values of local variables of the current handler and global variables in the Variable pane. You
cannot change the value of local variables that are not in the current handler.

Change the value of a variable in the Variable pane
1 Double-click the value of the variable in the Value column.

2 Enter the new value for the variable.

3 Press Enter (Windows) or Return (Mac).

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 920
Debugging Scripts in Director

Viewing objects in the Debugger window

With the Watcher pane in the Debugger window, you can view variables and other data objects associated with the
current handler, as well as objects associated with other handlers. By adding objects to the Watcher pane, you can keep
track of their values as they change because of scripts. When the value of an object changes due to the execution of a
line of code, Director changes the color of the object’s name in the Watcher pane to red.

The Watcher pane displays only the objects you add to it. You can use up to four separate tabs in the Watcher pane to
organize objects into groups.

Add an object to the Watcher pane whose name appears in the Script pane
1 Select the name of the object in the Script pane.

2 Click the Watch Expression button.

Add an object to the Watcher pane whose name does not appear in the Script pane
1 Double-click the first empty cell in the object column of the Watcher pane.

2 Type the name of the object in the cell and press Enter (Windows) or Return (Mac).

If the object has properties, a plus sign (+) appears next to the object’s name.

Display an object’s properties
% Click the plus sign next to the object name.

The Watcher pane lets you organize objects in a few ways.

Organize objects in the Watcher pane

< Do one of the following:

+ To sort the objects in the Watcher pane, click the Name column head at the top of the left column. The object
names in the column are listed in alphabetical order.

« To sort the objects in reverse-alphabetical order, click the Name column head a second time.

To organize objects into groups, use the tabs in the Watcher pane. To add an object to a specific tab, click the
tab you want to use before adding the object.

To clear the contents of a tab in the Watcher pane, select the tab and then right-click (Windows) or Control-
click (Mac) in the Watcher pane and select Clear All

Stepping through scripts in the Debugger window

The Debugger window provides you with a set of tools for running scripts slowly, so you can watch the effect that each
line of code has on your movie. You can execute one line of code at a time and choose whether to execute nested
handlers one line at a time or all at once.

Execute only the current line of code indicated by the green arrow
% Click the Step Script button.

Many handlers include calling statements to other handlers. You can focus your attention on such nested handlers, or
ignore them and focus on the code in the current handler.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 91
Debugging Scripts in Director

When you are confident that nested handlers are performing as expected and want to concentrate on the code in the
current handler, the Debugger window can step over nested handlers and go directly to the next line of code in the
current handler. When the Debugger steps over a nested handler, it executes the handler but does not display the
handler’s code or pause within the nested handler.

Step over nested handlers
% Click the Step Script button in the Debugger window.

The Step Script button runs the current line of code, runs any nested handlers that the line calls, and then stops at
the next line in the handler.

If you suspect that nested handlers are not performing as expected and want to study their behavior, the Debugger
window can run nested handlers line by line as well.

Run nested handlers one line at a time
% Click the Step Into Script button in the Debugger window.

Clicking the Step Into button runs the current line of code and follows the normal flow through any nested handlers
called by that line. When finished with a nested handler, the Debugger window stops at the next line of code within
the upper-level handler.

When you are finished debugging, you can exit the Debugger at any time.

Resume normal execution of code and exit the Debugger window
% Click the Run Script button.

Exit the Debugger and stop playback of the movie
% Click the Stop Debugging button.

Editing scripts in debugging mode
When you are in debugging mode, you may edit your scripts directly in the Debugger window. This enables you to fix
bugs as soon as you find them and then continue debugging.

Edit a script in the Debugger window
1 Click in the Script pane and place the insertion point where you want to begin typing.

2 Enter the changes to the script.

You can jump to a specific handler by selecting the name of the handler and clicking the Go to Handler button.

3 When you are finished debugging and editing scripts, click the Stop Debugging button. The Script window returns
to Script mode.

4 Click the Recompile All Modified Scripts button.

Debugging projectors and Shockwave movies

This section discusses debugging during runtime in Director projectors and movies that contain Adobe® Shockwave®
content. You can use either the Message window or enable full script error dialog boxes to debug projectors and movies
that contain Shockwave content.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 92
Debugging Scripts in Director

Debug using the Message window

% Set the Player object’s debugPlaybackEnabled property to TRUE.

When this property is TRUE, playing back a projector or a movie that contains Shockwave content opens a Message
window (Windows) or a Message text file (Mac), and the results of any put () or trace () function calls are output
to these formats.

If at any time during the movie the debugPlaybackEnabled property is set to FALSE, the Message window or text
file is closed and cannot be opened again during that playback session, even if debugPlaybackEnabled is set back
to TRUE later in that session.

Debug by enabling full script error dialogs

% In an .ini file for a projector or a movie that contains Shockwave content, set the DisplayFullLingoErrorText

property to 1.

This generates more descriptive error text in the script error dialog box than the generic error text. For example, a
generic error message might look like:

Script error: Continue?
Setting the DisplayFullLingoErrorText property to 1 could generate the following error message:
Script error: list expected

For information on creating and modifying an appropriate .ini file for a projector or a movie that contains
Shockwave content, see the Director.ini template file in the root Director installation folder.

Advanced debugging

If the problem is not easy to identify, try the following approaches:

Determine which section has the problem. For example, if clicking a button produces the wrong result, investigate
the script assigned to the button.

If a sprite does the wrong thing, try checking the sprite’s property values. Are they set to the values you want when
you want?

Figure out where the script flows. When a section of the movie does not do what you want, first try to trace the
movie’s sequence of events in your head. Look at other scripts in the message hierarchy to make sure Director is
running the correct handler.

Follow the tracing in the Message window; this shows which frames the movie goes through and any handlers that
the movie calls as the movie plays.

Try using the Step Script and Step Into features in the Debugger window and see whether the results differ from
what you expect.

Check variables and expressions. Analyze how their values change as the movie plays. See if they change at the
wrong time or do not change at all. If the same variable is used in more than one handler, make sure that each
handler that uses the variable states that the variable is global.

You can track the values of variables and expressions by displaying their values in the Watcher pane of the
Debugger window or the Object inspector.

Make changes one at a time. Don’t be afraid to change things in a handler to see if the change eliminates the
problem or gives some result that helps point to the problem.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 93
Debugging Scripts in Director

However, do not trade one problem for another. Change things one at a time and change them back if the problem
is not fixed. If you introduce too many changes before solving a problem, you might not determine what the
original problem was and you might even introduce new problems.

+ Re-create the section. If you have not found the problem, try re-creating the section from scratch. For example, if
rolling the pointer over a sprite does not make the sprite behave the way you want, create a simple movie that
contains just the sprite and handler with the rollover () method.

Do not just copy and paste scripts; that might just copy the problem. Re-creating the section lets you reconstruct
the logic at its most basic level and verify that Director is working as you expect. If the section that you re-create
still does not work properly, chances are that there is something wrong in the logic for the section.

If the section that you re-create works properly, compare that section to the original movie to see where the two
differ. You can also copy the section into the original piece and see whether this corrects the problem.

Last updated 9/28/2011

Chapter 5: Director Core Objects

The core objects in Director® provide access to the core functionality and features available in Director, projectors, and
the Adobe® Shockwave® Player. Core objects include the Director player engine, movie windows, sprites, sounds, and
so on. They represent the base layer through which almost all APIs and other object categories are accessed; the
exceptions are the scripting objects, which extend the core functionality of Director.

For an illustration of how the core objects relate to each other and to other objects in Director, see “Object model
diagrams” on page 45.

Cast Library

Represents a single cast library within a movie.

A movie can consist of one or more cast libraries. A cast library can consist of one or more cast members, which
represent media in a movie, such as sounds, text, graphics, and other movies.

You can create a reference to a cast library by using either the top level castLib () function or the Movie object’s
castLib property. For example, if a movie contains a cast library named scripts, you could create a reference to this
cast library by doing the following:

+ Use the top level castLib() method.
-- Lingo syntax
libScript = castLib("scripts")
// JavaScript syntax

var libScript = castLib("scripts");

+ Use the Movie object’s castLib property.

-- Lingo syntax
libScript = movie.castLib["scripts"]

// JavaScript syntax
var libScript = movie.castLib["scripts"];

Method summary for the Cast Library object

Method

findEmpty()

Property summary for the Cast Library object

Property

fileName (Cast)

member (Cast)

name

Last updated 9/28/2011

94

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Core Objects

Property

number (Cast)

preLoadMode

selection

See also

castLib, castLib(), Member, Movie, Player, Sprite, Window

Global

Provides a location to store and access global variables. These variables are available to both Lingo and JavaScript
syntax.

You can access the Global object by using the top level _global property. You can either assign _global to a variable,
or use the _global property directly to access the Global object’s methods and any defined global variables.
+ Assign _global to a variable.

-- Lingo syntax

objGlobal = global

// JavaScript syntax
var objGlobal = _global;

+ Use the _global property directly.
-- Lingo syntax

_global.showGlobals ()

// JavaScript syntax
_global.showGlobals () ;

« Access a global variable.

-- Lingo syntax
global gSuccess

on mouseDown

gSuccess = "Congratulations!"

put (gSuccess) -- displays "Congratulations!"
end

// JavaScript syntax

_global.gSuccess = "Congratulations!";
function mouseDown () {
trace(_global.gSuccess); // displays "Congratulations!"

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Core Objects

Method summary for the Global object

Method

clearGlobals()

showGlobals()

See also
_global

Key

Used to monitor a user’s keyboard activity.

You can access the Key object by using the top level _key property. You can either assign _key to a variable, or use the
_key property directly to access the Key object’s methods and properties.

« Assign _key to a variable.
-- Lingo syntax
objKey = _key
// JavaScript syntax
var objKey = _key;
« Use the _key property directly.
-- Lingo syntax

isCtrlDown = _key.controlDown

// JavaScript syntax
var isCtrlDown = _key.controlDown;

Method summary for the Key object

Method

keyPressed()

Property summary for the Key object

Property

commandDown

controlDown

key

keyCode

optionDown

shiftDown

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Core Objects

See also

key

Member

Represents a cast member within a cast library. Cast members are the media and script assets in a movie. Media cast
members may be text, bitmaps, shapes, and so on. Script cast members include behaviors, movie scripts, and so on.

A cast member can be referenced either by number or by name.

« When referring to a cast member by number, Director searches a particular cast library for that cast member, and
retrieves the member’s data. This method is faster than referring to a cast member by name. However, because
Director does not automatically update references to cast member numbers in script, a numbered reference to a
cast member that has moved position in its cast library will be broken.

+ When referring to a cast member by name, Director searches all cast libraries in a movie from first to last, and
retrieves the member’s data when it finds the named member. This method is slower than referring to a cast
member by number, especially when referring to large movies that contain many cast libraries and cast members.
However, a named reference to a cast member allows the reference to remain intact even if the cast member moves
position in its cast library.

You can create a reference to a cast member by using either the top level member () function, or by using the member
property of the Cast, Movie, or Sprite object.

The following examples illustrate creating a reference to a cast member.

+ Use the top level member () function.
-- Lingo syntax
objTree = member ("bmpTree")
// JavaScript syntax

var objTree = member ("bmpTree") ;

« Use the Sprite object’s member property.

-- Lingo syntax
objTree = sprite(l) .member;

// JavaScript syntax
var objTree = sprite(l) .member;

Method summary for the Member object

Method

copyToClipBoard()

duplicate() (Member)

erase()

importFilelnto()

move()

Last updated 9/28/2011

97

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Core Objects

Method

pasteClipBoardInto()

preLoad() (Member)

unLoad() (Member)

Property summary for the Member object

Property
castLibNum modifiedDate
comments name

creationDate

number (Member)

fileName (Member)

purgePriority

height rect (Member)
hilite regPoint
linked scriptText
loaded size
media thumbNail
mediaReady type (Member)
member width
modified
modifiedBy

See also

98

Media Types, member (), member (Cast), member (Movie), member (Sprite), Movie, Player, Scripting

Objects, Sprite, Window

Mixer

A mixer is a container that mixes the sound objects it contains, and plays the resulting output. Because multiple audio
sources are merged into a single audio source, mixers save resources by reducing the amount of data transferred to the
sound card.

Method summary for the Mixer object

Method

createSoundObject deleteSoundObject
getSoundObject() getSoundObjectList
mute (Mixer) pause() (Mixer)

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Core Objects

Method

play() (Mixer)

reset (Mixer)

save (Mixer)

startSave (Mixer)

stop() (Mixer)

stopSave (Mixer)

unmute (Mixer)

Property summary for the Mixer object

Property
bufferSize (Mixer) bitDepth (Mixer)
channel channelCount (Mixer)

elapsedTime (Mixer)

filterList (Mixer)

isSaving (Mixer)

name (Mixer)

numBuffersToPreload

panMatrix (Mixer)

sampleRate (Mixer)

status (Mixer)

soundObjectList

toChannels

useMatrix (Mixer)

volume (Mixer)

Mouse

Provides access to a user’s mouse activity, including mouse movement and mouse clicks.

You can access the Mouse object by using the top level _mouse property. You can either assign _mouse to a variable,

or use the _mouse property directly to access the Mouse object’s properties.

« Assign _mouse to a variable.
-- Lingo syntax
objMouse = mouse
// JavaScript syntax

var objMouse = _mouse;

+ Use the _mouse property directly.

-- Lingo syntax
isDblClick = mouse.doubleClick

// JavaScript syntax

var isDblClick = mouse.doubleClick;

Last updated 9/28/2011

929

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Core Objects

Property summary for the Mouse object

Property
clickLoc mouseloc
clickOn mouseMember
doubleClick mouseUp
mouseChar mouseV
mouseDown mouseWord
mouseH rightMouseDown
mouseltem rightMouseUp
mouselLine stillDown

See also

_mouse

Movie

Represents a movie being played within the Director player.

The Director player can contain one or more movies. A movie can consist of one or more cast libraries. A cast library

can consist of one or more cast members, which represent the media and script assets in a movie. Media cast members
may be text, bitmaps, shapes, and so on. Script cast members include behaviors, movie scripts, and so on. Sprites are
created from cast members and are used on the Stage of a movie.

You can refer to the currently active movie by using the top level _movie property. You can refer to any movie in the
player by using the Window object’s movie property.

Refer to the currently active movie.

-- Lingo syntax

objMovie = movie

// JavaScript syntax

var objMovie = _movie;

Use the Window object’s movie property to access the movie in a particular window.
-- Lingo syntax

objMovie = player.window[2] .movie

// JavaScript syntax
var objMovie = _player.window[2] .movie;

You can use a movie reference to access not only the methods and properties of a movie itself, you can also call Lingo
and JavaScript syntax handlers, and access the movie’s cast members and sprites, including their methods and

properties. This differs from previous versions of Director in which you had to use the te11l command to work with
movies. The Movie object provides a simpler way to work with movies.

Last updated 9/28/2011

100

DIRECTOR SCRIPTING DICTIONARY 11.5

Director Core Objects

Method summary for the Movie object

Method

beginRecording()

marker()

call

mergeDisplayTemplate()

callAncestor

newMember()

cancelldleLoad()

preLoad() (Movie)

clearFrame()

preLoadMember()

constrainH()

preLoadMovie()

constrainV()

printFrom()

delay() puppetPalette()
deleteFrame() puppetSprite()
duplicateFrame() puppetTempo()

endRecording()

puppetTransition()

finishldleLoad() ramNeeded()
frameReady() (Movie) rollOver()
getNthFileNamelnFolder() saveMovie()

go() sendAllSprites()
goLoop() sendSprite()
goNext() stopEvent()

goPrevious()

unLoad() (Movie)

halt()

unLoadMember()

idleLoadDone()

unLoadMovie()

insertFrame()

updateFrame()

label()

updateStage()

loadPolicyFile()

Property summary for the Movie object

Property

aboutinfo

idleReadChunkSize

active3dRenderer

imageCompression

activeCastLib imageQuality
actorList keyboardFocusSprite
allowTransportControl lastChannel
allowVolumeControl lastFrame
allowZooming markerList

Last updated 9/28/2011

101

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Core Objects

Property

beepOn member (Movie)
buttonStyle name

castLib paletteMapping
centerStage path (Movie)
channel preferred3dRenderer
copyrightinfo (Movie) preLoadEventAbort
displayTemplate selEnd
editShortCutsEnabled selection
enableFlashLingo selStart

exitLock score

fileFreeSize scoreSelection
fileSize script

fileVersion sprite (Movie)
fixStageSize stage

frame timeoutList
frameLabel traceLoad

framePalette

traceLogFile

frameScript

traceScript

frameSound1 updatelLock
frameSound2 updateMovieEnabled
frameTempo useFastQuads
frameTransition window

idleHandlerPeriod

xtraList (Movie)

idleLoadMode

xtraList (Movie)

idleLoadPeriod

xtraList (Movie)

idleLoadTag

xtraList (Movie)

See also

_movie, Cast Library, Member,

Player

Represents the core playback engine used to manage and execute the authoring environment, movies in a window
(MIAWS), projectors, and Shockwave Player.

The Player object provides access to all of the movies and windows that it is managing, in addition to any Xtra

extensions that are available.

Sprite, Window

Last updated 9/28/2011

102

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Core Objects

You can create a reference to the Player object by using the top level player property.

+ Assign _player to a variable.
-- Lingo syntax
objPlayer = _player
// JavaScript syntax

var objPlayer = player;

+ Usethe player property directly.

-- Lingo syntax
_player.alert ("The movie has ended.")

// JavaScript syntax

_player.alert ("The movie has ended.");

Method summary for the Player object

Method

alert()

getPref() (Player)

appMinimize()

installMenu

cursor()

open() (Player)

externalParamName()

quit()

externalParamValue()

setPref() (Player)

flushinputEvents()

windowPresent()

Property summary for the Player object

Property

activeWindow

netThrottleTicks

alertHook

organizationName

applicationName

productName

applicationPath

productVersion

currentSpriteNum

runMode

debugPlaybackEnabled

safePlayer

digitalVideoTimeScale

scriptingXtraList

disablelmagingTransformation

searchCurrentFolder

emulateMultibuttonMouse

searchPathList

externalParamCount

serialNumber

frontWindow

sound (Player)

inlinelmeEnabled

switchColorDepth

itemDelimiter

toolXtraList

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 104
Director Core Objects

Property
lastClick transitionXtraList
lastEvent userName
activeWindow window
lastKey windowList
lastRoll xtra
mediaXtraList xtraList (Player)
netPresent

See also

_player, Cast Library, Member, Movie, Sprite, Window

Sound

The Director sound object controls audio playback in all sixteen available sound channels.

Old workflow

The Sound object consists of Sound Channel objects, which represent individual sound channels.
You can create a reference to the Sound object by using top level _sound property.

+ Assign _sound to a variable.

-- Lingo syntax
objSound = _sound

// JavaScript syntax
var objSound = _sound;

+ Use the _sound property to access the Sound object’s soundDevice property.

-- Lingo syntax
objDevice = _sound.soundDevice

// JavaScript syntax
var objDevice = _sound.soundDevice;

Method summary for the Sound object (Old workflow)

Method

beep()

channel() (Sound)

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Core Objects

Property summary for the Sound object (Old workflow)

Property

soundDevice

soundDevicelList

soundEnabled

soundKeepDevice

soundLevel

soundMixMedia

See also

_sound, Sound Channel

New workflow

Sound objects are added to a mixer. A mixer represents a collection of sound objects in which the sounds can be played

individually or all at once. You can create a reference to the sound object by using the mixer with which it is associated.

% Assign the sound object to a variable:

--- Lingo syntax
objSound = mixerobjectref.getSoundObject (soundobjectname)

// JavaScript syntax
var objSound = mixerobjectref.getSoundObject (soundobjectname) ;

Method summary for the Sound object (New workflow)

Method

breakLoop (Sound Object) Save (Sound Object)

moveTo seek (Sound Object)

mute (Sound Object) startSave (Sound Object)

pause (Sound Object) stop (Sound Object)

play (Sound Object) stopSave (Sound Object)
registerByteArrayCallback unmute (Sound Object)
registerCuePointCallback unregisterByteArrayCallback
registerEndOfSpoolCallback() unregisterCuePointCallback
replaceMember unregisterEndOfSpoolCallback()

Last updated 9/28/2011

105

DIRECTOR SCRIPTING DICTIONARY 11.5

Director Core Objects

Property summary for the Sound object (New workflow)

Property

bitDepth (Sound Object)

channelCount (Sound Object)

connectionStatus (Sound Object)

currentTime (Sound Object)

elapsedTime (Sound Object)

endTime (Sound Object)

filterList (Sound Object)

isSaving (Sound Object)

loopCount (Sound Object)

loopEndTime (Sound Object)

loopsRemaining (Sound Object)

loopStartTime (Sound Object)

member (Sound Object)

mixer

mostRecentCuePoint (Sound Object)

name (Sound Object)

percentStreamed (Sound Object)

panMatrix

playRate (Sound Object)

sampleCount (Sound Object)

sampleRate (Sound Object)

startTime (Sound Object)

status (Sound Object)

toChannels

useMatrix

volume (Sound Object)

See also

Mixer

Sound Channel

Represents an individual sound channel found within the Sound object.

There are eight available sound channels. You can use a Sound Channel object in script to access and modify any of

the eight sound channels.

Note: You can modify only the first two sound channels in the Score of the Director user interface.

You can create a reference to a Sound Channel object by using the top level sound () method, the Player object’s sound
property, or the Sound object’s channel () method. For example, you can reference sound channel 2 by doing the

following:

+ Use the top level sound () method.

-- Lingo syntax

objSoundChannel = sound(2)

// JavaScript syntax
var objSoundChannel =

+ Use the Player object’s sound property.

-- Lingo syntax

objSoundChannel = player.sound[2]

// JavaScript syntax

var objSoundChannel = player.sound[2];

Last updated 9/28/2011

106

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Core Objects

« Use the Sound object’s channel () method.

-- Lingo syntax
objSoundChannel = _sound.channel (2)

// JavaScript syntax
var objSoundChannel = _sound.channel (2);

Method summary for the Sound Channel object

Method

breakLoop() play() (Sound Channel)
fadeln() playFile()

fadeOut() playNext() (Sound Channel)
fadeTo() queue()

getPlayList() rewind() (Sound Channel)
isBusy() setPlayList()

pause() (Sound Channel) stop() (Sound Channel)

Property summary for the Sound Channel object

Property
channelCount (Sound Channel) member (Sound Channel)
elapsedTime pan
endTime (Sound Channel) sampleCount (Sound Channel)
loopCount sampleRate (Sound Channel)
loopEndTime (Sound Channel) startTime (Sound Channel)
loopsRemaining status
loopStartTime volume (Sound Channel)

See also

channel () (Sound), sound (Player), sound(), Sound

Sprite

Represents an occurrence of a cast member in a sprite channel of the Score.

A Sprite object covers a sprite span, which is a range of frames in a given sprite channel. A Sprite Channel object

represents an entire sprite channel, regardless of the number of sprites it contains.

Note: Flash® member components placed on the stage (Flash sprites) that are invisible can be accessed only by using the
member object. Using a sprite object to access a Flash sprite with an invisible property will result in an error.

Last updated 9/28/2011

107

DIRECTOR SCRIPTING DICTIONARY 11.5 108
Director Core Objects

A sprite can be referenced either by number or by name.

« When referring to a sprite by number, Director searches all sprites that exist in the current frame of the Score,
starting from the lowest numbered channel, and retrieves the sprite’s data when it finds the numbered sprite. This
method is faster than referring to a sprite by name. However, because Director does not automatically update

references to sprite numbers in script, a numbered reference to a sprite that has moved position on the Stage will
be broken.

+ When referring to a sprite by name, Director searches all sprites that exist in the current frame of the Score, starting
from the lowest numbered channel, and retrieves the sprite’s data when it finds the named sprite. This method is
slower than referring to a sprite by number, especially when referring to large movies that contain many cast
libraries, cast members, and sprites. However, a named reference to a sprite allows the reference to remain intact
even if the sprite moves position on the Stage.

You can create a reference to a Sprite object by using the top level sprite () function, the Movie object’s sprite
property, or the Sprite Channel object’s sprite property.

+ Use the top level sprite () function.
-- Lingo syntax
objSprite = sprite(1)
// JavaScript syntax
var objSprite = sprite(l);
+ Use the Movie object’s sprite property.
-- Lingo syntax
objSprite = movie.sprite["willowTree"]
// JavaScript syntax
var objSprite = movie.sprite["willowTree"];
+ Use the Sprite Channel object’s sprite property.
-- Lingo syntax

objSprite = channel(3) .sprite

// JavaScript syntax
var objSprite = channel (3).sprite;

You can use a reference to a Sprite object to access the cast member from which the sprite was created. Any changes
made to the cast member from which a sprite was created are also reflected in the sprite. The following example
illustrates changing the text of a text cast member from which sprite 5 was created. This change to the cast member
will also be reflected in sprite 5.

-- Lingo syntax
labelText = sprite(5)
labelText .member.text = "Weeping Willow"

// JavaScript syntax

var labelText = sprite(5);
labelText .member.text = "Weeping Willow";

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Core Objects

Property summary for the Sprite object

Property

backColor locV

blend (Sprite) locz

bottom member (Sprite)
constraint name (Sprite)
cursor quad

editable rect (Sprite)
endFrame right

filterlist rotation

flipH skew

flipv spriteNum
foreColor startFrame
height top

ink width

left

locH

See also

Cast Library, Member, Movie, Player, sprite (Movie), sprite (Sprite Channel), sprite(), Sprite

Channel, Window

Sprite Channel

Represents an individual sprite channel in the Score.

A Sprite object covers a sprite span, which is a range of frames in a given sprite channel. A Sprite Channel object
represents an entire sprite channel, regardless of the number of sprites it contains.

Sprite channels are controlled by the Score by default. Use the Sprite Channel object to switch control of a sprite
channel over to script during a Score recording session.

A sprite channel can be referenced either by number or by name.

« When referring to a sprite channel by number, you access the channel directly. This method is faster than referring
to a sprite channel by name. However, because Director does not automatically update references to sprite channel
numbers in script, a numbered reference to a sprite channel that has moved position in the Score will be broken.

« When referring to a sprite channel by name, Director searches all channels, starting from the lowest numbered
channel, and retrieves the sprite channel’s data when it finds the named sprite channel. This method is slower than
referring to a sprite channel by number, especially when referring to large movies that contain many cast libraries,
cast members, and sprites. However, a named reference to a sprite channel allows the reference to remain intact
even if the sprite channel moves position in the Score.

Last updated 9/28/2011

109

DIRECTOR SCRIPTING DICTIONARY 11.5 110
Director Core Objects

You can create a reference to a Sprite Channel object by using the top level channel () method, and referring to either
the channel number or name.

-- Lingo syntax
objSpriteChannel = channel (2) -- numbered reference
objSpriteChannel = channel ("background") -- named reference

// JavaScript syntax
var objSpriteChannel = channel(2); // numbered reference
var objSpriteChannel = channel ("background"); // named reference

You can use a reference to a Sprite Channel object to access the sprite that is currently being used in a particular sprite
channel. The following example illustrates accessing the background color of the sprite that is currently being used in
sprite channel 2.

-- Lingo syntax
labelSprite = channel (2) .sprite.backColor

// JavaScript syntax
var labelSprite = channel(2) .sprite.backColor;

Method summary for the Sprite Channel object

Method

makeScriptedSprite()

removeScriptedSprite()

Property summary for the Sprite Channel object

Property

name (Sprite Channel)

number (Sprite Channel)

scripted

sprite (Sprite Channel)

See also

Cast Library, channel() (Top level), Member, Movie, Player, Sprite, Window

System

Provides access to system and environment information, including system level methods.
You can create a reference to the System object by using the top level _system property.

+ Assign _systemto a variable.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Core Objects

-- Lingo syntax
objSystem = _system

// JavaScript syntax
var objSystem = system;

+ Use the _system property directly.

-- Lingo syntax
sysDate = _system.date()

// JavaScript syntax
var sysDate = system.date();

Method summary for the System object

Method

date() (System)

getinstalledCharSets

getSystemCharSet

isCharSetInstalled

restart()

shutDown()

time() (System)

Property summary for the System object

Property

colorDepth

deskTopRectList

environmentProplList

milliseconds

See also

_system

Window

Represents a window in which a movie is playing, including the Stage window and any other movies in a window
(MIAWsS) that are in use.

You can create a reference to a Window object by using the top level window () function, the Player object’s window
property, or the Player object’s windowList property.

+ Use the top level window () method.

Last updated 9/28/2011

111

DIRECTOR SCRIPTING DICTIONARY 11.5
Director Core Objects

-- Lingo syntax
objWindow = window ("Sun")

// JavaScript syntax

var objWindow = window("Sun") ;

+ Use the Player object’s window property.
-- Lingo syntax
objWindow = _player.window["Sun"]
// JavaScript syntax

var objWindow = player.window["Sun"];

+ Use the Player object’s windowList property.
-- Lingo syntax

objWindow = _player.windowList [1]

// JavaScript syntax
var objWindow = player.windowList [1];

Note: When creating a named reference to a window by using either the top level window () function or the Player object’s
window property, a reference to that window is created only if a window by that name exists. If a window by that name
does not exist, the reference contains voIp (Lingo) or null (JavaScript syntax).

The movie object property scriptExecutionStyle isset to a value of 10 by default, and windowType is deprecated
by default in favor of the appearanceoptions and titlebarOptions propertylists. If scriptExecutionStyle isset

to a value of 9, windowType is fully functional.

Method summary for the Window object

Method
close() moveToBack()
forget() (Window) moveToFront()

maximize() open() (Window)
mergeProps() restore()
minimize()

Property summary for the Window object

Property

appearanceOptions resizable
bgColor (Window) sizeState
dockingEnabled sourceRect
drawRect title (Window)

fileName (Window)

titlebarOptions

image (Window)

type (Window)

movie

visible

Last updated 9/28/2011

112

DIRECTOR SCRIPTING DICTIONARY 11.5 113
Director Core Objects

Property
name windowBehind
picture (Window) windowlInFront

rect (Window)

See also

Cast Library, Member, Movie, Player, Sprite, window(), window, windowList

Last updated 9/28/2011

Chapter 6: Media Types

The media types in Director® provide access to the functionality of the various media types, such as RealMedia®,
MP4Media, FLV, DVD, Animated GIF, and so on, that are added to movies as cast members.

Literally, media types are not actually objects, but rather cast members that are of a specific type of media. When a
media type is added to a movie as a cast member, it not only inherits the functionality of the core Member object, it
also extends the Member object by providing additional functionality that is available only to the specified media type.
For example, a RealMedia cast member has access to the Member object’s methods and properties, but it also has
additional methods and properties that are specific to RealMedia. All other media types also exhibit this behavior.

For an illustration of how the cast member media types relate to each other and to other objects in Director, see “Object
model diagrams” on page 45.

Animated GIF

Represents an animated GIF cast member.
You can add an animated GIF cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax
_movie.newMember (#animgif)

// JavaScript syntax
_movie.newMember ("animgif") ;

Some of the following methods or properties may apply only to sprites that are created from an animated GIF cast
member.

Method summary for the Animated GIF media type

Method

resume()

rewind() (Animated GIF, Flash)

Property summary for the Animated GIF media type

Property

directToStage

frameRate

linked

path (Movie)

playBackMode

Last updated 9/28/2011

114

DIRECTOR SCRIPTING DICTIONARY 11.5 115
Media Types

See also

Member

Bitmap

Represents a bitmap cast member.

You can use bitmap image objects to perform simple operations that affect the content of an entire bitmap cast
member, such as changing the background and foreground colors of the member, or to perform fine manipulations of
the pixels of an image, such as cropping, drawing, and copying pixels.

You can add a bitmap cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax
_movie.newMember (#bitmap)

// JavaScript syntax
_movie.newMember ("bitmap") ;

Some of the following methods or properties may apply only to sprites that are created from a bitmap cast member.

Method summary for the Bitmap media type

Method

crop() (Image)

pictureP()

Property summary for the Bitmap media type

Property
alphaThreshold imageCompression
backColor imageQuality
blend (Sprite) palette
depth (Bitmap) picture (Member)
dither rect (Image)
foreColor trimWhiteSpace
image (Image) useAlpha

See also

Member

Button

Represents a button or check box cast member.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 116
Media Types

You can add a button cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax
_movie.newMember (#button)

// JavaScript syntax
_movie.newMember ("button") ;

Property summary for the Button media type

Property

hilite

See also

Member

ByteArray

ByteArray cast member

The #bytearray cast member can be used in Director, Shockwave, and Projector. This scripting-only cast member
has limited user interface support.

Create ByteArray member using Ul Select Insert > Media Elements > Byte Array to insert a ByteArray cast member.

Create ByteArray member using Lingo Use the new method to create a ByteArray cast member.

Usage

m = new (#byteArray)

For more information, see “ByteArray” on page 147.

Color Palette

Represents the color palette associated with a bitmap cast member.

A color palette cast member does not have any methods or properties that can be accessed directly from it. The
following methods and properties are merely associated with color palettes.

You can add a color palette cast member to a movie by using the Movie object’s newMember () method.
-- Lingo syntax

_movie.newMember (#palette)

// JavaScript syntax
_movie.newMember ("palette") ;

You can associate a bitmap cast member with a color palette cast member by setting the palette property of the
bitmap cast member. The following example sets the palette property of the bitmap cast member bmpMember to the
color palette cast member colorPaletteMember. The value of the palette property reflects the number of the color
palette cast member.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Media Types

-- Lingo syntax
member ("bmpMember") .palette = member ("colorPaletteMember")

// JavaScript syntax
member ("bmpMember") .palette = member ("colorPaletteMember") ;

After you associate a bitmap cast member with a color palette cast member, you cannot delete the color palette cast
member until you remove its association with the bitmap cast member.

Method summary for the Color Palette media type

Method

color()

Property summary for the Color Palette media type

Property

depth (Bitmap)

palette

paletteMapping

See also

Bitmap, Member, palette

Cursor

Represents a cursor cast member.
You can add a cursor cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax
_movie.newMember (#cursor)

// JavaScript syntax
_movie.newMember ("cursor") ;

Property summary for the Cursor media type

Property

castMemberlList

cursorSize

hotSpot

interval

See also

Member

Last updated 9/28/2011

117

DIRECTOR SCRIPTING DICTIONARY 11.5 118
Media Types

DVD

Represents a DVD cast member.
You can add a DVD cast member to a movie by using the Movie object’s newMember () method.
-- Lingo syntax

_movie.newMember (#dvd)

// JavaScript syntax
_movie.newMember ("dvd") ;

Some of the following methods or properties may apply only to sprites that are created from a DVD cast member.

Event summary for the DVD media type

The following DVD events are always be handled by a bvbeventNotification event handler. When one of these
events occurs, the DVDeventNotification event handler receives the event as a parameter. Some of these events also
contain additional information that is passed as a second or third parameter to DvDeventNotification. For more
information on using the following events with the DvDeventNotification handler, see on DVDeventNotification.

Event

on DVDeventNotification noFirstPlayChain
audioStreamChange parentalLevelChange
buttonChange playbackStopped
chapterAutoStop playPeriodAutoStop
chapterStart rateChange
diskEjected stillOff

diskinserted stillon
domainChange titleChange

error UOPchange
karaokeMode warning

Method summary for the DVD media type

Method

activateAtLoc()

rootMenu()

activateButton()

selectAtLoc()

frameStep() selectButton()
chapterCount() selectButtonRelative()
pause() (DVD) stop() (DVD)

play() (DVD) subPictureType()
returnToTitle() titleMenu()

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5

Media Types

Property summary for the DVD media type

Property

angle (DVD) duration (DVD)
angleCount folder
aspectRatio frameRate (DVD)
audio (DVD) fullScreen

audioChannelCount

mediaStatus (DVD)

audioExtension

playRate (DVD)

audioFormat

resolution (DVD)

audioSampleRate

selectedButton

audioStream

startTimelList

audioStreamCount stopTimeList
buttonCount subPicture
chapter subPictureCount
chapterCount title (DVD)
closedCaptions titleCount

currentTime (DVD)

videoFormat

domain

volume (DVD)

See also

Member

Field

Represents a field cast member.

You can add a field cast member to a movie by using the Movie object’s newMember () method.
-- Lingo syntax

_movie.newMember (#field)

// JavaScript syntax
_movie.newMember ("field") ;

Method summary for the Field media type

Method

charPosTolLoc() pointToltem()
lineHeight() pointToLine()
linePosToLocV() pointToParagraph()

Last updated 9/28/2011

119

DIRECTOR SCRIPTING DICTIONARY 11.5

Media Types

Method

locToCharPos()

pointToWord()

locVToLinePos()

scrollByLine()

pointToChar()

scrollByPage()

Property summary for the Field media type

Property
alignment fontStyle
autoTab lineCount
border margin
boxDropShadow pageHeight
boxType scrollTop
dropShadow selEnd
editable selStart
font text
fontSize wordWrap
See also
Member

Film Loop

Represents a film loop cast member.
You can add a film loop cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax
_movie.newMember (#filmloop)

// JavaScript syntax
_movie.newMember ("filmloop") ;

Property summary for the Film Loop media type

Property

media

regPoint

See also

Member

Last updated 9/28/2011

120

DIRECTOR SCRIPTING DICTIONARY 11.5

Media Types

Flash Component

Represents a Adobe® Flash® component that is embedded in a cast member or sprite that contains Flash content.

A Flash component provides prepackaged functionality that extends the existing functionality of cast members or
sprites that contain Flash content. They are created and supported entirely by the Director development community.

Director supports the following Flash components:

Flash component

Description

Button A resizable rectangular user interface button.

CheckBox A fundamental part of any form or web application; can be used wherever you need to gather a set of t rue
or false values that aren’t mutually exclusive.

DateChooser
A calendar that allows a user to select a date.

Label A single line of text.

List A scrollable single- or multiple-selection list box.

NumericStepper

Allows a user to step through an ordered set of numbers.

RadioButton

A fundamental part of any form or web application; can be used wherever you want a user to make one
choice from a group of options.

ScrollPane Displays movie clips, JPEG files, and SWF files in a scrollable area.

TextArea A multiline text field.

Textlnput A single-line component that wraps the native ActionScript TextField object.
Tree Allows a user to view hierarchical data.

A Flash component has access to the same APIs that a regular Flash cast member or sprite does, in addition to the
functionality that is specific to that component. For more information about using these Flash components, see the

Using Director topics in the Director Help Panel.

You can add a Flash component cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax

_movie.newMember (#flashcomponent)

// JavaScript syntax

_movie.newMember ("flashcomponent") ;

See also

Flash Movie,

Flash Movie

Member

Represents a cast member or sprite that contains Flash content.

You can add a Flash movie cast member to a movie by using the Movie object’s newMember () method.

Last updated 9/28/2011

121

DIRECTOR SCRIPTING DICTIONARY 11.5
Media Types

-- Lingo syntax
_movie.newMember (#flash)

// JavaScript syntax
_movie.newMember ("flash") ;

A Flash movie cast member or sprite can also contain Flash components. Flash components provide prepackaged
functionality that extends the existing functionality of Flash movie cast members or sprites. For more information
about the Flash components that Director supports, see “Flash Component” on page 121.

Some of the following methods or properties may apply only to sprites that are created from a Flash movie cast

member.

Method summary for the Flash Movie media type

Method
callFrame() printAsBitmap!()
clearAsObjects() rewind() (Animated GIF, Flash)

clearError()

setCallback()

findLabel()

setFlashProperty()

flashToStage()

settingsPanel()

getFlashProperty()

setVariable()

getVariable() showProps()
goToFrame() stageToFlash()
hitTest() stop() (Flash)
hold() stream()
newObject() tellTarget()
print()

Property summary for the Flash Movie media type

Property

actionsEnabled originPoint
broadcastProps originV
bufferSize playBackMode
buttonsEnabled playing
bytesStreamed posterFrame
centerRegPoint quality
clickMode rotation
defaultRect scale (Member)
defaultRectMode scaleMode

Last updated 9/28/2011

122

DIRECTOR SCRIPTING DICTIONARY 11.5
Media Types

Property
eventPassMode sound (Member)
fixedRate static
flashRect streamMode
frameCount streamSize
imageEnabled viewH
linked viewPoint
mouseOverButton viewScale
originH viewV
originMode

See also

Flash Component, Member

Font

Represents a font cast member.

You can add a font cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax
_movie.newMember (#font)

// JavaScript syntax
_movie.newMember ("font") ;

Property summary for the Font media type

Property

bitmapSizes

characterSet

fontStyle

originalFont

recordFont

See also

Member

Linked Movie

Represents a linked movie cast member.

Last updated 9/28/2011

123

DIRECTOR SCRIPTING DICTIONARY 11.5

Media Types

You can add a linked movie cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax

_movie.newMember (#movie)

// JavaScript syntax
_movie.newMember ("movie") ;

Property summary for the Linked Movie media type

Property

scriptsEnabled

See also

Member

MP4Media/FLV

Director supports H.264-encoded MP4, F4V, and FLV file formats.

Property summary for the MP4Media/FLV asset

Property

audio (MP4Media/FLV)

connectionStatus (MP4Media/FLV)

currentTime (MP4Media/FLV)

directToStage (MP4Media/FLV)

duration (MP4Media/FLV)

frameRate (MP4Media/FLV)

fileName (MP4Media/FLV)

height (MP4Media/FLV)

image (MP4Media/FLV)

isPlayable (MP4Media/FLV)

loop (MP4Media/FLV)

percentStreamed (MP4Media/FLV)

trackinfo

video (MP4Media/FLV)

volume (MP4Media/FLV)

width (MP4Media/FLV)

Property summary for the MP4Media/FLV sprite

Property

audio (MP4Media/FLV)

connectionStatus (MP4Media/FLV)

currentTime (MP4Media/FLV)

directToStage (MP4Media/FLV)

image (MP4Media/FLV)

isPlayable (MP4Media/FLV)

loop (MP4Media/FLV)

mediaStatus (MP4Media/FLV)

Last updated 9/28/2011

124

DIRECTOR SCRIPTING DICTIONARY 11.5 125
Media Types

Property
mixer pausedAtStart (MP4Media/FLV)
percentStreamed (MP4Media/FLV) video (MP4Media/FLV)

volume (MP4Media/FLV)

Method summary for the MP4Media/FLV asset

Method
enableSoundTrack(trackNum) pause (MP4Media/FLV)
play() (MP4Media/FLV) seek(mSec) (MP4Media/FLV)

stop() (MP4Media/FLV)

Method summary for the MP4Media/FLV sprite

Method
pause (MP4Media/FLV) play() (MP4Media/FLV)
rewind() (MP4Media/FLV) seek(mSec) (MP4Media/FLV)

stop() (MP4Media/FLV)

QuickTime

Represents a QuickTime® cast member.

You can add a QuickTime cast member to a movie by using the Movie object’s newMember () method.
-- Lingo syntax

_movie.newMember (#quicktimemedia)

// JavaScript syntax
_movie.newMember ("quicktimemedia") ;

Some of the following methods or properties may apply only to sprites that are created from a QuickTime cast
member.

Method summary for the QuickTime media type

Method

enableHotSpot() qtRegisterAccessKey()
getHotSpotRect() qtUnRegisterAccessKey()
nudge() setTrackEnabled()
ptToHotSpotID() swing()
QuickTimeVersion()

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Media Types

Property summary for the QuickTime media type

Property

audio (RealMedia)

scale (Member)

currentTime (QuickTime, AVI)

staticQuality

fieldOfView

tilt

hotSpotEnterCallback

trackCount (Member)

hotSpotExitCallback

trackCount (Sprite)

invertMask trackEnabled
isVRMovie trackNextKeyTime
loopBounds trackNextSampleTime
mask trackPreviousKeyTime

motionQuality

trackPreviousSampleTime

mouselLevel

trackStartTime (Member)

node

trackStartTime (Sprite)

nodeEnterCallback

trackStopTime (Member)

nodeExitCallback

trackStopTime (Sprite)

nodeType trackText

pan (QTVR property) trackType (Member)
percentStreamed (Member) trackType (Sprite)
playRate (QuickTime, AVI, MP4, FLV) translation

preLoad (Member)

triggerCallback

rotation

warpMode

See also

Member

RealMedia

Represents a RealMedia cast member.

You can add a RealMedia cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax
_movie.newMember (#realmedia)

// JavaScript syntax

_movie.newMember ("realmedia") ;

Some of the following methods or properties may apply only to sprites that are created from a RealMedia cast member.

Last updated 9/28/2011

126

DIRECTOR SCRIPTING DICTIONARY 11.5
Media Types

Method summary for the RealMedia media type

Method

pause() (RealMedia, SWA, Windows Media)

play() (RealMedia, SWA, Windows Media)

realPlayerNativeAudio()

realPlayerPromptTolnstall()

realPlayerVersion()

seek()

stop() (RealMedia, SWA, Windows Media)

Property summary for the RealMedia media type

Property

audio (RealMedia)

password

currentTime (RealMedia)

pausedAtStart (RealMedia, Windows Media)

displayRealLogo

percentBuffered

duration (RealMedia, SWA)

soundChannel (RealMedia)

image (RealMedia)

state (RealMedia)

lastError

userName (RealMedia)

mediaStatus (RealMedia, Windows Media)

video (RealMedia, Windows Media)

See also

Member

Shockwave 3D

Represents a Adobe® Shockwave® 3D cast member.

A Shockwave 3D (or simply 3D) cast member differs from other cast members in that a 3D cast member contains a
complete 3D world. A 3D world contains a set of objects that are unique to 3D cast members, and that enable you to

add 3D functionality to a movie.

You can add a 3D cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax

_movie.newMember (#shockwave3d)

// JavaScript syntax

_movie.newMember ("shockwave3d") ;

For more information on the objects and APIs that are available to 3D cast members, see “3D Objects” on page 157.

Last updated 9/28/2011

127

DIRECTOR SCRIPTING DICTIONARY 11.5
Media Types

See also

Member

Shockwave Audio

Represents a Shockwave Audio cast member.

You can add a Shockwave Audio cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax
_movie.newMember (#swa)

// JavaScript syntax
_movie.newMember ("swa") ;

Event summary for the Shockwave Audio media type

Event

on cuePassed

Method summary for the Shockwave Audio media type

Method

getError() (Flash, SWA)

getErrorString()

isPastCuePoint()

pause() (RealMedia, SWA, Windows Media)

play() (RealMedia, SWA, Windows Media)

preLoadBuffer()

stop() (RealMedia, SWA, Windows Media)

Property summary for the Shockwave Audio media type

Property

bitRate

percentStreamed (Member)

bitsPerSample

preLoadTime

channelCount (Sound Channel)

sampleRate (Sound Channel)

copyrightinfo (SWA)

sampleSize

cuePointNames

soundChannel (SWA)

cuePointTimes

state (Flash, SWA)

duration (RealMedia, SWA)

streamName

Last updated 9/28/2011

128

DIRECTOR SCRIPTING DICTIONARY 11.5

Media Types
Property
loop (Member) URL
mostRecentCuePoint volume (Member)
numChannels

See also

Member

Sound

Represents a cast member that is used to store and refer to sound samples.

Sound samples are controlled by the core Sound and Sound Channel objects. A sound cast member does not have any
APIs of its own, and uses the APIs of the Sound and Sound Channel objects to control its behavior.

You can add a sound cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax
_movie.newMember (#sound)

// JavaScript syntax
_movie.newMember ("sound") ;

For more information on the objects and APIs you can use to control sound samples, see “Sound” on page 104 and
“Sound Channel” on page 106.

See also

Member

Text

Represents a text cast member.

You can add a text cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax
_movie.newMember (#text)

// JavaScript syntax
_movie.newMember ("text") ;

Event summary for the Text media type

Event

on hyperlinkClicked

Last updated 9/28/2011

129

DIRECTOR SCRIPTING DICTIONARY 11.5
Media Types

Method summary for the Text media type

Method

count()

pointinHyperlink()

pointToChar()

pointToltem()

pointToLine()

pointToParagraph()

pointToWord()

Property summary for the Text media type

Property

antiAlias

hyperlink

antiAliasThreshold

hyperlinkRange

bottomSpacing

hyperlinks

charSpacing

hyperlinkState

firstindent

kerning

fixedLineSpace

kerningThreshold

font RTF

fontStyle selectedText

HTML useHypertextStyles
See also
Member

Vector Shape

Represents a vector shape cast member.

You can add a vector shape cast member to a movie by using the Movie object’s newMember () method.

-- Lingo syntax
_movie.newMember (#vectorshape)

// JavaScript syntax

_movie.newMember ("vectorshape") ;

Some of the following methods or properties may apply only to sprites that are created from a vector shape cast

member.

Last updated 9/28/2011

130

DIRECTOR SCRIPTING DICTIONARY 11.5

Media Types

Method summary for the Vector Shape media type

Method

addVertex()

deleteVertex()

moveVertex()

moveVertexHandle()

newCurve()

showProps()

Property summary for the Vector Shape media type

Property

antiAlias imageEnabled
backgroundColor originH
broadcastProps originMode
centerRegPoint originPoint
closed originV

curve regPointVertex

defaultRect

scale (Member)

defaultRectMode

scaleMode

endColor strokeColor
fillColor strokeWidth
fillCycles vertex
fillDirection vertexList
fillMode viewH
fillOffset viewPoint
fillScale viewScale
flashRect viewV

gradientType

See also

Member

Windows Media

Represents a Windows Media® cast member.

You can add a Windows Media cast member to a movie by using the Movie object’s newMember () method.

Last updated 9/28/2011

131

DIRECTOR SCRIPTING DICTIONARY 11.5 132
Media Types

-- Lingo syntax
_movie.newMember (#windowsmedia)

// JavaScript syntax
_movie.newMember ("windowsmedia") ;

Some of the following methods or properties may apply only to sprites that are created from a Windows Media cast
member.

Method summary for the Windows Media media type

Method

pause() (RealMedia, SWA, Windows Media)

play() (RealMedia, SWA, Windows Media)

rewind() (Windows Media)

stop() (RealMedia, SWA, Windows Media)

Property summary for the Windows Media media type

Property

audio (Windows Media) pausedAtStart (RealMedia, Windows Media)
directToStage playRate (Windows Media)

duration (Member) video (RealMedia, Windows Media)

height volume (Windows Media)

loop (Windows Media) width

mediaStatus (RealMedia, Windows Media)

See also

Member

Last updated 9/28/2011

133

Chapter 7: Scripting Objects

The scripting objects, also known as Xtra extensions, in Director provide access to the functionality of the software
components that are installed with Director® and extend core Director functionary. The preexisting Xtra extensions
provide capabilities such as importing filters and connecting to the Internet. If you know the C programming
language, you can create your own custom Xtra extensions.

For an illustration of how the scripting objects relate to each other and to other objects in Director, see “Object model
diagrams” on page 45.

Audio filters

Audio filters are plug-in audio editors that apply effects to audio files in formats like MP3, WAV, MP4, and so on.
Audio filters work on PCM samples.

These filters have the following syntax:
<audioFilter Object Reference> audioFilter (<symbol>, <paramList>)

Filters return filter objects if their parameters are properly specified. However, if the parameters are incorrectly
specified or are out of range, they return an error.

Property summary for Audio filters

Property Name

enabled (filter)

EchoFilter

An echo is the reflection of a sound wave that arrives at the listener after some delay. An echo can either be a single
reflection or multiple reflections of the sound wave.

The Director echo filter adds a series of repeated decaying echoes to the sound wave.

Property summary
Property Description Range Default
echolLevel:Number Ratio of processed signalto [0-1 0.8

unprocessed signal.

feedback:Number Percentage of output thatis [0-1 0.5
fed back into the input.

delayTime:Number Delay between feedbacks. 1-2000 1000

Examples
The following examples apply the echo filter with the default parameters to the sound object:

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5

Scripting Objects

-- Lingo syntax
on mouseUp me

mixref = new (#mixer)

soundobj = mixref.createsoundobject ("so",member (2))

myfilter=audiofilter (#echofilter, [#echoLevel: 0.8, #feedback:0.5,#delaytime:1000])
soundobj.filterlist.append(myfilter)

mixref.play ()
end

// JavaScript syntax
function mouseUp ()

{
mixer = movie.newMember (symbol ("mixer")) ;
soundobj = mixer.CreateSoundObject ("so",member(2)) ;

myfilter=audioFilter (symbol ("Echofilter") ,propList (symbol ("echoLevel"), 0.8, symbol ("feedback"

),0.5,symbol ("delaytime"),1000)) ;

soundobj.filterlist.append (myfilter) ;

mixer.play () ;

}

FlangeFilter

Flange is an echo effect in which the delay between the original signal and its echo is very short and varies with time.

The effect is sometimes referred to as a sweeping sound.

Property summary

Property

Description

Range

Default

mix

Adjusts the mix of original
(dry) and flanged (wet)
signal. Some amounts of
both signals are required to
achieve the characteristic
cancellation and
reinforcement that occurs
during flanging. With
Original at 1, no flanging
occurs. With Delayed at 0,
the result is a wavering
sound.

0-1

0.8

feedback

Determines the percentage
of the flanged signal that is
fed back into the flanger.
With no feedback, the effect
uses only the original signal.
With feedback added, the
effect uses a percentage of
the affected signal from a
point before the current
point of playback.

0-1

0.5

delayTime

Minimum delay used on the
copy of the input signal.

1-30

Last updated 9/28/2011

134

DIRECTOR SCRIPTING DICTIONARY 11.5
Scripting Objects

Property Description Range Default

width Maximum additional delay [1-30 10
that is added to the signal in
addition to the delay in the
delay parameter.

rate Frequency of the low- 0.01-60 0.25
frequency oscillator which is
applied to the original audio.

waveform Waveform used (sine wave, | sine, triangular, logarithmic sine
triangular wave, logarithmic
wave).
Examples

-- Lingo syntax

on mouseUp me

mixref=new (#mixer)

soundobj=mixref.createsoundobject ("so", member (2))

myfilter=audioFilter (#FlangeFilter, [#mix:0.8, #feedback:0.5, #delayTime:10, #width:10,
#rate:0.25, #waveform:#sine])

soundobj.filterlist.append (myfilter)

mixref.play ()

end

// JavaScript syntax
function mouseUp ()

{

mixer = movie.newMember (symbol ("mixer")) ;

soundobj =mixer.CreateSoundObject ("so",member (2)) ;

myfilter=audioFilter (symbol ("FlangeFilter") ,propList (symbol ("Mix"), 0.8, symbol ("feedback") , 0.
5,symbol ("delaytime"), 10, symbol ("width"),10, symbol ("frequency"),0.25, symbol ("rate"),0.25, sym
bol ("waveform") , symbol ("sine"))) ;

soundobj.filterlist.append (myfilter) ;

mixer.play () ;

}

DistortionFilter

The distortion effect can be used to simulate blown car speakers, overdriven amplifiers, and so on. Director supports
amplitude distortion.

Amplitude distortion is achieved by changing the signal strength by values provided by the user using
distortionvalues, or by adding random values within a specified range.

Last updated 9/28/2011

135

DIRECTOR SCRIPTING DICTIONARY 11.5

Scripting Objects

Property summary
Property Description Range Default
percentage Whether the amount mentioned is an absolute value | 0-1 1
or a percentage.
amount Random values less than the distortion amountare | 0-100/0-32000 25
added to the audio signal data resulting in distortion.
Values must be between 0 and 100 if they are
percentages. Otherwise, they can vary between 0
and 32000.
useRandom Whether to use random values or values from the 0-1 1

distortionValues matrix. If useRandomis set to
True, values between 0 and the values mentioned
above are used. If it is set to False, values from the
distortionValues matrix are used.

distortionValues

A two-dimensional array with columns £rom
decibel and to decibel, and adistortion factor
specifying the distortion values for different decibel
levels. The signal strength within the range
distortionvalues [x] [0] and
distortionvalues [x] [1]are multiplied by the
value distortionvalues [x] [2].

The values for distortion[x][2]
is between 0 and 10.

numRange

Number of values in distortionvalues (number
of rows in the matrix).

Examples

-- Lingo syntax

on mouseUp me

mixref=new (#mixer)

soundobj=mixref.createsoundobject ("so", member (2))
myfilter=audiofilter (#Distortionfilter) --

-- using default parameters.

soundobj
rows=3

.filterlist.append (myfilter)

columns=3

freqg=100

amp=5

myMatrix = newmatrix(rows,columns) -- Creates a 3X3 matrix.

repeat with i = 1 to rows -- Initializes the matrix.
repeat with j = 1 to columns

if j=3 then
myMatrix.setval (i, j,amp)

amp=amp+5

else

myMatrix.setval (i, j, freq)

freg=freg+100

end 1if

end repeat

end repeat

myfilter
myfilter
myfilter

.userandom=0

.distortionvalues = myMatrix -- Assigns myMatrix to the Distortion matrix.

.numrange=rows

mixref.play ()

Last updated 9/28/2011

Creates the distortion filter

136

DIRECTOR SCRIPTING DICTIONARY 11.5

Scripting Objects

end

// JavaScript syntax

function mouseUp (

{

)

mixref = _movie.newMember (symbol ("mixer")) ;

soundobj=mixref .createSoundobject ("so", member (2)) ;

myfilter=audioFilter (symbol ("DistortionFilter"));// Creates the distortion filter

// using default parameters.

soundobj.filterlist.append (myfilter) ;

rows=3;
columns=3;

freqg=100;
amp=5;
myMatrix = newMatrix(rows,columns); //Creates a 3X3 matrix.
for(i = 1l;i<=rows;i++)
{
for(j = 1;j<=columns;j++)
{
if (j==3)

myMatrix.setval (i, j,amp) ;

amp=amp+5;

}

else

{

myMatrix.setval (i, j, freq) ;

freg=freqg+100;

}
}

myfilter.userandom=0;

myfilter.distortionvalues = myMatrix; // Assigns myMatrix to the Distortion matrix.

myfilter.numrange=rows;

mixref.play ()

7

AmplifierFilter

The amplifier filter attenuates or amplifies the input audio signal. If the amplifier filter gets distorted during

amplification, it leaves the audio distorted.

Property summary
Property Description Range Default
Factor Factor by which the input 0to 10 2
needs to be amplified.

Last updated 9/28/2011

137

DIRECTOR SCRIPTING DICTIONARY 11.5
Scripting Objects

Examples

-- Lingo syntax

on mouseUp me

mixref=new (#mixer)
soundobj=mixref.createsoundobject ("so",member (2))
myfilter=audioFilter (#AmplifierFilter, [#factor:2])
soundobj.filterlist.append (myfilter)

mixref.play ()

end

// JavaScript syntax
function mouseUp ()

{

mixer = movie.newMember (symbol ("mixer")) ;

soundobj =mixer.CreateSoundObject ("so", member (2)) ;
myfilter=audioFilter (symbol ("AmplifierFilter") , propList (symbol ("factor"),2));
soundobj.filterlist.append(myfilter) ;

mixer.play () ;

}

EnvelopeFilter

The envelope filter superimposes an oscillating wave (sinewave, sawTooth, Or rectangularwave) on the main
audio signal.

Usage
audioFilter (#EnvelopeFilter, [#frequency:1, #waveType:#Sinel)

Property summary

Property Description Range Default

Rate Rate of the oscillator wave 0.01 to 100 1
that gets superimposed on
the main audio signal.

ByteArray Provides a custom envelope | 0to 255 The default value in the byte array.
by creating a byte array. Each
byte in the byte array
represents the volume of the
envelope. The volume value
can be between 0 (silence) to
255 (full volume). Set the
waveform to #input to use
this byte array. The contents
of the byte array are treated
as one wave and the
duration is controlled by the
frequency parameter. If the
byte array size is 2 bytes and
the frequency is 1 Hz, then
each byte of the byte array is
applied to 0.5 sec of audio.

Waveform Type of the oscillator wave. | sine, sawTooth, rectangular, triangular, | sine
input

Last updated 9/28/2011

138

DIRECTOR SCRIPTING DICTIONARY 11.5
Scripting Objects

Examples

--Lingo syntax

on mouseUp me

mixref = new (#mixer)

soundobj = mixref.createSoundObject ("so", member (2))

myfilter = audioFilter (#envelopeFilter, [#rate:1, #waveform:#Sinel)
soundobj.filterlist.append (myfilter)

mixref.play ()

end

//JavaScript syntax

function mouseUp ()

{

mixer = movie.newMe mber (symbol ("m ixer"));
soundobj = mixer.CreateSoundObject ("so",member (2)) ;

myfilter=audioFilter (symbol ("envelopeFilter") ,propList (symbol ("rate"), 1, symbol ("waveform") ,s

ymbol ("Sine"))) ;
soundobj.filterlist.append (myfilter) ;
mixer.play () ;

}
The byte array usage is as follows:

mix = new (#mixer)

so = mix.createSoundObject ("1", member(l)) so.filterlist.append(audiofilter (#envelopefilter,

[#bytearray:b, #waveform:#input])) mix.play ()
The byte array will be filled in the movie script as:

on startmovie me

b = bytearray()

repeat with i = 1 to 51000
b[i] = i/200

end repeat

FadeOutFilter

Decreases the intensity of the sound from its current level to zero.

Property summary
Property Description Range Default
duration The time duration during 1 to 1000000 1000
which the audio signal
intensity decreases to zero.
duration is specified in
milliseconds.
startDelay The initial delay after which | 0 to 8000000 0
the filter is applied.

Last updated 9/28/2011

139

DIRECTOR SCRIPTING DICTIONARY 11.5
Scripting Objects

Examples

-- Lingo syntax

on mouseUp me
mixref=new (#mixer)

soundobj=mixref.createsoundobject ("so", member (2))

myfilter=audioFilter (#FadeOutFilter,

soundobj.filterlist.append (myfilter)

mixref.play ()
end

// JavaScript syntax
function mouseUp ()

{

mixer = movie.newMember (symbol ("mixer")) ;
soundobj =mixer.CreateSoundObject ("so", member (2)) ;

myfilter=audioFilter (symbol ("FadeOutFilter") ,propList (symbol ("duration"), 1000,

symbol ("startdelay"),0)) ;

soundobj.filterlist.append (myfilter) ;

mixer.play () ;

}

FadelnFilter

[#duration:1000,

#startDelay:0])

Increases the audio intensity of the sound from its current level to the maximum value.

Property summary

Property Description

Range

Default

milliseconds.

duration The time duration in which
the audio signal intensity
increases to its maximum.
duration is specified in

1to 1000000

1000

added before the

startDelay The initial delay after which
thefilter is applied. Silence is

startDelay duration.

0 to 8000000

Last updated 9/28/2011

140

DIRECTOR SCRIPTING DICTIONARY 11.5
Scripting Objects

Examples

-- Lingo syntax

on mouseUp me
mixref=new (#mixer)
soundobj=mixref.createsoundobject ("so", member (2))
myfilter=audioFilter (#FadeInFilter, [#duration:1000, #startDelay:0])
soundobj.filterlist.append (myfilter)
mixref.play ()

end

// JavaScript syntax

function mouseUp ()

{

mixer = movie.newMember (symbol ("mixer")) ;

soundobj =mixer.CreateSoundObject ("so", member (2)) ;
myfilter=audioFilter (symbol ("FadeInFilter") , propList (symbol ("duration"),b 1000,
symbol ("startdelay"),0)) ;

soundobj.filterlist.append (myfilter) ;

mixer.play () ;

}

FadeToFilter

Increases or decreases the sound intensity of the audio signal to the specified level.

Property summary
Property Description Range Default
duration The time duration in which the audio signal 1 to 1000000 1000
intensity increases/decreases to the specified
level. duration is specified in milliseconds.
toValue The level to which the sound intensity 0to 255 0
increases or decreases.
startDelay The initial delay after which thefilter is applied. | 0 to 8000000 0

Last updated 9/28/2011

141

DIRECTOR SCRIPTING DICTIONARY 11.5

Scripting Objects

Examples
-- Lingo syntax
on mouseUp me

mixref=new (#mixer)

soundobj=mixref.createsoundobject ("so", member (2))
myfilter=audioFilter (#FadeToFilter, [#toValue:0, #duration:1000,
soundobj.filterlist.append (myfilter)

mixref.play(
end

)

// JavaScript syntax

function mouseUp ()

{

mixer =_movie.newMember (symbol ("mixer")) ;

soundobj =mixer.CreateSoundObject ("so", member (2)) ;

myfilter=audioFilter (symbol ("FadeToFilter") ,propList (symbol ("toValue"), 0, symbol ("duration"),

1000, symbol ("startdelay"),0));
soundobj.filterlist.append (myfilter) ;

mixer.play () ;

}

#startDelay:0])

LowPassFilter
The low pass filter allows frequencies below a specified cut-off frequency to pass through. All other frequencies are
blocked.
Property summary
Property Description Range Default
lowCutOffFreq Cut-off frequency; only 20 - 96000 1000
audio signals below this
frequency are allowed to
pass through.
Examples

-- Lingo syntax
on mouseUp me

mixref=new (#mixer)

soundobj=mixref.createsoundobject ("so", member (2))

myfilter=audioFilter (#LowPassFilter,

soundobj.filterlist.append (myfilter)

mixref.play ()
end

// JavaScript syntax

function mouseUp ()

{

mixer = _movie.newMember (symbol ("mixer")) ;

soundobj =mixer.CreateSoundObject ("so", member (2)) ;

myfilter=audioFilter (symbol ("LowPassFilter") ,propList (symbol ("lowCutOffFreqg"),1000)) ;

soundobj.filterlist.append(myfilter) ;

mixer.play () ;

}

Last updated 9/28/2011

[#lowCutOffFreqg:10001])

142

DIRECTOR SCRIPTING DICTIONARY 11.5 143
Scripting Objects

HighPassFilter

The high pass filter allows frequencies above a specified cut-off frequency to pass through. All other frequencies are

blocked.

Property summary
Property Description Range Default
highCutOffFreq Cut-off frequency; only 20 - 96000 4000
audio signals above this
frequency are allowed to
pass through.
Examples

-- Lingo syntax

on mouseUp me

mixref=new (#mixer)
soundobj=mixref.createsoundobject ("so", member (2))
myfilter=audioFilter (#HighPassFilter, [#highCutOffFreq:4000])
soundobj.filterlist.append (myfilter)

mixref.play ()

end

// JavaScript syntax
function mouseUp ()

{

mixer = movie.newMember (symbol ("mixer")) ;

soundobj =mixer.CreateSoundObject ("so", member (2)) ;

myfilter=audioFilter (symbol ("HighPassFilter") , propList (symbol ("highCutOffFreqg"),4000)) ;
soundobj.filterlist.append(myfilter) ;

mixer.play () ;

}

BandPassFilter

The band pass filter allows frequencies between two specified cut-off frequencies to pass through. All other frequencies
are blocked.

Property summary

Property Description Range Default

lowCutOffFreq Frequencies between the 20 - 96000 1000
lower and higher cut off
frequencies are allowed to
pass through. All other
frequencies are blocked.

highCutOffFreq Frequencies between the 20 - 96000 4000
lower and higher cut off
frequencies are allowed to
pass through. All other
frequencies are blocked.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5

Scripting Objects

Examples
-- Lingo syntax
on mouseUp me

mixref=new (#mixer)

soundobj=mixref.createsoundobject ("so",member (2))

myfilter=audioFilter (#BandPassFilter, [#lowCutOffFreg: 1000,

soundobj.filterlist.append (myfilter)

mixref.play ()
end

// JavaScript syntax

function mouseUp ()

{

mixer =_movie.newMember (symbol ("mixer")) ;

soundobj =mixer.CreateSoundObject ("so", member (2)) ;

myfilter=audioFilter (symbol ("BandPassFilter") , propList (symbol ("lowCutOffFreqg"),1000, symbol ("
highCutOffFreq"),

4000)) ;

soundobj.filterlist.append (myfilter) ;

mixer.play () ;

}

#highCutOffFreq:4000])

BandStopFilter
The band stop filter blocks frequencies that fall between two specified cut-off frequencies. All other frequencies are
allowed to pass through.
Property summary
Property Description Range Default
lowCutOffFreq Frequencies between the 20 - 96000 1000
lower and higher cut off
frequencies are blocked. All
other frequencies are
allowed to pass through.
highCutOffFreq Frequencies between the 20 - 96000 4000
lower and higher cut off
frequencies are blocked. All
other frequencies are
allowed to pass through.

Last updated 9/28/2011

144

DIRECTOR SCRIPTING DICTIONARY 11.5
Scripting Objects

Examples

-- Lingo syntax
on mouseUp me
mixref=new (#mixer)

soundobj=mixref.createsoundobject ("so",member (2))

myfilter=audioFilter (#BandStopFilter, [#lowCutOffFreg: 1000,

soundobj.filterlist.append (myfilter)

mixref.play ()
end

// JavaScript syntax
function mouseUp ()

{

mixer =_movie.newMember (symbol ("mixer")) ;

soundobj =mixer.CreateSoundObject ("so", member (2)) ;

myfilter=audioFilter (symbol ("BandStopFilter") , propList (symbol ("lowCutOffFreqg"),1000, symbol ("

highCutOffFreqg"),4000)) ;

soundobj.filterlist.append (myfilter) ;

mixer.play () ;

}

ReverbFilter

The ReverbFilter creates the effect of a diffused or reverberated sound.

#highCutOffFreq:4000])

Property summary

Property Description Range Default

wetMix Percentage of processed 0-1 0
signal in the output.

dryMix Percentage of original signal [0-1 0
in the output.

reverbWidth Width of reverberation. 0.1-100 1

lowCutOffFreq Frequencies below this 20 - 96000 500
threshold are attenuated.

highCutOffFreq Frequencies above this 20 - 96000 5000
threshold are attenuated.

decayRate Indicates how fast the audio [0.01-0.99 0.2
signal decays after early
reflection.

Last updated 9/28/2011

145

DIRECTOR SCRIPTING DICTIONARY 11.5
Scripting Objects

Examples

-- Lingo syntax

on mouseUp me
mixref=new (#mixer)
soundobj=mixref.createsoundobject ("so", member (2))

myfilter=audioFilter (#ReverbFilter, [#wetMix:0.3, #dryMix:0, #reverbWidth:1,

#lowCutOffFreq:500, #highCutOffFreq:5000, #decayRate:0.2])
soundobj.filterlist.append (myfilter)
mixref.play ()

end

// JavaScript syntax

function mouseUp ()

{

mixref = movie.newMember (symbol ("mixer")) ;

soundobj =mixref.CreateSoundObject ("so",member(2)) ;

myfilter=audioFilter (symbol ("ReverbFilter") ,propList (symbol ("wetMix"),0.3,symbol ("dryMix"),0
,symbol ("reverbWidth") ,1, symbol ("lowCutOffFreqg"),500, symbol ("highCutOffFreqg"),b5000),

symbol ("decayRate") ,0.2) ;
soundobj.filterlist.append (myfilter) ;
mixref.play () ;

}

PitchShiftFilter

Shifts the frequencies of the audio signal by a specified factor.

Property summary
Property Description Range Default
Shift The factor by which the 0.1-5 2
frequencies of the audio
signal are shifted.
Examples

-- Lingo syntax

on mouseUp me
mixref=new (#mixer)
soundobj=mixref.createsoundobject ("so", member (2))
myfilter=audioFilter (#PitchShiftFilter, [#shift:2])
soundobj.filterlist.append (myfilter)
mixref.play ()

end

// JavaScript syntax

function mouseUp ()

{

mixer = movie.newMember (symbol ("mixer")) ;

soundobj =mixer.CreateSoundObject ("so", member (2)) ;

myfilter =audioFilter (symbol ("PitchShiftFilter"),propList (symbol ("shift"),2));

soundobj.filterlist.append(myfilter) ;
mixer.play () ;

}

Last updated 9/28/2011

146

DIRECTOR SCRIPTING DICTIONARY 11.5 147
Scripting Objects

ParamEgFilter

Description
A parametric equalizer amplifies or attenuates the signals of a specified frequency.

Property summary

Property Description Range Default
centerFrequency Center frequency 20- 96000 8000
bandWidth Bandwidth 20-96000 200
Gain Gain indb -20 to 20 0
Examples

-- Lingo syntax
on mouseUp me
mixref=new (#mixer)
soundobj=mixref.createsoundobject ("so", member (2))
myfilter=audiofilter (#ParamEgFilter, [#centerFrequency:8000, #bandWidth:200, #gain:0])
soundobj.filterlist.append (myfilter)
mixref.play ()
end

//JavaScript syntax
function mouseUp ()

{

mixer =_movie.newMember (symbol ("mixer")) ;

soundobj = mixer.CreateSoundObject ("so",member (2)) ;

myfilter=audioFilter (symbol ("ParamEgFilter") ,propList (symbol ("centerFrequency"),b 8000, symbol (
"bandwidth"),200, symbol ("gain"),0)) ;

soundobj.filterlist.append(myfilter) ;

mixer.play () ;

}

ByteArray

The Lingo object, Bytearray, helps you read, write, and work better with binary data. Bytearray is a scripting object
that is accessible to JavaScript and Xtras.

ByteArray cast member

The #bytearray cast member can be used in Director, Shockwave, and Projector. This scripting-only cast member
has limited user interface support.

Create ByteArray member using Ul Select Insert > Media Elements > Byte Array to insert a ByteArray cast member.

Create ByteArray member using Lingo Use the new method to create a ByteArray cast member.

Usage

m = new (#byteArray)

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5

Scripting Objects

ByteArray member properties

The ByteArray cast member has a single property, bytearray.

Operator summary for the ByteArray object

Operator Return Type
Random Access Operator Integer
String String

Property summary for the ByteArray object

Property Name

Type

BytesRemaining

Integer (Read only)

endian

Symbol. Possible values are #bigEndianand #littleEndian. The defaultvalueis #littleEndian.

length (byte array)

Integer (Read only)

position (byte array)

Integer

Method summary for the ByteArray object

Method Names

ByteArray

ByteArray(str)

readBoolean

writeBoolean

readint8
readint16

readint32

writelnt8
writelnt16

writelnt32

readFloat32

readFloat64

writeFloat32

writeFloat64

readByteArray

writeByteArray

readString

writeString (byte array)

readRawString

writeRawString

compress()

uncompress()

toHexString

Integration with the Lingo Image object

The following methods can be used to access an image pixel buffer as a byte array, and fill the pixel buffer from the

byte array.

Last updated 9/28/2011

148

DIRECTOR SCRIPTING DICTIONARY 11.5

Scripting Objects

Method Names

getPixels()

setPixels()

Import a byte array as a cast member

The new method importByteArrayInto (), similar toimportFileInto (), has been added to help you import byte

array content as media output.

Byte array as input to a sound object

You can pass a byte array to a sound object. If a byte array has to be generated from a file, the byte array reads the
contents of the file using FileIO, and passes the byte array contents to the sound object whenever the callback method

returns true.

Note: Director audio supports only 8-bit unsigned, and 16- and 24-bit signed audio files for this operation.

Usage

SoundObject Mixer.createSoundObject (SoundObjname, callbackFunction, [castMemRef],

[sampleRate, channelcount,bitDepth])

Parameters
Parameter Description Default value Required/ optional
SoundObjname The name associated with the sound object. Sound objects Required
with duplicate names are not allowed.
callbackFunction When a Lingo or JavaScript function is passed to Required
createSoundObject, the sound object calls the
callbackFunction when itis ready to receive data for
playback.
castMemRef Passes a cast member reference if the callback method is a Optional
member of the parent script. If the callback method is in
movieScript, do not specify the parameter, or specify it as
void.
sampleRate Sampling frequency of the audio. 48000 kHz Optional
channelCount Number of channels in the audio. 2 Optional
bitDepth Bit depth of the audio. 16 Optional

More about callbackFunction

When a Lingo or JavaScript function is passed to createSoundobject, the sound object calls the callbackFunction

when it is ready to receive data for playback.

Optionally, you can also pass a cast member reference using the callback function.

When providing input to callbackFunction:

+ The registered callback function is called soon after the sound object is played.

+ The parameter to the callback function is a zero length byte array. Fill this byte array with audio data. Unlimited

length of data that can be copied to the byte array.

Last updated 9/28/2011

149

DIRECTOR SCRIPTING DICTIONARY 11.5 150
Scripting Objects

+ The next callback function is called after the data has been played.

+ The return value of the callback function can either be true or false, indicating whether the sound object should
continue calling the callback function the next time (True) or stop once it has played all audio data passed to it
(False).

« If necessary, you can stop the sound object manually in the callback function. Stopping the sound object manually
also stops the callback method.

The syntax of the callbackFunction is as follows:

On callbackFunction outByteArray
--outByteArray is filled with bytearray samples.
end

Note: Inside the callback handler, if there is any script that causes runtime errors (such as property not found), the error
messages are not displayed, and the handler execution is aborted at the point of error. All the subsequent statements are
not executed.

The byte array input to the function is filled with the requested bytes of bytearray samples.
Note: The bytearray samples must be in the same format as specified in createSoundobject.

If you did not specify a format in createSoundobject, the default format with the following specifications is used:

Bit depth 16
Sampling frequency 48000 Hz
Channel count 2

To override the default format, set the following symbols in the property list:

#bitDepth --Bit depth of the audio.
#sampleRate --Sampling frequency of the audio.
#channelCount --Number of channels in the audio.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5

Scripting Objects

Examples
-- BUTTON BEHAVIOR --
global gSoundIOInstance -- instance of FileIO for reading sound file
global Sound -- soundObject
global gMixer -- mixer object

on mouseUp (me)

-- ACTION: Opens a sound file in the same folder as the movie

-- and creates a soundObject to play it back. The sound file

-- will be read in when requested by a callback from the

-- sound object. The callback handler HAS to be in a Movie Script, whic
-- means that globals MUST be used to play back the sound file.

-- See the Movie Script for callback details.

-- Open a sample file to read the data
gSoundIOInstance = new xtra("fileIO")

gSoundIOInstance.openFile(_movie.path & "RawSound.snd",0)

gMixer = new (#mixer)

-- Create the sound object with the SampleRate, ChannelCount &
-- BitDepth. Specify the callback method.

vName = "Imported sound mixer"

vCallback = #audioInput

vByteArray = VOID -- Callback method is available in the Movie Script,
-- scriptReference also

vSettings = [#samplerate:48000, #channelcount:2, #bitdepth:16]
gSound = gMixer.createSoundObject (\

vName, \

vCallback, \

VOID, \

vSettings)

-- Play the sound

gMixer.play ()

end mouseUp

Last updated 9/28/2011

h

can specify

151

DIRECTOR SCRIPTING DICTIONARY 11.5
Scripting Objects

Callback method (movie script)
-- MOVIE SCRIPT --
global gSoundIOInstance -- instance of FileIO for reading sound file
global gSound -- soundObject
on audiolInput (aByteArray)
-- SOURCE: Called back from gSound whenever gSound has finished
-- playing its current contents.
-- INPUT: <aByteArray> will be an empty byteArray which has to be
-- filled and the modified byteArray to send back.
-- ACTION: Transfers the (remaining) contents of the file to
-- aByteArray
-- OUTPUT: Returns TRUE if there was any data to pas to aByteArray
-- FALSE if not.
-- Checking the if we've reached the end of the file
vFileLength = gSoundIOInstance.getLength ()
vPosition = gSoundIOInstance.getPosition()
if vPosition = vFileLength then
-- We've reach the end of the file. Close it and tell the
-- soundObject to stop calling back.
gSoundIOInstance.closefile()
return FALSE -- stop calling the callback
end if
-- Read entire contents of the file into a byteArray
vByteArray = gSoundIOInstance.readByteArray (vFileLength)
vArrayLength = vByteArray.length
put vArrayLength, vFileLength
-- Copy from the temporary byteArray to the one passed in as a
-- parameter
if vArrayLength <> 0 then
vResult = aByteArray.writeByteArray (vByteArray, 1, vArrayLength)
end if
-- Ensure this callback is made again when the sound has played out
return TRUE
end audioInput

on stopmovie
gSoundIOInstance.closefile()
end stopmovie

Byte array as output from a sound object

Use registerByteArrayCallback and unregisterByteArrayCallback to get the contents of a sound object asa
byte array. When the callback function runs, the byte array is filled with the audio sample data received from the sound
object. You can modify the byte array data before playing the sound object.

Fileio
Enables you to perform file input and output operations.

You can create a reference to a Fileio object by using the new operator.

Last updated 9/28/2011

152

DIRECTOR SCRIPTING DICTIONARY 11.5 153
Scripting Objects

-- Lingo syntax
objFileio = new xtra("fileio")

// JavaScript syntax
var objFileio = new xtra("fileio");

FileIO Xtra can read or write files of any encoding type. You can now also read or write binary data from a file using
byte arrays.

Further, FileIO now supports reading data directly from a byte array, as well as writing byte arrays to an external file.

Method summary for the Fileio object

Method

closeFile()

createFile()

delete() (FilelO)

deleteFile()

displayOpen()

displaySave()

error() fileName()
getCharSet getFinderInfo()
getLength() getOSDirectory()
getPosition() openFile()
readByteArray (FilelO Xtra) readChar()
readFile() readLine()
readToken() readWord()

setFilterMask()

setFinderInfo()

setNewLineConversion()

setPosition()

status()

setCharSet

writeByteArray (FilelO Xtra)

writeChar()

writeReturn()

writeString()

version()

MUI Xtra

The MUI Xtra provides fully functional dialog boxes set up the way that you specify. These dialog boxes don’t require
the memory or disk footprint of a MIAW that simulates a dialog box.

You can create a reference to an MUI Xtra object by using the new operator.

-- Lingo syntax
objMui = new xtra ("Mui")

// JavaScript syntax
var objMui = new xtra("Mui");

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5

Scripting Objects

Method summary for the XML Parser object

Method

Alert()

fileOpen()

fileSave()

GetltemProplList

getURL()

GetWidgetList()

GetWindowPropList

Initialize

IltemUpdate()

run

stop

WindowOperation

NetLingo

Enables you to perform network operations such as obtaining or streaming media from a network, checking network

availability, checking the progress of a network operation, and so on.

You can create a reference to a NetLingo object by using the new operator.

-- Lingo syntax

objNetLingo =

// JavaScript syntax

var objNetLingo new xtra("netlingo");

Director provides Lingo (and JavaScript) methods to send or receive byte arrays over the Internet.

new xtra("netlingo")

Method summary for the NetLingo object

Method
browserName() cacheDocVerify()
cacheSize() clearCache

downloadNetThing

externalEvent()

getLatestNetID getNetByteArray
getNetText() getStreamStatus()
gotoNetPage gotoNetMovie
netAbort netByteArrayResult
netDone() netError()

Last updated 9/28/2011

154

DIRECTOR SCRIPTING DICTIONARY 11.5
Scripting Objects

Method

netLastModDate() netMIME()
netStatus netTextResult()
postNetByteArray postNetText
preloadNetThing() proxyServer
tellStreamStatus() URLEncode

SpeechXtra

Enables you to add text-to-speech functionality to a movie.

You can create a reference to a SpeechXtra object by using the new operator.

-- Lingo syntax
objSpeech = new xtra ("speechxtra")

// JavaScript syntax
var objSpeech = new xtra ("speechxtra");

Method summary for the SpeechXtra object

Method

voiceCount()

voiceSet()

voiceGet()

voiceSetPitch()

voiceGetAll()

voiceSetRate()

voiceGetPitch()

voiceSetVolume()

voiceGetRate()

voiceSpeak()

voiceGetVolume()

voiceState()

voicelnitialize()

voiceStop()

voicePause() voiceWordPos()

voiceResume()

XML Parser

Enables you to perform XML parsing.

You can create a reference to an XML Parser object by using the new operator.

-- Lingo syntax
objXml = new xtra ("xmlparser")

// JavaScript syntax
var objXml = new xtra ("xmlparser") ;

Last updated 9/28/2011

155

DIRECTOR SCRIPTING DICTIONARY 11.5
Scripting Objects

Method summary for the XML Parser object

Method

count()

doneParsing()

getError() (XML)

ignoreWhiteSpace()

makelList()

makeSublList()

parseString()

parseURL()

Property summary for the XML Parser object

Property

attributeName

attributeValue

child (XML)

name (XML)

XML Xtra

XML documents can be created using any encoding, and encoding information is embedded using the following XML

declaration tag:

<?xml version="1.0" encoding="utf-8"?>

Further, XML documents can also embed binary data blobs inside them, making it impossible to represent the entire

XML document using UTF-8.

As a solution, the Director XML parser uses the XML declaration tag of the document to identify the text encoding of

a document.

Method summary for XML Xtra

Method Name

parseByteArray

parseString (XML Xtra)

parseURL (XML Xtra)

Last updated 9/28/2011

156

Chapter 8: 3D Objects

About 3D Objects

The 3D objects enable you to add 3D functionality to a movie. These objects are exposed to both Lingo and JavaScript
syntax within Director, projectors, and the Adobe” Shockwave® Player.

You access these 3D objects through Shockwave 3D (or simply 3D) cast members. You can also create 3D sprites from
the 3D cast members. Both 3D cast members and 3D sprites contain functionality that is specific to 3D cast members
and sprites. They also have access to the functionality of non-3D cast members and sprites, whose APIs are specified
by the core Member and Sprite objects, respectively.

A 3D cast member differs from a non-3D cast member in that a 3D cast member contains a complete 3D world. A 3D
world contains the objects that provide access to 3D functionality. All objects in a 3D world are based on a basic object
known as a node. The simplest form of a node in a 3D world is a Group object; a Group object is essentially the most
basic node. All other objects in a 3D world are based on a Group object, which means that the other objects inherit the
functionality of a Group object in addition to containing functionality that is specific to those objects.

For an illustration of how the 3D objects relate to each other and to other objects in Director, see “Object model
diagrams” on page 45.

Director® ships with two Xtra extensions that enable access to the 3D objects:

+ 3D Asset Xtra (3DAuth.x32 in Windows®, 3D Auth Xtra on Mac®) provides support for the 3D media window
inside Director.

+ 3D Media Xtra (Shockwave 3D Asset.x32 in Windows, 3D Asset Xtra on Mac) provides support for the 3D media
itself.

To access the 3D objects during authoring or at runtime, your movie must contain the 3D Asset Xtra.

Camera

Represents a Camera object.

A camera controls how a 3D sprite views the 3D world. A 3D sprite displays a particular camera’s view into the world.

You can create a reference to a camera by using the camera property of the 3D Member object. The camera property
gets the camera at a specified index position in the list of cameras. In Lingo, you use the camera property directly from
the 3D Member object to create a reference. In JavaScript syntax, you must use the get PropRef () method to create a
reference.

The following example creates a reference to the second camera of the 3D cast member "family room", and assigns it
to the variable myCamera.

-- Lingo syntax
myCamera = member ("family room") .camera[2]

// JavaScript syntax
var myCamera = member ("family room") .getPropRef ("camera", 2);

Last updated 9/28/2011

157

DIRECTOR SCRIPTING DICTIONARY 11.5
3D Objects

Method summary for the Camera object

Method

addBackdrop

addOverlay

insertBackdrop

insertOverlay

removeBackdrop

removeOverlay

Property summary for the Camera object

Property

backdrop

fog.far (fog)

backdropl[].blend (3D)

fog.near (fog)

backdropl].loc (backdrop and overlay) hither
backdropl[].regPoint (3D) orthoHeight
backdropl].rotation (backdrop and overlay) overlay

backdrop(].scale (3D)

overlay[l.blend (3D)

backdropl[].source

overlay[l.loc (backdrop and overlay)

backdrop.count (3D)

overlay[l.regPoint (3D)

child (3D)

overlay[].rotation (backdrop and overlay)

colorBuffer.clearAtRender

overlay[l.scale (3D)

colorBuffer.clearValue

overlay[l.source

fieldOfView (3D) overlay.count (3D)
fog.color() projection
fog.decayMode rootNode
fog.enabled (fog) yon

See also
Group, Light, Model, Model Resource, Motion,

Group

Shader, Texture

Represents a model that does not have a resource or any shaders.

A group is the most basic node, and is merely a point in space that is represented by a transform. You can assign
children and parents to this node in order to group models, lights, cameras, or other groups.

The most basic group is called a world, which is essentially synonymous with a 3D cast member.

Last updated 9/28/2011

158

DIRECTOR SCRIPTING DICTIONARY 11.5 159
3D Objects

You can create a reference to a group by using the group property of the 3D Member object. The group property gets
the group at a specified index position in the list of groups. In Lingo, you use the group property directly from the 3D
Member object to create a reference. In JavaScript syntax, you must use the get PropRef () method to create a reference.

The following example creates a reference to the first group of the 3D cast member space, and assigns it to the variable
myGroup.

-- Lingo syntax
myGroup = member ("space") .group[1]

// JavaScript syntax
var myGroup = member ("space") .getPropRef ("group", 1);

Method summary for the Group object

Method

addcChild pointAt
addToWorld registerScript()
clone removeFromWorld
cloneDeep rotate
getWorldTransform() scale (command)
isinWorld() translate

Property summary for the Group object

Property

name (3D)

parent

pointAtOrientation

transform (property)

userData

worldPosition

See also

Camera, Light, Model, Model Resource, Motion, Shader, Texture

Light

Represents a light in a 3D world.
Lights are used to light a 3D world. Without lights, the objects within the world cannot be seen.

You can create a reference to a light by using the 1ight property of the 3D Member object. The 1ight property gets
the light at a specified index position in the list of lights. In Lingo, you use the 1ight property directly from the 3D
Member object to create a reference. In JavaScript syntax, you must use the get PropRef () method to create a reference.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
3D Objects

The following example creates a reference to the third light of the 3D cast member "film room" and assigns it to the

variable myLight.

-- Lingo syntax
myLight = member ("film room") .light [3]

// JavaScript syntax
var myLight = member ("film room") .getPropRef ("light",

Property summary for the Light object

Property

attenuation

color (light)

specular (light)

spotAngle

spotDecay

type (light)

See also

Camera, Group, Model, Model Resource, Motion, Shader,

Member

Represents a Shockwave 3D cast member.

A Shockwave 3D (or simply 3D) cast member contains a complete 3D world. A 3D world contains the set of objects

you use to add 3D functionality to a movie.

You can create a reference to a 3D cast member by using either the top level member () function, or by using the member
property of the Movie or Sprite object. These are the same techniques you can use to create a reference to a non-3D

cast member.

+ Use the top level member () function.
-- Lingo syntax

3dMember = member ("magic"

// JavaScript syntax
var 3dMember = member ("magic") ;

« Use the Sprite object’s member property.
-- Lingo syntax

3dMember = sprite(l) .member;

// JavaScript syntax
var 3dMember = sprite(l) .member;

3);

Texture

Last updated 9/28/2011

160

DIRECTOR SCRIPTING DICTIONARY 11.5

3D Objects

Method summary for the Member object

Method

camera()

model (3D)

cloneModelFromCastmember

modelResource

cloneMotionFromCastmember motion()
deleteCamera newCamera
deleteGroup newGroup
deleteLight newLight
deleteModel newMesh
deleteModelResource newModel

deleteMotion

newModelResource

deleteShader newShader
deleteTexture newTexture
extrude3D resetWorld

group() revertToWorldDefaults
light()

loadFile()

Property summary for the Member object

Property
ambientColor loop (3D)
animationEnabled model

bevelDepth

modelResource

bevelType

motion

bytesStreamed (3D)

percentStreamed (3D)

camera preLoad (3D)
cameraPosition reflectivity
cameraRotation shader
diffuseColor smoothness

directionalColor

specularColor

directionalPreset

state (3D)

directToStage

streamSize (3D)

displayFace

texture

Last updated 9/28/2011

161

DIRECTOR SCRIPTING DICTIONARY 11.5 162
3D Objects

Property

displayMode textureMember

group textureType

light tunnelDepth
See also

Camera, Group, Light, Model, Model Resource, Motion, Shader, Sprite, Texture

Model

Represents a visible object that a user sees within a 3D world.

A model makes use of a model resource and occupies a specific position and orientation with a 3D world. A model
resource is an element of 3D geometry that can be used to draw 3D models. A model also defines the appearance of
the model resource, such as what textures and shaders are used. For more information about the relationship between
models and model resources, see the Using Director topics in the Director Help Panel.

You can create a reference to a model by using the model property of the 3D Member object. The model property gets
the model at a specified index position in the list of models. In Lingo, you use the model property directly from the 3D
Member object to create a reference. In JavaScript syntax, you must use the get PropRef () method to create a reference.

The following example creates a reference to the second model of the 3D cast member Transportation and assigns
it to the variable myModel.

-- Lingo syntax

myModel = member ("Transportation") .model [2]

// JavaScript syntax
var myModel = member ("Transportation") .getPropRef ("model", 2);

A model also contains modifiers that control how the model is rendered or how its animation behaves. Modifiers are
attached to a model by using the addModifier () method. After a modifier has been attached to a model, its properties
can be manipulated with script.

The following modifiers are available to a model:

Modifier Description

Bones player Modifies a model’s geometry over time.

Collision Allows a model to be notified of and respond to collisions.

Inker Adds silhouette, crease, and boundary edges to an existing model.

Keyframe player Modifies a model’s t rans form properties over time.

Level of detail (LOD) Provides per-model control over the number of polygons used to render a model, based on the
model’s distance from a camera.
The LOD modifier is also available to model resources.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 163
3D Objects

Modifier Description
Mesh deform Alters an existing model resource’s geometry at runtime.
Subdivision surfaces (SDS) Causes the model to be rendered with additional geometric detail in the area of the model that the

camera is currently looking at.

Toon Changes a model’s rendering to imitate a cartoon drawing style.

For more information about the methods, properties, and events available to the modifiers, see the Using Director
topics in the Director Help Panel.

Model Resource

Represents an element of 3D geometry that is used to draw 3D models.

A model makes use of a model resource and occupies a specific position and orientation with a 3D world. A model also
defines the appearance of the model resource, such as what textures and shaders are used.

For more information about the relationship between models and model resources, and about using models and model
resources, see the Using Director topics in the Director Help Panel.

You can create a reference to a model resource by using the mode1Resource property of the 3D Member object. The

modelResource property gets the model resource at a specified index position in the list of model resources. In Lingo,
you use the modelResource property directly from the 3D Member object to create a reference. In JavaScript syntax,

you must use the get PropRef () method to create a reference.

The following example creates a reference to the second model resource of the 3D cast member wheels and assigns it
to the variable myModelResource.

-- Lingo syntax
myModelResource = member ("wheels") .modelResource [2]

// JavaScript syntax
var myModelResource = member ("wheels") .getPropRef ("modelResource", 2);

Motion

Represents a predefined animation sequence that involve the movement of a model or a model component.

Individual motions can be set to play by themselves or with other motions. For example, a running motion can be
combined with a jumping motion to simulate a person jumping over a puddle.

You can create a reference to a motion by using the mot ion property of the 3D Member object. The motion property
gets the motion at a specified index position in the list of motions. In Lingo, you use the mot ion property directly from
the 3D Member object to create a reference. In JavaScript syntax, you must use the get PropRref () method to create a
reference.

The following example creates a reference to the fourth motion of the 3D cast member athlete and assigns it to the
variable myMot ion.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 164
3D Objects

-- Lingo syntax
myMotion = member ("athlete") .motion[4]

// JavaScript syntax
var myMotion = member ("athlete") .getPropRef ("motion", 4);

Renderer Services

Represents the global object that contains a property list whose values impact common rendering properties for all 3D
cast members and sprites.

You can access the global renderer services object using the top level getRendererServices () function.

The following example accesses the renderer property of the global renderer services object and assigns the value to
the variable myRenderer.

-- Lingo syntax
myRenderer = getRendererServices () .renderer

// JavaScript syntax
var myRenderer = getRendererServices () .renderer;

Method summary for the Renderer Services object

Method

getHardwarelnfo()

Property summary for the Renderer Services object

Property

modifiers

primitives

renderer

rendererDeviceList

textureRenderFormat

See also

Member, Sprite

Shader

Represents a model’s surface color.

You can draw images on the surface of a model by applying one or more textures to each shader.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 165
3D Objects

You can create a reference to a shader by using the shader property of the 3D Member object. The shader property
gets the shader at a specified index position in the list of shaders. In Lingo, you use the shader property directly from
the 3D Member object to create a reference. In JavaScript syntax, you must use the get PropRef () method to create a
reference.

The following example creates a reference to the second shader of the 3D cast member triangle and assigns it to the
variable myShader.

-- Lingo syntax
myShader = member ("triangle") .shader[2]

// JavaScript syntax
var myShader = member ("triangle") .getPropRef ("shader", 2);

Normal Mapping

Normal mapping is a technique used for showing finer details like lighting of bumps and dents without using
additional polygons. A normal map texture provides the direction of the normal (used for lighting calculations) at each
pixel on the rendered image.

Adobe Director supports using normal mapping. Normal maps are exposed in Lingo as a new type of shader, which
can be created by passing #normalMap as the type of shader to the ‘newShader" handler of the 3D cast member.

See the following example:

-- Creating the normal map texture

normalMap = mem.newTexture ("normalMap", #fromCastMember, member ("normalMap Image"))
-- Creating the diffuse texture

my_diffuse_texture = mem.newTexture ("texturel", #fromCastMember, member ("texture_ Image"))
-- Creating the specular texture

my specular texture = mem.newTexture ("my specular texture", #fromCastMember,

member ("specular Image"))

-- Creating a normal map shader

sh = mem.newShader ("myShader", #normalMap)

-- Assign the normal map texture to the first layer

sh.textureList [1] = normalMap

-- Assign the diffuse texture to the second layer

sh.textureList [2] = my diffuse texture

-- Assign the specular texture to the third layer

sh.textureList [3] = my specular_ texture

-- Note: You can also use layers 4,5, and 6 for any other textures

-- Applying diffuse property for the shader

sh.diffuse=rgb(100,100,100)

-- Note: You can also change the shader material properties such as specular, ambient, emissive,
and shininess.

-- Assigning the normal map shader to the 3D model.

member ("3DMember") .model ("3DModel") .shaderList = sh

Bump Mapping to Normal Mapping

Bump mapping allows you to simulate bumps on the surface of an object. This effect is achieved by modifying the
surface normals of the object.

Adobe Director supports converting bump maps to normal maps.

See “bumpMapToNormalMap()” on page 277

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 166
3D Objects

Cube Mapping

Cube mapping is a method of using a six-sided cube as the shape of the map. The model is projected onto the six faces
of a cube and stored as six square textures, or unfolded into six regions of a single texture. A cube map texture contains
6 2D images, each one representing a particular face of a cube.

See the following example:

member (whichCastmember) .newTexture (newTextureName ,#cubemapTexture, cubeEdgeLength,
sourceRefl, sourceRef2, sourceRef3, sourceRef4, sourceRef5, sourceRefé6)

In this example, each of sourceRef1 to sourceRefs must be either a cast member or a Lingo image object. These
members are applied to six different faces of the cube map texture as follows:

+ sourceRefl gets mapped to positive X-side
+ sourceRef2 gets mapped to negative X-side
+ sourceRef3 gets mapped to positive Y-side
+ sourceRef4 gets mapped to negative Y-side
+ sourceRef5 gets mapped to positive Z-side
+ sourceRef6 gets mapped to negative Z-side

The cube map images must always have the square dimensions so that the faces can form a cube. Hence, the width and
height of each bitmap image in the cube map must be equal.

Note: Two types of texture generation modes are supported that generates the eye-space reflection vector or normal vector
in the (s,t,r) texture coordinates.

A new property is added to the “standard” shader to allow setting texture co-ordinate generation mode for cube map
texture. After setting the created texture to a standard shader, use the property textureCoordGenMode or
textureCoordGenModeList. The values allowed are #normal and #reflection. By default, the eye-space reflection
effect is supported.The property textureCoordGenMode modifies values for all the eight layers of textures. Use the
Lingo indexing command (textureCoordGenModeList)to set the value for individual texture layer.

Parallax Mapping

Parallax mapping is an enhancement of Normal/Bump Mapping technique. This technique provides more apparent
depth and greater realism with less impact on the performance. Parallax maps are exposed in Lingo as a new type of
shader, which can be created by passing #parallaxMap as the type of shader to the newShader (“newShader” on
page 499) handler of the 3D cast member.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 167
3D Objects

-- Creating the height map texture
heightMap = mem.newTexture ("heightMap", #fromCastMember, member ("heightMap Image"))

-- Creating the diffuse texture

my diffuse texture = mem.newTexture ("texturel", #fromCastMember, member ("texture Image"))
-- Creating the specular texture

my_ specular texture = mem.newTexture ("my_ specular texture", #fromCastMember,
member ("specular Image")

-- Creating a parallax map shader

sh = mem.newShader ("myShader", #parallaxMap)

-- Assign the height map texture to the first layer

sh.texturelList [1] = heightMap

-- Assign the diffuse texture to the second layer

sh.textureList [2] = my diffuse texture

-- Assign the specular texture to the third layer

sh.textureList [3] = my specular_ texture

-- Note: You can also use layers 4,5, and 6 for any other textures

-- Applying diffuse property for the shader

sh.diffuse=rgb(100,100,100)

sh.parallaxHeight = 0.035

-- Note: 0.035 is the standard value for parallax height.

-- The value can be between 0 to 1.

-- Where 0 implies no parallax and 1 implies maximum parallax.

-- The feel of depth increases by increasing this value.

-- Note: You can also change the shader material properties such as specular, ambient, emissive,
and shininess.

-- Assigning the parallax map shader to the 3D model.

member ("3DMember") .model ("3DModel") .shaderList = sh

Parallax mapping also supports texture transformation:

member (whichCastmember) . shader (whichShader) . textureTransform
member (whichCastmember) .model (whichModel) . shader.textureTransform
member (whichCastmember) .model (whichModel) .shaderList{ [index]}.textureTransform

For more information on texture transformation, see “textureTransform” on page 1223.

Additive Shading

In Adobe Director, user can set member ("3D") . shader ("sh") .multiTexturing = FALSE to disable DirectX 9-
based multi texturing (composing all texture layers in a single pass) for the given shader. This feature enables the user
to make use of the old style additive shading and also the new multi-texturing in the same scene.

Note: This is an extension to getRendererServices () . multiTexturing property, which earlier only allowed to
disable multi-texturing on the whole scene, making it impossible to use single pass layered shading for other shaders in
the same scene.

See getRendererServices.multiTexturing (“getRendererServices()” on page 394).

Note: If no value is specified for shader . multiTexturing, then the value assigned to
getRenderServices().multiTexturing1MﬂlbeLued.Thedqﬁuﬂtvuhﬂqu
getRenderServices () .multiTexturing is TRUE.

See “getRendererServices()” on page 394

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 168
3D Objects

Alpha Sorting

Alpha sorting allows the use of transparent or semi-transparent polygons of a mesh to display in front of or behind
one another according to their distance from the camera.

For usage, see “alphaSort (shader)” on page 754.

Sprite

Represents a 3D sprite created from a Shockwave 3D cast member.

You can create a reference to a 3D sprite by using the top level sprite () function, the Movie object’s sprite property,
or the Sprite Channel object’s sprite property. These are the same techniques you can use to create a reference to a
non-3D sprite.

+ Use the top level sprite () function.
-- Lingo syntax
3dSprite = sprite(l)
// JavaScript syntax

var 3dSprite = sprite(l);

+ Use the Movie object’s sprite property.
-- Lingo syntax
3dSprite = movie.sprite["willowTree"]
// JavaScript syntax

var 3dSprite = movie.sprite["willowTree"];

+ Use the Sprite Channel object’s sprite property.

-- Lingo syntax
3dSprite = channel (3) .sprite

// JavaScript syntax
var 3dSprite = channel (3).sprite;

Method summary for the Sprite object

Method

addCamera

cameraCount()

deleteCamera

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
3D Objects

Property summary for the Sprite object

Property

antiAliasingEnabled

backColor

camera

directToStage

See also

Camera, Member

Texture

Represents the texture applied to a shader.

You can create a reference to a texture by using the texture property of the 3D Member object. The texture property
gets the texture at a specified index position in the list of textures. In Lingo, you use the texture property directly from
the 3D Member object to create a reference. In JavaScript syntax, you must use the get PropRef () method to create a
reference.

The following example creates a reference to the first texture of the 3D cast member triangle and assigns it to the
variable myTexture.

-- Lingo syntax
myTexture = member ("triangle") .texture[1]

// JavaScript syntax
var myTexture = member ("triangle") .getPropRef ("texture", 1);

Render Texture

Render Textures are textures that are created and updated at runtime. In Adobe Director, to work with Render
Textures, perform the following tasks:

1 CreateaRender Texture object. For creating a Render Texture object, invoke the <3dCastMemRef > .newTexture ()

method with #typeIndicator as #renderTexture and pass the dimensions of the Render Texture. For instance:

myRT = member ("3D World") .newTexture ("MyRT1", #renderTexture, 512, 512)

This code will create a new texture object of type #renderTexture. This object can be used like any other texture
object. For instance, you can attach it to a shader or create camera backdrops or overlays.

Note: You can also get the image of a Render Texture by using the <renderTex0Obj >. image syntax. This type of image
access is not supported for other texture types.

2 Once the Render Texture object is created, it can be used to render a 3D scene into the Render Texture. You need
to invoke the <sprites.renderToTexture (<camera>, <renderTexObj>) method (“renderToTexture” on
page 599) by passing the camera object and the destination Render Texture object for which the scene needs to be
rendered.

See also, “updateRTImageOnRender” on page 1261.

Last updated 9/28/2011

169

Chapter 9: Constants

This section provides an alphabetical list of all the constants available in Director®.

The majority of these constants apply only to Lingo. JavaScript syntax does contain some constants that are similar to
the Lingo constants listed here; therefore, where appropriate, JavaScript syntax usage and examples are provided to
help you map the functionality of Lingo constants with their closest counterparts in JavaScript syntax. For more
information about JavaScript syntax constants, see one of the many third-party resources on the subject.

" (string)

Usage

--Lingo syntax

// JavaScript syntax

Description

String constant; when used before and after a string, quotation marks indicate that the string is a literal —not a variable,
numerical value, or script element. Quotation marks must always surround literal names of cast members, casts,
windows, and external files.

Example

This statement uses quotation marks to indicate that the string “San Francisco” is a literal string, the name of a cast
member:

--Lingo syntax
put member ("San Francisco") .loaded

// JavaScript syntax
put (member ("San Francisco") .loaded) ;

See also
QUOTE

BACKSPACE

Usage
-- Lingo syntax
BACKSPACE

// JavaScript syntax
51 // value of _key.keyCode

Last updated 9/28/2011

170

DIRECTOR SCRIPTING DICTIONARY 11.5 171
Constants

Description
Constant; represents the Backspace key. This key is labeled Backspace (Windows®) and Delete (Mac®).

Example

This on keyDown handler checks whether the Backspace key was pressed and, if it was, calls the handler clearEntry:

--Lingo syntax

on keyDown
if (_key.key = BACKSPACE) then clearEntry
_movie.stopEvent ()

end keyDown

// JavaScript syntax

function keyDown () {
if (_key.keyCode == 51) ({
clearEntry () ;

_movie.stopEvent () ;

EMPTY

Usage
--Lingo syntax
EMPTY

// JavaScript syntax

Description

Character constant; represents the empty string, " ", a string with no characters.

Example
This statement erases all characters in the field cast member Notice by setting the field to EMPTY:

--Lingo syntax
member ("Notice") .text = EMPTY

// JavaScript syntax
member ("Notice") .text = "";

ENTER

Usage
--Lingo syntax
ENTER

// JavaScript syntax
3 // value of _key.keyCode

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 172
Constants

Description

Character constant; represents Enter (Windows) or Return (Mac) for a carriage return.
On PC keyboards, the element ENTER refers only to Enter on the numeric keypad.

For a movie that plays back as an applet, use RETURN to specify both Return in Windows and Enter on the Mac.

Example

This statement checks whether Enter is pressed and if it is, sends the playhead to the frame addsum:
-- Lingo syntax

on keyDown

if (_key.key = ENTER) then movie.go("addSum")
end

// JavaScript syntax

function keyDown () {
if (_key.keyCode == 3) {
_movie.go ("addSum") ;

See also

RETURN (constant)

FALSE

Usage
-- Lingo syntax
FALSE

// JavaScript syntax
false

Description
Constant; applies to an expression that is logically FALSE, such as 2 > 3. When treated as a number value, FALSE has
the numerical value of 0. Conversely, 0 is treated as FALSE.

Example
This statement turns off the soundEnabled property by setting it to FALSE:

-- Lingo syntax
_sound.soundEnabled = FALSE

// JavaScript syntax
_sound.soundEnabled = false;

See also

if, not, TRUE

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Constants

Pl

Usage
-- Lingo syntax
PI

// JavaScript syntax
Math.PI

Description

Constant; returns the value of pi (p), the ratio of a circle’s circumference to its diameter, as a floating-point number.
The value is rounded to the number of decimal places set by the £loatPrecision property.

Example

This statement uses the PI constant as part of an equation for calculating the area of a circle:

-- Lingo syntax

vRadius = 3

vArea = PI*power (vRadius, 2)

trace (vArea) -- results in 28.2743

// JavaScript syntax

var vRadius = 3;

vArea = Math.PI*Math.pow(vRadius, 2);

trace (vArea); // results in 28.274333882308138

QUOTE

Usage
--Lingo syntax
QUOTE

// JavaScript syntax
\u

Description

Constant; represents the quotation mark character and refers to the literal quotation mark character in a string,
because the quotation mark character itself is used by Lingo scripts to delimit strings.

Example
This statement inserts quotation mark characters in a string:

-- Lingo syntax
put ("Can you spell" && QUOTE & "Adobe" & QUOTE & "?"

// JavaScript syntax
put ("Can you spell \"Adobe\"?");

The result is a set of quotation marks around the word Adobe®:

Can you spell "Adobe"?

Last updated 9/28/2011

173

DIRECTOR SCRIPTING DICTIONARY 11.5 174
Constants

RETURN (constant)

Usage
-- Lingo syntax
RETURN

// JavaScript syntax
36 // value of _key.keyCode
\n // when used in a string

Description

Constant; represents a carriage return.

Example
This statement causes a paused movie to continue when the user presses the carriage return:
-- Lingo syntax

if (_key.key = RETURN) then movie.go(_movie.frame + 1)

// JavaScript syntax
if (_key.keyCode == 36) ({
_movie.go(movie.frame + 1);

This statement uses the RETURN character constant to insert a carriage return between two lines in an alert message:
-- Lingo syntax

_player.alert ("Last line in the file." & RETURN & "Click OK to exit.")

// JavaScript syntax
_player.alert("Last line in the file." + "\n" + " Click OK to exit");

In Windows, it is standard practice to place an additional line-feed character at the end of each line. This statement
creates a two-character string named CRLF that provides the additional line feed:

CRLF = RETURN & numToChar (10)

SPACE

Usage
-- Lingo syntax
SPACE

// JavaScript syntax
49 // value of _key.keyCode

Description
Constant; read-only, value that represents the space character.

Example

This statement displays “Age Of Aquarius” in the Message window:

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Constants

-- Lingo syntax

put ("Age"&SPACE&"Of"&SPACE&"Aquarius")

TAB

Usage
-- Lingo syntax
TAB

// JavaScript syntax
48 // value of _key.keyCode

Description
Constant; represents the Tab key.

Example

This statement checks whether the character typed is the tab character and calls the handler doNextField if it is:

-- Lingo syntax

if (_key.key = TAB) then doNextField

// JavaScript syntax
if (_key.keyCode == 48) ({
doNextField() ;

}

These statements move the playhead forward or backward, depending on whether the user presses Tab or Shift+Tab:

-- Lingo syntax
if (_key.key = TAB) then
if (_key.shiftDown) then
_movie.go(movie.frame

else
_movie.go(_movie.frame
end if
end if

// JavaScript syntax
if (_key.keyCode == 48) ({
if (_key.shiftDown) {
_movie.go(_movie.frame
} else {
_movie.go(movie.frame

See also

BACKSPACE, EMPTY, RETURN (constant)

Last updated 9/28/2011

175

DIRECTOR SCRIPTING DICTIONARY 11.5
Constants

TRUE

Usage
-- Lingo syntax
TRUE

// JavaScript syntax
true

Description
Constant; represents the value of a logically true expression, such as 2 < 3.It has a traditional numerical value of 1,
but any nonzero integer evaluates to TRUE in a comparison.

Example

This statement turns on the soundEnabled property by setting it to TRUE:

-- Lingo syntax
_sound.soundEnabled = TRUE

// JavaScript syntax
_sound.soundEnabled = true;

See also
FALSE, if

VOID

Usage
-- Lingo syntax
VOID

// JavaScript syntax
null

Description
Constant; indicates the value voIp.

Example

This statement checks whether the value in the variable currentvariable is VOID:

Last updated 9/28/2011

176

DIRECTOR SCRIPTING DICTIONARY 11.5
Constants

-- Lingo syntax
if currentVariable = VOID then

put ("This variable has no value")
end if

// JavaScript syntax

if (currentVariable == undefined) ({
put ("This variable has no value");

1

See also

voidP ()

Last updated 9/28/2011

177

178

Chapter 10: Events and Messages

This section provides an alphabetical list of all the events and messages available in Director®.

on activateApplication

Usage

-- Lingo syntax

on activateApplication
statement (s)

end

// JavaScript syntax
function activateApplication() {
statement (s) ;

}

Description

Built-in handler; runs when the projector is brought to the foreground. This handler is useful when a projector runs
in a window and the user can send it to the background to work with other applications. When the projector is brought
back to the foreground, this handler runs. Any MIAWs running in the projector can also make use of this handler.

During authoring, this handler is called only if Animate in Background is turned on in General Preferences.

On Windows®, this handler is not called if the projector is merely minimized and no other application is brought to
the foreground.

Example
This handler plays a sound each time the user brings the projector back to the foreground:

-- Lingo syntax

on activateApplication
sound (1) .queue (member ("openSound"))
sound (1) .play ()

end

// JavaScript syntax

function activateApplication() {
sound (1) .queue (member ("openSound")) ;
sound (1) .play () ;

See also

on deactivateApplication, activeCastLib, on deactivateWindow

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Events and Messages

on activateWindow

Usage

-- Lingo syntax

on activateWindow
statement (s)

end

// JavaScript syntax
function activateWindow ()
statement (s) ;

Description

System message and event handler; contains statements that run in a movie when the user clicks the inactive window
and the window comes to the foreground.

You can use an on activateWindow handler in a script that you want executed every time the movie becomes active.

Clicking the main movie (the main Stage) does not generate an on activateWindow handler.

Example

This handler plays the sound Hurray when the window that the movie is playing in becomes active:
-- Lingo syntax

on activateWindow

sound (2) .play (member ("Hurray"))
end

// JavaScript syntax
function activateWindow() {
sound (2) .play (member ("Hurray")) ;

See also

activeWindow, close(), on deactivateWindow, frontWindow, on moveWindow, open() (Window)

on beginSprite

Usage

-- Lingo syntax

on beginSprite
statement (s)

end

// JavaScript syntax

function beginSprite() {
statement (s) ;

Last updated 9/28/2011

179

DIRECTOR SCRIPTING DICTIONARY 11.5 180
Events and Messages

Description

System message and event handler; contains statements that run when the playhead moves to a frame that contains a
sprite that was not previously encountered. Like endsprite, this event is generated only one time, even if the playhead
loops on a frame, since the trigger is a sprite not previously encountered by the playhead. The event is generated before

prepareFrame.
Director creates instances of any behavior scripts attached to the sprite when the beginSprite message is sent.

The object reference me is passed to this event if it is used in a behavior. The message is sent to behaviors and frame
scripts.

If a sprite begins in the first frame that plays in the movie, the beginsprite message is sent after the prepareMovie
message but before the prepareFrame and startMovie messages.

Note: Be aware that some sprite properties, such as the rect sprite property, may not be accessible in a beginSprite
handler. This is because the property needs to be calculated, which is not done until the sprite is drawn.

The go, play, and updateStage commands are disabled in an on beginSprite handler.

Example

This handler plays the sound cast member Stevie Wonder when the sprite begins:
-- Lingo syntax

on beginSprite me

sound (1) .play (member ("Stevie Wonder"))
end

// JavaScript syntax
function beginSprite() {
sound (1) .play (member ("Stevie Wonder")) ;

See also

on endSprite, on prepareFrame, scriptInstancelList

on closeWindow

Usage

-- Lingo syntax

on closeWindow
statement (s)

end

// JavaScript syntax
function closeWindow () {
statement (s) ;

Description

System message and event handler; contains statements that run when the user closes the window for a movie by
clicking the window’s close box.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 181
Events and Messages

The on closewWindow handler is a good place to put Lingo commands that you want executed every time the movie’s
window closes.

Example

This handler tells Director to forget the current window when the user closes the window that the movie is playing in:

-- Lingo syntax

on closeWindow
-- perform general housekeeping here
window (1) . forget ()

end

// JavaScript syntax

function closeWindow()
// perform general housekeeping here
window (1) .forget () ;

on cuePassed

Usage

-- Lingo syntax

on cuePassed({me,} channelID, cuePointNumber, cuePointName)
statement (s)

end

// JavaScript syntax
function cuePassed(channellID, cuePointNumber,cuePointName) {
statement (s) ;

Description
System message and event handler; contains statements that run each time a sound or sprite passes a cue point in its
media.

+ me The optional me parameter is the script InstanceRef value of the script being invoked. You must include
this parameter when using the message in a behavior. If this parameter is omitted, the other arguments will not be
processed correctly.

+ channelID The number of the sound or sprite channel for the file where the cue point occurred.

+ cuePointNumber The ordinal number of the cue point that triggers the event in the list of the cast member’s cue
points.

+ cuePointName The name of the cue point that was encountered.

The message is passed—in order—to sprite, cast member, frame, and movie scripts. For the sprite to receive the
event, it must be the source of the sound, like a QuickTime® movie or SWA cast member. Use the i sPastCuePoint
property to check cues in behaviors on sprites that don’t generate sounds.

Example

This handler placed in a Movie or Frame script reports any cue points in sound channel 1 to the Message window:

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Events and Messages

-- Lingo syntax
on cuePassed channel, number, name
if (channel = #Soundl) then
put ("CuePoint" && number && "named" && name && "occurred in sound 1")
end if
end

// JavaScript syntax
function cuePassed(channel, number, name) {
if (channel == symbol ("Soundl")) {
put ("CuePoint " + number + " named " + name + "occurred in sound 1");

See also

scriptInstancelist, cuePointNames, cuePointTimes, isPastCuePoint ()

on deactivateApplication

Usage

-- Lingo syntax

on deactivateApplication
statement (s)

end

// JavaScript syntax

function deactivateApplication() ({
statement (s) ;

Description

Built-in handler; runs when the projector is sent to the background. This handler is useful when a projector runs in a
window and the user can send it to the background to work with other applications. Any MIAWs running in the

projector can also make use of this handler.

During authoring, this handler is called only if Animate in Background is turned on in General Preferences.

On Windows, this handler is not called if the projector is merely minimized and no other application is brought to the

foreground.

Example
This handler plays a sound each time the user sends the projector to the background:

Last updated 9/28/2011

182

DIRECTOR SCRIPTING DICTIONARY 11.5
Events and Messages

-- Lingo syntax

on deactivateApplication
sound (1) .queue (member ("closeSound"))
sound (1) .play ()

end

// JavaScript syntax

function deactivateApplication() ({
sound (1) .queue (member ("closeSound")) ;
sound (1) .play () ;

See also

add (3D texture), activeCastLib, on deactivateWindow

on deactivateWindow

Usage

-- Lingo syntax

on deactivateWindow
statement (s)

end

// JavaScript syntax

function deactivateWindow () ({
statement (s) ;

Description

System message and event handler; contains statements that run when the window that the movie is playing in is
deactivated. The on deactivate event handler is a good place for Lingo that you want executed whenever a window

is deactivated.

Example

This handler plays the sound Snore when the window that the movie is playing in is deactivated:

-- Lingo syntax
on deactivateWindow

sound (2) .play (member ("Snore"))
end

// JavaScript syntax
function deactivateWindow () ({
sound (2) .play (member ("Snore")) ;

Last updated 9/28/2011

183

DIRECTOR SCRIPTING DICTIONARY 11.5 184
Events and Messages

on DVDeventNotification

Usage

-- Lingo syntax

on DVDeventNotification objectRef, event {, eventArgl} {, eventArg2} {, eventArg3}
statement (s)

end DVDeventNotification

// JavaScript syntax
function DVDeventNotification (objectRef, event {, eventArgl} {, eventArg2} {, eventArg3}) ({
statement (s) ;

Description

Author-specified DVD event handler. Contains statements that run in response to events that occur while a DVD is
playing.

This handler can be used to track all DVD events. In the script examples above, objectRef, the first parameter passed
to the DVDeventNotification handler, is a reference to the DVDeventNotification object itself. The actual event that
occurs is always passed as the second parameter, event. Some events contain additional information about them that
is passed as a third parameter, eventArgl. In some cases, a fourth and fifth parameter, eventArg2 and eventArg3, may
contain additional event information.

The following table lists the events that can occur while a DVD is playing.

Event Description

angleChange Occurs when either the number of available angles changed or the current user angle number changed.

The following additional information is passed to DvDeventNotification when this event occurs:

* eventArg2 - An integer that indicates the number of available angles. When the number of available
angles is 1, the current video is not multiangle.

* eventArg3 - An integer that indicates the current user angle number.

audioStreamChange Occurs when the current user audio stream number changed for the main title.

The following additional information is passed to DvDeventNotification when this event occurs:

* eventArg2 - An integer that indicates the new user audio stream number. Stream 0xFFFFFFFF
indicates that no stream is selected.

buttonChange Occurs when either the number of available buttons changed or the currently selected button number
changed.

The following additional information is passed to DvDeventNotification when this event occurs:
e eventArg2 - An integer that indicates the number of available buttons.

* eventArg3- Aninteger that indicates the currently selected button number. Selected button number
0 implies that no button is selected.

chapterAutoStop Occurs when playback stopped as a result of an automatic stop.

chapterStart Occurs when playback of a new program in the tit1le domain starts.

The following additional information is passed to DvDeventNotification when this event occurs:

* eventArg2 - An integer that indicates the new chapter number.

diskEjected Occurs when a DVD is ejected.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5

Events and Messages

Event

Description

diskinserted

Occurs when a DVD is inserted.

domainChange

Occurs when the DVD player’s domain changes.

The following additional information is passed to DvDeventNotification when this event occurs:

* eventArgl. A value that indicates the new domain. The new domain will be one of the following
values.

firstPlay. The DVD Navigator is performing default initialization of a DVD.

videoManagerMenu. The DVD Navigator is displaying menus for the whole disc.

videoTitleSetMenu. The DVD Navigator is displaying menus for the current title set.

title. The DVD Navigator is displaying the current title.

* stop. The DVD Navigator is in the stop domain.

error Occurs when a DVD error condition is encountered.
The following additional information is passed to DvDeventNotification when this event occurs:
* eventArg2. A value that indicates error condition. The error condition will be one of the following
values.
* copyProtectFail. Key exchange for DVD copy protection failed. Playback is stopped.
* invalidDVD1_0Disc.DVD-Video discis authored incorrectly for specification version 1.x. Playback
is stopped.
* invalidDiscRegion.DVD-Video disc cannot be played because the disc is not authored to play in
the system region.
* lowParentalLevel.Player parental level is lower than the lowest parental level available in the
DVD content. Playback is stopped.
* macrovisionFail. Macrovision distribution failed. Playback stopped.
* incompatibleSystemAndDecoderRegions. No discs can be played because the system region
does not match the decoder region.
* incompatibleDiscAndDecoderRegions. The disc cannot be played because the disc is not
authored to be played in the decoder’s region.
* unexpected. Something unexpected happened; perhaps content is authored incorrectly. Playback
is stopped.
karaokeMode Occurs when the audio mode is set to karaoke.

noFirstPlayChain

Occurs when the DVD disc does not have a FP_PGC (First Play Program Chain) and that the DVD
Navigator will not automatically load any PGC and start playback.

parentalLevelChange

Occurs when the parental level of the authored content is about to change.

The following additional information is passed to DvDeventNotification when this event occurs:

* eventArg2. An integer that indicates the new parental level set in the player.

playbackStopped Occurs when playback stops. The DVD Navigator has completed playback of the PGC and did not find
any other branching instruction for subsequent playback.
playPeriodAutoStop Occurs when playback stopped as a result of an automatic stop.

Last updated 9/28/2011

185

DIRECTOR SCRIPTING DICTIONARY 11.5

Events and Messages

Event

Description

rateChange

Occurs when the playback rate changes.

The following additional information is passed to DvDeventNotification when this event occurs:

* eventArg2. An integer that indicates the new playback rate. A value that is less than (<) 0 indicates
reverse playback mode. A value that is greater than (>) 0 indicates forward playback mode. This value
is the actual playback rate multiplied by 10,000.

stillOff

Occurs at the end of any still (PGC, Cell, or VOBU).

stillon

Occurs at the beginning of any still (PGC, Cell, or VOBU).

The following additional information is passed to DvDeventNotification when this event occurs:

* eventArg2 - A boolean that indicates whether buttons are available. Zero (0) indicates buttons are
available. One (1) indicates no buttons are available.

eventArg3 - Aninteger or address that indicates the number of seconds the still will last. 0xFFFFFFFF
indicates an infinite still.

titleChange

Occurs when the current title number changes.

The following additional information is passed to DvDeventNotification when this event occurs:

* eventArg2 - An integer or address that indicates the new title number.

UOPchange

Occurs when one of the available playback or search mechanisms has changed.

The following additional information is passed to DvDeventNotification when this event occurs:

* eventArg2 - An integer or address that indicates which playback or search mechanisms the DVD disc
explicitly disabled.

warning

Occurs when a DVD warning condition is encountered.

The following additional information is passed to DvDeventNotification when this event occurs:

* eventArg2 - Aninteger or address that indicates the warning condition. The warning condition will be
one of the following values.

* invalidDVD1_0Disc. DVD-Video disc is authored incorrectly. Playback can continue, but
unexpected behavior might occur.

* formatNotSupported. A decoder would not support the current format. Playback of a stream
might not function.

¢ illegalNavCommand. The internal DVD Navigation command processor attempted to process an
illegal command.

* open.
* seek.

* read.

See also
DVD

Last updated 9/28/2011

186

DIRECTOR SCRIPTING DICTIONARY 11.5
Events and Messages

on endSprite

Usage

-- Lingo syntax

on endSprite
statement (s)

end

// JavaScript syntax

function endSprite() {
statement (s) ;

Description

System message and event handler; contains Lingo that runs when the playhead leaves a sprite and goes to a frame in

which the sprite doesn’t exist. It is generated after exitFrame.

Place on endsprite handlers in a behavior script.

Director destroys instances of any behavior scripts attached to the sprite immediately after the endsprite event

occurs.

The event handler is passed the behavior or frame script reference me if used in a behavior. This endsprite message
is sent after the exitFrame message if the playhead plays to the end of the frame.

The go (), play (), and updateStage () methods are disabled in an on endsprite handler.

Example

This handler runs when the playhead exits a sprite:

-- Lingo syntax
on endSprite me
-- clean up

gNumberOfSharks = gNumberOfSharks - 1

sound (5) .stop ()
end

// JavaScript syntax

function endSprite() {
// clean up
gNumberOfSharks--;
sound (5) .stop () ;

See also

on beginSprite, on exitFrame

Last updated 9/28/2011

187

DIRECTOR SCRIPTING DICTIONARY 11.5
Events and Messages

on enterFrame

Usage

-- Lingo syntax

on enterFrame
statement (s)

end

// JavaScript syntax

function enterFrame ()
statement (s) ;

Description

System message and event handler; contains statements that run each time the playhead enters the frame.
Place on enterFrame handlers in behavior, frame, or movie scripts, as follows:

+ To assign the handler to an individual sprite, put the handler in a behavior attached to the sprite.

+ To assign the handler to an individual frame, put the handler in the frame script.

+ To assign the handler to every frame (unless you explicitly instruct the movie otherwise), put the on enterFrame
handler in a movie script. The handler executes every time the playhead enters a frame unless the frame script has
its own handler. If the frame script has its own handler, the on enterFrame handler in the frame script overrides

the on enterFrame handler in the movie script.

TheorderoffnuneevenmisstepFrame,prepareFrame, enterFrame,andexitFrama

This event is passed the object reference me if used in a behavior.

Example

This handler turns off the puppet condition for sprites 1 through 5 each time the playhead enters the frame:

-- Lingo syntax
on enterFrame
repeat with 1 = 1 to 5

_movie.puppetSprite (i,

end repeat
end

// JavaScript syntax
function enterFrame () ({
for (i=1;i<=5;i++) {

_movie.puppetSprite (i,

FALSE)

false) ;

Last updated 9/28/2011

188

DIRECTOR SCRIPTING DICTIONARY 11.5
Events and Messages

on EvalScript

Usage

-- Lingo syntax

on EvalScript aParam
statement (s)

end

// JavaScript syntax
function EvalScript (aParam)
statement (s) ;

Description
System message and event handler; in a movie with Adobe” Shockwave® content, contains statements that run when
the handler receives an Evalscript message from a browser. The parameter is a string passed in from the browser.

+ TheEvalScript message can include a string that Director can interpret as a Lingo statement. Lingo cannot accept
nested strings. If the handler you are calling expects a string as a parameter, pass the parameter as a symbol.

+ The on Evalscript handler is called by the Evalscript () scripting method from JavaScript or VBScript in a
browser.

Include only those behaviors in on EvalScript that you want users to control; for security reasons, don’t give
complete access to behaviors.

Note: If you place a return at the end of your EvalScript handler, the value returned can be used by JavaScript in the
browser.

Example

This shows how to make the playhead jump to a specific frame depending on what frame is passed in as the parameter:

-- Lingo syntax

on EvalScript aParam
_movie.go (aParam)

end

// JavaScript syntax
function EvalScript (aParam) {
_movie.go (aParam) ;

}

This handler runs the statement _movie.go (aParam) if it receives an EvalScript message that includes dog, cat, or
tree as an argument:

Last updated 9/28/2011

189

DIRECTOR SCRIPTING DICTIONARY 11.5 190
Events and Messages

-- Lingo syntax
on EvalScript aParam
case aParam of
"dog", "cat", "tree": _movie.go(aParam)
end case
end

// JavaScript syntax
function EvalScript (aParam)
switch(aParam) {
case "dog", "cat", "tree": movie.go(aParam);

}

A possible calling statement for this in JavaScript would be EvalScript ("dog").
This handler takes an argument that can be a number or symbol:

-- Lingo syntax
on EvalScript aParam

if word 1 of aParam = "myHandler" then
_movie.go (aParam)
end if
end

// JavaScript syntax
function EvalScript (aParam) {
if (aParam.indexOf ("myHandler",0)) {
_movie.go (aParam) ;

}

The following handler normally requires a string as its argument. The argument is received as a symbol and then
converted to a string within the handler by the string function:

-- Lingo syntax

on myHandler aParam

_movie.go(string(aParam))
end

// JavaScript syntax

function myHandler (aParam) {
_movie.go(aParam.toString()) ;

See also

externalEvent (), return (keyword)

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Events and Messages

on exitFrame

Usage

-- Lingo syntax

on exitFrame
statement (s)

end

// JavaScript syntax
function exitFrame () {
statement (s) ;

Description

System message and event handler; contains statements that run each time the playhead exits the frame that the on
exitFrame handler is attached to. The on exitFrame handler is a useful place for Lingo that resets conditions that
are no longer appropriate after leaving the frame.

Place on exitFrame handlers in behavior, frame, or movie scripts, as follows:

+ To assign the handler to an individual sprite, put the handler in a behavior attached to the sprite.
+ To assign the handler to an individual frame, put the handler in the frame script.

+ To assign the handler to every frame unless explicitly instructed otherwise, put the handler in a movie script. The
on exitFramehandler then executes every time the playhead exits the frame unless the frame script has its own on
exitFrame handler. When the frame script has its own on exitFrame handler, the on exitFrame handler in the
frame script overrides the one in the movie script.

This event is passed the sprite script or frame script reference me if it is used in a behavior. The order of frame events

iSprepareFrame,enterFrame,andexitFrame

Example
This handler turns off all puppet conditions when the playhead exits the frame:

-- Lingo syntax
on exitFrame me
repeat with i = 48 down to 1
sprite (i) .scripted = FALSE
end repeat
end

// JavaScript syntax
function exitFrame () ({
for (i=48; i>=1; i--);
sprite (i) .scripted = false;

}

This handler branches the playhead to a specified frame if the value in the global variable vTotal exceeds 1000 when
the playhead exits the frame:

Last updated 9/28/2011

191

DIRECTOR SCRIPTING DICTIONARY 11.5
Events and Messages

// JavaScript syntax
function exitFrame () {
if (_global.vTotal > 1000) {
_movie.go ("Finished") ;

See also

on enterFrame

on getBehaviorDescription

Usage

-- Lingo syntax

on getBehaviorDescription
statement (s)

end

// JavaScript syntax
function getBehaviorDescription() {
statement (s) ;

Description
System message and event handler; contains Lingo that returns the string that appears in a behavior’s description pane
in the Behavior Inspector when the behavior is selected.

The description string is optional.

Director sends the getBehaviorDescription message to the behaviors attached to a sprite when the Behavior
inspector opens. Place the on getBehaviorDescription handler within a behavior.

The handler can contain embedded Return characters for formatting multiple-line descriptions.

Example

This statement displays “Vertical Multiline textField Scrollbar” in the description pane:
-- Lingo syntax

on getBehaviorDescription

return "Vertical Multiline textField Scrollbar"
end

// JavaScript syntax

function getBehaviorDescription() ({
return "Vertical Multiline textField Scrollbar";

See also

on getPropertyDescriptionList, on getBehaviorTooltip, on runPropertyDialog

Last updated 9/28/2011

192

DIRECTOR SCRIPTING DICTIONARY 11.5
Events and Messages

on getBehaviorTooltip

Usage

-- Lingo syntax

on getBehaviorTooltip
statement (s)

end

// JavaScript syntax
function getBehaviorTooltip() {
statement (s) ;

Description

System message and event handler; contains Lingo that returns the string that appears in a tooltip for a script in the
Library palette.

Director sends the getBehaviorTooltip message to the script when the cursor stops over it in the Library palette.
Place the on getBehaviorTooltip handler within the behavior.

The use of the handler is optional. If no handler is supplied, the cast member name appears in the tooltip.

The handler can contain embedded Return characters for formatting multiple-line descriptions.

Example

This statement displays “Jigsaw puzzle piece” in the description pane:
-- Lingo syntax

on getBehaviorTooltip

return "Jigsaw puzzle piece"
end

// JavaScript syntax

function getBehaviorTooltip() {
return "Jigsaw puzzle piece";
See also

on getPropertyDescriptionList, on getBehaviorDescription, on runPropertyDialog

on getPropertyDescriptionList

Usage

-- Lingo syntax

on getPropertyDescriptionList
statement (s)

end

// JavaScript syntax

function getPropertyDescriptionList () {
statement (s) ;

Last updated 9/28/2011

193

DIRECTOR SCRIPTING DICTIONARY 11.5 194
Events and Messages

Description
System message and event handler; contains Lingo that generates a list of definitions and labels for the parameters that
appear in a behavior’s Parameters dialog box.

Place the on getPropertyDescriptionList handler within a behavior script. Behaviors that don’t contain an on
getPropertyDescriptionList handler don’t appear in the Parameters dialog box and can’t be edited from the
Director interface.

The on getPropertyDescriptionList message is sent when any action that causes the Behavior Inspector to open
occurs: either when the user drags a behavior to the Score or the user double-clicks a behavior in the Behavior
inspector.

The #default, #format, and #comment settings are mandatory for each parameter. The following are possible values
for these settings:

#default The parameter’s initial setting.

#format #integer #float #string #symbol #member #bitmap #filmloop #field #palette #picture
#sound #button #shape #movie #digitalvideo #script #richtext #ole #transition #xtra
#frame #marker #ink #boolean

#comment A descriptive string that appears to the left of the parameter’s editable field in the Parameters dialog box.

#range A range of possible values that can be assigned to a property. The range is specified as a linear list with several
values or as a minimum and maximum in the form of a property list: [#min: minvalue, #max: maxValue].

Example

The following handler defines a behavior’s parameters that appear in the Parameters dialog box. Each statement that
begins with addprop adds a parameter to the list named description. Each element added to the list defines a property
and the property’s #default, #format, and #comment values:

on getPropertyDescriptionList
description = [:]
description.addProp (#dynamic, [#default:1, #format:#boolean, #comment:"Dynamic"])
description.addProp (#fieldNum, [#default:1, #format:#integer, #comment:"Scroll which
sprite:"])
description.addProp (#extentSprite, [#default:1,#format:#integer, #comment: "Extend Sprite:"])
description.addProp (#proportional, [#default:1,#format:#boolean, #comment: "Proportional:"])
return description
end

See also

addProp, on getBehaviorDescription, on runPropertyDialog

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 195
Events and Messages

on hyperlinkClicked

Usage

-- Lingo syntax

on hyperlinkClicked me, data, range
statement (s)

end

// JavaScript syntax
function hyperlinkClicked(data, range) {
statement (s) ;

Description

System message and event handler; used to determine when a hyperlink is actually clicked.

This event handler has the following parameters:

« me Used in a behavior to identify the sprite instance

« data The hyperlink data itself; the string entered in the Text inspector when editing the text cast member

+ range The character range of the hyperlink in the text (It’s possible to get the text of the range itself by using the
syntax member Ref.char[range[1]..range[2]]

This handler should be attached to a sprite as a behavior script. Avoid placing this handler in a cast member script.

Example

This behavior shows a link examining the hyperlink that was clicked, jump to a URL if needed, then output the text of
the link itself to the message window:

property spriteNum
on hyperlinkClicked(me, data, range)
if data starts "http://" then
gotoNetPage (data)
end if
currentMember = sprite (spriteNum) .member
anchorString = currentMember.char [range[1l]..range[2]]
put ("The hyperlink on"&&anchorString&&"was just clicked.")
end
// JavaScript syntax
function hyperlinkClicked(data, range) {
var st = data.slice(0,7);
var ht = "http://";
if (st = ht) {
gotoNetPage (data) ;
}
var currentMember = sprite(this.spriteNum) .member;
var rl = currentMember.getPropRef ("char", range[l]).hyperlinkRange;
var a = r1[1l] - 1;
var b = r1[2];
var st = new String(currentMember.text) ;
var anchorString = st.slice(a, b);
put ("The hyperlink on " + anchorString + " was just clicked.");

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Events and Messages

onidle

Usage

-- Lingo syntax

on idle
statement (s)

end

// JavaScript syntax

function idle() {
statement (s) ;

Description

System message and event handler; contains statements that run whenever the movie has no other events to handle
and is a useful location for Lingo statements that you want to execute as frequently as possible, such as statements that
update values in global variables and displays current movie conditions.

Because statements in on idle handlers run frequently, it is good practice to avoid placing Lingo that takes a long time

to process in an on idle handler.

It is often preferable to put on idle handlers in frame scripts instead of movie scripts to take advantage of the on idle

handler only when appropriate.

Director can load cast members from an internal or external cast during an idle event. However, it cannot load linked
cast members during an idle event.

The idle message is only sent to frame scripts and movie scripts.

Example

This handler updates the time being displayed in the movie whenever there are no other events to handle:

-- Lingo syntax
on idle

member ("Time") .text = _system.time()

end idle

// JavaScript syntax

function idle() {

member ("Time") .text = _system.time();
}
See also

idleHandlerPeriod

Last updated 9/28/2011

196

DIRECTOR SCRIPTING DICTIONARY 11.5 197
Events and Messages

on isOKToAttach

Usage

-- Lingo syntax

on isOKToAttach me, aSpriteType, aSpriteNum
statement (s)

end

// JavaScript syntax
function isOKToAttach (aSpriteType, aSpriteNum) {
statement (s)

Description
Built-in handler; you can add this handler to a behavior in order to check the type of sprite the behavior is being
attached to and prevent the behavior from being attached to inappropriate sprite types.

When the behavior is attached to a sprite, the handler executes and Director passes to it the type of the sprite and its
sprite number. The me argument contains a reference to the behavior that is being attached to the sprite.

This handler runs before the on getPropertyDescriptionList handler

The Lingo author can check for two types of sprites. #graphic includes all graphic cast members, such as shapes,
bitmaps, digital video, text, and so on. #script indicates the behavior was attached to the script channel. In this case,
the spriteNum is 1.

For each of these sprite types, the handler must return TRUE or FALSE. A value of TRUE indicates that the behavior can
be attached to the sprite. A value of FALSE prevents the behavior from being attached to the sprite.

If the behavior contains no on isOKToAttach handler, then the behavior can be attached to any sprite or frame.

This handler is called during the initial attachment of the behavior to the sprite or script channel and also when
attaching a new behavior to a sprite using the Behavior inspector.

Example

This statement checks the sprite type the behavior is being attached to and returns TRUE for any graphic sprite except
a shape and FALSE for the script channel:

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5
Events and Messages

-- Lingo syntax
on isOKToAttach me, aSpriteType, aSpriteNum
case aSpriteType of
#graphic: -- any graphic sprite type
return sprite(aSpriteNum).member.type <> #shape
-- works for everything but shape cast members
#script: --the frame script channel
return FALSE -- doesn't work as a frame script
end case
end

// JavaScript syntax
function isOKToAttach (aSpriteType, aSpriteNum) {
switch (aSpriteType) ({
case symbol ("graphic"): // any graphic sprite type
return sprite(aSpriteNum) .member.type != symbol ("shape") ;
// works for everything but shape cast members
case symbol ("script"): // the frame script channel
return false; // doesn't work as a frame script

on keyDown

Usage

-- Lingo syntax

on keyDown
statement (s)

end

// JavaScript syntax
function keyDown () {
statement (s) ;

Description
System message and event handler; contains statements that run when a key is pressed.

When a key is pressed, Director searches these locations, in order, for an on keyDown handler: primary event handler,
editable field sprite script, field cast member script, frame script, and movie script. For sprites and cast members, on
keyDown handlers work only for editable text and field members. A keyDown event on a different type of cast member,
such as a bitmap, has no effect. (If pressing a key should have the same response throughout the movie, set
keyDownScript.)

Director stops searching when it reaches the firstlocation that has an on keyDown handler, unless the handler includes
the pass command to explicitly pass the keyDown message on to the next location.

The on keyDown event handler is a good place to put Lingo that implements keyboard shortcuts or other interface
features that you want to occur when the user presses keys.

When the movie plays back as an applet, an on keyDown handler always traps key presses, even if the handler is empty.
If the user is typing in an editable field, an on keyDown handler attached to the field must include the pass command
for the key to appear in the field.

Last updated 9/28/2011

198

DIRECTOR SCRIPTING DICTIONARY 11.5 199
Events and Messages

Where you place an on keyDown handler can affect when it runs.

+ To apply the handler to a specific editable field sprite, put the handler in a sprite script.

+ To apply the handler to an editable field cast member in general, put the handler in a cast member script.
+ To apply the handler to an entire frame, put the handler in a frame script.

+ To apply the handler throughout the entire movie, put the handler in a movie script.

You can override an on keyDown handler by placing an alternative on keyDown handler in alocation that Lingo checks
before it gets to the handler you want to override. For example, you can override an on keyDown handler assigned to
a cast member by placing an on keyDown handler in a sprite script.

Example
This handler checks whether the Return key was pressed and if it was, sends the playhead to another frame:

-- Lingo syntax
on keyDown

if (_key.key = RETURN) then movie.go ("AddSum")
end keyDown

// JavaScript syntax
function keyDown () {
if (_key.keyCode == 36) ({
_movie.go ("AddSum") ;

See also

charToNum (), keyDownScript, keyUpScript, key, keyCode, keyPressed()

on keyUp

Usage

-- Lingo syntax

on keyUp
statement (s)

end

// JavaScript syntax
function keyUp () {
statement (s) ;

Description

System message and event handler; contains statements that run when a key is released. The on keyUp handler is
similar to the on keyDown handler, except this event occurs after a character appears if a field or text sprite is editable
on the screen.

When a key is released, Lingo searches these locations, in order, for an on keyUp handler: primary event handler,
editable field sprite script, field cast member script, frame script, and movie script. For sprites and cast members, on
keyUp handlers work only for editable strings. A keyUp event on a different type of cast member, such as a bitmap, has
no effect. If releasing a key should always have the same response throughout the movie, set keyUpscript.

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 200
Events and Messages

Lingo stops searching when it reaches the first location that has an on keyUp handler, unless the handler includes the
pass command to explicitly pass the keyUp message on to the next location.

The on keyUp event handler is a good place to put Lingo that implements keyboard shortcuts or other interface
features that you want to occur when the user releases keys.

When the movie plays back as an applet, an on keyUp handler always traps key presses, even if the handler is empty.
If the user is typing in an editable field, an on keyUp handler attached to the field must include the pass command for
the key to appear in the field.

Where you place an on keyUp handler can affect when it runs, as follows:

« To apply the handler to a specific editable field sprite, put it in a behavior.

+ To apply the handler to an editable field cast member in general, put it in a cast member script.
« To apply the handler to an entire frame, put it in a frame script.

+ To apply the handler throughout the entire movie, put it in a movie script.

You can override an on keyUp handler by placing an alternative on keyup handler in a location that Lingo checks
before it gets to the handler you want to override. For example, you can override an on keyUp handler assigned to a
cast member by placing an on keyUp handler in a sprite script.

Example

This handler checks whether the Return key was released and if it was, sends the playhead to another frame:

-- Lingo syntax

on keyUp
if (_key.key = RETURN) then _movie.go ("AddSum")
end keyUp

// JavaScript syntax
function keyUp () {
if (_key.keyCode == 36) ({
_movie.go ("AddSum") ;

See also

on keyDown, keyDownScript, keyUpScript

on mouseDown (event handler)

Usage

-- Lingo syntax

on mouseDown
statement (s)

end

// JavaScript syntax

function mouseDown () {
statement (s) ;

Last updated 9/28/2011

DIRECTOR SCRIPTING DICTIONARY 11.5 201
Events and Messages

Description

System message and event handler; contains statements that run when the mouse button is pressed.

When the mouse button is pressed, Lingo searches the following locations, in order, for an onmouseDown handler:
primary event handler, sprite script, cast member script, frame script, and movie script. Lingo stops searching when it
reaches the first location that has an on mouseDown handler, unless the handler includes the pass command to
explicitly pass the mouseDown message on to the next location.

To have the same response throughout the movie when pressing the mouse button, set mouseDownScript or puta
mouseDown handler in a Movie script.

The on mouseDown event handler is a good place to put Lingo that flashes images, triggers sound effects, or makes
sprites move when the user presses the mouse button.

Where you place an on mouseDown handler can affect when it runs.

+ To apply the handler to a specific sprite, put it in a sprite script.

 To apply the handler to a cast member in general, put it in a cast member script.
+ To apply the handler to an entire frame, put it in a frame script.

+ To apply the handler throughout the entire movie, put it in a movie script.

You can override an on mouseDown handler by placing an alternative on mouseDown handler in a location that Lingo
checks before it gets to the handler you want to override. For example, you can override an on mouseDown handler
assigned to a cast member by placing an on mouseDown handler in a sprite script.

If used in a behavior, this event is passed the sprite script or frame script reference me.

Example
This handler checks whether the user clicks anywhere on the Stage and sends the playhead to another frame if a click
occurs:

-- Lingo syntax
on mouseDown

if (_mouse.clickOn = 0) then movie.go ("AddSum")
end

// JavaScript syntax
function mouseDown () {
if (_mouse.clickOn == 0)
_